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Abstract

Without performing biopsy that could lead physical damages to nerves and vessels, Com-

puterized Tomography (CT) is widely used to diagnose the lung cancer due to the high

sensitivity of pulmonary nodule detection. However, distinguishing pulmonary nodule in-

between malignant and benign is still not an easy task. As the CT scans are mostly in

relatively low resolution, it is not easy for radiologists to read the details of the scan image.

In the past few years, the continuing rapid growth of CT scan analysis system has generated

a pressing need for advanced computational tools to extract useful features to assist the radi-

ologist in reading progress. Computer-aided detection (CAD) systems have been developed

to reduce observational oversights by identifying the suspicious features that a radiologist

looks for during case review.

Most previous CAD systems rely on low-level non-texture imaging features such as inten-

sity, shape, size or volume of the pulmonary nodules. However, the pulmonary nodules have

a wide variety in shapes and sizes, and also the high visual similarities between benign and

malignant patterns, so relying on non-texture imaging features is difficult for diagnosis of the

nodule types. To overcome the problem of non-texture imaging features, more recent CAD

systems adopted the supervised or unsupervised learning scheme to translate the content of

the nodules into discriminative features. Such features enable high-level imaging features

highly correlated with shape and texture.

Convolutional neural networks (ConvNets), supervised methods related to deep learning,

have been improved rapidly in recent years. Due to their great success in computer vision

tasks, they are also expected to be helpful in medical imaging. In this thesis, a CAD based

on a deep convolutional neural network (ConvNet) is designed and evaluated for malignant

pulmonary nodules on computerized tomography. The proposed ConvNet, which is the core

component of the proposed CAD system, is trained on the LUNGx challenge database to

classify benign and malignant pulmonary nodules on CT. The architecture of the proposed

ConvNet consists of 3 convolutional layers with maximum pooling operations and rectified

linear units (ReLU) activations, followed by 2 denser layers with full-connectivities, and

the architecture is carefully tailored for pulmonary nodule classification by considering the
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problems of over-fitting, receptive field, and imbalanced data.

The proposed CAD system achieved the sensitivity of 0.896 and specificity of 8.78 at

the optimal cut-off point of the receiver operating characteristic curve (ROC) with the area

under the curve (AUC) of 0.920. The testing results showed that the proposed ConvNet

achieves 10% higher AUC compared to the state-of-the-art work related to the unsupervised

method. By integrating the proposed highly accurate ConvNet, the proposed CAD system

also outperformed the other state-of-the-art ConvNets explicitly designed for diagnosis of

pulmonary nodules detection or classification.
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Chapter 1

Introduction

Lung cancer is becoming the most common cancer disease in the world. According to the

statistical data published by the American Cancer Society [1], lung cancer is the leading cause

of cancer death. Early detection and diagnosis is a meaningful way to increase the survival

rate of cancer. In the field of lung cancer diagnosis, a patient who is suspected of having lung

cancer is recommended to perform a chest X-ray at first because of low cost and simplicity

to take. Lung cancer comes from the pulmonary nodule described as masses of abnormal

tissue inside the lung. When the pulmonary nodule projects into X-ray image, the mass

have different areas of density compared to the healthy tissues. By noticing the changing

of the area of the density, the radiologist can find the location of lung cancer. However, a

chest X-ray is a 2-dimensional projection of the lung, and the size of the pulmonary nodule

is usually less than 10 mm. Therefore, it is difficult for the radiologist to confirm the types

of the nodule (i.e., benign or malignant) and the exact nodule location to perform a further

medical treatment. If the radiologist notices any suspicious finding in the chest X-ray, a

further computerized tomography examination is suggested to finalize the diagnosis.

1.1 Pulmonary Nodule on Computer Tomography

Computerized Tomography (CT) scan, due to its high sensitivity to detect pulmonary nod-

ules, is widely used by radiologists. It shows a higher detection rate compared to other chest

radiography methods and is thus helpful in reducing the lung cancer mortality [59]. To over-

come the problem of the chest X-ray, CT scanner analyzes the patient’s lung by performing

many X-ray measurements with various angles and produces cross-sectional images of the

lung. By combining the scanned CT images, the radiologist reviews the patient’s lung in
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3-dimensional space. In contrast of X-ray image, CT images have a sophisticated metric (as

referring to Hounsfield Units) to help radiologist distinguish patterns in-between abnormal

and normal tissues.

In order to perform a completed CT scan, the CT scanner slowly slides along the axial

axis from the patient’s head to the feet. As indicated in Figure 1.1(a), one CT scan gener-

ates a series of cross-sectional images where start from the top to the bottom of the lung.

Each acquired cross-sectional image from CT scanner is called a slice. Figure 1.1(b) and

Figure 1.1(c) show two different slices acquired at different axial positions from a 64-year-old

female patient, who has lung cancer, respectively.

C
T

 S
can

 D
irectio

n

Top of Lung

Bottom of Lung

(b) Normal Slice

(c) Abnormal Slice

(a) A CT Scan

Figure 1.1: A lung CT scan from a 64-year-old female [26]. (a) direction of acquiring
slices. (b) one normal slice. (c) one abnormal slice which contains a malignant nodule
on the right top of the right lobe.

1.2 Computerized diagnosis of pulmonary nodule

In practice, although the CT scans have high sensitivity in the pulmonary nodule detection

[60], it is still not easy for a radiologist to determine whether the nodule belongs to benign or
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malignant. When the amount of patient cases is significant, it takes time for the radiologist

to make the diagnosis. The seminal National Lung Screening Trial [60] reported mortality

from lung cancer was reduced 20% by screening low-dose CT scans. However, the rate of

positive low-dose CT scans was 24.2%, while a total of 96.4% of positive screenings showed

a false positive. According to [60], a false positive diagnosis will lead to unnecessary follow

up medical examinations which will delay the diagnosis while increased radiation exposure

causes further damage to the patient.

Computer-Aided Detection (CAD) systems have been developed to reduce observational

oversights by identifying suspicious features that a radiologist looks for during case review.

Because the CAD system improves the accuracy of diagnosis by radiologists, the CAD system

becomes a good choice for preliminary diagnosis [27, 44, 45, 11, 18, 4, 50, 31, 22, 69, 46, 2,

41, 25].

A typical CAD system for a lung CT scan consists of two stages: 1) nodule detection and

2) lung disease classification. The first stage refers to marked areas of concern which highlight

suspicious nodule candidates. To generate marks, general approaches are applied through

image processing methodologies such as double threshold metrics or morphology operations

[27],[44]. However, marks generated by CAD systems generally have high sensitivities and

false positive rates [11]. Therefore, the second stage aims to reduce false positive rates for

marked areas of concern, while providing the capability of clinical diagnostic decision making.

Typically, features from marked areas of concern are extracted, and machine learning schemes

are used for nodule classification [27, 44, 45]. Figure 1.2 illustrates a completed CAD system

to help clinical radiologist for diagnosis of pulmonary nodules.

1.3 Motivation

A computer-aided diagnosis tool related to malignancy grading of pulmonary nodule belongs

to the second stage of the CAD system and focuses on reducing the false positive rate by

distinguishing the nodule types in-between benign and malignant cases. Pulmonary nodules

have a wide variety of shapes and sizes, as well as high visual similarities between benign

and malignant patterns, so analyzing low-level non-textual characteristics such as shapes or
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Figure 1.2: A typical CAD system to detect malignant pulmonary nodule from CT
scan. (a) overview of stage 1 on nodule detection. (a) overview of stage 2 on lung
disease classification.

sizes of the nodules always fail to provide a promising diagnostic performance. Early devel-

oped CAD system for pulmonary nodule detection applied conventional imaging processing

methods to describe the low-level features of the pulmonary nodule in the higher dimensional

spaces [18, 4, 50, 31]. However, such features had limited generalizations when new nodule

patterns appeared due to low discriminative power [47].

In recent years, deep learning has achieved great success in image classification, objective

detection, image segmentation, and natural language processing. In many of these fields, deep

learning can achieve near human performance [53]. Convolutional neural network (ConvNet),

the most popular deep learning architecture to perform image classification, has the ability to

extract high-level discriminative features. In addition to clinical usage for pulmonary nodule

detection, ConvNet uses the patch-based raw image without any additional information such

as nodule segmentation or volume of the nodule, and the ConvNet is trained automatically

end-to-end in a supervised manner without any additional feature extractor or classifier.

Thus, ConvNet is expected to be helpful in improving the performance of CAD systems.

Many research works have been done to utilize deep learning in medical field [36, 39, 13, 55,
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37, 68] to achieve higher accuracy of diagnosis.

1.4 Aim of Thesis

This thesis aims to design a CAD system based on a ConvNet for diagnosis of the malignant

pulmonary nodule on CT scan. The designed ConvNet is able to distinguish pulmonary

nodules in-between benign or malignant through raw input image without the need of ad-

ditional segmentation. To achieve the aim of this thesis, the designed ConvNet is carefully

tailored for pulmonary nodule classification task by: 1) exploring optimal hyper-parameters

including filter size, receptive field, and optimizer. 2) investigating the performance im-

pact of the imbalanced training dataset. 3) comparing the classification performance with

the state-of-the-art work without interference of ConvNet [46] and other related solutions

[36, 37, 55, 68, 58].

1.5 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 introduces the LUNGx Challenge

public database used to train and evaluate the proposed CAD system, followed by the theories

of the ConvNet including layer operations and training optimization. Chapter 3 presents the

current state-of-the-art works for malignancy detection of the pulmonary nodule on CT scan.

Chapter 4 introduces the methodologies of the proposed CAD system for pulmonary nodule

detection. Chapter 5 presents requirements to set up the experiments and the evaluation

comparisons of unsupervised learning method and other ConvNet architectures from previous

studies, followed by an analysis of imbalanced data problem that is commonly occurred in

the medical imaging database. Finally, Chapter 6 concludes the thesis.
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Chapter 2

Background

The purpose of this chapter is to introduce the lung CT database used to train and

evaluate the proposed ConvNet, followed by relevant theories about the proposed convolu-

tional neural network. The definition of the input database and ConvNet provide a better

understanding regarding the implementation of the proposed CAD system.

2.1 LUNGx Challenge Database

LUNGx Challenge database [26] was used for LUNGx Challenge [3], which was a challenge to

seek novel CAD systems for classification of pulmonary nodules on diagnostic computerized

tomography scans as benign and malignant. During the LUNGx Challenge event, six expe-

rienced radiologists attended the event by manually performing nodule malignancy ratings.

As reported in [3], the diagnostic area under the curve (AUC) from the six radiologists is

ranged from 0.70 to 0.85 with a mean AUC of 0.79, and three of the six radiologists have

statically better performance on malignancy detection compared to the submitted CAD sys-

tems during the LUNGx challenge event. Although LUNGx challenge was ended in 2016,

malignancy detection of the pulmonary nodule on LUNGx database is still challenging.

The characteristics of the pulmonary nodules in LUNGx Challenge database is shown in

Table. 2.1. The LUNGx Challenge database collect 41 malignant nodules, and the size of the

malignant nodule is in the range between 5.7 mm and 45.0 mm with the average size of 18.6

mm. In addition to nodule solidity, 34 malignant nodules are categorized into the group of

the solid nodules which its Hounsfield Units (HU) on CT are above -450. 2 malignant nodules

demonstrate the characteristic of the non-solid nodule with lower HU intensity which has a

range from -750 to -300. There have 5 malignant nodules which belong to part-solid nodules,
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and the part-solid nodule consists of a solid and a non-solid part. On the other hand, in the

LUNGx Challenge database, 42 nodules belongs to benign cases. The smallest benign nodule

is 4.6 mm, and the largest one has the size of 34.6 mm. Among the entire benign cases, there

are 35 solid, 2 non-solid and 5 part-solid nodules.

Table 2.1: Characteristics of the pulmonary nodules in LUNGx Challenge database

Malignant Nodule Benign Nodule

Number of nodules 41 42

Nodule size?

Average nodule size 18.6 mm 15.8 mm

Minimum nodule size 5.7 mm 4.6 mm

Maximum nodule size 45.0 mm 34.6 mm

Nodule solidity?

Number of non-solid 2 2

Number of part-solid 5 5

Number of solid 34 35

? All the data of nodule sizes and nodule solidities is provided by

LUNGx organizers [3], and the nodule size is measured by follow-

ing the Response Evaluation Criteria in Solid Tumors (RECIST)

guidelines [61].

Each CT scan from the LUNGx Challenge database is obtained under 120kV or 140kV

tube peak potential energy with tube current in the range from 240 to 500 mA and tube

current-exposure time product of 200-325 mA. The CT scans are reconstructed to the digital

imaging and communication in medicine (DICOM) format having the spatial size of 512 ×

512 pixels. The DICOM files of each CT scan are reconstructed with no gap and consists of

approximated 250 slices with the slice thickness of 1 mm.

The proposed CAD system is trained and evaluated by using LUNGx Challenge database.

The database provides 60 test sets of full thoracic coverage CT scans with 10 calibration sets.

The purpose of the calibration sets is to train the CAD systems designated for detecting
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Figure 2.1: Description of the spatial coordinate of a malignant nodule labeled by the
six radiologists from LUNGx group. The central coordinate of the malignant nodule in
the volume of CT scan is labeled as (x,y,z).

malignancy of pulmonary nodule, and the performances of the trained CAD systems are

evaluated by using the 60 testing dataset as the inputs. Six experienced radiologists confirmed

the 83 pulmonary nodules which consist of 42 benign nodules and 41 malignant nodules from

the entire LUNGx Challenge database. The reference standard for each confirmed nodule was

set via spatial coordinates of the approximate center of each nodule and diagnosis decision

between benign and malignant. Figure 2.1 demonstrates the process of how the radiologists

label each patient case on CT scan. The malignant nodule as shown in Figure 2.1 is labeled

by finding the slice where appeared nodule is located at the center mass of the nodule volume.

Because each slice is a cross-sectional image of the CT scan in the axial view, the nodule

appears in a series of slice images, so the center mass of the nodule volume has an axial

coordinate as referring to the slice number. After locating the slice number, the nodule

exhibits as a 2-D image in the slice. By locating the center of the nodule in the slice, the

completed central mass of the nodule is labeled as (x,y,z). As refer to Figure 2.1, the central
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mass of the malignant nodule is located at the zth slice image where the nodule appears at

(x,y) in the spatial domain of the zth slice. By taking advantage of the labeled data which

has already provided by LUNGx organizers, the nodule samples can be extracted. The detail

of extracting the nodule samples is described in section 4.1.1.

2.2 Neural Networks

The artificial neural system brings the strong interest of emulating human brain with a

size and complexity comparable model. Artificial neural network (ANN) has originally been

interested in modeling neocortex on the biological nervous system but has recently applied to

machine learning tasks such as voice recognition, computer vision, robotic control, and data

mining. Deep neural network (DNN) is an improved ANNs model and capable of predicting

data as accurate as human performance. DNN model consists of more layers than typical

ANN; thus, DNN is able to extract high-level abstraction in data [35]. ConvNet is one type

of DNN by employing convolution operations to extract image features. Since ConvNet is

introduced in early 1990’s [34], it has demonstrated impressive image recognition on ImageNet

[15] benchmark. In 2015, ResNet [24] has classified 1.2 million high-resolution images from

ImageNet database that contains 1000 different classes with error rates of 3.57%.

2.2.1 Artificial Neuron

When we see an object via the eye, the light receptors in our eye send biological current

through the optic nerve. Neurons in our brains process the biological current and let us

know what the eye sees. Figure 2.2 illustrates a simplest artificial neuron which consists of

three input nodes and produces a binary output.

Because the computer has different representations of the visual system than human,

computer perceives image by constructing the image patterns with pixels. In Figure 2.2,

three image pixels (x0, x1 and x2) through unique synapses paths to generate synapses

current. Each synapse path contains a learnable weight (w0, w1 and w2) which interacts

multiplicatively with the input pixel. When our eye focuses on one object, our eye automati-

cally ignores other objects where are surround us. Likely, learnable weights control synapses
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x0

x1

x2

x0w0
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x2w2

Fire

Input node

Threshold

Neuron

Figure 2.2: A mathematical model of artificial neuron with three input nodes, x0, x1
and x2.

current to related image patterns. For example, by setting negative weights, inhibitory (neg-

ative) synapses currents are generated to ignore unrelated image patterns. When input nodes

consist of relating image patterns, excitatory (positive) synapses currents are generated. In

the final stage of the model, the neuron receives and sums all synapses currents. If summed

value exceeds a certain threshold, the neuron is fired. The output of the artificial neuron can

be mathematically expressed as:

y = f(
i∑
xiwi + b) (2.1)

xi is the ith input, wi is the weight corresponding to ith input, b is bias and f is activation

function. Bias is a constant parameter summed before activation function. The idea of bias

is that bias allows the cluster of the classifier to fit the data accurately [19]. For example, an

output of the neuron cannot be fired regardless of changing learnable weights if the inputs are

all zeros. However, most medical images are stored as gray-scale. In the representation of a

gray-scale image, a pixel which has zero intensity corresponds to the black color. Therefore,

by adding bias, the neuron can be fired even all input pixels are zeros.

Activation function uses to control the firing rate of the neuron by changing the threshold.

Because activation function is a non-linear function, it statically compresses the output of

the neuron in a finite range regardless of how large or small the output of the neuron is.

Most common activation function are: sigmoid function (Eq. 2.2), tanh function (Eq. 2.3) or
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rectified linear unit (Eq. 2.4).

f(x) =
1

1 + e−x
(2.2)

f(x) = tanh(x) (2.3)

f(x) = max(x, 0) (2.4)

2.2.2 Artificial Neural Networks

A collection of artificial neurons forms the layers of the ANN. The neurons from the previous

layer build full-connections to each neuron in the next layer via synapse paths. A typical

ANN consists of an input layer in which the size of neurons matches the number of input

features, and it has one output layer used to generate scores of different classes. One or

two hidden layers are employed in-between the input layer and the output layer to perform

feature extraction [65]. The architecture of the DNN is inspired by integrating with deeper

and denser hidden layers. Because DNN builds more complex synapse paths compared to

ANN, increased capacity of learnable weights enables better learning abilities so that DNN

is able to extract more features in higher level abstraction.

Figure 2.3 shows a simple ANN which takes two input features (x0 and x1) and consists

of three neurons (h0, h1 and h2) in the hidden layer. Such a 3-layer ANN structure is capable

of generating a single class score (y). For example, the risk of getting lung canner could

depend on family history of lung cancer and smoking history [43]. To evaluate the risk via

ANN, the 3-layer ANN extracts the patient histories as two input features and outputs the

score for the risk of getting lung cancer.

The ability to extract input features is that neurons are organized into layers, and the

hidden layer uses to extract input features. In Figure 2.3, the hidden layer extracts three

features regarding both input features. The extracted features are uncorrelated due to none

of the synapse path with each other, but synapse paths build full-connections from two input

features to each neuron in the hidden layer, so the extract features are correlated to both

11



Input layer

Hidden layer

Output layer

x0

x1

y

h0

h1

h2

Figure 2.3: A 3-layer artificial neural network which consists of one input layer with
two neurons, one hidden layer with three neurons and one output layer with a single
neuron.

input features. Then, neurons from the hidden layer pass the extracted features via synapse

paths to the output neuron.

The process of propagating input features from the hidden layer (layers) to output layer

is defined as feed-forward propagation [19]. The feed-forward propagation for 3-layer ANN

can be defined as: hi = f(
∑j xjw

1
ij + bi)

y = f(
∑i hiw

2
i + by)

(2.5)

where hi is the ith neuron in the hidden layer, xj is the jth input neuron, w1
ij is the weight

in the synapse path where is from jth input neuron to ith neuron in the hidden layer, and y

is the output neuron. The synapse path, from ith neuron in the hidden layer to the output

neuron, has weight of w2
i . bi and by are the biases for ith neuron in the hidden layer and the

output neuron respectively. f refers to activation function.

Deep Neural Networks

By propagating more stages (hidden layers) before reaching the output layer, such an ANN

structure can be expressed as a DNN. Empirically, DNN, employs deeper hidden layers com-
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pared to ANN, has more representational power for feature extraction and better general-

ization for feature learning [19]. Figure 2.4 shows increasing the depth and width of each

hidden layer yields increased test accuracy, which the experiment data is collected from [19].

Figure 2.4: Classification performance on the different number of layers [19].

Because deeper hidden layers statically increase the number of synapse paths, the deeper

hidden layers extract more features via increased learnable parameters. For example, the

3-layer ANN, showed in Figure 2.3, adopts 4 neurons to extract input features, and it builds

9 synapse paths which consist of 9 learnable weight parameters with additional 4 bias param-

eters for a total of 13 learnable parameters. By inserting additional two hidden layers with

double size of neurons, the new architecture contains 16 neurons which build up 36 more

synapse paths and 12 more bias parameters compared to the original 3-layer ANN. The total

number of learnable parameters is increased by approximately 7 times. Therefore, DNN out-

performs ANN for the statistical reason because adding and expanding hidden layers increase

the number of learnable parameters dramatically.

Problems of Deeper Neural Network

When a shallow DNN with few hidden layers is trained, inserting more hidden layers does

indeed to have better classification accuracy on the test dataset. However, the classification
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performance eventually is saturated when the number of hidden layers exceeds a certain

threshold (as referring to Figure 2.4).

As DNN consists of deeper hidden layers, such a model builds a more complicated func-

tion (connection) in-between input features and outputs. On the other hand, over-fitting [33]

occurs when the deeper layers easily accumulate an extensive collection of learnable param-

eters. The learnable parameters with high capacity force the model to fit the training data

perfectly by tunning the parameters to fit the noises in the training data. As a consequence,

the model losses generalization on additional data.

Moreover, DNN builds full connectivities between two adjacent layers. Such a connection

scheme forces the network to extract features based on entire input features. Therefore,

trained model is lack of generalizing spatial invariance. For instance, trained images which

apply rotation transformation result in inferior classification performance because the input

features are shuffled via rotation.

2.2.3 Convolutional Neural Network

ConvNet is a particular type of DNN that employs convolution operation to extract features

within the local spatial region of the image. Instead of building fully-connectivities in-between

hidden layers, ConvNet forces hidden neurons to “see” local information and combine them

to form high-level feature. Different features usually appear at various local regions because

neighboring pixels are more correlated than faraway pixels. Therefore, ConvNet adopts a

collection of local feature detectors to achieve tremendous success in image classification.

ConvNet stacks a sequence of layers to transform input images from pixel values to class

scores. General ConvNet has four types of different layers: convolutional layer, activation

layer, pooling layer and fully-connected layer.

Convolutional Layer

The convolutional layer adopts learnable filter banks. Each filter convolves full depth of

the input volume within fixed-scale of spatial area, depending on filter size along with its

width and height. Instead of building full connectivity from whole neurons on input volume

to output neuron such as ANNs, the connection of the convolutional layer inspires feature
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extraction within local regions of the input volume. On the other hand, a set of filter banks

produce overlapping features extracted from a particular local region due to output depth

of each filter. Such overlapping features offer various representations of the particular local

region. Therefore, the output of the convolutional layer generates a group of feature maps,

and each feature map corresponds to different local regions from input volume.

Malignant nodule image

Convolution filter

(2×2 pixels)

Feature map

(2×2 pixels)
Cropped image

(3×3 pixels)

Figure 2.5: An example of convolutional layer to extract features within local region
of the cropped image. The convolutional layer consists of one filter of size 2 × 2 and
one output feature map.

Figure 2.5 shows a convolution operation for the cropped image by sliding the convolution

filter along the spatial matrix of size 3 × 3. For a convolutional layer, hidden neurons are

organized into each feature map. Unlike the DNN connection scheme (as referring to Fig-

ure 2.3), each hidden neuron in the convolutional layer builds the connection to a particular

local region of the input features. For example, the feature map, in Figure 2.5, consists of

4 hidden neurons to form a 2 × 2 matrix of the feature map, and each matrix element in

the feature map represents the output of each hidden neuron. By convolving the 2× 2 filter

without flipping, the highlight area of the input features is extracted to a unique feature

which is equal to -55 in the feature map. Hence, a local region of input features with the size

of 2× 2 corresponds to one feature in the feature map. In general, the output of each hidden

neuron can be expressed as Equation 2.6 [19].
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yi,j = (x~ w)(i,j) + bi,j or equivalently yi,j =
∑
m

∑
n

x(i+m, j + n)w(m,n) + bi,j (2.6)

In order to extract the feature yi,j at ith row and jth column of the feature map, weights

of the filter w with size of m × n perform dot production on the input features x from ith

row and jth column to (i+m)th row and (j+n)th column while the result of the dot product

adds the bias term, bi,j.

Although the feature extraction scheme of the convolutional layer is inspired by the feed-

forward propagation in ANN (as referring to Equation 2.5), the learnable parameters are

dramatically reduced because a single feature map is generated by convolving the same filter,

so each hidden neuron shares the learnable parameters from the same filter. Hence, ConvNet

has fewer chances of having over-fitting due to sharing the learnable parameters. Moreover,

ConvNet takes advantage of sharing parameters. Instead of relying on a denser hidden layer

to extract as many features as possible, the convolutional layer avoids the trained model fit

the input noises while learning the invariant relationships within the local spatial region by

stacks a series of filters (filter banks).

Activation Layer

The convolutional layer is often followed by an activation layer. Instead of extracting learned

features, the activation layer is used to introduce nonlinearity to the ConvNets in order to

accelerate convergence during the training phase. Although a large amount of data and high-

performance parallel computing solutions spurs ConvNets to integrate more convolutional

layers in order to achieve better classification result, long training time is still an important

concern. Most modern ConvNets architectures employed activation layer to reduce training

time while maintaining similar performance. Typical activation layer produces non-linearity

via sigmoid function, tanh function or ReLU.

Pooling Layer

It is common to insert a pooling layer between successive convolutional layers to reduce the

spatial dimensionality of each feature map. Full connectivity structure used in ANN requires
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a large number of weight parameters to match high definition input scale which often leads to

over-fitting. Also, the convolutional layer still has the chance to produce specific redundant

information because the local region still builds full connectivity. Therefore, pooling layer

retains the essential information and reduces chances of over-fitting. General pooling opera-

tions are max-pooling or average-pooling by replacing input values to maximum or average

value.

77 81 187

78 72 167

59 59 127

62

62

60

70 65 6067
Max pooling with 

filter size of 2 ×2 

and stride of 2

78 187

70 127

Figure 2.6: An example of max pooling operation. The 2× 2 filter with a stride of 2
takes 4 inputs and perform down-sampling by retaining the maximum value.

Figure 2.6 illustrates a max pooling layer down-samples the input feature map. The

feature map of size 4× 4 is pooled by retaining the maximum value within the pooling filter

which has the size of 2 × 2 and stride of 2. By keeping the maximum value of neighboring

features, the feed forward path of the ConvNet has less redundancy, and the path having

max activation is also retained.

Fully-connected Layer

Fully-connected layer builds full connections to previous pooling layer. The fully-connected

layer has a similar structure as ANN which performs classification. After last fully-connected

layer, it is common to normalize the output vectors via SoftMax [7] function. The SoftMax

can be defined as:

ŷi =
eyi∑j eyj

(2.7)
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where the SoftMax function suppresses the output vector at ith neuron to a value in-

between zero and one via an exponential function. Then, by dividing the suppressed output

vector at ith neuron with the sum of all suppressed output vectors in the layer, the normalized

output vector at ith neuron is generated and referred as ŷi. The normalized output vector

represents the probability distribution among all possible categories [7].

2.2.4 Training Convolutional Neural Network

Training the ConvNet corresponds to optimize the learnable parameters in convolutional

layers and fully-connected layers so that the trained model fits the training data. Because

the output of ConvNet produces the probabilistic distribution of the classes via SoftMax

function, the input features that belong to a particular class most likely has the highest

probability by feed-forward propagating the well-trained model. A standard optimization

method of the ConvNet is to minimize the losses of the loss function.

Loss Function

In order to evaluate the classification performance in the training phase, a loss function is

used to measure the errors between prediction scores and ground truths. For example, a

malignant nodule image patch is fed into a ConvNet model, but the output of the ConvNet

result in a higher score toward the class of benign nodule. To measure the error of the misclas-

sification, the loss function intuitively produces a large loss regarding the misclassification.

By utilizing the learnable parameters, the loss is gradually reduced while the ConvNet gets

more confidence to classify the image patch as malignant. Because the malignancy detection

of pulmonary nodule relates to binary classification, the loss function for the malignancy

detection can be defined as the binary cross-entropy loss function:

Li = −fxi · log(f̂xi)− (1− fxi) · log(1− f̂xi) (2.8)

where the cross-entropy loss for ith input volume which consists of feature xi is Li. fxi

refers to the ground truth label, and f̂xi means the class score corresponding to the ith input

volume.
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Optimizers

A loss function quantifies the quality of how well the model fits the training data. In order

to achieve low losses, it is crucial to apply an appropriate optimizer to fine-tune learnable

parameters so that the loss function is minima. A naive way of fitting the training data is

to generate a large collection of random values, and the best model is obtained by trial-and-

error. Instead of exhaustive searching the best learnable parameters, the gradient of the loss

function provides a direction toward to minimal loss. The gradient of the loss function can

be expressed as:

θ = θ − µ · ∇θL(θ) (2.9)

where the loss function is minimized with regards of a parameter, θ for an entire training

dataset. By moving θ in a descent direction of the gradient with constant steps, the losses

for the entire training dataset is gradually minimized. ∇θL(θ) refers to the gradient of the

loss function, and µ is the step size as referring to the learning rate.

Because the cross-entropy function is the part of Kullback-Leibler divergence [52] which is

a convex function, applying a relatively large learning rate leads to high chances of missing the

optimal point of the model. Conversely, a relatively small learning rate leads to a continuous

reduction in the loss, but the model takes time to reach the optimal point with regards to

convergence.

On the other hand, such a gradient descent algorithm (as referring to Equation 2.9)

updates the learnable parameters by calculating the gradients of an entire dataset. When

the size of the training data is large, a single update still requires a long time [49].

Stochastic Gradient Descent

Stochastic gradient descent (SGD) updates the gradient of the loss function based on each

training sample or batch [8]. In contrast of the conventional gradient descent which performs

redundant computations among the entire training dataset, SGD is much faster by performing

frequent computations within a limited batch size. Instead of finding the global minimum

point of the loss for the entire training dataset, SGD optimizes the model by converging to

the local minimum points for each training sample or batch. Because the activation layer
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introduces non-linearity, the cross-entropy loss has a shape of a non-convex surface, and the

non-convex surface usually consists of several basins as referring to local minimal points.

Thus, frequent updates of the local gradients in SGD leads the model to jump to a new local

minima with a better loss, and the model eventually converges to the global minma. SGD

with regard to a parameter update θ can be defined as:

θ = θ − µ · 1

n
· ∇θ

∑
n

L(θ, xn, yn) (2.10)

where the loss function L computes the average of the cross-entropy losses from n training

samples {x1, ..., xn} with ground truth labels {y1, ..., yn}.

SGD refers to a batch based gradients, and the gradient of a batch loss mathematically

represents as a non-convex surface so that the SGD contentiously keep overshooting (SGD

fluctuation [49]). It is common to apply a step-down learning rate to control the direction of

the gradient. A step-down learning rate applies a relatively large learning rate in the early

stage of the training phase, so the speed of the convergence is accelerated. After several

training iterations, the learning rate is decreased by order of magnitude. A reduction of the

learning rate leads to consistent finding the best local minima which has the lowest loss.

In order to have a smooth reduction of the learning rate, an exponential decay algorithm

gradually decrease the learning after each epoch, and each epoch refers to the total number

of iterations for the model to train the entire training dataset. The exponential decay of the

learning rate can be expressed as:

µ = µ · e−γt (2.11)

where γ is a hyper-parameter that refers to the decay rate. t is the iteration number.

Adaptive Optimizers

The hyper-parameters of the learning rate in SGD has to predefine before the training phase.

Hence optimizing the learning rate in SGD is an expensive time cost progress. Adaptive opti-

mizers (e.g., Adam [32], AdaGrad [16] or RMSProp [62]) adaptively adjust the learning rate

based on the magnitude of the gradients [49]. Adaptive optimizers dynamically change the

learning rate to perform more efficient gradient updates compared to non-adaptive optimizer
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such as SGD. However, the adaptive optimizers lead the learning rate to shrink in one of the

local minimal points so that the model will never reach the best optimal loss.

Back-propagation

Optimizers such as SGD point out the appropriate direction to achieve minimal loss of the

loss function. In order to alter the weights and biases in each layer, a back-propagation

provides an efficient way to find the gradients of each layer and recursively computes the

gradients from the loss function to the first layer of the ConvNet. The gradient for each

layer is estimated via chain rule of the derivation. Algorithm 1 presents the algorithm of

back-propagation. The back-propagation is employed after computing the gradient of the

loss function through optimizer such as SGD.

Algorithm 1 Back-propagation

while current iteration < maximum iterations AND gradient of the loss function < desired
criterion do

for Input sample from training dataset do
Compute the gradient of the loss function through optimizer
for each hidden neurons in the output layer do

Compute gradient as error signal
end for
for each layer flow backward from output layer do

Compute gradient of the layer
Update bias parameter
for each hidden neurons in the layer do

Compute gradient of the hidden neuron
Update weight parameter

end for
end for

end for
end while
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Chapter 3

Related works

Pulmonary nodule patterns are generally presented as unique texture inside lung lobe.

Before deploying classification schemes, most CAD systems apply feature extraction opera-

tions within the marked area of concern. Depending on the input scale of the classifier, the

marked area of concern typically is generated as two different modalities: local regions of

interest (ROIs) or volumes of interest (VOIs). By sliding fixed-scale of classifier over ROIs

or VOIs, the diagnostic decision for pulmonary nodules is made.

3.1 Traditional Feature Extraction Approaches

Early studies demonstrated the usefulness of discriminative features to detect pulmonary

nodule over ROIs or VOIs, such as first order gray-level thresholding operations [18, 4],

histogram of gray-level [50] and histogram of CT density [31]. Since more modern texture

descriptions were implemented, recently proposed CAD systems provided a new perspective of

feature extractions in higher dimensional spaces. Such systems employed local binary pattern

(LBP) [22], histogram of gradient (HOG) and scale-invariant feature transform (SIFT) [69].

3.2 Unsupervised Learning

The previously presented approaches for feature extractions relied on hand-crafted features

which had lack of adaptabilities when new nodule patterns appeared. To achieve promising

results against new data, more recent studies agreed with unsupervised feature learning. Such

features allowed the systems to discover customized features regardless of input features.

Such systems are k-means [13], principal component analysis (PCA) followed by convolution
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and pooling operations [46], and restricted Boltzmann machine (RBM) [25] which is an

unsupervised learning scheme adopted architecture of the artificial neural network (ANN).

Regardless of extracted features, it is also crucial to choose an appropriate classifier that

optimally translates the features into correct classes. General feature-based classifiers applied

for pulmonary nodule detection are linear discriminant (LD) [50, 2], k-nearest neighbors

(kNN) [45] and support vector machine (SVM) [46, 69]. Also, ANN is not only able to extract

learned features, but also able to perform classification due to output vector transformed from

the input dimension to one-dimensional space [4, 41].

A successful attempt for malignancy detection of the pulmonary nodule is adopted by un-

supervised learning schemes with linear SVM [46]. Under testing within LUNGx database,

the previous work [46] has demonstrated superior performance among other hand-crafted fea-

tures, such as histogram of CT density, LBP on the three orthogonal planes (axial, coronal

and sagittal CT images) and LBP with random sampling. The feature extraction is done over

VOIs, a 3-D cubic bounding box that contains entire pulmonary nodule and surrounding tis-

sues. During feature extraction, multiple stages were applied as follows: 1) PCA over VOIs.

2) multiple kernels of 3-D convolution. 3) pooling operations over convolved features. In the

first stage, the extracted VOIs were converted into 3-D kernels with high correlated unsu-

pervised features by employing PCA. The following stage used 3-D convolution operations

over the kernels generated from the previous stage. Higher-level features were extracted on

the second stage. The last stage employed the combination of max-pooling and min-pooling

which reduced volumes of convolved features into one-dimensional feature vectors while ex-

tracted features were maintained via pooling operations. The one-dimensional feature vectors

were used to train linear SVM and evaluate malignancy detection of pulmonary nodules over

the classifier.

3.3 Supervised Learning

Regarding significant success in large-scale image classification [15], ConvNets outperformed

the state-of-the-art in the field of computer vision by taking advantage of supervised learning

schemes [33, 54]. To overcome the issue of the unsupervised learning schemes which require
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Pulmonary Nodules

Benign NodulesMalignant Nodules

Figure 3.1: Visual representations of the pulmonary nodule patches in axial view.
The pulmonary nodules consists of two main categories: benign and malignant nodule.
The nodule images are captured under LUNGx database [26].

to transform representations of input features, ConvNets can learn and extract numerous

amount of high-level discriminative features from the raw image at multiple levels of abstrac-

tion while whole networks are trained in a supervised manner to perform classification due to

similar output structure of ANNs. As a consequence, the characteristics of ConvNet are well

suited to pulmonary nodule detection when low-level features always resulted in inaccurate

prediction and entire classification process should be done in an automatic fashion.

3.3.1 Shallow ConvNet

Early attempts have made to overcome classification of the lung disease patterns via Con-

vNets. A shallow ConvNet was proposed to classify patch-based images with interstitial lung

disease (ILD) [36]. Like pulmonary nodule patterns as illustrated in Figure 3.1, ILD pat-

terns also have high variation texture within the same class while different classes often have

similar visual representation. The previous ConvNet [36] showed the remarkable capability

of extraction on high-level discriminative features in comparisons of LBP, SIFT, and RBM.

However, the previous ConvNet, using single convolutional layer, captures high-level features

insufficiently because such shallow structure cannot demonstrate the full potential of feature
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Figure 3.2: Schematic of the Shallow ConvNet [36]. Conv/ReLU, convolutional layer
followed by rectified linear unit; pooling, maximum pooling layer; FC, fully-connected
layer; FC/SoftMax, fully-connected layer followed by SoftMax.

extraction based on the hierarchy of abstraction which usually requires a deeper structure.

The schematic of the Shallow ConvNet is shown in Figure 3.2.

3.3.2 ConvNet with Two Convolutional Layers

In contrast with the shallow ConvNet [36], Song et al. [55] adopted a deep ConvNet struc-

ture with two convolutional layers (as shown in Figure 3.3). The ConvNet [55] achieved

statically higher precision on malignancy detection of the pulmonary nodule compared to

ANN and Stacked Autoencoder [64] which is a neural network based unsupervised learning

algorithm. The architecture of ANN and SAE mainly consists of fully-connected layers, so

such an architecture with fully-connectives in-between hidden layers always fail to analyze

invariant features within the local region, and the pulmonary nodule patterns are usually
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Figure 3.3: Schematic of the ConvNet with two convolutional layers [55]. Conv/ReLU,
convolutional layer followed by rectified linear unit; pooling, maximum pooling layer;
FC, fully-connected layer; FC/SoftMax, fully-connected layer followed by SoftMax.

highly correlated in-between benign and malignant nodule.

3.3.3 ConvNet with Two Grouped Convolutional Layers

A grouped convolution based ConvNet was proposed to detect pulmonary nodule [37]. The

grouped convolution was initially introduced in AlexNet model [33] to reduce computation

costs when the output depth of convolutional layer is deep. Grouped convolution also im-

proves classification accuracy when a deep convolutional layer divides into a group of two

light convolutional layer [67]. As shown in Figure 3.4, the grouped ConvNet has two groups

of two convolutional layers in a series.
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3.3.4 ConvNet with Three Convolutional Layers

Another recent successful CAD system for malignancy detection of the pulmonary nodule

employs three successive convolutional layers [68]. After trained with 1,018 real clinical

pulmonary nodules, the trained model achieved diagnosis on malignancy detection of the

pulmonary nodule as well as a real radiologist. Figure 3.5 shows the architecture of the

ConvNet with three convolutional layers.

3.3.5 Transfer Learning on AlexNet

Instead of training ConvNet model from scratch, using the pre-trained model to train new

data has demonstrated nonperformance in the classification of medical image tasks [6, 63].

Training pre-trained weights to adopt new data is defined as progress of transfer learning.

Transfer learning reduces risks of over-fitting and issue of convergence. Especially, medi-

cal images always have difficulty to optimize clusters of the classifier due to similarities of

its features. More recent studies applied pre-trained deeper ConvNet (AlexNet [33]) with

transfer learning to classify pulmonary embolism patterns [58]. The AlexNet consists of 5

convolutional layers, and the architecture of the AlexNet is shown in Figure 3.6. By applying

transfer learning, the AlexNet inherited capability of feature extraction from the pre-trained

model which had shown state-of-the-art performance on the natural image. However, doubt

has raised between transfer learning and customized architecture regarding the significant

differences between natural images and medical images.
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Figure 3.4: Schematic of the ConvNet with two grouped convolutional layers [37].
Conv/ReLU, convolutional layer followed by rectified linear unit; pooling, maximum
pooling layer; FC, fully-connected layer; FC/SoftMax, fully-connected layer followed
by SoftMax.
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Figure 3.5: Schematic of the ConvNet with three convolutional layers [68]. Conv,
convolutional layer; pooling, maximum pooling layer; FC, fully-connected layer;
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layer followed by SoftMax.
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Chapter 4

Proposed Method

This chapter aims to provide the detailed definition of the proposed CAD system. Flowchart

of the proposed CAD system is shown in Figure 4.1(a). The proposed CAD system is a novel

patch-based malignancy detection tool to learn and capture high-level discriminative features

of the pulmonary nodule in a supervised manner and learned features are used for nodule

diagnosis without any additional classifier. The system consists of two main stages as fol-

lows: 1) data preparation aims to provide ROIs in conditions of spatial transformations. 2)

ConvNet performs feature extraction and classification by taking advantage of more relevant

information provided from the first stage.

4.1 Data Preparation

Common CAD systems for pulmonary nodule detection aim to analyze the marked area of

concern. Data preparation is an important stage to enhance texture description on the nodule

that improves feature extraction in the following stage. The data preparation stage is shown

in Figure 4.1(b). The data preparation stage consists of three steps: 1) extract ROIs from

CT images. 2) over-sampling ROIs. 3) contrast normalization.

The extracted ROI presents the pulmonary nodule as a 2-D image patch, and the image

patch highlights the pulmonary nodule within a relatively large region compared to the

normal CT slice image. Because it is common that medical imaging database usually has

limited data size in contrast of natural imaging database, extracted ROIs are over-sampled

via spatial transformation, so the increased number of training samples reduce the risk of

over-fitting. On the other hand, different CT scanners lead various changes in illumination of

the CT slice image. The contrast normalization is used to reduce the illumination effect by
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Figure 4.1: Overview of the proposed CAD system. (a) The flowchart of the pro-
posed CAD system. (b) Illustration of the data preparation stage. (c) Schematic of
the ConvNet. Conv/ReLU, convolutional layer followed by rectified linear unit; pool-
ing, maximum pooling layer; FC/Dropout, fully-connected layer followed by dropout;
FC/SoftMax, fully-connected layer followed by SoftMax; ConvNet, Convolutional neu-
ral network.
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normalizing the intensities of the ROIs. In the following sections, the detailed method of ROI

extraction is described in section 4.1.1, followed by the data argumentation (section 4.1.2)

and contrast normalization (section 4.1.3).

4.1.1 ROI Extraction

The proposed CAD system extracts ROIs in the axial plane, and the extracted ROIs con-

tain the full size of the pulmonary nodules. Typical ROI extraction is done by a manual

segmentation [2, 41] or automatic detection via the CAD systems [27, 44, 45]. Since LUNGx

Challenge database has already provided approximated central mass of each confirmed nod-

ule, ROIs are manually extracted by cropping the axial CT images with bounding boxes.

Such bounding boxes have fixed cropping size for each nodule, depending on the visual size

of the nodule while keeping the same aspect ratio to prevent information loss when rescaling

to match input size of the proposed ConvNet.

Samples of bounding boxes with representations of nodules are shown in Figure 4.2(a)

and Figure 4.2(c), and the extracted ROIs demonstrate that the sizes of the pulmonary

nodules maintain the major portion of the image patch. If the presence of the pulmonary

nodule is in a small region of the ROI, the feature information obtained by the ConvNet is

not enough to determine whether there is a pulmonary nodule in the input image patch due

to the ConvNet extracts image features within numerous local regions. This can also lead

to the decrease in classification accuracy. In addition to the architecture of the proposed

ConvNet (as described in section 4.2), three maximum pooling layers are employed to reduce

redundant local features by sub-sampling the input feature maps. Therefore, if the size of the

pulmonary is too small to be recognized in the ROI, the presence of the pulmonary nodule

in the feature maps located in-between the last pooling layer and the first FC layer is too

small to provide enough information.

In terms of the ROI size, extracted ROIs are resized to 64×64 pixels to match the input

size of the proposed ConvNet. From the practice of the ConvNet, the ConvNet which has

relatively large input size requires a lot more parameters to process the input images. With

too many learnable parameters, the classification performance of the ConvNet is degraded

because of over-fitting. Also, each ROI is extracted in the axial plane which represents
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a cross-sectional slice of the CT scan, so each nodule generates various numbers of ROIs,

depending on the size of the nodule volume. The samples of the ROIs extracted from single

benign and malignant nodules are illustrated in Figure 4.2(b) and Figure 4.2(d).

(a) 

(c) 

(b)

(d) 

Figure 4.2: Extracted ROIs from LUNGx Challenge database [26]. Images (a) and
(c) show the bounding boxes of the pulmonary nodules. Image (a) shows a malignant
nodule from 68-year-old female. Image (b) shows extracted ROIs from the malignant
nodule. Image (c) shows a 79-year-old female with benign nodule. Image (d) shows
samples of the extracted ROIs from the benign nodule.

4.1.2 Data Augmentation

To achieve promising classification results for the diagnosis of the malignant pulmonary

nodule, ConvNets rely on massive numbers of learned parameters. However, deep structures

always increase the chance of over-fitting when dataset used to train is limited. Because
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limited training dataset misleads learned parameters to achieve local optima, the correct

prediction only occurs when input data is very close or exact as training dataset. To reduce

the risk of over-fitting, data augmentation is used to generate spatial invariance on extracted

ROIs. Natural images usually contain geometrical information. For example, an image of

the residential house consists of the high-level geometrical structure such as the sky. By

applying spatial transformation such as rotation or flipping, the transformed natural image

fails to demonstrate the geometrical information. In contrast of natural images, geometrical

information is trivial to describe nodule. It is still valid to present nodule in any orientation.

In this thesis, each extracted ROI is over-sampled to 3 additional artificial image patches by

rotating 90, 180 and 270 degrees.

4.1.3 Contrast Normalization

After rotation transformation, contrast normalization is applied to augmented image patches.

By subtracting the global average of intensities which is computed from the entire dataset, the

augmented image patches achieves zero-centering, and the zero-centering refers to the zero

mean of the entire dataset. Thus, the normalized image has fewer sensitives for illumination

changes which usually happened when a CT examination is taken on different CT scanner.

For example, a dataset consists of n image patches, and each image presents as an image

tensor xi,j in the spatial domain, so the global mean of the entire dataset (x) can be expressed

as:

x =
1

n

∑
i,j

xi,j (4.1)

Contrast normalization also improves performance and reduce training time [29]. Because

the learnable parameters are optimized by gradient descent algorithm, normalized images

have less spatial variance due to zero-centering, so the contrast normalization avoids steeper

gradient update which can significantly affect the training performance because a steeper

gradient leads a larger number of update in learning parameters. Hence, the training without

contrast normalization has the higher risk to miss the global minima of the loss function,

and the trained model is easy to over-fitting.
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Moreover, the proposed ConvNet adopts activation layers to introduce non-linearity in-

between the convolutional layers. During the training phase, the weights in convolutional

filters are initialized as a collection of random numbers. By applying contrast normaliza-

tion, the output feature maps convolved by randomly initialized filters have zero-centered

distributions. As a consequence, a small step of update in the weight parameter leads to

significant changes in the activation layer because of the activation function is a non-linear

function which has the steepest slope near the origin. This also leads the model to have a

faster convergence speed.

4.2 Proposed ConvNet

After obtaining nodule image patches via the data preparation stage, the next stage is to

perform classification task by analyzing the features of input regions in various levels using

ConvNet. The schematic of the proposed ConvNet is shown in Figure 4.1(c).

It is crucial to choose an appropriate filter size for each convolutional layer due to local

connectivity within fixed-scale of spatial area. Natural images are usually constructed with

high-level structures among whole image region such as arbitrary colors, multiple objects or

geometrical information. In contrast of natural images, nodule image patches are character-

ized by local textural features. Such features are stochastic patterns which repeat within a

small region. In order to capture the local textural features, small filters are applied so that

the convolutional layer takes advantage of the filters adopted with small size by analyzing

fine-grained local regions.

In order to optimize the architecture of the proposed ConvNet, the receptive field should

also be considered. The receptive field is defined as the particular region in input volume

that ConvNet performs extraction within this region. As illustrated in Figure 4.3, an input

feature map with the size of 4×4, convolved with the filter size of 2×2 and stride of 1,

produces 3×3 output feature map. By applying the same filter size of convolution, the final

output feature map size is reduced to 2×2. Because each feature on the last feature map

requires 2×2 features from the first feature map where is acquired from 3×3 input features,

the output feature map is able to describe the local structures on 3×3 local regions of the
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input feature map. Hence, an appropriate total receptive field should be considered to pass

enough local sparse structures from input to output of the ConvNet while preventing final

output features exceed input receptive field.

In this thesis, a group of 5×5 fixed scale filters is used for convolution operation along with

input width and height, which its size is relatively small by comparing with the input size

of 64 × 64. Also, the proposed ConvNet consists of 3 convolutional layers and 3 maximum

pooling layers, and total receptive field is limited to 36×36 so that approximately half of

the input receptive field has been seen by the ConvNet while maintaining the specific local

textural features. Table 4.1 shows the size of the receptive field respected to each learnable

layer in the proposed ConvNet. The receptive field of each learnable layer gradually increases

while the input data propagates via the 3 convolutional layers and 3 pooling layers which are

employed in the proposed ConvNet.

Table 4.1: Receptive field of each learnable layer in proposed ConvNet

Input Conv Pool Conv Pool Conv Pool

Filter size 5×5 2×2 5×5 2×2 5×5 2×2

Receptive field 64×64 5×5 6×6 14×14 16×16 32×32 36×36

Conv, convolutional layer; Pool, maximum pooling layer

4.2.1 Architecture

The architecture of the proposed ConvNet is shown in Figure 4.4. The processed image

patches from the previous stage are rescaled to 64×64 pixels to match the input data size.

The ConvNet to be applied consists of consecutive 3 convolutional layers followed by 2 fully-

connected layers. All the three convolutional layers use 5×5 filters. The same filter will be

used to slide around one input feature map to generate one output feature map. The first

convolutional layer contains 1×12 filters of size 5×5, which receives the 1 input feature map

and generates 12 output feature maps. Similarly, the second and third convolutional layer

contain 12×24 and 24×48 filters respectively.

The ReLUs are used as the activation function of each convolutional layer. The activation
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Figure 4.3: Example of the receptive fields in a network with two convolutional layers.
Conv, convolutional layer

function can introduce non-linearity to the network. Especially, ReLU, which has shown

better gradient changes than sigmoid and tanh functions [33], suppresses negative values

to 0 and keeps positive values. Besides, the ReLU function, f(x) = max(x, 0), is easy to

implement which can help improve the speed performance of both the training and inference

process of the network.

Max-pooling layer is inserted after each convolutional layer. Max-pooling operation main-

tains maximum value within the non-overlapping filter of size 2×2 and stride of 2 on each

feature map. The pooling layers are used to reduce the dimensionality of the following layers

of the network in order to maintain more relevant local features. Moreover, pooling opera-

tion increases the receptive field size so that the network can learn more complex local sparse

structures from the input. In the proposed ConvNet, the output dimensionality will be half

38



Input 

(64×64)

5
5

Conv/

ReLU

2
2

Feature Maps

12@60×60 

Pooling

Feature Maps

12@30×30 

5
5

Conv/

ReLU

Feature Maps

24@26×26 

2
2

Pooling

Feature Maps

24@13×13 

5
5

2
2

Feature Maps

48@9×9 

Conv/

ReLU

Feature Maps

48@5×5 

Pooling

256

FC/

Dropout

2

FC/

SoftMax

Feature 

Extraction
Feature 

Classification

Figure 4.4: Architecture of proposed ConvNet. Conv/ReLU, convolutional layer
followed by rectified linear unit; pooling, maximum pooling layer; FC/Dropout, fully-
connected layer followed by dropout; FC/SoftMax, fully-connected layer followed by
SoftMax.

of that of the input after each max-pooling operation.

Fully-connected (FC) layers construct the last part of the proposed ConvNet after the

max-pooling layer. First FC layer has 256 output neurons to build full connectivity and

shares all local sparse structures from 48 feature maps generated by the last max-pooling

layer. The last FC layer consists of 2 output neurons in order to match the number of output

classes which are benign and malignant.

The denser FC layer often leads over-fitting due to full connectivity structure which

requires a large number of parameters. Here in the proposed ConvNet architecture, in order

to avoid over-fitting, the dropout [56] scheme is applied to the first FC layer. The output

of the last FC layer is set to zero with a probability of 0.5. Figure 4.5 shows a network

with three FC layers employs a dropout with a ratio of 0.5. After applying dropout, the

two hidden neurons in both first and second FC layers act inhibitory. As a result, the total

number of the synapse paths are reduced from 24 to 8. The dropped out neurons do not

contribute to the network calculation on both of forwarding pass and backward propagation.

Therefore, each time an input is present during training, the network performs the forward

inference with a different architecture. This can effectively reduce the co-adaptation of the

neurons and thus avoid over-fitting.
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(a) Standard FC layers (b) Dropout with a ratio of 0.5

Figure 4.5: Network with three fully-connected layers applies dropout with a ratio of
0.5. Image (a) illustrates the connections without applying dropout. Image (b) shows
the connections with dropout of 0.5.

4.3 Training Strategy

To express the full potential of classification performance in the proposed ConvNet, training

strategy is applied to perform a promising classification result on malignancy detection of

the pulmonary nodule. The training strategy can be viewed as three parts: 1) reorganized

database 2) choice of the optimizer. 3) selection of hyper-parameters.

4.3.1 Dataset Distribution

Diagnostic performance of malignant pulmonary nodule under the proposed CAD system

is evaluated based on train-validation-test scheme. The LUNGx organizers stated that the

calibrations sets are not relevant for the evaluation of difficulty levels in the test sets, while

ConvNet generally needs a large amount of data to learn enough discriminative features in

order to have full potential in pulmonary nodule classification to distinguish malignant and

benign classes. The training scheme of the proposed CAD system is different from LUNGx

40



Challenge training scheme.

To ensure the performance of proposed CAD system, instead of using LUNGx calibration

sets to train the proposed ConvNet, 54 cases in the LUNGx testing sets are reserved for

training and validation purposes, and leaving additional 6 cases in the LUNGx testing sets

and entire LUNGx calibration cases to test the performance of the proposed ConvNet. Here

in the proposed CAD system, the training sets consist of 60 nodules with 30 benign and 30

malignant cases while the validation sets include 3 benign nodules and 2 malignant nodules.

During the testing stage, the proposed CAD system is evaluated by 9 benign nodules and 9

malignant nodules.

Figure 4.6 illustrates the dataset distribution for the training-validation-test scheme of the

proposed ConvNet by reorganizing the LUNGx Challenge dataset, so the proposed ConvNet

is trained by 6 times more nodules compared to LUNGx Challenge training data size, and

the rest of nodules are divided into validation dataset and testing dataset.

After the data preparation stage, the proposed ConvNet is trained by augmented image

patches where 2,225 image patches belong to malignant nodules and 1,496 image patches

belong to benign nodules. The proposed ConvNet uses 112 image patches as the malignant

class and 76 image patches as the benign class for validation. After the training stage,

the proposed ConvNet is tested by 432 image patches as malignant and 344 image patches

as benign. Because the training, validation and testing sets of the proposed CAD system

are organized based on nodule cases, this setup guarantees augmented image patches for

validation and testing that have never been “seen” by the trained model during the training

stage. The data distribution of the proposed CAD system is shown in Table 4.2.

4.3.2 Optimizer

The proposed ConvNet is trained with the back-propagation algorithm by minimizing weight

losses to achieve an optimal model. The weight loss is measured by cross-entropy error and

normalized by SoftMax to represent the probabilistic distribution of classes. The weights

are optimized by using stochastic gradient descent (SGD) which is a non-adaptive gradient

descent optimizer. Although adaptive optimizers such as Adam, AdaGrad or RMSProp can

significantly reduce training time due to faster convergence by comparing with SGD, adaptive
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Figure 4.6: Dataset distribution for the training-validation-test scheme of the pro-
posed ConvNet compared to the LUNGx Challenge training-test scheme.

optimizer tends to have insufficient generalization to perform classification on new data.

Wilson et al.[66] pointed out that models optimized by SGD outperformed classification on

new data by comparing with adaptive optimization methods. Adaptive optimizers produced

inaccurate classification results with probability arbitrarily close to half. Therefore, SGD is

applied to optimize the proposed ConvNet.

4.3.3 Hyper-parameters

Hyper-parameters define the complexity of the ConvNet such as filter size or input size.

Hyper-parameters are also the parameters defined before training such as learning rate, batch
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Table 4.2: Dataset distribution

Data set Training set Validation set Testing set

Number of malignant nodules 41 30 2 9

Number of benign nodules 42 30 3 9

Proportion of nodules 100% 72% 6% 22%

Number of malignant patches 2,769 2,252 112 432

Number of benign patches 1,916 1,496 76 344

Proportion of patches 100% 79% 4% 17%

size or initialized weight distribution. An exponential decay learning scheme is used to update

the learning rate with the initial rate of 0.0001. 16 input samples per batch are employed

to update weights while weights are initialized as the Gaussian distribution with a standard

deviation of 0.005 and constant bias of 0.1. The predefined number of training epochs is

1,000, but the optimal trained model is obtained when the validation result at the epoch

achieves the best overall accuracy by comparing with validation results at next 10 epochs.

The overall accuracy is the average of corrected predictions from both malignant and benign

classes.
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Chapter 5

Results and Analysis

By integrating the proposed highly accurate ConvNet, the proposed CAD system achieves

a promising diagnostic accuracy for detection of malignant pulmonary nodules on CT. In

section 5.3, a set of experiments justifies the proposed ConvNet architecture from choices of

hyper-parameters, layer components and training strategy. Then, the proposed CAD system

performance for diagnosis of the malignant pulmonary nodule on CT is compared with state-

of-the-art work in section 5.4, followed by performance comparisons with other ConvNet

architectures in section 5.5.

5.1 Experiment Environment

The proposed ConvNet is implemented under Caffe [30] deep learning framework. Other

experiments related with convolutional neural networks are also performed under Caffe en-

vironment. Training and testing networks are processed under Ubuntu 16.04 Linux system

with Intel Xeon E5-2630 @ 2.60 GHz, 32 GB RAM and Nvidia K40 GPU.

5.2 Experiment Metrics

5.2.1 Accuracy

Accuracy measures the average of correct predictions on benign and malignant nodules during

the validation and testing phase. Although accuracy is trivial to evaluate the diagnostic

performance for malignancy detection of the pulmonary nodule, it is a good estimator to

evaluate the performance of the classifier. Because the proposed CAD system consists of
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a ConvNet to classifier the pulmonary nodules in-between benign and malignant nodules,

the performance of the classifier in the proposed ConvNet can be evaluated via accuracy.

In section 5.3, the classification performances of the ConvNet with different configurations

of the hyper-parameters are analyzed based on the accuracy metric. The accuracy of the

classifier in the proposed ConvNet can be expressed as:

Accuracy =
Number of correct predicition

Total number of inputs
(5.1)

5.2.2 Sensitivity and Specificity

To evaluate the diagnostic performance for malignancy detection of the pulmonary nodule,

the criterion of the estimators are sensitivity and specificity. In the field of medical research,

the sensitivity refers to the probability of the diagnostic decision for a particular disease

correctly identified, and the specificity is the ability of correct diagnostic decision for the

patient without the particular disease. In this thesis, the sensitivity represents a percentage

of malignant nodules classified as malignant; whereas, the specificity is a percentage of benign

nodules predicted as benign. The sensitivity and specificity can be expressed as:

Sensitivity =
Number of maligant nodule classified as malignant

Total number of malignant nodules
(5.2)

Specificity =
Number of benign nodule classified as benign

Total number of benign nodules
(5.3)

5.2.3 Statical Analysis: Receiver Operating Characteristic

Since confidence level of classification for classes of the malignant or benign nodule is based

on normalized scores between those two classes, the receiver operating characteristic (ROC)

[71], a statistical analysis, is used to evaluate overall diagnostic performance for detection of

the malignant pulmonary nodule. The ROC is the plot of sensitivity (true positive rate) and

specificity (false positive rate) at different decision thresholds of the classifier. An area under

the ROC curve (AUC), a classification analysis, measures the area the entire ROC curve, and

AUC provides the classification performance based on the true positive rate and false positive
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rate on all possible classification thresholds. In this thesis, AUC is calculated under DeLong

test [14] in order to compare performances between different classifiers. By using 1,000 boot-

straps, sensitivity and specificity at the optimal cut-off of the ROC are obtained and used as

supplemental estimators. In the section 5.4, a comparison with state-of-the-art work by using

unsupervised method is evaluated based on sensitivity and specificity at the optimal cut-off

point of ROC curve; also, AUCs are compared. In section 5.5, the classification performance

of the proposed ConvNet is also compared with other ConvNet architectures by performing

ROC analysis. Instead of using accuracy to measure the classification performance in sec-

tion 5.6, the classification result is analyzed by AUC under ROC because the experiments

are done under different testing datasets.

5.3 Tuning of Hyper-parameters

Table 5.1: Performance of the ConvNets with Different Configurations

Input Scale Dropout Filter Size Optimizer ?Accuracy

64×64 0 5×5 SGD 0.8505

64×64 0.5 7×7 SGD 0.8402

64×64 0.5 3×3 SGD 0.8479

32×32 0.5 3×3 SGD 0.8763

64×64 0.5 5×5 Adam 0.8595

64×64 0.5 5×5 SGD 0.8866

? Accuracy: average of correct predictions on benign and ma-

lignant nodules from the testing sets.

In order to choose optimal ConvNet architecture, relevant experiments are performed

based on different configurations of the hyper-parameters. The malignant pulmonary nodule

detection performances of different ConvNet architectures are evaluated by using the testing

sets, and the results are shown in Table 5.1. According to the Table 5.1, the proposed

ConvNet uses a group of 5×5 fixed scale filters and SGD optimizer while dropout with a

ratio of 0.5 is applied on the first FC layer.
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A group of 5×5 fixed scale filters is proposed in order to limit the total of receptive field

(36×36) into approximately half of the input receptive field. By increasing the size of the

filter to 7×7, the overall accuracy results in a drop of roughly 5%. The total receptive field

is enlarged to 50×50 which is an insufficient size to pass enough local sparse structures from

the first to the latest layer by comparing with the proposed filter size of 5×5. A smaller filter,

size of 3×3, is also compared with the proposed filter size. Using a filter size of 3×3 reduces

overall accuracy by approximately 4%. In this thesis, the input receptive is limited to 64×64

pixels. Using a filter size of 3×3 is too small to capture enough invariant information due

to the highly correlated neighboring pixels from the input data. The input image patches

are then rescaled to 32×32. The overall accuracy improves by 3% while using a filter size of

3×3. However, the performance of using 3×3 filter is still inferior to the proposed filter size.

Also, a dropout with a probability of 0.5 increases approximately 4% overall accuracy

compared with the same ConvNet architecture without dropout operation. Performance

differences for the ConvNets trained by SGD or Adam are also compared. The SGD gradient

optimizer surpassed the Adam by increasing the overall accuracy of about 4/

5.3.1 Analysis of the Proposed CAD System’s Performance

This section provides additional analysis for the performance of the proposed ConvNet. Dur-

ing the training phase, the training loss and validation accuracy for each epoch are shown in

Figure 5.1. As illustrated in Figure 5.1, the training loss of the proposed ConvNet started

to converge until roughly 60 epochs. The best validation accuracy achieved at 208 epochs.

Figure 5.2 shows classified nodule samples and some difficult cases that nodule samples were

misclassified by the proposed ConvNet.

5.4 Comparison with Unsupervised Method

The proposed CAD system performance for diagnosis of the malignant pulmonary nodule on

CT is compared with previous state-of-the-art work [46]. The previous work adopted unsu-

pervised learning scheme by applying Principle Component Analysis (PCA). The previous

work was trained and evaluated under testing dataset of the LUNGx Challenge database.
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Figure 5.1: Training losses and validation accuracies during the training of the pro-
posed system.

However, the authors did not provide the data distribution for training and testing datasets.

To perform a fair comparison in-between the proposed ConvNet and the state-of-the-art

work, the classification performance in the proposed ConvNet is further justified via addi-

tional nodule samples acquired from calibration set of the LUNGx Challenge database (as

referring to Figure 4.6).

The comparison with the previous work is shown in Table 5.2. Nishio et al. [46] applied a

combination of PCA, convolution and pooling operations as a multi-stage feature extractor,

followed by a linear SVM to perform classification in-between malignant and benign pul-

monary nodules. The system [46] was evaluated under LUNGx testing sets and achieved a

sensitivity of 0.867 and specificity of 0.744 at the optimal cut-off point of the ROC curve with

AUC of 0.837. In contrast with Nishio’s approach, the proposed CAD system outperforms

pulmonary nodule detection in-between benign and malignant cases. The best-trained model

of the proposed ConvNet achieved AUC of 0.920 with a sensitivity of 0.896 and specificity of

0.878.
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Figure 5.2: Example of ROIs that were classified or misclassified by the proposed
ConvNet.

The proposed CAD system surpassed unsupervised feature extraction that involves multi-

stages as described in the previous work [46] for three reasons: 1) principal components are

statistically based on the covariance matrix. However, the covariance matrix cannot be eval-

uated in an accurate manner. PCA transforms input features into high dimensional spaces.

Such input transformation often leads to the difficulty to calculate a large size covariance ma-

trix within a limited training database. In contrast with PCA, the proposed CAD system,

applied ConvNet structure, extracts features in high dimensional spaces without the need

for the covariance matrix. 2) PCA has high sensitivity on illumination and local structure

changes such as shifting or rotation. Instead of providing invariant samples for training the

classifier explicitly, the proposed CAD system can recognize invariant changes by inserting

pooling layer after each convolutional layer which maintains relevant local features. 3) the

PCA followed by single convolution operation has a shallow hierarchical layered structure by

comparing with the proposed CAD system. It is expected that the proposed CAD system

surpasses the previous work [46] due to more complex extracted features. The proposed CAD

system is a hierarchical layered structure to extract high-level discriminative features based

on the hierarchy of abstractions. By comparing with the previous work [46], more complex

(higher-level) internal representations of the input image are hierarchically extracted from

the first to the last convolutional layer.

In contrast of the hand-crafted feature extractors such as histogram of density, LBP-TOP
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Table 5.2: Comparison of the proposed CAD system with the previous work

Methods
Feature

Extractor
Classifier Sensitivity Specificity AUC

Nishio [46]

Hisogram SVM 0.867 0.488 0.640

LBP-TOP SVM 0.900 0.558 0.688

RLBP SVM 0.800 0.674 0.725

Multi-stages SVM 0.867 0.744 0.837

Proposed ConvNet 0.896 0.878 0.920

Histogram, histogram of CT density; LBP-TOP, local binary pattern on

the three orthogonal planes; RLBP, LBP with 3-D random sampling;

Multi-stages, combination of PCA, convolution and pooling operations;

SVM, support vector machine.

and RLBP, the proposed CAD system achieved superior classification result for detection of

malignant pulmonary nodule due to a hierarchical layered structure. Such hand-crafted

features are histogram transformations limited in spatial domain with lack of complexity in

terms of data representations which often fail to adopt new data.

5.5 Comparison with Other ConvNet Architectures

Table 5.3: Comparison with other ConvNet architectures

Methods Sensitivity Specificity AUC 95% Confidence Interval

Li et al. [36] 0.785 0.860 0.868 0.842 to 0.891

Li et al. [37] 0.824 0.853 0.884 0.865 to 0.902

Song et al. [55] 0.835 0.851 0.843 0.821 to 0.864

Yang et al. [68] 0.850 0.838 0.876 0.856 to 0.895

Tajakhsh et al. [58] 0.792 0.913 0.897 0.874 to 0.918

Proposed Method 0.896 0.878 0.920 0.898 to 0.938
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Some ConvNets are already applied for various medical imaging applications. To show

the superiority of the proposed ConvNet when performing pulmonary nodule classification,

the ConvNet architectures, proposed in [36, 37, 55, 68, 58], are also trained and tested

for pulmonary nodule classification under the same training and testing datasets. Their

performances are compared with that of the proposed ConvNet, and experiment results are

summarized in Table 5.3.

Shallow ConvNet

The shallow ConvNet proposed in [36], had inferior experiment result with AUC of 0.868

because Li et al. [36] applied a single convolutional layer followed by a single max-pooling

layer and three FC layers. Because quantities of learned features are based on hierarchical

layered structure, such shallow structure cannot capture enough high level features. Also, the

shallow ConvNet had demonstrated the over-fitting issue due to redundant hidden neurons

in the FC layer. However, the proposed ConvNet showed similar generalizations for both

positive and negative samples (e.g., sensitivities and specificities). In contrast with the

shallow ConvNet, the proposed ConvNet adopted approximately 4% less hidden neurons and

dropout method to reduce complexities of the connectivities in FC layers.

ConvNet with Two Grouped Convolutional Layers

Li et al. [37] proposed a ConvNet with two grouped convolutional layers and achieved an

AUC of 0.884. Although the number of the convolutional layers is doubled compared with

the shallow ConvNet [36], the filter size for each convolutional layer is relatively large with

respect to its input receptive field. In [37], the authors used 5×5 filters while the input

receptive field is 32×32. To overcome this problem, the proposed ConvNet uses the same

filter size with larger input receptive field size to pass enough invariant information and

prevent losses of local sparse structures.

ConvNet with Two Convolutional Layers

Song et al. [55] proposed a ConvNet which has a similar architecture as [37]. The ConvNet

adopts two convolutional layers with the filter size of 5×5. The ConvNet proposed in [55] had
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inferior experiment result with AUC of 0.829 because the input receptive is further reduced

to 28×28. As a result, such large filter sizes fail to capture detailed local information.

Moreover, the proposed ConvNet employs dropout scheme to reduce the complexity of the

fully-connections in FC layer. However, [55] has to tune two times more parameters in the

FC layer, so it is easier to be over-fitted.

ConvNet with Three Convolutional Layers

The ConvNet [68], which employed with successive three convolutional layers, had AUC of

0.876, but the result is still inferior compared with the proposed ConvNet. Adding an FC

layer translates local features extracted by convolutional layers into unique representations of

different classes, and translated information is used to perform classification. Although the

last layer in [68] transforms the extracted features into a 1-D vector by performing convolu-

tion, the last convolutional layer only builds two hidden neurons that have full connections

from the previous layer. As a result, all extracted features from previous layers rely on the

two neurons; unlikely, the proposed ConvNet adopts 256 neurons to translate local extracted

features from the previous layer and learn the non-linear combination of those features effec-

tively.

Transfer Learning on AlexNet

In addition, during ImageNet contest [15], AlexNet showed approximately 17% error rate

among 1.2 million natural images over 1,000 different classes. AlexNet consists of 5 convolu-

tional layers and 3 FC layers with over 61 million learnable parameters. In our experiment,

the AlexNet model is evaluated by applying transfer learning in order to compare pulmonary

nodule classification performance with the proposed ConvNet composed with fewer layers. In

order to match the input size of AlexNet, all image patches are resized to 224×224, and RGB

channels are encoded by duplicating with same gray level intensities. A layer-wise fine-tuning

strategy [58] is applied to gradually re-adjust the pre-trained weights in order to achieve the

optimal result. After an adequate fine-tuning, the best model achieved AUC of 0.897.

However, the proposed ConvNet still has the superior performance by comparing with the

fine-tuned AlexNet model. By considering the full connectivity in-between the last pooling
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and the first FC layer on AlexNet, 37 million learnable parameters had to be tuned during

training so that this full connectivity is too redundant in limited training datasets. Also, it

is still possible that the huge number of parameters lead the trained model to achieve local

optima.

ROC Analysis

ROC curves for different ConvNet architectures are shown in Fig. 5.3. To test the statistical

significance of the AUC differences among all analyzed ConvNets, the significance level under

DeLong test is performed [17]. Significance level refers to the probability of null hypothesis

occurred. If the significance level is less than .05 (ρ 6 .05), the null hypothesis is rejected. In

the presence of this thesis, the null hypothesis is that the proposed ConvNet has a statically

similar diagnostic performance for malignancy detection of the pulmonary nodule. According

to the resulted ROCs, the proposed ConvNet achieve statically significant (ρ 6 .05), so the

proposed ConvNet is statistically confirmed to be the best model against all models.

5.6 Investigation of Imbalanced Data Problem

To train a ConvNet under natural imaging database, the training dataset is generated by

randomly selecting a fixed portion of data from the entire augmented database. However,

augmented medical imaging database usually have high spatial correlations within each lesion

sample, so a random selection in nodule image patches leads unreliable high performance on

the diagnosis of pulmonary nodule because the testing or validation dataset might contain

the coherent augmented image patches that have already “seen” by the model. Hence, the

datasets of the proposed ConvNet are quantified depending on the number of nodules. The

proposed ConvNet is trained by 30 benign and 30 malignant. However, each nodule gen-

erates a various number of ROIs based on different sizes of nodule volume, so the training

data size is imbalanced for each class (1,496 benign images and 2,252 malignant images). In

general, a model trained by an imbalanced dataset tends to have poor classification perfor-

mance compared to the model trained by a balanced dataset. According to previous studies

on imbalanced medical imaging database, the imbalanced problem has occurred when the
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majority class has 1,000 times more samples than the minority class [20, 21]. Although the

database used in the proposed CAD system is significantly smaller, the imbalanced problem

for the proposed database is still ambiguous.

As the way to deal with imbalanced class size in the training phase is very important,

additional experiments are done to explore the effects of the imbalanced training data. The

imbalanced data problem is investigated by evaluating the classification performance of the

proposed ConvNet trained by a larger imbalanced or manually balanced dataset via over-

sampling or under-sampling. In section 5.6.2, the results are compared to the proposed model

trained by the original training dataset. The weighted cross-entropy is a popular method to

overcome imbalanced problem [10]. The weighted cross-entropy function is applied to the

proposed ConvNet, and the classification performances between weighted and conventional

cross-entropy are compared in section 5.6.3.

5.6.1 Preparation of a Larger Imbalanced Dataset

To justify whether the proposed ConvNet has data imbalance problem, the number of differ-

ence between malignant and benign class is increased on purpose. This is done by performing

additional data augmentation so that the training dataset is more imbalanced. During data

augmentation, each extracted ROI is further over-sampled by flipping along horizontal and

vertical axises; flipped image patches are also applied rotation transformations by rotating

90, 180 and 270 degrees. The data distributions for the original database and further aug-

mented database are presented in Table. 5.4. In contrast with the original training dataset,

the difference between malignant and benign nodule samples is increased approximately 3

times. In addition to the testing dataset, the number of data samples is increased due to the

additional data augmentation among all ROIs.

An important question that needs to be considered at first is whether the proposed Con-

vNet trained with the original training dataset keeps the same performance when the testing

data is further augmented. Based on the testing result under further augmented testing

dataset, the proposed ConvNet trained with original training dataset achieved a sensitivity

of 0.880 and specificity of 0.876 at the optimal cut-off point of ROC curve with AUC of

0.920 (as shown in Table 5.5). In contrast to the original testing dataset, further augmented
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Table 5.4: Data distribution for original database and further augmented database

Number of malignant samples Number of benign samples

Training dataset

Original 2,252 1,496

Further augmented 6,756 4,488

Testing dataset

Original 432 344

Further augmented 1,296 1,032

testing dataset resulted in the same AUC when the model was trained by the original train-

ing dataset. However, it is noticed that the sensitivity and specificity decreased. This is in

a situation of moved classification threshold respected to the distribution changes of prior

probabilities in different classes when additional spatial transformations are applied to the

testing samples. To demonstrate the discriminative power of the classifier, AUC is more

intuitive to be used as the criterion of the estimating the classification performance because

the AUC measures an aggregate performance of classifier regarding all possible classifica-

tion thresholds. Therefore, the proposed ConvNet trained with original training dataset and

tested with further augmented testing dataset shows equally discriminative power when the

trained model is tested by the original testing dataset.

5.6.2 Under-sampling and Over-sampling

According to the previous studies of medical image analysis [42, 40], AUC analysis is applied

to analyze the performances of the classifiers trained by imbalanced datasets. The impact

of data imbalance problem in the proposed method is explored by comparing the AUCs

between the model trained with further augmented training dataset and the model trained

with original training dataset. By comparing with the model trained by the original training

dataset, the trained model under further augmented training dataset demonstrates data

imbalanced problem due to deterioration of AUC from 0.920 to 0.901. To overcome the

imbalanced data problem, under-sampling and over-sampling are applied.
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Under-sampling is capable of dealing with the imbalance problem by randomly remove

samples in the majority class until the numbers matched the minority class [28]. To overcome

the imbalance problem when the training dataset is further augmented, the malignant classes

are reduced to the same number of the benign classes by randomly selecting the augmented

malignant nodules. Once the training dataset is balanced, the trained model achieves an AUC

of 0.918, but still inferior to the model trained with the original dataset. A more robust way

to deal with the imbalance problem is over-sampling [38]. over-sampling is performed by

maintaining all augmented malignant nodule patches while randomly duplicating samples

from benign class to make the training dataset be balanced. The model trained with this

over-sampled database has an AUC of 0.919.

The classification performances of the proposed ConvNet trained with original train-

ing dataset, a larger imbalanced dataset and balanced dataset via over-sampling or under-

sampling are compared. All the experiment results are summarized in Table 5.5. The

under-sampling and over-sampling are indeed effective to overcome data imbalance prob-

lem occurred when the proposed ConvNet is trained by further augmented training dataset.

In contrast with the model trained by original training dataset, sampling based approaches

resulted in a drop AUC. Because the way of under-sampling is to randomly discard the sam-

ples within majority class, particular nodule patches could be all discarded in the worst case,

or a large portion of the particular nodule patches are discarded. As a consequence, the

under-sampling results ineffective learning process which is against the propose of data aug-

mentation. In addition to over-sampling, over-sampling leads to downgrade the classification

performance due to the redundancy of duplication. Hence, the original data distribution re-

sulted in no impact of data imbalance problem, and the proposed ConvNet trained by original

training dataset demonstrated statically better generalization than the other models trained

by larger imbalanced or manually balanced dataset. Moreover, [9] stated that the classifica-

tion performance could be reduced by balancing the dataset with over/under-sampling if the

original dataset is small.
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Table 5.5: Comparison with imbalanced and balanced datasets

Sensitivity Specificity AUC

Imbalanced 0.863 0.878 0.901

Balanced

Under-sampling 0.887 0.849 0.918

Over-sampling 0.847 0.874 0.919

Proposed method 0.880 0.876 0.920

Imbalance, an imbalanced training dataset generated by additional spatial

transformations. Under-sampling, a balanced training dataset via under-

sampling. Over-sampling, a balanced training dataset via over-sampling.

Proposed method, proposed model trained by original training dataset and

tested by the further augmented testing dataset with additional augmented

samples such as flipping.

5.6.3 Weighted Cross-entropy

In addition to balancing the training dataset via under-sampling or over-sampling, the

weighted cross-entropy is applied in the proposed ConvNet to overcome the imbalance prob-

lem by introducing the weight into the conventional cross-entropy function. Because the

conventional cross-entropy is not capable of rescaling the loss, the conventional cross-entropy

could fail to measure the loss for minority class when the amount of the majority class signif-

icantly exceeds the minority class. As a consequence, the model stops updating the learnable

parameters corresponding to the minority class, and over-fitting occurs.

Unlike conventional cross-entropy function, weighted cross-entropy is able to rescale the

loss by up-scaling or down-scaling the positive error with regard to the left term of the

cross-entropy function (Equation 2.8). Under further augmented training dataset, the model

trained with weighted cross entropy has better AUC performance compared with the model

trained with conventional cross-entropy loss function. The best testing result under AUC

is 0.916 when weight is adjusted to 1.5. However, the testing result under AUC is still

inferior compared with the model trained with original training dataset and conventional
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cross-entropy loss function. According to [10], the weighted cross entropy is used to stabilize

training loss when the model is trained by an extreme imbalanced dataset. In conclusion,

weighted cross entropy is able to increase performance when training data is exceeded a

certain portion of imbalance ratio. However, the original training dataset does not have

this problem. Moreover, evaluated sensitivity and specificity for the proposed method are

fairly close, so the trained model has well-distributed weights among two classes. Therefore

weighted cross entropy might not be the best option to train the ConvNet under the original

training dataset.
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Figure 5.3: ROC curves for different ConvNet architectures. The AUCs of ROC
curves are: Li et al. [36], 0.868; Li et al. [37], 0.884; Song et al. [55], 0.843; Yang
et al. [68], 0.876; Tajakhs et al. [58], 0.897; proposed method, 0.920. ROC, receiver
operating characteristic; AUC, area under the curve.
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Figure 5.4: ROC curves for different distributions of the training dataset. Imbal-
ance, an imbalanced training dataset generated by additional spatial transformations.
Under-sampling, a balanced training dataset via under-sampling. Over-sampling, a bal-
anced training dataset via over-sampling. Proposed method, proposed model trained
by original training dataset and tested by the further augmented testing dataset with
additional augmented samples such as flipping.
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Chapter 6

Conclusion

6.1 Conclusion

In this thesis, a novel computer-aided detection (CAD) system is proposed for the diagnosis

of the malignant pulmonary nodule on computerized tomography (CT) by using patch-based

imaging features. Instead of designing a particular feature extraction scheme to describe the

high-level features of the pulmonary nodule, the proposed CAD system directly learns them

from the process of supervised learning. The architecture of the proposed Convolutional

Neural Network (ConvNet) is carefully tailored to capture high-level discriminative features

of the pulmonary nodule. The proposed ConvNet is composed of a series of 3 convolutional

layers with the filter size of 5×5, 3 max-pooling layers and 3 ReLU activation layers, followed

by 2 fully-connected layers. The model is trained automatically end-to-end in a supervised

manner by minimizing cross-entropy via stochastic gradient descent (SGD), a non-adaptive

optimized. The performance for diagnosis of the malignant pulmonary nodule on CT is

evaluated under LUNGx Challenge database. The proposed CAD system illustrated bet-

ter diagnostic performance than the unsupervised approach [46] and other previous works

adopted ConvNets [36, 37, 55, 68, 58].

During the LUNGx Challenge event, the submitted CAD systems resulted in worse di-

agnostic performance than the experienced radiologists for malignancy detection of the pul-

monary nodule on CT. The LUNG Challenge database had been challenged until Nishio

[46] proposed a CAD system, an unsupervised method, and the system achieved an area

under ROC (AUC) of 0.837. Instead of using conventional feature extraction approaches

such as histogram of CT density, local binary pattern (LBP), the unsupervised solution [46]

showed high-level discriminative feature extraction ability and better diagnosis of the ma-
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lignant pulmonary nodule on CT by using a combination of principal component analysis

(PCA), convolution and pooling operations. However, the proposed CAD system in this

thesis demonstrated more promising diagnostic results in a supervised way. The proposed

CAD system achieved a sensitivity of 0.896 and specificity of 0.878 at the optimal cut-off

point of the ROC curve with AUC of 0.920. By comparing with the unsupervised method

[46] under the same database, the evaluated results for the diagnosis of malignant pulmonary

nodule achieve 10% AUC improvement.

In contrast with other ConvNet solutions designed for the classification of lung patterns

[36, 37, 55, 68, 58], the proposed CAD system in this thesis outperformed the malignancy

detection of the pulmonary nodule on CT under same LUNGx Challenge database. The ma-

lignancy detection performance for the shallow ConvNet [36], adopted a single convolutional

layer, achieved 4% AUC improvement compared to the unsupervised method proposed by

Nishio [46], but the classification performance of the shallow ConvNet was inferior to the

proposed ConvNet. The shallow ConvNet cannot express the full potential of high-level

discriminative feature extractions through the hierarchical layered structure by employing a

single convolutional layer. Also, the redundant hidden neurons in Fully-connected (FC) layer

resulted in over-fitting. The ConvNet [37] with two grouped convolutional layers improved

AUC by approximately 2% compared to the Shallow ConvNet, but the proposed ConvNet

still demonstrated better AUC because the proposed ConvNet employs a relatively small

filter respected to the input size in order to pass enough invariant information and prevent

losses of the local sparse structure. The ConvNet [55] with two convolutional layers showed

the worse AUC among all ConvNet solutions because the total receptive field in the Con-

vNet [55] exceeds the input receptive field, so the filters failed to prevent the network to

capture non-local information. In contrast with the ConvNet adopted the same amount of

convolutional layers [68], the proposed ConvNet improved AUC by 5% due to none of the FC

layer. In addition to the transfer learning by fine-tuning AlexNet model [58], the proposed

ConvNet surpassed the AlexNet model by improving 2% AUC. The AlexNet model consists

of 37 million learnable parameters, the enormous numbers of parameters lead the trained

model to achieve local optima.

In addition to clinical usage, a CAD system does not only need to provide a promising
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diagnostic performance, but it also has to be easy to be used. In contrast with the proposed

CAD system, the previous unsupervised approach for diagnosis of the malignant pulmonary

nodule on CT requires multiple system blocks such as feature transformation, feature ex-

traction, and feature classification. Since the proposed ConvNet is trained end-to-end in a

supervised manner, the proposed system is easy to perform diagnosis of the malignant pul-

monary nodule on CT in a single system. On the other hand, the proposed CAD system

takes raw images as inputs. Unlikely, the previous works [2, 41] require segmented nodule

as inputs, or additional low-level imaging features of the pulmonary nodules (e.g., density,

size or shape) are employed as inputs [12]. Regarding the input format, the proposed CAD

system performs diagnosis of the malignant pulmonary nodule on CT without any manual

intervention.

6.2 Future Work

Although the proposed CAD system achieved more accurate classification result than the

current state-of-the-art works, augmented samples used to train ConvNet are still significantly

less than natural image database (e.g., ImageNet). The limited number of training samples

can be expanded by adopting other lung databases. By increasing the training samples, there

will be uncertainty that the proposed ConvNet would have better performance or worse.

According to the experiments conducted by Zhu et al. [70], increasing the complexity of

ConvNet with a large amount of training data would not be the optimal solution. The future

work would be worth to include evaluating the diagnostic performance for the malignancy

detection of the pulmonary nodule on CT under other lung databases. For example, Lung

Image Database Consortium (LIDC) public database [5] consists of 1,018 patient cases with

2,636 pulmonary nodules. Besides, the LIDC database has various of slice thicknesses from

0.6 mm to 5.0 mm, so it also would be worth to justify the classification performance of the

proposed ConvNet when the representations of the inputs are not standardized.

In addition to the future work for the architecture of the proposed ConvNet, a deeper

architecture would be worth to evaluate by adopting ideas of residual blocks [24] or inception

blocks [57]. In the sense of training methods, hard negative mining, related to the imbalanced
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problem, would also be worth to be further justified by using larger lung database. More-

over, it would be also worth to compare the classification performances with different shapes

of the input data since some recent studies demonstrate state-of-the-art performances for

malignancy detection by analyzing the volumetric patterns of the pulmonary nodule instead

of patch-based features or using 2.5D based input nodule data by concatenating the nodule

image patches in different views such as sagittal, coronal and axial views [51, 70].

The cropping sizes of the extracted ROIs in this thesis are determined by manual se-

lections. The way of extracting ROI could be done in an automatically fashion in the fu-

ture. Region-based convolutional neural networks (R-CNNs) could be the one to replace the

proposed ROI extraction approach. R-CNN is a fully convolutional network that predicts

boundaries of objects by applying region proposal networks (RPNs). RPNs share convolu-

tional layers with region proposal methods for state-of-the-art object detection. For example,

SPPnet [23] and Fast R-CNN [48] have demonstrated inexpensive computational cost and

obtained promising detection accuracy.
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