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ABSTRACT 

 

Oils rich in omega fatty acids (e.g., omega-3, -6, and -9) are both economically and 

nutritionally important to human beings, as they are playing significant roles in the 

prevention of various diseases (e.g., coronary artery disease, hypertension, and diabetes) and 

maintenance of mental health. However, due to their unsaturated nature, susceptibility to 

oxidation, and immiscibility in aqueous products, microencapsulation was introduced to 

entrap the oils to circumvent these challenges. The overall goal of this thesis was to 

encapsulate omega fatty acid-rich oils (e.g., canola, fish, and flaxseed oils) using plant 

protein-based (e.g., pea, soy, lentil, and canola protein isolates) matrices, in order to enhance 

storage stability.  

  In study one, the effect of pH (e.g., 3.0, 5.0, and 7.0) on the physicochemical (e.g., 

surface charge, hydrophobicity, and solubility), interfacial (e.g., interfacial tension and 

rheology), and emulsifying (e.g., droplet size and emulsion stability) properties of pea, soy, 

lentil, and canola protein isolates were determined to select one protein/pH to produce the 

most stable emulsion for encapsulation. Overall, proteins (at pH 7.0) with high surface charge, 

low hydrophobicity and high solubility showed a better ability to lower interfacial tension, 

whereas proteins (at pH 3.0) with high surface charge, hydrophobicity, and better solubility 

can form stronger viscoelastic films at the interface. All proteins could form stable emulsions 

away from their isoelectric point. Therefore, the selection of an effective plant protein 

emulsifier for encapsulation entails finding a balance between the properties needed to 

associate at the oil-water interface with those needed to develop a strong interfacial film. As 

such, lentil protein isolate (LPI) at pH 3.0 was selected as the most promising emulsifier to 

produce a stable emulsion, due to its high surface charge, solubility, and hydrophobicity.  

  In study two, the LPI-based wall materials (e.g., maltodextrin, sodium alginate, and 

lecithin) were used to encapsulate canola oil (as a model oil) using spray drying, in order to 

design a microcapsule formulation, which offered good physical properties (e.g., moisture 

content, water activity, color, wettability, particle size, surface oil, and entrapment efficiency) 



iii 
 

and oxidative stability. Initially, mixtures of LPI (2-8%, w/w in initial emulsions) and 

maltodextrin (9.5-18%, w/w in initial emulsions) were used to entrap canola oil (20-30%, 

w/w in final microcapsules). Emulsion (e.g., emulsion stability, droplet size, viscosity) and 

microcapsule (e.g., surface oil and entrapment efficiency) properties were then characterized 

to determine a better capsule design. The microcapsules prepared with 20% oil, 2% LPI, and 

18% maltodextrin were selected as a baseline to re-design better microcapsules using 

different preparation conditions and wall materials (e.g., sodium alginate and lecithin). 

Overall, the combination of LPI (2%), maltodextrin (17%), and sodium alginate (1%) 

presented the best capsule design to offer the highest entrapment efficiency (~88%) and 

oxidative stability, because of the formation of an electrostatic complex between negatively 

charged sodium alginate and positively charged LPI.  

  In study three, different omega fatty acid rich-oils (e.g., canola, fish, and flaxseed 

oils) were encapsulated by spray drying using the combination of LPI, sodium alginate, and 

maltodextrin. Physical properties, storage stability (e.g., free fatty acid content, peroxide 

value, 2-thiobarbituric acid reactive substances, and oxidative stability index) and in vitro 

release characteristics of encapsulated oils were investigated. Overall, all microcapsules 

displayed similar physical properties (except color). The combination of LPI, sodium alginate, 

and maltodextrin exhibited improved protection to susceptible oils from hydrolysis and 

oxidation in comparison with other microcapsules to entrap omega fatty acid-rich oils, and 

offered great antioxidative capacity, especially on fish oil, but oil-type had a significant effect 

on the rates of hydrolysis and oxidation. Minor amounts of encapsulated oils (~3.2-8.9%) 

were released under simulated gastric fluid, whereas the addition of simulated intestinal fluid 

resulted in significant oil release (~62.6-73.4%).  

  In summary, LPI with good physicochemical and functional properties represented 

as a promising emulsifier to alternate soy and animal-derived proteins and to produce a stable 

oil-in-water emulsion for the development of microcapsules. The combination of LPI, sodium 

alginate, and maltodextrin can be potentially used as a universal platform to encapsulate more 

omega fatty acid-rich oils to fortify omega fatty acids in commercial food and supplements.  
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1. INTRODUCTION 

 

1.1. Overview  

  Research activities surrounding microencapsulation of omega fatty acid-rich oils 

have attracted much attention over the past decade as they provide a number of potential 

advantages to the food industry. Microencapsulation offers protection to sensitive core 

materials, decreases nutrient loss of the encapsulant, and transforms liquid materials into an 

easily handled and dispersed solid powder (Desai and Park, 2005). The process typically 

involves coating individual active particles or droplets within wall materials comprised of 

proteins, polysaccharides and/or lipids to produce capsules in the micron to millimeter size 

range (Tyagi et al., 2011). Among the various microencapsulation techniques (e.g., spray 

drying, freeze drying, coacervation, extrusion, and fluidized-bed coating), spray drying is 

the most commonly applied, due to its low cost and wide availability of equipment (Desai 

and Park, 2005). 

  The selection of wall materials is meaningful for the production of microcapsules, 

because they greatly influence the stability of microcapsules, entrapment efficiency, and the 

degree of protection to the core materials. According to Nesterenko et al. (2013), no single 

wall material is able to provide high entrapment efficiency and effective protection, so, a 

combination of polysaccharides and proteins is most commonly studied to develop 

microcapsules, in which proteins serve as emulsifying and film-forming materials, whereas 

polysaccharides (e.g., maltodextrins, starches, pectin, chitosan, and sodium alginate) are 

applied as matrix forming materials (Young et al., 1993; Gharsallaoui et al., 2010). Proteins 

from animal sources (e.g., whey, gelatin, and casein) have been widely used for 

microencapsulation. However, plant proteins (e.g., soy, pea, and barley proteins) used as 

wall materials in microencapsulation have started to attract more attention and open up new 
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markets that restrict the use of animal proteins for religious, dietary, or ethical preferences 

and to reduce costs (Choi et al., 2010; Li et al., 2012; Nesterenko et al., 2013).   

  It is well known that omega fatty acids (e.g., omega-3, -6, and -9) play an essential 

role in human physiology, including the prevention and treatment of cardiovascular diseases 

and immune response disorders, development of the central nervous systems for infant 

growth, and maintenance of mental health (Shibasaki et al., 1999). However, because of their 

unsaturated nature, omega fatty acid-rich oils are chemically unstable, are susceptible to 

oxidative deterioration and readily produce free radicals, which are deemed to negatively 

affect the shelf-life, sensory properties, and overall acceptability of food products (Velasco et 

al., 2003). Therefore, microencapsulation of omega fatty acids-rich oils is considered as an 

effective way to reduce the susceptibility to environmental factors (e.g., oxygen, light, 

temperature, and moisture), increase shelf-life, mask the unpleasant taste, and supply the oils 

in the powder format in the marketplace (Calvo et al., 2012).   

  The overall goal of this research was to encapsulate omega fatty acids-rich oils (e.g., 

canola oil, fish oil, and flaxseed oil) within plant protein-based wall matrices, in order to 

produce stable microcapsules against oxidative reactions. Can Karaca et al. (2013a) designed 

a lentil protein-based wall material in combination with maltodextrin to entrap flaxseed oil 

that offered enhanced protection against a 25 d oxidative test and controlled release under 

simulated gastrointestinal fluids, but the oil payload (10%) was too low to be commercially 

viable. During the present research: a) different proteins (e.g., canola, soy, lentil and pea 

proteins) were considered through a pre-encapsulation screening process involving their 

effectiveness at stabilizing the oil-in-water interface during emulsion formation; b) the oil 

payload was increased to ≥20%; and c) a stable microencapsulation formulation was 

developed to entrap omega fatty acids-rich oils (e.g., canola, fish, and flaxseed oils).    

 

1.2. Objectives  

  The overarching goal of this research project was to create microcapsules with plant 

proteins (e.g., canola protein isolate, soy protein isolate, lentil protein isolate, or pea protein 

isolate) as the wall materials to encapsulate omega fatty acids-rich oils (e.g., canola, fish, and 

flaxseed oils), in order to enhance storage stability. Specific objectives of this research were: 

a) to determine the effect of pH on the physicochemical, interfacial, and emulsifying 

properties of canola, soy, lentil, and pea protein isolates, in order to select one protein/pH to 

produce a stable emulsion; b) to develop a plant protein-based microcapsule formulation 

which effectively encapsulates an oil (e.g., canola oil), offers good physical properties (e.g., 
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moisture, water activity, color, wettability, and particle size), and provides the protective 

nature against oxidation; and c) to entrap different omega fatty acids-rich oils (e.g., canola, 

fish, and flaxseed oils) using the developed microcapsules, and to assess the stability and in 

vitro release behavior of the encapsulated oils. 

 

1.3. Hypotheses  

  The following hypotheses were tested as part of this research: a) plant proteins away 

from the isoelectric points will have better physicochemical, interfacial, and emulsifying 

properties; b) legume proteins will have better emulsifying properties than oilseed proteins; c) 

emulsion (e.g., droplet size, viscosity, and emulsion stability) and microcapsule (e.g., 

entrapment efficiency and surface oil) properties will be significantly affected by oil and 

protein concentrations; d) the encapsulation process will greatly improve the storage stability 

of oils; and e) the microcapsules will remain intact within simulated gastric fluid, but then 

release the oils in the presence of simulated intestinal fluid.   
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2. LITERATURE REVIEW 

 

2.1. Microencapsulation 

  Microencapsulation has been used in numerous sectors, such as pharmaceuticals, 

biotechnology, agriculture and food to encapsulate essential oils, colorants, flavors, vitamins 

and microorganisms, in order to improve their applicable properties (e.g., shelf-life, handling 

properties and stability) (Ray et al., 2016). Microencapsulation is defined as a technology to 

isolate or embed bioactive particles (e.g., flavors, antioxidants, polyunsaturated oils, 

vitamins, and probiotics) by building a physical barrier or a homogeneous/heterogeneous 

matrix, to produce small capsules with various morphologies and of diameters between 0.2 

and 5,000 µm. The encapsulated substances are known as the core, internal or payload phase, 

whereas the outer protective materials are considered as the wall, external, and coating phase. 

In general, microencapsulation is applied for different purposes: protecting the core material 

from surrounding environmental changes (e.g., pH, temperature, oxygen, light, and 

humidity), controlling the volatility and release properties of the core material, masking the 

unpleasant flavor and taste of the core material, transforming liquid compounds into solids 

for easy handling, and diluting the core material when only very small amounts are required 

(Desai and Park, 2005; Nesterenko et al., 2013; Bakry et al., 2016).   

  Depending on the physicochemical properties of the core materials, the composition 

of the wall materials, and the microencapsulation techniques, different morphologies can be 

obtained. For instance, Figure 2.1 shows: (a) a simple capsule design (where a core is 

surrounded by a single layer of wall material); (b) a multi-core capsule design (where 

multiple cores are dispersed within a continuous wall material matrix); (c) a multi-wall 

design (where a single core is surrounded by several layers of wall material); and (d) an 

assembled capsule design (where several distinct particles that consist of a single wall 

material layer coating a single core are embedded in a continuous matrix of wall material) 

(Raybaudi-Massilia and Mosqueda-Melgar, 2012).  
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Figure 2.1. Different microcapsule model: (a) simple microcapsule, (b) multicore 

microcapsule, (c) multiwall microcapsule, and (d) assembled microcapsule.  
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2.1.1. Core materials  

  The health benefits of omega fatty acids-rich oils (e.g., derived from fish, flaxseed 

and canola) are substantiated through extensive studies that implicate their ability to prevent 

coronary artery disease, hypertension, diabetes, arthritis, inflammatory and autoimmune 

disorders (Connor, 2000; Tur et al., 2012). Many studies also encourage the daily intake of 

omega fatty acids (e.g., omega-3 and omega-6 fatty acids) by pregnant and lactating women 

to support the healthy development of both the retina and brain of the infant (Connor, 2000; 

Koletzko et al., 2011). Omega fatty acids belong to the family of unsaturated fatty acids, 

which have at least one double bond within the carbon chain. They include omega-3 (the first 

double bond placed at the third carbon starting from the methyl end of carbon chain, e.g., 

α-linolenic acid, eicosapentaenoic acid, and docosahaxaneoic acid), omega-6 (the first double 

bond placed at the sixth carbon starting from the methyl end of carbon chain, e.g., linoleic 

acid, arachidonic acid, docosapentaenoic acid), and omega-9 fatty acids (the first double bond 

placed at the ninth carbon starting from the methyl end of carbon chain, e.g., oleic acid). 

Marine oils (e.g., derived from fish and microalgae) and vegetable oils (e.g., derived from 

flaxseed, canola and soybean) represent the most widely available sources of omega fatty 

acids (Bakry et al., 2016). However, due to their unsaturated nature, omega fatty acids-rich 

oils are chemically unstable and susceptible to oxidative deterioration and readily produce 

free radicals and unpleasant tastes, which are deemed to negatively affect the shelf-life, 

sensory properties and overall acceptability of food products (Velasco et al., 2003). 

Therefore, microencapsulation technology is used as a viable method to maintain and 

improve the biological and functional characteristics of the oils, in order to further develop 

healthy food products fortified with omega fatty acids (e.g., bread, milk, and yogurt).    

 

2.1.2. Wall materials  

  The selection of appropriate wall materials is an important aspect to consider in the 

design of microcapsules containing omega fatty acid-rich oils, because wall materials 

influence their stability, entrapment efficiency and the degree of protection. The ideal wall 

material should have the following characteristics: low viscosity under high concentrations; 

good emulsifying properties to stabilize the core materials; non-reactivity with the core 

materials; ability to hold core materials within the capsules; desired controlled release 

characteristics; ability to provide maximum protection to core materials against 

environmental conditions (e.g., oxygen, heat, light, and humidity); excellent solubility (in 

water or ethanol); have a plain taste; and be economically viable (Desai and Park, 2005).   
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  Synthetic polymers (e.g., petroleum-derived polymers) and biopolymers (e.g., 

carbohydrates and proteins) are most commonly used as wall materials for 

microencapsulation, in which petroleum-derived polymers (e.g., polystyrenes, polyamides, 

and polyacrylates) are used in pharmacy and medicine, whereas biopolymers are used in the 

food industry (Dubey et al., 2009; Nesterenko et al., 2013). A number of polysaccharides 

have been studied as wall materials, such as starches, maltodextrin, gum Arabic, pectin, 

chitosan, and sodium alginate (Liu et al., 2010b; Sun-Waterhouse et al., 2011; Nesterenko et 

al., 2013). The major advantage of these polysaccharides is their excellent water solubility. 

However, they tend to have poor emulsifying properties that are important for 

microencapsulation (Nesterenko et al., 2013). Proteins from animal sources [e.g., milk (whey 

and casein) and gelatin] (Devi et al., 2012; Sanguansri et al., 2013; Silva et al., 2016) and 

plant sources (e.g., pulses, oilseeds and cereals) have also been used for oil 

microencapsulation (Wang et al., 2011; Can Karaca et al., 2013a; Tang and Li, 2013), 

because of their excellent emulsifying properties. Plant proteins are emerging in the industry 

as an alternative to animal proteins, due to perceived consumer safety concerns associated 

with the consumption of animal-derived proteins [e.g., bovine spongiform encephalopathy 

(BSE)], lower cost, abundant supply, and dietary preferences stemming from religious or 

moral concerns (Choi et al., 2010; Li et al., 2012; Nesterenko et al., 2013). Also 

maltodextrins are often used as a secondary material or ‘filler’ in the wall material, because 

of their excellent solubility and low viscosity at high concentrations, enabling the total solid 

contents to be raised to improve the drying efficiencies of the final powdered ingredient, 

especially during spray drying (Gharsallaoui et al., 2007). According to Nesterenko et al. 

(2013), no single wall material is able to present all the desired properties, where a 

combination of polysaccharides and proteins is most commonly studied to develop 

microcapsules. Utilization of proteins/polysaccharides mixtures allows the incorporation of 

specific properties of each polymer, to further improve their emulsion stability and produce 

microcapsules with better oxidative stability of the core material (Young et al., 1993; 

Gharsallaoui et al., 2010). 

 

2.2. Protein-stabilized emulsions 

  Emulsion preparation is an important initial step during the microencapsulation of 

oils. During emulsion formation, oil droplets become dispersed through the input of 

mechanical energy (e.g., homogenization) within an aqueous continuous phase containing 

emulsifiers (e.g., protein). The formed oil-in-water emulsion has droplet diameters ranging 
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between 100 nm to 100 µm (McClements, 2005). Emulsions are considered to be 

thermodynamically unfavorable systems, which tend to break down over a period of time by 

a variety of destabilization mechanisms (e.g., gravitational separation, aggregation, and 

coalescence) (McClements, 2005). The role of emulsifiers is to prevent this instability by 

adsorbing to the interface to form a protective barrier around the oil droplets and can provide 

both electrostatic (at pHs away from the protein’s isoelectric point) and steric stabilizing 

forces (McClements, 2005). During emulsion formation, proteins partially unfold to align at 

the oil-water interface and place their hydrophobic and hydrophilic moieties towards the oil 

and aqueous phases, respectively. Afterwards, the proteins at the interface aggregate to form 

a viscoelastic film which then may or may not be crosslinked using a fixative (e.g., 

transglutaminase) depending on the strength of the film (Morris and Gunning, 2008). It is 

recognized that flexible proteins (e.g., casein) that have more disordered structures are the 

most surface active proteins, whereas globular proteins (e.g., β-lactoglobulin or pea legumin) 

are more compact and rigid, and require some levels of unfolding before adsorbing to the 

interface (Dickinson, 1986). Several intrinsic characteristics of the proteins (e.g., flexibility, 

surface hydrophobicity, solubility, surface charge, and molecular size) affect the formation 

and stabilization of emulsions. For example, good solubility in the aqueous phase is a 

prerequisite for the proteins to be used as emulsifiers, because it determines the amount of 

proteins available to migrate to the oil-water interface to stabilize the oil droplets (Sikorski, 

2001). Surface hydrophobicity also plays an important role, because the greater amount of 

hydrophobic patches on proteins allow the greater adsorption and retention at the oil-water 

interface (Sikorski, 2001). Due to non-toxicity, wide availability, and friendly labeling, 

proteins (e.g., caseins, whey proteins, and soy proteins) are widely used to stabilize emulsions 

to further produce microcapsules. Emulsion viscosity is another important parameter to 

control during encapsulation, since it can impact the stability and flow behavior of emulsions 

during the drying process. For instance, high viscosities of the feed emulsion can interfere the 

atomization during spray drying, prolong the drying process, lead to the formation of 

elongated particles, and cause air inclusion in the particles (Rosenberg et al., 1990). 

Moreover, emulsions should be stable over a certain period before drying process, so, smaller 

droplet sizes are necessary to prevent destabilization and air inclusion in the particles 

(Drusch, 2006).   
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2.3. Microencapsulation techniques 

  Omega fatty acids-rich oils have been microencapsulated using different techniques 

(e.g., spray drying, freeze drying, coacervation, extrusion, and fluidized-bed coating) (Table 

2.1), however spray drying and coacervation are the most commonly used techniques in the 

food industry. The selection of a suitable technique depends on the type of core and wall 

materials, the size of final microcapsules, the desired physicochemical properties of 

microcapsules, the release profile, and the production scale and the cost (Bakry et al., 2016). 

Each technique produces microcapsules with specific properties (Table 2.2) (Desai and Park, 

2005; Ray et al., 2016). 

 

2.3.1. Spray drying  

  Due to the low cost, continuous operation and industrial scale, spray drying of 

emulsions containing omega fatty acids-rich oils has been extensively used as a 

microencapsulation and drying technology in the food industry (Bakry et al., 2016). Spray 

drying involves preparation of a stable emulsion prepared with the core materials and 

polymer solutions, pumping the emulsion into a spray dryer, atomization of the emulsion into 

droplets, and dehydration of the atomized droplets to produce microcapsules under extremely 

high inlet temperature (Desai and Park, 2005). Inlet and outlet temperatures should be 

critically controlled during spray drying, because inlet temperature greatly affects the 

efficiency of water evaporation to further determine the quality of microcapsules, whereas 

outlet temperature impacts the denaturation of wall materials of microcapsules (Broadhead et 

al., 1994; Kha et al., 2014). Spray drying offers several advantages: first, spray dryers are 

widely available and production cost is lower than other techniques (e.g., relative to freeze 

drying, the cost of spray drying is 30-50 × lower) (Gharsallaoui et al., 2007); second, spray 

drying is rapid and easily scaled-up (Pu et al., 2011); and third, spray drying is a flexible 

process, so as to offer substantial variation for the encapsulation matrix, while still producing 

dry powders with good quality (Desai and Park, 2005). However, a few limitations of spray 

drying include: a limited number of wall materials available, as they must require good 

solubility in water; and the high temperature during atomization could increase the level of 

lipid oxidation in the final product if proper care is not taken (Bakry et al., 2016). Sanguansri 

and co-workers (2013) demonstrated the use of sodium caseinate in combination with glucose 

and starch as wall materials to encapsulate tuna oil. They found the entrapment efficiency 

was affected by the bioactive mixtures (e.g., tributyrin and resveratrol) presented in the tuna   
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Table 2.1. Overview of microencapsulation of omega fatty acids-rich oils using different techniques. 

Technique Core material Wall materials Entrapment 
efficiency (%) 

References 

Spray drying Tuna oil Sodium caseinate, glucose, and starch 79-92 Sanguansri et al., 2013 

Flaxseed oil Chickpea protein isolate or lentil protein isolate with 
maltodextrin 

84-90 Can Karaca et al., 2013a 

Olive oil Gelatin, sodium caseinate, gum Arabic, lactose, maltodextrin, 
and modified starch 

33-53 Calvo et al., 2010 

     
Freeze drying Fish oil Sodium caseinate and lactose or maltodextrin 29-82 Heinzelmann et al., 2000 

Flaxseed oil Lentil protein isolate and maltodextrin 46-63 Avramenko et al., 2016 

Walnut oil Sodium caseinate, carboxymethylcellulose, lecithin, and 
maltodextrin 

37-69 Calvo et al., 2011 

     
Complex 
coacervation 

Fish oil Gelatin and Acacia gum 17-92 Tamjidi et al., 2013 

Flaxseed oil Gelatin and gum Arabic 84 Liu et al., 2010b 

Olive oil Gelatin and sodium alginate 63-89 Devi et al., 2012 
     

Extrusion Olive oil Sodium alginate 61 Sun-Waterhouse et al., 2011 
     

Fluidized-bed 
coating 

Fish oil Soybean soluble polysaccharide, maltodextrin and octenyl 
succinic anhydride starch 

96-99 Anwar and Kunz, 2011 

  

10 
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Table 2.2. Comparison of various microencapsulation techniques used to encapsulate omega fatty acids-rich oils (Desai and Park, 2005; Ray et 

al., 2016). 

Technique Mechanism Particle size (μm) Oil payload (%) Cost 

Spray drying Dehydration 5-150 5-50 Low 

Freeze drying Sublimation drying - Various High 

Coacervation Electrostatic attraction 1-500 40-90 High 

Extrusion Immobilization by polysaccharide gel 150-2000 10-30 Moderate 

Fluidized-bed coating Coating of the solution 5-5000 5-50 Moderate 

 

  

11 
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oil, which further influenced the amount of released oil (up to 86%) under simulated 

gastrointestinal fluid. Can Karaca et al. (2013a) encapsulated 10 to 20% of flaxseed oil within 

chickpea protein isolate or lentil protein isolate-based matrices, and found that oil 

concentration and protein source significantly impacted physicochemical properties, 

oxidative stability of core material and release characteristics from the microcapsules. Calvo 

and co-workers (2010) investigated the microencapsulation of olive oil using different wall 

materials (e.g., gelatin, sodium caseinate, gum Arabic, maltodextrin, lactose, and modified 

starch), and claimed that the combination of sodium caseinate and lactose produced 

microcapsules with better entrapment efficiency (~53%) and microcapsule yield (~50%) in 

comparison with other wall materials.    

 

2.3.2. Freeze drying  

  Freeze drying is also known as lyophilisation, and is commonly used for the 

dehydration of heat-sensitive materials. For microencapsulation, the oil is homogenized with 

the coating materials to form an emulsion and is then frozen to be freeze dried (Heinzelmann 

et al., 2000). Frozen water is directly sublimated from the solid phase to a gas under a 

vacuum (Oetjen and Haseley, 2004). Because of simple operating procedures and reduced 

temperature, freeze drying is an attractive drying method to be used in microencapsulation. 

However, high energy use, long processing time, high production cost and poorer ability to 

protect encapsulated oils from oxidation (due to porous structure of the microcapsules) are 

major concerns for industrial application (Desobry et al., 1997). Heinzelmann and co-workers 

(2000) prepared a matrix of sodium caseinate with lactose or maltodextrin to encapsulate fish 

oil (26-33%) using different preparation conditions (e.g., homogenization passes and freezing 

rate), and observed that the microcapsules with highest core entrapment efficiency did not 

necessarily translate into better storage stability for the encapsulated oil, since other 

characteristics (e.g., moisture and particle size) were also influential. Avramenko and 

co-workers (2016) designed flaxseed oil (10-30%) microcapsules using native and pre-treated 

(heat and enzymatic hydrolysis) lentil protein isolate in combination with maltodextrin. They 

found it was not necessary to apply a pre-treatment of the lentil protein isolate, since the 

pre-treated lentil protein isolate (~47%) produced microcapsules with decreased entrapment 

efficiency when compared with native lentil protein isolate (~63%). Calvo et al. (2011) found 

that the fatty acid composition in walnut oil was not significantly affected by freeze drying 

and wall materials, in which the combination of lecithin, carboxymethylcellulose, and 

maltodextrin produced walnut oil microcapsules with higher entrapment efficiency (~69%).    
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2.3.3. Complex coacervation  

  Complex coacervation is a microencapsulation technique involving the electrostatic 

attraction between two oppositely charged biopolymers over a narrow pH range to produce a 

stable coacervates, which then separates to form a coacervate-rich and solvent-rich phase 

(Bakry et al., 2016). Coacervation is classified as simple or complex coacervation. In the 

former, one biopolymer comes out of solution to coat an oil droplet after homogenization via 

temperature changes, the addition of a water-miscible nonsolvent (e.g., ethanol) or the action 

of electrolytes (e.g., sodium sulfate) (Martins et al., 2009). However, in the case of complex 

coacervation, the oil is first emulsified in the aqueous solution at a pH where two 

biopolymers carry similar net charges, followed by the separation of the liquid phase during 

the formation of the coacervates as the adjustment of pH induces both biopolymers carry 

opposing net charges to further coat individual oil droplets. Finally, the solidification of wall 

materials is achieved by the addition of cross-linking agents (Piacentini et al., 2013). 

Capsules are then typically dried by spray drying to yield a flowable dried powder. Although 

simple coacervation is more economical than complex coacervation for microencapsulation, 

because of the lower cost to induce the reaction and phase separation, but formed capsules are 

less superior (Sutaphanit and Chitprasert, 2014). Those formed by complex coacervation 

achieve higher oil payloads (up to 99%), and have lower surface oil, better storage stability, 

and better controlled release properties than those formed by simple coacervation (Xiao et al., 

2011). Complex coacervation has been successfully used in the microencapsulation of fish oil 

using gelatin and acacia gum as wall materials, in which the entrapment efficiency was 

significantly affected by the oil concentration and gelatin/acacia gum ratio (Tamjidi et al., 

2013). Liu and co-workers (2010b) optimized the encapsulation of flaxseed oil within a 

gelatin-gum Arabic matrix via complex coacervation, and found that homogenization rate 

(3,000-15,000 rpm) and total biopolymer concentrations (1-2% w/v) had great effects on the 

structure, particle size, and surface oil of microcapsules. Olive oil was encapsulated within a 

gelatin and sodium alginate matrix using complex coacervation at pH 3.5-3.8, in which the 

entrapment efficiency and release characteristics of olive oil from microcapsules were greatly 

dependent on the polymer concentration and oil concentration (Devi et al., 2012).   

 

2.3.4. Extrusion  

  Extrusion is a potential technology to encapsulate omega fatty acids-rich oils, in 

which a single or twin screw extruder is most commonly used to produce high density 

microcapsules with a less porous structure. Generally, the oil is dispersed within a molten 
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carbohydrate matrix (e.g., sucrose, maltodextrin, glucose syrup, and glucose) that stays in the 

glassy state (induced by high pressure, high temperature, and high shear rate), followed by 

extrusion through a series of dies into the dehydrating liquid (e.g., isopropanol and liquid 

nitrogen), which results in the solidification of wall materials to entrap the oil. The granules 

are then separated from the dehydrating liquid, followed by air-drying or vacuum-drying of 

the residual solvent (Saleeb and Arora, 1999; Nickerson et al., 2014). The advantage of 

extrusion is that the oil is completely surrounded by the wall materials to provide better 

oxidative stability and prolonged shelf-life. However, it is a relatively expensive process 

(twice that of spray drying) and produces microcapsules with larger particle sizes (150-2,000 

µm), which limits its industrial applications (Desai and Park, 2005; Bakry et al., 2016). 

Extrusion techniques were previously used to encapsulate olive oil within a sodium alginate 

(with/without caffeic acid) matrix to limit the rate of oxidative degradation of the oil 

(Sun-Waterhouse et al., 2011).   

 

2.3.5. Fluidized-bed coating  

  Fluidized-bed coating was originally used as a pharmaceutical technique, however it 

has recently been applied by the food industry to encapsulate a wide variety of essential oils 

and omega fatty acids-rich oils. In general, the powdered particles with core materials are 

suspended within a fluidized-bed chamber with high velocity air under controlled 

temperature and humidity. The wall materials are atomized within the chamber and gradually 

build outer layers on the surface of suspended particles (Desai and Park, 2005). Therefore, 

the wall materials (e.g., cellulose derivatives, dextrins, and starch derivatives) must have a 

lower viscosity to be atomized and pumped into the chamber and better thermal stability 

(Teunou and Poncelet, 2005). However, fluidized-bed coating has only been used as a 

secondary coating method for the microcapsules, which provides an additional coating on the 

surface of formed microcapsules (Kaushik et al., 2015). So, it is considered as a novel 

technique to produce microcapsules with increased shelf-life, controlled release 

characteristics, and improved aesthetics, taste, and color (Desai and Park, 2005). Recently, 

the fluidized-bed coating was used to encapsulate fish oil within a soybean soluble 

polysaccharide – maltodextrin. The prepared microcapsules had longer shelf-life at room 

temperature relative to capsules produced by freeze drying or spray drying (Anwar and Kunz, 

2011).  
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2.4. Microcapsules properties 

2.4.1. Physical properties  

  The physical properties of microcapsules are important to investigate in terms of 

both core bioavailability and applicability by the food industry. These properties include: 

moisture content, water activity, particle size, wettability, surface oil and entrapment 

efficiency (Kaushik et al., 2015). The moisture content is an important parameter to 

determine the storage stability of the microcapsules, where high moisture tends to lead to 

caking/agglomeration of the dried powder and lipid oxidation to induce off flavors (Lim et 

al., 2012). Moisture levels are controlled by the wall material (which abides water) and the 

drying temperature (e.g., inlet and outlet temperature in spray drying) (Reineccius, 2004a). 

The desired moisture content is 3-4% for shelf stable dried powders in the food industry 

(Klinkersorn et al., 2005). The water activity of the microcapsules can significantly affect 

microbial spoilage and lipid oxidation, which further determines shelf-life of the product 

(Sun-Waterhouse et al., 2013). Oxidative degradation is typically limited when the water 

activity falls between 0.2 and 0.3, because of the restriction of metal transition and 

retardation of hydroperoxide decomposition resulting from the quenching of free radicals and 

singlet oxygen (Velasco et al., 2003).  

  Particle size is an important parameter contributing to the flowability, 

compressibility, bulk density, and oxidative stability of the microcapsules (Koc et al., 2015). 

McNamee and co-workers (1998) reported that particle size of microcapsules is mainly 

dependent on the microencapsulation technique used. Therefore, it is affected by the size of 

nozzle, feeding rate, air pressure, and total solid content, when the microcapsules are 

produced using spray drying. In general, a decrease in surface area of microcapsules would 

delay the oxidation reaction as particle size increases (Desobry et al., 1997). The desirable 

particle size of microcapsules is below 40 µm in the food industry to avoid impacting the 

mouth feel of food products (Koc et al., 2015). The wettability of microcapsules is also 

primarily influenced by particle size and the wall materials, and can have a big impact on the 

dissolution and subsequent release of core materials (Vasisht, 2014). Generally, 

microcapsules with high surface oil and larger particle size are difficult to dissolve in the 

aqueous solution, because of the agglomeration of microcapsules. Moreover, the 

microcapsules produced by some wall materials (e.g., gum acacia) with lower dissolving 

ability in cold water exhibit poor wettability (Reineccius, 2004a).  

  Surface oil is defined as non-encapsulated oil on the surface of the dried particles. 

The measurement of surface oil is important as it can easily react with oxygen to produce 
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off-flavors and result in poor stability for the application. Surface oil can be determined by 

the gentle extraction of oil from microcapsules using an organic solvent (e.g., hexane, 

methanol, and ethyl acetate) (Kaushik et al., 2015). The ideal surface oil for microcapsules 

should be below 2% (w/w) for food industry applications (Nickerson et al., 2014). 

Entrapment efficiency is determined as the percentage of encapsulated oil within the wall 

matrix to the percentage of oil used in the formulation. Therefore, a higher entrapment 

efficiency indicates a lower surface oil on the microcapsules (Kaushik et al., 2015). 

Entrapment efficiency can be improved by increasing the wall materials content in the 

formulation, which is related to the formation of a stronger protective shell around the core 

material (Nesterenko et al., 2013). However, too much wall material can result in an abrupt 

increase in the viscosity of feeding emulsions used for spray drying; as such, drying process 

efficiency is greatly decreased resulting in microcapsules with lower entrapment efficiencies 

(Yu et al., 2007). Moreover, optimization of spray drying conditions (e.g., inlet and outlet 

temperatures) is important to improve the entrapment efficiency of microcapsules. For 

instance, the higher drying temperature promotes the formation of a rigid wall structure, in 

order to limit the migration and release of core materials (Rascon et al., 2010). Food industry 

aims to produce microcapsules with entrapment efficiency higher than 98% (Nickerson et al., 

2014).   

 

2.4.2. Oxidative stability  

  The primary purpose of encapsulating omega fatty acids-rich oils is to protect those 

oils against oxidative degradation by building a barrier around the oil droplets; so, lipid 

oxidation in microcapsules is meaningful to study, because it results in the loss of nutritional 

value and develops the undesirable flavors to further negatively affect their commercial 

application (Velasco et al., 2003). Lipid oxidation includes three steps: initiation, 

propagation, and termination. During initiation, the abstraction of hydrogen from 

polyunsaturated fatty acids (PUFA) produces the alkyl radical, on which the free radical is 

delocalized on the carbon chain, and upon molecular rearrangement, to form conjugated 

double bonds. Subsequently, the alkyl radical reacts with triplet state oxygen to produce a 

peroxyl radical, which has high energy to promote the abstraction of hydrogen from another 

PUFA. Therefore, the addition of hydrogen on the peroxyl radical produces hydroperoxide, 

and this step is known as propagation. In termination, the combination of two radicals (e.g., 

the combination of peroxyl radical and alkoxyl radical, and the combination between alkyl 

radicals) occurs to form non-radical species or the radical reacts with a chain-breaking 



17 
 

antioxidant (e.g., vitamin E) to form a relatively stable radical (McClements and Decker, 

2007). In practice, primary lipid oxidation products (produced by the initiation and 

propagation steps of lipid oxidation, e.g., hydroperoxides, conjugated dienes and trienes) and 

secondary lipid oxidation products (produced by the decomposition of primary lipid 

oxidation products via β-scission reaction, e.g., aldehydes, carbonyls, and ketones) are 

monitored to determine the oxidative reaction (McClements and Decker, 2007) and the 

methods are summarized in Table 2.3. In general, different types of wall materials and 

microencapsulation techniques offer the different protective effects on the core materials, 

based on various ability of wall materials/structure to inhibit the oxygen transfer (Kaushik et 

al., 2015).    

 

2.4.3. Release characteristics  

  According to Gouin (2004), another significant purpose for encapsulation is to 

control the release properties of the omega fatty acids-rich oils at the appropriate time and 

place, in order to improve their effectiveness and reduce the required dose (i.e., targeted 

delivery). Release maybe triggered by chemical, physical or mechanical means (e.g., 

shearing, solubilisation, heating, pH, enzymatic reaction) (Pothakamury and 

Barbosa-Canovas, 1995; Nesterenko et al., 2013). The main factors affecting the release 

characteristics of the core materials are related to interactions between the wall and core 

materials, physical properties of microcapsules (e.g., particle size and wettability), structure 

of microcapsules, viscosity and solubility of the wall materials (da Silva et al., 2014). Zuidam 

and Shimoni (2009) reported the cross-linking reagent used in wall materials provided a more 

gradual release upon the diffusion in water. The morphology of microcapsules also greatly 

affects the release characteristics of core materials. For example, in Figure 2.1, the core 

material is easily and quickly released from the simple microcapsules, followed by the 

multi-core microcapsules, whereas the multiple layers of wall materials in the multi-wall 

microcapsules can prolong the release process, but the core material can be still released 

quickly. However, the complex structure of assembled microcapsules greatly slow down the 

release action, and more serious chemical, physical or mechanical factors need to be involved 

to release the core material (Drusch and Mannino, 2009). Recently, the release of core 

materials has been investigated under various mechanisms, such as degradation, pH, salt, 

temperature, pressure, and simulated digestion (Desai and Park, 2005). For example, the 

degradation release is triggered by the addition of enzymes (e.g., proteases) to degrade the 

wall materials (e.g., proteins) (Hickey et al., 2007). The release of core materials has also  
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Table 2.3. Different methods to determine oxidative stability of encapsulated oils.  
 
Method Oxidation 

products 
Desired  
industry target 

Advantages Disadvantages 

Peroxide value Primary <5 meq/kg Most commonly used Relative insensitive with a detection limit 
of 0.5 meq/kg 

Conjugated 
dienes and trienes 

Primary <2 mmol/kg Simple, fast, and less samples required Limited to samples with certain number of 
double bonds, ineffective in complex foods 

Thiobarbituric 
acid reactive 
substances 
 

Secondary - Simple and inexpensive Non-specificity, not effective at lower 
oxidation level 

Anisidine value Secondary <20 Able to measure non-volatile 
compounds with high molecular weight 

Interference by other compounds having 
absorbance at 350 nm 

Sensory panel Secondary - Highly sensitive Time consuming, expensive, and 
qualitative only 

  

18 
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been studied under different pH and ionic strength conditions of the solvent, because those 

changes result in the alteration of wall material solubility (Can Karaca et al., 2013a). In 

practice, release of core materials from microcapsules can also occur under simulated 

gastrointestinal fluids (using pepsin and pancreatin), which involves degradation, pH, and 

temperature (Can Karaca et al., 2013a). 

 

2.5. Choice of materials 

2.5.1. Wall materials 

Canola protein isolate   

  Canola (Brassicaceae spp.) is primarily grown for its oil content to be used for 

cooking and biodiesel purposes (Wu and Muir, 2008). Once the oil is pressed, the remaining 

meal (high in protein and fiber) is typically sold as low price feed products (Uruakpa and 

Arntfield, 2005). Canola meal is relatively high in protein (up to 50% protein on a dry basis) 

(Uppstrom, 1995), has a well-balanced amino acid profile, and good technologically 

functional properties (Aluko and McIntosh, 2001). Canola proteins are dominated by a 

salt-soluble globulin protein (cruciferin) and a water-soluble albumin protein (napin), 

constituting approximately 60% and 20% of the total protein, respectively (Hoglund et al., 

1992). Cruciferin (12S; S is a Svedberg unit; molecular weight of 300 kDa; pI of 7.25) is a 

hexameric protein comprised of six subunits, each being composed of a heavy α-chain with 

254 to 296 amino acids and a light β-chain with 189 to 191 amino acid residues linked by one 

disulfide bond. In contrast, napin (2S; molecular weight of 12.5-15 kDa; pI of 11) is a much 

small protein comprised of a 4.5 kDa polypeptide linked together with a 10 kDa polypeptide 

by two disulfide bonds (Wanasundara, 2011). It is characterized by strong alkalinity that is 

due to its high level of basic amino acid (e.g., histidine, lysine, and arginine), which leads to 

its very basic pI (Schmidt et al., 2004). Theoretically, cruciferin exhibits lower emulsifying 

ability than napin, because the globular conformation of cruciferin contributes to the low 

surface activity at the oil-water interface. Therefore, due to higher surface activity, napin is 

able to generate a greater initial surface coverage and have more intramolecular short-range 

interactions at the interface (Krause and Schwenke, 2001). Canola proteins have been used in 

many commercial products (e.g., beverages, dressing, baked goods, and protein snack bars) 

(Day, 2013), but very little information is available to use them as wall materials to develop 

microcapsules.  
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Soy protein isolate  

  Soybeans are used as a major source of edible oil, whereas the meal is primarily used 

as an animal feed. Because of the well-balanced amino acid profile, soy protein has been 

extracted from the remaining meal and widely used as nutritional and functional food 

ingredient (Singh et al., 2008). Soy protein provides all 9 essential amino acids (e.g., lysine, 

phenylalanine, tryptophan, valine, threonine, methionine, leucine, isoleucine, and histidine) 

and many techno-functional benefits, such as promoting moisture and flavor retention, 

emulsion stabilization, and enhancing the texture of food products (e.g., peanut butter and 

frozen desserts) (Anderson and Wolf, 1995). Soy protein (pI of 4.8) is dominated by glycinin 

and β-conglycinin proteins, constituting approximately 50 and 40% of the total protein, 

respectively (Koshiyama and Fukushima, 1976; Staswick et al., 1981). Glycinin (7S; 

molecular weight of 320-360 kDa) is comprised of five subunits, each being composed of 

acidic polypeptides (molecular weight of 35-43 kDa; pI of 4.8-5.5) and basic polypeptides 

(molecular weight of 20 kDa; pI of 6.5-8.5) linked by disulfide bonds (Badley et al., 1975; 

Staswick et al., 1981). β-conglycinin (11S; molecular weight of 180 kDa) contains 5% of 

carbohydrates moieties that relates to its immunoreactivity (Amigo-Benavent et al., 2009). It 

is comprised of α´ subunit (molecular weight of 76 kDa, pI of 4.9), α subunit (molecular 

weight of 72 kDa; pI of 5.2), and β subunit (molecular weight of 53 kDa, pI of 5.7-6.0) 

(Koshiyama and Fukushima, 1976). Soy proteins show interesting physicochemical and 

functional properties (e.g., water solubility, water and fat absorption, emulsion stabilization, 

and film forming properties) that attribute to the development of microcapsules (Gu et al., 

2009). They have been studied as wall materials to produce microcapsules using spray drying 

(Augustin et al., 2006; Charve and Reineccius, 2009; Favaro-Trindade et al., 2010) and 

coacervation techniques (Chen and Subirade, 2009; Mendanha et al., 2009; Nori et al., 2010).  

 

Pulse protein isolates 

  Pulse proteins are often eaten as a nutritional replacement for animal proteins, 

especially in countries in which the consumption of animal proteins is limited by 

non-availability or religious habits (Liener, 1962). Recently, it is reported that the 

consumption of pulses have a number of potential health benefits, such as reducing the risk of 

cardiovascular disease, cancer, diabetes, hypertension, and gastrointestinal disorders (Hu, 

2003; Tharanathan and Mahadevamma, 2003). Pulses include peas, chickpeas, beans and 

lentils. Pulse proteins are dominated by salt-soluble globulin proteins (legumin and vicilin) 

and a water-soluble albumin protein (molecular weight of 16-483 kDa), constituting 
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approximately 70% and 10-20% of the total protein, respectively (Papalamprou et al., 2010; 

Roy et al., 2010). The globulin proteins in pulses are comprised of two major proteins: 

legumin (11S) and vicilin (7S). Legumin (pI of 4.8; molecular weight of 300-400 kDa) is a 

hexamer with subunits comprised of both acidic (molecular weight of approximately 40 kDa) 

and basic (molecular weight of approximately 20 kDa) chains linked by disulfide bridges. 

Vicilin (pI of 5.5; molecular weight of 150-180 kDa) is a trimer comprised of subunits with 

molecular weight of 50 kDa (Derbyshire et al., 1976; Sathe et al., 1984; Boye et al., 2010b). 

Generally, the ratios of albumin to globulin and legumin to vicilin are variable based on 

different pulse proteins. For example, the ratio of albumin to globulin is 1:3 for lentil protein; 

and the ratios of legumin to vicilin are 10.5:1 and 1:9 for lentil protein and pea protein, 

respectively (Gupta and Dhillon, 1993). These ratios affect the emulsifying properties of 

proteins. For example, Dagorn-Scaviner et al. (1987) found that purified pea vicilin proteins 

had higher emulsifying activity index (111 m2/g) than purified pea legumin proteins (60 m2/g). 

Pulse proteins have been successfully incorporated into microencapsulation processes as wall 

materials (Nesterenko et al., 2013; Can Karaca et al., 2015). Pulse proteins are often 

associated with polysaccharides to help improve their solubility and emulsifying properties to 

produce more stable emulsions with better droplet size distributions, in order to increase their 

entrapment efficiency during the microencapsulation process (Pereira et al., 2009; 

Gharsallaoui et al., 2010; Liu et al., 2010b).  

 

Maltodextrin  

  Maltodextrins are defined as depolymerized starches [with dextrose equivalent (DE) 

value less than 20] produced by chemically and/or enzymatically hydrolysis of starches (Qi 

and Xu, 1999). Theoretically, the DE value significantly affects the browning tendency, 

oxidative protection property and hygroscopicity. Maltodextrins with high DE values provide 

better oxidation resistance, but they are more sweet and susceptible to browning reaction 

(Wang et al., 2014). Raja and co-workers (1989) found that maltodextrins with DE values 

between 10 to 20 were most suitable to produce microcapsules with higher entrapment 

efficiency using spray drying, whereas the maltodextrins with higher DE values were less 

acceptable for spray drying due to their caramelization characteristics and adhesive properties 

to clog the nozzle of spray dryer (Bayram et al., 2005). Because of their excellent solubility, 

little affinity to hydrophobic materials, and low viscosity at high concentrations, 

maltodextrins are most commonly used as a secondary wall material (also known as a filler) 

to improve the drying properties of microcapsules (Gharsallaoui et al., 2007). Desobry et al. 
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(1999) reported that maltodextrins with low molecular weight (high DE value) can effectively 

reduce the oxygen permeability by building the dense wall matrix to further increase the 

stability of encapsulated oils. However, since they lack of interfacial and emulsifying 

properties that are required for oil retention, they are generally associated with other wall 

materials (e.g., gum Arabic, whey proteins, sodium caseinate, and soy proteins) to provide 

high entrapment efficiency (Gharsallaoui et al., 2007). In the study of Jafari et al. (2007), they 

utilized maltodextrin together with modified starch or whey protein as wall materials to 

encapsulate fish oil, in order to achieve high oil retention and excellent oxidative protection.  

 

Sodium alginate 

  Sodium alginate is an anionic polysaccharide consisting of α-L-guluronic acid and 

β-D-mannuronic acid residues that are linked by 14 linkages, which is derived from brown 

sea algae (Gaserod et al., 1998; Goh et al., 2012). Due to its hygroscopicity and 

innocuousness, sodium alginate is used as a gelling agent, stabilizer, and thickener for a wide 

range of products (e.g., jelly, ice cream, and chocolate milk) (Goh et al., 2012). It has been 

used as an encapsulating agent, because of its wide availability, low cost, and it is both 

tasteless and odorless (Etchepare et al., 2015). In the microencapsulation process, sodium 

alginate is added in the initial emulsions to improve stability by increasing the viscosity of 

the continuous phase, so as to reduce the movement of droplets (McClements, 2005). In most 

cases, positively charged proteins are utilized in combination with negatively charged sodium 

alginate to produce multilayers of polyelectrolytes (Kreft et al., 2007; Xiao et al., 2011). 

According to Zhang et al. (2015a), orange oil was encapsulated using β-lactoglobulin in 

combination with pectin or sodium alginate, in which the sodium alginate produced more 

stable double-layered emulsions with little changes on droplet size and turbidity after 4 weeks 

of storage.  

 

2.5.2. Core materials 

Canola oil 

  Canola oilseed is one of the most important oil source in the world. Canola oil is the 

third largest volume of vegetable oil produced worldwide after palm and soybean oils (Lin et 

al., 2013). In comparison with rapeseed, canola contains significant lower levels of erucic 

acid (< 2% compared to 54% in rapeseed) and glucosinolates (< 30 μmol/g compared to 

55-115 μmol/g in rapeseed) which are beneficial for human and animal consumption (Mag, 

1983; Velasco et al., 2008). Canola oil is characterized by its low level of saturated fatty acids 
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(7%) and larger amounts of unsaturated fatty acids [including oleic (61%), linoleic (21%), 

and α-linolenic acids (ALA, 11%)] (Dupont et al., 1989; Johnson et al., 2007). Therefore, 

canola oil is considered as a cardio-protective substance (Lin et al., 2013). Lin and 

co-workers (2013) stated that in comparison with other dietary fat sources, consumption of 

canola oil is beneficial to reduce total cholesterol and low-density lipoprotein cholesterol, in 

order to further decrease the risk of coronary heart disease and improve insulin sensitivity.  

 

Fish oil 

  Fish oils are generally extracted from fresh oily fish or livers of lean fish, and 

contain polyunsaturated fatty acids [e.g., eicosapentaenoic acid (EPA) and docosahexaenoic 

acid (DHA)] (Calder, 2013). The amount of EPA and DHA are varying among fish, but most 

standard fish oils are comprised of 30% EPA and DHA in total at 1.5:1 ratio (Calder, 2013). 

Those long-chain polyunsaturated fatty acids provide a range of health benefits: 1) improving 

brain and cognition development at early childhood (Bakry et al., 2016); 2) providing 

anti-inflammatory effects to prevent cancer in human cell lines (Wendel and Heller, 2009); 3) 

maintaining cardiovascular and mental health (Ruxton et al., 2007); and 4) preventing several 

diseases (e.g., immune response disorders, ulcerative colitis, and Crohn’s disease) (Eckert et 

al., 2010; Jordan, 2010). Specially, DHA presents as an essential structural lipid in sensory 

and vascular retina tissue (Lauterbach and Pawlik, 2014). However, due to insolubility in 

water, susceptibility to oxidative deterioration, and undesirable flavor, the incorporation of 

fish oil in food products is limited (Augustin et al., 2006). Therefore, encapsulation 

technology is investigated to utilize these high value oils in aqueous food systems (Patrick et 

al., 2013). For example, barley proteins-based microcapsules provided great protection on the 

fish oil to against oxidative reaction during accelerated storage test (at 40 °C) for 8 weeks 

(Wang et al., 2011).  

 

Flaxseed oil 

  Flaxseed oil is known as a good source of ALA (45%-55%), oleic acid (21%), and 

linoleic acid (14%) (Rubilar et al., 2012; Calder, 2013). ALA is an essential fatty acid for 

human health, not only because it provides a number of health benefits (e.g., prevent 

cardiovascular diseases and immune response disorders), but it also acts as a precursor for the 

synthesis of long-chain polyunsaturated fatty acids (Calder, 2013). A number of studies 

demonstrated the conversion of ALA to EPA and DPA in plasma lipids, platelets, leukocytes 

and erythrocytes, but the conversion to DHA is limited (Arterburn et al., 2006; Burdge and 
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Calder, 2006). Flaxseed oil also contains vitamin E (tocopherols, 79 mg/100 g), which is 

dominated by γ-tocopherol. Therefore, due to the antioxidant functions of tocopherols, 

flaxseed oil also contributes to an essential nutrient to protect cell membranes against 

oxidative damage (Bozan and Temelli, 2008). Encapsulation of flaxseed oil has been studied 

using a range of wall materials (e.g., maltodextrin, whey protein concentration, modified 

starch, gum Arabic, and pulse proteins) by different techniques (e.g., spray drying and 

complex coacervation) to improve the oxidative stability, handling properties, and 

acceptability to consumers (Rubilar et al., 2012; Can Karaca et al., 2013a; Carneiro et al., 

2013).  
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3. EFFECT OF PH ON THE INTER-RELATIONSHIPS BETWEEN THE 

PHYSICOCHEMICAL, INTERFACIAL AND EMULSIFYING PROPERTIES OF 

PEA, SOY, LENTIL AND CANOLA PROTEIN ISOLATES1 

 

3.1. Abstract 

  The inter-relationships between the physicochemical, interfacial and emulsifying 

properties for pea, soy, lentil and canola protein isolates as a function of pHs (3.0, 5.0, and 

7.0) were investigated. Surface charge, hydrophobicity, solubility, interfacial tension, 

rheology, droplet size and emulsion stability were all studied. Conditions that favored the 

protein to have a high charge, low hydrophobicity and high solubility (pH 7.0) were better 

able to associate with the oil–water interface to lower interfacial tension. However, 

conditions that fostered the protein to have a high charge, high hydrophobicity and high 

solubility (pH 3.0) led to stronger interfacial viscoelastic films. Findings suggest that a 

balance of the surface active properties is most ideal for using plant protein emulsifiers in a 

food application. Overall, findings from this study indicated that all proteins could form 

stable emulsions away from its isoelectric point (pH 3.0 or pH 7.0), although the ones formed 

at pH 3.0 displayed much better interfacial rheology. Of the protein-types studied, the most 

promising alternative to soy protein isolate as an emulsifier was lentil protein isolate because 

it had high charge, solubility and hydrophobicity at pH 3.0. The low solubility of pea protein 

at acidic pH could cause sedimentation issues in products, whereas allergen concerns are still 

associated with the napin protein from canola. 

 

3.2. Introduction 

  Food emulsions are mixtures of two (or more) immiscible liquids (e.g., oil and 

water), where one liquid is dispersed as droplets within a continuous phase of the other, 

formed in the presence of emulsifiers (e.g., proteins) under mechanical shear (McClements, 

2005). Although the emulsifying properties of plant proteins have been previously studied 

                                                                             
1. Chang, C., Tu, S., Ghosh, S., & Nickerson, M. T. (2015). Effect of pH on the 
inter-relationships between the physicochemical, interfacial, and emulsifying properties of 
pea, soy, lentil and canola protein isolates. Food Research International, 77, 360-367.
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(Adebiyi and Aluko, 2011; Avramenko et al., 2013; Barac et al., 2010; Can Karaca et al., 

2011a; Cheung et al., 2014; Liang and Tang, 2013), little information is available relating to 

how the surface properties of a protein, their interfacial characteristics (e.g., interfacial 

tension and interfacial rheology), and their ability to stabilize an emulsion interrelate. 

Knowledge of these inter-relationships involving plant proteins may be useful in emulsion 

preparation, prediction of long-term stability, and quality control in food products. 

  Plant protein-based emulsifiers typically involve the use of soy protein products 

(e.g., concentrates or isolates), however because of allergen concerns industry is searching for 

other alternatives. Some emerging protein ingredients include those derived from pea, lentil 

and canola. Soy, pea and lentil proteins are all dominated by 11S (S denotes a Svedberg unit; 

molecular mass ~350 kDa) and 7S (molecular mass ~150-180 kDa) globulin-type storage 

proteins (Boye et al., 2010a). In soy, these are known as glycinin and β-conglycinin, 

respectively, whereas in pea and lentil these are referred to as legumin and vicilin, 

respectively. In contrast, canola proteins are dominated by a 12S globulin protein (known as 

cruciferin, molecular mass ~300 kDa) and a 2S albumin protein (known as napin, molecular 

mass ~14-16 kDa) (Wanasundara, 2011). Similar to other protein based emulsifiers, all of 

these proteins act by diffusing to the interface, re-orienting to become better integrated with 

the interface and then form a viscoelastic film to stabilize the oil droplets by either charge 

repulsion at pHs away from the protein's isoelectric point (pI) or through steric stabilization 

(Tcholakova et al., 2006; Morris and Gunning, 2008). 

  The overall goal of this study was to investigate the effect of pH on the 

physicochemical, interfacial, and emulsifying properties of pea, soy, lentil and canola protein 

isolates separately, in order to elucidate potential inter-relationships that exist to better tailor 

their use in the future. 

 

3.3. Materials and methods 

3.3.1. Materials 

  Pea (Propulse™) (PPI), lentil (LPI) and soy (PRO-FAM 974) (SPI) protein isolates 

were kindly donated by Nutri-Pea Limited (Portage la Prairie, MB, Canada), POS 

Bio-Sciences (Saskatoon, SK, Canada) and Archer Daniels Midland Company (Decatur, IL,  

USA), respectively. Canola seeds (Brassica napus/variety VI-500) were kindly donated by 

Viterra (Saskatoon, SK, Canada) for use in preparation of the canola protein isolate (CPI). 

According to the Association of Official Analytical Chemists Method 920.87 (AOAC, 2003), 

the crude protein contents of PPI, SPI and LPI were determined to be 78.30% (wet basis, 
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w.b.), 94.87% w.b., and 79.36% w.b. (%N × 6.25), respectively. Concentrations used in this 

study reflect the protein contents rather than powder weight. Canola oil used in this study was 

purchased from a local supermarket. Milli-Q water was obtained from a Millipore Milli-Q™ 

water purification system (Millipore Corporation, Milford, MA, USA). 

 

3.3.2. Preparation of a canola protein isolate 

  Prior to use, canola seeds (stored at 4 °C in a sealed container) were initially 

screened using a #8 (2.63 mm) followed by a #12 (1.70 mm) Tyler mesh filters (Tyler, 

Mentor, OH, USA) to remove smaller seeds. The screened seed was then frozen at -40 °C for 

overnight before the cracking by using a stone mill (Morehouse-Cowles stone mill, Chino, 

CA, USA). The cotyledons were separated from the seed coat using an air classifier 

(Agriculex Inc., Guelph, ON, Canada). The cotyledons oil (~13%) was extracted using a 

continuous screw expeller (Komet, Type CA59 C; IBG Monforts Oekotec GmbH & Co., 

Mönchengladbach, Germany) at 59 rpm with a 3.50 mm choke. The hexane extraction (× 3) 

at 1:3 meal to hexane ratio for 8 h was used to remove the residual oil from canola meal, and 

the meal was then air-dried for another 8 h to evaporate the residual hexane to prepare 

defatted canola meal. 

  CPI was extracted from the defatted canola meal according to Klassen et al. (2011). 

In brief, defatted canola meal and 0.05 M Tris-HCl buffer (pH = 7.0) containing 0.1 M NaCl 

were mixed at 1:10 ratio and mechanically stirred at 500 rpm (IKAMAG RET-G, Janke & 

Kunkel GmbH & Co. KG, IKA-Labortechnik, Germany) for 2 h under room temperature 

(21-23 °C). The supernatant was then separated from the mixture using a centrifuge (Sorvall 

RC Plus Superspeed Centrifuge, Thermo Fisher Scientific, Asheville NC, USA) at 3000 × g 

for 1 h, followed by the filtration using #1 Whatman filter paper (Whatman International Ltd., 

Maidstone, England), and dialysis with Spectra/Por molecular porous membrane tubing (6-8 

kDa cut off, Spectrum Medical Industries, Inc., USA) at 4 °C for 72 h in a fresh Milli-Q 

water (Millipore Corporation, MA, USA) environment to remove the salt. The dialyzed 

solution was then centrifuged (× 2) at 3000 × g for 1 h to collect the sediments. Finally, the 

sediments were freeze-dried (Labconco Corporation, Kansas City, Missouri 64132) for 24 h 

under a temperature difference of 35 °C to produce the CPI for the later experiments. The 

crude protein content of CPI was measured to be 99.11% w.b. (%N × 6.25). 

 

 

 



28 
 

3.3.3. Sample preparation 

  Protein solutions (0.05%, 0.01%, and 2.0%, w/w) were prepared by dissolving 

protein powders (PPI, SPI, LPI, and CPI) into Milli-Q water. The solution pH was adjusted to 

pH 3.0, pH 5.0, and pH 7.0 using either 1.0 M HCl or 1.0 M NaOH. The protein solutions 

were then mechanically stirred at 500 rpm for 2 h at room temperature (21-23 °C). 

 

3.3.4. Zeta potential 

  A Zetasizer Nano-ZS90 (Malvern Instruments, Westborough, MA, USA) was used 

to measure the electrophoretic mobility (UE) of the protein isolate solutions (0.05%, w/w), 

and the zeta potential (ζ, mV) was determined as a function of pH and protein type through 

Henry's equation (3.1): 

 

UE =  2𝜀𝜀∙𝜁𝜁∙𝑓𝑓(𝜅𝜅𝜅𝜅)
3𝜂𝜂

                           [3.1.] 

 

where, ε (Farad/m) is the permittivity, f(κα) is a function related to the ratio of particle radius 

(α, nm) and the Debye length (κ, nm-1), and η (mPa·s) is the dispersion viscosity (constant at 

1.002 mPa·s). For this study, the Smoluchowski approximation f(κα) equaled to 1.5 as is 

typically done when using folded capillary cells with point scatters larger than 200 nm in a 

dispersant with electrolyte concentrations of > 1 mmol/L. This approximation assumes that 

the point scatters (i.e., the protein) is at high enough levels so that the Debye length (or 

thickness of the electric double layer) is small relative to the particle size (κα ≫ 1). The 

approximation also assumes that the zeta potential is linearly related to the electrophoretic 

mobility. Measurements were made in triplicate, and reported as the mean ± one standard 

deviation (n = 3). 

 

3.3.5. Solubility 

  Solubility was investigated as a function of pH for all isolates using the modified 

technique of Morr et al. (1985). In brief, a 2.0% (w/w) protein solution was transferred to a 

15 mL centrifuge tube and centrifuged (Clinical 200, VWR International, Germany) at 9100 

× g for 10 min at room temperature (21-23 °C) to remove insoluble residues. Protein 

solubility was calculated based on the protein content in the supernatant divided by the 

protein content in the original protein sample. All measurements are reported as the mean ± 

one standard deviation (n = 3). 
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3.3.6. Surface hydrophobicity 

  Surface hydrophobicity for all protein isolates was measured as a function of pH 

using  the modified method described by Kato and Nakai (1980), based on the interaction 

between 8-anilino-1-naphthalenesulfonate (ANS) probe and hydrophobic moieties on the 

protein's surface to give a fluorescent signal. In brief, the stock protein solution (0.01%, w/w) 

was diluted to 0.002% (w/w), 0.004% (w/w), 0.006% (w/w), and 0.008% (w/w) with Milli-Q 

water. 20 μL of 8 mM ANS solution was mixed with 4 mL of protein solutions by vortexing 

(S/P Vortex Mixer, Baxter Diagnostics Inc., USA) for 10 s, and kept in the dark for 15 min. 4 

mL of protein solutions with 20 μL of Milli-Q water mixture were used as controls, and 4 mL 

of Milli-Q water with 20 μL of 8 mM ANS mixture was used as a blank and kept in the dark 

for 15 min before the test. Fluorescence intensity (FI) of samples was measured using a 

FluoroMax-4 spectrofluorometer (Horiba Jobin Yvon Inc., Edison, NJ, USA) with the 

excitation wavelength at 390 nm and the emission wavelength at 470 nm at a slit width of 1 

nm. Net FI was calculated by subtracting FI values for the control and blank samples from 

the FI value for the mixture of protein solutions with ANS. An index of relative surface 

hydrophobicity for the protein isolate was presented as the initial slope of the net FI versus 

protein concentration of the protein solutions. All measurements were reported as the mean ± 

one standard deviation (n = 3). 

 

3.3.7. Interfacial tension 

  Interfacial tension between protein solutions (2.0%, w/w) and canola oil was 

determined as a function of pH using a semi-automatic tensiometer (Lauda TD2, GmbH & 

Co., Lauda-Königshofen, Germany) with a Du Noüy ring (20 mm diameter). In brief, a 20 

mL protein solution was added into the glass sample cup (57 mm diameter), and then the Du 

Noüy ring was lowered into the protein solution, followed by the addition of canola oil (20 

mL). The maximum force measured while the ring was pulling upwards to stretch the oil–

protein interface without breaking the interface was recorded. Three consecutive maximum 

force readings were made on each time of interface stretching at 3 min intervals, and the 

measurement was stopped until the standard deviation lower than 0.10 mN/m. The interfacial 

tension was then calculated from the maximum force (Fmax) using the following formula: 
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γ =  𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚
4𝜋𝜋𝜋𝜋𝜋𝜋

                              [3.2.] 

 

where γ is the interfacial tension (mN/m); R is the radius of the ring (10 mm); β is a 

correction factor that depends on the dimensions of the ring and the density of the liquid 

involved. All measurements were reported as the mean ± one standard deviation (n = 3). 

 

3.3.8. Interfacial rheology 

  Oscillatory interfacial dilatational rheological properties of all isolates as a function 

of pH were evaluated using a rheometer (AR-G2 Rheometer, TA Instruments Ltd., New 

Castle, DE, USA). The interface between a protein solution (2.0%, w/w) and canola oil was 

subjected to be an infinitesimal sinusoidal compression and expansion surface area, and the 

rheological behavior of the interface was characterized by measuring the interfacial storage 

modulus [Gi′ (Pa)] and the loss modulus [Gi″ (Pa)] through time and frequency sweep tests. 

The overall response of the sample against the interfacial deformation was expressed as 

complex modulus (Gi*) that was calculated by the following formula: 

 

Gi* = √(Gi´)2 + (Gi´´)2                        [3.3.] 

 

  A bicone geometry (diameter = 68 mm, angle = 10°) and a polytetrafluoroethylene 

(PTFE) cup (inner diameter = 80 mm, depth = 45 mm) were used for the experiment. The 

protein solution was poured into the PTFE cup at the height of 19,500 μm, followed by 

immersing the bicone geometry into the solution without touching the bottom. Then, the 

similar amount of canola oil was added to cover the exposed protein solution surface. The 

interface location was determined by the dramatic normal force drop while the geometry 

moving upwards to 15,000 μm relative to the original position. Time sweep test was carried 

out with the controlled strain (0.1%) and frequency (0.1 rad/s) at room temperature (21-23 

°C) for 30 min to determine the formation of viscoelastic film at interface in 30 min. This was 

then followed immediately by a frequency sweep test over a frequency range (0.1-10 rad/s) 

with controlled strain (0.1%) at room temperature (21-23 °C) on the same sample to measure 

the strength of the viscoelastic film at interface. 
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3.3.9. Emulsion preparation 

  Oil-in-water emulsions were prepared by homogenizing 2.0% (w/w) protein 

solutions with canola oil. In brief, 9 g of 2.0% (w/w) protein solutions and 1 g of canola oil 

were homogenized using an Omni Macro Homogenizer (Omni International Inc., Marietta, 

GA, USA.) equipped with a 20 mm saw tooth at speed 4 (~7200 rpm) for 5 min to prepare 

10.0% (w/w) oil-in-water emulsions in a 50 mL plastic centrifuge tube. 

 

3.3.10. Droplet size distribution 

  Droplet size distribution of freshly prepared emulsions was determined using a 

Mastersizer 2000 laser light scattering instrument (Malvern Instruments Ltd., Worcestershire, 

UK) with a Hydro 2000S sample handling unit as described by Can Karaca et al. (2011a,b). 

The droplet size distribution was measured immediately after the emulsion samples were 

prepared. Distilled water was used as the dispersant in the sample handling unit, and the 

obscuration was brought up to ~14% by sample addition. The relative refractive index of 

emulsion, which is the ratio of the refractive index of canola oil (1.470) to the refractive 

index of the dispersant (1.330) was 1.105. The droplet size was reported as surface-average 

diameter (d3,2) that is expressed as: 

 

d3,2 = ∑ 𝑛𝑛𝑖𝑖∙𝑑𝑑𝑖𝑖
3

𝑖𝑖=1
∑ 𝑛𝑛𝑖𝑖∙𝑑𝑑𝑖𝑖

2
𝑖𝑖=1

                            [3.4.] 

 

where ni is the number of droplets of diameter (di) (McClements, 2005). 

 

3.3.11. Emulsion stability 

  Emulsion stability (ES) was determined according to Liu et al. (2010a) with minor 

modifications. In brief, homogenized samples (10 mL) were immediately filled into a 10 mL 

sealed graduated glass cylinders (inner diameter = 10.5 mm, height = 160 mm), and then 

stored for 24 h at room temperature. During storage, the emulsions separated into a cream 

upper layer and a serum bottom layer which included protein sediments. Emulsion stability 

was measured as ES (%) and expressed as: 
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ES (%) = HS / HE ×100                       [3.5.] 

where HS is the height of the serum layer, and HE is the height of the emulsion, as measured 

using a digital micrometer (Model 62379-531, Control Company, USA) having a precision of 

0.01 mm. Figure 3.1 gives an image of a CPI stabilized emulsion at pH 3.0 immediately after 

homogenization (A) and after 24 h storage (B). Figure 3.1 (C) shows an image of a 

destabilized CPI emulsion found to occur at pH 7.0 (see Results and discussion section). 

 

3.3.12. Statistics 

  All experiments were performed in triplicate and reported as the mean ± one 

standard deviation. A two-way analysis of variance (ANOVA) was used to measure statistical 

differences in physicochemical properties, interfacial properties, droplet size distribution, and 

emulsion stability as a function of pHs (3.0, 5.0, and 7.0) and protein types (PPI, SPI, LPI, 

and CPI). A simple Pearson correlation was calculated to describe the relationship between 

different properties [i.e., solubility, charge (absolute value), hydrophobicity, interfacial 

tension, interfacial complex modulus, droplet size and emulsion stability] of all protein 

isolates as a function of pH. All statistics were analyzed using Systat 10.0 software (Systat 

Software, Inc., Chicago, IL). 
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Figure 3.1.  An image of a freshly prepared oil-in-water emulsion stabilized with a canola 

protein isolate (A – regardless of the pH), and that after a 24 h storage period 

for an emulsion prepared at pH 3.0 (B) and pH 7.0 (C).  
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3.4. Results and discussion 

3.4.1. Physicochemical properties 

  Physicochemical properties, such as charge, hydrophobicity and solubility are 

important factors contributing to the diffusion and association of the plant proteins to an oil–

water interface. Protein charge, hydrophobicity and solubility for all protein isolates (e.g., 

PPI, SPI, LPI, and CPI) were measured as a function of pH [Figure 3.2 (A-C)]. An analysis of 

variance indicated that all physicochemical properties were affected by pH and protein-type, 

along with their interaction (p < 0.001). A Pearson correlation found that solubility was 

strongly associated with charge (r = 0.711; p < 0.001) indicating that more highly charged 

proteins were more soluble. 

  At pH 3.0, all isolates had similar net positive charges (~ +32.5 mV) [Figure 3.2 

(A)]. Hydrophobicity at this pH was the highest relative to other pHs for all isolates, with LPI 

showing the greatest hydrophobicity followed by SPI, CPI and then PPI [Figure 3.2 (B)]. It is 

presumed that the dissociation of protein subunits at pH 3.0 might contribute to the higher 

hydrophobicity relative to the other pHs. Differences in hydrophobicity among the proteins 

studied are hypothesized to reflect inherent differences in protein composition (e.g., 

percentage of 11S vs 7S proteins, or ratio of globulin and albumin proteins). For instance, 

globulin proteins tend to be more hydrophobic than albumins (Papalamprou et al., 2009), and 

11S proteins are more hydrophobic than 7S proteins (Liang and Tang, 2013). In the case of 

solubility, all isolates were found to be the highest and similar in magnitude at pH 3.0 and pH 

7.0, with the exception of CPI at the latter pH [Figure 3.2 (C)]. At pH 3.0, CPI showed the 

highest protein solubility, followed by SPI, LPI, and PPI [Figure 3.2 (C)]. 

  At pH 5.0, there were almost no net charges (~ ±5 mV) for PPI, SPI, and LPI 

indicating that proteins were near the pI values. In contrast, at pH 5.0 CPI carried a net charge 

of ~ +18.0 mV [Figure 3.2 (A)]. Net neutrality for CPI occurred near pH 6.2 [Figure 3.2 (A)]. 

Hydrophobicity was also found to be reduced at pH 5.0 relative to pH 3.0, and followed a 

similar trend in terms of protein-type at pH 3.0 [Figure 3.2 (B)]. Due to the reduced surface 

charge, protein–protein interactions dominated leading a reduction in surface hydrophobicity 

(i.e., hydrophobic moieties on the surface of smaller individual proteins become buried again 

as larger aggregates) and a minimal solubility of ~4% for SPI, LPI and PPI at pH 5.0. In the 

case of CPI, solubility remained near ~37% since it was still away from its pI value of 6.2. 

  At pH 7.0, all isolates carried a net negative charge which differed depending on the 

protein-type. SPI was found to display the greatest charge, followed by LPI, PPI and CPI 

[Figure 3.2 (A)]. With the exception of CPI, all other proteins were away from their pI value.  
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Figure 3.2.  Zeta potential (mV) (A), surface hydrophobicity (arbitrary units, a.u.) (B), and 

solubility (%) (C) for protein solutions as a function of pH and protein-type. 

Data present the mean ± one standard deviation (n = 3). Abbreviations include: 

pea protein isolate (PPI), soy protein isolate (SPI), lentil protein isolate (LPI) 

and canola protein isolate (CPI).  
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Overall, hydrophobicity was found to be the lowest at pH 7.0 for all isolates relative to the 

other pHs, with the exception of CPI which was slightly higher than at pH 5.0. At pH 7.0, all 

isolates were of similar magnitude (± 2 arbitrary units) [Figure 3.2 (B)]. Hydrophobicity 

values may have been lowered at pH 7.0, because both the isolates and ANS probes carried a 

net negative charge. The net electrostatic repulsive forces in the solution may disrupt the 

interaction between aromatic moieties on protein isolates with the ANS probe to give poorer 

estimates of the true value (Alizadeh-Pasdar and Li-Chen, 2000). Solubility at pH 7.0 was 

similar to that of pH 3.0 for all isolates with the exception of CPI which was at its lowest 

(~23%) [Figure 3.2 (C)]. Although not measured, it is presumed that solubility would be 

minimal for CPI at pH 6.2, which corresponds to where its surface charge was neutral. 

  Overall, solubility is dependent upon the balance between protein–protein and 

protein–solvent interactions. A Pearson correlation found that solubility was strongly 

associated with charge (r = 0.711; p < 0.001) indicating that more highly charged proteins 

(whether negative or positive) were more soluble, and that hydrophobicity was not strongly 

linked to solubility (r = 0.320; p > 0.05), although hydrophobic interactions are expected to 

play an important role in stabilizing protein–protein aggregates as they form under more 

neutral conditions. 

 

3.4.2. Interfacial properties 

  During emulsion formation, proteins migrate and accumulate at the oil–water 

interface to lower the interfacial tension (Damodaran, 1996). Changes to the interfacial 

tension as a function of pH for all isolates is given in Figure 3.3. An analysis of variance 

indicated that both pH (p < 0.001) and protein-type (p < 0.001), along with their interaction 

(p < 0.05) were significant. Overall, the addition of isolates into the aqueous phase at all pHs 

was found to lower the interfacial tension from ~ 22.5 mN/m (control, no proteins) to 8-16 

mN/m. The ability for all proteins to lower the interfacial tension was similar at pH 3.0 and 

pH 5.0 regardless of their differences in physicochemical properties, however they 

significantly improved at pH 7.0 (Figure 3.3). Furthermore at each pH, PPI was the most 

effective at reducing interfacial tension, followed by LPI and SPI which were similar, and 

then by CPI which was the least effective (Figure 3.3). In the present study, interfacial 

tension was negatively correlated with surface charge (r = -0.372; p < 0.05) and positively 

correlated with surface hydrophobicity (r = 0.494; p < 0.01). This suggests that the 

effectiveness of the protein to reduce the interfacial tension (i.e., lower values) is better when  
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Figure 3.3.  Interfacial tension (mN/m) for protein solutions as a function of pH and 

protein-type at a canola oil-water interface. Data represent the mean ± one 

standard deviation (n = 3). Abbreviations include: pea protein isolate (PPI), 

soy protein isolate (SPI), lentil protein isolate (LPI) and canola protein isolate 

(CPI).  
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the protein carries a higher charge and reduced hydrophobicity. However, it's important to 

note that reduced hydrophobicity does not mean any surface activity. No correlation was seen 

between solubility and interfacial tension (r = 0.260; p > 0.05) was found. It is hypothesized 

that interfacial tension is more related to an optimum balance between charge and 

hydrophobicity on the protein. 

  At pH 3.0, proteins have both high charge and hydrophobicity, and therefore were 

only moderately able to reduce interfacial tension driven most likely by the charge on the 

proteins. In contrast, at pH 5.0 charges were reduced to neutrality for the legume proteins 

(SPI, PPI and LPI) and to low levels for CPI, whereas hydrophobicity was also reduced to 

more moderate levels. In this case, interfacial tension was able to be reduced moderately 

driven most likely by the lower hydrophobicity on the proteins. At pH 7.0, proteins were 

more effective at reducing interfacial tension, since hydrophobicity was generally lower and 

charge was again high. In all cases, interfacial tension was lowered by both soluble and 

insoluble protein dispersed in the aqueous medium, in which the ratio of soluble-to-insoluble 

proteins would be pH dependent. For instance, at pH 5.0 the legume proteins were not very 

soluble [Figure 3.2 (C)], however they were still effective at reducing interfacial tension by 

the small amount of soluble protein and the insoluble protein that did not sediment yet in the 

time frame of the experiment. Lam and Nickerson (2014) also reported the interfacial tension 

of β-lactoglobulin at pH 3.0 (~17.8 mN/m) to be similar at pH 5.0 (~18.6 mN/m), even 

though they had large differences on the physicochemical properties. 

  Interfacial rheology is an important physical parameter related with the long-term 

stability of emulsions stabilized by proteins (Bos and Van Vliet, 2001). The dynamic 

interfacial storage modulus (Gi′) and loss modulus (Gi″) of interfacial layers of SPI with time 

and frequency sweep as a function of pH are presented in Figure 3.4. All other proteins (PPI, 

LPI, and CPI) followed a similar trend except for differences in magnitude (not shown). For 

time sweep data, Gi′ and Gi″ showed a slight upward and downward trend, respectively over 

time, suggesting that SPI at pH 3.0 and pH 5.0 [Figure 3.4 (A and C)] reached the interface 

relatively quickly, and formed a viscoelastic film as evidenced by Gi′ > Gi″. At the interface, 

it is presumed that protein–protein interactions and the rearrangement of the protein's tertiary 

structure lead to the formation of an intermolecular network to keep Gi′ and Gi″ at the 

equilibrium state (Ruiz-Henestrosa et al., 2008). However, for SPI at pH 7.0, Gi′ < Gi″ 

indicated that no protein network was formed at the interface [Figure 3.4 (E)]. 

  Once the protein isolates were adsorbed and attained the equilibrium states at the 

interface, the strength of the viscoelastic protein film at the interface was investigated as a  
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Figure 3.4.  Dilatational storage modulus (Gi′) and loss modulus (Gi″) for SPI solutions at 

pH 3.0 (A and B), pH 5.0 (C and D), and pH 7.0 (E and F) at the oil-water 

interface as a function of time (left) and frequency (right).  
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function of frequency [Figure 3.4 (B, D and F at pH 3.0, pH 5.0 and pH 7.0, respectively)]. 

Gi′ and Gi″ for SPI at both pH 3.0 and pH 5.0 were relatively constant as a function of 

frequency, until a cross-over point was reached at ~2.24 rad/s, after which Gi′ < Gi″ and the 

viscoelastic film began showing rubbery-like behavior where Gi″ increases and Gi′ starts to 

decrease suddenly [Figure 3.4 (B and D)]. At pH 7.0, no film network was formed at the 

interface leading to fluid-like rheological behavior of the protein network at the interface (Gi′ 

< Gi″) [Figure 3.4 (F)]. It is surmised that SPI at pH 3.0 and pH 5.0, PPI at pH 3.0, LPI at pH 

3.0 and pH 5.0, and CPI at pH 3.0 and pH 5.0 (data were not shown) could form the 

viscoelastic films at the interface which is significant for the long-term stability of the 

emulsions, and the strength of the viscoelastic films as a function of pH and protein-type at 1 

rad/s was evaluated in Table 3.1. An analysis of variance of complex modulus (Gi
*) data at a 

frequency of 1 rad/s indicated that pH (p < 0.001) and protein-type (p < 0.001), along with 

their interaction (p < 0.05) were all significant (Table 3.1). Gi
* expresses the energy involved 

at the interface through relaxation processes (Lucassen and van den Tempel, 1972; Seta et al., 

2012). Gi
* of CPI at pH 3.0 and pH 5.0 was much larger than LPI, followed by PPI and SPI at 

both pHs, suggesting that CPI at pH 3.0 and pH 5.0 formed stronger viscoelastic films that 

may result in an emulsion with better long-term stability than the others (Table 3.1). 

  A simple Pearson correlation indicated that the interfacial tension was positively 

correlated with Gi
* (r = 0.705; p < 0.001) suggesting that the higher the interfacial tension 

value (or the least effective at reducing interfacial tension the protein was) the stronger and 

thicker the viscoelastic film will be. Findings suggest that despite the protein's ability to lower 

interfacial tension further at pH 7.0, an interconnected network was unable to form, possibly 

due to the lower surface hydrophobicity [Figure 3.2 (B)] which would stabilize protein–

protein aggregation at the interface. In contrast, it is hypothesized that stronger interfacial 

films form at pH 3.0, since proteins experience a greater amount of protein–protein 

interactions as the hydrophobic forces are more abundant. The higher molecular interaction 

between adsorbed proteins at the interface could contribute to this result (Lucassen-Reynders 

et al., 1975), which was also demonstrated by the study of interfacial properties of β-casein 

and β-lactoglobulin (Seta et al., 2014). 
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Table 3.1. Effect of pH and protein-type on storage modulus (Gi´), loss modulus (Gi´´), and 

complex modulus (Gi
*) (Units: milliPascal) of the O/W model system emulsion 

at 1 rad/s. Data represent the mean values of triplicate samples. Standard 

deviations were not reported since no differences were observed until after the 

second decimal position. Different letters (a ~ d) in the column indicate 

significant (p < 0.05) differences among protein solutions. Abbreviations include: 

pea protein isolate (PPI), soy protein isolate (SPI), lentil protein isolate (LPI), 

canola protein isolate (CPI), storage modulus (Gi´), loss modulus (Gi´´) and 

complex modulus (Gi
*). 

 

 pH 3.0  pH 5.0  pH 7.0 

 
Gi'  
(mPa) 

Gi''  
(mPa) 

Gi
*  

(mPa) 
 Gi'  

(mPa) 
Gi'' 
(mPa) 

Gi
* 

(mPa) 
 Gi' 

(mPa) 
Gi'' 
(mPa) 

Gi
*  

(mPa) 
PPI 2.3 0.7 2.4ab  - 0.3 0.4a  - 0.3 0.2a 

SPI 1.3  0.6 1.4a  1.8 0.8 2.0b  - 0.3 0.3b 

LPI 2.5 0.9 2.7ab  0.8 0.6 1.0c  0.3 0.4 0.8c 

CPI 4.5 1.6 4.8b  4.9 2.2 5.4d  0 0.4 0.4d 
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3.4.3. Emulsifying properties 

  Because of droplet flocculation and excess protein aggregation in the aqueous phase, 

the droplet size distributions for all emulsions showed multimodal size distributions, with 

each of them having one prominent peak (Figure 3.5). However, the magnitude and location 

of the peak varied based on the pH and protein-type. It is hypothesized that for the legume 

proteins (SPI, PPI and LPI) a shift in the distribution towards larger particles at pH 5.0 from 

pH 3.0 and pH 7.0 reflects protein–protein aggregation occurring due to reduced solubility. In 

the case of CPI, solubility continually declines as pH is raised from 3.0 to 7.0 resulting in a 

continuous pH-dependent shift within the size distribution. A similar multimodal size 

distribution was also previously reported in PPI stabilized emulsions at pH 3.0 – pH 9.0 

(Liang and Tang, 2013), SPI and LPI stabilized emulsions at pH 7.0 (Can Karaca et al., 

2011a), and CPI stabilized emulsions at pH 7.0 (Can Karaca et al., 2011b). 

  The average droplet diameter (d3,2) for all protein-stabilized emulsions as a function 

of pH is shown in Figure 3.6. An analysis of variance indicated that pH and protein-type, 

along with their interaction (p < 0.001) were significant. Overall, oil droplets stabilized by 

PPI and LPI at pH 5.0 were significantly larger than those at pH 3.0 and pH 7.0 which were 

similar in magnitude. SPI behaved similarly, except that droplets were slightly larger at pH 

7.0 than at pH 3.0 possibly. At pH 3.0, CPI and SPI produced similar size droplets (~5 μm) 

which were smaller than PPI and LPI stabilized oil droplets which were also similar in 

magnitude (~9 μm) (Figure 3.6). A Pearson correlation revealed the droplet size to be 

negatively correlated with surface charge (r = -0.740; p < 0.001), the strength of the 

interfacial film (Gi
*) (r = -0.323; p < 0.05), solubility (r = -0.817; p < 0.001) and 

hydrophobicity (r = -0.372; p < 0.05). Findings suggest that smaller sized droplets can be 

obtained using proteins that: a) are highly charged to facilitate movement to the oil–water 

interface to lower interfacial tension and to increase charge repulsion between droplets once 

integrated to the interface; b) are highly soluble to allow quicker diffusion to the interface and 

to afford greater conformational flexibility needed to rearrange at the interface; and c) have 

high hydrophobicity to produce stronger interfacial films. 

  Gravitational separation driven by density differences between oil and aqueous 

phases is one of the most common mechanisms for instability (McClements, 2007). Because 

of the significantly (p < 0.001) different protein solubility, the emulsions either separated into 

a 2- phase emulsion or destabilized. Figure 3.1 shows an example involving CPI only. It was 

observed that the emulsion with CPI at pH 3.0 separated into a cream layer (at the top) and a 

turbid serum layer (at the bottom) [Figure 3.1 (B)] after 24 h from time zero [Figure 3.1 (A)]. 
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Figure 3.5.  Droplet size distribution of PPI (A), SPI (B), LPI (C), and CPI (D) (2.0%, w/w) 

stabilized emulsions prepared at a 1:9 (w/w) oil-to-water ratio with canola oil.  
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Figure 3.6.  Mean droplet diameter (d3,2, μm) of different proteins (2.0%, w/w) stabilized 

emulsion prepared at a 1:9 (w/w) canola oil-to-water ratio. Data represent the 

mean ± one standard deviation (n = 3). Abbreviations include: pea protein 

isolate (PPI), soy protein isolate (SPI), lentil protein isolate (LPI) and canola 

protein isolate (CPI).  
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The emulsions with PPI, SPI, and LPI at pH 3.0 and pH 7.0 separated in a similar manner. 

However, the emulsion prepared with CPI at pH 5.0 (not shown) and pH 7.0 [Figure 3.1 (C)] 

destabilized into a cloudy emulsion layer with oil–protein flocculates (at the top) and a clear 

serum layer (at the bottom). This destabilization occurred with emulsions prepared with PPI, 

SPI, and LPI at pH 5.0, which is close to the protein's isoelectric point. 

  Overall, ES was found to be similar in magnitude at pH 3.0 and pH 7.0 for PPI 

(~85% and ~87%, respectively), SPI (~90% and ~86%, respectively), and LPI (~87% and 

~83%, respectively). However, all of them were found to be unstable at pH 5.0 which was 

close to the pI for the legume proteins. In contrast, ES for CPI at pH 3.0 was found to be 

~85%, whereas the emulsions were unstable at both pH 5.0 and pH 7.0 which were closer to 

the isoelectric point (~pH 6.2) [Figure 3.2 (A)]. Despite differences seen in the 

physicochemical and interfacial properties at pH 3.0 and pH 7.0 for the legume proteins, 

emulsion stability over the 24 h time frame remained similar. It was surmised that this may 

be due to the high charge (negative or positive) on the protein's surface that coated the oil 

droplets. Most likely the neutral charge on the protein's surface at pH 5.0 resulted in 

flocculation of the oil droplets during the gravitational creaming experiment. Droplet size 

within range of ~5 to 9 μm did not seem to play a key role in altering stability, however the 

small reduction in stability for SPI from 90% to 86% may be the result of a slightly smaller 

droplet size at pH 3.0. In the case of CPI, the charge on the protein declined as pH was raised 

from pH 3.0 to pH 7.0, leading to droplet flocculation and instability at pH 5.0 and pH 7.0. 

 

3.5. Conclusions 

  The generic consensus of how a protein stabilizes an emulsion involves its migration 

to the interface, where it then unravels and rearranges to position its hydrophobic moieties 

towards the apolar phase and its hydrophilic moieties towards the polar phase. An interfacial 

viscoelastic film then forms by protein–protein aggregation to coat the oil droplet and 

stabilize the emulsion via charge repulsion (at pHs away from the protein's pI) and/or steric 

forces. Findings from this study indicate that the ability for a protein (specifically isolates 

from pea, soy, lentil and canola) to initially associate with the oil–water interface during the 

initial stage of emulsion formation to lower the interfacial tension requires them to have a 

high surface charge and low hydrophobicity (e.g., pH 7.0 in the present study). It's important 

to note that low hydrophobicity does not imply that the protein is not surface active. However 

the properties of a protein to form a strong viscoelastic interfacial film are different, where 

proteins require a high surface charge and high hydrophobicity (e.g., pH 3.0 in the present 
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study). Therefore selection of an effective plant protein emulsifier really entails finding a 

balance between properties needed to associate at the oil–water interface with those needed to 

develop a strong interfacial film. 

  The most prudent way to find this balance is to consider the oil droplet size, where 

smaller sized droplets typically lead to improved stability. Findings from this study suggest 

that proteins should be: (i) highly charged so they can associate with the interface and to 

provide charge repulsion once the oil droplet is coated; (ii) have good solubility to allow for 

easier diffusion to the interface and conformational flexibility during the rearrangement step; 

and (iii) have moderately high hydrophobicity to produce stronger interfacial films. Although 

a long-term stability trial was not performed as part of this study, it is presumed that the 

stronger interfacial films formed at pH 3.0 than pH 7.0 would lead to more stable emulsion, 

which may find applications in protein-rich acidic beverages or similar type products. Of the 

protein-types studied, the most promising alternative to SPI as an emulsifier is LPI because it 

showed high charge, solubility and hydrophobicity at pH 3.0. The low solubility of pea 

protein at this pH could result in precipitation issues of the emulsifier for product developers 

within the continuous phase (although not impacting emulsion stability), whereas CPI would 

have issues lowering interfacial tension during emulsion formation and allergen concerns 

associated with its 2S protein. 

 

3.6. Linkage 

  From the experiments reported in this manuscript, LPI at pH 3.0 was selected for 

further study as a promising emulsifier to stabilize an oil-in-water emulsion, because it has 

high surface charge, hydrophobicity, and good solubility to effectively lower the interfacial 

tension and produce a strong interfacial film to coat on the oil droplet. The focus of the 

second study of this research project was to develop LPI-based microcapsules to entrap 

canola oil using spray drying. The effect of LPI and oil concentrations on the emulsion (e.g., 

droplet size, viscosity, and emulsion stability) and microcapsule (e.g., surface oil and 

entrapment efficiency) properties were first investigated to determine an appropriate capsule 

design, which was further re-designed by using different wall materials (e.g., LPI, 

maltodextrin, lecithin, and sodium alginate) and preparation methods, in order to produce a 

best capsule formulation that offered good physical properties (e.g., moisture content, water 

activity, color, wettability, particle size) and protective nature against oxidation.  
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4. MICROENCAPSULATION OF CANOLA OIL BY LENTIL PROTEIN 

ISOLATE-BASED WALL MATERIALS2 

 

4.1. Abstract 

  The overall goal was to encapsulate canola oil using a mixture of lentil protein 

isolate and maltodextrin with/without lecithin and/or sodium alginate by spray drying. 

Initially, emulsion and microcapsule properties as a function of oil (20%-30%), protein 

(2%-8%) and maltodextrin concentration (9.5%-18%) were characterized by emulsion 

stability, droplet size, viscosity, surface oil and entrapment efficiency. Microcapsules with 20% 

oil, 2% protein and 18% maltodextrin were shown to have the highest entrapment efficiency, 

and selected for further re-design using different preparation conditions and wall ingredients 

(lentil protein isolate, maltodextrin, lecithin and/or sodium alginate). The combination of 

lentil protein isolate, maltodextrin, and sodium alginate represented as the best wall material 

to produce microcapsules with the highest entrapment efficiency (~88%). The lentil protein 

isolate-maltodextrin-sodium alginate microcapsules showed better oxidative stability and had 

a stronger wall structure than the lentil protein isolate-maltodextrin microcapsules. 

 

4.2. Introduction 

  Canola oil is rich in unsaturated fatty acids (e.g., oleic acid, linoleic acid and 

α-linolenic acid), which provide a variety of health benefits, including the reduction of 

cardiovascular disease, type 2 diabetes, and osteoporosis risk (Rajaram, 2014). However, the 

susceptibility of unsaturated fatty acids to oxidation represents a major challenge in its 

application, since lipid oxidation leads to the formation of free radicals and volatile 

compounds resulting in undesirable flavor in food products (Pegg, 2005). Microencapsulation 

is a process that helps circumvent this issue by offering protection to oils during food 

processing and storage, increasing their shelf-life, and transforming a liquid into a more 

easily handled and dispersed solid powder (Desai and Park, 2005). 

                                                                            
2. Chang, C., Varankovich, N., & Nickerson, M. T. (2016). Microencapsulation of canola oil 
by lentil protein isolate-based wall materials. Food Chemistry, 212, 264-273.  
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  Microencapsulation is defined as a process involving the coating of individual active 

particles or droplets within an edible wall material comprised of proteins, polysaccharides 

and/or lipids; to produce capsules in the micron to millimeter size range (Tyagi et al., 2011). 

Among the various microencapsulation techniques (e.g., spray drying, extrusion coating, 

complex coacervation, and liposome entrapment), the most commonly one applied is spray 

drying, due to its low cost and wide availability of equipment (Desai and Park, 2005). Wall 

material formulations and emulsification conditions (e.g., emulsion stability, droplet size, and 

emulsion viscosity) are the most important factors impacting the quality of spray dried 

microcapsules in terms of their entrapment efficiency, physicochemical properties and storage 

stability (Koc et al., 2015). Hogan et al. (2001) found the emulsions prepared by soya oil, 

sodium caseinate, and corn syrup solids had lower viscosity, which further produced the 

microcapsules with significantly higher entrapment efficiency, in comparison with the 

microcapsules prepared by maize starch. Can Karaca et al. (2013a) also demonstrated the 

emulsions prepared by flaxseed oil and legume proteins with larger droplet size resulted in 

the microcapsules with better oxidative stability and lower surface oil. 

  Wall materials act as barriers to protect the core material and to control diffusion, 

playing an essential role in producing stable microcapsules with high entrapment efficiency. 

They require to have good emulsifying properties, solubility, drying properties and proper 

rheological properties to be easily used in the spray dryer (Gharsallaoui et al., 2007). The 

most commonly studied wall materials for microencapsulation in the food industry are whey 

proteins, sodium caseinate, soy protein, gelatin, maltodextrin, starches and gum Arabic 

(Gharsallaoui et al., 2007; Koc et al., 2015). Hogan et al. (2001) stated that it was impossible 

to produce soya oil microcapsules only using sodium caseinate, and the addition of maize 

starch ideally increased entrapment efficiency. There is no single material providing all 

properties required for an ideal encapsulating agent, therefore the combination of proteins 

and polysaccharides as wall materials is commonly studied to offer enhanced entrapment 

efficiency.  

  Because of its low cost, good solubility, neutral aroma and taste, low viscosity at 

high concentrations and poor emulsifying capacity, maltodextrin (a hydrolysed starch) is 

desirable to be used in combination with other wall materials in the microencapsulation 

process as a processing aid (Madene et al., 2006). The degree of hydrolysis [dextrose 

equivalent (DE) of 5.0-20.0] of corn starch to produce maltodextrin exhibits significant 

effects on the microcapsules’ characteristics (Dokic et al., 2004), in which microcapsules 

prepared by maltodextrin with lower DE value (e.g., DE of 9.0) had lower surface oil in 



49 
 

comparison with microcapsules containing maltodextrin with higher DE value (e.g., DE of 

18.0), due to the formation of more hydrophilic microcapsule surface structure resulting from 

the higher molecular weight glucose oligomers (Can Karaca et al., 2013b). Lecithin, an ionic 

phospholipid, is widely used in the preparation of single-layered and bi-layered 

microcapsules (Carvalho et al., 2014), because of non-toxicity, well compatibility and 

nutritional effects (e.g., lowering the cholesterol level in the blood) (Wilson et al., 1998). The 

addition of lecithin in the production of microcapsules has been previously reported to 

improve microcapsules’ properties, such as higher entrapment efficiency, better oxidative 

stability, and smaller particle size (Carvalho et al., 2014). Sodium alginate, which contains 

two monomeric units of β-D-mannuronic acid and α-L-guluronic acid, is a natural anionic 

polysaccharide extracted from brown algae (Liu et al., 2013). It is commonly used in the 

production of microcapsules to form the rigid wall matrix with multivalent cations to increase 

oxidative stability of encapsulated oils (e.g., olive oil) (Liu et al., 2013; Sun-Waterhouse et al., 

2013). Very little information is available about the microencapsulation of canola oil using 

pulse proteins-based wall materials in the literature. Lentil protein isolate (LPI) is considered 

as a promising emerging protein used by the food industry, due to its nutritional value, low 

cost and functional properties (e.g., water holding capacity and oil binding capacity) (Boye et 

al., 2010a). Can Karaca and co-workers (2013a) designed a lentil protein-based wall material 

in combination with maltodextrin to entrap 10% flaxseed oil which is far too low to be 

commercially viable.  

  The objective of this study was to improve the oil concentration by developing a 

LPI-based wall material which provides the protective nature to against oxidation for the 

delivery of healthy oils (e.g., canola oil), beyond that of what Can Karaca et al. (2013a) could 

achieve (10% oil concentration).  

 

4.3. Materials and methods 

4.3.1. Materials 

  LPI and maltodextrin (MALTRIN M100, dextrose equivalent of 9.0-12.0) were 

kindly donated by POS Bio-Sciences (Saskatoon, SK, Canada) and Grain Processing 

Corporation (Muscatine, IA, USA), respectively. The crude protein content of LPI was 

determined to be 78.97% w.b. (%N × 6.25) as described by the Association of Official 

Analytical Chemists Method 920.87 (AOAC, 2003). Soy lecithin (L-alpha-Lecithin from 

soybean oil), canola oil, SA and all chemicals used in this study were purchased from Fisher 

Scientific (Ottawa, ON, Canada), a local supermarket, and Sigma-Aldrich (Oakville, ON, 



50 
 

Canada), respectively. A Millipore Milli-QTM water purification system (Millipore 

Corporation, Milford, MA, USA) was used to produce Milli-Q water.  

 

4.3.2. Emulsion preparation 

Phase one 

  The formulations of initial emulsions were prepared with different oil, LPI and 

maltodextrin concentrations [Table 4.1 (a)]. LPI was first dispersed in Milli-Q water at the 

specified concentration (corrected for protein level within the powder) and adjusted to pH 3.0 

with 2.0 M HCl or 2.0 M NaOH, followed by stirring at 500 rpm for overnight at 4 °C to 

ensure complete dispersion. pH of the LPI solutions was re-adjusted to 3.0 prior to sample 

homogenization. In a preliminary experiment, the LPI concentration in the emulsion was 

restricted <10% (w/w), since at levels ≥10% (w/w), LPI solutions were too viscous to be used 

for pH adjustment and emulsion preparation (data not shown). A pH 3.0 protein solution was 

used based on work by Chang et al. (2015). Maltodextrin was then dissolved into LPI 

solution at levels outlined in Table 4.1 (a) and stirred at 500 rpm for 3 h at room temperature 

(22-23 °C). Oil-in-water emulsions were prepared by homogenizing varying amounts of oil 

(20% vs 30% oil concentration), maltodextrin, and LPI solutions using a Polytron PT 2100 

Homogenizer (Kinematica AG, Lucerne, Switzerland) equipped with a 12 mm PT-DA 

2112/2EC generating probe at 15,000 rpm for 5 min at room temperature [Table 4.1 (a)].  

 

Phase two 

  Stemming from the results in phase one, a wall formulation of 2% LPI and 18% 

maltodextrin with 20% oil concentration was selected as the base formulation (See Results 

and Discussion) for further reformulation using different homogenization conditions and 

additional ingredients (lecithin, and/or sodium alginate) in wall material. LPI solutions were 

prepared in the same manner as described above. A soy lecithin solution was prepared by 

dissolving it in Milli-Q water and adjusting to pH 3.0 (at which the lecithin has better 

dissociation behavior, because the phosphate groups on the lecithin have a pKa value of ~1.5) 

(Chuah et al., 2009) with 1.0 M HCl or 1.0 M NaOH, followed by stirring at 500 rpm for 

overnight at 4 °C. In a preliminary experiment, the soy lecithin concentration in the emulsion 

was restricted ≤3.0% (w/w), since at levels >3.0% (w/w), the soy lecithin cannot be 

completely solubilized after stirring overnight, and the solution was too thick to be used for 

emulsion preparation. pHs of the LPI and the lecithin solutions were re-adjusted to 3.0 prior 

to sample homogenization. Sodium alginate and maltodextrin were separately dissolved in   
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Table 4.1.  Formulations used for developing the initial emulsions to deliver 20% and 30% oil within microcapsules (phase one) (a), and with 

different wall materials (b) and emulsion preparation conditions [all solutions were mixed with the emulsions for 10 min at 500 

rpm, and then homogenized at 15,000 rpm under room temperature (21-23 °C)] (c) to deliver 20% oil within microcapsules (phase 

two). Abbreviations include: lentil protein isolate (LPI), oil concentration in final microcapsules (OC), maltodextrin (MD), and 

total solids (TS), lecithin (L), and sodium alginate (SA). 

 

a. Formulations of initial emulsions to deliver 20% and 30% oil in the spray-dried microcapsules (phase one). 

Formulation 
Initial emulsions (%, w/w)  Spray-dried microcapsules (%, w/w) 

Oil LPI MD TS Core : Wall  Oil LPI MD TS 
20% OC 2% LPI 5 2 18 25 1:4  20 8 72 100 

4% LPI 5 4 16 25 1:4  20 16 64 100 

6% LPI 5 6 14 25 1:4  20 24 56 100 

8% LPI 5 8 12 25 1:4  20 32 48 100 

30% OC 2% LPI 7.5 2 15.5 25 1:2.3  30 8 62 100 

4% LPI 7.5 4 13.5 25 1:2.3  30 16 54 100 

6% LPI 7.5 6 11.5 25 1:2.3  30 24 46 100 

8% LPI 7.5 8 9.5 25 1:2.3  30 32 38 100 
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Table 4.1. (continued). 

 

b. Formulations of initial emulsions with different wall materials to deliver 20% oil in the spray-dried microcapsules (phase two).  

Strategy Formulation  
Before Spray Drying (%, w/w)  After Spray Drying (%, w/w) 

Oil LPI MD L SA TS Core:Wall  Oil LPI MD L SA TS 

A LPI-MD 5 2 18 - - 25 1:4  20 8 72 - - 100 

B LPI-MD 5 2 18 - - 25 1:4  20 8 72 - - 100 

C LPI-MD 5 2 18 - - 25 1:4  20 8 72 - - 100 

D LPI-MD-L 5 2 15 3 - 25 1:4  20 8 60 12 - 100 

E LPI-MD-L 5 2 17 1 - 25 1:4  20 8 68 4 - 100 

F LPI-MD-SA 5 2 17 - 1 25 1:4  20 8 68 - 4 100 

G LPI-MD-L-SA 5 2 14 3 1 25 1:4  20 8 56 12 4 100 

H LPI-MD-L-SA 5 2 16 1 1 25 1:4  20 8 64 4 4 100 
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Table 4.1. (continued). 

 

c. Emulsion preparation conditions to deliver 20% oil in microcapsules (phase two). 

Strategy Formulation Approach 
Primary emulsion Secondary emulsion Tertiary emulsion Quaternary emulsion 

A LPI-MDa Dissolve MD in LPI solution and 
stir for 3 h; then homogenize with 
the oil for 5 min 

- - - 

B LPI-MDa Homogenize LPI solution with 
the oil for 5 min 

Homogenize MD solution with 
the primary emulsion for 3 min 

- - 

C LPI-MDa Homogenize LPI solution with 
the oil for 5 min and stir for 3 h at 
4 °C 

Homogenize MD solution with 
the primary emulsion for 3 min 

- - 

D LPI-MD-Lb Homogenize L solution with the 
oil for 3 min 

Homogenize LPI solution with 
the primary emulsion for 5 min 

Homogenize MD solution with 
the secondary emulsion for 3 min 

- 

E LPI-MD-Lc Prepared as described in strategy D (but at a different L concentration) 

F LPI-MD-SAd Homogenize LPI solution with 
the oil for 5 min 

Homogenize SA solution with 
the primary emulsion for 3 min 

Homogenize MD solution with 
secondary emulsion for 3 min 

- 

G LPI-MD-L-SAe Homogenize L solution with the 
oil for 3 min 

Homogenize LPI solution with 
the primary emulsion for 5 min 

Homogenize SA solution with the 
secondary emulsion for 3 min 

Homogenize MD solution with 
the tertiary emulsion for 3 min 

H LPI-MD-L-SAf Prepared as described in strategy G (but at a different L concentration) 
a. The initial emulsions contain 5% canola oil, 2% LPI, and 18% maltodextrin.  
b. The initial emulsion contains 5% canola oil, 2% LPI, 15% maltodextrin, and 3% lecithin.  
c. The initial emulsion contains 5% canola oil, 2% LPI, 17% maltodextrin, and 1% lecithin.  
d. The initial emulsion contains 5% canola oil, 2% LPI, 17% maltodextrin, and 1% sodium alginate.  
e. The initial emulsion contains 5% canola oil, 2% LPI, 14% maltodextrin, 3% lecithin, and 1% sodium alginate.  
f. The initial emulsion contains 5% canola oil, 2% LPI, 16% maltodextrin, 1% lecithin, and 1% sodium alginate.   
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Milli-Q water and stirring at 500 rpm for 3 h at room temperature. The initial oil-in-water 

emulsions with 20% (w/w) oil concentration and different wall material components [Table 

4.1 (b)] were prepared as described in Table 4.1 (c) using the Polytron PT 2100 Homogenizer. 

 

4.3.3. Emulsion characteristics 

Emulsion stability 

  Emulsion stability (ES) was measured as described by Liu et al. (2010a) with minor 

modification. In brief, freshly prepared emulsions (10 mL) were filled into a 10 mL sealed 

graduated glass cylinders (inner diameter = 10.5 mm, height = 160 mm), and then stored for 

24 h at room temperature. During storage, the emulsions were separated into a cream upper 

layer and a serum bottom layer. The visual observation was done after 24 h of storage. 

Emulsion stability was measured as ES (%) and expressed as:  

 

ES (%) = HS / HE × 100                       [4.1.] 

 

where HS is the height of the serum layer, and HE is the height of the emulsion, as measured 

using a digital micrometer (Model 62379-531, Control Company, USA) having a precision of 

0.01 mm. All data was reported as the mean ± one standard deviation from triplicate emulsion 

preparations (n = 3). 

 

Emulsion droplet size 

  Droplet size of freshly prepared emulsions was measured using a Mastersizer 2000 

laser light scattering instrument (Malvern Instruments Ltd., Worcestershire, UK) equipped 

with a Hydro 2000S sample handling unit as described by Can Karaca et al. (2013a) with 

minor modification. Droplet size measurements were taken immediately after the production 

of emulsions and obscuration in all measurements was performed at ~14% by sample 

addition. According to Mie Theory, droplet size was calculated by using the refractive index 

difference between droplets and dispersing medium to predict scattering light intensity. The 

ratio of refractive index of canola oil (1.470) to Milli-Q water (1.330) was 1.105. Droplet size 

was presented as volume-mass mean diameter (d4,3) that is expressed as: 
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d4,3 = ∑ 𝑛𝑛𝑖𝑖∙𝑑𝑑𝑖𝑖
4

𝑖𝑖=1
∑ 𝑛𝑛𝑖𝑖∙𝑑𝑑𝑖𝑖

3
𝑖𝑖=1

                            [4.2.] 

 

where ni is the number of droplets of diameter (di) (McClements, 2005). All data was 

reported as the mean ± one standard deviation from triplicate emulsion preparations (n = 3). 

 

Emulsion viscosity 

  The viscosity of emulsions as a function of shear rate (1-200 s-1) was evaluated using 

a rheometer (AR-G2 Rheometer, TA Instruments Ltd., New Castle, DE, USA) equipped with 

a geometry (40 mm cone diameter, 1° cone angle) at room temperature, in order to determine 

if the emulsions were able to be fed into the benchtop spray dryer (B-290, Buchi 

Labortechnik AG, Flawil, Switzerland), which requires the viscosity of sample to be lower 

than 0.3 Pa s. The viscosity of emulsions was determined using shear stress divided by shear 

rate (at 50 s-1). All data was reported as the mean ± one standard deviation from triplicate 

emulsion preparations (n = 3). 

 

4.3.4. Spray drying  

  The emulsions were spray dried using a benchtop Buchi Advanced Mini Spray Drier 

B-290 (Buchi Labortechnik AG, Flawil, Switzerland) equipped with an atomizing nozzle (0.7 

mm diameter). The emulsions were fed into the primary chamber (65 × 110 × 70 cm) through 

a peristaltic pump under constant mechanically stirring at 300 rpm to maintain homogeneity 

and prevent droplet coalescence. The drying air flow rate was 35,000 L/h, and the 

compressed air pressure was adjusted to 5 bars. The inlet temperature was set up to 180 °C, 

and the outlet temperature was kept at 85 ± 1 °C by adjusting pump rate (5-20%). Finally, the 

formulation of spray-dried microcapsules was shown in Table 4.1. The production of 

microcapsules by spray drying was performed in triplicate. 

 

4.3.5. Microcapsule properties 

Physical characteristics 

  The moisture content of microcapsules was determined gravimetrically after drying 

the microcapsules in a gravity convention oven (APTLine ED, Binder GmbH, Tuttlingen, 

Germany) at 105 °C for overnight. The water activity (aw) of microcapsules was measured 

using an AquaLab 4TE water activity meter (Decagon Devices, Inc., Pullman, WA, USA) 

with a 0.001 sensitivity at 22 °C. The colour of microcapsules was measured using a Hunter 
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Colorimeter (ColorFlex EZ 45/0, Hunter Associates Laboratory, Inc., Reston, VA, USA) and 

reported in term of the L (lightness), a (redness), and b (yellowness) color system. Moisture, 

water activity and colour were reported as the mean ± one standard deviation from triplicate 

capsule preparations (n = 3). 

  Wettability of microcapsules was measured using the method described by 

Balmaceda et al. (1976). In brief, ~1 g of microcapsules was transferred into 80 mL Milli-Q 

water through a small sieve. The ability for microcapsules to dissolve into water was 

observed for 30 min at room temperature without mechanical stirring, followed by the stirring 

at 500 rpm for 1 min. Finally, the wettability of microcapsules was graded as excellent (e.g., 

the sample immediately wets as it contacts the water, followed by complete dispersion after 

30 min), good (e.g., the sample slightly wets as it contacts the water, followed by partial 

dispersion and sedimentation at the bottom after 30 min), fair (e.g., the sample is very slightly 

wet and tends to clump at the surface of water, however, after 30 min, a small amount of 

sample is still on the surface), and poor (e.g., the sample hardly wets and clumps when it 

contacts with water; most of the sample remains on the surface of water after 30 min), based 

on the performance of microcapsules dissolving into water.  

  Particle size of microcapsules was measured using Microtrac II Particle Size 

Analyzer (Models 7997-10, Leeds & Northrup). According to the instrument manual, ~1 g of 

microcapsules was diluted into Milli-Q water until the laser attenuation was within the range 

from 0.8 to 0.85. Particle size was presented as volume-mass mean diameter (d4,3). Data was 

reported as the mean ± one standard deviation from triplicate capsule preparations (n = 3). 

 

Surface oil and entrapment efficiency 

  One gram of microcapsules was weighted in a 50 mL centrifuge tube and 15 mL of 

hexane was added and shaken for 15 s to extract surface oil. The solvent was then filtered 

twice through #3 Whatman filter paper (Whatman International Ltd., Maidstone, UK), 

collected the clear organic solvent in a 30 mL beaker, and evaporated in a fume hood for 

overnight. Finally, the residual hexane was completely removed by heating in a gravity 

convection oven (APTLine ED, Binder GmbH, Tuttlingen, Germany) at 105 °C for 30 min. 

The surface oil of microcapsules was determined gravimetrically. The entrapment efficiency 

(EE) was calculated by the following formula (Anwar and Kunz, 2011): 
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EE = (Total oil – Surface oil) / Total oil × 100%             [4.3.] 

 

where total oil is the oil payload (20% or 30%, w/w) in the microcapsules. Data was reported 

as the mean ± one standard deviation from triplicate capsule preparations (n = 3). 

 

4.3.6. Oxidative stability 

Oil extraction 

  Oxidative stability of encapsulated canola oil in microcapsules and free canola oil 

(control sample) was determined by measuring peroxide value (PV) and 2-thiobarbituric acid 

reactive substances (TBARS) as a function of storage time over 30 d for triplicate capsule 

preparations. After spray drying, the microcapsules (~ 4 g) along with free canola oil (~ 2 g) 

were stored in unflushed sealed amber glass bottles (10 mL) at room temperature. The 

extraction of encapsulated oils was performed prior to PV and TBARS tests as described by 

Can Karaca et al. (2013a, b) and Klinkesorn et al. (2005) with some modifications. In brief, 

microcapsules (~ 4 g) were dissolved in Milli-Q water (30 mL) and stirring at 500 rpm for 5 

min, followed by the addition of hexane/isopropanol (3:1, v/v) mixture (40 mL) and stirring 

for 15 min to extract the oil. The resulting mixture (in a 250 mL centrifuge tube) was then 

centrifuged (Sorvall RC Plus Superspeed Centrifuge, Thermo Fisher Scientific, Asheville NC, 

USA) at 4,193 × g for 10 min at 20 °C. The clear organic solvent was syringed out and 

filtered through #1 Whatman filter paper (Whatman International Ltd., Maidstone, England) 

with anhydrous Na2SO4 into a 125 mL Erlenmeyer flask. Afterwards, the organic solvent was 

dried under a stream of nitrogen in the fume hood. PV and TBARS tests were carried out 

immediately after oil extraction on every 5 d of storage over a 30 d period.  

 

Peroxide value (PV) 

  In brief, the extracted and free canola oil (~0.2 g) were mixed with 30 mL of acetic 

acid/chloroform solution (3:2, v/v) in a 125 mL Erlenmeyer flask, followed by the addition of 

saturated potassium iodide (KI, 0.5 mL). The solution was left to stand exactly for 1 min with 

occasional shaking to release iodine from chloroform layer, followed by the addition of 

Milli-Q water (30 mL) to stop the reaction. Afterwards, 1% (w/v) starch indicator (0.5 mL) 

prepared by corn starch was applied into the mixture. Finally, the resulting solution was 

titrated with 0.001 N sodium thiosulfate (Na2S2O3) until the violet color derived from the 

iodine disappeared. A blank sample as a control was carried out through all the steps. PV of 

encapsulated and free canola oils was calculated using the following formula (Pegg, 2005): 
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PV = (S – B) × N × 1000 / W                     [4.4.] 

 

where S is the volume (mL) of Na2S2O3 solution used to titrate the encapsulated and free oils, 

B is the volume (mL) of Na2S2O3 solution used to titrate the blank (without oils), N is the 

normality of Na2S2O3 solution, and W is the oil weight (g). Data was reported as the mean ± 

one standard deviation from triplicate capsule preparations (n = 3). 

 

2-Thiobarbituric acid reactive substances (TBARS) 

  TBARS test was performed based on the reaction between malondialdehyde (MDA, 

a compound that results from the decomposition of peroxides) and 2-thiobarbituric acid 

(TBA). Specifically, the extracted and free canola oils (~ 40 mg) were first mixed with 

2-butanol in the 10 mL volumetric flasks. 50 μL of 8.1% (w/v) sodium dodecyl sulfate (SDS), 

375 μL of 20% acetic acid (pH 3.5), 375 μL of 0.8% (w/v) TBA, 8.25 μL of 0.02% (w/v) 

butylated hydroxytoluene (BHT) (in dimethyl sulfoxide (DMSO)), and 200 μL of the 

oil-butanol mixture were added into a 2.0 mL Eppendorf tube. MDA standards (200 μL) were 

prepared by diluting 100 μM of 1,1,3,3-tetraethoxypropane (TEP) (in 1% (v/v) sulfuric acid) 

in a 2-butanol at a concentration range of 1.25-50.00 μM under the same experimental 

conditions as the oils. The blank was prepared by applying 200 μL of 2-butanol under the 

same experimental conditions as the oils. Afterwards, oil samples, MDA standards, and the 

blank were heated at 95 °C for 1 h, and then cooled down in the cold water for 5 min, 

followed by the addition of 2-butanol/pyridine (15:1, v/v) mixture (0.9 mL) with vigorously 

mixing for 30 s using an analog vortex mixer at speed of 3 (VWR Vortexer Mini, USA). Then, 

oil samples, MDA standards, and the blank were centrifuged (Eppendorf Centrifuge 5424, 

Hamburg, Germany) at 4,000 × g for 10 min. The absorbance of the upper organic solvent at 

532 nm was measured against a 2-butanol blank using a spectrophotometer (Genesys 10uv, 

Thermo Fisher Scientific). Finally, a standard curve was plotted using the net absorbance of 

MDA standards (subtracting the absorbance value of the blank from the MDA standards) 

versus the MDA concentration to get the equation of the trend line. TBA values of samples 

were expressed as MDA content (nmol)/sample oil weight (mg), in which MDA 

concentration of samples was calculated by using the equation of the trend line on the 

standard curve and net absorbance value of oil samples (subtracting the absorbance value of 

blank from the sample) (Akhlaghi and Bandy, 2010; Pegg, 2005). Data was reported as the 

mean ± one standard deviation from triplicate capsule preparations (n = 3). 
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4.3.7. Emulsion and microcapsule morphology 

  The morphology of fluorescently-labeled emulsion droplets stabilized by (a) LPI, (b) 

LPI-MD, (c) LPI-SA and (d) LPI-MD-SA solutions were examined using a Nikon C2 

Confocal Laser Scanning Microscope (CLSM) (Nikon, Tokyo, Japan). In brief, 0.1% (w/w, 

basis on labeling materials) of Nile Red (staining the oil) and Fast Green FCF (staining the 

LPI) were dissolved in the canola oil and LPI solution, respectively, and stirred at 500 rpm 

for 10 min in the dark. Maltodextrin and sodium alginate could not be visualized since the 

oligo- and polysaccharides were below the size resolution of the microscope. Emulsions were 

then prepared as described in Section 4.3.2. [Strategies B and F, in Tables 4.1 (b and c), with 

and without sodium alginate]. Fluorescently-labeled emulsions were observed using CLSM 

with two lasers at the excitation and emission wavelengths for Nile Red (excitation λ = 530 

nm; emission λ = 635 nm) and Fast Green FCF (excitation λ = 633 nm; emission λ = 740 

nm). 

  Surface morphology of spray dried (a) LPI, (b) LPI-MD, (c) LPI-SA, and (d) 

LPI-MD-SA microcapsules was taken using a scanning electron microscope (SEM) 

(JSM-840A, JEOL, Japan) operated at 10 kV with a sample chamber pressure of 5.0 × 10-6 

Torr. The microcapsules were coated with approximately 200 angstroms of gold (Edwards 

S-150B Plasma Sputter Coater) in order to make samples conductive, and observed at 8000 × 

magnification with a working distance of 15 mm.  

 

4.3.8. Statistics 

  All experiments were performed on triplicate batches of capsules and emulsions 

(except particle size and wettability tests, which were performed in duplicate), and reported 

as the mean ± one standard deviation. A two-way analysis of variance (ANOVA) and Tukey 

Test were used to measure statistical difference in the emulsion properties (e.g., emulsion 

stability, emulsion droplet size, and emulsion viscosity), surface oil and entrapment efficiency 

of the microcapsules prepared in phase one as a function of LPI concentration (2-8%) and oil 

content (20% vs. 30%).  

  A one-way ANOVA was used to analyze statistical differences in the emulsion 

properties, surface oil and entrapment efficiency of the microcapsules prepared in phase two, 

and physical properties (e.g., moisture content, water activity, color, wettability, and particle 

size) and oxidative stability (e.g., PV and TBARS) of selected microcapsules. All statistics 

were performed using Systat v10 software (San Jose, CA, USA). 
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4.4. Results and discussion 

4.4.1. Encapsulation of oil using a LPI-MD wall material (phase one) 

  The emulsion stability, droplet size, and viscosity of emulsions prepared with 

different LPI concentrations and oil contents are shown in Table 4.2 (a). In terms of emulsion 

stability, emulsions prepared with a 20% oil were slightly more stable than those with a 30% 

oil (p < 0.05). For both oil concentrations, a slight increasing trend was observed as LPI 

concentration was increased (p < 0.05), where at the 8% LPI level no separation occurred. 

Overall droplet size was found to be greater at the 30% oil content (~18.1 µm diameter) 

relative to the 20% oil content (~16.8 µm diameter) (p < 0.05), however the effect was 

different depending on the LPI concentration. At the 20% oil level, all droplets were of 

similar size (p > 0.05). However, at the 30% oil level, droplets were all similar in size for 2% 

and 4% LPI concentrations, whereas droplets were slightly smaller in magnitude for 6% and 

8% LPI concentrations (p < 0.05) [Table 4.2 (a)]. In terms of viscosity, the effect of payload 

was not significant (p > 0.05), however a rise in viscosity was observed as the LPI 

concentration increased from 2% LPI (~6.5 mPa s) to 8% LPI (~11.4 mPa s) (p < 0.05). 

Overall, better stability of the formed emulsions is thought to be attributed to slightly higher 

viscosity of the continuous phase, and slightly smaller droplets at the higher LPI 

concentrations. 

  Effects of oil content and LPI concentration on the surface oil and entrapment 

efficiency are shown in Table 4.2 (b). Overall, the surface oil content was found greater with 

30% oil (~12%) relative to the 20% oil (~7%) (p < 0.05), and was found to increase with 

increasing LPI concentration (p < 0.05). Surface oil was the lowest (~5.4%) at the 2% LPI 

concentration with a 20% oil content. Overall, entrapment efficiency was found greater with 

the 20% oil (~65%) relative to the higher oil concentration (~60%) (p < 0.05), and decreased 

with increasing LPI concentration at each oil content (p < 0.05). Only at the 8% LPI 

concentration, the entrapment efficiency was similar in magnitude for both payloads (~56%) 

(p > 0.05). The highest entrapment efficiency (~73%) was found in the microcapsules with 2% 

LPI concentration and 20% oil content. 

  Gharsallaoui and co-workers (2007) indicated wall materials with lower emulsion 

viscosity display better coating properties with higher entrapment efficiency. Rosenberg et al. 

(1990) reported that higher viscosity of emulsions can cause the atomization step during 

spray drying to be prolonged, which adversely affects the drying rate of the powder to give 

higher surface oil on the dry powder. It is proposed the decline in entrapment efficiency with 

increased payload may be due to: a) the lack of sufficient wall material to form a tightly   
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Table 4.2.  Effect of oil and lentil protein isolate concentrations on the properties of the initial emulsion and the spray-dried microcapsules. Data 

represent the mean ± one standard deviation (n = 3). Different small letters in the same column indicate a significant difference, as 

well as different capital letters in the same line (p ≤ 0.05). Abbreviations include: lentil protein isolate (LPI), oil concentration in the 

final microcapsule (OC), and no separation due to evident creaming (NS). 

 

a. Emulsion characteristics of initial emulsions to deliver 20% and 30% oil in the spray-dried microcapsules (phase one) 
LPI (%) Emulsion stability (%)  Droplet size(µm)  Viscosity (mPa s) 

20% OC  30% OC 20% OC  30% OC 20% OC  30% OC 

2.0 92.8 ± 0.7aA  87.6 ± 0.1aB  17.1 ± 0.7aA  18.6 ± 0.4aB  6.6 ± 1.6aA  6.4 ± 1.0aA 

4.0 92.9 ± 0.7aA  89.4 ± 0.2bB  16.8 ± 0.4 aA  18.7 ± 0.0 aB  7.4 ± 1.1 abA  6.9 ± 0.9aA 

6.0 94.3 ± 1.3bA  90.4 ± 0.3bB  16.5 ± 0.3 aA  17.8 ± 0.2bB  8.8 ± 0.3 bA  9.5 ± 0.7bA 

8.0 NS  NS  16.8 ± 0.2 aA  17.3 ± 0.4bA  10.9 ± 0.6 cA  11.9 ± 0.8cA 

b. Physical properties of spray-dried microcapsules to deliver 20% and 30% oil (phase one) 

LPI (%)  Surface oil (%)  Entrapment efficiency (%) 

20% OC 30% OC 20% OC 30% OC 

2.0  5.4 ± 0.2aA 10.4 ± 0.4aB  73.0 ± 0.9aA 65.2 ± 1.4aB 

4.0  6.9 ± 0.2bA 11.6 ± 0.3bB  65.5 ± 1.1bA 61.5 ± 1.1bB 

6.0  7.2 ± 0.1bA 12.3 ± 0.1cB  63.9 ± 0.6bA 58.9 ± 0.3cB 

8.0  8.8 ± 0.1cA 13.7 ± 0.5dB  55.8 ± 0.5cA 56.1 ± 1.7dA 
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packed wall structure around the oil droplets (Polavarapu et al., 2011); and b) the entrapment 

procedure itself. During the formulation, LPI and maltodextrin were mixed together prior to 

homogenization to form the wall material, however Sansone et al. (2011) demonstrated that 

maltodextrin is capable to break the structural integrity to cause agglomeration in wall matrix 

while studying pectin-maltodextrin wall materials for entrapping functional extracts from 

Fadogia ancylantha, Melissa officinalis, and Tussilago farfara. As such, a more complex 

wall material design may be necessary to avoid damage caused by maltodextrin on the wall 

integrity for plant protein based capsules. The food industry aims to produce microcapsules 

with < 2% surface oil and > 98% entrapment efficiency (Drusch and Berg, 2008), so, the 

microcapsules with 20% oil and 2% LPI were carried forward with the aim of significantly 

improving their properties. 

 

4.4.2. Encapsulation of oil using re-formulated LPI-MD-based wall materials (phase two) 

  Changes in the emulsion stability, droplet size and viscosity as a function of new 

wall formulations and preparation conditions as described in Tables 4.1 (b and c) are given in 

Table 4.3. Emulsions prepared with LPI and maltodextrin [Strategies A-C, Table 4.1 (b and c)] 

had relatively similar emulsion stability (~92%), droplet size (~17 µm) and viscosity (~7 mPa 

s), resulting in similar surface oil (~5.3%) and entrapment efficiencies (~73%) for the final 

spray dried microcapsules (p > 0.05). The addition of lecithin (L) [Strategy D, Tables 4.1 (b 

and c)] at the 3% level to the LPI and maltodextrin mixture led to a decrease in emulsion 

stability from ~92% to ~40%, an increase in droplet size from ~17 µm to ~84 µm, and an 

increase in viscosity from ~7 mPa s to ~17 mPa s (p < 0.05). Although changes in emulsion 

characteristics were found, this did not translate into different surface oil or entrapment 

efficiencies compared with LPI-MD (p > 0.05). A reduction in lecithin content from 3% to 1% 

[Strategy E, Tables 4.1 (b and c)] was found to follow a similar trend in the emulsion 

properties relative to LPI-MD [Strategies A-C, Tables 4.1 (b and c)], however to a lesser 

magnitude. Surface oil of the LPI-MD-L (1%) was found to increase from ~5.5% to ~8.5% 

relative to LPI-MD-L (3%) and entrapment efficiency reduced from ~72% to ~58% (p < 

0.05). The presence of lecithin (a phospholipid molecule) is hypothesized to disrupt the 

LPI-stabilized oil-water interface by outcompeting with the LPI molecules. As such, 

emulsions became less stable, had greater coalescence occurring (as evident by larger 

droplets) which resulted in greater emulsion viscosities. The end result was that surface oil 

and entrapment efficiency became more and less, respectively. When lecithin was present at 3% 

level, changes were not seen in surface oil and entrapment efficiency value in comparison 
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Table 4.3. Effect of wall materials on the properties of initial emulsion and the microencapsulated powder after spray drying. Data represent the 

mean ± one standard deviation (n = 3). Different small letters in the same column indicate a significant difference (p ≤ 0.05). 

Abbreviations include: lentil protein isolate (LPI), maltodextrin (MD), lecithin (L), sodium alginate (SA), and no separation due to 

evident creaming (NS). 

Strategy Formulation Emulsion stability  

(%) 

Droplet size  

(μm) 

Viscosity  

(mPa s) 

Surface oil  

(%) 

Entrapment efficiency  

(%) 

A LPI-MD 92.8 ± 0.7a 17.1 ± 0.7ab 6.6 ± 1.6a 5.4 ± 0.2a 73.0 ± 0.9a 

B LPI-MD 93.0 ± 0.3a 15.2 ± 0.5b 6.6 ± 0.4a 4.9 ± 0.5a 75.3 ± 2.7a 

C LPI-MD 91.1 ± 0.0b 17.4 ± 0.5ab 7.3 ± 0.9ab 5.7 ± 0.1a 71.3 ± 0.4a 

D LPI-MD-L 39.7 ± 0.7c 83.8 ± 3.0c 16.6 ± 1.9c 5.5 ± 0.7a 72.3 ± 3.3a 

E LPI-MD-L 54.1 ± 0.1d 37.1 ± 1.2d 13.0 ± 1.0bc 8.5 ± 1.2b 57.5 ± 6.0b 

F LPI-MD-SA NS 58.8 ± 3.8e 48.9 ± 0.1d 2.4 ± 0.0c 87.9 ± 0.2c 

G LPI-MD-L-SA NS 18.4 ± 0.6ab 172.2 ± 9.8e 11.5 ± 1.7d 42.3 ± 8.5d 

H LPI-MD-L-SA NS 19.1 ± 0.3a 53.6 ± 1.2d 5.5 ± 0.3a 72.4 ± 1.4a 
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with LPI-MD (Strategies A-C, Table 4.3), possibly since the higher concentration lead to the 

formation of phospholipid micelles within the emulsion. 

  The addition of sodium alginate (SA) to the LPI-MD [Strategy F, Tables 4.1 (b and 

c)] resulted in improved emulsion stability from ~92% to ~100% relative to the LPI-MD 

formulations, increased droplet size from ~17 µm to ~59 µm and increased viscosity from ~7 

mPa s to ~49 mPa s (p < 0.05). Emulsion stability was improved, postulated due to the 

significant rise in viscosity relative to the LPI-MD emulsions. Upon spray drying, surface oil 

was at a minimum (~2.4%) and entrapment efficiency was the maximum (~88%) relative to 

the other capsule formulations. Sodium alginate in the proposed design is expected to act in 

two ways: (1) during emulsion formation, the primary emulsion is stabilized by LPI at the 

oil-water interface. At pH 3.0, LPI has positive charges. During the second homogenization 

step, the negatively charged alginate polysaccharide forms an electrostatic complex with the 

LPI (Guzey and McClements, 2006; Chang et al., 2015), leading to the condensation of the 

alginate on the droplet surface forming a complex matrix. The thicker interfacial membrane 

would prevent droplet coalescence via electrostatic repulsion and steric stabilization. 

Maltodextrin is considered as a hydrophilic non-ionic polysaccharide, therefore is not thought 

to contribute to the opposite charge adsorption (Carvalho et al., 2014). And (2) alginate is 

very hydroscopic and acts as a thickener to increase the viscosity of the continuous phase of 

the emulsion, limiting the diffusion of oil droplets and decelerating the velocity of 

gravitational separation (Zhang et al., 2015a). The addition of lecithin to the LPI-MD-SA at 

the 3% concentration [Strategy G, Tables 4.1 (b and c)] acted to lower droplet size from ~59 

µm to ~18 µm and raise viscosity from ~49 mPa s to ~172 mPa s (p < 0.05), without 

impacting emulsion stability (p > 0.05). Surface oil was also increased ~5 fold to ~11.5% and 

entrapment efficiency was reduced from ~88% to ~42% (p < 0.05). The substantial rise in 

viscosity with this formulation is proposed to be associated with a combination of micelles, 

aggregated protein-protein and protein-alginate aggregates within the continuous phase as the 

lecithin outcompetes with the protein to reside on the interface. The 1% lecithin level 

[Strategy H, Tables 4.1 (b and c)] showed a similar trend, but was less effective. 

 

4.4.3. Comparison between LPI-MD and LPI-MD-SA microcapsules with entrapped oils 

  Based on the previous experiments, the capsule comprised of LPI-MD-SA [Strategy 

F, Tables 4.1 (b and c)] was selected, along with LPI-MD [Strategy B, Tables 4.1 (b and c)] as 

a control were studied further in terms their physical properties, their ability to against 

degradative oxidative reactions during storage and morphology. 



65 
 

  The physical properties (e.g., moisture content, water activity, color, wettability and 

particle size) of the LPI-MD and LPI-MD-SA microcapsules are shown in Table 4.4. 

Microcapsules having high moisture levels may lead to caking/agglomeration of dried 

powder, and lipid oxidation to induce off flavors (Lim et al., 2012). Those with high water 

activity could increase the risk of microbial spoilage and result in shorter shelf-life 

(Sun-Waterhouse et al., 2013). In the current study, LPI-MD microcapsules had significantly 

(p < 0.05) higher moisture content and water activity than LPI-MD-SA microcapsules, 

probably due to the greater amount of maltodextrin which abides water. The moisture content 

of the developed LPI-MD-SA microcapsules (~3.50%) falls within the desired range (3-4%) 

for shelf stable dried powders in the food industry (Klinkesorn et al., 2005). The L (lightness), 

a (redness), and b (yellowness) color values are also reported in Table 4. LPI-MD 

microcapsules were found to be slightly yellower in color than LPI-MD-SA microcapsules, as 

the b value (~7.15) was significantly (p < 0.05) higher than the LPI-MD-SA microcapsules 

(~5.57), most likely due to the higher surface oil content on LPI-MD microcapsules. The 

wettability of microcapsules is primarily influenced by particle size and wall materials, and 

can have a big impact on the dissolution and release of active ingredients (Vasisht, 2014). 

LPI-MD microcapsules were found to have better wettability than LPI-MD-SA microcapsules 

(Table 4.4) postulated because of the higher levels of maltodextrin present. Particle size of the 

LPI-MD and LPI-MD-SA microcapsules were similar (< 10 µm) (p > 0.05), and in the range 

of the desired particle size (< 40 μm) for microcapsules in the food industry (Koc et al., 2015). 

Particle size is an important parameter contributing to the flowability, compressibility, bulk 

density, and oxidative stability of the microcapsules (Koc et al., 2015). McNamee et al. (1998) 

reported that particle size of microcapsules could be affected by the size of nozzle, feeding 

rate, air pressure, and total solid content. In this study, all of emulsions were spray dried 

under same conditions, regardless of wall materials used. 

  The ‘peroxide value’ test is an indicator of primary lipid oxidation associated with 

the production of hydroperoxides, whereas ‘TBARS’ test is used to measure secondary lipid 

oxidation products, such as aldehydes, ketones, cyclic compounds, alcohols, and 

hydrocarbons (Pegg, 2005). Oxidative stability of the LPI-MD and LPI-MD-SA 

microcapsules in comparison with the free canola oil is presented in Figure 4.1. An analysis 

of variance indicated that both peroxide value and TBARS value of the microcapsules were 

affected by wall materials and storage time, along with their interaction (p < 0.05). Overall, 

the free canola oil and the encapsulated oil in LPI-MD microcapsules experienced similar (p > 
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Table 4.4. Physical properties of selected microcapsules. Data represent the mean ± one standard deviation. Different small letters in the same 

column indicate a significant difference (p ≤ 0.05). Abbreviations include: lentil protein isolate (LPI), maltodextrin (MD), and 

sodium alginate (SA). 

 

Strategy Formulations Moisture 

(%) 

Water activity Color Wettability Particle size 

(μm) L a b 

B LPI-MD 4.30 ± 0.17a 0.42 ± 0.00a 91.71 ± 0.39a 0.38 ± 0.07a 7.15 ± 0.11a Good 9.15 ± 0.29a 

F LPI-MD-SA 3.50 ± 0.09b 0.36 ± 0.01b 92.43 ± 0.31a 0.12 ± 0.03b 5.57 ± 0.25b Fair  9.04 ± 0.11a 
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Figure 4.1. Changes in (A) peroxide value (PV) and (B) 2-thiobarbituric acid reactive 

substances (TBARS) for the free and encapsulated canola oil in LPI-MD and 

LPI-MD-SA microcapsules over 30 d of storage. Data represent the mean ± one 

standard deviation (n = 3). Abbreviations include: lentil protein isolate (LPI), 

maltodextrin (MD), and sodium alginate (SA). 
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0.05) oxidative stability, which were significantly (p < 0.05) less stable than oil entrapped 

within the LPI-MD-SA microcapsules. LPI-MD-SA microcapsules had a significantly (p < 

0.05) lower peroxide value than LPI-MD microcapsules and free oil over the 30 d storage 

period. In all cases, the peroxide values were gradually increased during storage from ~1.5 to 

~7.5 meq active O2 kg-1 for the oil entrapped within LPI-MD capsules and the free oil; and 

from ~1.5 to ~5 meq active O2 kg-1 for the oil entrapped within the LPI-MD-SA capsules over 

the 30 d storage period [Figure 4.1 (A)]. In contrast, TBARS values for the oil entrapped 

within both microcapsules and the free oil were similar (p > 0.05) over the first 20 d of 

storage. However, by day 25, TBARS values for both of the free canola oil and that entrapped 

within the LPI-MD microcapsule significantly increased relative to the oil entrapped within 

the LPI-MD-SA microcapsule (p < 0.05), which remained unchanged from early times 

[Figure 4.1 (B)]. A possible reason why the LPI-MD-SA microcapsules are better may be due 

to: (a) the larger droplet sizes than the LPI-MD emulsions (Table 4.3) that would have less 

surface area to limit the contact between oil and oxygen (Heinzelmann and Franke, 1999); (b) 

the lower surface oil and better entrapment efficiency than the LPI-MD microcapsules (Table 

4.3); and (c) the thicker complex interface. Labuza et al. (1972) also suggested that when 

water activity is close to 0.3, lipid oxidation was limited, which contribute to the better 

oxidative stability of LPI-MD-SA microcapsules (aw of ~0.36) versus the LPI-MD 

microcapsules (aw of ~0.42). In the present study, peroxide value of the encapsulated oil in 

LPI-MD-SA microcapsules after 30 days storage met the desired industry target (5 meq 

active O2 kg-1) (Nickerson et al., 2014). 

  The morphology of emulsions prepared with a) LPI, b) LPI-MD, c) LPI-SA and d) 

LPI-MD-SA stabilizing solutions, imaged by CLSM is given in Figure 4.2 (a). Without 

maltodextrin, the LPI only solution resulted in oil droplets (red color staining) with a wide 

droplet distribution dispersed within the protein solution (green color staining) [Figure 4.2 

(a-A)]. It is postulated the LPI binds to the oil-water interface as evident by well-defined 

darker edges around each droplet, which are then further surrounded by a LPI-rich continuous 

phase [Figure 4.2 (a-A)]. The large dark circles within the image represent air bubbles. The 

addition of maltodextrin created smaller, more uniformly distributed oil droplets (red color 

staining) with similar morphology as without maltodextrin [Figure 4.2 (a-B)]. The addition of 

sodium alginate to the LPI solution (without maltodextrin) resulted in a more structured 

continuous phase with larger green aggregates most likely comprised of LPI-SA electrostatic 

complexes formed under the acidic conditions [Figure 4.2 (a-C)]. The addition of 

maltodextrin to the solution, led to a more uniform continuous phase with fewer large LPI-SA  
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a. Confocal laser scanning microscopy images of emulsions. 

 
 

b. Scanning electron microscopy images of microcapsules. 

 
 

Figure 4.2. Confocal laser scanning microscopy images of the emulsions (a) and scanning 

electron microscopy images (at 8000 × magnification) of the microcapsules (b) 

prepared by LPI (A), LPI-MD (B), LPI-SA (C) and LPI-MD-SA (D). 

Abbreviations include: lentil protein isolate (LPI), maltodextrin (MD), and 

sodium alginate (SA).  
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structures, postulated due to a disruption of protein-polysaccharide interaction in the presence 

of maltodextrin [Figure 4.2 (a-D)]. Based on the CLSM images, it is difficult to discern the 

distribution of sodium alginate chains within LPI-MD-SA stabilized emulsions, whether a 

mixed interfacial film or a bilayer is formed. 

  To resolve this, the surface morphology of a) LPI, b) LPI-MD, c) LPI-SA, and d) 

LPI-MD-SA microcapsules were imaged by SEM after spray drying, and shown in Figure 4.2 

(b). All microcapsules exhibited spherical geometry and irregular surface with various size 

that are typical characteristics resulting from the spray drying process (Carvalho et al., 2014). 

Without maltodextrin, the microcapsules prepared with LPI (only) were spherical shaped and 

had smooth surface. The capsules showed few indentations indicating the microcapsules had 

thinner walls with lower retention of the core material [Figure 4.2 (b-A)]. LPI-MD 

microcapsules were characterized by deeper invaginations and wrinkles with slight 

agglomerations [Figure 4.2 (b-B)], whereas LPI-SA microcapsules presented larger particles 

with relative smooth surface with few concavity [Figure 4.2 (b-C)]. Theoretically, 

invagination and concavity are considered as the result of uneven shrinkage of the wall 

during spray drying (Sheu and Rosenberg, 1998). It is postulated that the more tightly bound 

wall of the LPI-SA microcapsules caused less invaginations than the LPI-MD microcapsules. 

In general, capsules with greater amounts of invaginations result in poor reconstitution and 

greater surface area. The latter allows higher air permeability through the wall, to reduce the 

effectiveness of protection from degradative oxidative reactions (Rosenberg and Sheu, 1996; 

Walton and Mumford, 1999). The addition of maltodextrin on the combination of LPI and 

sodium alginate greatly strengthened the wall structure and resulted in the thicker wall 

material to encapsulate the oil with relative rough surface [Figure 4.2 (b-D)], which indicates 

the LPI-MD-SA microcapsules had lower air permeability and better protection to the core 

material. According to the SEM images, the combination of LPI, maltodextrin, and sodium 

alginate formed stronger wall structure to protect the oil from deteriorative oxidative 

reactions in comparison with LPI-MD microcapsules, which was also demonstrated in Figure 

4.1. The increased surface roughness on the LPI-SA [Figure 4.2 (b-C)] and LPI-MD-SA 

[Figure 4.2 (b-D)] microcapsules relative to the LPI-MD microcapsules [Figure 4.2 (b-B)] 

suggests that a bi-layer type wall material is more probable.  
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4.5. Conclusions 

  Overall, the LPI-based wall material comprised of 2% LPI, 17 % maltodextrin and 1% 

sodium alginate with a 20% oil proved to be the most effective encapsulation design from the 

current study, which greatly increased the oil concentration comparing with the lentil 

protein-based microcapsules developed by Can Karaca and co-workers (2013a) to 

encapsulate 10% flaxseed oil. The wall material was found capable to offering protection to 

against degradative oxidative reactions much better than LPI-MD alone, suggesting that a 

plant protein wall material needs to be strengthened by means of electrostatic complexation 

with an opposite charged polysaccharide to reduce the level of wall shrinkage during spray 

drying. Although the production of microcapsules using a benchtop spray dryer should be 

explored for its scale up potential, the capsule design could be incorporated into a wide range 

of food products, ranging from dairy, to snack foods and baked good applications, and also be 

used as a feed supplement to enhance the delivery of healthy oils. 

 

4.6. Linkage 

  LPI-based microcapsules were prepared with different concentrations of LPI and 

maltodextrin as wall materials, and preparation methods to entrap 20 and 30% of canola oil, 

in which the combination of LPI, maltodextrin, and sodium alginate was demonstrated as the 

best capsule design to encapsulate 20% oil, because it offered the highest entrapment 

efficiency (~88%), good physical properties, and protective nature against oxidation. The 

focus of the third study of this research project was to encapsulate different omega fatty 

acids-rich oils (e.g., canola oil, fish oil, and flaxseed oils) using the combination of LPI, 

maltodextrin, and sodium alginate in the previous study, and to investigate the physical 

properties of microcapsules, storage stability, and in vitro release behavior of the 

encapsulated oils, in order to further determine its potentiality to be used as a universal 

platform to deliver healthy oils.  
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5. STABILITY AND IN VITRO RELEASE BEHAVIOR OF ENCAPSULATED 

OMEGA FATTY ACIDS-RICH OILS IN LENTIL PROTEIN ISOLATE-BASED 

MICROCAPSULES 

 

5.1. Abstract 

  The objective of this study was to investigate the use of a lentil protein isolate-based 

microcapsule design as a platform for entrapping different types of omega fatty acids-rich oils 

(e.g., canola, fish, and flaxseed oils), and to characterize differences in the physical properties 

(e.g., moisture content, water activity, color, wettability, particle size, surface oil, and 

entrapment efficiency), storage stability, and in vitro release behavior of the entrapped oils. 

All microcapsules displayed similar physical properties regardless of the core material. Free 

fatty acid content, peroxide value, 2-thiobarbituric acid reactive substances, and Rancimat 

test were investigated between the free and encapsulated oils to determine protective effects 

from microencapsulation, and found the wall material provided the greatest protective effect 

to fish oils relative to the others. Overall, only a minor amount of encapsulated oil 

(~3.2-8.9%) was released within simulated gastric fluid, with the majority (~62.6-73.4%) 

being released after sequential exposure to simulated intestinal fluid, which promoted the 

release of polyunsaturated fatty acids.  

 

5.2. Introduction 

  Oils rich in omega fatty acids (e.g., omega-3, -6 and -9) are of high economic 

importance to the food industry, due to their roles in the prevention of cardiovascular 

diseases, hypertension and diabetes, and in brain and ocular development during fetal and 

infant growth (Larsen et al., 2011). Over the last few decades, an increasing number of 

studies have focused on metabolic relationships, nutritional benefits, handling and 

distribution, and recommend intakes of long chain polyunsaturated fatty acids (PUFAs) from 

plant and marine origins, particularly linoleic acid, α-linolenic acid (ALA), eicosapentaenoic 

acid (EPA) and docosahexaenoic acid (DHA). Canola and flaxseed oils typically contain 

5-10% and 45-55% of ALA, respectively. EPA and DHA are mainly present in fish oils at 

different amounts and ratios depending on various metabolic characteristics of the fish itself.
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Most commercial fish oils are formulated to have 30% EPA and DHA at a ratio of 1.5:1 

(Calder, 2013). However, their susceptibility to degradative oxidative reactions can lead to 

rancidity, off-flavors, off-odours, loss in the bioavailability and poor product quality 

(Nickerson et al., 2014). Furthermore, the immiscibility of the oils in various aqueous 

products causes significant challenges in food formulations. To help circumvent these 

challenges, microencapsulation can be applied to entrap the oils within a physical barrier to 

help minimize fatty acid degradation. 

  Microencapsulation is defined as a technology that utilizes proteins, carbohydrates, 

or lipids to enclose or package active core ingredients (e.g., essential fatty acids, antioxidants, 

vitamins, and flavors) within matrices in the diameter range of micro- to millimeter. The 

technology helps to improve the handling properties of the oils, control their release during 

transit through the gastrointestinal tract, mask the undesirable flavours, and offer protection 

from environmental factors (e.g., temperature, air, moisture, and light) present during food 

processing and storage (Desai and Park, 2005). Microencapsulation of fish, flaxseed and 

canola oils using different proteins-based wall materials (e.g., chickpea protein isolate, lentil 

protein isolate, and sodium caseinate) has been studied previously (Can Karaca et al., 2013a; 

Gallardo et al., 2013; Pourashouri et al., 2014; Goyal et al., 2015; Chang et al., 2016). 

However, more intense research is being focused towards the use of plant proteins in order to 

address changing consumer demands and niche markets (e.g., vegan) (Pelser et al., 2007; Can 

Karaca et al., 2013a; Chang et al., 2016). Lentil protein is one of the plant-based alternatives 

to animal derived proteins that has potential as an encapsulating agent, because of its 

excellent emulsifying properties, low cost, good nutritional value and low risk of allergen 

(Boye et al., 2010a). Can Karaca et al. (2013a) found lentil protein (20%)-maltodextin (70%) 

wall materials were able to entrap flaxseed oil to give low surface oil (~1.1%) and high 

entrapment efficiencies (~90.4%), however the payload (also known as oil concentration) 

remained low (10%). Chang and co-workers (2016) investigated different wall formulations 

and emulsion preparation conditions for entrapping canola oil using a benchtop spray dryer. 

The authors found that a wall material comprised of 8% lentil protein isolate, 4% sodium 

alginate and 68% maltodextrin provided the best capsule formulation to give low surface oil 

(~2.4%), high entrapment efficiencies (~87.9%) and good protection to against oxidation 

over a 30 d storage study. Payloads were also increased to 20%. 

  The overall goal of this research was to build on work by Chang et al. (2016), to 

investigate the effect of oil-type on the physical characteristics, stability properties (against 

oxidation), and in vitro release behavior of encapsulated oils from microcapsules containing 
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LPI, sodium alginate and maltodextrin as the wall material. Further, changes to the fatty acid 

profile throughout processing and release were examined to determine if some fatty acids had 

a greater affinity to the protein matrix than others. Evaluation of the different oil-types from 

the wall material will describe its utility as a universal platform for delivering healthy oils in 

food products. 

 

5.3. Materials and methods 

5.3.1. Materials 

  In the microcapsules, the core materials used included canola, fish, and flaxseed oils, 

in which both of fish and flaxseed oils were procured from Bioriginal Food and Science 

Corp. (Saskatoon, SK, Canada), whereas canola oil was obtained from a local supermarket. 

The combination of LPI, maltodextrin, and sodium alginate was selected as the wall material 

based on the work by Chang et al. (2016), in which LPI [containing 78.97% (%N × 6.25) of 

protein, 0.49% of lipid, 6.24% of moisture, 7.19% of ash, and 7.11% of carbohydrates on wet 

basis] and maltodextrin [MALTRIN M100, dextrose equivalent (DE) of 9.0-12.0] were 

produced by POS Bio-Sciences (Saskatoon, SK, Canada) and the Grain Processing 

Corporation (Muscatine, IA, USA), respectively, whereas sodium alginate and other 

chemicals (on analytical grade) were purchased from Sigma-Aldrich, Canada. A Millipore 

Milli-QTM water purification system (Millipore Corporation, Milford, MA, USA) was used to 

prepare Milli-Q water.  

 

5.3.2. Preparation of a lentil protein isolate 

  Lentil protein isolate was produced at POS Bio-Sciences pilot scale facility using 

their commercial alkaline extraction and isoelectric precipitation process. In brief, flour was 

dispersed in water at a 1:10 (w/w) flour to water ratio and pH adjusted to 9.5 using 1.0 M 

NaOH for 1 h at room temperature. Insolubles were recovered via centrifugation, whereas the 

supernatant was subsequently adjusted to pH 4.5 using 0.1 M HCl to induce the precipitation 

of proteins. Proteins were then neutralized followed by spray drying. 

 

5.3.3. Microcapsules preparation 

  The microcapsules were prepared using a wall material comprised of LPI, 

maltodextrin, and sodium alginate, but with different core materials (e.g., canola, fish, and 

flaxseed oils). All capsules were produced using a two-step process: emulsion preparation 

followed by spray drying, as described by Chang et al. (2016). In brief, LPI (2% w/w in the 
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emulsion, the concentration was corrected for protein level within the powder) was dissolved 

in Milli-Q water and adjusted to pH 3.0 with 2.0 M HCl or 2.0 M NaOH. Afterwards, the 

protein solution was stirring at 500 rpm for overnight at 4 °C, followed by re-adjustment of 

pH to 3.0. The aqueous solutions of other wall materials [e.g., maltodextrin (17% w/w in the 

emulsion) and sodium alginate (1% w/w in the emulsion)] were prepared by dispersing them 

in Milli-Q water for 3 h at room temperature (22-23 °C). The primary oil-in-water emulsion 

was prepared by homogenizing the oil (5% w/w in the emulsion) with the LPI solution using 

a Polytron PT 2100 Homogenizer (Kinematica AG, Lucerne, Switzerland) equipped with a 

12 mm PT-DA 2112/2EC generating probe at 15,000 rpm for 5 min. Subsequently, the 

sodium alginate solution was mixed with the primary emulsion for 10 min at 500 rpm, 

followed by the homogenization at 15,000 rpm for 3 min to produce the secondary emulsion. 

The tertiary emulsion was prepared in the same manner as described in the preparation of 

secondary emulsion by using the mixture of maltodextrin solution and the secondary 

emulsion.  

  The microcapsules (1:4 of core/wall material ratio) were produced by spray drying 

the tertiary emulsion using a laboratory-scale Buchi Advanced Mini Spray Drier B-290 

(Buchi Labortechnik AG, Flawil, Switzerland) equipped with an atomizing nozzle (0.7 mm 

diameter). The inlet temperature was adjusted to 180 °C, and the outlet temperature was 

stabilized at 85 ± 1 °C by controlling the sample flow rate (5-20%). The spray dryer had 35 

m3/h of air flow rate and 5 bars of compressed air pressure. The emulsion was continuously 

stirring at 300 rpm to maintain homogeneity and avoid destabilization when pumping into the 

sample chamber (65 × 110 × 70 cm). The production of microcapsules was performed in 

triplicate.  

 

5.3.4. Physical properties 

  For moisture content measurements, 0.5 g of microcapsules were dried in a 

convection oven (APTLine ED, Binder GmbH, Tuttlingen, Germany) at 105 °C for ~12 h. 

The dried microcapsules were then weighted using an analytical balance (Sartorius, USA) 

with precision of 0.0001 g to determine the moisture content based on weight difference. An 

AquaLab 4TX water activity meter (Decagon Devices, Inc., Pullman, WA, USA) was used to 

assess the water activity of microcapsules at 22 °C. For color measurements, a ColorFlex EZ 

45/0 Colorimeter (Hunter Associates Laboratory, Inc., Reston, VA, USA) was used to 

determine the color of microcapsules based on CIE tristimulus value system, in which the 

color of microcapsules was expressed as L (lightness), a (red – green), and b (blue – yellow). 
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For particle size measurements, 1 g of microcapsules were suspended under agitation to 

determine the particle size using a laser diffraction-based particle analyzer (LS 13 320 SW 

Particle Size Analyzer, Beckman Coulter, Inc., Brea, CA, USA). A Universal Liquid Module 

was selected as a sample module and particle size was recorded as volume-mass diameter 

(d4,3) (Chang et al., 2016).  

  For wettability measurements, 1 g of microcapsules were transferred into 80 mL of 

Milli-Q water through a sieve [#12 (1.70 mm) Tyler mesh filter, Mentor, OH, USA]. The 

dissolving behavior of microcapsules was observed for 30 min, followed by stirring at 500 

rpm for 1 min, to determine the wettability of microcapsules into 4 levels [e.g., excellent (the 

microcapsules completely wet as contacting with water, and dissolve after 30 min), good (the 

microcapsules partly wet as contacting with water, and precipitate after 30 min), fair (the 

microcapsules slightly wet as contacting with water, and partly float on the surface of water 

after 30 min), and poor (the microcapsules hardly wet as contacting with water, and mostly 

float on the surface of water after 30 min)] (Balmaceda et al., 1976). 

  Surface oil of microcapsules was determined according to the method of Chang et al. 

(2016). In brief, 15 mL of hexane was added to 1 g of microcapsules in a 50 mL beaker and 

mixed well for 15 s to extract the surface oil. The solvent mixture was filtered through #3 

Whatman filter paper (Whatman International Ltd., Maidstone, UK), followed by the 

evaporation of organic solvent in a 50 mL beaker under a fume hood for ~12 h. Finally, the 

residual organic solvent was dried in a convection oven (APTLine ED, Binder GmbH, 

Tuttlingen, Germany) at 105 °C for 30 min, and the surface oil of microcapsules was 

calculated gravimetrically. The entrapment efficiency (EE) was calculated by the method 

given by Anwar and Kunz (2011) as follows:  

 

EE = (Total oil – Surface oil) / Total oil × 100%            [5.1.] 

 

where total oil is 20% (w/w) oil in the microcapsules.  

  Data for all physical tests was reported as the mean ± one standard deviation from 

triplicate microcapsule preparations (n = 3).  

 

5.3.5. Stability test 

Oil extraction 

  For monitoring storage stability, the microcapsules (8 g) and the free oils (4 g) were 

stored in sealed glass bottles at room temperature (22-23 ºC) in the absence of light for 1 
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month. The hydrolytic stability [e.g., free fatty acid (FFA) content] and the oxidative stability 

[e.g., peroxide value (PV) and 2-thiobarbituric acid reactive substances (TBARS)] of the 

encapsulated and free oils were investigated on every 5 days during storage. The 

encapsulated oil was extracted prior to the measurement according to the methods of Can 

Karaca et al. (2013a) and Klinkesorn et al. (2005) with some modifications. Briefly, Milli-Q 

water (60 mL) was added to 8 g of microcapsules and stirred at 500 rpm for 5 min. The 

resulting solution was then extracted with 100 mL of hexane/isopropanol (3:1, v/v) under 

stirring for 15 min and centrifuged (Sorvall RC Plus Superspeed Centrifuge, Thermo Fisher 

Scientific, Asheville NC, USA) at 4,193 × g for 10 min. The clear organic phase was 

collected. After filtration (#1 Whatman filter paper, Whatman International Ltd., Maidstone, 

England) through anhydrous Na2SO4, the solvent was evaporated under a stream of nitrogen 

in the fume hood to collect the encapsulated oil for further experiments.  

 

Free fatty acid (FFA) 

  The FFA contents in the encapsulated and free oils were determined using the direct 

titration method according to AOCS (2000). In brief, the oil sample (1 g) was dissolved into 

ethyl alcohol (25 mL), followed by the addition of phenolphthalein indicator (50 μL). The 

resulting solution was then titrated with 0.01 N NaOH until the faint permanent pink color 

appeared. FFA contents of the encapsulated and free oils were calculated using the following 

formula:  

 

FFA (%) = [(V × N × 282.46) / W] × 100                [5.2.] 

 

where V is the volume (L) of NaOH solution used for titration, N is the normality of NaOH 

solution, and W is the oil weight (g). Data was reported as the mean ± one standard deviation 

from triplicate microcapsule preparations (n = 3).  

 

Peroxide value (PV) 

  The PV of the encapsulated and free oils was determined by an iodometric titration 

method to measure the iodine produced from the reaction between potassium iodide and the 

peroxides present in the oil samples (Kolanowski et al., 2004). In brief, 0.2 g of the oil 

sample was dissolved into 30 mL of acetic acid/chloroform (3:2, v/v) mixture, followed by 

the addition of 0.5 mL of saturated potassium iodide. After that, the mixture was occasionally 

shaken for 1 min to liberate iodine. 30 mL of Milli-Q water and 0.5 mL of starch indicator 
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(1%, w/v) were then added to stop the reaction and produce the violet color, respectively. 

Finally, the liberated iodine was titrated with 0.001N sodium thiosulfate (Na2S2O3) until the 

solution became colorless. A blank sample was carried out through all the steps. PV of the oil 

sample was calculated as (Pegg, 2005): 

 

PV = (S – B) × N × 1000 / W                     [5.3.] 

 

where S is the volume (mL) of Na2S2O3 solution used for the titration of oil samples, B is the 

volume (mL) of Na2S2O3 solution used for the titration of the blank (without oil samples), N 

is the normality of Na2S2O3 solution, and W is the oil sample weight (g). Data was reported 

as the mean ± one standard deviation from triplicate microcapsule preparations (n = 3).  

 

2-Thiobarbituric acid reactive substances (TBARS) 

  The TBARS values of the encapsulated and free oils were measured based on the 

reaction of 2-thiobarbituric acid (TBA, a chromogenic reagent) with malondialdehyde (MDA, 

a compound resulting from secondary lipid oxidation) to produce a pink chromophore with 

absorbance maximum at 532 nm. In brief, the sample was prepared by dissolving the 

encapsulated or free oil (40 mg) in 2-butanol in a 10 mL of volumetric flask. 

1,1,1,3,3-tetraethoxypropane (TEP, 100 μM) was diluted in 2-butanol in a 10 mL of 

volumetric flask to prepare MDA standards (1.25-50.00 μM). In a 2.0 mL of Eppendorf tube, 

200 μL of the sample, the MDA standard, or 2-butanol (presented as a blank) was mixed with 

50 μL of 8.1% (w/v) sodium dodecyl sulfate (SDS), 375 μL of 20% (v/v) acetic acid (at pH 

3.5), 375 μL of 0.8% (w/v) TBA, and 8.25 μL of 0.02% (w/v) butylated hydroxytoluene 

[BHT, in dimethyl sulfoxide (DMSO)]. Afterwards, the reaction was induced by heating the 

mixture at 95 °C for 1 h in a water bath, in order to accelerate the reaction to reach the 

maximum color development. After cooling in cold water, 0.9 mL of 2-butanol/pyridine 

(15:1, v/v) was added into the Eppendorf tube and vigorously mixed for 30 s to extract the 

chromophore, followed by the centrifugation (Eppendorf Centrifuge 5424, Hamburg, 

Germany) at 4,000 × g for 10 min. The absorbance of the upper organic layer at 532 nm was 

recorded against a 2-butanol blank. Finally, the TBARS value of the sample was reported as 

MDA content (nmol)/sample oil weight (mg), which was calculated using the standard curve 

(obtained from MDA standards) and the absorbance of the sample (Akhlaghi and Bandy, 

2010; Pegg, 2005). Data was reported as the mean ± one standard deviation from triplicate 

microcapsule preparations (n = 3). 
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Oxidative stability index (OSI) 

  The OSI of the encapsulated and free oils with and without antioxidants [e.g., 

butylated hydroxytoluene (BHT) and tert-butylhydroquinone (TBHQ)] was estimated right 

after the microcapsules’ preparation using a Rancimat (Model 679, Metrohm, Herisau, 

Switzerland). In brief, synthetic antioxidants (0.02% w/w) were dissolved into the oil and 

stirring for 1 h in a dark cooling room (4 oC) before the Rancimat test. 3 g of microcapsules 

or oils (e.g., free oils, oils with BHT, and oils with TBHQ) were exposed to a stream of air 

(20 L/h of flow rate) at 100 ºC to accelerate the oxidative reaction. The volatile oxidation 

products were then collected and dissolved into distilled water to increase the conductivity. 

Finally, the induction period, which is defined as the time taken to reach an inflection point 

on the curve of conductivity versus time (h), was recorded and expressed as the OSI (AOCS, 

1994). Data was reported as the mean ± one standard deviation from triplicate microcapsule 

preparations (n = 3).  

 

5.3.6. In vitro release behavior 

  In vitro release behavior of the encapsulated oil under a simulated gastrointestinal 

model was studied according to the method of Burgar et al. (2009) with some modifications. 

Simulated gastric fluid (SGF) was prepared by dissolving 3.2 g of pepsin in 1000 mL of the 

salt solution (at pH 1.2), which included 2 g of NaCl, 7 mL of 36% (v/v) HCl, and Milli-Q 

water (to make up the volume to 1000 mL). Simulated intestinal fluid (SIF) was prepared by 

dissolving 6.8 g of monobasic potassium phosphate (KH2PO4) and 77 mL of 0.2 N NaOH in 

750 mL Milli-Q water, followed by the addition of 10 g of pancreatin. The mixture was then 

adjusted to pH 6.8 using 1.0 M NaOH, and the final volume was made up to 1000 mL with 

Milli-Q water. Both of SGF and SIF were stored at 4 °C for further use.  

  For exposure to SGF, 3 g of microcapsules was mixed with 30 mL of SGF and 

incubated in a water bath at 37 °C and 100 rpm for 2 h. The solid particles were then 

removed by the filtration of the solution through #1 Whatman filter paper (Whatman 

International Ltd., Maidstone, England). Subsequently, the resulting solution was mixed with 

hexane at 1:1 (v/v) ratio for 15 min, followed by the centrifugation (Sorvall RC Plus 

Superspeed Centrifuge, Thermo Fisher Scientific, Asheville NC, USA) at 9,100 × g for 10 

min. The organic phase was collected and the aqueous phase was re-extracted by hexane at 

1:1 (v/v) ratio. Finally, the organic phase was filtered through #1 Whatman filter paper 

(Whatman International Ltd., Maidstone, England) with anhydrous Na2SO4, and the organic 

solvent was evaporated under a stream of nitrogen in a fume hood. The amount of released 
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oil was determined gravimetrically. For exposure to SGF and SIF in sequence, 3 g of 

microcapsules was dissolved in 30 mL of SGF and incubated under same conditions for 2 h, 

followed by the pH adjustment to 6.8 using 1.0 M NaOH. The addition of SIF (30 mL) was 

then applied, and incubating the mixture under same condition for 3 h. The amount of 

released oil was determined gravimetrically as described above. Data was reported as the 

mean ± one standard deviation from triplicate microcapsule preparations (n = 3). 

 

5.3.7. Fatty acid composition 

  To determine changes to the fatty acid profiles of the free oils, oils directly after 

encapsulation (extracted as described previously in section 5.3.5.), and those released (from 

SGF and SGF + SIF treatments), the content of fatty acid methyl esters (FAMEs) was 

measured using a gas chromatography (model 7890A, Agilent Technologies, Inc., Santa 

Clara, CA, USA) equipped with a 30 m cis/trans FAME column (DB-23, Agilent 

Technologies, Inc., Santa Clara, CA, USA) and detected by a hydrogen ionization detector 

(model 6850, Agilent Technologies, Inc., Santa Clara, CA, USA). In brief, FAMEs of the oil 

samples were obtained by trans-methanolation treatment of 0.008 g of the oil sample in 2 mL 

of methanolysis reagent [H2SO4:methanol = 1:99 (v/v)] at 100 °C in a gravity convection 

oven (APTLine ED, Binder GmbH, Tuttlingen, Germany) for 30 min. The chromatographic 

column was initially warmed at 160 °C for 30 min and then increased to 240 °C. All the 

studied FAMEs were adequately separated in 30 min under these conditions. The fatty acid 

composition was identified by comparing the retention time with the standard (PUFA-2, 

purchased from Sigma-Aldrich). Data was reported as the mean ± one standard deviation 

from triplicate microcapsule preparations (n = 3). 

 

5.3.8. Statistics 

  The results were expressed as the mean ± one standard deviation of three 

independent microcapsule preparations. One-way analysis of variance (ANOVA) was 

performed to evaluate the effect of oil type, treatments (e.g., free oils, oils after spray drying, 

released oils under SGF, and released oils under SGF + SIF) and antioxidants on the physical 

properties, fatty acid composition, and OSI, respectively. Two-way ANOVA with Tukey Post 

Hoc test was completed to determine the effect of oil type and storage time/treatments on the 

stability properties (e.g., FFA, PV, and TBARS) and in vitro release behavior. Statistical 

analysis was carried out by using the software Systat v10 (San Jose, CA, USA) at 95% 

confidence interval. 
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5.4. Results and discussion 

5.4.1. Physical properties of microcapsules 

  The physical properties of microcapsules prepared with different oil-types are shown 

in Table 5.1. An analysis of variance indicated that the physical properties (e.g., moisture 

content, water activity, wettability, particle size, surface oil, and entrapment efficiency) of 

microcapsules were not affected by oil-type (p > 0.05) with the exception of color (p < 0.05). 

Overall, microcapsules prepared with different oils had similar physical properties (moisture 

content: ~3.5%; water activity: ~0.35; wettability: fair; particle size: ~8.9 μm; surface oil: 

~2.4%; and entrapment efficiency: ~87.8%) (Table 5.1). In general, lipid oxidation is 

decelerated when water activity is in the range of 0.2-0.4 (Velasco et al., 2003), and the 

industrial moisture standard is in the range of 3-4% for shelf stable dried powder 

(Klinkersorn et al., 2005). It was observed that microcapsules containing flaxseed oil were 

more dark yellow in color than those containing fish oil, followed by those with canola oil, 

where its L value (~90.53) and b value (~10.28) were much lower and higher than other 

microcapsules, respectively (Table 5.1). This was most likely caused by visible differences in 

the color of the oil itself. Nykter et al. (2006) suggested that the color of oil can be affected 

by the amount of chlorophyll present, the microbial treatment used, and the deodorization 

process. Specifically, oil containing less chlorophyll (e.g., below 1 mg/kg of oil) is lighter 

yellow in color; the deodorization step during processing can decrease the yellow and red 

pigments in the oil; and fungal treatments can greatly increase the yellow and red pigments 

during the storage (Nykter et al., 2006).  

  Particle size is an important parameter, since it affects flowability, compressibility, 

bulk density, wettability and stability of the microcapsules (Koc et al., 2011). Koc and 

co-workers (2011) reported smaller particles (< 40 μm) are beneficial to decrease the 

oxidation level. In the current study, the particle size (~8.9 μm) was smaller relative to those 

reported in other studies (~12.9 μm) (Table 5.1), which maybe because of the lower total 

solid contents in the initial emulsions. Turchiuli et al. (2005) found that the particle size of a 

vegetable oil microcapsule prepared with maltodextrin and acacia gum was greatly increased 

from 18 μm to 85 μm as the total solid content increased from 30% to 50%. 
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Table 5.1. Physical properties of the microcapsules prepared in this study in comparison with other proteins-based capsules to deliver canola oil, 

fish oil, and flaxseed oil. Different small letters in the same column indicate a significant difference (p ≤ 0.05) in the current study. 

Abbreviations include: lentil protein isolate (LPI), maltodextrin (MD), sodium alginate (SA), whey protein isolate (WPI), whey 

protein concentrate (WPC), sodium caseinate (SC), chickpea protein isolate (ChPI), and skipjack roe protein hydrolysate (SRPH).  

Wall 
materials 

Core 
Oil 

Moisture 
(%) 

Water 
activity 

Color 
Wettability Particle size 

(μm) 
Surface oil 

(%) 

Entrapment 
efficiency 

(%) L a b 
A) Current study 

LPI, SA, 
and MD 

Canola  3.50 ± 0.09a 0.36 ± 0.01a 92.43 ± 0.31a 0.12 ± 0.03a 5.57 ± 0.25a Fair 9.04 ± 0.11a 2.43 ± 0.04a 87.85 ± 0.18a 

 Fish  3.47 ± 0.10a 0.34 ± 0.05a 91.11 ± 0.30b 0.11 ± 0.02a 7.30 ± 0.16b Fair 8.57 ± 0.42a 2.38 ± 0.42a 88.12 ± 2.10a 

 Flax- 
seed  

3.53 ± 0.46a 0.34 ± 0.03a 90.53 ± 0.23c 0.21 ± 0.04b 10.28 ± 0.12c Fair 8.99 ± 0.36a 2.52 ± 0.40a 87.38 ± 2.00a 

           
B) Literature works 

WPI1 Fish  1.48 ± 0.04 - - - - - 3.10 ± 0.00 - 75.65 ± 1.19 

SRPH2 Fish 1.66 ± 0.09 - - - - - 17.07 ± 0.57 - 13.00 

WPC and 
SC2 

Fish  1.13 ± 0.11 - - - - - 10.23 ± 0.10 - 70.00 

ChPI and 
MD3 

Flax-  
seed  

3.71 ± 0.46 0.06 ± 0.00 - - - - 24.00 2.64 ± 0.04 83.62 ± 0.40 

WPC and 
lactose4 

Flax- 
seed  

3.98 ± 0.13 0.36 ± 0.02 - - - - - 4.73 ± 0.16 86.77 ± 0.51 

SC and 
lactose4 

Flax- 
seed  

3.88 ± 0.09 0.35 ± 0.01 - - - - 10.01 ± 0.58 5.57 ± 0.09 84.51 ± 0.25 

References: 1Aghbashlo et al. (2013), 2Intarasirisawat et al., (2015), 3Can Karaca et al. (2013a), and 4Goyal et al. (2015).  
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  Surface oil can negatively impact the oxidative stability, wettability and dissolubility 

by resulting in the aggregation of microcapsules (Can Karaca et al., 2013a). The lower 

surface oil (~2.4%) and higher entrapment efficiency (~87.8%) observed in the current study 

relative to other works (surface oil of ~4.3% and entrapment efficiency of ~68.9%) (Table 

5.1) can be attributed to the formation of condensed and strong wall structure by LPI, sodium 

alginate and maltodextrin. It is reported that the electrostatic complex coating on the oil 

droplet was produced by the negatively charged sodium alginate and positively charged LPI, 

and maltodextrin improved drying properties of microcapsules (Chang et al., 2016).  

  Moreover, the fatty acid compositions of the free and encapsulated oils are shown in 

Table 5.2. It was proposed that high temperatures used during spray drying may lead to an 

increased oxidation of unsaturated fatty acid and alteration of fatty acid composition (Ng et 

al., 2013). However, in the current study, an analysis of variance indicated the fatty acid 

compositions of oils before and after spray drying were not significantly changed (p > 0.05). 

Overall, saturated fatty acids (SAFA) were detected as ~4.0%, ~28.0%, and ~2.6% in the 

microcapsules containing canola, fish and flaxseed oils, respectively; while unsaturated fatty 

acids were detected as ~96.0%, ~72.0%, and ~97.4% in the microcapsules containing canola, 

fish and flaxseed oils, respectively (Table 5.2). Because the oils were rapidly encapsulated 

within the protein-carbohydrate wall matrix, the alteration of fatty acids in oils was 

suppressed (Reineccius, 2004b). In addition, the condensed wall structures prevented heat 

transfer and keep the core materials’ (e.g., oils) temperature below 100 °C during the 

dehydration (Reineccius, 2004b). Therefore, the microcapsules design with LPI, sodium 

alginate, and maltodextrin to encapsulate oils using spray drying exhibited representative 

physical properties in comparison with other studies.  
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Table 5.2. Fatty acid profiles of free oils, oils extracted from microcapsules after spray 

drying, and released oils under simulated gastric fluid (SGF) and simulated 

intestinal fluid (SIF) treatments from microcapsules with canola oil (a), fish oil 

(b), and flaxseed oil (c). Different small letters in the same row indicate a 

significant difference (p ≤ 0.05) in the current study. Abbreviations include: 

saturated fatty acids (SAFA), monounsaturated fatty acids (MUFA), and 

polyunsaturated fatty acids (PUFA).  

 

a. Canola oil microcapsules 

Fatty acid Free oil After spray 
drying SGF SGF + SIF 

C14:0 - - - - 

C16:0 1.50 ± 0.00 1.52 ± 0.02 1.57 ± 0.02 1.55 ± 0.02 

C16:1 (n9) 1.18 ± 0.01 1.24 ± 0.04 1.25 ± 0.01 1.16 ± 0.02 

C18:0 1.36 ± 0.03 1.33 ± 0.01 1.43 ± 0.07 1.32 ± 0.08 

C18:1 (n9) 22.11 ± 0.16 21.79 ± 0.08 22.78 ± 0.53 20.86 ± 0.18 

C18:1 (n7) 10.62 ± 0.12 10.63 ± 0.09 11.42 ± 0.63 10.23 ± 0.34 

C18:2 (n6) 14.35 ± 0.03 14.39 ± 0.01 14.20 ± 0.16 14.74 ± 0.09 

C18:3 (n6) 2.65 ± 0.04 2.63 ± 0.01 2.56 ± 0.17 2.65 ± 0.04 

C18:3 (n3) 35.68 ± 0.24 36.01 ± 0.18 33.91 ± 1.21 37.17 ± 0.53 

C20:0 1.21 ± 0.03 1.18 ± 0.01 1.33 ± 0.06 1.12 ± 0.01 

C20:1 (n9) 9.33 ± 0.10 9.29 ± 0.09 9.57 ± 0.01 9.18 ± 0.05 

C20:4 (n6) - - - - 

C20:5 (n3) - - - - 

C22:4 (n6) - - - - 

C22:6 (n3) - - - - 

     

SAFA 4.07 ± 0.05a 4.04 ± 0.03a 4.32 ± 0.16b 4.00 ± 0.10a 

MUFA 43.25 ± 0.22a 42.94 ± 0.16a 45.01 ± 1.18b 41.44 ± 0.47c 

PUFA 52.68 ± 0.12a 53.02 ± 0.19ac 50.67 ± 1.34b 54.56 ± 0.58c 
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Table 5.2. (continued). 

 

b. Fish oil microcapsules 

Fatty acid Free oil After spray 
drying SGF SGF + SIF 

C14:0 25.60 ± 0.26 24.80 ± 0.21 23.99 ± 0.05 24.03 ± 0.52 

C16:0 2.25 ± 0.02 2.20 ± 0.02 2.16 ± 0.01 2.16 ± 0.03 

C16:1 (n9) 18.97 ± 0.18 18.45 ± 0.11 17.95 ± 0.07 17.94 ± 0.27 

C18:0 0.90 ± 0.01 0.89 ± 0.02 0.88 ± 0.01 0.87 ± 0.01 

C18:1 (n9) 1.18 ± 0.01 1.20 ± 0.01 1.26 ± 0.01 1.24 ± 0.03 

C18:1 (n7) 4.65 ± 0.04 4.60 ± 0.05 4.54 ± 0.05 4.48 ± 0.04 

C18:2 (n6) 0.31 ± 0.00 0.35 ± 0.00 0.39 ± 0.00 0.53 ± 0.03 

C18:3 (n6) 0.29 ± 0.00 0.28 ± 0.00 0.28 ± 0.00 0.28 ± 0.00 

C18:3 (n3) 0.93 ± 0.00 1.21 ± 0.02 1.21 ± 0.02 1.41 ± 0.03 

C20:0 0.14 ± 0.01 0.14 ± 0.00 0.14 ± 0.00 0.13 ± 0.00 

C20:1 (n9) 0.75 ± 0.38 0.54 ± 0.01 0.54 ± 0.00 0.53 ± 0.00 

C20:4 (n6) 0.27 ± 0.00 0.27 ± 0.00 0.27 ± 0.00 0.26 ± 0.00 

C20:5 (n3) 30.57 ± 0.51 31.24 ± 0.16 31.68 ± 0.02 31.48 ± 0.43 

C22:4 (n6) 0.44 ± 0.02 0.46 ± 0.01 0.50 ± 0.00 0.49 ± 0.02 

C22:6 (n3) 12.74 ± 0.37 13.38 ± 0.15 14.22 ± 0.13 14.18 ± 0.48 

     

SAFA 28.90 ± 0.31a 28.03 ± 0.20b 27.16 ± 0.04bc 27.20 ± 0.56c 

MUFA 25.56 ± 0.59a 24.79 ± 0.16ab 24.30 ± 0.12b 24.19 ± 0.33b 

PUFA 45.54 ± 0.89a 47.18 ± 0.26ab 48.54 ± 0.13b 48.61 ± 0.89b 
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Table 5.2. (continued). 

 

c. Flaxseed oil microcapsules 

Fatty acid Free oil After spray 
drying SGF SGF + SIF 

C14:0 - - - - 

C16:0 0.97 ± 0.02 0.95 ± 0.01 0.95 ± 0.00 0.97 ± 0.01 

C16:1 (n9) - - - - 

C18:0 1.37 ± 0.03 1.33 ± 0.01 1.35 ± 0.02 1.26 ± 0.04 

C18:1 (n9) 3.31 ± 0.12 3.21 ± 0.02 3.29 ± 0.06 3.08 ± 0.11 

C18:1 (n7) 1.86 ± 0.14 1.75 ± 0.01 1.74 ± 0.10 1.50 ± 0.15 

C18:2 (n6) 5.07 ± 0.03 5.06 ± 0.01 5.11 ± 0.02 5.16 ± 0.06 

C18:3 (n6) - - - - 

C18:3 (n3) 84.44 ± 0.69 85.24 ± 0.11 85.04 ± 0.24 86.22 ± 0.79 

C20:0 0.44 ± 0.05 0.36 ± 0.01 0.39 ± 0.02 0.28 ± 0.05 

C20:1 (n9) 2.54 ± 0.30 2.11 ± 0.06 2.13 ± 0.04 1.55 ± 0.37 

C20:4 (n6) - - - - 

C20:5 (n3) - - - - 

C22:4 (n6) - - - - 

C22:6 (n3) - - - - 

     

SAFA 2.78 ± 0.10a 2.64 ± 0.02ab 2.69 ± 0.03ab 2.50 ± 0.11b 

MUFA 7.71 ± 0.56a 7.06 ± 0.09ab 7.17 ± 0.19ab 6.13 ± 0.63b 

PUFA 89.51 ± 0.65a 90.30 ± 0.10ab 90.15 ± 0.22ab 91.37 ± 0.73b 
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5.4.2. Storage stability of free and encapsulated oils 

Hydrolytic stability 

  FFAs are the result of hydrolytic rancidity of oils, and give an indication of the 

hydrolytic stability during processing and storage. FFAs have both hydrophilic and 

hydrophobic groups, which then can concentrate at the surface of oils to increase the 

diffusion of oxygen, and as such, is considered as a proxidant to accelerate lipid oxidation 

(Choe and Min, 2006; O’Connor et al., 2007). The FFA contents of the free and encapsulated 

canola, fish and flaxseed oils over 30 d of storage are determined in Figure 5.1. An analysis 

of variance indicated that both of microencapsulation and storage time were significant (p < 

0.05) factors governing the FFA content, with the exception of canola oil (p > 0.05). The 

FFA contents in the free and encapsulated canola oil were similar before (~0.0038%) and 

after 1 month of storage (~0.0041%). Most likely, the FFAs were removed by a refining step 

during the production of the commercial canola oil (Rycebosch et al., 2013). Therefore, it 

was shown little hydrolysis occurred, in order to generate new FFAs during the storage of 

canola oil and microcapsules [Figure 5.1 (A)]. In contrast, chemical or enzymatic spoilage 

might be happened to generate FFAs in the fish oil and flaxseed oil (de Koning, 2001), which 

may not be refined during their production. In the present study, the FFAs in the free fish oil 

started to be generated at day 0 (~0.0028%) and then increased relatively at a constant rate 

until day 30 (~0.0055%) [Figure 5.1 (B)]. FFAs generation within the entrapped fish oil was 

slowed significantly, ending with a final concentration of ~0.0042% on day 30 [Figure 5.1 

(B)]. In the case of flaxseed oil, generation of new FFAs in the free and entrapped oils was 

absent (~0.0046%) until day 15. Afterwards, the FFA content increased at a much greater rate 

in the free oil than the entrapped oil, rising to ~0.0063% and ~0.0051% at day 30, 

respectively [Figure 5.1 (C)]. The rates of FFA increase for the free and encapsulated oils 

were not stable (Figure 5.1), because hydrophilic groups in FFA attached to water molecules 

to decrease the sensitivity of color detection in the aqueous solution during titration to 

determine FFA content (O’Connor et al., 2007). However, in terms of FFA, all of the free and 

encapsulated oils in this study had acceptable quality (FFA < 0.15%) after 1 month storage 

(Sun-Waterhouse et al., 2011). 
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Figure 5.1. Changes in free fatty acid (FFA) content for the free and encapsulated canola oil 

(A), fish oil (B), and flaxseed oil (C) over 30 days of storage. Data represent the 

mean ± one standard deviation (n = 3).  
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Oxidative stability 

a. Peroxide and 2-thiobarbituric acid reactive substances values 

  The PV is used to measure primary oxidative products (e.g., hydroperoxides) within 

the initial stage of lipid deterioration, whereas the TBARS test measures secondary oxidative 

products (e.g., aldehydes, ketones, and carbonyl compounds) from the decomposition of 

hydroperoxides (Pegg, 2005). PV and TBARS value of the free and encapsulated oils during 

storage are presented in Figure 5.2. An analysis of variance indicated that both PV and 

TBARS values of free and encapsulated oils were affected by both microencapsulation and 

storage time, along with their interaction (p < 0.05). Overall, the free and encapsulated canola 

oil experienced better oxidative stability than the free and encapsulated fish and flaxseed oils. 

Microencapsulation exhibited greater oxidative protection effect in fish oil and flaxseed oil 

than in canola oil. In case of canola oil, the encapsulated oil [PV: ~5.02 meq active O2/kg; 

TBARS: ~0.820 MDA eq. (nmol/mg oil)] had slight lower PV and TBARS value than the 

free oil [PV: ~8.09 meq active O2/kg; TBARS: ~0.983 MDA eq. (nmol/mg oil)] after 1 

month storage, whereas the encapsulated fish oil [PV: ~5.34 meq active O2/kg; TBARS: 

~1.320 MDA eq. (nmol/mg oil)] and flaxseed oil [PV: ~9.59 meq active O2/kg; TBARS: 

~1.154 MDA eq. (nmol/mg oil)] showed much lower PV and TBARS values than the free 

fish oil [PV: ~13.04 meq active O2/kg; TBARS: ~3.013 MDA eq. (nmol/mg oil)] and 

flaxseed oil [PV: ~18.73 meq active O2/kg; TBARS: ~1.473 MDA eq. (nmol/mg oil)] after 

storage (Figure 5.2). In the comparison between fish oil samples and flaxseed oil samples, it 

is clear to see the combination of LPI, sodium alginate and maltodextrin provided better 

protection for fish oil to against the production of hydroperoxides. However, in terms of 

secondary oxidation products, the flaxseed oil samples showed a gentle increase on TBARS 

values in contrast with a dramatically rise for fish oil samples (Figure 5.2).  

  Several reasons could be contributed to the results. (1) Although microencapsulation 

can depress the oxygen diffusion into capsules, the changes of oxygen concentration were not 

stable, due to the complexity of wall structure (Imagi et al., 1992). (2) FFAs have amphiphilic 

properties to increase oxygen solubility in the fatty acids (Choe & Min, 2006), so, more 

oxygen would be dissolved into the free and encapsulated fish oil and flaxseed oil with higher 

amounts of FFAs (Figure 5.1) to result in oxidation. (3) The oils with more unsaturated fatty 

acids are more susceptible to oxidation (Choe and Min, 2006), so, it was proposed the 

encapsulated fish oil with higher amount of SAFA (~28.0%) should be more oxidative stable 

than others (Table 5.2). However, Sun-Waterhouse et al. (2011) detected the changes of fatty  
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Figure 5.2. Changes in (A) peroxide value (PV) and (B) 2-thiobarbituric acid reactive 

substances (TBARS) for the free and encapsulated canola oil (1), fish oil (2), 

and flaxseed oil (3) over 30 days of storage. Data represent the mean ± one 

standard deviation (n = 3).  
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acid composition among the surface and encapsulated oils over 30 days of storage, and found 

more polyunsaturated fatty acids (PUFA), especially the PUFA with longer chain and more 

double bonds, were released to the surface of microcapsules during storage. Therefore, the 

encapsulated fish oil [with ~31.2% of EPA (C20:5, n3) and ~13.4% of DHA (C22:6, n3)] 

[Table 5.2 (b)] and flaxseed oil [with ~85.2% of ALA (C18:3, n3)] [Table 5.2(c)] would 

migrate to the surface of capsules to raise the oxidation rate. (4) Fatty acids with more double 

bonds have more sites for hydrogen abstraction and generate more free radicals to produce 

more hydroperoxides, which will be further decomposed to aldehydes or ketones (Choe and 

Min, 2006). Therefore, the fish oil samples (with EPA and DHA) exhibited higher TBARS 

values than the flaxseed oil samples (with ALA). (5) In the current study, the free and 

encapsulated canola oil had relatively low level of PV and TBARS values than other samples 

(Figure 5.2), due to the presence of tocopherols (e.g., α-, β-, and γ-tocopherol) to prevent 

oxidation in the canola oil (Pelser et al., 2007). However, starting on day 20, because of the 

degradation of tocopherols resulting from the oil degradation or oxidation, the TBARS values 

of free and encapsulated canola oils gently increased [Figure 5.2 (B1)], which was also 

demonstrated in the kenaf seed oil microcapsules with sodium caseinate, maltodextrin and 

lecithin (Ng et al., 2013). In the present study, the PVs of free and encapsulated oils 

(excepting the free flaxseed oil on day 30) were still fallen into the industrial acceptable level 

(PV < 18 meq active O2/kg) for oil quality (Sun-Waterhouse et al., 2011) after 1 month 

storage.  

  In all cases, the storage time significantly increased PV and TBARS values in the 

free and encapsulated oils (p < 0.05), because physical and chemical changes of 

microcapsules and oil diffusion through the wall materials could be happened to release more 

oils to be prone to oxidation during storage (Aghbashlo et al., 2013). The permeation of 

oxygen through the wall to the inside of microcapsules is also another reason contributing to 

the increased oxidation during storage, which was also demonstrated in fish oil microcapsules 

prepared with whey protein isolate (Aghbashlo et al., 2013).  

 

b. Oxidative stability index 

  Accelerated oxidative test using the Rancimat has been used to predict shelf-life of 

lipid foods during storage and evaluate the efficiency of antioxidants in a short time. During 

the test, oils are oxidized to short-chain volatile acids (e.g., carboxylic acids) that are then 

collected in distilled water to increase the electric conductivity, and the time (also known as 

OSI) required to induce a sharp increase of conductivity is recorded to indirectly measure the 
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oxidative stability. Therefore, the higher OSI indicates better stability under accelerated 

storage conditions (Gallardo et al., 2013). The OSI of the encapsulated and free oils 

with/without antioxidants (e.g., BHT and TBHQ) is shown in Figure 5.3. An analysis of 

variance indicated that both the addition of antioxidants and microencapsulation significantly 

improved the oxidative stability of the oils (p < 0.05), with the exception of BHT in fish oil 

(p > 0.05). Overall, the OSI increased in the following order: free oil < oil with BHT < 

encapsulated oil < oil with TBHQ. Interestingly, the encapsulated fish oil (OSI: 6.3 h) 

exhibited better oxidative stability than the oil with TBHQ (OSI: 5.0 h), because of the lower 

solubility of TBHQ in the oils with higher amount of saturated fatty acids and higher 

opportunity to generate free radicals from fatty acids with more double bonds 

(Martin-Polvillo et al., 2004; Hossain et al., 2010). Hossain and co-workers (2010) compared 

the antioxidative capacity between BHT and TBHQ in fish oil with tetradecane, and they 

found TBHQ (OSI: 39.9 h) displayed much lower antioxidative capacity than BHT (OSI: > 

48 h) in the fish oil with tetradecane, due to the extremely low solubility of TBHQ in 

tetradecane (24.6%). In the present study, the fish oil had higher amount of SAFA (~28.9%) 

than canola oil (~4.1%) and flaxseed oil (~2.8%), which led to poorer solubility of TBHQ 

(Table 5.2). Moreover, due to the presence of EPA and DHA in the fish oil [Table 5.2 (b)], 

higher amount of free radicals were accumulated at the end of induction period 

(Martin-Polvillo et al., 2004). Therefore, TBHQ showed weaker antioxidative capacity in the 

fish oil than in canola oil and flaxseed oil. In theory, the porosity of the wall structure on the 

microcapsules affects the oxygen permeability to further determine the oxidative stability of 

the encapsulated oil (Imagi et al., 1992). Therefore, due to the exceptional OSIs obtained 

from the encapsulated oils, it is proved that the microencapsulation using LPI with 

maltodextrin and sodium alginate produced a highly compacted and strong wall matrix to 

protect oils from deteriorative oxidation, which expressed the comparative antioxidative 

capacity as synthetic antioxidants.  

  In general, synthetic antioxidants (e.g., BHT and TBHQ) are added to protect the oil 

quality and reduce the deterioration during the processing and storage. In the current study, 

the oils with BHT (canola oil: 18.6 h, fish oil: 1.9 h, flaxseed oil: 3.8 h) had slightly higher 

OSI than the free oils (canola oil: 17.8 h, fish oil: 1.7 h, flaxseed oil: 2.6 h), whereas the 

addition of TBHQ greatly improved the oil stability 3-5 fold (Figure 5.3). The efficiency of 

phenolic antioxidants is closely related to the number of hydroxyl groups on the aromatic 

ring, as well as the ability to provide hydrogen to peroxide radical to interrupt the 

propagation, and their polarity (McClements and Decker, 2007, Hossain et al., 2010). There  
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Figure 5.3. Oxidative stability index (h) of the encapsulated and free canola oil, fish oil and 

flaxseed oil with/without butylated hydroxytoluene (BHT) and 

tert-butylhydroquinone (TBHQ). Data represent the mean ± one standard 

deviation (n = 3). 
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is only one hydroxyl group that is adjacent to the two tert-butyl groups on BHT to result in 

steric hindrance, so, BHT slowly reacts with peroxide radicals. However, two hydroxyl 

groups present on 1, 4 position to the aromatic ring on TBHQ, which easily donate hydrogens 

to peroxide radicals and finally produce stable quinone type compounds (McClements and 

Decker, 2007; Hossain et al., 2010). Moreover, TBHQ can be easily accumulated at the 

air-oil interface to prevent oxidation, due to its higher polarity (McClements and Decker, 

2007). Therefore, TBHQ is a more effective antioxidant than BHT to protect oil quality. 

 

5.4.3. In vitro release behavior of encapsulated oils 

  The release characteristics of encapsulated oils under simulated gastrointestinal tract 

conditions can have a big impact on the adsorption and accumulation of heart healthy fatty 

acids (e.g., ALA, EPA, and DHA) (Fathi et al., 2014). The amount of released oils (e.g., 

derived from canola, fish and flaxseed) from the microcapsules exposed to SGF and SIF is 

shown in Figure 5.4. An analysis of variance indicated that all of oil-type and digestive 

conditions, along with their interaction, significantly affect the oil release (p < 0.05). Overall, 

a much higher percent of released oil was observed in sequential exposure under SGF and 

SIF conditions (~66.6%), as compared to SGF condition alone (~5.2%) (Figure 5.4). The 

longer digestion process resulting in greater degradation of the microcapsules under SGF + 

SIF conditions could be attributed to this result, because pepsin (in SGF) and pancreatin 

(including amylase and trypsin, in SIF) can hydrolyze both proteins (e.g., LPI) and 

carbohydrates (e.g., sodium alginate and maltodextrin) to change the microcapsules’ wall 

structure and produce more pores to release the oils (Goyal et al., 2015). However, due to the 

resistance of protein to peptic hydrolysis, only maltodextrin was hydrolyzed by the strong pH 

and ionic changes under SGF condition to release a small amount of oils (Fathi et al., 2014). 

In addition, because of the presence of surface oil, particle aggregation was happened to 

decrease the digestibility of microcapsules under SGF condition, whereas a longer period of 

mechanical stress applied on the microcapsules was helpful to break the hydrophobic 

interactions between particles to release more oils under SGF + SIF conditions. 

  In the current study, the microcapsules released a significant (p < 0.05) higher 

amount of canola oil (~8.9%) in comparison with fish oil (~3.2%) and flaxseed oil (~3.4%) 

under SGF condition, whereas more fish oil (~73.4%) was released from the microcapsules 

under SGF + SIF conditions (Figure 5.4). Different fatty acids compositions could be a 

reason for the results. It was observed that the released canola oil contained a significant (p < 

0.05) higher amount of SAFA and monounsaturated fatty acids (MUFA) and lower amount of   
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Figure 5.4. In vitro release behavior of canola oil, fish oil, and flaxseed oil from 

microcapsules under simulated gastric fluid (SGF) and sequential exposure to 

simulated gastric fluid and simulated intestinal fluid (SGF + SIF). Data 

represent the mean ± one standard deviation (n = 3). 
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polyunsaturated fatty acids (PUFA) under SGF condition comparing with the encapsulated 

canola oil, but there was no significant (p > 0.05) changes on fatty acids compositions in the 

released fish oil and flaxseed oil (Table 5.2). In theory, fatty acids with lower hydrophobicity 

(with shorter chain length and less double bond) exhibit better ability to penetrate through the 

cell membrane and higher rates of absorption and metabolism (Matsuno and Adachi, 1993), 

so, canola oil was more easily released under SGF condition. Furthermore, Pourashouri et al. 

(2014) demonstrated that more SAFA [e.g., palmitic acid (C16:0) and stearic acid (C18:0)] 

stayed in the surface oils, whereas PUFA [e.g., EPA (C20:5, n3) and DHA (C22:6, n3)] 

proportion was greatly higher in the encapsulated oils, and no significant difference was 

detected for MUFA [e.g., sapienic acid (C16:1, n9) and oleic acid (C18:1, n9)] when 

comparing the surface oils with the encapsulated oils. They found PUFA was hardly to attain 

in the surface oil at the extremely high temperature (180 °C) during spray drying and closely 

bound with wall materials of microcapsules. Therefore, more encapsulated fish oil (with EPA 

and DHA) was released after a longer digestive treatment (with SGF and SIF).  

  The amounts of released oils under SGF condition are in agreement with the findings 

from Shen et al. (2011) and Goyal et al. (2015) working on the fish oil microcapsules with 

sodium caseinate, glucose monohydrate, and corn starch and the flaxseed oil microcapsules 

with whey protein concentrate and lactose, respectively. However, Goyal et al. (2015) 

reported only ~23.1% of released flaxseed oil under SGF + SIF conditions, which was much 

lower as compared with ~62.6% in the current study, because the globular conformation of 

whey protein concentrate was highly resistant to enzymatic hydrolysis during digestion. On 

the other hand, Can Karaca et al. (2013a) reported very high amounts of flaxseed oil were 

released under SGF (~37%) and SGF + SIF (~84%) conditions from microcapsules prepared 

with chickpea protein/lentil protein and maltodextrin. This large difference could be caused 

by the different wall materials, in which sodium alginate and LPI produced a much stronger 

complex matrix in the current study.  

 

5.5. Conclusions 

  In the present study, canola, fish and flaxseed oils (containing relative high amount 

of unsaturated fatty acids) were stabilized through microencapsulation developed by the 

combination of LPI, sodium alginate and maltodextrin. Spray drying was demonstrated to be 

a good microencapsulation technique for these oils, due to the negligible effect on fatty acids 

profiles, and gave microcapsules with good physical properties (e.g., moisture content, water 

activity, wettability, particle size, surface oil, and entrapment efficiency). The combination of 
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LPI, sodium alginate and maltodextrin exhibited great protection to susceptible oils (e.g., 

canola, fish, and flaxseed oils) from hydrolytic rancidity and oxidative degradation over 30 

days of storage, and offered greater antioxidative capacity than synthetic antioxidants in the 

case of fish oil. However, due to differences on oil processing steps, fatty acid composition, 

FFA content and oxygen diffusion, different oils had various rates of hydrolysis and 

oxidation. In vitro release test showed that the amount of released oils was higher under 

sequential exposure of SGF + SIF conditions than that of SGF condition, in which more 

encapsulated canola oil was released under SGF condition, whereas the addition of SIF 

stimulated more fish oil to be released from microcapsules. Therefore, the oils had 

non-negligible impacts on the storage stability and in vitro release behavior. The 

microcapsules formulated in the current study could be potentially used as a universal 

platform to fortify high value omega fatty acids-rich oils in commercial food and 

supplementary products.  
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6. GENERAL DISCUSSIONS 

 

  Omega fatty acids-rich oils (e.g., canola oil, fish oil, and flaxseed oil) are gaining 

increasing interest in the food industry because of their numerous health benefits (e.g., 

improving cardiovascular and mental health, preventing immune response disorders, 

providing anti-inflammatory effects, and playing a positive role in early childhood 

development). However, the major hurdles associated with the incorporation of the omega 

fatty acids-rich oils into food products are their insolubility in water and susceptibility to 

oxidative deterioration (especially when exposed to oxygen, light, moisture, and heat), which 

decreases shelf-life, produces off-flavors, and negatively affects consumers’ acceptability of 

developed products (Velasco et al., 2003; Bakry et al., 2016). Therefore, microencapsulation, 

which involves coating bioactive particles or droplets (e.g., omega fatty acids-rich oils) 

within a biopolymer matrix to produce microcapsules, is considered as a viable method to 

protect those high value oils and maintain their biological and functional properties 

(Gharsallaoui et al., 2007; Bakry et al., 2016). Proteins extracted from animals (e.g., whey 

proteins, gelatin, and casein) and from plants (e.g., soy proteins, pulse proteins, and canola 

proteins) are widely used for the microencapsulation of omega fatty acids-rich oils, because 

of their biocompatibility, biodegradability, functional properties, and emulsifying capacity 

(Nesterenko et al., 2013). Over the past decades, the application of plant proteins as an 

alternative to animal-derived proteins in food products has become an increasingly interesting 

area for research, due to increased perceived safety concerns of animal-derived products, 

religious preference, and economic benefits. Therefore, the preparation of microcapsules has 

been turning towards plant proteins as preferred wall materials of the future.  

  A prerequisite to effectively encapsulate omega fatty acids-rich oils is to create a 

stable emulsion, in which oil droplets are fully covered by protein films to produce 

microcapsules with maximum entrapment efficiency and better oxidative stability. In theory, 

during emulsion formation, proteins migrate to the interface and re-orient to expose both 

hydrophobic and hydrophilic moieties, allowing them to become integrated with the oil-water 

interface to effectively reduce interfacial tension. Subsequently, a viscoelastic protein film is 

formed to partially cover the droplet surface to further prevent droplet aggregation and 
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coalescence, so as to stabilize the emulsion (McClements, 2005; Morris and Gunning, 2008). 

Stabilization typically occurs through electrostatic repulsion at pHs away from the protein’s 

isoelectric point or steric hindrance (Morris and Gunning, 2008).  

  In the present research, the physicochemical, interfacial, and emulsifying properties 

of pea protein isolate (PPI), soy protein isolate (SPI), lentil protein isolate (LPI) and canola 

protein isolate (CPI) at pH 3.0, 5.0, and 7.0 were investigated to produce a stable emulsion, in 

which the emulsifying and interfacial properties of proteins were found to be dependent on 

their surface charge, surface hydrophobicity and solubility. Surface charge was found to 

change from positive to negative as pH increased from 3.0 to 7.0, reflecting the solvent pH 

being below and above the protein’s isoelectric point, respectively. Surface hydrophobicity 

influences the ability of a protein to adsorb to the oil-water interface (McClement, 2005). For 

most of protein isolates (except PPI), hydrophobicity at pH 3.0 was higher than at pH 5.0, 

followed by at pH 7.0, in which LPI showed greater hydrophobicity than others at pH 3.0. 

Solubility determines the amount of protein that is available to migrate to the oil-water 

interface to stabilize the emulsion (Liang and Tang, 2013). Regardless of protein type, 

solubility was found to be similar at pH 3.0 and 7.0 which was higher than at pH 5.0. CPI 

(~90.4%) had the highest solubility at pH 3.0, followed by SPI (~67.8%), LPI (~56.2%) and 

PPI (~13.6%). In general, proteins are solubilized in the aqueous phase and accumulate at the 

oil-water interface to lower the interfacial tension during emulsion formation (Damodaran, 

1996). In the current research, the addition of all protein isolates greatly lowered the 

interfacial tension at all pHs, in which the ability for all proteins to lower the interfacial 

tension was similar at pH 3.0 and 5.0 (~14 mN/m), however was significantly improved at 

pH 7.0 (~10 mN/m), due to the formation of the viscoelastic layers at the interface via 

hydrophobic interaction at pH 3.0 and aggregation of the relatively neutral proteins at pH 5.0 

(Tcholakova et al., 2006). Therefore, all soluble and insoluble protein isolates played a role to 

lower the interfacial tension. This was also the case for β-lactoglobulin at pH 3.0 and 5.0 with 

large differences on the physicochemical properties (Lam and Nickerson, 2014). The 

long-term stability of emulsions was significantly affected by the interfacial rheology, which 

is determined by the formation of a viscoelastic protein film at the interface (Bos and Van 

Vliet, 2001). For the time sweep test, the interfacial storage modulus (Gi´) was higher than 

the interfacial loss modulus (Gi´´) at pH 3.0 and 5.0 (except PPI at pH 5.0) indicating the 

formation of a viscoelastic protein film through protein-protein interactions and the 

rearrangement of the protein’s tertiary structure. In contrast, no interfacial film was formed at 

pH 7.0 because Gi´ < Gi´´. In the frequency sweep test, CPI showed a better ability to form a 
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stronger interfacial film than LPI, followed by PPI and SPI at pH 3.0 and 5.0. The stronger 

intermolecular interaction between adsorbed proteins with higher hydrophobicity at the 

interface could contribute to this result (Lucassen-Reynders et al., 1975). This was also 

demonstrated on the interfacial properties of β-casein and β-lactoglobulin (Seta et al., 2014). 

Finally, emulsion stability was found to be similar in magnitude at pH 3.0 and 7.0 for PPI, 

SPI, and LPI, due to the similar droplet size at pH 3.0 and 5.0. However, all of them were 

found to be unstable at pH 5.0, which was close to the pI of the legume proteins. In contrast, 

CPI only created a stable emulsion at pH 3.0, whereas the emulsions stabilized by CPI at pH 

5.0 and 7.0 were unstable, because the lower surface charge resulted in droplet flocculation 

during the gravitational creaming experiment. Overall, due to the relative high surface charge, 

solubility and hydrophobicity, LPI at pH 3.0 was selected as a proper emulsifier to create 

stable emulsions for encapsulation purposes.  

  The selection of appropriate wall materials is the next fundamental step to develop 

stable microcapsules with high entrapment efficiency. The wall materials play an important 

role in protecting the core materials (e.g., omega fatty acids-rich oils) against oxidative 

deterioration, control the release of bioactive ingredients, and improve the storage stability 

under environmental stresses. Nesterenko and co-workers (2013) demonstrated that the 

combination of proteins and polysaccharides used as wall materials offered desirable 

characteristics to develop microcapsules, such as good emulsifying properties to stabilize 

high value oils and lower viscosity under high concentrations. Therefore, LPI (2-8% w/w in 

initial emulsions) at pH 3.0 combined with other wall materials (e.g., maltodextrin, sodium 

alginate, and lecithin) was initially studied to encapsulate canola oil (20-30% w/w in final 

microcapsules) using spray drying, which is the most commonly used drying technology for 

microencapsulation. Maltodextrin (DE: 9.0-12.0) was used as a processing aid during 

microencapsulation (Madene et al., 2006); sodium alginate increased the viscosity of the 

continuous phase, and formed the electrostatic complex with LPI at pH 3.0 as a second wall 

barrier (Guzey and McClements, 2006; Zhang et al., 2015a; Chang et al., 2016); lecithin was 

thought to improve emulsion stability, due to its amphiphilic nature (Carvalho et al., 2014). 

Both the emulsion properties (e.g., emulsion stability, viscosity, and droplet size) and 

microcapsules’ properties (e.g., surface oil and entrapment efficiency) were analyzed to 

determine the best capsule design. As LPI and oil concentrations increased, droplet size, 

viscosity, and surface oil increased, whereas entrapment efficiency decreased. The addition of 

lecithin negatively affected the microcapsules’ properties, which was thought to be due to 

competition with LPI molecules at the oil-water interface, which resulted in the depletion of 
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one of them. Therefore, the combination of LPI (2% w/w in the initial emulsion), 

maltodextrin, and sodium alginate was determined as the best capsule design to encapsulate 

canola oil (20% w/w in final microcapsules). Since physical properties (e.g., moisture content, 

water activity, color, wettability, and particle size) and oxidative stability are important for 

industrial application, the LPI-MD-SA microcapsules were compared with the LPI-MD 

microcapsules (presented as a control). It was found LPI-MD-SA microcapsules had a lower 

moisture content, water activity and smaller particle size, which are beneficial to prolong the 

shelf-life and depress the possibility of oxidation. Oxidative stability test was performed on 

peroxide value (PV, an indicator of primary lipid oxidation) and 2-thiobarbituric acid reactive 

substances (TBARS, an indicator of secondary lipid oxidation). The encapsulated canola oil 

in the LPI-MD microcapsules showed similar oxidative stability as the free canola oil, which 

were less stable than the oil encapsulated in the LPI-MD-SA microcapsules. A number of 

reasons can contribute to this result: (1) the LPI-MD-SA emulsions had larger droplet size to 

offer less surface area for air diffusion (Heinzelmann and Franke, 1999); (2) the combination 

of LPI, maltodextrin, and sodium alginate effectively covered oil droplets to produce 

microcapsules with less exposed surface oil and higher entrapment efficiency; and (3) the 

LPI-MD-SA microcapsules had a less porous and more complex wall structure to protect the 

core material. Therefore, the LPI-MD-SA system was selected as the most effective capsule 

design to encapsulate other omega fatty acids-rich oils.  

  It is well known that omega fatty acids (e.g., omega-3, -6, and -9 fatty acids) have 

demonstrated beneficial effects towards cardiovascular diseases, hypertension, and visual and 

brain development. The consumption of omega fatty acids-rich oils (e.g., canola oil, fish oil, 

flaxseed oil) has increased over the last decades. Canola and flaxseed oils are good sources of 

oleic acid, linoleic acid, and α-linolenic acid (ALA), whereas fish oil represents the most 

widely used source of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which 

are essential fatty acids to maintain cardiovascular, mental, and immune system health 

(Ruxton et al., 2007; Jordan, 2010). However, due to their polyunsaturated structure, they are 

chemically and enzymatically unstable during storage. In the present research, these oils were 

encapsulated within the LPI, sodium alginate, and maltodextrin wall matrix. The oil-type did 

not significantly affect the physical properties of microcapsules, with the exception of color, 

which was determined by the original oil color. Fortunately, the moisture content (~3.5%), 

water activity (~0.35), and particle size (~8.9 μm) of the microcapsules reached the industrial 

standards for a shelf stable dried powder. Storage stability (including hydrolytic stability and 

oxidative stability) of the encapsulated oils over 30 days storage period was investigated at 
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room temperature. The encapsulated canola oil exhibited better storage stability, because of 

the refining step employed in commercial production (free fatty acids removed) and lower 

degree of unsaturation. However, due to the presence of multiple sites of unsaturation (e.g., 

EPA and DHA), the encapsulated fish oil had significantly higher TBARS values than the 

encapsulated flaxseed oil during storage. In order to evaluate the antioxidative efficiency of 

microencapsulation, their oxidative stability index (OSI) was measured using a Rancimat for 

the encapsulated and free oils with/without antioxidants [e.g., butylated hydroxytoluene 

(BHT) and tert-butylhydroquinone (TBHQ)]. Mostly, the OSI had the following order: free 

oil < oil with BHT < encapsulated oil < oil with TBHQ. Interestingly, the encapsulated fish 

oil displayed a higher OSI than the oil with TBHQ, which indicated that microencapsulation 

using LPI, maltodextrin, and sodium alginate exhibited more efficient protection to lipid 

oxidation than the synthetic antioxidants (e.g., BHT and TBHQ) for fish oil.  

  The release characteristics of the encapsulated oils were studied under simulated 

gastric fluid (SGF) and simulated intestinal fluid (SIF), in which ~67% of the encapsulated 

oils were released under the sequential exposure of SGF and SIF conditions, as compared to 

SGF condition alone (~5%), because of greater degradation of the microcapsules under 

longer digestive process and the breakage of electrostatic bonding between LPI and sodium 

alginate by the alternation of solution pH (6.8). In addition, higher amount of canola oil was 

released under SGF conditions than others, since fatty acids with shorter chain length and less 

double bond were more easily penetrated through the wall materials (Matsuno and Adachi, 

1993), whereas more fish oil was released under SGF + SIF conditions, because 

polyunsaturated fatty acids hardly stay at the surface of microcapsules and need a longer time 

to be released (Pourashouri et al., 2014).  

  It is very necessary to study the bioavailability of the encapsulated oils in specific 

regions within the digestive system and to investigate the interactions between proteins and 

encapsulated oils in the future. However, the present research demonstrated that LPI can be 

used as a promising emulsifier to produce a stable emulsion. The combination of LPI, 

maltodextrin, and sodium alginate can effectively encapsulate omega fatty acids-rich oils, in 

order to protect those high value oils against oxidative deterioration and prolong the 

shelf-life.  
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7. GENERAL CONCLUSIONS 

 

  The overall goal of this research was to improve the oxidative stability of omega 

fatty acid-rich oils (e.g., canola, fish, and flaxseed oils) during storage by encapsulation 

technique using plant protein-based matrices. Specifically, a pre-encapsulation screening 

process was performed to select a protein isolate (from pea, soy, lentil and canola protein 

isolates) at a proper pH (e.g., pH 3.0, 5.0 and 7.0) to effectively stabilize the oil-in-water 

emulsion. Then, the selected protein isolate was used as a fundamental wall material to 

develop stable microcapsules with other wall materials (e.g., maltodextrin, lecithin, and 

sodium alginate), in which emulsion properties (e.g., droplet size, viscosity, and emulsion 

stability), microcapsules’ properties (e.g., moisture content, water activity, color, wettability, 

particle size, surface oil, and entrapment efficiency), and oxidative stability (e.g., PV and 

TBARS) were investigated to determine the best capsule design. Finally, the best capsule 

design was used to entrap different omega fatty acid-rich oils (e.g., canola, fish, and flaxseed 

oils) to study their storage stability and release characteristics.  

  In the first stage of this research, the effect of pH on the physicochemical, interfacial, 

and emulsifying properties of pea, soy, lentil and canola protein isolates was studied, in order 

to select one protein/pH to produce a stable emulsion. Findings suggested that for a protein to 

be a good emulsifier should have the following attributes: (1) it should have high surface 

charge to be easily solubilized and provide repulsive force once coated on the oil droplets; (2) 

it should have good solubility to be readily adsorbed to the interface; and (3) it should have 

high surface hydrophobicity to form a stronger viscoelastic protein film via intermolecular 

interactions. Overall, proteins with high surface charge and low hydrophobicity had better 

ability to lower interfacial tension, whereas proteins with high surface charge and high 

hydrophobicity can form stronger viscoelastic films at the interface. Therefore, the selection 

of an effective plant protein emulsifier really entails finding a balance between properties 

needed to associate at the oil-water interface with those needed to develop a strong interfacial 

film. LPI was selected as a promising emulsifier to produce a stable emulsion, because of its 

high surface charge, solubility, and hydrophobicity at pH 3.0. 
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  In the second stage of this research, a mixture of LPI and maltodextrin with/without 

lecithin and/or sodium alginate was studied to develop stable microcapsules using spray 

drying, in order to offer good physical properties and provide protection against oxidation. 

Initially, canola oil (20-30% w/w in final microcapsules) was entrapped using the mixture of 

LPI (2-8% w/w) and maltodextrin (9.5-18% w/w). Emulsion and microcapsules’ properties 

were analyzed to select the proper capsule design. Due to the advanced emulsion properties 

and the highest entrapment efficiency, microcapsules prepared using 20% oil, 2% LPI and 18% 

maltodextrin was selected for further re-design to improve the entrapment efficiency using 

different preparation conditions and wall materials. Finally, the microcapsule with 2% LPI, 

17% maltodextrin and 1% sodium alginate was determined as the best capsule design to offer 

good physical properties and effective protection against oxidation, which indicated the 

addition of negative charged polysaccharide is necessary to strengthen the wall structure of 

microcapsules by the electrostatic complexation with the positive charged protein.  

  In the third stage of this research, different omega fatty acids-rich oils (e.g., canola, 

fish, and flaxseed oils) were encapsulated using the combination of LPI, maltodextrin, and 

sodium alginate, followed by the assessment of physical properties, storage stability and in 

vitro release behavior of the encapsulated oils. Overall, all microcapsules displayed similar 

physical properties (except the color). The microencapsulation offered great protection to the 

oils against hydrolysis and oxidation over the 30 d of storage at room temperature. The 

combination of LPI, maltodextrin, and sodium alginate even provided greater antioxidative 

capacity than the synthetic antioxidants (e.g., BHT and TBHQ) to protect fish oil. However, 

because of the difference on the fatty acid composition, processing steps, free fatty acid 

content, and air diffusion, different oils exhibited various rates of hydrolysis and oxidation. In 

vitro release tests showed that only minor amounts of oils (~5%) were released under SGF 

condition, whereas the majority of oils (~67%) with higher concentrations of polyunsaturated 

fatty acids were released under sequential exposure of SGF and SIF. Therefore, the storage 

stability and release characteristics were significantly influenced by the oils.  

  Based on the great physicochemical and functional properties, LPI represented as an 

effective emulsifier that is alternative to soy and animal-derived proteins and produced a 

stable oil-in-water emulsion for microencapsulation. The combination of LPI, maltodextrin 

and sodium alginate can be applied as appropriate wall materials to encapsulate omega fatty 

acids-rich oils to further provide excellent physical properties and antioxidative capacity, in 

order to be potentially used as a universal platform in commercial food and supplement 

products to enhance the delivery of healthy oils.  
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8. FUTURE STUDIES 

 

  Omega fatty acids are generally recognized for their ability to maintain human health 

and reduce the risk of diseases, so, food products fortified by omega fatty acids-rich oils have 

been attracted more attention. However, due to their susceptibility to oxidation and 

insolubility in water, incorporation of those oils in food products is particularly challenging. 

Microencapsulation is considered as an effective way to solve these problems. In the current 

research, 20% of omega fatty acids-rich oils (e.g., canola, fish, and flaxseed oils) were 

encapsulated using the mixture of LPI, maltodextrin, and sodium alginate to produce 

microcapsules with relative higher entrapment efficiency (~88%) in comparison with other 

studies (Aghbashlo et al., 2013; Can Karaca et al., 2013a; Goyal et al., 2015; Intarasirisawat 

et al., 2015). Ideally, the food industry targets to entrap 30-70% of oils to produce 

microcapsules with < 2% surface oil and > 98% entrapment efficiency (Drusch and Berg, 

2008; Nickerson et al., 2014). It has been reported that lower amounts of oil (5-50%) could 

be encapsulated using spray drying comparing with complex coacervation (40-90%) (Desai 

and Park, 2005; Ray et al., 2016). Therefore, further work is needed to increase the entrapped 

oil content with desirable entrapment efficiency. Gharsallaoui and co-workers (2007) stated 

that wall materials play an important role in the determination of the emulsion properties to 

further significantly influence the efficiency of oil encapsulation. Modification could be 

explored as a way to improve the emulsifying properties of LPI to further improve the 

properties of developed microcapsules. For instance, Zhang et al. (2015b) developed fish oil 

microcapsules using the Maillard reaction products (HSPI-MD) of partially hydrolyzed SPI 

(using Neutrase at 54 °C) and maltodextrin (DE 8-10) by freeze drying. They found that 

HSPI-MD conjugates-based microcapsules had much higher entrapment efficiency (87%) 

than the microcapsules prepared with native SPI and maltodextrin (66%) and microcapsules 

prepared with partially hydrolyzed SPI and maltodextrin (57%), because the limited 

hydrolysis improved the emulsifying properties of SPI by breaking SPI into short chain 

length, which were interact with maltodextrin to produce a strong structural matrix to 

encapsulate fish oil. Xiao et al. (2011) applied complex coacervation between SPI (after 

ultrasonic treatment to increase solubility) and gum Arabic (at 1:1 ratio, pH 4) to encapsulate 
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sweet orange oil (10-70%) with relative high entrapment efficiency (70-85%). In the work by 

Tamjidi et al. (2013), fish oil (33% w/w in the final microcapsules) was encapsulated within 

the gelatin-acacia gum coacervates using complex coacervation and reached ~92% 

entrapment efficiency. Moreover, Tamm et al. (2016) studied antioxidant property of 

β-lactoglobulin hydrolysates in spray dried fish oil microcapsules. They found enzymatic 

hydrolysis using trypsin greatly improved antioxidant property of β-lactoglobulin (degree of 

hydrolysis was 6%), because the hydrolysis enhanced the effectiveness of peptides to adsorb 

at the oil-water interface to increase the accessibility of antioxidant amino acids (e.g., 

cysteine, methionine, and glutathione), and small peptides (< 1 kDa) in hydrolyzed 

β-lactoglobulin exhibited increased iron chelating activity (O’Loughlin et al., 2015). 

Therefore, the combination of chemical reaction (e.g., Maillard reaction and electrostatic 

complexation), modification of LPI (e.g., physical, chemical, and enzymatic) and different 

microencapsulation techniques could be tried to encapsulate a higher amount of omega fatty 

acid-rich oils to produce microcapsules with greater entrapment efficiency and oxidative 

stability. 

  The controlled release of omega fatty acids-rich oils are one the most important 

aspects of microencapsulation. It was observed that only ~67% of encapsulated oils were 

released under simulated gastrointestinal fluids in the current research, so, part of the oils 

were complexed with wall materials within microcapsules as the waste. Due to the 

differences in solubility, strength of wall structure, and wettability, the choice of wall 

materials exhibits a great impact on the release of encapsulated oils during in vitro digestion 

(Bakry et al., 2016). Binsi et al. (2017) produced microcapsules using fish roe with/without 

gum Arabic by spray drying. They found the addition of gum Arabic not only greatly 

increased entrapment efficiency from 72% to 97%, but it also improved oil release (from 87% 

to 96%) under simulated gastrointestinal fluids, because protein aggregation was happened 

within the microcapsules without gum Arabic to entrap oil globules inside of the aggregated 

protein mass during spray drying, whereas the protein aggregation was minimized in the 

microcapsules with gum Arabic to increase the exposure of proteolytic enzymatic degradation. 

In the work by Can Karaca et al. (2013a), about 84% of encapsulated flaxseed oil was 

released from microcapsules (with ~84% entrapment efficiency) prepared by only chickpea 

or lentil protein isolates with maltodextrin under in vitro digestive process. Thereby, the 

adjustment of wall materials (e.g., addition or removement of polysaccharides) could be 

investigated to stimulate the release of encapsulated oils under gastrointestinal fluids, but 

remain/improve the entrapment efficiency. Furthermore, the reaction between encapsulated 
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oils and proteins may have relevant incidence to depress the release of encapsulated oils and 

lead to the loss of nutritional value (e.g., loss of essential amino acids). As early as last 

century, a number of studies have demonstrated the reaction of oils with amino acids to result 

in the loss of methionine, tryptophan, histidine, and lysine, but the interaction was subjected 

under high relative humidity (≥ 80%) at high temperature (e.g., 50 °C) (Gardner, 1979; 

Matoba et al., 1984). Very little information is available to understand how the reaction 

proceeds at low water activity (0.2-0.4) with room temperature, and how the reaction affects 

the bioavailability of encapsulated oils from microcapsules. Overall, much effort through 

research is still needed to develop wall materials and identify appropriate encapsulation 

techniques, in order to improve the bioavailability of encapsulated omega fatty acid-rich oils 

and optimize the microencapsulation with suitable oil content and entrapment efficiency. 

  



108 
 

9. REFERENCES 

 

Adebiyi, A. P., & Aluko, R. (2011). Functional properties of protein fractions obtained from 

 commercial yellow field pea (Pisum sativum) seed protein isolate. Food Chemistry, 128, 

 902-908. 

Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2013). Influence of wall material and 

 inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food 

 and Bioprocess Technology, 6, 1561-1569.  

Akhlaghi, M. & Bandy, B. (2010). Dietary broccoli sprouts protect against myocardial 

 oxidative damage and cell death during ischemia-reperfusion. Plant Foods for Human 

 Nutrition, 65, 193-199. 

Alizadeh-Pasdar, N., & Li-Chen, E. C. Y. (2000). Comparison of protein surface 

 hydrophobicity measured at various pH values using three different fluorescent probes. 

 Journal of Agricultural and Food Chemistry, 48, 328-334. 

Aluko, R. E. & McIntosh, T. (2001). Polypeptide profile and functional properties of defatted 

 meals and protein isolates of canola seeds. Journal of Science of Food and Agriculture, 

 81, 391-396. 

Amigo-Benavent, M., Athanasopoulos, V. I., Ferranti, P., Villamiel, M., & del Castillo, M. D. 

 (2009). Carbohydrate moieties on the in vitro immunoreactivity of soy β-conglycinin. 

 Food Research International, 42, 819-825.  

Anderson, R. L. & Wolf, W. J. (1995). Compositional changes in trypsin inhibitors, phytic 

 acid, saponins and isoflavones related to soybean processing. Journal of Nutrition, 125, 

 581S-588S.  

Anwar, S. H. & Kunz, B. (2011). The influence of drying methods on the stabilization of fish 

 oil microcapsules: comparison of spray granulation, spray drying, and freeze drying. 

 Journal of Food Engineering, 105, 367-378.  

AOAC (2003). Methods 920.87 Official methods of analysis (17th ed.). Washington, DC: 

 Association of Official Analytical Chemists. 

AOCS. (1994). Methods Cd 12b-92 Official methods and recommended practices of the 

 American oil chemists’ society. (4th ed.). Champaign: American Oil Chemists’ Society.  



109 
 

AOCS. (2000). Methods 26.042 Official methods and recommended practices of the 

 American oil chemists’ society. (5th ed.). Champaign: American Oil Chemists’ Society. 

Arterburn, L. M., Hall, E. B., & Oken, H. (2006). Distribution, interconversion, and dose 

 response of n-3 fatty acids in humans. American Journal of Clinical Nutrition, 83, 

 1467S-1476S.  

Augustin, M. A., Sanguansri, L., & Bode, O. (2006). Maillard reaction products as 

 encapsulants for fish oil powders. Journal of Food Science, 71, 25-32.  

Avramenko, N. A., Chang, C., Low, N. H., & Nickerson, M. T. (2016). Encapsulation of 

 flaxseed oil within native and modified lentil protein-based microcapsules. Food 

 Research International, 81, 17-24.  

Avramenko, N. A., Low, N. H., & Nickerson, M. T. (2013). The effects of limited enzymatic 

 hydrolysis on the physicochemical and emulsifying properties of a lentil protein isolate. 

 Food Research International, 51, 162-169. 

Badley, R. A., Atkinson, D., Hauser, H., Oldani, D., Green, J. P., & Stubbs, J. M. (1975). The 

 structure, physical and chemical properties of the soy bean protein glycinin. Biochimica 

 et Biophysica Acta-Protein Structure, 412, 214-228.  

Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. 

 (2016). Microencapsulation of oils: a comprehensive review of benefits, techniques, and 

 applications. Comprehensive Reviews in Food Science and Food Safety, 15, 143-182.  

Balmaceda, E. A., Kim, M. K., Franzen, R., Mardones, B., & Lugay, J. C. (1976). Protein 

 functionality methodology – standard tests. Presented at IFT annual meeting, Anaheim, 

 CA. 

Barac, M., Cabrilo, S., Pesic, M., Stanojevic, S., Zilic, S., Macej, O., & Ristic, N. (2010). 

 Profile and functional properties of seed proteins from six pea (Pisum sativum) 

 genotypes. International Journal of Molecular Sciences, 11, 4973-4990. 

Bayram, O. A., Bayram, M., & Tekin, A. R. (2005). Spray drying of sumac flavour using 

 sodium chloride, sucrose, glucose and starch as carriers. Journal of Food Engineering, 

 69, 253-269.  

Binsi, P. K., Natasha, N., Sarkar, P. C., Muhamed Ashraf, P., George, N., & Ravishankar, C. N. 

 (2017). Structural, functional and in vitro digestion characteristics of spray dried fish roe 

 powder stabilised with gum arabic. Food Chemistry, 221, 1698-1708.  

Bos, M. A., & Van Vliet, T. (2001). Interfacial rheological properties of adsorbed protein 

 layers and surfactants: A review. Advances in Colloid and Interface Science, 91, 

 437-471. 



110 
 

Boye, J. I., Aksay, S., Roufik, S., Ribereau, S., Mondor, M., Farnworth, E., & Rajamohamed, 

 S. H. (2010a). Comparison of the functional properties of pea, chickpea and lentil protein 

 concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food 

 Research International, 43, 537-546. 

Boye, J. I., Zare, F., & Pletch, A. (2010b). Pulse proteins: processing, characterization, 

 functional properties and applications in food and feed. Food Research International, 43, 

 414-431.  

Bozan, B. & Temelli, F. (2008). Chemical composition and oxidative stability of flax, 

 safflower and poppy seed and seed oils. Bioresource Technology, 99, 6354-6359.  

Broadhead, J., Edmond, R. K., Hua, I., & Rhodes, C. T. (1994). The effect of process and 

 formulation variables on the properties of spray-dried β-galactosidase. Journal of 

 Pharmacology and Pharmacotherapeutics, 46, 458-467.  

Burdge, G. C. & Calder, P. C. (2006). Dietary α-linolenic acid and health-related outcomes: a 

 metabolic perspective. Nutrition Research Reviews, 19, 26-52.  

Burgar, M. I., Hoobin, P., Weerakkody, R., Sanguansri, L., & Augustin, M. A. (2009). NMR 

 of microencapsulated fish oil samples during in vitro digestion. Food Biophysics, 4, 

 32-41. 

Calder, P. C. (2013). Nutritional benefits of omega-3 fatty acids. In C. Jacobsen, N. S. 

 Nielsen, A. Frisenfeldt Hom, and A. D. Moltke Sorensen (Eds.), Food enrichment with 

 omega-3 fatty acids (pp. 3-26). Sawston, UK: Woodhead Publishing Limited.  

Calvo, P., Castano, A. L., Hernandez, M. T., & Gonzalez-Gomez, D. (2011). Effects of 

 microcapsule constitution on the quality of microencapsulated walnut oil. European 

 Journal of Lipid Science and Technology, 113, 1273-1280.  

Calvo, P., Castano, A. L., Lozano, M., & Gonzalez-Gomez, D. (2012). Microencapsulation of 

 refined olive oil: influence of capsule wall components and the addition of antioxidant 

 additives on the shelf life and chemical alteration. Journal of the Science of Food and 

 Agriculture, 92, 2689-2695.   

Calvo, P., Hernandez, T., Lozano, M., & Gonzalez-Gomez, D. (2010). Microencapsulation of 

 extra-virgin olive oil by spray-drying: influence of wall material and olive quality. 

 European Journal of Lipid Science and Technology, 112, 852-858.  

Can Karaca, A., Low, N., & Nickerson, M. (2011a). Emulsifying properties of chickpea, faba 

 bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. 

 Food Research International, 44, 2742-2750. 



111 
 

Can Karaca, A., Low, N., & Nickerson, M. (2011b). Emulsifying properties of canola and 

 flaxseed protein isolates produced by isoelectric precipitation and salt extraction. Food 

 Research International, 44, 2991-2998. 

Can Karaca, A., Low, N., & Nickerson, M. (2013a). Encapsulation of flaxseed oil using a 

 benchtop spray drying for legume protein-maltodextrin microcapsule preparation. 

 Journal of Agricultural and Food Chemistry, 61, 5148-5155.  

Can Karaca, A., Nickerson, M. T., & Low, N. H. (2013b). Microcapsule production 

 employing chickpea or lentil protein isolates and maltodextrin: physicochemical 

 properties and oxidative protection of encapsulated flaxseed oil. Food Chemistry, 139, 

 448-457.  

Can Karaca, A., Low, N., & Nickerson, M. (2015). Potential use of plant proteins in the 

 microencapsulation of lipophilic materials in foods. Trends in Food Science & 

 Technology, 42, 5-12.  

Carneiro, H. C. F., Tonon, R. V., Grosso, C. R. F., & Hubinger, M. D. (2013). Encapsulation 

 efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using 

 different combinations of wall materials. Journal of Food Engineering, 115, 443-451.  

Carvalho, A. G. S., Silva, V. M., & Hubinger, M. D. (2014). Microencapsulation by spray 

 drying of emulsified green coffee oil with two-layered membranes. Food Research 

 International, 61, 236-245. 

Chang, C., Tu, S., Ghosh, S., & Nickerson, M. T. (2015). Effect of pH on the 

 inter-relationships between the physicochemical, interfacial and emulsifying properties 

 for pea, soy, lentil and canola protein isolates. Food Research International, 77, 360-367.  

Chang, C., Varankovich, N., & Nickerson, M. T. (2016). Microencapsulation of canola oil by 

 lentil protein isolate-based wall materials. Food Chemistry, 212, 264-273.  

Charve, J. & Reineccius, G. A. (2009). Encapsulation performance of proteins and traditional 

 materials for spray dried flavors. Journal of Agricultural and Food Chemistry, 57, 

 2486-2492.  

Chen, L. & Subirade, M. (2009). Elaboration and characterization of soy/zein protein 

 microspheres for controlled nutraceutical delivery. Biomacromolecules, 10, 3327-3334.  

Cheung, L., Wanasundara, J., & Nickerson, M. T. (2014). The effect of pH and NaCl levels 

 on the physicochemical and emulsifying properties of a cruciferin protein isolate. Food 

 Biophysics, 9, 105-113. 

Choe, E. & Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. 

 Comprehensive Reviews in Food Science and Food Safety, 5, 169-186.  



112 
 

Choi, Y. S., Choi, J. H., Han, D. J., Kim, H. Y., Lee, M. A., Jeong, J. Y., Chung, H. J., & Kim, 

 C. J. (2010). Effects of replacing pork back fat with vegetable oils and rice bran fiber on 

 the quality of reduced-fat frankfurters. Meat Science, 84, 557-563.  

Chuah, A. M., Kuroiwa, T., Ichikawa, S., Kobayashi, I., & Nakajima, M. (2009). Formation 

 of biocompatible nanoparticles via the self-assembly of chitosan and modified lecithin. 

 Journal of Food Science, 74, n1-n8.  

Connor, W. E. (2000). Importance of n-3 fatty acids in health and disease. The American 

 Journal of Clinical Nutrition, 71, 171S-175S.  

Dagorn-Scaviner, C., Gueguen, J., & Lefebvre, J. (1987). Emulsifying properties of pea 

 globulins as related to their adsorption behaviors. Journal of Food Science, 52, 335-341.  

Damodaran, S. (1996). Amino acids, peptides, and proteins. In O. R. Fennema (Ed.), Food 

 chemistry (pp. 321-429) (3rd ed.). New York: Marcel Dekker Inc. 

da Silva, P. T., Fries, L. L. M., de Menezes, C. R., Holkem, A. T., Schwan, C. L., Wigmann, E. 

 F., Bastos, J. D., & da Silva, C. D. (2014). Microencapsulation: concepts, mechanisms, 

 methods and some applications in food technology. Ciencia Rural, 44, 1304-1311.  

Day, L. (2013). Proteins from land plants – potential resources for human nutrition and food 

 security. Trends in Food Science & Technology, 32, 25-42.  

de Koning, A. J. (2001). The free fatty acid content of fish oil: the effect of lime addition on 

 the reduction of the free fatty acid content of fish oil during the fish meal and oil 

 production process. International Journal of Food Properties, 4, 171-177.  

Derbyshire, E., Wright, D. J., & Boulter, D. (1976). Legumin and vicilin, storage proteins of 

 legume seeds. Phyrochtmistry, 15, 3-24.  

Desai, K. G. H. & Park, H. J. (2005). Recent developments in microencapsulation of food 

 ingredients. Drying Technology, 23, 1361-1394.  

Desobry, S. A., Netto, F. M., & Labuza, T. P. (1997). Comparison of spray-drying, 

 drum-drying and freeze-drying for β-carotene encapsulation and preservation. Journal of 

 Food Science, 62, 1158-1162.  

Desobry, S. A., Netto, F. M., & Labuza, T. P. (1999). Influence of maltodextrin systems at an 

 equivalent 25DE on encapsulated β-carotene loss during storage. Journal of Food 

 Processing Preservation, 23, 39-55.  

Devi, N., Hazarika, D., Deka, C., & Kakati, D. K. (2012). Study of complex coacervation of 

 gelatin A and sodium alginate for microencapsulation of olive oil. Journal of 

 Macromolecular Science, Part A: Pure and Applied Chemistry, 49, 936-945.  



113 
 

Dickinson, E. (1986). Mixed proteinaceous emulsifiers: review of competitive protein 

 adsorption and the relationship to food colloid stabilization. Food Hydrocolloids, 1, 3-23.  

Dokic, P. P., Dokic, L. P., Sovilj, V. J., & Katona, J. M. (2004). Influence of maltodextrin 

 dextrose equivalent value on rheological and dispersion properties of sunflower oil in 

 water emulsions. Acta Periodica Technologica, 35, 17-24.  

Drusch, S. (2006). Sugar beet pectin: a novel emulsifying wall component for 

 microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocolloids, 

 21, 1223-1228.  

Drusch, S. & Berg, S. (2008). Extractable oil in microcapsules prepared by spray-drying: 

 Localisation, determination and impact on oxidative stability. Food Chemistry, 109, 

 17-24. 

Drusch, S. & Mannino, S. (2009). Patent-based review on industrial approaches for the 

 microencapsulation of oils rich in polyunsaturated fatty acids. Trends in Food Science & 

 Technology, 20, 237-244.  

Dubey, R., Shami, T. C., & Bhasker Rao, K. U. (2009). Microencapsulation technology and 

 application. Defence Science Journal, 59, 82-95.  

Dupont, J., White, P. J., Johnston, K. M., Heggtveit, H. A., Mcdonald, B. E., Grundy, S. M., 

 & Bonanome, A. (1989). Food safety and health effects of canola oil. Journal of the 

 American College of Nutrition, 8, 360-375.  

Eckert, G. P., Franke, C., Noldner, M., Rau, O., Wurglics, M., Schubert-Zsilavecz, M., & 

 Muller, W. E. (2010). Plant derived omega-3-fatty acids protect mitochondrial function in 

 the brain. Pharmacological Research, 61, 234-241.  

Etchepare, M. D., Barin, J. S., Cichoski, A. J., Jacob-Lopes, E., Wagner, R., Fries, L. L. M., 

 & de Menezes, C. R. (2015). Microencapsulation of probiotics using sodium alginate. 

 Ciencia Rural, 45, 1319-1326.  

Fathi, M. Martin, A., & McClements, D. J. (2014). Nanoencapsulation of food ingredients 

 using carbohydrate based delivery systems. Trends in Food Science & Technology, 39, 

 18-39. 

Favaro-Trindade, C. S., Santana, A. S., Monterrey-Quintero, E. S., Trindade, M. A., & Netto, 

 F. M. (2010). The use of spray drying technology to reduce bitter taste of casein 

 hydrolysate. Food Hydrocolloid, 24, 336-340.  

Gallardo, G., Guida, L., Martinez, V., Lopez, M. C., Bernhardt, D., Blasco, R., Pedroza-Islas, 

 R., & Hermida, L. G. (2013). Microencapsulation of linseed oil by spray drying for 

 functional food application. Food Research International, 52, 473-482.  



114 
 

Gardner, H. W. (1979). Lipid hydroperoxide reactivity with proteins and amino acids: a 

 review. Journal of Agricultural and Food Chemistry, 27, 220-229.  

Gaserod, O., Smidsrod, O., & Skjak-Braek, G. (1998). Microcapsules of alginate-chitosan-I: 

 a quantitative study of the interaction between alginate and chitosan. Biomaterials, 19, 

 1815-1825.  

Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of 

 spray-drying in microencapsulation of food ingredients: an overview. Food Research 

 International, 40, 1107-1121.  

Gharsallaoui, A., Saurel, R., Chambin, O., Cases, E., Voilley, A., & Cayot, P. (2010). 

 Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised 

 oil-in-water emulsions. Food Chemistry, 122, 447-454.  

Goh, C. H., Heng, P. W. A, & Chan, L. W. (2012). Alginates as a useful natural polymer for 

 microencapsulation and therapeutic applications. Carbohydrate Polymers, 88, 1-12.  

Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. 

 Trends in Food Science & Technology, 15, 330-347.  

Goyal, A., Sharma, V., Sihag, M. K., Tomar, S. K., Arora, S., Sabikhi, L., & Singh, A. K. 

 (2015). Development and physico-chemical characterization of microencapsulated 

 flaxseed oil powder: a functional ingredient of omega-3 fortification. Powder Technology, 

 286, 527-537.  

Gupta, R. & Dhillon, S. (1993). Characterization of seed storage proteins of lentil (Lens 

 culinaris M.). Annals of Biology, 9, 71-78.  

Gu, X., Campbell, L. J., & Euston, S. R. (2009). Effects of different oils on the properties of 

 soy protein isolate emulsions and gels. Food Research International, 42, 925-932.  

Guzey, D. & McClements, D. J. (2006). Formation, stability and properties of multilayer 

 emulsions for application in the food industry. Advances in Colloid and Interface 

 Science, 128, 227-248. 

Heinzelmann, K. & Franke, K. (1999). Using freezing and drying techniques of emulsions 

 for the microencapsulation of fish oil to improve oxidation stability. Colloids and 

 Surfaces B: Biointerfaces, 12, 223-229. 

Heinzelmann, K., Franke, K., Velasco, J., & Marquez-Ruiz, G. (2000). Microencapsulation of 

 fish oil by freeze-drying techniques and influence of process parameters on oxidative 

 stability during storage. European Food Research and Technology, 211, 234-239.  



115 
 

Hickey, D. K., Kilcawley, K. N., Beresford, T. P., & Wilkinson, M. G. (2007). Lipolysis in 

 cheddar cheese made from raw, thermized, and pasteurized milks. Journal of Dairy 

 Science, 90, 47-56.  

Hogan, S. A., McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (2001). Emulsification 

 and microencapsulation properties of sodium caseinate/carbohydrate blends. 

 International Journal of Dairy Technology, 11, 137-144.  

Hoglund, A. S., Rodin, J., Larsson, E., & Rask, L. (1992). Distribution of napin and cruciferin 

 in developing rapeseed embryo. Plant Physiology, 98, 509-515.  

Hossain, M., Toba, M., Abe, Y., Mochizuki, T., & Yoshimura, Y. (2010). Effect of antioxidant 

 species on oxidation stability of fish oil biodiesel. Journal of the Japan Petroleum 

 Institute, 53, 365-366.  

Hu, F. B. (2003). Plant-based foods and prevention of cardiovascular disease: an overview. 

 American Journal of Clinical Nutrition, 78, 544-551.  

Imagi, J., Muraya, K., Yamashita, D., Adachi, S., & Matsuno, R. (1992). Retarded oxidation 

 of liquid lipids entrapped in matrices of saccharides or proteins. Bioscience 

 Biotechnology and Biochemistry, 56, 1236-1240.  

Intarasirisawat, R., Benjakul, S., Vissessanguan, W., Maqsood, S., & Osako, K. (2015). 

 Skipjack roe protein hydrolysate combined with tannic acid increases the stability of fish 

 oil upon microencapsulation. European Journal of Lipid Science and Technology, 117, 

 646-656.  

Jafari, S. M., He, Y., & Bhandari, B. (2007). Role of powder particle size on the 

 encapsulation efficiency of oils during spray drying. Drying Technology, 25, 1081-1089.  

Johnson, G. H., Keast, D. R., & Kris-Etherton, P. M. (2007). Dietary modeling shows that the 

 substitution of canola oil for fats commonly used in the United States would increase 

 compliance with dietary recommendations for fatty acids. Journal of the American 

 Dietetic Association, 107, 1726-1734.  

Jordan, R. G. (2010). Prenatal omega-3 fatty acids: review and recommendations. Journal of 

 Midwifery & Women’s Health, 55, 520-528.  

Kato, A., & Nakai, S. (1980). Hydrophobicity determined by fluorescence probe methods and 

 its correlation with surface properties of proteins. Biochimica et Biophysica Acta, 624, 

 13-20. 

Kaushik, P., Dowling, K., Barrow, C. J., & Adhikari, B. (2015). Microencapsulation of 

 omega-3 fatty acids: a review of microencapsulation and characterization methods. 

 Journal of Functional Foods, 19, 868-881.  



116 
 

Kha, T. C., Nguyen, M. H., Roach, P. D., & Stathopoulos, C. E. (2014). Microencapsulation 

 of Gac oil: optimisation of spray drying conditions using response surface methodology. 

 Powder Technology, 264, 298-309.  

Klassen, D. R., Elmer, C. M., & Nickerson, M. T. (2011). Associative phase separation 

 involving canola protein isolate with both sulphated and carboxylated polysaccharides. 

 Food Chemistry, 126, 1094-1101. 

Klinkersorn, U., Sophanodora, P., Chinachoti, P., McClements, D., & Decker, E. A. (2005). 

 Stability of spray-dried tuna oil emulsion encapsulated with two-layered interfacial 

 membranes. Journal of Agricultural and Food Chemistry, 53, 8365-8371.  

Koc, M., Gungor, O., Zungur, A., Yalcin, B., Selek, I., Ertekin, F. K., & Otles, S. (2015). 

 Microencapsulation of extra virgin olive oil by spray drying: effect of wall materials 

 composition, process conditions, and emulsification method. Food Bioprocess 

 Technology, 8, 301-318.  

Koc, M., Koc, B., Sakin-Yilmazer, M., Kaymak-Ertekiin, F., Susyal, G., & Bagdathoglu, N. 

 (2011). Physicochemical characterization of whole egg powder microencapsulated by 

 spray drying. Drying Technology, 29, 780-788. 

Kolanowski, W., Laufenberg, G., & Kunz, B. (2004). Fish oil stabilization by 

 microencapsulation with modified cellulose. International Journal of Food Sciences and 

 Nutrition, 55, 333-343. 

Koletzko, B., Agostoni, C., Carlson, S. E., Clandinin, T., Hornstra, G., Neuringer, M., Uauy, 

 R., Yamashiro, Y., & Willatts, P. (2001). Long chain polyunsaturated fatty acids 

 (LC-PUFA) and perinatal development. Acta Paediatrica, 90, 460-464.  

Koshiyama, I. & Fukushima, D. (1976). Identification of the 7S globulin with β-conglycinin 

 in soybean seeds. Phytochemistry, 15, 157-159.  

Krause, J. P. & Schwenke, K. D. (2001). Behavior of a protein isolate from rapeseed 

 (Brassica napus) and its main protein components – globulin and albumin at air/solution 

 and solid interfaces, and in emulsions. Colloids and Surfaces B: Biointerfaces, 21, 29-36. 

Kreft, O., Prevot, M., Mohwald, H., & Sukhorukov, G. B. (2007). Shell-in-shell 

 microcapsules: a novel tool for integrated, spatially confined enzymatic reactions. 

 Angewandte Chemie-International Edition, 46, 5605-5608.  

Labuza, T. P., Mcnally, L., Gallagher, D., Hawkes, J., & Hurtado, F. (1972). Stability of 

 intermediate moisture foods. 1. Lipid Oxidation. Journal of Food Science, 37, 154-159. 



117 
 

Lam, R. S. H., & Nickerson, M. T. (2014). The effect of pH and heat pre-treatments on the 

 physicochemical and emulsifying properties of β-lactoglobulin. Food Biophysics, 9, 20-

 28. 

Larsen, R., Eilertsen, E. K. E., & Elvevoll, E. O. (2011). Health benefits of marine oils and 

 ingredients. Biotechnology Advances, 29, 508-518. 

Lauterbach, R. & Pawlik, D. (2014). Fish-oil fat emulsion and retinopathy in very low birth 

 weight infants. In V. R. Preedy (Ed.), Handbook of nutrition, diet and the eye (pp. 233-

 240). San Diego, USA: Academic Press.  

Liang, H. N., & Tang, C. H. (2013). pH-dependent emulsifying properties of pea [Pisum 

 sativum (L.)] proteins. Food Hydrocolloids, 33, 309-319. 

Liener, I. E. (1962). Toxic factors in edible legumes and their elimination. American Journal 

 of Clinical Nutrition, 11, 281-298.  

Li, H., Zhu, K., Zhou, H., & Peng, W. (2012). Effects of high hydrostatic pressure treatment 

 on allergenicity and structural properties of soybean protein isolate for infant formula. 

 Food Chemistry, 132, 808-814.  

Lim, H. K., Tan, C. P., Bakar, J., & Ng, S. P. (2012). Effects of different wall material on the 

 physicochemical properties and oxidative stability of spray-dried microencapsulated red-

 fleshed pitaya (Hylocereus polyrhizus) seed oil. Food and Bioprocess Technology, 5, 

 1220-1227.  

Lin, L., Allemekinders, H., Dansby, A., Campbell, L., Durance-Tod, S., Berger, A., & Jones, P. 

 J. H. (2013). Evidence of health benefits of canola oil. Nutrition Reviews, 71, 370-385.  

Liu, S., Elmer, C., Low, N. H., & Nickerson, M. T. (2010a). Effect of pH on the functional 

 behavior of pea protein isolate–gum Arabic complexes. Food Research International, 

 43,489-495. 

Liu, S., Low, N. H., & Nickerson, M. T. (2010b). Entrapment of flaxseed oil within 

 gelatin-gum Arabic capsules. Journal of American Oil Chemists Society, 87, 809-815.  

Liu, L., Wu, F., Ju, X. J., Xie, R., Wang, W., Niu, C. H., & Chu, L. Y. (2013). Preparation of 

 monodisperse calcium alginate microcapsules via internal gelation in microfluidic-

 generated double emulsions. Journal of Colloid and Interface Science, 404, 85-90.  

Lucassen, J., & van den Tempel, M. (1972). Dynamic measurements of dilational properties 

 of a liquid interface. Chemical Engineering Science, 27, 1283-1291. 

Lucassen-Reynders, E. H., Lucassen, J., Garrett, P. R., Giles, D., & Hollway, F. (1975). 

 Dynamic surface measurements as a tool to obtain equation of state data for soluble 

 mono-layers. Advances in Chemistry Series, 144, 272-285. 



118 
 

Madene, A., Jacquot, M., Scher, J., & Desobry, S. (2006). Flavor encapsulation and 

 controlled release – a review. International Journal of Food Science and Technology, 4, 

 1-21.  

Mag, T. (1983). Canola oil processing in Canada. Journal of the American Oil Chemists’ 

 Society, 60, 380-384.  

Martin-Polvillo, M., Marquez-Ruiz, G., & Dobarganes, M. C. (2004). Oxidative stability of 

 sunflower oils differing in unsaturation degree during long-term storage at room 

 temperature. Journal of the American Oil Chemists Society, 81, 577-583. 

Martins, I. M., Rodrigues, S. N., Barreiro, F., & Rodrigues, A. E. (2009). Microencapsulation 

 of thyme oil by coacervation. Journal of Microencapsulation, 26, 667-675.  

Matoba, T., Yonezawa, D., Nair, B. M., & Kito, M. (1984). Damage to amino acid residues of 

 proteins after reaction with oxidizing lipids: estimation by proteolytic enzymes. Journal 

 of Food Science, 49, 1082-1084.  

Matsuno, R., & Adachi, S. (1993). Lipid encapsulation technology-techniques and 

 applications to food. Trends in Food Science & Technology, 4, 256-261.  

McClements, D. J. (2005). Emulsion ingredients. In F. M. Clydesdale (Ed.), Food emulsions: 

 principles, practices, and techniques (2nd ed.) (pp. 95-174). Boca Raton, USA: CRC 

 Press.  

McClements, D. J. (2007). Critical review of techniques and methodologies for 

 characterization of emulsion stability. Critical Reviews in Food Science and Nutrition, 

 47, 611-649. 

McClements, D. J. & Decker, E. A. (2007). Lipids. In S. Damodaran, K. L. Parkin, and O. R. 

 Fennema (Eds.), Food chemistry (4th ed.) (pp. 155-216). Boca Raton, USA: CRC Press.  

McNamee, B. F., O’Riorda, E. D., & O’Sullivan, M. (1998). Emulsification 

 microencapsulation properties of gum Arabic. Journal of Agricultural and Food 

 Chemistry, 46, 4551-4555.  

Mendanha, D. V., Ortiz, S. E. M., Favaro-Trindade, C. S., Mauri, A., Monterrey-Quintero, E. 

 S., & Thomazini, M. (2009). Microencapsulation of casein hydrolysate by complex 

 coacervation with SPI/pectin. Food Research International, 42, 1099-1104.  

Morr, C. V., German, B., Kinsella, J. E., Regenstein, J. M., van Buren, J. P., Kilara, A., 

 Lewis, B. A., & Mangino, M. E. (1985). A collaborative study to develop a standardized 

 food protein solubility procedure. Journal of Food Science, 50, 1715-1718. 



119 
 

Morris, V. J. & Gunning, A. P. (2008). Microscopy, microstructure and displacement of 

 proteins from interfaces: implications for food quality and digestion. Soft Matter, 4, 

 943-951.  

Nesterenko, A., Alric, I., Silvestre, F., & Durrieu, V. (2013). Vegetable proteins in 

 microencapsulation: a review of recent interventions and their effectiveness. Industrial 

 Crops and Products, 42, 469-479.  

Ng, S., Jessie, L. L., Tan, C., Long, K., & Nyam, K. (2013). Effect of accelerated storage on 

 microencapsulated kenaf seed oil. Journal of the American Oil Chemists Society, 90, 

 1023-1029.  

Nickerson, M., Yan, C., Cloutier, S., & Zhang, W. (2014). Protection and masking of omega-3 

 and -6 oils via microencapsulation. In A. G. Gaonkar, N. Vasisht, A. R. Khare, and R. 

 Sobel (Eds.), Microencapsulation in the food industry (pp. 485-500). San Diego, CA: 

 Elsevier Inc.  

Nori, M. P., Favaro-Trindade, C. S., Alencar, S. M., Thomazini, S. M., & Balieiro, J. C. C. 

 (2010). Microencapsulation of propolis extract by complex coacervation. LWT-Food 

 Science and Technology, 44, 429-435.  

Nykter, M., Kymalainen, H. R., Gates, F., & Sjoberg, A. M. (2006). Quality characteristics of 

 edible linseed oil. Agricultural and Food Science, 15, 402-413.  

O’Connor, C. J., Lai, S. N. D., & Eyres, L. (2007). Handbook of Australasian edible oils. 

 Auckland: Oils and Fats Specialist Groups of NZIC.  

O’Loughlin, I. B., Kelly, P. M., Murray, B. A., FitzGerald, R. J., & Brodkorb, A. (2015). 

 Molecular characterization of whey protein hydrolysate fractions with ferrous chelating 

 and enhanced iron solubility capabilities. Journal of Agricultural and Food Chemistry, 

 63, 2708-2714.  

Oetjen, G. W. & Haseley, P. (2004). Freeze-drying (2nd Ed.). Weinheim, Germany: 

 Wiley-VCH Verlag Gmbh & Co. KGaA.  

Papalamprou, E. M., Doxastakis, G. I., Biliaderis, C. G., & Kiosseoglou, V. (2009). Influence 

 of preparation methods on physicochemical and gelation properties of chickpea protein 

 isolates. Food Hydrocolloids, 23, 337-343. 

Papalamprou, E. M., Doxastakis, G. I., & Kiosseoglou, V. (2010). Chickpea protein isolates 

 obtained by wet extraction as emulsifying agents. Journal of the Science of Food and 

 Agriculture, 90, 304-313.  



120 
 

Patrick, K. E., Abbas, S., Lv, Y., Ntsama, I. S. B., & Zhang, X. (2013). Microencapsulation by 

 complex coacervation of fish oil using gelatin/SDS/NaCMC. Pakistan Journal of Food 

 Sciences, 23, 17-25.  

Pegg, R. (2005). Measurement of primary lipid oxidation products. In R. E. Wrolstad, T. E. 

 Acree, & E. A. Decker (Eds.), Handbook of food analytical chemistry (pp. 515-564). 

 New Jersey: Wiley. 

Pelser, W. M., Linssen, J. P. H., Legger, A., & Houben J. H. (2007). Lipid oxidation in n-3 

 fatty acid enriched Dutch style fermented sausages. Meat Science, 75, 1-11.  

Pereira, H. V. R., Saraiva, K. P., Carvalho, L. M. J., Andrade, L. R., Pedrosa, C., & Pierucci, 

 A. P. T. R. (2009). Legumes seeds protein isolates in the production of ascorbic acid 

 microparticles. Food Research International, 42, 115-121.  

Piacentini, E., Giorno, L., Dragosavac, M. M., Vladisavljevic, G. T., & Holdich, R. G. (2013). 

 Microencapsulation of oil droplets using cold water fish gelatin / gum Arabic complex 

 coacervation by membrane emulsification. Food Research International, 53, 362-372.  

Polavarapu, S., Oliver, C. M., Ajlouni, S., & Augustin, M. A. (2011). Physicochemical 

 characterisation and oxidative stability of fish oil and fish oil-extra virgin olive oil 

 microencapsulated by sugar beet pectin. Food Chemistry, 127, 1694-1705. 

Pothakamury, U. R. & Barbosa-Canovas, G. V. (1995). Fundamental aspects of controlled 

 release in foods. Trends in Food Science & Technology, 6, 397-406. 

Pourashouri, P., Shabanpour, B., Razavi, S. H., Jafari, S. M., Shabani, A., & Aubourg, S. P. 

 (2014). Impact of wall materials on physicochemical properties of microencapsulated 

 fish oil by spray drying. Food and Bioprocess Technology, 7, 2354-2365.  

Pu, J. N., Bankston, J. D., & Sathivel, S. (2011). Developing microencapsulated flaxseed oil 

 containing shrimp (Litopenaeus setiferus) astaxanthin using a pilot scale spray dryer. 

 Biosystems Engineering, 108, 121-132.  

Qi, Z. & Xu, A. (1999). Starch-based ingredients for flavor encapsulation starch. Cereal 

 Foods World, 44, 460-465.  

Raja, K. C. M., Sankarikutty, B., Sreekumar, M., Jayalekshmy, A., & Narayanan, C. S. (1989). 

 Material characterization studies of maltodextrin samples for the use of wall material. 

 Starch-Starke, 41, 298-303.  

Rajaram, S. (2014). Health benefits of plant-derived alpha-linolenic acid. American Journal 

 of Clinical Nutrition, 100, 443S-448S.  



121 
 

Rascon, M. P., Beristain, C. I., Garcie, H. S., & Salgado, M. A. (2010). Carotenoid retention 

 and storage stability of spray-dried paprika oleoresin using gum Arabic and soy protein 

 isolate as wall materials. LWT-Food Science and Technology, 44, 549-557.  

Raybaudi-Massilia, R. M. & Mosqueda-Melgar, J. (2012). Polysaccharides as carriers and 

 protectors of additives and bioactive compounds in foods. In N. K. Desiree (Ed.), The 

 complex word of polysaccharides (pp. 429-453). Rijeka: InTech.  

Ray, S., Raychaudhuri, U., & Chakraborty, R. (2016). An overview of encapsulation of active 

 compounds used in food products by drying technology. Food Bioscience, 13, 76-83.  

Reineccius, G. A. (2004a). The spray drying of food flavors. Drying Technology, 22, 1289-

 1324.  

Reineccius, G. A. (2004b). Multiple-core encapsulation: the spray drying of food ingredients. 

 In P. Vilstrup (Ed.), Microencapsulation of food ingredients (pp. 151-185). UK: 

 Leatherhead International Limited.  

Rosenberg, M., Kopelman, I. J., & Talmon, Y. (1990). Factors affecting retention in spray-

 drying microencapsulation of volatile materials. Journal of Agricultural and Food 

 Chemistry, 38, 1288-1294.  

Rosenberg, M. & Sheu, T. Y. (1996). Microencapsulation of volatiles by spray-drying in 

 whey protein-based wall systems. International Dairy Journal, 6, 273-284.  

Roy, F., Boye, J. I., & Simpson, B. K. (2010). Bioactive proteins and peptides in pulse crops: 

 pea, chickpea and lentil. Food Research International, 43, 432-442.  

Rubilar, M., Morales, E., Contreras, K., Ceballos, C., Acevedo, F., Villarroel, M., & Shene, C. 

 (2012). Development of a soup powder enriched with microencapsulated linseed oil as a 

 source of omega-3 fatty acids. European Journal of Lipid Science and Technology, 114, 

 423-433.  

Ruiz-Henestrosa, V. P., Carrera Sanchez, C., & Rodriguez Patino, J. M. (2008). Adsorption 

 and foaming characteristics of soy globulins and Tween 20 mixed systems. Industrial 

 and Engineering Chemistry Research, 47, 2876-2885. 

Ruxton, C. H. S., Reed, S. C., Simpson, M. J. A., & Millington, K. J. (2007). The health 

 benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. Journal of 

 Human Nutrition and Dietetics, 20, 275-285.  

Rycebosch, E., Bruneel, C., Termote-Verhalle, R., Lemahieu, C., Muylaert, K., Van Durme, J. 

 V., Goiris, K., & Foubert, I. (2013). Stability of omega-3 LC-PUFA-rich 

 photoautotrophic microalgal oils compared to commercially available omega-3 

 LC-PUFA oils. Journal of Agricultural and Food Chemistry, 61, 10145-10155.  



122 
 

Saleeb, F. Z. & Arora, V. K. (1999). US Patent 5972395.  

Sanguansri, L., Day, L., Shen, Z. P., Fagan, P., Weerakkody, R., Cheng, L. J., Rusli, J., & 

 Augustin, M. A. (2013). Encapsulation of mixtures of tuna oil, tributyrin and resveratrol 

 in a spray dried powder formulation. Food & Function, 4, 1794-1802.  

Sansone, F., Mencherini, T., Picerno, P., Amore, M., Aquino, R. P., & Lauro, M. R. (2011). 

 Maltodextrin/pectin microparticles by spray drying as carrier for nutraceutical extracts. 

 Journal of Food Engineering, 105, 468-476. 

Sathe, S. K., Deshpande, S. S., & Salunkhe, D. K. (1984). Dry beans of phaseolus – a review. 

 1. Chemical – composition – proteins. CRC Critical Reviews in Food Science and 

 Nutrition, 20, 1-46.  

Schmidt, I., Renard, D., Rondeau, D., Richomme, P., Popineau, Y., & Axelos, M. A. V. (2004). 

 Detailed physicochemical characterization of the 2S storage protein from rape (Brassica 

 napus L.). Journal of Agricultural and Food Chemistry, 52, 5995-6001. 

Seta, L., Baldino, N., Gabriele, D., Lupi, F. R., & de Cindio, B. (2012). The effect of 

 surfactant type on the rheology of ovalbumin layer at the air/water and oil/water 

 interfaces. Food Hydrocolloids, 26, 247-257. 

Seta, L., Baldino, N., Gabriele, D., Lupi, F. R., & de Cindio, B. (2014). Rheology and 

 adsorption behavior of β-casein and β-lactoglobulin mixed layers at the sunflower 

 oil/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 

 44, 669-677. 

Shen, Z., Apriani, C., Weerakkody, R., Sanguansri, L., & Augustin, M. A. (2011). Food 

 matrix effects on in vitro digestion of microencapsulated tuna oil powder. Journal of 

 Agricultural and Food Chemistry, 59, 8442-8449.  

Sheu, T. Y. & Rosenberg, M. (1998). Microstructure of microcapsules consisting of whey 

 proteins and carbohydrates. Journal of Food Science, 63, 491-494.  

Shibasaki, A., Irimoto, Y., Kim, M., Saito, K., Sugita, K., Baba, T., Honjyo, I., Moriyama, S., 

 & Sugo, T. (1999). Selective binding of docosahexaenoic acid ethyl ester to a sliver ion 

 loaded porous hollow-fiber membrane. Journal of the American Oil Chemists’ Society, 76, 

 771-775. 

Sikorski, Z. E. (2001). Functional properties of proteins in food systems. In Z. E. Sikorski 

 (Ed.), Chemical and functional properties of food proteins (pp. 113-135). Boca Raton, 

 USA: CRC Press.  



123 
 

Silva, E. K., Azevedo, V. M., Cunha, R. L., Hubinger, M. D., & Meireles, M. A. A. (2016). 

 Ultrasound-assisted encapsulation of annatto seed oil: whey protein isolate versus 

 modified starch. Food Hydrocolloids, 56, 71-83.  

Singh, P., Kumar, R., Sabapathy, S. N., & Bawa, A. S. (2008). Functional and edible uses of 

 soy protein products. Comprehensive Review in Food Science and Food Safety, 7, 14-28.  

Staswick, P. E., Hermodson, M. A., & Nielsen, N. C. (1981). Identification of the acidic and 

 basic subunit complexes of glycinin. The Journal of Biological Chemistry, 256, 

 8752-8755.  

Sun-Waterhouse, D., Wadhwa, S. S., & Waterhouse, G. I. (2013). Spray-drying 

 microencapsulation of polyphenol bioactives: a comparative study using different natural 

 fiber polymers as encapsulants. Food and Bioprocess Technology, 6, 2376-2388.  

Sun-Waterhouse, D., Zhou, J., Miskelly, G. M., Wibisono, R., & Wadhwa, S. S. (2011). 

 Stability of encapsulated olive oil in the presence of caffeic acid. Food Chemistry, 126, 

 1049-1056.  

Sutaphanit, P. & Chitprasert, P. (2014). Optimisation of microencapsulation of holy basil 

 essential oil in gelatin by response surface methodology. Food Chemistry, 150, 313-320.  

Tamjidi, F., Nasirpour, A., & Shahedi, M. (2013). Mixture design approach for evaluation of 

 fish oil microencapsulation in gelatin-acacia gum coacervates. International Journal of 

 Polymeric Materials and Polymeric Biomaterials, 62, 444-449.  

Tamm, F., Harter, C., Brodkorb, A., & Drusch, S. (2016). Functional and antioxidant 

 properties of whey protein hydrolysate/pectin complexes in emulsions and spray-dried 

 microcapsules. LWT-Food Science and Technology, 73, 524-527.  

Taneja, A. & Singh, H. (2012). Challenges for the delivery of long-chain n-3 fatty acids in 

 functional foods. Annual Review of Food Science and Technology, 3, 105-123.  

Tang, C. H. & Li, X. R. (2013). Microencapsulation properties of soy protein isolate and 

 storage stability of the correspondingly spray-dried emulsions. Food Research 

 International, 52, 419-428.  

Tcholakova, S., Denkov, N. D., Ivanov, I. B., & Campbell, B. (2006). Coalescence stability 

 of emulsions containing globular milk proteins. Advances in Colloid and Interface 

 Science, 123-126, 259-293. 

Teunou, E. & Poncelet, D. (2005). Fluid-bed coating. In C. Onwulata (Ed.), Encapsulated 

 and powdered foods (pp. 197-212). Boca Raton, USA: CRC Press.  

Tharanathan, R. N. & Mahadevamma, S. (2003). Grain legumes – a boon to human nutrition. 

 Trends in Food and Science Technology, 14, 507-518.  



124 
 

Turchiuli, C., Fuchs, M., Bohin, M., Cuvelier, M. E., Ordannaud, C., Payrad-Maillard, M. N., 

 & Dumoulin, E. (2005). Oil encapsulation by spray drying and fluidised bed 

 agglomeration. Innovative Food Science and Emerging Technologies, 6, 29-35.  

Tur, J. A., Bibiloni, M. M., Sureda, A., & Pons, A. (2012). Dietary sources of omega-3 fatty 

 acids: public health risks and benefits. The British Journal of Nutrition, 107, 23-52.  

Tyagi, V. V., Kaushik, S. C., Tyagi, S. K., & Akiyama, T. (2011). Development of phase 

 change materials based microencapsulated technology for building: a review. Renewable 

 and Sustainable Energy Reviews, 15, 1373-1391. 

Uppstrom, B. (1995). Seed Chemistry. In D. S. Kimber and D. I. McGregor (Eds.), Brassica 

 oilseeds: production and utilization (pp. 217-242). England: Wallingford.  

Uruakpa, F. O. & Arntfield, S. D. (2005). The physic-chemical properties of commercial 

 canola protein isolate-guar gum gels. International Journal of Food Science and 

 Technology, 40, 643-653.  

Vasisht, N. (2014). Factors and mechanisms in microencapsulation. In A. G. Gaonkar, N. 

 Vasisht, A. R. Khare, and R. Sobel (Eds.), Microencapsulation in the food industry (pp. 

 15-24). San Diego, CA: Elsevier Inc.  

Velasco, J., Dobarganes, C., & Marquez-Ruiz, G. (2003). Variables affecting lipid oxidation 

 in dried microencapsulated oils. Grasas Aceites, 54, 304-314.  

Velasco, P., Soengas, P., Vilar, M., & Cartea, M. E. (2008). Comparison of glucosinolate 

 profiles in leaf and seed tissues of different Brassica napus crops. Journal of the 

 American Society for Horticultural Science, 133, 551-558.  

Walton, D. & Mumford, C. (1999). The morphology of spray-dried particles: the effect of 

 process variables upon the morphology of spray-dried particles. Chemical Engineering 

 Research and Design, 77, 442-460.  

Wanasundara, J. P. D. (2011). Proteins of Brassicaceae oilseeds and their potential as a plant 

 protein source. Critical Reviews in Food Science and Nutrition, 51, 635-677.  

Wang, R. X., Tian, Z. G., & Chen, L. Y. (2011). A novel process for microencapsulation of 

 fish oil with barley protein. Food Research International, 44, 2735-2741.  

Wang, X., Yuan, Y., & Yue, T. (2014). The application of starch-based ingredients in flavor 

 encapsulation. Starch, 67, 225-236.  

Wendel, M. & Heller, A. R. (2009). Anticancer actions of omega-3 fatty acids – current state 

 and future perspectives. Anti-Cancer Agents in Medicinal Chemistry, 9, 457-470.  



125 
 

Wilson, T. A., Meservey, C. M., & Nicolosi, R. J. (1998). Soy lecithin reduces plasma 

 lipoprotein cholesterol and early atherogenesis in hypercholesterolemic monkeys and 

 hamsters: beyond linoleate. Atherosclerosis, 140, 147-153.  

Wu, J. & Muir, A. D. (2008). Comparative structural, emulsifying, biological properties of 2 

 major canola proteins, cruciferin and napin. Journal of Food Science, 73, C210-C216.  

Xiao, J. X., Yu, H. Y., & Yang, J. A. (2011). Microencapsulation of sweet orange oil by 

 complex coacervation with soybean protein isolate/gum Arabic. Food Chemistry, 125, 

 1267-1272.  

Young, S. L., Sadra, X., & Rosenberg, M. (1993). Microencapsulating properties of whey 

 protein. 2. Combination of whey proteins with carbohydrates. Journal of Dairy Science, 

 76, 2878-2885.  

Yu, C., Wang, W., Yao, H., & Liu, H. (2007). Preparation of phospholipid microcapsules by 

 spray drying. Drying Technology, 25, 695-702.  

Zhang, J., Peppard, T. L., & Reineccius, G. A. (2015a). Double-layered emulsions as 

 beverage clouding agents. Flavour and Fragrance Journal, 30, 218-223.  

Zhang, Y., Tan, C., Abbas, S., Eric, K., Xia, S., & Zhang, X. (2015b). Modified SPI improves 

 the emulsion properties and oxidative stability of fish oil microcapsules. Food 

 Hydrocolloids, 51, 108-117.  

Zuidam, N. J. & Shimoni, E. (2009). Overview of microencapsulates for use in food products 

 or processes and methods to make them. In N. J. Zuidam and V. A. Nedovic (Eds.), 

 Encapsulation technologies for food active ingredients and food processing (pp. 3-31). 

 Dordrecht, Netherlands: Springer.  

 


