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Abstract

Fluid models are used to quantitatively describe many phenomena in plasmas, providing a

reduced description of the lower dimensionality in comparison to kinetic models. Often, fluid

models are more amenable to numerical and analytical analysis including nonlinear effects.

The principal drawback of fluid models is the inability to describe kinetic effects which are

important in the long mean free path regimes. However, a linear closure can be introduced

to model kinetic effects, such as Landau damping. Such closures for three- and four-moment

fluid model [G.W. Hammett and F.W. Perkins, Physical Review Letters 64, 3019(1990)] are

known to be able to model plasma response function (with the decent accuracy) and kinetic

effects of plasma microinstabilities (such as ion-temperature gradient instability). One of the

results of this work is the derivation of the exact linear closure for the set of one-dimensional

plasma fluid equations. The exact linear expression for the heat flux is obtained thus replacing

the infinite hierarchy of fluid moments with a finite set of equations that incorporate kinetic

effects of thermal motion into a fluid model. It is shown that the obtained exact closure in

the limit case is reduced to the closure derived previously by Hammett and Perkins. Another

goal of this work is to show how such fluid model with the kinetic closure can be modeled

numerically using a recently developed non-Fourier method [A. Dimits, et. al., Phys Plasmas,

21 (5) 2014]. The method is based on the approximation of a Fourier image by a sum of

Lorentzian functions allowing fast conversion into the configuration (real) space. With this

approach, the one-dimensional model which includes evolution equation for the energy was

implemented using the BOUT++ framework. The numerical implementation was verified in

the series of test simulations of the plasma response function. Additionally, a self-consistent

model of the ion Landau damping was implemented. It is shown that the damping rate for

the ion Landau damping model agrees well with the exact kinetic result.
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Chapter 1

Introduction

Plasma is a quasineutral gas of charged particles in which particle interactions are predom-

inantly collective due to long-range electromagnetic forces. Collective effects are responsible

for a plethora of physical phenomena such as waves, instabilities, turbulence, and transport.

Dynamics of plasma involve electromagnetic forces and classical equations of motion. Quan-

tum effects in plasma are important when the de Broglie wavelength of the charge carriers

becomes comparable to the interparticle distance. Most of modern laboratory and nature

plasmas are not sufficiently dense to satisfy this criterion. Some plasmas in space and in a

specific laboratory experiments (e.g., plasma X-ray sources) can be relativistic, however for

our applications typical plasma temperatures are in the range below 10 keV, so the relativistic

effects are not important.

A basic plasma model can be based on classical continuum mechanics using the conser-

vation of mass, momentum and energy. Such a model would involve the equations for basic

fluid variables such as average mass density ρ(x, t), fluid velocity V(x, t), energy T (x, t).

The evolution of these macroscopic variables will depend on the position and time. Strictly

speaking, plasmas can be well described by fluid equations [1–5], when particle collisions are

frequent and the mean free path between particle collisions is short compared to the length

scale of the interest (e.g. the wavelength of oscillations) and, as the result, the deviation from

a fully thermodynamic state is small. On the other hand, statistical description is applicable

and the probability, or distribution function f(x,v, t) can be used to characterize the plasma

state. The evolution of the distribution function itself is described by the kinetic equation.

Complicated nature of plasma phenomena often makes difficult or impossible the use of

an analytical approach, in particular, for a solution of plasma kinetic equations. Therefore,

numerical simulations play an important role in a modern plasma physics research. Kinetic
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simulations, e.g. particle-in-cell (PIC) methods, or direct solutions of the nonlinear differen-

tial kinetic equation, offer comprehensive and the most accurate approach [6–8]. However,

such simulations can be very demanding for computational resources (especially in 3D ge-

ometries) and can be difficult to interpret. On the other hand, fluid models, based on the

evolution of several fluid variables, are generally easier to simulate numerically. They are

also easier for physical interpretation.

The problem with the fluid approach, however, is in the absence of kinetic (velocity-

dependent) effects which are often critically important for nonlinear plasma dynamics, insta-

bilities and transport, for example, for the ion-temperature-gradient (ITG) driven instabili-

ties [9,10]. Macroscopic plasma variables (density, fluid velocity, pressure,...) can be obtained

from the distribution function. The evolution equations for such macroscopic variables are

obtained by the integration of the kinetic equation, weighted with increasing powers of the

velocity. This procedure results in an infinite hierarchy of moment equations: each of these

moment equations involves another variable which is the higher-order moment. Rigorous

closure for these equations (higher moments) can be obtained only in the limit of a short

mean free path λ � L, and/or strong collisions ν � ω, where ω is the characteristic fre-

quency and L is the characteristic length for the phenomena of interest, λ = vT/ν is the

mean free path between collision, ν is the frequency of collisions, vT is the particle thermal

velocity. In weakly collisional regimes when thermal motion is important these conditions

are not satisfied, and one generally needs to refer to the kinetic theory.

One of the important kinetic effects is Landau damping: the collisionless interaction

leading to the transfer of energy between the waves and particles. As shown in this work,

it is possible to incorporate the linear Landau damping effects into fluid models. A study

of Landau-fluid models that include closures for kinetic effects, in particular, for Landau

damping, is the goal of this work. The Hammett-Perkins approach [11] using an approximate

ansatz was the first systematic approach suggested to address this problem. The derivation

of the exact one-dimensional closure for the set of three-moment fluid equations is performed

in this thesis with generalized Chapman-Enskog [1] approach. The derived closure exactly

reproduces the linear kinetic result and in an appropriate limit reduces to the Hammett-

Perkins closure.
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The exact linear closure is written in Fourier space and is expressed as a complex function

of the mode frequency and the wave number. This means that in nonlinear simulations (that

often are performed in configuration space) one needs to perform back and forth transforma-

tions between Fourier and configuration space. This is not feasible to do at every time step.

A non-Fourier method [12] was suggested recently to avoid this problem [12]. Numerical im-

plementation of the non-Fourier method is another goal of this thesis. I have done this within

the plasma fluid simulation framework BOUT++ [13]. In order to verify the numerical im-

plementation, a number of test simulations were performed. These includes evaluation of the

plasma response function as well as the self-consistent model for the ion Landau damping.

Plasma response function is defined here as plasma density response to the perturbed poten-

tial, δn/δφ, which is prescribed externally with given frequency and the wave number. The

plasma response function implemented in BOUT++, both for three- and four-moment fluid

models with kinetic closures, shows excellent agreement with the analytical results in Fourier

space. In fluid model of the ion sound wave with Landau damping, the potential and the

complex wave frequency are determined self-consistently. This self-consistent model shows

excellent agreement with the exact linear dispersion relation. Therefore, the simulations

verify the numerical implementation of kinetic closures.

The thesis is organized as follows. Introduction starts with general general review of

kinetic and fluid plasma equations. Using the example of simple ion sound waves, the limi-

tations of the fluid approach is discussed next: contrary to the kinetic approach, fluid model

solution cannot predict the Landau damping. In Chapter 2 it is shown how to overcome this

problem by introducing proper kinetic closures for fluid equations. The review of Hammett-

Perkins approach [11] is given. Then, I present my derivation of the exact one-dimensional

closure with the Chapman-Enskog [1] method for three-moment fluid equations. I show that

in a particular limit this result is reduced to the Hammett-Perkins ansatz. I also derive next

order corrections to the Hammett-Perkins which give more accurate results. In Chapter 3,

I describe my numerical implementation of the obtained closures and results of my simula-

tions. Appendix A reviews of the exact closure models derived in Chang-Callen [14] (CC)

and Litt-Smolyakov [15] (LS) works for more general three-dimensional plasma fluid equa-

tions. I discuss here some inconsistency between the CC and LS results. Appendix B gives
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additional information on the plasma dispersion function and its numerical implementation.

Appendix C lists some integrals that have been used in the exact linear closures in Chapter

2.

1.1 Plasma models

This section provides a short introduction into the two basic plasma description methods:

the microscopic (kinetic) approach and the macroscopic (fluid) approach.

1.1.1 Kinetic plasma equations: Boltzmann and Vlasov models

Since there is a large number of particles in plasmas, it is impractical to describe the

coordinates and velocity of each particle. It is conventional to use a distribution function,

f(x,v, t), to describe the plasma probabilistically. The distribution function gives the number

of particles dN per unit volume dxdv in a six-dimensional velocity-configuration phase space:

f(x,v, t) =
dN(x,v, t)

dxdv
. (1.1)

It can be thought as a number of particles at a given time t in a small phase-space region

∆x∆v. Due to a large number of particles in real plasmas, the distribution function provides

a sufficiently accurate description in a statistical sense. A system of particles can be thought

as “fluid” in six-dimensional phase space that evolves in time.

Before introducing the plasma kinetic equations for finding a distribution function in

plasma, it is useful to describe some terminology relevant to the distribution function. If the

distribution function has coordinate dependence, it is said to be inhomogeneous, in contrast

to the homogeneous case, in which there is no spatial dependence. A dependence on the ori-

entation of the velocity vector v makes the distribution function anisotropic, opposite to the

isotropic case, when there is no particular direction in the velocity space. Plasma in thermal

equilibrium is usually assumed to have a Maxwellian distribution, which is homogeneous,

isotropic, and time-independent, given by

fM =
n

π3/2v3T
e−v

2/v2T , (1.2)
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where n is the particles number density, v2T = 2T/m is the thermal velocity, and T ≡ kBT is

the temperature, measured in units of energy.

Fig. 1.1 shows several possible types of the Maxwellian distribution in two-dimensional

(vy, vx) velocity space. It is given in contour plot, i.e. lines of constant value of the function.

First, the Maxwellian distribution (1.2) (Fig. 1.1a), represented by concentric circles around

zero. Flowing (drifting) Maxwellian (Fig. 1.1b) is the distribution with an average velocity

in a particular direction (x-direction in the picture). Anisotropic Maxwellian can arise when

a temperature in some direction is different from another, e.g. Tx > Ty (Fig. 1.1c). The so-

called bump-on-tail distribution function can arise in a situation when a weak beam is present

in the system (Fig. 1.1d) in addition to the Maxwellian for a bulk plasma. The distribution

function of the type shown in Fig. 1.1d is an example when in addition to the basic moments

of density, pressure and fluid flow velocity, there could be higher-order moments like the heat

flux.

Generally the distribution functions need to be defined for each sort of particles in a

given system. Therefore, one can define fα(x,v, t), where α corresponds to particle type. To

obtain the differential equation for the evolution of the distribution function in space and

time, one considers that the number of particles is conserved under the flow in phase space.

This conservation law can be written in the form

d

dt

ˆ
dxdvf(x,v, t) = 0. (1.3)

Together with the conservation of the phase-space volume (Liouville Theorem)

d

dt

ˆ
dxdv = 0, (1.4)

it results in the conservation of the distribution function fα(x,v, t) in phase space in the

absence of collisions:
dfα
dt

=
∂fα
∂t

+ v · ∂fα
∂x

+ a · ∂fα
∂vα

= 0, (1.5)

where the chain rule was used to find the total time derivative. Here,

v =
dx

dt
(1.6)

and

a =
dv

dt
(1.7)
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(d) Bump-on-tail distribution

Figure 1.1: Types of distribution function in 2D (vx, vy) phase space, represented
with the contour lines of a constant velocity distribution function (arbitrary units).
The examples (a), (b), and (c) do not involve the higher-order moments, like the heat
flux; (d) is the example of the distribution function with a finite heat flux.
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specify the microscopic velocity and acceleration in the phase space. Equations (1.6, 1.7) are

equivalent to the characteristics of the PDE in Eq. (1.5). These characteristics are formally

written in the form:

dx

v
= dt (1.8)

and

dv

qα
mα

(
E +

v ×B

c

) = dt. (1.9)

Eq. (1.5), describing particle flow in phase space is a collisionless kinetic (Vlasov) equation,

or simply Vlasov equation [16]. In plasmas with collisions, the number of particles (in phase

space) is not conserved: a particle can be scattered from the given region of velocity space

by the collision. It will result in Boltzmann equation:

dfα
dt

= C(f), (1.10)

where C(f) is a collision operator. When the effects caused by particle interactions are

negligible, C(f) = 0. The present work is focused on collisionless plasma models, therefore

the Vlasov equation will be used in our calculations.

Kinetic equation (1.5) can be derived from N-particle distribution function, or Klimon-

tovich equation [17], or from the BBGKY hierarchy [18–22], that provides exact description

of many particles in plasma, but are of no direct use due to extremely large number of par-

ticles in real systems. Vlasov equation becomes exact when the number of particles in a

Debye volume becomes infinite. Strictly speaking, Vlasov equation applies to an ensemble

of plasmas, and for a large number of particles in plasma, any fluctuations of the field can

be neglected. This is equivalent to replacing the real fields with smoothed (averaged) fields.

Including the internal smoothed fields in the force term of Eq. (1.5), one obtains the most

known form of Vlasov equation:

∂fα
∂t

+ v · ∂fα
∂x

+
qα
mα

(
E +

v

c
×B

)
· ∂fα
∂v

= 0, (1.11)
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where macroscopic internal electromagnetic fields E and B must satisfy Maxwell equations:

div E = 4πρ, (1.12)

div B = 0, (1.13)

rot E = −1

c

∂B

∂t
, (1.14)

rot B =
4π

c
J +

1

c

∂E

∂t
. (1.15)

Charge density ρ can be found by summation:

ρ(x, t) =
∑

α=i,e

qαnα(x, t), (1.16)

where space density n can be found by integrating the distribution function over the entire

velocity space:

nα(x, t) =

ˆ
v

fα(x,v, t)d3v. (1.17)

Current density J is

J(x, t) =
∑

α=i,e

qαnα(x, t)V(x, t) =

ˆ
v

vfα(x,v, t)d3v, (1.18)

where V(x, t) is the average flow velocity. Eqs. (1.11) to (1.18) form a complete set of

self-consistent equations to be solved simultaneously and called the Vlasov–Maxwell system.

Even though the Vlasov equation (1.5) does not include collision term explicitly, it is not

so limited as may appear, as the Lorentz force already includes a number of the effects of

particle interactions.

1.1.2 Particle-in-cell method

One of the kinetic methods is to solve Vlasov–Maxwell system (1.11-1.18) by the nu-

merical particle-in-cell (PIC) method. It has been developed and used initially to study

hydrodynamic problems [23]. Nowadays, It became the most popular technique for solving

kinetic plasma equations numerically. Essentially, PIC is a direct method of following parti-

cles along the trajectories in the electric field created by the collection of the same particles.

Particles positions are advanced in time in the given electric field, then the field is recalcu-

lated at the new positions. The process is then repeated. The information about particle
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positions and their velocities provides direct knowledge of the particle distribution function.

The particles are considered as discrete objects, but for field calculation, charges are spread

in space and approximated by the continuous distribution. The field is calculated on the

fixed grid (set of cells) and for a continuous distribution of the electric charge, hence the

name, particles-in-cell. PIC is relatively simple and straightforward method to implement,

though may require significant computational resources for realistic parameters.

For illustrative purposes let us present two examples of PIC simulations which I performed

by using the open-source codes [7]. I show here the examples of Landau damping [24] and

two-stream instability [25]. Incorporation of the Landau damping into fluid equations is

a goal of this work and I show the results of PIC simulations to explain the physics of

Landau damping. Landau damping problem is introduced further in this Chapter, along

with the analytical approach, and the PIC example is shown at the end of this Chapter.

PIC simulations of two-stream instability [26] are used to illustrate the nonlinear regime of

wave-particle interactions (nonlinear wave trapping, Fig. 1.2) and discuss the limitations of

the linear closures. The PIC calculations can be continued well into the nonlinear stage,

and various forms of the distribution functions are observed. Note that the closure methods

considered in this work are only good for the linear regime with small deviations, such as in

Figs. 1.2a-1.2c. Strong nonlinearity, shown in Figs. 1.2d-1.2f, requires fully nonlinear kinetic

approach.

Particle-in-cell simulations for our examples were performed with 1D electrostatic XES1

[27] code, which is a version of the ES1 code (described in [26]) with the support of graphical

user interface (X-Window System). ES1 code simulates plasma in a periodic domain, with

electrostatic potential solver in Fourier space using Fast-Fourier transform. An integration of

equations of motion is done with a popular leap-frog method and Boris scheme for magnetized

particles [28].

1.1.3 Fluid plasma equations

An alternative method of plasma description is based on the fluid model. It describes

plasma with the averaged (over a large number of particles) macroscopic variables, such as

density, momentum, temperature, and so on. The plasma fluid equations are derived by

9
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Figure 1.2: Phase space evolution for two-stream instability, initialized with the two
counter-streaming Maxwellian beams. Beams are represented with black (moving in
the negative direction) and blue (moving in the positive direction) dots. System also
includes immobile ion’s background. Velocity v and coordinate x units are shown in
normalized units. Later in the simulation, (d), (e) and (f), the system enters the strongly
nonlinear stage with particle trapping and multivalued solutions. These regimes cannot
be described by the linear closures studied in this thesis.
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taking velocity moments of the Vlasov equation (1.5). This procedure reduces the seven-

dimensional space (x,v, t) to the four-dimensional space (x, t) for a finite number of macro-

scopic fluid variables. The derivation itself can be found in the general plasma physics

books [29,30]. It is presented here for the illustrative purpose, to show how the closure prob-

lem arises in the system of plasma fluid equations. Let us first represent the kinetic Vlasov

equation (1.5) in a conservative form as

∂f

∂t
+

∂

∂x
· vf +

∂

∂v
· af = 0, (1.19)

where

a =
q

m

(
E +

v

c
×B

)
, (1.20)

and indices were omitted for convenience. In the following, the obtained expressions are

applicable for ions or electrons. Representation (1.19) is more convenient for the derivation

of moment equations. Let us start by taking the first moment by integrating Eq. (1.19) with

a moment “1”: ˆ
d3v

∂f

∂t
+

ˆ
d3v

∂

∂x
· vf +

ˆ
d3v

∂

∂v
· af = 0. (1.21)

Integrals over the velocity space are taken at constant (t,x) which allows moving partial

derivatives with respect to time and position outside the integrals. This can not be applied

to a partial derivative with respect to velocity, but using the divergence theorem one can

convert it into a surface integral. Therefore, Eq. (1.21) can be written as

∂

∂t

ˆ
d3v f +

∂

∂x
·
ˆ

d3v vf +

‹

∞

dsv · af = 0. (1.22)

By the definition of distribution function, first term of (1.22) will give the density moment

n. The second term of (1.22) is nV, where V denotes the macroscopic average velocity. Sur-

face integral will result to zero as lim
v→∞

f = 0. Resulting expression is the density conservation

∂n

∂t
+∇ · nV = 0. (1.23)

To obtain an equation for momentum evolution, one needs to take the next moment of

the Vlasov equation (1.19) by integrating it with a weight mv:

m
∂

∂t

ˆ
d3v vf +m

∂

∂x
·
ˆ

d3v vvf +m

ˆ
d3v v

∂

∂v
· af = 0, (1.24)
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where the first term can be immediately written as

m
∂

∂t

ˆ
d3v vf = m

∂

∂t
(nV) . (1.25)

The second term of Eq. (1.24) will result in a tensor, as it contains dyadic product vv.

The latter can be simplified by representing the particle velocity as

v = V + v′, (1.26)

where V is the net fluid velocity and v′ is a random (thermal) velocity, which satisfies´
d3v v′f = 0. It can be written as

vv = VV + Vv′ + v′V + v′v′. (1.27)

The second term of Eq. (1.24) can be written as

m
∂

∂x
·
(ˆ

d3v VVf +

ˆ
d3v v′v′f

)
= ∇ · (mnVV) +∇ ·Π,

where Π = m
´

d3v v′v′f is a total stress tensor. This tensor can be represented as

Π = pI + π, (1.28)

where p = m
3

´
d3v v′2f is the isotropic pressure, I - identity tensor, and π is the traceless

anisotropic viscosity tensor (or stress tensor), which is defined as

π =

ˆ
d3v m

(
v′v′ − v′2

3
I

)
f. (1.29)

Finally, the third term in Eq. (1.24) can be transformed into

m

ˆ
d3v v

∂

∂v
· af = m

ˆ
d3v

[
∂

∂v
· vaf − ∂v

∂v
· af

]
, (1.30)

where the first term goes to zero for the same reasons as before in Eq. (1.22). The last part

undergoes the following transformation:

m

ˆ
d3v

∂v

∂v
· af = m

ˆ
d3v I · af = m

ˆ
d3v af, (1.31)

which results in

−mna = −ne
(
E +

v

c
×B

)
. (1.32)
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After combining all terms for the second moment (1.24), one has

m
∂

∂t
(nV) +m∇ · (mnVV) +∇ ·Π− ne

(
E +

v

c
×B

)
= 0. (1.33)

After simplifications and considering the density conservation (1.23) one can write the fol-

lowing momentum conservation equation:

mn
Dv

Dt
= −∇p+ ne

(
E +

v

c
×B

)
−∇π, (1.34)

where the substantial (or total) time derivative operator is:

D

Dt
≡ ∂

∂t
+ v · ∇. (1.35)

At this point, the obtained equations for density conservation (1.23) and momentum bal-

ance (1.34) are applicable for both electrons and ions. However, this model is not complete:

Eq. (1.34) contains the terms with the pressure p and the stress tensor π, which was defined

in (1.29). Skipping the full derivation (can be found in [30]) of the pressure moment, the

result is
D

Dt

(
3p

2

)
+

5p

2
∇ · u = −Π:∇u−∇ · q, (1.36)

where q is the heat flux, and represent the next (higher order) moment variable, defined as

q =

ˆ
d3v f

mv
′2

2
v

′
. (1.37)

The derived equations are exact integrals of the collisionless kinetic equation (1.19), pre-

senting particular conservation law, e.g. conservation of particles, momentum, energy, etc. It

can also be seen how each of the derived moment equations is coupled together and produce

the infinite hierarchy. Therefore, any chosen system of moment equations will not be closed,

since each equation involves a higher moment. There are generally two main approaches to

the fluid closure problem. One can simply truncate the moment hierarchy, i.e. drop the

higher-order moments. This approach was introduced by Grad [31] and has been used in a

number of studies of neutral gases [32] and plasmas [33]. Alternatively, one can explicitly cal-

culate (approximately) the higher-order moments from the kinetic theory, as it will be shown

in the next section. More accurate perturbation theory approach is based on the Chapman-

Enskog method first developed for a neutral gas dominated by collisions [1]. More detailed
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description of the approximations resulting in classical transport closures for the fluid plasma

equations can be found in Ref. [34]. The description of the Chapman-Enskog method is given

in Appendix A for the case of three-dimensional plasma in presence of collisions.

1.1.4 Collisional closures for fluid equations

This section provides the derivation of classical plasma transport coefficients in presence

of collisions. These are similar to neutral gases and therefore one can omit the effects of the

electric field. The distribution function is considered in the form f = fM + f̃ , where fM is the

Maxwellian distribution (1.2), and f̃ is a small deviation. To solve for distribution function

in presence of collisions, one needs the Boltzmann’s equation:

∂f

∂t
+ v · ∂f

∂x
= C(f), (1.38)

where the electric field is neglected and C(f) = −ν (f − fM) is the Krook’s collision operator

[29], and fM is the Maxwellian distribution (1.2). The Krook’s operator has a meaning of a

relaxation operator resulting in f̃ = 0 and thus giving standard Maxwellian distribution, as

expected. Considering the stationary case, Eq. (1.38) takes the following form:

v · ∂fM
∂x

= −νf̃ . (1.39)

By allowing the variation in space for density n(x) and temperature T (x) in the Maxwellian

distribution, the following gradient for the Maxwellian can be obtained:

∂fM
∂x

=
∇n
n
fM +

∇T
T

(
−3

2
+
v2

v2T

)
fm. (1.40)

The perturbed distribution function from Eq. (1.39) is then

f̃ =
1

ν
v ·
(∇n
n

+
∇T
T

(
−3

2
+
v2

v2T

))
fM . (1.41)

Using the expression above, one can calculate various macroscopic fluxes by integrating the

perturbed distribution function. Such fluxes can be used as closures in the corresponding set

of plasma fluid equations. For example, particle flux is defined as

Γ = nV =

ˆ
vf̃d3v. (1.42)
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To obtain the expression for particle flux in the absence of the temperature effects (T =

const), one can substitute the expression for f̃ from Eq. (1.41) into Eq. (1.42). It results in

the following expression for the particle flux in x-direction:

Γx = −1

ν

dn

dx

1

n

ˆ
v2xfMd3v =

1

ν

dn

dx

1

n
〈v2x〉, (1.43)

where averaging is made over Maxwellian distribution. Assuming isotropic velocity space

lead to 〈v2x〉 = 〈v2y〉 = 〈v2z〉 = 〈v2〉/3, therefore only 〈v2〉 can be found. While Maxwellian

distribution is isotropic in the velocity space, it is convenient to represent velocity space in

spherical coordinates. Integration over the velocity space gives:

ˆ
d3v =

2πˆ

0

dφ

πˆ

0

sin θdθ

∞̂

0

v2dv = 4π

∞̂

0

v2dv (1.44)

The average squared velocity 〈v2〉 can be found in the spherical coordinates representation:

〈v2〉 =
n

π3/2v3T

∞̂

0

4πv2e−v
2/v2T dv. (1.45)

It can be simply evaluated with integration by parts and results into 〈v2〉 = 3
2
nv2T . Therefore,

particle flux Γ due to the gradient in density is

Γ = −Dν∇n, (1.46)

where Dν =
v2T
2ν

. This expression is also known as the Fick’s first law [35]. The expression for

the particle flux can be interpreted as the closure for the continuity equation: no additional

equations are needed to describe the evolution of the density. Substituting the obtained

particle flux (1.46) into the continuity equation (1.23), the diffusion equation for the density

(or Fick’s second law) is obtained:
∂n

∂t
= Dν∇2n. (1.47)

Next, one can derive an expression for collisional heat flux q, which is defined as

q =
m

2

ˆ
v2vf̃d3v. (1.48)

With n = const in Eq. (1.41), the heat flux in x-direction is

qx = −m
2

1

ν

dT

dx

1

T

ˆ
v2v2x

(
−3

2
− v2

v2T

)
fMd3v. (1.49)
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Two integrals should be evaluated, 〈v2v2x〉 and 〈v4v2x〉. Again, by the assumption of isotropic

velocity space, 〈v2v2x〉 = 〈v2v2z〉. Using spherical coordinates representation (1.44), one can

find

〈v2v2z〉 =

2πˆ

0

dφ

πˆ

0

cos2 θ sin θ dθ

∞̂

0

v6fMdv =
4

3
π

∞̂

0

v6fMdv, (1.50)

〈v4v2z〉 =
4

3
π

∞̂

0

v8fMdv. (1.51)

Both integrals can be evaluated with integration by parts, and the heat flux results in

q = −DTn∇T, (1.52)

where DT =
5v2T
2ν

.

To evaluate the momentum diffusion (stress tensor) Π (and a viscous force, associated

with it), one needs to assume a moving Maxwellian:

fM(x, v) =
n

π3/2v3T
exp

(
−(v − V (x))2

v2T

)
, (1.53)

where n = const, T = const, and V (x) is the fluid velocity. Then, dropping nonlinear terms,

one can show that

v · ∇fM = −fM
v2T
vαvβ

(
∂Vβ
∂xα

+
∂Vα
∂xβ

)
. (1.54)

By the assumption of the shear plane-parallel flow V = Vy(x)êy, where êy is the unit vector

in y-direction, the momentum diffusion tensor can be obtained as

Πxy = m

ˆ
vxvyf̃d3v = −m1

ν

1

v2T

∂Vy
∂x

ˆ
v2xv

2
yfMd3v, (1.55)

which requires to evaluate 〈v2xv2y〉, which results in the integral:

〈v2xv2y〉 =
n

v3Tπ
3/2

2πˆ

0

cos2 φ sin2 φ dφ

πˆ

0

sin5 θ dθ

∞̂

0

v6e−v
2/v2T dv, (1.56)

which results in 〈v2xv2y〉 = nv4T/4. Substituting it into Eq. (1.55), one gets

Πxy = − v2T
mν

nm
∂Vy
∂x

. (1.57)
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Finally, the viscous force, defined as F ≡ ∇ · Π, can be found in y-direction:

Fy = −Dνmn
∂V 2

y

∂x2
, (1.58)

where Dν =
v2T
2ν

.

All three diffusion coefficients have a similar scaling D ∼ v2T/ν, which is consistent with

the random-walk diffusion model. The random-walk processes are characterized by D ∼
(∆x)2 /τ , where ∆x is the average displacement in time τ before particle changes its direction

(e.g., collide). Thus, for plasma ∆x has a meaning of the free path, with τ as a time between

collisions. Then D ∼ v2T/ν, where ν ∼ 1/τ and vT = ∆x/τ .

The method discussed above allows to estimate the main transport coefficients in the

presence of collisions. For a more accurate result, one can use a general Chapman-Enskog

method described in Appendix A.

1.2 Waves in plasmas

In this section both kinetic and fluid models will be used to describe ion sound waves in

plasmas. The advantage of fluid model is simplicity: equations are solved in three spatial

dimensions and time instead of the six-dimensional phase space and time for the kinetic,

e.g. Vlasov equation. The disadvantage of the fluid approach, however, is the absence of the

particle thermal effects such as Landau damping.

1.2.1 Ion sound waves

Ion sound waves are longitudinal oscillations of plasma density and electric field (wave

of rarefaction and compression). They are similar to ordinary sound waves in neutral gases

with the main difference in that the ion sound waves are supported in collisionless plasma by

long distance electrostatic interactions. This interaction is mediated by the electrons which

due to their small mass follow the potential trying to keep the quasineutrality.

The plasma is assumed to consist of a single species of ions and electrons. Equations of

continuity (1.23) and momentum (1.34) in a one-dimensional case are:
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∂nα
∂t

+
∂

∂z
(vαnα) = 0, (1.59a)

mαnα

(
∂

∂t
+ vα

∂

∂z

)
vα = −∂pα

∂z
− qαnα

∂φ

∂z
, (1.59b)

where α is species type index (e or i). Here n, v, p, φ are the particle density, velocity, pressure

and electrostatic potential, respectively. No external electric or magnetic field is assumed.

The self-consistent electric potential is found from the Poisson equation

∂2φ

∂z2
= −4π

∑

α

eαnα. (1.60)

The ion temperature for this problem is considered to be much smaller than that of

electrons, Ti � Te. As it will be shown with kinetic theory, in the case of Ti ∼ Te ion sound

waves would be greatly affected (usually damped) by Landau damping. By letting Ti = 0

for ions one obtains:

∂ni
∂t

+
∂

∂z
(vini) = 0, (1.61a)

mini

(
∂

∂t
+ vi

∂

∂z

)
vi = −eni

∂φ

∂z
. (1.61b)

Since the wave frequency for sound waves ω is small compared to the plasma frequency

ωpe, and the ions are much heavier than electrons, one can neglect electron mass in the

momentum balance equation for electrons, which will result in

−∇pe + ene∇φ = 0. (1.62)

In the limit ω � kvTe, the perturbations of the electron temperature are small and one

assumes Te = const, which gives
∇ne
ne

=
e

Te
∇φ . (1.63)

By integrating this equation, one obtains the Boltzmann equation for electrons

ne = n0e exp

(
eφ

Te

)
, (1.64)

which effectively shows the “immediate” electron response related to changes in potential.

Here n0e is the equilibrium electron density.
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Let us consider linear wave oscillations with small deviations from stationary equilibrium

state. Therefore, all variables can be expanded around the equilibrium:

X(x, t) = X0(x) + X̃(x, t), (1.65)

where X0(x) is the equilibrium state and X̃(x, t) is a linear perturbation, X̃ � X0. Lineariz-

ing Eqs. (1.60), (1.61), (1.64) and assuming n0e = n0i = n0, the full system of equations is:

(tilde sign for perturbed values is omitted and isotropic equilibrium state assumed)

∂ni
∂t

+ n0
∂vi
∂z

= 0, (1.66a)

mi
∂vi
∂t

+ e
∂φ

∂z
= 0, (1.66b)

ne = n0
eφ

Te
, (1.66c)

∂2φ

∂z2
= −4πe (ni − ne) , (1.66d)

where ni, vi, φ are small deviations from equilibrium values.

Assuming a quasi-neutral approximation ni = ne in Eqs. (1.66) and looking for a solution

in the form X ∼ e−i(ωt−kz), the dispersion relation is

ω2 = c2sk
2, (1.67)

where c2s = Te/mi is the ion sound velocity. Replacing quasi-neutrality condition with Poisson

equation (1.66d) will result in the dispersion equation

ω2 =
c2sk

2

1 + k2λ2D
, (1.68)

where λ2D = Te/ (4πn0e
2) - Debye length. The Eq. (1.68) includes the dispersion of the ion

sound waves, and in short wavelength regime k2λ2D � 1 the frequency is bound from above

by the ion plasma frequency ωpi =
√

4πne2/mi.

1.2.2 Electrostatic waves in kinetic theory and ion Landau damp-

ing

In this section, the linear dispersion relation for the ion acoustic waves will be derived by

using the kinetic approach. As in the previous section, the one-dimensional model will be be
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investigated here. To start, one needs one-dimensional Vlasov equation in the absence of the

magnetic field:
∂fα
∂t

+ v
∂fα
∂x

+
qα
mα

E
∂fα
∂v

= 0. (1.69)

Further, a perturbed distribution function in the form fα(x, v, t) = f0α(v) + f1α(x, v, t) is

assumed. Seeking a solution in the form of f1α ∼ e−i(ωt−kx), the first order term f1α is found

from Eq. (1.69) in Fourier space:

f1α =
qαkφ

mα

∂f0α/∂v

ω − kv , (1.70)

where φ is the perturbed potential. Note that Eq. (1.70) contains singularity at ω = kv

due to the particle-wave resonant interaction. From the perturbed distribution function, the

density perturbation can be found by integrating over the velocity space:

n1α =
n0αqαkφ

mα

∞̂

−∞

∂f0α/∂v

ω − kv dv, (1.71)

and after substitution it to the Poisson equation (1.60), one obtains the general dispersion

relation:

1 +
∑

α

ω2
pα

k2

∞̂

−∞

∂f0α/∂v

v − ω/k dv = 0, (1.72)

where ωpα =
√

(4πn0αq2α) /mα is the plasma frequency (for α species).

The obtained dispersion relation contains the singularity at ω = kv, and the first approach

to handle it is to take the principal value of the integral, as done by Vlasov [36]. The singular

part of the integrand 1/(v − ω/k) is eliminated via the principal value integration, i.e.

P.V.

∞̂

−∞

dv

v − ω/k = lim
ε→0



ω/k−εˆ

−∞

dv

v − ω/k +

∞̂

ω/k+ε

dv

v − ω/k


 , (1.73)

giving a real and finite value. Landau showed [24] that the correct way to treat the problem

is through an initial value problem, which requires to perform the Laplace transform in time.

Then the dispersion relation takes the form which has an additional imaginary term: (for a

cold plasma limit ω/k � v)

1 +
∑

α

ω2
pα

k2



∞̂

−∞

∂f0α/∂v

v − ω/k dv + iπ
∂f0α
∂v

∣∣∣∣∣
v=ω/k


 = 0. (1.74)
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One can use another approach to represent the general kinetic dispersion relation, with

the help of a plasma dispersion function Z(ζ) [37], defined as

Z(ζ) =
1

π1/2

∞̂

−∞

e−s
2

s− ζ ds, Im ζ > 0. (1.75)

Useful property can be noted that if to differentiate Z(ζ) with respect to ζ, one can obtain

Z′(ζ) =
−1

π1/2

∞̂

−∞

2s

s− ζ e
−s2ds, (1.76)

which yields via the integration by parts

Z′(ζ) = −2 (1 + ζZ) . (1.77)

It will be shown shortly that ζ = ω/(kvT ) is the normalized frequency in our application.

It is useful to present two limiting cases of the plasma dispersion function Z(ζ), adiabatic

(particles moves faster compared to the wave phase velocity), ζ � 1:

Z(ζ) = iπ1/2e−ζ
2 − 2ζ +

4ζ3

3
− 8ζ5

15
+ · · · , (1.78)

and fluid limit, with ζ � 1,

Z(ζ) = iπ1/2σe−ζ
2 − 1

ζ
− 1

2ζ3
− 3

4ζ5
+ · · · , (1.79)

where

σ =





0, Im ζ > 0,

1, Im ζ = 0,

2, Im ζ < 0.

(1.80)

It is also convenient to introduce the plasma response function R(ζ), given by

R(ζ) = 1 + ζZ(ζ). (1.81)

For a small argument (adiabatic) approximation ζ � 1 gives

R(ζ) ≈ 1 + i
√
πζe−ζ

2 − 2ζ2 +
4

3
ζ4, (1.82)

and asymptotic expansion for the fluid case with large ζ � 1:

R(ζ) ≈ i
√
πζσe−ζ

2 − 1

2ζ2
− 3

4ζ4
, (1.83)

21



where σ is given above (1.80).

To take the advantage of special functions being introduced, one can transform Eq. (1.71),

assuming that f0α is Maxwellian, into

n1α =
qαφn0α

mαvTα

∞̂

−∞

(d/ds)(e−s
2
)

s− ζα
ds, (1.84)

where ζα = ω/(kvTα). This allows to represent density perturbation with the plasma response

function:

n1α = Rα(ζα)
qαφ

Tα
n0α. (1.85)

Finally, to obtain general dispersion relation for one-dimensional longitudinal (electrostatic)

waves, one needs to substitute the density perturbation (1.85) into use Poisson equation (1.60):

− 1 =
1

k2λ2D
R(ζe) +

2ω2
pi

k2v2Ti
R(ζi). (1.86)

The basic longitudinal modes are high-frequency electron plasma oscillations (and related

electron plasma waves with finite electron temperature) and low-frequency ion sound waves.

For high-frequency electron oscillations, the effect of heavy ions can be neglected, thus im-

posing ω2
pi = 0. For cold electrons, ζe � 1 and the corresponding asymptotic expansion leads

to Re = −k2v2Te/2ω2. Thus, from Eq. (1.86) one gets ω2 = ω2
pe. Keeping the small corrections

due to electron temperature, one obtains:

Re = −k
2v2Te
2ω2

− 3

4

(
k2v2Te
ω2

)2

, (1.87)

and from Eq. (1.86) the Langmuir (or Bohm-Gross) waves can be found:

ω2 = ω2
pe + 3k2v2Te, (1.88)

where the approximation ω2 ' ω2
pe have been used in the second term of Eq. (1.87). The ion

sound waves are low-frequency waves in the range kvT i � ω � kvTe, which implies ζe � 1

and ζi � 1. The electron Landau damping can be neglected for the ion sound waves because

the slope of fe(v) is small near its peak. For electrons, the condition ζe � 1 corresponds

to the Boltzmann density ne = n0eφ/Te and response function Re ≈ 1. For k2λ2D � 1 one

obtains the dispersion relation from Eq. (1.86):

R(ζ) = −τ, (1.89)
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where τ ≡ T0i/T0e. To solve this equation, one can assume complex ω and real k, while

seeking a damping rate of the initially placed wave. Therefore roots must satisfy Re(R) =

τ, Im(R) = 0. This problem can be treated as the system of two nonlinear equations of two

arguments (complex plane). This is illustrated in Fig. 1.3, where the contour plots for each of

the equations are given on the complex plane. Roots can be found in the intersection points.

From all possible roots with Im ω < 0, the dominant root is the one having the smallest

|Im ω|. The exact numerical solution of Eq. (1.89) presented in Fig. 1.4.

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
Im ζ

0.0

0.5

1.0

1.5
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2.5

3.0

R
e
ζ

Figure 1.3: Complex plane with contour lines of Im(R) = 0 (red) and Re(R) = −τ
(black) for values of τ = 0.1, 0.4, 0.7, 1.0, 1.3, 1.6. Roots with the smallest |Im ω| are
circled.

To obtain an approximate solution, one needs to use the limiting cases of the plasma

response function. Taking the first two real terms for ions from (1.83)

Ri ≈ −
1

2

k2v2T i
ω2
− 3

4

k4v4T i
ω4

, (1.90)

and substituting it into Eq. (1.86), one can obtain the ion sound dispersion relation:

ω2 =
k2c2s

1 + k2λ2D
, (1.91)
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which is equivalent to the result (1.68) that obtained by using two-moment fluid approxima-

tion. But Eq. (1.83) contains also the imaginary term, responsible for the Landau damping.

By including it into the ion response function R(ζi), the resulted dispersion relation is given

by

− 1 =
1

k2λ2D
+

2ω2
pi

k2v2Ti

(
i
√
πζie

−ζ2i − 1

2ζ2i
− 3

4ζ4i

)
. (1.92)

In a first approximation the Landau damping term can be neglected:

1

τ

(
− 1

2ζ2i
− 3

4ζ4i

)
= −1− k2λ2D ' −1, (1.93)

where term k2λ2D is also neglected, assuming weak dispersion case. Thus,

1

ζ2i

(
1 +

3

2ζ2i

)
= 2τ. (1.94)

While ζi � 1, the approximation 1/ζ2i ≈ 2τ can be substituted into the previous equation to

obtain

ζ2i =
1 + 3τ

2τ
, (1.95)

or
ω2

k2
=
Te + 3Ti
mi

, (1.96)

which is the standard dispersion relation for the ion acoustic waves. With this one can handle

the imaginary term of Eq. (1.92):

− i√πζie−ζ
2
i +

1

2ζ2i
+

3

4ζ4i
= τ, (1.97)

− 2i
√
πζie

−ζ2i +
1

ζ2i

(
1 +

3

2ζ2i

)
= 2τ, (1.98)

and substitute 1/ζ2 ≈ 2τ :

ζi =

(
1 + 3τ

2τ

)1/2(
1 + i

1

τ

√
πζie

−ζ2i

)−1/2
. (1.99)

Finally, expanding the square root, the approximate solution is

ζi ≈
(

1 + 3τ

2τ

)1/2(
1− i

2

1

τ

√
πζie

−ζ2i

)
, (1.100)
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resulting in approximate damping rate

− Im ζi
Re ζi

=

√
π

8

√
1 + 3τ

τ 3
e−(1+3τ)/(2τ), (1.101)

where the Eq. (1.95) is used for the ζi in the imaginary part. The negative imaginary part of

the obtained wave frequency implies damping in time. It can be shown with a wave in the

form X ∼ e−iωt, where complex negative frequency ω = −iγ; then X ∼ e−γt. Therefore, Im ω

represents a damping rate, which usually is being noted as γ. Resulted approximate solution

for the ion Landau damping (1.101) is plotted in Fig. 1.4, along with the exact (numerical)

solution of Eq. (1.89).

10−1 100

τ = T0i/T0e

10−4

10−3

10−2

10−1

100

−Im ω
Re ω

Exact solution

Approximate solution

Figure 1.4: Landau damping for ion sound waves. Exact solution of Eq. (1.89) repre-
sented with solid line, approximate solution (1.101) with a dashed line.

To illustrate the effects, related to Landau damping, a one-dimensional particle-in-cell

(PIC) simulation is presented. The initial electrostatic wave is considered which is damped

due to finite electron temperature. The ions are heavy and immobile. The kinetic dispersion

relation is solved for the damping rate and compared with PIC results. By neglecting the
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ion dynamics ωpi = 0 in Eq. (1.86) one has

− 1 =
1

k2λ2D
R(ζe). (1.102)

Seeking an electron plasma oscillations, ω/k � vTe, the plasma response function (1.83) for

the large argument approximation can be written as

− 1 =
1

k2λ2D

(
2i
√
πζe−ζ

2 1

2ζ2

)
, (1.103)

from where one finds ζ:

ζ =

(
1

2k2λ2D
− 2i
√
π

1

2k2λ2D
ζe−ζ

2

)1/2

. (1.104)

Expansion of the square root (assuming small imaginary term) gives the result

Im ω ≈ −e−3/2√π ωpe
(2k2λ2D)3/2

e−1/(2k
2λ2D), (1.105)

where the real part of plasma waves ω2 = ω2
pe + 3k2v2Te was used in the imaginary part. For

kλD = 0.5 Eq. (1.105) provides the damping rate Im ω = −0.154 ωpe.
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PIC simulation

Analytical, γ = 0.154

(a) “Quiet start” loading
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Analytical, γ = 0.154

(b) Regular random loading

Figure 1.5: Landau damping of an electrostatic wave for two different initial distri-
butions: (a) “quiet start” with a well represented Maxwellian; (b) random Maxwellian
distribution.

For this simulation, let us assume the initial perturbation of the electron density ne ∼
sin(k0x) with k0λD = 0.5. The Landau damping effect strongly depends on the velocity

distribution function (VDF) representation. In fact, as shown in Fig. 1.5, a better repre-

sentation for the VDF results in greater damping. The so-called “quiet start” technique
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initializes particles uniformly in space with a non-random Maxwellian VDF [6]. The dif-

ference between the distribution functions from quiet start and regular particle loading is

represented in Fig. 1.6. Quiet start loading results in wave damping, consistent with the

analytical result (Fig. 1.5a). As reported previously [6], the Landau damping was observed

only with the quiet start technique, however only ∼ 26 macroparticles per cell had been

used. Loading more particles, ∼ 211 per cell results in Landau damping (Fig. 1.5b) with a

regular loading of particles. Obviously, larger number of particles reduce the noise in the

VDF initialization.

Fig. 1.7 demonstrates the collisionless dissipation mechanism of Landau damping, in

which the energy transfers from the wave to the particles. The electrostatic wave energy´
dxE(x)2/(8π) is transferred to the kinetic energy of electrons

∑N
i=1mev

2
i /2 resulting the

wave damping.

Finally, the phase space mixing during the Landau damping can be seen in Fig. 1.8. This

mixing starts in the region ω/k ≈ vTe, where resonance occurs between particles and a wave.
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Quiet start

Random start

Figure 1.6: Velocity distribution function produced with two methods of initial par-
ticle loading in the XES1 code: quiet start technique (solid) and random particle dis-
tribution (dashed).
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Figure 1.7: Conservation of energy in the simulation of Landau damping. Energy
from the initial electrostatic wave (dashed line) has been transferred to particles kinetic
energy (solid line). Energy units are normalized.
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Figure 1.8: Phase-space evolution of the electron component of the plasma during
the Landau damping simulation. Due to symmetry, only the positive velocity region
plotted. Linear regime is characterized by shearing of the initial perturbation (b), in
nonlinear regime particle trapping occurs (holes in phase space) which stops damping,
(c)-(d). The linear closures are not valid in strongly nonlinear regimes.
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Chapter 2

One-dimensional collisionless closures

Fluid equations provide an adequate description of many problems. In contrast to the

kinetic approach, they are generally more amenable to analytic insights and numerical sim-

ulations. Their reduced dimensionality provides simpler physical interpretation and lowers

computational cost compared to the fully kinetic approach. In general, however, wave-particle

interactions (Landau damping) are not captured by fluid models. Some kinetic effects can be

included in fluid equations via linear closures [38]. Hammett and Perkins (HP) [11] were the

first to propose some systematic approach to this problem. They suggested an approximate

closure, based on the ad-hoc matching of a “reasonable” expression with the exact kinetic re-

sult (for the plasma response function). This Chapter starts with a more detailed description

of the HP approach. Then it is shown, that in fact, the HP closure follows from the exact

closure procedure for one-dimensional three-moment fluid equations. The derivation of the

exact linear closure is one of the results of this work, where I have used the Chapman-Enskog

approach [1].

2.1 Hammett-Perkins closure

In the Hammett-Perkins [11] (HP) approach the Landau-fluid (LF) closure operator is

the semi-empirical closure. It is obtained by matching the response function in the fluid

model with the asymptotic of the exact kinetic expression. It was built in a way to match

the exact linear-response function (1.81), close to collisionless, Maxwellian plasma. This

section provides the review the three-moment and four-moment fluid models with the closure

ansatzes, proposed in HP work.
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2.1.1 Three-moment Landau-fluid closure

For a three-moment fluid model, the authors consider the following generalized set of fluid

equations for the particle density n, the momentum density mnv, and the pressure p:

∂n

∂t
+

∂

∂z
(vn) = 0, (2.1a)

∂

∂t
(mnv) +

∂

∂z
(vmnv) = −∂p

∂z
+ enE − ∂S

∂z
, (2.1b)

∂p

∂t
+

∂

∂z
(vp) = − (Γ− 1) (p+ S)

∂v

∂z
− ∂q

∂z
, (2.1c)

where Γ is the ratio of specific heats, and S is dissipative momentum flux, and the heat flux

moment is q = m
´

dv f(u− v)3. It will be shown further in this Chapter that Eqs. (2.1) are

exact moments of Vlasov equation (1.11) in one-dimensional case. They also will correspond

to the assumption of Γ = 3 and S = 0 in Eqs. (2.1) made by the authors of this model.

The system of Eqs. (2.1) contain more unknowns than the number of equations and

require a closure. The authors came up with two ansatzes: for the heat flux q and dissipative

momentum flux S. They were expressed through the lower moments such as the velocity v

and the temperature T . The postulated linear closures are written in the form

q̃k = −n0χ1
21/2vt
|k| ikT̃k, (2.2)

and

S̃ = −mn0µ1
21/2vt
|k| ikṽk, (2.3)

where χ1, µ1 are constants. This form is suggested by the dimensional arguments and a

further comparison with exact kinetic results. By linearizing the system of Eqs. (2.1) and

solving it for density, one finds

n = −n0
eφ

T0
R3, (2.4)

where R3 is the response function (1.81) for the three-moment fluid model. It is expressed

in the form

R3 =
χ1 − iζ

χ1 − iΓζ − 2iχ1µ1ζ − 2χ1ζ2 − 2µ1ζ2 + 2iζ3
, (2.5)

where ζ = ω/(
√

2|k|vT ) is the normalized frequency. Expansion for R3 in the cold plasma

limit with ζ � 1 is given by:

R3 ≈ −
1

2ζ2
+

1

2
iµ1

1

ζ3
+

(
1

2
µ2
1 −

3

4

)
1

ζ4
. (2.6)
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By comparing this expansion to the exact linear response function approximation (1.83) it

can be seen that one requires µ1 = 0 in order to match the exact response function. This

explains S = 0 in this model. An expansion for R3 in the case of hot plasma limit with

ζ � 1:

R3 ≈ 1 + 2iζ

(
µ1 +

1

χ1

)
− ζ2

(
4µ2

1 + 8
1

χ1

+
36

χ2
1

− 2

)
. (2.7)

Comparing to the exact plasma response function approximation (1.82) and setting µ1 =

0, one obtains

R3 ≈ 1 + 2iζ/χ1. (2.8)

In order to match the Maxwellian response function R(ζ) (1.81) for a small argument, the

constant can be found as χ1 = 2/
√
π. Even though χ1 is chosen this way to fit the low-

frequency limit, the closure is for the use in fluid equations, which are automatically valid in

the high-frequency limit. The resulting R3 does a fair job of approximating the Maxwellian

R over the full frequency range (Fig. 2.1).

2.1.2 Four-moment Landau-fluid closure

To obtain a more accurate result, a four-moment fluid model was considered by adding

an equation for the heat flux q to the system (2.1):

∂q

∂t
+
∂

∂t
(vq) = −3q

∂u

∂z
+ 3

p

mn

∂p

∂z
− ∂r

∂z
, (2.9)

where

r = m

ˆ
duf(u− v)4 = 3p2/mn+ δr (2.10)

is a higher-order moment. Proposed linear low-frequency closure expression for δr were

expressed through the lower order moments, given by

δr̃k ≈ −D1

√
2vt
|k| ikq̃k + β1n02v

2
t T̃k, (2.11)

where D1, β1 are constants. Following the same procedure and solving linearized four-moment

fluid system (2.1, 2.9), a new response function can be obtained:

R4 =
2β1 − 2iD1ζ − 2ζ2 + 3

3 + 2β1 − 6iD1ζ − (12 + 4β1)ζ2 + 4iD1ζ3 + 4ζ4
. (2.12)
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Expanding R4 in the cold plasma limit ζ � 1

R4 ≈ −
1

2ζ2
−
(

1

2
D2

1 +
3

4

)
1

ζ4
, (2.13)

one can see that it is already satisfied Maxwellian R (1.83) for the second order term. Ex-

panding R4 for small ζ leads to

R4 ≈ 1 + ζ
4iD1

2β1 + 3
+ ζ2

8β2
1 + 32β1 − 24D2

1 + 30

4β2
1 + 12β1 + 9

. (2.14)

To match the Maxwellian R (1.82), a simple system must be solved:

4iD1

2β1 + 3
= i
√
π, (2.15)

8β2
1 + 32β1 − 24D2

1 + 30

4β2
1 + 12β1 + 9

= −2. (2.16)

Solving these two equations gives us D1 = 2
√
π/(3π − 8) and β1 = (32 − 9π)/(6π − 16).

Thus, this result is accurate through second order in ζ, while closure for q̃k was only first-

order accurate. The resulting response function shows much better consistency with the

Maxwellian R over the full frequency range (Fig. 2.1).

2.2 Closure model for the heat flux

In this section I derive the linear closure using the Chapman-Enskog approach [1]. Con-

trary to the Hammet-Perkins methods, the generalized Hammet-Perkins approach result in

the exact closure. The fluid equations with the exact closure result in the plasma response

which is fully identical to that one obtained from linear kinetic calculations. I also show in

this section that the Hammet-Perkins result follows from the exact closure as a leading term

of the expansion in the ω/(kvT ) parameter. The next order terms are also derived in this

section.

2.2.1 One-dimensional moment equations

One-dimensional moment equations are considered, which are just a special case of three-

dimensional equations (1.23, 1.34, 1.36) when only the longitudinal (along the magnetic field)
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Figure 2.1: The real and imaginary parts of the normalized response function R(ζ)
versus the normalized real frequency ζ.

motion is considered, along the z direction. The resulting moments of the one-dimensional

Vlasov equation (1.69) have the form:

∂

∂t
n+

∂

∂z

(
nV‖
)

= 0, (2.17)

∂

∂t

(
nV‖
)

+
∂

∂z
(
p‖
m

+ nV 2
‖ ) +

en

m
E‖ = 0, (2.18)

∂

∂t

(
p‖ + nV 2

‖
)

+
∂

∂z
(2q‖ + 3V‖p+ nV 3

‖ )− 2en

m
E‖V‖ = 0, (2.19)

∂

∂t

(
2q‖ + 3V‖p+ nV 3

‖
)

+
∂

∂z
(r‖ + 4q‖V‖ + 6

p‖
m
V 2
‖ + nV 4

‖ ) +
4e

m
E‖

(p‖
m

+ nV 2
‖

)
= 0, (2.20)

with the following definition of macroscopic variables. The density is

n =

ˆ
f
(
v‖
)
dv‖, (2.21)

the fluid velocity V‖,

nV‖ =

ˆ
f
(
v‖
)
v‖dv‖, (2.22)
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the pressure moment p‖

p‖ = m

ˆ
f
(
v‖
)
v

′2
‖ dv

′

‖, (2.23)

where v′‖ is the random particle velocity, such that v‖ = v
′

‖+V‖ and it obeys
´
f
(
v‖
)
v

′

‖dv
′

‖ = 0

condition. The heat flux is defined as

q‖ =
m

2

ˆ
f
(
v‖
)
v

′3
‖ dv

′

‖, (2.24)

and the next (fourth) moment macroscopic variable r‖ is

r‖ = m

ˆ
f
(
v‖
)
v

′4
‖ dv

′

‖. (2.25)

After some rearrangements, let us can write the first three moments, Eqs. (2.17-2.19) as

∂n

∂t
+

∂

∂z
(vn) = 0, (2.26a)

mn

(
∂

∂t
+ v

∂

∂z

)
v = −∂p

∂z
+ enE, (2.26b)

∂p

∂t
+

∂

∂z
(vp) = −2p

∂v

∂z
− 2

∂q

∂z
, (2.26c)

where the parallel indices are omitted. This system is used in further kinetic closure deriva-

tion. In comparison to the Hammett-Perkins three-moment model (2.1), the system (2.26)

does not contain the friction variable S. HP artificially introduced this dissipative momentum

flux in order to compare with previously suggested Landau damping models [9].

2.2.2 Chapman-Enskog method for heat flux closure derivation

System (2.26) contains the unknown heat flux q, which needs to be evaluated in order to

close the system. The goal of this derivation is to find the heat flux in a form, that allows

incorporating some kinetic effects into a fluid system of plasma equations. For this purpose

plasma fluid equations and kinetic equation are combined. The approach is based on the

Chapman-Enskog [1] ansatz, which presents the distribution function in the following form:

f = fM + F̃ , (2.27)

where fM is the dynamical Maxwellian and F̃ is the small deviation. The dynamical

Maxwellian is given by

fM =
n (x, t)

π1/2 [2T (x, t) /m]1/2
exp

(
−m [v − V (x, t)]2

2T (x, t)

)
, (2.28)
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where the macroscopic variables of density n (x, t), temperature T (x, t), and flow velocity

V (x, t) are time and spatially dependent. This allows the distribution function to evolve in

time and space accordingly to the first three fluid moments (2.26). A variable v in (2.28) is the

particle velocity, therefore v′ = v − V is the random part of velocity. Also, the ansatz (2.27)

implies that the deviation F̃ does not contribute to the lower moments n (x, t), T (x, t), and

V (x, t). This condition is expressed by the following constraints:

ˆ
F̃
{

1, v′,mv′2/2
}

d3v′ = 0. (2.29)

By substituting Eq. (2.27) into one-dimensional Vlasov equation (1.69), I have obtained:

DF̃ +

(
∂n

∂t
+ v

∂n

∂x

)
Fm
n

+

(
∂T

∂t
+ v

∂T

∂x

)(
−1

2
+
v

′2

v2T

)
Fm
T

+

(
∂V

∂t
+ v

∂V

∂x

)
· 2v′

v2T
Fm +

e

m
E
∂Fm
∂v

= 0, (2.30)

where

D ≡ ∂

∂t
+ v

∂

∂x
+

e

m
E
∂

∂v
. (2.31)

The Eq. (2.30) explicitly contains the substantial derivatives of the macroscopic fluid variables

n, V, T , which are substituted from the system (2.26) to obtain

DF̃ = −v′∂T
∂x

(
3

2
− v′2

v2T

)
Fm
T

+
∂q

∂x

(
2v′2

v2T
− 1

)
Fm
p
. (2.32)

By linearizing this expression and taking the Fourier transform, I have obtained

F̃ = − T̃
T

kv′F0

ω − kv′
(

3

2
− v′2

v2T

)
+

q̃

pvT

kvTF0

ω − kv′
(

1− 2v′2

v2T

)
, (2.33)

that can be written in a compact form:

F̃ = − T̃
T
aT +

q̃

pvT
aq, (2.34)

with coefficients

aT =
kv′F0

ω − kv′
(

3

2
− v′2

v2T

)
, (2.35)

aq =
kvTF0

ω − kv′
(

1− 2v′2

v2T

)
. (2.36)

36



Integrating Eq. (2.34) over dv′ and using condition (2.29), I have obtained the closure ex-

pression:

q̃k
pvT

= Qt
T̃k
T
, (2.37)

where QT = aT
aq

and

aT =

∞̂

−∞

kv′Fm
ω − kv′

(
3

2
− v′2

v2T

)
dv′, (2.38)

aq =

∞̂

−∞

kvTFm
ω − kv′

(
1− 2v′2

v2T

)
dv′, (2.39)

and finally, QT is found as (integrals used are listed in Appendix C)

QT =
1 + 3

2
Zζ − ζ2 − Zζ3

Z − 2ζ − 2Zζ2
. (2.40)

To show that the fluid equations (2.26) with closure (2.40) are fully equivalent to the

linear kinetic model, I have followed the Hammett-Perkins procedure and found the response

function:

R(ζ) = 1 + ζZ(ζ), (2.41)

which is the exact response function that was defined in Chapter 1 for electrostatic waves in

kinetic theory. The adiabatic limit ζ � 1 for QT is found approximately to be

QT ≈ −
i√
π

+ ζ

(
3

2
− 4

π

)
. (2.42)

Substituting only zeroth order term from Eq. (2.42) into Eq. (2.37), the approximate

expression for the heat flux closure is:

q̃k = −n0vT√
π

ikT̃k
|k| , (2.43)

which is similar to the three-moment fluid closure (2.2) in the HP model (with corrections

should be made on the heat flux q and the thermal velocity vT definitions). One can evaluate

the inverse Fourier transform of the heat flux closure (2.43), to find a real space representation

q(z) = −n0vT√
π

∞̂

0

T (x+ x′)− T (x− x′)
x′

dx′, (2.44)
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where the convolution theorem has been used. It shows an intrinsic nonlocality in real space

of the obtained closure, i.e. evaluation of the heat flux requires information about energy field

in all space. Dealing with nonlocal operators generally requires special numerical treatment

and it is introduced in Chapter 3.

If one desire a higher linear accuracy, the next term can be included in our closure (2.37)

from Eq. (2.42). In fact, this results in a much better approximation of the response function.

Fig. 2.2 shows, that it is comparable to the HP four-moment fluid model with kinetic clo-

sure (2.11). However, the transcendental dependence on frequency ω from the second term

in (2.42) would need to be addressed. For the general (non-linear) purpose simulations, some

kind of instantaneous estimate [39] of ω could be used.
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Figure 2.2: Exact kinetic response function presented here with solid lines, HP four-
moment LF with dashed lines and our Chapman-Enskog closure (dotted lines) in the
first-order approximation, Eq. (2.42).
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2.3 Ion sound dispersion relation from the fluid model

with the closure

In this section I use the fluid model with closure to derive the self-consistent dispersion

relation for the ion sound waves. The goal is to investigate the validity of the kinetic closure

(2.37) in the complex frequency plane. The fluid equations for the ion component are

∂ni
∂t

+
∂

∂z
(vini) = 0, (2.45a)

mini

(
∂

∂t
+ vi

∂

∂z

)
vi = −∂pi

∂z
+ eniE, (2.45b)

∂pi
∂t

+
∂

∂z
(vipi) = −2pi

∂vi
∂z
− 2

∂q

∂z
, (2.45c)

where the closure is given with

q = −n0vTi√
π

ikTi
|k| . (2.46)

The Boltzmann relation is used for the electron component. The full system is linearized for

small amplitude perturbations:

n(x, t) = n0i + ñi(x, t), vi(x, t) = ṽi(x, t), Ti(x, t) = T0i + T̃i(x, t). (2.47)

Let us seek the solution in the form X̃ ∼ e−i(ωt−kx). Then the linear equations in Fourier

space take the form (the tilde signs are omitted here)

− iwni + ikn0ivi = 0, (2.48a)

− iwmivi + ikTi + ikT0i
ni
n0i

+ ikeφ = 0, (2.48b)

− iwTi + 2ikT0ivi + α
√
τkcsTi = 0, (2.48c)

where τ = T0i/T0e, α =
√

8/π, q = −i√τ α/2 n0csTi. The dispersion relation in the

quasineutral case ni ≈ ne can be found in the form:

1− k2c2s
ω2

(1 + τ)− τ 2k2c2s
w2 + τα2k2c2s

+ iτ 3/2
α3k3c3s

ω (ω2 + τα2k2c2s)
= 0. (2.49)

Analytical solution of this equation can be obtained by the method of perturbation using ion

temperature as a small parameter. Thus for (τ � 1) one can find

ω = ω0 +
3

2
τω0 − iτ 3/2ω0α, (2.50)
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where

ω2
0 = k2c2s. (2.51)

Therefore, the approximate expression for the damping rate is

γ = ατ 3/2 kcs. (2.52)

In order to compare this linear fluid model with the kinetic result, I have also solved

the dispersion equation (2.49) numerically exactly. This solution is shown in Fig. 2.3. The

approximate solution (2.52) is valid only for small values of τ , as it is expected.

0.25 0.50 0.75 1.00 1.25
τ = T0i/T0e

10−3

10−2

10−1

100

−Im ω
Re ω

LF-3 exact

LF-3 approximate

Exact kinetic solution

Figure 2.3: Landau damping for three-moment fluid model with kinetic closure (2.46).
The exact solution of the dispersion equation (2.49) (red) and the approximate solu-
tion (2.52) (red dashed) in comparison with the exact kinetic solution of Eq. (1.89)
(blue dashed).
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Chapter 3

Numerical implementation of collisionless clo-

sures

In the previous Chapter, we have discussed collisionless closure for fluid plasma equations.

Also, the exact linear kinetic closure was derived. In this Chapter, the numerical methods

for solving these closure operators are introduced, as well as the verification procedure. Col-

lisionless kinetic closures naturally arise in a Fourier space, however, they are intrinsically

nonlocal due to the presence of the nonlocal operator sgn(k) = k/|k| (2.43). Often simu-

lations are performed in real space and (Fourier) transform to real space results in greater

computational cost. One of the methods that was developed recently, the fast non-Fourier

method [12], allows efficiently to perform such calculations with kinetic closure operators in

real space. As the part of this thesis, I have implemented numerical simulation, involving the

fast non-Fourier method. It was done in the BOUT++ framework [13], that has been used

for the calculations of the fluid plasma equations with the fast non-Fourier method. For ver-

ification purposes, I have used the simulations with three- and four-moment one-dimensional

linear equations with the kinetic closures. From these simulations, the plasma response func-

tion was compared with the exact kinetic result. It showed excellent agreement between fast

non-Fourier method and Fourier space calculations. Further, ion Landau damping problem

has been studied using the simulation for the three-moment fluid model. Let us start with

the description of the fast non-Fourier method.
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3.1 Fast non-Fourier method for the computation of

closure operators

The closure operator (2.43) has a relatively simple form in Fourier space. However, in

many cases, the simulations are performed in the real space because of complex geometry,

spatial nonuniformity, and nonlinear effects. For these cases, operators become nonlocal

and Fourier representation becomes less useful. Conversions between the real and Fourier

space can become more time consuming, particularly when one wants to perform such trans-

formation on the nonlocal operator sgn(k). Such conversions to real space may require an

additional computational cost. Therefore, an effective non-Fourier method is needed.

The fast non-Fourier method [12,40,41] represents a closure operator sgn(k) as a system

of equations in the real space. It is based on the approximation of the term 1/|k| with a

sum of Lorentzian functions in Fourier space, which correspond to the solution of modified

Helmholtz equation in real number space. The inhomogeneous modified Helmholtz equation

is (
1− ∂2

∂z2

)
ψ(z) = S(z), (3.1)

where z is a single real spatial variable, S(z) is the source function. It was shown [12] that

multiplication of the field S by 1/(1 + k2) is equivalent of applying the inverse of a modified

Helmholtz operator.

The 1/|k| part of the sgn(k) can be approximated with the finite sum of Lorentzians

ψN(k) [12]:

1

|k| ≈ ψN(k) = β
N−1∑

n=0

αn

k2 + α2n
, (3.2)

where N is a positive integer. Convenient choice of constants α, β, N allows a good fit in

Fourier space over a wide range of the wavenumber k. By using proposed [12] parameters

α = 5, β = 1.04 and N = 7 gives a 2% relative error over approximately 103 spectral range.

It is illustrated in Fig. 3.1 with a plot of |k|ψ7(k), where

ψ7(k) = 1.04
6∑

n=0

5n

k2 + 52n
. (3.3)
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Such an approximation is sufficient for many simulations. However, if one needs a different

range of wavenumber with a good fit, it can be “shifted”. With a multiplier k0 for α in

Eq. (3.3) it can be shifted to lower (k0 < 1) or higher (k0 > 1) wavenumber region. It is

illustrated in Fig. 3.2.
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(b) Zoom into a region of interest

Figure 3.1: Plot of |k|ψ7(k), where ψ7(k) (3.3) is the approximation for 1/|k|. There-
fore, region of good fit is around one; (a) shows a wide range of wavenumber values,
including regions, where approximation becomes not valid; (b) represents the same plot
within range of good fit.

3.2 BOUT++: High Performance fluid simulations frame-

work

As mentioned previously, to perform our simulations, the BOUT++ framework was used.

This code created at the Los Alamos National Laboratory and widely used worldwide for

simulations of tokamak plasmas. BOUT++ is a modular platform for 3D simulations of an

arbitrary number of fluid equations in curvilinear coordinates using finite-difference meth-

ods [13,42]. It was developed based on the original BOUndary Turbulence (BOUT) 3D 2-fluid

code [43, 44]. BOUT++ uses the coordinate system metric tensor gij = gij (x, y) (constant

in one dimension), therefore it is restricted to the coordinate system with axi- or transla-

tionally symmetric geometry. The two-dimensional metric tensors allow the code to be used

to simulate plasmas in many geometries like slab, sheared slab, cylindrical coordinates, etc.
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Figure 3.2: Plot of |k|ψ7(k), where ψ7(k) (3.3) is the approximation for 1/|k|. It can
be “shifted” into lower and higher wavenumber region using a multiplier k0 for α in
Eq. (3.3); solid blue line corresponds to k0 = 1.

BOUT++ has the object-oriented framework in C++ and able to perform parallel compu-

tations with a good efficiency up to thousands of processors. BOUT++ is a free open-source

project that is being constantly developed [45] by many users.

The structure of BOUT++ allows separating general blocks of curvilinear geometry, dif-

ferential geometry, parallel communication, numerical solvers, and others, from the problem

specific physical equations. The BOUT++ philosophy was to allow the user to concentrate on

physics as much as possible, selecting the most efficient numerical approaches while reusing

some highly efficient numerical blocks, e.g. massively parallel communication between the

cores. However, choosing particular schemes, geometry, boundary conditions, etc. is wholly

problem-specific, and requires a good knowledge of computational fluid dynamics [46] and

programming skills.

The core of BOUT++ is written in C/C++, it is organized into classes and functions

which operate on them. Fig. 3.3 represents the main parts of the code and operations flow

during initialization and run. The initialization (shown in red) starts with physics init

function reading a grid file (information on the mesh size, geometry configuration etc.). This
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Figure 3.3: Overview of the BOUT++ control flow during initialization (red), and
during running a simulation (blue) [45].

step can be replaced by the reading from the user specified input file. Then physics init

continues, it reads if necessary additional parameters and variables from the grid or/and

input file, and specify variables to be evolved. It calls bout solve function to pass these

variables to the solver. Running operation (shown in blue) starts when the Main function

calls the solver. While it is initialized, it calls a corresponding solver, which is PVODE by

default (can be replaced). To advance equations, PVODE makes calls to RHS function, which,

in turn, calls physics run function, where user-specified equations are written. Physics run

mostly does calculations of the differential operators, and inversion operations (e.g., Poisson

equation) if they are present in a given model. This is a rough general scheme which misses

many other operations, such as memory handling, parallelization etc.

The space coordinates x, y, z in BOUT++ are not all equivalent. As it was mentioned,

metric tensor implies some restrictions on the geometry configuration: z-direction is al-

ways periodic, x and y can be either periodic or bounded. By convention, y-coordinate in

BOUT++ is parallel to magnetic field lines direction. Thus, the (x, z) plane is the perpen-
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dicular plane to the magnetic field lines. BOUT++ supports either scalar or vector fields and

includes a wide range of differential operators that can be applied to all variables. Gradient

operators in perpendicular and in parallel directions to the magnetic field are implemented

in order to take advantage of the length-scale separation.

Time integration in BOUT++ is implemented with the various solvers, such as PVODE,

CVODE, Euler, Runge-Kutta, PETSc, and other. The CVODE [47] is a commonly used

solver, it solves stiff and non-stiff systems of ordinary differential equations. It does not

require the information about a structure of the equations, solving initial value problems

(IVPs) of the form:

df

dt
= g(f , t), (3.4)

f(t0) = f0, (3.5)

where g(f , t) is a general nonlinear function, which does not contain time derivatives of f . The

methods are implemented in the CVODE adjust the internal time-step and order to satisfy

requested tolerances. The BOUT++ code calculates the nonlinear function g(f , t) with finite-

difference methods. These include central derivatives (first and second derivatives), advection

schemes in each dimension separately, and flux conserving methods of various order.

Additionally, BOUT++ includes methods for Laplacian inversion (e.g., for solving Pois-

son equation), both in parallel (y-direction) and perpendicular ((x, z)-plane) directions. In

parallel direction, it allows to inverse an equation of the following form:

(
A+B∇2

‖
)
φ = ρ, (3.6)

where φ is an unknown scalar field and ρ is a (known) scalar field input. It is being solved

accordingly to the boundary conditions. For the periodic domain the cyclic reduction is

implemented.

BOUT++ uses two input files: an options text file and a binary grid file. Option file

is used for setting numerical schemes, boundary conditions, simulation time. Binary grid

file is used for the geometry configuration, mesh space, and initializing of evolving variables.

However, in the most recent revisions of the code geometry parameters can be also specified

in the options text file. This includes metric tensor components and a wide range of the initial

conditions for each evolving variable. This allows skipping grid file for many problems.

46



My one-dimensional simulations of three- and four- moment plasma fluid model required

to advance three and four linear equations in time, respectively; along with solving of the

Helmholtz equation for the closure term at each time step. Parallel y-direction in BOUT++

was the best choice here, it is periodic by default and allows calculating the inverse of

Helmholtz equation (3.1), with A = 1 and B = −1 in Eq (3.6). The CVODE time solver

with the parameters atol = 10−10, rtol = 10−5 was used for all simulations in this thesis.

Such tolerances are usually sufficient for normalized equations. While our equations have no

upwind terms of the form v ∂v/∂x, the central finite-difference scheme of the second order

was set for all spatial derivative calculations.

3.3 Evaluation of plasma response function

To check the accuracy and verify the fast non-Fourier method implementation, let us

evaluate the response function for a given Landau-fluid model. The plasma response function

is defined as the response of the perturbed density to the potential perturbation (1.85). For

simplicity it is presented in the dimensionless form: (see the normalization scheme later in

this section)

ñ(k, ω) = −φ̃(k, ω)R(k, ω). (3.7)

To evaluate R for a system of linear plasma fluid equations, let us introduce the external

potential of the form φext ∼ sin (kz − wt). This can be used as the driving force for a

system of linear plasma fluid equations, where one can expect (the system is linear) that the

perturbed density solution will settle on ñ(k, z) = A(k, z) sin (kz − wt+ δ). The amplitude

A and phase shift δ depends on driven frequency ω and wavenumber k. Then the plasma

response function R can be evaluated from (3.7) as

Re(R) = A cos(δ), (3.8a)

Im(R) = −A sin(δ). (3.8b)

By varying the frequency ω with the fixed wavenumber k in driving force, the plasma response

function R can be evaluated over the range of frequencies.
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3.3.1 Three-moment Landau-fluid model

The equations to be solved will be presented in dimensionless form, to reduce roundoff

errors and the number of parameters in the equations. A normalization scheme is introduced

as

n′ =
n

n0

, T ′ =
T

T0i
, φ′ =

eφ

T0e
, v′ =

v

cs
, q′ =

q

csT0in0

, t′ = wpit, z
′ =

z

λD
. (3.9)

Using the linearization scheme (2.47), our normalized system for the three-moment fluid

model, obtained from Eqs. (2.26) is (prime signs are omitted for normalized variables and

tilde signs are skipped for linearized variables):

∂n

∂t
+
∂v

∂z
= 0, (3.10a)

∂v

∂t
+
∂n

∂z
+
∂T

∂z
+
∂φext
∂z

= 0, (3.10b)

∂T

∂t
+ 2

∂v

∂z
+ 2

∂q

∂z
= 0, (3.10c)

where φext represents the driving force φext = sin (kz − ωt). The heat flux q for this model is

taken in the zero-order approximation (2.43) in order to apply the fast non-Fourier method.

Rewritten in the dimensionless form, the heat flux closure is:

qk = −
√

2

π

1

|k|ikTk. (3.11)

Following the fast non-Fourier method, the 1/|k| part is approximated with the partial sum

ψN(k), Eq. (3.2). This implies that the heat flux is also represented by the partial sum:

qk =
N−1∑

n=0

qnk , (3.12)

where each term qnk has the form

qnk = −
√

2

π
β

αn

k2 + α2n
ikT, (3.13)

and after simple rearrangement, one obtains a familiar structure of the modified Helmholtz

equation (3.1):
(
k2 + α2n

)
qnk = −χ12

1/2βαnikT. (3.14)
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It is possible to evaluate operators of the form kn ↔ (−i∂/∂z)n to transform the Eq. (3.14)

to real space: (
α2n − ∂2

∂z2

)
qn(z) = −χ12

1/2βαn
∂T (z)

∂z
. (3.15)

Finally, the numerical solution for the total heat flux q can be found by the summation over

all the partial solutions of Eq. (3.15):

q(z) =
N−1∑

n=0

qn(z), (3.16)

where Eq. (3.15) is solved for each partial heat flux term qn(z) at every time step.

Thus, the total system consists of equations are Eqs. (3.10) along with N Eqs. (3.15) for

the closure approximation, where N is the number of series elements in the Eq. (3.16).

As it was expected, an externally driven potential made the plasma density n(k, w) to

settle on a sinusoidal solution, as shown in Fig. 3.4. An example of such density response

is shown in Fig. 3.5, where the system was driven with frequency ω = 2ωpi. The phase

shift between the plasma density response and the external potential δ and the amplitude of

the density response A, substituted to Eqs. (3.8), are used to evaluate the plasma response

function R at the point ζ = 2ωpi/vT (k = 1). In this way, it is possible to plot the plasma

response function over the frequencies for the three-moment model with Hammett-Perkins

closure ansatz, Fig. 3.6. It shows good accuracy and excellent agreement with the analytical

plasma response function (Fourier space calculations) [48].
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ñ
/n

0
(x

=
0,
t)

(c) φext ∼ sin(2ωpit)

0 5 10 15 20
tωpi

−1.0

−0.5

0.0

0.5

1.0

ñ
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Figure 3.4: Plasma density response for externally driven potential, for several driven
frequencies. The different amplitude response (smaller for higher frequency) can be
noted. The solution settles to the constant sine form after ∼ 10 ion plasma periods,
after what the evaluation of the plasma response function (3.8) can be performed.
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Figure 3.5: The plasma density response ñ for the externally driven potential φ̃ext ∼
sin(2ωpit). The phase shift δ between the driven wave and the response, along with
the amplitude A of the density response are used to evaluate the plasma response
function (3.8).

3.3.2 Improvement to the three-moment kinetic closure

As shown in Chapter 2, our kinetic closure (2.42) for the heat flux with the second term

(in ζ � 1 limit) provides a better approximation for the response function. It is worth to

try to include it to the simulation. Let us write the expression for q, using Eq. (2.42): (in a

dimensionless form)

qk = −
√

2

π

1

|k|ikTk +
ω

|k|

(
3

2
− 4

π

)
Tk, (3.17)

where ω/|k| should be estimated somehow. In this particular simulation, the the system is

driven with the external force with the frequency ω and fixed wavenumber k. Thus, I have

tried to substitute these values of k and ω into the Eq. (3.17). Such an assumption results in

a good agreement between BOUT++ simulations and the Fourier result for plasma response
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Figure 3.6: The real and imaginary parts of the normalized response function for
the three-moment model (with BOUT++ non-Fourier calculations) with HP-like clo-
sure (3.11) compared to the exact response function.

function (Fig. 3.7).

3.3.3 Four-moment Landau-fluid model

It is of interest to apply the same procedure to the four-moment system of fluid plasma

equations, where the heat flux q evolves accordingly to the next moment of the Vlasov

equation. This moment for the heat flux q is given in (2.9), with the closure (2.11), proposed

in the HP work. The system of linear equations (3.10) thus must be supplemented with the

linear heat flux moment:
∂q

∂t
+ 3

∂v

∂z
+
∂(δr)

∂z
= 0, (3.18)

where r variable is normalized as r′ = r/(n0c
2
sT0). Closure term δr (2.11) in the dimensionless

form is

δr̃k = −D1

√
2

|k| ikq̃k + 2β1T̃k, (3.19)

where constants D1 = 2
√
π/(3π − 8) and β1 = (32 − 9π)/(6π − 16). Note, that the second

term in closure term (3.19) is local and can be simply converted to real space. Therefore, the
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Figure 3.7: The real and imaginary parts of the normalized response function for
the three-moment model (with BOUT++ non-Fourier calculations) with improved clo-
sure (3.17) compared to the exact response function.

procedure of the fast non-Fourier method is applied to the first term only. The same ψ7(k)

(3.3) was used to approximate 1/|k| term in Eq. (3.19), and externally driven simulation was

performed to evaluate the plasma response function. The resulting response function is given

in Fig. 3.8, it also shows excellent agreement with the Fourier calculations.

3.4 Landau damping with kinetic closure

In the previous section the closures were verified by evaluating a response of the plasma

component to the applied electric field. Another verification of kinetic closures can be

performed in the self-consistent simulation of the Landau damping. Let us use the three-

moment fluid model 3.20a) with the kinetic closure for the heat flux (3.11). A self-consistent

model should contain electron dynamics as well. The Boltzmann relation for electrons (1.64)

has been used together with quasineutrality approximation. Using the same normalization
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Figure 3.8: The real and imaginary parts of the normalized response function for
the four-moment model (with BOUT++ non-Fourier calculations) with HP-like clo-
sure (3.19) compared to the exact response function.

scheme (3.9), our system is: (tildes and primes are omitted, system is linear and normalized)

∂n

∂t
+
∂v

∂z
= 0, (3.20a)

∂v

∂t
+ τ

∂n

∂z
+ τ

∂T

∂z
+
∂n

∂z
= 0, (3.20b)

∂T

∂t
+ 2

∂v

∂z
+ 2

∂q

∂z
= 0, (3.20c)

where τ = T0i/T0e, and q is found by the non-Fourier method, Eq. (3.15). Long system

length was chosen, L = 200λD, to satisfy condition kλD � 1. To observe damping, an initial

condition of density perturbation n was imposed in the form of harmonic wave with the

smallest possible wavenumber k = 2π/L.

Fig. 3.9 shows the damping rate from non-Fourier simulations (circles) for different val-

ues of τ , in comparison with the exact solution of the fluid dispersion relation (Eq. 2.49,

solid line). It shows excellent agreement and therefore serves an another verification of the
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implemented fast non-Fourier method. Both results are close to the exact kinetic solution

from Chapter 1 (shown by dashed line).
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Figure 3.9: Landau damping for three-moment fluid simulation with kinetic closure.
Numerical result (circles) for damping rate in comparison with exact solution of the
fluid dispersion relation (2.49) (solid red). Also, the exact kinetic solution of ion Landau
damping is presented (dashed blue).
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Chapter 4

Conclusion

Fluid plasma equations are based on an infinite hierarchy of moments of the kinetic Vlasov

equation. The full infinite system is equivalent to the kinetic equation. For practical calcula-

tions the hierarchy is truncated in one or another way, either by simply dropping higher-order

terms, or providing the closures for higher moments in terms of the lower moments. In the

regime of frequent collisions (short mean free path) the velocity distribution function is close

to Maxwellian, and the closure can be derived using small parameters, λ � L (mean free

path is much shorter than the system length) and ν � ω (frequent collisions), e.g. via the

standard Chapman-Enskog procedure [1]. The result is classical transport theory with con-

stant transport coefficients. Many modern plasmas of interest, e.g. in magnetic confinement

devices, are almost collisionless and mean free path is large compared to the size of the device

and the characteristic length of the perturbations. Yet, plasmas are confined relatively long

time, therefore the lowest order distribution function is still close to Maxwellian. Then the

small deviations from Maxwellian can be sought via the perturbative approach. This can be

done directly in the kinetic theory or from more advanced fluid theory.

Basic plasma fluid models generally miss kinetic effects such as Landau damping. The

problem of kinetic closures for fluid equations that incorporate the Landau damping is a

subject of this thesis. More or less systematic approach was proposed in Hammett-Perkins

[11] (HP) work. These authors came up with closures that approximate the kinetic plasma

response function. A comprehensive approach leading to exact closures is described in Refs.

[14,15].

By using generalized Chapman-Enskog method [14, 15] I have derived the exact linear

kinetic closure (2.37) for the three-moment plasma fluid model in the one-dimensional case.

The closure variable, heat flux q (2.37) found as the complicated expression in terms of the
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plasma dispersion function Z(ζ). This closure provides a linearly exact response function

which is identical to the linear kinetic solution. In zeroth-order approximation it provides

the same result that as was previously obtained with HP three-moment closure ansatz (2.2).

By including higher-order terms, the better accuracy for the plasma response function is

obtained, which is comparable to the HP four-moment fluid closure ansatz, Fig. 3.7.

Nonlocal nature of the closure operators expressed in the form of complex functions of

the wave vector is impractical for nonlinear simulations, especially in complex geometries.

In this thesis, I implemented collisionless closure operators in a numerical model by using

a recently proposed [12] non-Fourier method. It approximates the closure term by a sum

of Lorentzians in Fourier space. The latter corresponds to the solution of the modified

Helmholtz equation in real space. The whole procedure was numerically implemented in

the BOUT++ framework [48]. The one-dimensional plasma density response function both

in our BOUT++ implementation and the Fourier analysis has shown excellent agreement

(Fig. 3.6) with exact response function for real frequencies (neglecting the mode growth and

damping). The same calculations were performed for a four-moment model with a closure for

r variable, proposed by HP, also showing excellent agreement (Fig. 3.8) with the analytical

plasma response function.

The obtained collisionless kinetic closure was also verified in a self-consistent model of

the ion Landau damping in BOUT++. It was done with the three-moment fluid system and

HP-like closure for the heat flux. The same fast non-Fourier method has been used for the

closure operator calculation. The resulting damping rate (shown in Fig. 3.9) agrees well with

the theoretical results.

The future work can be focused on a generalizing of the fast non-Fourier method. As I

shown in this thesis, the higher-order terms in the heat flux closure improve the agreement

with kinetic theory. The higher-order terms include the frequency dependence which can

be converted into the real space and time domain with additional time derivatives. Such

a system of fluid equations with closures that involve time derivatives can also be modeled

within the BOUT++ framework.

Despite the limitations, linear closures are being used in nonlinear plasma fluid simula-

tions. Our results and practical implementations in BOUT++ can be used in such problems,
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e.g., for the problem of the instability and transport due to lower-hybrid modes [49] relevant

to E×B plasmas and electric propulsion and plasma processing devices [50].
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Appendix A

Generalized closure for the viscosity and

heat flux in 3D case

In this Appendix, the review of the exact closure models following to Chang-Callen [14]

(CC) and Litt-Smolyakov [15] (LS) studies is given. The purpose of this Appendix is to

compare the CC and LS results. It will be shown that CC closure has some inconsistency

in provided results, more specifically with obtaining the exact plasma response function.

Both CC and LS approaches are based on the Chapman-Enskog method [1]. Following the

Chapman-Enskog ansatz, the distribution function f is represented in the form:

f = FM + F̃ , (A.1)

where FM is the dynamical Maxwellian distribution, and F̃ is the deviation from the distri-

bution. The dynamical Maxwellian is given by

FM(x,v, t) =
n(x, t)

π3/2 [2T (x, t)/m]3/2
exp

(
−m [(v −V(x, t)]2

2T (x, t)

)
, (A.2)

and its evolution depends on the evolution of the macroscopic variables n(x, t), V(x, t) and

T (x, t), where v is the particle velocity and V is the fluid velocity. The ansatz (A.1) also

imposes the following constraints on the deviation of the distribution F̃ :

ˆ
F̃
{

1,v
′
,mv

′2/2
}
d3v

′
= 0, (A.3)

where v
′

= v − V is the random velocity, and weighting functions (in the curly brackets)

corresponds to the particle, momentum and energy moments. It means that F̃ will not

contribute to the perturbation of these lowest moments. Substituting the ansatz (A.1) in the

Boltzmann equation (1.10), it can be rewritten in the form:

(
∂n

∂t
+ v · ∇n

)
FM
n

+

(
∂T

∂t
+ v · ∇T

)(
−3

2
+
v

′2

v2T

)
FM
T

+

(
∂V

∂t
+ v · ∇V

)
· 2v

′

v2T
FM +

e

m
E·∂FM

∂v
+DF̃ = C (f) , (A.4)
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where v2T = 2T/m is the thermal velocity and

D ≡ ∂

∂t
+ v · ∇+

e

m
E · ∂

∂v
. (A.5)

It can be noted, that kinetic equation (A.4) contains a time evolution of the plasma fluid

equations. The standard plasma fluid equations (obtained as first three moments of the

kinetic equation in Chapter 1) are

∂n

∂t
+∇ · nV = 0, (A.6a)

mn

(
∂V

∂t
+ V · ∇V

)
= −∇p+ enE−∇ ·Π + R, (A.6b)

3

2
n

(
∂T

∂t
+ V · ∇T

)
= −p∇ ·V −Π:∇V −∇ · q +Q, (A.6c)

with R and Q:

R = −νmnV, (A.7)

Q = −νn
(

3

2
(T − Tn)− m

2
u2
)
, (A.8)

where R is the collisional term (ion-neutral collisions) and Q represents a balance between

the ion frictional heating and cooling, caused by collisions. Including macroscopic evolution

equations (A.6) into Eq. (A.4) one obtains the recast of kinetic equation in the Chapman-

Enskog form:

DF̃ = C (f) + v
′ ·∇T

(
5

2
− v

′2

v2T

)
FM
T
−
(

v
′
v′ − v

′2

3
I

)
: ∇Vm

FM
T

− (Π:∇V +∇ · q−Q)

(
1− 2

3

v
′2

v2T

)
FM
p

+ (∇ ·Π−R) · v′FM
p
, (A.9)

where the deviation F̃ depends on the lower order moments. This equation is still fully

equivalent to linearized Boltzmann equation (1.10).

At this point one-dimensional problem is considered, in the direction of the perturbed

electric field (and the wavevector). After linearizing the Chapman-Enskog-like equation A.9

for F̃ and taking the Fourier transform of Eq. (A.9) (using ∂/∂t→ −iω and ∇ → ik‖), one

obtains

F̃ =
Ṽ‖
vT

4

3

k‖vTFM

ω + iν − k‖v′
‖

(
v

′2
‖

v2T
− v

′2
⊥

2v2T

)
− Π̃‖

p

k‖v
′

‖FM

ω + iν − k‖v′
‖

+
q̃‖
pvT

2

3

k‖vTFM

ω + iν − k‖v′
‖
L
(1/2)
1 (x)− T̃

T

k‖v
′

‖FM

ω + iν − k‖v′
‖
L
(3/2)
1 (x), (A.10)
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with L
(1/2)
1 (x) = 3/2− v′2/v2T and L

(3/2)
1 (x) = 5/2− v′2/v2T , and the moments Ṽ‖, Π̃‖ and q̃‖

are defined with respect to the direction of wavevector. The following identities have been

used: (
v

′
v′ − v

′2

3
I

)
: ∇V =

2

3
ik‖V‖

(
v

′2
‖ − v

′2
⊥/2

)
, (A.11)

and

∇ ·Π · v′
= ik‖Π‖v

′

‖, (A.12)

where V‖ and Π‖ are the components along the perturbed ion velocity; in case of k =kxx̂,

these would be Vx and Πxx, respectively. The Eq. (A.10) for F̃ can be written in the short

form as

F̃ =
Ṽ‖
vT
aV −

Π̃‖
p
aπ +

q̃‖
pvT

aq −
T̃

T
aT , (A.13)

with the following coefficients:

aV =
4

3

k‖vTFM

ω + iν − k‖v′
‖

(
v

′2
‖

v2T
− v2⊥

2v2T

)
, (A.14)

aπ =
k‖v

′

‖FM

ω + iν − k‖v′
‖
, (A.15)

aq =
2

3

k‖vTFM

ω + iν − k‖v′
‖
L
(1/2)
1 (x), (A.16)

aT =
k‖v

′

‖FM

ω + iν − k‖v′
‖
L
(3/2)
1 (x). (A.17)

Previously imposed constraint (A.3) on the deviation F̃ state that it is not affected by the

lowest moments. Therefore, by integrating Eq. (A.13) with
{

1,v
′
,mv

′2/2
}

moments, one

can obtain

Π̃‖
p0

= PV
Ṽ‖
vT

+ PT
T̃

T0
, (A.18)

q̃‖
p0vT

= QV

Ṽ‖
vT

+QT
T̃

T0
, (A.19)

where closure coefficients PV , PT , QV , QT are complex functions of the plasma dispersion

function Z(ζ) with a complex argument ζ = (ω + iν) /(k‖vT ). It can be noted, that obtained

closures have the Onsager symmetry properties, i.e. they are both expressed as the functions

of Ṽ and T̃ .
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Obtained above form of closure expressions is similar in both Chang-Callen and Litt-

Smolyakov works. One can check that these closures, used with the plasma fluid equations,

provide the same linear kinetic response function R(ζ) = 1+ζZ(ζ). First, the plasma response

function can be represented in general depending on coefficients PV , PT , QV , QT . Then the

corresponding coefficients from CC and LS results can be substituted for comparison between

each other. The plasma response function appeared in ñ = qn0/T0Rφ̃, and, therefore, can be

expressed from the linearized fluid equations (A.6):

− iwñ+ ikn0ũ = 0, (A.20a)

− iwmn0ũ = −ikn0T̃ − ikT0ñ− iken0φ̃− ikπ̃, (A.20b)

− 3

2
iwn0T̃ = −ikn0T0ũ− ikq̃. (A.20c)

After substitution of obtained closures for π (A.18) and q (A.19) and solving the sys-

tem (A.20), one can find the response function, expressed via PV , PT , QV , QT coefficients:

R =
2Qt − 3ζ

2Qt − 2ζ (PtQv − PvQt +Qv + Pt + 4)− ζ2 (4Qt + 3Pv) + 6ζ3
. (A.21)

Let us start with the Chang-Callen results. Denoting with the upper cc index, closure

coefficients for the linear closure terms (A.18,A.19) are presented as functions of Z and ζ:

P cc
V =

6Z (2Zζ2 − Z + 2ζ)

4Z2ζ − 2Zζ2 + 5Z− 2ζ
, (A.22a)

P cc
T = − 4Z2ζ + 4Zζ2 + 2Z + 4ζ

8
3
Z2ζ − 4

3
Zζ2 + 10

3
Z− 4

3
ζ
, (A.22b)

Qcc
V = −4Z2ζ + 4Zζ2 + 2Z + 4ζ

4Z2ζ − 2Zζ2 + 5Z− 2ζ
, (A.22c)

Qcc
T =

12Z2ζ2 − 6Zζ3 + 33Zζ − 6ζ2 + 18

8Z2ζ − 4Zζ2 + 10Z− 4ζ
. (A.22d)

By substituting them into Eq. (A.21) one obtains the following expression for the response

function:

Rcc
3 =

Zζ + 1

1− 1
3
Zζ + 2

3
ζ2 + 2

3
Zζ3

, (A.23)

which is not the expected exact response function (1.81). For a small argument approximation

the obtained result gives Rcc
3 ≈ 1 + 4

3
iζ
√
π, where the distinction with the exact small

argument limit (1.82) is present already in the first order term. This can be explained with
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the typo in CC work. For further comparison, let us present here expansions for closure

coefficients in CC work. The cold plasma limit ζ � 1 approximation results into:

P cc
V = −6

5
i
√
π + ζ

(
−24

25

√
π
2

+
108

25

)
, (A.24a)

P cc
T = −3

5
+ ζ

(
−18

25
i
√
π +

36i

25
√
π

)
, (A.24b)

Qcc
V = −2

5
+ ζ

(
−12

25
i
√
π +

24i

25
√
π

)
, (A.24c)

Qcc
T = − 9i

5
√
π

+ ζ

(
93

50
− 108

25π

)
. (A.24d)

In the hot plasma approximation ζ � 1:

P cc
V = 2ζ−1 +

7

3
ζ−3, (A.25a)

P cc
T = ζ−2 +

11

3
ζ−4, (A.25b)

Qcc
V =

2

3
ζ−2 +

22

9
ζ−4, (A.25c)

Qcc
T =

5

4
ζ−1 +

7

3
ζ−3. (A.25d)

For Litt-Smolyakov results any indices are omitted in the following notation. The coeffi-

cients for closure terms (A.18, A.19), expressed in terms of the plasma dispersion function Z

and ζ are

PV =
Z (12Zζ2 − 6Z + 12ζ)

6Z2ζ − 3Zζ2 + 7.5Z− 3ζ
, (A.26a)

PT =
4Z2ζ + 4Zζ2 + 2Z + 4ζ

−4Z2ζ + 2Zζ2 − 5Z + 2ζ
, (A.26b)

QV =
2Z2ζ + 2Zζ2 + 1Z + 2ζ

−2Z2ζ + Zζ2 − 2.5Z + 1ζ
, (A.26c)

QT =
−6Z2ζ2 + 3Zζ3 − 16.5Zζ + 3ζ2 − 9

−4Z2ζ + 2Zζ2 − 5Z + 2ζ
. (A.26d)

By substituting LS coefficients (A.26) into the general expression for response function (A.21),

one obtains

R3 = 1 + ζZ, (A.27)

which is fully equivalent to the exact kinetic linear response function (1.81), as expected. Let
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us approximate the coefficients (A.26) in ζ � 1 limit:

PV = −4

5
i
√
π + ζ

(
−16

25
π +

72

25

)
, (A.28a)

PT = −2

5
+ ζ

(
−12

25
i
√
π +

24

25

i√
π

)
, (A.28b)

QV = −2

5
+ ζ

(
−12

25
i
√
π +

24

25

i√
π

)
, (A.28c)

QT = − 9i

5
√
π

+ ζ

(
93

50
− 108

25π

)
. (A.28d)

By substituting only zeroth-order terms (terms without ζ) of coefficients (A.28) into Eq. (A.21)

and solving for response function, one obtains the following result:

R3 ≈
25
√
πζ + 30i

31
√
πζ − 2ζ (2i

√
π + 5ζ) (5

√
πζ + 6i) + 30i

, (A.29)

where the small term approximation (1.78) for dispersion function Z(ζ) is used. Expand-

ing (A.29) with small argument ζ will give

R3 ≈ 1 + i
√
πζ +

(
2− 7

6
π

)
ζ2, (A.30)

which is consistent with the exact response function expansion (1.82) for the first order.

Expanding the obtained response function (A.29) with a large argument ζ leads to

R3 ≈ −
1

2
ζ−2 +

1

5
i
√
πζ−3, (A.31)

which is also consistent with the exact formula expansion in Eq. (1.83) for the second order;

ζ−3 term is absent in exact expansion of response function. The illustration can be seen

in Fig. A.1, where the R3 (A.29) and the Hammett-Perkins result for three-moment closure

ansatz (2.5) are compared with the exact result. In the limit of high collisionality (ζ � 1),

LS coefficients (A.26) appeared as

PV =
4

3
ζ−1 +

14

9
ζ−3, (A.32a)

PT =
2

3
ζ−2 +

22

9
ζ−4, (A.32b)

QV =
2

3
ζ−2 +

22

9
ζ−4, (A.32c)

QT =
5

4
ζ−1 +

7

3
ζ−3. (A.32d)
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By substituting only first terms (terms with ζ−1 and ζ−2) of coefficients (A.32) into Eq. (A.21)

and solving for response function, one obtains the following result:

R3 = − 9ζ2 (6ζ2 − 5)

108ζ6 − 252ζ4 + 57ζ2 − 16
, (A.33)

where Z(ζ) was replaced the expression for the large argument approximation of Z(ζ) (1.79).

Expanding the obtained response with a large ζ results in

R ≈ −1

2
ζ−2 +

5

12
ζ−4, (A.34)

which is consistent with the exact response function expansion in Eq. (1.83).
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Figure A.1: The real and imaginary parts of the normalized plasma response func-

tion. Three-moment model with Litt-Smolyakov closure (A.29) response function R3LS

(dotted) is compared to the Hammett-Perkins three-moment response function result

R3HP (dashed). The exact plasma response function R is also present (solid).
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Appendix B

Plasma dispersion function

Plasma dispersion function is a special function of a complex argument. It appears in

many areas of plasma physics, particularly, in application to the collisionless kinetic equation.

In this thesis I have used mostly the plasma response function R = 1+ζZ, expressed through

the plasma dispersion function Z. Thus, the central point is the evaluation of the plasma

dispersion function Z. The plasma dispersion function was already defined (1.75), but another

definition [37] can be used:

Z(ζ) = 2ie−ζ
2

iζˆ

−∞

e−t
2

dt, (B.1)

which is valid for any sign of Im ζ. It also can be related to the error function, and, in fact,

Z(ζ) = i
√
πe−ζ

2

erfc(−iζ), (B.2)

where erfc is the complementary error function [51].

The SciPy [52] (library for Python) has been used in my numerical calculations, where

the special function w represents the Fadeev function:

w(z) = e−ζ
2

erfc(−iζ). (B.3)

It can be seen that Z(ζ) = i
√
πw(ζ). The details on the algorithms and the code behind the

implementation of the Fadeev function can be found in Ref. [53]. The code is also available

for C, Matlab, GNU Octave, R, Scilab, and Julia.

To illustrate a general behavior of the plasma dispersion function, the plots can be found

in Figs. B.1-B.3. They are all consistent with the well-known work of Fried-Conte [37].
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Figure B.1: Plasma dispersion function for the real argument.
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Figure B.2: Plasma dispersion function for the complex argument with positive imag-
inary values; (a) shows the real output and (b) shows the imaginary output.
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Figure B.3: Plasma dispersion function for the complex argument with negative
imaginary values.

72



Appendix C

Velocity weighted integrals of the Maxwellian

in terms of Plasma Dispersion Function

The integrals used to evaluate the coefficients in Chapter 2 defined as

F0 =
1√
πvT

exp

(
−v
′2

v2T

)
, (C.1)

∞̂

−∞

F0 dv′ = 1, (C.2)

∞̂

−∞

v′2F0 dv′ =
v2T
2
, (C.3)

∞̂

−∞

dv′

ω − kv′F0 = − 1

kvT
Z(ζ), (C.4)

∞̂

−∞

v′dv′

ω − kv′F0 = −1

k
(1 + ζZ(ζ)) , (C.5)

∞̂

−∞

v′2dv′

ω − kv′F0 = −vT
k
ζ (1 + ζZ(ζ)) , (C.6)

∞̂

−∞

v′3dv′

ω − kv′F0 = −v
2
T

k

(
1

2
+ ζ2 (1 + ζZ(ζ))

)
. (C.7)
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