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Abstract 

The Near Edge X-ray Absorption Fine Structure (NEXAFS) spectra of orthorhombic single 

crystals of n-octacosane (n-C28H58), recorded at room temperature (298 K) and at cryogenic 

temperatures (93 K), show distinct differences. The characteristic carbon 1s à 𝜎*C-H band in the 

NEXAFS spectrum of n-C28H58 is broader and has a lower energy onset in its room temperature 

spectrum than in its NEXAFS spectrum recorded at cryogenic temperatures. Density functional 

theory simulations show that nuclear motion and molecular disorder contribute to the observed 

spectral broadness and are the origin of the low-energy onset of the C-H band in the room 

temperature spectrum. 
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Introduction 

The variation of molecular spectra (NMR, IR, etc.) with temperature can be used to probe 

molecular dynamics. Sensitivity to molecular dynamics and motion is also expected in Near 

Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. As an example, NEXAFS 

spectra of gas, liquid, supercooled liquid, and solid water show sensitivity to local hydrogen 

bonding and changes in this bonding with temperature and phase.1 To date, experimental studies 

of the temperature variation in the NEXAFS spectra of molecules are limited. 

This study examines the temperature dependence in the NEXAFS spectra of n-alkanes. N-

alkanes, CH3(CH2)nCH3 are a family of simple organic molecules consisting of methyl (CH3) and 

methylene (CH2) moieties. Despite their relative simplicity, the NEXAFS spectra of n-alkanes 

show significant complexity, with characteristic differences with phase (gas versus condensed), 

chain length, degree of order, and with temperature.2-10 Chemical analysis of these materials 

would be strengthened if fundamental understandings of their NEXAFS spectra (including the 

role of order and dynamics) were improved, and if stronger structure / spectra relationships were 

established. 

The carbon 1s NEXAFS spectra of simple gas phase alkanes (methane, ethane, propane, etc.) are 

dominated by series of narrow and well resolved carbon 1s ® Rydberg transitions, with a rich 

array of vibronic features.2, 10-11 These gas phase spectra are well modeled by calculations that 

consider the lowest energy geometry but neglect vibronic transitions2, 10 as core-excited potential 

energy surfaces are difficult to model. When neopentane was examined in the gas and condensed 

phases, characteristic Rydberg transitions observed in the gas phase spectra were shifted to 

higher energy and were broadened in the condensed phase spectra.3 This effect was attributed to 
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Rydberg quenching in the solid state, and the emergence of valence (𝜎"#$∗ ) character.3 In the 

carbon 1s NEXAFS spectra of n-alkane solids such as paraffin and polyethylene, two low energy 

transitions of nearly equal strength (the “C-H band”, at 287.6 and 288.2 eV in paraffin) dominate 

the spectra.7, 12 Schöll  et al.7 examined how this C-H band changed with elevated temperature 

and the degree of crystallinity in polyethylene copolymers. They found that NEXAFS features 

were broader in the more disordered polymer as well as in molten polyethylene. The origin of 

these changes was not well understood, but the following observation can be made: increased 

disorder leads to a broader “C-H” band.  

Nuclear motion is predicted to play a role in the variation of NEXAFS spectra with 

temperature.13-15 Pettersson and Nilsson have extensively studied the NEXAFS spectra of water 

(liquid, supercooled liquid and solid phases) and have shown that its oxygen 1s NEXAFS 

spectrum is sensitive to the local hydrogen-bonded network and its change with temperature and 

phase.1, 16 The Pendergast group13-14 have examined how ‘nuclear motion’ effects leads to 

spectral broadening in NEXAFS spectra of amino acids and related molecules. Their work 

compared DFT spectral simulations based on the lowest energy molecular geometry, to 

simulations that model the nuclear degrees of freedom by averaging ‘snapshots’ from molecular 

dynamics simulations. Their work predicted that zero-point motion and thermally excited 

vibrational modes contribute to the shape of NEXAFS spectra. In molecular solids such as 

glycine, these MD-DFT simulations predict that solid-phase vibrational modes are the origin of 

temperature dependent broadening.14-15  

Gauche	defects	(e.g.	rotation	about	individual	C-C	bonds,	distorting	an	n-alkane	from	the	

lowest	energy,	all	trans	geometry)	are	another	possible	contributor	to	disorder	in	the	

NEXAFS	spectra	of	n-alkanes,	including	single	crystal	n-alkanes.	In	the	examination	of	the 
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spin-lattice relaxation time (T1p) for n-alkanes of various lengths,	Basson et al.17 observed a 

thermally populated defect below the melting point for solid n-alkanes of length 28 (n-C28H58) or 

shorter. This dynamic process was identified as a thermally populated trans-gauche defect 

motion near the end of the n-alkane chains17 (later classified as an end-gauche defects18). These 

defects were seen well below the characteristic pre-melting point solid / solid phase transition to 

the pseudohexagonal rotator phase,19 in which an increased population of gauche defects near 

chain ends was also observed.20 We therefore expect that some fraction of thermally populated 

gauche defects will be present in solid n-alkanes, particular for shorter n-alkane chains. 

There is little experimental temperature dependent NEXAFS spectra of organic molecules, and 

none that we are aware of at cryogenic temperatures. In this work, we examine the carbon 1s 

NEXAFS spectra of orthorhombic (o-rh) single crystals of n-octacosane (n-C28H58) recorded at 

room temperature (298 K) and cryogenic temperature (93 K). Regular diamond or parallelogram 

shaped n-octacosane crystallites with straight edges and well-defined angles were identified by 

optical microscopy (OM). These spectroscopic studies are accompanied by DFT simulations that 

model the effect of defects and vibrational modes on the NEXAFS spectra.  

2.	Experimental	Information	

2.1	Samples	and	Sample	Preparation.		

N-octacosane	(n-C28H58,	99%)	was	purchased	from	Alfa	Aesar	and	used	without	purification.	

Isopropyl	alcohol	(99.9%)	was	ACS	grade	and	purchased	from	Fisher	Scientific.		

Samples	were	prepared	on	100	nm,	0.5	×	0.5	mm	low	stress	silicon	nitride	(Si3N4)	windows	

(Norcada	 Inc.).	Thin	 single	 crystals	of	n-octacosane	 (n-C28H58)	were	prepared	by	 solution	

casting5,	9	from	an	isopropyl	alcohol	solution	with	a	mass/volume	ratio	of	1.0	mg/2.00	ml.	
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The	substrate	temperature	during	solvent	evaporation	was	optimized	in	order	to	isolate	the	

orthorhombic	structure	over	its	monoclinic	polymorph.	Thin	single	crystals	were	obtained	

when	the	samples	were	cast	at	lower	solvent	evaporation	temperature	(~	8	°C).	

The	 morphology	 of	 the	 n-octacosane	 single	 crystals	 were	 characterized	 by	 optical	

microscopy	(Nikon	Eclipse	ME600,	with	a	Q-Imaging	CCD	camera).		

N-octacosane	crystals	were	found	to	be	rectangular	or	diamond	in	shape	in	optical	and	X-ray	

microscopy	 examination.	 This	 indicates	 that	 the	 (a,b)	 unit	 cell	 axes	 of	 the	 crystals	 are	

oriented	in	the	plane	of	the	substrate	(see	Scheme	1).	Regular	diamond	or	parallelogram	

shaped	n-alkane	crystallites	with	straight	edges	and	well-defined	angles	were	identified	by	

optical	 microscopy	 (OM).	 N-alkane	 crystals	 with	 acute	 interior	 angles	 of	 68°	 ±1°	 are	

orthorhombic,	 with	 those	with	 acute	 interior	 angles	 of	 74°	 ±1°	 are	monoclinic.21-23	 Only	

orthorhombic	single	crystals	of	n-octacosane	(n-C28H58)	were	examined	in	this	work.	

	

2.2	X-ray	Spectromicroscopy	Characterization.		

X-ray	microscope	 images	and	variable	 temperature	NEXAFS	spectra	were	obtained	at	 the	

spectromicroscopy	(SM)	beamline24	at	the	Canadian	Light	Source	(CLS),	using	the	cryogenic	

Scanning	Transmission	X-ray	Microscope	(c-STXM)25	and	the	ambient	STXM	microscope	(a-

STXM).24	 STXM	 microscopy	 allows	 one	 to	 acquire	 the	 transmission	 (I)	 spectra	 from	

individual	single	crystals,	and	to	measure	the	incident	flux	(Io)	from	areas	adjacent	to	these	

crystals.	NEXAFS	spectra	were	acquired	at	cryogenic	(93	K)	and	ambient	temperatures	(~	

298	K)	with	the	c-STXM	microscope.25	All	NEXAFS	spectra	were	acquired	using	left	circular	

X-ray	 polarization	 to	 eliminate	 potential	 linear	 dichroism	 from	 oriented	 crystals.	

Transmission	spectra	were	converted	to	optical	density	with	Beer’s	law,	OD	=	-ln(I/Io).		
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Data	analysis	were	performed	using	aXis	200026	and	spectra	are	presented	using	the	Origin	

Lab	Pro	software	package.27	The	data	presentation	focuses	on	the	carbon	1s	→	σ*C−H	band	

(287	−	288	eV),	in	order	to	highlight	features	that	vary	with	nuclear	motion	contributions.	

Care	was	taken	to	exclude	experimental	artefacts	such	as	radiation	damage	and	thickness	

effects.	In	order	to	avoid	thickness	effects	associated	with	the	small	fraction	of	higher	order	

photons,	only	spectra	from	thinner	crystals	(OD	<	1.5)	were	considered.	The	relatively	high	

radiation	sensitivity	of	n-alkane	molecules28	limits	the	permissible	dose	that	can	be	used	for	

NEXAFS	measurements.	 Experimental	 conditions	 (energy	 point	 spacing,	 dwell	 time,	 etc.)	

were	optimized	to	minimize	radiation	exposure,	and	the	STXM	was	defocused	to	150	nm	

diameter	during	image	sequence	data	acquisition.	Fresh	sample	areas	were	used	for	each	

spectrum.	Radiation	damage	was	monitored	by	examining	the	NEXAFS	spectra	in	the	carbon	

1s	 continuum	 (300	 eV)	 to	 test	 for	mass	 loss	 and	 at	 the	 energy	 of	 the	 carbon	1s	→	𝜋*C=C	

transition	(285	eV)	to	test	for	the	formation	of	C=C	double	bonds.28-29	Radiation	damage	was	

found	to	be	minimal	in	the	experimental	conditions	used.	

The	energy	scale	of	the	ambient	temperature	NEXAFS	spectrum	was	confirmed	through	in	

situ	calibration	to	the	Rydberg	transitions	(carbon	1s	→3s	(ν=0)	transition	at	292.74	eV	and	

carbon	1s	→	3p	(v=0)	transition	at	294.96	eV;	after	Ma	et	al)11	in	the	NEXAFS	spectrum	of	

CO2,	performed	in	the	a-STXM.	These	data	were	used	to	calibrate	the	ambient	temperature	

NEXAFS	spectrum	recorded	in	the	c-STXM.	The	same	shift	was	applied	to	calibrate	the	energy	

scale	of	the	cryogenic	measurements.		

2.3	Density	Functional	Theory	Calculations	

N-decane	(n-C10H22)	was	used	as	a	computational	model	for	this	study.	The	lowest	energy	

geometry	 (all	 trans)	of	 n-decane	was	determined	by	ωB97X-D	DFT	calculations	at	 the	6-
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31+G(d,	 p)	 level,	 performed	with	 the	 program	 Gaussian	 16.30	 There	 were	 no	 imaginary	

frequencies	 in	 the	 vibrational	 analysis	 calculation.	 Several	 variations	 of	 the	 n-decane	

structure	were	examined	in	order	to	study	the	effect	of	disorder	and	nuclear	motion	effects.	

The	effect	of	gauche	defects	on	the	NEXAFS	spectra	are	studied	by	rotating	bond	dihedrals	

in	 n-decane	 individually.	 The	 population	 of	 gauche	 defects	 at	 room	 temperature	 was	

obtained	 from	 the	 molecular	 dynamic	 simulation	 study	 of	 n-decane	 by	 Thomas	 et	 al.31	

NEXAFS	spectra	were	averaged	according	to	the	weights	of	these	calculated	gauche	defect	

configurations.	This	method	provides	an	estimate	of	the	effect	of	gauche	defects	in	n-decane,	

as	an	approximation	for	the	effect	of	gauche	defects	in	longer	n-alkane	crystals.	In	the	solid	

phase,	such	defects	could	be	static,	but	Basson	et	al.	have	noted	that	end-gauche	defects	can	

also	be	thermally	populated	at	room	temperature	in	octacosane	(n-C28H58).32-33	

Many	 forms	 of	 motion	 can	 contribute	 to	 ‘nuclear	 motion	 effects’	 in	 an	 n-alkane	 solid,	

including	zero-point	motion	and	thermally	populated	vibrational	modes.	Zero-point	motions	

should	be	expected	to	contribute	at	all	temperatures,	while	the	Boltzmann	distribution	of	

thermally	populated	vibrational	modes	will	increase	with	sample	temperature.		

To	examine	the	spectroscopic	effect	of	the	thermally	populated	modes,	we	have	constructed	

a	simple	model	based	on	the	n-decane	(n-C10H22)	molecule,	which	has	90	(3N-6)	vibrational	

modes.	We	have	 constructed	geometries	 for	 the	 turning	points	of	 all	 of	 these	vibrational	

modes,	on	the	principle	that	the	molecule’s	geometry	will	spend	the	most	of	its	time	at	these	

turning	 points.	 DFT	 spectroscopic	 simulations	 were	 performed	 for	 these	 turning-point	

geometries,	and	were	averaged	according	to	the	expected	Boltzmann	population	of	 these	

vibrational	modes	at	298	K.	All	vibrations	are	considered,	as	weighted	by	their	Boltzmann	

population.	This	simple	approach	neglects	 the	effects	of	zero-point	motion,	as	well	as	 the	
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population	 of	 vibrational	 modes	 above	 n	 =	 1,	 which	 will	 be	 significant	 for	 low-energy	

vibration	modes.		

Carbon	 1s	 NEXAFS	 simulations	 of	 n-decane	 structures	 were	 obtained	 from	 DFT	

calculations34-35	using	the	deMon2k	package.36-37	All	NEXAFS	simulations	were	performed	

using	Transition	Potential	(TP-DFT)	method	with	the	half-core	hole	(HCH)	approximation.38	

Spectral	 lines	 were	 simulated	 using	 0.2	 eV	 wide	 Gaussian	 line	 shapes.	 The	 molecular	

spectrum	is	generated	by	averaging	the	DFT	simulation	from	each	carbon	atom.	The	IGLO-

III	basis	set39	was	used	for	the	core	excited	carbon	atom,	effective	core	potential	(ECPs)	for	

all	other	carbon	atoms,40	and	the	triple-zeta	(TZVP)	basis	set	for	hydrogen	atoms.40	XAS-I	

augmentation	orbitals	were	used	on	the	core	excited	carbon	atom.38	The	GEN-A4*	auxiliary	

basis	and	the	PBE	GGA	exchange-correlation	functional	were	used.41-42			

	

3.	Results	

Figure 1 presents the variation in the C-H band of the carbon 1s NEXAFS spectra of 

orthorhombic n-ocatacosane (o-rh n-C28H58) with temperature, comparing the room temperature 

(298 K) spectrum with that recorded at cryogenic temperatures (93 K). The shape of the C-H 

band is significantly broader at room temperature, and the C-H band has a lower energy onset 

(~200 meV lower) relative to that recorded at cryogenic temperatures. A broader C-H band is 

expected at higher temperature, as nuclear motion will be more significant. However, the lower 

energy offset for the room temperature spectra is unexpected and requires further discussion.  

The	observed	spectroscopic	trends	(width	and	onset)	were	also	observed	for	n-

tetracontane	(n-C40H82)	powders,	recorded	in	TEY	mode	on	the	CLS	SGM	beamline	(11	ID-

1).43 
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Figure 2 compares the TP-DFT simulations of the carbon 1s NEXAFS spectra of n-decane (n-

C10H22) with an all-trans minimum energy geometry, to simulations of gauche defects and 

thermally populated vibrational models. The shape of the TP-DFT simulation of the carbon 1s 

spectrum of n-decane (n-C10H22) (in the all trans geometry) differs from the experimental carbon 

1s spectrum of n-octacosane (n-C28H58) on account of the length of the model. The methyl-group 

and the first-methylene in from the end of the chain contribute to the third band observed in 

Figure 2, at ~289.2 eV. For n-decane (n-C10H22), these sites correspond to 40% of the atomic 

sites in the n-alkane chain; therefore, this third band is exaggerated in this short n-alkane model. 

A full examination of the chain length and atomic site dependence in the NEXAFS spectra of n-

alkanes is in preparation.44  

The splitting between the first two peaks in the TP-DFT simulation (~0.6 eV) roughly matches 

the observed splitting in the experimental carbon 1s spectrum of n-octacosane (n-C28H58) 

recorded at cryogenic temperatures. 

When gauche defects and populated vibrational modes are considered, new contributions are 

observed at lower energy; these are indicated by an asterisk in Figure 2. This trend is consistent 

with the lower energy onset of the C-H band observed in the room temperature NEXAFS 

spectrum of orthorhombic n-octacosane (o-rh n-C28H58), relative to the spectrum recorded at 

cryogenic temperatures. 

 

4. Discussion 

Spectral broadening in the carbon 1s NEXAFS spectra of molecular solids is expected to have 

several origins. Beyond the intrinsic broadening from the core-hole lifetime (~80 meV), vibronic 

contributions, disorder, and nuclear motion are expected to contribute to the shape of the 
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NEXAFS transtions.13-14, 45 Vibronic contributions2, 11 should be similar for spectra recorded at 

ambient and at cryogenic temperatures, as the additional energy required for vibronic excitation 

(e.g. a C 1s(n = 0) à s*C-H(n = 1) transition) comes from the absorbed photon. Vibronic 

contributions will therefore appear at higher energy. Vibronic contributions therefore cannot be 

responsible for the low-energy onset observed in the room temperature NEXAFS spectrum of n-

octacosane (n-C28H58).  

Nuclear motion effects, via the population of vibrational modes and thermally populated 

molecular defects, are expected to differ with temperature. The effect of the thermal population 

of vibrational modes and defects on the NEXAFS spectrum of n-alkanes was examined using 

TP-DFT simulations. This distortion from the lowest energy, all trans geometry results in lower 

energy transitions appearing at lower energy side of the C-H band. This is a reasonable 

observation; as geometries are distorted from the lowest energy geometry, the HOMO-LUMO 

gap in a molecule is expected to decrease, and with it, the energy of the core à LUMO transition 

will also decrease. This trend is observed for thermally populated gauche defects as well as 

vibrations.  

We note that the TP-DFT simulations of thermally populated vibrations and gauche defects do 

not reproduce the intensity of the low energy onset observed in the room temperature NEXAFS 

spectrum. This is not completely unexpected, as our computational model is limited. We 

examined a shorter chain (10 carbon atoms long instead of 20) in order to be computationally 

more accessible (90 versus 252 normal modes). We have also only examined the turning points 

for the lowest energy thermally populated vibration (n = 1), and not higher quantum number 

vibrational states (n > 1), expected to be populated for low energy normal modes.  
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Our vibrational model is that of an isolated n-alkane molecule, and not a solid structure. This 

model does not capture changes to vibrations due to intermolecular interactions in the condensed 

phase, or the low-energy shifts expected from dynamic stabilization.46 A full approach to 

examine the temperature dependent spectroscopy will require molecular dynamics simulations, 

which, with appropriate size, will be able to capture the effect of the solid-phase on nuclear 

motion contributions to the NEXAFS spectra, as well as thermally populated gauche defects. 

This requires considerable development, and will be the subject of future work. 

In this work, the carbon 1s NEXAFS spectrum of a condensed n-alkane orthorhombic n-

octacosane (o-rh n-C28H58) recorded at cryogenic temperatures (93 K), is compared to its 

NEXAFS spectrum recorded at room temperature. Characteristic differences are observed with 

temperature. Specifically, the distinctive “C-H band” in the NEXAFS spectrum is narrower in 

the spectrum recorded at cryogenic temperatures, and the onset of this band appears at higher 

energy. DFT simulations show that distortions from the lowest energy all trans geometry, from 

thermally populated vibrational modes and gauche defects, result in new features appearing at 

lower energy in the NEXAFS spectrum. Cryogenic temperatures restrict thermal motion in the 

sample, from a lower population of vibrational modes and thermally accessible defects. This 

results in a narrower C-H band in the spectrum recorded at cryogenic temperatures. At ambient 

temperatures, gauche defects will be more common, and nuclear motion effects will be 

enhanced.  

5. Conclusions 

This work reports remarkable differences in the NEXAFS spectra of an organic molecule with 

temperature, and attributes these spectroscopic differences to molecular vibrations and defects 

populated at ambient temperatures, relative to that at cryogenic temperatures. Future work will 
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include the acquisition of NEXAFS spectra at a broader range of temperatures and a more 

rigorous exploration of the temperature dependence of the observed nuclear motion effects. 
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Figure 1: Carbon 1s NEXAFS spectra of orthorhombic n-octacosane (o-rh n-C28H58) at 

cryogenic (93 K) and ambient (298 K) temperatures, recorded with circular left polarization. 

Optical density spectra are rescaled for comparison. 

 

Figure 2: TP-DFT simulations of the effect of thermally populated gauche defects and thermally 

populated vibrations (n = 1) on the NEXAFS spectra of the isolated n-decane (n-C10H22) 

molecule 

Scheme	1:	Schematic	diagram	for	chain	length	orientation,	published	unit	cell	parameters	

of	orthorhombic	structure	of	n-octacosane	(n-C28H58).22-23,	47	
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