
 
 

HYDRAULIC PROPERTIES OF AGGREGATED OIL SAND 

MATERIAL FROM THE ATHABASCA DEPOSIT 

 
 

 

 

A Thesis 

Submitted to the College of Graduate and Postdoctoral Studies 

In Partial Fulfillment of the Requirements for the Degree of 

Master of Science 

In the Department of Soil Science 

University of Saskatchewan 

Saskatoon 

 

 

 

 

By 

Eric John Neil 

 

 

 

 

 

© Copyright, Eric John Neil, March 2018. All Rights Reserved. 



i 
 

PERMISSION TO USE 

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from 

the University of Saskatchewan, I agree that the libraries of the university may make it freely available 

for inspection. I further agree that permission for the copying of this thesis in any manner, in whole or 

in part, for scholarly purposes may be granted by the professor who supervised the thesis work or, in 

their absence, by the Head of the Department or the Dean of the College in which the thesis work was 

completed. It is understood that due recognition shall be given to the author(s) and to the University 

of Saskatchewan in any scholarly use of any material in this thesis. It is also understood that any 

copying, publication, or use of this thesis or parts thereof for financial gain, is prohibited without the 

author’s written permission. Requests for permission to copy or to make other use of the materials in 

this thesis, in whole or in part, should be addressed to: 

 

Head of the Department of Soil Science 

University of Saskatchewan 

51 Campus Drive 

Saskatoon, Saskatchewan 

S7N 5A8 Canada 

 

 

 

 

 

 

 

 



ii 
 

DISCLAIMER 

Reference made in this thesis to any specific commercial product, process, or service by trade 

name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, 

recommendation, or favouring by the University of Saskatchewan. The views and opinions of the 

author expressed herein do not reflect those of the University of Saskatchewan, and shall not be used 

for advertising or product endorsement purposes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ABSTRACT 

Of crucial importance to the reclamation of oil sands mining-affected areas, is creation of a soil 

medium capable of supporting a target ecosystem. A considerable portion of these landscapes contain 

coarse-textured soils, which have poor water retention. Furthermore, many soils naturally contain oil 

sand, and little is known of its effects on the surrounding soils. The key objectives of this thesis were 

to assess the soil water repellency (WR) and infiltration rates of aggregated oil sand material (AOSM) 

and surrounding soils from the Athabasca region, to understand their potential to modify the soil water 

dynamics of reclamation ecosystems. To evaluate the efficacy of discreet and composite salvaging 

techniques, the effects of salvage depth on the hydraulic properties of AOSM were also examined. 

A correlation exists between AOSM salvage depth and extent of weathering, where near-surface 

deposits contain fewer petroleum hydrocarbons (PHC)s than at depth. This relationship confirms 

onion-skin weathering, where exposure to weathering and degradation is greater in the near-surface 

of the profile and on the surface of individual aggregates. The WR of AOSM was significantly greater 

than the surrounding soils, indicating potential for reduced absorption and conductivity. This was 

confirmed by an infiltration study, which showed AOSM have significantly lower infiltration rates than 

the surrounding soils. Therefore, AOSM may slow the flow of water through the profile, increasing 

water storage and providing additional plant-available water, potentially modifying the soil water 

regime and enabling the establishment of relatively productive ecosites. As salvage depth of AOSM 

increased (weathering decreased), PHC content and WR increased while infiltration rate decreased. 

Similarly, PHC content and WR increased with depth into individual AOSM. These results suggest 

interstitial PHCs are responsible for the enhanced WR and reduced infiltration rates. Therefore, as 

AOSM continues to weather and its PHCs are degraded and/or removed, its hydraulic properties will 

likely become more similar to that of the surrounding soils. The results of this study imply the benefits 

of discreet salvaging, where deep deposits containing relatively high levels of PHCs remain at depth 

after reclamation, avoiding the excessive drying and expression of WR often experienced in the near-

surface.  
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1.  INTRODUCTION 

1.1 Background 

As conventional oil and gas reserves become depleted, other energy sources must be obtained 

and utilized (Hein et al., 2016). Four of the major unconventional energy resources which are available 

in North America are heavy oil, bitumen sands, oil shales, and coal-bed methane (Hein et al., 2016). 

Of the total global resources of bitumen sand or “oil sand”, the vast majority (>70%) are located in the 

Western Canada Sedimentary Basin of Alberta and Saskatchewan (Hein et al., 2016). For Canada, 

as well as the rest of the world, this is an enormous resource which faces considerable challenges 

regarding sustainable development, especially in light of the potential for greenhouse gas emissions 

and other economic and environmental concerns (Hein et al., 2016).  

The oil sands region of Northern Alberta contains the vast majority of Canadian oil sands 

resources and consists of the Athabasca, Peace River, and Cold Lake areas which contain a total of 

fifteen individual deposits that are estimated to hold 27 billion m3 (170 billion barrels) of crude oil 

reserves, underlying an area of approximately 142,000 km2 (Fig. 1.1) (Gosselin et al., 2010; 

Government of Alberta [GOA], 2016). Large scale commercial mining operations commenced in the 

region in the late 1960’s and have since grown considerably (Gosselin et al., 2010). The removal of 

oil sand material is accomplished either through in situ extraction or open pit surface mining (Johnson 

& Miyanishi, 2008; GOA, 2009). Deep deposits, which account for approximately 80% of the available 

oil sands, are accessible only through in situ extraction methods such as cyclic steam stimulation and 

steam-assisted gravity drainage, which use steam to heat and liquefy the oil, allowing it to be pumped 

to the surface (GOA, 2009; GOA, 2016). The remaining shallow materials can be reached through 

surface mining, and are limited to a region within the Athabasca deposit, near Fort McMurray, AB (Fig. 

1.1) (GOA, 2016). In recent years, in situ extraction has been the prevalent method, accounting for 

57% of the total oil sands oil production in 2015 (GOA, 2016). The in situ processes are energy 

expensive, but beneficial due to the relatively small ecological footprint (GOA, 2016). Historically 
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however, surface-mining has been responsible for the majority of oil production in the oil sands region, 

and is the method that has the most complete and long-term impact on ecosystems (Johnson & 

Miyanishi, 2008). Although in situ methods are gaining popularity, surface-mining continues to be an 

active practice. In 2015, surface-mining was responsible for 43% of the total oils sands oil production, 

and is projected to experience a 49% increase in overall production by 2030 (GOA, 2016).  

 

 
 
 

Figure 1.1.  Map of the Oil Sands Region of Western Canada. 

(http://appstore.capp.ca/oilsands/page/oil-sands-2012-01-23-03-01-45) 

 
 

The near-surface deposits which are accessible through surface-mining underlie approximately 

4,800 km2 of land surface (GOA, 2016). As of August, 2016, over 900 km2 of this land had been 

disturbed by oil sands mining operations (GOA, 2016). In accordance with Alberta’s Environmental 

Protection and Enhancement Act, oil sands mining companies are mandated to reclaim disturbed land 

and ensure land capability equivalent to that which existed prior to disturbance (Cumulative 

Environmental Management Association, 2006). One of the requisite components of reclamation is 

the placement of appropriate substrate and soil capping materials. These may include tailings sands 

that are recovered during the bitumen extraction process, as well as the overburden materials which 



3 
 

have been previously removed in order to access the oil sand reserves (Rooney & Bayley, 2011). A 

soil survey performed on dominantly coarse-grained Brunisolic soils of over 1,000 oil sands sites in 

the Athabasca oil sands region revealed that petroleum hydrocarbon (PHC)-affected materials (oil 

sand), in the form of aggregates and layers, are naturally present in the upper three meters of the soil 

profile at approximately half of the sites (Leskiw et al., 2006). Because the available reclamation 

materials may originate from the near-surface, they have the potential to contain portions of oil sand. 

These PHC-bearing materials may have the ability to hinder the recovery and maintenance of 

reclamation ecosystems by suppressing plant roots, soil organisms, and soil processes (Visser, 

2008b).  

In a recent study based in the Athabasca oil sands region, Fleming (2012) found that the potential 

for oil sand aggregates to cause hydrocarbon contamination and toxicity of soils and surrounding water 

bodies was limited. In almost all cases, PHC concentrations of saturated and drained soils and 

leachate were well within acceptable limits for soils and groundwater, according to the Canadian 

Council of Ministers of the Environment (CCME) (2008) Canada-Wide Standard for Petroleum 

Hydrocarbons in Soil (Fleming, 2012). Although there appears to be limited potential for PHC toxicity 

of soils and groundwater, it is possible that other soil physical and hydrological processes may be 

affected by the presence of oil sand inclusions. It has been observed that areas above oil sand-

affected soils seem to experience increased soil water contents (Leskiw et al., 2006; Fleming, 2012). 

Furthermore, it has been speculated that, depending on the location of oil sand aggregates or layers 

within the soil profile, the soil water retention in the rooting zone may either increase or decrease as a 

result (Leskiw, 2005; Leskiw et al., 2006; Visser, 2008b; Fleming, 2012). There are two mechanisms 

that are thought to contribute to this phenomenon: (i) a reduction in pore space due to intrapore PHCs; 

and (ii) hydrophobicity due to the chemical composition of the PHCs. The PHCs within the pore 

structure of the oil sand are naturally immobile and reduce pore space, and as a result can greatly 

inhibit the flow of fluid through the material (Mossop, 1980). It is also thought that, because oil sand 

from the region is typically composed of relatively recalcitrant and insoluble PHCs, hydrophobicity may 

be present (Leskiw et al., 2006; Fleming, 2012). Both of these characteristics would enable PHC-
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affected soils to act as a zone of low hydraulic conductivity, slowing the flow of water through the soil 

profile and increasing the residence time of water in the overlying soils.  

1.2 Hypothesis and Objectives 

It is hypothesized that oil sand aggregates (aggregated oil sand material [AOSM]) from the 

Athabasca oil sands region, have lower infiltration rates and greater hydrophobicity (water repellency) 

than the surrounding coarse-textured soils. Furthermore, AOSM which are nearer to the soil surface 

receive more exposure to weathering and degradation.  

 

 
Figure 1.2.  Proposed model for onion-skin weathering  

and hydraulic properties of aggregated oil sand material. 
 
 

Therefore, it is also hypothesized that AOSM express onion-skin patterns of weathering and hydraulic 

properties, where PHC content and water repellency increase and infiltration rate decreases, with 

increasing salvage depth as well as with increasing depth into individual aggregates (Fig. 1.2). To 

address these questions, the following objectives were outlined: 

1.  Characterize the water repellency of AOSM and soils from various salvage depths. 

2.  Identify the infiltration rates of AOSM and soils from various salvage depths. 

3.  Evaluate the effects of salvage depth and depth of sampling into individual aggregates 

on the PHC content, hydrophobicity, and infiltration rates of AOSM. 
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1.3 Organization of Thesis  

This thesis is composed in manuscript style, as a collection of articles submitted to peer-reviewed 

journals. Following this introduction is Chapter 2, the Literature Review, which outlines some of the 

challenges associated with oil sands mining reclamation and the materials found therein. Chapters 3 

and 4 address Objectives 1 and 2 respectively, as well as provide insight into Objective 3. In Chapter 

3, the degree and persistence of hydrophobicity of AOSM are determined through measurements of 

sessile drop contact angle (CA) and water drop penetration time (WDPT). Chapter 4 evaluates the 

infiltration rates of AOSM and surrounding soils through water and ethanol infiltration studies. Chapter 

5, Synthesis and Conclusions, includes a summary and synthesis of the findings of Chapters 3 and 4, 

as well as relevant implications for the reclamation industry and recommendations for future research. 

For reader convenience and to minimize redundancy, Chapter 6 includes a single, combined list of 

works cited for all chapters in this thesis. The effects of AOSM inclusions in reclamation soils are briefly 

discussed in an auxiliary study included in Appendix B., The Effects of Aggregated Oil Sand Material 

on the Saturation, Drainage, and Field Capacity of Reclamation Soils, and are also touched upon in 

Chapters 3 through 5. 
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2.  LITERATURE REVIEW 

2.1 Athabasca Oil Sands Region 

2.1.1 Climate and Soils 

The oil sands of Northern Alberta reside within the Boreal Forest Natural Region of Alberta. This 

region experiences a cold continental climate, with short summers in which the average daily 

temperature exceeds 15 °C for only one or two months, and long, cold winters with daily temperatures 

below -10 °C for four months or more in most Natural Subregions (Natural Regions Committee, 2006). 

Precipitation follows a summer-high continental pattern, where 60 to 70% of the annual precipitation 

is received between April and August, with peak rainfall occurring in July (Natural Regions Committee, 

2006). Extensive portions of the post-glacial landscape are composed of glaciofluvial and aeolian 

deposits, resulting in the development of coarse-textured Brunisolic and Luvisolic forest soils 

throughout much of the region (Natural Regions Committee, 2006). Additionally, many of these soils 

naturally contain portions of oil sand. The presence of oil sand in the near-surface is generally thought 

to be the result of erosional and depositional processes, which occurred approximately nine to ten 

thousand years ago during the drainage of glacial Lake Agassiz (Leskiw et al., 2006; Visser, 2008b). 

Its rapid draining resulted in the removal of oil sand from the McMurray Formation and subsequent 

deposition in glacial lakes and ponds which eventually receded, leaving behind soil materials with oil 

sand inclusions (Leskiw et al., 2006; Visser, 2008b).  

2.1.2 Mine Site Reclamation  

Due to the large-scale nature of the mining activities in the region, reclamation will involve the 

reconstruction of landforms and ecosystems at a landscape scale (Johnson & Miyanishi, 2008) (Fig. 

2.1). In order to ensure equivalent capability of reclaimed areas, a number of factors are taken into 

consideration including landscape features such as landform, slope, aspect, hydrology, and soil 

stability, as well as the composition of the reclamation soils, and the revegetation and land-use targets 
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(Visser, 2008a). The goal in engineering new ecosystems from mining-disturbed land is not to re-

create the landscape as it was pre-disturbance, but rather to construct a landscape which will provide 

habitat for living organisms, allowing them to sustainably develop (Johnson & Miyanishi, 2008). In the 

case of the oil sands region, primary land-uses are commercial timber production and wildlife habitat 

(Visser, 2008a), but may also include recreation as well as sources of traditional foods and medicinal 

plants (Oil Sands Vegetaion Reclamation Committee, 1998).  

 
 
 

Figure 2.1.  Oil sands surface mining and reclamation processes. 
 
 
A fundamental component of reclamation is the creation of a soil medium which has the nutrient 

and water retention necessary to support a target ecosystem (Leatherdale et al., 2012). Soil materials 

available for reclamation can be arranged in various combinations, called prescriptions (Leatherdale 

et al., 2012). In order to optimize the effectiveness of soil prescriptions the compositions, depths, and 

sequence of layering must be considered (Huang et al., 2011b). Following extraction, oil sand bitumen 

can be upgraded to synthetic crude oil by removing carbon and sulfur and adding hydrogen (Johnson 

& Miyanishi, 2008; GOA, 2009). During processing and upgrading, several by-products are created 

including fluid fine tailings, sand tailings, petroleum coke, and elemental sulfur (Gosselin et al., 2010). 
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While tailings are one of the materials abundantly available for reclamation, they typically make an 

inappropriate medium for plant growth. This is due to its low water and nutrient holding capacities, as 

well as undesirable soil chemistry arising from residual bitumen compounds such as petroleum 

hydrocarbons (PHC)s and heavy metals (Naeth et al., 2011; Rooney & Bayley, 2011). Therefore, soil 

prescriptions must be composed of more suitable soil materials such as the lean oil sand, subsoil, 

topsoil, and peat which are removed in order to reach the oil sand deposits (Naeth et al., 2011).  

2.2 Recreating Landscapes and Ecosystems 

2.2.1 Reclamation Challenges 

Due to the glacial and post-glacial history of the region, many of the materials overlying the oil 

sand reserves are coarse-textured glaciofluvial and aeolian deposits. As such, a considerable portion 

(20%) of the final reclaimed landscapes in the region will be composed of these materials (Huang et 

al., 2011b). Coarse-textured soils typically have high infiltration rates and hydraulic conductivities and 

low water-holding capacities (Leatherdale et al., 2012). Consequently, these materials also have 

relatively low nutrient-holding capacities, which could further limit the potential productivity of emerging 

and stable reclamation ecosystems. These properties make coarse-textured soils suitable for certain 

vegetation types such as jack pine, but less suitable for white spruce and trembling aspen for example, 

which require relatively high soil water contents (Zettl et al., 2011). Furthermore, because the majority 

of the precipitation in this region is received during the warmest months of the year, evapotranspiration 

may exceed precipitation, increasing the potential for soil water depletion and deficit.  

Although many of the soils are consistently coarse-textured, they naturally exhibit a range of soil 

water and nutrient contents, and associated forest stand types (Zettl et al., 2011). These regions have 

traditionally supported a range of ecosite phases from relatively unproductive ‘a’ ecosites 

characterized by low nutrient holding capacities and subxeric moisture regimes, to that of more highly 

productive ‘d’ ecosites with submesic moisture and medium nutrient regimes (Beckingham & 

Archibold, 1996). The characteristics of the soils and relatively dry climate in the region present 

reclamation challenges with respect to supporting more highly productive ecosites. The wide range of 
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moisture regimes found in the naturally occurring coarse-textured soils suggests there are natural 

mechanisms controlling the moisture availability and associated forest stands which develop (Zettl et 

al., 2011). To ensure that reclamation soil prescriptions are capable of replicating the same range of 

moisture regimes and associated ecosites that existed prior to mining disturbance, these natural 

mechanisms must be understood (Zettl et al., 2011).  

2.2.2 Aggregated Oil Sand Material 

As mentioned, due to the depositional history in the region, many of the near-surface soils contain 

portions of oil sand. Because many of the available reclamation soils originate from the near-surface, 

they also have the potential to contain these PHC-affected materials. Aggregated oil sand material 

(AOSM), previously referred to as tarballs, are portions of oil sand that are naturally present in surface 

soils and subsoils, typically at depths of 50 cm to > 100 cm (Visser, 2008b). They are present as 

distinct balls or aggregates, typically millimeters to tens of centimeters in diameter, but may be up to 

several meters (Fleming, 2012). They also exists as bands which are millimeters to tens of centimeters 

in thickness and extend from centimeters to several meters in length (Fleming, 2012). AOSM from the 

Athabasca oil sands region are frequently similar in texture to their surrounding soils (Leskiw et al., 

2006; Rosso, 2016); although, Fleming (2012) found they can contain significantly (P < 0.05) elevated 

silt and clay contents. Using the Canadian System of Soil Classification (Soil Classification Working 

Group, 1998), soils from the region are commonly classified as sand textured, but may be as fine as 

loamy sand (Fleming, 2012; Rosso, 2016). The total mass-based PHC content of AOSM from the 

Athabasca oil sands region is typically < 10%, with the majority (95%) composed of highly recalcitrant, 

high molecular weight hydrocarbons from the F3 (Carbon [C]>16 - C34) and F4 (C>34) fractions, and the 

remainder from the relatively low molecular weight F2 (C>10 - C16), F1 (C6 – C10), and volatile (benzene, 

toluene, ethylene, and xylene [BTEX]) fractions (CCME, 2008) (Leskiw et al., 2006; Visser, 2008b, 

Fleming, 2012). However, Fleming (2012) also found that some AOSM samples contain “rich cores”, 

where the concentrations of all hydrocarbon fractions are orders of magnitude greater than that of 

typical AOSM. 
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Oil sand, particularly that from northern Alberta, has many unique structural and chemical 

properties compared to most other conventional oil reserves around the world. Oil sand bitumen is a 

mixture of molecular species consisting primarily of highly condensed polycyclic aromatic 

hydrocarbons (PAH) (Gosselin et al., 2010). In comparison to conventional and heavy oils, bitumen 

PHCs have a relatively high molecular weight, lower hydrogen to carbon ratio, and higher levels of 

sulfur, nitrogen, and metals such as nickel and vanadium (Gosselin et al., 2010). High grade 

Athabasca oil sands have porosities of 25 to 35%, which is considerably higher than most petroleum 

reservoir sandstones (Mossop, 1980). This high porosity is generally attributed to the lack of mineral 

cement, which in most sandstones, occupies a considerable amount of void space (Mossop, 1980). 

This lack of consolidation is why these deposits are called oil sands rather than oil-bearing sandstones 

(Mossop, 1980). Many oil sand deposits around the world are oil wet, meaning that the oil is in intimate 

contact with the mineral grain surfaces; whereas the Alberta oil sands are referred to as water wet 

(Mossop, 1980). These water wet deposits are composed of mineral grains surrounded by thin films 

of connate water, followed by the bitumen which protrudes into the pore spaces created by the mineral 

grain structure (Mossop, 1980; Takamura, 1982). The interstitial location of the PHCs suggests there 

may be potential for reduced porosity and pore connectivity, in comparison to PHC-free soil materials. 

Additionally, the highly recalcitrant and insoluble nature of the bitumen further increases the potential 

for hydrophobicity and soil water repellency (WR) (Page et al., 2000; Reid et al., 2000). Regardless of 

the mechanism(s), it is known that the bitumen in Alberta oil sand inhibits the flow of fluids through the 

porous medium created by its mineral grain structure (Mossop, 1980). 

These qualities suggest that oil sand inclusions may have the ability to considerably modify the 

soil water dynamics of reclamation soil profiles through increased WR and reductions in absorption, 

conductivity, and storage of soil water. These oil sand inclusions could further complicate reclamation 

efforts and hinder the establishment of target ecosystems. It therefore, becomes important to 

understand the hydraulic properties of oil sand materials in order to prepare effective reclamation 

prescriptions.  
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2.2.3 Aurora Soil Capping Study 

For years, oil sands mining companies have been making earnest efforts to prepare for post-

mining reclamation. Many companies have launched research programs to improve our understanding 

of reclamation ecosystem development and sustainability (Johnson & Miyanishi, 2008). Among the 

most recent and significant contributors has been Canada’s Oil Sands Innovation Alliance (COSIA). 

COSIA is a group of ten oil sands companies from the region, whose goal is to develop and share 

experience and intellectual property regarding the environmental sustainability and reclamation of oil 

sands impacted ecosystems.  

In 2012 Syncrude Canada Ltd., a contributing member of COSIA, established a reclamation 

research site called the Aurora Soil Capping Study (ASCS). The site is located within the Athabasca 

oil sands region, at the Syncrude Canada Ltd. Aurora North Mine, north of Fort McMurray, AB (57° 19′ 

20″ N, 111° 30′ 24″ W). The ASCS is a long-term, instrumented watershed research site designed to 

test the efficacy of various reclamation prescriptions which utilize coarse-textured, PHC-affected soil 

materials. This site provides several unique research opportunities. It is a landscape-scale site 

composed of multiple substrates and soil prescriptions, with the capability to instrument and monitor 

at landscape-scales over relatively long time spans (years to decades). Additionally, the ASCS 

incorporates soils which were salvaged and replaced in various depth increments. These different 

salvaging approaches were used to test the performance of various layering schemes, but also to 

compare the effects of discreet and composite salvaging techniques on the success of reclamation 

soil profiles.  

Discreet salvaging is the removal and replacement of soil layers in relatively small, distinct soil 

horizons (e.g. 0-15 cm, 15-50 cm, 50-100 cm, 100-200 cm). Composite salvaging is the removal of 

relatively large portions of the soil profile with little consideration for material composition (e.g. 15-200 

cm). It was thought that because the composition of the soils are fairly consistent with depth throughout 

large portions of the soil profiles, discreet salvaging may be unnecessary. In this case, composite 

salvaging and replacement may provide a reclamation option which is not only effective in promoting 

reclamation success, but is also economically and environmentally efficient. Composite salvaging 
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allows for a reduction in the activity of heavy machinery, which conserves resources as well as 

minimizes the ecological footprint of reclamation efforts through a reduction in associated green house 

gas emissions.  

To address the objectives of the current study, the hydraulic properties of soils and AOSM from 

various discreet and composite salvages of the ASCS were determined. Not only will this provide an 

indication of the effects of AOSM on the soil water dynamics of reclamation soils, but also evaluates 

the effects of soil salvage depth and thickness (i.e. discreet vs. composite salvaging).  

2.3 Soil Water Dynamics of AOSM-Affected Reclamation Soils  

2.3.1 Soil Layering  

By controlling the various factors which naturally affect water and nutrient availability, there is 

potential to customize reclamation prescriptions to suit desired ecosystems. There are several design 

strategies which may be used to optimize the water- and nutrient-holding capacities in primarily 

coarse-textured soils including textural layering (Huang et al., 2011a; Huang et al., 2011b; Zettl et al., 

2011), soil compaction (Naeth et al, 2011; Pernitsky et al., 2016), and the addition of organic matter 

(Hudson, 1994). 

Due to the availability of multiple soil materials in the region (subsoil, topsoil, peat, and lean oil 

sand overburden), there is an opportunity and in many cases a necessity, to include layering and 

textural/structural contrasts within the reclamation soil profiles. In recent years, layered systems have 

received considerable attention due to their popularity in engineered cover systems used in waste 

containment and mine waste storage (Huang et al., 2011a). Many soil reclamation designs also utilize 

textural layering in order promote the formation of flow barriers (Huang et al., 2011). Flow barriers are 

created in natural and reclaimed soils, under unsaturated conditions, as a result of textural and/or 

structural contrasts (Si et al., 2011). These contrasts produce discontinuities in soil hydraulic 

properties, potentially limiting the downward flow of water and chemicals (Si et al., 2011). Furthermore, 

by reducing percolation, flow barriers act to increase soil water storage capacity of the overlying soils, 

which is often beneficial for both natural and post-reclamation ecosystems in semi-arid regions such 



13 
 

as portions of the Alberta oil sands region (Huang et al., 2011a; Si et al., 2011). An increase in soil 

water storage is particularly beneficial when dealing with predominantly coarse-textured reclamation 

materials, which have high infiltration rates and saturated hydraulic conductivities and low soil water 

storage capacities. In the Athabasca oil sands region, the layering and resulting textural contrasts of 

coarse-textured soils of natural sites has shown to considerably enhance the available soil water-

holding capacity, and provides the ability of texturally similar materials to support a wider range of 

moisture regimes and associated ecosite types as compared to texturally homogeneous soil profiles 

(Huang et al., 2011a; Huang et al., 2011b; Zettl et al., 2011). In addition to increasing the residence 

time of water in the soil, this decreased flow rate can lead to reduced nutrient loss from the soil profile 

and can also minimize the potential for groundwater contamination (Si et al., 2011).  

Flow barriers can be further distinguished as hydraulic barriers and capillary barriers. Capillary 

barriers may form in soils with textural contrasts, such as where fine-textured soil is underlain by a 

coarser-textured soil (Naeth et al., 2011; Si et al., 2011). They may also form in texturally similar 

materials, where a more highly compacted layer overlies a less compacted layer (Naeth et al., 2011). 

In oil sands reclamation for example, capillary barriers form where tailings sand is capped with other 

finer-textured soils (Naeth et al., 2011). Water in the relatively small pores of the finer-textured capping 

material is held at high suction and will not permit flow into the larger pores of the underlying coarse-

textured tailings sand where pore suction is lower (Naeth et al., 2011). As a result, water will be held 

in the finer, overlying soil layer until the water content is high enough (suction low enough) for water 

to flow into the underlying tailings (Naeth et al., 2011). In areas with soil water deficits (precipitation < 

potential evapotranspiration), capillary barriers can be beneficial to plant communities by limiting 

percolation out of the root zone and increasing plant available water (Naeth et al., 2011).  

Hydraulic barriers can form where a coarse-textured soil is underlain by a finer-textured, or more 

highly compacted, soil. Typically, the finer-textured (or highly compacted) layer will have a lower 

hydraulic conductivity than that of the overlying coarse (lightly compacted) layer (Scott, 2000; Si et al., 

2011). During infiltration, when the wetting front reaches the layer interface, the hydraulic conductivity 

decreases to that of the limiting (fine-textured; highly compacted) layer (Scott, 2000; Si et al., 2011). 
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Over time, water will accumulate just above the layer interface, resulting in an increased residence 

time of water within the overlying layer (Scott, 2000; Si et al., 2011). The hydraulic barrier effect can; 

therefore, provide plant available water in coarse soils where water is typically unavailable (Scott, 

2000; Si et al., 2011). For example, in reclamation soil prescriptions composed of coarse-textured 

subsoils overlying highly compacted lean oil sand from the Athabasca oil sands region, Pernitsky et 

al. (2016) observed a considerably lower hydraulic conductivity in the lean oil sand layer, which 

resulted in an increase in soil water storage in the overlying subsoil.  

In addition to the layering of various soils, the inclusion of PHC-affected materials such as AOSM 

could also create flow barriers and hydraulic discontinuities within the reclamation soil profiles. 

Furthermore, the bitumen within AOSM may be hydrophobic and promote soil water repellency, which 

could also create or contribute to hydraulic discontinuities. 

2.3.2 Soil Water Repellency 

Hydrophobic compounds in soils such as organically derived oils, are known to have the potential 

to produce soil water repellency, a surface property that reduces or prevents the absorption or 

infiltration of water into the soil (Dang-Vu et al., 2009; Müller & Deurer, 2011; Diehl, 2013). Depending 

on the location and site specific conditions, hydrophobic compounds may either enhance or diminish 

the soil water retention and hydraulic conductivity of the affected soil, and consequently affect the 

ecosystem present (Diehl 2013). Currently, our understanding of the causes of WR is still incomplete 

and appears as though its development is influenced by site-specific conditions. However, there 

seems to be a consensus that WR is most commonly caused by an accumulation of hydrophobic 

organic substances on the surfaces of soil particles (Müller & Deurer, 2011). It is well known that, in 

comparison to fine-textured soils, coarse-textured soils are particularly vulnerable to WR due to the 

relatively small surface area-to-volume ratio of their soil particles (Doerr et al., 2000). In other words, 

in coarser-textured soils, when introduced to a given amount of hydrophobic material, a greater volume 

of the soil particles may become coated and consequently exhibit WR. Finer-textured materials have 

a greater surface area to distribute the hydrophobic substances across and; therefore, smaller 
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volumes of the soil are affected. In addition to hydrophobic coatings, WR may also be caused by 

hydrophobic interstitial matter (Bisdom, 1993; Doerr et al., 2000). One hydrophobic compound which 

can both coat soil particles and fill soil pores, are petroleum hydrocarbons such as those contained 

within oil sand bitumen (Walker et al., 1976; Roy & McGill, 2000; Quyum et al., 2002; Buczko et al., 

2006; Brassington et al., 2007; Adams et al., 2016). As mentioned, many of the available reclamation 

materials in the Athabasca oil sands region are coarse-textured, and furthermore, often contain 

coarse-textured oil sand inclusions (i.e. AOSM). In addition to their vulnerability due to their coarse 

texture, AOSM have an increased risk of hydrophobicity due to the chemical composition and 

interstitial location of the bitumen within.  

Water repellency is a dynamic property because the soil water content can alter the wetting 

properties of the soil. In other words, WR changes with changing water content (i.e. wetting and 

drying). Typically, as a water repellent soil becomes drier, it becomes increasingly hydrophobic until 

reaching a maximum level at or near drought conditions (Doerr et al., 2000; Müller & Deurer, 2011; 

Diehl, 2013; Tillman et al., 1989). Similarly, water repellent soils experience a decrease in WR with 

time and exposure to water (Tillman et al., 1989). Because WR is dynamic, there are multiple 

properties that should be known in order to accurately predict WR, among the most important of which 

are the degree and persistence (Müller & Deurer, 2011). The sessile-drop contact angle (CA) of a 

water droplet on an air-dry material surface is a measure of the degree of WR, and represents the 

maximum WR that the material may experience after prolonged drought periods (Dekker & Ritsema, 

1994; Müller & Deurer, 2011; Diehl, 2013). The persistence of WR refers to the time required for the 

WR to diminish and water to infiltrate (Müller & Deurer, 2011). During the wetting of a dry soil, the time 

required for the maximum CA of water on the soil surface to gradually decrease to zero and allow 

complete infiltration, is known as the persistence of WR (Müller & Deurer, 2011). The measurement 

of the time required for complete infiltration is often referred to as the water drop penetration time 

(WDPT) test (Dekker & Ritsema, 1994; Müller & Deurer, 2011). The critical water content is an 

additional criterion which can provide important information about the water repellent behaviour of the 

soil. The critical water content is the soil water content below which the degree and persistence of WR 
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are functions of the soil water content (Müller & Deurer, 2011). In other words, it is the soil water 

content below which the soil is hydrophobic and above which it is hydrophilic.  

2.3.3 Hydraulic Properties of Aggregated Oil Sand Material  

It is hypothesized that AOSM shows onion-skin patterns of weathering and hydraulic properties. 

Onion-skin weathering arises from greater exposure to weathering and degradation in materials 

located in the near-surface of the soil profile as well as on the outer portions of aggregates, resulting 

in near-surface aggregates and outer portions of individual aggregates which contain relatively small 

quantities of PHCs (i.e., drier in regards to PHC content). Because exposure of the aggregates to 

weathering progressively decreases with increasing depth into the soil profile as well as with increasing 

depth into the centers of aggregates, the materials contain progressively greater quantities of PHCs 

with depth into the soil profile and with depth into individual aggregates (i.e., wetter in regards to PHC 

content). Fleming’s (2012) observations of AOSM with rich cores would also suggest this is the case, 

where the total amount of all PHC fractions were higher in the cores than the outer portions of the 

AOSM. This would indicate that, compared to the inner portions, the outer AOSM will likely have 

increased porosity (fewer interstitial PHCs) and reduced WR (fewer insoluble/water repellent PHCs), 

leading to an increase in hydraulic conductivity. Because the PHCs within Athabasca oil sand are 

present throughout the pore spaces of the material, pore connectivity may be limited. The plugging of 

soil pores typically results in decreased water infiltration rates (Gray, 1970) and heterogeneity in water 

content, where the inner portions are often wetter, resulting in lower pore-water suction and the 

promotion of anoxic conditions (Gerke & Kohne, 2002). In the case of oil sand materials, anoxic 

conditions within the AOSM would limit biodegradation of the inner bitumen, while aerobic conditions 

on the surface would promote it (Frontera-Suau, 2000; Gu, 2006; Zhao & Machel, 2011). This pattern 

of breakdown would further enhance the difference in hydraulic conductivity of outer and inner 

aggregate portions, by modifying the relative abundances of light (hydrophilic) and heavy 

(hydrophobic) PHCs within the respective layers of the AOSM. Therefore, onion-skin weathering 

patterns should be present, and may even become more pronounced with subsequent weathering and 
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degradation. However, there are several mechanisms which could potentially modify these patterns in 

AOSM including heterogenous distributions of PHCs and pore water, and the formation of low 

conductivity surface seals and precipitates.  

The rich cores observed by Fleming (2012) contain elevated concentrations of heavy PHCs which 

should promote hydrophobicity and decrease hydraulic conductivity. However, the inner portions also 

contain greater concentrations of light PHCs which could increase hydrophilicity (reduce 

hydrophobicity) and consequently increase the hydraulic conductivity of the affected portions, 

contradicting the onion-skin weathering hypothesis. Visser (2008b) found that the heterogeneity in the 

distribution of PHCs within AOSM samples was inversely related to the total PHC content. Based on 

the coefficients of variation (CV) for the PHC contents in each fraction in each AOSM sample, AOSM 

with relatively low PHC contents had highly heterogeneous or patchy distributions of PHCs (CV = 

approximately 60-65%); whereas, AOSM with high PHC contents were found to be far less variable in 

distribution (CV < 10%) (Visser, 2008b).  It is possible that AOSM which contain a relatively low PHC 

content and highly heterogeneous distribution of PHCs will also express heterogeneity in WR. In the 

case of AOSM with rich cores, it is possible that WR will be far more variable on the outer portions of 

the aggregate where PHC content is lower, and become more consistent with depth into the material. 

This could potentially result in weak or unexpected trends among WR, hydraulic conductivity, and 

depth. 

It is known that soil water content is inversely related to WR, so as water content decreases, WR 

increases until reaching its maximum under drought conditions (Doerr et al., 2000). Therefore, an 

increased water content on the inner portions of AOSM could reduce the expression of WR of its inner 

portions, giving rise to a negative correlation between WR and depth into AOSM, contradicting the 

onion-skin weathering and hydraulic property hypothesis. Portions of the AOSM which are not 

connected to the atmosphere through soil pores (due to interstitial PHCs) are protected from the 

evaporative demand of the surrounding air, effectively reducing the water vapour pressure gradient, 

and allowing pore water to remain relatively unmodified. Additionally, if the pore connectivity is limited, 

the likelihood of the material being isolated will increase with increasing depth into the aggregate. 
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Therefore, it is possible that inner, isolated portions of some AOSM deposits may consistently remain 

wetter than their outer portions. Additionally, when hydrophobicity is present, pores may trap and hold 

water once it has infiltrated, resulting in reduced evaporation and loss of water (Müller & Deurer, 2011). 

This can occur if the surface of a porous material becomes sufficiently dry to express hydrophobicity, 

shielding the inner waters from evaporation (Müller & Deurer, 2011). Furthermore, it has been 

speculated that the presence of light PHCs within rich cores of AOSM may indicate that heavy PHCs 

within the outer portions are providing shielding or protection, which promotes the accumulation of 

light PHCs by preventing their further modification and/or removal (Fleming, 2012). These heavy PHCs 

may also act to shield and trap water within the inner portions of the oil sand. The increase in the 

number of light PHCs within the inner portions may also increase the hydrophilicity (decrease 

hydrophobicity) of those portions, leading to negative correlations between hydraulic properties and 

depth into aggregates.  

A process called slaking, may also promote the formation of surface seals which can decrease 

the hydraulic conductivity of the affected material. Slaking promotes the breakdown of soil structure 

and enhancement of surface sealing, and occurs when soil aggregates are structurally unable to 

withstand the stresses produced by differential swelling, the pressure of entrapped air, the rapid 

release of heat during wetting, and the mechanical action of moving water (Liu et al., 2011).  The 

effects of slaking are greatly controlled by the water content and wetting rate, where aggregate slaking 

decreases with antecedent water content and increases with wetting rate (Liu et al., 2011).  Therefore, 

AOSM which are closer to the soil surface and typically have a lower antecedent water content, are 

more vulnerable to soil slaking processes than those found at depth.  Similarly, inner portions of AOSM 

which are relatively protected from the surrounding environment, should also contain higher water 

contents and; therefore, undergo less slaking and associated pore sealing than outer portions of 

AOSM. This pattern of exposure to slaking could contribute to atypical trends in hydraulic conductivity 

with depth, and contradict the onion-skin weathering hypothesis. 

Salt precipitates and surfactants may also have the ability to considerably modify the expected 

relationships among WR, hydraulic conductivity, and sampling depth of AOSM. Previous studies have 
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shown the presence of intra-pore salt precipitates, such as calcite and calcium sulfate, can significantly 

reduce soil hydraulic conductivity (González-Delgado, 2011; Nicot, 2012). AOSM from the Athabasca 

oil sands region contain relatively high concentrations of sulfur, which could potentially combine with 

other substances to form precipitates. In fact, salt precipitates have often been observed on and 

around AOSM deposits throughout the region (Leskiw et al., 2006; Visser, 2008). It is also possible 

that sulfate, or other chemical species contained within the oil sand, may combine with organic 

substances to form a surfactant (Jafvert and Heath, 1991; Zhou and Zhu, 2005). Depending on the 

surfactant that forms, the WR and absorption potential of the material may be enhanced or diminished 

as a result (Zhou and Zhu, 2005).  

2.3.4 Observations of AOSM-Affected Soils  

The impact of oil sand materials on the overall soil water regime is largely unknown; however, 

field observations have revealed that areas above oil sand-affected soils are noticeably wetter than 

the surrounding soils (Leskiw et al., 2006; Fleming, 2012). An increase in soil water storage will likely 

increase ecosystem productivity and could aid in the establishment of reclamation ecosystems, by 

providing additional plant-available water (Leskiw et al., 2006). It has been speculated that differences 

in particle size and/or pore size distributions between AOSM and their adjoining soils may be 

contributing to the observed increases in soil water storage above AOSM (Leskiw et al., 2006; Fleming, 

2012). Fleming (2012) found that AOSM can contain a significantly (P<0.05) greater silt and clay 

content than the surrounding soils, which could account for differences in pore size distributions. It is 

also possible that in texturally similar materials, the interstitial PHCs within the oil sand decrease it’s 

pore size distribution in relation to the surrounding PHC-free soils. Regardless, a decrease in pore 

size distribution would likely reduce the hydraulic conductivity of the oil sand, resulting in the formation 

of a hydraulic barrier at the interface of the oil sand and the overlying soil. It is also possible that WR, 

due to the presence of hydrophobic PHCs, is contributing to a reduction in the hydraulic conductivity 

of the oil sand.  



20 
 

If oil sand is located beneath the rooting zone, there is potential for increased water storage within 

the overlying rooting zone. In addition to providing more plant-available water, this reduced hydraulic 

conductivity and increased residence time of water in the rooting zone also inhibits deep percolation 

and reduces the input of hydrocarbon leachate to groundwater (Leskiw, 2005; Fleming, 2012). 

However, an oil sand layer near the surface of the soil profile has the potential to reduce soil water 

storage by limiting infiltration (Leskiw et al., 2006). Reduced infiltration can result in additional adverse 

effects including reduced groundwater recharge, increased runoff and erosion, and the subsequent 

contamination of surrounding surface water bodies through excessive sediment and nutrient loading.  

Just as hydrophobic oil sand may act to increase soil water storage in the rooting zone, so too 

may hydrophilic oil sand inclusions. In a study performed by Fleming (2012) it was found that AOSM 

contain significantly higher water contents than the surrounding soil matrix. Typically, coarse-textured 

materials have coarse pore-size distributions and low water holding capacities. However, as 

mentioned, coarse-textured oil sand may contain a finer pore size distribution than the surrounding 

soil due to interstitial PHCs. This could result in an accompanying increase in water retention under 

relatively high pore water suctions. Therefore, by retaining more water than the surrounding PHC-free 

soils, hydrophilic oil sand inclusions are capable of increasing overall soil water storage. Additionally, 

because of it’s finer pore size distribution it is possible for a capillary barrier to form on the underside 

of the AOSM, which would limit the percolation of water out of the AOSM into the underlying coarse-

textured soils, resulting in greater soil water storage within the AOSM and overlying soils. 

Anecdotal accounts from personnel who have worked with oil sand aggregates suggest that the 

majority of accumulations are hydrophilic, while only some are hydrophobic (Fleming, 2012). It is 

possible that the observed hydrophilic nature of many AOSM may have arisen from the weathering 

and/or degradation of the interstitial PHCs (Fleming, 2012). It is unknown whether this reduction in 

hydrophobicity is caused from a change in the relative number of light (hydrophilic) and heavy 

(hydrophobic) interstitial PHCs or from a reduction in the total number of PHCs. For the former, the 

ratio of light to heavy PHCs would have to decrease through the degradation and/or removal of heavy 

PHCs, exposing a greater proportion of light PHCs. This seems unlikely, as light PHCs are less 
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complex and more soluble in solution than heavy PHCs and; therefore, have a greater chance of 

degradation and/or removal from the oil sand (Fleming, 2012). For the latter, the removal of PHCs 

from the oil sand may expose more of the mineral grain surfaces, leading to a decrease in 

hydrophobicity. Please recall that unweathered oil sand from Northern Alberta contain layers of 

connate water surrounding their mineral grains (Mossop, 1980; Takamura, 1982). This suggests that 

the mineral components are hydrophilic by nature (Mossop, 1980; Takamura, 1982; Gu, 2006). It 

therefore, stands to reason that once the hydrophobic PHCs are removed and the hydrophilic mineral 

grains exposed, the oil sand will express little to no WR. Given these considerations, it is expected 

that the WR of oil sand will be positively correlated with it’s total PHC content. 

Due to the widespread occurrence of oil sand-affected soils in the region, and their potential to 

considerably alter the hydrology and consequently the ecosystems that develop, it is important to 

identify oil sand hydraulic properties and their effects on soil water dynamics. Addressing the 

objectives in this study will improve our understanding of these materials, and enhance our ability to 

make accurate predictions and models of the various reclamation scenarios which incorporate oil 

sand-affected soils. 
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3.  EXPOSURE TO WEATHERING REDUCES THE WATER REPELLENCY OF 

AGGREGATED OIL SAND MATERIAL FROM SUBSOILS  

OF THE ATHABASCA REGION1 

3.1 Preface 

Near-surface oil sand materials are naturally present throughout many of the soils of the Alberta 

oil sands region. Due to differences in their depositional location, and subsequent history of weathering 

and degradation, these materials display a range of chemical and physical properties. Because oil 

sand contains petroleum hydrocarbons, water repellency is one such property that is present, to 

varying extent, in the majority of these materials. In order to provide an indication of the potential for 

near-surface oil sand inclusions to alter the hydrology of an affected area, this chapter examines the 

magnitude and variability of the water repellency of oil sand inclusions. 

3.2 Abstract 

This study assesses the water repellency (WR) of aggregated oil sand material (AOSM) from the 

Athabasca region, Canada, and evaluates the onion-skin weathering hypothesis, which postulates that 

with increasing depth into the soil profile or into individual AOSM samples, the exposure to and extent 

of weathering of AOSM decreases and petroleum hydrocarbon (PHC) content and WR increase. WR 

and PHC content were determined for outer and inner portions of AOSM from depths of 15–200 cm. 

Results show AOSM displays a wide range of WR, in terms of both contact angle (CA) (0° to 129°) 

and water drop penetration time (WDPT) (0 to > 3600 s). As salvage depth or depth into AOSM 

increases, PHC content and WR increase, confirming onion-skin weathering. These findings imply the 

benefit of discreet salvaging into separate layers, as opposed to composite salvaging of shallow and 

deep soils. Deep materials, which contain relatively high PHC contents, can be salvaged and replaced 

                                                           
1 This work has been previously published in Neil, E.J., and Si, B.C. (2018), Exposure to weathering reduces 
the water repellency of aggregated oil sand material from subsoils of the Athabasca region. Published in 
Can. J. Soil Sci. doi: 10.1139/CJSS-2017-0087. Minor modifications have been made for consistency.    
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as deep layers to avoid the excessive drying and expression of WR which may occur in the near-

surface. By controlling the location of AOSM within the soil profile, water storage in the rooting zone 

may be increased, allowing the establishment of relatively productive ecosystems. 

3.3 Introduction 

Northern Alberta, Canada is home to the world’s largest and richest oil sand reserves, consisting 

of the Athabasca, Peace River, and Cold Lake deposits, which underlie an area of approximately 

142,000 km2 [Government of Alberta (GOA) 2016]. Oil sand, or bitumen, deposits are present in over 

80 locations worldwide (Meyer et al. 2007), with more than 70% of these resources located within the 

Alberta oil sands (Hein 2006). The shallow portions of this region which are accessible through surface 

mining comprise an area of 4,800 km2 near Fort McMurray, AB (GOA 2016). The Alberta government 

requires oil sands mining companies to reclaim disturbed land and recreate self-sustaining, 

maintenance-free watersheds and ecosystems with capabilities equivalent to or better than the pre-

disturbance conditions (Cumulative Environmental Management Association 2006). The 

reconstruction of soil profiles is a critical component of any reclamation plan, because the ultimate 

capability of a reclaimed area is controlled largely by the quality of the reconstructed soil (Oil Sands 

Vegetation Reclamation Committee 1998). Creation of the soil medium requires selection of an 

appropriate soil layering prescription, which includes depths, composition, and configuration of 

reclamation materials (Huang et al. 2011). In order to effectively prepare reclamation prescriptions, an 

understanding of each of the available materials is essential.  

A soil survey performed in the Athabasca oil sands region shows that considerable quantities of 

petroleum hydrocarbon (PHC) affected soils are present in the form of aggregates and layers within 

the top three meters of these dominantly coarse-grained Brunisolic soils (Leskiw et al. 2006). One of 

the most common surficial hydrocarbon deposits of the region is aggregated oil sand material (AOSM), 

previously referred to as “tarballs” (Fig. 3.1). These aggregates are PHC-impregnated materials with 

a similar texture to that of the surrounding soil, and are typically millimeters to tens of centimeters in 

diameter (Fleming 2012). The materials available for reclamation in this region may originate from the 
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near-surface horizons of the profile and; therefore, have the potential to contain AOSM, which may or 

may not inhibit the plant roots, soil organisms, and soil processes required for the recovery and 

maintenance of a stable ecosystem (Visser 2008). Several studies have shown that PHCs, such as 

those contained within oil sand bitumen, are often associated with WR (Walker et al. 1976; Roy and 

McGill 2000; Quyum et al. 2002; Buczko et al. 2006; Brassington et al. 2007; Adams et al. 2016), and 

it has been hypothesized that the weathering of PHCs will typically shift their chemical composition 

toward relatively recalcitrant products with greater hydrophobicity (Walker et al. 1976; Brassington et 

al. 2007).  

 
 
 

Figure 3.1.  Aggregated oil sand material (AOSM) from three stages of  

weathering (low, medium, and high), placed on top of their surrounding  

sandy subsoil. Measurement scale in centimeters. 
 
 

Polycyclic aromatic hydrocarbons (PAH) are a common class of PHC present in oil sand bitumen, 

and have the potential to produce hydrophobicity and soil water repellency (Cerniglia 1992; Zhou and 

Zhu 2005). Typically, low molecular weight PAHs such as naphthalene and phenanthrene are rapidly 

degraded in sediments and soils, whereas high molecular weight PAHs such as benz[a]anthracene, 

chrysene, and benzo[a]pyrene, which are relatively insoluble and highly resistant to degradation, may 

persist indefinitely (Cerniglia 1992). This is largely due to the decreasing enzymatic capability of soil 

microorganisms to degrade PHCs of increasing complexity (Walker et al. 1976). Although microbial 

degradation of heavy PAHs may occur, there are a limited number of species of microorganisms that 
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are capable of complete mineralization (Cerniglia 1992; Zhou and Zhu 2005), making it unlikely that 

all of the PHCs within AOSM would be degraded by means of microbial degradation. Additionally, as 

molecular size increases, solubility and mobility decrease, which further promotes the depletion of light 

PHCs and enrichment of heavy PHCs within the weathered oil sand material (Mossop 1980; Eastcott 

et al. 1988; Fleming 2012). Generally, low-molecular-weight PHCs are preferentially degraded, 

volatilized, and leached from bitumen, resulting in the accumulation of heavier, more complex PHCs 

over time (Mossop 1980; Brunner et al. 1987; Cerniglia 1992).   

Previous investigations have confirmed that typical AOSM from the Athabasca oil sands region is 

composed primarily of relatively heavy hydrocarbons, such as those from the F3 (Carbon [C]>16 - C34) 

and F4 (C>34) fractions of the classification system provided by the Canadian Council of Ministers of 

the Environment (CCME) (2008) in their Canada-Wide Standards for Petroleum Hydrocarbons (PHC) 

in Soil (Fleming 2012). Volatile hydrocarbons, including benzene, toluene, ethylene, xylene and other 

low molecular weight hydrocarbons such as those from the CCME (2008) F1 (C6 – C10) fractions, are 

typically undetectable; whereas, F2 (C>10 - C16) hydrocarbons are slightly more abundant with 

concentrations above detectable limits (Fleming 2012). Exceptions have been found in AOSM with 

“rich” cores, which can contain total PHC contents that are orders of magnitude greater than typical 

AOSM, including elevated levels of the relatively light F1 and F2 hydrocarbons (Fleming 2012). Under 

normal field conditions, the F1 and F2 fractions are relatively soluble and easily transported in water, 

whereas the heavier F3 and F4 fractions are nearly insoluble (Fleming 2012). The ability to readily 

dissolve in water indicates that the F1 and F2 PHCs are hydrophilic, and the relative insolubility of the 

F3 and F4 fractions suggests hydrophobicity (Page et al. 2000; Reid et al. 2000). Typically, the PHCs 

remaining in AOSM are relatively heavy in composition, so differences in WR will likely be due to 

differences in the total PHC content as opposed to differences in PHC composition. Roy et al. (2003) 

showed that total PHC content was positively correlated with soil water repellency in 12 petroleum-

contaminated sites in central Alberta. 

The Alberta oil sands are somewhat unique in composition: the bitumen is not in direct contact 

with the mineral particle portions of the oil sand; upon formation there is a thin lens of connate water 
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surrounding the mineral particles, separating the mineral particles from the bitumen contained within 

the centers of the pores (Mossop 1980; Takamura 1982). This physical arrangement has two important 

implications for WR: (i) mineral particles are originally surrounded by water and are; therefore, 

considered hydrophilic (Mossop 1980; Takamura 1982; Gu 2006); and (ii) water that is introduced to 

the pore structure of the oil sand is in direct contact with the exposed interstitial bitumen rather than 

the sheltered mineral portions, suggesting that the water repellent nature of the oil sand will be 

primarily, if not exclusively, controlled by the water repellent characteristics of the bitumen within. 

Depending on the location and site specific characteristics, the WR of oil sand inclusions may enhance 

or diminish the level of WR present at the site, affecting the soil wettability, soil water retention and 

water storage, and consequently the ecosystem (Diehl 2013). Therefore, when attempting to reclaim 

a hydrocarbon-affected area such as the Alberta oil sands, it is important to understand the potential 

soil WR of the available reclamation materials. Aggregated oil sand material is one such potentially 

water repellent material, which is present in many of the soils in this region, and is composed primarily 

of sand and PHCs, both of which are prone to WR.  

Since the PHCs remaining in the AOSM are thought to cause WR, the water repellent behaviour 

of the material should be directly related to the extent of weathering, and consequently the amount of 

PHC remaining. As biodegradation occurs and hydrophobic molecules are broken down, water 

repellency is reduced (Bisdom et al. 1993; Dekker and Ritsema 1994). The limited biodegradation of 

the heavy hydrocarbon fractions (F3 and F4) which are present in oil sand, is most likely a 

biotransformational process which can render larger, more complex PHCs into several smaller 

“daughter” PHC compounds (Fleming 2012). These daughter compounds are more easily dissolved 

in soil solution and leached from the AOSM than the parent compounds. It is also known that the 

presence of oxygen typically increases the biodegradation rate of crude oil constituents (Cerniglia 

1992; Frontera-Suau 2000; Gu 2006; Zhao and Machel 2011). Based on the above it stands to reason 

that the outer portions of AOSM, which are more exposed to weathering and degradation agents, 

should contain fewer PHCs and exhibit less WR than the more protected inner portions. The AOSM 

with rich cores that were observed by Fleming (2012) also suggest this. Similarly, near-surface AOSM 
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deposits should be more exposed to weathering, contain fewer PHCs, and exhibit less WR than 

deeper deposits.  

We hypothesize that AOSM undergoes onion-skin weathering, where the amount of weathering 

or degradation decreases and consequently the PHC content and WR increase, with increasing depth 

from the soil surface as well as with increasing depth into individual AOSM samples. To test these 

hypotheses, the WR of AOSM from various salvage depths and apparent stages of weathering were 

determined. The objective of this study is to evaluate the onion-skin weathering hypothesis of AOSM, 

to better understand the dynamics of oil sand weathering and its effects on soil hydraulic properties 

such as WR.   

3.4 Materials and Methods 

3.4.1 Study Site and Reclamation Materials 

The study area is located in the Central Mixedwood Natural Subregion within the Boreal Forest 

Natural Region of Alberta (Natural Regions Committee 2006). The area may be further distinguished 

into smaller components called ecosite phases, based on moisture and nutrient regimes, as outlined 

in Beckingham and Archibald (1996). The study region has been known to support portions of  ‘a’, ‘b’, 

and ‘d’ ecosite phases (Zettl et al. 2011), characterized by subxeric, submesic, and mesic moisture 

regimes respectively, and by poor (‘a’ ecosites) and medium (‘b’ and ‘d’ ecosites) nutrient regimes 

(Beckingham and Archibald 1996). Parent materials in the area are composed primarily of glaciofluvial 

sands and gravels, giving rise to coarse-textured Brunisolic soils (Leskiw et al. 2006). These soils most 

commonly support the ‘a1’ ecosite phase, which is characterized by a subxeric moisture regime and 

poor nutrient regime, with jack pine (Pinus banksiana Lamb) and lichen (Cladina spp. and Cladonia 

gracilis) as the dominant tree and understory species (Beckingham and Archibald 1996). Prior to 

surface mining, the forest vegetation, soils, and lean oil sand overburden are removed to depths of up 

to 100 m in order to reach the desired oil sand reserves (Johnson and Miyanishi 2008). The excavated 

overburden and soil materials are then stored in stockpiles. These materials, and potentially additional 
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peat and soils collected from neighboring undisturbed areas, are available for later use in reclamation 

(Johnson and Miyanishi 2008). 

In order to test the efficacy of utilizing various soil reclamation prescriptions, as well as to explore 

the potential impacts to ecological receptors (i.e. vegetation, microbial communities, surface and 

ground waters, etc.) that may occur in hydrocarbon-affected reclamation soils, a long-term 

instrumented watershed research site called the Aurora Soil Capping Study (ASCS) was established 

in 2012 at Syncrude Canada Ltd.’s Aurora North Mine, north of Fort McMurray, AB. The ASCS site 

contains 36 one-hectare plots, consisting of 12 reclamation treatments repeated in triplicate. The 

treatments are composed of various combinations of hydrocarbon-affected soil materials that were 

collected from the area prior to surface mining. Soils and subsoils containing AOSM were collected 

from the following materials of the ASCS: 

 Upper Subsoil Bm horizon salvage (15 – 50 cm): Surface soil was removed (LFH layer, A horizon, 

and a portion of the top of the B horizon which totals approximately 15 – 20 cm), then the 

remaining Bm horizon was salvaged to a depth of 50 cm.  

 Blended B/C horizons salvage (50 – 100 cm): Surface soil and upper subsoil Bm horizon were 

removed (0 – 50 cm), then the remaining B horizon and a portion of the C horizon were salvaged 

to a depth of 100 cm. 

 Composite Subsoil salvage (15 – 200 cm): Surface soil was removed (LFH layer, A horizon, and 

a portion of the top of the B horizon which totals approximately 15 – 20 cm), then the remaining 

Bm horizon and a portion of the C horizon were salvaged to a depth of 200 cm.  

The three soil salvage types will be referred to as Bm, B/C, and SS respectively. The soils were 

originally salvaged by Syncrude Canada Ltd. in various depth ranges and intervals, in order to 

compare the effects of discreet and composite salvaging techniques on the success of reclaimed soil 

profiles. Discreet salvaging involves the removal (prior to mining) and replacement (during 

reclamation) of soil layers in distinct soil horizons, such as those of the Bm and B/C salvages. 

Composite salvaging is the removal and replacement of relatively large sections of the soil profile, with 
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little concern for material composition, as in the case of the SS salvage. It was posited that, due to the 

relatively uniform composition of the soils throughout the depth of the soil profiles in the region, discreet 

salvaging may be unnecessary. If so, composite salvaging would provide an alternative technique 

which promotes reclamation success, but that is superior in terms of economic and environmental 

efficiency. Composite techniques minimize the use of heavy machinery, consequently conserving 

resources, and mitigating the ecological footprint of mining and reclamation activities by reducing 

green house gas emissions. 

In-tact AOSM samples, ranging from centimeters to decimeters in diameter, were chosen 

randomly from each of the available salvage materials and lightly brushed to remove the excess sand 

matrix adhering to their outer surfaces. Aside from periods of active testing, which were performed at 

20 °C and 30% relative humidity, the AOSM was stored at 4 °C to minimize microbial degradation. 

Prior to testing, the AOSM was air dried at 20 °C and 30% relative humidity, for a period of several 

days to weeks, until reaching a constant mass. 

In addition to their salvage type, the majority of the AOSM samples were categorized into one of 

three relative weathering stages (low, medium, or high), based on physical stability, visual appearance, 

and odour (Table 3.1).   

Table 3.1.   

Weathering stage determination for aggregated oil sand material. 

Weathering  *Colour Petroleum Physical fragmentation 

stage   odour requirements 
    

     Low     black       Strong     hammer and chisel 

     Medium     dark grey       Mild     by hand 

     High     light grey       None     soft-bristled paint brush  

* Light coloured surface precipitate indicates a greater stage of weathering. 

To assess the physical stability of the AOSM, the relative force required to cause the sample to 

physically fragment, or break, was determined. Firstly, the sample was brushed with a soft-bristled 

paint brush, and if fragmentation occurred then the sample was considered highly weathered in terms 
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of physical stability. Secondly, if the sample did not fragment with the use of a paint brush, but could 

be broken by hand, it was considered to be at a medium stage of weathering. Lastly, if fragmentation 

of the sample required the use of a steel hammer and chisel, it was classified as low-weathered. The 

visual signs of weathering were based on the colour of the sample, as well as whether it contained a 

light-coloured precipitate on portions of it’s surface, where the presence of a precipitate indicated a 

higher stage of weathering. The level of petroleum odour was determined simply by smelling the 

sample while it was approximately 5 cm from the assessor’s nose. A clear and strong odour of 

petroleum indicated a low stage of weathering, a faint odour indicated a medium stage, and the 

absence of a petroleum odour indicated a high stage of weathering. Generally, AOSM would receive 

the same classification (low, medium, or high) using each of the three criteria (visual appearance, 

physical stability, and odour). For samples where one of the three weathering criteria came to a 

different conclusion, the weathering stage was based on the majority (i.e. weathering stage indicated 

by the two criteria with matching conclusions). For samples where all three weathering criteria 

suggested a different weathering stage, the sample was classified as medium weathered. 

A Horiba LA-950 particle size analyzer was used to determine the particle size distributions of the 

AOSM and soil matrix (Horiba Scientific, Edison, NJ, USA). This type of apparatus is known to 

overestimate the size of small particles, particularly clay sized particles, present in soil samples. To 

ensure the AOSM and soil matrix were of sufficient coarseness for accurate testing using a laser 

particle size analyzer, the texture of several samples were determined using the pipette method based 

on Stokes’ Law as outlined in Dane and Topp (2002). The results of the pipette method showed the 

materials contained only minute amounts of clay sized particles (< 2% by mass), making them suitable 

for the LA-950 laser analyzer. Particle sizes were categorized into soil separates using the 

classification systems of the Canadian Soil Survey Committee and United States Department of 

Agriculture, which define soil separates as sand (< 2000 m to 50 m), silt (< 50 m to 2 m), and 

clay (< 2 m) (Dane and Topp 2002). The soil textures were determined using the Canadian System 

of Soil Classification (Soil Classification Working Group 1998). The mass-based total organic carbon 

(TOC) contents of AOSM and soil matrix from the three salvage types were determined using a LECO 
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C-632 dry combustion carbonator (LECO Corp., St. Joseph, MI, USA) (Wang and Anderson 1998). 

Because these soil materials contain limited soil organic matter, it can be assumed that the measured 

TOC is primarily of petroleum origin (i.e., PHCs).  

The most common type of hydrophobic substance causing WR in sands are amphiphilic 

molecules, polar organic molecules containing both hydrophilic and hydrophobic portions (Doerr et al. 

2000; Diehl 2013). For such a case, the affected material may act in a hydrophobic or hydrophilic 

manner, depending on the antecedent water content as well as pH and temperature (Doerr et al. 2000; 

Diehl 2013). Furthermore, soils affected by WR may change their behaviour from hydrophobic to 

hydrophilic during wetting, and vice versa during drying (Dekker and Ritsema 1994; Doerr et al. 2000). 

This is certainly the case in the Athabasca oil sands region, where studies by Hunter (2011) and Chau 

et al. (2014) have illustrated the dependence of wetting duration on the WR of both natural 

(undisturbed) and reclamation (disturbed) soil materials. 

3.4.2 Measurement of Water Repellency 

Due to the temporally transient nature of WR in the study region, both the degree and persistence 

of WR of the AOSM were determined. The degree of WR of air-dry soil materials can be used to 

determine the maximum or potential WR that may be experienced after prolonged drought periods 

(Müller and Deurer 2011). The sessile drop CA between a water droplet and the material surface 

represents the degree of WR and provides a measurement at a fixed point in time (Dekker and Ritsema 

1994; Diehl 2013). The WDPT represents the persistence of WR and provides measurements through 

time (Dekker and Ritsema 1994; Müller and Deurer 2011). This indicates whether the potential for 

WR, as indicated by the CA, will have a substantial effect on water absorption and conductivity of 

AOSM.   

The degree of WR of the AOSM was determined via sessile drop CA analysis, using a PG-X 

pocket goniometer (FIBRO Systems AB, Hägersten, Sweden). The PG-X delivers a controlled volume 

of water to the surface of the material. In the current study, this procedure utilized 3 L deionized, de-

aired water droplets. Once a water droplet was applied and its equilibrium position reached, the on-
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board camera was used to take photographs of the water droplet on the surface of the material. The 

photographs were used in conjunction with ImageJ software (Rasband 1997-2012) and the Low Bond 

Axisymmetric Drop Shape Analysis method outlined by Stalder et al. (2010), to determine the water 

contact angles. Several AOSM samples from each of the available soil salvage types were tested (Bm 

= 27; B/C = 21; SS = 11), for a total of 59 samples. Each sample was tested three to six times on 

relatively flat portions of its outer surface, with measurement locations spaced approximately 

equidistantly across the surface of the sample. The mean CA for each AOSM sample was then 

obtained to account for variability within samples. There are three general scenarios that can arise 

when examining CA: spontaneous wetting or infiltration (hydrophilic or wettable) where CA = zero; 

partial wetting (subcritical WR) where 0° < CA ≤ 90°; and non-wetting (critical WR or hydrophobic) 

where CA > 90° (Müller and Deurer 2011). When the CA is above 90° water should theoretically never 

infiltrate, but when it is 90° or less, capillary forces will draw water into the sample (Dekker and Ritsema 

1994). This information provides insight into the stability of water repellency and is another indication 

of its persistence (Dekker and Ritsema 1994). Therefore, the times for the CAs of the AOSM to become 

≤ 90° were also determined for samples from each salvage type (Bm = 23; B/C = 21; SS = 11), which 

totalled 55 samples. It is important to note; however, that water will not always infiltrate when CAs are 

less than 90°. The geometry or shape of soil particles can affect the interactions between solid 

surfaces and liquids, and prevent infiltration into seemingly subcritically water repellent surfaces (CA 

< 90°) (Shirtcliffe et al., 2010). For example, a curved or fibre-like structure can suspend a liquid, or 

prevent infiltration, when its sessile CA is between 0° and 90° (Shirtcliffe et al., 2010). Additionally, 

particle size can have an effect on the infiltration of water into subcritically water repellent soils, such 

that soils with liquid CAs < 90° may exhibit incomplete wetting or non-wetting behaviours (Hamlett et 

al., 2011). Hamlett et al. (2011) found that the smaller the diameter of soil particles, the smaller the 

liquid contact angles could be while still preventing infiltration. In other words, the critical contact angle, 

or the largest contact angle at which infiltration commences, decreases as particle size decreases 

(Hamlett et al., 2011). Therefore, although a CA of 90° is being used as an indication for the likely 

threshold between partially wettable and non-wettable surfaces in this study, there may be exceptions 
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to this rule. Due to this uncertainty, the times for the CAs to become less than 90° should be considered 

as merely a possible indication of WR rather than an absolute measure, and the initial sessile drop 

CAs and WDPTs should be treated as the primary representations of WR in this study. 

The persistence of WR was also determined using the CA goniometer. As the 3 L water droplets 

infiltrated the AOSM surface, additional CA images were taken at various times throughout infiltration. 

These changes in CA over time, from maximum CA to zero, represent the WDPT. In addition to the 

goniometer measurements, persistence was measured on several samples using another form of the 

WDPT test. Water droplets (40 L) were introduced to the AOSM using an autopipette, and the time 

for complete infiltration was recorded. The WPDT measurements were performed on samples from 

each of the soil salvage types (Bm = 35; B/C = 24; SS = 13), providing a total of 72 samples. As with 

the CA testing, the WDPT measurements were performed on reasonably flat locations and spaced 

roughly equally across the surface of the sample. Each sample was measured approximately 10 times 

and the mean WDPTs of each sample determined, in order to account for variability within samples. 

The WDPT classification scheme of Bisdom et al. (1993) was then used to categorize the AOSM 

samples into repellency classes.  

As mentioned, the onion-skin weathering hypothesis states that with increasing depth from the 

soil surface and with increasing depth into individual AOSM samples, the extent of weathering or 

degradation of AOSM decreases and; consequently, the PHC content and WR increase. In order to 

test the former portion of the onion-skin weathering hypothesis, the degree and persistence of WR 

were measured on the outer surfaces of AOSM samples from multiple salvage depths (Bm, B/C, SS 

salvages). To test the latter portion of this hypothesis, the WR of the inner portions of several samples 

were determined in addition to the outer surface measurements. To access the inner portions of these 

samples, a steel dental pick and spatula were used to remove material to a desired depth. Material 

was removed in 10 mm diameter holes in depth increments of 3 to 10 mm. The sample was then air 

dried before performing the WDPT measurements. This was completed at one to three depths per test 

location to a total depth of 3 to 24 mm, depending on individual AOSM sample thickness. 
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3.4.3 Infrared Measurement of AOSM Surface Precipitate 

A select number of AOSM samples contained a light-coloured (white) precipitate on their outer 

surface, which is consistent with previous studies of oil sand material. It has been observed that salt 

precipitates often form on and around the outer surfaces of AOSM (Visser 2008). The high 

concentrations of sulfur (800 to 1200 mg kg-1) within AOSM would suggest the precipitate is likely a 

sulfate salt, possibly calcium sulfate, that forms from sulfur entering soil solution and traveling to the 

surface of the AOSM where it precipitates with calcium (Visser 2008). The high suphur content of 

AOSM and the existence of precipitates on many of the aggregates suggests the presence of a sulfate 

compound. To explore this possibility, attenuated total reflectance Fourier transform infrared (ATR-

FTIR) spectroscopy was performed to test for the presence of sulfate within the outer and inner 

portions of the four AOSM samples that were WR tested at multiple depths. The ATR-FTIR 

experiments were performed using a Bruker Optics Equinox 55 FTIR spectrometer (Bruker Optics, 

Milton, ON, Canada), which was equipped with an N2-cooled mercury cadmium telluride detector and 

a single bounce ZnSe diamond coated crystal ATR accessory. The background spectrum of the crystal 

was collected and later subtracted from the sample spectra prior to data analysis. Material was 

collected from the outer and inner portions of each of the four AOSM samples, ground into a fine 

powder, and individually pressed onto the diamond crystal surface for measurement. The ex-situ FTIR 

spectra of the various samples were then determined over a wavenumber range of 4000 to 700 cm-1. 

Each of the obtained spectra are the result of 512 co-added scans taken at a resolution of 4 cm-1.  

3.4.4  Statistical Analysis 

Pearson’s r was used to explore potential linear correlations among soil texture, TOC, CA, WDPT, 

and measurement depth. Analysis of variance (ANOVA) were performed to explore differences in the 

tested variables, where differences in means were considered significant at P < 0.05. 
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3.5 Results and Discussion 

3.5.1 Physical Properties of Reclamation Materials 

The weathering classification of AOSM showed that the low weathering class primarily included 

AOSM from the deep salvage (B/C); the medium class was composed of all salvage types (Bm, B/C, 

and SS); and the highly weathered class included materials from the shallowest depths (Bm and SS) 

(Fig. 3.2, Table 3.2). 

 

 
 
 
Figure 3.2.  Weathering classification (low, med, high) of AOSM from three  

soil salvage types: Bm (15-50 cm), B/C (50-100 cm), and SS (15-200 cm). 
 
 

Soil matrix and AOSM from each of the salvage types are sand textured soils, with the exception 

of two AOSM samples which are somewhat finer and classified as loamy sand. ANOVA showed that 

AOSM have a significantly (P = 2.8 x 10-6) lower amount (i.e., mass) of clay sized particles than the 

surrounding soils (Table C.1); however, neither the AOSM (0.0%) nor the soil matrix (0.4%) contain 

substantial amounts of clay. ANOVA also revealed that outer and inner potions of AOSM are not 

significantly different (P > 0.1) in texture (soil separates) (Tables C.2, C.3, and C.4).  
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Table 3.2.   

Mean and (standard deviation) of total organic carbon content in % by mass 

of soil matrix, outer AOSM, and inner AOSM from three soil salvage types. 

Salvage Depth AOSM 
Weathering 

   Total Organic Carbon (%) 

Type (cm) Soil   AOSM 

      Matrix   Outer   Inner 

Bm 15-50 Med-High 0.6 (0.09)  6.3 (2.1)    7.9 (2.1) 

B/C 50-100 Low-Med 0.4 (0.03)  9.7 (5.4)  11.2 (3.1) 

SS 15-200 Med-High 0.7 (0.06)   6.5 (2.0)     6.6 (1.0) 

† AOSM = aggregated oil sand material 

The mean TOC contents with standard deviations, of the soil matrix, outer AOSM, and inner 

AOSM are presented in Table 3.2. ANOVA revealed the TOC contents of the outer and inner portions 

of AOSM are significantly different (P = 0.028), where the inner material (9.6%) has a greater mean 

TOC content than the outer (7.5%) (Table C.5). The low weathered AOSM contained significantly 

greater TOC contents (13.0%) than the high (6.5%) and medium (6.4%) classes (Fig. 3.3), where P = 

1 x 10-5 (highly weathered) and P = 3 x 10-16 (medium weathered) (Tables C.6 and C.7). Furthermore, 

there is a positive correlation between TOC content and depth into AOSM samples (Fig. 3.3). 

 

      
  
  
Figure 3.3.  Total mass-based carbon content at various depths into individual AOSM for all samples 

(left) and samples from various weathering classes (low; medium and high combined) (right).  
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3.5.2 Degree and Persistence of Water Repellency 

The maximum CAs of the air-dry AOSM samples measured anywhere from 0° (hydrophilic) to 

129° (hydrophobic), where ≥ 75% showed some level of water repellency (CA > 0°) and the remainder 

were wettable (CA = 0°) (Fig. 3.4). The mean () maximum CA for all samples was 47° with a 

coefficient of variation (CV) of 96%. The shallow salvage (Bm) primarily showed wettability or subritical 

WR ( = 28°; CV = 115%), while the SS salvage was predominantly hydrophobic ( = 96°; CV = 36%). 

The B/C salvage showed a range of water repellent behaviour, which included hydrophilic, subcritically 

water repellent, and hydrophobic materials ( = 47°; CV = 100%). Similarly, the WR of salvage 

materials also depended on the degree of weathering: AOSM of medium ( = 53°; CV = 94%) and 

high ( = 49°; CV = 101%) degree of weathering varied from wettable to hydrophobic, while all 

materials of a low ( = 105°; CV = 17%) degree of weathering were hydrophobic.   

 

      
 
 

Figure 3.4.  Mean degree of water repellency of AOSM, grouped  

by soil salvage type (left) and extent of weathering (right). 
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When observing the contact angles through time, more than 70% of the droplets had CA ≤ 90° 

within 5 s of contact, and the remainder was divided approximately equally between droplets with CA 

≤ 90° within 60 s, and those greater than 60 s (Fig. 3.5). 

 

        
 
 

Figure 3.5.  Time for the AOSM water contact angles to become ≤ 90°,  

grouped by soil salvage type (left) and extent of weathering (right). 
 
 

The WDPTs from both the goniometer and autopipette testing were combined and presented in 

Figure 3.6. The mean WDPT for all samples was 824 s with a CV of 221%. Approximately 1/3 of the 

samples are classified as hydrophilic with WDPTs ≤ 5 s, less than 1/3 are slightly water repellent with 

WDPTs from 5 to 60 s, and more than 1/3 are strongly to extremely water repellent with WDPT ≥ 60 

s. Similar to the CA results, the SS salvage predominantly showed extremely water repellent WDPTs 

( = 3250 s; CV = 90%), the Bm was mainly wettable to slightly water repellent ( = 270 s; CV = 381%), 

and the B/C showed a range of WDPTs ( = 331 s; CV = 156%). Furthermore, the degree of 

weathering also affected soil water repellency, where AOSM with a low degree of weathering ( = 

3775 s; CV = 95%) showed strong to extreme WR, a high degree of weathering ( = 903 s; CV = 

227%) resulted in mainly wettable to strongly water repellent materials, and the medium weathered  

( = 659 s; CV = 231%) AOSM showed a range of WR from wettable to severely water repellent.  
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The degree and persistence of WR of the AOSM are related, where there is a linear correlation 

(r2 = 0.81) between CA and the natural logarithm of WDPT. There also appears to be a correlation 

between WR and salvage depth (Fig. 3.4; Fig. 3.6), where greater salvage depth generally results in 

a greater degree (CA) and persistence (WDPT) of WR (B/C and SS > Bm). 

 

     
 
 

Figure 3.6.  Mean persistence of water repellency of AOSM, grouped  

by soil salvage type (left) and extent of weathering (right).  
 
 

The WDPTs indicate that the majority of the AOSM will allow infiltration within the first minute of 

exposure, another portion within 10 min, and some that are severely or extremely water repellent with 

WDPTs greater than 10 min. Hunter (2011) investigated the WR of soils from several hydrocarbon-

affected reclamation sites and natural ‘a’ ecosites in the Athabasca oil sands region. The sites showed 

similar WR, with WDPTs ranging from 0 to 122 s and CAs from 0° to > 110°, where the variability was 

high in both land types with coefficients of variation often exceeding 200%. Although the magnitude of 

WR in the soils tested by Hunter (2011) was generally lower than the AOSM in the current study, a 

high level of variability was present in both materials, indicating that the spatial variability of WR in the 

AOSM from the current study is comparable to that of other natural soil materials in the region. 
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The WR of the tested AOSM showed a strong dependence on wetting duration. Although 

repellency is present to some extent in much of the AOSM, according to the CA analysis, over half of 

the material will wet either immediately (hydrophilic) or eventually if given adequate time (subcritically 

water repellent) (Fig. 3.4). The remainder are hydrophobic and theoretically may never have the 

capability of wetting and allowing infiltration in their current condition. The results of Hunter (2011) and 

Chau et al. (2014) confirm the dependence of wetting duration on the WR of natural and reclaimed 

hydrocarbon-affected soils, where CA and WDPT were negatively correlated with antecedent soil 

water content. In addition to the CA and WDPT values themselves, the time it takes for a soil CA to 

change from > 90° to ≤ 90° also has important implications. In the current study, very few samples (< 

20%) had a CA > 90° for longer than one minute, suggesting that the vast majority (> 80%) of the 

AOSM began to allow at least some infiltration within one minute of contact with water, and are thus 

considered to be either hydrophilic (WDPT = 0 s) or subcritically water repellent (WDPT > 0 s). This is 

also consistent with Hunter (2011) who found that the majority of hydrocarbon-affected soils, in both 

natural and reclaimed sites, are wettable or subcritically WR according to CA analysis. 

These results are also consistent with water repellency theory. Some material surfaces are 

seemingly water repellent (CA > 90°) when first introduced to water, but with time and exposure to 

water, their amphiphilic molecules reorient themselves to a hydrophilic position which enables 

infiltration (Dekker and Ritsema 1994; Doerr et al. 2000). This is typically what is observed in the highly 

weathered or shallow AOSM. In other cases; however, surfaces can be so WR (typically when CA > 

90°) that the molecules are unable to reorient themselves within a reasonable or observable time 

frame, if ever, and are thus considered hydrophobic (Dekker and Ritsema 1994; Doerr et al. 2000), 

which is what is observed in the low weathered or deep salvage AOSM. This is also consistent with 

the observed linear correlation (r2 = 0.81) between CA and WDPT of AOSM in the current study. 

However, it is important to note that CA and WDPT are not always related. Bachmann et al. (2007) 

found a significant relationship between the CA and WDPT when the CA was > 90°; whereas, for 

smaller CAs (≤ 90°) the WDPT was found to be < 5 s, and it was concluded that the measurement of 

WDPT is insensitive to differences in wettability throughout the entire range from wettable to 
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hydrophobic. This phenomena is also exhibited in a study performed by Chau et al. (2014) on soils 

from undisturbed ‘a’ ecosites and reclaimed sites in the Athabasca oil sands region, which showed 

that CA and WDPT can be, but are not always, correlated.  

The wettable or subcritical nature of the WR in AOSM has been verified by the results of an 

accompanying tension-controlled infiltration experiment performed on the same AOSM samples used 

in the current study. The majority of the AOSM allowed infiltration to occur under negative pore water 

pressures ranging from -20 to -0.1 cm (Neil and Si, 2018b), indicating subcritical WR with CAs ≤ 90° 

(Bauters et al. 2000). However, the infiltration of 95% ethanol was also determined, under pressure 

conditions equivalent to those used for water (i.e. the height of ethanol in the infiltration column was 

adjusted based on the difference in densities of water and ethanol) (Neil and Si, 2018b). The results 

showed that ethanol infiltration was significantly (P < 0.05) higher than that of water, indicating that 

WR is indeed producing some appreciable effect on the absorption and conductivity of water in the 

AOSM (Neil and Si, 2018b). 

3.5.3 Water Repellency with Depth  

There were clear differences in WR between outer (surface; depth = 0 cm) and inner (below 

surface; depth > 0 cm) portions of the AOSM. The inner material showed a greater degree (CA) and 

persistence (WDPT) of WR than the outer material, with few exceptions. There is a linear correlation 

between measurement depth and WDPT, with an r2 = 0.61 (Fig. 3.7). The AOSM sample, of medium 

to high weathering, from the B/C horizons salvage (B/C-1) had a poor depth–WDPT relationship with 

an r2 = 0.03; however, the remaining samples (B/C-2, SS-1, and Bm-1) showed strong to moderate 

correlations with r2 values of 0.93, 0.69, and 0.62 respectively. A clear difference can be seen between 

the AOSM of different weathering classes (Fig. 3.7). The least weathered AOSM has the greatest WR 

and the best relationship between depth and WDPT (r2 = 0.93); the medium AOSM have intermediate 

WR and reasonable depth–WDPT relationships (r2 = 0.69 and 0.62); and the highly weathered AOSM 

is generally the least water repellent and has the weakest relationship with depth (r2 = 0.03). 
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The CA and WDPT increased with salvage depth (Fig. 3.4; Fig. 3.6) and; therefore, there is a 

positive correlation between WR and salvage depth. This is because shallow AOSM deposits, which 

are nearer to the soil surface and more exposed to weathering agents prior to salvage, should have a 

smaller amount of hydrophobic PHC material than AOSM from deeper deposits. The Bm horizon 

salvage which contains materials from 15 to 50 cm depth, had less TOC than the B/C horizons salvage 

originating from 50 to 100 cm depth (Fig. 3.2; Table 3.2). The SS salvage contains materials between 

15 to 200 cm, where one would expect a greater abundance of low-weathered AOSM; however, the 

TOC results suggest it contains mainly highly weathered AOSM. This may indicate that AOSM from 

the SS salvage used in this study originated primarily from shallow depths. In other words, the SS 

salvage is composed mainly of AOSM from the Bm horizon (15 to 50 cm) and very few from the 50 to 

200 cm range. Therefore, there is clearly a dependence of both WR and TOC (i.e., PHCs) on salvage 

depth.  

 

        
 
 
Figure 3.7.  WDPT at various depths into four AOSM samples, grouped  

by soil salvage type (left) and extent of weathering (right). 
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There is also a negative correlation between WR and the AOSM stage of weathering (Fig. 3.4; 

Fig. 3.6). Samples from the lowest stage of weathering were more likely to have the greatest WR and 

include AOSM from the deep salvage (B/C); medium weathered AOSM showed a range of WR and 

included all salvages (Bm, B/C, and SS); and the highly weathered AOSM are the least water repellent 

and found in the shallowest material (Bm and SS) (Fig. 3.2; Fig. 3.4; Fig. 3.6). However, due to the 

unknown pre-disturbance depths of the individual AOSM samples, further analysis of this relationship 

is not feasible. A similar result was reported by Zhao and Machel (2011) for a site in the Athabasca oil 

sands region, where the biodegradation of oil sand bitumen was found to decrease with depth. 

3.5.4 Onion-Skin Weathering  

The relationships among WR, weathering, salvage depth, and TOC (PHC) content confirm the 

onion-skin weathering hypothesis. As salvage depth increases, exposure to weathering and 

biodegradation decreases, and consequently PHC content and WR increase. Additionally, WDPT and 

PHC content are correlated with depth into AOSM samples (Fig. 3.3; Fig. 3.7). Aside from the WDPT 

results of sample B/C-1, these results also confirm the onion-skin weathering hypothesis, where PHC 

content and WR increase with depth into the AOSM. The onion skin weathering of AOSM is similar to 

the spheroidal weathering of rock. Spheroidal weathering results in concentric layers of intact, 

weathered rock to form sequentially around a central corestone, through fracturing due to 

mineralogical, chemical, and mechanical processes (Hirata et al. 2016). Typical weathering agents 

include reactants such as oxygen and water, which advance toward the inside of the corestone (Hirata 

et al. 2016). In a study focused on the weathering of charnockitic bedrock, Behrens et al. (2015) found 

that primary minerals are initially removed, leaving behind secondary minerals and crystalline oxides 

as well as increased porosity. As weathering proceeds, the increase in porosity further increases the 

ability of reactive substances to penetrate the inner portions of the rock, resulting in enhanced 

weathering (Behrens et al. 2015). It appears that the removal of PHCs from AOSM may be a similar 

process: as weathering proceeds, PHCs are removed from the outer portions of the AOSM, increasing 

porosity and allowing further penetration of weathering agents. This suggests that the spheroidal 
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weathering and removal of PHCs in AOSM are responsible for the decrease in PHC content and 

increase in WR, with depth into the soil profile as well as with depth into individual AOSM samples.  

3.5.5 AOSM Surface Precipitate 

The outer surface of sample B/C-1 differed from the other three WDPT–depth samples, based on 

visual assessment. It contained extensive cracking, a lighter colour including the presence of a white 

precipitate on some portions, and a seemingly lower PHC content as was suggested by the colour and 

by the absence of a strong petroleum odour. These characteristics are indications of strong 

weathering. However, the surface of this AOSM exhibits substantial WR, contradicting the strong 

inverse relationships between WR and the degree of weathering and depth into the AOSM. It is 

possible that the WDPT–depth relationship, which is considerably stronger for other samples, has 

been modified in sample B/C-1 by the presence of a sulfate compound. The ATR-FTIR results from 

the outer portions of sample B/C-1 showed a peak absorbance at a wave number of approximately 

1100 cm-1 (Fig. A.1), which indicates the presence of sulfate (Peak et al. 1999). The outer and inner 

positions of the other three AOSM samples showed no peak absorbance at 1100 cm-1, with the 

exception of a portion of the outer surface of sample Bm-1 (Fig. A.1). The outer surface of Bm-1 also 

contained portions that were similar in appearance to that of B/C-1. However, the previous WDPT–

depth measurements of this sample were not performed on the surface(s) which contained the sulfate 

precipitate, which may explain why Bm-1 did not show a poor WDPT–depth relationship like that of 

sample B/C-1. Furthermore, additional WR tests confirmed that the portions of Bm-1 which contained 

sulfate, had a greater mean CA and WDPT on its outer portions (83°, 87 s) than inner (77°, 15 s). 

It is possible that sulfate combined with organic substances to form a surfactant (Jafvert and 

Heath 1991; Zhou and Zhu 2005). Surfactants have the ability to increase the solubility of hydrophobic 

organic compounds and decrease water repellency, and are a typical means of remediation for various 

hydrophobic environmental contaminants including PAHs (Jafvert and Heath 1991; Zhou and Zhu 

2005). However, depending on the type of surfactant, precipitation and sorption of the surfactant may 

occur on soil particles, leading to the persistence or exacerbation of hydrophobicity (Zhou and Zhu 
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2005). For example, strongly sorbed non-ionic surfactants are known to have a strong retention 

capability for hydrophobic organic compounds, resulting in the reduced availability of hydrophobic 

substances for degradation and removal (Zhou and Zhu 2005). Therefore, it is possible that a non-

ionic sulfate surfactant formed on the surfaces of samples B/C-1 and Bm-1, altering the WR of the 

affected materials. 

3.5.6 Implications for Reclamation 

As mentioned, the WR–depth relationship that was observed in the majority of the AOSM is 

consistent with onion-skin weathering. This has important implications for the salvaging of soil cover 

materials as well as their re-placement. Because AOSM from deep soils is at a low stage of weathering 

and thus has the potential for a high level of WR, discreet salvage or salvage by depth, such as the 

Bm and B/C horizons salvages, will create a natural separation of materials into two classes: ASOM 

from the Bm (shallow) is predominantly wettable or subcritically water repellent, while the B/C salvage 

(deep) contains a much greater proportion of water repellent AOSM. For the former, AOSM may still 

absorb and store water even when experiencing excessive drought, but on the whole the latter may 

not. Therefore, depending on the site specific conditions, separate placement may be advantageous 

(i.e., when soils are excessively dry). In such a case, AOSM from the Bm salvage could be placed in 

the near surface (i.e., rooting zone) and AOSM from the B/C salvage placed deeper in the profile (i.e., 

below rooting zone). This arrangement will promote hydrophilic conditions by preventing the relatively 

water repellent AOSM of the deeper salvage from undergoing excessive drying and; therefore, 

alleviating the potential for the AOSM to become highly water repellent. The presence of excessively 

dry, highly water repellent oil sand material in the near surface or on the soil surface could limit the 

infiltration of water into the soil profile and; consequently, reduce soil water storage. This may be 

particularly relevant when considering the construction of a sloping landscape, where water repellent 

AOSM placed in the near surface has the potential to reduce infiltration and promote the occurrences 

of overland flow and erosion.  
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WR increases with depth into the AOSM. This suggests that it may be beneficial to conduct soil 

salvaging, stockpiling, and placement in a manner which minimizes or avoids excessively breaking up 

the AOSM, so that the relatively water repellent inner portions of the material are not overly exposed. 

The more hydrophilic outer portions will likely absorb a greater amount of water than the highly water 

repellent inner portions and; therefore, when AOSM are in-tact their outer portions will more often 

contain water, which may make it easier for the highly water repellent inner portions to also absorb 

and store water. Handling of the AOSM during cold weather (i.e., winter) would minimize its breakup 

because under low temperatures the oil in the AOSM is extremely viscous, making these materials 

relatively rigid. 

Several CA measurements were also made by Rosso (2016) on soil matrix from a sand textured 

B/C horizons salvage collected from the ASCS area. The results showed maximum CAs ranging 

between 11° and 45°, classifying the soil as subcritically water repellent. Cross-comparison between 

AOSM from our study and soil matrix from Russo (2016), as well as Hunter et al. (2011), suggests that 

AOSM is more water repellent than the surrounding soil matrix. This could result in a slower drainage 

of water through AOSM deposits. Given the current information, it is difficult to predict whether the 

incorporation of the more water repellent AOSM in reclamation soils will have a positive or negative 

effect on improving soil water storage. More information, such as the water infiltrability of AOSM in 

reclamation soils, in addition to the maximum potential water repellency obtained from this study, is 

needed in order to answer this question. 

3.6  Conclusions 

It seems likely that AOSM weathers in an onion-skin manner, in terms of both salvage depth and 

depth into individual AOSM samples: there is a greater degree of weathering and lower PHC content 

and WR in the shallow salvage materials, and similarly a greater degree of weathering and lower PHC 

content and WR on the surface of individual AOSM than at depth. 

It is apparent that AOSM show a range of water repellent behavior in terms of both degree and 

persistence. Regardless, the subcritical nature of the WR in AOSM suggests that water absorption will 
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still occur, albeit relatively slowly. The majority of the samples allowed infiltration to commence within 

one minute of exposure, indicating that repellency will likely persist only during periods of extensive 

drought, and only in the small portion of materials that show a severe or extreme persistence of WR. 

However, this small amount of hydrophobic material has the potential to significantly impact the 

hydrology of an affected area. The results from previous studies appear to support this, which show 

that sandy soil matrix from the study area has a considerably lower degree of WR and absorbs water 

more effectively than the AOSM from our current study. Nonetheless, the ability of the AOSM to allow 

at least some infiltration will minimize the negative effects of WR-related phenomena. 
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4. INTERSTITIAL HYDROCARBONS REDUCE THE INFILTRATION RATES  

OF COARSE-TEXTURED RECLAMATION MATERIALS  

FROM THE ATHABASCA OIL SANDS2 

4.1 Preface 

Reclamation in the Alberta oil sands is facing many challenges, among the most prominent of 

which are those associated with coarse-textured soils. Typically, these soils have poor water and 

nutrient retentions, which can limit the potential productivity of emerging ecosystems. Previous studies 

have shown that textural/structural layering in natural and reclamation soils have the ability to increase 

soil water storage and provide additional water for plant uptake. It has been speculated that the 

inclusion of oil sand materials within the near-surface of the soil profile may also contribute to this 

effect, by reducing percolation and increasing the residence time of water within the overlying soils. 

This reduction in water flow is thought to be the result of reduced porosity due to the presence of 

interstitial petroleum hydrocarbons (PHC)s. Furthermore, Chapter 3 confirmed that near-surface oil 

sand inclusions exhibit hydrophobicity, which reduces the absorption of water in these materials. 

These near-surface oil sand inclusions may; therefore, have the ability to modify the soil water regime 

and associated ecosystems which emerge in these areas. To improve our understanding of the soil 

water dynamics of oil sand-affected coarse-textured soils, the current chapter examines the water 

infiltration rates of oil sand inclusions and their surrounding soils. 

4.2 Abstract 

In the Alberta oil sands, many soils available for reclamation contain portions of oil sand referred 

to as aggregated oil sand material (AOSM). The objective of this study was to determine the infiltration 

rates of soils and AOSM from various salvage depths and with various concentrations of interstitial 

                                                           
2 This work has been previously included in Neil, E.J., and Si, B.C. (2018), Interstitial hydrocarbons  
reduce the infiltration rates of coarse-textured reclamation materials from the Athabasca oil sands.  
Accepted in Catena. Minor modifications have been made for consistency.    
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petroleum hydrocarbons (PHCs). The water infiltration rates of AOSM and surrounding soil were 

determined using a miniaturized infiltrometer, revealing that the soil allows significantly (P < 0.05) 

greater infiltration than the AOSM. Furthermore, highly-weathered AOSM which originate from the 

near-surface, exhibit significantly lower PHC contents and greater infiltration rates than medium- and 

low-weathered AOSM, which are found at depth. The infiltration of 95% ethanol indicates water 

repellency (WR) is present in both the AOSM and surrounding soil; however, the ethanol results also 

suggest that the reduced water infiltration rates of AOSM in comparison to the soil, are primarily due 

to structural differences such as reductions in total porosity and pore connectivity resulting from 

interstitial PHCs. The diminished infiltration of water into AOSM indicates the ability to slow the 

downward flow of water and increase the residence time of water in overlying coarse-textured soils, 

potentially altering the soil water regime and associated ecosite.   

4.3  Introduction 

The shallow oil sand deposits of northern Alberta, which are economical for open pit mining, 

consist of a 4,800 km2 region near Fort McMurray, AB (Government of Alberta, 2016). These near-

surface oil sand deposits are accessed by first removing vegetation from the landscape as well as 

peat, soils, subsoils, and lean oil sand overburden. Once mining operations are complete, reclamation 

in these areas will require the reconstruction of landforms and ecosystems at a landscape scale 

(Johnson & Miyanishi, 2008). One key to successful mine reclamation involves the design of a soil 

medium which has sufficient water and nutrient retention for the development of a desired plant 

community (Leatherdale et al., 2012). Within the oil sands region, approximately 20% of the final 

reclaimed landscape will be composed of layered, coarse-textured glaciofluvial and aeolian deposits 

(Huang et al., 2011). Regardless of their relatively uniform textural classifications, these mining 

affected areas naturally support a range of boreal forest ecosite and forest stand types, over a range 

of moisture regimes (Zettl et al., 2011). In order to recreate ecosite assemblages and spatial 

arrangements similar to those present prior to disturbance, soil treatments capable of supporting 

various moisture regimes and ecosite phases are required. 
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Many of the surface soils and subsoils in the Athabasca oil sands region naturally contain portions 

of oil sand, in the form of discreet accumulations and layers (Leskiw et al., 2006; Visser, 2008). During 

salvaging and stockpiling activities, these oil sand inclusions often become further fragmented and 

mixed into the soils. One of the most abundant forms of oil sand inclusions are aggregated oil sand 

materials (AOSM), which have been previously referred to as “tarballs”. AOSM are discrete 

accumulations of oil sand of various shapes, ranging from a few centimetres up to several metres in 

diameter (Fleming, 2012). Limited information is currently available on oil sand aggregates and layers 

in the root zone of this boreal forest ecosystem; however, it has been frequently observed that in 

profiles with significant quantities of oil sand within the subsoil, the soil just above was consistently 

wetter than the surrounding soil (Leskiw et al., 2006; Fleming, 2012). This is likely explained by a 

change in water conducting porosity, resulting in a prolonged residence time of water in the root zone. 

Consequently, if an oil sand layer is found within the subsoil material beneath the rooting zone, there 

may be significant opportunity for increased soil water content, which may result in altered vegetative 

cover compared to that of an oil sand-free soil (Leskiw, 2005). However, it has also been observed 

that the presence of an oil sand layer, on or near the soil surface, may limit water storage and plant 

rooting depth, presumably due to reduced water entry caused by physical sealing or hydrophobicity 

(Leskiw et al., 2006). It is apparent that further investigation into the cause(s) of modified water 

contents in hydrocarbon-affected soils is necessary in order to optimize the effectiveness of 

reclamation prescriptions. 

The Alberta oil sand deposits are structured such that, upon formation there is a thin layer of water 

located between the mineral grains and bitumen, resulting in the protrusion of bitumen into the centers 

of the pores (Mossop, 1980; Takamura, 1982). Not surprisingly, these bitumen accumulations are 

known to substantially impede the flow of fluid through the material (Mossop, 1980). This may be due 

to a reduction in effective porosity, resulting from the presence of the interstitial bitumen. Additionally, 

water introduced to oil sand will be in direct contact with interstitial bitumen as opposed to mineral 

grain surfaces, which suggests that the ability of the oil sand to absorb and conduct water will be 

largely controlled by the surface chemistry and associated hydraulic properties of the bitumen itself. 



51 
 

The composition of bitumen is diverse and complex, containing a multitude of petroleum hydrocarbon 

(PHC) compounds with various chemical and physical properties (Eastcott et al., 1988; Frontera-Suau, 

2000; Gu, 2006). Oil sand bitumen may be modified by physical, chemical, and biological weathering 

agents, which in turn affects the composition, availability, and distribution of PHCs within the 

environment (Brassington et al., 2007). At this stage in its weathering, AOSM from the Athabasca oil 

sands region contains mainly high-molecular-weight or “heavy” PHCs and little or no “light” PHCs 

(Visser, 2008; Fleming, 2012). AOSM is typically composed of heavy hydrocarbons from the F3 

(Carbon [C]>16 - C34) and F4 (C>34) fractions, some F2 (C>10 - C16), and little or none of the F1 (C6 – 

C10) and volatile fractions (Canadian Council of Ministers of the Environment, 2008) (Visser, 2008; 

Fleming, 2012). Fleming (2012) found exceptions to this, where AOSM with “rich” cores contained 

total PHC contents that were orders of magnitude greater and included elevated levels of the lighter 

F1 and F2 fractions. The low abundance of light PHCs, in typical AOSM, is due to a combination of 

factors: light or low-complexity PHCs are biodegraded preferentially to heavy, high-complexity PHCs 

(Mossop, 1980; Brunner et al., 1987; Cerniglia, 1992); light PHCs are more soluble and mobile in soil 

solution and, consequently, have a greater chance of removal from the AOSM (Eastcott et al., 1988; 

Visser, 2008) and; heavy PHCs are often degraded into smaller “daughter” PHCs, which may have a 

greater solubility and, therefore, a greater probability of removal in soil solution (Fleming, 2012). The 

relative solubilities of the different hydrocarbon fractions suggest that light PHCs are relatively 

hydrophilic whereas heavy PHCs are hydrophobic. Neil and Si (2018a) found that AOSM have onion-

skin weathering and water repellency (WR) patterns, with increases in total organic carbon (TOC), 

which is used as an estimate of PHC content, and increases in WR with increasing salvage depth and 

with depth into individual samples. In other words, AOSM which are presumably more exposed to 

weathering, such as near-surface deposits and the outer portions of individual aggregates, typically 

contain fewer PHCs and are less water repellent than portions which are relatively protected, such as 

deep deposits and inner portions of individual aggregates. This indicates that the WR, and perhaps 

other hydraulic properties of AOSM, are a factor of its degradational history and resultant PHC 

distribution.  
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Neil and Si (2018a) observed a range of water repellent behaviour in AOSM. Due to the 

heterogeneous and dynamic nature of the WR within AOSM, it is difficult to predict based solely on 

WR, whether or not other hydraulic properties of the material will be significantly impacted. Properties 

such as hydraulic conductivity or infiltration rate can provide valuable insight into how a material will 

behave on a larger scale and how it may impact it’s host soil profile and ecosystem through such 

phenomenon as reduced infiltration, runoff and erosion, preferential flow, and reduced soil water 

storage (Dekker and Ritsema 1994; Doerr et al. 2000). Because the PHCs within oil sand reduce pore 

space and promote WR, and the TOC (i.e., PHCs) and WR are correlated with salvage depth and 

depth into individual samples, we hypothesize that the infiltration rates of AOSM decrease with 

increasing salvage depth and depth within individual samples, and consequently with increasing PHCs 

and WR. In addition, we hypothesize that the infiltration of water into AOSM will be significantly 

reduced in comparison to the texturally similar surrounding soil matrix, due to the presence of 

interstitial PHCs. To test these hypotheses, infiltration experiments were performed on coarse-textured 

subsoils of various salvage depths, and on the outer and inner portions of AOSM inclusions from soil 

salvages of various depths and relative stages of weathering. The objective of this study was to 

determine the infiltration rates of coarse-textured subsoils and the PHC-affected oil sand aggregates 

contained within, and to evaluate the effects of PHC content, WR, and salvage depth on these values. 

This will provide insight into the potential effects of AOSM on the soil water dynamics of reclamation 

soils. 

4.4  Materials and Methods 

4.4.1   Study Site and Reclamation Materials 

The Aurora Soil Capping Study (ASCS) site at the Syncrude Canada Ltd. Aurora North Mine, 

north of Fort McMurray, AB, was chosen for this study. The ASCS is a long-term instrumented 

watershed research site, used to evaluate the performance of various reclamation prescriptions 

utilizing hydrocarbon-affected soils and lean oil sand overburden. The ASCS consists of 36 one-

hectare plots composed of soil reclamation materials containing oil sand aggregates in varying 
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proportions. There are 12 treatments repeated in triplicate, with the treatments ranging in soil cover 

design (i.e., one or two soil horizons) and in total reclamation capping thickness. Coversoil (i.e., 

reclaimed topsoil) materials used in the ASCS are composed of peat salvaged from lowland bogs and 

fens within the mine development footprint, and of surface soil from upland forest areas containing 

LFH, A horizon material, and potentially a portion of the B horizon. Subsoil materials consist of mineral 

soils which contain AOSM, that are salvaged at various depths after the salvage of upland surface 

soil. 

The parent materials for these salvaged soils are primarily of glaciofluvial and aeolian origins, 

resulting in the subsequent formation of coarse-textured Brunisolic soils (Leskiw et al., 2006). The site 

is part of the Central Mixedwood Natural Subregion within the Boreal Forest Natural Region of Alberta 

(Natural Regions Committee, 2006), and its soils typically support an a1 ecosite phase, characterized 

by a subxeric moisture regime and poor nutrient regime, with jack pine (Pinus banksiana Lamb) and 

lichen (Cladina spp. and Cladonia gracilis) as the dominant tree and understory species (Beckingham 

& Archibald, 1996).  AOSM-affected soil was collected from the following salvaged subsoil materials 

composing the ASCS, as described in Chapter 3: 

 Upper Subsoil Bm horizon salvage (15 – 50 cm): Surface soil was removed (LFH layer, A horizon, 

and a portion of the top of the B horizon which totals approximately 15 – 20 cm), then the 

remaining Bm horizon was salvaged to a depth of 50 cm.  

 Blended B/C horizons salvage (50 – 100 cm): Surface soil and upper subsoil Bm horizon were 

removed (0 – 50 cm), then the remaining B horizon and a portion of the C horizon were salvaged 

to a depth of 100 cm. 

 Composite Subsoil salvage (15 – 200 cm): Surface soil was removed (LFH layer, A horizon, and 

a portion of the top of the B horizon which totals approximately 15 – 20 cm), then the remaining 

Bm horizon and a portion of the C horizon were salvaged to a depth of 200 cm.  
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The soil salvage types will be abbreviated as Bm, B/C, and SS respectively. AOSM was chosen 

from each of the available reclamation materials, with sizes ranging from centimeters to decimeters in 

diameter. The AOSM were categorized into one of three weathering stages or classes (low, medium, 

or highly weathered) based on physical stability, colour, and odour, as outlined in Chapter 3 (Table 

3.1). The AOSM was stored at 4 °C to minimize degradation, except during preparation and testing, 

which occurred at 20 °C and 30% relative humidity.  

The particle size distributions of the soils and AOSM were determined using a Horiba LA-950 

particle size analyzer (Horiba Scientific, Edison, NJ, USA). The TOC contents of the AOSM and 

surrounding soil matrix were determined using a LECO C-632 dry combustion carbonator (LECO 

Corp., St. Joseph, MI, USA) (Wang & Anderson, 1998). Since PHCs are composed largely of carbon, 

the TOC contents were used as a quick means of estimating the relative PHC contents of the various 

salvage materials. The soil matrix was sieved to a diameter of 2 mm and packed into metal cores with 

a length and inner diameter of 5.08 cm, at a gravimetric water content of 0.05 g g-1 and bulk density 

of 1.6 g cm-3. Prior to testing, the soil cores and AOSM were air dried at 20 °C and 30% relative 

humidity until reaching constant mass.  

4.4.2   Miniaturized Infiltrometer 

In order to determine the infiltration rates and hydraulic parameters (field-saturated hydraulic 

conductivity, Kfs, and inverse capillary length scale, ) of the AOSM and its host soil matrix, a tension-

controlled infiltration experiment was performed using a miniaturized infiltrometer. The experimental 

setup was a modified version of that used by Leeds-Harrison et al. (1994). The most notable 

differences were those of the infiltrometer tip and liquid reservoir. The infiltrometer tip design from 

Chau et al. (2012) was used, which consists of a modified 200 L pipette tip with an inner diameter of 

2 mm and a selectively permeable nylon membrane fixed upon it’s end using cyanoacrylate adhesive 

(superglue). The nylon membrane has an air entry value of approximately -3 kPa or -30 cm water 

pressure head, which restricts the flow of air at suctions () of 3 kPa or less, but allows the passage 

of liquid. This enables the measurement of liquid flow into materials under negative pore pressure 
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conditions. The liquid reservoir used in the current study was a form of “Mariotte’s bottle”. This type of 

apparatus allows fluid to exit the reservoir at a constant water pressure head, regardless of a changing 

height of fluid in the reservoir (McCarthy, 1934). This provides the capability to conduct infiltration 

measurements at a constant, known water pressure head throughout the course of an experiment as 

water is removed from the reservoir.  

During testing, the AOSM and soil matrix cores were individually placed on a height-adjustable 

stand and raised until contact was made between the sample and the infiltrometer tip. During infiltration 

liquid was drawn out of the reservoir, through the tubing, and into the sample, which registered as a 

change in mass on an analytical balance. The infiltration rate could therefore, be determined by 

recording the change in mass in the reservoir over time. During infiltration the mass of the reservoir 

was recorded at 10 s intervals for the first five minutes and 60 s intervals thereafter. Measurements 

were conducted sequentially from low to high pressure heads, at values of –20, –13, –7, –3, –1.5, and 

–1.2 or –0.1 cm. As the pore water pressure conditions were increased (suction decreased), 

progressively larger soil pores were being accessed in addition to those that were already participating 

in the infiltration. This is due to the inverse relationship between pore water suction and pore size. The 

suction values listed above were chosen to provide an indication of the flow of water through 

macropores (≥ 1 mm pore diameter; pressure heads ≥ -3cm or suctions ≤ 3cm), as well as that of 

mesopores and micropores (< 1 mm pore diameter; pressure heads < -3cm or suctions > 3cm). The 

infiltration rate, or liquid flux, from the tip of the infiltrometer was calculated according to the following: 

 

��  =  
��

�����
                                                                                            (4.1) 

 

where qi is the flux or infiltration rate (L3 L-2 T-1), A is the contact surface area (L2), ti is the time interval 

of infiltration (T), ρf is the liquid density (M L-3), and m is the mass of liquid infiltrated (M) during time 

interval ti. 
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The majority of the AOSM samples used in this study were previously tested for water repellency 

(Chapter 3). Once the water repellent characteristics of the AOSM had been determined, the samples 

were once again air dried and then infiltrations completed on the same locations. The infiltration testing 

included 22 AOSM samples of various weathering stages, and consequently of various levels of WR, 

which were chosen randomly from the collected salvage materials. In addition to the AOSM, six soil 

matrix samples were also tested. The water infiltrations were performed on multiple locations (two to 

four) on the outer surfaces of each of the AOSM to account for variability within samples. From the 22 

AOSM samples, four were chosen for extensive testing on their inner portions (i.e., at various depths 

within aggregates) in addition to their outer surfaces. Similarly, the WR measurements on the inner 

portions were completed at multiple depths, and the samples air dried prior to performing the infiltration 

tests at the same locations and depths.  

Additional water infiltration testing was performed on the outer portions of three AOSM samples 

that were air dried between individual infiltrations. In other words, when the water infiltration rate 

decreased in response to a decrease in suction (or increase in water pressure head), the AOSM was 

air dried and the experiment resumed at the suction showing the reduced values. 

Once the water infiltrations were complete, the unknown hydraulic parameters were estimated 

using Wooding's (1968) equation for steady-state infiltration under a shallow circular pond: 

 

�(ℎ) =  �1 +
4

����
 � ��� exp(�ℎ)                                                             (4.2) 

 

where q(h) is steady-state infiltration rate (L T-1), h is pressure head (L), rd is the contact radius (L),  

is the inverse capillary length scale (L-1), and Kfs is the field-saturated hydraulic conductivity (L T-1). 

The  and Kfs parameters were estimated through non-linear regression of q as a function of h, using 

curve fitting and the least squares method. Wooding’s (1968) model and the fitted hydraulic 

parameters can be used in future modelling and estimation of infiltration rates under various 

antecedent soil water content or pore suction conditions. 
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In addition to the various water infiltrations, four AOSM samples and several soil matrix cores 

were also tested using 95% ethanol. Ethanol has a substantially lower surface tension than water and 

as a result is virtually not affected by water repellent surfaces (Tillman et al., 1989). Essentially, the 

ethanol infiltration rate represents the maximum water infiltration rate that could be achieved by the 

sample if water repellency were not present. Furthermore, because ethanol ignores the effects of 

repellency, it can provide information about the pore connectivity of water repellent materials (Tillman 

et al., 1989). Because it was known that the PHCs within the AOSM may be solubilized and removed 

by the ethanol solution, thereby changing the structure of the AOSM, infiltration times were kept to a 

minimum. Once steady state was reached at an individual suction value, as indicated by a constant 

infiltration rate, the infiltration was halted at that suction and immediately resumed at the next (lower) 

suction value. In this way, the contact time between the PHCs and ethanol solution was minimized, 

thus reducing the opportunity for PHC solubilization and removal during infiltration measurements. All 

ethanol infiltrations were performed under pressure conditions equivalent to those of the water 

infiltrations, and were calculated as follows: 

 

ℎ� =  
��ℎ�

��
                                                                                     (4.3) 

 

where hE and hW are ethanol and water pressure heads (L), and E and W are ethanol and water 

densities (M L-3). 

Several analysis of variance (ANOVA) were used to examine differences in infiltration rates of the 

AOSM and surrounding soil matrix, and to determine whether changes in measurement depth, salvage 

depth, and water pressure head produce significant effects on the mean infiltration rates of AOSM, 

where differences were considered significant at P < 0.05. Additionally, Pearson’s r was used to 

examine linear correlations between infiltration rate and WR (Contact angle [CA] and water drop 

penetration time [WDPT]).  
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4.5 Results 

4.5.1   Material Characterization 

Using the particle size classification system of the Canadian Soil Survey Committee (1982) and 

textural classification of the Canadian System of Soil Classification (Soil Classification Working Group, 

1998), the AOSM and surrounding soil matrix of the ASCS are considered sand-textured, with the 

exception of two AOSM samples which were loamy sand. ANOVA revealed AOSM have a significantly 

(P = 3 x 10-6) lower quantity (i.e., mass) of clay sized particles than their respective host soils, although 

the total clay content is low in both the AOSM (0.0%) and soil matrix (0.4%) (Table C.1). In addition, 

ANOVAs also showed that the outer and inner potions of the AOSM are not significantly different (P > 

0.1) in texture (soil separates) (Tables C.2, C.3, and C.4). 

The TOC contents of the soil matrix and AOSM were determined for each of the soil salvage 

materials (Table 4.1). Rosso (2016) found similar mass-based TOC contents in the ASCS soil matrix, 

with means and standard deviations of 1.4 ± 0.2%, 0.8 ± 0.2%, and 0.5 ± 0.2% in the Bm, B/C, and 

SS salvages respectively. In addition, ANOVA showed that the TOC contents of the outer (7.6 ± 3.9%) 

and inner (9.6 ± 3.3%) portions of the AOSM are not significantly different (P = 0.051) (Table C.8); 

however, for the four AOSM samples tested on their inner portions, the TOC contents are significantly 

different (P = 0.031) (Table C.9), with less TOC in the outer material (7.4 ± 2.6%) than inner (9.6 ± 

3.3%).  

Table 4.1.   

Mean and (standard deviation) of total organic carbon content in % by mass 

of soil matrix, outer AOSM, and inner AOSM from three soil salvage types. 

 

 

 

 

† AOSM = aggregated oil sand material 

Salvage Depth AOSM 
Weathering 

   Total Organic Carbon (%) 

Type (cm) Soil   AOSM 

      Matrix   Outer Inner 

 Bm 15-50 Med-High 0.6 (0.09)   6.3 (2.1)   7.9 (2.1) 

B/C 50-100 Low-Med 0.4 (0.03) 10.2 (5.6) 11.2 (3.1) 

SS 15-200 Med-High 0.7 (0.06)   6.8 (2.1)   6.6 (1.0) 
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The low weathering class was composed of AOSM from the deep salvage types (B/C and SS); 

the medium class included all salvages (Bm, B/C, and SS); and the highly-weathered class included 

the salvage types with the shallowest materials (Bm and SS) (Fig. 4.1). ANOVA confirmed that AOSM 

from the low weathering class contains significantly greater TOC contents (13.0 ± 4.1%) than the 

highly-weathered (6.8 ± 2.8% TOC; P = 5 x 10-5) (Table C.10) and medium-weathered AOSM (6.4 ± 

1.8% TOC; P = 4 x 10-15) (Table C.11).   

 

 
 
 

Figure 4.1.  Total mass-based carbon content of AOSM from various weathering classes (low, 

medium, high) and soil salvage types: Bm (15-50 cm), B/C (50-100 cm), SS (15-200 cm). 
 
 
4.5.2   Water Infiltration 

In many cases, water infiltration into the AOSM began immediately upon contact with the 

infiltrometer, but in others it took up to several minutes. For many of the AOSM, once the flow of water 

began at a given suction, infiltration fluctuated through time. Infiltration rate was typically greatest 

during the initial several minutes of flow, and would then decrease rapidly through time. Due to this 

variability, the infiltration rates of individual tests were calculated as the mean of the readings from the 

first five minutes of measurements, taken at 10 s intervals. In addition to the temporal variability seen 

within individual infiltrations, there was also considerable variability between AOSM samples. The  

coefficients of variations (CV) in water infiltration rates were relatively high as well as suction 

dependent, ranging from 0.49 to 1.26 for outer material and from 0.40 to 1.01 for inner material.  
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Figure 4.2 shows examples of the various water infiltration–suction trends observed in the AOSM. 

Many of the individual samples did not show an exponential increase in infiltration rate with a decrease 

in suction (increase in water pressure head), but instead would experience a decrease in infiltration or 

no clear trend at all. Figure 4.2A and to some extent Figure 4.2E, show infiltration curves from AOSM 

sampling positions which display typical soil water infiltration curves, for which Eq. 4.2 can be 

successfully applied. The remaining examples in Figure 4.2 show infiltration curves which would be 

considered atypical for homogeneous soils. 
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Figure 4.2.  Water infiltration rates of AOSM, as a function of water pressure head. Figures 2A to 2F 

show the results from six samples which encompass the various infiltration trends observed in AOSM. 
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The mean water infiltration rates of the outer and inner portions of the AOSM are similar at each 

of the tested suctions (water pressure head values). The results of the water infiltrations confirmed the 

mean infiltration rates of the outer and inner portions, both separately and combined, did not 

significantly differ with suction (within or across individual AOSM samples or salvage types). Because 

the water infiltration rates of the outer and inner portions of AOSM were not significantly different, the 

results for these materials were combined prior to further data analysis. The mean water infiltration 

values of the AOSM (outer and inner combined) and soil matrix are presented in Figure 4.3. The mean 

water infiltration rates of the soil matrix differ significantly with suction (Table C.12), where a decrease 

in suction results in greater infiltration. The soil matrix values were used in conjunction with Eq. 4.2 to 

obtain hydraulic parameters for this material (Fig. 4.3). The AOSM; however, did not show the same 

exponential relationship and; therefore, Eq. 4.2 could not be applied with the same level of accuracy. 

ANOVAs show AOSM have significantly lower mean water infiltration rates than that of the soil matrix 

in the  ≤ 7cm suction range (Tables C.17, C.18, C.19, and C.20); however, no significant difference 

was found at higher suctions.  

 

    
 
 

Figure 4.3.  Mean water infiltration rate as a function of water pressure head for soil matrix  

and AOSM. Solid lines (curves) are best-fit predictions obtained using Wooding’s (1968) 

relationship; error bars display standard deviations of mean values. Tabled values show the 

predicted hydraulic parameters (field-saturated hydraulic conductivity, Kfs; inverse capillary 

length scale, ) and the fit of the predicted curves (Pearson’s correlation coefficient, r2). 
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According to the results of Neil and Si (2018a), the majority of the AOSM samples used in the 

current study express some level of water repellency. The mean CA of water on the surface of air-dry 

AOSM samples was 47° with a CV of 96%, and the mean WDPT was 824 s with a CV of 221% (Neil 

and Si, 2018a). While there may appear to be a relationship between infiltration rate and WR (CA and 

WDPT) for select AOSM samples and/or suctions, the majority did not show any predictable 

relationships. There is; however, a relationship between the AOSM weathering stage and mean water 

infiltration rates. Figure 4.4 shows the measured and predicted water infiltration values of AOSM from 

the three weathering classes.  

 

      
 
 

Figure 4.4.  Mean water infiltration rates as a function of water pressure head for AOSM from 

three weathering stages. Solid lines (curves) are best-fit predictions obtained using Wooding’s 

(1968) relationship; error bars display standard deviations of mean values. Tabled values show 

the predicted hydraulic parameters (field-saturated hydraulic conductivity, Kfs; inverse capillary 

length scale, ) and the fit of the predicted curves (Pearson’s correlation coefficient, r2). 

 
 

The highly-weathered AOSM had the greatest water infiltration rates in the macropore range ( 

≤ 3cm), of all weathering classes, and exhibited an exponential infiltration–suction trend. 

Consequently, Eq. 4.2 fit well to the measured data (r2 = 0.83). In contrast, the low- and medium-

weathered AOSM had relatively low water infiltration rates at all tested suctions, with a negligible 

increase or even a decrease in infiltration with decreasing suction. As a result, Eq. 4.2 provided a 

weaker fit to the low- (r2 = 0.35) and medium-weathered (r2 = 0.20) AOSM. 
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Three AOSM samples were tested on their outer surfaces to examine the effects of drying 

between infiltrations. Figure 4.5 includes the results from one of the samples, which showed a similar 

pattern to that of the other two samples. When water infiltration rate declined in response to a decrease 

in suction (purple line segments in Figure 4.5), the AOSM was air dried and the experiment resumed. 

 

 
 
 

Figure 4.5.  Mean water infiltration rates as a function of water pressure head for an AOSM 

sample. Each separate purple line segment represents infiltrations performed sequentially,  

with no drying time between measurements. The blue line represents the infiltration rates 

obtained when the sample was wet from previous infiltrations. The orange line shows  

the infiltration rates obtained when the sample was air dried between measurements. 
 
 

Generally, once the AOSM was re-dried and re-tested, water infiltration rates were greater 

(orange dotted line in Figure 4.5) than when the material was wet (blue dotted line in Figure 4.5). 

However, this did not necessarily result in a more traditional trend, where an increase in infiltration 

occurs in response to a decrease in suction. As with the majority of the AOSM, in addition to the 

unusual mean infiltration–suction trends, there were fluctuating infiltration rates through time at 

individual suctions. 

4.5.3   Ethanol Infiltration 

To determine whether WR was contributing to the atypical trends seen in the water infiltration 

results, infiltrations were performed using 95% ethanol. Four AOSM samples, which showed 

considerable fluctuations in water infiltration rates through time as well as atypical infiltration–suction 
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trends, were tested with ethanol on their outer surfaces. The water and ethanol infiltration curves show 

clear differences in their magnitude and infiltration–suction relationships (Fig. 4.6), as is the case for 

all of the AOSM tested with ethanol. Ethanol infiltration did not occur in any of the AOSM or soil matrix 

samples at the 20 cm suction, but at all other suctions it was typically greater than that of its water 

counterpart.  

       
 
 

Figure 4.6.  Mean infiltration rates of water and 95% ethanol  

as a function of water pressure head for an AOSM sample. 
 
 
The AOSM infiltration rates of water and ethanol are significantly different at  < 3 cm (Tables 

C.13 and C.14). Furthermore, the mean AOSM ethanol infiltration rates were at least 2 times greater, 

depending on suction, and generally displayed a more exponential relationship with suction than that 

of their water infiltrations (Fig. 4.7B). ANOVAs confirmed the water infiltration rates of AOSM were 

similar between suctions (Table C.15), but the ethanol infiltration rates differed significantly with 

suction (Table C.16) where a decrease in suction resulted in an increase in infiltration.   

The soil matrix, which does not contain an abundance of PHCs (< 1% TOC), also showed some 

repellency, with ethanol infiltration rates of up to approximately 2.5 times greater in the macropore 

range, depending on suction, than its water infiltration rates. Unlike the AOSM, the soil matrix water 

infiltration significantly differed between suctions (Table C.12), where a decrease in suction resulted 

in an increased infiltration rate (Fig. 4.7A). The ethanol infiltration rates of the soil matrix also differed 

between suctions (Fig. 4.7A).  
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4.6 Discussion 

4.6.1   Water Infiltration 

The results of the AOSM weathering classification are consistent with onion-skin weathering, 

where AOSM from shallow salvage depths are presumably more exposed to weathering agents and; 

thus, more degraded and contain less TOC (i.e., PHCs) than those found at greater depths. 

Additionally, the four samples tested on their inner portions contained significantly greater TOC 

contents on their inner portions than outer. These results are consistent with those of Neil and Si 

(2018a), who found that TOC content as well as WR (CA and WDPT) are negatively correlated to the 

extent of weathering of the AOSM and positively correlated to salvage depth and to depth within 

individual AOSM samples. However, the current study shows that water infiltration under negative 

pore water pressure is, at most, weakly correlated to WR. Although AOSM has the potential for WR, 

as is suggested by the maximum WDPT and CA values, it is not necessarily reflected in its actual 

ability to absorb and conduct water. Neil and Si (2018a) also showed that the majority of AOSM (> 

80%) allowed some absorption to initiate within one minute of contact with water, and concluded that 

the WR was primarily subcritical in nature. Subcritical water repellency is the ability to alter surface 

chemistry, and change between hydrophobic and hydrophilic states, depending on moisture conditions 

(Doerr et al. 2000; Diehl 2013). Consequently, because water was being introduced into the AOSM 

during the infiltration measurements, the water content was increasing and; thus, the water repellency 

of the AOSM may have been actively changing (decreasing) during the experiment. This may partially 

explain why there is no correlation between the water infiltration rates and the WR values of the AOSM, 

which were tested under initially air-dry conditions.  

Delay in the onset of flow in some samples during the initial several minutes of testing is likely 

due to the WR of the material. However, contrary to the results of Neil and Si (2018a), the water 

infiltrations performed in the current study indicate that AOSM does not behave like a typical 

subcritically water repellent soil. Typically, water infiltration into a homogeneously-subcritically water 

repellent soil is initially slow, then gradually increases with time as the soil is exposed to water and the 
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repellency is reduced (Tillman et al. 1989). According to the current water infiltration study these 

materials appear to behave purely hydrophobically upon contact with water, but hydrophilically after 

the sudden onset of infiltration, as opposed to subcritically water repellent. In many instances water 

infiltration did not commence upon contact between the infiltrometer tip and AOSM, and often required 

several minutes to establish flow, which resembles a hydrophobic material. Once flow commenced, 

infiltration rates were generally greatest at the onset of flow and then decreased or ceased as time 

proceeded, which resembles a hydrophilic material (Tillman et al. 1989). However, Neil and Si (2018a) 

also found that the WR in AOSM increased with depth into the samples. This increase in WR with 

depth into individual aggregates could also be contributing to the general decrease in water infiltration 

over time, by increasing the amount of time required to wet the material and allow further infiltration 

as the wetting front travels deeper into the AOSM. This may also be responsible for the temporally 

fluctuating water infiltration rates seen in many samples. It is possible that as the wetting front reaches 

new portions of the AOSM pore structure, it comes into contact with previously unexposed subcritically 

water repellent materials, which require contact time with water to reorient to a hydrophilic position 

before allowing further infiltration. In this way, the flow rate would fluctuate through time in response 

to the changing water repellent conditions at the wetting front.  

Despite the observed decrease in infiltration over time, there is often still a surge of water during 

the initial stage (several seconds to minutes) when performing infiltrations at subsequently lower 

suctions. The relationship between pore suction and pore size may explain this.  As previously 

mentioned, as pore water suction decreases (water pressure head increases), the maximum pore size 

participating in the infiltration increases (Luxmoore 1981). The equivalent pore diameter for a given 

pore water pressure may be determined using a form of the Young-Laplace equation applicable to 

capillary tubing, which is based on the original works of Laplace (1805) and Young (1805) later unified 

by Gauss (1830).  
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This relationship between pore diameter and pore water pressure is often referred to as the height of 

capillary rise equation or Jurin’s Rule, in honour of James Jurin (1717) who was among the first to 

record observations of capillary rise phenomena: 

 

ℎ =  
2� ����

���
                                                                          (4.4) 

 
where h is the pore liquid pressure (L),  is the surface tension of the liquid (M T-2), is the contact 

angle between the liquid and material surfaces (°),  is the liquid density (M L-3), g is the acceleration 

due to gravity (L T-2), and r is the pore radius (L). If AOSM pores become filled under a previously 

tested (higher) suction condition, with water that cannot be redistributed away from the infiltration point 

and throughout the material within the time frame of the experiment, the only pores which are empty 

and available to take on water at a subsequently lower suction are the newly accessed, larger pores. 

These larger pores may then quickly fill with water during infiltration, causing a rapid reduction in pore 

suction, resulting in a decreased infiltration rate through time. Additionally, as pore size increases, flux 

also increases according to Poiseuille’s (1847) Law for ideal fluids: 

 

� = − 
�����
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∙

∆ℎ
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                                                                 (4.5) 

 

where q is the fluid flux (L3 L-2 T-1), r is the pore radius (L), f is the fluid density (M L-3), g is the 

acceleration due to gravity (L T-2),  is the fluid viscosity (M L-1 T-1), h is the change in pressure head 

(L), and x is the change in distance in the direction of flow (L). Poiseuille’s Law indicates that fluid 

flux is proportional to the square of the pore radius, so a small change in pore size can produce a large 

change in flux. Due to this relationship, the majority of the total hydraulic conductivity of a soil is 

produced from flow through large pores (macropores; ≥ 1 mm diameter) and very little from small 

pores (meso- and micro-pores). This would explain why the water infiltration rates of AOSM often 

increased significantly in response to an increase in pressure, even in samples that experienced a 

near cessation of flow over time under the previous (lower) pressure conditions. 
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Although ANOVAs indicate that the water infiltration rates of AOSM showed no statistically 

significant ( = 0.05) relationship with WR, they do appear to be related to the AOSM stage of 

weathering (Fig. 4.4). In the macropore suction range ( ≤ 3 cm), in contrast to the low- and medium-

weathered AOSM, the highly-weathered material shows an increase in water infiltration with 

decreasing suction. Based on the infiltration–suction trends in Figure 4.4, it appears as though the 

low- and medium-weathered AOSM primarily contain pores that are smaller than 0.15 mm in diameter 

(equivalent to  = 20 cm using Eq. 4.4). In other words, the majority of the pores are accessed when 

performing the infiltrations at  = 20 cm and; therefore, when the suction is decreased, few or no 

additional (larger) pores are accessed. Consequently, identical pore sizes (≤ 0.15 mm) are being 

accessed throughout the  = 20 to 0.1 cm range, producing a relatively uniform infiltration rate 

throughout this range. The highly-weathered AOSM; however, must contain a considerable portion of 

macropores (≥ 1 mm diameter;  ≤ 3 cm). As suction is decreased, additional (larger) pores are 

accessed and the highly-weathered AOSM experiences significantly increased infiltration rates. 

Similar trends can be observed in the mean AOSM and soil matrix water infiltration values. The mean 

AOSM infiltration rates are relatively constant throughout the range of tested suctions, similar to that 

of the low- and medium-weathered AOSM; whereas, the soil matrix shows an exponential infiltration–

suction trend similar to that of the highly-weathered AOSM (Fig. 4.3). This suggests that in relation to 

the soil matrix, the highly-weathered AOSM generally have a lower proportion of macropores that are 

effectively conducting water, and the medium- and low-weathered AOSM have even less. Although 

there are differences in the macropore range, there are no significant differences among the various 

AOSM and soil matrix samples in the  = 7 to 20 cm range. This indicates that these coarse textured 

materials have very few small pores which conduct water, regardless of their material type, the 

presence or amount of PHCs, or whether the PHCs are water repellent. It is only when accessing 

macropores ( ≤ 3 cm) that the mean infiltration rates of the various AOSM and soil matrix start to 

deviate from one another. This suggests that, unlike small pores, the macropores of these materials 

are substantially affected by interstitial PHCs, whether it be from WR or a reduction in the quantity and 
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connectivity of macropores. Furthermore, the macropores of the AOSM appear to be affected by the 

degradational histories and resultant PHC contents and distributions within the AOSM, as is suggested 

by the mean water infiltration–suction trends among the different weathering classes (Fig. 4.4). An 

important implication of these findings is that AOSM behaves like a compacted soil, where the 

presence of PHCs mimic that of compaction. Typically, as soils are compacted, there is a reduction in 

macroporosity and increases in meso- and micro-porosity (McNabb et al. 2001; Dec et al. 2008). 

Additionally, as compaction occurs and pore size distribution is modified, there is often a reduction in 

pore connectivity (McNabb et al. 2001). In the current study, as PHC content in AOSM increases, 

water infiltration in the macropore suction range decreases considerably, whereas meso- and micro-

pore flow are relatively unaffected. 

For the soil matrix, when using the fitted hydraulic parameter values of  = 0.39 cm-1 and Kfs = 31 

cm hr-1, the predicted water infiltration values fit well to the measured ones (r2 > 0.80). These 

parameters can be used to predict infiltration rates under varying suction or moisture conditions, which 

may be subsequently encountered in the field. Due to the unpredictable nature of the infiltration–

suction relationships seen in many of the AOSM, obtaining hydraulic parameters for individual samples 

was for the most part unsuccessful. In some cases, it was possible to fit the model (Eq. 4.2) to the 

measured data for individual sampling locations within a single AOSM sample, and even more rare to 

fit the model to the mean infiltration values, of all locations within a single AOSM sample. It is important 

to note that although hydraulic parameters have been successfully obtained from select AOSM 

infiltration tests, these values do not represent the entire or even typical range of AOSM, but rather 

only describe the samples which behave according to the exponential relationship typically seen in 

homogeneous soils as outlined by Wooding (1968) in Eq. 4.2. Therefore, these parameters would be 

of little use in future predictions or modelling. However, when fitting the mean infiltration values of 

multiple AOSM samples (Fig. 4.3), particularly for individual weathering classes (Fig. 4.4), Eq. 4.2 fits 

considerably better. It is important to note that although the model provides a statistically (r2) weak fit 

to the measured data of the low- and medium-weathered AOSM (Fig. 4.4) as well as the mean values 

for all AOSM samples (Fig. 4.3), the difference in magnitude between the respective measured and 
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predicted values is quite small. In contrast, the highly-weathered AOSM has a statistically strong fit, 

but the magnitude difference between measured and predicted values is relatively large. This is due 

to the range of infiltration values from each of the classes. The highly-weathered AOSM show a 

relatively large range of water infiltration values. Therefore, when deviating from the mean by a given 

magnitude, there will be a larger impact proportionally on the fit (r2) of the low- and medium-weathered 

AOSM and mean AOSM because their range of values is relatively small. Consequently, although the 

obtained hydraulic parameters produce a poor fit statistically, they provide a relatively good fit when 

considering the magnitude difference between the measured and predicted values and; therefore, they 

may still be of use in future prediction and modelling exercises.  

The increased water infiltration rates of the AOSM that were air dried between tests, suggests 

that once soil pores are filled with water during the early part of a test, infiltration decreases 

considerably (Fig. 4.5). This also suggests that WR is not the only (nor primary) factor influencing the 

infiltration of water into AOSM. Generally, soil water repellency increases with increasing dryness of 

the soil (Tillman et al. 1989; Diehl 2013); and therefore, if WR were the primary factor impacting the 

infiltration of water into the AOSM, drying the material would result in significantly reduced infiltration 

rates. Although the water infiltration rates generally increased once air dried, flow still fluctuated 

through time. As mentioned, it is possible that as the wetting front travels deeper into the AOSM, 

portions which have been previously unexposed to water take substantial time to wet and allow further 

infiltration, and could explain the temporally fluctuating infiltration rates.    

4.6.2   Ethanol Infiltration 

The water infiltration rates in AOSM were smaller in magnitude and did not differ across suctions 

like that of the ethanol. This would indicate that WR within the AOSM is indeed producing a noticeable 

effect on water infiltration. The infiltration rates in the soil matrix did; however, differ with suction, but 

also showed differences between water and ethanol, indicating that repellency is also a factor in this 

material. The reduction in water infiltration due to repellency was similar in the AOSM and soil matrix, 

proportionally, according to their respective differences in water and ethanol infiltration rates (Fig. 4.7). 
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The water infiltration rates of the soil matrix were considerably greater than that of the AOSM in the 

macropore suction range. There are a number of potential causes for these reduced values in AOSM, 

including WR as well as a reduction in effective porosity due to interstitial PHCs. The ethanol infiltration 

rates of the soil matrix were also greater than those of the AOSM. Given what is known of these 

materials, the lower ethanol infiltration rates in the AOSM must be cause by interstitial PHCs which 

are reducing the volume and connectivity of pore spaces. This is suggested by the following: the 

AOSM and soil matrix are texturally similar, the soil matrix has relatively little or no pore plugging by 

PHCs, and the effects of WR are not present when using ethanol. Therefore, when using ethanol the 

only factor differing between the AOSM and soil matrix are the interstitial PHCs within the AOSM. This 

is further supported by the difference between the water infiltration rates of the low/medium-weathered 

(high PHC content; low infiltration rates) and highly-weathered (low PHC content; high infiltration rates) 

AOSM (Fig. 4.4). This suggests that water infiltration rate decreases with increasing PHC content in 

these coarse-textured soil materials. Similarly, Pernitsky et al. (2016) found that increasing bulk 

density and PHC concentration within lean oil sand overburden materials resulted in a decrease in 

hydraulic conductivity of the lean oil sand and an increase in water storage in the overlying coarse-

textured soils. In addition, Neil and Si (2018a) found that PHC content increases with depth into 

individual AOSM samples. This suggests that the further the wetting front of a probing liquid travels 

into individual AOSM, the greater the potential for reduced infiltration due to a reduction in pore volume 

and connectivity resulting from the increased presence of interstitial PHCs. 

4.6.3 Implications for Water Storage 

It would appear that AOSM have the potential to decrease the infiltration and storage of water 

due to the presence of interstitial PHCs. The PHCs within AOSM occupy space and interrupt the 

continuity of pores, impeding water from entering and occupying these materials. This effect would 

likely become more pronounced as the PHC content of the AOSM increased, as is suggested by the 

water infiltration rates of the AOSM of different weathering stages. As part of a reclamation soil profile 

the interstitial PHCs in the low-weathered AOSM (i.e., high PHC content) would produce the greatest 
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decrease in the soil water storage, followed by the medium- and highly-weathered AOSM (i.e., lower 

PHC contents). However, the reduced infiltration rates of the AOSM in comparison to the surrounding 

soils may also slow the vertical flow of water, causing an increase in the residence time of water within 

the soil profile. Keeping water in the soil for a longer period of time provides vegetation with more time 

to access water, essentially increasing the soil water storage over relatively long time spans. In 

reclamation soils that contain considerable quantities of coarse-textured materials, which naturally 

have low water and nutrient holding capacities, an increase in the water residence time may be 

beneficial to emerging and stable ecosystems as it provides additional plant-available water to a soil 

which is already relatively susceptible to drought stress. It is likely that the PHC content of the AOSM 

would impact how pronounced this residence time effect would be. Based on the infiltration rates 

obtained in this study, it is likely that the low-weathered AOSM would produce the greatest reduction 

in the flow of water and hence the greatest increase in residence time within the soil. However, the 

low-weathered material may more or less act as an impermeable object, causing water to rapidly flow 

around it, which would have little effect on the residence time. It is possible that the medium- or highly-

weathered ASOM would result in a greater increase in the residence time of water because more of 

the water flows through the pore structure of the AOSM, at a reduced rate, before continuing downward 

through the soil profile. 

Based on the results of this study, it is difficult to predict which mechanism (reduced volume of 

soil capable of water storage; increased residence time) will have a greater effect on the soil water 

balance and amount of plant-available water within the soil profile. It is possible that the two effects 

will offset one another, resulting in a null net effect to the soil water balance. Future modelling studies, 

using the hydraulic parameters obtained in this study and others, could provide an improved 

understanding of the effects of AOSM inclusions on the soil water dynamics of reclamation soil profiles. 
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4.7 Conclusions 

The AOSM weathering classification is consistent with onion-skin weathering: AOSM originating 

from the near-surface of the soil profile is weathered to a greater extent, and consequently contains 

less TOC (i.e., PHCs) and has greater water infiltration rates in the macropore suction range, than 

AOSM from at depth and; PHC content increases with depth into individual aggregates, but mean 

water infiltration rate is not affected by measurement depth. 

The paired water and ethanol infiltrations confirmed that some form of WR is present in the pore 

structure of the AOSM. Ethanol infiltration rates were greater and showed a pronounced increase with 

decreasing suction, as opposed to water which was reduced in magnitude and frequently did not show 

any significant change with suction. The ethanol measurements revealed that WR is also present in 

the soil matrix, which showed greater infiltration rates for ethanol than water. The difference in the 

water and ethanol infiltrations were approximately the same for both the soil matrix and AOSM, 

suggesting similar levels of WR. The ethanol infiltration rates of the soil matrix were significantly 

greater than that of the AOSM. These results also indicate that WR is not solely responsible for the 

reduced water infiltration in the AOSM, and suggests that a difference in effective (i.e., conducting) 

porosity may also be contributing. Since we know that the soil matrix and AOSM in this study are 

nearly texturally identical and have approximately the same WR, it seems likely that differences in 

infiltration are due to differences in porosity resulting from interstitial PHCs. While the water infiltration 

trends may reflect a hydrophilic or subcritically water repellent soil as opposed to a truly hydrophobic 

soil, the difference in magnitude between the ethanol and water infiltrations indicates that WR was 

present to some extent. Based on these results, it seems likely that water flow in AOSM is affected by 

both WR and a reduction in porosity due to interstitial PHCs.  

As AOSM is further weathered and degraded through time, interstitial PHCs which can potentially 

cause WR as well as a reduction in effective porosity may be removed, leaving behind a coarse 

textured material similar to the surrounding soil matrix. As these chemical and physical changes occur, 

the hydraulic properties of the AOSM will become more similar to that of the surrounding soils.  

Furthermore, it appears as though PHCs have a greater effect on larger sized pores, and as PHC 
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content increases, infiltration in the macropore range decreases considerably. In this way, the 

interstitial PHCs in AOSM produce an effect similar to that of compaction, by reducing macroporosity 

and pore connectivity. 

Water infiltration rates of AOSM were significantly lower than the soil matrix in the macropore 

suction range. Because the majority of a soils hydraulic conductivity is attributed to macropore flow, 

the difference between the AOSM and soil matrix macropore flows suggests that the soil water 

dynamics in these coarse textured soils would be significantly affected by AOSM inclusions. The space 

that is occupied by AOSM causes a reduction in the volume of soil capable of storing water, potentially 

resulting in decreased water storage. However, as water travels through the soil profile and reaches 

portions of AOSM, flow rate will decrease, which may result in an increase in residence time and; 

therefore, an increase in water storage, in the soils located above. This may explain the previous 

observations of increased water contents in soils overlying oil sand. Consequently, depending on its 

location within the soil profile, AOSM has the potential to modify water content and alter the soil 

moisture regime and ecosite. If AOSM is present just beneath the rooting zone, there is potential to 

increase the soil water storage within the rooting zone and allow for the establishment of relatively 

productive ecosites with wet moisture regimes. However, if AOSM is located deeper in the profile 

where it does not produce a significant effect on the soil water storage in the rooting zone, relatively 

dry ecosites may develop. Therefore, AOSM-affected soils may provide another tool with which to 

influence the soil water regimes of reclaimed sites, in order to customize them to support a range of 

desired ecosites. 
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5. SYNTHESIS AND CONCLUSIONS 

Surface mining activities in the oil sands region of Northern Alberta result in the removal of 

vegetation, soils, and landform features, causing a disruption to normal ecosystem functions. In order 

to reclaim the affected areas, soil prescriptions which are capable of providing the necessary 

conditions to support a target ecosystem are required. Properties such as water and nutrient retention 

will largely determine the possible ecosystems which are capable of developing. Many of the materials 

available for reclamation throughout the region are coarse-textured soils, which have relatively low 

water and nutrient holding capacities. Nevertheless, these soils naturally supported a range of 

moisture and nutrient regimes, and associated ecosite phases, from dry to relatively wet. The natural 

layering of soil and sediment horizons is known to result in a greater available water holding capacity 

than that of texturally-homogeneous soil profiles. However, these soils are also known to contain 

portions of oil sand in the form of aggregates and layers, and it has been observed that soil water 

content is frequently greater directly above these materials than in the surrounding soils. In order to 

prepare effective soil reclamation prescriptions which are capable of supporting target ecosystems, 

the hydraulic properties of oil sand inclusions must be investigated.  

The overarching objective of this thesis work was to evaluate the potential for oil sand inclusions 

(i.e. AOSM) to modify the soil water dynamics of coarse-textured reclamation soil profiles. Two main 

studies were performed to address this objective. The first study provided an indication of the 

maximum hydrophobicity, or soil water repellency, of AOSM, as well as it’s persistence with time and 

with increasing water content. The study was performed to understand the potential for AOSM 

hydrophobicity to modify the soil water dynamics of its host soil profile through reduced absorption and 

flow. The second study examined the tension-dependent infiltration rates of AOSM and surrounding 

coarse-textured soil materials, to support the findings of the first study and to further evaluate the 

potential for AOSM to modify the soil water dynamics of reclamation soils.  

Chapter 3 addressed the first objective, where measurements of sessile drop contact angle and 

water drop penetration time provided indications of the degree and persistence of WR of AOSM. 
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Testing occurred on AOSM from various salvage depths and at multiple sampling depths within 

individual aggregates. The results were highly variable, showing a wide range of WR in terms of both 

degree and persistence, with values spanning nearly the entire spectrum typically observed in natural 

soil materials. However, despite the excessive levels of WR found in many of the AOSM, the majority 

allowed water infiltration to commence within a reasonable time, typically within one minute of contact 

with water. This indicates that although AOSM has the potential for WR, it will likely persist after wetting 

only in the materials which are highly hydrophobic, minimizing the potential for associated negative 

effects to the soil profile. Furthermore, it was found that with increasing salvage depth, the apparent 

stage of weathering of AOSM decreased, while the PHC content (measured as TOC content) and WR 

increased. Similarly, the PHC content and WR increased with increasing depth into individual AOSM. 

This suggests that AOSM undergo onion-skin weathering, where near-surface deposits and the 

surfaces of individual aggregates experience greater exposure to weathering and degradation. The 

relatively high levels of oxygen, heat, and microbes, as well as the frequent occurrence of wetting and 

drying cycles of these surface materials may promote weathering and degradation of the PHCs in 

AOSM. This breakdown of hydrophobic interstitial material may then result in a reduction in WR and 

increases in absorption and flow.  

In Chapter 4, the potential for AOSM to modify soil water dynamics was further evaluated by 

determining the infiltration rates, of water and 95% ethanol, of AOSM and surrounding coarse-textured 

soils using a miniaturized infiltrometer. The results of the study are consistent with onion-skin 

weathering of AOSM throughout the depth of the profile, where AOSM from the near-surface appeared 

to be more highly weathered, contain less PHCs, and consequently had greater water infiltration rates 

than deeper materials. Similarly, PHC content increased with increasing depth into individual AOSM, 

but water infiltration rate was not significantly affected. The paired water and ethanol infiltrations 

indicated that WR was present in both the AOSM and surrounding soils, with approximately equal 

reductions in water infiltration rates as compared to ethanol for both materials. The water infiltration of 

AOSM was significantly lower than that of the surrounding soil throughout the macropore suction 

range. Because we know that the AOSM and surrounding soil are nearly texturally identical, and 
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express approximately equal levels of WR, the differences in their infiltration rates are likely the result 

of differences in conducting porosity due to interstitial PHCs within the pore structure of the AOSM. 

The difference observed in AOSM from different stages of weathering also suggests this is the case, 

where the water infiltration rates of the highly weathered AOSM were significantly greater than that of 

the medium- and low-weathered AOSM throughout the macropore suction range.  

The differences in infiltration rates of the AOSM and surrounding soil suggests that water flow 

through coarse-textured soil profiles may be considerably affected by AOSM inclusions. If AOSM is 

present in the near-surface, there is the potential for reduced absorption and downward flow of water 

through the AOSM into the underlying soil, resulting in reduced soil water storage. Conversely, the 

reduced infiltration rates and conducting porosity of the AOSM could result in the formation of flow 

barriers at the interfaces between the AOSM and surrounding soils. Therefore, if AOSM is located 

below the surface, there is an opportunity to slow the flow of water through the profile and increase 

the soil water storage in the soil above AOSM.  

In summary, as salvage depth increased, weathering of AOSM decreased, resulting in increases 

in PHC content and WR, and a decrease in infiltration rate. These results imply the benefit of 

performing discreet salvage and replacement of soil layers during mining and reclamation activities. 

Through the separation of deep and shallow soil materials, deep deposits which have relatively great 

hydrophobicity remain at depth where water content is generally greater and; therefore, the expression 

of hydrophobicity is minimal. In addition, deep deposits have relatively low infiltration rates, and if 

placed in the near-surface, could result in a reduction in water infiltration into the soil profile and an 

associated reduction in soil water storage. However, particularly in coarse-textured soils, it may be 

advantageous to place AOSM in the near-surface, within or directly beneath the rooting zone, where 

it’s WR and/or low infiltration capability allow it to slow the downward flow of water and increase plant 

available soil water storage. Ultimately, the ability of AOSM inclusions to modify soil water storage 

provides an additional tool with which to customize reclamation soil prescriptions and create the 

conditions necessary to support target ecosystems.  
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It is apparent that AOSM have the capability to alter the hydrology of their host soils. According 

to previous surveys, approximately 70% of the soils in the top 3 meters of the oil sands region contain 

< 5% oil sand by volume. For these reclamation soils, because the oil sand is present in relatively 

small quantities, there may not be a significant effect on the hydrology of the reclamation soil profiles. 

However, approximately 15% of the soils were found to contain between 5% and 25% oil sand by 

volume, and the remaining soils contain > 25%. In the soil materials which contain higher quantities of 

oil sand, there may be a considerably greater effect to the soil hydrology. As such, the oil sand quantity 

of reclamation soils should be assessed prior to reclamation. When using soil materials containing 

greater quantities of oil sand, soil profiles should be carefully constructed in order to minimize the 

expression of WR and the associated reductions in water infiltration and soil water storage in the near-

surface. However, as previously mentioned, the presence of oil sand material in the near-surface may 

not pose a threat to soil water storage, but may in fact increase water residence time and soil water 

storage, providing a strategy with which to control the soil moisture regime of reclaimed sites, Future 

modelling studies, using the hydraulic parameters obtained in this and other research, will improve our 

understanding of the soil water dynamics of AOSM-affected reclamation soils. Modelling is a 

quantitative tool with which to evaluate the effects of AOSM on entire soil profiles, over long time 

spans. By modelling various prescriptions or combinations of AOSM-affected soils, multiple 

reclamation scenarios may be evaluated and compared, providing an indication of their ability’s to 

support target ecosystems. By modelling the soil water dynamics over long time spans, the 

sustainability’s of the various reclamation prescriptions may be assessed. Furthermore, the effects of 

ecological succession may also be examined, providing further indication of the interactions between 

the reclaimed soils and ecosystems. Through such modelling studies, the design of AOSM-affected 

reclamation soil prescriptions can be further optimized to sustainably support target ecosystems and 

promote reclamation success.  
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APPENDIX A. ATTENUATED TOTAL REFLECTANCE FOURIER  

TRANSFORM INFRARED SPECTROSCOPIC MEASUREMENT  

OF AGGREGATED OIL SAND MATERIAL 
 

 

 

 

 

 

Figure A.1.  ATR-FTIR absorbance spectra of AOSM samples with surface precipitate. 
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APPENDIX B. THE EFFECTS OF AGGREGATED OIL SAND MATERIAL ON THE 

SATURATION, DRAINAGE, AND FIELD CAPACITY OF RECLAMATION SOILS 

B.1 Introduction  

The results of Chapter 4 indicate that, regardless of the cause(s), water infiltration rates of air dry 

aggregated oil sand materials (AOSM) are generally lower than that of their surrounding sandy soil 

matrix. To further assess the potential effects of AOSM inclusions on the soil moisture dynamics of 

reclamation profiles, a soil column study was designed. A set of experiments examining the saturation, 

drainage, and soil water content at field capacity (FC) of pure soil and AOSM/soil combinations were 

conducted. 

B.2 Materials and Methods 

This study utilized the same materials of the Aurora Soil Capping Study (ASCS) site, located north 

of Fort McMurray, AB, that were examined in Chapters 3 and 4. The experiment utilized a set of two 

acrylic soil columns, with inner diameters of 12.7 cm, and heights of 20 cm and 40 cm for the upper 

and lower columns respectively. The two columns were stacked vertically, containing at their interface 

a selectively-permeable nylon membrane with an air-entry value of –3 kPa. Under atmospheric 

pressure conditions, the nylon membrane allows the passage of water, but not air. This prevents air 

within the columns from becoming trapped at the interface and affecting the lower boundary condition 

of the upper column during the saturation and drainage procedures. Any trapped air in the upper 

column will exit through the top of the column which is open to atmosphere, or through one of the four 

breather holes (3/16” dia.) that were placed equidistantly along the circumference of the column at a 

height of 1 cm from its bottom. Air within the lower column must exit through the bottom of the column 

which is open to atmosphere, or through one of two sets of four breather holes located at heights of 3 

cm and 20 cm. 

The study design consisted of paired experiments with one control and one AOSM-affected 

treatment per pair. The first experiment served as the control and contained pure sand in both the 
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lower and upper soil columns. The second experiment contained the same lower column used in the 

first treatment (no re-packing), but the upper column was re-packed to contain an air-dry AOSM 

sample approximately centered within the column. Each paired set of experiments were performed in 

triplicate with three separate sets of control columns and AOSM samples. The samples were chosen 

based on their total organic carbon (TOC) contents (i.e., PHC contents) and visual signs of weathering, 

and were intended to represent three different stages, or extents, of weathering and degradation. The 

known physical and water repellent properties of the AOSM samples are displayed in Table B.1.   

 
Table B.1.   

Physical properties of the aggregated oil sand materials included in upper soil columns. 

†    AOSM = aggregated oil sand material 

‡    Stage of weathering of AOSM ranges from 1 (low) to 7 (highly weathered) 

§    Values are reported as mean ± standard deviation  

¶    TOC = total organic carbon  

#    CA = contact angle  

††  WDPT = water drop penetration time 

‡‡  b = bulk density 
 
 

All upper and lower soil columns were packed at bulk densities of approximately 1.6 g cm-3, which 

is somewhat higher than the range of bulk densities observed by Zettl et al. (2011) in natural, coarse-

textured soil profiles of the region, and equivalent to the average reclaimed bulk density of the 

texturally-similar lean oil sand overburden included in the soil profiles of the ASCS site (Pernitsky et 

al., 2016). A bulk density slightly greater than that of the natural soils was chosen, in order to represent 

the worst case scenario in terms of reduced porosity due to compaction from heavy machinery during 

the replacement and reconstruction of the reclaimed soil profiles. 

Soil AOSM Stage of  TOC§    CA§  WDPT§ Volume b 

Columns Sample Weathering (g 100g-1)   ( ° )  (s) (cm3) (g cm-3) 

1 A 4             9.6        128      2010   63 2.05 
     ±     0.2     
        

2 B 1          21.3         104        606 164 1.74 
     ±    3.4    ±     20    ±  725   
        

3 C 5           5.1             0           1    81 1.76 

        ±     0.1    ±       0    ±         0     
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The lower column was packed to its maximum height of 40 cm, in order to ensure a continuum of 

soil and good contact between the lower and upper columns. The upper column was packed to a 

height of 18 cm, leaving 2 cm of head space in the top of the column for ponded water application. 

Once the upper and lower columns were packed and vertically affixed, de-aired tap water was 

introduced to the top of the upper column. Water was ponded and maintained at an average height of 

1.75 cm above the soil surface until approximately 3 pore volumes (9L) of water were introduced. After 

the disappearance of the ponded water, the columns were left to drain for 48 hours to achieve FC. 

During the experiment a time domain reflectometry (TDR) device was used to monitor the 

volumetric soil water content (v) in the top 6.5 cm of the upper soil column while it was brought to 

saturation and drained to FC. Triplicate sets of TDR probes were installed to account for variability 

within each of the columns. After 48 hrs of drainage the columns were assumed to be at FC, which 

was confirmed by a relatively constant water content through time as revealed by TDR (Fig. B.1). Once 

FC was reached, the soil columns were detached and their masses recorded. The contents of the 

upper column were then sampled to determine the water content of the soil profile and its relationship 

with depth. Sand was removed from the upper column in 2 cm vertical lifts. Each lift was sampled six 

times (spaced equidistantly within the horizontal cross section of the column), where each sample was 

composed of approximately 20 to 30 g of wet sand. In order to obtain the gravimetric soil water 

contents, the wet samples were then dried at 105 °C for 24 hrs and their masses re-determined.  

Analysis of variance (ANOVA) were performed on the volumetric water content results obtained 

from the TDR in order to explore potential differences between probes, as well as differences through 

time, as drainage occurred. ANOVAs were also used to examine differences in post-drainage (FC) 

water contents between the pure sand and sand/AOSM columns. Differences were considered 

significant when P < 0.05. 

B.3 Results and Discussion 

ANOVAs revealed that during the 48 hr drainage period the mean v of the top 6.5 cm of the upper 

columns were not significantly different, with the exception of control column 1 (Sand 1 in Figure B.1) 
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which was significantly different than all other control and AOSM treatments. The TDR probes in the 

upper column of control column 1 were installed immediately after saturation prior to drainage, 

whereas the probes for all other columns were installed prior to saturation. It is possible that the contact 

between the probe bodies and soil particles was more effective when installed prior to saturation, 

because the saturation process allows particles which are disturbed during probe installation to resettle 

tightly around the probe, resulting in a higher observed water content. 
 

 
 

Figure B.1.  Post-saturation (drainage) volumetric water content  

of sand from the upper soil columns. Solid lines are treatments 

with pure sand; dotted lines are treatments with sand and AOSM. 
 

During drainage, TDR revealed that > 90% of the total water loss in the top 6.5 cm of the upper 

columns occurred in the first 4 hrs (with the exception of control column 1, which due to its installation 

method has no saturated water content value for comparison) (Fig. B.1). The v of the top 6.5 cm of 

the upper columns 48 hrs after drainage (excluding control column 1, v = 0.098 cm3 cm-3) were fairly 

consistent with a mean v of 0.124 cm3 cm-3 and standard deviation of 0.004 cm3 cm-3. 

The results for the gravimetric water content sampling of the upper columns were converted to 

volumetric water contents, and displayed in Figures B.2A, B.2B, and B.2C. Two of the paired 

experiments (columns 1 and 3; Figs. B.2A and B.2C) showed lower water contents throughout the 

majority of the column when AOSM was present, and one (column 2; Fig. B.2B) showed no significant 

difference between that of the pure sand and AOSM/sand treatments.  
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Figure B.2 (A, B, and C).  Volumetric water contents with standard deviations, at FC,  

of sand from the upper soil columns of paired Columns 1, 2, and 3. Solid lines are 

treatments with pure sand; dotted lines are treatments with sand and AOSM; yellow 

horizontal lines are the upper and lower depth boundaries of the AOSM inclusions. 
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It is possible that, due to the significantly lower infiltration capability of the AOSM in comparison 

to the surrounding soil, air was entrapped above and/or below the inclusions. During saturation, the 

wetting front should be relatively uniform as it vertically advances through the homogenously packed 

sand. Once the wetting front reaches the AOSM inclusion, it encounters a flow barrier because the 

hydraulic conductivity of the AOSM is significantly lower than that of the surrounding sand. As it 

reaches this hydraulic barrier, water will take the path of least resistance and consequently flow 

preferentially through the sand surrounding the AOSM inclusion. As the water continues to flow 

through the sand it will do so in a more or less vertical direction, due to the coarse pore-size distribution 

and strong influence of gravity on water movement in pores of this size. Therefore, as the wetting front 

passes the bottom boundary of the AOSM, there may be limited lateral flow, resulting in a dry region 

directly below the AOSM inclusion. 

Similarly, during saturation, air which is occupied in the soil pores must be displaced in order for 

water to enter the pores. In the current study, as water enters pore spaces, air must exit the column 

through the breather holes located near its bottom edge. It is possible that, due to the limited porosity 

and/or pore connectivity of AOSM, the air permeability (in addition to the hydraulic conductivity) may 

be significantly reduced in AOSM compared to the surrounding sand. This would indicate that as the 

soil column is being saturated, air is being displaced through the sand portions more rapidly than 

through the AOSM. This arrangement would enable water to fill the pore spaces of the portions of the 

column which contained a vertical continuum of sand throughout the height of the column, more rapidly 

than the portions located above the AOSM. This would create a non-uniform wetting front, allowing 

water in the portions of sand surrounding the AOSM to reach the depth of the AOSM more rapidly 

than the water travelling through portions of sand directly above AOSM. Once the wetting front 

surrounds the lateral surfaces of the AOSM, there are no empty (air-filled) pore spaces connecting the 

empty pores of the sand above the AOSM to the breather holes at the base of the column. Therefore, 

the air in the empty pore spaces above the AOSM becomes trapped, limiting the amount of water that 

can enter these pores, and resulting in comparably lower water contents above the AOSM than in the 

surrounding soil. 
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As mentioned, unlike that of Columns 1 and 3, Column 2 showed no significant difference in soil 

water contents when AOSM was included. To further explore this inconsistency, the experiment for 

the AOSM/sand treatment for column 2 was repeated. The repeated experiment resulted in 

significantly greater soil water contents in the AOSM-affected sand than in that of the pure sand 

treatment, for the soils located at depths below the depth of the AOSM inclusion. 

 

 
 

Figure B.3.  Volumetric water contents with standard deviations, at FC, of sand from  

the upper soil columns of the Column 2 measurements. Solid lines are treatments  

with pure sand; the dotted line is the treatment with sand and AOSM; yellow  

horizontal lines are the upper and lower depth boundaries of the AOSM inclusion. 
 
 

The results of this study suggest that AOSM do have the ability to modify the soil water storage 

in coarse-textured reclamation soils of the region. At equivalent depths, the differences in the soil 

water contents of the pure sand and AOSM-affected sand treatments are typically less than 1% 

volumetric water content (0.01 cm3•cm-3). While this may seem like a relatively small difference, it 

resulted in considerable differences in the total soil water storage (up to 9%; 9 cm of water in a 1 m 

soil profile). 
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B.4 Conclusions 

The study outlined in Chapter 4 suggests that due to relatively low infiltration rates, AOSM have 

the potential to increase soil water storage in overlying soils via the creation of flow barriers, which 

slow the downward flow of water. The study summarized in this current appendix suggests this isn’t 

always the case and that, due to the wetting patterns experienced in AOSM-affected soils, AOSM may 

also decrease or have no effect on, the water storage of the overlying soils. These results re-illustrate 

the variability of the hydraulic properties of AOSM, and imply that additional testing would be beneficial, 

particularly at the field scale. Nevertheless, this study provides additional confirmation that the 

presence of AOSM can considerably alter the soil water dynamics of coarse-textured AOSM-affected 

reclamation soils.  
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APPENDIX C. ANALYSIS OF VARIANCE OUTPUTS 

Table C.1.  Analysis of variance (ANOVA) of clay content (g•100 g-1) of aggregated oil  
sand material (AOSM) and surrounding soil matrix. 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

  AOSM 41 0.116 0.003 0.000 

  Soil Matrix   8 3.377 0.422 0.277 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups 1.177   1 1.177 28.353 2.784 x 10-6 4.047 

 Within Groups 1.951 47 0.042    

 Total 3.128 48         

 
 
 
Table C.2.  Analysis of variance (ANOVA) of sand content (g•100 g-1) of outer and inner  
portions of aggregated oil sand material (AOSM). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

Outer AOSM 24 2218.556 92.440 19.347 

Inner AOSM 17 1601.453 94.203   4.428 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups 30.940   1 30.940 2.339 0.134 4.091 

 Within Groups 515.834 39 13.227    

 Total 546.774 40         

 
 
 
Table C.3.  Analysis of variance (ANOVA) of silt content (g•100 g-1) of outer and inner  
portions of aggregated oil sand material (AOSM). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

Outer AOSM 24 181.328 7.555 19.351 

Inner AOSM 17   98.547 5.797   4.428 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups 30.770   1 30.770 2.326 0.135 4.091 

 Within Groups 515.927 39 13.229    

 Total 546.697 40         
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Table C.4.  Analysis of variance (ANOVA) of clay content (g•100 g-1) of outer and inner  
portions of aggregated oil sand material (AOSM). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

Outer AOSM 24 0.116 0.005 0.001 

Inner AOSM 17 0.000 0.000 0.000 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups 0.0002   1 0.0002 0.7031 0.4069 4.0913 

 Within Groups 0.0129 39 0.0003    

 Total 0.0131 40         

 
 
 
Table C.5.  Analysis of variance (ANOVA) of total organic carbon content (g•100 g-1)  
of outer and inner portions of aggregated oil sand material (AOSM) used in the  
water repellency study (Chapter 3). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

Outer AOSM 76 566.308 7.451 14.114 

Inner AOSM 19 181.566 9.556 10.623 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups     67.331   1 67.331 5.011 0.028 3.943 

 Within Groups 1249.732 93 13.438    

 Total 1317.063 94         
 
 
 
Table C.6.  Analysis of variance (ANOVA) of total organic carbon content (g•100 g-1)  
of low- and highly-weathered aggregated oil sand material (AOSM) used in the  
water repellency study (Chapter 3). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

    Low 21 273.306 13.015 16.740 

    High 14   91.594   6.542   7.195 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups 351.866   1 351.866 27.109 1.003 x 10-5 4.139 

 Within Groups 428.336 33   12.980    

 Total 780.202 34         
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Table C.7.  Analysis of variance (ANOVA) of total organic carbon content (g•100 g-1)  
of low- and medium-weathered aggregated oil sand material (AOSM) used in the  
water repellency study (Chapter 3). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

  Low 21 273.306 13.015 16.740 

  Medium 60 382.974   6.383   2.976 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups 684.120   1 684.120 105.896 3.030 x 10-16 3.962 

 Within Groups 510.364 79     6.460    

 Total 1194.484 80         

 
 
 
Table C.8.  Analysis of variance (ANOVA) of total organic carbon content (g•100 g-1)  
of all outer and inner portions of aggregated oil sand material (AOSM) used in the  
infiltration study (Chapter 4). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

Outer AOSM 69 526.287 7.627 15.085 

Inner AOSM 19 181.566 9.556 10.623 
 

Source of Variation SS df MS F P-value F critical 

 Between Groups      55.422   1 55.422 3.916 0.051 3.952 

 Within Groups 1216.977 86 14.151    

 Total 1272.398 87         
 
 
 
Table C.9.  Analysis of variance (ANOVA) of total organic carbon content (g•100 g-1)  
of the outer and inner portions of aggregated oil sand material (AOSM) that were  
tested at multiple depths in the infiltration study (Chapter 4). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

Outer AOSM 18 132.737 7.374    6.642 

Inner AOSM 19 181.566 9.556 10.623 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups   44.000   1 44.000 5.064 0.031 4.121 

 Within Groups 304.119 35   8.689    

 Total 348.119 36         
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Table C.10.  Analysis of variance (ANOVA) of total organic carbon content (g•100 g-1)  
of low- and highly-weathered aggregated oil sand material (AOSM) used in the  
infiltration study (Chapter 4). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

    Low 21 273.306 13.015 16.740 

    High 12    81.305   6.775   7.887 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups 297.263   1 297.263 21.860 5.433 x 10-5 4.160 

 Within Groups 421.553 31   13.598    

 Total 718.816 32         

 
 
 
Table C.11.  Analysis of variance (ANOVA) of total organic carbon content (g•100 g-1)  
of low- and medium-weathered aggregated oil sand material (AOSM) used in the  
infiltration study (Chapter 4). 

Groups Count Sum Mean Variance 

    (g•100 g-1) (g•100 g-1) (g•100 g-1) 

  Low 21 273.306 13.015 16.740 

  Medium 55 353.242   6.423   3.113 

 

Source of Variation SS df MS F P-value F critical 

 Between Groups   660.394   1 660.394 97.175 4.062 x 10-15 3.970 

 Within Groups   502.897 74     6.796    

 Total 1163.291 75         
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Table C.12.  Analysis of variance (ANOVA) of mean water infiltration rates (cm•hr-1) of soil matrix at 
different water pressure head (h) values. 

Groups Count Sum Mean Variance 

    (cm•hr-1) (cm•hr-1) (cm•hr-1) 

h =    ̶ 20 cm 2 77.412 38.706 3.389 

h =    ̶ 13 cm 6 95.494 15.916 255.991 

h =    ̶ 7 cm 6 284.948 47.491 1309.317 

h =    ̶ 3 cm 6 2324.351 387.392 70848.418 

h =    ̶ 1.5 cm 2 1859.680 929.840 64301.623 

h =    ̶ 0.1 cm 2 2289.426 1144.713 83060.362 
 

Source of Variation SS df MS F P-value F critical 

Between Groups 3266630   5 653326 23.084 3.008 x 10-7 2.773 

Within Groups   509434 18   28302    

Total 3776064 23         

 
 

Table C.13.  Analysis of variance (ANOVA) of mean water and ethanol infiltration rates (cm•hr-1) of 
aggregated oil sand material at a pressure head value of – 1.5 cm H2O. 

Groups Count Sum Mean Variance 

    (cm•hr-1) (cm•hr-1) (cm•hr-1) 

Ethanol 4 265.349 66.337 663.547 

Water 4   76.963 19.241 171.595 

 

Source of Variation SS df MS F P-value F critical 

Between Groups 4436.131 1 4436.131 10.624 0.017 5.987 

Within Groups 2505.427 6 417.571    

Total 6941.558 7         
 
 

Table C.14.  Analysis of variance (ANOVA) of mean water and ethanol infiltration rates (cm•hr-1) of 
aggregated oil sand material at a pressure head value of – 0.1 cm H2O. 

Groups Count Sum Mean Variance 

    (cm•hr-1) (cm•hr-1) (cm•hr-1) 

Ethanol 4 754.846 188.711 12735.441 

Water 4 122.577   30.644     304.354 
 

Source of Variation SS df MS F P-value F critical 

Between Groups 49970.473 1 49970.473 7.664 0.032 5.987 

Within Groups 39119.384 6   6519.897    

Total 89089.858 7         
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Table C.15.  Analysis of variance (ANOVA) of mean water infiltration rates (cm•hr-1) of aggregated 
oil sand material at different water pressure head (h) values. 

Groups Count Sum Mean Variance 

    (cm•hr-1) (cm•hr-1) (cm•hr-1) 

h =    ̶ 20 cm 61 1279.394 20.974 164.188 

h =    ̶ 13 cm 61 1215.648 19.929 222.268 

h =    ̶ 7 cm 61 1186.960 19.458 131.362 

h =    ̶ 3 cm 61 1347.886 22.096 268.236 

h =    ̶ 1.5 cm 61 1281.923 21.015 305.225 

h =    ̶ 0.1 cm 60 1524.945 25.416 307.867 
 

Source of Variation SS df MS F P-value F critical 

Between Groups   1377.495     5 275.499 1.182 0.317 2.239 

Within Groups 83640.880 359 232.983    

Total 85018.375 364         

 
 
 
Table C.16.  Analysis of variance (ANOVA) of mean ethanol infiltration rates (cm•hr-1) of aggregated 
oil sand material at different water pressure head (h) values. 

Groups Count Sum Mean Variance 

    (cm•hr-1) (cm•hr-1) (cm•hr-1) 

h =    ̶ 13 cm 4 208.121 52.030 1889.316 

h =    ̶ 7 cm 4 159.662 39.915 325.668 

h =    ̶ 3 cm 4 216.041 54.010 157.316 

h =    ̶ 1.5 cm 4 265.349 66.337 663.547 

h =    ̶ 0.1 cm 4 754.846 188.711 12735.441 

 

Source of Variation SS df MS F P-value F critical 

Between Groups 60276.803  4 15069.201 4.777 0.011 3.056 

Within Groups 47313.864 15   3154.258    

Total 107590.67 19         
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Table C.17.  Analysis of variance (ANOVA) of mean water infiltration rates (cm•hr-1) of aggregated 
oil sand material (AOSM) and surrounding soil matrix at a pressure head value of – 7 cm H2O. 

Groups Count Sum Mean Variance 

    (cm•hr-1) (cm•hr-1) (cm•hr-1) 

  AOSM 61 1186.960 19.458   131.362 

  Soil Matrix   6    284.948  47.491 1309.317 
 

Source of Variation SS df MS F P-value F crit 

Between Groups 4293 1 4292.855 19.339 4.146 x 10-5 3.989 

Within Groups 14428 65 221.974    

Total 18721 66         
 
 
 
Table C.18.  Analysis of variance (ANOVA) of mean water infiltration rates (cm•hr-1) of aggregated 
oil sand material (AOSM) and surrounding soil matrix at a pressure head value of – 3 cm H2O. 

Groups Count Sum Mean Variance 

    (cm•hr-1) (cm•hr-1) (cm•hr-1) 

  AOSM 61 1347.886  22.096     268.236 

  Soil Matrix 6 2324.351 387.392 70848.418 
 

Source of Variation SS df MS F P-value F critical 

Between Groups 728945   1 728945 127.942 5.286 x 10-17 3.989 

Within Groups 370336 65     5697    

Total 1099281 66         
 
 
 
Table C.19.  Analysis of variance (ANOVA) of mean water infiltration rates (cm•hr-1) of aggregated 
oil sand material (AOSM) and surrounding soil matrix at a pressure head value of – 1.5 cm H2O. 

Groups Count Sum Mean Variance 

    (cm•hr-1) (cm•hr-1) (cm•hr-1) 

  AOSM 61 1281.923   21.015     305.225 

  Soil Matrix   2 1859.680 929.840 64301.623 

 

Source of Variation SS df MS F P-value F critical 

Between Groups 1599483   1 1599483 1181 1.259 x 10-41 3.998 

Within Groups 82615 61 1354    

Total 1682099 62         
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Table C.20.  Analysis of variance (ANOVA) of mean water infiltration rates (cm•hr-1) of aggregated 
oil sand material (AOSM) and surrounding soil matrix at a pressure head value of – 0.1 cm H2O. 

Groups Count Sum Mean Variance 

    (cm•hr-1) (cm•hr-1) (cm•hr-1) 

  AOSM 60 1524.945 25.416 307.867 

  Soil Matrix   2 2289.426 1144.713 83060.362 
 

Source of Variation SS df MS F P-value F critical 

Between Groups 2424825  1 2424825 1437 1.273 x 10-43 4.001 

Within Groups 101225 60 1687    

Total 2526050 61         

 




