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Abstract 
 

Conventional disposal of waste rock results in the construction of benches 

with interbedded fine and coarse layers dipping at the angle of repose.  The 

waste rock benches are typically 20-meters in height and are constructed in 

a vertical sequence to form waste rock dumps commonly greater than 100-

meters high.  The interbedded structure influences the flow pathways for 

infiltration water within the waste rock profile.  Preferential flow pathways 

develop when one material becomes more conductive than the surrounding 

material.  The flow of meteoric waters through the interbedded waste rock 

structure is difficult to describe since the dumps are constructed above 

natural topography and are generally unsaturated. 

 

Two previous research studies were undertaken at the University of 

Saskatchewan to study end dumped waste rock piles and the relationship to 

preferential flow for unsaturated conditions.  The first study was conducted 

during the excavation of a large waste rock pile at Golden Sunlight Mine in 

Montana (Herasymuik, 1996).  Field observations showed that the waste 

rock pile consisted of steeply dipping fine and coarse-grained layers.  The 

results of further laboratory analysis indicated the potential for preferential 

flow through the fine-grained material under conditions with negative pore-

water pressures and unsaturated flow.   

 

The second study investigated the mechanism for preferential flow in 

vertically layered, unsaturated soil systems (Newman, 1999).  The 

investigation included a vertical two-layer column study and a subsequent 

numerical modelling program showing that water prefers to flow in the finer-

grained material.  The preferential flow path was determined to be a function 

of the applied surface flux rates and the unsaturated hydraulic conductivity of 

the fine-grained material layer.   
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A numerical modelling program to evaluate preferential flow was conducted 

for the present study in an inclined four-layer system consisting of alternating 

fine and coarse-grained waste rock.  The numerical modelling program was 

undertaken using the commercial seepage software package, Seep/W, that 

is commonly used by geotechnical engineers.  The result obtained using 

Seep/W showed preferential flow to occur in the fine-grained layer.  

However, difficulties with respect to convergence under low flow conditions 

with steep hydraulic conductivity functions were encountered. 

 

A comprehensive sensitivity analysis was completed to investigate the 

factors that influence convergence in the Seep/W model including: 

convergence criteria, mesh design and material properties.  It was found that 

the hydraulic conductivity function used for the coarse-grained material was 

the most important factor.  The problem of the steep slope for the hydraulic 

conductivity function specified for the coarse-grained material was solved by 

progressively decreasing the slope of the hydraulic conductivity function at 

10-8 m/s (for applied fluxes of 10-7 m/s or less).  The sensitivity analysis 

showed that the manipulation of the hydraulic conductivity function had 

insignificant changes in the flux distribution between the waste rock layers 

and great significance for achieving convergence.  Based on the discoveries 

of the sensitivity analysis, a 20-meter high multi-layer waste rock profile 

inclined at 50º with an applied flux of 7.7e10-9 m/s equal to the annual 

precipitation at the Golden Sunlight Mine was successfully simulated.  A 

parametric study was subsequently conducted for an applied flux rate of 10-5 

m/s for slope heights of 1-meter to 20 meters with slope angles varying 

between 45º and 90º.  The parametric study demonstrated that flow in a 

multi-layered waste rock dump is a function of inclination, contact length 

between the layers, and the coarse and fine-grained hydraulic properties for 

the waste rock.  An alternative numerical modelling technique based on a 

modified Kisch solution was also used to investigate preferential flow.  The 
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Kisch method helped to verify and simplify the numerical problem as well as 

to illustrate the mechanics of preferential flow in a two-layered system. 

 

In general, commercial seepage modeling packages are powerful and useful 

tools that are designed to adequately accommodate a wide range of 

geotechnical problems.  The results of this research study indicate that 

Seep/W may not be the best-suited tool to analyze unsaturated seepage 

through sloped waste rock layers.  However, numerical modelling is a 

process and working through the process helps to enhance engineering 

judgment.  The Seep/W model provided an adequate solution for a simplified 

simulation of unsaturated seepage through waste rock layers.  The modified 

Kisch solution independently verified the solution and provided additional 

confidence for the results of Seep/W model. 
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CHAPTER 1 INTRODUCTION 

INTRODUCTION 

1.1 Background 
The mining industry has a significant impact on both the economy and the 

environment.  Environmental regulations specify the standard for protecting the 

environment, and an economically viable mining industry is one that can protect 

the environment and produce a profit.  Research has contributed significantly to 

the minimization of environmental impact from mining operations.  Through 

continuing research, improvements to current mining practice can lead to newer 

and less expensive construction and decommissioning technologies for new 

mine sites.   

 

Computers play an important role in the rapidly developing field of design and 

decommissioning for waste rock dumps, with respect to their hydrologic 

behavior.  Increases in computing power have made numerical modelling an 

active part of engineering in the mining industry.  One of the most relevant roles 

of predictive modelling is to ensure that a reclaimed waste rock dump will not 

have long-term negative impacts associated with the infiltration of precipitation 

and subsequent discharge to the environment.  The design of cost efficient 

control measures during mining and decommissioning depends heavily on the 

ability to model and predict the potential for acid generation and drainage from a 

waste rock dump.   

 

Herasymuik (1996) described several models for waste rock hydrology and 

geochemistry, and for the prediction of acid generation and drainage.  

Herasymuik noted that the models were weak in predicting secondary mineral
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production, water flow, and solute transport in unsaturated heterogeneous waste 

rock.  Herasymuik also noted that there appeared to be a lack of understanding 

with respect to the interactions between hydrogeology and geochemical 

processes active in waste rock piles. 

 

Current predictive models generally treat waste rock hydrology as a “black box.”  

However, the “black box” is known to interact with the atmosphere and drain 

acid water into the environment.  In cases, which involve tailings impoundments, 

there are models available that accommodate saturated and unsaturated flow in 

homogenous media and calculate the geochemical reactions together with 

environmental loadings.  However, the lack of a comparable understanding 

regarding the properties of waste rock may result in the incorrect application of 

control measures for acid drainage.  In order to achieve an acceptable level of 

confidence in the design of a waste rock pile overly conservative approaches 

are often implemented.  Herasymuik (1996) acknowledged the lack of 

understanding of waste rock properties and conducted research focused on 

determining the internal structure and characteristics of the hydrogeologic 

properties of a waste rock pile. 

 

Waste rock dumps frequently contain significant quantities of reactive sulphide 

minerals.  The piles also have a high coefficient of permeability, and rapid 

drainage through the pile produces an unsaturated rock structure when the pile 

is constructed above the water table.  The sulphide bearing minerals are 

exposed to oxidizing conditions and react with water and atmospheric oxygen to 

produce acid rock drainage (ARD).  Herasymuik (1996) documented detailed 

observations made while excavating a waste rock pile at the Golden Sunlight 

Mine (GSM) in Montana, USA.  GSM is situated in a semi-arid climate where the 

potential evapotranspiration is two to three times greater than the average 

annual precipitation of 243 mm/year (Swanson, 1995).  From these 

observations, Herasymuik developed a conceptual model for the hydrogeology 

of the waste rock pile.  In general, Herasymuik’s conceptual model predicts that 
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water due to surface infiltration will tend to flow in the finer materials within the 

waste rock profile.  The broad objective of the present study is to evaluate the 

conceptual model presented by Herasymuik (1996) using numerical modelling 

techniques for unsaturated flow. 

1.2 Research Objective and Scope 
Protection of the environment in a more economical manner can be achieved 

through use of a superior predictive model.  The development of a superior 

predictive model requires an understanding of the hydrogeologic properties of a 

waste rock dump.  The conceptual model developed by Herasymuik (1996) 

provided such an understanding.  Further development required that a 

mathematical model be developed based on the conceptual model.  However, 

the translation of the conceptual model to a mathematical model proved to be 

difficult.    

 

Several studies related to waste rock piles and the production of ARD have 

been undertaken by other researchers.  These studies mainly emphasized the 

importance of infiltrating water.  One such study conducted by Newman (1999) 

determined the mechanism for preferential flow in a vertically layered, 

unsaturated system.  Further study was required to link the work of Newman 

(1999) with the conceptual model for a waste dump proposed by Herasymuik 

(1996) since field observations showed the layers to be inclined at the angle of 

repose (i.e., 38º).  A new numerical modelling program was undertaken in this 

thesis to evaluate the flow of water in both vertical and inclined layers of waste 

rock.  However, the difficulties associated with modelling inclined waste rock 

layers were extensive.  It was also difficult to accurately characterize the layered 

structure in a waste dump.  Furthermore, texture, geochemical and mineral 

properties of the rock affect the weathering and oxidation.  In many cases, these 

parameters that are unknown and site specific conditions significantly influence 

the flow of water.   
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The objective of this thesis is to evaluate the conceptual model for the 

hydrogeology of an unsaturated end dumped waste rock pile using the 

numerical software called Seep/W (Geo-Slope, 1995) for saturated/unsaturated 

flow.  Seep/W is a computer model routinely used by geotechnical engineers for 

the design of earth structures.  The specific objectives are as follows: 

1) To conduct a literature review of existing numerical techniques for 
modelling the flow of water through waste rock dumps; 

2) To develop finite element domains and material properties that represent 
waste rock systems; 

3) To conduct a parametric study to establish the influences of slope angle 
and contact length between layers with respect to flow and numerical 
convergence; 

4) To develop criteria for achieving convergence for nonlinear seepage 
problems associated with waste rock; 

5) To develop a simple pseudo two dimensional finite difference numerical 
method to independently analyze the seepage solutions based on first 
principles; and 

6) To provide recommendations for future research. 

 

The modelling work presented in this thesis considered the steady-state 

saturated/unsaturated flow of water through a waste rock pile, but did not 

consider chemical reactions or gas transport.  The scope of this thesis is 

considered to be an initial step towards the numerical modelling of an entire 

waste rock pile. 

 

Herasymuik (1996) showed that end dumped waste rock segregates into layers 

of waste rock at residual slope angles with a water content of 6%.  The layers 

consisted of waste rocks that had been stratified due to segregation during down 

slope ravelling upon dumping.  The stratified layers were also formed as a result 

of variations in rock type.  Oxidation and weathering to finer-textured material at 

different rates induced greater variations with respect to texture.  These layers 

were often relatively uniform in grain size but were not always continuous along 

the length of the slope.  The adjacent layers were also uniform but were either 

coarser or finer than one another.  Observations showed that there was 
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moisture in the fine-grained layers while the coarse-grained layers remained dry.  

The different textures between the sloping layers appeared to be sufficient to 

result in preferential unsaturated flow of precipitation that infiltrated the surface 

of the waste rock.  It is possible that there is need for further study on induced 

preferential flow pathways to create an environmentally benign design of waste 

rock piles to avoid ARD (Mehling et al., 1997).  This possibility is assumed to be 

outside the scope of the present thesis. 

1.3 Research Methodology 
The research program followed a standard modelling methodology.  A physical 

problem was examined and a conceptual model developed.  The conceptual 

problem was then described using a mathematical model and a solution was 

sought.  The solution was then evaluated. 

 

Only a few researchers have set out to study the hydrogeology internal to a 

waste rock dump.  The field study and conceptual model developed by 

Herasymuik (1996) provided the important first steps towards the development 

of a predictive model.  Newman (1999) continued the work by providing an 

understanding of the mechanism for preferential flow.  The study by Newman 

(1999) for vertical waste rock layers was conducted in the laboratory followed by 

numerical modelling.  The numerical modelling program developed for this study 

began by considering these previous studies.  Various slope angles were 

investigated and heights typical of benches from end dumped waste rock piles 

were considered.  A sensitivity analysis presented in Appendix B, studied the 

effects of the input parameters (i.e., convergence criteria, material properties, 

and geometry) on the finite element numerical model.  The analysis concluded 

by examining an alternative numerical solution using a finite difference method 

and then revisiting the finite element solution. 

1.4 Thesis Outline 
This research study provides the background required for the development of a 

numerical model for waste dumps.  Chapter 2 describes the modelling 
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methodology used together with a literature review.  The literature review 

summarizes the related research conducted previously, and describes the 

physical problem. 

 

Chapter 3 presents the theoretical background required to understand the main 

processes involved in the movement of water in unsaturated systems.  The 

mathematical methods used for the numerical models are also presented.  

Chapter 4 presents the detailed parametric study that was undertaken using the 

Seep/W finite element model.  The independent finite difference numerical 

method developed is presented at the end of Chapter 4.  The results obtained 

from both modelling programs are presented, analyzed, and discussed in 

Chapter 5.  A summary and conclusion are provided in Chapter 6, as well as 

recommendations for continuing research. 

 

The outputs from the modelling programs are presented in three appendices.  

The output of the parametric study is located in Appendix A.  An outline of an 

extensive sensitivity analysis along with a discussion of the results, and the 

tables summarizing the results are presented in Appendix B.  Appendix C 

provides the spreadsheet results of the finite difference numerical method 

developed. 
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CHAPTER 2 LITERATURE REVIEW AND BACKGROUND 

LITERATURE REVIEW AND BACKGROUND 

2.1 Introduction 
The development of a numerical model should adhere to the scientific method of 

problem solving.  When a problem is identified and a need to solve the problem 

arises, a certain methodology is followed.  The first section of this chapter 

demonstrates the evolution of a numerical model from a conceptual problem to a 

feasible solution.  The following sections provide background for the physical 

problem under consideration, and a review of related research. 

2.2 Modelling Methodology 
The purpose of a modelling exercise is to define the performance of a physical 

model prior to the construction of the full-scale system.  Models may encompass 

large-scale field-testing, scaled models, analogue models, or numerical models.  

However, the greatest benefit of numerical modelling is seldom realized except 

during the final prediction of performance.  Modelling can be beneficial to 

design, interpretation of data, and generic numerical experiments.  The 

advantage of modelling lies in the ability of a model to enhance judgment.  

Modelling is primarily about the processes involved more than about prediction 

(Barbour, 1998).  

 

The National Research Council (NRC, 1990) defines a mathematical model as a 

replica of some real-world object or system.  The model is an attempt to take the 

current understanding of the processes involved (i.e., conceptual model) and 

translate these processes into mathematical terms. 
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There are several steps in the development of a model as noted by NRC (1990), 

Mercer and Faust (1981), and Freeze and Cherry (1979).  Common to the 

conceptual frameworks for modelling are the following components: 

 

1. Conceptualization: Definition of the site and scope of the physical 
phenomenon; 

2. Definition: Description of physical processes; 
3. Formulation: Representation of the physical phenomena with 

mathematical descriptions; 
4. Solution: Obtaining a numerical solution; and 
5. Interpretation: Validation and calibration of the numerical model with 

respects to the physical system. 
 

Spitz and Moreno, 1996, identified modelling components in detail, as presented 

in Table 2.1 below. 
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Table 2.1 Modelling Components (after Spitz and Moreno, 1996) 
Component Key Elements Examples 
Natural System Geometry 

 
Dimensionality 
State 
Hydrogeology 
 
 
Observed responses 
Groundwater problem 

• Lateral extent, thickness, source 
volume 

• One-, two-, three-dimensional 
• Transient, steady 
• Porosity, hydraulic conductivity, 

dispersivity, storativity, chemical 
properties 

• Water level, concentration 
• Extraction, contamination 

Conceptual 
Model 

Idealized system 
Relevant units 
Boundary and initial 
conditions 
Controlling processes 

• Aquifer, aquitard, aquiclude 
 

• Initial condition 
 

• Flow, capillarity, gravity, transport, 
chemical reactions 

Mathematical 
Model 

Physical laws 
 
Differential equations 
Boundary conditions 
 
Initial conditions 

• Conservation of mass 
• Conservation of energy 
• Equilibrium of forces 
• Constitutive relationships 
• Material relationships 
• Laplace equation 
• First-, second-, third-kind conditions 
• Specified head or concentration 

Solution Analytical model 
Porous media (bench-
scale) model 
Analog model 
 
 
Empirical model 
Mass balance (single-
cell) model 
Numerical model 

• Viscous fluid model 
• Membrane model 
• Electrical analog model 

 
 
• Finite-difference model 
• Finite-element model 
• Random walk model 
• Method of characteristics 
• Boundary element method 

Calibration Solution versus 
observation 
Adjustment of model 
input data 

 

Validation Testing of model 
prediction versus 
observations not 
used in calibration 

 

Simulations Parameter sensitivity 
Predictive simulations 
Analysis of 
uncertainty 
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Barbour, (1998) outlined the modelling process in the following steps: 

 

Step 1 – The physical problem and the pertinent processes taking place are 

monitored and the actual objective of the model is defined.  The hypothesis for 

the expected model outcome is determined and a definition of the conceptual 

model that describes the relevant area, and effect of outside influences and the 

outcome is provided. 

 

Step 2 – The relevant area is measured or defined.  A brief discussion of the 

important processes occurring is provided, accompanied by the most relevant 

equations and theories (i.e., the relevant fundamental laws).  A statement of the 

essential assumptions and approximations used in definitions is included with a 

data set of all known information.  The area of interest is defined, as are any 

influencing conditions.  The responses of the system are noted and a 

mathematical model is developed using the provided information. 

 

Step 3 – An analytical or numerical method of solving the problem is chosen and 

an accurate solution and explanation of results is obtained.  The solution 

obtained is compared with known solutions and published field studies in order 

to establish its accuracy.  The limitations of the solution obtained and possible 

error sources are also defined. 

 

Step 4 – The solution is verified and interpreted with respect to the pertinent 

physical problem and a modelling experiment or laboratory study is designed 

with proper calibration and adjustment so that the model parameters are in 

agreement with field responses.  The range of reasonable and acceptable 

responses to the solutions is decided upon and a sensitivity analysis is carried 

out through a selection of a range of relevant parameters (properties, boundary 

conditions, etcetera).  The parameters are varied individually and the simulation 

is repeated.  The responses of the key systems are discussed and the model is 
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confirmed by applying the calibrated model to the new set of responses.  The 

model is audited and submitted for independent review and the results are 

presented. 

 

Swanson (1995) provided an example that illustrated how the methods 

described above can be adapted to solve a problem.  Swanson (1995) 

conducted a predictive modelling program of moisture movement through 

engineered soil covers.  The modelling methodology was divided into six stages: 

1. Site Familiarization; 
2. Introductory Modelling; 
3. Preliminary Modelling; 
4. Field Response Modelling; 
5. Predictive Modelling; and 
6. Methodology Summary and Analysis. 

 

The general methodology and approaches outlined above are those most 

commonly found in the literature. 

2.3 Modelling Issues 
There are several key characteristics and limitations associated with numerical 

models.  Numerical models are simple representations of a “greater reality.”  

Therefore, the model is subject to the accuracy of the interpreted data collected 

(for example, soil sampling and associated laboratory analysis).  The 

development of the model should start from a simple representation and move 

to a more complex representation.   

 

It should to be noted that the numerical modelling is not a solution to a problem 

but is rather a tool for solving the governing equations.  The numerical model is 

an incorporation of the site-specific geometry, boundary conditions, and relevant 

parameters, which include calibrating and verifying the model (Spitz and 

Moreno, 1996).  The modelling exercise relies heavily on the engineer/ 

researchers’ judgment.  Sensitivity studies are helpful in the evaluation of the 

significance of ‘uncertainties’ in the input parameters. 
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Potential errors in model development can be reviewed in terms of the modelling 

steps described in the previous section.  The conceptual model is a simplified, 

but a realistic representation of a real physical system.  Misinterpretation of the 

physical system or a poor definition of the boundary conditions or material 

properties are not compensated for by sophisticated numerical modelling.  The 

adage, “garbage in results in garbage out” is of significance to the case at hand.  

However, it is not a requirement that the physical model be fully defined prior to 

the application of a numerical model.  An iterative approach can be used.  An 

initial conceptual model can be simulated based on estimated conditions.  A 

further definition of the physical system can be pursued until an acceptable 

agreement between the model and reality is developed.  The critical aspect is to 

keep the accuracy of the model in perspective, in light of the initial definition of 

the physical system.  It often happens that complex models are used too early in 

a study (Barbour, 1998). 

 

Sophisticated numerical models do not compensate for limitations in the basic 

definition of the physical system.  In many areas of geotechnical engineering, 

there are fundamental processes that are still not well understood.  Secondly, all 

of these theoretical descriptions are based on a series of assumptions.  The 

significance of these assumptions in light of the physical system being modelled 

must be kept in mind (Barbour, 1998). 

 

Errors can often develop in mathematical solutions due to difficulties with 

numerical oscillation or dispersion, or round-off and truncation errors.  When 

large systems of equations are being solved, repeated round-off error can 

become problematic.  The significance of these error can usually be detected by 

studying the effect of machine precision.  Errors of this type are dangerous when 

working with small numbers and steep soil property functions (Barbour, 1998). 

 

Barbour (1998) states, “The greatest danger of model misuse is blind faith.  This 

occurs when the model user is not familiar with the physical system, 
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assumptions, and theoretical foundations, and limitations of the numerical 

solution described previously, yet accepts the results of the model simulation 

without question.  This is potentially a greater problem with the increasing use of 

general modelling packages.  In every case, an interpretation of the numerical 

model results that would contradict engineering intuition should be considered 

suspect.  The basic question still is are the results reasonable?” 

2.4 The Physical Problem 
The physical problem to be studied is the hydrogeology of waste rock dumps as 

it relates to acid rock drainage (ARD).  MEND, 1995 noted that many 

researchers have studied waste pile hydrology with regards to ARD; however, 

the internal seepage behavior of mine waste rock dumps is poorly understood.  

The literature shows that observations indicate that waste rock pile stratigraphy 

may be a determining factor in internal seepage behavior.  From the literature 

review undertaken for the purposes of this thesis, it can be deduced that the 

amount of information available is seriously limited.  No single site provides a 

complete data record of important parameters required for the characterization 

of the hydrologic behavior of a waste rock pile  

 

MEND (1995) characterized the generation of acidic water within a waste rock 

pile as being quite “complicated.”  The process involves an intricate interaction 

amongst hydraulic, chemical, and thermal processes, including variably 

saturated fluid flow and air circulation in the rock mass above the water table.  In 

addition, ARD involves heat generation and heat transfer in both the aqueous 

and gaseous phases, oxygen consumption and re-supply, reaction kinetics.  

Furthermore, solutes are transported in an exceptionally heterogeneous medium 

containing both a porous matrix and open voids.  It should be noted that other 

processes are also relevant to the flow of water through waste rock piles.  

Examples of such factors are weathering, fines migration, and deposition, 

sealing of channels, settlement of the rock pile, and temporal changes in the 

spatial distribution of permeable pathways. 
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MEND (1995) proposed four hydrostratigraphic types to characterize waste rock 

piles.  The types differ depending upon the material and construction methods, 

and the characteristics of flow.  The flow of water is porous in finer sandy gravel 

materials whereas it is channelized in coarser materials.  The types are outlined 

as follows: 

 

1. Non-segregated coarse-grained rock piles that transmit water rapidly to 
the base of the pile; 

2. Non-segregated fine-grained rock piles that are likely to contain a basal 
saturated zone; 

3. Segregated rock piles that contain a fine-grained crest zone that may not 
permit the passage of significant quantities of water; and  

4. Layered, segregated dumps that contain a finer-grained crest and sandy 
gravel layers parallel to the face of the rock pile. 

 

The current study will look at the fourth type.  Figure 2.1 shows a typical 

example of segregated waste rock piles.  Segregated waste rock dumps exhibit 

a dominant vertically graded stratigraphy.  This is caused by the segregation 

that occurs as materials roll down the pile at the angle-of-repose.  Finer sandy 

gravels are present at the crest, while coarser materials accumulate further 

down-slope.  The vertical thickness of the finer segregated crest zone depends 

on the source rock textural composition and the dump height.  According to the 

studies reviewed, most end dumped fills exhibit areas of finer material in the 

crest that are about one-third of the total dump height (MEND, 1995). 
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Figure 2.1a Segregated End Dump Waste Rock Pile at Golden Sunlight 
Mine (after Herasymuik, 1996) 

 

 

Figure 2.1b Excavated Profile of a Waste Rock Pile at Golden Sunlight 
Mine (after Herasymuik, 1996) 
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MEND (1995) indicated that the segregated fine-grained material in the top third 

of these dumps exhibited infiltration capacities several orders of magnitude 

lower than that of the material in the lower slope area.  Thus, it is anticipated 

that flow through these dumps should be largely dominated by infiltration into the 

coarser rock-like material. 

 

Several investigations have revealed that in addition to the vertically graded 

stratigraphy, a distinct layering parallel to a dump face formed as different 

materials were placed.  Dawson and Morgenstern (1995) have shown that when 

materials consisting mostly of finer sandy gravel are end-dumped, little 

segregation occurs and a finer grained layer is formed in the dump.  These finer 

layers could develop a perched water table as saturation approaches 100 

percent due to infiltration or compression.  A perched water table might continue 

to develop until the hydrostatic head exceeds the capillary barrier formed at the 

fine/coarse interface.  The excess pore-water pressure developed in the fine 

layer may  have implication with respect to slope stability and may also result in 

higher ARD. 

 

In 1994, a unique occurrence provided a rare opportunity for the study of the 

hydraulic properties and flow pathways in an end-dumped waste rock pile at the 

Golden Sunlight Mine (GSM) located in Montana, USA.  End-dumping at this 

site produced a layered, segregated dump as identified in MEND 1995.   

 

GSM was subject to a large earth movement underneath a 100 million-ton waste 

rock pile.  To stabilize the movement, 15 million tons of waste rock were 

relocated.  A research program began in 1994 to study this event involving 

Placer Dome Canada Inc. and the Unsaturated Soil Group (USG) at the 

University of Saskatchewan (Newman et al, 1997). 

 

The research program consisted of several phases, in which an extensive field 

investigation was conducted.  The waste rock at the site was removed in a 
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series of 18-meter high benches.  Twenty-nine test pits were excavated on the 

benches, with the pits ranging in depth from 3- to 4-meters.  The test pits 

exposed layers of waste rock, which resulted from the end-dumping process.  

The layers were extensive but not continuous down the slope and ranged in 

thickness of 10 cm to several meters.  The layers were visually logged with 

respect to minerological components, grain sizes, texture, structure, matrix 

quantity and quality, state of oxidation and weathering, color, strike, dip and any 

other notable features.  In situ measurements of water content, matric suction, 

temperature, and relative humidity were also taken (Herasymuik, 1996).   

 

The field logging and sampling program documented a highly structured waste 

rock material, defined by color and/or grain size differences.  The layers were 

found to dip at approximately the angle of repose for the material and strike at 

an angle consistent with the edge of the dump-top surface from which the 

material was end dumped.  Changes in grain size were observed to occur 

horizontally and vertically within the pile.  These observations agreed with the 

MEND (1995) observations. 

 

A typical cross section of the excavated waste rock pile is presented in Figure 

2.2.  Note the distinctive dipping layers produced by end-dumping waste rock.  

The contrasting colors of the layers are indicative of different mineralogy as well 

as of different oxidation rates of and degrees of weathering between layers.  The 

gray layers were observed as coarse-grained waste rock, while the reddish 

layers were fine-grained waste rock.  The reddish colour is an indication of 

advanced oxidation and weathering in the fine-grained layers, and is a direct 

result of higher volumetric water contents.  This observation was contrary to the 

MEND (1995) findings, which indicated that flow through the waste rock dumps 

should be largely dominated by infiltration into the coarse-grained rock-like 

layers. 
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Figure 2.2 Cross-Section of a Typical End-Dumped Waste Rock Pile (after 
Herasymuik, 1996) 

 
The second phase of the GSM research program involved data reduction and 

laboratory analysis.  The wide ranges of grain-size found were classified based 

on grain-size distribution.  Waste rock with a large amount of coarse material 

(less than 40% passing the 4.75-mm sieve) drains rapidly under small values of 

matric suction and also shows a corresponding rapid decrease in unsaturated 

hydraulic conductivity. In contrast, fine waste rock (containing more than 40% 

passing 4.75-mm sieve) is capable of retaining water under a larger matric 

suction and therefore retains a relatively higher unsaturated hydraulic 

conductivity than the coarse material (Herasymuik, 1996).   

 

The grain size distribution, soil-water characteristic curves and the hydraulic 

conductivity function curves were determined for each sample.  The material 

property curves are shown in Figures 2.3 to 2.5, respectively.  The material 

properties show that the fine-grained waste rock layers have a higher air entry 

value (AEV), which indicates that the material can have a higher water content 

under a specific matric suction.  Therefore, the fine-grained waste rock will be 

the preferential layers for the storage of water and will provide pathways for the 
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liquid water flow in the waste rock pile under unsaturated conditions 

(Herasymuik, 1996).    
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Figure 2.3 Grain Size Distribution Curves for Field Samples Chosen for 
Large Diameter Pressure Plate Testing (after Herasymuik, 1996) 
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Figure 2.4 Soil-Water Characteristic Curve for Sampled Waste Rock (after 
Herasymuik, 1996) 
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Figure 2.5 Hydraulic Conductivity Function for Sampled Waste Rock (after 
Herasymuik, 1996) 
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2.5 Conceptual Model 
Herasymuik (1996) developed a detailed conceptual model describing the 

internal workings of an end-dumped waste pile.  The model showed that end-

dumped waste rock would result in stratified layers of waste rock at 

approximately the angle of repose, and the layers would be at residual water 

content.  The stratified layers consisted of waste rock that had segregated after 

dumping during down-slope raveling.  The stratified layers also formed due to 

variations in rock type.  These layers were often relatively uniform in grain size 

but were not continuous down the slope.  The adjacent layers were also uniform 

but were either coarser-grained or finer-grained.  The hydraulic conductivity of 

adjacent layers may vary by several orders of magnitude.  The difference in 

texture between the layers may be sufficient to result in preferential flow.  A 

diagram showing a 2-dimensional simplification of the observations at GSM is 

presented in Figure 2.6. 

 

Vertically Layered System
     Golden Sunlight Mine

 

Figure 2.6 Diagram of Layered System at GSM (after Herasymuik, 1996) 
 

Herasymuik (1996) described a conceptual model for the hydrogeology of an 

end-dumped waste rock pile.  The conceptual model begins with the infiltration 

of water due to precipitation.  Water that infiltrates into the coarse-grained 
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material at the top of the waste rock pile, or into the material on the slope, 

cannot be retained.  The water will form into a film or droplets, and drain 

vertically from the coarse-grained layers due to gravity.  It was suggested that 

Darcy’s flow law does not describe the flow of water on the particle surfaces.  

The film of water on the coarse material enters the fine-grained layers, where it 

is then stored and transported under saturated/ unsaturated conditions (i.e., 

Darcy’s law applies).  Sulphide-bearing minerals present in the fine-grained 

layers interact with the infiltrating water and oxygen in a biochemical reaction.  

The biochemical reaction results in oxidation and weathering, and produces 

sulphuric acid.  The contaminated infiltrated water can eventually drain from the 

waste rock pile.  The increased heat and lowered pH caused by the initial 

reaction accelerates the oxidation process.  The heat also increases the 

evaporation of water, with water vapor transported upwards in the waste rock 

pile.  Coarse-grained waste rock layers with open interpartical voids provide a 

preferential pathway for the movement of water vapor and other escaping 

gases.  The upward movement of water vapor may redistribute water within the 

wetting front where the vapor condenses to liquid or exits the pile.  This process 

is active in the upper portion of the waste rock pile associated with the wetting 

front. 

2.6 Aspects of the Physical Problem and Related Studies 
An important part of developing a numerical model is the study and review of 

related research.  Unfortunately, little research has been published on the 

prediction and analysis of seepage through waste rock dumps.  Newman (1999) 

conducted a closely related study and the present study is largely an extension 

of this initial work.  The study of the capillary barrier effect in engineered soil 

covers is also somewhat related to the present study and has received 

considerable attention in the research literature.   

2.6.1 Mechanism for Preferential Flow 
Newman (1999) studied the mechanism for preferential flow.  The study was 

based on the conceptual model developed by Herasymuik (1996) and 
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observations made by Horton and Hawkins (1965).  The research methodology 

followed by Newman (1999) included a column study and a numerical modelling 

program. 

 

A laboratory test was conducted with a column that measured 15 by 30 by 140 

cm and was constructed of clear plastic (Figure 2.7).  The column was designed 

to allow two different materials to be placed side by side in a series of lifts, 

separated by a thin adjustable metal sheet.  The materials used in the 

experiment had contrasting grain sizes (i.e., a coarse-grained material in contact 

with a fine-grained material).  The first column experiment used a fine-grained 

Beaver Creek sand separated from a coarse-grained medium silica sand.  The 

second column test consisted of a coarse-grained waste rock from GSM next to 

a fine-grained waste rock. 

 

#1-A

#1-B

#1-C

#1-D

#1-E

#2-A

Cutoff heights used in analysis #1
Cutoff height used in analysis #2

Discrete drainage
collection

Groove for
metal cutoff

Fine Coarse

 

Figure 2.7 Column Design (after Newman et al, 1997) 
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The laboratory analysis consisted of four steady-state fluxes applied evenly over 

the surface of the column for different cutoff heights.  Two of the applied flux 

rates exceeded the saturated hydraulic conductivity (Ksat) of the fine-grained 

layer, while two other applied flux rates were less than the Ksat of the fine-

grained material.  At the end of the experiments, the resulting discharge was 

collected from each vertical layer and the percentage of flow transported through 

the coarse-grained material was compared to that transported by the fine-

grained material.  For each different contact length, the procedure was repeated.  

The different contact lengths controlled the length over which water could flow 

between the two materials.  The larger contact length resulted in an increase in 

horizontal transport of liquid water between the materials.  Once the laboratory 

experiment was completed, numerical modelling was performed using the finite 

element-modelling package Seep/W by Geo-Slope International (Newman et al, 

1997). 

 

Newman et al, (1997) presented the results from the column experiment and 

numerical modelling program and stated, “…that when the applied flux is greater 

than Ksat of the fine-grained material, water flows preferentially through the 

coarse-grained material…” as shown in Figure 2.8.  In addition, “Under steady-

state conditions, pore-water pressures at the surface are reduced in the fine-

grained material, as the material pores become water filled.  The coarse material 

also experiences negative pore-water pressure under the applied flux.  Between 

the suctions of 0 kPa to the suction where the hydraulic conductivity of the 

coarse and fine-grained materials intersect, the coarse-grained material is more 

conductive and waters that enters the fine-grained material flows preferentially 

towards the coarser material.” 
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Figure 2.8 Numerical Modelling Result When the Applied Flux was Greater 
than the Ksat of the Fine-Grained Material (after Newman et al, 1997) 

 

Newman et al, (1997) also stated that, “When the applied flux is less than Ksat of 

the fine-grained material, water flows preferentially through the fine material…”  

(Figure 2.9).  “Under an applied flux of 4.25E-7 m/s, the suction in the layers is 

greater than the intersection suction and fine-grained material will exhibit the 

greater conductivity.  In both the laboratory experiment and the numerical 

simulations, a pressure equal to zero boundary condition was placed at the 

bottom of the column.  The pressure contours show that as the water flows 

towards the bottom, suction must reduce in order to satisfy this condition.  The 

point of re-crossover occurs at a point where the matric suction in that the 

coarse and fine-grained materials correspond to the same value hydraulic 

conductivity.” 
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Figure 2.9 Numerical Modelling Result when the Applied Flux was Less 
than the Ksat of The Fine-Grained Material (after Newman et al, 1997) 

 

The major finding the work of Newman (1999) was that water would flow 

preferentially in the fine-grained layer for infiltration fluxes less than the 

saturated hydraulic conductivity of the fine material.  This contradicts the 

conventional theory of flow explained in the waste rock dumps that was 

described in MEND (1995).  The primary significance of the preferential flow is 

the ability of a waste rock pile to store water, which is one of the constituents 

required to produce ARD.   

2.6.2 Studies on sloping layered system 
The study of the capillary barrier effect in engineered soil covers is somewhat 

related to the problem at hand.  Capillary barriers have received considerable 

attention in the research literature.  Several laboratory and numerical modelling 

studies have been conducted by various researchers, (e.g., Frind et al., 1976; 

Zaslavsky and Sinai, 1981; Selim, 1987; Miyazaki, 1988; Larson et al., 1988; 

Ross, 1990; Wallach and Zaslavsky, 1991; Steenhuis et al., 1991; Tsai and 

Chen, 1993; Oldenburg and Pruess, 1993; Yeh et al., 1994; Stormont, 1995; 

Kumar et al., 1995).  A detailed review of experimental, analytical, and numerical 
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works in this area has been presented by Bussière et al. (1997) who 

investigated capillary barriers on slopes. 

 

The main difference between previous studies of capillary barrier and the current 

study is the slope angle.  Capillary barrier covers installed on a tailings pond are 

typically constructed between 2° to 4° from the horizontal, while end-dumped 

waste rock dumps are constructed at the angle of repose (Aubertin et al, 1997).  

However, the similarities are that research has been conducted with regards to 

flow within each layer and across the interface of adjacent layers.  The layers 

are constructed of sharply contrasting materials with the top layer being a fine-

grained material and the lower layer being a coarse-grained material.  Both 

systems are also subjected to unsaturated flow regimes (Bussière et al., 1997).  

 

Miyazaki (1988) measured the water flow in unsaturated soil slopes where a fine 

soil was sandwiched between coarse materials.  The objective of the study was 

to observe the effects of the coarse materials on down-slope water flow, and to 

extend the refraction law of water flow in saturated soils into unsaturated soils.   

 

Miyazaki (1988) showed that the wetting front does not stop at the interface of 

the fine and coarse-grained soil layers.  Water moves down along the inclined 

interface and the amount of lateral flow increases with distance down slope.  

Accumulation of the unsaturated flow along the interface may lead to a saturated 

condition at the lower end of the sloping interface when the interface is 

sufficiently long.   

 

The incidence angle of the water flux between layers at the point where the 

wetting front reaches the interface is determined by combining the pressure 

head gradient and gravity.  The direction of the pressure head gradient is 

practically perpendicular to the wetting front, while the direction of gravity is 

vertical.  Figure 2.10 presents the difference in the refraction of flow between a 
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saturated and unsaturated layered system for different values of hydraulic 

conductivities. 

 

Figure 2.10 Figure Presents the Difference in the Refraction of Flow 
Between a Saturated and Unsaturated Layered System for Different 

Hydraulic Conductivities (after Miyazaki, 1988) 
 

Figure 2.11 shows a schematic view of downward flow, unsaturated lateral flow 

(A), saturated lateral flow (B), and partial flow (C) at the inclined interface 

between fine and coarse-grained materials.  Saturated lateral water flow in the 

second coarse layer accumulates and some water will drop vertically as partial 

water flow (C). 
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Figure 2.11 Figure Shows the Schematic Relation between Downward 
Flow, Unsaturated Lateral Flow (A), Saturated Lateral Flow (B) and Partial 

Flow (C) at the Inclined Interface between Fine Particles and Coarse 
Materials (after Miyazaki, 1988) 

 

When a coarse-grained layer is sandwiched between two fine-grained layers, 

the wetting front apparently ceases and lateral flow occurs at the inclined 

interface between the top fine-grained and coarse-grained layer during 

infiltration.  The lateral flow of water also occurs at the inclined interface during 

steady state percolation.  The combination of refraction with partial water flow 

(C) is an important concept with respect to the flow of water in highly 

heterogeneous soil slopes. 

 

Stormont (1995) confirmed the work of Miyazaki (1988) in his study on the effect 

of constant anisotropy on capillary barrier performance.  Stormont (1995) 

indicated that the consequence of anisotropy in a fine-grained layer is that 

infiltration at the top of the fine-grained layer might be deflected from the vertical.  

Downward moving water should be diverted laterally as it approaches the fine-

coarse interface.  Lateral diversion along the fine-grained layer results in an 

increasing water content in the down dip direction.  Eventually, there will be a 

location near the fine-coarse contact that becomes sufficiently wet that a 

quantity of water equal to the infiltration rate will move into the coarse-grained 

layer. 
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Stormont (1995) concluded that an anisotropic fine-grained layer could improve 

the performance of a capillary barrier in two ways.  First, the increased rate of 

lateral divergence in an anisotropic capillary barrier will tend to keep the fine-

grained layer drier and consequently less likely to become wet and vulnerable.  

Second, for any infiltration rate under comparable antecedent conditions, an 

anisotropic capillary barrier will have a greater divergence length than a 

comparable isotropic barrier. 

 

The above research relates to a dipping layered system of end-dumped waste 

rock.  The steeper angles in the waste rock dump will increase the effect gravity 

will have on the infiltrating water.  The fine-coarse contact between waste rock 

layers will also facilitate the movement of unsaturated flow down the slope.  This 

also means that a coarse-grained layer will remain dry until the fine-grained 

layer above nears saturation. 

 

Aubertin et al. (1997) performed a numerical modelling study of unsaturated flow 

in inclined layers.  The authors investigated the influence of the slope angle and 

the length of the inclined layer using a 2-dimensional numerical model.  The 

numerical model consisted of a 3-layer cover placed on tailings with a 2 and 4% 

slope, and with a 10 and 50-meter slope length.  The authors also noted that 

larger slope angles could be used to study dikes and waste dumps.  The authors 

also warned of the danger of misinterpreting a one-dimensional model of a cover 

system. 

 

The result obtained by Aubertin et al. (1997) showed that the hydrogeological 

conditions in an inclined and layered unsaturated soil system were influenced by 

several factors.  The factors suggested were the capillary properties of the 

different materials (including a possible anisotropy), the system geometry (layer 

thickness, length, and slope angle), the hydraulic regime and the water balance 

components (precipitation, evaporation, infiltration, and runoff).   
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The physics of flow for the problem of inclined systems was shown by Aubertin 

et al. (1997).  If the hydraulic pressure corresponding elevation to the difference 

between the upper and lower part of a continuous system approached the air 

entry value (AEV) of the fine-grained material, then the top portion may become 

unsaturated.  In the case analyzed, it was important to ensure a high degree of 

saturation along the slope of a cover system to prevent gas transport across the 

cover.  In a tall steep layered system, fine layers could desaturate rapidly over 

longer contact lengths. 

 

Desaturation of the soil depends upon the slope length and the slope angle.  

Increasing the air entry value (AEV) of the fine-grained material also helps 

maintain a more stable water content profile.  Aubertin et al. (1997) noted that 

there is a complex but definite relationship between the soil-water characteristic 

curve (SWCC) of the soil and the slope length, angle, and moisture distribution 

in covers. 

 

Stormont and Anderson (1999) conducted infiltration tests on soil columns to 

investigate the capillary barrier effect of an underlying coarse-grained layer.  The 

results showed that water movement across the interface occurred when the 

suction head at the interface reached the breakthrough head of the coarser 

lower soil layer.  The breakthrough head was defined as the suction head at 

which the coarse-grained layer first began to conduct seepage, regardless of the 

infiltration rate or the properties of the overlying fine-grained soil layer. 

 

Stormont and Anderson (1999) also noted that after eight test-cycles, the 

breakthrough head did not change substantially, and an effective capillary 

barrier was restored after each breakthrough.  It was also noted that the more 

uniform and coarser the lower soil layer, the more effective the capillary barrier.  

The suction head profile during these tests was controlled by the properties of 

the fine-grained upper layer and by the infiltration rate until the soil near the 

interface reached the breakthrough head.  The authors showed the importance 
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of the materials used for a cover system and the effect of the materials on the 

performance of the cover system. 

 

Bussière et al, (1999) studied the capillary barrier effects with respect to the 

slope angle.  The study was conducted for barriers to be used as a gas barrier 

for reactive mine tailings.  The authors showed the results of a numerical study 

that illustrated the influence of the slope angle on the capillary barrier behavior 

of different materials.  

 

The Bussière et al, (1999) numerical model study is one of the more complete 

studies found in the research literature.  The numerical study was conducted 

using Seep/W finite element model for saturated and unsaturated flow (Geo-

Slope, 1995).  The model simulated was the cross-section of an actual mine site 

with a slope length of 50 meters and an angle of 18°.  The mesh density used 

was much finer at the top than it was inside the tailings.  The intention was to 

have greater precision in the numerical prediction without having a model that 

was too computationally demanding.  The numerical model was then verified 

using measured values from instrumentation placed in situ. 

 

The study showed that the water content profile was significantly influenced by 

the position under consideration along the slope.  Thus, it was necessary to 

evaluate the impact of the geometry on the performance of a cover.  The study 

also confirmed earlier findings that a finer-grained material with a high air entry 

value will hold water better than a coarser-grained material with a lower air entry 

value. 

2.7 Summary and Need for Further Research 
The primary rational for this study was to develop appropriate methods for 

predicting the hydrologic behaviour of waste rock dumps.  The key objective of 

this present work is to study, layered systems within waste rock piles where 

infiltration flows preferentially through the dump.   
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Previous studies carried out by Newman (1999) and Bussière et al, (1999) 

demonstrated that the preferential flow in coarse and fine-grained materials 

under unsaturated conditions could be simulated using the Seep/W model (Geo-

slope, 1995).  The previous studies were directed at either vertical (Newman, 

1999) or relatively flat (Bussière et al, 1999) layered systems.  In the subsequent 

chapters of the thesis, the Seep/W model will be used to attempt to predict 

unsaturated flow patterns through interbedded layers of coarse and fine-grained 

materials.  The first part of this chapter introduced the physical problem of ARD 

and showed that limited research has been done in the area of predicting flow 

through end-dumped waste rock piles.  There is an important need to be able to 

predict, control, and possibly design waste rock dumps that transmit infiltration 

water through preferred pathways.  Mehling et al. (1997) proposed blending and 

layering waste rock to delay, mitigate, or prevent acid generation.  This method 

proposed blending or layering acid and non-acid generating waste rock to 

produce an environmentally benign composite.  Attempts to verify the theory 

were limited by an extremely limited database of case studies. 

 

The examinations of Mehling et al. (1997) on available hard rock case studies, 

indicated that: 

1. Blending did not reduce sulphide oxidation rates in the potentially acid 
material unless highly reactive neutralizing material (lime) was applied, 
and the blending was near ideal, as in column or humidity cell tests. 

2. Layering did not reduce sulphide oxidation rates in potentially acid 
material, even when layers were less than 10 cm thick. 

 

Mehling et al. (1997) identified several problems that future researchers should 

study.  The first two problems were i) developing intimate contact between the 

mixed materials to achieve a benign composite at a practical cost, and ii) 

relating laboratory test results to the field.  The third area of concern identified 

was related to the prediction of preferential flow through acid producing layers.  

The third problem is the major focus of this thesis. 
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The Mehling et al. (1997) study also suggested hauling limestone to a mine site 

and blending it with reactive waste rock, provided it was economical.  It might 

even be more economical to grind reactive and non-reactive waste rock to 

specified grain sizes, and then layer these materials.  The blending of layers 

was found to be ineffective at 10-cm thicknesses (Mehling et al., 1997).  The 

layering of coarse-grained reactive with fine-grained non-reactive waste rock 

can also induce preferential flow with a greater layer thickness, although thicker 

layers would make construction easier. 

 

The current study builds on a combination of the observations made in the field 

by Herasymuik (1996) and the laboratory and modelling study of Newman 

(1999).  Newman (1999) successfully predicted the behaviour of a vertical 

system.  Typically, real systems are inclined.  The current study extends the 

Newman (1999) study to higher and steeper systems such as those observed by 

Herasymuik (1996). 

 



Chapter 3  Theoretical Background  

 Page 35   

CHAPTER 3 THEORETICAL BACKGROUND 

THEORETICAL BACKGROUND 

3.1 Introduction 
The previous chapter described the physical problem to be solved, a conceptual 

interpretation of the physical problem, a review of past research studies and the 

methodology required to solve the problem.  The specific tools to solve the 

problem are the related theory and governing equations.  These tools convert 

the conceptual model to a mathematical model and a modelling program.  This 

chapter summarizes the saturated/unsaturated soil theory necessary to describe 

the physical problem and introduces the governing equations. 

3.2 Unsaturated Soil Theory 
The flow of water in waste rock piles is important because of both its potential 

environmental impacts and its influence on slope stability.  Waste rock piles are 

designed and constructed on the ground surface to prevent the retention of 

water behind or above the embankment face (Nelson and McWhorter, 1985).  

As a result, most waste rock piles, except for localized saturated zones, are 

unsaturated.  Waste rock piles may receive water from several sources, and do 

not function under steady state seepage conditions.  Water is generally 

introduced periodically (i.e., rainfall, snowmelt, runoff etc.) and an understanding 

of the principles of unsteady state unsaturated water movement, as it pertains to 

acid rock drainage (ARD), is critical. 

 

The following sections describe the theoretical background of unsaturated soil 

theory required to develop the equations for the mathematical model.
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3.2.1 Properties of Unsaturated Soils 
Unsaturated soils consist of four phases: air, water, soil particles, and the 

contractile skin as shown in Figure 3.1 (Fredlund and Rahardjo, 1993).  

Fredlund and Rahardjo (1993) stated, “The primary property that influences the 

soil is the ability of the contractile skin to exert surface tension and consequently 

it behaves like an elastic membrane under tension.” 

 

 

Figure 3.1 An Element of Unsaturated Soil Showing Continuous Air Phase 
(after Fredlund and Rahardjo, 1993) 

 
The surface tension of the contractile skin results from different intermolecular 

forces acting on the molecules at the air-water interface compared to the forces 

acting on the water molecules in the interior of the water (Fredlund and 

Rahardjo, 1993).  The contractile skin behaves like an elastic membrane with 

different pressures on each side.  The pressure differences create a curved 

membrane with the concave curvature towards the larger exerting pressure.  

Fredlund and Rahardjo (1993) stated, “The surface tension produced by the 

differences in pressure exerted on the curved membrane or contractile skin 
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relates to the radius of curvature of the surface.”  Figure 3.2 illustrates the 

pressures and surface tension acting on a curved membrane. 

 

 

Figure 3.2 Pressures and Surface Tension Acting on a Curved Surface 
(after Fredlund and Rahardjo, 1993) 

 

Fredlund and Rahardjo (1993) stated, “Pressures u and u + ∆u are acting on the 

membrane with a radius of curvature Rs and a surface tension of Ts.  

Unsaturated soils are subjected to an air pressure ua that is greater than the 

water pressure uw.  The difference between the air pressure and water pressure 

is referred to as the matric suction (ua – uw).”  This pressure difference causes 

the contractile skin to curve according to the Equation 3.1.  “When the air and 

water pressure become equal, the radius of curvature approaches infinity 

resulting in zero matric suction and a flat air-water interface.” 

 

(ua – uw) = 2Ts/Rs     (3.1) 

 

A term that needs to be defined is soil suction.  Fredlund and Rahardjo (1993) 

stated, “Soil suction refers to the free energy state of the soil water measured in 

terms of the partial vapour pressure of the soil water.  Total suction is the 

addition of capillary forces and dissolved salts in unsaturated soil, and is 

represented by matric and osmotic suction….” From Figure 3.2, “…it can be 

seen that matric suction is related to capillarity.  The pore spaces in a porous 

media act as capillary tubes that cause water to rise above the water table.  This 

zone is referred to as the capillary fringe.  Although the pores are saturated, the 
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pressure heads are less than atmospheric or negative in this zone.  As pore 

water pressure becomes increasingly negative the pores begin to drain and 

adsorptive forces between soil particles may assist in sustaining high negative 

water pressures at low water contents….” Figure 3.3 illustrates this principle with 

a capillary tube model using different radii of curvature.  “The relative humidity in 

the soil also decreases as a result of increases in matric and osmotic suction.  

Matric suction is zero at 100% relative humidity.” 

 

 

Figure 3.3 Capillary Tubes, Illustrating the Air-Water Interface at Different 
Radii of Curvature in Soil (after Fredlund and Rahardjo, 1993) 

 

3.2.2 Unsaturated Liquid Water Flow 
For saturated and unsaturated soils, the driving potential causing water to flow is 

known as hydraulic head.  Hydraulic head is defined as the sum of the elevation 

head and pressure head and is presented in Equation 3.2 (Fredlund and 

Rahardjo, 1993). 
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h = z + uw / pwg     (3.2) 

 

Above the water table, the pressure heads are negative whereas below the 

water table pressure heads are positive.  In the field, piezometers are used to 

provide a measurement of hydraulic head in saturated material.  In the 

unsaturated zone however, hydraulic head is determined indirectly through the 

measurement of the suction head or negative pore-water pressure using a 

tensiometer.  Water will flow from a point of high hydraulic head to a point with 

low hydraulic head regardless of whether the pore-water pressure is negative or 

positive (Fredlund and Rahardjo, 1993). 

 

Darcy’s Law describes water flow in soils.  Darcy’s Law states that the flow of 

water through a soil is proportional to the hydraulic gradient by the following 

equation: 

νw = -Kw ∂hw/∂y     (3.3) 

where: νw  = flow rate of water (specific discharge), 
 -Kw  = hydraulic conductivity with respects to the water phase, and 
 ∂hw/∂y = hydraulic gradient in the y direction. 

 

The specific discharge νw has the dimension of a velocity or flux and is 

sometimes referred to as the Darcy velocity or flux (Freeze and Cherry, 1979).  

Darcy’s law can also be written as: 

 

Q = -KiA      (3.4) 

where: Q = discharge, 
 i = hydraulic gradient, and 
 A = cross-sectional area. 

 

Darcy’s law is also valid for flow through unsaturated soil; although, the 

hydraulic conductivity is no longer constant.  Under saturated conditions, the 

hydraulic conductivity is approximately constant.  In unsaturated conditions, the 

hydraulic conductivity is a function of the water content and matric suction.   
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Higher water contents result in more pores filled with water.  Water flows 

through pores filled with water and therefore, under unsaturated condition, fewer 

pores are available for flow.  As a result, lower water contents correspond to 

lower values of hydraulic conductivity.  During the drainage of a saturated soil, 

air begins to enter the large pore spaces first and water flow is forced to move 

along the more tortuous path in the smaller pores (Fredlund and Rahardjo, 

1993).  The hydraulic conductivity will decrease rapidly as the volume of pore 

space occupied by water decreases. 

 

Fredlund and Rahardjo, (1993) stated that, “The soil water characteristic curve 

(SWCC) represents the volumetric water content as a function of matric suction.  

The SWCC is important in describing how a soil stores water under negative 

pore-water pressures.  The air entry value (AEV) can be determined from the 

SWCC.  The AEV is defined as the matric suction value that must be exceeded 

to have air enter the voids of the soil.  The AEV is a function of the maximum 

pore size of the soil.”  Figure 3.4 shows a typical SWCC.  The residual degree of 

saturation or water content is defined as the degree of saturation or the water 

content at which an increase in matric suction does not produce a significant 

change in the degree of saturation or water content (Fredlund and Rahardjo, 

1993). 

 

The hydraulic conductivity function is expressed by the hydraulic conductivity 

versus suction or pore-water pressure.  Figure 3.4 shows three typical curves.  

These curves are commonly determined from the soil-water characteristic curve.  

There are several methods that allow for the calculation of the hydraulic 

conductivity function.  The Fredlund et al (1994) method was used for this study. 
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Figure 3.4 Characteristic Curves for Volumetric Water Content and 
Hydraulic Conductivity as a Function of Negative Pressure Head (after 

Freeze and Cherry, 1979).  (a) Uniform Sand; (b) Silty Sand; (c) Silty Clay 

3.3 Finite Element Method 
The finite element method is one tool that can be used to solve the governing 

equations.  The application of the finite element method requires the 

discretization of the soil mass into elements.  Triangular and quadrilateral 

shapes of elements are commonly used for two-dimensional problems.  Each 

element is made up of points call nodal points.  The hydraulic head at each 

nodal point is obtained by solving the governing flow equation and applying the 

boundary conditions (Fredlund and Rahardjo, 1993). 

 

The two-dimensional finite element software package used to solve the 

mathematical model and governing equation for this study is Seep/W (Geo-

Slope, 1995).  The governing differential equation for 2-dimensional saturated/ 

unsaturated flow used in the formulation of Seep/W is as follows: 
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where: h = total head 
kx = hydraulic conductivity in the x-direction 
ky = hydraulic conductivity in the y-direction 
Q = applied boundary flux 
Θ  = volumetric water content 
 t = time 
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Equation 3.5 states that the difference between the flow (flux) entering and 

leaving an elemental volume at a point in time is equal to the change in the 

volumetric water content.  In other words, the sum of the rates of change of 

flows in the x and y-directions plus the external applied flux is equal to the rate 

of change of the volumetric water content with respect to time 

 

Under steady state conditions, the flux entering and leaving an elemental 

volume is the same at all times.  The right side of the equation consequently 

vanishes and the equation reduces to: 
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A soil element with infinitesimal dimensions illustrated the derivation of Equation 

3.6 for steady-state system is presented in Figure 3.5. 

 

 

Figure 3.5 Two-Dimensional Water Flow through an Unsaturated Soil 
Element (after Fredlund and Rahardjo, 1993) 
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3.4 Modified Kisch Solution 
The finite element method combined with a software package like Seep/W (Geo-

slope, 1995), provides a comprehensive numerical tool.  However, it is possible 

to use a finite difference method with hand calculations to provide a clearer 

understanding of the processes that are taking place.  The following section 

summarizes the finite difference solution that was used to model preferential 

flow in waste rock layers. 

 

Kisch (1959) considered the problem of reducing water losses from reservoirs 

by using a lining of compacted clay.  It was assumed that water flow was vertical 

and solutions were obtained for the equation of steady-state saturated and 

unsaturated flow through non-homogeneous soils.  The equations provided the 

relationship between the water head in the blanketed reservoir and seepage 

losses. 

 

The Kisch method of analysis is based on the equation for unsaturated steady 

flow using Darcy’s law, and is presented in Equation 3.7. 

 

z

h
Kq

∂
∂

=      (3.7) 

where: q  = discharge per unit area normal to flow, 

 K  = saturated or unsaturated permeability (with dimensions 1−LT ), 
 h   = hydraulic head (with dimensions L ), and 
 z   = vertical coordinate increasing upwards (i.e., in the direction 

opposite to the flow. 
 

The hydraulic head, h is defined by Equation 3.8.  For unsaturated flow, the 

pressure head is a function of the water content (i.e., there is no pressure 

transfer). 

 

zph +=      (3.8) 

where: p = pore-water pressure head. 
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Using Equations 3.7 and 3.8, and assuming q is constant for steady-state: 

 

z

z

K

q

z

p

∂
∂

−=
∂
∂

 or 1−=
∂
∂

K

q

z

p
    (3.9) 

 

Equation 3.9 is referred to as the Kisch solution (However, soil scientist refer to 

Equation 3.9 as the Richard’s Equation).  In Equation 3.9, Kisch assumed the 

there was only vertical flow and therefore the gradient, z
z

∂
∂  is equal to one.  In 

a sloping system the distance between two nodes is no longer z∂ but l∂ , and 

 

αsin
zl ∂=∂      (3.10) 

where: α = the slope angle. 

 

Substituting Equation 3.10 into 3.9 results in an equation for both saturated and 

unsaturated flow for a sloping system.  

 

l

z

K

q

l

p

∂
∂

−=
∂
∂

     (3.11) 

 

Note that Equation 3.11 becomes the same as Equation 3.9 when ο90=α . 

 

To solve Equations 3.9 and 3.11, the relationship between K and p  must be 

known.  By knowing the hydraulic conductivity function with respect to pressure 

head (meters), a table of values can be set up on a spreadsheet.  The Kisch 

solution is solved by plotting the function ( ) 11 −−= KqY  as a function of p .  The 

area under the curve between two values of p  is equal to the distance between 

the points where p  is equal to these two values.  The function, Y , approaches 

infinity as the calculated hydraulic conductivity approaches the applied flux (i.e., 

K approaches q), and as z  increases p  will go to a constant value (i.e., ∂p 
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approaches 0 as z increases).  The constant value of p  corresponds to K  

equal to q . 

 

The above theory can be applied to a sloping layered system of fine and coarse-

grained material (refer to Figure 3.6).  The bottom boundary condition can be 

chosen for a variety of situations.  The water table at the bottom boundary can 

be defined as having a pressure head of 0-meters, and a hydraulic conductivity 

equivalent to the saturated hydraulic conductivity.  Using the Kisch formulation, 

the pressure head profile can be calculated for each column for a specified q 

with respect to the incremental elevation changes by moving up through the 

column.  However, it is necessary to calculate the pressure head profile for the 

system (i.e., both columns together).  The system pressure head is assumed to 

be equal horizontally at each vertical node for each column.  To solve for the 

system pressure head, the system hydraulic conductivity can be calculated 

using Equation 3.12, (Freeze and Cherry, 1979). 

 

( ) ( )
fc

ffcc
ll bb

bKbK
K

+

×+×
=     (3.12) 

 

where: llK   = the hydraulic conductivity where the flow is parallel to the soil   
columns, 

cK ,  = the hydraulic conductivity of the coarse and fine soil types 

respectively, and 

cb ,     = the thickness of coarse and fine soil types respectively. 

 

The equations presented above are arranged in a manner that can be solved 

using an iterative procedure with respect to incremental elevation changes (i.e., 

∂ e separated by ∂

Selecting a value for ∂

One hundred nodes were used for simulations.  Once the initial bottom 

boundary -meters for a water table), the applied 
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flux, the thickness of each column, and the angle of the system is specified.  The 

system angle can be varied from the vertical (90º) to 45º.   

 

Equations 3.11 and 3.12 can be solved for the change in pressure head.  The 

change in pressure head is added to the previous head, and a new iteration with 

a new hydraulic conductivity for each soil type is then solved at the next node.  

The new hydraulic conductivities are solved by using a table of the material 

properties and a simple linear interpolating function to solve for values between 

known points.  As the pressure head and hydraulic conductivity of the system 

are solved, the pressure head and hydraulic conductivity for the individual soil 

types are independently solved.  From the information obtained, the system 

gradient and individual fluxes at each node can be calculated.  The system 

gradient for each node is calculated by solving the right hand side of Equation 

3.11.  The hydraulic conductivity, gradient, and area are known for each layer.  

Therefore, the flux at each node for each layer can be solved using Darcy’s Law.  

The sum of the flux in each layer is equal to the total applied flux. 

 

Figure 3.6 illustrates the modified Kisch solution using the finite difference 

method (FDM).  The FDM profiles show how two single one-dimensional 

columns are combined to make a pseudo-two dimensional column with two 

distinct layers.  The FDM pressure profiles show how the pressure heads 

calculated for each node combined to form the system pressure head profile 

(hp).  The FDM sloped profile shows the dimensions used to define the 

algorithms for sloping the solution (i.e., Equation 3.10).  The flux profiles show 

the calculated flux results in each layer of the system calculated from the bottom 

boundary condition (i.e., h = 0). 
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Figure 3.6 Schematic of the Modified Kisch Solution Using the Finite 
Difference Method 
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The above system of equations and iterative process can be solved for a 

layered system with preferential flow from the bottom boundary condition to the 

point where the change in pressure head approaches zero.  However, the 

applied flux flows from the top to the bottom of the column.  Separate sets of 

equations are required in order to describe how the applied flux flows 

preferentially on the top half of the columns 

 

The flux is applied evenly across the top of both one-dimensional columns and 

the infiltrating flux flows in preferential pathways via lateral movement.  The flux 

applied equally at the top node of both soil types results in pressure heads and 

hydraulic conductivities at the top nodes corresponding to the hydraulic 

conductivity curves of the individual soil type.  The pressure head in individual 

soil layers and the hydraulic conductivity converged to the point where the 

change in pressure head approaches zero.  Convergence is reached by laterally 

transferring a quantity of flux from the coarse-grained soil layer to the fine-

grained layer.  The amount of flux transferred is a function of the hydraulic 

conductivity and the pressure head difference between the two soil types.  The 

flow is perpendicular to the applied flux.  The perpendicular hydraulic 

conductivity of the system is calculated using Equation 3.13 (Freeze and Cherry, 

1979). 

 

ffcc

fc

KbKb

bb
K

+

+
=⊥     (3.13) 

 

Equation 3.14 calculates the change in flux in transferring from one column to 

another. 

 

lpKq ∂∂=∆ ⊥⊥      (3.14) 

 

where: ⊥∂p = the difference in pressure head between the coarse-grained and 
fine-grained column at a given node. 
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The calculated change in flux is then added to the fine-grained column and 

subtracted from the coarse-grained column.  Given the new flux at the nodes in 

each column, the next iteration of hydraulic conductivities can be calculated 

using Equation 3.15. 

 

fc

fc
fc b

q
K

,

,
,

sinα
=     (3.15) 

 

Calculating the coarse-grained and fine-grained pressure heads from the new 

hydraulic conductivities completes the iteration.  The iterations are calculated 

with the use of a table of values and a simple linear interpolating function.  

Further iterations cause the change in flux and the difference in pressure heads 

to approach zero.  Eventually, the fluxes and pressure heads equal the values 

calculated by the first set of equations presented.  Figure 3.6 also illustrates the 

distribution of the applied flux (i.e., the top boundary condition) in the FDM and 

flux profiles of the system.  The modified Kisch solution spreadsheets are 

presented in Appendix C. 

 

This chapter has outlined the necessary theoretical background needed to solve 

the physical problem described in Chapter 2.  The following chapter outlines the 

attempts to solve the physical model using the governing equations of flow and 

modelling programs using both the Seep/W model and the modified Kisch 

solution. 
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CHAPTER 4 NUMERICAL MODELLING PROGRAM 

NUMERICAL MODELLING PROGRAM 
 

4.1 Introduction 
The theory required to describe the conceptual model mathematically was 

outlined in Chapter 3.  This chapter will build on the previous chapters and 

develops a solution for the physical model.  

 

A pilot program to numerically model flow through waste rock was conducted 

prior to the work presented in this thesis.  The pilot program was designed to 

model, using the Seep/W model, observations made by Herasymuik (1996).  

However, modelling a waste rock pile proved to be extremely difficult.  Several 

problems or combinations of problems were identified.  To solve these 

problems, the model was simplified.   

 

The simplifications implemented provided poor results.  A base line model of a 

known solution was needed.  As noted in Chapter 2, Newman (1999) completed 

a study of preferential flow between adjacent coarse-grained and fine-grained 

materials. 

 

 

The objective of the pilot program was to determine whether the overall 

objective (i.e. numerically modelling flow through a layered waste rock system) 

was possible and to identify and overcome the difficulties encountered.  The 

resulting parametric study established a base line model that was systematically 

increased in complexity.  The objective of the parametric study was to identify  
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how flow occurred through waste rock layers and how flow would behave as the 

model grew in complexity. 

 

The parametric study identified several anomalies in the model and the 

numerical modelling method.  Therefore, an extensive sensitivity analysis using 

the Seep/W model was developed to explore selected areas of interest.  The 

sensitivity analysis is presented in Appendix B.  The use of the simpler modified 

Kisch solution was explored to see if a comparable solution could be obtained, 

and to develop a better understanding of the basic principals involved in solving 

the problem. 

4.2 Pilot Program 
Chapter 2 described in detail the observations made by Herasymuik (1996) at 

Golden Sunlight Mine in Montana, USA, and those outlined by MEND (1995).  

Herasymuik (1996) developed a conceptual model of the hydrogeology of the 

waste rock pile, based on field observations.  Herasymuik (1996) observed that 

the waste rock at Golden Sunlight Mine was placed in high wedge-dump and 

terraced-dump configurations and were constructed by end-dumped waste rock 

in several lifts.  The top and bottom of each lift had a fine-grained horizontal 

layer associated with heavy truck traffic.  In most cases, the traffic layers were 

observed to be near saturation.  The variation in texture between the waste rock 

layers was sufficient to result in preferential flow through the waste rock pile.  A 

photograph showing the observations at GSM can be seen in Figure 4.1. 

 

The pilot program resulted from the need to numerically simulate the 

hydrogeology of an end dumped waste rock pile.  The model considered only 

the flow of liquid water through the waste rock pile.  Chemical reactions and gas 

flow were not considered.  The criteria for the model involved a compromise 

between accuracy and simplicity.  The model could not be too complex or it 

would be impossible to solve, however the model could not be overly simple or it 

would not achieve the objective of the program.  Figure 4.1 shows the highly 

structured end-dumped waste rock pile, and illustrates how the physical 
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phenomenon was converted into a numerical model.  First, the boundary 

conditions were identified.  A boundary was placed between each layer, and the 

top and bottom of all the layers.  A decision was made regarding the number of 

layers that should be included in the model (i.e., where to place the left and right 

boundaries).  The use of four to eight layers was deemed reasonable, to 

minimize the effects that the boundaries would have on the interaction of the 

internal layers, without an excessive number of layers increasing the 

computational effort by an unreasonably amount. 

 

 

Boundary Conditions

Internal Grid

Separate Rock Layers

  

Figure 4.1 Simplification of Layered Waste Rock System 

 

Based on these factors, a numerical model was developed for a twenty-meter 

lift.  The model used the 2-D finite element-modelling package Seep/W (Geo-

Slope, 1995).  It was initially anticipated that simple boundary conditions and 

material properties were all that would be required for the analysis.  Materials 

were chosen with properties similar to the waste rock samples available for 

laboratory testing.  The materials selected for the analyses were those used by 
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Newman (1999).  Beaver Creek sand was chosen to represent fine waste rock 

layers.  Silica sand was selected for the coarse waste rock layers, and a 

compacted till was chosen for the tight traffic layer.  The hydraulic conductivity 

functions of the materials selected are shown in Figure 4.2. 
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Figure 4.2 Hydraulic Conductivity Functions for the Initial Pilot Model 
 

The initial model used for the pilot program had seven alternating coarse and 

fine-grained layers sloped at 50º from the vertical.  Each layer had a thickness of 

1-meter in the horizontal.  The till layer was placed at the base of the alternating 

layers and was 1-meter thick in the vertical.  A water table was established with 

a zero head boundary condition at the base of the till layer.  A flux boundary 

condition of 10-5 m/s was applied at the top of the alternating layers.  The sloped 

edge was set to a zero flux boundary condition, which was reviewed by 

elevation (i.e., if K = Ksat, h = 0), for a given distance up the slope.  The review 

boundary was used to check for seepage at the toe or up the slope.  The initial 
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model developed with the specified boundary conditions is presented in Figure 

4.3.   

 

The initial numerical model was subsequently a greatly simplified representation 

of the conceptual model proposed by Herasymuik (1996).  However, the model 

proved extremely difficult to solve.  The main problem involved trying to achieve 

convergence in the numerical solution. 
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Figure 4.3 Initial Model Developed and Analyzed 
 

Several variations for the input parameters were used in an attempt to achieve 

convergence.  The following points summarize the variations used for input 

parameters: 

1. Increasing/decreasing the number and thickness of layers; 
2. Raising/lowering the flux review boundary on the slope; 
3. Adjusting convergence criteria; 
4. Using different fluxes at ground surface; 
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5. Increasing/decreasing the mesh density; 
6. Using different materials; 
7. Exchanging layers; and 
8. Transient runs. 

 

When a variation or combination of variations did not result in a satisfactory 

answer, a new simulation would begin with a simpler model than that presented 

in Figure 4.3.  Seventeen different modelling simulations were attempted.  Some 

of the models showed limited success upon completion.  The major conclusion 

of the pilot program was that there was a need to start from a known solution 

and then increase in complexity.  The results would allow one problem to be 

isolated at a time rather than deal with several problems at once.  Newman et al 

(1997) and Newman (1999) undertook the only known study of this nature.  

These studies evaluated flow through vertical coarse and fine-grained layers.  

Building from these studies to more complex cases that better represented a 

waste rock pile resulted in a more detailed parametric study. 

4.3 Parametric Study 
The parametric study was designed as a continuation of the Newman (1999) 

study discussed in Chapter 2.  The first step was to establish model parameters, 

and then adapt the Newman (1999) study accordingly.  To understand the 

interaction of multiple adjacent layers, four layers were used rather than two 

used by Newman (1999).  Additional layers increased the computational effort.  

Newman (1999) showed that preferential flow through the fine-grained layer 

occurred for any flux less than the saturated hydraulic conductivity of that layer.  

Therefore, an initial applied flux (q) of 10-5 m/s was selected.  All attempts to use 

the annual precipitation of approximately 7.7E10-9 m/s at the Golden Sunlight 

Mine resulted in non-convergence of the solution.  The bottom boundary 

condition was a water table with a pressure head (h) equal to zero.  The lateral 

perimeters of the model were set as no flow boundaries.  The total thickness of 

the model was 1-meter with each layer 0.25-meter thick.  The mesh density 

ranged from 20 to 16 elements per meter in the horizontal and 20 to 17 

elements per meter in the vertical.  A flux section was used to calculate the 
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seepage flow across selected sections.  The model profile included six flux 

sections.  One flux section was used at the top and bottom of the model to 

check water balance.  The remaining four sections were used in the mid-section 

of the profile to measure the flux in each layer.  Figure 4.4 shows the two-meter 

vertical (or 90º) model.  The alternating fine (F) and coarse (C) layers are 

designated along with the flux section arrows.  Note that no vertical cutoff 

section was used as in the Newman (1999) study.  The alternating layers were 

allowed to interact along the full length of contact. 
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Figure 4.4 Two-meter 90°° Profile Adopted from Newman’s Study 
 
The materials used in the modelling study were changed from those used by 

Newman (1999).  The fine-grained material was changed from Beaver Creek 

sand, shown in Figure 4.2, to a fine-grained waste rock, as described by 

Herasymuik (1996) for Golden Sunlight Mine.  The hydraulic conductivity 

function for the fine-grained layer material was computed using the Fredlund et 

al (1994) method, based on the SWCC and saturated hydraulic conductivity 

measured by Herasymuik (1996).   
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Study 
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The coarse-grained layer used by Newman (1999) was also modified.  The pilot 

program showed that the initial silica sand hydraulic conductivity function was 

too steep.  The steep function resulted in large changes in hydraulic conductivity 

for small changes in pressure head.  These changes made reaching 

convergence problematic for the taller/higher suction profiles.  In order to solve 

the convergence problems for all profiles, a shallower function was used for the 

silica sand.  The hydraulic characteristic curves for both materials and the 

applied flux used in the parametric study are shown in Figure 4.5. 
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Figure 4.5a Hydraulic Conductivity Functions For Coarse and Fine-Grained 
Layers Adopted for the Parametric Study 
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Figure 4.5b Soil Water Characteristic Curves For Coarse and Fine-Grained 
Layers Adopted for the Parametric Study  

 

Systematic incremental changes to the initial 1-meter vertical model were 

progressively implemented to reach the targeted 20-meter sloped system.  The 

height and slope of the model was varied according to the parametric study 

shown as flow chart in Figure 4.6.  First, the one-meter profile was modelled for 

all the slope angles starting with vertical layers (no slope).  Once all the slope 

angles for a particular height were completed, the profile height was increased 

by multiples of two.  

 

A successful model simulation was defined as obtaining numerical convergence 

within a specified tolerance.  According to Geo-Slope (1995), Seep/W solves the 

finite element equations by computing the head at each node.  The head at each 

node is dependent on the material properties of the material, although the 

correct material properties are not known at the start of an analysis.  Therefore, 

an iterative procedure is used to determine the heads within the profile.   
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The iterative process means that the final solution must achieve convergence 

under the selected convergence criteria.  It is possible for an analysis to satisfy 

the defined convergence criteria, while at the same time not accurately 

representing the material properties used in the simulation.  Therefore, 

convergence of the analysis must be verified using an alternative method (Geo-

Slope, 1995). 

 

Convergence for the current study was determined by two different methods for 

each simulation.  The first method was a vector norm versus iteration graph as 

provide by Seep/W (Geo-Slope, 1995).  As the solution converges, the 

difference between consecutive vector norms will decrease to an acceptable 

tolerance.  The second method also used a graphical method.  The graph was 

generated by plotting the hydraulic conductivity values calculated by Seep/W at 

each node against the input hydraulic conductivity functions of both the fine-

grained and coarse-grained materials.  The calculated hydraulic conductivities 

should plot on or near the materials hydraulic conductivity functions to ensure 

that convergence has occurred.  Both methods must meet the given tolerance to 

ensure complete convergence of the problem solution. 
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Figure 4.6 Parametric Study 
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The parametric study presented in Figure 4.6 shows the various cases 

simulated during the study.  The modelling program ran steady-state models 

using the commercial numerical analysis package Seep/W (Geo-Slope, 1995) 

and produced solutions with convergence for 30 different model simulations.  

However, lowering the applied flux to simulate the annual precipitation rate at 

Golden Sunlight Mine (7.7E10-9 m/s) resulted in most of the models failing to 

achieve convergence.   

 

To understand the problems encountered with the convergence issues that 

resulted from varying input parameters, an investigation was undertaken in the 

form of an extensive sensitivity analysis.  The sensitivity analysis studied the 

effects of convergence criteria, mesh design, material properties, and transient 

modelling on the finite element solution.  The investigation was “package-

specific,” in other words, it was designed specifically to test and evaluate 

variations in the input parameters that are specified for the Seep/W model.  The 

objective of the sensitivity analysis was to provide resolutions to solve the 

problems encountered during the pilot program and the parametric study.  

However, the investigation provided to be a considerable effort and showed the 

limitations of the commercial numerical analysis package chosen as the primary 

tool to solve the problem.   

 

The understanding of the precise algorithms of the commercial package Seep/W 

was found to be limited to the published documents.  A full understanding of 

exactly where the model failed could not accurately be determined nor 

corrected.  The review of the literature did not show any details of the “trials and 

tribulations” of other numerical modellers but concentrated only on their 

successful numerical models.  An extensive discussion on the methods used 

and the various outcomes during the sensitivity analysis is presented in 

Appendix B to aid future researchers. 
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To develop a further understanding of the strongly heterogeneous nonlinear 

problems a return to first principles was necessary.   

4.4 Modified Kisch Solution 
The use of an alternative numerical method of solution was also investigated to 

provide further insight to the problem and to independently verify the results of 

the finite element method.  A finite difference method (FDM) was described in 

Chapter 3 and was used to solve the preferential flow problem.  Current finite 

difference methods can be used to solve for head loss throughout a one or two-

dimensional system.  Analyzing two soil columns of different materials, the head 

loss in each column can be calculated independently.  However, by using a 

system of equations for parallel and perpendicular flow in materials of different 

hydraulic conductivities, the separate columns can be joined.  The solution 

becomes a modified form of the Kisch (1959) solution.  The modifications 

provided an algorithm that made it possible to incline the two-column system to 

simulate a slope.  This was illustrated in Figure 3.6.  

 

The algorithm and equations for the FDM were combined using a spreadsheet.  

The spreadsheet used six work sheets: Properties, Calc, Data, Conductivities, 

Heads, Flux, and Gradient.  The spreadsheet required the following input 

parameters from the user: 

1. The hydraulic conductivity functions for the coarse and fine-grained 
materials, (K); 

2. The angle the system is sloped at, (α); 
3. The thickness of each layer, (bc, bf); 
4. The space between each node, (dz); 
5. The top boundary condition, i.e., applied flux, (q); and 
6. The bottom boundary condition. 

 

The hydraulic conductivity functions for each soil type were entered in the 

"properties" sheet with respect to matric suction, (kPa).  The matric suction was 

then converted to pressure head in meters, and the functions were placed in a 

format suitable for a lookup table (used later to extrapolate a value between two 

known values).  The remaining parameters were entered into the “calculation” 
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sheet.  The “data” sheet was used to organize the results into output plots, and 

the remaining sheets show the calculated results in graphic form for hydraulic 

conductivity, pressure heads, flux, and gradient for the individual layers and/or 

the system. 

 

The “calculation” sheet is subdivided into several categories: input parameters, 

pressure head, hydraulic conductivity, change in pressure head, gradient, and 

flux.  The input parameters are entered in a small table.  The pressure heads 

were solved at each node for: independent flow (subscript i) for both the coarse 

layer (subscript c) and the fine layer (subscript f), (hci, hfi); for lateral or 

perpendicular flow (subscript p), (hcp, hfp); and for the system, (hp).  The 

hydraulic conductivity (subscript k) was solved at each node for: independent 

flow, (kci, kfi); lateral flow, (kcp, kfp); independent flow as a function of the 

system pressure heads, (kc(hp), kf(hp)); flow parallel to the system, (kll); and 

flow perpendicular to the system, (kp).  The change in pressure heads were 

solved at each node for: the system, (dhp) and independently, (dhpc, dhpf).  The 

hydraulic gradient was calculated at each node for the system, (I).  The flux was 

calculated at each node for independent flow (qci, qfi).  The change in flux for 

perpendicular flow was calculated, (dq), and added and subtracted to the 

applied flux in the coarse and fine layer (qcp,qfp) respectively, to emulate lateral 

flow. 

 

The input parameter for nodal spacing, dz was important for obtaining accuracy 

in the solution and defining the total system height.  For example, a nodal 

spacing of 0.1-meter resulted in a system height of 10-meters (i.e., for 100 

nodes used).  The top boundary condition was the applied flux (qin), and the 

bottom boundary condition was defined as a water table (i.e., h = 0 and 

therefore K = Ksat). 

 

The spreadsheet program used the equations and methodology presented in 

Chapter 3 to calculate the FDM solution.  Using the material properties, five 
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different head profiles were computed.  The first two profiles were based on the 

Kisch (1959) solution, for the coarse and fine-grained materials, (hci, hfi).  The 

layers were analyzed as individual systems (i.e., a column of fine-grained 

material only).  The third profile combined the separate profiles into a head 

profile for the system of two adjacent layers of coarse and fine-grained 

materials, (hp).  Recall that the first three pressure head profiles were calculated 

from the bottom boundary condition at elevation zero up through the profile at 

each node to the top node (defined by dz multiplied by the number of nodes in 

the system).  The remaining two head profiles, (hcp, hfp) are based on the 

results of the first two profiles, (hci, hfi) at the top node of the system, and 

calculated the lateral flow (or the flow perpendicular to the applied flux) from the 

coarse to fine-grained material at each node sequentially from the top through to 

the bottom of the system.   

 

The pressure heads were solved by calculating the change in pressure head for 

the current nodal elevation and adding the change to the current pressure head 

to solve for the next nodal elevation (refer to Figure 3.6).  The change in 

pressure head was calculated by knowing the initial pressure head and hydraulic 

conductivity in each soil column.  Once the change in pressure head was added 

to the previous head, a new iteration with a new hydraulic conductivity for each 

soil type was then solved at the next node.  The new hydraulic conductivities are 

solved by using the lookup table of material properties.  Since the newly 

calculated pressure head will often be between two defined pressure heads in 

the material properties table, a simple linear interpolating function was used to 

solve for the new hydraulic conductivity valve as a function of the new pressure 

head.  From the calculated pressure heads and hydraulic conductivities, the 

system gradient and individual fluxes at each node were then calculated. 

 

The output of the FDM included four graphs (presented in Chapter 5).  The first 

graph compared the calculated hydraulic conductivities to the hydraulic 
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conductivity functions of each soil type.  The remaining graphs present the head, 

flux, and gradient profiles calculated respectively. 

 

Several comparison simulations were undertaken to evaluate the results from 

the FEM (e.g., Seep/W) with the results from the FDM solution (modified Kisch).  

The simulations used different heights and slopes, for a two-layered system of 

coarse and fine-grained materials.  Note that this was different than the 

parametric study conducted with the Seep/W. 

 

The initial profile height chosen was 8-meters but this was lowered to 2-meter 

and 1.14-meters.  The 2-meter height was used to decrease the nodal spacing 

in the finite difference solution.  The 1.14-meter profile was used to compare the 

results with the Newman (1999) study.  The following slope angles were 

modelled; namely 90°, 75°, and 45°.  Two sets of coarse and fine-grained 

materials were used (i.e., modified silica sand (silica2) and TP5GS1 from earlier 

work, and the silica and Beaver Creek sand from the Newman (1999) study).  

The results for the finite different method study are presented in Chapter 5. 

4.5 Chapter Summary 
The previous chapters introduced the physical problem and described the 

methodology required to solve the physical problem by first conceptualizing the 

problem and then converting the problem to the fundamental mathematical 

equations.  Chapter 4 described the numerical computer programs and methods 

used to meet the objective and scope of the thesis.  The parametric program 

studied the effect of increasing height and inclination of a two-soil four-layered 

waste rock system.  The finite difference method using the modified Kisch 

solution investigates the physical problem with an independent and fundamental 

approach. 

 

Chapter 5 presents the solutions, analyses, and discussion related to the 

questions that were formulated.  Chapter 6 summarizes the modelling programs 

and makes recommendations for future research. 
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CHAPTER 5 PRESENTATION OF RESULTS, ANALYSIS, AND DISCUSSION

PRESENTATION OF RESULTS, ANALYSIS, AND DISCUSSION 

5.1 Introduction 
The steady state and transient numerical modelling was completed using the 

two-dimensional saturated/unsaturated flow, finite element computer package 

called Seep/W (Geo-slope, 1995).  The parametric study undertook steady state 

modelling and produced solutions with convergence for 30 model simulations.  

The results from the modified Kisch solution, introduced as an alternate 

numerical solution, were used to compare and help verify results from the finite 

element method.  Chapter 5 presents the results of the modelling studies 

introduced in Chapter 4.  However, Chapter 5 begins with a short discussion 

outlining the major issues discovered during this study and summarizes the 

sensitivity analysis presented in Appendix B.  During the course of this study, 

approximately 200 simulations were investigated.  A list of all relevant 

simulations and the results are presented in the Appendices.  

5.2 Non-convergence and the Result of the Sensitivity Analysis 
Numerical modelling for the parametric study was preceded by pilot program 

that moved through a long modelling process with many unsuccessful model 

simulations using various parameters and combinations.  Chapter 4 discussed 

the need to restart the modelling process at a known solution and conduct a 

parametric study.  However, with the parametric study, issues with respect to 

convergence criteria, mesh design, and material properties proved to be critical.  

For example, the first coarse-grained material selected worked well for all profile 

heights below 8-meters but not for any taller profiles.  The applied flux of 10-5 

m/s worked well for all models studied but the use of any lower flux would result 

in non-convergence. 
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To better understand the anomalies encountered and to acquire a better 

understanding of the key parameters of the commercial numerical analysis 

package Seep/W used to solve physical problem, a sensitivity analysis was 

undertaken and presented in Appendix B.  The main objective of the sensitivity 

analysis was to determine which input parameters affected convergence most 

and how to better manage these parameters and improve convergence.  The 

key conclusions determined from the sensitivity analysis are outlined below: 

1. Numerical models are extremely sensitive to very large or small numbers.  
 
2. The convergence criteria are critical in obtaining a solution to the problem.  

Insufficient iterations or high rates of change in the solver caused non-
converged solutions.  A tight convergence criterion did slow the solver 
considerably but produced a reliable solution.  

 
3. The study of the mesh design showed that tighter nodal spacing in areas of 

higher activity and/or removing elements with low flow has a direct effect on 
improving convergence.  

 
4. The material properties specified for the layers were shown to be the most 

important factor.  Reducing the slope of the hydraulic conductivity function 
can dramatically increase the convergence of the model.  However, by doing 
so, results in the model deviating from the real system being modelled and 
therefore an acceptable compromise needs to be achieved to keep the 
model solvable and accurate within a selected tolerance. 

 
5. The major breakthrough of the sensitivity analysis came with further 

manipulation of the hydraulic conductivity function for the coarse-grained 
material.  The problem of the steep slope for the hydraulic conductivity 
function specified for the coarse-grained material was solved by 
progressively decreasing the slope of the hydraulic conductivity function at 
10-8 m/s (for applied fluxes of 10-7 m/s or less).  The slope of the function with 
values of matric suction greater than the air entry value was reduced into 
three sections with decreasing slopes.  The first section of the slope was set 
equal to the original silica2, the second section of the slope was only slightly 
reduced, and the third section of the slope was inclined to match the 
hydraulic conductivity function for the fine-grained material.  By doing so, the 
difference between the two functions became a constant.  The general 
principle behind these changes was to ease convergence while not affecting 
flux in the system significantly (i.e. preferential flow still occurs in the correct 
distribution and convergence criteria were met). 

 
6. The use of transient modelling was explored, however the sensitivity analysis 

showed that problems with the time expansion caused instability in the 
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system.  The transient modelling proved to be the most inefficient method to 
solve the solution studied due to the amount of time required to solve a 
single model. 

 
 
The selected parameters and the resulting flux in each layer at mid height for all 

significant models simulated in the sensitivity analysis were tabulated and are 

presented in the Appendix B.  The results of the parametric studied presented in 

the following section were obtained using material properties and applied flux, 

based on the sensitivity analysis, that allowed Seep/W to achieve converged 

solutions. 

5.3 Parametric Study 
Velocity vectors, pressure head contours, seepage flux across selected 

sections, and two convergence graphs were obtained for each solution.  Figure 

5.1 shows the resulting fluxes (m/s), pressure head contours (m), and velocity 

vectors for the 4-meter high, 90º and 60º slopes.  These results are typical in 

appearance to the other solutions, and were therefore selected for presentation. 

The computed velocity vectors show preferential flow of the applied flux through 

the fine material in the system.  Initially a flux of 10-5 m/s was applied evenly 

across the top of the slope.  Figure 4.5a shows where the applied flux intersects 

the hydraulic conductivity function for each material.  It can be seen that the fine 

material is more conductive than the coarse material for all values of matric 

suction greater than 2.3 kPa.  The system gradient favors a flux movement from 

the coarse layers into the fine layers.  Figure 5.1 shows that the velocity vectors 

do not drain evenly from the sloped profile.  This phenomenon has been shown 

by the conceptual model presented by Herasymuik (1996). 

 

Herasymuik (1996) suggested that water would not flow through the coarse-

grained layers when the value of the matric suction was greater than the value 

corresponding to residual water content.  It was suggested that liquid would 

gather into a water droplet and when the droplet becomes sufficiently heavy, it 

will travel vertically.  The vertical movement of water is gravity driven and 

depends on the slope, the material properties (e.g., grain size, hydraulic 
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conductivity), and the dimensions of the system.  The Seep/W software (Geo-

slope, 1995) assigns a fixed residual hydraulic conductivity to the movement of 

flow from the coarse-grained layer to the fine-grained layer. 

 

The hydraulic conductivity functions for the coarse and fine layers, together with 

the applied flux, determine where preferential flow will occur through the fine-

grained layers.  Figure 5.1 shows preferential flow as a crossover of flow from 

the coarse to the fine-grained layers.  The flow crossover stabilizes in each layer 

before reaching the mid-section of the profile.  The flow crosses back into the 

coarse layers as it approaches the specified zero head at the bottom boundary.  

As the pressure head increases and exceeds –0.23 m (-2.3 kPa), the coarse 

layers becomes the preferential conduit.  Hence, flow crosses back to the 

coarse-grained layers before exiting the system. 

 

The flux sections characterize the amount of seepage across selected cross-

sections in the system.  The top and bottom flux sections, used to check water 

balance, show a negligible difference in flux.  The intermediate flux sections for 

the 60º model in Figure 5.1 gave values of 63% (6.3E10-6), 10% (1.0E10–6), 

27%(2.7E10-6), and 0%(2.7E10-10) of the total flux in each layer, going from left 

to right.  The lower flux corresponds to the lower pressure head contours in the 

coarse-grained layers.  It can also be seen that the pressure heads are lowest at 

the top of the vertical system and decrease rapidly from left to right across the 

sloped systems.  The low-pressure heads in the outer coarse-grained layer 

result in a zone that does not transmit seepage. 
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Figure 5.1 Seep/W result for four-meter 90º and 60º  profiles 

The soil-water characteristic curve (SWCC) presented in Figure 4.5b is not 

required to achieve a solution for the steady-state model.  However, using the 

SWCC provides a measure of storage in the sloping profiles.  When the first 

fine-grained layer (F1) becomes saturated, the first coarse-grained layer (C1) 

will stop draining into F1, and will increase in degree of saturation.  Therefore, if 

F1 is thicker, it can store more water.  

 

Several graphs were prepared to better show the effects of storage and gravity 

on the flux pathway, for a sloping layered system.  Figure 5.2 shows the flux 

passing the mid-section of F1.  The curves indicate the change in flux for each 

layer as the slope angle decreases from vertical (90º) to 45º for each height. 
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Figure 5.2 shows that the flux in F1 increases consistently as the height of the 

system increases, regardless of the slope angle.  The increase is proportional to 

the increase in contact length between the layers.  There was a negligible 

increase in flux between the 16 and 20-meter high systems for all slope angles.  

The maximum flux for each height was reached at a slope of 60º.  However, the 

flux decreases for all heights for the 45º slope.  It is difficult to provide a reason 

why the flux decreases for the 45º slope.  If the fine layer reaches saturation, the 

flux would have reached a constant value similar to that for the 60º slope.  One 

possible explanation is as follows:  As the system slope becomes closer to 45º, 

the reduction in hydraulic gradient reduces the saturated flow in the first fine-

grained layer (F1) and hence reduces vertical drainage from the adjacent first 

coarse-grained layer (C1).  The associated increase in pressure head enabled 

the coarse layer to carry more of the flux.  Further study between the 60º and 

45º slopes would be required to determine the angle at which the pressure 

heads increased sufficiently to affect the relative flow rates. 

 

Figure 5.3 shows the flux passing the mid-section of the first coarse-grained 

layer (C1).  The flux is no longer proportional to the height increase.  In fact, the 

flux is relatively constant as the height of the system increases and Figure 5.3 

shows an exponential increase in flux as the slope increases.  The flux in the 

first coarse-grained layer is at a maximum value for the 45º slope.  This is 

consistent with the reduction in flux in the first fine-grained layer at 45º as shown 

in Figure 5.2.  However, for all other angles both the first fine and coarse-

grained layers show an increase in flux.  Therefore, the increased flux must 

have come from the upper coarse and fine-grained layers, F2 and C2, 

respectively. 
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Figure 5.2 Change in Flux Passing Layer, ‘F1’ at Mid Height 
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Figure 5.3 Change in Flux Passing Layer, ‘C1’ at Mid Height 
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Figure 5.4 shows the flux passing the mid-section of the second fine-grained 

layer (F2).  In general, the layer F2 transmits more than half of the flux at 90º.  

However, as the slope angle decreases the flux steadily decreases.  The 

proportional decrease in flux with slope angle explains the flux increase in the 

lower coarse and fine-grained layers. 
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Figure 5.4 Change in Flux Passing Layer, ‘F2’ at Mid Height 

Newman (1999), and Newman et al (1997) explained why the flux crosses over 

from the coarse layers to the fine-grained layers, in a two-layer system.  It is also 

important to understand how preferential flow at the top of the profile behaves 

with multiple layers as shown in Figure 5.5 for the vertical profiles.  The outside 

two elements in C1 evenly contribute seepage to the bordering fine-grained 

layer elements.  The second coarse-grained layer borders only one fine-grained 

layer and drains two elements into the fine layer.  Therefore, C1 will drain more 

quickly than C2 as shown in Figure 5.6, where C1 transports less seepage than 

C2 by mid height.  However, both C1 and C2 drain to the same flux for the 20-

meter vertical profile as shown in Figure 5.7.  The observation indicates that the 

layers will reach equilibrium for the taller profiles (i.e., larger contact length).  At 

the end of the initial crossover, the second fine layer transmits more flux than 
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the first fine layer.  As the slope decreases from the vertical, the flux balance 

moves to the lower layers as shown in Figure 5.6. 

  1.0000e-005  

 F1                  C1               F2                C2

Applied Flux = 10-5 m/s

 

Figure 5.5 Top Half Meter of 4-meter Vertical Solution 

Figure 5.6 shows the overall results of the 4-meter system for each slope.  The 

figure shows the relative proportion of the flux in each layer.  The logarithm of 

hydraulic conductivity is plotted on the secondary axis of Figure 5.6.  The plotted 

values for the logarithm of hydraulic conductivity are the logarithm of the lowest 

hydraulic conductivity calculated by Seep/W for a particular simulation.  The 

trend of the logarithm for hydraulic conductivity confirms that the slope angle 

was directly proportional to the resulting pressure heads and corresponding 

hydraulic conductivity.  The lowest value of pressure head and the 

corresponding hydraulic conductivity was located on the top of the coarse-

grained layers in the vertical profiles and on the mid-section of C2 in the sloped 

systems (refer to Figure 5.1).  

 

Figure 5.7 shows the overall results of the 20-meter system for each slope.  The 

20-meter profile has a higher elevation head and contact length between layers.  

The results are similar to the 4-meter high system, except for the flux values in 

fine-grained layers.  It appears that the longer contact length results in more of a 

flux transfer from F2 to F1 as the slope angle is increased.  However, the fluxes 

in all the layers are identical at the 45º slope angle. The coarse-grained layers in 

the 20-meter high system begin with the same flux but C2 quickly drains to 

residual water content with a flux-approaching zero.  Note that the greatest 

change in the logarithmic of hydraulic conductivity was found for all heights to be 

between the 85º and 60º slopes.   
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Figure 5.6 Flux and Hydraulic Conductivity Change for the Four Meter 
System at Mid Height 
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Figure 5.7 Flux and Hydraulic Conductivity Change for the Twenty-Meter 
System at Mid Height 
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The results of the parametric study showed preferential flow in inclined waste 

rock layers as described by Herasymuik (1996) and demonstrated by Newman 

(1999) for the vertical system.  The detailed results for all the models simulated 

are presented in Appendix A.  The parametric study demonstrated that flow in a 

multi-layered waste rock dump is a function of inclination, contact length 

between the layers, and coarse and fine-grained material hydraulic properties, in 

addition to mechanism of preferential flow stated by Newman (1999). 

5.4 Modified Kisch Solution 
The modified Kisch solution using the finite difference method (FDM) was 

developed to explore an alternative solution for preferential flow in an 

unsaturated layered system.  Chapter 3 outlined the theoretical aspects of the 

problem and Chapter 4 described the procedure for the investigation.  The 

following section will describe the operation of the modified Kisch solution and 

compare the results with the solutions obtained from the finite element method 

(FEM) solution (Seep/W). 

 

A 2-meter and a 1.14-meter, two layer, vertical system were used for the 

analysis.  Within the solution, the layers could be specified as coarse over fine 

or fine over coarse-grained material.  The fine-grained layer material selected for 

analysis was TP5GS1 and the coarse-grained layer material selected was 

silica2.  Table 5.1 presents the input parameters for the analysis.   

Table 5.1 Input Parameter for The Modified Kisch Solution 

Height: 2.00 m 

Angle (α) 90 ° 

Thickness of coarse layer (bc) 0.05 m 

Thickness of fine layer (bf) 0.05 m 

Distance from each node (dz) 0.02 m 

Angled distance from each node (dl) 0.02 m 

Applied flux (qin) -1.00E-05 m/s 
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The thickness of the coarse and fine-grained layers were defined as bc and bf, 

respectively.  The distance between nodes was defined by dz and multiplied by 

the number of nodes to give the total height.  For the simulated sloped systems, 

dl will be greater than dz (dl is a function of dz and the angle).  The input flux 

was represented by qin.  Note that the negative sign indicates the flux was 

moving down through the system (i.e., the negative direction). 

 

As previously explained in Chapters 3 and 4, the FDM program calculated the 

change in pore-water pressure between elevations from the bottom to the top 

and then from the top back to the bottom.  The FDM program first solved for 

hydraulic conductivity, flux, and gradient in each layer and then solved for the 

variables at each node using the average heads.  The results are presented in 

four plots: pressure head versus elevation, flux versus elevation, gradient versus 

elevation, and computed hydraulic conductivities versus material conductivities.  

The results for the vertical 2-meter system are presented in Figures 5.8 through 

5.11. 
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Figure 5.8 Pressure Heads Calculated for the Vertical 2-Meter System 
Showing the Pressure Heads for the Coarse (hci) and Fine (hfi) Layers and 

for the Combined System (hp) 
 

Figure 5.8 shows the pressure heads calculated where hci was the coarse-

grained layer, hfi was the fine-grained layer, and hp was the pore-water 

pressure heads for the system (i.e., the combined result of both fine and coarse-

grained layers).  Figure 5.9 presents the calculated fluxes in the system from 

bottom to top defining the bottom cross-over of flux for preferential flow and from 

top to bottom defining the upper cross-over of flux for preferential flow. 
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Figure 5.9 Fluxes Calculated for the Vertical 2-Meter System Showing the 
Flux in the Coarse (qci, qcp), Fine (qfi, qfp), and Combined Total Flux (q-

total) 
 

Note that fluxes are defined for the full height of the system; however to fully 

define preferential flow the system must be calculated in two halves.  The fluxes 

at elevations 0 to 1-meter are defined in the coarse and fine-grained layers by 

qci and qfi, respectively.  The fluxes at elevations 2-meter to 1-meter are defined 

in the coarse and fine-grained layers by qcp and qfp, respectively.  Figure 5.10 

presents the calculated gradients from the bottom to the top of the system. 
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Figure 5.10 Gradients Calculated for the Vertical 2-Meter System with the 
Applied Flux of 10-5 m/s. 

 

The gradient is the change in pore-water pressure head with respect to the 

change in elevation.  Figure 5.10 shows that the gradient quickly increased from 

0 to 1 between 0-meter to 1-meter of elevation.  The computed results for the 

combined flow system suggested that a change in pore-water pressure equaled 

a change in gradient, which corresponded to a change in hydraulic 

conductivities and therefore a change in flux within the layers.  In other words, 

the system reached hydraulic equilibrium with respect to elevation (i.e., dz) via 

preferential flow (i.e., change in flux between layers).  To ensure convergence, 

the calculated conductivities were compared against those of the material 

properties.  Figure 5.11 presents the FDM calculated conductivities plotted 

against those specified for the material properties. 
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Figure 5.11 Hydraulic Conductivities Calculated for the Vertical 2-Meter 
System Plotted Versus the Material Hydraulic Conductivity Functions 

 
It is apparent in Figure 5.11 that the computed hydraulic conductivities match 

the given properties.  This was attributed to the accuracy of the model and the 

simple interpolating function used.  It is important to note that five hydraulic 

conductivities and functions are presented in Figure 5.11.  The first three were 

calculated from the bottom to the top, where the calculated hydraulic 

conductivities for the coarse and fine-grained layers were kc and kf, 

respectively, and the combined system hydraulic conductivity was kll.  Note that 

kll ends at the pressure head of 2.8-meters and the hydraulic conductivity of 10-5 

m/s, while kc and kf end at different hydraulic conductivities but the same pore-

water pressure head.  The calculated hydraulic conductivities from the top to the 

bottom in the coarse and fine-grained layer were kci and kfi respectively.  In this 

case, the conductivities end at 10-5 m/s but at different pore-water pressure 

heads.   
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Several models were analyzed using the FEM (Seep/W) and compared to the 

results from the modified Kisch solution.  Three 2-meter system models were 

analyzed with slopes of 90, 75, and 45°, and with TP5GS1 and silica2 as the 

fine and coarse-grained materials.  Three systems models, one 1.14-meter at 

90° and two 2-meter at 75° were analyzed respectively with Beaver Creek sand 

and silica2 as the fine and coarse-grained materials.  The second 90° model 

was set up to compare with the results of Newman (1999) (i.e., a 1.14-meter 

vertical column).  The results of the first set of three models are presented in 

Figures 5.12 to 5.14 and show the calculated fluxes of both solutions.  All of the 

Seep/W solutions passed the convergence criteria outlined earlier and are 

represented in the figures as “Coarse” and “Fine.” 

 

 

Figure 5.12 Darcy Flux Calculated for the Vertical 2-Meter System for 
Modified Kisch and Seep/W Solutions 
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Figure 5.13 Darcy Flux Calculated for the 75°°, 2-Meter System for Modified 
Kisch and Seep/W Solutions 

 

Figure 5.14 Darcy Flux Calculated for the 45°°, 2-Meter System for Modified 
Kisch and Seep/W Solutions 
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The results for the first three models presented in Figure 5.12 through 5.14, 

compared well.  There was a slight fluctuation in the computed values for the 

fine-grained material results as the model was inclined from the vertical.  Note 

that at the bottom crossover portion of the Seep/W solution does not have as 

smooth a curve as that calculated with the Modified Kisch solution. 

 

The second set of three models (i.e., one 1.14 and two 2-meter) used the 

steeper Beaver Creek sand function for the fine-grained material.  The results of 

the second set of models are presented in Figures 5.15 to 5.17 and show the 

calculated fluxes/velocities of both the modified Kisch (FDM) and FEM solutions.  

It is important to note that all of the FEM solution passed the convergence 

criteria outlined earlier.  The results are presented in Figures 5.15 through 5.17 

as “Coarse” and “Fine.” 

 

 

Figure 5.15 Darcy Flux Calculated for the Vertical, 1.14-Meter System for 
Modified Kisch and Seep/W Solutions 
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Figure 5.16 Darcy Flux Calculated for the 75°°, 2-Meter System for Modified 
Kisch and Seep/W Solutions 

 

Figure 5.17 Darcy Flux Calculated for the 45°°, 2-Meter System for Modified 
Kisch and Seep/W Solutions 
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The results of the second set of models did not compare as well as the previous 

set.  The FDM solution for the coarse-grained layer did not match that of the 

FEM solution and the top to bottom calculations were erroneous.  To help 

understand the difference from the first set of models to the second set, the 

calculated pressure head, gradients, and conductivities were studied and are 

presented in Figures 5.18 to 5.20. 

 

Compared to the first set of materials used, (i.e., TP5GS1 and silica2) the pore-

water pressure heads shown in Figure 5.18 for the second set are more linear 

and rigid.  Figure 5.19 presents the calculated gradients.  Note the double hump 

in the curve indicating that, unlike the first model, (i.e., shown in Figure 5.10) the 

second model did not reach a gradient of 1 before the midpoint.  Figure 5.20 

presents the given and calculated hydraulic conductivities.  Note the distinct 

break in the curve of the fine-grained function at the air entry value (AEV). 

 

 

Figure 5.18 Pressure Heads Calculated for the Second Vertical 1.14-Meter 
System Using Beaver Creek and Silica Sand 
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Figure 5.19 Gradients Calculated for the Second Vertical 1.14-Meter 
System Using Beaver Creek and Silica Sand 

 

Figure 5.20 Hydraulic Conductivities Calculated for the Second Vertical 
1.14-Meter System Using Beaver Creek and Silica Sand 
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The overall results were that the first set of three models using silica2 and 

TP5GS1 for materials compared well to the FEM solutions; however, the second 

set of models using silica2 and Beaver Creek sand failed to arrive at a complete 

solution due to the steep and sudden change in the Beaver Creek sand 

hydraulic conductivity function.  It appeared that the interpolating function was 

unable to correctly select points along the function and therefore introduced 

error into the calculations making the top to the bottom solution erroneous.  

 

Other issues were noted with the modified Kisch (1959) solution (FDM).  It was 

observed that the solution was improved by defining tighter nodal spacing and 

by adding more points in the hydraulic conductivity functions for both materials, 

or by redefining the hydraulic conductivity functions as a mathematical function.  

However, there were two main problems with the FDM.  First, the linear method 

by which the FDM was calculated depended solely on the previously calculated 

value.  The FDM can take an error and carry that error to the remaining 

calculations, or compound the error.  In many cases, the investigator will have 

difficulties in determining an error existed let alone debugging the error.  The 

second and most important problem with the FDM was the same problem 

encountered with the FEM, which was that dividing and multiplying by very small 

numbers resulted in numeric instability.  In the case of the current FDM study, 

the instability was dependent on the input parameters, each of which could 

create instability equally.  In this study, a balance had to be reached between 

the calculations made from the bottom to top (parallel equations, i.e., Equation 

3.12) and those made from the top to the bottom (perpendicular equations, i.e., 

Equation 3.13).  For example, defining small nodal spacing and layer thickness 

would increase the accuracy for the parallel equations but would rapidly 

decrease the accuracy for the perpendicular equations.  Achieving a reasonable 

balance was possible but it limited the versatility and range of the problems that 

can be studied with the FDM.  This was evident in the second set of models 

analyzed.   



Chapter 5  Presentation of Results, Analysis, and Discussion Page 88 

    

5.5 Pilot Program Revisited 
As discussed in Chapter 4, the nature of this thesis resulted from choosing a 

starting point, encountering considerable difficulties and having to take several 

large step backwards before being able to take small successful steps forward 

again.  Upon completion of the sensitivity analysis (Appendix B) and the finite 

difference numerical method, the lessons learned were applied to the model 

used in the original pilot program (refer to Figure 4.3).  Using an applied flux of 

10-5 m/s and the original silica2 material properties, a 20-meter tall profile 

inclined at 50° was developed.  The model consisted of seven alternating 1-

meter thick fine and coarse-grained layers.  A 1-meter thick compacted till layer 

was specified under the fine and coarse-grained layers to simulate a compacted 

traffic layer of a lower construction bench.  The zero pore-water pressure 

boundary condition was specified at the bottom of the till layer, and a review 

boundary was placed on the slope of the model to define possible seepage.  

The nodal spacing was reduced between different layers and at the top 

boundary.  Convergence criteria used for the parametric study were applied.  

The model was allowed to run for several days and as new review boundaries 

were calculated the iterations were repeated.  The results of the model with 

pressure contours and velocity vectors are presented in Figure 5.21.  The model 

was found to achieve full convergence. 

 

The results in Figure 5.21 show that the applied flux flowed preferentially.  It 

appeared that the amount of flux was sufficient to reduce the head in the fine-

grained layer, which allowed flow back into the coarse-grained and through to 

the first fine-grained layer.  The first fine layer became saturated to the point 

where it was unable to accept more flux.  The first coarse-grained layer 

transmitted the remaining flux to the bottom of the system.   

 

The bottom section of the system showed the development of a perched water 

table.  The flow in each fine-grained layer crossed over to the adjacent coarse-
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grained layers.  A perched water table was created due to the lower permeability 

of the till and the water flowed laterally through all layers to the toe of the slope.   
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Figure 5.21 Result of the 50°° 20-meter Multi-Layered System with the 
Applied Flux of 10-5 m/s 

 

The positive model result described above prompted an additional model 

simulation with the annual precipitation at Golden Sunlight Mine for the applied 

flux  (i.e., 7.7E10-9 m/s).  The modified multi-sloped silica2 hydraulic conductivity 

function developed during the sensitivity analysis and results presented in 

Figure B21, was used.  The results with pore-water pressure contours and 

velocity vectors are presented in Figure 5.22.  Note that this model also 

achieved full convergence within a reasonable period of computational time. 

 

The results presented in Figure 5.22 showed that preferential flow fully 

developed with the low applied flux and selected material properties.  All flux 

from the coarse-grained layer crossed over to the fine-grained layers and the 
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flux was transmitted to the bottom of the system through the fine layers.  Due to 

the low flux, a significant perched water table did not developed at the bottom 

contact with the till layer.  However, seepage did flow toward the slope at the 

review boundary, and exit out.  
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Figure 5.22 Result of the 50°° 20-meter Multi-Layered System with the 
Applied Flux of 7.7e10-9 m/s 

 

The results present in Figure 5.22 were not expected to be accomplished during 

this study.  The successful work of Newman (1999) led to a successful 

parametric study, modified Kisch (1959) solution, and sensitivity analysis 

(Appendix B) that developed the understanding of the tools available to 

numerically solve the problem.  The results from this study can now be a 

platform for future research. 
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CHAPTER 6 SUMMARY, CONCLUSION, & RECOMMENDATIONS 

SUMMARY, CONCLUSION, & RECOMMENDATIONS 
 

6.1  Summary and Conclusion 
The previous chapters described the modelling process beginning with the 

identification of a real life seepage problem (the physical problem) through to the 

conceptualization of the problem as a series of basic components.  The 

conceptual model was transformed to a mathematical model by defining the 

governing equations, and solving the mathematical model using both a finite 

element method (i.e., Seep/W) and a finite difference method (i.e., modified 

Kisch solution), along with verification of the results.  This chapter will 

summarize the lessons learned from the problems encountered in the pilot 

program, the parametric study, and the development of the modified Kisch 

solution. 

 

The negative results of the pilot program led to the development of a parametric 

study.  The results of the parametric study (section 5.3) showed that numerical 

modelling programs could support the conceptual model developed by 

Herasymuik (1996), and the mechanics of preferential flow described by 

Newman (1999).  The numerical simulation results presented are preliminary in 

nature and are not intended to fully describe seepage in unsaturated waste rock 

dumps with dipping layers of variable textures.  However, the results of the 

analysis illustrated complexity of unsaturated flow hydrogeology in waste rock 

dumps, and some key trends.  The process of starting with a simple solution and 

increasing the complexity incrementally yielded not only valuable insight into the 

problem, but gave a higher platform in which to start future studies that are more 

ambitious. 
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The parametric study showed that preferential flow in inclined waste rock layers 

could be modelled numerically.  Preferential flow was found to be a function of 

the material properties, geometry, and pressure heads in the system, and the 

applied flux into the system.  Preferential flow was also found to be influenced 

by the inclination of the waste rock layers, as well as the contact length between 

the fine and coarse layers.   

 

It was concluded that preferential flow was a function of several variables that 

dictated where the preferential conduit would occur and how much flux would be 

transmitted.  A unique solution exists for each set of variables specified.  Not 

only did the parametric study reveal that the problem being solved was non-

linear, but also that it was a coupled problem in such a way that the variables 

appeared inter-dependent on each other. 

 
The modified Kisch (1959) solution using the finite difference method was 

explored and a surprisingly straightforward solution to preferential flow in a two-

soil two-layered system was discovered.  The modified Kisch solution can 

characterize preferential flow through the system by utilizing the five pressure 

head profiles calculated.  As the applied flux enters the top of the system, the 

flux was divided between the layers, based on the last two head profiles and the 

law of conservation of mass.  The division of flux was found to characterize the 

initial crossover of flux shown by Newman (1999).  A third head profile was used 

to characterize the center and bottom sections of the system.  It was shown at 

the vertical midway point of the system, the gradient was equal to unity, and no 

transfer of flux was observed.  As the elevation decreased, the pressure head in 

the system increases to zero and the head in the system will reach a point 

where both the coarse and fine-grained material have the same hydraulic 

conductivity for the same pressure head.  At this point, the coarse-grained 

material becomes more conductive and the majority of the flux will crossover 

into the coarse-grained layer. 
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The results of the modified Kisch solution were academic in nature; however 

working through the mathematics provided further insight to the relationships 

between the individual layers as they interact as a system.  The modified Kisch 

solution can be used to compare two soil properties before turning to the 

Seep/W.  In addition, the system of equations and algorithms can be further 

improved to increase efficiency. 

 

By following the methodology for numerical modelling outlined in Chapter 2, an 

understanding of the numerical model was further developed with respect to 

both the physical and mathematical models.   

 

Based on the lessons learned from the numerical modelling programs, the 

original model in the pilot program was repeated with positive results.  The 

results of the simulations showed that with the very low applied flux of 7.7E10-9 

m/s, flow through a seven-layered system would quickly move to the fine-

grained layer and travel exclusively in the fine-gained layers.  Only when the 

pore-water pressure heads increased would the flow transfer back into the 

coarse-grained material layers and eventually exit the system.  The result was 

significant with respect to reducing matric suction and possible slope stability 

issues.   

6.2  Need for Future Research 
Little research has been devoted to the prediction and analysis of seepage 

through waste rock dumps.  This study investigated preferential flow in vertical 

to inclined waste rock layers with horizontal segregation (i.e., fine-coarse-fine-

coarse).  The conceptual model described by Herasymuik (1996) indicated that 

as waste rock is end dumped, the waste rock segregates, and the coarser-

grained material rolls further down the dump than the finer-grained material.  

This results in layering not only horizontally but also vertically, as finer material 

will be retained more near the top of the dump than at the bottom.  This sorting 

can explain the observation of a wetting front on the top third of an end-dumped 

waste rock bench.  MEND (1995) also noted that the finer material would remain 
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in the top third of the waste rock dump.  The added complexity of the problem 

with respect to the vertical segregation and further horizontal segregation (i.e., 

more that two materials) of waste rock layers was not investigated in this study 

and is recommended for future study. 

 

The current study also investigated many of the problems related to using 

numerical modelling as a predictive design tool.  The major problems resulted 

from the negative pressure heads and corresponding low values of hydraulic 

conductivity encountered in the taller profiles while using steep hydraulic 

conductivity functions and low applied fluxes.  It has to be noted that the 

numerical modelling package (Seep/W) used was not designed to deal with the 

extreme conditions encountered in this study.  A balance between applying 

accurate material properties and changing the material properties to ease 

numerical instability has to be reached in case-by-case bases.  As noted earlier 

in the thesis, if a very low hydraulic conductivity function value contributes 

significantly to numerical instability and insignificantly to flow, the slope of the 

hydraulic conductivity function should be increased to assist numerical stability 

but also be kept from significantly changing the flow distribution within the 

system.   

 

In general, commercial seepage modelling packages are powerful and useful 

tools that are designed to adequately accommodate a wide range of 

geotechnical problems.  The study showed that Seep/W may not be the best-

suited tool to analyze unsaturated seepage through sloping waste rock layers.  

However, numerical modelling is a process and working through the process 

helps to enhance engineering judgment.  The Seep/W model provided an 

adequate solution for a simplified simulation of unsaturated seepage through 

waste rock layers.  The modified Kisch solution independently verified the 

solution and provided additional confidence for the results of Seep/W model.  

However, several improvements in numerical modelling coding, pre-processing, 

and computing power must occur before further developments can proceed.  In 
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addition, laboratory studies for a multi-layer waste rock system should be 

conducted to verify the current study as well as design new studies as numerical 

modelling coding specific for unsaturated seepage through waste rock layers.   

 

A possible application of the numerical modelling includes the slope stability 

analysis for the waste rock dumps and the design of an engineered waste rock 

pile in which non-reactive fine-grained material borders a reactive coarse-

grained waste rock.  The results of the present study show it is possible to 

simulate unsaturated flow through the fine-grain material, leaving the coarse-

grain material void of significant flux.  The result would be a system that may 

greatly reduce drainage through acid generating material.   
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APPENDIX A PARAMETRIC STUDY 

PARAMETRIC STUDY 
 

The parametric study involved the solution of steady state models and yielded 

solutions with convergence for 30 model simulations.  The results of the 

parametric study with respect to the increasing model height and the lowest log 

hydraulic conductivity calculated for the models are presented in Table A1 

below.  Table A1 presents the percentage of the total flux in each layer for each 

inclination at each height modelled. 

Table A1 Result of The Parametric Study with Respects to Model Height 

1m 
LAYER   ANGLES  

 90 85 75 60 45 
1ST FINE 35.48% 37.11% 40.46% 46.48% 44.17% 
1ST COARSE 5.14% 5.88% 8.50% 15.12% 33.49% 
2ND FINE 45.48% 45.38% 44.79% 38.73% 24.83% 
2ND COARSE 13.78% 11.39% 6.28% 1.36% 0.01% 
CONDUCTIVITY -5.80 -5.79 -5.92 -6.96 -8.38 

      

2m 
LAYER ANGLES 

 90 85 75 60 45 
1ST FINE 37.21% 39.16% 45.80% 57.36% 48.05% 
1ST COARSE 2.23% 3.15% 6.04% 10.00% 33.93% 
2ND FINE 50.10% 50.38% 45.96% 32.35% 18.34% 
2ND COARSE 9.90% 5.43% 1.67% 0.96% 0.00% 
CONDUCTIVITY -6.30 -6.08 -6.89 -8.89 -10.34 

      

4m 
LAYER   ANGLES  

 90 85 75 60 45 
1ST FINE 38.69% 42.40% 52.17% 63.10% 48.50% 
1ST COARSE 2.37% 3.50% 4.36% 10.00% 34.74% 
2ND FINE 51.98% 50.81% 42.83% 26.99% 16.79% 
2ND COARSE 6.69% 2.93% 0.30% 0.00% 0.00% 
CONDUCTIVITY -6.34 -6.33 -7.94 -10.05 -10.44 

      
      
      



Appendix A  Parametric Study Page A-2 

 

    

      

Table A1 Result of the parametric study with respects to model height 
(continued) 

8m 
LAYER   ANGLES  

 90 85 75 60 45 
1ST FINE 43.57% 47.36% 59.14% 64.81% 48.50% 
1ST COARSE 2.33% 2.95% 3.46% 11.26% 34.82% 
2ND FINE 50.31% 48.25% 37.32% 23.99% 16.66% 
2ND COARSE 3.77% 1.30% 0.06% 0.00% 0.00% 
CONDUCTIVITY -6.35 -6.70 -8.74 -10.24 -10.48 

      

16m 
LAYER   ANGLES  

 90 85 75 60 45 
1ST FINE 44.90% 53.40% 62.38% 65.08% 48.33% 
1ST COARSE 2.30% 2.73% 3.70% 11.79% 34.71% 
2ND FINE 49.33% 43.40% 33.87% 23.11% 16.65% 
2ND COARSE 3.25% 0.48% 0.03% 0.00% 0.13% 
CONDUCTIVITY -6.39 -7.11 -8.62 -10.28 -10.51 

      

20m 
LAYER   ANGLES  

 90 85 75 60 45 
1ST FINE 45.70% 52.83% 62.75% 65.11% 48.29% 
1ST COARSE 2.31% 2.71% 3.86% 11.81% 34.45% 
2ND FINE 49.00% 43.86% 33.37% 23.06% 16.68% 
2ND COARSE 2.95% 0.39% 0.03% 0.00% 0.00% 
CONDUCTIVITY -6.40 -6.91 -8.64 -10.30 -10.57 

 

The results of the parametric study with respects to the increase inclination and 

the lowest log conductivity calculated for the model of the models is presented in 

Table A2 below.  Table A2 presents the flux in each layer for each height at 

each model inclination. 
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Table A2 Result of The Parametric Study with Respects to Model 
Inclination 

90 Degrees 
LAYER  HEIGHTS   

 1 2 4 8 16 20 
1ST FINE 35.48% 37.21% 38.69% 43.57% 44.90% 45.80% 
1ST COARSE 5.14% 2.23% 2.37% 2.33% 2.30% 2.30% 
2ND FINE 45.48% 50.10% 51.98% 50.31% 49.33% 49.10% 
2ND COARSE 13.78% 9.90% 6.69% 3.77% 3.25% 2.77% 
CONDUCTIVITY -5.80 -6.30 -6.34 -6.35 -6.39 -7.86 

85 Degrees 
LAYER  HEIGHTS   

 1 2 4 8 16 20 
1ST FINE 37.11% 39.16% 42.40% 47.36% 53.40% 52.83% 
1ST COARSE 5.88% 3.15% 3.50% 2.95% 2.73% 2.71% 
2ND FINE 45.38% 50.38% 50.81% 48.25% 43.40% 43.86% 
2ND COARSE 11.39% 5.43% 2.93% 1.30% 0.48% 3.93% 
CONDUCTIVITY -5.79 -6.08 -6.33 -6.70 -7.11 -6.91 

75 Degrees 
LAYER  HEIGHTS   

 1 2 4 8 16 20 
1ST FINE 40.46% 45.80% 52.17% 59.14% 62.38% 62.75% 
1ST COARSE 8.50% 6.04% 4.36% 3.46% 3.70% 3.86% 
2ND FINE 44.79% 45.96% 42.83% 37.32% 33.87% 33.37% 
2ND COARSE 6.28% 1.67% 0.30% 0.06% 0.03% 0.03% 
CONDUCTIVITY -5.92 -6.89 -7.94 -8.74 -8.62 -8.64 

60 Degrees 
LAYER  HEIGHTS   

 1 2 4 8 16 20 
1ST FINE 46.48% 57.36% 63.10% 64.81% 65.11% 65.11% 
1ST COARSE 15.12% 10.00% 10.00% 11.26% 11.81% 11.81% 
2ND FINE 38.73% 32.35% 26.99% 23.99% 23.06% 23.06% 
2ND COARSE 1.36% 1.61% 0.00% 0.00% 0.00% 0.00% 
CONDUCTIVITY -6.96 -8.89 -10.05 -10.24 -10.30 -10.30 

45 Degrees 
LAYER  HEIGHTS   

 1 2 4 8 16 20 
1ST FINE 44.17% 48.05% 48.50% 48.50% 48.33% 48.29% 
1ST COARSE 33.49% 33.93% 34.74% 34.82% 34.71% 34.45% 
2ND FINE 24.83% 18.34% 16.79% 16.66% 16.65% 16.68% 
2ND COARSE 0.01% 0.00% 0.00% 0.00% 0.13% 0.00% 
CONDUCTIVITY -8.38 -10.34 -10.44 -10.48 -10.51 -10.57 
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The results of Table A1 are plotted and presented in Figures A1 to A6 below.  

The figures show the flux in each layer (secondary axis) and the lowest 

calculated log conductivity (primary axis) as the model is inclined for each 

modelled height. 
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Figure A1 The Results of the 1-meter Model with respect to Inclination 
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Figure A2 The Results of the 2-meter Model with Respect to Inclination 
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Figure A3 The Results of the 4-meter Model with Respect to Inclination 
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Figure A4 The Results of the 8-meter Model with Respect to Inclination 
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Figure A5 The Results of the 16-meter Model with Respect to Inclination 
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Figure A6 The Results of the 20-meter Model with Respect to Inclination 

The results of Table A2 are plotted and presented in Figures A7 to A11 below.  

The figures show the flux in each layer (secondary axis) and the lowest 

calculated log conductivity (primary axis) for each modelled height, as the model 

is inclined. 
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Figure A7 The Results of the 90°° Model with Respect to Height 
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Figure A8 The results of the 85°° Model with Respect to Height 
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Figure A9 The Results of the 75°° Model with Respect to Height 
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Figure A10 The Results of the 60°° Model with Respect to Height 
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Figure A11 The Results of the 45°° Model with Respect to Height 
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APPENDIX B SENSITIVITY ANALYSIS 

SENSITIVITY ANALYSIS 

B1 Introduction 

The numerical modelling for the parametric study began with the completion of 

the pilot program that moved through a long modelling process with many 

unsuccessful model simulations with various parameters and combinations 

attempted.  To better understand the anomalies encountered and to acquire a 

better understanding of the key parameters of the commercial numerical 

analysis package, Seep/W used to solve physical problem, a sensitivity analysis 

was undertaken.  The sensitivity analysis determined the effect that the 

convergence criteria, mesh design, material properties, and transient 

simulations had on the computed solutions.   

B2 Numerical Modelling Program 

The main objective of the sensitivity analysis was to determine which input 

parameters affected convergence and how to manage these parameters to 

improve convergence.  The 8-meter column at an angle of 75º was used for 

most of the analyses.  This system represented an intermediate height and 

slope to model, and required only one run of the program to solve.  However, 

other heights and slopes were also explored further.  The applied fluxes used for 

the analyses varied from 10-3 to 10-7 m/s.  These fluxes were chosen to provide 

regimes between fully and partially saturated.  Major factors assessed with the 

sensitivity analysis were: convergence criteria, mesh design, material properties, 

and transient modelling effects.  The sensitivity analysis program is presented in 

Figure B1.   

Convergence Criteria Mesh Design Material Properties Transient Modelling

Sensitivity Analysis

 

Figure B1 Sensitivity Analysis Factors 
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The sensitivity analysis was not carried out for all possibilities.  Each category 

was subdivided into major variables and for these variables; only a limited range 

of values was studied.  The topics covered are described in the following 

subsections. 

B2.1 Convergence Criteria 

The modeller has several techniques that can be used to influence the way a 

finite element program calculates a solution.  In the Seep/W (Geo-Slope, 1995) 

package, five major parameters can be varied.  The combination of values 

chosen for each parameter directly affects the solver.  The convergence 

parameters are: 

1. Maximum number of iterations; 
2. Tolerance; 
3. Maximum change; 
4. Rate of change; and 
5. Minimum change. 

 

The parameter for the maximum number of iterations limits the number of 

iterations used to obtain a solution.  The tolerance parameter is used to select 

the percentage difference in the norm of the nodal head vector between two 

successive iterations.  The iteration process stops if the percentage difference is 

less than the specified tolerance.  If the percentage difference is greater than the 

tolerance, the iteration process continues until it reaches the maximum number 

of iterations. 

 

The next three parameters refer to changes in conductivity (in orders of 

magnitude).  Geo-Slope (1995) states that, “The maximum conductivity change 

parameter is the maximum change in the (log base 10) of the hydraulic 

conductivity between two successive iterations.  A value of 1 (the default value) 

means the hydraulic conductivity can change as much as 1 order of magnitude 

between iterations.  The ‘rate of conductivity change’ parameter controls the rate 

at which maximum change diminishes with each oscillation reversal in the 

convergence process.  A value of 1.1, for example, means that after the first 
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oscillation reversal, the maximum change is reduced to 0.91 (i.e., 1.0/1.1).  After 

the next oscillation reversal, maximum change is reduced to 0.83 (i.e., 0.91/1.1) 

and so forth until the maximum change is less than the minimum change.  The 

minimum conductivity change parameter puts a lower limit on the value to which 

maximum change can diminish.  A value of 10-4 means that the change in 

hydraulic conductivity from one iteration to the next is 10-4 orders of magnitude.” 

 

The convergence criteria must be selected based on the model complexity and 

observations of the solver performance.  If the vector norms calculated by the 

solver do not appear to converge, a tighter convergence criterion may be 

required.  The convergence criteria for the parametric study was based on the 

lessons learned from the pilot program. 

 

The initial models of the pilot program began with the default convergence 

criteria.  As the models proved difficult to solve, tighter and tighter convergence 

criteria were used.  The tightest convergence criterion was required for the taller 

profiles.  The shorter profiles initially used less tight and faster convergence 

criterion.  However, it was discovered that by using different rate of change 

parameters, different pressure heads would be calculated for a model.  Based 

on this discovery, the tighter convergence criterion was used for all models 

simulated in the parametric study.  This increased the overall computation time, 

but insured that all the solutions had a similar base.  The convergence criterion 

chosen is presented in Table B1. 

Table B1 Convergence Parameters for The Parametric Study 

Convergence parameter Value 

Maximum number of iterations 999 

Tolerance (%) 10-5 

Maximum change 0.1 

Rate of change 1.01 

Minimum change 10-5 
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The taller profiles required up to 3000 iterations before convergence was 

attained.  Since the maximum number of iterations allowed by the program were 

999, the taller profiles required three consecutive analyses, using the previous 

results as the initial conditions for the following model.  Sensitivity analyses 

related to the convergence parameters were analyzed and the results are 

presented in section B3. 

B2.2 Mesh Design 

Guidelines for mesh design are discussed in Seep/W manual.  In general, it is 

good practice to reach a balance between the ease of mesh generation and 

efficiency processing, and mesh size should be inversely proportional to the 

change of gradient (Geo-Slope, 1995).   

 

The parametric study used two standard mesh designs.  The designs consisted 

of quadrilateral elements.  The first design was used for the initial, relatively 

short, vertical systems up to the eight-meter high profiles.  The first design 

consisted of 5 elements for the base of each layer and 20 elements for each 

meter in height.  However, the vertical 16-meter profile required twice the 

number of elements as the 8-m profile.  The extra elements increased the 

computational time and produced instability in the solver (for some cases).  The 

results from the pilot program showed that an extremely fine mesh density 

resulted in floating point errors in the program solver, and not enough elements 

resulted in poor results.  To solve this problem a mesh with a 4 element wide by 

17 element high per meter design was used for all remaining systems.  The 

mesh with this lower density design proved to be most successful.   

 

The sensitivity analysis investigated changing the nodal spacing in the mesh 

design.  The following mesh designs were included in the sensitivity analysis: 
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1. Comparison of results between a sloped 45º profile with an internal 
mesh angles of 45º and 90º; 

2. Modifications to the mesh with tighter nodal spacing at the top and 
bottom boundaries, and at the interfaces between layers;  

3. Use of secondary nodes; and 
4. Removing elements from the mesh. 

 
Two methods for sloping the profiles were adopted from the parametric study 

program.  The first method was the simplest.  It involved matching the internal 

angles of the mesh elements with the slope of the system.  For the 45º profiles, 

the internal angle of the mesh element was 45º.  However, the use of any 

internal angle less than 90º will decrease computational efficiency.  An angle of 

45º provided the minimum acceptable performance for a quadrilateral element 

(Geo-Slope, 1995).  The second method of sloping profiles keeps the internal 

element angles at 90º.  This method involves using the vertical profile, and 

pinning the top left node.  The entire profile would be rotated to the desired 

slope.  However, considerable effort was required to define these meshes.  

Therefore, a balance between ease of mesh generation and efficiency 

processing was reached by using the first method (matching elements to the 

slope).  A sensitivity analysis was used to compare results between a sloped 45º 

profile with internal mesh angles of 45º and 90º.  The results of the simulations 

are presented in the following section. 

 

During the modelling, several areas of the mesh were identified as possible 

problem areas.  These areas included the top and bottom boundary conditions, 

the area where the flux crosses over to another layer, the interface between 

layers, and the low pressure head regions. 

 

The boundary conditions are areas of the model that are forced to have certain 

head or flux values.  If these values are unrealistic or extreme in anyway, stress 

is placed on the system and non-convergence results.  The crossover areas are 

regions of high computational activity and need to be defined correctly.  The 

interface between layers is marked by a node, which is shared by two very 
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different materials.  An extreme pressure head difference in hydraulic properties 

(i.e., K), between the two layers creates area of instability.  In general, to help 

ease the distress in these regions, a closer nodal spacing or mesh density can 

be used.  By knowing the problem regions in a model, a custom-made mesh 

design can be developed with closer nodal spacing in the problem areas to 

speed computations in other areas.  Defining this mesh was simplified by the 

size ratio option found in Seep/W version 4.0 and higher (Geo-Slope, 1995). 

 

The size ratio specifies the element distribution along each side of the multiple 

element regions.  The size ratio is the ratio of the length of the last element to 

that of the first element along a side (Geo-Slope, 1995).  A modified mesh was 

developed with nodal spacing that was tight at the top and bottom and looser in 

the middle of the system.  A tight mesh was also used at the interfaces but a 

looser mesh was used at the center of a layer.  A sensitivity analysis using the 

modified mesh was conducted and the results are presented in section B3. 

 

The use of secondary nodes and higher integration orders was also investigated 

during in the mesh sensitivity analysis.  The typical quadrilateral element 

consisted of four nodes.  A quadrilateral element with secondary nodes consists 

of eight nodes.  Secondary nodes with a higher integration order of nine rather 

than four are recommended for nonlinear problems (Geo-Slope, 1995).  The 

nature of the problem being solved was nonlinear and secondary nodes should 

assist in convergence.  However, secondary nodes were not used for the 

parametric study due to the increase in computational time required to solve the 

problem.  In addition, the models from the parametric study were able to 

converge without the use of the secondary nodes.  

 

Secondary nodes were used to solve the non-convergence produced by the 

applied fluxes of 10-6 m/s or less.  These low flux values produced lower 

pressure heads and hydraulic conductivities in the system, and the solution 

using the standard quadrilateral element with four nodes (the standard mesh) 
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was unable to converge.  The analysis of the low flux problem with secondary 

nodes was conducted and results are presented in section B3.   

 

The remaining modification to the standard mesh came as a simplification.  

Observations from the parametric study showed that the outside two elements of 

the outside layers did not contribute flux to the interior elements.  This was 

particularly noticeable in the vertical profiles.  Removing these outside elements 

decreased the computational time, and removed areas of higher suction (related 

to the lack of flow in these areas) that contributed to higher instability.  For the 

inclined profiles, the low flow and higher negative pressure areas are located in 

both coarse layers.  Removing elements from the coarse layers without affecting 

the overall flow pattern may result in removing non-convergent nodes.  A 

number of analyses were completed to verify the possibility of improving the 

convergence by removing elements.  The results of the simulations are 

presented in section B3. 

B2.3 Material Properties 

To model a natural system or an aspect of a natural system, the results depend 

heavily upon how close the specified parameters are to that of the natural 

system.  The properties required for each material are the hydraulic conductivity 

function and the soil-water characteristic curve (SWCC) as presented in Figure 

4.5a and 4.5b respectively.  The SWCC was required for the transient analyses, 

but it was also needed to calculate the volumetric water content contours in the 

steady-state models.   

 

When modelling granular materials such as waste rock, the material properties 

have a steep function.  Steep functions add to the problem of non-convergence.  

Non-convergence is due to the non-linearity of the hydraulic conductivity 

function with respect to matric suction.  For example, a pressure head change of 

1-meter changes the hydraulic conductivity in the coarse-grained layer by 1015 

m/s (refer to Figure 4.5a).  A small pressure head change therefore results in a 
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hydraulic conductivity change of several orders of magnitude.  The result is that 

the vector norm jumps from one extreme to another for consecutive iterations 

and fails to converge.  Customizing the mesh design and convergence criteria 

for the problem is one possible solution.  However, if this does not work, a 

compromise has to be reached between keeping material properties as realistic 

as possible and achieving an acceptable solution. 

 

The sensitivity analysis for the material properties was directed at two parts.  

The first part studied modifying the coarse material hydraulic conductivity 

function with respect to the ease of convergence.  The second part studied the 

effects of closing the gap between the coarse-grained and fine-grained materials 

hydraulic conductivity functions.  This effectively reduced the order of magnitude 

difference between the hydraulic conductivity for the materials.  Geo-Slope 

(1995) also suggests breaking a steep hydraulic conductivity function into a 

series of short flatter segments while keeping the overall shape of the original 

hydraulic conductivity function.  This method was not investigated in this study. 

 

The first coarse–grained material used in the pilot program and the initial 

parametric study was silica sand (Figure 4.2).  However, for all models over 5-

meters, convergence could no longer be achieved.  Convergence was only 

achieved when the silica sand was modified.  The initial silica sand was 

designated as silica1 and the modified sand was designated silica2 (coarse-

grained material in Figure 4.5).  The slope of the permeability function for the 

initial coarse material “silica1” was changed between the air entry value (AEV) 

and residual value of 10-17 m/s by adjusting the residual matric suction from 4 

kPa to 10 kPa.  To provide a better understanding of the effects of changing the 

conductivity curve, four conductivity functions at different slopes were studied 

and compared.  The curves studied were silica1, silica2, and two intermediate 

curves (silica1a and silica1b) and are presented in Figure B2. 
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Figure B2 Sensitivity Analysis of Coarse Material  

The second method considered reducing the difference between the fine and 

coarse-grained materials.  Figure 4.5a shows that as the matric suction 

increases so does the difference between the hydraulic conductivity functions of 

fine and coarse-grained materials.  Reducing the difference between the two 

functions was conducted in three ways.  The first way was to replace the fine-

grained material of TP5GS1 with Beaver Creek sand (Figure 4.2).  Beaver 

Creek sand properties are more similar to the coarse-grained material than 

those of TP5GS1 are.  The second way was to introduce a material that would 

bridge the difference between the coarse and fine-grained materials (i.e., a 

transitional material).  The use of a transitional material indicated that the 

change from one layer to another is more gradual.  In addition, it is possible that 

a transitional material could bridge the difference in pressure heads between the 

layers and therefore assist convergence.  The transitional material developed for 

this study is presented in Figure B3.  The third way involved increasing the 

residual hydraulic conductivity of the coarse-grained material.   
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Figure B3 Hydraulic Conductivity Function for The Transitional Material 

 

During the low applied flux modelling simulations, another material property 

problem was encountered.  An applied flux of 10-7 m/s corresponded to a matric 

suction of 20 kPa in the fine-grained material (Figure 4.5a).  However, a matric 

suction of 20 kPa has no corresponding hydraulic conductivity in the coarse-

grained material.  The coarse-grained material was not defined for any values of 

matric suction greater than 10 kPa.  Therefore, Seep/W reacts by assigning 

nodes with matric suctions greater than 10 kPa to a horizontal line as shown in 

Figure B3.  This line begins at the residual value of 10-17 m/s and may vary from 

10 to 1000 kPa in some cases.   

 

The difference between a material with a residual hydraulic conductivity of 10-12 

m/s rather than 10-17 m/s does not significantly affect the flux in that material.  

However, it may assist convergence.  Sets of models were defined with the 

coarse-grained material having a residual value of hydraulic conductivity equal 

to 10-17, 10–12, 10–9, 10–8, and 10-7 m/s.  These models were checked for 

improvement in convergence with minimal change in the original flux distribution 
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in the system.  Finding a balance between convergences and allowing flow 

through areas that would not otherwise carry seepage was investigated. 

 

The above runs were completed with the residual hydraulic conductivities as a 

horizontal line.  The problem with the horizontal residual hydraulic conductivity 

was that the solver could calculate a constant residual value for any pressure 

head greater than the actual residual.  This may destabilize the rest of the 

system.  A better solution was to match the residual slope of the coarse-grained 

material hydraulic conductivity curve to that of the fine-grained material.  The 

sloped residual will define a unique hydraulic conductivity for each pressure 

head for the coarse material.  The growing difference between the functions for 

a given matric suctions reaches a constant value and this should assist the 

solver in reaching convergence.  Another possibility is to have the residual 

values of both the fine and coarse-grained materials slope to meet at 106 kPa.  

Therefore, the difference in both curves will decrease to zero with greater 

applied suction. 

 

The modelling results when using Beaver Creek sand for the fine-grained 

material, a transitional material, and a residual slope for the coarse material are 

all presented in section B3.  

B2.4 Transient Models 

An alternative method of solving a steady-state problem was to use a transient 

model.  The transient model stepped the time forward using small time steps.  

This initiates a system to accept the imposed boundary conditions.  The time 

steps were then increased until the model reached a steady-state condition.  A 

steady-state condition occurred when the flux entering and leaving an element in 

a model were equal for all times.  The other advantage of a transient model was 

that each time step provides a solution and a further understanding of the 

process at work in the system.  However, transient models have several 

disadvantages.   
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As discussed in Chapter 3, the transient governing differential equation requires 

two more variables than the steady-state equation.  These variables are the rate 

of change of volumetric water content and time.  The volumetric water content is 

defined by the SWCC  (see Figure 4.5b) for each material used.  The time is 

defined in the program as time steps. 

 

The SWCC for the coarse-grained material was similar to its hydraulic 

conductivity function.  Both curves are functions of matric suction, and both 

curves are steep.  Therefore, the problems encountered with a steep hydraulic 

conductivity function can also be expected to occur for a steep SWCC.  For 

example, a small pressure change will result in a large storage change, as well 

as a large hydraulic conductivity change.  Satisfying two steep curves 

complicates convergence. 

 

Another disadvantage of the transient models was the time required to solve the 

simulations.  Each time step is treated as though it were a steady-state run (i.e., 

it will run for the full number of iterations defined in the convergence criteria).  

Therefore, a transient run with 50 time steps, using the convergence criteria of 

the steady-state model in the parametric study will finish after 50,000 iterations. 

 

Seep/W (Geo-Slope, 1995) outlines the following criterion to generate a time 

sequence: 

1. The number of increments; 
2. The starting time; 
3. The initial increment size; 
4. The amount by which the time increment should increase with each step 

(i.e., expansion factor); and 
5. The maximum increment size. 

 

The time steps are measured in seconds.  A typical time step sequence would 

be to start small and then use the expansion function to reach a maximum 

increment size (e.g., one day).  That maximum increment size is then used for 
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the remaining time steps.  The time sequence used for most of the transient 

models is shown in Table B2 

Table B2 Time Sequence Used for Transient Models 

TIME STEP PARAMETER VALUE 

Number of Time Steps 25 

Starting Time 0 seconds 

Initial Increment Size 5 seconds 

Expansion Factor 1.5 

Maximum Increment Size 86400 seconds 

 

After the SWCC and time sequences are defined, the transient model will run as 

defined.  There are several combinations of methods to analyze a transient 

model.  The first method, where the input parameters are used to attempt a 

solution, involves taking an initial system and forcing the applied flux through the 

system.  An alternate method is to use a steady-state simulation to saturate the 

system by using a boundary condition at the top of the pile equal to the elevation 

head or using a flux equal to Ksat.  The results can then be defined as an initial 

condition.  Using this initial condition, a transient model can allow drainage from 

the initial condition to a residual value before the desired flux is applied.  

Alternatively, a transient model can drain to the desired flux.  This means that a 

saturated flux is applied to the model and the flux reduces with time to the 

unsaturated flux.  Since the saturated system does not pose a convergence 

problem, the alternative method would be expected to converge.  Once the 

desired flux is reached, time steps can be added to achieve steady-state 

conditions.  Transient modelling with a standard or modified mesh can be 

simulated with different fluxes and materials.  The results of the transient 

sensitivity analyses are presented in section B3. 
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B3 Presentation of Results, Analysis and Discussion 

The need for a sensitivity analysis became evident when the top boundary 

condition for the parametric study model was lowered from a flux of 10-5 m/s to a 

value equal to the average precipitation of the Golden Sunlight Mine of 243 mm 

per year (i.e., 7.7E10-9 m/s; Swanson, 1995).  In general, the results of the 

model simulations were a complete failure to achieve convergence.  

Convergence improved as the flux increased; however, only a flux of 10-5 m/s 

was found to give convergence for all profiles.  This corresponds to a 

precipitation of 300 meters per year, which does not represent conditions found 

in nature. 

 

A sensitivity analysis was conducted using the 8-meter profile from the 

parametric study with the input fluxes of 10-3, 10-6, and 10-7 m/s.  For the 10-3 

m/s flux, all the profiles converged and seepage was mainly through the coarse-

grained layers (i.e., matric suction was less than -2.3 kPa).  For the 10-7 m/s flux 

none of the profile solutions converged.  The results for the 10-6 m/s flux showed 

that as the profile inclined from 90º to 45º, convergence would improve.  The 

90º, 85º, and 75º profiles did not converge, the 60º profile showed poor 

convergence and while the 45º profile showed good convergence.  The key 

difference between the profiles was that high negative pressures developed in 

the coarse-grained material increased as the slope angle increased.  For 

example, the minimum hydraulic conductivity for the 45º profile was 5.0E10-14 

m/s while the minimum hydraulic conductivity for the 60º profile was 9.0E10-15 

m/s.   

 

The conclusion that can be drawn from the parametric study was that as the 

profile height increased, the pore-water pressure in the profile was reduced, 

causing non-convergence in the solution.  Lowering the specified flux produced 

a similar result to increasing the profile height.  It was of interest in the 10-6 m/s 

flux model that the seepage through the coarse-grained material decreased to 

zero, as the model was inclined steeper than 75º.  Usually non-convergence 
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was related to a low flow through the coarse-grained layers (i.e., very low 

hydraulic conductivity) resulting from low pore-water pressures in the layers.  

The only exception occurred when a model converged with a minimum 

conductivity of 5.0E10-14 m/s in the coarse-grained material.  However, 

convergence was not achieved when the minimum hydraulic conductivity of 

9.0E10-15 m/s was calculated.  The question that arises as to whether this 

means that 10-14 m/s is the lower limit for the model, or the program solver, or 

just for the material properties?  It was not possible to obtain a definitive answer 

to this question. 

 

The main objective of the sensitivity analysis was not only to determine which 

input parameters affected convergence but also to determine how to combine 

these parameters to improve convergence.  The following sections explore a 

limited number of variables for selected profiles.   

B3.1 Convergence Criteria 

The convergence criterion directs the procedure used in the finite element 

method (FEM) to calculate a solution.  In the finite element program (Seep/W) 

the five parameters associated with the convergence criteria are: 

1. Maximum number of iterations; 
2. Tolerance; 
3. Maximum change (in calculated hydraulic conductivity); 
4. Rate of change; and 
5. Minimum change. 

 

The initial models of the pilot program lead to the convergence criteria shown in 

Table 4.1.  It was also noted in the parametric study that different pore-water 

pressure heads would be calculated for the same model by varying only the rate 

of change parameters.  To investigate this and other possible effects of varying 

the convergence criteria, the sensitivity analysis used an applied flux of 10-5 m/s 

for the 8-meter, 85º profile with eight different combinations of convergence 

criteria, as presented in Table B3.  Figure B6 illustrates the general configuration 

of geometry and the alternating fine and coarse-grained layers for this model. 
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Table B3 Convergence Parameters for Sensitivity Analysis 

Convergence 
Parameter 

Test 
#1 

Test 
#2 

Test 
#3 

Test 
#4 

Test 
#5 

Test 
#6 

Test 
#7 

Test 
#8 

Max. Number of 
Iterations 

999 100 10 100 500 500 500 500 

Tolerance (%) 10-5 1 1 0.1 10-3 10-3 10-3 10-5 
Max Change 0.1 1 1 1 0.5 0.1 0.1 0.1 
Rate of Change 1.01 1.1 1.1 1.15 1.05 1.05 1.01 1.01 
Minimum Change 10-5 10-4 10-4 10-4 10-5 10-5 10-5 10-5 

 

Test numbers 1, 7, and 8 resulted in convergence.  Test numbers 5 and 6 

resulted in poor convergence, and test numbers 2, 3, and 4 resulted in non-

convergence.  Using test number 1 as the base line test, only tests number 7 

and 8 had similar results, which indicated that there were sufficient iterations to 

converge and that the tolerance of 10-3 was sufficient to achieve convergence.  

Both test numbers 5 and 6 showed similar convergence patterns indicating that 

the rate of change factored more than the maximum change defined.  Test 

number 3 did not converge due to an insufficient number of iterations, while the 

high tolerance and rate of change of test number 2 resulted in a high degree of 

non-convergence, as the solver appeared to diverge from the solution.  Test 

number 4 also failed due to the high rate of change defined. 

 

Table B4 summarizes the results of the fluxes flowing through each layer at mid 

height for each test.  The non-converged tests have results that vary greatly 

from each other and from test number 1 while test number 5 and 6 are similar to 

each other but are different from the known solution (i.e., test number 1 from the 

parametric study).  Tests numbers 7 and 8 with good convergence have the 

same results as the known solution. 
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Table B4 Convergence Sensitivity Analysis Results 

Layer 
(%) 

Test 
#1 

Test 
#2 

Test 
#3 

Test 
#4 

Test 
#5 

Test 
#6 

Test 
#7 

Test 
#8 

First Fine 47.4 42.2 0.3 45.6 54.9 50.5 47.5 47.5 
First Coarse 2.9 25.2 92.3 12.4 2.9 5.8 2.9 2.9 
Second Fine 48.3 34.5 0.4 31.4 43.7 41.9 48.3 48.3 
Second 
Coarse 

1.3 1.1 6.9 10.0 0.9 1.8 1.2 1.2 

Results Good None None Poor Poor Good Good Good 
 

It is important to note that a further sensitivity analysis with respect to 

convergence criteria should be conducted for each analysis conducted to 

achieve the optimum possible balance of speed and accuracy.   

B3.2 Mesh Design  

The sensitivity analysis looked into changing the nodal spacing in the mesh.  

The following mesh designs were included in the sensitivity analysis: 

 

1. Comparison of results between a 45º profile with an internal mesh angle 
of 45º (used in the parametric study) and 90º; 

2. Modify the mesh with tighter nodal spacing at the top and bottom 
boundaries, and at the interface between layers;  

3. Use of secondary nodes; and 
4. Removing elements/nodes from the mesh. 

 

The 45º profile with an internal mesh angle of 90º was used to compare 

convergence results with the standard mesh and both meshes are presented in 

Figure B4.   
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Figure B4 45º  Profile with an Internal Mesh Angle of 45º  on the Left and 90º  
on the Right 

 

The model was analyzed for fluxes of 10-5, 10-6, and 10-7 m/s.  Both 10-5 m/s flux 

models converged, however the fluxes through each layer were different as 

shown in Table B5.  The 10-6 m/s flux converged for the 45º element mesh and 

poor convergence was achieved for the 90º element mesh.  Both meshes with 

the 10-7 m/s flux models did not converge. 

Table B5 Comparison of Results Between Internal Mesh Angles of 45º  and 
90º  

Mesh 
Element 
angle (flux) 

First Fine 
(%) 

First 
Coarse 

(%) 

Second 
Fine (%) 

Second 
Coarse 

(%) 

Convergence 
Achieved 

45º Mesh 
(10-5) 

48.5 34.8 16.7 0 Yes 

90º Mesh 
(10-5) 

69.2 15.6 15.3 0 Yes 

45º Mesh 
(10-6) 

44.1 0 56.0 0 Yes 

90º Mesh 
(10-6) 

42.5 0 57.5 0 Poor 

45º Mesh 
(10-7) 

41.3 0 59.3 0 No 

90º Mesh 
(10-7) 

38.0 0 61.9 0 No 

 

Element 
orientation at 45° 

Element 
orientation at 90° 
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It was observed in the parametric study that the 45º profiles for all heights 

showed a distinct decrease of flux in the F1 layer and an increase flux in the C1 

layer.  The 10-5 m/s flux with the internal element angle of 90º (used in the 

sensitivity analysis) showed that the flux in the F1 and coarse-grained layers 

continue to gradually increase in flux and did not decrease in flux as shown in 

Figure 5.6 and 5.7 of the parametric study.  These results were unexpected and 

bring into question the results observed in the parametric study for the 45º 

profiles. 

 

The internal mesh angle of 45º may have resulted in the F1 layer to prematurely 

be unable accept more flux from the C1 layer.  This would indicate that the 

pressure in the F1 layer did exceed the -2.3 kPa required to have preferential 

flow, therefore the flux did not fully cross over.  The fact that the top right tip of 

the 90º element model was approximately 0.7-meters higher than the 45º 

element could also have result in different internal pore-water pressures.  This 

may be the reason why the 10-6 m/s flux converged for the 45º slope and only 

achieved poor convergences for the 90º slope.  The results for the models with 

pore-water pressure contours for the converged solutions at fluxes equal to 10-5 

and 10-6 m/s and the non-converged solution at 10-7 m/s are presented in Figure 

B5. 
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Figure B5 Computed Results for the 45º  Profile with an Internal Mesh 
Angle of 45º  at 10-5 m/s flux, and 90º  at 10-5, 10-6, and 10-7 Fluxes with Pore-

Water Pressure Contours 
 

The far right profile in Figure B5 shows the standard mesh with the internal 

elements angle of 45° at a flux of 10-5 m/s, and the remaining meshes from right 

to left are the computed results for the input fluxes of 10-5, 10-6, and 10-7 m/s, 

respectively with the modified mesh the 90° elements.  The pore-water pressure 

contours in Figure B5 shows that a lower negative pore-water pressure region 

(i.e., closer to zero) developed in the top half of the coarse-grained layers for the 

10-7 m/s model that did not converge.  The lower negative pore-water pressure 

regions noted do not appear in the 10-5 m/s flux models that achieved 

convergence.  This area appears to may have contributed to the non-

convergence of the 10-7 m/s model. 

 

    10-5m/s  10-6m/s          10-7m/s 
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Figure B6 shows a modified mesh with tighter nodal spacing at the top and 

bottom boundaries, and at the interface between layers using the 8-meters and 

the 75º profile.  The modified mesh used three different flux rates of 10-5, 10-6, 

and 10-7 m/s to check for improvements in convergence compared with the 

standard mesh results from the parametric study.   

 

The results showed that the convergence of the models became poorer as the 

flux rate was lowered.  A small improvement was observed when compared with 

the standard mesh results.  Table B6 compares the resulting flux in each layer 

between the standard meshes and the modified meshes for each flux.  There 

was little change between each mesh except for the 10-6 m/s model and this 

might be the result of the non-converged solution.   

Table B6 Comparison of Results Between The Standard and Modified 
Meshes  

Mesh (Flux) First Fine (%) First Coarse 
(%) 

Second Fine 
(%) 

Second 
Coarse (%) 

Standard (10-5) 59.1 3.5 37.3 0.1 
Modified (10-5) 59.2 3.5 37.2 0.1 
Standard (10-6) 37.6 0 62.2 0 
Modified (10-6) 42.5 0 57.5 0 
Standard (10-7) 37.6 0 62.4 0 
Modified (10-7) 38.0 0 61.9 0 

 

Figure B6 shows the modified mesh and the computed results for three different 

models with pore-water pressure contours and fluxes through each layer.   
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Figure B6 Result of the Modified Mesh for 10-5, 10-6, and 10-7 Fluxes with 
Pore-water Pressure Contours 

 

The left most profile shows the modified mesh, and the next meshes from left to 

right are the results with pore-water pressure contours for the 10-5, 10-6, and 10-7 

m/s applied fluxes, respectively.  It can be seen that as the flux is reduced, the 

pore-water pressure in the profiles decreases.  In addition, the flow vectors at 

low flow are concentrated along the more closely spaced elements along the 

interface between the different materials.  The pore-water pressure contours in 
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Lower 
Negative 
Pressure 
 
 
 
 
 
 
Higher 
Negative 
Pressure 

Higher 
Negative 
Pressure 
 
 
 
 
 
 
Lower 
Negative 
Pressure 



Appendix B  Sensitivity Analysis Page B-23 

 

    

Figure B6 show two lower negative-pressure regions that developed near the 

base in the coarse-grained layers at 10-7 m/s flux.  The lower negative pore-

water pressure region does not appear in the 10-5 m/s flux model; however, the 

10-6 m/s flux model shows signs of lower negative pore-water pressure regions 

developing.  It appears that the higher negative pore-water pressure regions not 

only contribute to non-convergence of the model but also are more significant in 

the less inclined models when compared to Figure B5.  Note that some pore-

water pressure regions are –2 kPa to 0 kPa, and should be able to transport 

water seepage but do not appear to do so. 

 

It was discussed in section B2 that secondary nodes and higher integration 

order might assist in obtaining convergence.  A mesh with secondary nodes was 

developed for the 8-meter 75° profile.  The secondary node mesh used three 

different applied fluxes (i.e., 10-5, 10-6, and 10-7 m/s) to check for improvements 

in convergence as compared to the standard mesh.   

 

The results showed that convergence of the models became poorer as the flux 

was lowered.  No notable improvement was observed when comparisons were 

made with the standard mesh results.  Table B7 compares the resulting flux in 

each layer between the standard and secondary node meshes for each flux.  It 

was observed that the results for the 10-6 and 10-7 m/s flux models are different 

for each mesh used but similar when the fluxes differ but mesh configurations 

remain the same.  The difference between the models can be explained by the 

models not reaching convergence and the difference between the order of 

integration used by the solver. 
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Table B7 Comparison of Results Between the Standard and Modified Mesh 
with Secondary Nodes 

Mesh (Flux) First Fine (%) First Coarse 
(%) 

Second Fine 
(%) 

Second 
Coarse (%) 

Standard (10-5) 59.1 3.5 37.3 0 
Secondary (10-5) 59.1 3.4 37.4 0.1 
Standard (10-6) 37.6 0 62.2 0 
Secondary (10-6) 41.2 0 58.8 0 
Standard (10-7) 37.6 0 62.4 0 
Secondary (10-7) 41.9 0 58.1 0 

 

Figure B7 shows the secondary node mesh and the computed results for the 

three different fluxes with pore-water pressure contours and fluxes through each 

layer.   

 

The left most profile shows the standard mesh with the secondary nodes added, 

and the next meshes from left to right are the results for the 10-5, 10-6, and 10-7 

m/s input fluxes, respectively, with pore-water pressure contours.  The results 

were similar to those obtained with the modified mesh.  As the flux was reduced 

the pore-water pressures in the profile became lower, (except in the areas of 

non-convergence where the pressures actually increased), and the flow vectors 

were concentrated along the interface between the different materials.  The 

pore-water pressure contours in Figure B7 showed two low negative pore-water 

pressure regions in the 10-7 m/s model that developed in the coarse-grained 

layers, similar to the results in Figure B6. 
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Figure B7 Result for Computed Mesh with Secondary Nodes for 10-5, 10-6, 
and 10-7 m/s Applied Fluxes with Pore-Water Pressure Contours 

 

The lower negative pore-water pressure regions for the 10-7 m/s applied flux 

observed in the results of Figures B5, B6, and B7 can be related to the non-

convergence in the elements.  These areas do not have seepage and according 

to the hydraulic conductivity function for the coarse-grained layer presented in 

Figure 4.5a, the pore-water pressures of 0 to 2.0 kPa correspond to a hydraulic 

conductivity of 1.0E10-2 to 5.5E10-5 m/s, respectively.  However, the calculated 
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conductivity provided by the Seep/W model for the lower negative pore-water 

pressure regions in the 10-7 m/s applied flux model were between 10-8 to 10-12 

m/s.  Therefore, the pore-water pressures solved for the 10-7 m/s flux were not 

correct in the lower negative pore-water pressure regions noted.  The error for 

the 10-6 m/s flux models was not as great but it still contributed to the non-

convergences of most of the models. 

 

Section B2 also discussed how convergence might be improved by removing 

the nodes/elements where high negative pore-water pressures resulted in a 

negligible flux and corresponded to extremely low hydraulic conductivities that 

resulted in non-convergence.  Several meshes were developed with the removal 

of elements/nodes from the standard mesh.  The new meshes are referred to as 

simplified meshes.  The first mesh was developed with the removal of the two 

outside column of elements between the first fine and second coarse-grained 

layers.  The results from the parametric study showed that these elements did 

not contribute to preferential flow as shown in Figure B8 below.  There is a line 

of symmetry where the flow vectors do not cross of flow toward the center of the 

mesh.  It was evident that these elements did not interact in the vertical profiles, 

and the non-interaction was also observed in the inclined profiles to a lesser 

degree.  A model with the flux equal to 10-7 m/s, using the simplified mesh, was 

analyzed and results are presented in Figure B9   
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Figure B8 Result from the Parametric Study 2-Meter (Standard Mesh) with 
10-5 m/s Applied Flux Model 

 

Based on the results presented in Figures B5 through B7, several lower 

negative pore-water pressure regions developed where lower pore-water 

pressures were not expected.  Believing that these areas were due to non-

convergence, a second simplified mesh was developed by removing the outer 

three columns of elements from the C2 layer.  The inside coarse elements were 

left to interact with the bordering fine-grained layer and enough elements were 

left on the top and bottom boundaries to leave room for preferential flow.  A 

model with a 10-6 m/s flux was analyzed and the results are presented in Figure 

B9.  In addition, a third model was developed which simplified the second mesh 

further by removing the inside two columns of elements from the center of the 

first coarse layer.  Models with a flux set equal 10-6 and 10-7 m/s flux were 

analyzed and compared for improvements in convergence.  The results are 

presented in Figure B9.   

 

The resulting convergences from the simplified meshes are plotted in Figure 

B10.  The improvement in convergence was observed by lowering the density of 

the non-converged nodes in the plot.  Figures B10a to B10c show the results for 

Line of  

Symmetry 
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the 10-6 m/s flux with the standard mesh, a simplified mesh with elements 

removed from the second coarse-grained layer, and a simplified mesh with 

elements removed from both coarse-grained layers, respectively.  Figures B10d 

to B10f show the computed results for the 10-7 m/s flux and the standard mesh, 

a simplified mesh with two outside elements removed in the first fine and second 

coarse-grained layers and a modified material property which is discussed in the 

following section, and a simplified mesh with elements removed from both 

coarse-grained layers, respectively.  In summary, it can be seen in Figures 10d 

to 10f that the difficulty in achieving convergence at low flux (i.e., 10-7 m/s) is 

caused by the steep hydraulic conductivity function for the coarse material.  The 

valves of hydraulic conductivity calculated by the Seep/W solution do not 

correspond to the material property function. 
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Figure B9 Computed Result for Three Simplified Meshes (outside two 
elements removed, second coarse elements removed, and elements 

removed from both coarse layers) with 10–7, 10-6, 10-6, and 10-7 m/s Applied 
Fluxes (from left to right) 
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Figure B10a Convergence Results for The 10-6 m/s Model with The 
Standard Mesh 
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Figure B10b Convergence Results for The 10-6 m/s Model with The 
Elements Removed from Second Coarse Layer 
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Figure B10c Convergence Results for The 10-6 m/s Model with The 
Elements Removed from Both Coarse Layers 
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Figure B10d Convergence Results for The 10-7 m/s Model with The 
Standard Mesh 
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Figure B10e Convergence Results for The 10-7 m/s Model with The 
Elements Removed from The Outside Fine and Coarse Layers 
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Figure B10f Convergence Results for The 10-7 m/s Model with The 
Elements Removed from Both Coarse Layers 
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The 10-6 m/s flux convergence results with the standard mesh showed slight to 

moderate non-convergence.  The conductivity points in Figure B10a show the 

calculated hydraulic conductivity for each model.  The size and density of the 

scatter pattern from the given coarse-grained layer hydraulic conductivity was 

the measure of convergence.  Figure B10b shows that the removal of the 

outside elements in the second coarse-grained layer improved convergence in 

the lower portion of the curve, but widened the scatter pattern in the upper 

portion of the curve.  Figure B10c shows that the removal of elements in the first 

coarse-grained layer greatly improved convergence (or the appearance of 

convergence).  However, several non-converged points still exist in elements in 

the upper portion of the model.   

 

The convergence results for the 10-7 m/s flux with the standard mesh showed a 

high level of non-convergence in a distinct scatter pattern (Figure B10d).  Figure 

B10e shows that removing the outside two columns of elements from both sides 

reduced the scatter pattern.  The use of a modified (i.e. reduced residual 

hydraulic conductivity function) material property may also affect the reduction in 

the scatter pattern.  Figure B10f shows that the removal of elements from both 

coarse-grained layers resulted in a similar but greatly reduced scatter pattern.  

However, several non-converged points still exist. 

 

To ensure that the flux in each layer of the system was not significantly affected 

by removing elements/nodes, a 10-5 m/s flux model was analyzed and compared 

with the converged solution from the standard mesh.  In addition, the results 

from the 10-6 and 10-7 m/s flux models with elements removed from both coarse-

grained layers were also compared and are presented in Table 5.6. 
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Table B8 Comparison of Computed Results Between Standard and 
Simplified Mesh with Elements Removed From Both Coarse Layers  

Mesh (Flux) First Fine (%) First Coarse 
(%) 

Second Fine 
(%) 

Second 
Coarse (%) 

Standard (10-5) 59.1 3.5 37.3 0.06 
Simplified (10-5) 52.4 3.1 44.5 0.1 
Standard (10-6) 37.6 0 62.2 0 
Simplified (10-6) 37.0 0 63.0 0 
Standard (10-7) 37.6 0 62.4 0 
Simplified (10-7) 37.0 0 63.2 0 

 

The results presented in Figure B9 indicated that the remaining coarse elements 

in the top portion of the 10-6 and 10-7 m/s flux models still show regions of higher 

than expected pore-water pressures.  Figure B10 indicated that removing 

elements in the coarse-grained layers did improve convergence significantly, 

however, several non-convergent elements/nodes were still evident.  The non-

convergent areas appeared to be in the upper portion of the models where 

preferential flow occurs.  Further fine-tuning of the mesh can be made for each 

different input flux to continue to improve convergence, however elements with 

flow vectors should not be removed or else there would be a deviation from the 

known solution.   

 

Comparing the flux flowing in each layer showed surprisingly little change in the 

non-converged 10-6 and 10-7 m/s flux models; however, there was a 7 percent 

change in the converged 10-5 m/s flux models after elements from the first 

coarse-grained layer were removed.  It is interesting that the difference occurred 

in the fine-grained layers.  Figure B11 presents the results for the 10-5 m/s flux 

model with the standard and simplified meshes. 
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Figure B11 Computed Results from the 10–5 m/s Applied Flux Model with 
the Standard Mesh on the Left and Simplified Mesh on the Right 

 

The pressure contours in Figure B11 indicate that the higher negative pore-

water pressure zone in the standard mesh did not occur in the simplified mesh.  

The preferential flow zones in the top portion of both meshes appear to be 

similar.  Since the change in flux showed an increase in both the second fine 
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and coarse-grained layers, it can be concluded that removing elements from the 

first coarse-grained layer not only disrupted the flow vectors abruptly but may 

also prevent further crossover flow between the upper two layers.  This flow 

would otherwise have occurred in the converged 10-5 m/s solution but not in the 

non-converged 10-6 and 10-7 m/s models.  A possible reason for no change in 

flow in the 10-6 and 10-7 m/s flux models was due to the insignificant amount of 

flux flowing in the coarse-grained layers for the non-converged solution.  It could 

also indicate that the preferential flow cross over of flux is completed before the 

removed elements are encountered. 

B3.3 Material Properties 

The sensitivity analysis for material properties concentrated on studying the 

effects on convergence issues for modifying the steep hydraulic conductivity 

function of the coarse-grained material, as well as changing the materials 

properties, and decreasing the difference between the materials properties 

used. 

 

It was previously mentioned that in the parametric study, the coarse-grained 

material (i.e., silica1) did not converge after increasing the model over a certain 

height.  The only solution to the problem was obtained by modifying the property 

curve for the coarse-grained material to that of silica2.  To study the effects of 

changing the slope of the soil property curve for hydraulic conductivity, two 

intermediate curves were developed and the four curves were presented in 

Figure 4.8.  The results of the analysis are presented in Figure B12. 

 

The results in Figure B12 indicate that as the slope of the hydraulic conductivity 

curve was decreased there was marked improvement in convergence.  Even the 

first incremental slope change showed a vast improvement in convergence of 

the problem solution.   
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For a given finite element mesh and set of convergence parameters, the 

hydraulic conductivities calculated by the program solver are directly dependent 

on the specified material properties of the fine-grained material for the given 

applied flux.  In this case, the 10-5 m/s flux will correspond to a matric suction in 

the fine-grained material of approximately 3.5 kPa with a corresponding 

hydraulic conductivity of 10-5 m/s (i.e., equal to the applied flux).  It can be seen 

on Figure B12 that the corresponding hydraulic conductivity in the coarse-

grained material changes more than three orders of magnitude at a suction of 

3.5 kPa, from silica1 to silica1a, less than two orders of magnitude from silica1a 

to silica1b, and less than one order of magnitude from silica1b to silica2.  The 

matric suctions varies only 1 kPa between silica1 to silica2. 

 

1.E-18
1.E-17
1.E-16
1.E-15
1.E-14
1.E-13
1.E-12
1.E-11
1.E-10
1.E-09
1.E-08
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01
1.E+00

0.1 1 10

Matric Suction (kPa)

H
yd

ra
u

lic
 C

o
n

d
u

ct
iv

it
y 

(m
/s

)

Silica2
Silica1
Silica1a
Silica1b
Silica 1
Silica 1a
Silica 1b
Silica 2

 

Figure B12 Result from the Sensitivity Analysis of the Coarse Material 
Using 10–5 m/s Applied Flux. 

 

Once again, the results indicated that low calculated value of hydraulic 

conductivities for coarse elements/nodes are proportional to non-convergence in 

those elements/nodes.  The non-converged nodes are on the left side of the 

curve, indicating lower than expected pressure, which explained the low pore-
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water pressure zones in the results previously presented for the areas with 10-6 

and 10-7 m/s flux (i.e., Figures B6 through B9).  It also explained the absence of 

flow vectors in these zones.  Since the solution did not converge, the actual 

material properties for the coarse-grained material were not properly 

represented and therefore the calculated conductivities in the non-converged 

patterns replaced the correct hydraulic conductivity function within the particular 

solution, thus implying that there was no longer a unique solution for each 

pressure.  A matric suction of 2 kPa could correspond to a wide range of 

hydraulic conductivity values.  Hence, the low-pressure areas where no flow 

vectors were apparent had a relatively lower hydraulic conductivity than the 

surrounding element/nodes.  

 

 Figure B13a and B13b compare the 10-5 and 10-7 m/s flux results, respectively, 

for the standard mesh with the same parameters used for the parametric study. 
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a           b 

Figure B13 Result from the Converged (a) 10-5 m/s and Non-Converged (b) 
10–7 m/s Applied Flux Models with Calculated Hydraulic Conductivities and 

Pressure Contours 
 

Figure B13a presents the converged results of the 10-5 m/s flux model analyzed 

in the parametric study with pore-water pressure contours.  The mesh to the left 

shows the contours of the calculated hydraulic conductivities and the mesh to 

the right shows the contours of the calculated pressures.  Note that the contour 

shades of the each mesh are closely related (i.e., the higher negative pore-water 

pressures are corresponding with the lower conductivities values).  In this figure, 

the darker shade corresponds to the higher negative pore-water pressures and 

lower hydraulic conductivity values.  The higher negative pore-water pressures 

were clearly shown to be in the second coarse-grained layer.  The second 

coarse-grained layer had higher negative pore-water pressure values than the 

first coarse-grained layer due to its position over all the other layers.  The pore-
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water pressures and hydraulic conductivities in all the layers quickly increased in 

the lower portion of the mesh as the pore-water pressure increased from the –

2.5 kPa to 0 kPa specified at the bottom boundary. 

 

The 10-7 m/s flux solution shown in Figure B13b does not show the uniformity 

presented in Figure B13a.  The lower calculated hydraulic conductivities are in 

the coarse-grained layers.  However, the calculated higher negative pore-water 

pressures are in the first two layers.  A large region can be observed where the 

first fine and coarse-grained layers share the same pore-water pressures for the 

same elevations.  Based on the discrepancies from the contours in each mesh it 

can be concluded that the 10-7 m/s flux has not only failed to converge but 

identifies the mode of failure.  By plotting the calculated hydraulic conductivities 

and pressures against the material properties, combined with the hydraulic 

conductivity and pore-water pressure contours in Figure B13b, it can be 

concluded that the values of hydraulic conductivity are calculated correctly and 

the velocity vectors are a function of the calculated hydraulic conductivities and 

therefore are also correct.  In addition, the pore-water pressures were not 

calculated correctly and therefore the calculated hydraulic conductivities are 

plotted incorrectly (i.e., not on the given function).  Also, note that the pattern 

produced by the non-converged solution is inconsistent with the material 

properties (refer to Figure 5.16).  The pattern may be the result of incorrect pore-

water pressures calculated for nodes at different elevations and proximity to the 

fine and coarse-grained material boundary.  The reason why the pore-water 

pressures are greater than the material properties rather than lower or evenly 

distributed is unknown. 

 

It was discussed in section B2 that reducing the difference between the coarse 

and fine-grained material properties may assist in the convergence of the 

solution.  This theory was investigated using silica1 as the coarse-grained 

material and changing TP5GS1 to a uniform sand (e.g. Beaver Creek sand) for 

the fine-grained layer.  The model analyzed was an 8-meter model inclined 75° 
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with secondary nodes.  Note that the similar model with silica1 and TP5GS1 at 

10-5 m/s flux failed to converge in the parametric study.  The result of the new 

analysis is presented in Figure B14. 
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Figure B14 Result From the 10–5 m/s Flux Model with Silica1 and Uniform 
Beaver Creek Sand Material Properties Used for the Coarse and Fine 

Layers Respectively 
 

The results indicated that the solution continued to fail to converge in the 

coarse-grained layer but the fine-grained layer material did reach convergence.  

Assuming that the silica1 was still too steep to achieve convergence, silica2 was 

used with the uniform sand in an attempt to improve convergence for the 10-7 

m/s flux model.  The result of the analysis is presented in Figure B15.  The result 

also indicated non-convergence.   
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Figure B15 Computed Result From the 10–7 m/s Flux Model with Silica2 
and Uniform Sand Material Properties Used for the Coarse and Fine Layers 

Respectively. 
 

The purpose of the analyses presented in this section was to determine if by 

changing the material properties of the fine-grained layer to something slightly 

closer to the coarse-grained layer could positively affect the results of the non-

convergent models.  The analyses showed that non-convergence still occurred.  

This was not to say that further investigation might yield results that are more 

favorable.  However, the more the material properties are manipulated, the 

farther the analyses deviate from reality. 

 

Section B2 also discussed the possibility of using a transitional layer with soil 

properties between those of the coarse and fine-grained layers.  It can be 

argued that non-convergence was the result of the abrupt changes in pore-water 

pressures due to the sharing of nodes along the boundary of the fine and 

coarse-grained layers.  The transitional layer has a material property  function 

midway between the coarse and fine-grained material properties.  The 

transitional layer should, in theory, be a buffer to ease the transition from one 

Beaver 
creek sand 
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layer to the other.  Note that the transitional layer was not intended to represent 

actual field conditions encountered in the Golden Sunlight Mine (GSM), but was 

used as a modelling technique. 

 

The transitional layer was used for the modified mesh and the standard mesh 

with secondary nodes for the 10-7 m/s flux model.  Figure B16 illustrates the 

transitional layer between the coarse and fine-grained layers in the standard 

mesh with secondary nodes, and the calculated pore-water pressure contours.  

Figures B17 and B18 present the calculated hydraulic conductivities for the 

standard mesh with secondary nodes and the modified mesh.   

 

The results indicate that the use of a transitional layer for both meshes failed to 

reach convergence.  However, the standard mesh with secondary nodes 

showed improvement.  Both the fine-grained and transitional layers converged 

but the coarse-grained layer showed only slight improvements that can be 

attributed to replacing coarse elements/nodes with the transitional elements 

layer material.  A further investigation could consider a sensitivity analysis on 

different hydraulic conductivity function slopes for the transitional material until 

the transitional material fails to converge or the coarse-grained material 

converges.  This extension of the investigation was not pursued.   
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Figure B16 Mesh and Computed Pressure Contours for the Case with the 
Transitional Layers in a Standard Mesh with Secondary Nodes for the 10–7 

m/s Applied Flux Model. 
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Figure B17 Result from the 10–7 m/s Flux Model with Transitional Layer and 
the Standard Mesh with Secondary Nodes. 
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Figure B18 Result from the 10–7 m/s Input Flux Model with Transitional 
Layer and the Modified Mesh. 
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The final section of the material sensitivity analysis investigated the further 

manipulation of the hydraulic conductivity function of the coarse-grained layer.  It 

had been observed that the coarse-grained material with lower hydraulic 

conductivities failed to converge.  It was also known that the coarse-grained 

material was unable to transport significant flux at the lower conductivities and 

pore-water pressures, as compared to the fine-grained material at the same 

pore-water pressures.  Therefore, it was not necessary to define the coarse-

grained hydraulic conductivity function down to 10-17 m/s if 10-12 m/s might give a 

better result.  However, increasing the residual hydraulic conductivity by too 

much may lead to changing the flux distribution between the layers (i.e., a false 

solution).  The sensitivity analysis looked at three possible solutions:  

1. Raising the conductivity function residual value further up the curve; 
2. Raising and sloping the residual section of the function; and 
3. Raising and sloping the function into three distinct sections. 

 

The result of increasing the residual hydraulic conductivity for the same case 

shown in Figure B16 was plotted showing the convergence pattern calculated is 

presented in Figure B19.  Figure B19a shows the case with a 10-12 m/s residual 

conductivity where the model failed to converge.  The convergence pattern 

plotted was similar to that for the original material function except that a 

horizontal line of calculated conductivities equal to the 10-12 m/s is plotted for the 

pore-water pressure range between -6 and -11 kPa.  There was no change in 

the flux distribution between the layers. 

 

Figure B19b shows the results for the case with a 10-9 m/s residual conductivity.  

The results indicated that the non-convergence had been greatly reduced, 

however more flux was found entering into the coarse-grained layers.  Figure 

B19c and B19d show the results using residual conductivities of 10-8 and 10-7 

m/s, respectively.  The results showed that both models converged, however the 

flux in the coarse-grained layer had increased significantly.  The 10-7 m/s 

residual hydraulic conductivity function failed to achieve preferential flow.  All 

flux results are presented in section B6. 
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Figure B19a The Result from the 10–7 m/s Applied Flux Models with The  
10-12 m/s Residual Hydraulic Conductivity for the Coarse Layer 
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Figure B19b The Result from the 10–7 m/s Applied Flux Models with The  
10-9 m/s Residual Hydraulic Conductivity for the Coarse Layer 
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Figure B19c The Result from the 10–7 m/s Applied Flux Models with The  
10-8  m/s Residual Hydraulic Conductivity for the Coarse Layer 
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Figure B19d The Result from the 10–7 m/s Applied Flux Model with The 10-7 
m/s Residual Hydraulic Conductivity for the Coarse Layer 
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The computed results for increasing the residual hydraulic conductivity indicated 

that coarse-grained material would either not converge or would give a false 

solution.  To resolve this dilemma, further analyses focused on the calculated 

horizontal line that develops at the residual value.  The coarse-grained material 

was not defined past the residual hydraulic conductivity and residual pore-water 

pressure; however, the solver calculates hydraulic conductivities past the 

residual pore-water pressure.  To solve this problem a sloped residual section of 

the hydraulic conductivity function was developed, thereby forcing the solver to 

see a unique conductivity for each pore-water pressure.  A material property 

with a curved residual function segment beginning at 10-12 and 10-8 m/s is 

presented in Figure B20a and B20b.  The residual function segment curve was 

reduced by an order of magnitude and the result is present in Figure B20c.   
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Figure B20a The Result from the 10–7 m/s Applied Flux Model with The 
Residual Hydraulic Conductivity of The Coarse layer Curved From 10-12 

m/s 
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Figure B20b The Result from the 10–7 m/s Applied Flux Model with The 
Residual Hydraulic Conductivity of The Coarse layer Curved From 10-8 m/s 
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Figure B20c The Result from the 10–7 m/s Applied Flux Model with The 
Residual Hydraulic Conductivity of The Coarse layer Curved From 10-8 m/s 

with Increased Slope to The Function 
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Figure B20d The Result from the 10–7 m/s Applied Flux Model with The 
Residual Hydraulic Conductivity of The Coarse layer Curved From 10-8 m/s 

and From 10-11 m/s. 
 

The results of Figure B20a to B20c were similar to those shown in Figure B19 

(i.e., Figure B20a failed while Figures B20b and B20c had too much flow in the 

coarse-grained layers).  The third alternative was to change the slope of the 

existing hydraulic conductivity function in two places.  The slope of the new 

conductivity function was altered at 10-8 m/s by decreasing the slope of the 

function slightly.  The second change in slope was placed at a residual value of 

10-11 m/s and had a slope similar to that of the previous models.  The results are 

presented in Figure B20d.   

 

The computed results plotted on Figure B20d show non-convergence.  Note that 

the calculated conductivities were in a tighter pattern than previously.  For a final 

analysis, the change in slope at the residual value was changed to 10-10 m/s and 

a simulation with a flux of 10-7 m/s flux was evaluated.   
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The results presented in Figure B21a indicated convergence (i.e., the calculated 

hydraulic conductivities for the simulation matches the specified function not 

presented in Figure B21) and no significant increase in the flux was observed in 

the coarse-grained layers.  To confirm the stability of the new function, the 

simulation was re-analyzed with a 10-8 m/s flux.  The results presented in Figure 

B21b once again indicated convergence with a similar flux distribution.  It 

appeared that the key to solving the convergence issues was to reshape the 

hydraulic conductivity function for the coarse-grained materials in such a way as 

to strike a balance between achieving convergence (accuracy) and having the 

model represent reality (physical admissible solution).  Note that the lowest 

hydraulic conductivities calculated in both fine and coarse-grained materials 

share the same value of matric suction.  This was not the case in most of the 

models analyzed. 
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Figure B21a The Result From the Dual Change in Slope for Residual 
Hydraulic Conductivity in the Coarse Layer Hydraulic Conductivity 

Function at 10-8 and at 10-10 m/s, with an Applied Flux of 10-7 m/s 
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Figure B21b The Result From the Dual Change in Slope for Residual 
Hydraulic Conductivity in the Coarse Layer Hydraulic Conductivity 

Function at 10-8 and at 10-10 m/s, with an Applied Flux of 10-8 m/s 

B3.4 Transient Models  

The final sensitivity analysis topic that was investigated involved the use of 

transient models.  Chapter 3 outlined the theoretical aspects of the transient 

finite element formulation, and section 2B specified the methodology for 

modelling a steady state problem with transient models.  Three variations were 

explored: 

1. Applying the desired flux and stepping into time (1 model required); 
2. Saturating the system, draining the system to residual volumetric water 

contents and then applying the desired flux (3 models required); and 
3. Saturating the system and then draining the system from a saturated flux 

at to the desired unsaturated flux (2 models required). 
 

The first obstacle encountered with the transient models was checking for 

convergence.  It appeared that the solver did not calculate conductivities in the 

same way as for the steady state method.  Plotting the calculated conductivities 

against the actual hydraulic conductivities of the materials resulted in agreement 

on every occasion.  Plotting the calculated volumetric water contents against the 
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actual soil-water characteristic curves (SWCC) also showed agreement.  This 

observation left only the vector norm versus iteration graph and an analysis of 

the solution to determine whether the model achieved convergence. 

 

Several analyses were conducted using the first method listed.  However, a 

steady state solution with the desired fluxes was not achieved.  The problem 

was determined to be in the method of analysis.  Effectively, the model defined a 

mesh with predetermined properties and no activity, and then at time zero, a flux 

was forced into the system.  The input flux resulted in low pore-water pressures, 

low conductivities, and low volumetric water contents on the top elements.  As 

time goes on the flux was continually forced down the system.  The end results 

deviated from the known solution solved in the parametric study. 

 

The second method eliminated the flaw in the first method by running previous 

models such that at time zero the mesh was at a residual volumetric water 

content and pore-water pressure.  The sensitivity analysis investigated the 8-

meter, 75° profile with the standard and modified meshes at 10-5 and 10-7 m/s 

input fluxes.  To test the transient method, the coarse-grained material used for 

the analysis was the steeper silica1 function.  Figure B22 shows the results of 

the analysis as the system was saturated then drained and the input fluxes are 

subsequently applied. 
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Figure B22 Computed Pressure Contours and Flow Vectors From the 
Transient Analysis of the Standard Mesh Showing from Left to Right the 

Saturation of the System, the Transient Draining of the System, the 
Addition of Transient Applied Flux of 10–7 and 10-5 m/s 

 

Figures B23 and B24 present the computed pore-water pressure versus 

distance and vector norm versus iteration graphs, respectively.  Note that Figure 

B23a shows the decrease in computed pore-water pressures within the cross-

section of the system as time advances in the 10-7 m/s model.  Figure B23b is 

the same for the 10-5 m/s model but there is an error in the final time step. 
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a     b  

Figure B23 Computed Pressure Versus Distance For Each Time Step 
Across the Center of the Profile for the Transient Analysis Standard Mesh 

with Applied Fluxes of a) 10–7 and b) 10-5 m/s 
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a      b 

Figure B24 Computed Vector Norms vs. Iterations from Time Step #25 of 
the Transient Analysis Mesh with Applied Fluxes of a) 10–7 and b) 10-5 m/s 

 

The overall results shown in Figures B23 and B24 indicated that the 10-7 m/s 

flux model converged while the 10-5 m/s flux model did not converge.  However, 

inspecting the computed pore-water pressure contours in Figure B22 both 

models appeared to be incorrect.  The 10-7 m/s model may have required further 

time steps before reaching steady state and an established solution.   
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The results of the analysis using the modified mesh are presented in Figures 

B25 and B26. 
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Figure B25 Computed Pressure Contours and Flow Vectors From the 
Transient Analysis of the Modified Mesh Showing from Left to Right the 

Transient Applied Fluxes of 10 –5 and 10-7 m/s 
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Figure B26 Computed Pressure vs. Distance For Each Time Step Across 
the Center of the Profile for the Transient Analysis Modified Mesh With 

Applied Fluxes of a) 10–5 and b) 10-7 m/s 
 

The results from the modified mesh showed that both models converged.  The 

results indicated that the transient method could achieve the desired results, 

however, a steady state was not achieved.  The reason why the modified mesh 

showed improved convergence compared to the standard mesh appeared to be 

due to the increased number of nodes in the cross-section at the boundary 

between the coarse and fine-grained layers. 

 

A third transient analysis was conducted for the modified mesh with 10-7 m/s 

input fluxes.  A boundary function was used to define an input flux that would 

decrease in value as the solver stepped forward in time.  At the final time step, 

the flux would be equal to 10-7 m/s.  The initial condition was the saturated 

system, which then drained with respect to time as the boundary function was 

applied.  Figure B27 presents the resulting plots for pressure and volumetric 

water content versus distance of the cross-section across the center of the 

system. 
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The analysis did not reach steady state within the specified number of time 

steps.  The resulting vector norms versus iteration were found to converge for all 

time steps except the last one, (i.e., time step #25).  The flux vectors and pore-

water pressure contours for the time step #25 solution was found to be erratic.   

 

Figure B27a showed that the pore-water pressures dropped from 0 kPa to –10 

kPa, with the largest changes occurring in the last two time steps.  The last time 

steps showed more than a 5 kPa difference between the second coarse-grained 

layer and the adjacent fine-grained layers.  Figure 5.27b shows the volumetric 

water content of the layer at 0 kPa.  It can be seen that with time the volumetric 

water content decreased significantly more in the coarse-grained layers due to 

the steeper SWCC of the material.  At the final time step, both coarse-grained 

layers were at the same volumetric water content but not the same pore-water 

pressure.  Recalling that the material properties specified for the coarse-grained 

material, (i.e., silica1) were only defined to a pore-water pressure of –4 kPa, 

hence the calculated –10 kPa pressures in first coarse-grained layer may be the 

result of the non-convergent vector norms. 
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Figure B27 Computed Transient Analysis of the Modified Mesh with 
Applied Fluxes of 10-7 m/s Across the Center of the Profile a) Pressure vs. 

Distance b) Volumetric Water Content vs. Distance 
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In summary, the overall results of the transient analyses were positive.  It was 

found that difficult steady state problems could be solved with a transient 

analysis with progressive time steps until the steady state system was achieved.  

The disadvantage of the method was the amount of computational time involved 

and the apparent instability of the model, which was observed.  The instability 

appeared to occur towards the last few time steps where the time steps were 

largest.  In addition, verifying the solution for each time step using the transient 

method was difficult since the calculated conductivities versus material 

properties cannot be plotted.  The only method to verify the result was by 

analyzing each vector norm versus iteration plot during or after running the 

model and then viewing the flux vectors and pore-water pressure contours for 

each time step (i.e., #25 in this case study) to determine if the solution was 

reasonable. 

 

B4 Summary, Conclusion and Recommendations 

The sensitivity analysis manipulated key parameters for the finite element 

method/program and discovered which parameters are more critical than others 

for the purpose of solving the numerical model in terms of convergence and 

efficiency. 

Both the unsuccessful and successful results of the sensitivity analysis provided 

further insight into numerical modelling and the problem.  The first lesson 

learned was that the efficiency of the model should be improved only after the 

model becomes solvable.  Solutions for the more difficult models could have 

been obtained earlier if less attention was given to streamlining the model for 

quicker results.  Several specific conclusions are outlined below. 

 

1. Numerical models are extremely sensitive to very large or small numbers.  
Since the numerical method solves non-linear problems linearly, dividing 
and/or multiplying by extreme large or small numbers can cause instability in 
the solver resulting in poor solutions.  In addition, variations of the applied 
flux demonstrated the sensitivity of the model with respect to the calculated 
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values of hydraulic conductivities.  The lower the applied flux, the lower the 
calculated values of hydraulic conductivities. 

 
2. The convergence criteria proved critical in obtaining a solution to the 

problem.  Insufficient iterations or high rates of change in the solver caused 
non-converged solutions.  However, a tight convergence criterion slowed the 
solver considerably but produced a reliable solution.  The convergence 
criterion developed for the parametric study appears to be the best for 
solving the non-linear problem studied. 

 
3. The mesh design showed that changing the internal angle of the elements or 

using secondary nodes proved only limited improvements for the solution 
compared to the results for the standard mesh in the parametric study.  
However, the modified mesh with tighter nodal spacing in areas of higher 
activity, or removing elements with low flow appeared to have a more direct 
effect on improving convergence.  In general, the removal of elements must 
be accomplished so as not to disturb the internal flow regime of the system.  
This implies knowing or previously calculating the result to a certain degree. 

 
4. The material properties specified for the layers were shown to be the most 

important factor.  Reducing the slope of the hydraulic conductivity function 
can dramatically increase the convergence of the model.  However by doing 
so, the results of the model deviate from the real system being modelled. 

 
5. It was thought that reducing the difference between the fine and coarse-

grained material properties could ease convergence.  The use of materials 
with less contrast and/or the use of a transitional material layer with both 
modified and secondary node meshes resulted in limited improvements.  
However, different variations, not investigated, may provide better results.   

 
6. The major breakthrough of the sensitivity analysis came with further 

manipulation of the hydraulic conductivity function for the coarse-grained 
material.  The slope of the function with values of matric suction greater than 
the air entry value was reduced into three sections with decreasing slope.  
The first section of the slope was set equal to the original silica2, the second 
section of the slope was only slightly reduced, and the third section of the 
slope was inclined to match the hydraulic conductivity function for the fine-
grained material.  By doing so, the difference between the two functions 
became a constant.  The general principle behind these changes was to 
ease convergence while not affecting flux in the system significantly (i.e. 
preferential flow still occurs in the correct distribution and convergence 
criteria was met). 

 
7. The use of transient modelling was explored.  The sensitivity analysis 

showed that it was possible to step forward in time to reach a steady state 
solution for the model.  However, problems with the time expansion were 
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observed when the larger time expansions caused instability in the system.  
The transient modelling proved to be the most inefficient method of solution 
studied due to the amount of time required to solve a single model. 

 

The input parameters and resulting flux in each layer for all significant models 

simulated in the sensitivity analysis were tabulated and are presented in the 

following section. 

 

B5 Sensitivity Analysis Output 

Table B9 presents the results for the flux, convergence, and mesh sensitivity 

analysis simulations, and Table B10 presents the results for the material and 

transient sensitivity analysis simulations.  Note that the input parameters for the 

transient simulations were defined in Table B2. 

 

The following material names corresponds with the material properties used in 

Seep/W and in the tables below (i.e., soil name (hydraulic conductivity number 

used, SWCC number used)): 

• silica1 (13, 13) 
• silica 2 (19, 13) 
• TP5GS1 (14, 14) 
• Beaver Creek sand (8, 8) 
• transitional material (20, 19) 
 
The modified hydraulic conductivity functions for the reduced residual hydraulic 

conductivities used for silica2 were noted in the tables below as follows: Silica2 

(19) at residual hydraulic conductivity (R) at the log conductivity of 10-9 m/s (:9), 

i.e., 19(R:9).  The two reduced sloped functions were defined using two residual 

values.  For example, 19(R:11-12) would indicated that the silica2 function slope 

was reduced at 10-11 m/s and then again at 10-12 m/s. 
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Table B9 The Input Parameters and Results of All Significant Models Studied in the Flux, Convergence, and Mesh Sensitivity Analysis 
Convergence Criteria 

 
 Conductivity Change 

(in Orders of Magnitude) 
 Materials Flux Results  

File Name Height 
(m) 

Slope 
(Deg) 

Mesh 
Design 

TBC 
(m/s) 

BBC 
(m) 

Maximum 
Iterations 

Tolerance 
(%) 

Maximum 
Change 

Rate of 
Change 

Minimum 
Change 

Analysis 
Control 

Coarse 
Conductivity 

Coarse 
SWCC 

Fine 
Conductivity 

Fine 
SWCC 

Transitional 
Conductivity 

Trans. 
SWCC 

1st 
Fine 

1st 
Coarse 

2nd 
Fine 

2nd 
Coarse 

Convergence 
Achieved 

Flux 

mp20d6q2 8 90 Std 1.00E-03 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 1.00 60.06 1.00 38.01 Y 
mp20d6q3 8 90 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 34.38 0.00 65.58 0.00 N 
mp20d6q4 8 90 Std 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 35.05 0.00 64.38 0.05 N 
mp21dq2 8 85 Std 1.00E-03 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 1.00 63.48 1.00 34.56 Y 
mp21dq3 8 85 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 35.20 0.00 64.79 0.00 N 
mp21dq4 8 85 Std 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 35.96 0.00 60.29 2.03 N 
mp22dq2 8 75 Std 1.00E-03 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 1.00 69.56 1.00 28.47 Y 
mp22dq3 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 37.58 0.00 62.44 0.00 N 
mp22dq4 8 75 Std 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 37.62 0.00 62.19 0.05 N 
mp23dq2 8 60 Std 1.00E-03 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 0.83 71.75 1.10 26.32 Y 
mp23dq3 8 60 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 40.17 0.00 59.81 0.00 N 
mp23dq4 8 60 Std 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 41.00 0.00 59.00 0.00 N 
mp24dq2 8 45 Std 1.00E-03 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 0.56 90.13 1.02 8.27 Y 
mp24dq3 8 45 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 41.29 0.00 58.69 0.00 N 
mp24dq4 8 45 Std 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 44.11 0.00 55.87 0.00 N 

Convergence 

mp21dc1a 8 85 Std 1.00E-05 0 100 1 1 1.1 1.00E-04 SS 19 13 14 14 0 0 42.20 25.20 34.50 1.10 N 
mp21dc3a 8 85 Std 1.00E-05 0 10 1.00E+00 1 1.1 1.00E-04 SS 19 13 14 14 0 0 0.30 92.30 0.40 6.90 N 
mp21dc3b 8 85 Std 1.00E-05 0 100 1.00E-01 1 1.15 1.00E-04 SS 19 13 14 14 0 0 45.60 12.40 31.40 10.00 N 
mp21dc3c 8 85 Std 1.00E-05 0 500 1.00E-03 0.5 1.05 1.00E-05 SS 19 13 14 14 0 0 54.90 2.90 43.70 0.90 P 
mp21dcv1 8 85 Std 1.00E-05 0 500 1.00E-03 0.1 1.05 1.00E-05 SS 19 13 14 14 0 0 50.50 5.80 41.90 1.80 P 
mp21dcv2 8 85 Std 1.00E-05 0 500 1.00E-03 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 47.50 2.90 48.30 1.20 Y 
mp21dcv3 8 85 Std 1.00E-05 0 500 1.00E-03 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 47.50 2.90 48.30 1.20 Y 

Mesh 

meshvt1 8 75 Mod 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 59.20 3.50 37.20 0.10 Y 
meshvt1a 8 75 Mod 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 42.50 0.00 57.50 0.30 P 
meshvt2 8 75 Sec 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 59.10 3.40 37.40 0.00 Y 
meshvt2a 8 75 Sec 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 41.20 0.00 58.80 0.00 P 
meshvt3 8 75 Sim 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 59.22 3.46 37.28 0.03 Y 
meshvt3a 8 75 Sim 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 38.07 0.00 61.93 0.00 N 
meshvt3b 8 75 Sim 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 37.01 0.00 63.00 0.00 N 
meshvt3c 8 75 Sim 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 52.35 3.06 44.48 0.11 Y 
meshvt3d 8 75 Sim 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 36.95 0.00 63.17 0.00 N 
mp24d451 8.7 45 @90 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 69.20 15.60 15.30 0.00 Y 
mp24d453 8.7 45 @90 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 43.84 0.00 56.36 0.00 P 
mp24d454 8.7 45 @90 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 40.93 0.00 59.26 0.00 N 

mp25 8 75 Sim 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19-MOD 13 14 14 0 0 54.52 0.00 45.48 0.00 N 
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Table B10 The Input Parameters and Results of all Significant Models Studied in the Material and Transient Sensitivity Analysis 
Convergence Criteria    

 
 Conductivity Change 

(in Orders of Magnitude)  Materials Flux Results  

File Name Height 
(m) 

Slope 
(Deg) 

Mesh 
Design 

TBC 
(m/s) 

BBC 
(m) 

Maximum 
Iterations 

Tolerance 
(%) 

Maximum 
Change 

Rate of 
Change 

Minimum 
Change 

Analysis 
Control 

Coarse 
Conductivity 

Coarse 
SWCC 

Fine 
Conductivity 

Fine 
SWCC 

Transitional 
Conductivity 

Trans. 
SWCC 

1st 
Fine 

1st 
Coarse 

2nd 
Fine 

2nd 
Coarse 

Convergence 
Achieved 

Materials 

mp22dm2 8 75 Sec 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 13 13 14 14 0 0 43.58 0.00 56.01 0.00 N 
mp22dm2a 8 75 Sec 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 41.89 0.00 58.14 0.00 N 
mp22dm2b 8 75 Sec 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 0 0 59.08 3.42 37.43 0.06 Y 
mp22dm2c 8 75 Sec 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 13 13 8 8 0 0 41.84 0.00 58.15 0.00 N 
mp22dm2d 8 75 Sec 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 8 8 0 0 41.88 0.00 57.15 0.00 N 
mp22dm2e 8 75 Sec 1.00E-10 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 8 8 0 0 44.36 0.00 36.58 0.00 N 
mp22dq3i 8 75 Std 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:11-12) 13 14 14 0 0 38.89 0.00 61.08 0.00 P 
mp22dq3j 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:11-12) 13 14 14 0 0 37.60 0.00 62.40 0.00 N 
mp22dq3k 8 75 Std 1.00E-08 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:10-12) 13 14 14 0 0 38.97 0.00 60.98 0.00 Y 
mp22dq3l 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:10-12) 13 14 14 0 0 38.20 0.00 61.70 0.00 Y 

mp22dq3m 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:8-10) 13 14 14 0 0 45.20 0.50 53.95 0.40 Y 
mp22dq3n 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:8-11) 13 14 14 0 0 40.00 0.00 59.90 0.00 Y 
mp22dq3o 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:12-14) 13 14 14 0 0 37.60 0.00 62.40 0.00 N 
mp22dq3u 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:9) 13 14 14 0 0 42.80 0.30 56.60 0.10 P 
mp22dq3w 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:7) 13 14 14 0 0 30.90 22.10 24.50 21.80 Y 
mp22dq3x 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:8) 13 14 14 0 0 52.60 2.40 42.70 2.30 Y 
mp22dq3y 8 75 Std 1.00E-07 0 999 1.00E-05 1 1.01 1.00E-05 SS 19(R:12) 13 14 14 0 0 38.60 0.00 39.60 21.76 N 
mp22dq3z 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19(R:12) 13 14 14 0 0 37.10 0.00 62.30 0.00 N 
mp22ds1 8 75 Std 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 13 13 14 14 0 0 40.61 1.01 58.43 0.00 N 
mp22ds1a 8 75 Std 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 13(1a) 13 14 14 0 0 48.11 0.89 50.94 0.00 P 
mp22ds1b 8 75 Std 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 13(1b) 13 14 14 0 0 53.93 1.32 44.65 0.02 Y 

mp26 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 19 14 14 0 0 37.64 0.00 62.39 0.00 N 
mp26a 8 75 Std 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 19 14 14 0 0 59.30 3.70 36.98 0.00 Y 

mp2dm2q3 8 75 Std 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 8 8 0 0 38.85 0.00 61.14 0.00 N 
tranmat 8 75 Mod 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 20 19 39.56 0.49 60.11 0.13 N 
tranmat1 8 75 Mod 1.00E-05 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 20 19 55.75 6.25 36.29 1.67 Y 
tranmat2 8 75 Mod 1.00E-06 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 20 19 37.17 4.20 55.82 2.78 N 
tranmat3 8 75 Sec 1.00E-07 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 19 13 14 14 20 19 34.14 1.75 63.11 1.04 N 

Transient 

mp22dhhh 8 75 Std 8 m 0 999 1.00E-05 0.1 1.01 1.00E-05 SS 13 13 14 14 0 0 0.15 50.46 0.16 49.23 Y 
mp22dhha 8 75 Std 0.00E+00 0 400 1.00E-05 1 1.05 1.00E-05 Transient 13 13 14 14 0 0 49.70 0.33 49.70 0.26 Y 
mp22dhhb 8 75 Std 1.00E-05 0 400 1.00E-05 1 1.05 1.00E-05 Transient 13 13 14 14 0 0 48.72 0.00 51.28 0.00 N 
mp22dhhc 8 75 Std 1.00E-07 0 400 1.00E-05 1 1.05 1.00E-05 Transient 13 13 14 14 0 0 3.84 0.02 4.11 92.04 N 
mp22dhh1 8 75 Mod 8 m 0 999 1.00E-05 0.1 1.05 1.00E-05 SS 13 13 14 14 0 0 0.15 50.46 0.16 49.22 Y 
mp22dhh2 8 75 Mod 0.00E+00 0 400 1.00E-05 1 1.05 1.00E-05 Transient 13 13 14 14 0 0 16.06 64.90 14.82 4.22 N 
mp22dhh3 8 75 Mod 1.00E-05 0 400 1.00E-05 1 1.05 1.00E-05 Transient 13 13 14 14 0 0 47.46 0.04 52.50 0.00 Y 
mp22dhh4 8 75 Mod 1.00E-07 0 400 1.00E-05 1 1.05 1.00E-05 Transient 13 13 14 14 0 0 46.68 3.97 46.74 2.61 Y 
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APPENDIX C MODIFIED KISCH SOLUTION 

MODIFIED KISCH SOLUTION 
 

The spreadsheet used to for the finite different method to solve for the modified 

Kisch solution for preferential flow between two layers is presented in this 

appendix. 

 

Six models were analyzed using the modified Kisch solution.  Three 2-meter 

systems models were analyzed at 90°, 75°, and 45° with TP5GS1 and silica2 as 

the fine and coarse materials respectively.  Three systems models (one 1.14 

and two 2-meter) were analyzed at 90°, 75°, and 45° with beaver creek sand 

and silica2 as the fine and coarse materials respectively.  The input parameters 

and results of the first set of three models are presented in Tables C1 through 

C3.  The table shows the calculated values for the equations (defined in Chapter 

3) at each node for the given elevation.  Note that only the top 30 nodes and the 

bottom 28 nodes are presented for clarity.  

 

The results of the second set of three models are presented in Tables C4 to C6. 
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Table C1 The FDM Results for the 90°°, 2-Meter System using The Modified Kisch Solution 
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Table C2 The FDM Results for the 75°°, 2-Meter System using The Modified Kisch Solution 
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Table C3 The FDM Results for the 45°°, 2-Meter System using The Modified Kisch Solution 
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Table C4 The FDM Results for the 90°°, 1.14-Meter System using The Modified Kisch Solution 
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Table C5 The FDM Results for the 75°°, 2-Meter System using The Modified Kisch Solution 
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Table C6 The FDM Results for the 45°°, 2-Meter System using The Modified Kisch Solution 

 


