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Abstract. Vegetation has a tremendous influence on snow processes and snowpack dynamics yet remote sensing techniques 

to resolve the spatial variability of sub-canopy snow depth are lacking. Unmanned Aerial Vehicles (UAV) have had recent 

widespread application to capture high resolution information on snow processes and are herein applied to the sub-canopy 10 

snow depth challenge. Previous demonstrations of snow depth mapping with UAV Structure from Motion (SfM) and airborne-

lidar have focussed on non-vegetated surfaces or reported large errors in the presence of vegetation. In contrast, UAV-lidar 

systems have high-density point clouds, measure returns from a wide range of scan angles, and so have a greater likelihood of 

successfully sensing the sub-canopy snow depth. The effectiveness of UAV-lidar and UAV-SfM in mapping snow depth in 

both open and forested terrain was tested in a 2019 field campaign in the Canadian Rockies Hydrological Observatory, Alberta 15 

and at Canadian Prairie sites near Saskatoon, Saskatchewan, Canada. Only UAV-lidar could successfully measure the sub-

canopy snow surface with reliable sub-canopy point coverage, and consistent error metrics (RMSE <0.17m and bias -0.03m 

to -0.13m). Relative to UAV-lidar, UAV-SfM did not consistently sense the sub-canopy snow surface, the interpolation needed 

to account for point cloud gaps introduced interpolation artefacts, and error metrics demonstrate relatively large variability 

(RMSE <0.33m and bias 0.08 m to -0.14m). With the demonstration of sub-canopy snow depth mapping capabilities a number 20 

of early applications are presented to showcase the ability of UAV-lidar to effectively quantify the many multiscale snow 

processes defining snowpack dynamics in mountain and prairie environments.  

1 Introduction 

Snow accumulation and melt are critical parts of the hydrological cycle in cold regions (King et al., 2008). To understand these 

processes there needs to be robust and accurate observation methodologies to measure the depth and density of a snowpack, 25 

and its change, across all aspects of the landscape. Unfortunately, traditional remote sensing methods struggle to quantify the 

spatial distribution of snow at a high enough resolution and accuracy to account for the fine scale interactions between snow 

and vegetation (Nolin, 2010). Remote sensing conceptually promises the capability to gather this type of data at the spatial 

scales and extents needed, but the main challenge for snow observations across a heterogeneous landscape is that exposed 

vegetation and forests obscure the underlying snow surface (Bhardwaj et al., 2016; Nolin, 2010; Tinkham et al., 2014). This 30 
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paper seeks to illuminate some of the challenges posed to UAV-based remote sensing of snow depth observations and how 

UAV-based lidar represents a promising opportunity to overcome this limitation at the small catchment scale (<5 km2). 

Capturing the spatial distribution of snowpacks and snowcover at a particular instance provides information about the 

integrated accumulation and ablation processes up to that point in time. Accurate quantification of snow accumulation and 

ablation is needed to improve the understanding of snow hydrology, test process understandings, examine spatial scaling of 35 

process interactions (Clark et al., 2011; Deems et al., 2006; Trujillo et al., 2007), and to initialise and/or validate model 

predictions (Painter et al., 2016). Snow depth, the focus of this paper, is not the variable of ultimate interest for hydrology. 

Rather, snow water equivalent (SWE) is used for snow hydrology applications (Pomeroy and Gray, 1995). Fully cognisant of 

this, the focus here is on snow depth, as it is well documented that snow depth varies much more than density (Pomeroy and 

Gray, 1995; Shook and Gray, 1996; Jonas et al., 2009; López-Moreno et al., 2013); therefore, improving the accuracy of snow 40 

depth observations in a drainage basin is critical to improving the estimation of SWE at and within basin scales.  

Snow depth and SWE observations are traditionally collected though in situ observations (Goodison et al., 1987; Helms et al., 

2008; Kinar and Pomeroy, 2015a; Sturm, 2015). In situ approaches, such as snow surveying, rely on manual sampling of snow 

depths and densities to get SWE. When conducted along landscape-stratified transects the lansdcape-scale SWE can be 

estimated (Pomeroy and Gray, 1995; Steppuhn and Dyck, 1974). The challenge for snow survey observations is that they are 45 

prone to observer bias, are labour intensive and time consuming, and are often unable to sample all aspects of a landscape such 

as avalanche zones (Kinar and Pomeroy, 2015a). Nonetheless, snow surveying is a proven approach to quantify SWE and has 

been operationalised across many regions. The practice has historical precedence and has created many long-term records 

which are a valuable data source (Goodison et al., 1987; Helms et al., 2008). Other point observations, such as snow pillows 

(Coles et al., 1985), acoustic sensors (Kinar and Pomeroy, 2009; 2015b), and passive gamma sensors (Smith et al., 2017) are 50 

valuable automated data sources, but suffer from location/elevation bias -- as demonstrated by the SNOTEL network in the 

western United States (Molotch and Bales, 2006).  In particular, measurements of snow in forest clearings will provide a much 

greater snowpack than would be found under the adjacent canopy (Pomeroy and Gray, 1995) and so are not suitable for snow 

hydrology calculations or model validations even though they are often used for just such purposes.  Other techniques need to 

be developed to capture the small-scale spatial variability of snow-vegetation interactions to advance our process 55 

understandings and validate the next generation of distributed snow models. 

Remote sensing approaches have shown promise to evaluate snow depth in open areas. Airborne-lidar and UAV Structure 

from Motion (UAV-SfM) approaches have been proven to provide snow depth mapping abilities when differencing snow-

covered (hereafter snow) and snow-free (hereafter ground) Digital Surface Models (DSM). Lidar, an active sensor, emits a 

pulse of light and detection of the reflected pulse results in a point cloud of a scene with a consistent quaility point cloud 60 

regardless of flight characteristics, wind conditions, or solar illumination. A clear benefit of lidar is that multiple returns per 

pulse can be observed with points within the canopy and at the underlying surface. In contrast UAV-SfM uses a passive RGB 

sensor where data quality is not actively controlled. This results in variable image quality because: inconsistent solar 

illumination influences image exposure; wind gusts influence platform stability leading to blurry images and inconsistent 
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overlap; and surface heterogeneity means that some areas of the domain will have more key points--points automatically 65 

detected and matched in multiple images (Westoby et al., 2012)--leading to variably in the quality of the SfM solution (Bühler 

et al., 2016; Harder et al., 2016; Meyer and Skiles, 2019).  So while SfM can provide similar quality error metrics in open 

areas the quality will vary between flights as conditions change, whereas lidar will be more consistent.  Reported snow depth 

accuracy in open environments, expressed as root mean square errors (RMSE), varies from 0.08 m to 0.60 m for airborne-lidar 

(DeBeer and Pomeroy, 2010; Harpold et al., 2014; Painter et al., 2016; Tinkham et al., 2014), 0.17 to 0.30 m for airborne-SfM 70 

(Bühler et al., 2015; Meyer and Skiles, 2019; Nolan et al., 2015), and 0.02 to 0.30 m for UAV-SfM (Harder et al., 2016; Vander 

Jagt et al., 2015; De Michele et al., 2016). A notable challenge is that the presence of exposed vegetation, especially dense 

forest, confounds SfM solutions and obscures airborne-lidar bare ground extractions which are needed for fine scale 

differencing of DSMs to evaluate snow depths or snow depth changes (Bhardwaj et al., 2016; Deems et al., 2013; Harpold et 

al., 2014). Terrestrial laser scanning (TLS) is another approach for observing high-resolution snow depth data which has been 75 

used to develop an understanding of snow depth distributions and for validating other snow depth observation methods (Currier 

et al., 2019; Egli et al., 2012; Grünewald et al., 2010; Mott et al., 2011). However, TLS has had limited contributions to 

furthering understanding of snow processes in forested areas as they are restricted to visible open terrain and forest edges 

(Currier et al., 2019). 

Most applications of remote sensing for observing snow processes have focussed on open environments. However, vegetated 80 

portions of those same environments can play a large role in landscape-scale snow hydrology. For example, wetland vegetation 

accumulates deep snowdrifts and so has an exaggerated influence on snow accumulation processes in prairie environments 

(Fang and Pomeroy, 2009). Similarly, forests constitute large fractions of the mountain domain (Callaghan et al., 2011; 

Troendle, 1983) and have very different snow processes than found in open environments (Pomeroy et al., 2002). Snow-

vegetation interactions are complex (Gelfan et al., 2004; Hedstrom and Pomeroy, 1998; Harder et al., 2018; Musselman et al., 85 

2008; Parviainen and Pomeroy, 2000; Pomeroy et al., 2001) and involve both snow interception by the canopy and wind 

redistribution to forest edges. In dense forests vegetation leads to interception and subsequent sublimation of snow resulting 

in an overall decrease in accumulation (Hedstrom and Pomeroy, 1998; Parviainen and Pomeroy, 2000; Reba et al., 2012; 

Swanson et al., 1986). In open environments, such as the prairies, tundra and alpine, wind redistribution of snow leads to a 

decrease in snow depth in exposed erodible areas and an increase in snow accumulation in aerodynamically rough surfaces or 90 

sheltered areas that act as snow sinks – this includes forest edges (Essery et al., 1999; Fang and Pomeroy, 2009; Liston and 

Hiemstra, 2011; Pomeroy et al., 1993; Schmidt, 1982). Much of the understanding of snow-vegetation interactions is based on 

snow surveys, which are limited in scale and extent. Thus approaches to systematically and efficiently quantify these dynamics 

across a drainage basin accounting for topographic and vegetation heterogeneity are needed to further develop and test our 

process understandings. 95 
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1.1 Research Questions and Objectives 

The overall motivation of this work is to understand how snow depth, as well as the processes driving its accumulation and 

ablation, varies across the complex vegetated landscapes. Better tools are needed to measure snow at scales that resolve snow-

vegetation interactions, which can involve individual trees and small forest gaps. So the specific objectives in this manuscript 

are to: 1) evaluate the ability of UAV-lidar versus UAV-SfM to quantify snow depth in open and vegetated areas, and 2) 100 

articulate challenges and opportunities for UAV’s to map sub-canopy snow depth. 

2 Data and Methods 

2.1 Sites 

Several sites from western Canada, which represent a range of surface condition and snow climates, were selected to test the 

ability of the UAV-lidar and UAV-SfM to sample snow depth in open and vegetated areas.  105 

Fortress Mountain Snow Laboratory (hereafter Fortress), in Kananaskis AB (50.833, -115.220), is a research basin operated 

by the University of Saskatchewan’s Centre for Hydrology in support of mountain hydrology research. The 5 km2 catchment’s 

elevation ranges from 2000 m to 2900 metres above sea level (m.a.s.l.). Field observations for this paper focussed on the 

Fortress Ridge (Figure 1a) which spans an open alpine environment, a larch treeline zone near 2200 m.a.s.l., and a mixed 

lodgepole pine and subalpine fir forested slope to the valley bottom at 2000 m.a.s.l. (Schirmer and Pomeroy, 2019). The area 110 

was developed as an alpine ski resort in the 1960’s, currently a limited-use ski operation without snowmaking, and some open 

ski runs remain through some of the slopes of interest.  Strong winds result in substantial redistribution of snow by blowing 

snow in this environment (Aksamit and Pomeroy, 2018) 

Two study areas in the Canadian Prairies were tested in this study. Both sites provide examples of cropland with hummocky 

terrain subject to significant blowing snow redistribution (Figure 1bc). Windblown snow from upland areas of short vegetation 115 

is often transported to lower elevation wetland depressions where it is effectively trapped by wetland vegetation. One site was 

located southeast of Saskatoon, SK (51.941 N, -106.379 W), hereafter Clavet, with the other site north of Saskatoon, SK 

(52.694 N, -106.461 W), hereafter Rosthern. The main difference between prairie sites was that Rosthern received more 

snowfall and developed a deeper snowpack than Clavet in winter 2019. Where results from both sites are aggregated, they are 

collectively referred to as Prairie hereafter. 120 
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Figure 1: a) Fortress Mountain Snow Observatory in Kananaskis, Alberta Canada, b) Clavet and c) Rosthern Prairie study locations 

in Saskatchewan Canada.  Data collection was centred on Fortress Ridge (ridgeline in middle of photograph) an area of high 

topographic variability and variability between dense forests and clearings. The Clavet scene highlights the tall dense grass and 

wetland vegetation of a wetland and agricultural land transitions.  The Rosthern scene highlights the low vertical relief and isolated 125 
woodlands amongst cultivated fields. 

2.2 Data Collection 

2.2.1 Lidar System 

The UAV-lidar system was comprised of a Riegl miniVUX-1UAV lidar sensor, integrated with an Applanix APX-20 Inertial 

Measurement Unit (IMU), and mounted on a DJI M600 Pro UAV platform (Figure 2a). The miniVUX1-UAV utilises a rotating 130 

mirror to provide a 360-degree line scan with a measurement rate of 100 KHz and up to 5 returns per shot with a 15 mm 

precision. The APX-20 provides positional accuracy of <0.05m in horizontal and <0.1m in vertical dimensions with a 200Hz 

sampling rate and 0.015 degree and 0.035 degree accuracy in roll/pitch and heading, respectively. The payload, 5 kg, 

approaches the maximum capacity of the M600 Pro platform so flight parameters to maximise mapping efficiency were set to 

7 m/s ground speed, 100 m flight altitude above the surface, with parallel flight lines 80 m apart. Flight times are conservatively 135 

limited to 15 minutes. The generated UAV-lidar point clouds have densities of approximately 75 points per square metre (pt 

m-2). 

2.2.2 Structure from Motion systems 

Coincident surface mapping with SfM used imagery collected by EbeeX or Ebee+ fixed wing UAV platforms with SODA 

RGB cameras from Sensefly (Figure 2b). The longer flight times, up to 70 minutes, associated with a lightweight payload on 140 
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a fixed wing platform allowed for efficient mapping of large areas. Overlap parameters were generally 80% for the longitudinal 

and 65% in the lateral axes. Flight altitudes of 120 m above the surface provided a ground sample distance of 2.8 cm with the 

SODA camera, which was used on both EbeeX and Ebee+ platforms. The generated UAV-SfM point clouds have densities of 

~ 110 pt m-2. 

  145 
Figure 2: UAV-lidar platform: Riegl miniVUX1-UAV mounted on DJI M600 Pro (a) and UAV-SfM platform: Sensefly EbeeX (b). 

2.2.3 Ground Validation Surveys 

The assessment of snow depth accuracy used coincident surveys of surface elevation points with differential Global Navigation 

Satellite System (GNSS) surveys and manual measurement of snow depths with a ruler. The intention of the surveys was to 

validate the spatially distributed snow depth retrievals therefore transects were random within the survey areas and selected in 150 

a manner for the surveyor(s) to efficiently sample the greatest variety of vegetation types and gradients. A Leica GS16 

base/rover kit provided a real-time-kinematic (RTK) survey solution that allows surveying of points to an accuracy of < 

±2.5cm. Post-processing of the GNSS data used the Canadian Geodetic Survey of Natural Resources Canada Precise Point 

Positioning (PPP) online tool (https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php) to define an absolute base station 

location. Post-processing adjustment of the GS16 rover points to account for the PPP base station location used the Leica 155 

Infinity software (version 2.4.1.2955). 

https://doi.org/10.5194/tc-2019-284
Preprint. Discussion started: 16 December 2019
c© Author(s) 2019. CC BY 4.0 License.



7 

 

2.2.4 Campaigns 

To assess the accuracy of these methods as well as provide insight into the snow distribution evolution over periods of time 

19 surveys were conducted over the course of September 2018 to April 2019. These are summarised by date, surface condition, 

data collected, and corresponding number of surface points in Table 1. 160 

 

Table 1: Summary of data collection campaign, Sept 2018 to April 2019 

Date 

(mm-dd) 

Surface Data Collected Site Number of Manual 

Observations 

09-07 ground lidar Rosthern 0 

09-19 ground lidar Fortress 0 

10-10 ground lidar Clavet 0 

12-13 snow lidar Clavet 0 

01-31 snow lidar,SfM Clavet 51 

02-13 snow lidar,SfM Fortress 81 

03-11 snow lidar Clavet 30 

03-13 snow lidar,SfM Rosthern 111 

03-15 snow lidar Clavet 35 

03-18 snow lidar,SfM Rosthern 81 

03-20 snow lidar,SfM Clavet 69 

03-22 snow lidar,SfM Rosthern 72 

03-24 snow SfM Rosthern 0 

03-26 snow lidar,SfM Rosthern 73 

03-29 snow lidar Rosthern 77 

04-03 snow lidar Clavet 0 

04-04 snow lidar Rosthern 0 

04-09 snow lidar Rosthern 0 

04-25 snow lidar Fortress 39 

 

2.3 Data Processing 

Snow depth was quantified as the vertical difference between a bare ground DSM and a bare snow DSM. This approach was 165 

taken regardless of whether point clouds or surface models come from lidar scanning or SfM processing. The workflows 

implemented to produce point clouds and DSMs vary between lidar and SfM approaches (Figure 3). 
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Figure 3: Data processing workflows for lidar and SfM point cloud generation. 

2.3.1 Lidar processing workflow 170 

To generate a georeferenced lidar point cloud several data streams need to be integrated in post processing. The raw high 

frequency trajectory (x, y, z, pitch, roll, and yaw) information from the APX-20 IMU was post processed with POSPAC UAV 

software, which includes a post processing kinematic (PPK) correction by integrating base GNSS data from a known point < 

2 km from flight area, to provide an absolute sensor position accuracy of <2.5 cm. The post-processed IMU data is merged 

with the scanner data within the proprietary RiProcess software package to translate the time of flight laser returns to an x, y, 175 

and z point. Finally, overlapping scan data is used to optimise the IMU trajectory, laser data accuracy is greater than the post 

processed IMU trajectory data, to align the scan lines and reduce the noise of the final point cloud within the RiPrecision tool.  

2.3.2 SfM processing workflow 

The UAV-SfM processing workflow begins with associating a high accuracy x, y, and z positon to the images taken. Within 

the Emotion 3.X software from SenseFly a PPK correction, with raw GNSS data collected at the known point base station, is 180 

applied to the photo locations to give geotag accuracies of < ±2.5 cm. The Pix4D Mapper (v 4.3.33) SfM software, with the 

“3D Maps” default options template, processed the collected imagery and post processed geotags to produce a densified point 

cloud. Within the study sites a minimum of 5 ground control points (GCP), blue 2 m x 2 m tarps with a white cross, were 

surveyed with the Leica GS16 rover and integrated into the Pix4D SfM workflow. For further details on how Pix4D implements 

SfM techniques and more generally the approach to use SfM to map snow depth refer to Harder et al. (2016) and Meyer and 185 

Skiles (2019). 
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2.3.3 Point Cloud Processing 

The points representing the ‘bare’ surface, whether that is the snow or ground surface, are of interest for snow mapping. Lidar 

point clouds comprise of returns from vegetation and the snow/ground surface, while UAV-SfM point clouds comprise returns 

from vegetation or the snow/ground surface and exhibit substantial noise around snow patch edges (Harder et al., 2016). To 190 

remove noise and vegetation points a noise removal and bare surface point classification was applied to the point clouds with 

the LAStools software (Isenburg, 2019). The lidar workflow performed a noise removal followed by a bare surface point 

classification. For ground surface lidar scans, the height of vegetation (non-ground) points was also calculated. For the UAV-

SfM point clouds, the noise removal and bare surface classification follows the workflow of Isenburg (2018).  

2.3.4 Surface interpolation 195 

A DSM was generated in order to reduce the overall volume of data and to allow for simple surface differencing. The 

‘blast2dem’ tool within the LAStools package generates a seamless triangulated irregular network (TIN) that conforms to the 

point cloud which is then resampled to a raster (Isenburg, 2019). A spatial resolution of 0.1 m was applied to all DSMs 

generated. 

2.3.5 Error Assessment 200 

To assess the accuracy of UAV-lidar and UAV-SfM with respect to observations, a surface based comparison was undertaken. 

Snow and ground surface values were extracted from the DSM raster cells for locations where a point was manually surveyed 

and snow depth measured. The snow depth was calculated from the vertical difference between the DSM values for the snow 

and ground DSM’s. The influence of vegetation height on snow depth errors was also considered by segmenting the error 

metrics with respect to vegetation height (open <0.1 m, shrub <0.5 m, and trees >0.5 m) derived from the snow-free (ground) 205 

UAV-lidar scan. The classified vegetation maps and location of all survey points are visualised in Figure 4. The error metrics 

employed to assess the differences between observations and estimates included the root mean square error (RMSE), and the 

mean bias (mb). 
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 210 

Figure 4: Fortress a), Rosthern b), and Clavet c) study sites classified by vegetation height derived from snow-free (ground) UAV-

lidar into open (<0.5m), shrub (>0.5m and <2m) and tree (>2m) domains. Red points identify locations of manual snow depth survey 

observations sampled over the course of the data collection campaign. Black lines in Fortress map are 50 m elevation contours. 

2.3.6 Point Coverage 

The continuity of bare surface point density between UAV-lidar and UAV-SfM methods was quantified in order to interpret 215 

how well the respective tools can sense sub-canopy surfaces. All surveys with coincident UAV-lidar and UAV-SfM flights 

were assessed with the LAStools (Isenburg, 2019) grid_metrics function to classify area with > 1 pt 0.25 m -2 and thereafter 

were summarised as percentage areas of each study site with >1 pt 0.25 m-2 with respect to technique.  This is a rough metric 

of DSM quality as it quantifies the relative amount of interpolation needed to translate a point cloud to a continuous surface.  

3 Results 220 

3.1 Accuracy of UAV-lidar versus UAV-SfM 

An accuracy assessment comparing the snow depth from UAV-lidar and UAV-SfM techniques to that manually sampled 

through the RTK ground surveys is shown in Figure 5. UAV-lidar has consistently lower error than UAV-SfM in open 

environments and mountain vegetation. The exception is prairie shrub vegetation where the UAV-lidar RMSE is slightly larger 

than UAV-SfM RMSE. The significance of the different relative RMSE values for Prairie shrub vegetation is negligible 225 

relative to the much larger differences noted in the other domains. UAV-lidar bias is consistently negative (-0.03 m to -0.13 

m), while the UAV-SfM bias is more variable and both positive and negative (0.08 m to -0.14 m).  
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Figure 5: Comparison of snow depth observations and UAV-based snow depth estimates. Plots are segmented for points extracted 230 
from the point clouds or interpolated surfaces (rows), sites (columns) and observation method (colours).  

The influence of vegetation on snow depth measurement is directly assessed by considering the errors associated with different 

vegetation classes (Figure 5). When considering UAV-lidar, the errors are worse in the presence of vegetation. Open Prairie 

and Fortress samples are similar (0.09 m and 0.1 m RMSE respectively), whilst vegetated sites have larger error (0.13 m to 

0.17 m RMSE) with no observed dependency upon vegetation class or type. The UAV-lidar is equally successful penetrating 235 

the open leaf-off deciduous tree canopy at the prairie sites as the closed needleleaf canopy at the Fortress site. The UAV-lidar 

RMSE for Shrub and Tree vegetation classes at Fortress and Prairie sites are within 0.04 m. For UAV-SfM the errors differ 

widely for various vegetation covers. The Open vegetation has a large RMSE range (0.1 m in Prairie and 0.3 m in Fortress 
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respectively) while vegetation RMSEs range from 0.13 m to 0.33 m. While UAV-SfM reports slightly better metrics than 

UAV-lidar in the prairie Shrub case it is within the observational error of RTK survey equipment and reasons will be examined 240 

in the discussion. The influence of vegetation type is apparent in the UAV-SFM Tree class errors where the dense needleleaf 

forest at Fortress has a higher RMSE (0.33 m) than the leaf-off deciduous trees in the prairies (0.2 m). Overall UAV-lidar tends 

to consistently have lower RMSE’s than UAV-SfM which provides confidence in this technique for mapping snow depth sub-

canopy.  

Snow depth is estimated from differencing the snow and ground DSM. Therefore, the uncertainty of the snow depth is a 245 

propagation of the error of both the snow and ground DSMs. To distinguish which DSM may contribute more to the snow 

depth error, the remotely sensed surface elevations were compared to the surface elevations from the RTK surveys (Figure 6). 

The UAV-SfM snow surface elevations have errors consistently greater than the corresponding UAV-lidar surfaces at Fortress. 

In the Prairie snow-surface case, the median RMSE is consistently lower for UAV-SfM than UAV-lidar, but the UAV-SfM 

does have more variability in its errors. The ground surface was only available from UAV-lidar for this study so no 250 

corresponding UAV-SfM ground surface analysis is available. The snow-free UAV-lidar survey has a consistently higher or 

more variable RMSE than the snow surfaces (with the exception of the Open Prairie and Open and Tree Fortress UAV-SfM). 
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 255 

Figure 6: Boxplots of RMSE of UAV estimated and RTK survey surface elevations segmented by surface condition, technique, site, 

and vegetation classification. The error metrics approach the uncertainty of the RTK survey data +/- 2.5 cm data. 

3.2 Point cloud coverage 

The quality of a remotely sensed snow depth estimate is directly tied to how much interpolation is required to fill gaps in a 

point cloud. The point clouds were classified into areas where >1 pt 0.25 m-2 existed for each technique. Examples of this 260 

approach are visualized for the Fortress, Rosthern and Clavet sites on Feb 14, March 18 and March 20, 2019 survey dates in 

Figures 7-9 respectively. At the Fortress site (Figure 7b) the large areas of lidar only points (orange) correspond to areas of 

forest cover as the UAV-SfM technique could not reliably return surface points whilst the UAV-lidar could. At Fortress UAV-
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lidar had > 1 pt 0.25 m-2 for 93% of the area of interest versus 54% for UAV-SfM.  Considering the Figure 7a transect, the 

lack of UAV-SfM points near trees means that the interpolated snow surface does not capture the tree wells, which are sharp 265 

decreases in snow depth around the base of trees, and evident from the UAV-lidar data.  The noisy UAV-SFM points in the 

middle of the slope challenge the snow surface extraction even without the presence of vegetation leading to an underestimation 

of the snow surface.  Large areas without UAV-SfM point coverage occurred northwest of the ridge in open areas due to low 

surface contrast and surface homogeneity.  
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 270 

Figure 7: Fortress Ridge (February 14, 2019) study site with an example a) cross section with all points and interpolated vegetation-

free surface (lines) for SfM-snow (red), lidar-snow (green) and lidar-ground (blue) surveys. The study area is classified by areas with 

greater than 1 pt per 0.25 m-2 in b) with respect to point clouds obtained from UAV-lidar and UAV-SfM techniques. The red inset 

polygon in b) identifies the area of the orthomosaics displayed in c) with an overlain transparent point type classification. Red line 

in c) corresponds to the cross section plotted in a). 275 
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The predominantly open nature of the Prairie sites demonstrates a minimal difference in coverage between techniques. The 

average of 5 coincident flights at Prairie sites gave UAV-lidar a mean coverage of 92% versus 83% for UAV-SfM. As seen in 

Figure 8 at the Rosthern site, the areas without UAV-lidar points include some wetland shrubs (green areas in Figure 8 b and 

c), but predominantly are randomly distributed points. In contrast, UAV-SfM is missing points from areas where the snow 

surface is very uniform, in vegetated rings around wetlands, and in areas of dense vegetation (orange areas in Figure 8 b and 280 

c). These gaps in the point clouds are interpolated during DSM interpolation and therefore will represent areas of greater 

uncertainty.  There was ponded meltwater on the surface of the frozen ground and frozen wetland water surface at the Clavet 

Site on March 20, 2019, which is responsible for the many areas missing lidar points in Figure 9b.  Water is a specular reflector 

therefore unless the lidar has a nadir perspective water areas will appear as a gap in the point cloud. Fortunately, since water 

surfaces are flat, minimal interpolation artefacts remain when generating DSMs from the point clouds if the pond edges are 285 

captured.  The challenge in the prairies, as seen in Figure 8a and 9a, is in areas of thick but short vegetation (shrub class) where 

lidar pulses and SfM solutions interpret the vegetation surface as the ground surface and therefore the remotely sensed ground 

surface, and UAV-SfM and UAV-lidar snow surface are very similar.  An additional challenge of UAV-SfM due to challenges 

in vegetation removal in bare surface generation is that large gaps appear beneath the tall wetland edge vegetation leading to 

points, as visualized by transects in Figure 8 and 9, where the estimated UAV-SfM snow surface is below the UAV-lidar 290 

ground surface. 
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Figure 8: Rosthern (March 18, 2019) study site with an example a) cross section with all points and interpolated vegetation-free 295 
surface (lines) for SfM-snow (red), lidar-snow (green) and lidar-ground (blue) surveys. The study area is classified by areas with 

greater than 1 pt per 0.25 m-2 in b) with respect to point clouds obtained from UAV-lidar and UAV-SfM techniques. The red inset 

polygon in b) identifies the area of the orthomosaics displayed in c) with an overlain transparent point type classification. Red line 

in c) corresponds to the cross section plotted in a). 
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 300 

Figure 9: Clavet (March 20, 2019) study site with an example a) cross section with all points and interpolated vegetation-free surface 

(lines) for SfM-snow (red), lidar-snow (green) and lidar-ground (blue) surveys. The study area is classified by areas with greater 

than 1 pt per 0.25 m-2 in b) with respect to point clouds obtained from UAV-lidar and UAV-SfM techniques. The red inset polygon 

in b) identifies the area of the orthomosaics displayed in c) with an overlain transparent point type classification. Red line in c) 

corresponds to the cross section plotted in a). 305 
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4 Discussion 

4.1 UAV-lidar is more accurate and consistent than UAV-SfM 

Snow depth mapping with UAVs has had widespread application in recent years (Bühler et al., 2016; Harder et al., 2016; 

Vander Jagt et al., 2015; De Michele et al., 2016). The emphasis has been on using SfM techniques to difference DSMs. One 310 

of the objectives of this work was to consider the snow depth accuracies possible with the current state of the art of UAV-SfM 

versus UAV-lidar platforms. What has been demonstrated here is that while there are still errors in UAV-lidar (as with any 

measurement), they are smaller and more consistent relative to UAV-SfM. An unavoidable problem for all SfM 

implementations, which is reflected in this work, is that SfM can only sense the surface -- whether that it is the ground/snow 

surface or the top of a vegetation canopy (Westoby et al., 2012). This makes it fundamentally inappropriate for sub-canopy 315 

mapping of snow. Sub-canopy snow depth mapping with UAV-SfM therefore becomes an exercise in interpolation between 

areas of open vegetation rather than sensing the actual snow depth under the canopy. The ability of UAV-lidar to map snow-

depths, with and without canopy cover, with RMSE’s <0.17 m is a major improvement on previous attempts.  This RMSE is 

comparable to previous efforts with UAV or airborne-SfM and airborne-lidar that have been focussed on mapping the snow 

depth of open snow surfaces by masking out forested domains. In applications of airborne-lidar to forested areas much larger 320 

errors have been reported than 0.14 m RMSE (Deems et al., 2013).  

4.2 Bare surface point cloud coverage is critical 

The point coverage of UAV-lidar is the main advantage over UAV-SfM when trying to map sub-canopy snow depth. While 

snow depth accuracy at times can be similar between techniques, the ability of UAV-lidar to sense a surface below vegetation 

is critical to develop a coherent snow surface DSM. An example of a point cloud cross-section of a UAV-SfM and UAV-lidar 325 

in Figure 7 emphasizes this point. The UAV-SfM data will have wider gaps in the point cloud beneath individual trees that 

require interpolation. Features such as tree wells, where the snow depth decreases with proximity to a tree due to 

interception/sublimation losses and radiative melting (Pomeroy and Gray, 1995; Musselman and Pomeroy, 2017), will be 

missed. An interesting dynamic of the RMSE errors is that while lidar is comparable across all the sites and vegetation 

categories, the UAV-SfM RMSE values are much greater in the mountain domain. This is attributed to interpolation artifacts. 330 

In the Prairies where topography is fairly flat, interpolation of the few gaps can give a reasonable approximation of the actual 

surfaces. In contrast mountains have much more complex topography and the interpolation of large gaps misses much of the 

small scale topography and snow-vegetation interaction features. Interpolation works better between two points that are on the 

same plane (prairies) rather than on a complex non-linear slope (mountains) and where gaps in the point cloud are smaller. 
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4.3 Lidar snow depth maps and quantifying snow-vegetation interactions 335 

The ability of UAV-lidar to map sub-canopy snow depth is established by the consistent error metrics reported as well as the 

continuous bare surface point cloud coverage. The dynamics of snow depth at snow-vegetation process-resolving scales can 

therefore be examined. Two examples are presented here to foreshadow some of the analyses available with UAV-lidar. 

4.3.1 Fortress Snow Depth Change.  

The differences between open and forest snow cover processes can be resolved by considering the difference in snow depth 340 

between UAV-lidar scans that took place February 13 and April 25, 2019 at Fortress. Over this interval there was intermittent 

precipitation totaling approximately 100 mm. Measured change in snow depth visualizes how snow-vegetation interactions 

translated this snowfall into a snow depth distribution change over a two month interval (Figure 10). The upper, open terrain 

clearly demonstrates the influence of blowing snow redistribution. In the Figure 10c transect there was accumulation of up to 

2 m over the period on lee slopes, whilst the upper windswept portions of the ridge demonstrate snow erosion. The dynamics 345 

and extents of blowing snow sources and sinks are clearly visualized, as similarly noted by Schirmer and Pomeroy (2019) 

using SfM. Considering the forest slopes brings out features that UAV-SfM cannot observe. The UAV-lidar can observe the 

increasing snow drifts in the tree line (in the krummholz and tree islands – blue areas on top of facing slope in Figure 10a). 

Within the forested (Figure 10b) transect, there is a general decline in snow depth with variability due to melt on a south facing 

slope (on left of figure), and development of a tree well in the middle of the transect. The Figure 10b transect demonstrates the 350 

lack of wind redistribution in the canopies relative to the Figure 10c transect on the ridgeline.  
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Figure 10: a) UAV-lidar derived snow depth difference between Feb 13 and Apr 25, 2019. Green and yellow lines in a) correspond 

to the forest and ridge line transect locations for cross-sections in b) and c) respectively.  Cross-section figures plot the 0.5m wide 

point cloud cross section from the September 19, 2018 snow-free scan (black points) to show the point cloud and the processed 355 
surfaces of the bare ground from September 19, 2018 (red), and snow surface from February 14, 2019 (green) and April 25, 2019 

(blue) UAV-lidar scans. 
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4.3.2 Prairie peak snow peak depth and ablation patterns 

In the prairies, wind redistribution is the main driver of snow depth spatial variability. Areas of tall vegetation accumulate 

wind-blown snow from large upwind sources areas and so are typically associated with the deepest snowpacks. In the winter 360 

of 2019, the chronology of snow, temperature, and wind events defined the final snow depth distribution (Figure 11a). The 

UAV-lidar flown on March 13 captures all of these interactions. Deep snow drifts are found in the roadside ditches (linear 

features of 1.5m snow depth on the north and north west corners Figure 11a), in the edges of wetland vegetation (>1m snow 

depths on edges of wetlands identified by green polygons in Figure 11a), and the development of a sastrugi dune complex in 

open areas (parabolic dune shapes and small scale snow depth variability in middle of Figure 11a). Areas that the UAV-lidar 365 

was able measure correspond to areas where snow depth are the deepest and have important snow-vegetation interactions.  In 

contrast UAV-SfM struggles with sensing snow depth in the short shrubs on the edges of wetlands. In the prairies, mapping of 

the areas with deep snow is critical as the deepest snow areas are the ones that dominate runoff generation and runoff 

contributing area, are critical for ephemeral wetland ecology, and have the longest snowcover duration with the related runoff 

timing implications (Fang and Pomeroy, 2009; Pomeroy et al., 2014). 370 
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Figure 11: Peak snow depth at the Rosthern site from UAV-lidar scan on March 13, 2019 a) and snow melt depth difference from 

UAV-lidar scans on March 18 and March 22, 2019 b). Snow surface near infrared (NIR) reflectance c) and snow depth change d) 

over a transect (green line in b) are plotted with a hex plot (to show variability) and smoothed line (to show mean change). Green 375 
polygons in a) highlight wetland areas. 

Prairie snowpacks are shallow, leading Harder et al. (2016) to conclude that UAV-SfM was unable to capture snow ablation 

patterns as the signal to noise ratio in the open domain was too large and vegetated area errors were not considered. With the 

demonstrated ability of UAV-lidar to consistently map shallow snow in open areas and deep snows in the vegetated areas this 

can be reattempted. Consider the difference in snow depth between March 18 and 23 (Figure 11b) which represents the earliest 380 

part of the active melt period in this particular snowmelt season. Two examples of the spatial variability of process interactions 

can now be visualized at the appropriate resolutions. First, the spatial variability of albedo is a major driver of snowmelt. The 

greatest melt occurs alongside the gravel-covered “grid” roads in the ditches where road dust significantly lowers the albedo 
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thereby accelerating melt of the deep snowpacks. Moving eastward from the road ditches into the open fields there is a decrease 

in snowmelt depth in the overall scene, visualized in the Figure 11d transect. This pattern is due to the redistribution of dust 385 

from the grid roads to the open field snow surface by the prevailing westerly winds. A snow surface dust concentration gradient 

develops over the winter with higher concentrations of dust in the west than the east. Near-infrared (NIR) reflectance data, a 

proxy for snow surface albedo from a coincident multispectral UAV flight part of a separate study and not discussed further, 

demonstrates an increase in albedo (Figure 11c). This increase in albedo corresponds to a decrease in snowmelt rate (Figure 

11d), easterly away from the grid road. The gradient in dust and albedo describes the increases in snowmelt rates downwind 390 

of the grid road. Second, the spatial variability of snowpack cold content influences melt rates in the early part of the melt 

season. Within the agricultural field, the sastrugi drifts are not melting – due to the larger cold content of the deep cold 

snowdrifts relative to the smaller cold content of the shallower surrounding snowpacks. This is also prevalent in the non-

melting deep snowdrifts at the vegetated wetland edges. With UAV-lidar, a complete picture of the early and asynchronous 

snowmelt processes is possible. If reliant on UAV-SfM the interpolation needed to fill gaps in the point cloud, near vegetation 395 

and tops of the sastrugi, will obscure the full spatial pattern of snow depth change that conveys the heterogeneity of ablation 

processes. The high spatial resolution and vertical accuracy of UAV-lidar is required to capture these spatial patterns as the 

length scales of the snow surfaces features of interest are small, i.e. sastrugi drifts are on metre scales, and their changes at 

daily timesteps are at the centimetre scale. 

The processes visualized in the Fortress and Rosthern examples are not new, but the value of UAV-lidar is that spatial patterns 400 

and changes can be observed across complex landscapes and vegetation gradients with a consistent resolution and accuracy. 

UAV-lidar will therefore be a powerful tool to understand the landscape scale snow-vegetation interactions as well as make a 

core contribution to the validation and improvement of distributed modelling of snow processes.  

4.4 Are the costs and logistics of UAV-lidar worth it? 

UAV-lidar, relative to UAV-SfM, provides a superior observation of snow depth below vegetation canopies but it does come 405 

at a higher cost and logistical complexity. There are many similarities between approaches and one commonality is that both 

UAV-lidar and UAV-SfM require access to a GNSS solution to geolocate point clouds in absolute space.  The Leica GS16 

package used here is on the expensive side of the spectrum ($70,000 CAD) and cheaper products, subscription to virtual 

reference station networks if available in the study area, or equipment rentals are all viable alternatives to lower costs.  The 

main cost difference is therefore in terms of the sensor type.  A plethora of UAV-SfM options with and without RTK or PPK 410 

photo geotagging are available and can range from small inexpensive systems like a consumer grade UAVs (DJI Phantom 3 < 

$2,000 CAD) or more expensive options like the Sensefly EbeeX PPK system ($30,000 CAD) used here. Current integrated 

lidar systems suited to snow mapping (laser wavelengths < 1000 nm, small size, weight, and power requirements, and absolute 

errors < 5 cm) remain an order of magnitude more expensive than UAV-SfM. The cost of the complete UAV-lidar system 

(lidar, IMU, software suite, and UAV) used here approached $300,000 CAD.  New and cheaper UAV-lidar sensor options are 415 

coming to market all the time, largely driven by the sensing advances coming from development of autonomous vehicles, but 
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these need testing and still require high grade IMU/GNSS solutions to allow for absolute geolocation of point clouds. An 

underappreciated aspect of UAV-lidar is that the IMU/GNSS solutions can often be more expensive than lidar sensor itself. 

The additional cost of UAV-lidar to increase sub-canopy snow depth accuracy in dense forest situations in this application can 

be simplified to $15,000 CAD per cm reduction in RMSE (difference in equipment costs/difference in Fortress-Tree RMSE).  420 

Logistical differences between UAV-lidar and UAV-SfM are more subtle than the stark cost difference. UAV-SfM simply 

requires a UAV platform and camera in its basic configuration and therefore high endurance, small platforms, with small 

batteries can be easily deployed to map large areas.  In contrast UAV-lidar needs larger platforms that require more cycles of 

large battery sets to cover similar areas which represents a logical challenge in cold and remote areas. Previous UAV-SfM 

experience (Harder et al., 2017) demonstrated the need to utilise GCPs even with PPK/RTK photo geotagging to minimise the 425 

bias error metric.  The low bias of UAV-lidar errors, without assimilating GCPs, removes the need to deploy GCPs for UAV-

lidar applications which can be a large time sink. Data processing software suites and workflows are distinct but ultimately the 

same level of geomatics expertise is needed to generate useable information. Despite the lower cost and simpler logistics the 

errors and artefacts that UAV-SfM introduce in the sub-canopy domain, as detailed in sections 4.3.1 and 4.3.2, results in the 

noise obscuring the signal (Harder et al., 2017) particularly in dense forest situations. If accurate sub-canopy snow depth is 430 

required UAV-lidar is the superior option and therefore worth the added logistics and costs.  

4.5 Ongoing Challenges and Future Research Needs 

The ability of UAV-lidar to resolve sub-canopy snow depths is not without challenges. Precise classification of surface points 

from snow and ground scans is needed to resolve the snow depth at the resolution to confidently capture snow-vegetation 

interactions. The accuracy and resolution demands mean that bare surface classification techniques suitable for airborne 435 

platforms that efficiently resolve topography and hydrography at watershed scales from last returns will be unsuitable for 

resolving the snow depth around a particular shrub from a dense point cloud for example. Sub-canopy snow depth mapping 

requires careful selection of the appropriate point cloud classification and filtering tools and associated parameters to achieve 

desired quality and precision in a final point cloud. To preserve the small-scale surface variability point cloud processing will 

be less efficient as all points need consideration and the focus on small-scale features will at times lead to erroneous inclusion 440 

of points representing large scale non-surface objects. The algorithm and parameters decisions also have to be adjusted for 

each flight and site/environment for UAV-SFM due to the variable quality and noise of the generated point cloud.  

An especially challenging feature in resolving a ground surface is the presence of low and dense vegetation such as shrubs and 

wetland reeds. This is evident in looking in the centre of the wetland zones (green polygons) of Figure 11a where there are 

negative snow depths calculated. In this case, the lidar pulses cannot penetrate the dense vegetation to the underlying ground 445 

surface and the classified bare ground surface points have a positive bias.  As snow accumulates, the reeds compress and shrubs 

bend over to the extent that the corresponding snow surface is below the biased bare ground surface. In the examples presented 

above, the areas of negative snow are limited to areas where snow depth is shallow and are not as critical to capture as the deep 

snow in the wetland edges. This challenge might also be apparent in other regions, such as the Arctic tundra, where shrub 
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bending and burial by snow has been extensively documented (Pomeroy et al., 2006; Sturm et al., 2005). While shrubs are 450 

much sparser than wetland reeds their dynamic change in height and potential to bias positively the ground surface extraction 

will increase uncertainty of snow depth estimation in hydrologically significant snow accumulation areas. More powerful 

lasers and higher scan rates may be possible to increase point cloud density and penetration to the ground surface but leads to 

sensors that may exceed capabilities of most UAV platforms. Advances in bare surface classification software tools to address 

the large noise associated with low and dense vegetation is an obvious avenue of improvement. This avenue is inherently 455 

limited, as even a perfect bare surface extraction algorithm will not identify points at the ground surface if pulses cannot 

penetrate to the ground surface. The time of year chosen for the ground surface scan, ideally right after snowmelt when 

vegetation is at its lowest and not growing yet, may minimize errors. Unfortunately, this may not be feasible if the critical 

wetland areas are inundated as is often the case in the Canadian Prairies in spring. 

Mapping sub-canopy snow depth is important but the ultimate variable of interest is SWE. The challenge is that at snow-460 

vegetation interaction scales there may be significant variability from snow pack densification being driven by different 

processes across a landscape (Faria et al., 2000). Densification from wind packing is prevalent in open areas versus 

metamorphic densification due to temperature gradients in sheltered sub canopy areas (López-Moreno et al., 2013). Current 

methods of modelling or measuring snow density are not without problems at these small scales. Modelling snow density will 

impose conceptual understandings of these processes (Painter et al., 2016) which may be inappropriate for the small scale 465 

features that need to be represented – these may miss mechanical densification from snow clumps unloading or dripping from 

the canopy for example.  Observational approaches are also a challenge as typical in situ measurements are destructive, limited 

in extent, and often too limited to develop robust relationships of depth versus density at the small scales needed (Kinar and 

Pomeroy, 2015a; Pomeroy and Gray, 1995). Opportunities may be available to pair UAV-lidar with other UAV-borne sensors 

such as passive gamma ray or snow acoustics (Kinar and Pomeroy, 2015b) to develop higher resolution estimates of snow 470 

density.  

5 Conclusions 

Remote sensing techniques to determine snow depth have consistently been challenged by the presence of vegetation. This has 

complicated efforts to observe and understand snow-vegetation interactions at the necessary spatial scales. This work directly 

considers emerging UAV-lidar and UAV-SfM techniques to address this gap in observational capacity. Based upon extensive 475 

data collection at a variety of sites and snow conditions with varying snow-vegetation processes, the ability of UAV-lidar to 

measure sub-canopy snow depth is demonstrated. UAV-lidar provides snow depth estimates with RMSE’s <0.1 m in open 

areas and <0.17 m in vegetated areas. The UAV-lidar metrics consistently exceed the UAV-SfM metrics and are better than 

previously reported results in the airborne-lidar and UAV-SfM literature. The ability of UAV-SfM to measure snow depth in 

open areas is validated with respect to the growing body of literature and reconfirms that UAV-SfM is fundamentally 480 

inappropriate to sense sub-canopy surfaces. The clear advantage of UAV-lidar is that, as an active sensor, it provides a high 

https://doi.org/10.5194/tc-2019-284
Preprint. Discussion started: 16 December 2019
c© Author(s) 2019. CC BY 4.0 License.



27 

 

point cloud density that is unaffected by surface homogeneity and allows for reliable bare surface detection. With UAV-lidar 

we can now confidently observe sub-canopy snow depth at centimetre scales needed to examine snow-vegetation interactions 

at research catchment extents (ie <5 km2). UAV-lidar is an emerging tool that will contribute to improving basin-scale snow 

accumulation estimates, validation and parametrisation of distributed snow models, and enhancing snow vegetation interaction 485 

process understanding over the landscape scale. 
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