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ABSTRACT 

Brine and tailings produced by potash mining operations create hypersaline environments 

where only highly salt-tolerant organisms are capable of living – generally microbes. Microbial 

communities within analogous hypersaline environments such as salterns, evaporite deposits, and 

salt lakes have been characterized in the peer-reviewed literature and individual organisms have 

been used for various applications in biotechnology such as in cosmetics or pharmaceuticals. 

Bacterial biomass has also been broadly investigated as a metal biosorbent. However, microbial 

communities in potash mine tailings and brine and their potential applications in environmental 

technology has not been extensively studied. These unique microbial communities and 

biomaterials may offer new ways to manage industrial wastes or remediate contaminated sites 

under highly saline conditions. 

In this thesis, the microbial communities within brine, coarse tailings, and fine tailings from 

a Saskatchewan potash mine were examined. Culture-independent high-throughput amplicon 

sequencing of the 16S rRNA gene (V4 region) and culture-dependent plating techniques were 

employed to examine community compositions and salinity tolerance. The brine and tailings 

materials were all pH neutral, sodium-dominated, and highly saline (370 g/l for brine and > 835 

g/kg for tailings). High-throughput sequencing results (206164 total reads) identified a mixed 

community of archaea and bacteria within the brine pond sample, and bacterially dominated 

communities in the coarse and fine tailings. Proteobacteria were the most predominant phylum 

for all samples, making up 41-89% of subsampled sequences, and included high read counts in 

both classes Gammaproteobacteria and Betaproteobacteria. Twenty-two unique isolates that were 

relatives of genera observed in the high-throughput sequencing results were identified from spread 

plates. Isolates included known halophilic and halotolerant Archaea (Haloferax and Halorubrum 

species) and Bacteria (including Halomonas, Marinobacter, and Dietzia species). Salt tolerance of 

0-25% (w/v) NaCl was demonstrated by 13 of the isolates, while all isolates were capable of 

growth in the presence of at least 15% (w/v) NaCl. 
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The halotolerant bacterial isolate Croceicoccus sp. FTI14, selected for its fast growth in 

3% (w/v) NaCl amended media, was evaluated as a potential biosorbent for the removal of 

dissolved Cu(II) and Cr(VI) from saline groundwater (0.55 M ionic strength). Biosorption 

performance of the oven-dried and finely ground material was evaluated using batch biosorption 

experiments at varied ionic strengths, coupled with synchrotron-based scanning X-ray 

transmission microscopy (STXM) and Fourier Transform Infrared (FTIR) spectroscopy. Cu(II) 

uptake by dried FTI14 was 1.7-7.8 times higher than Cr(VI) uptake and metal uptake decreased 

when ionic strength of the solution was increased. At pH 4-5 and with 40 mg/l initial metal 

concentrations, FTI14 removed 40.3 ± 0.7% of the dissolved Cu(II) from deionized water and 19.3 

± 0.1% from saline groundwater solutions. Biosorption isotherms for Cu(II) fit both Langmuir (R2 

values of at least 0.80) and Freundlich models (R2 values of at least 0.86), while the Cr(VI) 

isotherm fit the Freundlich model only (R2 value = 0.97). STXM images showed that the adsorbent 

was a mixture of whole cells and indistinct biomass as well as demonstrated a spatial association 

between metal and biomass. FTIR spectra data suggested a change in amide functional groups, 

potentially the proteins on the biomass surface, after metal exposure. Findings suggest that the 

removal of metals from salt-impacted water is possible using biosorbents derived from salt-tolerant 

bacteria. 

This is the first study to utilize high throughput sequencing to investigate the membership 

and diversity of microbial communities in potash tailings and brine. It contributes to the broader 

understanding of halophilic and halotolerant microbes in natural and engineered environments, as 

well as investigates a potential environmental engineering application of biomaterials derived from 

them.  

 

Keywords: halophile, halotolerance, hypersaline environment, microbial community, potash 

tailings, potash brine, biosorption, metals, salinity, contaminated groundwater, remediation 
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1 GENERAL INTRODUCTION 

The responsible management of mining by-products is essential to achieve sustainability 

in the Canadian mining industry. Physicochemical properties of industrial effluents and solid 

tailings are often well-characterized and regulated to prevent introduction into natural, 

recreational, or drinking water systems. However, the microbiology of these materials is often 

overlooked. The microbes in tailings or mine water can sometimes be detrimental if released to 

the environment, but more often they present an opportunity for controlling the transport and fate 

of inorganic and organic contaminants. To seize this opportunity, the microbial species present in 

these materials first needs to be identified, and then control and/or use of the community or specific 

species can be considered.  

Canada was the largest potash producer and exporter in the world in 2015, with ten 

Saskatchewan mines producing the potassium-containing salts used as fertilizer (Jasinski, 2014; 

Marshall, 2015). The tailings produced by potash mining and processing are composed mostly of 

NaCl, KCl, and MgCl2 (Tallin et al., 1990), and the retention ponds for brine in tailings 

management areas can have a sum of ions on the order of 350 g/l due to run-off from tailings piles 

(Maathuis & Van der Kamp, 2002). When at saturation concentrations, salts are lethal for all but 

a few biological species – microorganisms in particular – and organisms that are able to live in 

extreme environments such as potash tailings and brine are considered extremophiles (Gupta et 

al., 2014). 

Other environments that contain similarly high salt concentrations include salterns, 

evaporite deposits, and salt lakes, and studies of these environments have revealed surprisingly 

diverse communities of microorganisms (DasSarma & DasSarma, 2012). A characterization of 

potash brine and tailings that includes the microbiology will contribute to the understanding of 

microbial communities in highly saline environments as well as provide the potash mining industry 

with a better picture of their mine tailings management areas. However, little attention has been 

paid to the microbial communities in Saskatchewan’s potash brine and tailings and the associated 

biotechnology-based research for potential applications of these extremophiles. 
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Actual and suggested engineering applications of biomaterials derived from extremophiles 

include water and waste treatment, energy production, biodegradable plastics production, and use 

as pharmaceutical intermediates (Margesin & Schinner, 2001). Microbes found in potash tailings 

or brine could potentially be used as metal adsorbents in water treatment, such as the removal of 

metals from industrial-contaminated groundwater. Biological material contains unique surface 

molecules, such as peptidoglycan or enzymes, that are able to attract and react with metal ions in 

solution, enabling microbes to sorb various micronutrients from their environment and 

contributing to metal fate and transport (Ams et al., 2013). This mechanism is effective in 

metabolically-inactive or heat-killed organisms which can be used as biosorbents for the treatment 

of metal-contaminated waters, an application that has been demonstrated with many types of 

biological material including algae, bacteria, fungi (Volesky & Holan, 1995), and food processing 

waste such as crab shells (Niu et al., 2007). Some of these materials have shown excellent sorption 

or ion exchange capacity, comparable with commercial synthetic cation exchange resins 

(Ahluwalia & Goyal, 2007) and often perform better than traditional sorbents (Gabr et al., 2008).  

It has been suggested that the adsorption of metals from saline systems by organisms 

adapted to living in hypersaline environments is greater than adsorption from saline systems by 

non-halophiles (Ams et al., 2013). A biosorbent developed from potash tailings or brine could 

offer an alternative remediation technology for the removal of metals from saline water and could 

be potentially used in groundwater pump and treat operations, or in industrial or other wastewater 

treatment plants. 

1.1 Research Objectives 

The microbial community in potash brine and tailings is largely unknown and the main 

purpose of this study is to identify the bacteria and archaea present in these communities. A 

secondary objective of the study is to evaluate the development of isolated halotolerant microbes 

as biosorbents for metal remediation in salt-impacted water, an understudied area of the 

biosorption literature. The use of cutting-edge analytical tools, including high-throughput 

amplicon sequencing and scanning transmission x-ray microscope (STXM) imaging, will enable 

in-depth analysis of microbial communities and the potential biosorbent.  

The specific objectives of this study include the following:  

1. Identify microbial community.  
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a. Compare the microbial communities in potash mine brine, coarse tailings, and 

fine tailings 

b. Isolate and characterize heterotrophic, aerobic microbes from these materials  

c. Explore how the microbiology relates to chemical compositions of potash 

brine and tailings 

2. Assess feasibility of halotolerant microbes as a biosorbent.  

a. Prepare a halotolerant or halophilic isolate as adsorbent 

b. Evaluate effectiveness of biosorbent for metal removal under saline and non-

saline conditions using batch adsorption experiments coupled with STXM and 

Fourier Transform Infrared (FTIR) spectra  

1.2 Research Significance 

This study examines the microbial community within potash tailings and brine, an 

environment that has only been previously described using isolation techniques. The use of high-

throughput amplicon sequencing allows for a snapshot of the entire community, including those 

microbes that are difficult to isolate. Information obtained from community analysis lays the 

groundwork for further metabolic characterization, biogeochemical studies, and development of 

biotechnological applications. This benefits the scientific community by contributing to the 

growing understanding of extreme halophile distribution in natural and engineered environments.  

The study goes on to investigate the potential use of this waste microbial community in a 

biotechnological application: biosorption of metals. It contributes to biosorption research by 

looking at adsorption of metals in natural groundwater and salt-impacted groundwater, as well as 

by using a halotolerant organism in a salt-impacted system – something that has not been focussed 

on in peer-reviewed literature. It benefits the potash industry by suggesting a means to repurpose 

a process by-product for alternative uses. As well, biosorption in salt-impacted water benefits 

many industries that have concerns for the co-occurrence of salt and metal contamination of 

waterways. 

1.3 Scope 

Brine, fine tailings, and coarse tailings were chosen for study as key representatives of the 

by-products produced by the potash milling process. A sample of each was provided by an active 
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potash mine site in Saskatchewan, Canada. Physicochemical studies throughout this thesis focused 

on salinity, measured as total salinity or ionic strength. Microbial community studies focused on 

the 16S rRNA gene (V4 region) and the study of isolated microbes was limited to readily 

culturable, heterotrophic, and aerobic species from brine and tailings. 

Adsorption studies focused on the batch biosorption of copper and hexavalent chromium, 

examples of metals that are commonly found in industrial wastes and represent both cationic and 

anionic metal species. Ionic strength was adjusted using sodium chloride and the effect of different 

ions was not studied.  

1.4 Thesis Organization 

This document is written as a manuscript-style thesis according to the guidelines 

established by the College of Graduate Studies and Research and the Department of Civil, 

Geological, and Environmental Engineering at the University of Saskatchewan. It includes a 

general introduction (Chapter 1), literature review (Chapter 2), two manuscripts (Chapters 3 and 

4), and overall conclusions and recommendations for future research (Chapter 5). The first 

manuscript is fundamental research, describing the microbial community within potash tailings 

and brine. It has been adapted and reformatted from a manuscript that will be submitted for 

publication. The second manuscript is applied research, where an isolate from potash tailings was 

developed as a metal biosorbent for salt-impacted groundwater remediation, and will be submitted 

for publication as part of a larger project.  
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2 LITERATURE REVIEW 

2.1 Potash Mining  

2.1.1 Potash mine and tailings management area  

Potash mining in a conventional mine occurs approximately 1000-1600 m underground, 

where the temperature remains a constant +27°C. The milling process was described in detail by 

Perucca (2003) and is summarized here (Figure 2-1). Large pieces of ore are removed from the ore 

bed using boring machines and are stored underground until needed for processing. Once brought 

to the surface, the milling process begins by mechanically crushing the ore into smaller pieces that 

are then scrubbed in agitation tanks with a brine solution to remove clay insolubles. The potash is 

separated from the sodium chloride by flotation using organic reagents, then skimmed from the 

top of the flotation solution and centrifuged. The refined potash product is then fire-dried and sized 

before sale. The remaining salty tailings, insolubles, and brine water are disposed of in piles on 

the mine site in the tailings management area (TMA, Figure 2-2). Liquids in the TMA drain into 

brine ponds adjacent to these piles (UNEP, 2001). The term brine is broadly used to describe water 

with high concentrations of salt and the brine ponds in the potash industry can reach concentrations 

of approximately 350 g/l (Maathuis & Van der Kamp, 2002). 

The high salinity – a measure of the total ionic composition of water – of potash mine 

surface and subsurface environments makes them extreme habitats where only highly-adapted 

microbes such as halophilic bacteria can survive. The potash extraction and refinement process is 

not sterile and microbes can be introduced to the system at each step of potash processing, however 

sources of halophilic organisms will contribute to the metabolically-active portion of the microbial 

community. These may include the ore bed, organic chemicals used in potash flotation (Robbins 

& Ingledew, 1976), atmospheric deposition including windblown dust, avian carriers, and soils in 

contact with the tailings piles and brine ponds and ditches. In addition to the inhospitable salinity 

levels, there are few sources of carbon, nitrogen, and the other nutrients needed to support  
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Figure 2-1  Schematic drawing of potash extraction and refining process for the Mosaic Colonsay conventional potash mine. The 

sampling points of fine and coarse tailings, as well as reclaim pond water, were used for physicochemical and microbial community 

characterizations in this study. 1 (Perucca, 2003) 

1 
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Figure 2-2  Tailings piles at the PotashCorp (PCS) Cory mine site in Cory, Saskatchewan, on the 

order of 30 m high.  

 

microbial life in potash brine and tailings. Potential organic carbon and nitrogen sources include 

the evaporite bed and chemical reagents used in the refinement processes. 

2.1.2 Analogous saline environments  

Hypersaline environments are defined as having a dissolved salt concentration higher than 

the salinity of seawater (35 g/l, DasSarma & DasSarma, 2012). Due to the high salt concentrations, 

these environments have several unique chemical characteristics. First, measurement of pH in high 

ionic strength solutions is complicated due to a lack of appropriate buffers and electrodes (Ams et 

al., 2013). In fresh water, the pH of a solution is often used to indicate the alkalinity (the measure 

of compounds in solution that can neutralize an acid) of a sample. However, when salinity is higher 

than 50 g/l, it no longer indicates the alkalinity as at this point the pH will decrease with increasing 

salinity and in no correlation to the alkalinity (Javor, 1989). Alkalinity must be measured as total 

alkalinity or by acid titration which will overcome the effects of inaccurate pH readings or ion 

complexing resulting from the high concentration of ions. The salt concentration also affects the 

specific heat capacity and concentration of dissolved gases, both of which decrease with increasing 
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salt concentration. This means that a saline environment will be on average warmer and contain 

less dissolved oxygen than a freshwater counterpart.  

Studies of hypersaline environments have shown examples of thriving species from all 

domains of life. Eukaryotic microorganisms are not very common at high salinities, but the green-

alga Dunaliella can still be found in diverse hypersaline environments including the harsh 

conditions of the Dead Sea (Oren, 2002) and the black yeast Hortaea werneckii can grow over a 

full range of NaCl concentrations from 0 g/l up to 321 g/l (Lenassi et al., 2007). Archaea tend to 

dominate the microbial community in solar salterns at salinities above 230 g/l but Bacteria have 

quite a few representatives across hypersaline environments as well (DasSarma & DasSarma, 

2012). These communities can vary greatly geographically even when environments with similar 

ionic composition are compared (Vreeland, 2012). An example of a common halophilic bacterium 

in these environments is Salinibacter ruber, whose highly-conserved gene sequences have been 

recovered from various salterns and natural salt lakes world-wide (Vreeland, 2012).  

2.2 Salt-Adapted Microorganisms 

2.2.1 Halophilic and halotolerant bacteria and archaea 

Halotolerant or halophilic organisms are able to live in environments with high salinity. 

They are extremophiles – organisms that are found in extreme or harsh environments – and are 

specially-adapted to live in environments with high salt concentrations. The distinction between 

halotolerant and halophilic organisms is that the former are able to grow in a broad range of 

salinities, while the latter require high salinity for growth (Golikowa, 1930; Rubentschik, 1929). 

Non-halophiles grow best at salinities less than 20 g/l, and halophiles are further characterized as 

being slight, moderate, and extreme halophiles, growing in salinities of 20-50 g/l, 50-200 g/l, and 

greater than 200 g/l, respectively (Larsen, 1962).  

High salt concentrations create a particularly harsh environment for microbes, producing 

high osmotic pressure in the cells; they are considered to be toxic to most forms of life (Gunde-

Cimerman et al., 2009). Biological membranes are water permeable and so halophilic organisms 

need to maintain a cytoplasm that is at least isosmotic to the surrounding environment and low in 

toxic sodium ions (Oren, 2002). Two main strategies have been studied that allow microbes to 

maintain their cellular osmotic balance: the accumulation of K+ or Cl- ions, or the accumulation of 

organic solutes (Oren, 2002). The osmotic pressure affects the availability of usable water for these 
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organisms and the adaptations they employ to overcome it are of great interest for biotechnological 

studies.  

Halophiles are metabolically diverse, with representative species of most metabolic 

processes (Oren, 2002). It is suggested that the processes that have not been observed in halophiles 

have energetic constraints with regards to the cost of maintaining an isosmotic cell matrix (Oren, 

1999). Oxygenic photosynthesis, anoxygenic photosynthesis, aerobic respiration, and fermentation 

have all been observed in cultures with NaCl at saturation levels (approximately 300-350 g/l, Oren, 

2002) and as such may be possible metabolisms present in potash waste materials.  

2.2.2 Applications for halophilic bacteria and archaea 

The unique properties of halophilic organisms have started to be utilized in different 

applications of biotechnology (Table 2-1). Halophilic organisms have properties especially 

appealing to industries that need to deal with high salt concentrations, including the oil and gas 

sector, salterns, and the food industry. For example, the presence of Halobacteriaceae sp. is 

encouraged in saltern crystallizer ponds because they produce a carotenoid pigment that absorbs 

light and increases pond evaporation rates (Oren, 2002). Halophiles offer unique cellular features 

including unique proteins such as the polyhydroxyalkanoates produced by Haloferax mediterranei 

that can be used to make a new type of biodegradable plastic (Oren, 2002). Their ability to thrive 

in high salinity conditions has also made halophiles valuable in bioremediation processes for brine 

spills such as those encountered in the petroleum industry (DasSarma & DasSarma, 2012).  

2.3 Biosorption  

Biosorption is a physicochemical reaction relevant to biotechnology, especially for the 

remediation of dissolved contaminants from contaminated water. It employs physical or chemical 

reactions to bind a molecule from a gas or liquid phase onto the surface of solid biological material. 

The process is competitive in terms of cost and efficiency with more conventional adsorbents 

including activated carbon and ion exchange resins (Table 2-2) (Aryal & Liakopoulou-Kyriakides, 

2015). Biomass is able to adsorb many metals, dyes, fluoride, pharmaceuticals, and organic 

contaminants (Michalak et al., 2013). For this thesis, the biosorption of metals by bacterial biomass 

was examined.  
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Table 2-1  Biotechnological applications for halophilic and halotolerant microbial species. 

  Product Process Species 

β-carotene a Food supplements: antioxidant and food coloring 
agent 

Dunaliella sp. 

Bacteriorhodopsin a Computer memory and processing, photoelectric 
converters, etc.  

Halobacter salinarum 

Biosurfactants b Microbially-enhanced oil recovery Bacillus licheniformis 

Carotenoid pigment c Light absorption, increase in saltern evaporation Dunaliella sp., Halobacteriaceae sp.  

Cell biomass a Additive in cosmetic anti-wrinkle cream Dunaliella sp. 

Chemical oxygen demand (COD) 
removal b 

Biological waste treatment Halobacter halobium 

Ectoine, hydroxyectoine, and 
compatible solutes a, b 

Biomolecule and cell stabilizers, salt antagonists, 
stress-protective agents, moisturizer in cosmetics 

Halomonas elongata, Desulfovibrio gigas, 
Clostridium pasteurianum, Marinococcus M52 

Exopolysaccharides b Microbially-enhanced oil recovery Halobacterium salinarum, Haloferax volcanii, 
Halobacterium distributum, Halomonas sp. 

Heat shock proteins, gene transfer of 
halotolerance to plants b 

Soil salinity issues Aphanothece halophytica 

Hydrocarbon, polycyclic aromatic 
hydrocarbon, halogenated organic 
compound breakdown b 

Biological waste treatment Streptomyces albaxialis, Halomonas sp., 
Methylomicrobium sp., Rhodococcus 
rhodochrous, Brevibacterium sp. 

Hydrogen production b Energy Various photosynthetic bacteria 

Hydrolase b Enzymes used in cell study and biomolecule 
production 

Pseudomonas sp., Haloferax alicantei, 
Alteromonas sp., Alterococcus agarolyticus, 
Halobacterium salinarum, Bacillus sp. 

Ice-nucleation activity (INA) b Artificial snow and ice production, ice cream 
production 

Pseudomonas syringae 
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  Product Process Species 

Isomerase b Enzymes used in cell study and biomolecule 
production 

Methanopyrus kandleri 

Liposomes b Target-specific medicines or cosmetics Halobacterium eutirubrum 

Long-chain polyunsaturated fatty 
acids b 

Food supplements  Shewanella sp., Olwellia sp. 

Organophosphorus acid anhydrases b Chemical warfare detoxification Alteromonas JD6.5 

Poly (γ-D-glutamic acid) b Thickener, humectant, sustained-release, or drug 
carrier for food or pharmaceuticals  

Natrialba sp. 

Polyhydroxyalkanoates (PHA) a Biodegradable plastics Haloferax mediterranei 

Salt sequestration via N-fixation b Soil salinity issues Anabaena torulosa 

Soy sauce, fish sauce b Fermentation Lactobacillus plantarum, Halobacterium 
salinarum, Halococcus sp., Bacillus sp., 
Tetragenococcus halophile 

a (Oren, 2002); b (Margesin & Schinner, 2001); c (Javor, 1989) 
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Biosorption can be more cost effective, environmentally friendly, and efficient than 

traditional metal-adsorbing materials as well as other methods for metal-removal including 

chemical precipitation and electrochemical techniques (Vijayaraghavan & Yun, 2008). For 

example, the algae Sargassum natans was found to have a binding capacity of 420 mg of gold per 

gram of biomass; in comparison, the binding capacity of a commercial ion exchange resin was 

approximately 350 mg per gram (Volesky & Kuyucak, 1988). While activated carbon in the same 

study had a binding capacity of close to 500 mg, it is much more expensive than the algae and 

cannot be regenerated for reuse. 

2.3.1 Mechanism of metal biosorption 

Due to the complex chemical nature of biomass, the mechanisms involved in binding 

metals are not always well-defined. Studies have suggested a variety of mechanisms including ion 

exchange, complexation, chelation, redox reactions, physical adsorption, and microprecipitation 

(Volesky, 2001). These reactions are driven by concentration gradients and high affinity binding 

sites on the biomass.  

Depending on the mechanism of the specific system, the reverse reaction – desorption – is 

often possible after a material has removed a solute (Atkinson et al., 1998; Fomina & Gadd, 2014). 

The ability to desorb the contaminant from the biosorbent purposefully is advantageous; the user 

could concentrate the metal and either return it to the process or sell it for profit, and potentially 

reuse the biosorbent. The ideal recovery process would be highly efficient and cause minimal 

damage to the biosorbent. Strong acids, bases, and complexing agents have been employed to elute 

the metals after the sorption process (Wang & Chen, 2009).  

Bioaccumulation 

Biosorption is a metabolically-passive method to concentrate a substrate and should not be 

confused with the process of bioaccumulation where substrates are actively taken up by live 

biomass (Aryal & Liakopoulou-Kyriakides, 2015). Live biological species can be capable of 

sequestering a wide variety of heavy metals, but toxicity thresholds limit the maximum uptake. In 

comparison, inactive biomass material is limited by the availability of binding sites on the surface 

without a toxic concentration threshold. Further, there is more cost involved in bioaccumulation 

operations as nutrients and specific growth conditions need to be applied to the system  
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Table 2-2  Comparison of inorganic, organic, and biological adsorbent sources.  

 Type Example Uses Advantages Disadvantages 

Inorganic 

Siliceous materials a Silica beads, 
glass, dolomite 

Desiccant, separation of 
hydrocarbons, cations  

Abundant, low cost, high surface 
area, mechanical strength 

pH <8 only, can have irreversible 
sorption processes 

Activated Alumina 
(Al2O3) b 

n/a Catalyst (or catalyst 
support), desiccant, fluoride 

High surface area, mechanical 
strength, can act as acid or base 

Manufactured, high temperature 
pre-treatment 

Aluminosilicates a, c Clays, Zeolites Cation sorption, ion 
exchange, heavy metals, 
phenols 

Can be pH-independent, low cost, 
abundant, high sorption capacity, 
selective, mechanical strength 

Low permeability 

Organic 

Activated Carbon a Charcoal, 
Biochar 

Air particulates, water 
particulates, dyes, metals 

Effective, large capacity, large 
surface area, chemical structure 
easily modified, well studied 

Expensive, non-selective, 
regeneration difficult 

Biological materials 

Wood Products a, c, d Sawdust, bark  Anion sorption (metals and 
dyes), heavy metals, 
organic compounds 

Abundant, low cost, basic 
binding sites, hydrophobic sites, 
ion exchange 

pH-dependent, discoloration of 
water 

Algae or Seaweed c n/a Heavy metals, dyes Abundant, low cost, ion 
exchange, high sorption capacity 

Used in other industries 
(competition), swelling and 
disintegration in column 

Chitin and  
Chitosan a, c 

Crab shells Anion sorption (metals and 
dyes) 

Abundant, low cost, contains 
high levels of –NH and –OH 
functional groups, chemical 
stability, highly-selective 

High processing required, 
nonporous, pH dependent, 
processing creates toxic waste 

Bacterial Cells e n/a Heavy metals, cation or 
anion sorption, dyes 

Highly selective, works in low 
concentrations, available as 
industrial waste 

Low mechanical strength, slow 
sorption process, pH-dependent, 
ionic strength-dependent  

a (Crini, 2006); b (Naiya et al., 2009); c (Bailey et al., 1999); d (Li et al., 2010); e (Vijayaraghavan & Yun, 2008) 
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(Vijayaraghavan & Yun, 2008). Srinath et al. (2002) compared biosorption and bioaccumulation 

of hexavalent chromium (Cr(VI)) in Bacillus strains and found that they could adsorb a maximum 

of 39.9 mg Cr/g (dry weight) versus the maximum of 34.5 mg/g that live strains could accumulate. 

While these two values are similar, the bioaccumulation process required an additional step to 

dilute the Cr(VI) solution to an initial concentration of 50 mg Cr(VI)/l. In a similar study, 

Pseudomonas aeruginosa living cells were able to sequester 79 mg/g of lead and 70 mg/g of nickel, 

but their non-living counterparts were able to adsorb 123 mg/g and 113.6 mg/g respectively (Gabr 

et al., 2008). 

2.3.2 Parameters affecting biosorption  

To provide a proper analysis of a material’s biosorption capabilities, adsorption 

characterization experiments need to operate under optimized conditions. Parameters that 

influence biosorption reactions include solution pH, temperature, other solutes, mixing rate, 

biosorbent particle size, and the nature of the reactive groups on the biosorbent. 

The most significant of these parameters is the solution pH, which affects both the sorbent 

and the metal species in solution. The overall surface charge of a biosorbent will often dictate what 

metal species it is able to bind – a negatively-charged surface will attract positively-charged metal 

species and a positively-charged surface will attract negatively-charged metal species. Solution 

pH controls the protonation of binding sites and changes which sites are available for adsorption 

reactions. Generally, when the pH is low and binding sites are protonated the adsorbent will attract 

anions and when the pH is raised (Park et al., 2010), the binding sites will be deprotonated and 

attract cations.  

The pH also affects the speciation of a metal in the solution. A basic pH may cause some 

metals to precipitate (Britton, 1943), which can contribute to the overall metal removal in practice 

but needs to be controlled in equilibrium biosorption studies. Also, hydrolysis reactions or 

hydration of metals in various pH ranges can affect the size of the metal ion in solution; the charge 

on these hydroxides are pH-dependent (Volesky & Holan, 1995).  

Acidification of the solution commonly occurs during metal biosorption reactions, thus the 

pH often needs to be monitored and controlled over the course of the equilibrium reaction (Volesky 

& Holan, 1995). Again, while this is essential for experimental studies, this is not practical in 

industrial-scale applications and that must be taken into consideration.  
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The temperature at which the experiment takes place has been found to have much less of 

an impact on the outcome than the pH (Aksu et al., 1992). How much temperature will affect the 

processes will depend on the exact binding mechanism, as physical adsorption reactions tend to be 

exothermic and need lower temperatures for sorption while chemical adsorption reactions tend to 

be endothermic and need a temperature that meets the heat of enthalpy for the reaction (Volesky, 

2003). Further, it has been found that temperature has little impact on biosorption processes 

between +20 and +35°C (Veglio & Beolchini, 1997).  

Ionic strength has generally been found to negatively impact adsorption capacity. 

Inhibition may be due to chloride competition at active sites, changes that affect the electrical 

double layer, or complexes between the metal ions and the salt ions (Dönmez & Aksu, 2002). High 

concentrations of other ions in solution may also introduce binding competition, especially for 

electrostatic-dependent processes. In one study, however, it was found that using halophilic 

bacteria as an adsorbent lead to an increase in adsorption at an ionic strength of 4 M compared to 

adsorption at 2 M (Ams et al., 2013). This finding provides important implications for the present 

thesis (Chapter 4), which explores the feasibility of metal adsorption under saline conditions by a 

halotolerant bacterium derived from potash tailings.  

The particle size of an adsorbent affects the kinetics of the adsorption reaction and the flow 

dynamics in an industrial-scale process. To enhance the reaction kinetics, a small-sized particle 

will maximize the surface area available for the reaction. In batch reactions, this is one of the 

advantages of using bacteria as an adsorbent, as the smallest particle that can be attained will be 

the size of one cell. However, to achieve a particle that will both have sufficient surface area and 

maintain proper pressure in a packed column or other industrial processes, it is best to maintain 

biosorbent particles between 0.5 and 1.5 mm in diameter (Volesky, 2003). There are immobilizing 

methods that can be used to increase bacterial sorbent particle size.  

Finally, reactive groups on the surface of the biosorbent can be affected by various pre-

treatments including acid-activation, growth conditions before the biomass was harvested, and the 

lifecycle point at which a cell was harvested (Gupta et al., 2000).  

2.3.3 Biosorption isotherm and models 

Assessment of a solid-liquid sorption system is initially based on small-scale batch sorption 

tests carried out to equilibrium. These batch equilibrium experiments mainly aim to determine the 
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affinity and sorption capacity of an adsorbent to each adsorbate at optimal operation parameters, 

as well as to elucidate the mechanisms and kinetics of the reaction. This type of experiment needs 

to be conducted first before upscaling the process or applying it to a continuous operation mode. 

A biosorption isotherm is the plot of solute uptake at equilibrium against the equilibrium 

solution concentration and can be used to compare adsorbents at the same system parameters. 

Generally, as the final solution concentration increases, the solute uptake will also increase until 

all the binding sites are filled. As the simplest isotherm, the relationship forms a single curve. This 

isotherm offers a clear picture of the maximum solute adsorbed (qmax), as well as the affinity 

between sorbate and adsorbent at low concentrations as shown by the initial slope of the curve.  

Modelling can become complicated as the classic model assumptions may not always apply 

to systems with numerous types of binding sites, sorbate solution chemistry, and the precipitation 

of accumulating metal phases and mechanisms (Fomina & Gadd, 2014; Volesky & Holan, 1995). 

Common models include the Langmuir model (Langmuir, 1918) and the Freundlich model 

(Freundlich, 1906), neither of which describe mechanisms involved, but instead reflect the 

experimental isotherm curves.  

2.3.4  Application for industrial wastewater 

Industrial effluents contain a mixture of various organic chemicals and metals and this 

greatly affects adsorption performance compared to a system with only one or two solutes. The 

performance of an adsorbent needs to be evaluated in these conditions in addition to the optimized 

systems.  

Ionic strength is regulated in laboratory controlled systems, but the competing ions present 

in industrial effluents will lower adsorption performance (Cotoras et al., 1992). The increased ionic 

strength in solution introduces competition for binding sites, changes in metal activity, and affect 

the properties of the electric double layer for system kinetics (Vijayaraghavan & Yun, 2008). It 

especially affects adsorption mechanisms that use electrostatic attraction.  

Studies of multi-solute systems in the literature demonstrate the suppression of individual 

metal binding and a specific order of preference in the mixed metals. This binding preference can 

be manipulated by pre-treatment as demonstrated with the fungi Aspergillus fumigatus, where the 

order of decreasing adsorption for iron-coated biomass was Fe > As > Zn > Mn > Pb instead of 
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the natural biomass order Fe > Zn > Mn > As > Pb (Jalili Seh‐Bardan et al., 2013). Aksu et al. 

(2002) observed that the effect of these multiple solutes increases with increasing concentrations.  

There are several commercialized biosorption products available on the market, some of 

which are listed in Table 2-3. These are generally made of immobilized microbial material 

including algae, bacteria, and fungi. Products, including AlgaSORBTM, AMT-BIOCLAIMTM, and 

Bio-fix, offer high removal rates in dilute systems and the ability to recycle the adsorbent material 

many times. AMT-BIOCLAIM is capable of metal recovery from waste systems containing 

cyanide and therefore can work in metal finishing operations (Atkinson et al., 1998), while Bio-

fix has demonstrated effective metal recovery in waters of acid mine drainage (Garnham et al., 

1997).  

Biological sorption materials have limitations that need to be addressed before broad use 

on an industrial scale is feasible (e.g. Michalak et al., 2013; Park et al., 2010). Firstly, raw biomass 

offers some unique mechanical strength and swelling issues. This is often dealt with by using 

various immobilization techniques, including embedding in a silica gel or polysulfone matrix. The 

extra processing steps for these approaches add time and cost to the process and this needs to be 

minimized to keep the economic edge that biomass has on chemical ion exchange resins. Secondly, 

unprocessed material often leaches organic materials or dyes into the wastewater, creating a 

secondary contamination of the water. Some options being explored include pre-treatment with 

acid- or alkali-wash.  

Table 2-3  Examples of commercialized biosorption products.  

Product Material Specifications Reference 

AlgaSORB™ Chlorella 
vulgaris 

Metal ions  

Dilute waters (1-100 mg/l) 

Immobilized in silica or polyacrylamide gel 

More than 100 biosorption-desorption cycles 

Garnham et al. 
(1997) 

AMT-
BIOCLAIM™ 

Bacillus subtilis 
treated in caustic 
solution 

Metal ions 

Up to 2.90 mmol Pb/g 

99% removal from dilute system 

Regenerable 

Works in cyanide solutions 

Brierley et al. 
(1991) 

Kuyucak (1990) 

Veglio & 
Beolchini 
(1997) 
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Product Material Specifications Reference 

Bio-fix Mixture 
(Sphagnum peat 
moss, algae, 
yeast, bacteria, 
and/or aquatic 
flora)  

Toxic heavy metals 

Immobilised in polysulfone 

Zn adsorption 4-fold higher than ion 
exchange resins 

More than 120 biosorption-desorption cycles  

Used in acid mine drainage 

Garnham et al. 
(1997) Volesky 
(1990) 

  

 

2.3.5 Halophilic biosorbents 

Species that can live in high salt concentrations need to tightly control ion permeability 

and these bacterial cells can have distinctive cell envelope characteristics and increased negative 

charge in phospholipids (Kushner & Kamekura, 1988; Schneegurt, 2012; Vreeland, 1987) that 

may contribute to improved metal adsorption capabilities. Adaptations can include a cell wall with 

increased hydrophobicity, an increase in the concentration of ion pumps (Oren, 2002), or the 

presence of S-layer proteins. In one study, the negatively-charged S-layer was found to increase 

copper and iron adsorption but decrease manganese and zinc adsorption (Schut et al., 2011). The 

use of halophilic organisms for metal adsorption has not been studied in-depth in the published 

literature, and most of the published research on this topic has taken place in the last 15 years 

(Table 2-4). 

 

Table 2-4  Metal adsorption by halophilic microorganisms in the literature.  

Halophile Adsorbate Metal Uptake1 Reference 

Dunaliella Cr(VI) 102.5 mg/g Dönmez & Aksu 
(2002) 

Halomonas V 91.8% Ghazvini & Mashkani 
(2009) 

 Pb, Cd 90, 50% Amoozegar et al. 
(2012) 

 Pb, Cd 24.15, 23.88 mg/g Rajesh & Rajesh (2015) 
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Halophile Adsorbate Metal Uptake1 Reference 

Nostoc punctiformes 
exopolysaccharide 

Cr, Na 144.68 mg/g Sharma et al. (2009) 

Purple nonsulfur 
bacteria 

Pb, Cu, Cd, Zn, Na 39, 20, 7, 5, 31% Panwichian et al. 
(2010) 

Halobacteria Zn, As, Cd 68.6, 36, 39.8 % Williams et al. (2013) 

 Ni, Al, Hg 50.8, 110.25, 7.4 ppm Williams et al. (2012) 

 Mn 108.44 mg/g Naik & Furtado (2014) 

Chromohalobacter sp. Np 89% Ams et al. (2013) 

Pseudomonas 
aeruginosa 

Co-EDTA complex 80.4% Paraneeiswaran et al. 
(2014) 

1 Metal uptake as reported, not necessarily at maximum 

 

2.3.6 Bacterial biosorbent preparation 

The methods for the preparation of bacterial adsorbents vary widely within the literature. 

The most common techniques involve suspending live cells in distilled water or autoclaving or 

oven-drying cell suspensions (e.g. Bai et al., 2014; Naik & Furtado, 2014).  

Live, inactive cells are often used because of the simplicity of the procedure. Nutrient 

media is removed and washed from the cells, and when they are re-suspended in distilled water 

the cells are assumed to be metabolically inactive. This technique is unable to represent biosorption 

as the sole uptake mechanism and toxicity levels in solution will still affect the adsorbent integrity. 

In peer-reviewed literature, Bai et al. reported higher levels of lead uptake in living cells than in 

autoclaved Bacillus subtilis (Bai et al., 2014).  

Autoclaves are used in the laboratory to sterilize equipment using high temperature and 

pressure and will effectively kill bacteria cells, including endospores. This process will often lyse 

cells, leaving cell debris suspended in the solution that can bind aqueous metals (Aryal & 

Liakopoulou-Kyriakides, 2015). However, autoclaving may destroy or damage some of the metal 

binding sites and cell structure, reducing binding capacity and the ability to reuse the biosorbent 

(Bai et al., 2014; Schut et al., 2011).  
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The final option, oven-dried biomass, has had good adsorption results in the literature. 

Drying cells using a mid-range temperature (+55 to +65°C) should inactivate the cells while 

leaving the components on the cell surface relatively untouched and a high surface-to-volume 

ratio. Better uptake of a wide range of metals has been demonstrated in oven-dried cells compared 

to living cells of chromium-resistant isolates (Srinath et al., 2002), Myxococcus xanthus, and 

Saccharomyces cerevisiae (Avery & Tobin, 1992; Omar et al., 1997). Drying the material also 

enables long-term stability and storage of biological adsorbents at low costs (Srinath et al., 2002).  

2.3.7 Metal adsorbates 

Metals are both a valuable resource and a challenge in industry. Because they are found in 

many ores and soils and have a broad range of chemical uses, the effluent from both mining and 

other industrial processes typically contain toxic metals at concentrations exceeding regulatory 

guidelines. Spills from these waste waters and chronic low-level discharges in industrial effluents 

are common sources of elevated levels of metals in the environment (Aryal & Liakopoulou-

Kyriakides, 2015; Wang & Chen, 2009). In Saskatchewan alone, there are 287 federally-controlled 

contaminated sites with metal concentrations above background levels and that may pose a risk to 

human health or the environment, as reported in the Federal Contaminated Site Inventory 

(Environment Canada, 2016), and these numbers do not include privately-managed sites. Metals 

are often essential to biological processes in low concentrations, acting as catalysts in the active 

sites of enzymes, but at higher concentrations they pose a toxicological risk to the environment 

and human health.  

When it comes to metal adsorption, metals of interest can be sorted into categories 

(Volesky, 2003). Firstly, the adsorption of toxic or radioactive metals (i.e. nickel, chromium, 

copper, uranium) would allow an industrial effluent to be treated sufficiently to meet discharge 

standards. Precious metals, including gold and silver, can be concentrated and sold as a 

commodity. Finally, there are metals like manganese, which is not toxic at low levels but requires 

removal to meet aesthetic guidelines. Copper and chromium are both toxic at high concentrations 

and are common contaminants in industrial wastewater in Saskatchewan (e.g. Shaw et al., 2011; 

Tenenbaum, 2009).  
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Copper 

Copper is considered a deleterious substance as its presence degrades the quality of a water 

system for both fish and humans (Environment Canada, 2012b). Because of this, the Government 

of Canada has set its drinking water guidance to 1 mg/l and the maximum authorized average 

monthly concentration under the Canadian Fisheries Act is 0.30 mg/l (Environment Canada, 

2012a). It is primarily present in industrial wastewater as CuCO3 and commonly found in the 

effluents of paper, petroleum, copper/brass plating, copper-ammonium, mining, and dye industries 

(Aksu et al., 1992; Yilmazer & Saracoglu, 2009). Conventional removal of copper from these 

waters include chemical or electrochemical processes, ion exchange, and evaporative recovery 

(Aksu et al., 1992). However, copper has a high affinity to both soil and organic ligands and 

adsorption is a plausible option for copper removal (McLean & Bledsoe, 1996). Reported values 

of copper adsorption can be found in Table 2-5, including the highest reported adsorption value of 

381 mg/g on a protein from Bacillus firmus (Salehizadeh & Shojaosadati, 2003) and the second 

highest value of 270 mg/g reported in 1984 (Norberg & Persson, 1984).  

 

Table 2-5  Highest reported values of metal uptake in copper biosorption.  

Biosorbent Metal Uptake1 
(mg/g) 

Reference  

Bacillus firmus protein 381 Salehizadeh & Shojaosadati (2003) 

Zoogloea ramigera 270 Norberg & Persson (1984) 

Aspergillus terreus 224 Gulati et al. (1999) 

Penicillium simplicissimum 112.3 Li et al. (2008) 

Thiobacillus ferrooxidans 198.5 Ruiz-Manriquez et al. (1998) 

Spirulina sp.  196 Chojnacka et al. (2005) 

Aspergillus terreus 160-180 Gulati et al. (2002) 

Arthrobacter sp.  148 Veglio et al. (1997) 

Penicillium chrysogenum  108.3 Deng & Ting (2005) 

Pseudomonas putida 96.9 Uslu & Tanyol (2006)  

1 Metal uptake as reported, not necessarily at maximum 
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Chromium  

Chromium is not mined in Canada; however, it is present in many anthropogenic wastes. 

It is a component found in bitumen, the extracted component in oil sands (Tenenbaum, 2009), but 

it is also commonly found in liquid discharges from pulp mills (EPA, 2010), metal smelters and 

refineries, metal finishing plants, and petroleum refineries (Environment Canada, 1994). It is 

estimated that at least 27 tonnes of chromium are released from industrial sources in Canada each 

year (Environment Canada, 1994).  

Chromium occurs in the environment in two valences, Cr(III) and Cr(VI). Trivalent 

chromium is naturally-occurring, cationic, and a micronutrient requirement for humans. In its 

hexavalent form, however, chromium occurs as anions and is toxic to biological systems. In 

solution, the chemical form of Cr(VI) depends on the solution pH, where HCrO4- is predominant 

at pH < 6.5, CrO42- (chromate) predominates at pH 6.5, and Cr2O72- (dichromate) is most common 

when present in concentrations higher than 10 mM and pH 2-6 (McLean & Bledsoe, 1996). 

Hexavalent chromium is highly mobile, but can be easily chemically-reduced to Cr(III) which is 

readily adsorbed by soils (McLean & Bledsoe, 1996). In Canada, hexavalent chromium is 

classified as “Carcinogenic to Humans” and no level of exposure is considered safe (Act, 1993). 

The maximum contaminant level allowed by the US EPA for total chromium (chromium-6 and 

chromium-3) concentration in drinking water is 0.1 mg/l (EPA, 2010). Literature reported values 

for chromium adsorption can be found in Table 2-6. The highest reported value of Cr(III) 

adsorption is 714.3 mg/g (Calfa & Torem, 2008), while the highest reported Cr(VI) adsorption 

value is much lower at 294.0 mg/g (Aksu et al., 2002).  

 

Table 2-6  Highest reported values of metal uptake in chromium biosorption . 

Valence Biosorbent Metal Uptake1 
(mg/g) 

Reference  

III Rhodococcus opacus 714.3 Calfa & Torem (2008) 

VI Activated sludge 294.0 Aksu et al. (2002) 

VI Aeromonas caviae 284.4 Loukidou et al. (2004) 

Not specified Orange peel (outer skin) 275 Masri et al. (1974) 

Not specified Senna leaves 250 Masri et al. (1974) 

VI Pachymeniopis sp. 225 Lee et al. (2000) 
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Valence Biosorbent Metal Uptake1 
(mg/g) 

Reference  

VI Spirulina sp.  185 Chojnacka et al. (2005)  

VI Rice hulls 164.3 Roy et al. (1993) 

VI Chlorella minutissima 162.2 Roy et al. (1993) 

VI Staphylococcus xylosus 143 Ziagova et al. (2007) 

Not specified Orange peel (inner white 
skin) 

125 Masri et al. (1974) 

1 Metal uptake as reported, not necessarily at maximum 
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3 ARCHAEAL AND BACTERIAL COMMUNITIES IN HYPERSALINE POTASH 
MINE TAILINGS AND BRINE1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1 This chapter is written in joint authorship with Wonjae Chang (supervisor), Joyce M 

McBeth (co-supervisor), and Jonathan M Vyskocil. The study is part of the IMII research program 

led by Dr. Wonjae Chang (Principal Investigator). Nicola Harris designed and conducted culturing 

experiments and all lab work. Jonathan Vyskocil prepared and executed the sequencing data 

pipeline in mothur. Phylogenetic data analysis, figure preparation, and interpretation was done by 

Nicola Harris, Jonathan Vyskocil, and Joyce McBeth. All other data analysis, interpretation, and 

manuscript preparation was conducted by Nicola Harris under the supervision of Wonjae Chang 

and Joyce McBeth. The tables, figures, and references cited herein have been reformatted to fit the 

thesis style. 
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3.1 Abstract 

Conventional potash mining practices produce large quantities of hypersaline tailings and 

brine. Other environments such as salt lakes or oilfield brine can have similar sodium-dominated 

salt concentrations as these materials, but potash by-products also contain limited carbon sources. 

The present study builds our understanding of previously-understudied microbial community 

compositions in potash mine wastes. Specifically, we have characterized three types of hypersaline 

potash by-products – brine, coarse tailings, and fine tailings – from a potash mine in Saskatchewan, 

Canada. Both high-throughput amplicon sequencing of the 16S rRNA gene (V4 region) and 

culture-dependent plating techniques were employed to examine community composition and 

salinity tolerance. High-throughput sequencing identified a mixed community of archaea and 

bacteria within the brine pond sample and bacterially-dominated communities in the coarse and 

fine tailings. Twenty-two unique isolates that were relatives of genera observed in the high-

throughput sequencing results were identified from spread plates. Isolates included known 

halophilic and halotolerant Archaea (Haloferax and Halorubrum species) and Bacteria (including 

Halomonas, Marinobacter, and Dietzia species) and the majority of these isolates demonstrated a 

wide salinity tolerance (NaCl concentrations from 0-25% (w/v)). Some of the isolated species may 

have utility to potash companies to enhance the evaporation of brine ponds while others may be 

utilized for the biodegradation of hydrocarbons in highly saline conditions. This is the first study 

to utilize high-throughput sequencing to investigate membership and diversity of microbial 

communities within potash tailings and brine. It also contributes to the broader understanding of 

the distribution of halophilic and halotolerant microbes in natural and engineered environments.  

3.2 Introduction 

Canada was the largest producer and exporter of potash in the world in 2015, playing a 

large role in global fertilizer production (Marshall, 2015). Potash ore is sourced from an ore bed 

deposited by the evaporation of an ancient marine basin and is composed mainly of sylvite (KCl) 

and halite (NaCl), with some insoluble clays and minerals (Holter, 1969). Extraction and 

refinement of the raw ore produces two tonnes of NaCl salts for every tonne of refined KCl salts 

(Tallin et al., 1990), which generates large amounts of potash brine and tailings. Brine contains 

total salt concentrations on the order of 350 g/l (Maathuis & Van der Kamp, 2002) and small 
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amounts of process water from the mill including organic reagents (e.g. oils, amines, and/or 

flocculants) (Perucca, 2003; Vonhof, 1975). Tailings are composed mostly of NaCl salts, with 

lesser amounts of KCl, MgCl2, and insoluble clays and minerals (Tallin et al., 1990; Vonhof, 

1975). In Saskatchewan potash mines, brine is stored in retention ponds, recirculated into the mill, 

or disposed of through deep-well injection and the tailings are deposited in piles within the tailings 

management area (TMA) (Reid & Getzlaf, 2004; Tallin et al., 1990; UNEP, 2001).  

Environments with similarly high sodium salinity have recently become the focus of 

several microbial characterization studies, expanding the pool of knowledge on microbial 

communities and processes in extreme conditions (Narasingarao et al., 2012; Oren, 2015; Schubert 

et al., 2010). Environments where the salt concentrations are near saturation can house diverse 

microbial communities despite the harsh environmental conditions, but community make-up can 

vary worldwide depending on the ionic composition (for example, K:Na weight ratios), and 

nutrient levels (Park, 2012; Vreeland, 2012). Broadly, archaea tend to dominate the microbial 

community in environments having salinities above 230 g/l, such as the crystallizer ponds in solar 

salterns, but bacteria have also been observed at these high salinities (Antón et al., 2000; DasSarma 

& DasSarma, 2012). Microbial community studies of environments with similar chemical 

characteristics to potash mine wastes (near-saturation salt levels, low nutrient and carbon loadings, 

and neutral pH), are expected to report microbial communities similar to those in potash brine and 

tailings. Such environments include man-made solar salterns and naturally occurring evaporite 

deposits and salt lakes, 

Solar salterns are anthropogenic environments originating from seawater and can be 

chemically-similar to potash brine, with sodium-dominated ion compositions. Crystallizer ponds, 

the last and most concentrated evaporative ponds in solar salterns, contain total salt concentrations 

of up to 370 g/l (Ghai et al., 2011) although they can range from oligotrophic to eutrophic nutrient 

states (Dillon et al., 2013). Microbial studies have found microbes from all three domains of life 

that may also be found in potash tailings or brine communities, including organisms from the 

Eukarya: the alga Dunaliella and brine shrimp Artemia (Gunde-Cimerman et al., 2009; Litchfield 

& Gillevet, 2002). Archaeal diversity is generally higher than bacterial diversity (Ghai et al., 2011) 

and genera can include Halorubrum, and Haloquadratum (Dillon et al., 2013; Ghai et al., 2011; 

Gunde-Cimerman et al., 2009). Crystallizer ponds can also contain benthic mats comprised of 

cyanobacteria and anoxygenic phototrophs, layered according to gradients in light, oxygen, and 
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sulfide (Caumette, 1993), and communities often include the Proteobacteria genera Oceanicola, 

Salinibacter, Vibrio, Flavobacterium, and Pseudomonas (Antón et al., 2002; Fernández et al., 

2014; Ghai et al., 2011).  

Members of microbial communities found within evaporite deposits, including the ore bed 

that potash is mined from, may also be present in potash brine and tailings. As saline lakes or 

marine environments evaporate, solid layers of salts (halite or sylvite, for example) are deposited 

and can contain fluid inclusions with microbial life. These brine inclusions can have various ionic 

and organic material compositions, depending on the composition of the original body of water 

(Timofeeff et al., 2001). Culture studies have achieved isolations of mostly halophilic, Archaeal 

species from class Halobacteria (Haloarchaea) (Grant et al., 1998; Schubert et al., 2010) as well 

as one halotolerant bacterium that was closely related to a Bacillus species (Vreeland et al., 2000). 

Molecular studies have also found DNA sequences that are related to Haloarchaea genera 

including Haloarcula, Halobacterium, Halorubrum, Haloferax, and Halogeometricum (Gramain 

et al., 2011; Park et al., 2009; Radax et al., 2001), with some evidence for the presence of bacterial 

DNA (Fish et al., 2002).  

Although salt lakes have much broader ranges of salinity and nutrient levels than potash 

brine and tailings and thus are not a perfect analogue, they have been well-characterized with 

regards to their chemistry and microbiology and provide useful information on microbes that are 

adapted to survive at high salinities. Great Salt Lake in Utah has similar sodium-dominated ion 

ratios to potash brine and tailings and the northern arm of the lake has salinity reaching 330 g/l 

(Javor, 1989). The northern portion of Great Salt Lake, however, also has high biodiversity of both 

Bacteria and Archaea due to the presence of a petroleum seep with nitrogen and sulfur containing 

asphaltic oil that provides abundant carbon and nutrients for microbes (Tazi et al., 2014). Many of 

the operational taxonomic units (OTU) found there are unique from other hypersaline 

environments, including haloarchaeal representatives and hydrocarbon-degrading Proteobacteria 

(Tazi et al., 2014).  

Culturing studies have been conducted using potash mine materials as a source for 

microbial isolates. Various haloarchaeal species have been isolated, including Arhodomonas sp. 

(Genbank accession no. HQ833040), Haloarchaeum sp. (JN227878-JN227881), and Haloferax 

sp. (JX669135, JN787949-JN787950) from a flotation enrichment step and mineral samples from 

a potassium mining company in Russia (Saralov et al., 2012a; Saralov et al., 2012b; Saralov et al., 
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2013) and Halobacterium sp., Halococcus sp., and Haloarcula sp. from a brine pool and mineral 

samples within a British potash mine (Norton et al., 1993). As well, halobacterial isolates 

(Pseudomonas sp.) were found in the substrate covering of a potash tailings pile in Germany (Koch 

et al., 2012). The microbial communities associated with potash tailings and brine described in the 

current study has not been previously described in peer-reviewed literature or assessed using high-

throughput sequencing techniques.  

The present research aims to characterize the Bacterial and Archaeal communities that live 

within potash brine and tailings to provide insight into their compositions and diversity, contribute 

to the growing understanding of the distribution of extreme halophiles in natural and engineered 

environments, and suggest some implications of the microbes for the potash industry and in 

biotechnological applications. To accomplish this, the study’s objectives were to (i) compare the 

microbial community in potash mine brine, coarse tailings, and fine tailings, (ii) isolate and 

characterize heterotrophic, aerobic microbes from these materials, and (iii) explore how the 

microbiology relates to chemical compositions of potash brine and tailings. 

3.3 Materials and Method 

3.3.1 Sampling and chemical analyses 

Samples were collected using bleach-sterilized containers in June 2015 and July 2016 from 

a potash mine in Saskatchewan (SK), Canada, including brine from a retention pond and coarse 

and fine tailings from the mill. Subsamples of the June 2015 samples were sent to the 

Environmental Analytical Laboratory at the Saskatchewan Research Council (SRC; Saskatoon, 

SK, Canada) and tested for major cations (Ca2+, K+, Mg2+, Na+, SO42-) using inductively coupled 

plasma optical emission spectrometry (ICP-OES), chloride with the ferricyanide method, HCO3- 

by titration, nitrate using colorimetric methods, organic carbon content using persulfate oxidation, 

and the presence of metals by inductively coupled plasma mass spectrometry (ICP-MS), all using 

standard methods (American Public Health Association et al., 2012; USEPA, 1983). Nutrient 

levels of the July 2016 samples were measured at the SRC, including ammonia (total Kjeldahl 

nitrogen), nitrate (hydrazine reduction), organic carbon (persulfate oxidation), and phosphorus 

(ICP-MS) using standard methods. The pH of brine and porewater from tailings samples (July 

2016) was measured using a Hach HQ40d portable pH meter (Loveland, CO, USA). Salinity was 

calculated using the concentrations of major ions in each sample (Ca2+, K+, Mg2+, Na+, SO42-, Cl-, 
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HCO3-, and NO3-). Results are reported as the mean of triplicate analyses ± standard error, if 

applicable (Table 3-1).  

3.3.2 DNA extraction 

All DNA extractions were conducted using standard aseptic handling techniques. Brine 

was prepared for total DNA extraction by filtering 5 L samples through sterile, disposable bottle 

top filters (0.20 μm Thermo Scientific™ Nalgene™ Rapid-Flow™) in triplicate. Tailings samples 

were weighed into approximately 10 g aliquots in triplicate and all sample types were stored at – 

80°C until extractions were performed. DNA was extracted using the MO BIO PowerWater® Kit 

(brine) or the MO BIO PowerMax® Soil DNA Isolation Kit (tailings) following the supplier’s 

recommended protocol with minor modification (brine samples were initially vortexed for 10 min 

instead of 5 min). Tailings extractions were vacuum concentrated with infrared at + 50°C 

(CentriVap® micro IR Vacuum Centrifugal Concentrator, Labconco). All extractions were 

quantified using a Qubit® 2.0 Fluorometer and Qubit™ dsDNA HS Assay kit (Life Technologies) 

and the DNA quality was assessed using an Epoch Microplate Spectrometer with a Take3 plate 

(Biotek) at 260/230 and 260/280 nm.  

3.3.3 High-throughput amplicon sequencing analysis 

DNA extractions were sent to RTL Genomics (Lubbock, Texas, USA) for Illumina MiSeq 

high-throughput amplicon sequencing of the V4 region of the 16s rRNA gene using the universal 

(bacterial/archaeal) primers 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 806R (5’-

GGACTACHVGGGTWTCTAAT-3’) (Caporaso et al., 2011).  

Sequencing data was analyzed using the mothur software package (Schloss et al., 2009) 

and MiSeq data standard operating procedure (Kozich et al., 2013). Briefly, sequences were 

trimmed and aligned to the Silva reference database, chimeras were removed, and sequences were 

screened for a maximum length of 300 base pairs. Reads were classified using the Silva rRNA 

Database v119 and an 80% bootstrap value cut-off for taxonomic assignments. The sequence reads 

were then assigned to operational taxonomic units (OTUs) based on 97% sequence identity and 

the OTUs were classified. Sampling coverage was estimated using Good’s Coverage. Data were 

subsampled to 22020 sequences per sample for calculating the Yue and Clayton measure of 

similarity, analysis of molecular variance (AMOVA), community richness (Chao1 and ACE), and 
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alpha-diversity (inverse Simpson). The ACE richness estimates consider an abundant OTU to have 

ten or more individuals.  

3.3.4 Microbial isolation and identification 

Media was prepared using either nutrient broth (NB; Sigma Aldrich, N7519) or Reasoner’s 

2A agar (R-2A; Sigma Aldrich, 17209), one of four levels of sodium chloride amendment (0, 3, 

15, and 25% (w/v) NaCl), and 20 g/l agar (total) then autoclaved at 121°C for 15 minutes. Both 

nutrient sources are nonspecific and target heterotrophic microorganisms, however NB is used 

broadly as a rich nutrient source while R-2A is nutrient-poor and often used for groundwater 

studies. Standard aseptic handling techniques were used for media inoculation and culturing. 

Undiluted brine or tailings were spread onto agar plates with three biological replicates within 12 

h of sampling. Final plate counts were performed two weeks after the last isolates appeared and 

the concentration of colony forming units (CFUs) calculated. Single colonies showing unique 

colony or growth characteristics were picked and streaked onto the same plate-type they were 

isolated on three times to procure pure microbial cultures.  

DNA was extracted from pure cultures using an UltraClean® Microbial DNA Isolation Kit 

(MoBio). Partial 16S rRNA genes were amplified by polymerase chain reaction (PCR) on a 

Veriti™ Thermal Cycler (Applied Biosystems). The PCR mix contained Econotaq® Plus 2X 

Master Mix (Lucigen) and the following primer combinations: (i) 27F-1492R for bacteria or (ii) 

519F-1492R for archaea (5’-AGAGTTTGATCMTGGCTCAG-3’ and 5’-

GGWTACCTTGTTACGACTT-3’, respectively; 5’-CAGCMGCCGCGGTAATWC-3’). The 

presence and size of the amplicons was confirmed using gel electrophoresis (Lonza FlashGel™ 

System) on 1.2% agarose and with a run time of 8 min. The PCR products and sequencing primers 

(27F, 519F, and 1492R) were sent to the McGill University and Génome Québec Innovation 

Centre for Sanger sequencing (Montreal, Canada).  

The 16S rRNA gene sequences obtained for forward and reverse strands were trimmed, 

assembled, and manually-curated using Sequencher software (Gene Codes Corporation). 

Consensus sequences were then compared to existing genome libraries using the Ribosomal 

Database Project (RDP) version 11.4 from Michigan State University to determine species 

similarity and assign taxonomic affiliation. Phylogenetic trees were constructed using isolates, 

near-relative type-strains, and halotolerant microbes that are often found in highly saline 
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environments with MEGA7: Molecular Evolutionary Genetics Analysis software version 7.0. The 

maximum likelihood method was used with the Tamura-Nei substitution model, 

Methanospirillium hungatei (Archaea) or Aquifex aeolicus (Bacteria) as outgroups, and 1000 

bootstrap replicates (Kumar et al., 2015; Tamura et al., 2011). 

3.3.5 Isolate characterization 

Twenty-two isolate groups having similar gene sequences (≤ 1 base pair different, 

ambiguous base pairs considered acceptable) were identified and representatives were chosen for 

phenotypic characterization. Salt (0, 3, 15, and 25% NaCl (w/v)) and temperature (4, 22, and 37°C) 

tolerances as well as growth at different nutrient levels (NB and R-2A) were tested using streak 

plates. With the exception of the tested variable, the growth conditions for each test were identical 

to those used in each strain’s isolation (e.g. FTI17 was isolated at 37°C using R-2A agar with 3% 

(w/v) NaCl amendment, thus all salinity tests for this isolate were conducted at 37°C on R-2A 

agar). A negative result was assigned after two weeks without observed growth. Gram staining 

(VWR) and light microscopy (Nikon Eclipse LV100) was utilized to check consistency of cell 

shape and type for each representative with the nearest identified type-strain relative.  

3.3.6 Nucleotide sequence accession numbers 

Sanger sequencing results were submitted to the GenBank nucleotide archive 

(http://www.ncbi.nlm.nih.gov/genbank/) under accession numbers KX344919-KX344960. 

Sequences obtained from high-throughput amplicon sequencing data were submitted to the 

European Nucleotide Archive (http://www.ebi.ac.uk/ena) under project number PRJEB15442 and 

accession numbers ERS1355422-ERS1355425.  

3.4 Results  

3.4.1 Chemistry of potash brine and tailings  

The brine and pore water from coarse and fine tailings were all neutral in pH (6.99-7.49) 

and all samples were highly saline (370 g/l for brine and > 835 g/kg for tailings; Table 3-1). Sodium 

was the dominant cation, with milliequivalent concentrations greater than the next most 

predominant cation, potassium, by a factor of 2.1 (fine tailings) to 20.1 (coarse tailings). In 

comparison to the salt concentrations, toxic metal concentrations were much lower and generally 
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found on the scale of µg/l or µg/g (Supplementary Materials Table 3-4). Total organic carbon 

levels in brine and coarse tailings were 1 mg/l and ≤ 10 mg/kg, respectively, both below the 16.8 

mg/l cut-off suggested by Schut et al. (1997) and thus many of the microbes living within them 

could be oligotrophic. The fine tailings contained a higher concentration of organic carbon (32 

mg/kg) as well as a higher proportion of insoluble material than coarse tailings (27.5% as compared 

to 1.12%), including clays and metals (Supplementary Materials Figure 3-5 and Table 3-4).  

 

Table 3-1 Physicochemical characteristics of the potash brine and tailings and number of 

isolates for each sample type. Mean values are presented ± standard error.  

Parameter Brine (mg/l, except 
as noted) 

Coarse Tailings 
(mg/kg, except as 
noted) 

Fine Tailings 
(mg/kg, except as 
noted) 

Physical and major ions 

pH 7.49 ± 0.01 6.99 a 7.11 ± 0.01 

Total Alkalinity 60a NT NT 

Total Salinity  370 g/l a 1120 ± 20 g/kg 835 ± 5 g/kg 

Bulk Density  NT 0.957 g/cm3 a 0.839 g/cm3 a 

Water insoluble portion NT 1.12%a 27.6 ± 0.6% 

Ca2+  2000a 2570 ± 90  32500 ± 3000  

Cl-  219000 ± 1000  700000 ± 20000  460000 ± 3200  

K+  58200 ± 300  33200 ± 3900  132000 ± 8000  

Mg2+  1800a 1330 ± 30  24100 ± 2100  

Na+  89500 ± 200  379000 ± 6500  160000 ± 2000  

SO4
2-  1800a 3900 ± 200  28700 ± 1600  

Carbon and nutrients 

Organic Carbon 1a ≤ 10  32 ± 2  

Inorganic Carbon 14a <10  116 ± 4  

Total N 1.2 ± 0.1  ≤ 10  143 ± 12  

Total P <1  < 10  113 ± 7  

Isolation Experiments 

Observed CFU b ++ + +++ 

No. distinct isolates 6 5 19 
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Parameter Brine (mg/l, except 
as noted) 

Coarse Tailings 
(mg/kg, except as 
noted) 

Fine Tailings 
(mg/kg, except as 
noted) 

NT – not tested;  
a Standard error is 0 
b (+++) high, (++) medium, (+) low observed CFU compared to other plated samples 

 

3.4.2 High-throughput amplicon sequencing analysis 

Illumina MiSeq high-throughput amplicon sequencing was successful in two of the three 

brine extractions and one coarse tailings extraction. Amplification failures in all sample types were 

likely due to low DNA concentrations in extractions (≤ 0.01 ng/µl). To achieve a successful 

amplification, the fine tailings extractions were pooled and concentrated further at the sequencing 

facility; due to the different treatment and high degree of processing, this sample data should be 

interpreted with caution, and comparisons with the other sequencing data presented here are only 

general.  

A total of 206164 high-quality reads were obtained from all successfully sequenced 

samples, and samples ranged from 22037 (brine) to 89567 (coarse tailings) reads each. The most 

prevalent phylum in all samples was the Proteobacteria (40.6-89.3% of subsampled sequences), 

with high read counts for both classes Gammaproteobacteria and Betaproteobacteria (Figure 3-1). 

The highest number of sequences occurring within both brine and coarse tailings samples belonged 

to Halomonas sp., while substantial Marinobacter sp. sequences were present in the brine samples 

(up to 4.6% of sequence reads). The fine tailings data also had a high percentage of Proteobacteria 

sequences (40.5%), but differed from brine and coarse tailings because they showed high 

proportions of Cyanobacteria (16.5%, including Coleofasciculus sp. and Lyngya sp.), and many 

sequences related to chemolithotrophs including Deferribacter sp., Sulfurospirillum sp., and 

Sedimenticola sp. The Archaeal phylum Euryarchaeota was a considerable portion (up to 23.2%) 

of brine samples and sequences included the haloarchaea Halorubrum sp., Haloarcula sp., and 

Haloferax sp. Although differences in community composition can be observed, the overall 

difference in community make-up between sample-types was not found to be statistically 

significant (AMOVA, p-value 0.328). 
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Figure 3-1 Phylogenetic distribution of most abundant phyla in the potash brine and tailings 

samples. Sequences reads for each sample were subsampled to 22020 reads. The dendrogram is based 

on the Yue and Clayton measure of dissimilarity. (*) indicates sample that was pooled and highly 

processed before sequencing due to previous failed amplification.  

 

3.4.3 Microbial richness 

At 97% similarity cut-off, a total of 1069 OTUs were observed in the four sets of 

sequencing results. The brine and coarse tailings samples were very similar in the number of 

observed OTUs and in estimators of OTU richness (Table 3-2). The fine tailings sample had a 

higher number of observed OTUs (619) and subsequently had the highest richness estimators. 

Chao1 is the most commonly used richness estimator and is a robust test that predicts the minimum 

number of species present in a sample (Shen et al., 2003), while Ace uses a more complicated 

model based on the number of individuals shown for each OTU (single, rare, and abundant species) 

and tends to estimate greater number of species than Chao1. With good sampling coverage Chao1 

and Ace estimators converge; this is the case in these results.  

The Inverse Simpson diversity index, ranging from 1 (no diversity) to infinity, was 

calculated to compare these communities using OTU abundance and evenness. Brine ranged from 

1.45 to 3.24, while coarse tailings were on the low end of that range (1.57). Fine tailings, on the 

other hand, had a comparably higher diversity index (52.89). 
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Table 3-2  Sample richness described as total number of observed OTUs, Good’s coverage, 

species richness estimators, and diversity indices calculated for the microbial communities from the 

potash brine and tailings samples using a sub-sampled population (22020 reads).  

Sample Total OTUs Good’s Coverage 
Estimated Richness Estimated Diversity 

Chao1 Ace Inverse Simpson 

Brine 1 157 0.996 375.6 382.8 3.24 

Brine 2 128 0.998 255.5  289.0 1.45 

Coarse 148 0.997 286.3 439.3 1.57 

Fine 536 0.992 1160.6 1713.0 52.89 

 

3.4.4 Isolation culture-based analysis 

Microbial growth was observed on spread plates made from all three types of potash waste 

material for the full range of salinity tested (0-25% (w/v) NaCl). Fine tailings had the highest plate 

counts overall while coarse tailings had the lowest (Table 3-1, and Supplementary Materials Table 

3-5). The highest colony counts were observed on plates with 3-15% (w/v) NaCl amendments for 

both brine and fine tailings and brine samples only had 3 colonies appear on the 0% (w/v) NaCl 

plates. Coarse tailings produced the highest colony counts on plates with 0-3% (w/v) NaCl 

amendments. Colonies were slower to appear on the NB media than on R-2A agar, suggesting an 

adjustment period was required for growth. A total of 50 colonies with unique colony or growth 

characteristics were chosen for genetic-based identification and further testing.  

Analysis of the partial 16S rRNA gene sequences of 42 pure cultures revealed the presence 

of 22 unique isolates (Table 3-3). Of these, 2 were isolated from brine, 1 from coarse tailings, 14 

from fine tailings, and 5 isolates were observed in more than one sample-type. Similarity values 

provided by Ribosomal Database Project (RDP) indicate that the majority of unique isolates 

showed > 99% sequence similarity to previously cultured type strains reported in the 16S rRNA 

gene database and four different isolates showing > 97% sequence similarity.  

The four archaeal isolates belong to the phylum Euryarchaeota, class Halobacteria 

(Haloarchaea), like the sequences observed in brine high-throughput sequencing data (Figure 3-2), 

and belonged to either genus Halorubrum or genus Haloferax. The eighteen bacterial isolates 
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belonged to four distinct phyla: one isolate to Bacteroidetes, three to Actinobacteria, three to the 

Firmicutes, and eleven to Proteobacteria (eight within class Gammaproteobacteria and three 

within class Alphaproteobacteria; Figure 3-3). Genus-level relatives (at least 97% sequence 

similarity) of all isolated species, including Vibrio, Salinibacter, and Flavobacterium species, also 

appeared in the high-throughput amplicon sequencing data. 

 

Table 3-3 Distinct potash isolates as determined by 99% similarity of the 16S rRNA gene, the 

best match in the RDP database, the sample type each was isolated from, and characteristics.  

Distinct 
isolates 

RDP match 
(similarity score, 
%) 

Sample Type Isolation 
Media1 

Gram 
Stain 

Cell 
Shape 

Salt 
tolerance 
(% (w/v) 
NaCl) 

FTI21 Halomonas 
gudaonensis (99.5) 

brine, coarse tailings, 
fine tailings 

R-2A 
(15%) 

- short 
rods 

0-25 

FTI23 Halomonas 
shengliensis (99.8) 

brine, coarse tailings, 
fine tailings 

R-2A 
(15%) 

- short 
rods 

3-25 

BI05 Salicola salis (98.2) brine, coarse tailings R-2A 
(25%) 

- rods 0-25 

FTI24 Halorubrum 
saccharovorum 
(99.9) 

brine, fine tailings R-2A 
(25%) 

nt nt 3-25 

FTI19 Halomonas 
andesensis (99.1)  

coarse tailings, fine 
tailings 

R-2A 
(3%) 

- short 
rods 

0-25 

BI06 Alcanivorax 
venustensis (99.5) 

brine R-2A - short 
rods 

0-25 

BI09 Halorubrum 
californiense (99.2) 

brine NB (25%) nt nt 15-25 

CTI06 Staphylococcus 
epidermidis (100) 

coarse tailings R-2A + cocci 0-25 

FTI05 Bacillus pumilus 
(99.9) 

fine tailings NB + rods 0-25 

FTI12 Bacillus thuringensis 
(100) 

fine tailings R-2A + rods 0-25 
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Distinct 
isolates 

RDP match 
(similarity score, 
%) 

Sample Type Isolation 
Media1 

Gram 
Stain 

Cell 
Shape 

Salt 
tolerance 
(% (w/v) 
NaCl) 

FTI14 Croceicoccus 
naphthovorans 
(97.6) 

fine tailings R-2A - short 
rods 

0-15 

FTI08 Dietzia maris (99.8) fine tailings NB + cocci 0-25 

FTI07 Gordonia 
alkanivorans (99.8) 

fine tailings NB + cocci 0-15 

FTI25 Haloferax 
prahovense (99.8) 

fine tailings R-2A 
(25%) 

nt nt 0-25 

FTI16 Halomonas 
meridiana (99.8) 

fine tailings R-2A - rods 0-15 

FTI26 Halorubrum 
lipolyticum (99.5) 

fine tailings NB (25%) nt nt 15-25 

FTI17 Marinobacter 
adhaerens (99.8) 

fine tailings R-2A 
(3%) 

- rods 0-25 

FTI11 Microbacterium 
phyllosphaerae 
(99.8) 

fine tailings NB + rods 0-25 

FTI06 Pseudomonas 
xanthomarina (99.5) 

fine tailings NB - rods 0-25 

FTI09 Skermanella 
aerolata (99.2) 

fine tailings NB - rods 0-15 

FTI13 Sphingomonas jaspsi 
(98.3) 

fine tailings R-2A - rods 0-15 

FTI18 Zunongwangia 
profunda (99.7) 

fine tailings R-2A 
(3%) 

- rods 0-25 

1 NaCl amendment denoted in parentheses as w/v, if applicable 
 

Isolates demonstrated wide ranges of salt tolerance (Table 3-3). Using descriptions by 

DasSarma and DasSarma (2012), moderate salt tolerance (0-15% (w/v) NaCl) was demonstrated 

by 5 bacterial isolates, all from fine tailings, and high salt tolerance (0-25% (w/v) NaCl) was 
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demonstrated by 13 of the isolates from various sample types, including an archaeal isolate. Two 

of the archaeal isolates were extremely halophilic (15-25% (w/v) NaCl), and one bacterial and one 

archaeal isolate were moderately halophilic (3-15% (w/v) NaCl). All brine isolates were capable 

of growth at 25% (w/v) NaCl amendments, but tailings samples contained some species having 

lower tolerance. All unique isolates demonstrated growth on both R-2A and NB plates. They were 

also capable of growth at 4°C, 22°C, and 37°C indicating that they are tolerant of mesophilic and 

psychrophilic conditions.  

 

Figure 3-2 Maximum likelihood phylogenetic tree of archaeal isolates. Bootstrap values are 

shown for branches with ≥ 50% bootstrap support.  

3.5 Discussion  

Brine and coarse tailings samples had similar chemistry with regards to carbon, nutrients, 

and metals. In comparing high-throughput amplicon sequencing and culturing experiments, these 

sample-types also yielded similar OTU counts, taxonomic composition with a predominant 

Gammaproteobacteria portion, and number of isolates (Figure 3-4). The tailings pile, whose run-

off feeds into the brine pond, contains 10 times as much coarse tailings as fine tailings (Potashcorp, 

2010), thus these similarities are likely due to the relationship between the materials in the TMA. 

Observed genera from these samples are consistent with genera that are often seen in 

hypersaline environments, suggesting that there are viable communities existing within tailings 
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and brine. The haloarchaea that are common in salterns, evaporites, and salt lakes were observed 

in both high-throughput amplicon sequencing and isolates from brine, but absent from coarse  

 

Figure 3-3 Maximum likelihood phylogenetic tree of bacterial isolates. Bootstrap values are 

shown for branches with ≥ 50% bootstrap support. Phyla and class breakdown of Proteobacteria are 

indicated on the right.  
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tailings results. Specifically, the genera Halorubrum, isolated from brine samples, has also been 

found in saltern crystallizer ponds (Dillon et al., 2013) and in a halite evaporite (Gramain et al., 

2011). The most prevalent bacterial phyla in these samples – Proteobacteria, Firmicutes, and 

Actinobacteria – are also commonly observed in salterns and salt lakes (Ghai et al., 2011; Hollister 

et al., 2010). Bacterial isolates were mostly Gammaproteobacteria and genera that are commonly 

observed in marine environments and salt lakes (Alcanivorax, Halomonas, and Staphylococcus (a 

Firmicute)). Salicola sp. BI05, a brine and coarse tailing isolate, was closely related to strains that 

have been isolated from salterns and salt flats (Kharroub et al., 2006; Maturrano et al., 2006). 

Conversely, the fine tailings sample, having insoluble mineral phases and a higher carbon 

content, was chemically different from brine and coarse tailings samples which may have led to 

the difference in observed community compositions and diversities. The higher inorganic carbon 

content of these materials (116 mg/kg) may explain the presence of autotrophic OTUs in the high-

throughput amplicon sequencing results. Autotrophs were not targeted with the tested isolation 

conditions, but examples were observed in molecular data from the fine tailings sample. 

Chemolithotrophs included Nitrosomonas and Halothiobacillus, while phototrophs included 

various halotolerant Cyanobacteria. Autotrophs were not observed in the other two samples.  

Fine tailings yielded 14 isolated species (11 OTUs) that were not seen in the other sample 

types (Figure 3-4). Many of these were relatives of species reported to be hydrocarbon degraders 

like those found in the Northern Arm of Great Salt Lake, and their presence could be related to the 

higher observed organic carbon content (32 mg/kg) in this sample. Close-relative species that have 

reported hydrocarbon degrading capability include Dietzia maris (Bødtker et al., 2009), 

Pseudomonas xanthomarina (Isaac et al., 2013; Sopeña et al., 2014), Sphingomonas jaspsi 

(Ferrera‐Rodríguez et al., 2013; Zhou et al., 2012), and Bacillus thuringiensis (Al-Saleh et al., 

2009). 

It was expected that the high salinity of the brine and tailings would select for extremely 

halophilic microbes in these communities, but this was not consistently observed on isolation 

plates or in isolate growth tests. Salt tolerance observed in isolates was generally broader than that 

previously tested and/or reported in their closest relatives (e.g. Behrendt et al., 2001; Fernández-

Martínez et al., 2003; Satomi et al., 2006). The archaeal isolates FTI24, FTI26, and FTI25 

demonstrated tolerance of lower salinity than that reported in near-relatives, including Haloferax 

sp. FTI25 which grew on a 0% (w/v) NaCl plate in the present study (Cui et al., 2006; Enache et 
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al., 2007; Nuttall & Dyall-Smith, 1993). Two of the bacterial isolates, Halomonas sp. FTI23 and 

Gordonia sp. FTI07, grew on plates both higher and lower in salinity than previous reports 

(Kummer et al., 1999; Wang et al., 2007a), and eleven other isolates demonstrated higher salinity 

tolerance than their type-strain counterparts. The ability of most of the isolates to grow on the near-

saturation 25% (w/v) NaCl plates suggest that they are capable of growing within tailings and 

brine. The observed halotolerant characteristics instead of true halophilic characteristics could be 

due to the presence of microniches of different salinities within these materials, or reflect the 

different sources of microbes in this environment. Microbes could have been introduced to these 

materials from many different sources with a wide range of salinity and organic load, including 

the ore body, organic chemicals used in the milling process, wind deposition, and soils in contact 

with the TMA, and some species such as Bacillus sp. may be tolerating the salinity as spores 

instead of growing. 

 

 

Figure 3-4 Venn diagrams showing shared OTUs (97% sequence similarity) in sample types for 

(a) isolated microbes and (b) high-throughput sequencing.  

 

Regarding temperature tolerance, many close relatives also reported growth at the tested 

range of 4-37°C (e.g. Kaeppel et al., 2012; Romano et al., 2006; Xu et al., 2009), or have not been 

previously tested. Many halophilic archaea and bacteria demonstrate temperature tolerance, 

including psychrophilic species observed in Antarctic saline lakes (Bowers et al., 2009; DasSarma 

& DasSarma, 2012), thus the presence of species that can grow at 4°C is not surprising. Growth 
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was observed at lower temperatures in Halomonas sp. FTI21, Halomonas sp. FTI23, Halorubrum 

sp. BI09, Gordonia sp. FTI07, and Haloferax sp. FTI25 than their closest relatives (Enache et al., 

2007; Kummer et al., 1999; Pesenti et al., 2008; Wang et al., 2007a; Wang et al., 2007b). DNA 

comparison showed high similarity scores in the 16S rRNA gene between isolates and their closest 

type-strain relatives (mostly > 99%), and thus, the broader temperature tolerances observed in this 

study may be due to environmental exposure in brine isolates, introduced genomic DNA through 

lateral gene transfer as plasmids, or a function of the type of media used in tolerance tests.  

Low organic carbon concentrations (< 32 mg/kg) and the ability to perform spread plate 

colony counts without sample dilution suggest that there are low levels of biomass in these 

materials. The metagenomic data, however, indicate microbes with a broad range of metabolic 

functions. The fine tailings high-throughput sequencing yielded sequences related to sulfate-

reducing bacteria that can have implications in greenhouse gas emissions and iron corrosion 

including Desulfothermus sp. and Desulfocapsa sp., as well as the sulfur-reducing bacteria 

Sulfurospirillum sp. (Finster et al., 1997; Finster et al., 2013; Nunoura et al., 2007). Methanogenic 

archaea may be present in the tailings, indicated by relatives of Methanobrevibactor detected in 

the coarse tailings and of Methanocaldococcus detected in the fine tailings, and could emit 

methane a greenhouse gas (Cheng et al., 2009). Nitrogen fixing Rhizobia, important organisms in 

nitrogen cycling processes, were detected in both brine and fine tailings (Güereña et al., 2015). 

Other processes may occur that affect metal-cycling, including chromium reduction (Arthrobacter 

relatives in fine tailings and Clostridium relatives in both tailings samples (Camargo et al., 2004; 

Inglett et al., 2011)), iron redox reactions (Acidiferrobacter and Deferribacter relatives in fine 

tailings), and arsenic transformations (Pseudomonas sp. were detected in all high-throughput 

sequencing results and was isolated from fine tailings (Koechler et al., 2015). The extent of these 

processes within the tailings pile needs to be confirmed with further studies.  

An interesting application for the highly pigmented microbes observed in the system would 

be to encourage growth and use the increase in pigments and carotenoids for stimulating brine 

pond evaporation, a strategy that is used in saltern evaporation ponds (Javor, 1989). Increasing 

evaporation would decrease the need for deep-well injection of excess brine, which has recently 

been linked to increased seismic activity (Verdon et al., 2016). This technology has been 

mentioned but not thoroughly studied within the peer-reviewed literature (Davis, 2000; Rocha et 

al., 2012).  
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Potash brine and tailings may also be a good source for biotechnologically-relevant 

microbes adapted to extreme environments. Microorganisms from similar environments have been 

used in antibiotic production, hydrocarbon degradation, surfactant production, biological waste 

treatment, and heavy metal biosorption (Margesin & Schinner, 2001; Oren, 2002). The versatile 

halotolerance demonstrated by isolates, especially those that may possess hydrocarbon-degrading 

capabilities, would be useful in remediation or waste treatment in highly saline conditions such as 

those seen in the oil industry.  

3.6 Conclusion 

This study presents the first characterization of microbial communities within hypersaline 

potash brine and tailings environments. High-throughput sequencing results showed three 

communities dominated by Proteobacteria, and a mixed Archaea and Bacteria community in the 

brine sample. Isolation experiments yielded both Haloarchaea and Bacteria species. Isolates 

demonstrated a broad salt tolerance – many of them capable of growth in 0-25% (w/v) NaCl 

amendments – extending the current understanding of salt tolerance in these species. Some of the 

isolated species may have utility to potash companies to enhance the evaporation of brine ponds, 

and others may be capable of degrading organic pollutants in highly saline conditions. The high 

salt tolerance among isolates and similar genera with previously characterized hypersaline 

communities suggest that a viable microbial community exists in these materials in spite of low 

biomass.  
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3.8 Supplementary Materials 

3.8.1 X-ray diffraction (XRD) 

For mineralogical analysis, samples were dried in a + 65°C oven for one week then ground 

to a fine powder using mortar and pestle. The fine powder was packed into 0.034” polyimide 

tubing, sealed with Loctite® 454™ Prism® Instant Adhesive, and mounted onto a sample holder. 

These samples were taken to the Canadian Macromolecular Crystallography Facility bending 

magnet beamline (CMCF-BM) at the Canadian Light Source, mounted on a sample holder, and 

analyzed using powder x-ray diffraction at a wavelength of 0.6888 Å and detector distance of 

250.011 mm. Using GSAS-II software (Toby & Von Dreele, 2013), the resulting x-ray diffraction 

patterns were calibrated using lanthanum hexaboride (LaB6) as a standard, then integrated to 

linearize the spectra using a blank polyimide tube to minimize background if needed. Mineral 

phases were identified using Match! 2 software to match diffraction patterns of the samples to 

reference diffraction patterns using the Crystallography Open Database (COD) (Downs & Hall-

Wallace, 2003; Gražulis et al., 2009; Gražulis et al., 2012). 

Spectra were consistent with the chemistry data obtained from the SRC (Table 3-1) and 

indicated that Halite (NaCl) is the major fraction of all three sample types (43.56-66.69% of peak 

area), while Sylvite (KCl) is the second highest fraction (13.74-34.15%) (e.g. Figure 3-5). These 

two mineral phases alone were able to account for more than 69% of peak intensity for all three 

sample types. Fine tailings had an additional three phases to cover a total of 94.90% of the 

diffraction peak profile: dolomite, anhydrite, and quartz, all phases that are expected with the 

Saskatchewan ore bed.  
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Figure 3-5  Example of XRD spectra showing evaporated brine mineralogy.  

 

3.8.2 ICP-MS analysis 

Table 3-4 Metal composition of potash brine and tailings. Mean values are presented as ± 

standard error.  

Parameter a Brine (mg/l, except as 
noted) 

Coarse Tailings (mg/kg, 
except as noted) 

Fine Tailings (mg/kg, 
except as noted) 

Aluminum 0.76 ± 0.01 640 ± 20 12200 ± 700 
Arsenic 0.01 b 0.23 ± 0.03 1.2 ± 0.1 
Barium 0.82 ± 0.01 2.73 ± 0.13 41 ± 3 
Beryllium ND ND 0.4 b 
Boron ND ND 24 ± 1 
Chromium 0.17 b 0.70 b 17 ± 2 
Cobalt ND ND 2.6 ± 0.3 
Copper 0.75 b ND 2.3 ± 0.5 
Iron 0.80 ± 0.01 340 ± 10 6000 ± 300 
Lead ND 0.1 b 0.5 b 
Manganese 3.0 b 7.5 ± 0.2 83 ± 7 
Molybdenum 0.04 b ND 0.1 b 
Nickel 0.12 b 0.6 b 11.5 ± 1.0 
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Parameter a Brine (mg/l, except as 
noted) 

Coarse Tailings (mg/kg, 
except as noted) 

Fine Tailings (mg/kg, 
except as noted) 

Selenium 0.13 ± 0.01 ND 0.2 b 
Silver ≤ 0.009 ND ND 
Strontium 36 b 14 b 98 ± 8 
Tin ND ND 0.3 b 
Titanium ND 19 ± 1 90 ± 7 
Uranium ND ND 0.3 b 
Vanadium 0.01 b 0.8 b 18 ± 1 
Zinc 0.25 ± 0.01  ND 11 ± 1 
ND – not detected  
a Tested and not detected in any samples: Antimony, Cadmium, and Thallium  
b Standard error is 0  

 

3.8.3 Colony forming units 

Table 3-5  Potash isolation plate counts.  

 Media (w/v NaCl) Observed Colony Counts Per Plate Mean Observed 
Colonies 

Mean Colony 
Counts (/g 

sample) 
Brine 
R-2A 0 0 3 1 10 
R-2A (3%) 192 214 nc 203 2030 
R-2A (15%) nc nc 270 270 2700 
R-2A (25%) nc nc 180 180 1800 
NB 0 0 0 0 0 
NB (25%) 47 150 0 65.7 657 
Coarse Tailings 
R-2A 11 51 162 74.67 194 
R-2A (3%) 141 TNTC TNTC TNTC TNTC 
R-2A (15%) TNTC 50 TNTC TNTC TNTC 
R-2A (25%) 20 8 2 10 26 
NB 147 40 48 78.3 135 
NB (25%) 55 19 4 26 58 
Fine Tailings 
R-2A 4 7 4 5 50 
R-2A (3%) TNTC TNTC TNTC TNTC TNTC 
R-2A (15%) TNTC TNTC TNTC TNTC TNTC 
R-2A (25%) 354 TNTC TNTC TNTC TNTC 
NB 17 4 8 9.7 97 
NB (25%) 173 206 139 172.7 1727 
nc - not countable; TNTC - too numerous to count 
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4 A FEASIBILITY STUDY TO DEVELOP BACTERIAL BIOSORBENTS FROM 
POTASH MINE TAILINGS FOR THE REMOVAL OF CU(II) AND CR(VI) FROM 
SALINE GROUNDWATER2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
2 This chapter was written in joint authorship with Wonjae Chang, James J Dynes, and 

Joyce M McBeth. The study is part of the IMII research program led by Dr. Wonjae Chang 

(Principal Investigator). Nicola Harris designed and conducted experiments. STXM images were 

collected by Nicola Harris and James Dynes, and STXM data analysis and figure preparation was 

done by James Dynes. FTIR figure preparation was done by Blain Paul. All other data analysis, 

interpretation, and manuscript preparation was conducted by Nicola Harris under the supervision 

of Wonjae Chang and Joyce McBeth. The tables, figures, and references cited herein have been 

reformatted to fit the thesis.  
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4.1 Abstract 

Removal of metals from contaminated water can be accomplished using biosorbents 

derived from waste biomass. Biosorption studies however, have indicated that the presence of salts 

can greatly decrease metal adsorption; this may be due to increased ionic strength, or competition 

for binding sites. This study investigated the use of halotolerant Croceicoccus sp. FTI14, isolated 

from hypersaline potash mine tailings, as a biosorbent for the removal of dissolved Cu(II) and 

Cr(VI) from saline groundwater (0.55 M ionic strength). Biosorption performance of the oven-

dried and finely-ground material was evaluated using batch biosorption experiments at varied ionic 

strengths, coupled with scanning X-ray transmission microscopy (STXM) and Fourier Transform 

Infrared (FTIR) technology. With 40 mg/l initial metal concentrations, FTI14 was capable of 40.3 

± 0.7% (16.3 ± 0.5 mg/g) and 19.3 ± 0.1% (7.8 ± 0.1 mg/g) Cu(II) removal from deionized water 

and saline groundwater, respectively. The observed Cu(II) uptake (meq/g) was higher than Cr(VI) 

by a factor of 6.3-28.7 and uptake decreased as ionic strength increased. Adsorbent structure and 

association between metal and biomass was visualized using STXM and FTIR spectra, and the 

results were consistent with a change in amide functional groups on the biomass after metal 

exposure. These findings suggest that removal of metals from salt-impacted water is possible using 

biosorbents derived from salt-tolerant bacteria.  

4.2 Introduction 

Metal contamination is a serious concern due to its persistence in the environment, its 

tendency to accumulate through the food chain, and the toxic effects it has on many organisms 

(Aryal & Liakopoulou-Kyriakides, 2015). In 2016, there were more than 3000 active metal-

contaminated sites managed by the Canadian government, according the Canadian Federal 

Contaminated Site Inventory (Environment Canada, 2016). Metals can be released into the 

environment through spills or chronic low level discharges in wastewater or industrial effluents 

(Volesky & Holan, 1995), often in association with inorganic salts (Chen et al., 2010; Panno et al., 

2006).  

Biosorption is a growing field in biotechnology used for environmental remediation and 

wastewater treatment (Vijayaraghavan & Yun, 2008). Many types of biological material including 

algae, seaweed, bacteria, fungi, plant material, and agriculture and food process wastes such as 
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crab shells have demonstrated metal adsorption capability (Crini, 2006; Michalak et al., 2013; Niu 

et al., 2007). These materials can remove metals that form cations in solution such as Cu(II) and 

those that form anions in solution such as Cr(VI) (Table 4-1). Biological materials have excellent 

sorption capacity, comparable with commercial synthetic cation exchange resins (Ahluwalia & 

Goyal, 2007) and often perform better than traditional sorbents, especially in dilute systems (Gabr 

et al., 2008). Biosorption is effective when contaminant concentrations are below 100 mg/l, where 

chemical and electrochemical processes are ineffective (Wang & Chen, 2009). Further, because 

biosorbent materials are generally derived from natural or waste material sources, biosorption is 

often considered to be more cost-effective than technologies such as ion exchange and reverse 

osmosis (Ahluwalia & Goyal, 2007; Nourbakhsh et al., 1994; Vijayaraghavan & Yun, 2008).  

 

Table 4-1  Highest reported values of metal uptake of Cu(II) and Cr(VI) in biosorption 

literature.  

Metal 
(valence) 

Biosorbent Metal Uptake1 
(mg/g) 

Reference  

Cu(II) Bacillus firmus protein 381 Salehizadeh & Shojaosadati (2003) 
Cr(VI) Activated sludge 294.0 Aksu et al. (2002) 
Cr(VI) Aeromonas caviae 284.4 Loukidou et al. (2004) 
Cu(II) Zoogloea ramigera 270 Norberg & Persson (1984) 
Cr(VI) Pachymeniopis sp. 225 Lee et al. (2000) 
Cu(II) Aspergillus terreus 224 Gulati et al. (1999) 
Cu(II) Penicillium simplicissimum 112.3 Li et al. (2008) 
Cu(II) Thiobacillus ferrooxidans 198.5 Ruiz-Manriquez et al. (1998) 
Cu(II) Spirulina sp.  196 Chojnacka et al. (2005) 
Cr(VI) Spirulina sp.  185 Chojnacka et al. (2005)  
Cr(VI) Rice hulls 164.3 Roy et al. (1993) 
Cr(VI) Chlorella minutissima 162.2 Roy et al. (1993) 
Cu(II) Aspergillus terreus 160-180 Gulati et al. (2002) 
Cu(II) Arthrobacter sp.  148 Veglio et al. (1997) 
Cr(VI) Staphylococcus xylosus 143 Ziagova et al. (2007) 
Cu(II) Penicillium chrysogenum  108.3 Deng & Ting (2005) 
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Metal 
(valence) 

Biosorbent Metal Uptake1 
(mg/g) 

Reference  

Cu(II) Pseudomonas putida 96.9 Uslu & Tanyol (2006)  

1 Metal uptake as reported, not necessarily at maximum 
 

Biological material contains charged surface molecules that are able to attract and react 

with charged metals, dyes, or fluorides as well as hydrophobic sites that can bind organic 

molecules (Çabuk et al., 2006; Green-Ruiz, 2006; Michalak et al., 2013; Nacèra & Aicha, 2006; 

Öztürk, 2007; Uslu & Tanyol, 2006). In metal biosorption, these materials are used independent 

of metabolic mechanisms to physically or chemically bind and remove metals from a gas or liquid 

phase and can be used to treat dilute wastewater or environmental spills (Aryal & Liakopoulou-

Kyriakides, 2015).  

Bacterial biomass can have particularly high metal uptake capacities and cell surface 

carries an overall negative charge at neutral pH levels (Öztürk et al., 2004). Lactobacillus 

acidophilus was able to remove 800 mg of arsenic per gram of dried biomass (Singh & Sarma, 

2010), almost doubling its own weight in removed metal. Similarly, an uptake capacity of 714 mg 

of Cr(III) was reported per gram of Rhodococcus opacus (Calfa & Torem, 2008). Due to their 

small size of 0.01-0.091 μm3 (Fauteux et al., 2015; Huete-Stauffer et al., 2016), bacteria have a 

high surface area that favors adsorption kinetics, and often present hydrophilic and gel-like 

surfaces that encourage adsorption (Volesky, 2003). The bacterial cell wall presents several 

functional groups identified in binding dissolved metals, including the amino, amido, sulfydryl, 

and carboxyl groups in various proteins, and hydroxyls in polysaccharides (Volesky & Holan, 

1995; Wang & Chen, 2009). However, the availability of a functional group for adsorption can be 

affected by steric or conformational barriers.  

While many biosorption studies report findings from single-solute systems, natural- and 

wastewaters contain a mixture of chemicals and minerals that greatly impact adsorption 

performance (Cotoras et al., 1992). Inhibition may be caused by competition at binding sites, 

changes that affect the electrical double layer or metal activity, or complexes forming between 

metal and salt ions such as chloride (Shukla et al., 2002; Vijayaraghavan & Yun, 2008). Adsorption 

mechanisms that use electrostatic attraction are especially affected (Volesky, 2003). For example, 

Dönmez and Aksu (2002) found that Dunaliela algae could remove 37.7 mg/g of Cr(VI) in solution 
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with 0% (w/v) NaCl, but this was decreased to 13.4 mg/g in solution with 20% (w/v) NaCl. An 

advantage, however, of using biological adsorption materials is that the diversity and specificity 

of available binding sites can allow for selective adsorption (i.e. the selective adsorption of Cu(II) 

over Na), a property that can make synthetic adsorbents costly.  

In general, biosorption has been proposed as a promising economic and environmentally 

friendly alternative to conventional metal removal methods (Gadd, 2009), but the presence of salts 

in the system can greatly impact metal removal performance (Wang et al., 2016; Zhu et al., 2015). 

Ams et al. (2013) suggested that the adsorption of metals from hypersaline systems by halophilic 

organisms – those that are adapted to living in hypersaline environments – is increased compared 

to adsorption by non-halophiles. Their study found that using halophilic bacteria as an adsorbent 

led to an increase in adsorption at an ionic strength of 4 M compared to adsorption at 2 M. Species 

that can live in high salt concentrations need to tightly control ion permeability, resulting in 

bacterial cells that can have distinctive cell envelope characteristics and increased negative charge 

in phospholipids (Kushner & Kamekura, 1988; Schneegurt, 2012; Vreeland, 1987) that may 

contribute to improved metal adsorption capabilities. Adaptations can include proteins with highly 

negatively-charged residues, a cell wall with increased concentration of ion pumps, or the 

accumulation of compatible amino acids or sugars within the cell (DasSarma & DasSarma, 2012; 

Zhuang et al., 2010). The effects of these adaptations on metal uptake are not yet clearly defined.  

The available literature for metal adsorption by halophilic and halotolerant bacteria is 

somewhat limited, with most of the published studies on this topic having taken place in the last 

ten years. Metal removal ranges from 5% Zn uptake by purple non-sulfur bacteria (Amoozegar et 

al., 2012) to 92% removal of Hg by Bacillus sp. (Green-Ruiz, 2006). Further, few studies have 

been conducted using halophilic or halotolerant bacterial adsorbents in the presence of salts (for 

example: Amoozegar et al., 2012; Ams et al., 2013; Ghazvini & Mashkani, 2009), other metal ions 

(Panwichian et al., 2010), industrial waste water, or natural water.  

Waste biomass derived from hypersaline environments such as potash mine tailings have 

not been extensively considered as potential metal biosorbents under saline conditions. The 

specific objectives for the current study were: (1) isolate a halotolerant bacterium from hypersaline 

mine tailings and prepare the biomass as a biosorbent, (2) conduct batch biosorption experiments 

to measure the adsorption of copper (Cu(II)) and chromium (Cr(VI)) as examples of cationic and 

anionic contaminants, respectively, and compare performance in deionized water, groundwater, 
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and saline groundwater, and (3) evaluate effectiveness of the biosorbent using atomic absorption 

spectrophotometry (AAS), scanning X-ray transmission microscopy (STXM), and Fourier 

Transform Infrared (FTIR) analysis. This study will demonstrate the feasibility of using a 

halotolerant biosorbent from potash mine tailings to remediate metals from saline groundwater at 

concentrations relevant to contaminated sites.  

4.3 Materials and Method 

4.3.1 Isolation, strain selection and culturing 

Isolates were obtained from potash mine tailings using nutrient broth (NB; Sigma Aldrich, 

N7519) or Reasoner’s 2A agar (R-2A; Sigma Aldrich, 17209) spread plates with NaCl 

amendments between 0 and 25% (w/v). Standard aseptic handling techniques were used for all 

culturing and DNA extractions. After pure cultures were obtained, DNA was extracted using an 

UltraClean® Microbial DNA Isolation Kit (MoBio) and the 16S rRNA gene was amplified by 

polymerase chain reaction (PCR) on a Veriti™ Thermal Cycler (Applied Biosystems) using the 

27F (5’-AGAGTTTGATCMTGGCTCAG-3’) and 1492R primers (5’-

CAGCMGCCGCGGTAATWC-3’). Sanger sequencing of the 16s rRNA gene performed at the 

McGill University and Génome Québec Innovation Centre (Montreal, Canada) was used to 

identify close relatives.  

Using Sequencher software (Gene Codes Corporation), the 16S rRNA gene sequences 

were trimmed, assembled, and manually curated, then the consensus sequence was compared using 

the Ribosomal Database Project (RDP) from Michigan State University. A maximum likelihood 

phylogenetic tree was constructed using MEGA7: Molecular Evolutionary Genetics Analysis 

version 7.0 with the consensus sequence and near-relative type-strains. The tree was determined 

using the Tamura-Nei substitution model, Aquifex aeolicus as an outgroup, and 1000 bootstrap 

replicates (Kumar et al., 2015; Tamura et al., 2011). 

Isolates were tested for salt- (0, 3, 15, and 25% NaCl (w/v)) and temperature tolerance (4, 

22, and 37°C). Microscopy was performed (Nikon Eclipse LV100) using Gram staining (VWR) 

to determine cell shape and type. Growth curves of fast-growing halotolerant isolates were 

determined by optical density measured at 600 nm using an Epoch Microplate Spectrometer, after 

growth in Reasoner’s 2A broth (R-2A, Himedia M1687) with 30 mg/l NaCl amendment and 

transfer to a 96-well plate with flat-bottomed wells (Supplementary Materials Figure 4-15).  
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Croceicoccus sp. FTI14 was selected for biosorption studies due to its fast growth. Cultures 

were grown in R-2A broth in a 37°C shaking water bath (80 rpm) for 2-4 days until solution was 

turbid and bright yellow in colour.  

Potash tailings samples were analyzed for: major cations (Ca2+, K+, Mg2+, Na+, and SO42-) 

using inductively coupled plasma optical emission spectrometry (ICP-OES) method; chloride with 

the ferricyanide method; HCO3- by titration; nitrate with colorimetric methods; and metals using 

inductively coupled plasma mass spectrometry (ICP-MS). These analyses were performed at the 

Environmental Analytical Laboratory at the Saskatchewan Research Council (SRC; Saskatoon, 

Canada) using standard methods (American Public Health Association et al., 2012; USEPA, 1983). 

4.3.2 Biosorbent preparation 

Dried biomass adsorbent materials were prepared following an adapted procedure from 

Srinath et al. (2002) (Figure 4-1). After the growth period, cultures were poured into 50 ml conical 

tubes and centrifuged at 4000×g for 10 minutes to separate biomass from the growth media. 

Supernatant was then poured off and the biomass was rinsed with sterilized Milli-Q water to 

remove any residual media. Biomass was oven-dried overnight at 65 ± 5°C (Aksu et al., 2002), 

resulting in hard pellets. These were then ground to a fine powder using an electric hand-held 

grinder and weighed. The prepared adsorbent was stored in a desiccator at room temperature until 

used in further experiments. 

 

 

Figure 4-1 Dried FTI14 preparation procedure: culture growth, centrifugation, oven-drying, 

and grinding to fine powder.  
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4.3.3 Solution preparation 

Groundwater was sampled from a rural well in Saskatchewan, Canada. It was tested for 

major ions by the Environmental Analytical Laboratory at the SRC using the same methods 

described in Section 4.3.1. Ionic strength was calculated using major ions (Ca2+, K+, Mg2+, Na+, 

SO42-, Cl-, HCO3-, and NO3-) according to the formula:  

 

𝐼𝐼 = 1
2
∑ 𝑐𝑐𝑖𝑖 𝑧𝑧𝑖𝑖2               (4.1) 

 

where ci is the molar concentration of an ion species and zi is its valency.  

All glassware was washed with 0.1 M nitric acid then rinsed three times with Milli-Q water, 

and bottles for chemical storage were then autoclaved. Stock metal solution (40 mg/l) was prepared 

by mixing 3.133 ml of CuSO4 0.1 M solution (Fluka 35185) or 12 mL K2CrO4 1/30 M solution 

(Fluka 35157) in 500 ml of deionized water (DI), groundwater (GW), or groundwater with 30 g/l 

NaCl amendment (GW+Na). Initial concentrations were chosen to be more representative of 

contamination levels than those commonly used in biosorption experiments (Chergui et al., 2007; 

Naik & Furtado, 2014; Öztürk, 2007), but high enough for detection in atomic absorption 

spectrophotometry (AAS), STXM, and FTIR analysis. A Hach HQ40d portable pH meter 

(Loveland, CO, USA) was used to measure solution pH, which was adjusted using HCl and NaOH. 

Solutions were filter-sterilized into glass bottles using sterile disposable bottle top filters (0.20 μm 

Thermo Scientific™ Nalgene™ Rapid-Flow™). 

4.3.4 Metal biosorption experiments 

Batch adsorption experiments were performed at pH levels based on the literature: 4.0-5.0 

for dissolved Cu(II) and 2.0-3.0 for dissolved Cr(VI) (Zouboulis et al., 2004). The optimum pH 

for Cu(II) biosorption is often reported to be pH 5.0-6.0 in the literature (Naja & Volesky, 2008; 

Subbaiah et al., 2011). However, negative control tests were conducted (without the addition of 

biomass) at approximately pH 5.5 and resulted in 75 and 90% removal of Cu(II) from GW and 

GW+Na, respectively (data not shown). Tests were repeated with pH 4.5 and no abiotic removal 

of Cu(II) was observed. A target pH of 4.0-5.0 was chosen for further tests. The adsorption 

experiments were conducted in triplicate in 50 ml conical centrifuge tubes using 10 ml of metal 
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ion solution and 1 g/l biosorbent concentrations. All treatments were conducted at 22 ± 1°C and 

agitated on a shaker at 200 rpm. Tests were conducted first using 40 mg/l Cu(II) and Cr(VI) ion 

solutions in DI, GW, and GW+Na, then with concentrations adjusted to 8, 16, 24, and 32 mg/l with 

DI for both metals and GW and GW+Na for Cu(II). Negative control experiments were conducted 

in triplicate without the addition of biomass.  

More than 85% of Cu(II) uptake occurred within the first 30 min and the system reached a 

maximum uptake after 120 minutes of contact time (Supplementary Materials Section 0 and Figure 

4-16). Subsequent tests were all conducted using a 120 min (2h) shaking period. After shaking, 

tubes were centrifuged at 4000 rpm for 10 min (Eppendorf 5804 R). Supernatant was analyzed for 

pH and residual metal ion concentrations in triplicate, then averaged. Metal concentrations were 

measured using a flame atomic absorption spectrophotometer (AAS) (Thermo Scientific iCE 

3000) at 324.8 and 357.9 nm for Cu and Cr, respectively. Results are reported as the average of 

the three replicate test values ± standard error. Solute uptake was calculated using the following 

equation (Vijayaraghavan & Yun, 2008): 

 

𝑄𝑄 = 𝑉𝑉𝑜𝑜𝐶𝐶𝑜𝑜−𝑉𝑉𝑓𝑓𝐶𝐶𝑓𝑓
𝑀𝑀

              (4.2) 

 

where Q is the solute uptake (mg/g), Co and Cf are the initial and final solute concentrations 

(mg/l), respectively; Vo and Vf are the initial and final solution volume in liters, respectively; and 

M is the mass of dried FTI14 (g).  

T-tests were used to compare initial and final mean values in biosorption experiments and 

one-way ANOVA with Bonferroni was utilized for the comparison of mean uptake in DI, GW, 

and GW+Na adsorption systems, both using GraphPad Prism 6.0 (GraphPad Software Inc.). Linear 

regression was performed for affinity calculations from isotherms to determine R2 values using 

IBM SPSS Statistics for Windows, version 22.0 (IBM Corp.). 

4.3.5 Biosorption modeling and statistical analysis  

Isotherms were compared to the Langmuir and Freundlich adsorption models based on the 

nonlinear squares method (Volesky & Holan, 1995). The Langmuir isotherm model uses the 

following equation: 
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𝑞𝑞 = (𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐿𝐿𝐶𝐶𝑓𝑓)/(1 + 𝐾𝐾𝐿𝐿𝐶𝐶𝑓𝑓)             (4.3) 

 

where q is solute uptake (mg/g), qmax is the maximum uptake (mg/g), Cf is the final solute 

concentration (mg/l), and KL is the Langmuir constant (L/mg), related to affinity. The Freundlich 

isotherm model uses the form:   

 

𝑞𝑞 = 𝐾𝐾𝐹𝐹𝐶𝐶𝑓𝑓
1/𝑛𝑛                (4.4) 

 

where q is solute uptake (mg/g), Cf is the final solute concentration (mg/l), n is the Freundlich 

exponent (dimensionless) and KF [(mg/g)(L/mg)1/n] is the Freundlich constant.  

The fit of the models was assessed with Akaike’s Information Criterion (AIC):  

 

AIC = 𝑁𝑁 ln SSE
𝑁𝑁

+ 2𝑁𝑁p + 2𝑁𝑁𝑝𝑝(𝑁𝑁𝑝𝑝+1)
𝑁𝑁−𝑁𝑁𝑝𝑝−1

            (4.5) 

 

where N is the number of data points and Np is the number of parameters in the model. The AIC 

values were compared using the evidence ratio:  

 

Evidence ratio = 𝑒𝑒−0.5∆             (4.6) 

 

where Δ is the absolute value of the difference in the AIC values of the two models.  

Statistical analyses were run using GraphPad Prism 6.0 (GraphPad Software Inc.). Graphs 

show mean values with error bars indicating standard error.  

4.3.6 Synchrotron-based STXM analysis 

Residual adsorbent from 40 mg/l Cu(II) biosorption experiments in all water types and 

Cr(VI) biosorption experiments in DI was characterized using synchrotron-based STXM analysis 

to identify the location of metals within the biomass. Adsorbent samples were rinsed with sterile 

Milli-Q water then 1-5 µl of adsorbent suspension in water were deposited onto a Si3N4 window 

(1x1 mm, thickness 75 nm on 200 µm thick Si chip, 5x5 mm, Norcada Inc., Edmonton, Canada) 

following a procedure similar to Obst et al. (2009). Each sample was slowly spread across window 
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area by gravity – allowing the adsorbent to stick to the window surface – and air-dried. They were 

pre-screened using optical microscopy to choose representative areas of each sample type.  

Imaging and spectromicroscopy was performed on the Soft X-ray Spectromicroscopy (SM) 

beamline at the Canadian Light Source (CLS) in Saskatoon, Canada, using the STXM end station 

(Kaznatcheev et al., 2007). The beamline was operated in the energy range of 130-2500 eV, with 

a spatial resolution of 30 nm, and resolving power of 3000 E/ΔE. Image difference maps were 

derived by subtracting the off-resonance image (280 eV for C 1s or 925 eV for Cu) from the on-

resonance image (288.2 eV for peptide bond of proteins or 931 eV for Cu(II) and 934.3 eV for 

Cu(I)) to confirm the presence of biomass or Cu, respectively. Composite maps were derived from 

C 1s (280-320 eV), Cu 2p (922-940 eV), and the Cr 2p edges (566-616 eV) stacks by spectral 

fitting with selected reference spectra for spatial correlation analysis (Dynes et al., 2006). 

Reference compounds included human serum albumin (protein), xanthan gum (polysaccharide), 

1,2-dipalmitoyl-sn-glycero-3-phosphocholine (lipid), CuSO4, Cu2O, and K2CrO4.  

4.3.7 Fourier transform infrared (FTIR) spectroscopy  

IR spectra of dried FTI14 before and after exposure to 32 mg/l Cu(II) or Cr(VI) in DI were 

recorded at room temperature on a Renishaw Invia Reflex Raman Microscope (Renishaw, 

Gloucestershire, UK) fitted with a IlluminatIR II FTIR microscope accessory (Smith’s Detection, 

Danbury, CT). 256 scans were accumulated for each spectrum in the region of 4400-400 cm-1 and 

compared to the spectrum produced by dried FTI14 before metal exposure. All samples were 

rinsed with DI and then air-dried overnight. They were then prepared as KBr pellets using 1 mg 

of sample carefully ground with 99 mg of KBr. 

4.3.8 Metal leaching 

After biosorption reactions were performed, spent biomass from 40 mg/l systems was 

tested for leaching properties. Metal and biomass solutions were separated by centrifugation, then 

the supernatant poured off. Biomass was then suspended in DI (approximate pH of 5.8) in 

duplicates without shaking for 24 hours at room temperature (22 ± 1°C). Mixtures were centrifuged 

at 4000 rpm for 10 min and the supernatant analyzed for dissolved metal concentrations.  
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4.4 Results and Discussion 

4.4.1 Isolate and tailings characteristics 

Isolate FTI14 formed small, round colonies that were bright yellow on R-2A plates with 

0% NaCl (w/v) amendment (Figure 4-2). Growth tests determined that FTI14 was capable of 

growth on both NB and R-2A plates and at 4-37°C. Growth was observed without salt amendment 

as well as at 3 and 15% NaCl (w/v) amendments, indicating that it was moderately halotolerant 

(DasSarma & DasSarma, 2012). Light microscopy revealed that cells were Gram negative, short 

rods that were arranged in chains (data not shown).  

Comparison of the sequenced 16s rRNA gene with type strains in the Ribosomal Database 

Project (RDP) indicated a match with Croceicoccus naphthovorans E4A9 (97.6% similarity 

score). An Alphaproteobacteria, the Croceicoccus genus was recently described within the 

Erythrobacteracea family and is noted for its yellow colour. Other members of this genus were 

also isolated from saline environments – C. marinus from deep sea sediment (3.4% salinity) and 

C. naphthovorans from a marine biofilm (Huang et al., 2015; Xu et al., 2009). C. naphthovorans 

was also identified as a potential polycyclic aromatic hydrocarbon (PAH) degrader, but no 

members of this genus have been studied in-depth for biotechnology applications, including 

biosorption studies. Other close relatives (> 95% similarity scores) of FTI14 include 

 

 

Figure 4-2  Isolate FTI14 plated on R-2A without NaCl amendment.  
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Novosphingobium sp. and Sphingopyxis sp., both within the Sphingomonadacea family 

(Figure 4-3).  

The tailings used to isolate FTI14 contained a high level of salts (total salinity of 835 g/kg), 

which is likely to be the limiting factor affecting microbial life in those materials. In comparison 

the toxic metal and metalloid levels were low and inconsequential with regards to tolerance levels 

in microbial organisms (< 0.5 mmol/l, as used by Nieto et al. (1989)). For example, the Cu detected 

in the tailings was 2.3 mg/kg (0.03 mmol/l) and the total Cr detected was 17 mg/g (0.27 mmol/l). 

 

 

Figure 4-3  Maximum likelihood phylogenetic tree of Croceicoccus sp. FTI14 and closest type-

strain relatives. Bootstrap values are shown for branches with ≥ 50% bootstrap support and Aquifex 

aeolicus was used as an outgroup. Taxonomic families are indicated on the right.  

 

4.4.2 Cu(II) and Cr(VI) biosorption 

Negative controls demonstrated changes in Cu(II) and Cr(VI) concentration for the tested 

conditions to be ≤ 3.04 mg/l and in pH of ≤ 0.02 (Figure 4-4 and Figure 4-5). Because both 

concentration and pH changes were minimal, the experimental set-up was considered to have no 

effect and no adjustments were made to the adsorption results. No statistical significance was 

observed between initial and final values (p values ≥ 0.01). 



 

60 
 

Biosorption solution pH affects both the dried biomass and the metal species in solution. 

Generally speaking, the lower pH (2-3) for Cr(VI) reactions will protonate binding sites on dried 

FTI14 and allow it to attract the HCrO4- ions that are predominant at pH < 6.5 (McLean & Bledsoe, 

1996; Park et al., 2010). The slightly higher pH for Cu(II) reactions (4-5) allows some of 

the potential binding sites to be deprotonated and attract the cationic Cu2+ ions. More basic pH 

levels can cause some metals to precipitate, which could contribute to the overall metal removal 

process but would have obscured the biosorption reactions studied here (Britton, 1943).  

With a 40 mg/l initial metal concentration and in DI, Cu(II) uptake by dried FTI14 was 

found to be 16.3 ± 0.5 mg/g, which was 40.3 ± 0.7% of the Cu(II) in the system (Figure 6). The 

adsorbent had a lower uptake for Cr(VI) with 9.6 ± 0.2 mg/g (22.9 ± 0.7% removal). When 

comparing the adsorption of Cd(II) and Cr(VI), Ziagova et al. (2007) found similar uptake 

differences between the cationic and anionic metals. The lower anion uptake under these 

conditions may be due to steric hindrance caused by the large HCrO4- molecule that is the dominant 

form of Cr(VI) at a pH of 2 (McLean & Bledsoe, 1996), or the lack of positively-charged binding 

sites associated with cell membranes (Loukidou et al., 2004). 

 Metal uptake decreased as the ionic strength increased in solution (Figure 4-6). Although both 

Cu(II) and Cr(VI) GW systems were within the drinking water objective set by the Water Security 

Agency in Saskatchewan for summation of ions (1500 mg/l), GW had an increased ionic strength 

of 0.03 M. In GW, adsorption was observed to be 9.9 ± 0.1 mg/g for Cu(II) (24.0 ± 0.5% removal) 

and 2.7 ± 0.5 mg/g for Cr(VI) (5.8 ± 1.0%), both lower than in DI. GW+Na had an ionic strength 

of 0.55 M and observed metal uptake was further decreased to 7.8 ± 0.1 mg/g Cu(II) (19.3 ± 0.1%) 

and 1.0 ± 0.3 mg/g Cr(VI) (2.1 ± 0.6%). Changes in concentration were all statistically significant 

at the 95% certainty cut off, while Cu adsorption systems and the Cr in DI system were significant 

at the 99% certainty cut off (Cu(II) p-values all < 0.0001, Cr(VI) in GW p-value = 0.0047 and 

Cr(VI) in GW+Na p-value = 0.0392). 

Cr(VI) adsorption was drastically decreased in GW and negligible in GW+Na. While 

Cu(II) adsorption in GW+Na varied from DI by 21%, it only varied from GW by less than 5%, 

suggesting that Cu(II) adsorption was not substantially affected by the additional NaCl. In a study 

of vanadate uptake by Halomonas sp., decreases similar to the latter were observed (8.4%)using 

50 mg/l initial vanadate concentrations when 2% (w/v) NaCl was introduced to DI (Ghazvini & 

Mashkani, 2009). A bigger difference was seen with Cr(VI) uptake by Dunaliella sp. using 56.6  
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Figure 4-4  Negative controls for Cu(II) biosorption showing (a) initial and final concentrations and (b) pH for deionized water (DI), 

groundwater (GW), and saline groundwater (Na).  
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Figure 4-5  Negative controls for Cr(VI) biosorption showing (a) initial and final concentrations and (b) pH for deionized water (DI), 

groundwater (GW), and saline groundwater (Na). 
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Figure 4-6  Effect of water type (DI, GW, and GW+Na) on metal uptake (mg of metal per dry g 

of adsorbent) in 40 mg/l systems; (****) significant at p < 0.0001 values.  

 

mg/l initial Cr(VI) concentrations, when 5% (w/v) NaCl was added to DI removal varied by 26% 

(Dönmez & Aksu, 2002). While neither study investigated the cause of the decrease in metal 

adsorption, both suggested that it could be caused by either competition for binding sites or 

interference by the increased ionic strength on the activity of both binding sites and metals. 

Although the final concentrations observed in these experiments do not meet the current 

standards set by Health Canada Guidance (1.0 mg/l for Cu and 0.05 mg/l for total Cr), the initial 

concentrations of 40 mg/l are higher than those generally observed in contaminated groundwater 

sites. Both Cu and Cr are trace metals, and are usually present in both clean and contaminated 

groundwater on the scale of ppb (µg/l). However, Cu has been observed at 2.78 mg/l in a New 

Jersey study (Page, 1981) and Cr at 0.08 mg/l in a monitoring well near a closed mine-site in 

Hungary (Czop et al., 2011).  
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4.4.3 Effect of biosorption on effluent pH  

The pH level rose in all systems after the 120 min contact time (Figure 4-7). With an initial 

pH of 4.2-4.4, the Cu(II) tests saw a rise in pH of approximately 0.5, while the Cr(VI) tests 

increased from 2.2-2.4 by approximately 0.1. Statistical analyses suggest some degrees of 

statistical significance (p values <0.001), but the shift was not enough to move any of the batch 

systems outside of the targeted pH range (4.0-5.0 for Cu(II) and 2.0-3.0 for Cr(VI)) and therefore 

pH was not adjusted during the reaction.  

Acidification is commonly expected during metal biosorption reactions due to ion 

exchange with the H+ ions on the adsorbent surface (e.g. Thevannan et al., 2010). The absence of 

this effect suggests that metal binding mechanisms in the current study may not include ion-

exchange reactions, particularly with H+ ions. Loukidou et al. (2004) observed a similar shift in 

pH (2.5 to 2.6) during Cr(VI) biosorption experiments and identified this as a potential cause of 

the effect. 

4.4.4 Adsorption isotherms 

Generally, as the final metal ion concentration increased, the solute uptake also increased 

(Figure 4-8). The tested concentrations represent a low-level metal contamination in groundwater 

(1-100 mg/l (Gupta et al., 2000)) and may only make up the initial slope of a traditional isotherm 

curve because it has not yet levelled off. Further testing at higher concentrations would show the 

full isotherm shape and determine if a maximum uptake can be observed, as is predicted with 

monolayer adsorption models. 

At low concentrations, the relationship between metal uptake and the final concentration 

is expected to be linear and the affinity of an adsorbent can be calculated as the average linear 

slope of each system. The affinity between the metal and FTI14 at these concentrations was the 

highest for Cu(II) in DI (0.740, R2 = 0.897) and decreased as the ionic strength increased (0.340, 

R2 = 0.951 for GW and 0.266, R2 = 0.977 for GW+Na). Cr(VI) affinity in DI (0.266, R2 = 0.987) 

was similar to the CuGW+Na system. Under these conditions, the order of affinity the adsorbent 

had in each system matched the observed uptake amounts (CuDI > CuGW > CuGW+Na = CrDI). 
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Figure 4-7 Effect of biosorption batch reactions on effluent pH for (a) Cu(II) and (b) Cr(VI).     
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Figure 4-8 Biosorption isotherms for final metal concentration (Cf) against Cu(II) uptake from 

deionized water (DI), groundwater (GW), and saline groundwater (GW+Na), and Cr(VI) uptake 

from DI. Lines indicate the fit of the Freundlich adsorption model.  

4.4.5 Adsorption models 

Two common biosorption models, the Langmuir model (Langmuir, 1918) and the 

Freundlich model (Freundlich, 1906), were used to fit the experimental data and determine uptake 

parameters and statistical fit (Figure 4-8 and Table 4-2). All Cu(II) systems mathematically fit both 

models but the Freundlich model provided a better fit as indicated by evidence ratios of 1.29-3.33 

(R2 values ≥ 0.86). The evidence ratio for Cu(II) in GW implies that the Freundlich model is 3.33 

times more likely to be valid than the Langmuir model. Due to a high dependency observed 

between parameters produced by the Cr(VI) system, the Langmuir model cannot be used with that 
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data. The Freundlich model, however, also provides a good fit for Cr(VII) uptake in DI (R2 value 

of 0.97). The constants from the Cu(II) Freundlich model, KF and n, decrease with increasing ionic 

strength, indicating a decreasing affinity between dried FTI14 and Cu(II) under these conditions. 

The Cu(II) systems also demonstrate n > 1, showing favourable adsorption reactions (Aksu et al., 

2002). The smallest Freundlich constants are seen with Cr(VI), indicating that dried FTI14 has less 

affinity to Cr(VI) than Cu(II).  

Using the Langmuir model, maximum uptake of Cu(II) was calculated to be 16.7 mg/g for 

DI, 12.1 mg/g for GW, and 15.7 mg/g for GW+Na. These values are similar to the uptake observed 

at the highest-tested initial concentration but because the isotherm has not necessarily levelled-off, 

the Langmuir model may not describe the system appropriately. Adsorption values reported in the 

literature have been much higher than this, with Cu(II) uptake up to 381 mg/g on a purified protein 

from Bacillus firmus (Salehizadeh & Shojaosadati, 2003) and 270 mg/g onto the bacterium 

Zoogloea ramigera (Norberg & Persson, 1984). Although maximum uptake of Cr(VI) cannot be 

calculated, the literature reports higher values than the observed uptake with FTI14, including 

294.0 mg/g using activated sludge (Aksu et al., 2002) and 284.4 mg/g using Aeromonas caviae 

(Loukidou et al., 2004). Further testing at higher concentrations may still demonstrate higher 

uptakes than those observed in the current study.  

The Langmuir model was developed for chemical, monolayer adsorption and represents 

homogeneous binding sites, while the Freundlich model accounts for heterogeneous adsorption 

surfaces and assumes that the energy of activation differs with each type of binding site (Aksu et 

al., 2002). The latter both describes the surface of dried FTI14 biomass more accurately and 

represented the observed uptake more closely. Although the underlying adsorption mechanisms 

and assumptions of the two models are different, both models have been found to represent many 

bacterial-metal adsorption reactions in the literature (Çabuk et al., 2006; Cotoras et al., 1992; 

Hasan et al., 2012; Öztürk, 2007). 

4.4.6 STXM analysis 

STXM images recorded at the C 1s edge (280-320 eV) revealed that prepared FTI14 

biomass was present as both whole cells and indistinct biomass. The form of the biosorbent is 

important when considering the dynamics of biosorption reactions, where individual cells will 

provide more surface area than biomass with damaged cell walls that has clustered together. Long
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Table 4-2  Langmuir and Freundlich adsorption parameters for Cu(II) and Cr(VI) isotherms with 8 to 40 mg/l initial metal 

concentrations.  

Metal 
Water 
Type 

Langmuir model Freundlich model Comparison 

qmax (mg/g 
dry weight) KL (l/mg) R2 Sy.x n KF (mg/g) R2 Sy.x Δ AIC Evidence 

Ratio 

Cu(II) 

 

DI 16.7 ± 2.1 0.27 ± 0.12 0.84 1.67 3.05 ± 0.81 5.3 ± 1.3 0.86 1.58 0.51 1.29 

GW 12.1 ± 2.6 0.09 ± 0.05 0.80 1.03 2.32 ± 0.56 2.1 ± 0.6 0.87 0.81 2.41 3.33 

GW+Na 15.7 ± 6.0 0.03 ± 0.02 0.91 0.70 1.57 ± 0.32 0.8 ± 0.3 0.92 0.66 0.65 1.39 

Cr(VI) DI -- -- -- -- 0.77 ± 0.10 0.1 ± 0.1 0.97 0.61 -- -- 
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rods were observed in the dried FTI14 control and in biomass after Cu(II) exposure in both GW 

tests, short rods after exposure to Cu(II) in DI, and indistinct clumps of biomass were observed in 

all systems (Figure 4-9). No patterns in shape were observed with the presence or absence of Na 

or the increased salts concentrations, as would be expected if differences in form were due to 

physical disruption during the biosorption reaction. An interesting observation, however, is that 

the dried FTI14 used for Cu(II) in GW+Na system appears to be lacking polysaccharides, possibly 

due to the saline solution stripping away the outer layer (Figure 4-10). Microscopy comparing 

dried bacterial biosorbents before and after metal exposure is not very common in the literature,  

 

Figure 4-9 STXM generated colour overlay maps of organics associated with dried FTI14. Maps 

show long rods in (a) dried FTI14 control, and (b) biomass after Cu(II) exposure in GW, short rods 

in (c) biomass after Cu(II) exposure in Di, and indistinct biomass (d) biomass after exposure to 

CR(VI) in DI.  
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Figure 4-10 STXM generated component maps for Cu biosorption from GW+Na.  Maps show (a) 

proteins, (b) lipids, (c) small amounts of polysaccharides, and (d) a colour overlay of the three.  

 

however whole cells have also been observed in autoclaved biosorbents after metal exposure using 

transmission electron microscopy (TEM) (François et al., 2012).  

Images were also recorded to examine the relationship between the metals and dried FTI14 

biomass. Spatial correlation between organic material and metals was observed in both the CuDI 

and CrDI samples, suggesting that there was an association between these materials resulting from 

a biosorption reaction. Cu was detected in the CuDI samples, although the signal was weak (< 0.01 

optical density (OD)). Both Cu(II) and Cu(I) oxidation states were observed spatially associated 

with biomass as evident by two peaks in the Cu 2p spectrum, one associated with Cu(II) (931 eV) 

and one with Cu(I) (934.3 eV) (Figure 4-11) (Grioni et al., 1992). The presence of Cu(I) may be 
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due to radiation damage from imaging rather than occurring during adsorption as it was not 

observed in the CuGW or CuGW+Na samples (images not shown) (Yang et al., 2011). The Cr 

detected in the CrDI sample had a spectrum similar to that of the Cr standard (Figure 4-12). 

Visualization of the relationship between the metals and the biocomponent using synchrotron 

technology is not traditionally utilized by biosorption researchers and although the signal obtained 

in this study is weak, the technology may prove useful in biosorption studies studying higher 

concentrations of substrate. 

4.4.7 FTIR analysis 

Analysis using FTIR further confirmed the association between dried FTI14 and the metals. 

The spectrum obtained from the dried FTI14 before metal exposure, used as a negative control, 

showed distinct peaks at 2960, 1659, 1530, 1451, 1384, and 1250 cm-1 (Figure 4-13). The strong 

peak at 1529.7 cm-1 assigned to N-H groups shifted slightly down to 1512.7 cm-1 after Cu(II) 

exposure and 1518.7 cm-1 after Cr(VI) exposure (Table 4-3). The focus of this study was not on 

the mechanism of adsorption, but this suggests that the amide (─NH2) functional groups often 

associated with proteins in bacteria were involved in the uptake of both Cu(II) and Cr(VI). The 

change was more pronounced in the system with Cu(II) ions which could be due to the higher 

uptake concentration or a stronger interaction. This observation is consistent with Subbaiah et al. 

(2011) in Cu(II) adsorption onto fungi as well as Gupta and Rastogi (2008) in Cr(VI) adsorption 

onto cyanobacteria. Both studies also observed peak shifts associated with hydroxide, carbonyl, or 

carboxyl groups, however these were not observed in the present study. The tested range of 

concentrations did not indicate that the biomass had reached saturation with regards to binding 

sites, and therefore the metals may bind amide groups as a first preference. Further experiments 

using higher metal concentrations would confirm if peaks from other functional groups also shift 

during binding site saturation. 

4.4.8 Metal leaching  

The ability to retain adsorbed metals is an important characteristic in the application of a 

biosorbent for use in water remediation and the low leached-metal values observed here are  
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Figure 4-11 STXM generated component maps for Cu biosorption from DI. Maps show (a) biological material, (b) Cu(II), (c) Cu(I), and 

(d) a colour overlay of the three. Cu spectra are shown (e) including CuSO4 and Cu2O controls.  
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Figure 4-12 STXM generated component maps for Cr biosorption from DI. Maps show (a) proteins, (b) polysaccharides), (c) Cr, and (d) 

a colour overlay of the three. Cr spectra are shown (e) including K2CrO control. 



 

74 
 

 

Table 4-3  FTIR absorption bands and suggested corresponding functional groups before and 

after metal biosorption in deionized water.  

Suggested 
functional group 

Wavenumber (cm-1) 

Unloaded biomass 
(control) 

Cu-loaded biomass 
(Cu) 

Cr-loaded biomass 
(Cr) 

Carbonyl (C─H) 2959.5 2959.5 2959.5 

Carboxyl (C═O)  1658.9 1658.9 1658.9 

Amide (N─H) 1529.7 1512.7 1518.7 

Carboxyl (C─O) 1451.2 1451.2 1451.2 

Carbonyl (C─H) 1383.7 1383.7 1383.7 

Sulfate (S─O) 1249.5 1249.5 1249.5 

(Akar et al., 2009; Bueno et al., 2008) 
 

 

Figure 4-13  FTIR spectra of biomass before biosorption (Control) and after exposure to Cu(II) 

and Cr(VI), indicating amide interaction with the metal ions.  
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promising in that regard. Dried FTI14 was found to leach 1.4 ± 0.2 mg/g (10-14%) of the adsorbed 

Cu(II) and 2.0 ± 0.7 mg/g (40-75%) of the adsorbed Cr(VI) (Figure 4-14). The only statistically- 

 relevant amount of leached Cu(II) was less than 1 mg/g (p value = 0.0063), while the statistically-

relevant leached Cr(VI) was higher at approximately 4 mg/g (p value = 0.0018). These results 

suggest that dried FTI14 can retain adsorbed Cu(II) in clean (metal- and salt-free) solutions and 

further suggests that the mechanisms involved are not simply concentration-dependent ion 

exchange reactions. Implications during water remediation applications may include the 

requirement of a chemical, such as hydrochloric acid, to desorb the metals before reusing spent 

dried FTI14 in subsequent reactions.  

 

Figure 4-14  Leaching tests showing initial and final adsorption for (a) Cu(II) and (b) Cr(VI).   

 

4.4.9 Implications, potential applicability and recommendations 

Effective Cu(II) adsorption was demonstrated in DI, GW and GW+Na at low pH (pH 4.2-

4.4) using a halotolerant biosorbent. These experiments were conducted at field-relevant 

contaminant levels in natural groundwater amended with NaCl, and successful adsorption in these 

conditions suggests that halotolerant bacteria could be considered as low-cost remedial agents in 

existing technologies such as pump and treat remediation of contaminated groundwater or for a 

polishing step in industrial wastewater treatment. The technology can be applied as fixed- or  

moving-bed column reactors (Michalak et al., 2013) or bag filtration-based biosorption systems 

where the adsorbent is kept in a mesh bag to allow easy separation (Banfalvi, 2006; Naja et al., 
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2006). In addition to metal-contaminated water, biosorption in this study was demonstrated at low 

pH values and the remediation of metals from acid mine drainage (AMD) is a potential application 

for this biotechnology (Kim et al., 2014). 

Before a scaled-up application of this technology is possible, many issues need to be 

addressed. Firstly, a practical method for selecting appropriate bacterial strains for adsorption 

needs to be developed. Next, a more economical growth media would need to be used to keep 

overall costs of the process low. Finally, tests would need to be conducted to evaluate 

immobilization strategies (for example embedding in silicon beads or biofilm) to improve strength 

in a column system or separation from the liquid phase. Preliminary studies for the immobilization 

of dried FTI14 biomass using zeolite have been conducted to evaluate zeolite adsorption potential 

under the conditions tested in this study (Supplementary Materials, Section 4.7.3). 

4.5 Conclusion 

The feasibility for development of a biosorbent from a halotolerant isolate derived from 

potash mine tailings and its use in the removal of Cu(II) and Cr(VI) in deionized water, 

groundwater, and saline groundwater was investigated. Dried FTI14 demonstrated a higher 

sorption capacity for Cu(II) ions than Cr(VI) in single-solute systems, and the presence of salt ions 

in the system suppressed adsorption of metal ions. Adsorption reactions for Cu(II) fit both 

Langmuir and Freundlich adsorption models while Cr(VI) fit the Freundlich model. STXM results 

showed that after metal exposure dried FTI14 was composed of both intact and broken-down cells 

and tentatively demonstrated an association between biomass and metals. FTIR spectra suggest 

that the ions were associated with proteins on the surface of dried FTI14. These observations 

demonstrate the development of halotolerant microbial biosorbents and that they can remove 

metals from saline groundwater. 
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4.7 Supplementary Materials 

4.7.1 Growth curve 

Growth curves of select isolates indicated that FTI14 reached the end of the exponential 

phase after approximately 8 hours of growth and achieved the highest absorbance (0.118) and 

subsequently the highest density of the tested isolates (Figure 4-15). The end of exponential growth 

phase was identified at 11, 12, and 24 hours for FTI06, FTI23, and FTI21, respectively, and was 

not observed within the tested timeframe for FTI08. FTI14 was selected to be developed as a 

biosorbent due to its fast growth, which allowed more adsorbent to be grown. 

 

Figure 4-15  Growth curves of select isolates in R-2A with 30 mg/l NaCl amendment, shown as 

absorbance at 600 nm over time.  

 

4.7.2 Contact time 

Required contact time was tested using 40 mg/l Cu(II) ion solution in DI and 1 g/l prepared 

dried biomass with three knock-out replicates taken at 30, 60, 120, 180, 240, and 1440 min. at pH 

4.5. Maximum uptake was reached after 120 minutes of contact time.  
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Figure 4-16  Cu(II) biosorption by FTI14 as a function of contact time. 

 

4.7.3 Zeolite adsorption 

Zeolite is a type of clay that has demonstrated effective cationic metal adsorption using ion 

exchange (Wang & Peng, 2010). It was tested for metal uptake and affect on the effluent pH using 

the same methods and conditions as the biosorption experiments outlined in Section 4.3.4. These 

tests were conducted using untreated Bear River Zeolite (BRZ™, USA).  

After 120 min with 1 g/l of zeolite, Cu(II) concentrations were reduced from 40 mg/l in DI 

(p value < 0.0001), but not substantially affected in GW or GW+Na (Figure 4-17). The zeolite had 

an uptake of 5.725 ± 0.3 mg Cu(II)/g from DI (14.5 ± 0.5% removal), a lower value than that seen 

with FTI14. In GW, uptake was greatly impacted and was only 0.651 ± 0.1 mg Cu(II)/g (1.58 ± 

0.3%). Cu(II) uptake by zeolite in the literature has been reported higher than the values seen here, 

therefore the limited adsorption may be due to the (unaltered) particle size, type of zeolite used, or 

a function of pH. Panayotova (2001) obtained almost 74% removal of Cu(II) from 50 mg/l initial 

concentration using pH 5.  

The final pH for Cu(II) biosorption rose in all water-types, including GW+Na. This 

suggests that pH was being affected by a reaction separate from the Cu(II) adsorption. The change 

in pH was larger than that observed in biosorption experiments.  
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Both the Cr(VI) concentrations and pH were only negligibly affected by the zeolite (Figure 

4-18), which was expected due to the presence of negatively charged binding sites in raw zeolite. 

It should be noted that chemically-modified forms of zeolite have reported successful Cr(VI) 

adsorption; at a final Cr(VI) concentration of 32 mg/l, an uptake of approximately 7 mg/g was 

reported (Ghiaci et al., 2004) which is only slightly lower than the 9.6 mg/g achieved in biosorption 

tests for the current study. 

 

 

Figure 4-17  Zeolite tests for Cu(II) showing (a) initial and final concentrations and (b) pH.  

 

Figure 4-18  Zeolite tests for Cr(VI) showing (a) initial and final concentrations and (b) pH.  
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5 CONCLUSIONS 

5.1 Key Findings  

The microbial communities found within potash tailings and brine shared many genera 

with other hypersaline environments such as solar salterns, evaporites, and salt lakes. The most 

prevalent phylum in all samples was the Proteobacteria (40.6-89.3% of subsampled sequences), 

and Actinobacteria and Firmicutes were also prevalent. Haloarchaeal genera that are common in 

salterns and evaporites were observed in both high-throughput amplicon sequence reads and 

isolates from brine and fine tailings, but absent from coarse tailings results, indicating there are 

mixed Bacterial and Archaeal communities in those two materials.  

Spread plates of fine tailings had the highest colony counts and most number of distinct 

isolates, while coarse tailings had the least. All isolates were relatives of species that were observed 

in high-throughput sequencing results and included known halophilic and halotolerant Archaea 

(Haloferax and Halorubrum species) and Bacteria (including Halomonas, Marinobacter, and 

Dietzia species). It was expected that the high salinity of the brine and tailings would select for 

extremely halophilic microbes in these communities, but isolates demonstrated a broad range of 

salt tolerance (0-25% (w/v) NaCl amendments) and both halotolerant and halophilic strains were 

observed. All isolates grew on both media-types and at the full range of temperatures tested. The 

observed growth characteristics extend the current understanding of both salt- and temperature-

tolerances. 

The Archaeal isolates were brightly-coloured and related to species used in salterns to 

enhance brine evaporation (Davis, 2000; Rocha et al., 2012). This is a use for indigenous microbes 

that the potash industry may be able to duplicate in their own brine ponds. Some fine tailings 

isolates were related to hydrocarbon degraders, including Dietzia maris (Bødtker et al., 2009), 

Pseudomonas xanthomarina (Isaac et al., 2013; Sopeña et al., 2014), Sphingomonas jaspsi 

(Ferrera‐Rodríguez et al., 2013; Zhou et al., 2012), and Bacillus thuringiensis (Al-Saleh et al., 

2009), and can potentially be used for bioremediation of hydrocarbon-contaminated soils and 

groundwater in saline conditions. 
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One of the isolates, a bacterium related to Croceicoccus sp. with 0-15% (w/v) NaCl 

tolerance and fast growth was chosen to be prepared and tested as a biosorbent. Croceicoccus sp. 

FTI14 was grown in liquid media, then concentrated and dried in an oven, and ground to a fine 

powder. In batch biosorption experiments, dried FTI14 demonstrated a higher affinity for Cu(II) 

ions than Cr(VI). The presence of salt ions in the groundwater system suppressed adsorption of 

metal ions, decreasing each time ionic strength was increased. FTIR spectra indicated a shift in an 

amide group peak, suggesting that the ions were associated with proteins on the surface of dried 

FTI14. STXM images showed that, after preparation and metal exposure, dried FTI14 was present 

as both intact cells (long and short rods) and indistinct biomass, indicating that some but not all 

the cells lysed during the process. The overlay maps of biological material and metals visualized 

the association between the biomass and metals.  

5.2 Future Research Directions 

5.2.1 Community composition 

While previous studies have found select isolates from potash mines and effluents, this is 

the first study of the microbial community as a whole. Future work could expand this research by: 

performing additional replicate analyses to allow for more statistical analyses, characterizing the 

community within the tailings piles with borehole sampling, and looking at time-relevant sampling 

to include seasonal fluctuations.  

5.2.2 Stimulating evaporation of brine ponds 

Many of the archaeal isolates found in this study were closely related to archaea found in 

saltern evaporation ponds (Dillon et al., 2013; Fernández et al., 2014). The saltern industry takes 

advantage of these brightly coloured organisms by using their pigments to enhance the evaporation 

of seawater (Davis, 2000; Javor, 1989). The brightly-coloured archaeal and bacterial isolates 

identified in this thesis could potentially be used for enhancing evaporation in brine ponds for 

potash mining operations and other industries. To enhance brine pond evaporation would mean a 

decrease in deep-well injections of excess brine, a practice that has been associated with increased 

seismic activity (Verdon et al., 2016), and the reintroduction of (clean) process water into the 

environment.  
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5.2.3 Scale-up and optimization of biosorption process 

The current study looked at biosorption by one strain isolated from potash tailings, chosen 

for its fast growth characteristics. There is currently no methodology for selecting effective 

biosorbents and while fast growth is an important factor in making a biosorbent, it does not indicate 

biosorption capability of a strain or consortium. A process for pre-selecting biomass for 

biosorption before conducting individual batch experiments is needed to improve on the time 

required for these studies.  

Improvements to lower the cost of media and shorten growth time will also be required 

before this technology can be applied in water treatment as large quantities of biomass are required 

for full-scale application. Further, optimized system performance (i.e. initial pH, reaction 

temperature, mixing rate, and particle size (if applicable)) needs to be compared to in situ 

performance to understand the full cost and benefits of a biosorption system. Finally, scale-up will 

require improvements to the biomass separation step, such as pilot-scale continuous column or 

bag-filtration batch treatments, and studies regarding the regeneration of the biosorbent and cycle 

lifetime.  
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7 APPENDIX A – Isolate Inventory
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Table A-1  Isolate Inventory 

Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

BI01a Brine R-2A (3%) -- -- white small circular glistening -- 

BI02 Brine R-2A (3%) 1 Halomonas 

gudaonensis 

white small circular glistening 

 

BI03 Brine R-2A (15%) 6 Halomonas 

shengliensis 

light pink small - 

medium 

circular -- -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

BI04 Brine R-2A (15%) 6 Halomonas 

gudaonensis 

white small circular -- 

 

BI05 Brine R-2A (25%) 4 Salicola salis off-white tiny circular -- -- 

BI06 Brine R-2A 6 Alcanivorax 

venustensis 

white small circular -- -- 

BI07 Brine R-2A (25%) 4 -- red tiny circular -- -- 

BI08 Brine R-2A (25%) 4 Halorubrum 

saccharovorum 

pink tiny circular -- -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

BI09 Brine NB (25%) 4 Halorubrum 

californiense 

red tiny circular -- 

 

CTI01a Coarse 

Tailings 

NB 6 -- light 

orange 

med circular -- -- 

CTI02 Coarse 

Tailings 

NB 1 Halomonas 

andesensis 

light 

orange 

large irregular -- -- 

CTI03a Coarse 

Tailings 

NB 6 -- white med circular -- -- 

CTI04a Coarse 

Tailings 

NB 7 -- off-white small circular bullseye -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

CTI05 Coarse 

Tailings 

R-2A 1 Staphylococcus 

epidermidis 

pink small circular umbonate 

 

CTI06 Coarse 

Tailings 

R-2A 1 Staphylococcus 

epidermidis 

white med circular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

CTI07 Coarse 

Tailings 

R-2A (3%) 1 Halomonas 

gudaonensis 

off-white small circular -- 

 

CTI08 Coarse 

Tailings 

R-2A (3%) 2 Halomonas 

gudaonensis 

off-white med circular bullseye 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

CTI09 Coarse 

Tailings 

R-2A (15%) 2 Halomonas 

gudaonensis 

white small circular -- 

 

CTI10 Coarse 

Tailings 

R-2A (15%) 2 Halomonas 

shengliensis 

peach small circular -- 

 

CTI11 Coarse 

Tailings 

R-2A (25%) 4 Salicola salis off-white small circular bullseye -- 

CTI12 Coarse 

Tailings 

R-2A (25%) 4 Salicola salis white tiny circular -- -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

CTI13a Coarse 

Tailings 

R-2A (25%) 4 -- off-white small irregular -- -- 

CTI14a Coarse 

Tailings 

R-2A (25%) 4 -- red tiny circular -- -- 

CTI15a Coarse 

Tailings 

NB (25%) 4 -- red tiny circular -- -- 

FTI01 Fine 

Tailings 

R-2A (3%) 3 Halomonas 

gudaonensis 

yellow small circular -- -- 

FTI02 Fine 

Tailings 

R-2A (3%) 3 Halomonas 

shengliensis 

light pink small circular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI03 Fine 

Tailings 

R-2A (3%) 2 Halomonas 

gudaonensis 

off-white small circular bullseye 

 

FTI04 Fine 

Tailings 

R-2A (3%) 2 Marinobacter 

adhaerens 

white small circular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI05 Fine 

Tailings 

NB 1 Bacillus pumilus white large irregular -- 

 

FTI06 Fine 

Tailings 

NB 1 Pseudomonas 

xanthomarina 

yellow med circular glistening, 

umbonate 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI07 Fine 

Tailings 

NB 1 Gordonia 

alkanivorans 

orange small circular -- 

 

FTI08 Fine 

Tailings 

NB 2 Dietzia maris off-white med circular flat 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI09 Fine 

Tailings 

NB 2 Skermanella 

aerolata 

light pink med circular mucoid 

 

FTI10 Fine 

Tailings 

NB 2 Dietzia maris dark 

yellow 

tiny circular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI11 Fine 

Tailings 

NB 1 Microbacterium 

phyllosphaerae 

yellow med circular glistening 

 

FTI12 Fine 

Tailings 

R-2A 1 Bacillus 

thuringiensis 

white large irregular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI13 Fine 

Tailings 

R-2A 1 Sphingomonas 

jaspsi 

orange small circular -- 

 

FTI14 Fine 

Tailings 

R-2A 1 Croceicoccus 

marinus 

yellow small circular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI15 Fine 

Tailings 

R-2A 1 Dietzia maris light 

orange 

small circular -- 

 

FTI16 Fine 

Tailings 

R-2A 2 Halomonas 

meridiana 

clear small circular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI17 Fine 

Tailings 

R-2A (3%) 1 Marinobacter 

adhaerens 

white med circular bullseye 

 

FTI18 Fine 

Tailings 

R-2A (3%) 1 Zunongwangia 

profunda 

yellow small circular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI19 Fine 

Tailings 

R-2A (3%) 1 Halomonas 

andesensis 

light pink small circular bullseye 

 

FTI20 Fine 

Tailings 

R-2A (3%) 1 Halomonas 

andesensis 

white large irregular lobate 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI21 Fine 

Tailings 

R-2A (15%) 2 Halomonas 

gudaonensis 

white tiny circular -- 

 

FTI22 Fine 

Tailings 

R-2A (15%) 5 Halomonas 

shengliensis 

pink tiny circular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI23 Fine 

Tailings 

R-2A (15%) 2 Halomonas 

shengliensis 

light 

orange 

tiny circular -- 

 

FTI24 Fine 

Tailings 

R-2A (25%) 4 Halorubrum 

saccharovorum 

red tiny circular -- 
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Isolate 

ID 

Sample 

Source 

Original 

Spread 

Plate (NaCl 

amendment 

(w/v)) 

Isolation 

Plate 

Growth 

Time 

(days) 

Preliminary 

RDP Type-

Strain Match 

 

Colony Characteristics 

Photo 
Colour Size Shape Other 

FTI25 Fine 

Tailings 

R-2A (25%) 4 Haloferax 

prahovense 

pink small circular glistening 

 

FTI26 Fine 

Tailings 

NB (25%) 4 Halorubrum 

lipolyticum 

red tiny circular -- 

 

a isolate was unable to be isolated under tested growth conditions 
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8 APPENDIX B – STXM Results
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Figure B-1 Component maps of organics associated with the prepared biosorbent before metal 

exposure. Maps show (a) proteins, (b) lipids, (c) polysaccharides, and (d) a colour overlay of the three. 
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Figure B-2 Component maps of organics associated with the prepared biosorbent after 

biosorption of Cu from DI. Maps show (a) proteins, (b) lipids, (c) polysaccharides, and (d) a colour 

overlay of the three. 
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Figure B-3 Component maps of organics associated with the prepared biosorbent after 

biosorption of Cu from GW. Maps show (a) proteins, (b) lipids, (c) polysaccharides, and (d) a colour 

overlay of the three. 
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Figure B-4 Component maps of organics associated with the prepared biosorbent after 

biosorption of Cr from DI. Maps show (a) proteins, (b) lipids, (c) polysaccharides, and (d) a colour 

overlay of the three. 
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