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ABSTRACT 

 

The main objective of this project was to investigate the effects of the type of dried distillers 

grains with solubles (wheat DDGS, corn DDGS, and blend DDGS (eg. wheat:corn = 70:30)) and 

bio-ethanol plant origin on the nutrient variation and availability in ruminants. In addition, 

DDGS products were studied as opposed to their parental grains. The project was divided into 

the several following studies.  

In Study 1, we studied the nutritive value of DDGS products in terms of (1) chemical 

profiles, (2) protein and carbohydrate sub-fractions associated with different degradation rates, 

and (3) digestible component nutrients and energy values using the NRC 2001-chemical 

approach and the in situ assay-biological approach. Also, we tested the validity of acid detergent 

insoluble crude protein (ADICP) and acid detergent lignin (ADL) to predict the potential 

degradability of DDGS. Due to starch fermentation in the ethanol process, the chemical 

components in DDGS became approximately threefold more concentrated than in feedstock 

grains. Slowly degraded protein (PB3) and unavailable protein (PC) increased in DDGS, 

indicating a decrease in the overall protein degradability in the rumen. Intermediately degraded 

protein (PB2) was higher for corn DDGS than for wheat DDGS and blend DDGS (54.2 vs. 27.7 

vs. 30.8 %CP), while PB3 was higher for wheat DDGS and blend DDGS (29.9 vs. 51.2 vs. 53.2 

%CP). Mainly as a result of differing heat conditions, PC differed significantly between wheat 

DDGS originated at different bio-ethanol plants (0.7 vs. 7.6 %CP). The prediction of truly 

digestible CP (tdCP) and NDF (tdNDF) differed between the NRC 2001-chemical approach and 

the in situ assay-biological approach; however, both approaches reported similar energy values. 

These values were the highest for corn DDGS (DE3X: 3.9 Mcal kg-1), followed by blend DDGS 

(DE3X: 3.6 Mcal kg-1), and wheat DDGS (DE3X: 3.4 Mcal kg-1). Corn DDGS was superior to 

corn, wheat DDGS was similar to wheat and corn, and blend DDGS was similar to corn. No 

significant differences in energy values were reported between bio-ethanol plants. ADICP was 

not an accurate indicator of the potential degradability of protein in DDGS samples, while ADL 

seemed to be an acceptable indicator of the potential degradability of DM (r = -0.87; P<0.01), CP 

(r = -0.89; P<0.01), and NDF (r = -0.82; P<0.01) in wheat DDGS samples incubated in rumen 

during 48 h. 

 ii



In Study 2, we studied the ruminal and intestinal digestion profiles and the hourly 

effective rumen degradation ratios between nitrogen (N) and energy. The results showed a 

reduction in the effective degradability of DM (EDDM), OM (EDOM) and CP (EDCP) of wheat 

DDGS relative to wheat; however, corn DDGS remained the same as corn. The effective 

degradability of NDF (EDNDF) did not vary between the DDGS samples and feedstock grains. 

Among DDGS types, EDDM ranged from 52.4 to 57.7 %, EDOM from 46.4 to 53.5 %DM, and 

EDCP from 34.0 to 45.6 %CP, being higher as the proportion of wheat in feedstock increased. 

No significant differences in EDDM, EDOM, EDCP and EDNDF for wheat DDGS were 

detected between the different bio-ethanol plants. The hourly effective degradability ratios 

between N and energy indicated a potential excess of N in rumen when DDGS samples were 

evaluated as single ingredient. This excess increased as the proportion of wheat in feedstock 

increased. Estimated intestinal digestibility of rumen bypass protein (IDP) was similar between 

wheat and wheat DDGS, but higher in corn DDGS than in corn. Blend DDGS had the highest 

IDP (93.9 %RUP). Due to the significantly different PC sub-fraction found in wheat DDGS 

originated at the different bio-ethanol plants, a large but numerical difference was detected in 

IDP (89.4 vs. 75.9 %RUP). 

   In Study 3, we used both the DVE/OEB System and the NRC 2001 Model to reveal the 

metabolic characteristics of DDGS protein and predict the protein supply to dairy cattle. The two 

models showed higher protein values (DVE or MP) for DDGS samples than for feedstock grains. 

The higher IDP for blend DDGS largely contributed to the higher protein value relative to wheat 

DDGS and corn DDGS (MP: 277 vs. 242 vs. 250 g kg-1 DM). Similarly, protein values differed 

significantly between the bio-ethanol plants mainly as a result of the numerical but large 

difference in IDP (MP: 272 vs. 223 g kg-1 DM). According to the two models, the degraded 

protein balance for DDGS products was higher than in the parental grains. Wheat DDGS showed 

the highest potential N excess (DBPNRC: 78 g kg-1 DM). For corn DDGS, however, the 

DVE/OEB System suggested a potential N excess (11 g kg-1 DM) while the NRC 2001 Model 

exhibited a potential N deficiency (-12 g kg-1 DM). The degraded protein balance for wheat 

DDGS was similar between the different bio-ethanol plants.                                  

In conclusion, the chemical and biological characteristics of DDGS varied among types 

and between wheat DDGS samples manufactured at the different bio-ethanol plants. Thus, it is 

inappropriate to assume fixed values for the nutritive value of DDGS without considering factors 
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such as type of grain used and bio-ethanol plant origin. Further research with higher number of 

samples will help to clarify the use of the chemical profile to predict energy values and the 

potential degradability of DDGS. 
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1. GENERAL INTRODUCTION 
 
The development and rapid expansion of the fuel ethanol industry in North America has 

increased the availability of distillers grains to livestock producers. Due to the ease of storage, 

dried distillers grains with solubles (DDGS) are the most commonly produced type of bio-

ethanol co-products. As wheat is readily available in western Canada, it is the primary substrate 

for bio-ethanol production; however, corn can be relatively cheap and may be used in 

combination with wheat. As a result, DDGS from pure wheat and from blends containing 

different proportions of wheat and corn are currently manufactured. In 2010, the DDGS 

production capacity of western Canada will be greater than 400,000 tonnes (CRFA 2009).  

The high protein, high fiber, high fat, and low starch contents make DDGS a very 

attractive ingredient to be used in ruminant diets; however, the nutrient profile of DDGS varies 

significantly among plants and over time within the same plant (Cromwell et al. 1993; Spiehs et 

al. 2002; Shurson 2005; Kleinschmit et al. 2007). This variability prevents DDGS from being 

totally accepted as livestock feed, as it may result in inaccurate ration formulation and 

diminished animal performance.  Thus, it is important to identify the factors causing this 

inconsistency so that processing conditions can be enhanced, top quality DDGS can be produced, 

and accuracy in ration formulation can be increased.  

While research has been conducted to evaluate the nutritive characteristics of corn DDGS 

(Cromwell et al. 1993; Spiehs et al. 2002; Shurson 2005; Kleinschmit et al. 2006; Rosentrater 

and Muthukumarappan 2006; Kleinschmit et al. 2007; Martinez-Amezcua et al. 2007; Stein and 

Shurson 2009), information on the nutritive value of wheat DDGS and blend (wheat/corn) 

DDGS is less available (Dong et al. 1987b; Boila and Ingalls 1994a, 1994b; Nyachoty et al. 

2005; Widyaratne and Zijlstra 2006; Gibb et al. 2008). Similarly, plant to plant inconsistencies 

have been reported for corn DDGS (Cromwell et al. 1993; Spiehs et al. 2002; Shurson 2005; 

Kleinschmit et al. 2007) but not for wheat DDGS. Assumed fixed values for the amount and 

digestibility of rumen undegraded protein (RUP) of DDGS are commonly assumed in current 

ration formulation; however, the rumen availability of protein from DDGS may vary among 

DDGS types and bio-ethanol plants as the chemical profile does. Thus, the knowledge of the 

chemical profile, protein and carbohydrate fractions, energy values, digestibility characteristics, 

and the protein metabolic characteristics and predicted protein supply to small intestine of each 

type of DDGS is essential in order to achieve accurate ration formulation.  
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Therefore, the objectives of the literature review that follows are 1) to review the 

production process of bio-ethanol and related co-products, 2) to provide detailed information on 

the nutrient characteristics of DDGS as affected by type and processing conditions, and 3) to 

introduce the feed evaluation methods that will be utilized to conduct a complete feed evaluation 

of different types of DDGS currently fed to ruminants in western Canada. 
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2. LITERATURE REVIEW 
 
 

2. 1. Benefits of bio-ethanol production 

The energy market is now being influenced by the concerns associated with global warming and 

environmental degradation. Ethanol is a renewable fuel because the energy is derived from plants 

that can be replenished. It contains a greater proportion of oxygen than gasoline, consequently 

reducing polluting emissions (Drapcho et al. 2008). In addition, the plant biomass used to 

produce ethanol absorbs carbon dioxide (CO2) as it grows, thus reducing the total greenhouse gas 

emissions. According to Farrell et al. (2006), the switch from gasoline to corn ethanol reduces 

greenhouse gas emissions moderately, by around 13%, and petroleum use by around 95% on an 

energetic basis. The benefits of bio-ethanol production are also social and economical, as this 

industry contributes to the economic growth of rural areas by opening new markets for Canadian 

agriculture and forestry and by creating jobs at bio-ethanol production plants (Government of 

Alberta 2008).  

Ethanol production from cereal grains generates the co-products collectively known as 

distillers grains. These co-products are normally sold as livestock feed ingredients; however, 

substantial research is currently being undertaken to study the potential use of distillers grains as 

human food ingredients and other value-added applications (Rosentrater 2007). The economic 

viability of the bio-ethanol plant is significantly enhanced by the sale of distillers grains 

(approximately 0.1 US$/L of ethanol produced from corn), thus these co-products represent a 

vital element to bio-ethanol production (Rosentrater 2007). The net energy gain generated by 

corn ethanol and its derived co-products has been reported to be about 4 MJ/ L to 9 MJ/L of 

ethanol (Farrell et al. 2006). 

 

 

2.2. Feedstocks used for the production of bio-ethanol and related co-products  

Ethanol produced from agricultural and forestry feedstocks results from the fermentation of 

starch, sugars, or lignocellulose.  

 

2.2.1. Starch and sugar-based feedstocks 

Most of today’s ethanol is generated from starch- and sugar- based feedstocks  
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(Burden 2009). Starch-based feedstocks include the processing of grains such as corn (Spiehs et 

al. 2002), wheat (Ojowi et al. 1997; Mustafa et al. 2000a, 2000b; Nyachoty et al. 2005), sorghum 

(Lodge et al. 1997; Al-Suwaiegh 2002) and barley (Mustafa et al. 2000b), while sugar-based 

feedstocks include plants such as sugar cane or sugar beets (McKendrick et al. 2003). The former 

feedstocks include starches or chains of sugars that have to be broken down before fermentation, 

while the latter feedstocks contain simple sugars that are rapidly extracted and fermented.  

Starch-based feedstocks are expensive because they are in demand for other applications; 

however, the high costs are compensated for by the commercialization of distillers grains 

(Government of Alberta 2008; Burden 2009). Each kg of wheat yields approximately 0.37 liters 

of ethanol and 0.29 kg of wheat dried distillers grains with solubles (DDGS) (Nichols et al. 1998; 

CRFA 2009), while each kg of corn produces 0.40 liters of ethanol and 0.32 kg of corn DDGS 

(Pimentel and Patzek 2005). Corn has a higher starch content than wheat, but wheat is higher in 

protein and lysine (NRC 2001). The drawback of wheat protein is its water insolubility that may 

cause problems in the downstream processing of bio-ethanol production (Drapcho et al. 2008). 

For this reason, low protein varieties of wheat such as Canadian Prairie Spring (Red and White), 

Canadian Western Red Winter, and Canadian Western Soft White are the most suitable for bio-

ethanol production (Drapcho et al. 2008).  

 

2.2.2. Lignocellulose-based feedstocks 

Lignocellulosic ethanol is produced from a wide range of biomass feedstocks, such as 

agricultural residuals (cereal straws, leaves, husks), forestry residues (wood chips, sawdust), fast 

growing trees (poplar, willow), plant waste from industrial processes (paper pulp, distillers 

grains) and grasses grown specifically for fuel production (switchgrass) (Anonymus 2009; 

Burden 2009). The main challenge is that these feedstocks contain cellulose and hemicellulose 

that are more difficult than starch-based feedstocks to biochemically break down into their 

component sugars and convert into ethanol (Drapcho et al. 2008). This is largely attributed to the 

inefficiency of the current commercial preparations of cellulases as well as the higher percentage 

of pentoses contained in hemicellulose, which unlike hexoses, are not easily fermented (Burden 

2009; Singhania 2009).  

Lignocellulosic feedstocks are more abundant than starch- and sugar- based feedstocks, 

thus they can be used to produce larger amounts of ethanol. Furthermore, the co-products derived 
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from processing (lignin, ash, and hard-to-process proteins) can replace fossil fuels as source of 

heat and power in the ethanol production facility, while the non-combustible ash can be 

marketed as fertilizer  (Anonymus 2009). Although the production of ethanol from lignocellulose 

is of growing interest worldwide, development of lignocellulose-to-ethanol technology is still 

underway (Purwadi et al. 2007). 

 

 

2.3. Bio-ethanol production in Canada 

Canada has the cropland and forest resources required to support an significant ethanol 

production. With this in mind, the Federal Government proclaimed the intention to implement a 

Federal Renewable Fuels Standard (RFS) in December 2006. This mandates an average of 5% 

renewable fuel content in gasoline by 2010 and 2% in diesel and home heating fuels no later than 

2012 (O'Connor 2007). Earlier in 2005, the government of Saskatchewan, Manitoba and Ontario 

also announced the mandatory use of ethanol-blends in those provinces (O'Connor 2007). As a 

result of these federal and provincial initiatives, 15 bio-ethanol plants are currently in operation 

and four are under construction (CRFA 2009). According to the Canadian Renewable Fuel 

Association (CRFA), the Canadian bio-ethanol production will reach 1,700 million liters in 

2010. Only 2.5 % of this bio-ethanol production will be generated from lignocellulosic 

feedstocks; the remainder 97.5 % will originate from starchy cereal grains, primarily wheat and 

corn (CRFA 2009). The amount of distillers grains, predominantly DDGS, generated as co-

products of this starch-based bio-ethanol production will exceed 1.4 million tones (Government 

of Alberta 2008). 

The use of wheat or corn for ethanol production mainly depends on geographical area and 

market value of the commodity. Although wheat is normally processed in the west and corn in 

the east, the relatively cheap price of corn has recently forced western Canadian bio-ethanol 

plants to include corn in combination with wheat in the processing. As a result, DDGS from pure 

wheat and from blends containing different proportions of wheat and corn are presently produced 

in western Canada. In 2010, the production capacity of western Canada from starch based-

feedstocks is estimated to be 512 million liters of ethanol and more than 400,000 tones of DDGS  

(CRFA 2009).  
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2.4. Production process of bio-ethanol and related co-products  

Most of Canada’s ethanol is generated from starch-based feedstocks. The production of ethanol 

from starch is similar for all grains: starch is enzymatically broken down to glucose, followed by 

the fermentation of glucose to ethanol. This conversion can be carried out by three different 

commercial processes: dry grinding, dry milling, and wet milling. The dry milling and wet 

milling processes have been thoroughly reviewed by Rausch and Belyea (2006). The term dry 

milling may erroneously be used to describe the dry grinding process. In dry milling, the 

processing is started by increasing the kernel moisture in order to facilitate the separation of the 

different grain components (pericarp, germ and endosperm); however, these steps are lacking in 

dry grinding (Rausch and Belyea 2006). In western Canada, ethanol is produced primarily from 

wheat via dry grind processing (Government of Alberta 2008; CRFA 2009). A schematic of the 

dry grinding process is illustrated in Figure 2.1. 

 

2.4.1. Initial handling of grain 

In the dry grinding process (Figure 2.1), feedstock is directly cleaned and ground by hammer 

mills or roller mills (Rausch and Belyea 2006). Grinding allows water penetration and 

maximizes the accessibility of enzymes to starch molecules, and allows separation of 

unfermented particles from liquid at the end of the process (Nichols and Bothast 2008). Facilities 

that process both wheat and corn feedstocks grind the grains together. Before the addition of 

enzymes, the ground material is mixed with water to form a slurry (Nichols and Bothast 2008). 

 

2.4.2. Hydrolyzation of starch to fermentable sugars 

Starch consists of two main structural components; amylose and amylopectin. Amylose is a 

linear polymer of glucose in which the glucose residues are connected by α-1,4 linkages, while 

amylopectin is a larger and branched polymer with both α-1,4 and α-1,6 linkages (Rausch and 

Belyea 2006). Although the ratio amylose:amylopectin varies among starch sources, starch from 

wheat and corn usually contains approximately 25% amylose and 75% amylopectin (Nichols and 

Bothast 2008). 

The process of converting starch to simple sugars is termed saccharification and uses a 

combination of heat and enzymes (Power 2003). In an initial step (Figure 2.1), referred as to 

liquefaction, the slurry is mixed with alpha-amylase enzyme and cooked by pressurized steam a 
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110 °C. Starch granules swell and gelatinize creating a thick mash. As the mash reaches the 

enzyme's optimum temperature, the enzyme chemically breaks down the starch into short chain 

molecules (dextrins) by hydrolyzing internal α-1,4 glucosidic linkages (Nichols and Bothast 

2008). In some plants, additional alpha-amylase as well as other enzymes, such as proteases, 

xylanases and cellulases, can be used to enhance starch conversion and reduce viscosity of the 

mash (Ingledew et al. 1999). The mash is then cooked (~70°C) for a short period of time to 

reduce the level of lactic acid producing bacteria (Nichols and Bothast 2008). These bacteria 

decrease the efficiency of ethanol fermentation by two mechanisms: 1) by competing with yeast 

for glucose, and 2) by producing lactic and acetic acids that inhibit yeast growth and metabolism 

(Bayrock et al. 2003). 

In a final step, saccharification and fermentation occur simultaneously. The mash is 

firstly cooled (~32°C) by heat exchangers and transferred into a fermentation vessel where 

glucoamylase enzyme, yeast species (Saccharomyces cerevisiae), and urea are added. 

Glucoamylase cleaves α-1,4 glucosidic linkages at non-reducing chain ends, and also has the 

ability to act on α-1,6 glucosidic linkages at amylopectin branch points (Nichols and Bothast 

2008). The production of ethanol by yeast occurs as quickly as glucose is released from dextrins 

by glucoamylase (Russell 2003). Urea, along with recycled water (thin stillage), is used by yeasts 

as a major source of nitrogen (Davis 2001). During fermentation, two methods are normally used 

in order to suppress the growth of contaminant bacteria: the addition of antibiotics such as 

penicillin or virginiamycin, and the addition of sulfuric acid (H2SO4) to maintain pH to acidic 

levels (4-5) (Bayrock et al. 2003; Nichols and Bothast 2008). Due to the problems associated 

with high sulfur levels in distillers grains, phosphoric acid (H3PO4) has been tested as an 

alternative; however, H2SO4 is the most economical option (Vaness et al. 2009). 

 

2.4.3. Ethanol fermentation and recovery 

Fermentation is completed in 40-60 hours (Nichols and Bothast 2008). The conversion pathway 

from glucose to ethanol is explained in detail by Rusell (2003). Yeast function is inhibited by 

ethanol, which increases the fluidity and permeability of the membrane, and by organic acids 

produced by the yeast itself and the contaminant bacteria (Drapcho et al. 2008). Approximately, 

0.51 g of ethanol and 0.49 g of CO2 are produced per g of glucose (Nichols and Bothast 2008). 

As illustrated in Figure 2.1, the resulting beer is sent to the beer well, from which it is transferred 
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to a distillation area for ethanol removal. Two products are collected in the distillation area; an 

ethanol-water mixture and the whole stillage. The ethanol-water mixture is further dehydrated by 

molecular sieves, typically zeolites, to obtain near-anhydrous (99.5%) ethanol (Bibb Swain 

2003). The whole stillage, which contains water, fiber, oil, protein, yeast cells, and unfermented 

portions of grains, is further processed to generate the bio-ethanol co-products. 

 

2.4.4. Stillage processing 

The whole stillage is separated into liquid and coarse solids by centrifugation (Figure 2.1). The 

liquid fraction, referred to as thin stillage (TS), is normally higher in fat and minerals (Belyea et 

al. 1998; Rausch and Belyea 2006; Kalscheur et al. 2008; Cao et al. 2009). TS also contains 

water soluble components, mostly fermentation by-products (i.e. glycerol), soluble sugars, 

soluble proteins and organic acids (i.e. lactid acid, acetic acid) (Kim et al. 2008). TS can be 

concentrated by evaporation to become condensed distillers solubles (CDS), or can be recycled 

back (15% or more) into the process as water added to form the slurry (Rausch and Belyea 2006; 

Nichols and Bothast 2008). If evaporated, most of the soluble sugars and a small portion of the 

soluble proteins are extracted (Kim et al. 2008). 

The solid fraction, termed wet distillers grains (WDG) or wet cake, is higher than  

TS in fiber (Kim et al. 2008). WDG can be blended with CDS resulting in wet distillers grains 

with solubles (WDGS), or can be blended and dried with CDS resulting in dry distillers grains 

with solubles (DDGS). In rotatory drum dryers commonly used in old-generation plants, the 

blending process to obtain DDGS with a dry matter (DM) content of 82 – 100 % consists of 

WDG at 25 - 55 %DM, CDS at 35 - 40 solid content and freshly dried DDGS at 90 %DM (Ileleji 

and Rosentrater 2008). The ratio of WDG, CDS and DDGS should be such that the DM content 

of the blend entering the dryer must be about 65% (Ileleji and Rosentrater 2008). Once the 

product is dried, approximately 70% is routed to the storage pad while the rest is blended with 

more WDG and CDS. In some plants, WDGS are partially dried to produce a co-product called 

modified wet distillers grains with solubles (MWDGS) (De Mello Jr et al. 2009). These co-

products are utilized as livestock feed; however, each stream has a specific nutritional profile and 

logistics that must be evaluated carefully in order to include them in ruminant rations. When the 

bio-ethanol plant is in close proximity to the farm, wet products are an excellent alternative for 
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ruminant rations; however, due to the enhanced ease of handling, storage and shipping DDGS, 

these are the most commonly utilized ruminant rations (Lardy 2007). 

 

 

2.5. Nutrient characteristics of DDGS  

Due to the starch removal, the remaining chemical components in the distillers grains products 

become concentrated, approximately threefold compared to the parent grain (Weigel et al. 1997). 

Thus, these co-products are generally characterized by high crude protein (CP), fat, neutral 

detergent fiber (NDF), ash, and low starch. This profile makes them highly attractive to be used 

in ruminant diets; however, the nutritional properties of distillers grains can be very variable 

(Spiehs et al. 2002). Table 2.1 is a compilation of data that demonstrates the variability in the 

nutrient composition of different corn- and wheat-based bio-ethanol co-products. 

Regarding DDGS, Shurson (2005) found that the nutrient composition fluctuates between 

old- and new-generation plants. This explains the higher protein and energy values of DDGS 

available today compared to the older values reported by the NRC 2001 (Birkelo et al. 2004). 

This variation can be attributed the overall improvement in the bio-ethanol industry processing 

as well as by the lack of standard compositional analysis procedures (Kim et al. 2008). Of more 

interest is the nutrient variability detected among new-generation plants (Cromwell et al. 1993; 

Spiehs et al. 2002; Kleinschmit et al. 2007) and over time within the same plant (Belyea et al. 

2004; Shurson 2005), which is attributed to differing feedstocks and processing conditions. This 

inconsistency is one of the biggest issues preventing DDGS acceptance as livestock feed since it 

results in inaccurate ration formulation. A complete chemical analysis conducted at least once 

yearly is recommended to account for this variability (Spiehs et al. 2002). 

 

2.5.1. Protein  

Dried distillers grains with solubles are a very good source of CP for ruminants. On a dry 

matter basis, reported values vary from 26.8 to 33.7 % for corn DDGS and from 30.5 to 45.8 

%CP for wheat DDGS (Table 2.1). The variation within DDGS type is attributed to grain 

varieties, which in turn depends on geographical area and soil fertility (Dong et al. 1987b), and 

processing methods. Some bio-ethanol plants remove the germ or pericarp prior to fermentation, 

resulting in reduced fat and fiber and augmented protein in the DDGS product (Martinez-



  

 
Table 2.1. Chemical profile of corn- and wheat-based ethanol co-products  
Items  Corn grain 

 (1 - 3) 
Corn DDGSz 

(1 -9) 
Corn WDGy 
(1, 2, 3, 4,  10) 

Corn TSx

( 4, 11, 12) 
Wheat grain 

(1, 13) 
Wheat DDGS 

(2, 13 - 17) 
Wheat  WDG 

(18 - 20) 
Wheat TS 
(18, 21, 22) 

         
DMw  88.1 86.2 - 93.0 30.9 - 35.5 5.0 - 6.2 87.1 - 90.0 91.6 - 95.6 27.2 - 31.6 6.3 
CPv (%DM) 9.4 - 10.8 26.8 - 33.7 25.0 - 39.5 1.3 - 16.8 11.1 - 16.3 30.5 - 45.8 26.0 - 26.5 36.6 - 46.6 
SCPu (%CP) 14.6 - 25.3 5.3 - 10.7 8.3  20.2 - 35.7  4.0 23.7 
NPNt (%SCP) 70 77.3 65.8  25  90.0 84.4 
Lysine (%CP) 2.6 -2.8 1.9 - 3.3 3.2 0.1 2.0 - 3.0 1.6 - 2.8 1.0 0.8 
Methionine (%CP) 1.6 - 2.0 1.7 - 2.2 1.7 0.1 1.3 - 1.6 1.4 - 1.5 0.7 0.5 
RUPs (%CP) 44.6 47.0 - 69.0 49.9 20.0 25.6 - 41.2  51.3 31.0 - 46.1 45.6 
ADICPr  (%CP) 0.3 - 1.2 7.5 - 23.1 1.5 - 5.7  0.1 - 0.9 7.4 5.9 - 16.7 16.7 
CFatq (%DM) 4.2 3.5 - 12.8 8.5 - 14.5 8.1 - 20.9 1.4 - 2.7 3.1 - 9.9 7.4 - 14.0 5.9 - 11.2 
Starch (%DM) 65.0 - 75.1 3.8 - 11.4 4.6 - 9.0 0.5 - 2.2 54.3 - 70.0  2.0 - 15.0 2.0 
NDFp (%DM) 9.5 - 12.9 25.0 - 51.3 39.4 - 58.1 11.7 6.9 - 20.2 28.9 - 57.0 55.5 - 74.0 35.2 - 38.4 
ADFn (%DM) 2.1 - 5.1 8.0 - 21.0 23.4 - 25.3 0.1 1.2 - 8.6 11.1 - 24.3 20. 2 - 22.0 2.0 - 8.5 
Lignin (%DM) 0.8 - 1.5 3.5 - 6.8 3.0 - 7.4  1.1 - 2.4   1.6 
Ash (%DM) 0.2 - 0.8 2.0 - 9.8 3.9 - 7.2 5.9 - 8.7 0.9 - 2.9 2.1 4.0 6.4 - 9.4 
   Calcium 0.0 - 0.1 0.0 - 0.5 0.0 - 0.2 0.0 - 0.1 0.0 - 0.8 0.2 - 0.3   
   Phosphorus 0.2 - 0.4 0.4 – 1.0 0.7 - 1.0 1.2 - 1.4 0.0 - 1.0 1.0 - 1.1   
   Sulfur 0.0 - 0.2 0.3 - 1.1 0.4 - 0.7 0.1 -1.0  0.1 - 0.2 0.5 - 0.6   
TDN1X (%) 88.7 85.0 - 90.0 79.5 - 90.2  81.2 - 86.5    
NEL3X (Mcal kg-1) 2.0 - 2.2 2.3 2.0 - 2.3  1.9 - 2.0    
NEm (Mcal kg-1) 2.2 - 2.3 1.9 - 2.0 2.1 - 2.4 1.9 - 2.3 2.0 - 2.2    
NEg (Mcal kg-1) 1.5 - 1.6 1.3 - 1.4 1.4 - 1.7 1.6 - 1.8 1.3 - 1.5    
         
Source: 1Dairy One (2009); 2NRC 2001; 3Sniffen et al. (1992); 4Rosentrater and Muthukumarappan (2006); 5Sphies et al. 2002; 6Kleinschmit et al. 
2006; 7Kleinschmit et al. 2007; 8Martinez-Amezcua et al. (2007); 9Stein and Shurson (2009); 10Cao et al. (2009); 11Kim et al. (2008); 12Lardy 
(2007); 13Dong et al. (1987b); 14Gibb et al. (2008); 15Widyaratne and Zijlstra (2006); 16Boila and Ingalls (1994a); 17Nyachoti et al. (2005); 
18Mustafa et al. (2000a); 19Ojowi et al. (1997); 20F. Reveco, personal communication; 21Iwanchysko et al. (1999);22Ojowi et al. (1996)  
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zDried distillers grains with solubles; yWet distillers grains with solubles; xThin stillage; wDry matter; vCrude protein; uSoluble crude protein; tNon-
protein nitrogen; sRumen undegraded protein; fAcid detergent insoluble crude protein; qCrude fat; pNeutral detergent fiber; nAcid detergent fiber 



Amezcua et al. 2007). Similarly, the protein content of DDGS can increase with the amount of 

yeast utilized. The growth of yeast during fermentation creates a cell mass that is highly rich in 

protein and substantially contributes to the protein content in the DDGS product (Belyea et al. 

2004).  

The protein content of the solubles is lower than in WDG, thus a decrease in the CP 

concentration of DDGS is observed as the amount of solubles added back increases (Noll et al. 

2007; Cao et al. 2009). Normally the ratio of distillers grains to solubles is 67:33 (as is); 

however, variations in this ratio as well as the variability in the CP of the solubles will affect the 

CP of the DDGS product (Belyea et al. 1998; Martinez-Amezcua et al. 2007).  

When comparing wheat DDGS with corn DDGS (Table 2.1), the higher CP values for 

wheat DDGS can be largely attributed to the higher CP content of wheat relative to corn. Several 

reports (Boila and Ingalls 1994a; University of Saskatchewan 2009) have showed that the CP 

content of DDGS increases as the wheat:corn ratio increases in the mixture.  

A good reason to include DDGS in ruminant rations is because of its significant amount and 

intestinal digestible rumen undegraded protein (RUP) (Ingalls 1995; Stern et al. 1995; O'Mara et 

al. 1997; Kleinschmit et al. 2007; Cao et al. 2009). Due to the degradation of a large part of the 

readily degradable protein during fermentation, and due to the reduced solubility of protein as a 

result of heat during liquefaction and drying, the remaining protein in DDGS has a higher 

proportion of RUP (Firkins et al. 1985; Arieli et al. 1989). While a substantial number of studies 

(Ingalls 1995; Stern et al. 1995; O'Mara et al. 1997; Kleinschmit et al. 2007; Cao et al. 2009) 

have reported large variation in the RUP content for corn DDGS, ranging from 40.0 to 76.0 

%CP, less information (NRC 2001; Gibb et al. 2008) is available for wheat DDGS, in which 

RUP values range from 51.3 to 59.5 %CP. This variability between and within DDGS types can 

be explained by the grain type and variety as well as by differing processing conditions. The 

content of RUP in corn is greater than in wheat due to the resistance of zein, the major corn 

protein source, to ruminal degradation (Little et al. 1968). Thus, RUP in blend (wheat/corn) 

DDGS increased as the content of corn in feedstock increased relative to wheat (Boila and 

Ingalls 1994a). The degradability and solubility of CP in the rumen decreases as temperature and 

time of drying increases (Arieli et al. 1989; McKinnon et al. 1995). Heat facilitates the Maillard 

reaction, through which sugar residues condensate with amino acids, rendering proteins 

indigestible (Firkins et al. 1985; Van Soest 1994). These indigestible proteins are recovered in 
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the lignin and acid detergent fiber fraction (ADF). Thus, an indication of the severity of the 

drying conditions can be provided by the content of acid detergent insoluble crude protein 

(ADICP) (Goering et al. 1972; Kleinschmit et al. 2007). A negative relationship between ADICP 

and the ruminal and intestinal availability of DDGS protein has been reported; however, ADICP 

levels must be higher than 13 %CP (Harty et al. 1998). Heat also denatures yeast, rendering them 

resistant to rumen degradation (Bruning and Yokoyama 1988). While most of the protein content 

in the solubles is heated yeast (Belyea et al. 2004; Klopfenstein et al. 2008), only 20 % is 

ruminally degradable (Herold 1999). Additionally, the solubles contribute to the RUP content in 

DDGS by providing simple sugars that increase the susceptibility to Maillard reaction during 

drying (Martinez-Amezcua et al. 2007). The effect of heat and solubles on RUP can be verified 

by previous studies, in which higher RUP values reported in DDGS compared to WDG (Firkins 

et al. 1985), and in DDGS compared to WDG (Ojowi et al. 1997; Mustafa et al. 2000a; Gibb et 

al. 2008). Contrary to these results, Cao et al. (2009) showed that increasing the soluble portion 

augmented the overall ruminal degradability of protein due to the increasing soluble protein 

fraction; however, drying conditions in this experiment differed from those performed in the bio-

ethanol plant, likely resulting in less severe reduction of the soluble protein fraction. 

Knowledge of differences in the levels and availability of amino acids between and 

within DDGS types is required for accurate diet formulation. The reported lysine contents range 

from 1.9 to 3.3 of %CP in corn DDGS and from 1.6 to 2.8 of %CP for wheat DDGS (Table 2.1). 

Since the amino acid profile of distillers grains is similar to that of the feedstock grain, 

differences in the grain type and variety are reflected in the amino acid composition of the 

DDGS (Dong et al. 1987b). On a dry matter basis, the lysine and methionine content in wheat are 

higher than in corn, as they are in wheat DDGS compared to corn DDGS. Belyea et al. (1998) 

found differences in the content and digestibility of essential amino acids in condensed distillers 

solubles, which suggests that the amino acid profile and availability can vary depending on the 

solubles added back. Lysine is the most susceptible amino acid to Maillard reaction due to the 

free amino group at the epsilon carbon unit (Warnick and Anderson 1968), and this susceptibility 

is increased by the sugars contained in the solubles; therefore, lysine digestibility for DDGS is 

lower than that for parental grain, solubles, and wet DG (Martinez-Amezcua et al. 2007).  

Inconsistencies in the protein content of DDGS may lead to excessive dietary nitrogen 

and increased nitrogen in manure, which increases the manure’s agronomic value but also results
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in increased ammonia emissions (Hao et al. 2009). Cole et al (2005) reported that in vitro daily 

ammonia emissions increased 60 to 200% when protein content of the diet varied from 11.5 to 

13% DM, primarly as a result of increased urinary nitrogen excretion. Several studies have 

shown that the nitrogen concentration in manure increases with increasing levels of distillers 

grains (Hao et al. 2009; Spiehs and Varel 2009). Normally, up to 30% and 20% of DDGS as dry 

matter can be included in dairy and beef rations respectively without detecting a negative effect 

nitrogen excretion (Janicek et al. 2008; Hao et al. 2009) .  

 

2.5.2. Energy  

Dried distillers grains with solubles are an excellent source of energy for ruminants. Normally, 

the energy values for DDGS are higher than those for parent grains (Table 2.1). In finishing beef 

cattle, improved gains and feed efficiency have been shown when replacing corn grain with corn 

DDGS (Ham et al. 1994). Barley, whose net energy content for gain (NEg) is 1.4 Mcal kg-1 DM 

(NRC 2001), is the most common grain utilized in ruminant rations in western Canada. No effect 

on cattle performance of finishing steers was observed when barley was replaced with wheat 

DDGS up to 32 %DM (Beliveau 2008). When replacement levels were higher than 47 %DM, 

NEg and feed conversion were reduced, but this was attributed to a reduction in the digestibility 

of the diet (Gibb et al. 2008). The similar or increased energy value of DDGS relative to cereal 

grains is attributed to the approximately threefold concentration of fat, and the readily digestible 

fiber (Klopfenstein et al. 2008; Schingoethe et al. 2009). Therefore, knowledge of the differences 

in the nutritional characteristics of fat and fiber among and within DDGS types is crucial to 

provide accurate levels of energy in the ration.  

 

2.5.3. Fat  

Reported fat values vary from 3.5 to 12.8 %DM for corn DDGS and from 3.1 to 9.9 %DM for 

wheat DDGS (Table 2.1). Fat content in the solubles can be as high as 34 %DM, thus increasing 

fat levels in DDGS are observed as the amount of solubles blended back increases (Noll et al. 

2007; Cao et al. 2009). As there exists a high variability in the fat concentration among solubles 

collected within the same and from different plants (Belyea et al. 1998; Knott et al. 2004), they 

are a determining factor in the fat composition variability of DDGS. Differences in the fat 

content within the same type of DDGS can also be explained by the method of analysis utilized. 
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Cao et al. (2009) showed that the official method (AOAC 954.02), which uses diethyl ether as 

the solvent, resulted in higher fat values than the use of petroleum ether, indicating that the 

energy content of the DDGS is defined by the method of analaysis.  

Despite the high and variable fat content in the solubles, several studies (Lodge et al. 

1997; F. Reveco, personal communication; Kim et al. 2008) have reported similar fat 

concentrations between DDGS and WDG. This discrepancy can be explained by differences in 

the fat levels of the solubles as a result of differing processing techniques among bio-ethanol 

plants. For instance, the germ of the grain, where the highest fat concentration is located, is 

sometimes removed prior to processing in corn based-ethanol plants, resulting in reduced lipid 

levels in DDGS relative to those produced by conventional processing (Martinez-Amezcua et al. 

2007; Tedeschi et al. 2009).  

When comparing corn DDGS and wheat DDGS, the fat content is higher for corn DDGS 

largely as a result of the higher fat content of corn relative to wheat (Dong et al. 1987b).  

Fat contains more energy than starch (9 vs. 4.5 kcal g-1), and the gross energy content of 

fat increases with the degree of saturation (Van Soest 1994). In DDGS, fat is primarily in the 

unsaturated form (Schingoethe et al. 2009). Although the degree of unsaturation is slightly 

higher in CDS than in WDG, fat concentration on a dry matter basis is twofold greater in CDS 

compared to WDG (Cao et al. 2009). Thus, increasing the level of solubles augments the gross 

energy content of DDGS and enhances the fatty acid profile.  

Fat composition, as well as fat availability, is important from a meat composition and 

quality standpoint (Klopfenstein et al. 2008). The fatty acid profile of corn DDGS is similar to 

corn grain; however, small amounts of docosahexaenoic acid (DHA) are only present in DDGS 

samples (Martinez-Amezcua et al. 2007). This fatty acid may be provided by the yeast, which is 

able to modify the fatty acid composition depending on fermentation conditions (Torija et al. 

2003). Compared to feeding corn oil, the quantity and digestibility of unsaturated fat in 

duodenum was higher in steers fed corn DDGS, suggesting that some of the fat in corn DDGS 

can be protected from rumen hydrogenation (Vander Pol et al. 2007). In addition, Depenbusch et 

al. (2009) has recently showed that the ratio of polyunsaturated fatty acids (PUFA) to saturated 

fatty acids (SFA) in beef meat increases with increasing levels of corn DDGS. Despite the 

human health benefits associated with PUFA consumption, a greater ratio of PUFA:SFA in meat 
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increases lipid oxidation and the subsequent production of off-flavors (Melton 1983; 

Depenbusch et al. 2009).  

 

2.5.4. Fiber  

DDGS contain a large amount of NDF, which can range from 25.0 to 51.3 %DM for  

corn DDGS and from 28.9 to 57.0 %DM for wheat DDGS (Table 2.1). This large variability is 

attributable to grain type and variety, bio-ethanol processing methods, and NDF analytical 

procedures. Dong and Rasco (1987a) showed that the NDF content of wheat was affected by 

variety. Some corn-based plants increase the nutritional value of DDGS for non-ruminant 

animals by recovering the pericarp fiber at the beginning of the dry grind process, consequently 

reducing the NDF content in the final co-product (Martinez-Amezcua et al. 2007). The solubles 

have less NDF fiber compared to distillers grains, thus the fiber concentration in DDGS decline 

as the inclusion of solubles increases (Cao et al. 2009).  

Rasco et al. (1989) found that drying renders some of the protein in distillers grains 

insoluble in the neutral detergent solution, increasing the NDF concentration of the dried product 

due to the augmented NDIN content. In distillers grains, NDIN content may represent 40% of the 

NDF (Krishnamoorthy et al. 1982); therefore, the reported NDF value must be corrected for 

NDIN for balancing diets. The AOAC procedure for NDF analysis, referred to as amylase treated 

NDF (Mertens 2002), uses sodium sulfite and heat-stable amylase to remove protein and starch 

contamination in NDF, respectively. However, other variants of this method, such as the absence 

of sodium sulfite and posterior NDIN correction, have been reported in studies with distillers 

grains (Boila and Ingalls 1994a; Mustafa et al. 2000a). In a comparison made by Dong and 

Rasco (1987a), the NDF value corrected for NDIN was higher in the absence of sodium sulfite 

than the NDIN-corrected NDF value in the presence of sodium sulfite. In addition, the use of fine 

paper filtration or centrifugation to perform the amylase treated NDF procedure adds variability 

to the NDF value. In DDGS samples, higher NDF values were observed by using the filtration 

method (Udén 2006). 

  Lignin content in DDGS is low, which explains the high NDF digestibility (from 62 to 71 

%) (Birkelo et al. 2004; Vander Pol et al. 2009). A first factor causing variation in the NDF 

digestibility among DDGS samples can be the degree of fat removal, as fat inhibits microbial 

growth and reduces fiber digestibility (Nagaraja et al. 1997). Moreover, the determination of the 
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degradation characteristics of NDF is affected by the physical form of the feed, as well as by the 

fermentation method (in situ vs. in vitro) utilized in analysis.  

In feedlot diets, DDGS can replace grains such as barley or corn providing energy in the 

form of readily digestible fiber. This fiber is digested at a slower rate and less lactic acid is 

produced relative to starch (U.S. Grains Council 2007b). Although a reduced incidence of rumen 

acidosis is presumed when DDGS are fed to beef cattle (Ham et al. 1994; Klopfenstein et al. 

2001), it has not been demonstrated yet. This can be attributed to the small particle size of 

DDGS, which contributes to the low physically effective NDF (peNDF) (3.4 – 19.8 %) 

(Kleinschmit et al. 2007). In lactating dairy cows, this low peNDF is an important consideration, 

as dietary fiber may not be adequate to prevent milk fat depression (Cyriac et al. 2005). For this 

reason, the use of DDGS in lactating dairy rations is recommended to replace concentrate 

ingredients, not forage ingredients (Schingoethe et al. 2009). In a recent study (Penner et al. 

2009), it was concluded that dried distillers grains can replace 10% of dietary concentrate 

without affecting milk yield, milk composition, and chewing activity in dairy cows.  

 

2.5.5. Residual starch  

Although most of the starch in the parent grain is converted to ethanol during the fermentation 

process, some residual starch is present in DDGS. In corn DDGS, the amount of residual starch 

among studies varies from 3.8 to 11.9 % DM (Table 2.1). The amount of unconverted starch may 

be dependent on the type of raw starch in the parent grain and the processing conditions (Sharma 

et al. 2009).  

Some raw starch is resistant to enzymes and has characteristics of crude fiber (Xie et al. 

2006). Differences in starch resistance among parent grains have been related to differences in 

starch granule structure (Stevnebø et al. 2009). Amylose levels in grain starch showed a negative 

correlation with starch degradability (Berry 1986; Stevnebø et al. 2006), while small starch 

granules had a faster degradation rate than large granules due to the relatively larger surface area 

(Stevnebø et al. 2006).  

Cooking starch results in considerable amounts of resistant starch and therefore starch 

residue (Berry 1986). Temperature and pH during liquefaction may affect the yield of resistant 

starch (Sharma et al. 2009). After gelatinization, starch is cooled and retrogradaion occurs, 

converting linear dextrines, mostly amylase, in an insoluble precipitate (Jameson et al. 2001). 
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This crystallization process is encouraged by low temperature (50°C), pH between 5 and 7, and 

high concentration of starch with long chain lenghts (Jameson et al. 2001; Sharma et al. 2009). 

Other factors influencing the yield of resistant starch during cooking are the formation of 

amylase-lipid complexes, the proportion of water and starch in the mash, cooking temperature, 

and the number of cooking/cooling cycles (Jameson et al. 2001). Also, a possible explanation for 

the presence of residual starch in DDGS products is the ineffectiveness of the processing 

conditions, since the full conversion of starch to ethanol requires an optimal combination of 

different factors (temperature, pH, time, enzymes, and yeast). It has been speculated that large 

protein molecules and the presence of unknown proteasas could inhibit the fermentation process 

(Bahdra et al. 2007). The improvements carried out by the bio-ethanol industry during the past 

ten years have reduced the residual starch of DDGS manufactured in new-generation plants 

relative to those originated in less efficient old-generation plants (Schingoethe et al. 2009). 

Further studies investigating the residual starch degradability of DDGS samples in both 

ruminants and monogastrics will help to clarify the nature of this residual starch.  

 

2.5.6. Minerals  

DDGS are low in calcium (Ca) but high in phosphorus (P) and sulfur relative to cattle nutrient 

needs (NRC 2001). These minerals affect not only animal performance but also animal health 

and the environment.  

Table 2.1 shows that Ca levels found in the literature range from <0.1 to 0.5 %DM for 

corn DDGS and from 0.2 to 0.3 for wheat DDGS. For P, levels range from 0.4 to 1.0 %DM for 

corn DDGS and from 1.0 to 1.1 %DM for wheat DDGS. These variations between and within 

DDGS types can be explained by differing grain types and varieties as well as by the solubles 

blended back. Tabular values indicate higher Ca and P levels for wheat relative to corn (Table 

2.1); while Cao et al. (2009) showed that Ca and P levels were higher in CDS than in corn WDG, 

resulting in increasing levels in DDGS as the inclusion of solubles increased.  

The dietary Ca and P requirements for a feedlot steer are approximately 0.6 %DM and 

0.3 %DM respectively, while the concentration in a concentrate-based diet containing 60 % 

DDGS and not supplemented with Ca is approximately 0.8 %DM for Ca and 0.7 %DM for P 

(NRC 1996; Gibb et al. 2008). Thus, finishing rations containing a high inclusion of DDGS can 

easily result in low Ca:P ratios if not properly supplemented. This in turn may cause metabolic 
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disorders (i.e. bone abnormalities) as well as decreased performance (NRC 2001). A diet 

containing 60% DDGS and supplemented with limestone was fed to feedlot cattle; however, no 

positive effect on daily gain and feed efficiency was detected (Gibb et al. 2008). The high P 

intake associated with DDGS feeding is also a concern, as an excess of P is excreted in feces and 

urine (Luebbe et al. 2008; Spiehs and Varel 2009). A high P concentration in livestock manure 

requires a greater landbase for manure application and promotes a risk for P runoff (Bremer et al. 

2008; Spiehs and Varel 2009).  

Sulfur in DDGS results from two primarly sources: the addition of sulfuric acid during 

fermentation and S-containing amino acids (Nichols and Bothast 2008; Spiehs and Varel 2009). 

Yeast also contributes to the total sulfur in DDGS, since yeast creates some sulfites during 

fermentation and sulfur makes up 3.9 g/kg of the yeast composition (Snider 2004). Solubles are 

more abundant in sulfur than WDG, thus sulfur content in DDGS increases with increasing 

levels of solubles (Cao et al. 2009; Schingoethe et al. 2009; Stein and Shurson 2009). The 

maximum tolerable sulfur concentration is 0.30 and 0.40 % of the diet DM for beef and dairy 

cattle, respectively (NRC 2001). As shown in Table 2.1, sulfur values greater than 1% have been 

reported for both wheat DDGS and corn DDGS. If a high sulfur content in DDGS is coupled 

with a high intake of the product, polioencephalomalacia (PEM) may occur (Schingoethe et al. 

2009). This disease is characterized by disturbances of the central nervous system (Sheep 

Industry Development Program 1988). Several studies (T. McAllister, personal communication;  

Vaness et al. 2009) have observed some strange behaviors and depressed mood in feedlot cattle 

fed 20 - 60% DDGS of the diet, which may be attributed to high dietary sulfur content. 

Moreover, an increased sulfur excretion contributes to the production of odorous compounds 

from manure (Spiehs and Varel 2009). 

 

2.5.7. Particle size and density 

Inconsistency in the physical properties between new- and old-generation plants, among 

new-generation plants, and within the same plant over time, has been shown in several studies of 

corn DDGS (Shurson 2005; Rosentrater and Muthukumarappan 2006; Ileleji et al. 2007; Kingsly 

et al. 2009), and represents one of the major market barriers to the use of DDGS as a livestock 

feed. A major issue is the poor flowability of DDGS as a result of the caking phenomenon. Due 

to this caking, particles tend to stick to each other forming unwanted agglomerates, which are 
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cause of troublesome storage and shipping of the product (Bahdra et al. 2009b). These 

agglomerates, also termed “syrup balls”, vary in size and density. Thus, when the DDGS product 

is incorporated in the animal ration  they may result in segregation, leading to uneven nutrient 

distribution, and consequent inconsistencies in diet formulation (Ileleji et al. 2007). The mean 

retention time in rumen of particles with higher density and smaller particle size is shorter 

(desBordes and Welch 1984; Ehle and Stern 1985; Kaske and Engelhardt 1990). In fact, 

alterations in density created a greater magnitude of response than for particle size (Ehle and 

Stern 1985). This suggests that the digestibility of DDGS products may be affected by variations 

in the density and size of the particles; however, information on the effect of DDGS particle size 

and density on ruminal digestibility has not been published yet. 

Several factors affecting the physical properties of DDGS have been described. The 

amount of CDS added during drying seems to have the greatest effect on the resulting DDGS 

particle size and bulk density. Increasing the inclusion of solubles increased inter-particle affinity 

and induced particle agglomeration during drying (Kingsly et al. 2009). Another study (Ileleji 

and Rosentrater 2008) has shown that the use of two rotary drum dryers results in DDGS with 

smaller particle size than those resulted from the use of a high-capacity rotary drum steam tube 

dryer. The reduced presence of syrup balls is due to the addition of the solubles in two steps in 

each of the two dryers (Ileleji and Rosentrater 2008). Other chemical properties of DDGS, such 

as the fat, have als been shown to cause stickiness among DDGS particles giving rise to larger 

agglomerates, contributing to reduced flow conditions and irregular nutrient distribution in the 

ration (Bahdra et al. 2009a).  

 

 

2.6. Feed evaluation  

 

2.6.1. The Cornell Net Carbohydrate and Protein System (CNCPS) 

The CNCPS (Fox et al. 1992; Russell et al. 1992; O'Connor et al. 1993; Fox et al. 2004) is a 

mathematical model that was developed to evaluate requirements, feed utilization, animal 

performance and nutrient excretion for ruminants based on the accumulated knowledge about 

feed composition, feed digestion, feed passage and physiological status (Fox et al. 2004). The 

CNCPS uses different sub-models: maintenance, growth, pregnancy, lactation, body reserves, 

 20



 21

feed intake and composition, rumen fermentation, intestinal digestion, metabolism, and nutrient 

excretion. The original feed composition sub-model was described in detail by Sniffen et al. 

(1992). It uses information on chemical profile to partition feed protein and carbohydrate pools 

into different fractions, each of them having a different rate of degradation. A schematic of the 

CNCPS is illustrated in Figure 2.2. 

The protein pool is divided into three fractions: non-protein nitrogen (PA), true protein 

(PB), and unavailable protein (PC). Fraction PA is buffer soluble protein consisting of ammonia, 

peptides and amino acids. Fraction PB is further divided into three sub-fractions based on their 

inherent rates of degradation. PB1 is represented by buffer soluble protein which is rapidly 

degraded in the rumen (Kd = 120 - 400 %h-1). PB2 is made up of protein not bound to NDF that 

is insoluble in buffer but soluble in neutral detergent. While some PB2 is intermediately 

fermented in the rumen (Kd = 3 - 16 %h-1), some escapes to the small intestine. PB3 consists of 

protein insoluble in neutral detergent but soluble in acid detergent. PB3 is associated with the 

cell wall, thus it is slowly degraded in the rumen (Kd = 0.06 - 0.55 %h-1) and most of it escapes 

to the small intestine. Fraction PC represents protein insoluble in the acid detergent and ends up 

being unavailable to the ruminant. PC is made up of protein associated with lignin, tannin-

protein complexes, and Maillard products.  

The carbohydrate pool is categorized into four fractions: CA, CB1, CB2, and CC. 

Fraction CA contains sugars and organic acids that are water soluble and rapidly fermented (Kd 

= 200 - 350 %h-1). Fraction CB1 consists of starch and pectins that are intermediately degraded 

in the rumen, as its degradation rate is lower than CA (Kd = 20 - 50 %h-1). Fraction CB2 

represents fiber carbohydrates (FC) that are available and slowly degraded in the rumen (Kd = 2 

- 10 %h-1). Fraction CC is undegradable FC associated with lignin and resistant starch. In order 

to account for the variability in the non-fiber carbohydrate (NFC) digestibility when various 

processing treatments are applied, and in order to accurately predict volatile fatty acid production 

and pH, a new division of the NFC fractions has been published by Lanzas et al. (2007); 

however, the original feed composition sub-model is widely utilized. 

 

2.6.2. NRC 2001 Model for feed energy estimation 

An accurate knowledge of the energy content of each feed included in the ration is crucial 

to accurate formulation. The traditional approach to estimate the energy value of feeds is to
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Figure 2.2. The Cornell Net Carbohydrate and Protein System (CNCPS). Adapted from Fox et al. (2004) 
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calculate its total digestible nutrient level (TDN) using a summative approach based on the 

chemical components. In this approach, the concentration of truly digestible NFC (tdNFC), CP 

(tdCP), fatty acids (tdFA) and NDF (tdNDF) of each feed is calculated as follows (Weiss et al. 

1992): 

tdNFC (%DM) = 0.98 × (100 - [(NDF – NDICP) + CP + EE + Ash]) × PAF; 

where, 0.98 = digestibility of NFC; and PAF = processing adjustment factor that accounts for the 

effects of processing on starch digestibility. 

tdCP (%DM) for concentrates = [ 1 - (0.4 × (ADICP/CP))] × CP 

tdCP (%DM) for forages = CP × e[ -1.2 × (ADICP/CP)]

tdFA (%DM) = FA; 

where, FA represents the fatty acid fraction that is estimated as CFat -1. 

tdNDF (%DM) = 0.75 × (NDFn - ADL) × [1 - (ADL/NDFn)0.667]; 

where, 0.75 represents the coefficient digestion for NDF; and NDFn = NDF – NDICP. 

Then, TDN value is estimated at maintenance level (TDN1X) as: 

TDN1X = tdNFC + tdCP + (tdFA × 2.25) + tdNDF - 7; 

where, 7 represents the metabolic fecal TDN, allowing the formula to account for the apparent 

digestibility.  

The above TDN1X formula is only valid for feeds of plant origin. Due to the 

uncharacteristic chemical composition of animal protein meals and fat supplements, NRC 2001 

provides modified versions of the TDN1X formula for these feeds. 

In NRC 1989, the TDN1X was used to estimate the digestible energy (DE) and derived energy 

values; however, as different nutrients have different heat combustion values, NRC 2001 

computes apparent DE as: 

DE1X (Mcal/kg) = (tdNFC/100 × 4.2) + (tdNDF/100 × 4.2) + (tdCP/100 × 5.6) + (FA/100 

× 9.4) - 0.3; 

where, 0.3 results from multiplying metabolic fecal TDN value of 7 by its assumed heat 

combustion value.  

Similar to TDN1X value, different DE equations for animal protein meals and fat 

supplements are suggested by NRC 2001. 

However, the energy content of feeds is not a constant value. As dry matter intake 

increases, the concentration of digestible energy tends to decrease. Thus, NRC 2001 proposes
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a variable discount that uses the TDN1X value and intake level of a diet to account for this change. 

Discount = [TDN1X - (0.18 × TDN1X - 10.3)] × intake / TDN1X; 

where, intake is expressed as incremental intake above maintenance.  

Based on the DE1X value and the discount variable, the different energy values of a single 

feed ingredient at different production levels of intake are calculated as follows: 

DEp (Mcal/kg) = DE × Discount 

MEp (Mcal/kg) = (1.01 × DEp) - 0.45) + 0.0046 × (Cfat - 3), if Cfat > 3% 

MEp (Mcal/kg) = (1.01 × DEp) - 0.45, if Cfat < 3% 

NELp (Mcal/kg) = 0.703 × MEp - 0.19 + {[(0.097 × MEp + 0.19)/97] × [Cfat - 3]} 

NEm (Mcal/kg) = (1.37 × ME) - (0.138 × ME2) + (0.0105 × ME3) - 1.12; 

where, ME = DE1X × 0.82. 

NEg (Mcal/kg) = (1.42 × ME) - (0.174 × ME2) + (0.0122 × ME3) - 1.65 

For fat supplements, NRC 2001 proposes different NEm and NEg equations due to 

different DE-ME conversion efficiencies. 

Despite the widely use of the NRC 2001 method to estimate the energy density of a diet, 

doubts have been raised about the accuracy of the chemical approach as well as the discounting 

method. One of the problems of the chemical approach is that the digestibility of NDF varies 

among and within feeds. Moreover, this approach is inaccurate due to the analytical procedure 

error and poor relationship between lignin levels and feed digestibility (Robinson et al. 2004). 

Thus, NRC 2001 also proposes a biological approach, in which 48 h in vitro incubation is 

performed to determine NDF digestibility and the subsequent tdNDF. The digestibility of NDF 

and rest of the feed components can also be estimated by 48h in situ incubation. A comparison of 

the three approaches in forages was done by Yu et al. (2004), concluding that the resulting energy 

values were the highest for the in situ approach, lowest for the chemical approach, and 

intermediate for the in vitro approach. Similarly, Robinson et al (2004) found that ME of distillers 

grains was higher using the in vitro approach than the chemical approach.  

Based on the NRC discounts, a high producing dairy cow with an energy output equivalent 

to nine times maintenance needs to consume 78 kg DM per day, suggesting that a decrease in the 

energy concentration of the diet as the energy output of the cow increases is not a correct 

approach (Robinson 2007). Using previous studies with lactating dairy cows, Robinson (2007) 

observed that the NEL concentration of a diet decreases as DM intake increases but it increases by 

 24



increasing NEL output. This could be explained by the genetic merit of the cow, as cows with 

higher NEL outputs absorb more nutrients from the digestive tract. Therefore, both the anticipated 

level of DM intake and energy output are required inputs to enhance accuracy in the estimation of 

the NEL concentration of a diet (Robinson 2007). 

 

2.6.3. In situ technique to estimate rumen degradability and kinetics of feed 

components 

In order to provide a ruminant with all nutrients required to achieve optimal performance, the 

ruminal availability of the feed components must be known. The in situ incubation technique is 

used to investigate the ruminal degradation characteristics of the different feed components, thus 

it is a basic procedure in many feed evaluation systems. This technique is simple and allows quick 

estimations for a large number of feed samples. The methodological factors affecting the 

repeatability of in situ disappearance, as well as the choice of mathematical models to fit the 

curves and goodness of fit of the model have been reviewed (Nocek 1988; Huntington and Givens 

1995; Nasri et al. 2006). 

The most widely used model is the nonlinear model firstly reported by Orskov and 

McDonald (1979) and later modified by Robinson et al. (1986) and Dhanoa (1988): 

R(t) = U + D × e -Kd × (t – T0); 

where, R(t) = residue present at t h incubation (%);    U = undegradable fraction (%); D = 

potentially degradable fraction (%); T0 = lag time (h); and Kd = degradation rate (% h -1). 

Based on the nonlinear parameters estimated in the above equation (U, D, Kd), the 

effective degradability (ED), or extent of degradation, of each nutrient is predicted according to 

NRC 2001 as:  

ED (%)  = S + (D × Kd) / (Kp + Kd); 

where, S = soluble fraction (%); Kp = estimated rate of outflow of digesta from rumen (% h-1) 

and it is assumed to be 4.5 % h-1 for forages and 6 % h-1 for concentrates (Tamminga et al. 1994; 

Yu et al. 2003a; Yu et al. 2003b).   

In contrast to the first-order kinetic model, which estimates the disappearance of each 

nutrient for a given time period, ED equation considers the fractional outflow rate of digesta 

from the rumen, thus predicting the amount of nutrient that will be truly digested in the rumen 
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over time. The rumen undegradable fraction of each feed component can be calculated as 100 - 

ED (%).   

 

2.6.4. Chemical profile: Acid detergent insoluble crude protein (ADICP) and 

lignin  

Ruminant nutritionists have been interested in using ADICP and lignin as indicators of 

digestibility for many decades. Although ADICP occurs naturally in the plant, it also results from 

heat damage via Maillard reaction during storage or processing. Some studies have established a 

negative correlation between ADICP and protein digestibility in forages (Goering et al. 1972; Yu 

and Thomas 1976; Van Soest and Mason 1991a; Waters et al. 1992)  and non-forages (Arieli et 

al. 1989; Waters et al. 1992; McKinnon et al. 1995); however, it is not clear whether ADICP 

behavior in DDGS is similar to conventional feeds. Nakamura et al. (1994a) found a negative 

correlation (r = - 0.49) between ADICP and protein digestibility, while Klopfenstein (1996) did 

not find any relationship. Harty et al. (1998) tested a high number of samples and observed that 

the best correlations were observed when ADICP levels were higher than 13 % of CP. 

 In the cell wall, lignin cements and anchors the cellulosic microfibrils, thereby stiffening 

it and protecting it from degradation (Hindrichsen et al. 2006). Several reports have shown 

negative correlations between lignin and both DM and NDF digestibilities in forages (Johnson et 

al. 1962; Tomlin et al. 1964; Smith et al. 1972; Jung et al. 1997). Less attention, however, has 

been paid to the reliability of lignin to predict fiber digestibility of concentrates and by-product 

feeds. The first limitation encountered when quantifiying lignin is the method of analysis, as 

lignin is higly insoluble and difficult to determine directly with any specific procedure 

(Hindrichsen et al. 2006). In both concentrates and forages, Klason Lignin (KL) method yielded 

higher values than the Acid Detergent Lignin (ADL) method (ADL) (Hindrichsen et al. 2006). In 

concentrate diets, a weak relationship between both KL and ADL and fiber digestibility was 

reported, suggesting that lignin can be considered a good indicator of fiber digestibility only in 

diets in which most part of the lignin content is supplied by the forage (Hindrichsen et al. 2006). 

In distillers grains, Robinson et al. (2004) showed a poor relationship between ADL content and 

in vitro NDF digestibility at 48 h; however, more studies are required in order to confirm this 

lack of correlation.  
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2.6.5. Prediction of truly digestible protein supply in small intestine  

Nutrition models are able to predict the protein value of a single feed or diet before it is fed to the 

animal, therefore allowing for optimization of feed utilization, production, farm income as well 

as avoiding adverse effects to the animal and environment.  

Several nutrition models (INRA 1978; ARC 1984; Madsen 1985; NKJ-NJF 1985; NRC 

1985; Tamminga et al. 1994) and the corresponding updates (Verité and Peyraud 1989; Madsen et 

al. 1995; NRC 2001; Tamminga et al. 2007) have been developed during the last forty years with 

the purpose of predicting the availability of the consumed protein as truly digested and absorbed 

protein in the small intestine. These models distinguish between the protein incorporated to 

ruminant microorganisms and protein flowing to the small intestine as undegraded protein. 

Therefore, the determination of the chemical profiles, the dynamic aspects of the protein 

degradation in rumen, as well as the intestinal digestibility of rumen bypass protein, are critical 

points in the prediction of protein supply to small intestine by the most modern models.  

Two modern and common protein evaluation systems are the DVE/OEB System 

(Tamminga et al. 1994), currently being used in Europe, and the NRC 2001 Dairy Model (NRC 

2001) used in North America. The frameworks of these two sophisticated models were developed 

based on the principles of previous models, thus incorporating important elements such as the 

potential for microbial protein synthesis (Tamminga et al. 1994; Yu et al. 2000; Yu et al. 2003b; 

Yu 2005).  

A detailed description of the DVE/OEB System and the NRC 2001 Model can be found in 

Tamminga et al. (1994) and NRC 2001, respectively. Two major outputs can be predicted from 

the two models: 1) the truly digested and absorbed protein in the small intestine and 2) the 

degraded protein balance. The first output includes the truly absorbable rumen synthesized 

microbial protein in the small intestine, the truly absorbed bypass feed protein in the small 

intestine, and endogenous protein losses. The second output reflects the balance between available 

N and energy in the rumen that is crucial to achieve efficient synthesis of microbial protein 

(Tamminga et al. 1994). In spite of the similar principles between the two models, some of the 

concepts and factors used in quantifying calculations differ (Yu et al. 2003a; Yu et al. 2003b). The 

most important differences are in the determination of endogenous protein losses, microbial 

protein synthesis and absorbable rumen bypass protein (Yu et al. 2003a; Yu et al. 2003b). 

Significant differences in the predicted values from the two models were found when evaluating 
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concentrates and forages; however, correlations of the predicted values were high (Yu et al. 

2003a; Yu et al. 2003b). In addition, the DVE/OEB System and the NRC 2001 Model also predict 

protein requirements, which also differ between the two models (Yu et al. 2003a). 

A more complete version of the DVE/OEB System has been recently published and is 

available for a fee (Tamminga et al. 2007). Compared to the previous version, the new system 

requires a much more detailed description of the protein and carbohydrate fractions of each feed, 

and it also provides a deeper insight into the breakdown dynamics of the nutrients in rumen. 

Therefore, a more precise prediction of the availability of rumen degradable protein, rumen 

bypass protein, volatile fatty acids, and rumen bypass carbohydrates, can be achieved. This 

enables an enhanced balance of nitrogen and energy to rumen microorganisms, and ultimately 

increases accuracy in ration formulation. 

 

 

2.7. Summary 
 

In western Canada, wheat DDGS, blend (wheat/corn) DDGS and imported corn DDGS are 

utilized in ruminant diets. Although substantial body of research has been reported for corn 

DDGS, information on the nutritional characteristics of wheat DDGS and blend DDGS for 

ruminants is scarce. DDGS is a good source of rumen bypass protein for ruminants. In current 

ration formulation, it is common to assume fixed values for the amount and digestibility of RUP 

of DDGS; however, the rumen availability of protein and other feed components may vary 

among DDGS types as the chemical profile has been shown to. Thus, a database on chemical 

profile, protein and carbohydrate fractions, energy values, and nutrient availability in the rumen 

and the small intestine for each type of DDGS needs to be created in order to increase accuracy 

in feeding formulation as well as to reduce feeding cost and environmental impact.  

Literature shows a high inconsistency in the nutritional value among corn DDGS samples 

collected at different plants. The most important factors affecting this variability are differences 

in the nutrient content of the parental grain, differences in the ratio of solubles and distillers 

grains blended, and differences in drying conditions. Plant to plant inconsistencies have not been 

reported for wheat DDGS yet; however, this information is required to improve processing 

conditions and product quality consistency of wheat DDGS.  
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The use of the chemical profile to determine energy values and to predict the potential 

degradability has been used successfully with many forages and concentrates. In DDGS, scarce 

information is available on the validity of these methodologies. 

Therefore, the purpose of this project was 1) to investigate the effects of DDGS type and 

bio-ethanol plant on the nutritive value (nutrient profile, protein and carbohydrate fractions and 

energy values), 2) to evaluate the validity of the NRC 2001 chemical approach in determining 

energy values of DDGS, 3) to investigate the effects of DDGS type and bio-ethanol plant on the 

in situ rumen degradation characteristics and intestinal digestibility of bypass protein, 4) to test 

the relationship between chemical profile and potential rumen degradability of DDGS, and 5) to 

investigate the effects of DDGS type and bio-ethanol plant on the prediction of the potential 

protein supply to small intestine. In addition, the comparison of DDGS type with its respective 

feedstock grain on each of the above parameters will be studied. To produce top quality DDGS 

suitable for export and marketing and for the livestock industry in western Canada, there is an 

urgent need for this information. 

(Hindrichsen et al. 2006) 
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3. NUTRIENT VARIATION AND AVAILABILITY (PROTEIN, FIBER AND ENERGY) 

OF CO-PRODUCTS OF BIO-ETHANOL PRODUCTION: COMPARISON AMONG 

WHEAT DDGS, CORN DDGS AND BLEND DDGS, AND BETWEEN DIFFERENT BIO-

ETHANOL PLANTS 

  

 

3.1. Introduction 

Dried distillers grains with solubles (DDGS) are a byproduct of fermentation during bio-ethanol 

production. As a result of the government policies to stimulate the expansion and consumption of 

bio-fuels, the number of bio-ethanol plants has increased in Western Canada. Although the bio-

ethanol industry in this part of the country is wheat based, the fluctuation in the price of wheat 

has forced bio-ethanol companies to include corn in the feedstock for bio-ethanol processing, 

consequently not only pure wheat DDGS but also blend (wheat/corn) DDGS is available. 

While the nutritional value of corn DDGS for ruminants has been extensively 

documented (Cromwell et al. 1993; Spiehs et al. 2002; Shurson 2005; Kleinschmit et al. 2006; 

Rosentrater and Muthukumarappan 2006; Kleinschmit et al. 2007; Martinez-Amezcua et al. 

2007; Stein and Shurson 2009), detailed information on wheat DDGS and wheat/corn blend 

DDGS is scarce and not recent (Dong and Rasco 1987a; Boila and Ingalls 1994a, 1994b; 

Nyachoty et al. 2005; Widyaratne and Zijlstra 2006; Penner et al. 2009). Thus, a database on 

chemical profile, protein and carbohydrate fractions, and energy values needs to be created in 

order to proceed with feeding recommendations for ruminants. Likewise, it is important to detect 

plant to plant variation and how this inconsistency in the product affects nutrient supply and 

consequently animal performance. To produce DDGS suitable for export and marketing, and for 

livestock industry within Canada, there is an urgent need for this information. So far, little 

research has been conducted to determine the magnitude of the differences in the nutritive value 

among wheat DDGS, corn DDGS and blend DDGS (particular blend DDGS), and between 

wheat DDGS originated at different bio-ethanol plants in Canada.  

In addition to product inconsistency, the methodology used in the nutritive 

characterization is crucial in order to avoid misformulation of the ration and diminished animal 

productivity. In the estimation of energy values, NRC (2001) describes a chemical approach in 

which the equations for truly digestible nutrient are based on the chemical composition of natural 
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feeds (Weiss et al. 1992).  Yet, the energy values of a feedstuff are not chemical constituents. 

Thus, it is a question whether this chemical approach described by NRC 2001 can accurately 

estimate energy values of DDGS. A biological approach, such as in vitro and in situ incubation, 

is considered a superior predictor of truly digestible nutrients (Robinson et al. 2004; Yu et al. 

2004). The method preferred for most researchers, and also suggested by NRC 2001, is the 48 h 

in vitro incubation; however, inflated results for feeds with a high content of soluble sugars have 

been reported (Seker 2002). For this reason, and because of the greater similarity to real animal 

conditions, an in situ assay (48 h incubation) provides the best estimation of the total tract 

digestion, and consequently truly digestible nutrients and energy values (Tamminga et al. 1994; 

Yu et al. 2003a; Yu et al. 2004). To date, there is no information on the relationship of the NRC 

2001-chemical approach and the in situ assay-biological approach that clarifies the accuracy of 

NRC 2001-chemical approach on the prediction of energy values for DDGS.  

The chemical profile has been used as a method to estimate the potential digestibility of 

feedstuffs. While a strong negative relationship between ADICP content and protein 

degradability is well established in forages (Goering et al. 1972; Yu and Thomas 1976; Van 

Soest and Mason 1991a), moderate (Nakamura et al. 1994a) or no correlation (Klopfenstein 

1996) have been found in distillers grains. Likewise, NRC (2001) uses acid detergent lignin 

(ADL) to predict potential neutral detergent fiber (NDF) digestibility. In order to acquire the best 

DDGS for livestock, more information on the use of chemical profile as predictor of potential 

digestibility of DDGS is required.   

The objectives of this study were 1) to determine the effect of DDGS type and bio-

ethanol plant on chemical profile, mineral concentrations, protein and carbohydrate fractions, 

and energy values; 2) to elucidate the validity of the NRC 2001 chemical approach in the 

determination of energy values for DDGS; and 3) to determine the effect of DDGS type and bio-

ethanol plant on in situ rumen degradability of DDGS components and test the relationship 

between chemical profile and rumen degradability. In addition, these parameters were studied in 

feedstock grains as opposed to their derived DDGS product. The final aim was to provide 

detailed information on the nutritive value of wheat DDGS, corn DDGS and blend DDGS in 

order to assist nutritionists in designing low cost, efficient feed programs in Canada.  

 

 

 31



3.2. Materials and methods 

 

3.2.1. Wheat DDGS, corn DDGS and blend DDGS and original cereal grains 

(corn and wheat) 

During May to December in 2007, three to five batches from each of wheat DDGS, blend DDGS 

(wheat:corn=70:30), and wheat samples were collected from two bio-ethanol plants (SK-Plant 1 

and SK-Plant 2) located in western Canada. Both plants used local wheat feedstock for bio-

ethanol production. During the same time frame, corn DDGS and corn samples produced by a 

bio-ethanol plant in North Dakota were obtained through Federated Co-Op Ltd, Saskatoon. Due 

to cold climate conditions, western Canada does not produce large amounts of corn and corn 

DDGS; however, corn DDGS and corn samples were used as reference samples for comparison 

with wheat and wheat DDGS.  

 

   3.2.2. Rumen in situ assay 

A rumen in situ assay was performed in order to measure rumen degradability and estimate truly 

digestible nutrients (tdNDF, tdCP, tdFA, tdNFC). Prior to ruminal incubation, samples were 

processed using a Sven Roller Mill (Apollo Machine and Products Ltd., Saskatoon, SK). The 

roller gap was adjusted to a size of 0.203 mm in order to equalize the particle size of all samples. 

Three Holstein dry cows fitted with a rumen cannula (Bar Diamond Inc, Parma, ID, USA) with 

an internal diameter of 10 cm were used in this study. The cows were individually fed twice 

daily at 0800 and 1600 according to the nutrient requirement defined by NRC (2001) at a 

maintenance level (See Appendix Table 8.1). The animals were cared for in accordance with the 

guidelines of the Canadian Council on Animal Care (CCAC 1993). Ruminal degradability of dry 

matter (DDM), organic matter (DOM), crude protein (DCP) and neutral detergent fiber (DNDF) 

at 24 and 48 h incubation, as well as ruminal degradability of total fatty acids (DFA), non-fiber 

carbohydrates (DNFC) and neutral detergent insoluble crude protein (NDICP) at 48 h incubation, 

were determined by in situ method (Yu et al. 2000) using nylon bags with a pore size of 40 

microns. The 24 and 48 h incubation times were based on the NRC-2001 suggestion in energy 

estimation (48 h) and the previous published report (Yu et al. 2000). Each treatment was 

randomly assigned to the cows for two runs. After incubation, the bags were removed from the 

rumen and rinsed under a cold stream of tap water to remove excess ruminal contents. The bags 
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were washed with cool water without detergent and subsequently dried at 55°C for 48 h. Dry 

samples were stored in a refrigerated room (4°C) until analysis. The residues were ground 

through a 1-mm screen (Retsch ZM-1, Brinkmann Instruments (Canada) LTD, Ontario) for 

chemical analysis. 

 

3.2.3. Chemical analysis 

All samples for chemical analysis were ground through a 1 mm screen. Dry matter (AOAC 

930.15), ash (AOAC 942.05), crude fat (CFat) (AOAC 954.02) and crude protein (CP, AOAC 

984.13) contents were analyzed according to the procedure of the AOAC (1990). For the starch 

analysis, samples were ground to 0.5 mm and analyzed using the Megazyme Total Starch Assay 

Kit and by the α-amylase/amyloglucosidase method (McCleary et al. 1997). Acid detergent fiber 

(ADF), neutral detergent fiber (NDF) and acid detergent lignin (ADL) were analyzed according 

to the filtration method (Van Soest et al. 1991b). Alpha-amylase without sodium sulfite was used 

prior to neutral detergent extraction. The N adjusted NDF (NDFn) was calculated as NDF-

NDICP. The acid (ADICP) and neutral detergent insoluble crude protein (NDICP) values were 

determined (Licitra et al. 1996). The NPN content was analyzed by precipitating of true protein 

with tungstic acid (samples were soaked into water with 0.3 M Na2WO4 for 30 minutes) and 

calculated as the difference between total N and the N content of the residue after filtration 

(Licitra et al. 1996). Total soluble crude protein (SCP) was determined by incubating the sample 

with bicarbonate-phosphate buffer and filtering through Whatman #54 filter paper (pore size = 

20 - 25 μm)  (Roe et al. 1990). The non-structural carbohydrates (NSC) including starch, sugars, 

organic acids, and other reserve carbohydrates such as fructan were estimated by non-fibre 

carbohydrates and calculated (Grings et al. 1992). The carbohydrate (CHO) and true protein, 

hemicellulose, and cellulose were calculated (Van Soest et al. 1991b). Calcium (Ca) (AOAC 

927.02) concentrations were determined by atomic absorption spectroscopy (Model Perkin 

Elmer 2380, Norwalk, CT) and phosphorus (P) (AOAC965.17) concentrations by 

spectrophotometry (Model Pharmacia LKB Biochrom Ltd, Ultroscope III, Cambridge, UK) 

according to the procedures of the AOAC (1990). Sulphur (AOAC 935.13) analysis was carried 

out by inductively couple plasma-optical emission spectrometer (Model Perkin Elmer Optima 

4300 DV ICP-OES, Waltham, MA) at ALS Laboratory Group, Saskatoon, SK, Canada 
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according to the procedures of the AOAC (1990). All samples were analyzed in duplicate and 

repeated if error was in excess of 5%. 

 

3.2.4. Partitioning protein and carbohydrate fractions  

The crude protein and carbohydrate (CHO) subfractions were partitioned according to the 

Cornell Net Carbohydrate and Protein System (CNCPS) (Sniffen et al. 1992; Chalupa and 

Sniffen 1994). The characterization of the CP fractions as applied in this system is as follows: 

fraction PA is non-protein N (NPN), fraction PB is true protein (TP), and fraction PC is 

unavailable protein. Fraction PA is rapidly degradable with an assumed degradation rate to be 

infinity. Fraction PB is further divided into three fractions (PB1, PB2, and PB3) that are believed 

to have different rates of degradation in the rumen (Sniffen et al. 1992). Fraction PB1 is 

represented by buffer soluble protein whis is rapidly degraded in the rumen (120-400 % h-1). 

Buffer-insoluble protein minus fraction PB3 is used to estimate fraction PB2. Fraction PB2 is 

insoluble in buffer but soluble in neutral detergent, while fraction PB3 is insoluble in both buffer 

and neutral detergent but soluble in acid detergent solution. Fraction PB2 is fermented in the 

rumen at a lower rate (3-16 % h-1) than the buffer-soluble fraction, and some PB2 fraction 

escapes to the lower gut. Fraction PB3 is believed to be more slowly degraded in the rumen 

(0.06-0.55% h-1) than fractions PB1 and PB2 because of its association with the plant cell walls, 

and a large proportion of PB3 is believed to escape the rumen. Fraction PC is ADICP, which is 

highly resistant to breakdown by microbial and mammalian enzymes, and it is assumed to be 

unavailable to the animal.  

Carbohydrate was partitioned into: rapidly degradable fraction (CA) which is composed 

of sugars and organic acids that have a rapid degradation rate of 300% h-1, intermediately 

degradable fraction (CB1) which is starch and pectin with an intermediate degradation rate of 20-

50% h-1, slowly degradable fraction (CB2) which is available cell wall with a slow degradation 

rate of 2-10% h-1, and an unfermentable fraction (CC) which is the unavailable cell wall.  

 

3.2.5. Energy values 

Estimated energy contents for truly digestible crude protein (tdCP), fatty acid (tdFA), neutral 

detergent fiber (tdNDF) and non-fiber carbohydrates (tdNFC) were calculated separately using 

the two different approaches as follows: 
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1) Using NRC 2001-chemical approach (values expressed in %DM): 

a. tdNFC (%DM)  = 0.98 × (100 - [(NDF - NDICP) + CP + EE + Ash]) × PAF;  

where, PAF is the processing adjustment factor and was assumed to be 1.00 according to 

NRC 2001. 

b. tdCP (%DM) = [ 1 - (0.4 × (ADICP/CP))] × CP 

c. tdFA (%DM) = FA, where FA = Cfat -1. 

d. tdNDF (%DM) = 0.75 × (NDFn – ADL) × [1 - (ADL/NDFn)0.667],  

where, NDFn = NDF – NDICP. 

2) Using in situ assay – biological approach: 

a. tdNFC (%DM) =  NFC (%DM) × DNFC48 (%),  

where, NFC = 100 - ([NDF - NDICP] + CP + EE + Ash) and DNFC48 stands for 

in situ digestibility of NFC after 48 h incubation. 

b. tdCP (%DM) = CP (%DM) × DCP48 (%),  

where, DCP48 stands for in situ digestibility of CP after 48 h incubation. 

c. tdFA (%DM) = FA (%DM) × DFA-48 (%),  

where, FA = Cfat - 1 and DFA48 stands for in situ digestibility of FA after 48 h 

incubation. 

d. tdNDF (%DM) = NDFn (%DM) × DNDFn48 (%),  

where, DNDFn48 stands for in situ digestibility of NDF after 48 h incubation and 

corrected for NDICP. 

Based on the values of truly digestible nutrients, the energy contents of total digestible 

nutrient at maintenance (TDN1X), digestible energy at production level of intake (DE3x), 

metabolizable energy at production level of intake (ME3x) and net energy for lactation at 

production level of intake (NEL3x) were determined using a summative approach (Weiss et al. 

1992) from the NRC 2001 dairy (NRC 2001), while net energy for maintenance (NEm), and net 

energy for growth (NEg) were determined using the NRC 1996 beef (NRC 1996). Both NRC 

dairy and NRC beef used the same formula to estimate NEg and NEm.   

 

3.2.6. Statistical analysis 

Study on the effect of type of DDGS and feedstock grain on chemical profile, protein and 

carbohydrate fractions and estimated energy values (chemical and biological approaches). 
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Statistical analyses were performed using the MIXED procedure of SAS (SAS 2005). The model 

used for the analysis was: Yij = µ + Fi + eij, where, Yij was an observation of the dependent 

variable ij; µ was the population mean for the variable; Fi was the effect of feed sources, as a 

fixed effect; batch as replication for the chemical approach; batch and run as replications for the 

biological approach; and eij was the random error associated with the observation ij.  

   Study on the effect of bio-ethanol plant on chemical profile, protein and 

carbohydrate fractions and estimated energy values of wheat DDGS. Statistical analyses 

were performed using the MIXED procedure of SAS (SAS 2005). The model used for the 

analysis was: Yij = µ + Pi + eij, where, Yij was an observation of the dependent variable ij ; µ was 

the population mean for the variable; Pi was the effect of bio-ethanol plant, as a fixed effect; 

batch as replications; and eij was the random error associated with the observation ij.  

   Study on the comparison of NRC 2001-chemical approach with biological approach 

(in situ assay) in the determination of digestible nutrients and energy values of DDGS. 

Paired t test procedure of SAS (SAS 2005) and correlation analysis were performed in order to 

establish the relationship between the NRC 2001-chemical approach and the in situ assay-

biological approach.  

   Study on the effect of DDGS type on in situ rumen degradability. Statistical analyses 

were performed using the MIXED procedure of SAS (SAS 2005). The model used for the 

analysis was: Yij = µ + Fi +eij, where, Yij was an observation of the dependent variable ijk; µ was 

the population mean for the variable; Fi was the effect of feed resources, as a fixed effect; batch 

and run as replications; and eij was the random error associated with the observation ijk. The 

relationship between chemical profile and potential degradability was evaluated by correlation 

analysis. 

   Studies on effect of bio-ethanol plant on in situ degradability of wheat DDGS. 

Statistical analyses were performed using the MIXED procedure of SAS (SAS 2005). The model 

used for the analysis was: Yijk = µ + Pi +eijk, where, Yijk was an observation of the dependent 

variable ijk; µ was the population mean for the variable; Pi was the effect of plant, as a fixed 

effect; batch and run as replicates; and eijk was the random error associated with the observation 

ijk.  

   For all statistical analyses, significance was declared at P<0.05 and trends at P≤0.10. 

Treatment means were compared using the Fisher’s Protected LSD method.  

 36



 37

3.3. Results and discussion 

 

3.3.1. Effects of DDGS type (wheat DDGS, corn DDGS vs. blend DDGS) and 

bio-ethanol plant on sulphur, calcium (Ca), and phosphorus (P) 

Dried distillers grains with solubles are low in Ca but high in P and sulfur relative to cattle 

nutrient needs (NRC 2001). This may have repercussions on animal performance, animal health, 

and the environment, especially if high levels of DDGS are included in the ration. Sulfur in the 

ruminant diet is primarily to provide adequate substrate to ensure maximal microbial protein 

synthesis. In general, the recommended sulfur content in the diet should be directly related to the 

protein concentration. However, DDGS contains much higher sulfur due to the addition of 

sulfuric acid during the ethanol production process.  The maximum tolerable level of sulfur in 

dairy cattle diets is less than 0.4% of dietary DM (NRC 2001). In studies with beef cattle, some 

strange behaviours and “depressed mood” in cattle fed 60% DDGS were observed (T. 

McAllister, personal communication). One possibility is that excess sulfur in the diet may be 

contributing to neurologic changes such as polioencephalomalacia (PEM) (“a disease 

characterized by a disturbance of the central nervous system. The PEM sometimes occurs on 

high grain diets, and diets that include plants/grain high on sulfur”) (Sheep Industry 

Development Program 1988). Therefore, the DDGS inclusion level in order to keep sulphur level 

at a safe concentration should be investigated 

The results (Table 3.1) showed that mineral profiles were significantly different between 

wheat and corn with wheat higher in Ca, P and sulfur. The mineral profiles were also different 

among the three types of DDGS with wheat DDGS lower (P<0.05) in sulfur (0.39 vs. 0.72 

%DM), higher (P<0.05) in Ca (0.18 vs. 0.05 %DM) and P (0.91 vs. 0.77 %DM) than corn 

DDGS, but similar to blend DDGS. There were no significant differences between the two bio-

ethanol plants (SK- Plant 1 vs. Plant 2) (Table 3.1).  

 

3.3.2. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plants on chemical characteristics and profiles  

Effects of DDGS type (wheat DDGS, corn DDGS vs. blend DDGS) and bio-ethanol plant on 

chemical characteristics and profiles are presented in Table 3.1. Chemical profiles were 

significantly different among wheat DDGS, corn DDGS and blend DDGS (wheat:corn =70:30). 



 

Table 3.1. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat:corn =70:30) and comparison of different bio-ethanol 
plants in terms of chemical profile  
         
 Feeds sources  Bio-ethanol plant   
           

 
Items 

Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
    SEM 

SK-Plant 1 
Wheat DDGS 

n = 2 

SK-Plant 2 
Wheat DDGS 

n = 3 
  SEM 

Basic chemical profile  
DM (%) 89.52 bc 88.77 c  93.76 a 91.44 b 91.61 b 0.697 92.43 94.65 1.050 
Ash (%DM) 2.12 c 1.73 c  5.12 a 4.32 b 5.09 a 0.203 4.98 5.21 0.391 
OM (%DM) 97.88 a 98.26 a  94.88 c 95.67 b 94.91 c 0.203 95.02 94.79 0.391 
Cfat (%DM) 1.91 d 4.59 c  4.98 c 16.53 a 8.53 b 0.432 6.18 a 4.18 b 5.277 

           
Structural carbohydrate profile 

NDF (%DM) 17.22 b 14.47 b  48.07 a 49.46 a 51.50 a 1.701 52.76 a 44.94 b 1.505 
ADF (%DM) 3.68 c 3.66 c  10.99 b 14.68 a 10.80 b 0.567 10.82 11.11 0.861 
ADL (%DM)   0.99 c 0.54 c  4.32 a 2.80 b 3.66 ab 0.445 3.62 4.78 0.871 
Hemicellulose (%DM) 13.55 c 10.82 c  37.04 ab 34.78 b 40.70 a 1.673 41.95 a 33.83 b 0.821 
Cellulose  (%DM)   2.68 c 3.11 c  6.68 b 11.88 a 7.14 b 0.531 7.20 6.33 0.291 
           

Non-structural carbohydrate profile 
Starch (%DM) 60.35 a 63.41 a  6.32 b 4.38 b 3.99 b 1.417 6.16 6.44 1.520 
           

Crude protein profile           
CP  (%DM)  14.28 d 10.13 e  39.32 a 32.01 c 36.82 b 0.832 39.99 38.87 1.664 
SCP (%CP) 24.56 a 14.71 b  16.29 b 11.44 c 14.86 b 0.920 16.90 15.88 1.243 
NPN (%SCP) 89.62 b 96.70 ab  100 a 100 a 100 a 2.522 100 100 0.000 
NDICP (%CP) 13.51 c 4.75 d  56.04 a 34.37 b 54.40 a 1.422 59.33 a 53.84 b 1.028 
ADICP (%CP) 0.00 c 0.08 c  4.85 ab 6.44 a 1.17 bc 1.412 0.69 b 7.63 a 0.125 
           

Minerals           
Sulfur (%DM) 0.16 c 0.12 d  0.39 b 0.72 a 0.37 b 0.010 0.37 0.40 0.011 
Calcium (%DM) 0.07 b 0.02 c  0.18 a 0.05 bc 0.15 a 0.013 0.19 0.18 0.007 

0.072 Phosphorus  (%DM) 0.37 c 0.29 c  0.91 a 0.77 b 0.92 a 0.037 0.90 0.91 
           

SEM = standard error of mean. Means with different letters in the same row are significantly different (P<0.05) 
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Wheat DDGS was lower (P<0.05) in Cfat than corn DDGS (5.0 vs. 16.5 %DM) and blend 

DDGS (5.0 vs. 8.5 %DM), lower (P<0.05) in ADF (11.0 vs. 14.7 %DM) but higher (P<0.05) 

ADL (4.3 vs. 2.8 %DM) than corn DDGS but not significantly different from blend DDGS 

(P>0.05). There was still some residual starch content in all DDGS, which indicated that the 

completeness of the fermentation was not achieved in any of the DDGS samples. However, 

residual starch contents in DDGS were not significantly different among wheat DDGS, corn 

DDGS and blend DDGS and averaged 4.9 %DM. Wheat DDGS was higher (P<0.05) in CP than 

corn DDGS (39.3 vs. 32.0 %DM) and blend DDGS (39.3 vs. 36.8 %DM). There were no 

significant differences in SCP with average of 13.6 %CP and NPN with average of 100.00 

%SCP. Protein solubility could be reduced in DDGS due to the heat applied during processing 

and/or due to fermentation processing, compared to original grains. It is possible that during 

fermentation, some soluble proteins were at least partially degraded, leaving a greater proportion 

of insoluble protein to end up in DDGS. This result is in agreement with previous reports 

(Firkins et al. 1985; Boila and Ingalls 1994a). Our results showed that SCP in all three types of 

DDGS was mainly NPN. Wheat DDGS contained similar (P>0.05) ADICP to corn DDGS with 

average of 5.6 %CP but higher (P<0.05) than blend DDGS (1.2 %CP).  Wheat DDGS also 

contained higher  (P<0.05) NDICP than corn DDGS (56.0 vs. 34.4 %CP) but similar (P>0.05) to 

blend DDGS (54.4 %CP). In general, DDGS samples contained about three times the percentage 

of most chemical components compared its respective original grain (Spiehs et al. 2002; 

Nyachoty et al. 2005; Widyaratne and Zijlstra 2006). The amount of CP and Cfat increases while 

starch decreases as wheat or corn are utilized in DDGS processing (Lee et al. 1991; Widyaratne 

and Zijlstra 2006). The values shown in the present study are similar to those listed by NRC 

2001, with exception of Cfat in corn DDGS (16.5 vs. 10.0 %DM) and CP in wheat DDGS (39.3 

vs. 42.3 %DM), and also to those reported by previous studies (Cromwell et al. 1993; Spiehs et 

al. 2002; Widyaratne and Zijlstra 2006). 

There were significant plant effects on chemical characteristics in CFat (6.2 vs. 4.2 

%DM), NDF (52.7 vs. 44.9 %DM), NDICP (59.3 vs. 53.8 %CP), and ADICP (0.69 vs. 7.6 %CP) 

(Table 3.1). These results indicated that the feedstock used, as well as the different bio-ethanol 

processing methods used in each plant, such as fermentation, distillation, amount of solubles 

blended back, and DDGS drying, affected chemical profiles. The amount of solubles added back 

would affect protein solubility and degradability in the rumen by providing simple sugars that
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would increase the susceptibility to the Maillard reaction (Belyea et al. 1998). The DDGS from 

SK-Plant 2 had visually distinguished darker colors due to a higher level of ADICP compared to 

those from SK-Plant 1. 

  

3.3.3. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plant on protein and carbohydrate sub-fractions  

The CP and carbohydrate sub-fractions, partitioned according to the Cornell Net Carbohydrate 

and Protein System (Sniffen et al. 1992; Chalupa and Sniffen 1994) included PA, PB1, PB2, PB3 

and PC for protein fractions, and CA, CB1, CB2 and CC for carbohydrate fractions. Each 

fraction has different degradation behavior (degradation rate) in the rumen which is highly 

related to component nutrient availability in ruminants. The effects of DDGS type (wheat 

DDGS, corn DDGS and blend DDGS) and bio-ethanol plant on protein and carbohydrate sub-

fractions are presented in Table 3.2. Original wheat and corn had significantly different protein 

sub-fractions but similar carbohydrate fractions (Table 3.2). Wheat was higher (P<0.05) than 

corn in rapidly degradable non-protein nitrogen (PA: 21.9 vs. 14.5 %CP), higher (P<0.05) in 

rapidly degradable CP fraction (PB1: 2.7 vs. 0.2 %CP), lower (P<0.05) in intermediately 

degradable CP fraction (PB2: 61.9 vs. 80.5 %CP), and higher (P<0.05) in slowly degradable CP 

fraction (PB3: 13.5 vs. 4.7 %CP). There were no significant differences in carbohydrate fractions 

between wheat and corn with averages of rapidly degradable free sugars (CA: 7.9 %CHO), 

rapidly degradable CHO fraction (CB1: 74.5 %CHO), intermediately degradable CHO fraction 

(CB2: 15.5 %CHO) and, unavailable CHO fraction (CC: 2.2 %CHO). 

Comparing among the three types of DDGS, wheat DDGS and blend DDGS were higher 

(P<0.05) than corn DDGS in PA (16.3 vs. 14.9 vs. 11.4 %CP) and PB3 (51.2 vs. 53.2 vs. 27.9 

%CP). While PB1 was 0 %CP for the three types, corn DDGS was significantly higher than 

wheat DDGS and blend DDGS in PB2 (54.2 vs. 27.7 vs. 30.8 %CP) and numerically higher in 

PC (6.4 vs. 4.9 vs. 1.2 %CP). Differences in PB2 and PB3 sub-fractions between wheat DDGS 

and corn DDGS may be explained by differing protein sub-fraction profile between wheat and 

corn as well as by differing processing conditions. As a result of heating, the major shifts in the 

protein fractions between feedstock grains and DDGS were observed in PB2 and PB3. 

Approximately half of PB2 in wheat was allocated into PB3 in wheat DDGS, while one third of 

PB2 in corn was allocated into PB3 in corn DDGS. PC sub-fraction is protein bound to other



 

 

Table 3.2. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat: corn=70:30) and comparison of different bio-ethanol 
plants in terms of protein and carbohydrate sub-fractions according to CNCPS system 
         
 Feeds sources  Bio-ethanol plant   
           

Items 
Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
    SEM 

SK-Plant 1 
Wheat DDGS 

n = 2 

SK-Plant 2 
Wheat DDGS 

n = 3 
  SEM 

Protein sub-fractions 
PA (%CP) 21.86 a 14.51 b  16.29 b 11.44 c 14.86 b 0.718 16.90 15.88 1.242 
PB1 (%CP) 2.70 a 0.20 b  0.00 b 0.00 b 0.00 b 0.569 0.00 0.00 0.000 
PB2 (%CP) 61.93 b 80.54 a  27.68 d 54.20 c 30.75 d 1.548 23.77 b 30.28 a 0.754 
PB3(%CP) 13.51 c 4.66 d  51.18 a 27.93 b 53.23 a 2.524 58.63 a 46.21 b 1.025 
PC (%CP) 0.00 c 0.08 c  4.86 ab 6.44 a 1.17 bc 1.412 0.69 b 7.64 a 0.125 
True proteinz (%CP) 78.14 b 85.41 a  78.85 b 82.12 ab 83.97 a 1.571 82.41 a 76.48 b 1.204 
           

Carbohydrate sub-fractions 
CHOy (%DM) 81.69 a 83.54 a  50.58 b 47.14 c 49.57 bc 1.174 48.85 51.74 2.191 
NFCx (%CHO) 81.29 a 83.22 a  48.34 b 18.36 d 36.49 c 2.841 40.55 b 53.53 a 2.661 
CA (%CHO) 7.40 b 8.12 b  35.94 a 9.08 b 28.47 a 3.461 27.96 b 41.27 a 2.291 
CB1 (%CHO) 73.89 a 75.10 a  12.40 b 9.28 b 8.02 b 1.918 12.60 12.26 2.470 
CB2 (%CHO) 15.79 d 15.22 d  31.26 c 67.42 a 45.77 b 3.552 41.67 a 24.33 b 1.675 
CC (%CHO) 2.92 c 1.56 c  20.40 a 14.22 b 17.74 ab 2.003 17.78 22.14 4.037 
           

SEM = standard error of mean. Means with different letters in the same row are significantly different (P<0.05).  
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zTrue protein = PB1 + PB2 + PB3 
yCHO = total carbohydrates = 100 – CP – Cfat – ash 
xNFC = non-fiber carbohydrates = 100 – (NDF – NDICP) – Cfat – CP - ash 



feed components such as lignin and tannins and is considered not degradable in rumen (Sniffen 

et al. 1992). As a result of the Maillard reaction, PC sub-fraction was higher in DDGS relative to 

feedstcok grain. In conclusion, the degradability of protein in rumen decreased in DDGS samples 

relative to feedstock grains. Although ruminal undegradable protein (RUP) is mainly represented 

by PB3 and PC sub-fractions, some RUP is present in PB2. Thus, an in situ degradability study is 

required in order to estimate more accurately the quantity of RUP in each type of DDGS. 

Although original wheat and corn were not different in carbohydrate fractions, wheat 

DDGS, corn DDGS and blend DDGS differed significantly (Table 3.2). Compared to corn 

DDGS, wheat DDGS was higher (P<0.05) in the non-fiber carbohydrate fraction (NFC: 48.3 vs. 

18.4 %CHO), higher (P<0.05) in highly degradable free sugars fraction (CA: 35.9 vs. 9.1 

%CHO), higher in unavailable CHO (CC: 20.4 vs. 14.2 %CHO), similar (P>0.05) in rapidly 

degradable CHO fraction (average 10.8 %CHO), and lower in intermediately degradable CHO 

(CB2: 31.3 vs. 67.4 %CHO). An explanation fot the outstanding difference in the CA fraction 

between wheat DDGS and corn DDGS may be found in the type of raw starch in the feedstock 

and processing conditions. CA sub-fraction contains sugars and organic acids (Sniffen et al. 

1992). Although the starch content of corn is higher than in wheat, the rate and extent of 

degradation of wheat starch is higher (See Appendix. Table 8.2), suggesting that wheat ethanol is 

generated more rapidly than corn ethanol. This may imply higher conversion of ethanol to 

organic acids, such as lactic and acetic acid, when wheat is used as feedstock, and consequently 

higher CA fraction in wheat DDGS relative to corn DDGS. In addition, wheat DDGS and corn 

DDGS were manufactured at different bio-ethanol plants, which differed in processing 

conditions such as amount of yeast utilized and fermentation time.  

There were significant bio-ethanol plant effects on protein and carbohydrate sub-fractions 

between the two plants (Table 3.2). SK-Plant 1 had lower (P<0.05) PB2, PC, and CA, higher 

(P<0.05) PB3, CB2 in DDGS than SK-Plant 2, indicating that bio-ethanol plant processing 

methods may affect protein and carbohydrate sub-fractions. For example, SK-Plant 1 and SK-

Plant 2 used different time and temperature of drying. This higher PC fraction which is not 

degradable is likely due to more heating applied during processing (Larson et al. 1993). 
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 3.3.4. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plant on energy values as determined from the NRC 2001 formula 

(chemical approach)  

The NRC 2001 formula is the usual method to estimate energy values for feeds. This method is a 

chemical approach that uses analytical results to estimate the values of truly digestible nutrients. 

The effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) and bio-ethanol plant 

on energy content as determined using the NRC dairy (NRC 2001) and beef, (NRC 1996) are 

presented in Table 3.3. Wheat and corn had similar (P>0.05) tdNFC (average 66.6 %DM) and 

tdNDF (average 9.0 %DM); however, wheat was higher (P<0.05) in tdCP (14.3 vs. 10.1 %CP) 

and lower (P<0.05) in tdFA (0.9 vs. 3.4 %DM) than corn. TDN1X was lower (P<0.05) in wheat 

than in corn (83.4 vs. 88.3 %DM). Wheat was significantly different from corn in energy values 

of ME3X, and NEL3X (Table 3.3). The estimated energy content for wheat and corn were similar 

to the tabular values in the NRC 2001, except that TDN1X value, of wheat was lower (83.4 vs. 

86.6 %DM).  

  Wheat DDGS was higher (P<0.05) than corn DDGS in tdNFC (20.1 vs. 8.5 %DM) and 

tdCP (38.6 vs. 31.2 %DM), but lower (P<0.05) in tdFA (4.0 vs. 15.5 %DM) and tdNDF (11.5 vs. 

22.1 %DM). Wheat DDGS had lowest (P<0.05) and corn DDGS had highest (P<0.05) energy 

values (TDN1X, DE3X, ME3X, NEL3X for dairy; NEm and NEg beef cattle) and blend DDGS was in 

between (Table 3.3). Our results showed that TDN1X in wheat DDGS was lower (P<0.05) than 

that in original wheat, but TDN1X in corn DDGS was similar (P>0.05) to original corn grain. 

This is because corn DDGS significantly reduced tdNFC from 68.2 %DM in original corn to 8.5 

%DM, although corn DDGS significantly increased tdFA content from 3.6 %DM in corn to 15.5 

%DM (Table 3.3). However, some studies showed that corn distiller’s grains is higher than corn 

in terms of energy content (Larson et al. 1993; Ham et al. 1994). TDN1X in corn DDGS was 

higher than the tabular value in NRC (2001) (89.8 vs. 79.5 %DM).  

The DE3X, ME3X, NEL3X, NEm and NEg values in wheat DDGS were similar (P>0.05) to 

wheat and corn, suggesting wheat DDGS as an alternative to wheat and corn in dairy and beef 

diets. However, the DE3X, ME3X, NEL3X, NEm and NEg values in corn DDGS were all higher 

(P<0.05) than in corn, indicating that corn DDGS are superior to original corn in dairy and beef 

diets. The energy values (DE3X, ME3X, NEL3X , NEm and NEg) in the blend DDGS were higher 

than in wheat, corn and wheat DDGS, suggesting blend DDGS as an alternative to corn and 



Table 3.3. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat:corn =70:30) and comparison of different bio-
ethanol plants in terms of truly digestible nutrients, total digestible nutrient content at maintenance level, and energy values using 
the NRC 2001-chemical approach 
         
 Feeds sources  Bio-ethanol plant   
           

Items 
Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
   SEM 

SK-Plant 1 
Wheat DDGS

n = 2 

SK-Plant 2 
Wheat DDGS

n = 3 
  SEM 

Component digestible nutrient  
tdNFC (%DM) 65.08 a 68.15 a  20.05 b 8.50 d 17.73 c 1.828 19.42 b 27.14 a 1.698 
tdCP (%DM) 14.28 c 10.13 d  38.56 a 31.20 b 36.65 a 0.910 39.88 37.68 1.613 
tdFA (%DM) 0.91 d 3.59 c  3.98 c 15.53 a 7.53 b 0.432 5.18 a 3.18 b 0.304 
tdNDF (%DM) 8.99 c 8.95 c  11.48 c 22.12 a 15.90 b 1.069 14.32 a 9.58 b 0.467 
           

Total digestible nutrient at maintenance level 
TDN1X (%DM) 83.39 b 88.31 a  76.04 d 89.77 a 80.21 c 0.965 78.26 74.56 1.569 

           
Predicted energy values  

DE3X  (Mcal kg-1 DM) (Dairy) 3.39 c 3.53 bc  3.42 c 3.85 a 3.56 b 0.044 3.52 3.35 0.069 
ME3X (Mcal kg-1 DM) (Dairy) 2.97 d 3.12 bc  3.01 cd 3.50 a 3.17 b 0.046 3.12 2.94 0.071 
NEL3X (Mcal kg-1 DM) (Dairy) 1.89 d 2.01 bc  1.94 cd 2.35 a 2.06 b 0.034 2.02 1.88 0.051 
NEm (Mcal kg-1 DM) (Beef) 2.06 c 2.16 bc  2.08 c 2.39 a 2.17 b 0.032 2.15 2.03 0.051 
NEg (Mcal kg-1 DM) (Beef) 1.40 c 1.48 bc  1.41 c 1.67 a 1.49 b 0.027 1.48 1.37 0.043 
           

SEM = standard error of mean. Means with different letters in the same row are significantly different (P<0.05) 
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superior to wheat and wheat DDGS in dairy and beef diets. There were no significant effects on 

TDN1X and energy values (DE3X, ME3X, NEL3X, NEm and NEg) between SK-Plant 1 and SK-

Plant 2 (Table 3.3). 

 

 3.3.5 Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) and 

bio-ethanol plant on energy values as determined from the in situ assay (biological 

approach) 

The energy values of a feedstuff are not chemical constituents, thus it is questionable whether 

these values can be accurately estimated by a chemical assay. The in situ assay is a more realistic 

approach for the estimation of truly digestible nutrients. The effects of DDGS type and bio-

ethanol plant on energy content are presented on Table 3.4. Wheat DDGS was higher (P<0.05) 

than corn DDGS in tdNFC (23.6 vs. 6.4 %DM) and tdCP (35.5 vs. 22.7 %DM) but lower 

(P<0.05) in tdFA (3.7 vs. 15.1 %DM) and tdNDF (17.3 vs. 33.9 %DM). Blend DDGS was in 

between for tdNDF and tdFA but was as high as wheat DDGS for tdNFC and tdCP. As a result, 

TDN1X and energy values (DE3X, ME3X, NEL3X, NEm and NEg) were higher (P<0.05) in corn 

DDGS relative to wheat DDGS while blend DDGS was in between.  

  Regarding the plant effect, SK-Plant 1 was lower (P<0.05) in tdNFC (18.5 vs. 27.1 

%DM) but higher (P<0.05) in tdFA (5.0 vs. 2.9 %DM) and tdNDF (20.2 vs. 15.3 %DM) than 

SK-Plant 2; however, there was not significant plant effect in terms of TDN1X and energy values 

(DE3X, ME3X, NEL3X , NEm and NEg). 

 

 3.3.6. Comparison of NRC 2001-chemical approach with biological approach 

(in situ assay) in the determination of truly digestible nutrients and energy values of 

DDGS 

Both approaches, chemical and biological, detected that DDGS type and bio-ethanol plant had a 

significant effect on truly digestible nutrients (tdNDF, tdCP, tdFA and tdNFC), TDN1X, and 

energy values (DE3X, ME3X, NEL3X , NEm and NEg). The difference and the correlation analysis 

between the chemical and the biological approaches for DDGS samples are presented in Table 

3.5. The numeric difference between the two approaches was significant for the predicted truly 

digestible nutrients; the highest difference was found in tdNDF (-7.7 %DM) followed by tdCP 

(4.8 %DM). Higher predicted tdNDF was found when using the in situ assay; however, higher 



 

 
 

Table 3.4. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat:corn =70:30) and comparison of different 
bio-ethanol plants in terms of truly digestible nutrients, total digestible nutrient content at a maintenance level, and 
energy values at three times maintenance level using the in situ assay-biological approach 
      
  Feed sources  Bio-ethanol plant   
         

Items  
Wheat 
DDGS 
n = 5 

Corn  
DDGS 
n =3 

Blend DDGS 
(W:C=70:30) 

n = 3 

SK-Plant 1 
SEM Wheat DDGS 

n = 2 

SK-Plant 2 
Wheat DDGS 

n = 3 
SEM 

Truly digestible nutrient 
     tdNFC (%DM)  23.63 a 6.35 b 16.99 a 2.124 18.49 b 27.06 a 1.782 
     tdCP (%DM)  35.53 a 22.69 b 33.64 a 1.349 37.37 34.29 2.051 
     tdFA (%DM)  3.72 c 15.06 a 7.22 b 0.477 4.96 a 2.89 b 0.322 
     tdNDF (%DM)  17.26 c 33.92 a 22.84 b 1.185 20.15 a 15.34 b 0.736 
         
Total digestible nutrient at a maintenance level 
     TDN 1X (%DM)  77.77 b 89.85 a 81.73 b 2.068 80.16 76.18 3.505 
         
Predicted energy values  
     DE3X (Mcal kg-1 DM) (Dairy)  3.47 b 3.79 a 3.59 ab 0.091 3.58 3.40 0.152 
     ME3X (Mcal kg-1 DM) (Dairy)  3.07 b 3.44 a 3.20 ab 0.093 3.18 2.98 0.154 
     NEL3X (Mcal kg-1 DM) (Dairy)  1.98 b 2.30 a 2.09 ab 0.067 2.07 1.91 1.992 
     NEm  (Mcal kg-1 DM) (Beef)  2.11 b 2.34 a 2.20 ab 0.328 2.19 2.06 0.112 
     NEg  (Mcal kg-1 DM) (Beef)  1.44 b 1.63 a 1.51 ab 0.057 1.51 1.39 0.096 
         
SEM = standard error of mean. Means with different letters in the same row are significantly different (P<0.05) 
In situ assay-biological approach: Truly digestible nutrients (tdNFC, tdCP, tdFA and tdNDF) estimated after 48 h rumen incubation. Energy 
values (DE3X,  ME3X,  NEL3X,  NEm ,  NEg ) calculated according to NRC 2001 formulas. 
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nutrients estimated after 48 h rumen incubation. Energy values calculated according to NRC 2001 formulas. 
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tdCP, tdFA and tdNFC were found when using the NRC 2001 approach. Although no significant 

differences between the two approaches were detected in terms of TDN1X and energy values, the 

predicted values were slightly higher for the biological approach.  

  These results are in agreement with a previous study (Yu et al. 2004), in which the 

highest difference between the chemical and biological approaches was found in tdNDF, being 

higher when the biological approach was used. NRC 2001-chemical approach estimates tdNDF 

based on the acid detergent lignin (ADL) content of the feed. Robinson et al. (2004) showed the 

poor relationship between ADL content and NDF digestibility in different feedstuffs including 

distillers grains, and concluded that the formula is not an accurate predictor of tdNDF. In that 

study, metabolizable energy of distillers grains was 13% higher when tdNDF was predicted in 

vitro. Differences among different feeds in the lignin content as well as in the extent to which 

lignin is bonded to other components of cell wall might be the reason for the deviation in the 

NDF digestibility (Chesson and Murison 1989). An independent comparison of the chemical and 

biological approach within each type of DDGS shows that the difference in tdNDF between the 

two approaches generally increases as the ruminal availability of NDF increases (See Appendix. 

Figure 8.1), thus the quantity and digestibility of NDF will determine the accuracy of the NRC 

2001-chemical approach when evaluating DDGS products. As NDF availability was lower for 

wheat DDGS, tdNDF values for wheat DDGS were more accurately predicted by the chemical 

approach than the other two DDGS types.  

 In terms of tdCP, the calculation according to NRC 2001 is based on the ADICP content; 

however, a negative correlation between ADICP and protein digestibility was detected only 

when ADICP levels were higher than 13% CP (Harty et al. 1998). As shown in Table 3.1, 

ADICP levels in the current DDGS samples ranged from 1.2 to 6.4%CP. Other studies (Rocha Jr 

et al. 2001; Detmann et al. 2004; Detmann et al. 2008) have reported that NRC 2001-chemical 

approach is inaccurate in predicting TDN1X content of feeds under tropical conditions. Of 

interest for further research would be the use of DDGS samples with higher ADCIP levels to 

investigate the accuracy of the NRC 2001-chemical approach to predict tdCP. 

 Correlation analysis between the chemical approach and the biological approach for 

DDGS samples showed significant and strong relationships for truly digestible nutrients, TDN1X, 

and energy values. 
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 3.3.7. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plant on in situ rumen degradability  

The effects of DDGS type and bio-ethanol plant on in situ rumen degradability of DM (DDM), 

OM (DOM), CP (DCP) and NDF (DNDF) after 24 h and 48 h incubations are presented in Table 

3.6. There were significant differences (P>0.05) in DDM and DNDF for 24 h incubation between 

wheat and corn (DDM24: 90.6 vs. 74.9 %; DNDF: 43.8 vs. 26.9 %), but after a 48 h incubation, 

the difference disappeared, averaging 91.8% (DDM48) and 48.2% (DNDF48). However, protein 

degradation patterns were different from DM and NDF. At both incubation times, wheat was 

always higher than corn (DCP24: 93.5 vs. 53.0 %; DCP48: 95.4 vs. 86.6 %).  

  Wheat DDGS had significantly higher in situ CP degradability (DCP: 61.1 vs. 47.1 % at 

24 h; 90.0 vs. 68.1% at 48 h) and lower in situ NDF degradability (DNDF: 63.5 vs. 79.4% at 48 

h) than corn DDGS, but similar in situ degradability to blend DDGS. Comparing the bio-ethanol 

plants, SK-Plant 1 had lower DDM24 than SK-Plant 2, but similar in situ degradability of CP 

and NDF.  In the lactating cow with typical levels of intake, little DM, cell wall, or protein 

remains at 48 h. There may not be significant quantities at the end of 24 h of fermentation. 

However, in this study, we would like to know relative differences in maximum rumen 

degradability between the different types of DDGS. The degradability at the longer incubation 

can be used as an indicator for total tract digestibility. 

 

3.3.8. Correlation analysis between ADICP and ADL and rumen 

degradability in overall DDGS, wheat DDGS, corn DDGS and blend DDGS  

Acid detergent insoluble crude protein and lignin are known for their adverse effects on 

digestibility in the animal. In DDGS, the high temperature (100 – 600 °C) applied during the 

drying process usually results in ADICP formation due to the Maillard reaction (Weiss et al. 

1986). While some studies have established a negative correlation between ADICP and CP 

digestibility in forages (Goering et al. 1972; Yu and Thomas 1976; Van Soest and Mason 1991a; 

Waters et al. 1992)  and non-forages (Arieli et al. 1989; Waters et al. 1992; McKinnon et al. 

1995), it is not clear whether ADICP behavior in DDGS is similar to conventional feeds. While 

Nakamura et al. (1994a) found a moderate correlation between ADICP and protein digestibility, 

Klopfenstein (1996) did not find any relationship. However, Harty et al. (1998) tested a high 

number  of  samples  and  observed  a  strong  relationship  between ADICP and  in vitro  protein            



 

Table 3.6. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat: corn =70:30) and comparison of different bio-
ethanol plants in terms of in situ degradability of dry matter (DDM), organic matter (DOM), crude protein (DCP) and NDF 
(DNDF) at 24 and 48 h incubations 
         
 Feeds sources  Bio-ethanol plant   
           

Items 
Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
SEM 

SK-Plant 1 
Wheat DDGS

\n = 2 

SK-Plant 2 
Wheat DDGS

n = 3 
SEM 

In situ degradability of DM at 24 and 48 h incubations 
DDM24 (%) 90.62 a 74.86 b  68.44 c 65.81 c 65.44 c 1.557 64.44 b 71.11 a 1.948 
DDM48 (%) 92.29 a 91.35 a  85.40 b 81.80 c 84.47 bc 1.219 85.88 85.09 2.164 
           

In situ degradability of OM at 24 and 48 h incubations 
DOM24 (%) 89.62 a 71.47 b  65.30 c 61.60 c 61.13 c 1.805 60.45 b 68.54 a 2.102 
DOM48 (%) 91.55 a 90.23 a  84.12 b 79.75 c 82.69 bc 1.322 84.45 83.90 2.325 
           

In situ degradability of CP at 24 and 48 h incubations 
DCP24 (%) 93.52 a 53.04 cd  61.07 b 47.10 d 56.99 bc 2.747 57.07 63.74 3.289 
DCP48 (%) 95.36 a 86.63 b  89.95 ab 68.14 c 87.64 b 2.140 93.04 87.89 3.013 
           

In situ degradability of NDF at 24 and 48 h incubations 
DNDF24 (%) 43.75 ab 26.90 c  42.02 ab 50.49 a 38.68 b 3.416 40.45 43.07 2.968 
DNDF48 (%) 51.43 c 44.90 c  63.50 b 79.36 a 63.36 b 2.942 3.260 63.44 63.60 
           

SEM = standard error of mean. Means with the different letters in the same row are significantly different (P<0.05)  
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utilization when ADICP levels were greater than 13% CP. Although results from the present 

study (Table 3.7) indicated a moderate correlation (r = 0.46; P = 0.0327) between ADICP and 

DM digestibility (24 h incubation) in the overall DDGS samples; no correlation between the 

ADICP content and the in situ digestibility of protein within each type of DDGS was found. 

Thus, these results would be in accordance with Klopfenstein (1996) and Harty et al. (1998), as 

ADICP levels in the present DDGS samples were lower than 13 %CP (Table 3.1). Based on the 

amount of samples under study, it is concluded that, as long as ADICP levels are below 13 %CP, 

ADICP may not be utilized as an accurate indicator of protein utilization in DDGS samples. 

Unlike the intrinsic ADICP of conventional feeds, the added ADICP in by-products created by 

the Maillard reaction is 60 - 80% digestible (Waters et al. 1992; Van Soest 1994). This would 

explain that ADICP levels greater than 13 %CP are required to observe a negative effect on 

protein digestibility. 

The amount of lignin as well as extent to which it is bonded to other components of cell 

wall affects ruminal digestibility (Chesson and Murison 1989). After 48 h incubation, there was a 

negative correlation between acid detergent lignin (ADL) and in situ degradability of DM, CP, 

and NDF for wheat DDGS (r < -0.82, P = 0.0035), but not for corn DDGS and blend DDGS, nor 

was there correlation after 24 h. Hindrichsen et al. (2006) concluded that ADL is not an accurate 

method to measure lignin and predict fiber digestibility in concentrates, while Jung et al. (1997) 

observed that correlation between lignin and the digestibility of DM and NDF was only found 

for legumes and several types of grasses. Also in the study by Jung et al. (1997), and in 

accordance with the present study, the higher the lignin content the stronger negative correlation. 

Although a limited amount of samples were utilized in the present study, it was concluded that 

ADL content can only be used as indicator of digestibility for wheat DGGS. The lack of 

correlation in corn DDGS and blend DDGS may be explained by the lower ADL content relative 

to wheat DDGS, differences in the distribution of lignin among the three types of DDGS, and 

weakness of the ADL method.  
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Table 3.7. Correlation between ADICP (%CP) and ADL (%DM)  and in situ digestibility of dry matter (DDM), crude protein (DCP) 
and neutral detergent fibre (DNDF) at 24 ad 48 h incubations of overall DDGS, wheat DDGS, corn DDGS and blend DDGS 
(wheat:corn=70:30) 
     
  DDGS type  Bio-ethanol plant 
     

 
Items 

DDGS 
Overall 
n = 11 

Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 

SK-Plant 1  
Wheat DDGS 

n = 2 

SK-Plant 2 
Wheat DDGS 

n = 3 
 --------------------------------------------Pearson Correlation Coefficients: r (P value)------------------------------------------------ 
Correlation between ADL and in situ degradability  
 

ADL vs. DDM24 NS NS NS NS NS NS 
ADL vs. DDM48 NS r = -0.87 (P = 0.0010) NS NS NS r = -0.95 (P = 0.0031) 
       
ADL vs. DCP24 NS NS NS NS NS NS 
ADL vs. DCP48 NS r =-0.89 (P = 0.0006) NS NS NS r = -0.88 (P = 0.0204) 
       
ADL vs. DNDF24  r = -0.48 (P = 0.0224) NS NS NS NS NS 
ADL vs. DNDF48 r = -0.72 (P = 0.0002) r = -0.82 (P = 0.0035) NS NS NS r = -0.98 (P = 0.0007) 
       

Correlation between ADICP and in situ degradability 
 

ADICP vs. DDM24 r = 0.46 (P = 0.0327) NS NS NS NS NS 
ADICP vs. DDM48 NS NS NS NS NS NS 
       
ADICP vs. DCP24 NS NS NS NS NS NS 
ADICP vs. DCP48 NS NS NS NS NS NS 
       
ADICP vs. DNDF24 NS NS NS NS NS NS 

NS ADICP vs. DNDF48 NS NS NS NS NS 
       

r = Pearson correlation coefficient 
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3.4. Conclusions  

It was concluded that wheat DDGS, corn DDGS and blend DDGS (wheat:corn=70:30) differed 

in chemical characterization and profiles, mineral concentration (Sulfur, Ca and P), CNCPS 

protein and carbohydrate sub-fractions, energy values at production levels for both beef and 

dairy cattle, and in situ degradability. The bio-ethanol plant origin also had significant impact on 

the nutritive value of DDGS. According to NRC 2001-chemical approach, the estimated energy 

values for wheat DDGS were similar to those for wheat and corn, suggesting wheat DDGS is an 

alternative to wheat and corn in dairy and beef diets. The estimated energy values for corn 

DDGS were significantly higher than those for corn, wheat DDGS, and blend DDGS, indicating 

that corn DDGS is a superior source of energy in dairy and beef diets. These energy values were 

similar to those obtained by the in situ assay-biological approach; however, the prediction of 

tdNDF and tdCP differed.  While a refinement of the NRC 2001 formula to predict tdNDF in 

DDGS is required, DDGS samples with higher ADICP levels may be required to investigate the 

accuracy of the tdCP formula.  

Results also revealed that the potential degradability of CP and NDF was higher in wheat 

DDGS and corn DDGS, respectively. While ADICP content was not an accurate indicator of the 

potential degradability of CP in DDGS samples, ADL seems to be an acceptable indicator of the 

potential degradability of wheat DDGS. Further research with more samples may help to clarify 

these relationships. Despite the nutrient variability between plants and the methodology utilized 

to determine the nutritive value of DDGS, it is clear that wheat DDGS, blend DDGS and corn 

DDGS are an excellent source of protein and energy for dairy and beef cattle.  

(AOAC 1990; Jung et al. 1997) 

 55



4. IN SITU RUMEN DEGRADATION KINETICS, EFFECTIVE DEGRADABILITY 

AND ESTIMATED INTESTINAL DIGESTIBILITY OF RUMEN UNDEGRADED 

PROTEIN OF CO-PRODUCTS OF BIO-ETHANOL PRODUCTION: COMPARISON 

AMONG WHEAT DDGS, CORN DDGS AND BLEND DDGS, AND BETWEEN 

DIFFERENT BIO-ETHANOL PLANTS 

 

 

4.1. Introduction 

As the price of cereal grains continues to increase, the demand for alternative feed ingredients 

such as dried distillers grains with solubles (DDGS), which provide sources of energy and 

protein in livestock diets, will also increase (Goverment of Alberta 2008b).  

The market value of DDGS is affected by the inconsistency of their nutritional properties. 

This inconsistency is one of the challenges in including DDGS in ruminant diets since accurate 

ration formulation is not consistently achieved. The nutrient composition, the availability of 

these nutrients in rumen, as well as the utilization of rumen undegraded protein (RUP) vary 

among DDGS samples derived from different feedstocks (Boila and Ingalls 1994a, 1994b; Lodge 

et al. 1997; Al-Suwaiegh 2002), and among corn DDGS samples collected at different bio-

ethanol plants (Cromwell et al. 1993; Spiehs et al. 2002; Kleinschmit et al. 2007). Factors such 

as the type and quality of feedstock grain, the extent of fermentation, the amount of solubles 

blended back, and the extent and temperature of drying contribute to the variability in DDGS 

properties (Carpenter 1970; Olentine 1986; Spiehs et al. 2002; U.S. Grains Council 2007a).  

Currently in western Canada, wheat DDGS and blend (wheat/corn) DDGS manufactured 

at different bio-ethanol plants as well as corn DDGS imported from the United States are utilized 

in ruminant diets. In Chapter 3, the detailed chemical profile, protein and carbohydrate fractions, 

and energy values affected by DDGS type and bio-ethanol plant origin were described; however, 

information on the degradability of each feed component, the hourly effective rumen degradation 

ratios, and the intestinal digestibility of RUP was not provided.  

Animal performance is partially related to the truly digested and absorbed protein in the 

small intestine, which is largely determined by microbial protein synthesized in the rumen and 

RUP. In order to achieve optimum microbial protein synthesis, the degradation of nitrogen (N) in 

rumen should match that of organic matter (OM), particularly the carbohydrate fraction. Thus, 
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the ratios between the effective degradability of N and energy should be used in feed formulation 

to optimize the composition of dairy diets (Tamminga et al. 1990; Tamminga et al. 1994). Good 

quality RUP must be digestible and available for absorption in the small intestine. Data on the 

RUP digestibility of DDGS derived from wheat or a blend of wheat and corn is scarce (Boila and 

Ingalls 1994b). The readily digestible fiber in DDGS is an important factor contributing to the 

energy content of DDGS (Schingoethe et al. 2009); however, little attention has been paid to the 

differences in the neutral detergent fiber (NDF) availability among different types of DDGS and 

among DDGS generated from different plants. This information is required for a detailed 

description of the nutritive value of these new co-products of bio-ethanol production. 

The purpose of this study was to investigate the effects of DDGS type and bio-ethanol 

plant origin on 1) rumen degradation kinetics and rumen availability of DM, OM, CP, and NDF, 

2) the hourly effective degradability ratio between N and energy, and 3) estimated intestinal 

digestibility of RUP. In addition, these parameters were compared in DDGS as opposed to 

parental grain. This research may be applied to routine ration formulation procedures that should 

improve the accuracy of predicting nutrient supply and utilization of animals consuming diets 

containing DDGS products. 

 

 

4.2. Materials and methods 

 

4.2.1. Samples 

Samples used in this experiment were the same seventeen feeds used in Chapter 3: wheat 

DDGS ( 5 batches), corn DDGS (3 batches), blend DDGS (3 batches), wheat (3 batches) and 

corn (3 bacthes). Prior to ruminal incubation, samples were processed using a Sven Roller Mill 

(Apollo Machine and Products Ltd., Saskatoon, SK). The roller gap was adjusted to a size of 

0.203 mm in order to increase similarity in the particle size of all samples.  

 

4.2.2. Animals and diets 

Three non-lactating Holstein cows fitted with a rumen cannula (Bar Diamond Inc, Parma, ID, 

USA) with an internal diameter of 10 cm were used in this study. The cows were individually fed 

twice daily at 08:00 and 16:00 h receiving 14 kg (7 kg at each feeding time) on a DM basis of a 
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totally mixed ration consisting of 56.82 % barley silage, 10.23 % alfalfa hay, 4.54 % dehydrated 

alfalfa pellets, 21.59 % standard dairy concentrate (containing barley, wheat, oats, dairy 

supplement pellets and molasses) and 6.82 % fresh cow concentrate (containing barley, oats, 

canola meal, soybean meal, wheat DDGS, corn gluten meal, molasses, golden flakes, canola oil, 

minerals and vitamins) (See Appendix, Table 8.1). The animals were cared for in accordance 

with the guidelines of the Canadian Council on Animal Care (CCAC 1993). 

 

4.2.3. Rumen incubation procedure 

Rumen degradation parameters were determined using the in situ method described by Yu et al. 

(2000). Seven grams of sample were weighed and placed into numbered nylon bags (Nitex 03 - 

41/31 monofilament open mesh fabric, Screentec Corp., Mississagua, ON) measuring 10 cm × 

20 cm with a pore size of 41 µm. The ratio of sample size to bag surface area was calculated and 

equal to 17.5 mg/cm2, which is within the range recommended by previous reports (Ørskov 

1982; Nocek 1988). A polyester mesh bag (45 cm × 45 cm with a 90 cm length of rope to be 

anchored to the cannula) was used to hold the bags in the rumen. Sample bags were added into 

the polyester mesh bag according to the ‘gradual addition/all out’ schedule and incubated for 48, 

24, 12, 8, 4, 2 and 0 h. Data from Urdl et al. (2006) was used to determine the number of bags 

incubated from each sample, which increased in relation to incubation time. The maximum 

number of bags in the rumen at any one time was 30. All treatments for each incubation time 

were incubated in duplicates (2 runs) and randomly allocated to the three non-lactating cows. 

After incubation, the bags were removed from the rumen and, together with those representing 0 

h, rinsed under cold tap water to remove excess ruminal contents. The bags were washed with 

cool water without detergent and subsequently dried at 55°C for 48 h. Dry samples were stored 

in a refrigerated room (4°C) until analysis.  

 

   4.2.4. Chemical analysis 

Original samples and pooled residues for each treatment, incubation time, and run, were ground 

through a 1-mm screen (Retsch ZM-1, Brinkmann Instruments (Canada) LTD, Ontario), and 

analyzed for DM (AOAC 930.15), ash (AOAC 942.05), CP (Leco protein/N analyzer. Model FP-

528, Leco Corp., St. Joseph, MI, USA), and NDF (Ankom A200 Filter Bag Technique (pore size 

= 25 μm), Ankom Technology, Fairport, NY, USA). In order to prevent the high fat content of 
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DDGS from giving inaccurately high values for NDF, fat was extracted by 2 h incubation of 

samples in acetone. Sodium sulfite and heat-stable amylase were used prior to NDF extraction. 

All samples were analyzed in duplicate and repeated when the error was higher than 5%. The 

rest of the chemical components were chemically assessed as described in Chapter 3. Nutrient 

composition of original samples is presented in Table 3.1. 

 

4.2.5. Rumen degradation parameters 

Degradation characteristics were determined for DM, OM, CP and NDF. The percentage of each 

nutrient was fitted to the first-order kinetics equation described by Ørskov and McDonald 1979 

and modified by Robinson et al (1986) and Dhanoa (1988) to include lag time: 

R(t) = U + D × e -Kd × (t – T0); 

where, R(t) = residue present at t h incubation (%); U = undegradable fraction (%); D = 

potentially degradable fraction (%); T0 = lag time (h); and Kd = degradation rate (% h -1). The 

results were calculated using the NLIN (nonlinear) procedure of SAS (2005) via interative least 

squares regression (Gauss Newton method). 

Based on the nonlinear parameters estimated in the above equation (U, D, Kd), the 

effective degradability (ED), or extent of degradation, of each nutrient was predicted according 

to NRC 2001 as:  

ED (%)  = S + (D × Kd) / (Kp + Kd); 

where, S = soluble fraction (%); Kp = estimated rate of outflow of digesta from rumen (% h-1) 

and was assumed to be 6 % h-1 (Tamminga et al. 1994).  In contrast to the first-order kinetic 

model, which estimates the disappearance of each nutrient for a given time period, the ED 

equation considers the fractional outflow rate of digesta from the rumen, thus predicting the 

amount of nutrient that will be truly digested in rumen over time (NRC 2001).  

The effective extent of degradation of N and OM was also calculated hourly as outlined 

by Sinclair et al. (1993) as:  

Hourly ED (g kg-1 DM) = S + [(D × Kd) / (Kp + Kd)] × [ 1 – e –t × (Kd + Kp)]. 

The difference in cumulative amounts degraded between successive hours was regarded 

as the quantity degraded per hour. From the quantity of N and OM degraded per hour, an hourly 

ratio of N to OM was calculated: 

Hourly ED ratio of N/OMt = (HEDNt – HEDNt-1) / (HEDOMt – HEDOMt-1); 



where, ratio N/OMt = ratio of N to OM at time t (g N kg-1 OM); HEDNt = hourly effective 

degradability of nitrogen at time t (g kg-1 DM); HEDNt-1 = hourly effective degradability of 

nitrogen 1 h before than t (g kg-1 DM); HEDOMt = hourly effective degradability of OM at time 

t (g kg-1 DM); and HEDOMt-1 = hourly effective degradability of OM at 1 h before than t (g kg-1 

DM). As reported by Czerkawski (1986), 25 g N kg-1 OM truly digested in the rumen is the 

optimal ratio to maximize microbial protein synthesis efficiency. 

 

4.2.6. In vitro estimation of intestinal digestibility of RUP (IDP) 

The estimation of intestinal digestibility of RUP was determined by a modification of the three 

step in vitro procedure described by Calsamiglia and Stern (1995). Briefly, dried ground residues 

containing 15 mg of N after 12 h ruminal incubation were exposed for 1 h in 10 mL of 0.1 N HCl 

solution containing 1 g/L of pepsin. The pH was neutralized with 0.5 mL of 1 N NaOH and 13.5 

mL of pH 7.8 phosphate buffer containing 37.5 mg of pancreatin that were added to the solution 

and incubated at 38°C for 24 h. After incubation, 3 mL of a 100% (wt/vol) trichloroacetic acid 

(TCA) solution were added to stop enzymatic activity and precipitate undigested proteins. 

Samples were centrifuged and the supernatant (soluble N) was analyzed for N (Kjeldahl method, 

AOAC 984.13). Estimated intestinal digestion of protein is calculated as TCA-soluble N divided 

by the amount of N in the 12 h residue sample. Although 16 h ruminal incubation period is 

recommended by the above procedure, no differences in pepsin-pancreatin digestion of N were 

reported when samples were suspended in rumen for 12 to 18 h (Calsamiglia and Stern 1995). 

 

4.2.7. Statistical analysis 

Study on the effect of type of DDGS and feedstock grain on rumen and intestinal 

degradation parameters. Statistical analyses were performed using the MIXED procedure of 

SAS (SAS 2005). The model used for the analysis was: Yij = µ + Fi + eij, where, Yij was an 

observation of the dependent variable ij; µ was the population mean for the variable; Fi was the 

effect of feed sources, as a fixed effect; batch and runs as replications; and eij was the random 

error associated with the observation ij.  

   Study on the effect of bio-ethanol plant on rumen and intestinal degradation 

parameters. Statistical analyses were performed using the MIXED procedure of SAS (SAS 

2005). The model used for the analysis was: Yij = µ + Pi + eij, where, Yij was an observation of 
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the dependent variable ij ; µ was the population mean for the variable; Pi was the effect of bio-

ethanol plant, as a fixed effect; batch as replications; and eij was the random error associated with 

the observation ij.  

   For all statistical analyses, significance was declared at P<0.05 and trends at P≤0.10. 

Treatment means were compared using the Fisher’s Protected LSD method.  

 

 

   4.3. Results and discussion 

 

 4.3.1. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plants on rumen degradation characteristics of DM and OM 

The effects of DDGS type and bio-ethanol plant on lag time (T0), rumen fractions (S, D, U), rate 

of degradation (Kd), and effective degradability of DM (EDDM) is presented in Table 4.1. 

Except T0, which was similar across treatments, the in situ rumen degradation characteristics of 

DM were significantly different between feedstock grain and DDGS products. Wheat was lower 

(P<0.05) than wheat DDGS in the washable fraction S but higher (P<0.05) in the degradable 

fraction D, Kd (36.67 vs. 5.98 % h-1) and EEDM (79.25 vs. 57.67 %). Similarly, corn was lower 

(P<0.05) than corn DDGS in S fraction and higher (P<0.05) in D fraction, but no significant 

differences were detected in terms of Kd (average 5.49 % h-1) and EDDM (average EDDM: 

53.80 %). The reduced Kd and EDDM in wheat DDGS relative to wheat can be partly explained 

by the formation of Maillard products during the drying process; however, due to the slow 

degradability of corn, the Maillard reaction was not as apparent in the case of corn DDGS 

degradability.   

   Herrera-Saldana et al. (1990) reported Kd of DM for wheat and corn of 12.37 % h-1 and 

4.70 % h-1, respectively. The higher Kd for wheat observed in the current study can be explained 

by the high degradation rate of starch (43.48 %h-1) (See appendix. Table 8.2). In the production 

of ethanol, specific genotypes characterized by high content of rapidly fermentable starch are 

utilized (Bothast and Schlicher 2005).  

  There was also significant variation in the in situ degradation kinetics among the three 

types of DDGS (Table 4.1). Similar to the trend observed in wheat and corn, wheat DDGS was 

similar (P>0.05) to corn DDGS in S fraction, and lower (P<0.05) than corn DDGS in D fraction.
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Table 4.1. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat: corn=70:30) and comparison of different bio-
ethanol plants in terms of in situ rumen characteristics of DM and OM 

     
 Feed sources  Bio-ethanol plant   
     

Items 
Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
SEM 

SK-Plant 1 
Wheat DDGS 

n = 2 

SK-Plant 2 
Wheat DDGS 

n = 3 
SEM 

           
In situ rumen degradation characteristics of DM 
T0 (h) 0.14 0.09  0.02 0.17 0.00 0.090 0.00 0.03 0.029 
S (%) 19.16 c 12.46 d  29.10 a 26.25 ab 25.37 b 1.060 29.03 29.15 1.187 
D (%) 70.44 b 82.20 a  60.11 d 65.01 c 62.46 cd 1.776 64.83 a 56.96 b 1.322 
Kd (% h-1) 36.67 a 6.86 b  5.98 b 4.11 b 5.55 b 1.673 4.01 7.30 1.036 
EDDM (%) 79.25 a 55.21 bc  57.67 b 52.39 c 54.62 bc 1.422 54.89 59.53 1.946 
 
In situ rumen degradation characteristics of OM 
T0 (h) 0.00 0.10  0.02 0.17 0.00 0.074 0.00  0.03 0.025 
S (%OM) 8.70 c 0.85 d  21.72 a 16.88 b 15.93 b 1.110 20.71 22.40 0.884 
D (%OM) 79.07 b 93.27 a  66.57 c 73.91 b 71.23 bc 2.286 72.98 a 62.30 b 1.618 
Kd (% h-1) 34.07 a 6.80 b  6.07 b 4.06 b 5.37 b 1.282 3.97 b 7.48 a 1.009 
EDOM (%OM) 75.62 a 49.16 bc  53.47 b 46.36 c 48.72 c 1.665 49.64 56.02 2.183 
EDOM (g kg-1 DM) 740.4 a 483.0 bc  507.3 b 443.6 c 462.5 c 15.881 471.7  531.0  20.776 
           
SEM = standard error of mean. Means with the different letters in the same row are significantly different (P<0.05) 
T0 = Lag time; S = Soluble fraction; D = Degradable fraction; Kd = Rate of degradation; EDDM = Effective degradability of dry matter; EDOM = Effective 
degradability of organic matter 
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Blend DDGS was similar (P>0.05) to corn DDGS but lower (P<0.05) than wheat DDGS in S 

fraction, and intermediate between wheat DDGS and corn DDGS in D fraction. Compared to 

corn DDGS, wheat DDGS had numerically higher Kd (4.11 vs. 5.98 % h-1) and significantly 

higher EDDM (52.4 vs. 57.7 %). Although no significant variation was observed between blend 

DDGS and corn DDGS, blend DDGS was numerically higher in Kd (5.55 vs. 4.11 % h-1) and 

EDDM (54.6 vs. 52.4 % h-1). Overall, the potential degradability of DM in DDGS increases as 

the content of wheat in the feedstock increases. This is not in agreement with Urdl et al. (2006), 

where higher EDDM was reported for corn DDGS relative to wheat DDGS (63.1 vs. 60.1 %). In 

that study, the S fraction for corn DDGS was significantly higher than that for wheat DDGS 

while D fraction and Kd were similar between the two types of DDGS. Compared to the current 

results, Urdl et al. 2006 also showed higher S fractions and lower D fractions for both wheat 

DDGS and corn DDGS, lower Kd for wheat DDGS (5.98 vs. 4.7 % h-1) and higher Kd for corn 

DDGS (4.11 vs. 4.80 % h-1). These differences in the rumen degradation kinetics between the 

two studies may be attributed to factors associated with DDGS samples, such as feedstock grains 

and bio-ethanol plant processing procedures, and to factors associated to the experimental 

procedure, such as feed particle size, ratio of sample size to bag surface area, pore size, and 

assumed passage rates (6.00 vs. 5.00 % h-1). 

   Wheat DDGS from different plants differed only slightly, though significantly in the D 

fraction, which was higher (P<0.05) for wheat DDGS from SK-Plant 1 (64.4 vs. 60.0 %) (Table 

4.1). Heating promotes the Maillard reaction, which is partially responsible for an increase in 

acid detergent insoluble crude protein (ADICP) and lignin and a decrease in hemicellulose 

(Weiss et al. 1986). Wheat DDGS from SK-Plant 2 showed higher ADICP, lower hemicellulose, 

and numerically higher ADL, pointing towards the idea of reduced DM degradability as a result 

of greater heat damage. However, wheat DDGS from SK-Plant 2 showed numerically higher Kd 

(7.30 vs. 4.01 % h-1) and EDDM (59.5 vs. 54.9 %). A possible explanation for this may be found 

in differences in rates of degradation of different wheat varieties obtained by the two plants and, 

consequently, in the resulted co-product. Although not yet reported for wheat, a considerable 

variety effect in the rate of degradation of DM has been reported in barley grown in western 

Canada (Yu et al. 2009). In addition, other factors related to the operational decisions of each 

plant, such as the amount of solubles blended back, may affect the degradability of the other feed 

components, thus affecting the entire DM degradability.  
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   Because ash content differed among different samples were highly parallel to DM 

content differences, the pattern and changes of OM degradation kinetics were highly related to 

those of DM (Table 4.1).  

 

  4.3.2. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plants on rumen degradation characteristics of CP 

The effects of DDGS type and bio-ethanol plant on mean values of ruminal degradation 

variables and effective degradability of CP (EDCP) is presented in Table 4.2. Lag time and S 

fraction were similar (P>0.05) across the treatments. Comparing feedstock grain with DDGS, 

wheat was similar (P>0.05) to wheat DDGS in D fraction but higher (P<0.05) in EDCP (73.6 vs. 

45.6 %CP) due to higher (P<0.05) Kd (18.50 vs. 4.56 % h-1). Corn was higher (P<0.05) than 

corn DDGS in D fraction, but similar (P>0.05) in EDCP (average 37.0 %CP) because of the 

numerically lower Kd for corn (3.90 vs. 4.19 % h-1). However, the concentration of CP in DDGS 

was roughly threefold the concentration in feedstock grain, thus EDCP expressed as g kg-1 DM 

was higher (P<0.05) in wheat DDGS and corn DDGS compared to wheat (185 vs. 126 g kg-1 

DM) and corn (114 vs. 49 g kg-1 DM), respectively.  

   Compared with the present results, Arieli et al. (1995) reported a lower EDCP for wheat 

(73.6 vs. 50.5 %CP) but similar levels for corn (40.1 vs. 43.6 %CP), while Herrera Saldana 

(1990) showed higher Kd and S fraction for wheat (Kd: 18.50 vs. 25.36 % h-1; S: 8.4 vs. 72.5 

%CP) and corn (Kd: 3.90 vs. 7.90 % h-1; S: 3.2 vs. 40.9 %CP). Tabular values (NRC 2001) are 

higher in S fraction and Kd for wheat DDGS (S: 8.1 vs. 39.5 %; Kd: 4.56 vs. 26.10 % h-1) and 

corn DDGS (S: 3.2 vs. 21.1 %CP; Kd: 4.19 vs. 7.90 % h-1). The observed EDCP for corn DDGS 

(34.0 %CP) was lower than the range (37.4 - 52.2 %CP) and the value (47.0 %CP) published by 

Harty et al. (1998) and Ham et al. (1980), respectively. These differences among studies are 

likely due to differences in the feedstock grains, ethanol plant processing methods, and 

experimental procedure. Samples in the present study were rolled to 0.203 mm prior to rumen 

incubation. This may have contributed to the lower S fraction in comparison with the quoted 

studies in which samples were normally ground to 1 mm. Likewise, the higher values for SCP 

(%CP) (Table 3.1) relative to the S fractions obtained in the present study are attributable to the 

differing particle size between the analytical procedure and the in situ assay. The S fraction of 

CP is negatively affected by an increase in temperature and time of drying (Arieli et al. 1989).
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Table 4.2. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat: corn=70:30) and comparison of different bio-
ethanol plants in terms of in situ rumen characteristics of CP and NDF 
     
 Feed sources  Bio-ethanol plant   
     

Items 
Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
SEM 

SK-Plant 1 
Wheat DDGS 

n = 2 

SK-Plant 2 
Wheat DDGS 

n = 3 
SEM 

           
In situ rumen degradation kinetics of CP 
T0 (h) 0.57 0.64  0.32 0.00 0.10 0.221 0.42 0.26 0.208 
S (%CP) 8.41 3.19  8.08 3.19 7.18 1.875 12.23 a 5.32 b 1.777 
D (%CP) 86.65 b 95.36 a  89.45 b 73.65 c 91.74 ab 2.302 87.77  90.56 2.095 
Kd (% h-1) 18.50 a 3.90 b  4.56 b 4.19 b 3.75 b  0.641. 3.54 5.24 0.763 
EDCP (%CP) 73.63 a 40.13 bc  45.58 b 33.95 c 36.20 c 3.095 44.80 46.10 2.893 
EDCP (g kg-1 DM) 126.0 b 48.5 c  185.1 a 114.4 b 141.8 b 11.620 188.7 182.7 11.311 
RUP (%CP) 26.37 c 59.87 ab  54.42 b 66.05 a 63.80 a 3.029 55.20 53.90 2.893 
RUP (g kg-1 DM) 45.2 b 72.2 b  222.8 a 222.6 a 246.6 a 11.995 232.5 216.3 16.739 
 
In situ rumen degradation kinetics of NDF 
T0 (h) 0.75 ab 0.24 ab  0.16 b 0.90 a 0.10 b 0.259 0.05 0.23 0.073 
S (%NDF) 5.88 b 19.19 a  0.00 b 0.00 b 0.00 b 2.930 0.00 0.00 0.00 
D (%NDF) 46.42 c 40.95 c  68.45 b 98.10 a 74.89 b 6.818 67.55  69.04 3.573 
Kd (% h-1) 11.58 a 8.99 ab  7.45 ab 3.67 b 5.49 b 2.055 6.13 8.33 1.771 
EDNDF (%NDF) 34.72 ab 41.78 a  35.59 ab 37.06 ab 31.65 b 2.509 33.47 37.01 2.795 
EDNDF (g kg-1 DM) 50.5 c 59.4 c  107.3 ab 116.8 a 97.1 b 6.071 103.4 109.9 9.037 
 
SEM = standard error of mean. Means with different letters in the same row are significantly different (P<0.05) 
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T0 = Lag time; S = Soluble fraction; D = Degradable fraction; Kd = Rate of degradation; EDCP = Effective degradability of crude protein; EDNDF = 
Effective degradability of neutral detergent fiber 
CP analyzed by Leco protein/N analyzer 
NDF analyzed by Ankom A200 Filter Bag Technique 



This is noted when comparing with a study reported by Mustafa et al. (2000a), in which wet 

distillers grains from wheat showed higher S fraction (15.2 vs. 8.1 %CP), similar D fraction 

(81.2 vs. 89.5 %CP), similar Kd (4.60 vs. 4.56 % h-1), and higher EDCP (60.8 vs. 45.6 %CP) 

than the wheat DDGS utilized in the present study. Therefore, as corroborated by earlier studies 

(Boila and Ingalls 1994a; Ojowi et al. 1997), the dried product is a better source of RUP than the 

wet product generated from the same feedstock. 

   Wheat DDGS was similar (P>0.05) to blend DDGS and higher (P<0.05) than corn DDGS 

in D fraction, whereas no significant variation among DDGS samples was observed in S fraction 

and Kd (average 4.16 % h-1) (Table 4.2). However, wheat DDGS was numerically the highest in 

Kd (4.56 % h-1), which largely contributed to the highest (P<0.05) EDCP (45.6 vs. 36.2 vs. 34.0 

%CP). While the degradable fraction of DDGS protein in the rumen increased as the content of 

wheat in feedstock increased, the undegradable fraction conversely increased with increasing the 

corn content in feedstock; therefore, RUP (%CP) for corn DDGS was numerically higher than 

blend DDGS and significantly higher than wheat DDGS (66.1 vs. 63.8 vs. 54.4 %CP). When 

RUP was expressed in g kg-1 DM, no significant variation was found among DDGS types. 

However, due to the higher protein content in wheat and the higher undegradability of of corn 

protein,  RUP (g kg-1 DM) for blend DDGS was numerically higher than that for wheat DDGS 

and corn DDGS (247 vs. 223 vs. 223 g kg-1 DM). The lower EDCP  in corn DDGS and blend 

DDGS relative to wheat DDGS is likely due to resistance of zein, the major corn protein source, 

to rumen degradation (Little et al. 1968). Similarly, Boila and Ingalls (1994) reported that the 

effective degradability of CP was higher in DDGS prepared from 100% wheat grain than from a 

mixture of 75% wheat grain and 25% corn grain.  

   Numerous studies have shown a negative relationship between ADICP concentration and 

effective degradability of CP in forages (Goering et al. 1972; Yu and Thomas 1976; Van Soest 

and Mason 1991a; Waters et al. 1992) as well as in by-products (Nakamura et al. 1994a; 

McKinnon et al. 1995). In the present study, no correlation (r = 0.075; P = 0.7411) was found 

between EDCP and ADICP. Boila et al (1994) observed that an increase in the concentration of 

ADICP among different types of wheat based DDGS resulted in a decreased degradability of CP; 

however, ADICP levels ranged from 8.9 to 16.7 %CP while in the present experiment were 

below 8 %CP. The lack of accordance in the relationship between ADICP content and effective 

degradability of CP between these two studies could be explained by Harty et al. 1998, who 
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concluded that ADICP can be utilized as a quantitative predictor of ruminal CP availability in 

DDGS only when the value is greater than 13 %CP. Unlike conventional feeds, approximately 

60 to 80 % of ADICP in distillers grains is digested (Waters et al. 1992; Van Soest 1994; 

Nakamura et al. 1994a), thus greater ADICP levels than the levels observed here would be 

required in order to detect greater differences in the ruminal protein degradability of the current 

DDGS samples. 

   In terms of plant effect (Table 4.2), significant differences between the two types of 

wheat DDGS were only found in the S fraction (12.2 vs. 5.3 %CP). Differences in the S fraction 

can be expected as a result of differences in feedstock grain, time and temperature of drying 

(Arieli et al. 1989; McKinnon et al. 1995) as well as in the amount of solubles blended back. The 

solubles contribute to RUP by providing low ruminally degradable heated yeast and soluble 

sugars that increase the susceptibility to Maillard reaction (Belyea et al. 2004; Martinez-

Amezcua et al. 2007; Klopfenstein et al. 2008). However, Cao et al. (2009) showed that raising 

the proportion of solubles in corn DDGS resulted in increased ruminal protein degradability as a 

result of increased S fraction. In wheat DDGS, reduced degradability of protein was attributable 

to a lower S fraction and reduced rate of degradation as a result of a higher ADICP (Boila and 

Ingalls 1994a). Although higher ADICP concentration and lower S fraction was found in wheat 

DDGS from SK-Plant 2, no plant effect was observed in terms of Kd and EDCP. Indeed, 

correlations between ADICP and Kd (r = 0.47; P = 0.1685), and between ADICP and EDCP (r = 

0.08; P = 0.8257) did not exist, suggesting that dissaperance of protein in the rumen is not 

sentive enough to the low ADICP levels of the present wheat DDGS samples. 

  

 4.3.3. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plants on rumen degradation characteristics of NDF 

The effects of DDGS type and bio-ethanol plant origin on degradation kinetics and effective 

degradability of NDF (EDNDF) is presented in Table 4.2. Comparing feedstock grain with 

DDGS products, no significant differences were observed in terms of T0. Wheat was similar 

(P>0.05) to wheat DDGS in S fraction, lower (P<0.05) in D fraction, and similar (P>0.05) in Kd 

(average 9.52 % h-1) and EDNDF (average 36.5 %NDF); however, the total amount of digestible 

NDF was higher (P<0.05) for wheat DDGS than for wheat (107 vs. 50 g kg-1 DM). Likewise, 

corn was higher (P<0.05) than corn DDGS in S fraction, lower (P<0.05) in D fraction, similar 



(P>0.05) in Kd (average 6.33 % h-1) and EDNDF (average 39.4 %NDF) but lower (P<0.05) in 

the total amount of effective degradable NDF (59 vs. 117 g kg-1 DM). Previously, Varga and 

Hoover (1983) described corn with lower Kd (5.10 vs. 8.99 % h-1) but similar EDNDF (42.3 vs. 

41.8 %NDF). In a recent study, Winterholler et al. 2009 reported corn DDGS with higher S 

fraction (35.7 vs. 0.0 %NDF), lower D fraction (54.4 vs. 98.1 %NDF), lower Kd (2.39 vs. 3.67 

% h-1) but higher EDNDF (67.4 vs. 37.1 %NDF). The likely causes of these differences are 

differences in the feedstocks, co-product processing, and in situ processing methods.  

   Dried distillers grains with solubles can replace the energy component from cereal grains 

in the diet. NEL3X, NEm, and NEg values for wheat DDGS are similar to wheat and corn, values 

for blend DDGS are similar to corn, and values for corn DDGS are superior to wheat and corn 

(Chapter 3). This can be explained by the threefold concentration of fat and the increased 

ruminal NDF availability in DDGS, which replaces the energy supply from starch in original 

grain.  

   Soluble fraction was zero across the three types of DDGS (Table 4.2). This is in 

accordance with the CB1 carbohydrate fraction obtained by CNCPS in Chapter 3.  CB1 consists 

of starch and soluble fiber (pectins and beta glucans) (Sniffen et al. 1992) and was 5.9, 4.0 and 

3.6 %DM for wheat DDGS, corn DDGS and blend DDGS, respectively. These results are close 

to the starch values reported in Table 3.1 (6.7, 4.4 and 4.0 %DM), thus corroborating the lack of 

S fraction in the NDF component of DDGS. Although corn DDGS was higher (P<0.05) than 

wheat DDGS and blend DDGS in T0 and D fraction, no significant variation was found among 

DDGS samples in terms of Kd (average 5.54 % h-1) and EDNDF (average 34.8 %NDF). When 

expressed as g kg-1 DM, EDNDF for corn DDGS was similar (P>0.05) to wheat DDGS (average 

112 g kg-1 DM) but higher (P<0.05) than blend DDGS (117 vs. 97 g kg-1 DM). No significant 

differences in NDF degradation parameters were observed between wheat DDGS and blend 

DDGS; however, numerical differences indicate that NDF degradation of wheat DDGS was 

faster than blend DDGS while the latter was degraded more extensively due to the higher D 

fraction. In contrast to other studies (Varga and Hoover 1983; Mustafa et al. 2000b), the present 

study did not show correlation between the extent of degradation of DM and NDF (r = 0.33, P = 

0.1296); however, the correlation between the extent of degradation of DM and CP was positive 

(r = 0.56, P = 0.0067), suggesting that differences in ruminal DM degradability among DDGS 

samples is largely due to differences in the ruminal degradability of CP rather than NDF. 
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   No effect on ruminal degradation NDF variables was detected between wheat DDGS 

originated from SK-Plant 1 and SK-Plant 2 (Table 4.2). As fat inhibits microbial growth and 

reduces fiber digestibility (Nagaraja et al. 1997), the numerical difference in the NDF 

degradability (33.5 vs. 37.0 %NDF) can be explained by the significant difference in the fat 

content (6.2 vs. 4.2 %DM).  

 

 4.3.4. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plants on hourly effective degradability ratios between N and 

energy 

In dairy cows, the optimal ratio between the effective extent of degradability of N and energy in 

order to achieve maximum microbial synthesis and minimize N loss is 25 g N kg-1 OM truly 

digested in rumen (Czerkawski 1986) or 32 g N kg-1 CHO truly digested in rumen (Sinclair et al. 

1991). Higher ratios indicate some potential loss of N or a deficiency in the energy supply in 

rumen, while lower ratios indicate N shortage or excessive energy supply for microbial growth. 

The effect of feedstock, DDGS type and bio-ethanol plant on the hourly ED ratio of N/OM at 

different incubation times is shown in Figure 4.1. The largest effective degradation N/OM ratios 

were seen at longer incubation across all the treatments. Wheat (Figure 4.1.A) exhibited higher 

than optimal rumen fermentation ratio at all incubation times except at 2 h, ranging from 23 to 

991 g N kg-1 OM, while corn (Figure 4.1.B) showed sub-optimal ratios during the entire 

incubation, ranging from 0 to 24 g N kg-1 OM (See Appendix, Table 8.3). The difference 

between wheat and corn can be explained by the difference in the rate and extent of degradation 

of protein, which were about five and two times higher, respectively, in wheat. Compared with 

DDGS, the hourly ED ratios of N/OM for wheat were higher (P<0.05) than those for DDGS 

samples at 0, 12 and 24 h; however, the ratios for corn were lower (P<0.05) at all incubation 

times. The extremely high value observed for wheat at 24 h (991 g N kg-1) is explained by the 

small difference (less than 0.01) between successive hours in the effective degradability of both 

N and OM after 12 h incubation. This results in disproportionate ratios, suggesting that the 

formula is not accurate at long incubation times when feeds characterized by high degradation 

rates are evaluated. 

   Comparing among the three types of DDGS (Fig. 4.1.C), wheat DDGS generally had the 

highest (P<0.05) ratios (26 - 103 g N kg-1 OM), while ratios for blend DDGS (29 - 89 g N kg-1 
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Figure 4.1. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat: corn=70:30) and comparison of different bio-
ethanol plants in terms of hourly effective degradability ratios between N and OM (Red dashed line = 25 g N kg-1 OM truly 
digested in rumen) 
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OM) were numerically higher (P>0.05) than those for corn DDGS (14 - 56 g N kg-1 OM). The 

hourly ED ratios of N/OM tended to rise with increasing incubation time for wheat DDGS and 

blend DDGS; however, they remained constant for corn DDGS after 2 h. This reflects a higher 

difference in the hourly effective degradation of N at later stages for blend DDGS and wheat 

DDGS than for corn DDGS, rather than differences in the hourly effective degradability of OM. 

   The bio-ethanol plant effect was significant at the beginning and end of incubations 

(Figure 4.1.D). The hourly ED ratios of N/OM for wheat DDGS from SK-Plant 1 was greater at 

0 h (42 vs.16 g N kg-1 OM) but lesser at 12 h (80 vs. 88 g N kg-1 OM) and 24 h (85 vs. 114 g N 

kg-1 OM). In this case, rather than differences in CP degradability, the larger difference at later 

incubation times was mainly due to differences in the in the hourly effective degradation of OM. 

As shown in Table 4.2, the difference in the ED (%) between the two wheat DDGS is greater for 

OM than for CP. 

   The results shown here indicate that DDGS samples exhibited a higher than optimal 

rumen fermentation ratio when evaluated as a single ingredient, revealing that, in spite of being 

an excellent source of RUP, there is extra N in rumen that is not captured in microbial protein. 

The extra N will increase the ammonia concentration in the rumen, which must be absorbed into 

bloodstream, converted to urea in the liver, and excreted in urine. This suggests that elevated 

levels of DDGS in ruminant rations will have repercussions both on animal performance, in 

terms of extra metabolic cost associated with excreting N, and on environment, as this may lead 

to soil N accumulation. According to previous studies (Janicek et al. 2008; Hao et al. 2009), up 

to 30% corn DDGS and 20% wheat DDGS as dry matter can be included in dairy and beef 

rations respectively without detecting a negative effect on animal performance and N excretion. 

 

 4.3.5. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plants on estimated intestinal availability of rumen undegradable 

protein 

With the development of new techniques (Hvelplund 1985; Calsamiglia and Stern 1995), several 

protein evaluation systems, such as NRC 2001 and DVE/OEB System, assign estimates of 

intestinal digestibility of RUP to each feed. The effect of DDGS type and bio-ethanol plant on 

the mean estimated RUP, estimated intestinal digestibility of RUP (IDP) as determined by the 

three step in vitro procedure (Calsamiglia and Stern 1995), estimated intestinally
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absorbable feed protein (IADP) and total digestible feed protein (TDP) is presented in Table 4.3. 

Wheat was an inferior (P<0.05) source of RUP than wheat DDGS (26.4 vs. 54.4 %CP); however, 

no significant difference was observed between corn and corn DDGS (average 63.0 %CP). In 

terms of IDP, wheat was similar (P>0.05) to wheat DDGS (average 78.2 %RUP) while corn was 

lower (P<0.05) than corn DDGS (69.3 vs. 82.5 %RUP). As a result, IADP for wheat and corn 

were lower (P<0.05) than for wheat DDGS and corn DDGS, respectively. TDP, calculated as the 

sum of IDAP (%CP) and EDCP (%CP), showed similarity (P>0.05) between wheat and wheat 

DDGS and higher values (P<0.05) for corn DDGS relative to corn.   

   The mean values for RUP were superior (P<0.05) for corn DDGS and blend DDGS 

compared to wheat DDGS (66.1 vs. 63.8 vs. 54.4 %CP) (Table 4.3). IDP was the highest 

(P<0.05) for blend DDGS and similar (P>0.05) between wheat DDGS and corn DDGS (93.9 vs. 

81.3 vs. 82.5 %RUP). As a result, IADP for blend DDGS and corn DDGS were similar (P>0.05) 

and superior (P<0.05) to wheat DDGS (59.9 vs. 54.5 vs. 44.0 %CP). The highest IDP for blend 

DDGS was largely responsible for the highest TDP (96.1 %CP). Due to the greater EDCP for 

wheat DDGS relative to corn DDGS, no significant difference in TDP was observed between 

these two types (89.5 vs. 88.4 %CP) 

   The results obtained here are in good agreement with Kleinschmit et al. 2007 who, using 

the three step in vitro procedure, reported RUP in corn DDGS ranging from 46.4 to 71.7 (%CP) 

and IDP ranging from 59.2 to 76.8 (%RUP). In that study, the lowest IDP value (59.2 %RUP) 

corresponded with the highest ADICP content (23.1 %CP); however, the effect of ADICP 

content on the digestibility of RUP was not clear when ADICP levels ranged from 7.5 to 11.9 

(%CP). Cao et al. (2009) also used the three-step in vitro procedure and showed lower IDP (62.3 

- 65.1 %RUP), IADP (36.2 - 39.6 %CP) and TDP (76.2 - 78.6 %CP) in corn DDGS; however, 

ADICP levels ranged from 14.1 to 17.4 %CP. According to Harty et al. (1998), ADICP can be 

utilized as a quantitative predictor of intestinal CP availability in distillers grains only when the 

value is above 13%. Similarly, Schroeder et al. (1996) reported that the digestibility of RUP of 

heat processed plant proteins does not decrease when ADICP levels are below 12-15 %CP. In 

the current study, ADICP content of DDGS samples was far below those levels but, unlike in the 

rumen, the relationship between ADICP content and intestinal digestibility of DDGS protein was 

significantly negative and moderate (r = -0.70; P = 0.0003). 

   In terms of plant effect (Table 4.3), significant differences were found only in IADP,
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Table 4.3. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat: corn=70:30) and comparison of different 
bio-ethanol plants in terms of estimated intestinal digestibility of rumen undegradable protein (IDP), estimated intestinally 
absorbable feed protein (IADP), and total digestible feed protein (TDP) 
         
 Feed sources  Bio-ethanol plant   
           

Items 
Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
SEM 

SK- Plant 1 
Wheat DDGS 

n = 2 

SK-Plant 2 
Wheat DDGS 

n = 3 
SEM 

           
CP (%DM) 14.28 d 10.13 e  39.32 a 32.01 c 36.82 b 0.535 39.99 38.87 1.019 
RUP z (%CP) 26.37 c 59.87 ab  54.42 b 66.05 a 63.80 a 3.209 55.20 53.90 2.893 
IDP y (%RUP) 76.41 bc 69.30 c  81.25 b 82.54 b 93.89 a 3.263 89.35 75.85 4.177 
IADP x (%CP) 20.22 c 41.69 b  43.96 b 54.46 a 59.85 a 3.112 49.37 a 40.36 b 1.989 

2.867 TDP w (%CP) 96.86 ab 81.82 c  89.54 b 88.41 b 96.05 a 1.985 94.17 86.46 
           

SEM=standard error of mean. Means with different letters in the same row are significantly different (P<0.05) 
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zRumen undegradable protein 
yEstimated intestinal digestibility using the three step in vitro procedure (Calsamiglia and Stern 1995) 
xEstimated intestinally absorbable feed protein = RUP × IDP / 100 
wTotal digestible feed protein = EDCP + IADP 



being higher (P<0.05) for wheat DDGS from SK-Plant 1 (49.4 vs. 40.4 %CP) mainly as a result 

of numerically higher IDP (89.4 vs. 75.9 %RUP). The numerical difference in IDP can be further 

attributed to the significant difference in ADICP content (0.7 vs. 7.6 %CP), however, the higher 

ADICP content for wheat DDGS from SK-Plant 2 was not reflected in reduced EDCP in the 

rumen. Thus, results shown here suggest that the disappearance of DDGS protein is more 

sensitive to low ADICP levels in the small intestine than in the rumen. In addition, since ADICP 

content provides an indication of the severity of the drying conditions (Goering et al. 1972; 

Kleinschmit et al. 2007), it can be speculated that wheat DDGS from SK-Plant 1 was exposed to 

more optimal heating conditions than wheat DDGS from SK-Plant 2. Optimal heating is 

interpreted as the heating able to increase, without damaging, RUP (Kleinschmit et al. 2007), 

thereby increasing the availability of feed protein in the lower tract. 

 

 

   4.4. Conclusions 

The digestive characteristics of each feed component (DM, OM, CP and NDF), the hourly 

effective degradability between N and energy, and the estimated intestinal availability of feed 

protein differed significantly among wheat DDGS, blend DDGS and corn DDGS, and to a lesser 

extent between different bio-ethanol plants. The effective degradability of DM in DDGS samples 

increased as the content of feedstock wheat increased. DDGS are a good source of rumen 

undegradable protein. The protein content of DDGS derived from wheat is higher relative to that 

derived from corn; however, the undegradability of the protein fraction increases as the 

proportion of corn in the feedstock increases. In addition, DDGS provide significant amounts of 

rumen degradable protein, which increased as the content of wheat in the feedstock increased. 

This indicates a potential loss of N when high levels of DDGS are included in the diet. 

   ADICP levels were generally low across all DDGS samples, revealing no effect of 

ADICP on ruminal and intestinal disappearance of feed protein. However, consideration should 

be given to the numerical differences in digestibility of RUP and the relation with ADICP 

content. Further research with a higher number of samples and higher range in the ADICP 

content should be undertaken to investigate the effect of ADICP on rumen and intestinal 

disappearance of DDGS protein. These results indicate that it is inappropriate to assume fixed 
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rumen and intestinal degradation characteristics for DDGS without considering factors such as 

DDGS type and bio-ethanol plant origin.  

   The ruminal degradability of CP and OM as well as the digestibility of RUP are required 

inputs for modern protein evaluation systems, such as the NRC 2001 Model and the DVE/OEB 

System. These models can provide more detailed information regarding the effect of DDGS type 

and bio-ethanol plant on the potential truly absorbable protein in the small intestine.  

 

 
(Ørskov and McDonald 1979; Robinson et al. 1986; Dhanoa 1988; Herrera-Saldana et al. 1990; Sinclair et al. 1993; Arieli et al. 1995; Schroeder 

et al. 1996; Mustafa et al. 2000a; Urdl et al. 2006; Lanzas et al. 2007; Winterholler et al. 2009)
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5. USING THE DVE/OEB SYSTEM AND THE NRC 2001 MODEL TO ESTIMATE THE 

METABOLIC CHARACTERISTICS OF PROTEINS AND PREDICT THE NUTRIENT 

SUPPLY FROM CO-PRODUCTS OF BIO-ETHANOL PRODUCTION: COMPARISON 

AMONG WHEAT DDGS, CORN DDGS AND BLEND DDGS, AND BETWEEN 

DIFFERENT BIO-ETHANOL PLANTS. 

 

 

5.1. Introduction 

Nutrition models are fundamental for the continued success of the dairy nutritionist. They are 

practical tools that provide information on the animal’s performance in response to changes in 

the ration. With the increasing understanding of events occurring in the ruminant’s digestive 

tract, as well as the development of in vitro techniques and mathematical approaches that mimic 

these events, nutrition models are able to estimate the availability of protein in the small 

intestine. This is advantageous from a research standpoint, as the in vivo animal trial is labor-

intensive, expensive, and suitable for only a few treatments, while models allow for the 

evaluation of a higher number of treatments.  

The period from 1970 to 1995 saw the creation of various nutrition models (INRA 1978; 

ARC 1984; Madsen 1985; NKJ-NJF 1985; NRC 1985; Wu et al. 2000) and their corresponding 

updates (Verité and Geay 1987; Madsen et al. 1995). These models were developed to predict 

the protein value for feeds and the requirements of dairy cattle in terms of truly digested and 

absorbed protein in the small intestine. Some of the principles and elements of these models were 

used to develop the framework of two more sophisticated models; the DVE/OEB System or 

Non-TDN Model (Tamminga et al. 1994), currently being used in Europe, and the NRC 2001 

Model or TDN Model (NRC 2001), used in North America. For each ingredient or diet, these 

two protein evaluation systems predict two major outputs: 1) the truly digested and absorbed 

protein in small intestine and 2) the degraded protein balance. The prediction of these two 

outputs is based on the chemical profile, the rumen degradation characteristics of different feed 

components, and the intestinal digestibility of dietary protein. The first output includes the truly 

absorbable rumen synthesized microbial protein in the small intestine, the truly absorbed bypass 

feed protein in the small intestine, and endogenous protein losses. The second output is a concept 

derived from the NKJ-NJF model and reflects the balance between available N and energy in the 
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rumen (Tamminga et al. 1994). This balance is critical in order to achieve efficient synthesis of 

microbial protein, which ultimately contributes to the postruminal pool of true protein.  

In Chapter 3 and Chapter 4, it was found that DDGS are a good source of RUP, rumen 

degradable protein and energy. In addition, significant effects of DDGS type and bio-ethanol 

plant origin existed on the chemical profile, the rumen degradation characteristics, and on the 

intestinal availability of feed protein. However, information on how the potential protein supply 

to the small intestine of dairy cows from DDGS is affected by DDGS type and bio-ethanol plant 

origin is still lacking.  

The principles of the DVE/OEB System and the NRC 2001 Model are similar; however, 

some of the concepts and factors used in calculations differ. For this reason, past studies 

observed significant differences between the two model supplies when different forages (Yu et 

al. 2003a; Yu et al. 2004)  and concentrates (Yu et al. 2003b; Heendeniya 2008) were evaluated. 

Since DDGS products are being largely utilized in both North America and Europe, it is of 

interest to provide nutritive value based on the two models as well as to study the relationship 

between the two models so that the protein value of DDGS can be extrapolated from one model 

to another.  

The objectives of the current study were 1) to investigate the effects of DDGS type and 

bio-ethanol plant origin on the metabolic characteristics of proteins and on the prediction of 

protein supply using the DVE/OEB System and the NRC 2001 model, 2) to compare the 

predicted protein supply of feedstock grains with their respective derived DDGS samples, and 3) 

to compare the two models in the prediction of protein supply from DDGS. This data will help 

nutritionists in Europe and North America, particularly in western Canada, to increase accuracy 

in the formulation of dairy rations containing wheat DDGS, corn DDGS or blend DDGS.  

 

 

5.2. Materials and methods 

 

5.2.1. Samples 

Samples used in this experiment were the same seventeen feeds used in Chapter 3 and 

Chapter 4: wheat DDGS ( 5 batches), corn DDGS (3 batches), blend DDGS (3 batches), wheat (3 

batches) and corn (3 bacthes). Prior to ruminal incubation, samples were processed using a Sven 
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Roller Mill (Apollo Machine and Products Ltd., Saskatoon, SK). The roller gap was adjusted to a 

size of 0.203 mm in order to increase similarity in the particle size of all samples.   

 

5.2.2. Animals and diets 

Animals and diets utilized for the rumen incubation procedure were the same as those 

previously described in Chapter 4. 

 

5.2.3. Rumen incubation procedure 

Rumen degradation parameters were determined using the in situ method described by Yu et al. 

(2000). Seven grams of sample were weighed and placed into numbered nylon bags (Nitex 03 - 

41/31 monofilament open mesh fabric, Screentec Corp., Mississagua, ON) measuring 10 cm × 

20 cm with a pore size of 41 µm. The ratio of sample size to bag surface area was calculated and 

equal to 17.5 mg/cm2, which is within the range recommended by previous reports (Ørskov 

1982; Nocek 1988). A polyester mesh bag (45 cm × 45 cm with a 90 cm length of rope to be 

anchored to the cannula) was used to hold the bags in the rumen. Sample bags were added into 

the polyester mesh bag according to the ‘gradual addition/all out’ schedule and incubated for 

120, 48, 24, 12, 8, 4, 2 and 0 h. Data from Urdl et al. (2006) was used to determine the number of 

bags incubated from each sample, which increased in relation to incubation time. The maximum 

number of bags in the rumen at any one time was 30. All treatments for each incubation time 

were incubated in duplicates (2 runs) and randomly allocated to the three non-lactating cows. 

After incubation, the bags were removed from the rumen and, together with those representing 0 

h, rinsed under cold tap water to remove excess ruminal contents. The bags were washed with 

cool water without detergent and subsequently dried at 55°C for 48 h. Dry samples were stored 

in a refrigerated room (4°C) until analysis.  

 
   5.2.4. Chemical analysis 

Original samples and pooled residues for each treatment, incubation time, and run, were ground 

through a 1-mm screen (Retsch ZM-1, Brinkmann Instruments (Canada) LTD, Ontario), and 

analyzed for DM (AOAC 930.15), ash (AOAC 942.05), CP (Leco protein/N analyzer. Model FP-

528, Leco Corp., St. Joseph, MI, USA), and NDF (Ankom A200 Filter Bag Technique (pore size 

= 25 μm), Ankom Technology, Fairport, NY, USA). In order to prevent the high fat content of 
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DDGS from giving inaccurately high values for NDF, fat was extracted by 2 h incubation of 

samples in acetone. Sodium sulfite and heat-stable amylase were used prior to NDF extraction. 

All samples were analyzed in duplicate and repeated when the error was higher than 5%. The 

rest of the chemical components were chemically assessed as described in Chapter 3. Nutrient 

composition of original samples is presented in Table 3.1. 

 

   5.2.5. Rumen degradation model 

The first order kinetic degradation model described by Ørskov and McDonald (1979) and 

modified by Robinson et al. (1986) and Dhanoa (1988) was applied to describe the rumen 

degradation characteristics of DM, CP and starch. This model was solved by NLIN (non linear) 

procedure of SAS 2005 via iterative least-squares regression (Gauess-Newton method) using the 

following equation: 

R (t) = U + (100 - S - U) × e-Kd × (t-T0) 

where, R(t) = residue present at t h incubation (%); S = soluble fraction (%); U = undegradable 

fraction (%); T0 = lag time (h); and Kd = degradation rate (% h -1). 

  The degradation model of starch differs in that T0 and U are assumed to be zero 

(Tamminga et al. 1994), thus: 

R (t) = (100 - S) × e-Kd × t 

Based on the nonlinear parameters estimated in the above equations (S, U, D, Kd),  

rumen degraded feed CP (RDP), rumen undegraded feed CP (RUP), and  rumen undegraded 

starch (RUSt) were predicted according to NRC 2001 as:  

RDP (%)  = S + (D × Kd) / (Kp + Kd); 

RUP (%) = U + (D × Kd) / (Kp + Kd); 

RUSt (%) = S × 0.1 + (D × Kp) / (Kp + Kd); 

where, D = 100 – S - U (%); Kp = estimated rate of outflow of digesta from rumen (%h-1) and 

was assumed to be 6 % h-1 (Tamminga et al. 1994); and 0.1 is a compensation factor between in 

situ and in vivo results indicating that 10% of the S fraction of starch escapes rumen degradation 

(Nocek and Tamminga 1991; Tamminga et al. 1994; Yu et al. 2003b). 
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   5.2.6. In vitro estimation of the intestinal digestibility of RUP (IDP) 

The estimation of intestinal digestibility of RUP (IDP) was the same as that previously described 

in Chapter 4. The procedure utilized was the three step in vitro procedure as described by 

Calsamiglia and Stern (1995).                                             

 

   5.2.7. Estimation of fermented organic matter (FOM) 

The DVE/OEB System utilizes the content of fermented organic matter (FOM) in the rumen to 

estimate microbial protein synthesis in the rumen, thus the term of Non-TDN Model. According 

to Tamminga et al. (1994), FOM was calculated as:  

FOM (g kg-1 DM) = DOM120 (g kg-1 DM) - CFat (g kg-1 DM) - RUP (g kg-1 DM) - RUSt (g kg-1 

DM) - FP (g kg-1 DM); 

where, DOM120 = digestible organic matter after 120h rumen incubation; RUP = rumen 

undegraded protein; RUSt = rumen undegraded starch; and FP = fermentation products that are 

assumed to be zero for concentrates. Because the content of starch in the residues of DDGS 

samples is very limited and does not play a significant role in determining FOM, the amount of 

RUSt was assumed to be zero. 

 
   5.2.8. Estimation of total digestible nutrients (TDN) 

The NRC 2001 Model requires TDN3X value to estimate rumen microbial protein synthesis, thus 

it is also designated as TDN-Model. A chemical and summative approach (NRC 2001) was used 

to estimate the total digestible nutrient at a maintenance level (TDN1X). In accordance with this 

approach, each sample was analyzed for DM, ash, CP, NDICP, ADICP, CFat, starch, NDF, 

ADF, ADL. Truly digestible non fiber carbohydrate (NFC), CP, CFat and NDF, and the 

consequent TDN1X for each sample were estimated. Ultimately, TDN1X (Table 3.3) was utilized 

along with a discount value to determine TDN3X as described by NRC 2001.  

 

   5.2.9. The DVE/OEB System 

The DVE/OEB system is outlined in detail by Tamminga et al. (1994). Below is a summarized 

description of the concepts and calculations that the DVE/OEB System utilizes to predict the 

protein supply and availability to the small intestine of dairy cows. The two major outputs of the 
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model are 1) the truly digested and absorbed protein in the small intestine (DVE) and 2) the 

degraded protein balance (DPBOEB). The DVE value was calculated as follows: 

DVE (g kg-1 DM) = AMCPDVE (g kg-1 DM) + ARUPDVE (g kg-1 DM) - ENDP (g kg-1 DM); 

where, AMCPDVE = absorbable microbial protein synthesized in rumen; ARUPDVE = truly 

absorbed bypass feed protein in the small intestine; and ENDP = endogenous protein loss in the 

small intestine.  

  The DPBOEB value, which shows the balance between potential microbial synthesis based 

on rumen degraded protein and potential protein synthesis based on energy extracted during 

anaerobic fermentation of OM in rumen (Non-TDN Model), was calculated as: 

DPBOEB (g kg-1 DM) = MCPRDP
DVE (g kg-1 DM) - MCPFOM (g kg-1 DM); 

where, MCPRDP
DVE =  microbial protein synthesized from rumen degraded protein; and MCPFOM 

= microbial protein synthesized from energy available from rumen fermented organic matter. A 

positive DPBOEB in a diet reveals a potential N loss from the rumen, while a negative value 

indicates a shortage of N that can impair microbial protein synthesis. Therefore, the optimal 

degraded protein balance in a diet is zero or slightly higher than zero (Tamminga et al. 1994).  

  The calculation of the components contained in these two outputs was as described 

below.  

 

 5.2.9.1. Estimation of microbial protein synthesis in the rumen 

(MCPFOM and MCPRDP
DVE) and truly absorbable rumen synthesized 

microbial protein in small intestine (AMCPDVE) 

Microbial protein synthesis according to DVE/OEB system is based on FOM, thus: 

MCPFOM (g kg-1 DM) = 0.15 × FOM (g kg-1 DM); 

where, 0.15 indicates that 150 g of microbial protein per kg of FOM is assumed to be 

synthesized (Tamminga et al. 1994).  

 DVE/OEB system also considers microbial protein synthesized from RDP (MCPRDP
DVE) for 

the estimation of DPBOEB.  MCPRDP
DVE was calculated as:  

MCPRDP
DVE (g kg-1 DM) = CP (g kg-1 DM) × [ 1- (1.11 × RUP (%CP) / 100)]; 

where, 1.11 represents the regression coefficient of in vivo data over in situ degradation data 

according to the French PDI system (Verité and Geay 1987; Tamminga et al. 1994).  
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  The estimation of the truly absorbable microbial protein synthesized in rumen 

(AMCPDVE) only contemplates MCPFOM, therefore:  

AMCPDVE (g kg-1 DM) = 0.75 × 0.85 × MCPFOM (g kg-1 DM); 

where, 0.75 and 0.85 are factors representing the assumed amount and digestibility of the true 

protein contained in MCPFOM, respectively (Tamminga et al. 1994). 

 

 5.2.9.2. Estimation of rumen undegraded feed protein (RUPDVE) and 

truly absorbed bypass feed protein in the small intestine (ARUPDVE) 

The content of ARUPDVE is based on the content and digestibility of RUPDVE, which was 

calculated as: 

RUPDVE (g kg-1 DM) = 1.11 × CP (g kg-1 DM) × RUP (% CP); 

 ARUPDVE was then formulated as: 

ARUPDVE (g kg-1 DM) = IDP (%) × RUPDVE (g kg-1 DM). 

 

 5.2.9.3. Estimation of endogenous protein losses in the small intestine 

(ENDP) 

The estimation of DVE is corrected for ENDP in order to consider N lost as a consequence of 

digestive processes. ENDP is associated to the amount of undigested dry 

matter (UDM), which was estimated as:  

UDM (g kg-1) = (Ash (g kg-1 DM) × 0.35) + [OM (g kg-1 DM) – ((OM (g kg-1 DM) × dOM 

(%))];  

where, 0.35 is the factor utilized by CVB (1996) indicating the 35% of ash is not digested; and 

dOM= OM digestibility after 120 h rumen incubation (Tamminga et al. 1994).  

  Given that the model assumes that 75 g of absorbed protein kg-1 UDM is required to 

compensate for the endogenous losses (Tamminga et al. 1994), ENDP was formulated as: 

ENDP (g kg-1 DM) = 0.075 × UDM (g kg-1 DM). 

 

   5.2.10. The NRC 2001 Model 

The detailed concepts and formulas of the NRC 2001 Model are provided by NRC (2001). 

Similarly to the DVE/OEB System, the true protein that is absorbed and digested postruminally 
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is a very important output. Thus, the NRC 2001 Model introduced the concept of metabolizable 

protein, which was calculated as: 

MP (g kg-1 DM) = AMCPNRC (g kg-1 DM) + ARUPNRC (g kg-1 DM) + AECP (g kg-1 DM); 

where, AMCPNRC = absorbable microbial protein synthesized in rumen; ARUPNRC = truly 

absorbed bypass feed protein in the small intestine; and AECP = truly absorbed endogenous 

protein in the small intestine. Contrary to the DVE/OEB System, endogenous protein losses are 

added rather than subtracted from supply. 

  Although the estimation of rumen degraded protein balance (DPBOEB) is not provided by 

the NRC 2001 Model, it can be calculated based on predicted data and according to the principle 

of the DVE/OEB System. However, unlike the DVE/OEB system, DPBOEB reflects the 

difference between the potential microbial protein synthesis based on ruminally degraded dietary 

protein and that based on total digestible nutrients at a production level (TDN Model). Therefore: 

DPBNRC (g kg-1 DM) = RDPNRC (g kg-1 DM) – 1.18 x MCPTDN
NRC (g kg-1 DM); 

where RDPNRC =  rumen degraded protein; and MCPTDN = microbial protein synthesis from 

energy available from total digestible nutrients (discounted at three times maintenance).  

  The different components contained in these two outputs were calculated as described 

below. 

 

 5.2.10.1. Estimation of microbial protein synthesis in the rumen 

(MCPTDN
NRC and MCPRDP

NRC) and truly absorbable rumen synthesized 

microbial protein in small intestine (AMCPNRC)  

Ruminally synthesized microbial protein is based on discounted TDN and dependent on the 

availability of RDP. Thus, MCPNRC was first calculated as follows: 

MCPTDN
NRC

 (g kg-1 DM) = 0.13 × TDN3X;  

where, 0.13 signifies that 130 g of microbial protein per kg TDN (discounted) are assumed to be 

synthesized (NRC 2001).  

  Then, RDPNRC calculation was as: 

RDPNRC (g kg-1 DM) = CP (g kg-1 DM)  × (100 – RUP (%CP)).  

  When, RDPNRC > 1.18 × MCPTDN
NRC, MCPTDN

NRC value is used as MCPNRC for the final 

AMCPNRC calculation. When RDPNRC < MCPTDN
NRC, MCPNRC was calculated as: 

MCPRDP
NRC (g kg-1 DM) = 0.85 × RDPNRC (g kg-1 DM); 



where, 0.85 indicates the assumed amount of RDP that is converted to microbial protein; and 

1.18 results from 1.00 / 0.85 (NRC 2001). 

  Since the content of true protein and digestibility of ruminally synthesized microbial CP 

are assumed to be 80% (NRC 2001), AMCPNRC was estimated as: 

AMCPNRC (g kg-1 DM) = 0.80 × 0.80 × MCPNRC (g kg-1 DM). 

 

 5.2.10.2. Estimation of rumen undegraded feed protein (RUPNRC) and 

truly absorbed bypass feed protein in the small intestine (ARUPNRC)  

The prediction of ARUPNRC is based on the content and digestibility of RUPNRC, thus: 

RUPNRC (g kg-1 DM) = CP (g kg-1 DM) × RUP (% CP); 

ARUPNRC (g kg-1 DM) = dRUP (%) × RUPNRC (g kg-1 DM). 

 

 5.2.10.3. Estimation of truly absorbed endogenous protein in the small 

intestine (AECP) 

The NRC 2001 Model predicts endogenous protein losses (ECP) from DM content. ECP of a 

feed is calculated as: 

ECP (g kg-1 DM) = 6.25 × 1.9 × DM (%) / 100; 

where, 6.25 represents the protein/N conversion factor; and 1.9 indicates that 1.9 g of 

endogenous N is originated from a kg of DM (NRC 2001). 

  Out of the total rumen ECP, 50% passes to small intestine and 80% is true protein (NRC 

2001). Thus, AECP was calculated as: 

AECP (g kg-1 DM) = 0.50 × 0.80 × ECP (g kg-1 DM). 

 

5.2.11. Statistical analysis 

Study on the effect of type of DDGS and feedstock grain on the predicted nutrient supply 

to dairy cows. Statistical analyses were performed using the MIXED procedure of SAS (SAS 

2005). The model used for the analysis was: Yij = µ + Fi + eij, where, Yij was an observation of 

the dependent variable ij; µ was the population mean for the variable; Fi was the effect of feed 

sources, as a fixed effect; batch and runs as replications; and eij was the random error associated 

with the observation ij.  
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   Study on the effect of bio-ethanol plant on the predicted nutrient supply to dairy 

cows. Statistical analyses were performed using the MIXED procedure of SAS (SAS 2005). The 

model used for the analysis was: Yij = µ + Pi + eij, where, Yij was an observation of the 

dependent variable ij ; µ was the population mean for the variable; Pi was the effect of bio-

ethanol plant, as a fixed effect; batch as replications; and eij was the random error associated with 

the observation ij.  

   Study on the comparison of the DVE/OEB System with the NRC 2001 Model in the 

prediction of nutrient supply to dairy cows. A Paired t test procedure of SAS (SAS 2005), 

correlation analysis, and regression analysis were performed in order to establish the relationship 

between the DVE/OEB System and the NRC 2001 Model.  

   For all statistical analyses, significance was declared at P<0.05 and trends at P≤0.10. 

Treatment means were compared using the Fisher’s Protected LSD method.  

 

  5.3. Results and discussion 

 

 5.3.1. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plants on the prediction of the potential nutrient supply to dairy 

cattle using the DVE/OEB System 

Using the DVE/OEB System, the effects of DDGS type and bio-ethanol plant on the prediction 

of the potential nutrient supply to dairy cattle is shown in Table 5.1. Microbial protein synthesis 

according to the DVE/OEB system is based on FOM. Given that wheat contained greater 

(P<0.05) amount of FOM than DDGS samples, MCPFOM and AMCPDVE were also greater 

(P<0.05) for wheat; however, no significant differences were observed between corn and DDGS 

products. The content and digestibility of RUP was greater in DDGS samples relative to 

feedstock grains (Table 4.2 and Table 4.3), consequently ARUPDVE values were on average five 

times higher (P<0.05) for DDGS (wheat DDGS vs. wheat: 200 vs. 36 g kg-1 DM; corn DDGS vs. 

corn: 204 vs. 56 g kg-1 DM). The variation in UDM and ENDP was similar, being higher 

(P<0.05) in DDGS samples than in feedstock grains. As a result of these differences, mainly in 

ARUPDVE, DVE values for DDGS were on average two times greater than those for feedstock 

grains (wheat DDGS vs. wheat: 249 vs. 107 g kg-1 DM; corn DDGS vs. corn: 251 vs. 108 g kg-1 

DM). Similarly, DPBOEB values were  higher  (P<0.05)  for  DDGS  samples  than  for  feedstock  



Table 5.1. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat: corn=70:30) and comparison of different bio-
ethanol plants in the prediction of nutrient supply to dairy cows using the DVE/OEB System 
     
 Feed sources  Bio-ethanol Plant  
   

 

        

Items 
Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
SEM 

SK-Plant 1 
Wheat DDGS 

n = 2 

SK-Plant 2 
Wheat DDGS 

n = 3 
SEM 

           
1. Truly absorbed rumen synthesized microbial protein in the small intestine (g kg-1 DM) 
FOM 792.5 a 562.6 bc  590.2 b 528.1 c 558.1 bc 15.85 563.2 608.1 19.83 
MCPFOM 118.8 a 84.4 bc  88.5 b 79.2 c 83.7 bc 2.38 84.5 91.2 2.98 
RDPDVE 126.8 c 48.5 d  185.1 a 114.4 c 163.5 b 6.43 188.8 182.7 11.31 
MCPRDP

DVE 122.1 b 40.6 d  160.6 a 89.9 c 138.8 b 6.87 163.2 158.9 12.20 
AMCPDVE 75.8 a 53.8 bc  56.4 b 50.5 c 53.4 bc 1.52 53.9 58.2 1.90 
 
2. Truly absorbed rumen undegraded feed protein in the small intestine (g kg-1 DM) 
RUPDVE 47.1 c 80.1 b  247.3 a 247.1 a 249.5 9.38 258.1 240.1 18.58 
ARUPDVE 35.6 c 55.8 c  199.7 b 204.0 b 234.6 a 9.42 230.8 a 178.9 b 11.86 
 
3. Endogeneous protein losses in the digestive tract (g kg-1 DM) 
UDM 59.6 b 24.3 c  97.6 a 51.5 b 94.8 a 5.06 103.9 93.5 8.36 
ENDP 4.5 b 1.8 c  7.3 a 3.9 b 7.1 a 0.38 7.8 7.0 0.63 
 
4. Total truly absorbed protein in the small intestine (g kg-1 DM) 
DVE 107.0 c 107.8 c  248.8 b 250.6 b 280.8 a 8.45 276.8 a 230.0 b 10.67 

67.7 

 
5. Degraded protein balance (g kg -1 DM) 

-43.8 d  72.1 a 10.7 c 55.1 b 5.96 78.7 DPBOEB 3.3 c 10.35 
           
SEM = standard error of mean. Means with different letters in the same row are significantly different (P<0.05) 
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grains (wheat DDGS vs. wheat: 72 vs. 3 g kg-1 DM; corn DDGS vs. corn: 11 vs. -44 g kg-1 DM). 

The negative DPBOEB value for corn indicated that, when evaluated as a single ingredient, 

microbial protein synthesis may be compromised because of a potential shortage of N in rumen. 

As shown in Table 5.1 for corn, microbial protein synthesis based on energy extracted during 

fermentation (MCPFOM) was higher (P<0.05) than that from rumen degradable protein 

(MCPRDP
DVE) (84 vs. 41 g kg-1 DM), while the opposite was observed for wheat and DDGS 

products. These results are in accordance with the hourly ED ratios between N and OM reported 

in Chapter 4, in which corn was the unique feed source that remained below the optimal ratio (25 

g N kg-1 OM) during the entire 24 h incubation. 

  The results showed that the different types of DDGS had an impact on the potential 

nutrient supply to dairy cattle (Table 5.1). As the amount of wheat in feedstock increased, FOM 

and consequently AMCPDVE increased in DDGS samples. A similar trend was observed in 

UDM, and subsequently in ENDP. Blend DDGS had the highest (P<0.05) ARUPDVE (235 g kg-1 

DM) resulting in the highest (P<0.05) DVE (281 g kg-1 DM), while DVE values for wheat 

DDGS and corn DDGS were similar (249 vs. 251 g kg-1 DM). DPBOEB values for DDGS 

samples were all positive; wheat DDGS was the highest (P<0.05), followed by blend DDGS, and 

corn DDGS (73 vs. 55 vs. 11 g kg-1 DM). These results are comparable with the previously 

reported hourly ED ratios between N and OM (Chapter 4). According to Tamminga et al (1994), 

the lactation requirement of a dairy cow producing 30 kg of milk with 3 % of true protein is 1414 

g per day of truly digested and absorbed protein in the small intestine, implying that 3 kg of 

wheat DDGS or 2.5 kg of blend DDGS in the ration (on a DM basis) would cover 50% of this 

requirement. 

  Table 5.2 shows the average predicted protein supply to dairy cows from other feeds 

commonly included in dairy rations when evaluated by the DVE/OEB System. The 

protein value (DVE) of DDGS samples was on average three times higher than alfalfa (260 vs. 

75 g kg-1 DM) and seven times higher than timothy (260 vs. 39 g kg-1 DM). Compared to barley, 

the protein value of wheat DDGS was three times greater on average (84 vs. 249 g kg-1 DM). 

Canola meal showed a lower protein value than wheat DDGS and corn DDGS (180 vs. 249 vs. 

251 g kg-1 DM) but a greater potential for N loss in the rumen (162 vs. 72 vs. 11 g kg-1 DM). 

Even though, it has been recently reported that corn DDGS can be replaced by canola meal in 

dairy cattle diets without affecting animal performance (Mulrooney et al. 2009). This fact can be  
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Table 5.2. The prediction of the protein supply to dairy cows from different feed sources, using the 
DVE/OEB System and the NRC 2001 Model 

       
Items Alfalfa (1) Timothy (2) Barley (3) Oat (4) Canola Meal (5) Soy meal (6) 
       
Using the DVE/OEB System (g kg DM-1) 
AMCPDVE  58.4 37.2 53.4 - 

 

 
 
 
 
 
 
 
 
 
 

55.2 61.0 
ARUPDVE  32.0 23.9 47.0 - 137.6 234.8 
ENDP 15.2 23.9 16.0 - 12.8 4.3 
DVE  75.3 38.9 84.4 - 180.0 291.4 
DPBOEB 51.7 -17.1 -6.1 - 162.1 136.5 
       
Using the NRC 2001 Model (g kg DM-1) 
AMCPNRC 50.1 26.5 45.3 53.3 58.7 59.6 
ARUPNRC 28.1 18.6 47.0 18.0 124.0 211.5 
AECP 4.4 4.4 4.3 4.5 4.4 4.4 
MP 82.0 49.5 96.6 75.7 187.1 275.5 
DPBNRC 55.5 -16.5 -30.9 -15.6 156.5 145.6 
       
Source: 1,2Yu et al. (2003a); 3Yu et al. (2003b); 4Yu et al. (2008); 5,6Heendeniya (2008) 
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explained by the reduced availability of lysine in corn DDGS and the more desirable biological 

value of canola meal protein (Mulrooney et al. 2009). The protein value of soy meal was the 

most similar to DDGS samples, particularly to blend DDGS (291 vs. 281 g kg-1 DM).  Several 

studies showed that similar milk production is achieved when corn DDGS or soy meal are used 

as protein supplements (Nichols et al. 1998; Anderson et al. 2006). Differences in the amino acid 

availability between the two protein sources exist; while corn DDGS are first limiting in lysine, 

soy meal is first limiting in methionine (Chandler 1989; Kleinschmit et al. 2007).  

  Between wheat DDGS from SK-Plant 1 and SK-Plant 2 (Table 5.1), significant 

difference was detected in the DVE value (271 vs. 230 g kg-1 DM), mainly due to the significant 

difference in ARUPDVE (231 vs. 179 g kg-1 DM). The difference in ARUPDVE can be further 

attributed to a significant difference in ADICP content (0.7 vs. 7.6 %CP) between plants and the 

subsequent numerical but large difference in the digestibility of RUP protein (89.4 vs. 75.9 

%RUP; Chapter 4). As a result, the relationship between ADICP content and DVE value for 

wheat DDGS was moderate and significant (r = -0.74; P<0.05). Several studies (Arieli et al. 

1989; McKinnon et al. 1995) have showed a negative relationship between the ruminal and post-

ruminal availability of protein and the ADICP content resulted from heating. In DDGS, the 

relationship ADICP and ruminal availability of protein has been found to not exist (Klopfenstein 

1996), to be moderate (Nakamura et al. 1994a), or to be strong when ADICP levels were higher 

than 13 %CP (Harty et al. 1998). In the present wheat DDGS samples, ADICP levels were 

significantly different but lower than 13 %CP, which is consistent with the lack of effect on the 

protein disappearance in rumen. However, the difference in the ADICP content was reflected in 

largely numerical differences in the digestibility of RUP, which ultimately affected the intestinal 

availability of RUP (Chapter 4) as well as the predicted total post-ruminal protein supply and 

availability. This suggests a higher sensitivity of DDGS protein disappearance to low ADICP 

levels in the small intestine than in the rumen, as well as the important role of ADICP in the 

determination of truly absorbable protein in the small intestine. The difference in ADICP content 

and the in subsequent DVE values has also an economic impact. In this case, 0.5 kg extra of 

wheat DDGS from SK-Plant 2 would be required in order to meet 50 % of the truly digested and 

absorbed protein in the small intestine required by a lactating dairy cow producing 30 kg of milk 

per day with 3 % true protein (DVE for lactation = 1414 g day-1). The variation in the 

metabolizable essential amino acids between plants was not studied; however, Kleinschmit et al. 
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(2007) concluded that for corn DDGS this variation was not as prominent as in the ruminal and 

post-ruminal availability of protein. 

 

 5.3.2. Effects of DDGS type (wheat DDGS, corn DDGS and blend DDGS) 

and bio-ethanol plants on the prediction of the potential nutrient supply to dairy 

cattle using the NRC 2001 Model 

Using the NRC 2001 Model, the effects of DDGS type and bio-ethanol plant origin on the 

prediction of the potential nutrient supply to dairy cattle is presented in Table 5.3. Given that 

RDPNRC was higher than 1.18 x MCPTDN
NRC for wheat and DDGS samples and lower for corn, 

MCPNRC was estimated correspondingly using MCPTDN
NRC and MCPRDP

NRC formulas, 

respectively. The variation of MCPNRC across treatments was equally detected in AMCPNRC, 

which was higher (P<0.05) for wheat than for wheat DDGS but lower (P<0.05) for corn than for 

corn DDGS. DDGS samples had greater content and digestibility of RUPNRC resulting in on 

average fivefold greater (P<0.05) ARUPNRC values than those for feedstock grains (wheat DDGS 

vs. wheat: 180 vs. 32 g kg-1 DM; corn DDGS vs. corn: 184 vs. 50 g kg-1 DM). This difference 

largely contributed to MP values for DDGS that were three times higher (P<0.05) on average 

than those for feedstock grains (wheat DDGS vs. wheat: 242 vs. 100 g kg-1 DM; corn DDGS vs. 

corn: 250 vs. 81 g kg-1 DM). For DPBNRC, values were higher (P<0.05) for DDGS samples than 

for feedstock grains (wheat DDGS vs. wheat: 78 vs. 9 g kg-1 DM; corn DDGS vs. corn: -12 vs. -

76 g kg-1 DM); however, it should be noted that both corn and corn DDGS had negative values. 

The negative balance is attributed to a greater rumen availability of energy from total digestible 

nutrients rather than degradable protein, indicating a shortage of N when corn and corn DDGS 

are evaluated as single ingredient. This result is in agreement with the hourly ED ratios between 

N and OM reported in Chapter 4 for corn, but not for corn DDGS, which exhibited an excess of 

N in rumen almost during the entire 24 h incubation. This discrepancy is explained by the fact 

that DPBNRC calculation is based on TDN rather than fermented organic matter. As shown in 

Table 5.3, TDN3X value for corn DDGS was as high as for corn, resulting in higher MCPTDN
NRC 

and lower DPBNRC relative to other feed sources. Despite the conceptual difference between 

DPBNRC and hourly ED ratios between N and OM, both parameters concurred that corn DDGS 

was the closest among DDGS samples to the optimal value (0 g kg-1 DM and 25 g N kg-1 OM), 
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Table 5.3. Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat: corn=70:30) and comparison of different 
bio-ethanol plants in the prediction of nutrient supply to dairy cows using the NRC 2001 Model 

         
 Feed sources  Bio-ethanol Plant  
           

Items 
Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
SEM 

SK-Plant 1 
Wheat DDGS 

n = 2 

SK-Plant 2 
Wheat DDGS 

n = 3 
SEM 

           
1. Truly absorbed rumen synthesized microbial protein in the small intestine (g kg-1 DM) 
TDN3X (%DM) 76.6 b 81.1 a  69.8 d 82.4 a 73.7 c 0.57 71.9 a 69.5 b 0.88 
RDPNRC 126.8 c 48.5 d  185.1 a 114.4 c 163.5 b 6.43 188.8 182.7 11.31 
MCPNRC 99.6z a 41.2y c  90.8z b 97.3z a 95.8z a 1.58 93.4z a 89.0z b 1.15 
AMCPNRC 63.7 a 26.4 c  58.1 b 62.2 a 61.3 a 1.01 59.8 a 57.0 b 0.74 

           
2. Truly absorbed rumen undegraded feedl protein in the small intestine (g kg-1 DM) 
RUPNRC 42.4 c 72.2 b  222.8 a 222.6 a 224.8 a 8.45 232.5 216.3 16.74 
ARUPNRC 32.1 c 50.2 c  179.9 b 183.8 b 211.3 a 8.49 207.9 a 161.2 b 10.68 

           
3. Truly digested rumen endogeneous protein in the small intestine (g kg-1 DM) 
ECP 10.6 c 10.5 c  11.1 a 10.9 b 10.9 b 0.05 11.0 b 11.2 a 0.08 
AECP 4.3 c 4.2 c  4.5 a 4.3 b 4.4 b 0.02 4.4 b 4.5 a 0.03 
           
4. Total truly absorbed protein in the small intestine (g kg-1 DM) 
MP 100.1 c 80.8 c  242.4 b 250.3 b 276.9 a 8.82 272.1 a 222.6 b 10.93 

           
5. Degraded protein balance (g kg -1 DM) 
DPBNRC 9.3 c -75.9 e  78.0 a -12.1 d 50.5 b 6.01 78.5 77.7 10.18 

           
SEM = standard error of mean. Means with different letters in the same row are significantly different (P<0.05) 
CP values utilized in the calculation of   RDPNRC  and  RUPNRC were obtained by  Leco protein/N analyzer 
z Predicted according to MCPTDN

NRC
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in which the balance between microbial protein synthesis potentially possible from available 

rumen degradable protein and that potentially possible from energy is achieved. 

  Comparing the three types of DDGS (Table 5.3), MCPNRC values increased as corn in 

feedstock increased. AMCPNRC for corn DDGS and blend DDGS was similar (P>0.05) and 

higher (P<0.05) than that for wheat DDGS. ARUPNRC was the greatest (P<0.05) for blend DDGS 

(211 g kg-1 DM) and similar (P>0.05) between wheat DDGS and corn DDGS (average 182 g kg-1 

DM), while AECP was the greatest (P<0.05) for wheat DDGS and similar (P>0.05) between 

corn DDGS and blend DDGS. These differences resulted in the highest (P<0.05) MP for blend 

DDGS (277 g kg-1 DM) and in similar (P>0.05) values between wheat DDGS and corn DDGS 

(average 246 g kg-1 DM). DPBNRC was the greatest (P<0.05) for wheat DDGS, followed by blend 

DDGS and corn DDGS (78 vs. 51 vs. -12 g kg-1 DM). For a dairy cow producing 30 kg of milk 

per day containing 3 % of true protein, NRC 2001 estimates a daily requirement of 1343 g MP, 

which would be met by including 3 kg of wheat DDGS or 2.5 kg of blend DDGS (on a DM 

basis). 

  Table 5.2 shows other feeds previously evaluated by the NRC 2001 Model. The protein 

value (MP) of DDGS samples was on average three times higher than alfalfa, five times higher 

than timothy, and three times higher than barley and oat (257 vs. 82 vs. 50 vs. 97 vs. 76 g kg-1 

DM). When comparing with other protein supplements, the MP value of DDGS samples was 

higher than canola (257 vs. 187 g kg-1 DM), and it was very similar to soy meal (257 vs. 276 g 

kg-1 DM). Blend DDGS was almost identical to soy meal in both ARUPNRC (211 vs. 212 g kg-1 

DM) and MP (277 vs. 276 g kg-1 DM). Despite these similarities, MP value does not contemplate 

the entire biological value of the protein. Therefore, other factors such as the availability of 

limiting amino acids must be considered. 

  The significant difference between wheat DDGS from SK-Plant 1 and SK-Plant 2 (Table 

5.3) in ARUPNRC (208 vs. 161 g kg-1 DM) resulted in a significant difference in MP (272 vs. 223 

g kg-1 DM). The relationship between ADICP content and MP value was moderate and 

significant (r = -0.74; P<0.05). Moreover, small but significant differences were detected in 

AMCPNRC and AECP due to numerical differences in the TDN value and DM content, 

respectively (Chapter 3). In accordance with Chapter 4 and the DVE/OEB System, the supply 

and availability of protein in the small intestine was more sensitive than the rumen to the 

difference in low ADICP levels of wheat DDGS samples. The difference in the ADICP content 
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between plants is largely the result of differing processing conditions, likely in the time and 

temperature of drying. The difference in the MP values between wheat DDGS from SK-Plant 1 

and from SK-Plant 2 (49 g kg-1 DM) will result in differences in animal performance at the same 

inclusion level.  

 

 5.3.3. Comparison of predictions from the DVE/OEB System and the NRC 

2001 Model 

The average of the predicted values for wheat DDGS, corn DDGS and blend DDGS calculated 

according to the DVE/OEB System and the NRC 2001 Model as well as the difference and 

correlations between the two models are presented in Table 5.4. The results showed that the 

predicted values from the DVE/OEB System were 10 % lower (P<0.05) in the truly absorbable 

rumen synthesized microbial protein in the small intestine, 10% higher (P<0.05) in the truly 

absorbed bypass feed protein in the small intestine, 30 % higher (P<0.05) in the endogenous 

protein, and 2% higher (P<0.05) in the total truly absorbed protein in the small intestine than the 

predicted values from NRC 2001 Model. No significant difference was detected in terms of the 

degraded protein balance between the two models.  

  These differences are attributed to differing concepts and factors utilized in calculations 

by each of the models. A striking dissimilarity affecting the truly absorbable rumen synthesized 

microbial protein in the small intestine is the prediction of the microbial protein synthesis in the 

rumen; while the calculation by the DVE/OEB System is based on fermented organic matter, the 

calculation by NRC 2001 Model is based on total digestible nutrients. This was verified by the 

significant average difference (-6 g kg-1 DM) and a weak correlation (r = -0.44; P<0.05) between 

the two models in terms of the truly absorbable rumen synthesized microbial protein in the small 

intestine. In addition, it was clearly detected when comparing wheat DDGS with corn DDGS 

(Table 5.1 and Table 5.3); whereas AMCPDVE was higher in wheat DDGS due to the higher 

FOM, AMCPNRC was higher in corn DDGS due to the higher TDN. It is important to mention 

that the FOM approach does not consider the fat fraction as ruminally degradable, thus 

eliminating it from the calculation and contributing to the lower AMCPDVE compared to 

AMCPNRC for corn DDGS.  Other minor differences affecting the amount of truly absorbable 

rumen synthesized microbial protein in the small intestine are the assumed amount of rumen 

synthesized microbial protein per kg of available energy (150 g MCP kg-1FOM vs. 130 g MCP 
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Table 5.4. Comparison of the DVE/OEB System with the NRC 2001 Model in the prediction of 
protein supply to dairy cows from DDGS 
        
Items 
(g kg DM-1) 

Mean 
DVE/OEB 

Mean  
NRC 2001 

Numeric 
differencez

 

  

 

 

 

 

 
 
 
 
 
 
 
 
 

SEDy P value rx P value 

        
AMCPDVE vs. AMCPNRC 54.0 60.1 -6.1 1.27 <0.0001 -0.44 0.0405 
ARUPDVE vs. ARUPNRC  210.4 189.5 20.9 0.66 <0.0001 1.00 <0.0001 
ENDP vs. AECP 6.3 4.4 1.9 0.39 <0.0001 0.45 0.0371 
DVE vs. MP 258.0 254.0 4.0 0.79 <0.0001 0.99 <0.0001 
DPBOEB vs. DPBNRC 50.7 45.9 4.8 2.73 0.0957 0.97 <0.0001 
        
zPaired t test (n = 11) 
yStandard error of the difference 
xPearson correlation (n = 11)
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kg-1 TDN) as well as the amount (0.75 vs. 0.80 %) and digestibility (0.85 vs. 0.80 %) of the true 

protein contained in the rumen synthesized microbial protein.  

  The truly absorbed bypass feed protein in the small intestine is calculated in the two 

models as bypass feed protein times the digestibility of feed protein in the intestine. However, 

the prediction of bypass feed protein differs between models; while the DVE/OEB System uses a 

regression coefficient (1.11) to correct the in situ degradation data on in vivo RUP results, no 

correction factor is used by the NRC 2001 Model. As a result, the highest significant difference 

on average (21 g kg-1 DM) but also the strongest correlation (r = 1; P<0.05) was observed 

between ARUPDVE and ARUPNRC. Similarly, the greatest difference between the two models 

when evaluating other sources of RUP (canola meal and soy meal) was found in the truly 

absorbed bypass feed protein in the small intestine (Table 5.2). 

  Another notable difference is the concept and calculation of endogenous protein in the 

digestive process. In the DVE/OEB System, the truly digested and absorbed protein in the small 

intestine is corrected for endogenous protein losses. The assumed net loss of metabolic protein is 

50 g kg-1 of undigested dry matter as the efficiency of resynthesis is 0.67, hence, the correction 

factor (0.075= 0.05/0.67) used in the ENDP formula. In the NRC 2001 Model, endogenous 

protein losses pass to small intestine contributing to the truly digested and absorbed protein. The 

same model assumes that the loss of metabolic protein is associated with dry matter content, 50% 

of the losses in rumen passes on to the small intestine, and 80% of the losses is true protein. As a 

result of these dissimilarities, a significant average difference (2 g kg-1 DM) and weak 

correlation (r = 0.45; P<0.05) were obtained between ENDP and AECP.  

  These differences between the two models in the concepts and calculations of the truly 

absorbable rumen synthesized microbial protein in small intestine, the truly absorbed bypass feed 

protein in the small intestine, and the endogenous protein losses contributed to a significant 

average difference (4 g kg-1 DM) in the prediction of the truly digested and absorbed protein in 

the small intestine. Despite this, the correlation was strong (r = 0.99; P<0.05) due to the fact that 

the range of the predicted values was similar.  

  In the prediction of the degraded protein balance, the DVE/OEB System assumes that 

100% rumen degraded feed protein can potentially be converted to microbial protein if enough 

energy is supplied. The NRC 2001 Model, however, assumes that only 85% of rumen degraded 

feed protein can be converted by rumen microorganisms into protein, thus the factor (1.18 = 1.00
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0.85) used in the American system. Moreover, the concept and calculation of the predicted 

microbial protein synthesis in the rumen from available energy (MCPFOM vs. MCPTDN
NRC) and 

the microbial protein synthesis in the rumen from available degraded protein (MCPRDP
DVE vs. 

RDPNRC) differed. MCPTDN
NRC contemplates more energy in the equation than MCPFOM, 

consequently more nitrogen is required to achieve optimal availability of nitrogen and energy in 

the rumen according to the NRC 2001 Model. The 1.11 correction factor is taken into 

consideration for the calculation of MCPRDP
DVE but not for RDPNRC. These differences generated 

positive DBPOEB and negative DPBNRC for corn DDGS, indicating N loss and N shortage 

respectively. Despite these factors, the average difference between the two models was not 

significant (5 g kg-1 DM), and correlation was strong (r = 0.97; P<0.05) due to the similar range 

of predicted values. Indeed, both models concluded that among DDGS samples studied, corn 

DDGS was the closest one to the optimal balance, which, at the same time, was approached by 

increasing the amount of corn relative to wheat in feedstock. 

  Linear regressions of the main average predicted nutritional values between the 

DVE/OEB System and the NRC 2001 Model for DDGS samples are presented in Table 5.5. All 

regression equations were significant. In addition, a high proportion of the variability in the truly 

absorbed rumen bypass feed protein in small intestine (R2 = 1.00), truly digested and absorbed 

protein in small intestine (R2 = 0.99) and degraded protein balance (R2 = 0.96) predicted 

according to the DVE/OEB System can be accounted by the equivalent parameters predicted by 

the NRC 2001 Model. 

Table 5.5. Regression equations for the prediction of protein supply from the 
DVE/OEB System based on the predicted values from the NRC 2001 Model 
     
Items 
(g kg DM-1) 

Regressionz R2 y P value RSDx

     
AMCPDVE vs. AMCPNRC AMCPDVE = 90.58 – 0.61 x AMCPP

NRC 0.19 0.0405 3.72 
ARUPDVE vs. ARUPNRC ARUPDVE = 1.11 x ARUPNRC 1.00 <0.0001 0.00 
ENDP vs. AECP ENDP = -39.03 + 10.31 x AECP 0.20 0.0371 1.71 
DVE vs. MP DVE = 14.83 + 0.96 x MP 0.99 <0.0001 3.58 
DPBOEB vs. DPBNRC DPBOEB = 16.93 + 0.73 x DPBNRC 0.96 <0.0001 6.50 
     
zLinear regression equation (n = 11) 

yR2 = Coefficient of determination 
xRSD = Residual standard deviation 
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  5.4. Conclusions 

Dried distillers grains with solubles are a good source of truly digested and absorbed protein in 

small intestine in dairy rations. According to the DVE/OEB System and the NRC 2001 Model, 

the predicted protein supply differed significantly among wheat DDGS, corn DDGS and blend 

DDGS and, to a lesser extent, between different bio-ethanol plants. Therefore, it is inappropriate 

to assume fixed protein values for DDGS without considering factors such as DDGS type and 

plant origin. The sensitivity between the two models to detect differences among DDGS types 

and between plants was similar. The two models coincided in predicting the superior protein 

value (DVE and MP) of blend DDGS as well as in identifying the more optimal degraded protein 

balance for corn DDGS. In addition, the difference in the ADICP content of wheat DDGS 

samples as a result of different ethanol operation decisions between plants was reflected in 

differing protein value, suggesting the use of ADICP is a reliable indicator for the protein value 

of wheat DDGS for sample comparison purposes.  

  It is important to remember that the current experiment evaluated DDGS as a single 

ingredient, thus the modeling of a total mixed ration containing different types and levels of 

DDGS would provide a more realistic approach of the differences in the ruminal and post-

ruminal supply and availability of protein as well as of the differences in the balance between 

available nitrogen and energy in rumen. Also, DVE and MP values do not contemplate the entire 

biological value of the protein. Therefore, other factors such as the availability of limiting amino 

acids must be carefully considered. 

  Although differences between the DVE/OEB System and the NRC 2001 Model were 

significant for most outputs due to differences in some of the concepts and factors used in the 

calculations, correlations between DVE and MP values and between DPBOEB and DPBNRC were 

also significant. Moreover, the two protein evaluations systems are both supply and requirement 

models, involving that the requirement values also differ. The study of the nutrient balance 

(model requirement minus model supply) would provide a better indication of the differences 

between the two models.  
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6. GENERAL DISCUSSION 

 
The general objective of this project was to investigate the effects of type and bio-ethanol plant 

origin in terms of the chemical and biological characteristics of dried distillers grains with 

solubles (DDGS). To achieve this, three types of DDGS currently utilized in ruminant diets in 

western Canada (wheat DDGS, corn DDGS, and a blend (wheat:corn = 70:30) DDGS), as well 

as wheat DDGS manufactured at two different bio-ethanol plants (SK-Plant 1 and SK-Plant 2), 

were evaluated using eight common feed evaluation methods: 1) chemical analysis, 2) Cornell 

Net Carbohydrate and Protein System (CNCPS), 3) energy values estimation using the NRC 

2001-chemical approach, 4) energy values estimation using an in situ assay-biological approach, 

5) in situ digestibility trial, 6) in vitro intestinal digestibility of rumen bypass protein (RUP) as 

outlined by Calsamiglia and Stern (1995), 7) prediction of the protein supply to small intestine 

using the NRC 2001 Model, and 8) prediction of the protein supply to small intestine using the 

DVE/OEB System. The parameters obtained from each of these methods were also studied in 

feedstock grains as compared to their derived DDGS product. In addition, the validity of the 

chemical profile to determine energy values and predict the potential degradability of DDGS was 

tested. 

Due to the starch removal during processing, the chemical components of DDGS samples 

were generally threefold higher than in feedstock grains. Still, some unconverted starch was 

present in DDGS samples (on average 4.9 %DM), suggesting starch resistance or ineffectiveness 

of the processing conditions. Compared to feedstock grains, and in accordance with previous 

studies, the protein profile in DDGS samples was characterized by reduced soluble crude protein 

(SCP), increased neutral detergent insoluble crude protein (NDICP), and increased acid detergent 

insoluble crude protein (ADICP). As a result, the CNCPS System showed a reduction in rapidly 

degradable non-protein nitrogen (PA), rapidly degradable protein (PB1), and intermediately 

degradable protein (PB2), and an increase in the slowly degraded protein (PB3) and unavailable 

protein (PC) of DDGS, suggesting decreased overall rumen degradability relative to feedstock 

grain. These shifts in the protein profile between feedstock grains and the derived DDGS product 

may be attributed to events occurring during processing, such as partial protein degradation 

during fermentation and Maillard product formation as a result of heating. The CNCPS profile 

among the three types of DDGS varied due to differences in the parental grains as well as 
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differences in the processing conditions among the bio-ethanol plants. While wheat DDGS and 

blend DDGS were characterized by higher PB3 and rapidly fermented carbohydrates (CA) than 

corn DDGS, the latter was characterized by higher PB2 and slowly degraded carbohydrates 

(CB2). Although RUP is mainly represented by PB3 and PC, some protein in PB2 escapes to 

small intestine. Thus, it is necessary to look at the in situ degradation data in order to conclude 

more accurately what type of DDGS is providing higher RUP.  

The energy values estimated according to the NRC 2001-chemical approach differed 

among the three types of DDGS largely due to differences in the truly digestible fatty acids 

(tdFA) and neutral detergent fiber (tdNDF). The energy content of corn DDGS was the highest, 

followed by blend DDGS and wheat DDGS. Corn DDGS values were gretaer than corn, wheat 

DDGS values were similar to wheat and corn, and blend DDGS values were similar to corn. 

Thus, wheat DDGS can be used as an alternative to wheat and corn in dairy and beef diets, while 

blend DDGS can be used as an alternative to corn.  

Results from the in situ degradability trial showed a reduction in the effective 

degradability of dry matter (%EDDM), organic matter (%EDOM), and crude protein (%EDCP) 

of wheat DDGS relative to wheat; however, corn DDGS remained the same as corn. This can be 

explained by the lower effective degradability of these feed components in corn relative to wheat 

as well as by differences in plant processes. Rumen undegraded protein (RUP, %CP) was on 

average twofold higher in wheat DDGS relative to wheat, while it was similar between corn 

DDGS and corn. Thus, it is important to clarify that only the chemical components, and not the 

nutrient components (such as RUP), become threefold concentrated in the DDGS product in 

comparison with feedstock grain. Among DDGS types, %EDDM, %EDOM and %EDCP 

increased with increasing the proportion of wheat in feedstock. In addition, the protein content in 

wheat DDGS was higher than in corn DDGS and blend DDGS. As a result, the availability of 

total rumen degradable protein (g kg-1) was the highest for wheat DDGS while the total supply of 

RUP (g kg-1) was similar among the three types of DDGS. The hourly effective degradability 

(ED) ratios between nitrogen (N) and energy indicated some potential loss of N in rumen when 

the three types of DDGS were evaluated as a single ingredient. Albeit far from the optimal ratio, 

corn DDGS was the closest to optimal, as it provided a lower amount of ruminal effective 

degradable protein and higher energy than wheat DDGS and blend DDGS. This excess of N 

implies that elevated levels of DDGS in ruminant rations may have repercussions both on animal 
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performance and on environment. Although the effective degradability of NDF (%EDNDF) was 

similar between feedstock grains and DDGS samples, the total amount of effective degradable 

NDF was on average twofold greater in DDGS. This increased NDF availability, along with the 

threefold concentration of fat, is what provided DDGS with energy values similar to those in 

feedstock grains.  

The high RUP in DDGS samples largely contributed to the higher protein value relative 

to feedstock grains. In a single feed evaluation, both DVE/OEB System and NRC 2001 Model 

coincided in identifying the superior protein value of blend DDGS, followed by similar values 

between wheat DDGS and corn DDGS. These differences among DDGS types are mainly 

attributed to differences in the estimated intestinal digestibility of RUP (IDP), which was 

significantly higher in blend DDGS. In accordance with the hourly ED ratios between N and 

OM, the DVE/OEB System showed that the degraded protein balance (DPB) was positive for the 

three types of DDGS and increased as the wheat proportion in the feedstock increased. However, 

the NRC 2001 Model showed a negative balance for corn DDGS, indicating a shortage of N that 

can impair microbial protein synthesis. This discrepancy is explained by the fact that while 

DPBDVE and hourly ED ratios are calculated based on fermented organic matter, DPBNRC is 

based on TDN value. As a result, the high TDN value of corn DDGS shifted the balance towards 

higher microbial protein synthesis based on energy supply rather than towards higher microbial 

protein synthesis based on rumen degradable protein, as observed for wheat DDGS and blend 

DDGS. 

Plant to plant variation was detected in wheat DDGS samples. These differences are 

mainly attributed to differences in the parental wheat, in the amount of solubles blended back 

with wet distillers, and in the processing conditions. The ADICP levels were 0.7 and 7.6 %CP 

for wheat DDGS from SK-Plant 1 and SK-Plant 2, respectively. In addition to higher ADICP 

content, wheat DDGS from SK-Plant 2 exhibited higher lignin and lower hemicellulose, 

suggesting more severe heating conditions in this plant. Literature has shown that ADICP 

content is negatively related to protein degradability in the rumen and the small intestine; 

however, this relationship was studied in corn DDGS samples and was only effective when 

ADICP values were above 13% CP. As a result, the low but significantly different ADICP values 

did not caused an effect on the protein degradability of wheat DDGS samples in rumen. 

Differences in intestinal digestibility (IDP), however, were non-significant but numerically large, 
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indicating that the disappearance of DDGS protein is more sensitive to low ADICP levels in the 

small intestine than in the rumen. As a matter of fact, correlation analysis showed that ADICP is 

negatively related to protein digestibility in the small intestine but not in the rumen. For both the 

DVE/OEB System and the NRC 2001 Model, and mainly due to the large difference in IDP 

values, the truly absorbable rumen bypass protein (ARUP) was significantly different between 

wheat DDGS samples. This contributed to the significantly higher protein value (DVE and MP) 

in wheat DDGS from SK-Plant 1. In addition, both models showed the same negative and 

moderate correlation between ADICP and protein values (DVE and MP), implying that low 

ADICP levels do provide an indication of the protein value of wheat DDGS samples. 

Although the predicted energy values using the NRC 2001-chemical approach and the in 

situ assay-biological approach were similar, results indicated that NRC 2001-chemical approach 

is not a reliable predictor of tdNDF and tdCP. The NRC 2001-chemical approach calculates 

tdNDF based on the acid detergent lignin content (ADL); however, only wheat DDGS samples 

showed a negative and strong relationship between ADL and NDF digestibility. In forages, this 

relationship is stronger as the ADL content increases. Thus, the accuracy of the NRC 2001-

chemical approach to predict tdNDF in DDGS samples may require ADL levels similar or higher 

to those detected in wheat DDGS samples. Similarly, tdCP value depends on the ADICP content, 

which in turn is negatively correlated with ruminal protein digestibility only when levels are 

greater than 13%CP. Therefore, the low ADICP levels in the current experiment suggest a lack 

of accuracy of the NRC 2001-chemical approach to determine tdCP.  

Particle size distribution has been shown to affect disgestibility and nutrient availaibility 

in the animal. In addition, if a large proportion of particles are smaller than the pore size of the 

filter paper (20 - 25 μm), ankom bag (25 μm), or nylon bag utilized (41 μm), chemical 

components such as fiber can be underestimated while digestibility values can be overestimated. 

Shurson (2004) showed that in the typical particle size distribution of corn DDGS, more than 

10% of the particles are retained in a sieve opening of 37 μm. Although particle size distribution 

was not measured in the present experiment, data reported by Shurson (2004) would suggest that 

degradability values resulted from the in situ trial could be slightly overestimated; however, a 

later evaluation using wheat DDGS samples observed that the amount of insoluble particles 

contained in the washable fraction was minimal (N. Zhi-yuan, personal communication). In 
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addition, a pore size bigger than particle size does not involve the complete loss of small 

particles from the bag. 

Therefore, results from this study clearly indicate that is not correct to assume fixed 

nutrient values for DDGS in ration formulation without considering factors such as DDGS type 

and bio-ethanol plant origin. Results have shown the role played by ADICP in the estimation of 

the metabolizable protein supplied to the dairy cow. This information can be used by nutritionists 

to increase accuracy in ration formulation, as well as by bio-ethanol companies in order to 

achieve better product quality consistency. For the former, it is recommended to check the 

chemical profile periodically, particularly ADICP levels, in order to track the quality of the 

DDGS product obtained from each plant and formulate rations accordingly. For the latter, it is 

important to control drying temperature and time in order to decrease ADICP levels in the 

DDGS product. Low differences in the ADICP levels of different DDGS sources will impact 

animal performance by achieving a more consistent supply of metabolizable protein.  

For the future, much additional information is required in order to increase the accuracy 

of the current feed evaluation systems when evaluating the nutritive value of DDGS. As stated 

earlier, literature has shown the relationship between ADICP content and protein digestibility in 

the rumen and the small intestine in corn DDGS samples. Thus, further research could include 

the use of wheat DDGS samples with a higher range of ADICP levels to establish the specific 

relationship between the ADICP content and the potential digestibility of wheat DDGS protein. 

Similarly, refinement of the tdNDF formula used by the NRC 2001-chemical approach is 

required, not only to evaluate DDGS, but also other feeds. As suggested in the literature, not only 

the content of lignin but also the extent to which lignin is bonded to other components of the cell 

wall affects NDF digestibility. Currently, Dr. VanAmburgh’ group at Cornell University is 

looking at the effect of lignin-carbohydrate linkages, in particular ester and ether linked phenolic 

acids like ferulic and p-coumaric acids, on NDF degradability. The effect of these 

hydroxycinnamic acids on rumen degradation characteristics of barley has been recently 

investigated by Dr. Yu’s group, at University of Saskatchewan, and will be available soon.   

Results from this study have shown nutrient variation among DDGS types and between 

different bio-ethanol plants; however, information on the nutrient profile of DDGS affected by 

different batches within the same plant has not been published yet. Similarly, the effect of bio-

ethanol plant on protein molecule structure and the subsequent effect on nutrient availability are 
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still unknown. These two studies are being currently performed at University of Saskatchewan 

by Dr. Yu’s group.  

In the present project, and in order to investigate the rumen degradation characteristics of 

DDGS, samples were rolled before rumen incubation. This processing removed the presence of 

syrup balls; however, these agglomerates are present in the DDGS product fed to cattle, 

particularly in wheat DDGS batches produced by some plants. As rumen outflow rate, and 

consequently digestibility, is affected by particle size and density; the effect of these physical 

parameters on the rumen degradation characteristics of DDGS needs to be investigated for 

proper ration formulation.   

  Lysine and methionine are the first and second limiting amino acids in DDGS, 

respectively. Thus, nutritionists are aware of the special consideration that the lysine to 

methionie ratios must have when including DDGS in the rations. For concentrates, the 

degradative behavior of lysine in the rumen and intestine was similar to that of protein, while 

methionine followed the same pattern as protein in the rumen but the absorption was slightly 

higher (4%) in the intestine (Tamminga et al. 2007). The question is whether DDGS samples 

behave the same as other concentrates. Thus, further studies investigating the metabolizable 

lysine and methionine affected by DDGS type and bio-ethanol plant will help to increase 

accuracy in ration formulation by providing the proper amino acid balance.  

  The supplementation of corn DDGS diets with rumen protected lysine and methionine 

has increased milk and protein yields, while replacing corn DDGS with other protein 

supplements of higher biological value, such as canola meal, has tended to increase these 

production parameters. At the present, information on the effect of amino acid supplementation 

in wheat-based DDGS diets is not available. Dr. Mutsvangwa, at the University of 

Saskatchewan, is currently conducting a trial to investigate the effect of extruding wheat DDGS 

along with peas or canola meal on milk production parameters 

Animal performance is the most important factor determining the acceptability of DDGS 

as protein supplement for dairy rations. While results obtained in the present study showed the 

potential loss of N when DDGS are included in the ration, literature has shown that inclusion 

levels up to 30% of corn DDGS can be included without detecting a negative effect on milk 

production and N excretion. However, the excess of N may also represent a risk for reproductive 

performance, which is also a determining factor of the economical viability of the dairy 
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operation.  Thus, it could be of interest to investigate the effect of DDGS inclusion rate, in 

particular wheat DDGS, on the reproductive performance of commercial farms.  

Several studies have recently shown an increased ratio of polyunsaturated fatty acids 

(PUFA) to saturated fatty acids (SFA) in meat with increasing the levels of corn DDGS, 

suggesting that some of the fat in corn DDGS can be protected from rumen biohydrogenation. It 

seems that the amount of solubles blended back has a direct effect on the PUFA:SFA ratio; 

however, information is still scarce. Likewise, the fatty acid profile of milk as affected by the 

amount of solubles blended back has not been investigated yet. 

In addition, the efficiency of ethanol extraction in new-generation bio-ethanol plants still 

can be firther optimized. The results from the present study showed residual starch in all DDGS 

samples. The presence of this unconverted starch can be attributed to resistance to degradability 

or to ineffectiveness of the processing conditions. Thus, further studies investigating the effect of 

granule structure and amylose:amylopectin ratio on starch degradability in both ruminants and 

monogastrics will help to clarify the nature of this residual starch. (Dong and Rasco 1987a; 

Shurson 2004) 
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8. APPENDIX 
 
 

Table 8.1. Total mixed ration (%DM) fed to non-lactating Holstein cows fitted with 
a rumen cannula 
Barley silage 56.8 
Alfalfa hay 20.2 
Dehydrated alfalfa pellets 4.5 
Standard dairy concentrate 21.6 
Fresh cow concentrate 6.8 
Standard dairy concentratez, y (%DM) 
Barley 56.0 
Wheat 5.0 
Oats 5.0 
Dairy supplement pellets 33.0 
Molasses 1.0 
Fresh cow concentratex,w (%DM) 
Barley 51.05 
Oats 5.0 
Canola meal 11.6 
Soybean meal 10.0 
Wheat distillers dried grains 9.0 
Corn gluten meal 3.0 
Molasses 2.5 
Golden flakesv 2.5 
Canola oil 0.5 
Mineral-vitamin mixt 3.0 
Niacin-magnesium mixs 0.3 
Cobalt-iodized salt 0.6 
Sodium bicarbonate 0.6 
Ground limestone 0.3 
Dynamater 0.05 
Cows was fed twice daily at 8:00 and 16:00 by receiving 14 kg (7 kg at each feeding time) of the total 
mixed ration. 
zGrains were dry rolled and mixed with supplement pellets. 
yProximate composition: 18.5% crude protein, 0.7% calcium, 0.8% phosphorus (DM basis). 
x0.48 cm (3/16”) pellets  
wProximate composition: 22% crude protein, 0.9% calcium, 0.85% phosphorus (DM basis). 
vDried fat supplement (Malaysian palm oil) distributed in Western Canada by Prairie Micro-Tech 
Inc., Regina, Saskatchewan. 
tFormulated to provide 45 mg manganese, 63 mg zinc, 17 mg copper, 0.5mg selenium, 11000 I.U. 
vitamin A, 1800 I.U. Vitamin E per kg of dairy concentrate.  The mix also contributes 0.14% 
magnesium, 0.48% calcium, 0.26% phosphorus, 0.23% sodium and 0.38% chloride to the total dairy 
concentrate.  Prepared by Federated Cooperatives Ltd., Saskatoon, Saskatchewan. 
sFormulated to provide one gram of niacin and 0.3 grams of magnesium per kg of fresh cow 
concentrate. 
rContains 22% sulphur, 18% potassium, 11% magnesium (International Minerals and Chemical 
Corp., Mundelein, ILL). 
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Table 8.2. Comparison of wheat and corn in terms of 
in situ rumen characteristics of starch 

  
             Feed sources 
  
Items Wheat Corn  SEM 
     
T0 (h) 0.00 0.00   
S (%) 22.76 a 2.99 b  3.384 
D (%) 77.24 b 97.00 a  3.384 
Kd (% h-1) 43.48 a 7.55 b  3.246 
EDStarch (%) 87.99 a 54.99 b  2.965 
EDStarch (g kg-1DM) 530.89 a 350.51 b  22.218 
     
SEM = standard error of mean. Means with the different letters in 
the same row are significantly different (P<0.05) 
Starch model according to Tamminga et al. (1994) 
Samples ground through a 0.5 mm screen 
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Table 8.3.  Comparison of wheat DDGS, corn DDGS and blend DDGS (wheat: corn=70:30) and comparison of different 
bio-ethanol plants in terms of the hourly effective degradability ratios between N and OM (g N kg-1 OM) 
         
 Feed Sources  Bio-ethanol Plant effect  
           

Items 
Wheat 
Grain 
n = 3 

Corn 
Grain 
n = 3 

 
Wheat 
DDGS 
n = 5 

Corn 
DDGS 
n = 3 

Blend DDGS 
(W:C=70:30) 

n = 3 
SEM 

SK-Plant 1 
Wheat DDGS 

n = 2 

SK-plant 2 
Wheat DDGS 

n = 3 
SEM 

           
0h 29.7 a 0.00c  26.4 a 14.3 bc 29.5 ab 6.327 41.6 a 16.2 b 5.139 
2h 22.5 c 12.1 d  73.0 a 57.8 b 62.1 b 2.556 77.1 70.2 2.645 
4h 29.9 c 12.8 d  75.1 a 57.6 b 64.0 b 2.228 77.7 73.3 2.342 
8h 54.5 c 14.5 d  79.7 a 57.2 c 68.0 b 2.570 79.0 80.1 1.771 
12h 104.1 a 16.3 d  84.7 ab 56.8 c 72.4 bc 8.389 80.4 b 87.5 a 1.522 

4.687 24h 990.9 a 23.7 b  102.8 b 55.9 b 88.5 b 220.398 84.6 b 114.9 a 
           

SEM=standard error of mean. Means with the different letters in the same row are significantly different (P<0.05).  
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Figure 8.1. Differences between the in situ assay-biological approach and the 
NRC 2001-chemical approach in the truly digestible neutral detergent fiber 
(tdNDF) values of DDGS samples. NDF availability estimated as NDFn 
digestibility after 48 h incubation × NDFn (%DM) 
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