

DYNAMICS OF MICROBIAL COMMUNITIES DURING DECOMPOSITION OF ¹³C LABELLED CORN UNDER DIFFERENT TILLAGE PRACTICES IN OHIO USA

Oguz Can Turgay¹, Nicola Lorenz², Nigel Hoilett² Taniya Roy Chowdhury², Richard P. Dick², Bobbi Helgason³

¹ Ankara University, TURKEY

² Ohio State University, USA

³Saskatchewan University, CANADA

Key Concepts in the research...

Soil microbial communities as central components of soil controlling **carbon decomposition and the partitioning** back to the atmosphere as CO₂ or storing in soils.

No tillage (NT) ecosystems stabilize carbon by surface decomposition and **binding of organic carbon to mineral soil layers**. On the other hand, to effectively manage NT practices fundamental information is needed on how these systems sequester carbon.

We hypothesize that **nutrient transport** between surface litter and mineral soil is an important mechanism **generated by bacteria and fungal hyphae** and can be **monitored by isotopic carbon pathway** (13C) in the presence of different **microbial barriers** (1µ and 5µ **meshes**) that may allow us to differentaite fungal and bacterial decomposition processes in NT ecosystem.

WHAT IS ¹³C LABELLING?

Captured honeybees in Australia, **fitted with tiny sensors** and released back into the wild (as an **extensive environmental monitoring**) to answer questions about **colony behaviours and disorders**, AUSTRALIA

"...A technique used to track the passage of an isotope, or an atom with a variation, through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific atoms by their isotope....", **Wikipedia**

AIMS OF STUDY

To examine microbial ¹³C transport from the NT litter layer to the mineral soil layer.

The study is simply based on the comparison of ¹³C labelled-residue decomposition of under plough tillage (PT) and no-tillage (NT) systems in OARDC*, Wooster, Ohio, USA, where one of the world's oldest experimental NT plot (since 1962) is available.

* Ohio Agricultural Research and Development Center

MATERIAL and **METHODS**

1) Isotopic labelling, preparation of ¹³C labelled corn residue material for field and laboratory experiments)

2) Field-incubation setup, a PVC mesocosm design fitted with exclusion barriers to understand the degree and temporal dynamics of microbial ¹³C transport from litter to mineral soil

3) Seasonal monitoring of ¹³C transport for Autumun (November), Spring (May) and Summer (mid July) through different microbial groups in soil by using ¹³C PLFA technology*

*Measurement of ¹³C-phospholipid fatty acid profile belongs to different microbial groups in soil.

13C CORN LABELLING GREENHOUSE EXPERIMENT

- 40 pots (23x25cm, 12lt)
- Peat:perlit media (Fafard 3B mix, 2kg per pot)
- Fertilization (15-9-12 Osmocote Plus-slow release fertilizer and 20-10-20 PLS microelements
- Temperature conditions (28/22C daylight/overnight)
- 6 to 8 weeks growth period

13C labelled corn with 80-90cm height and 13-15 g dry biomass in the end of 6-8 weeks growth period

Mesocosm design in Plough Till (PT) plots

(3 inch PVC including mineral soil + ¹³C labelled corn residue)

Mesocosm design in No Till (NT) plots

PVC coupling separeted with nylon meshes with different pore size

1,27μm (Stops fungal penetration)

5,0μm (fungi have ≥2mμ dia)

5,0mm (smallest soil animal size 7-70μm)

Field Layout

¹³C-TRANSPORT EXPERIMENT IN TRIPLETT-VAN DOREN LONG-TERM TILLAGE PLOTS

- soil sampling (November, May and July)
- splitting cores to 0-2.5 and 2.5-7.5cm layers
- ¹³C-PLFA analysis
- SOM fractionation and measurement of ¹³C enrichment in humic-fulvic acids and humin fractions

Marker fatty acids tracked by 13C applied and related microbial groups in the present study

Gram positive (6FAs)	15:0 ANTEISO, 16:1 ISO G, 16:0 ISO, 16:0, 17:0 ISO and 17:0 ANTEISO
Gram negative (4FAs)	16:1 w7c, 17:0 CYCLO, 16:1 2OH and 18:1 w9t Alcohol
Non-specific Bacteria (1 FA)	18:0
Saprotrophic Fungi (2FAs)	18:1 w9c and 18:1 w9t
Arbuscular mycorrhiza (1FA)	16:1 w5c

```
obial groups
                                             Marker FAs
                                                                       References
           Gram+ bacteria
                          i15:0; a15:0; i16:0; i17:0; a17:0
                                                             O'leary and Wilkinson, 1988
                          (16:1w9c, 16:1w7c, 16:1w5c, 18:1w7 <20%*)
         Gram-bacteria
                        16:1w7c; 18:1w7c (>20%*)
                                                           Zelles, 1999
                       17:0cy; 19:0cy; 16:1 OH
                                                          Guckert et al. 1985
      Actinobacteria
                      16:0 10ME; 17:0 10ME; 18:0 10ME
                                                          Kroppenstedt, 1992
     Methanogens
                      Type I: 16:1ω8
                                                         Bowman et al. 1993
                     Type II: 18:1ω8
                                                        Borjesson et al. 1998
   Sulphate red. Bac. 17:0cy, 16:0 10ME
                                                        Zelles, 1999
  Fungi
                  18:2w6,9c; 18:1w9c
                                                       Federle, 1986
AM fungi
                 16:1w5
                                                      Olsson et al., 1999
Protozoa
                20:4w6,9,12,15c
                                                     Chen et al., 2001
matodes
              20:4w6,9,12,15c
                                                    Ruess, 2005
```

Results in general (NMDS analysis by tillage)

Seasonality seems more effective on microbial carbon transfer and no statistically significant difference between different tillage methods

Results in general (NMDS analysis only no tillage)

Microbial carbon transport was significantly affected from seasonality ander different fungal barriers and soil depths (p< 0.001) but not from barriers itself

Early December (icy)

Late December (frozen)

Mid February (oversaturated)