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Abstract

There is growing evidence to suggest that small energetically favourable clusters play an

important role in the thermodynamics and dynamics of liquids. However, identifying and

quantifying favoured local structures (FLS) in real liquids remains a challenge. Ronceray

and Harrowell[ EPL, 96 (2011) 36005] developed a simple spin lattice model that explore the

effects such structures have on the properties of the liquid and their ability to freeze. By

selecting different FLS, they found the model froze to an array of different crystal structures

with varying unit cell sizes and complexities through a range of strong and weak first order

transitions. This thesis explores how complex structures are formed through nucleation and

contrasts the nucleation mechanism of the {1, 5} FLS model, which exhibits a weak first

order transition, with that of the {3, 3} FLS model, which freezes through a strong first

order transition. Monte Carlo simulation and the mean first passage time method were

employed to calculate the nucleation rate and identify the nature of the critical nucleus for

the FLS model systems. The {1, 5} FLS system accumulates a significant amount of solid-like

structure in the metastable liquid phase prior to freezing. As a result, the supercooled liquid

contains large equilibrium solid-like clusters that fluctuate in size prior to nucleation. After

visualization of the spins, the {1, 5} FLS system showed that the system forms a structure

close to that of the crystal before crystallization. In contrast, the {3, 3} FLS system forms

most of its structure during the transition process. The energy barrier for the {3, 3} FLS

system was found to be higher than that observed for the {1, 5} FLS system. This work

examines the role the symmetry and structural correlation of the FLS might play in the

different freezing and nucleation behaviours of the two systems.
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Chapter 1

Introduction

1.1 Overview

Nucleation is the initial process that controls the formation of new materials such as the

crystallization of a solid from solution, the condensation of liquid from a vapour or the self-

assembly of viral capsids [1]. Structure formation begins with a small number of molecules

coming together to form a seed particle in a pattern characteristic of the new phase and once

this seed has reached a critical size, the material forms spontaneously. Classical nucleation

theories have been successful in describing the formation of simple materials but they fail

to describe the nucleation of complex materials that form different local structures, which

are then organized over multiple length scales. For example, colloidal photonic crystals

developed for light harnessing [2], materials in CdTe solar cells and zeolites used for catalysts

in the petroleum industry and purification/separation technologies [3, 4], all exhibit complex,

large unit cells in their crystal structures that are formed from a variety of different local

molecular arrangements. These are then structured and organized over many nanometers

to form pore structures, or ordered layers. It is clear that a deep understanding of how

to control structure formation is essential to our ability to produce high quality, complex

materials for applications in energy and separation technologies.

This work addresses the differences in the nucleation mechanism for strong and weak

first order phase transitions and how differences in the symmetry of local structures that

make up a crystal, often referred to as favoured local structures (FLS) because they have

low favourable energies, affects nucleation mechanisms. The remainder of the introductory

chapter discusses nucleation, which involves forming clusters of a new phase in the presence

of a mother phase. Classical nucleation theory, which is the most common model used to
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understand nucleation models, will be reviewed along with the kinetics and thermodynamics

of nucleation. A spin lattice model that was developed by Ronceray and Harrowell [5] is

chosen as the system to address the questions above. The chapter also describes these spin

models, which contains energetically favourable local structures and their contribution to

glass and crystal formation. The work described in this thesis focuses on two of these models

denoted the {1, 5} FLS and the {3, 3} FLS systems. These were chosen because they show

significant differences in their freezing behaviour . They also show significant differences in

their symmetry. To examine these systems, the mean first-passage time (MFPT) method,

proposed by Wedekind [6], was employed to calculate the rate of nucleation, the size of the

critical embryo, the Zeldovich factor and the nucleation barrier. The MFPT method and

the importance of the free energy barrier to nucleation are explained in this chapter.

1.2 Stability, Metastability and Phase Transitions

Consider the process of compressing a gas along an isotherm. Above the critical temperature

T > Tc, the pressure increases continuously as a function of decreasing volume, as shown

in Figure 1.1a. Below Tc, the isotherm exhibits a first order transition from the gas to the

liquid phase that is characterized by a discontinuous change in the volume at a constant

pressure, denoted by the b− b′ line in Figure 1.1a. The pressure then increases rapidly once

the system is in the condensed phase. At the equilibrium coexistence point, the temperature,

pressure and chemical potential of the two phases are equal and in the single phase regions

the equilibrium phase has the lowest chemical potential (see Figure 1.1b).

However, experiments show that first order phase transitions do not always occur exactly

at the equilibrium point between two phases. For example, gases can be compressed below

the gas-liquid equilibrium density without condensing to form a supersaturated vapour.

Liquids can also be cooled below their equilibrium melting temperature without freezing to

form what is known as a supercooled liquid. In fact, most water in clouds exists in the form

of supercooled liquid droplets [7].

2



Figure 1.1: Phenomenological picture of metastability in vapour liquid equilibrium adapted

from P. G. Debenedetti [7]. The blue line is the binodal, while the red line is the spinodal,

b and b′ are equilibrium states on the binodal, c is the binodal, e and f are the limits of

stability. T is the temperature and Tc is the critical temperature.

P

P1

V

b
d

b'

c

f

e

T<Tc

T=Tc
T>Tc

(a)

P1 P

µ

f

e

T1

b = b'

(b)

3



The states beyond the equilibrium points are metastable extensions of a phase beyond

the equilibrium phase transition. To understand their properties and their relations to

thermodynamic quantities, it is necessary to consider the effect of fluctuations around a

local equilibrium point. A macroscopic body that cannot interact with its surroundings is

known as an isolated system and cannot exchange mass, heat or do work on its surroundings.

The second law of thermodynamics states that the state of entropy of the entire universe, as

an isolated system, will always increase over time for a spontaneous process and will reach

a maximum at equilibrium. For a system that is in equilibrium, any process that disturbs

the equilibrium via a fluctuation must satisfy the equation,

[∆S]U,V,N ≤ 0, (1.2.1)

where S is the entropy, U is the internal energy, V is the volume and N is the number

of moles of the system. ∆S is the change of the entropy caused by the fluctuation. This

equation can be rewritten as,

[∆U ]S,V,N ≥ 0, (1.2.2)

which indicates that the internal energy is a minimum at equilibrium, so fluctuations away

from equilibrium cause U to increase. The effect of a fluctuation can be explored by con-

sidering an expansion around the equilibrium point. Using a Taylor expansion, the energy

variation can be expanded as,[
δU +

1

2!
δ2U +

1

3!
δ3U + . . .

]
S,V,N

≥ 0. (1.2.3)

At a minimum, a vanishing linear and positive second order term exists for a stable equilib-

rium when considering all variations at constant S, V,N . This gives

δU |S,V,N = 0, and δ2U |S,V,N > 0. (1.2.4)

It shows that fluctuations away from equilibrium are restored to their initial equilibrium

position. The system is in an unstable equilibrium when both terms equal zero,

δU |S,V,N = 0, and δ2U |S,V,N = 0. (1.2.5)

This represents the point where the energy surface is flat so there is no restoring force and

fluctuations will continue to grow.
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The internal energy at constant temperature, T , pressure, p, and chemical potential, µ,

are given by the fundamental equation

dU = TdS − pdV + µdN. (1.2.6)

This relates to changes in energy, entropy, volume and number of molecules of a single com-

ponent fluid along a reversible path. For an n−component mixture, the equation becomes

dU = TdS − pdV +
n∑
j=1

µjdNj. (1.2.7)

Equations 1.2.6 and 1.2.7 can be written in a general form as,

dU =
n+2∑
j=1

YjdXj, (1.2.8)

where X represents the natural independent extensive variables for energy (entropy, volume,

number of moles), and Y corresponds to the conjugate intensive variables (temperature,

minus pressure, chemical potential), thus, [X, Y ] = [S, T ;V,−P ;µi(i = 1, ...n)]. By taking

partial derivatives, we obtain the conjugate intensive variables,

Yj =

(
∂U

∂Xj

)
X1,X2......,Xj−1,Xj+1.......Xn+2

. (1.2.9)

The right hand side of Equation 1.2.4 can be written as,

(
∂Yn+1

∂Xn+1

)
Y1,Y2......,Yn,Xn+2

> 0. (1.2.10)

When a macroscopic system satisfies Equation 1.2.10, the system is said to be in stable or

metastable equilibrium. Once the limit of stability is reached,(
∂Yn+1

∂Xn+1

)
Y1,Y2......,Yn,Xn+2

= 0. (1.2.11)

These equations are valid for confirming stability of a homogenous fluid system with respect

to the appearance of a new phase. For example, in a single component system, taking

(N, V, S) as the variables Equation 1.2.10 gives

(N, V, S) =⇒ −
(
∂P

∂V

)
> 0. (1.2.12)
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In the context of the gas liquid transition, Equation 1.2.12 shows that the gas phase

remains metastable at volumes below the equilibrium point until the limit of stability (spin-

odal) is reached at the maximum in the Van der Waals equation of state. The same analysis

can be carried out for other thermodynamic potentials, such as the Helmholtz (N, V, T ) and

Gibbs (N,P, T ) free energies. A similar analysis also applies to other phase transitions, such

as the liquid-crystal freezing transition, which is the focus of the current thesis. However,

the existence of a spinodal-like limit of stability of the liquid phase is unlikely because the

liquid and crystal phases have different fundamental symmetries.

In the metastable region, State A shown in Figure 1.2, the system is locally stable to

small fluctuations, but large fluctuations will allow the system to find the stable energy

minimum (State B). This implies that there is a barrier between the metastable and stable

states that must be overcome. It also highlights the fact that metastable states must have

a finite lifetime because a large enough fluctuation will eventually appear in the system as

described in Figure 1.2.

State A State B

F
re

e
 e

n
e
rg

y

Metastable
equilibrium

Unstable
equilibrium

Nonequilibrium

Stable
equilibrium

Phase space coordinate

Figure 1.2: Illustration of the evolution of a system from a metastable equilibrium state

(State A), via an unstable equilibrium to a stable equilibrium state (State B). Adapted from

figure 4 in reference [8].
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1.3 Nucleation

Nucleation involves forming clusters of a new stable phase in the presence of a metastable

mother phase. These clusters can be formed in both sub-saturated and supersaturated

conditions. If the mother phase is sub-saturated, the clusters form but are unstable and

disappear but if the mother phase is supersaturated, the clusters that are formed need to

exceed a certain minimum size before they grow spontaneously into the new stable phase.

The volume of the newly formed phase is proportional to the free energy decrease associated

with moving material from the metastable phase to the more stable phase. On the other

hand, forming a new phase implies the formation of an interface between the mother phase

and the new phase. This proportionally increases the energy to the area of the interface. The

first comprehensive study of thermodynamics of the nucleation process was by Gibbs [9], who

revealed that the reversible work required to form a nucleus of a new phase comprises two

terms, a bulk and a surface term. Becker and Doring [10] derived an expression for the rate

of formation of critical clusters. Volmer and Weber [11] came up with the first nucleation

rate expression, arguing that the nucleation rate should be proportional to the frequency of

collisions between the critical clusters of the new phase and the vapour molecules. Zeldovich

[12] and Frenkel [13] expanded on nucleation work done earlier. Their work together forms

what is now known as classical nucleation theory(CNT). This has become the standard simple

theory for nucleation of a new phase, such as a liquid or a crystal. Classical nucleation theory

has excelled at describing simple materials but has failed to describe complex materials. For

example, although CNT could estimate critical supersaturations in vapour-liquid systems,

the nucleation rates are off by many orders of magnitude and CNT fails both quantitatively

and qualitatively to describe binary nucleation in water-rich aqueous alcohol or acetone

mixtures since the composition of the nucleus was incorrectly predicted [14].

1.3.1 Kinetic Model for Cluster Formation

For a cluster, En, formed from n molecules, it is assumed that adding or removing a single

molecule, E1, causes the cluster to either grow or shrink in a series of bimolecular reactions:

En−1 + E1

k+(n−1)−−−−−⇀↽−−−−−
k−(n)

En, En + E1

k+(n)−−−−−⇀↽−−−−−
k−(n+1)

En+1, (1.3.1)
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where k+(n) represents the rate of addition to an n-sized cluster, while k−(n) is the rate of

single molecule loss. This process of monomer addition and loss to a cluster is represented

in Figure 1.3.

Considering a system of coupled differential equations, the description of change in the

population of an embryo of a given size, n, at time, t, may be written as,

∂N(n, t)

∂t
= N(n− 1, t)k+(n− 1)−N(n, t)(k+(n) + k−(n)) +N(n+ 1, t)k−(n+ 1), (1.3.2)

where N(n, t) is the number density of embryos having n-monomers at time t. The nucleation

rate past a cluster size n, J(n, t), represents the time-dependent flux of clusters past that

size and is written as,

J(n, t) = N(n, t)k+(n)−N(n+ 1, t)k−(n+ 1). (1.3.3)

The nucleation rate in the above equation has dimensions of inverse time, and is proportional

to the total number of molecules in the system.

k1+ k2+ k3+

k2- k3- k4-

Figure 1.3: Growth and decay of a cluster occurs through a series of bimolecular reactions.
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In the context of vapour condensation, the forward rate of monomer addition to a cluster

can be obtained from kinematic consideration of the gas phase, and is directly related to

the vapour pressure. However, the rate constant associated with the loss of a monomer is

independent of the pressure, and is a property of the cluster that is unknown. By assuming

detailed balance, the backward rate can be obtained in terms of the equilibrium populations

of the clusters and the forward rate. In crystal nucleation, both forward and backward

rates are unknown. Nevertheless, the equilibrium hypothesis forms one of the essential

assumptions in classical nucleation and can be described as follows. Consider a well defined

problem like a chemical species A reacting to give a new species B, with a forward rate

constant k+
A and for the reverse, k−B . The rate of change of A is given by,

dXA

dt
= −k+

AXA + k−BXB, (1.3.4)

where XA and XB are mole fractions of species A and B, respectively. For a closed system,

XA and XB become constant after some time, so at equilibrium, dXA/dt = 0. Having the

forward rate and the equilibrium mole fractions of A and B makes it relatively simple to

obtain the reverse rate,

k−B = k+
A

Xeq
A

Xeq
B

. (1.3.5)

By using the constrained equilibrium hypothesis, which states that the embryos evolving

from the metastable phase cannot grow beyond a certain limit size, and assuming microscopic

reversibility at equilibrium, the net rate must be zero. The backward rate for the cluster

growth can therefore be expressed in terms of the forward rate as

k−(n+ 1) = k+(n)
N eq(n)

N eq(n+ 1)
. (1.3.6)

where N eq(n), is the equilibrium cluster size distribution.

1.3.2 Classical Nucleation Theory

It is still necessary to obtain an expression for the equilibrium number of clusters before an

expression for the rate can be obtained. The metastable state of a system contains thermal

fluctuations. When the nucleation barrier is high enough compared to the thermal energy,

N eq(n) ∝ exp

(
−∆Gn

kBT

)
, (1.3.7)
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where ∆Gn is the (minimum) reversible work needed to form an n-molecule embryo. Because

in principle, there should be no work associated with the formation of a single molecule em-

bryo, the proportionality constant should equal the number density of unassociated molecules

in the bulk metastable phase. Therefore,

N eq(n) = N0exp

(
−∆Gn

kBT

)
, (1.3.8)

where N0 is the number of the monomers, or isolated molecules.

Taking into account the sequential formation of embryonic liquid droplets in a super-

saturated vapour, as described in Equation 1.3.1, the unimolecular steps resulting in the

formation of these droplets are considered to be at equilibrium. The chemical potential for

a droplet with n molecules, µn, can therefore be written as

µn = nµ1, (1.3.9)

where µ1 is the chemical potential per molecule in the bulk vapour. The embryos are treated

as distinct molecular species of an ideal gas mixture, because of this assumption, it follows

that

µn = λn(T, υ) + kBT ln
N eq(n)∑
N eq(n)

, (1.3.10)

where λn is the chemical potential of an n-sized embryo when it is the only species present,

υ is the bulk specific volume and N eq(n) is the concentration of n-molecule droplets. The

concentration, N eq(n), becomes

N eq(n) =
[∑

N eq(n)
]
exp

[
nµ1 − λn
kBT

]
. (1.3.11)

Comparing Equation 1.3.11 with Equation 1.3.8 implies,

∆Gn = λn − nµ1, (1.3.12)

where λn = nµ−A(n)σ, and µ is the chemical potential of the stable phase and A(n) is the

area of the cluster interface, and σ is surface tension. Classical nucleation theory assumes

steady state conditions, where the distribution of clusters of different sizes is independent of

time. The total steady state nucleation rate obtained by performing a recurrent summation

over all embryo sizes present is given by,

J = Ntot

[
nmax∑
nmin

1

k+
(n)N

eq(n)

]−1

, (1.3.13)
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where Ntot is the total number density of embryos, nmin and nmax are the smallest embryo

size and largest embryo size in the cluster distribution, respectively.

Replacing the summation in Equation 1.3.13 by an integral and using Equation 1.3.8

gives,

J = k+
(n)Ntot

[∫ nmax

n=nmin

1

k+
(n)N

eq(1)
exp

(
∆G(n∗)
kBT

)
dn

]−1

. (1.3.14)

where n∗ is the critical nucleus. The major contribution to the integral comes from a

narrow size range centred around the location of n∗, where the distribution exhibits a sharp

maximum. Approximating the free energy around the location of n∗ gives,

∆G(n) ≈ ∆G(n∗) +
1

2

d2∆G(n)

dn2
|n∗(n− n∗)2. (1.3.15)

The nucleation rate then becomes

J = k+
(n)NtotN

eq(1)exp

(
∆G(n∗)
kBT

)[∫ ∞
0

exp

(
1
2
d2∆G(n)
dn2 |n∗(n− n∗)2

2kBT

)
dn

]−1

. (1.3.16)

Some of these fluctuations may reach and overcome the critical size, which leads to growth of

the cluster to become more stable. Classical nucleation theory assumes the system reaches a

steady-state whose nuclei appears at a rate described by evaluating the integral in Equation

1.3.16 to give,

J = k+
(n)ZNtotexp

(
−∆G(n∗)

kBT

)
, (1.3.17)

where Z is the Zeldovich factor, which is a function of the second derivative of the cluster

formation free energy at the critical size,

Z =

√
− 1

2πKBT

δ2∆G

δn2
|n=n∗. (1.3.18)

This factor was introduced by Becker and Doring [10] to describe the cluster fluctuations

around the critical size. The number of critical clusters that reach a size that is large enough

to grow continuously is given by ZNtotexp
(
−∆G(n∗)

kBT

)
. Volmer and Weber [11] and Farkas[15]

did not consider the Zeldovich factor in their work which resulted in an overestimation of

the nucleation rate. The Zeldovich factor therefore characterizes the flatness of the energy

profile around the critical size.

The key feature of classical nucleation theory is that it uses the constrained equilibrium

hypothesis, involving detailed balance, to transform the nucleation rate from a kinetic prob-

lem into one that is amenable to thermodynamic analysis. The minimum reversible work
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of forming a cluster can then be calculated in a number of different ways, including simple

classical thermodynamics or computer simulation.

1.3.3 Thermodynamics to Nucleation Free Energy Barrier

The free energy barrier to nucleation can be estimated by treating the droplet of the new

phase as being composed of a bulk core surrounded by an interface [7]. At constant temper-

ature, pressure, and number of particles, the Gibbs free energy is the appropriate thermo-

dynamic potential for the reversible work of a process. The change in free energy associated

with the formation of a nucleus is the sum of a bulk term and a surface term,

∆G(n) = ∆µn+ σA(n), (1.3.19)

where ∆µ is the chemical potential difference between the two phases involved, n is the

size of the cluster, A is the surface area of the embryo and σ is the surface tension of the

interface. The first term is equivalent to the total free energy associated with the formation

of the nucleus of the new phase, while the second represents the free energy gain due to the

formation of the new interface. It is usually assumed that the cluster is a sphere of radius,

r, because this is the shape that minimizes the surface area of the cluster, and that the new

phase is a uniform density, ρ, with a sharp interface between the cluster and the surrounding

mother phase. Equation 1.3.19 then becomes,

∆G(r) =
4

3
πr3ρ∆µ+ 4πr2σ. (1.3.20)
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Figure 1.4: Classical Nucleation Theory. The solid line represents ∆G(r), given by equation

1.3.20, which is the sum of the surface term (dashed line) and the volume term (dash-dot

line).

G

Figure 1.4 shows the free energy of nucleation as a function of the nucleus radius, r,

as envisioned by classical nucleation theory. The positive term is the cost of forming the

new phase, and is proportional to the surface area of the new phase. The surface area for

a spherical nucleus is given by 4πr2. To obtain the surface free energy, this is multiplied

by the surface tension of the new phase, assuming it is a sharp interface with the surface

tension of a flat bulk liquid-vapour interface at the coexistence. The negative term is related

to the lower free energy of the most stable phase with respect to the metastable phase. This

term is obtained by multiplying the number of particles in the nucleus with the difference in

chemical potential between the two phases and noting n = 4
3
πr3ρ.

The competition between the negative and positive terms leads to the formation of a

critical barrier with a critical cluster size, and it highlights how the metastable state is

stabilized. Fluctuations that lead to the formation of clusters smaller than the critical size

lower their free energy by shrinking back into the uniform mother phase. If a cluster greater

than the critical size is formed, it lowers its free energy by spontaneously growing into a

droplet of the new stable phase. The nucleation rate is then the rate at which clusters pass

over the nucleation barrier and is usually measured as the number of clusters formed per
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unit time per unit volume.

Classical nucleation theory is based on several assumptions that may be violated under

certain circumstances. It assumes nucleation is a one step process, where only one free en-

ergy barrier is relevant, and the nucleus forming in the metastable phase consists of only

a small piece of the thermodynamically stable phase. It has been known that during crys-

tallization, the structural composition of crystalline clusters changes as they become larger.

The chemical potential difference is assumed constant in classical nucleation theory but it

may be a function of crystal size, depending on the structure of the small cluster, although

the exact relation is not known. The formation of intermediate phases during crystallization

has also been noticed for many systems including small molecules, proteins and ice. Also,

the spherical nucleus is a good approximation for the gas liquid phase, but crystals have

facets, with different surface free energies, etc. This leads to the need to use the Wulff [16]

construction, where the surface free energy term involves a sum over the facets with the

equilibrium shape of the crystal. However, despite these draw backs, CNT remains the most

widely used approach to study nucleation.

1.4 Molecular Monte Carlo Simulation Methods

The Monte Carlo method was originally developed by von Neumann, Ulam and Metropolis,

at Los Alamos [17], to study the diffusion of neutrons in nuclear materials, and has since

become one of the essential computer simulation methods used to study a wide range of

molecular systems [18, 13], including many spins systems [19, 20]. The method gets its name

from the extensive use of random numbers that help evaluate integrals, such as the partition

function found in statistical mechanics. However, rather than the direct evaluation of an

integral, the Metropolis MC algorithm focuses on producing a trajectory in phase space that

samples from a particular statistical mechanics ensemble and allows for the calculation of

average properties of a system.

In a classical system, the canonical partition function for a system of N identical particles,

in a volume V , at a temperature T , can be written as

Q = c

∫
dpNdrNexp[−Ĥ(rN , pN)/kBT ], (1.4.1)

where rN represents the particle coordinates, pN represents their corresponding momenta,
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c = 1/h3NN !, h being Planks constant, and H(pN , rN) = K(pN) +E(rN) is the Hamiltonian

for the system with kinetic energy, K, and potential energy, E. The kinetic energy is a

quadratic function of the momenta, and independent of the position of the particles, so it is

possible to integrate over these degrees of freedom to obtain

Q = (1/N !)Z/Λ3N , (1.4.2)

where Λ = (2πmkT/h2)1/2 is the de Broglie wavelength and Z is the configurational integral,

Z =

∫
drNexp[−βE(rN)]. (1.4.3)

An average quantity in statistical mechanics is then given by,

< A >=

∫
drNexp[−βE(rN)]A(rN)

Z
. (1.4.4)

The metropolis method provides an efficient method for the evaluation of two integrals in

Equation 1.4.4 by using importance sampling. The goal of importance sampling is to draw

a sample from a proposal distribution and re-weight the integral using importance weights

so that the correct distribution is targeted. In this case, the method samples regions of the

distributions with a large Boltzmann factor. If the configurations of the system are sampled

with the correct distribution, then the average of a property can simply be calculated as

< A >= (1/Ns)
Ns∑
i=1

Ai, (1.4.5)

where Ns is the total number of configurations sampled and Ai is the value of the property

in the ith configuration.

The challenge in molecular simulation is to sample the distribution to obtain the average

even when Z is not known in advance and only exp[−βE] is known. To achieve this, the

Metropolis method uses an acceptance probability for moving from an old configuration (o)

to a new configuration (n), as shown in Figure 1.5, that is based on the need for equilibrium

and detailed balance between the old and new states.

Acceptance probability(old→ new) = min(1, exp[−β∆E]), (1.4.6)

where ∆E is the energy difference between the new configurational state and the old, and

kT is the Boltzmann’s constant times the absolute temperature. Equation 1.4.6 shows that
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any MC move that results in a decrease in the energy is automatically accepted. If the move

results in an increase in the energy, the move that is accepted has a probability that decreases

exponentially with increasing ∆E. To test if such a move is accepted, a random number

between 0 and 1 is generated. If the random number is below the acceptance probability,

given by Equation 1.4.6, the move is accepted, otherwise, it is rejected and the system is

returned to the old configuration.

One advantage of this technique is that only a small fraction of the states of the system

need to be sampled in order to get accurate estimates of physical quantities, assuming the

system is able to access the equilibrium states. The presence of metastable states, that trap

the system in sub-regions of configuration space can influence the ability of the Monte Carlo

methods to provide good equilibrium averages.
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Figure 1.5: Acceptance ratio plot as a function of energy difference.
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Figure 1.6: Periodic boundaries used in simulation. The shaded portion represents the

system while the arrow shows the interaction.

In order to simulate bulk phases, it is important to choose boundary conditions that show

the presence of the bulk surrounding for an N−particle model system rather than a wall.

This is achieved by employing periodic boundary conditions. The system cell volume of N

particles is treated as a primitive cell of a periodic lattice of identical cells, as shown in Figure

1.6. This allows the particles to interact with the closest particles in any of the cells. Periodic

boundary conditions [15] have proven to be an effective method for simulating homogenous

bulk systems [21]. It is important to note that this can lead to artificial correlations that are

not present in a true bulk system, and it is important to consider only interactions that span

half the cell width to avoid artificial interactions. It is worthwhile stating that the boundary

of the periodic box itself has no special significance thus, the origin of the periodic lattice of

primitive cells may be chosen anywhere and will not affect any property of the model system

under study.

The importance sampling Monte Carlo method provides good estimates of average quan-

tities in equilibrium because it samples the states where the Boltzmann factor is high. How-

ever, it is often interesting to know the properties of the system away from the equilibrium,

where the probability of sampling is small. For example, in nucleation, the states associated

with the critical nucleus appear at the top of a free energy barrier so these states are rarely

sampled in MC simulation. Umbrella sampling was introduced by Torrie and Valleau [22], to

overcome this problem and is designed to sample configurations along an arbitrary reaction

17



coordinate. The method works by adding a bias in the form of an additional energy term to

the interaction energy that forces the system to sample regions of configuration space that

usually have low probabilities of appearance. The average properties are then calculated by

reweighing the bias to ensure the correct probability is obtained. The method has been used

extensively to study nucleation and is very effective in studying systems with high barriers

[72]. However, this study will not use umbrella sampling because the barriers are low enough

to allow nucleation to occur on the simulation time scale. Instead, this work will use the

mean first passage time as a way of obtaining the free energy barrier.

1.5 Mean First Passage Time

The mean first passage time (MFPT) method for analyzing simulations of activated processes

was presented by Wedekind et. al. [23]. The method is based on the concept of mean first

passage times and has many advantages to it. It is simple and straightforward to implement

in a simulation, it can be used to determine the rate, and also facilitates the location of

transition states, i.e, finding the critical nucleus, solely from the kinetic data. It differentiates

activation from the subsequent growth of the system and has the possibility to infer more

valuable information, such as the thermodynamics of the activation barrier, including the

height of the barrier, as well as growth curves and lag times. The parameter of interest in

nucleation is the rate at which the barrier is crossed and this method makes this relatively

simple to determine.

The dynamics of many non-equilibrium and activated processes can be described in terms

of a Fokker-Planck equation,

∂P (x, t)

∂t
=

∂

∂x
[D0e

−βU(x) ∂

∂x
(P (x, t)eβU(x))] (1.5.1)

where P (x, t) is the probability distribution function, D0 the diffusion coefficient, U(x) the

free energy barrier, β = 1/kT , k the Boltzmann constant and T the temperature. The

reaction coordinate x is the cluster size. Figure 1.7a shows a typical one-dimensional free

energy surface for an activated process with a domain [a, b] that has a barrier located at x∗

18



Figure 1.7: Free energy barrier and corresponding mean first passage time.
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(a) A Plot showing the free energy of formation of

a cluster. The MFPT arises from a narrow size

range close to x∗.

x0 xbb=x*

τ(
b

)

τJ = 1/J

(b) Plot Showing the corresponding mean first

passage time of Figure 1.7a.

The MFPT for the nucleation event described by Equation 1.5.1 is given by the expression

τ(x0; a, b) =

∫ b

x0

1

D0

dy exp[βU(y)]

∫ y

a

dz exp[−βU(z)]. (1.5.2)

The MFPT is analyzed based on a starting position, x0, in the Figure 1.7a. The boundary

conditions reflect at point a and absorb at point b. The average time it takes the system to

reach x∗ for the first time is given by τ(b = x∗) and the barrier crossing rate is,

J =
1

2τ(x∗)
, (1.5.3)

where the factor 1/2 arises from the fact that the system has an equal chance of falling to

either side at the top of the barrier. The location of the transition state can also be obtained
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from the behaviour of the MFPT. The first derivative of Equation 1.5.2 with respect to b

yields
∂τ(b)

∂b
=

1

D0

exp[βU(b)]

∫ b

a

∂z exp[−βU(z)]. (1.5.4)

Taking the second derivative gives,

∂2τ(b)

∂b2
=

1

D0

+ βU ′(b)
∂τ(b)

∂b
, (1.5.5)

where the prime (′) denotes the first derivative. At the top of the barrier βU ′(x∗) = 0, which

gives the size of the critical nucleus at the top of the barrier,

∂2τ(b)

∂b2
|b=x∗ =

1

D0

. (1.5.6)

Activation rates are determined accurately only when the nucleation barrier is high, i.e

when βU(x∗) � 1. The MFPT has a characteristic sigmoidal shape as shown in Figure

1.7b, and the rate is given by the inverse of the value of the MFPT at the plateau, τJ ,

and is relatively insensitive to the initial conditions [23]. The inflection point of the MFPT

curve gives x∗, which indicates the size of the critical nucleus at the top of the barrier. Near

the critical nucleus size, x∗, the MFPT expression is given by Equation 1.5.2 and can be

evaluated by the method of steepest descent to give,

τ(b) =
τJ
2

(1 + erf((b− x∗)c)), (1.5.7)

where x∗ is the critical size at the transition state, erf(x) = 2/
√
π
∫ x

0
e−x

2
dx is the error

function, and

c =

√
|U ′′(x∗)|

2kT
, (1.5.8)

which is related to the Zeldovich factor Z = c/
√
π and the local curvature around the top

of the barrier, U ′′(x∗). The MFPT at the plateau,

τJ =
1

J
, (1.5.9)

represents the inverse of the transition rate. By fitting MFPT results to Equation 1.5.7,

many of the important parameters can be obtained.

The free energy barrier, which refers to the minimum amount of free energy that must

be procured by a chemical entity in order to undergo a given activated process, controls

the dynamics of many systems such as phase transitions and chemical reactions. There are
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different equilibrium techniques used to study activation barriers and free energy landscape

from simulations. An example is the umbrella sampling [6]. Equilibrium techniques however

are mostly not sufficient because the process of interest does not occur at equilibrium. Non-

equilibrium techniques have also recently been developed where the system is forced by an

external influence.

The method developed by Wedekind and Reguera [23] presented above allows the calcu-

lation of the nucleation rate and size of the critical cluster, directly from non equilibrium

trajectories of the nucleation process. The method also allows for the reconstruction of the

equilibrium free energy barrier [6]. This method is easy to implement and can be used

in stochastic simulations. The dynamics of many non-equilibrium and activated processes

described in terms of a Fokker-Planck equation is presented in Equation 1.5.1. When the

barrier is relatively high for an activated process, the system reaches a steady state after

a short transient time, where ∂P (x,t)
∂t

= 0. This steady state is characterized by a time-

independent probability distribution, P (x), and a constant current reaction rate, J , given

by,

J = −D(x)e−βU(x) ∂

∂x

(
P (x)eβU(x)

)
, (1.5.10)

that is independent of x as ∂P (x)
∂t

= −∂J
∂x

= 0. Integrating this equation yields,

βU(x) = − lnP (x)− J
∫

dx′

D(x′)P (x′)
+ C, (1.5.11)

where C is a constant. It is worthwhile noting that in an equilibrium situation, Equation

1.5.11 reduces to βU(x) = − lnP (x). This equation shows that the free energy landscape

from the knowledge of the steady state probability can be reconstructed as long as the value

of the steady state rate and the diffusion coefficient are known. These parameters are not

accurately obtained easily in a simulation however, the steady state rate is related to the

mean first passage time which is given by Equation 1.5.2. Taking the second derivative of

Equation 1.5.2 gives,

∂ ln(A(x)D(x))

∂x
=

1

D(x)A(x)
+
∂(βU(x))

∂x
, (1.5.12)

where A(x) = ∂τ(x)
∂x

. Integrating this equation gives,

βU(x) = ln(B(x))−
∫

dx′

B(x′)
+ C. (1.5.13)
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Combining Equation 1.5.11 and Equation 1.5.13 gives,

∂(B(x)P (x))

∂x
= P (x)− JA(x). (1.5.14)

Integrating this then gives,

B(x) =
1

P (x)

[∫ x

a

P (x′)dx′ − τ(x)

τ(b)

]
, (1.5.15)

where J = 1/τ(b) has been used. As long as the steady state is reached, the equations

are valid. The method is valid only for high and symmetrical nucleation barriers, where

the simulation data are well described by Equation 1.5.7. The analysis has been proved

to work fairly well although it is more involved for transitions in which the time scales

of nucleation and growth are not well separated [24, 25]. Wedekind et. al. [26] used

the method to investigate the thermodynamics of the crossover from a nucleation-growth

process to spinodal decomposition in a condensing Lennard-Jones vapour and to reconstruct

the free energy barrier for cluster formation. Wedekind et. al. [27] report six nucleation

rate isotherms for vapour-liquid condensation in argon using the MFPT method and also

calculates the critical cluster size. Although the results obtained deviated from CNT by two

to seven orders of magnitude, they are consistent with rates obtained by other simulation

methods. The method has been extensively used to determine the rate, cluster sizes and to

estimate free energy barriers in different vapour-liquid transitions [28]. It has also been used

to study crystallization in Lennard-Jones nano-droplets [29] and liquids [30], and is found to

be an effective method in characterizing crystal nucleation. One of the challenges of using

the method is that the nucleation events must take place within the time scale of simulation,

which generally restricts the analysis to the study of nucleation involving barriers lower than

15kT .

1.6 Favoured Local Structures

1.6.1 Local structure in liquids

Crystals have both well defined local structures and long-range periodic order. In a simple

crystal, such as the face centred cubic (FCC) crystal, all the individual atoms share the same

local order, which is then propagated in all three axial directions. The individual atoms in
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more complex crystals may exhibit different local structures that are then organized on a

longer length scale into a large unit cell able to be replicated over a long-range. On the

other hand, while liquids do not exhibit long-range ordering, even the simplest model liquid,

such as the hard sphere fluid or liquid argon [31, 32], show significant short-range ordering

as indicated by the short-ranged peaks in their radial distribution functions (see Figure 1.8).

 

Figure 1.8: Radial distribution functions for liquid argon and solid argon obtained from

simulation [32] reproduced with permission.

There is growing evidence to suggest that the presence of local structure within the

liquid phase has important implications for their properties. Local ordering in systems

with directional bonding is well known. For example, water has been known to form local

tetrahedral order stabilized by hydrogen bonding [33, 34]. This was already recognized by

Rontgen [35], leading to the famous mixture model of water [36]. The local tetrahedral

order in liquid Si and SiO2 [7] is almost identical to that of the crystal, but the long order

is disrupted by the orientational disorder of the tetrahedra, leading to the formation of

what is known as a random tetrahedral network. The number density of such tetrahedral
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local structures may play a critical role in water-like anomalies, such as the liquid density

maximum [37] and possible liquid-liquid phase transitions between high and low density

liquid [38], observed in these systems. Local order has also been observed in metallic liquids

[39].

Local order in simple liquids is more difficult to characterize, but mesoscopic structural

order, which can be characterized by bond orientational order parameters, have been iden-

tified [36]. There is growing evidence that local structure in liquids may assume a vital role

in crystallization, quasicrystal formation, and the liquid-glass transition. One approach to

understanding liquid behaviour, particularly below the freezing temperature where the liquid

is expected to thermodynamically freeze to the stable crystal, is to consider the formation

of favoured local structures (FLS) that have a low energy. The idea was first suggested by

Frank [39] and has been developed into a more general theory of frustration in liquids and

glass forming by Tarjus [40]. The main focus is on the formation of local structures that

frustrate the formation of the crystal phase. The icosahedron is one example of a structure

that is energetically favourable but is unable to fill space and has been linked to glass forming

[41]. However, recent studies have begun to examine the role of a wide range of different

FLS that can be identified as small polyhedral packing units [42] involving small clusters (

see Figure 1.9).
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Figure 1.9: Topological clusters [43] reproduced with permission. The structures detected

by the topological cluster classification [44]. The letters correspond to local structures found

in different models/systems, while the numbers identify the number of atoms in the cluster.

K is the Kob-Andersen model [45], W is the Wahnstrom model [46]. The locally favoured

structures for the Kob-Andersen model (11A), Wahnstrom model (13A) and hard spheres

(10B) are highlighted by boxes. Other letters correspond to the variable-ranged Morse po-

tential. Letters at the start of the alphabet refer to long-ranged interactions and later letters

refer to short-ranged interactions, following Doye et al. [47]. Common crystal structures are

also shown.

 

The local order formed in the liquid state does not necessarily have to frustrate crystal

formation, and some liquids show evidence of the formation of FLS that favour crystal for-

mation [48]. In the absence of frustration, ordering is likely to proceed through a continuous

or weakly first-order transition. Competition between bond orientational order parameters

compatible with the crystal symmetry, and those that are incompatible, leads to strong

frustration effects against crystallization and transitions that are strongly first order.
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1.6.2 Lattice Models

Favoured local structures (FLS) describe long lived and energetically favourable structures

that appear in the liquid. Some FLS are related to the crystal states that the system

can form, and they promote nucleation. Other FLS frustrate nucleation and can lead to

glass formation. These structures have been identified and are known to gain significant

concentration as temperature is lowered by various studies. However, FLS are difficult

to identify in experiments or atomic models of liquids. Ronceray and Harrowell [49, 5]

developed a new lattice spin model, where the FLS is explicitly specified. In this model, a

spin is located at each lattice site on a two-dimensional triangular lattice, and it can take two

possible orientations, up or down. The energy of a spin is determined by the up-down pattern

of its neighbouring six spins. If the pattern matches the pattern of the FLS, then it is given

a lower energy of −1, otherwise it has an energy of zero. The energy of the configuration is

then the sum of the energies for all the spins. Figure 1.10 shows the different FLS structures

possible in the model, along with their resulting crystal structures. The identity of a given

FLS is denoted by indicating the number of down spins, followed by the length of the longest

sequence of up spins in the FLS. For example, the {2, 4} notation indicates that the FLS

has 2 down spins and 4 up spins following each other sequentially. The {1, 5}, however, is

labeled {1} because if there is 1 down spin then the remaining 5 are all up spins and will

follow each other in the sequence. The {0, 6} FLS is labeled {0} for the same reason. In

Figure 1.10, the symbol g is the multiplicity, Z is the unit cell size and Eo is the ground-state

energy as shown in Figure 1.10.
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Figure 1.10: Distinct locally favoured structures and their ground-states in the two dimen-

sional spin lattice model [5]. Reproduced with permission from authors.

FLS accumulate in liquids upon cooling for a given interaction potential between particles

because of their stability. The model produces various crystals with different sized unit cells

that exhibit different symmetries and geometries. The properties of this FLS model make

it a good choice for study, as it is possible to study nucleation as a function of crystal

complexity and unit cell size, and it is relatively simple to simulate these lattice spin models.

In addition, several FLS models show interesting freezing phenomena. For example, two

FLS, the {2, 3} and {2, 4} FLS in Harrowell’s [5] paper usually freezes into the ground-

state crystal structure a in figure 1.10, even though there are two ground-state structures

of the same energy. The {3, 1} FLS, on the other hand, freezes into either of the two

possible structures indicating a variety of nucleation mechanisms. The work in this thesis

focuses on the nucleation behaviour of the {1, 5} and the {3, 3} FLS systems. These were

chosen because they show significant differences in their freezing behaviour. They also show

significant differences in their symmetry.

1.7 Scope of Thesis

This work is going to address two key questions:

• What is the difference in the nucleation mechanism for strong and weak first order

phase transitions?

• How do differences in the symmetry of the FLS affect the nucleation mechanisms?
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To address these two questions, this thesis will use the lattice FLS model developed by

Ronceray and Harrowell [5], and will focus on the study of the {3, 3} FLS and {1, 5} FLS

models because they exhibit a strong and weak first order phase transitions, respectively.

The two models have similar sized unit cells. The {3, 3} FLS model has a unit cell of 6, while

the unit cell of the {1, 5} FLS model is 7, which should rule out unit cell size as a factor

influencing the nucleation process. However, the two models have different symmetries. The

{1, 5} FLS model belongs to the Cs point group, with two symmetry operations, while the

{3, 3} FLS belongs to the C2h point group that has 4 symmetry operations.

Monte Carlo simulations will be used to study both the freezing behaviour and the nu-

cleation behaviour of the two FLS models. In particular, the MFPT method, developed by

Wedekind et al [6], will be used to calculate the nucleation rates, critical cluster size and

nucleation free energy barriers for a range of temperatures below the equilibrium freezing

point. The nucleation of the two models will then be compared.

To complete this study, it is necessary to perform the following:

1. Develop a Monte Carlo simulation code to model the FLS systems.

2. Characterize the equilibrium fluid and crystal structures in terms of the probability of

finding a given FLS.

3. Develop a cluster criteria for identifying nuclei in the fluid state.

4. Calculate nucleation barriers and nucleation rates, and identify crystal embryos for

each crystal.

The remainder of the thesis is organized as follows. Chapter 2 describes the simulation

model (Section 2.1), as well as the simulation method used to calculate the equilibrium

properties (Section 2.2), the cluster criteria (Section 2.3) and the Mean First Passage Time

is described in Section 2.4. The results of the study are described in Chapter 3, starting

with the {3, 3} FLS model (Section 3.1) and followed by the {1, 5} FLS model in Section

3.2. The discussion of the results and future outlook for the work are contained in Chapter

4.
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Chapter 2

Simulation details

2.1 Model

The systems under study contain spins organized in a two dimensional triangular lattice,

with periodic boundary conditions. Each site has a single degree of freedom called the spin

value that can be either up or down. The local environment comprises the spin states of the

nearest six neighbours. Each site is given an energy of 0 if its environment is not in the FLS

and Ei = ε = −1, if its environment is in the FLS and ε is the energy scale. Thus,

Ei = {−1, neighbours in FLS
0, neighbours not in FLS, (2.1.1)

and the total energy of the system is,

E =
N∑
i

Ei, (2.1.2)

where the sum is over all N spins in the configuration.

As mentioned earlier, this model has 13 distinct FLS. For clarification purposes, the

system under study will be termed the Favoured Local Structure (FLS) and the remaining

12 configurations will be referred to as Local Structures (LS). The total energy per particle is

obtained by adding up all the energy per site and dividing by the total number of particles.

This thesis work will examine the nucleation behaviour in two of the FLS models, the

{3, 3} FLS model, and the {1, 5} FLS model, shown in Figure 2.1. The purple particle

represents a down spin, while the green particle represents an up spin. The identity of a

spin is denoted by indicating the number of down spins followed by the longest sequence of

up spins. It is worthwhile to note that the particles identity has no relation to its own spin
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orientation. The overall identity of the system is indicated by the favoured local structures

which will dominate the system in the crystal state but will not necessarily be the only local

structure observed in a configuration.

Figure 2.1: An example of the {1, 5} and {3, 3} FLS configuration. Purple represents down

spins, while green represents up spins.

a

(a) {1, 5} FLS

b

(b) {3, 3} FLS

In Figure 2.1, spin a has six neighbours, which defines its identity as {1, 5} FLS. The

identity of the FLS is obtained by indicating the number of down spins (1 purple for this

particular particle) and the longest sequence of up spins ( 5 up spins following each other

sequentially here ) leading to the labelling {1, 5} FLS. Spin b has 3 green particles, which

represents up spins and 3 purple particles which are down spins. The 3 up spin neighbours

follow each other sequentially. The labeling of this will therefore be 3 down spins and 3

longest sequence of up spins, thus referred to as the {3, 3} FLS.

Figures 2.2a and 2.2b show the spin arrangements in the ground-state crystal for the

{1, 5} and {3, 3} FLS models. The {1, 5} FLS crystal contains the {1, 5} FLS itself, as

well as the {0, 6} LS. The {3, 3} crystal also contains additional local structures, the {2, 2}
LS and the {4, 1} LS. Figure 2.3 shows some spins organized in a triangular lattice. The

values are their respective energies, which are determined solely from the organization of the

neighbours. The system under study is the {3, 3} FLS system in this example.
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Figure 2.2: Ground-state crystal of the {1, 5} and {3, 3} FLS configuration. Purple represents

down spins, while green represents up spins.

(a) {1, 5} FLS

(b) {3, 3} FLS

-1 -1 0 0

0 -1 0 0 0 0

0

000-10-1

0

Figure 2.3: Example of energy assignment for a configuration of spins in the {3, 3} FLS

system. Purple represents down spins, while green represents up spins.
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The total energy per spin of this system is obtained by adding up all the energies per site

and dividing by the total number of spins.

2.2 Equilibrium Properties

The equilibrium properties of the two FLS models were studied using the standard Metropolis

Monte Carlo simulation method. A Monte Carlo cycle has flip attempts equal to the total

number of spins. Each flip attempt involves selecting a spin at random, with the old energies

of the neighbours calculated, the spin is flipped and the new energy is also calculated,

considering the fact that the spin flip changes the energy of neighbours. If the new energy

is less than the old, we accept the move, but if not, the move is accepted with a probability:

Acceptance probability(old→ new) = min(1, exp[−β∆E]),

where ∆E = Enew − Eold, is the difference in energy between the configurations, Eold is the

energy before the spin was flipped and Enew is the energy as a result of the spin flip, β = 1
kBT

.

To test the acceptance probability, a random number generator is used to generate a random

number between 0 and 1. If the result is less than exp[−β∆E], then the move is accepted,

otherwise the move is rejected and the spin is returned to its original state.

The temperature of the system is reported in dimensionless reduced units, scaled by ε/kB,

where kB is the Boltzmann’s constant. The system consists of N = 3600 spins, arranged

in the 60 × 60 triangular lattice. The system was equilibrated and at a high temperature,

T = 1.6. The system’s temperature is then varied with 0.05 decrements till it reaches

a temperature T = 0.3. At each fixed temperature, 100 flips per site is used to reach

equilibrium and data is collected over the next 100 flips per site. The simulation continues

till a temperature of 0.3 is reached then, the process is reversed and the system is heated

in increments of 0.05 to a final temperature of T = 1.6, measuring equilibrium data at each

temperature.

During the equilibrium simulations, the following properties are measured:

• The average energy.

• The probability of observing a given local structure surrounding a spin.
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2.3 Cluster Criteria

The size of a cluster of the growing embryo is the key order parameter used to describe

nucleation. In a simulation, it is necessary to develop a criteria that identifies which particles

have the characteristics of the new phase and then identify how these particles are clustered

together to form a physical cluster. In the case of the freezing transition, it is necessary to

distinguish solid-like particles from liquid-like particles based on their local environment, then

identify which solid-like particles belong to the same cluster. In chapter 3, the description

of how the solid-like spins are identified in the {3, 3} and {1, 5} FLS models are explained

in detail. In the current work, two solid-like spins that are neighbours in the lattice are

considered to be in the same solid cluster and the algorithm developed by Sevick et. al. [50],

is used to identify clusters.

2.4 Mean First Passage Time and Nucleation Events

To examine individual nucleation events, the simulation code developed for the lattice spin

models was used. The system contained spins organized in a triangular lattice. The mean

first passage time analysis, described in Section 1.5 of the introduction chapter (chapter 1),

is the main tool used in this thesis to study nucleation. This method involves the calculation

of the time to the first appearance of the largest cluster of size, n, in the system during

a dynamic nucleation event, which is then averaged over an ensemble of trajectories. An

individual nucleation trajectory is simulated in the following way using the same basic MC

code, described in Section 1.4, for the study of the equilibrium properties. The system is

initially equilibrated for 100 MC moves per site at a high temperature, T = 1.6, that is above

the equilibrium freezing temperature for the model. After equilibration, the temperature of

the system is then instantaneously quenched to a temperature below the equilibrium freezing

temperature, where nucleation occurs on a reasonable simulation time scale. For the {3, 3}
FLS model, this occurs in the range T = 0.6 − 0.7. For the {1, 5} FLS, this occurs in the

range T = 0.4 − 0.5. If the quench temperature was lower than these ranges, nucleation

occurred too rapidly, and it was not possible to sample the clusters sizes in the metastable

liquid region. If the quench temperature was higher than these ranges, nucleation did not

occur on the simulation time scale.
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A time step in the simulation consists of N MC attempts to flip a spin. In principle,

this allows the possibility that every spin in the system could change during a single time

step. However, since the spins are selected randomly for each MC attempted move, some

particles may not be selected in a single time step and some may be selected more than

once. The energy of the system and the cluster sizes are calculated at the end of each time

step. The simulation runs for 100 time steps, which is usually much longer than the time

for nucleation in the system. Three hundred trajectories are performed for each model, at

each temperature.

The mean first passage time is calculated as the number of time steps for the first appear-

ance of largest cluster of size, n, in the system, averaged over the ensemble of trajectories.

It is calculated for all n. However, the stochastic nature of the MC moves, as opposed to a

deterministic trajectory, means that a cluster may grow or shrink by the addition or loss of

several spins during a single time step. For example, the cluster may grow from size n = 10

to n = 14 in a single time step. To ensure all cluster sizes are sampled, the intermediate

cluster sizes are assumed to have appeared at the same time, i.e., it is assumed that the

cluster, size 14, appeared through the growth of the intermediate cluster sizes:n = 11, 12

and 13, within the single time step.

The free energy barrier was calculated using Equation 1.5.13 along with Equation 1.5.15.

The steady state probability of observing an n-sized cluster, P (n), was obtained by counting

the total number of times an n-sized cluster appears in the ensemble of states sampled in

the MC trajectories, and dividing by the total number of states sampled. The trajectories

were truncated at sizes just above the critical cluster size to avoid including states associated

with the stable crystal state.
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Chapter 3

Results and Discussion

This chapter presents the results obtained for the entire work and discusses the findings.

Section 3.1 looks at the findings for the {3, 3} FLS, while section 3.2 discusses the {1, 5}
FLS. In both sections, the equilibrium system is characterized in terms of the energy and

the probability of finding a given FLS as a function of temperature. These results are used

to help develop the cluster criteria used to identify the growing embryos during a nucleation

run. The results for the nucleation runs and MFPT analysis are also presented.

3.1 {3, 3} FLS

3.1.1 Equilibrium properties

Figure 3.1 shows the equilibrium energy per spin of the {3, 3} FLS system, plotted as a

function of temperature, for a cooling cycle followed by a heating cycle obtained using the

equilibrium MC simulation method described in Section 2.2. This data is consistent with the

results obtained by Ronceray and Harrowell [5] as they have the same energy variation as a

function of temperature and melting/freezing temperatures. Together with results obtained

for the {1, 5} FLS, which are presented in Section 3.2, this shows that the Monte Carlo

simulation code that was developed is able to model the FLS systems accurately.

35



Figure 3.1: The Energy, E, per spin of the {3, 3} FLS model as a function of temperature,

T . The symbols represent the data points for cooling (circles) and heating (squares). The

solid line provides a guide to the eye.
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The energy of the system is proportional to the fraction of states in the system that

are in the FLS, because only those sites with the {3, 3} have a favourable energy, while all

other local structures have no energy. In the high temperature limit, T → ∞, all possible

spin configurations become equally likely, so there are 26 possible configurations for the six

neighbouring spins that surround a given site. The energy, E(T =∞), is then the fraction of

these possible states that correspond to the FLS. This gives E(T =∞) = −g/26 = −6/26 =

−0.09375, where the multiplicity, g, accounts for the number of ways the FLS can appear

at the site and is equal to six for the {3, 3} FLS [49]. At the highest temperature studied

here, T = 1.6, the energy E = −0.17, which is still well below the high energy limit and

indicates the system has already developed FLS structure. As the temperature is decreased

further, the energy decreases continuously until T = 0.65, where this drops significantly

from E = −0.3 to E = −0.62, showing the system has frozen. It also shows that the
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system achieves most of its order during the phase transition, as observed by Ronceray and

Harrowell [5]. The energy of the perfect crystal is E0 = −2/3, so Figure 3.1 shows that the

system does not freeze directly to a perfect crystal, but to one where there are defects. As

the temperature is decreased further, the defects anneal out and the energy of the system

approaches E0.

When the system is heated, the energy follows the same temperature dependence as the

cooling curve, except that it remains a crystal until T = 0.70, where it then melts. This gives

rise to a hysteresis loop, characteristic of a strong first order phase transition. Outside of the

hysteresis, the energy, as a function of temperature of the cooling and heating cycles, are the

same. This suggest that the system is in equilibrium on the time scale of the simulations.

The existence of a hysteresis loop gives the upper and lower bounds on the equilibrium

phase transition temperature, as they define the temperatures where the system can freeze

and melt on the time scale of the simulation. The system has 13 distinct local structures,

only one of which is the FLS. It is therefore important to understand how the populations

of the different structures evolve as the system cools, then freezes. Figure 2.2b depicts that

in the perfect crystal, there are two other local structures that are present, the {2, 2} and

the {4, 1} local structures, although they are not energetically the most favoured structures.

These two local structures are however, spin inversions of each other.

Figure 3.2 shows how the populations of the different local structures change with temper-

ature for the {3, 3} FLS system . All the local structures start decreasing in the probability

of finding them as the temperature decreases, with the exception of the {2, 2} and the {3, 3}.
The increase in the {3, 3} FLS is expected, because the lower energy states are favoured as

the temperature is decreased. However, the {2, 2} local structure has no energetic advantage.

To understand why the {2, 2} local structure increases, it is important to note that there

are correlations between the local structure surrounding one site and the local structure

surrounding a neighbouring site. For example, the presence of a {6, 0} local structure at a

site, which has six down spins, reduces the probability of finding a neighbour with a long

string of up spins because two neighbouring sites also share two additional neighbour sites

(see Figure 3.3).
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Figure 3.2: Probability distribution of FLS (P ) as a function of temperature (T ), for the

{3, 3} FLS model for both cooling and heating cycles.
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Figure 2.2b shows that in the {3, 3} FLS perfect crystal, the {2, 2} local structure appears

next to a pair of neighbouring {3, 3} structures. This suggests that as the number of {3, 3}
FLS structures increases in the equilibrium liquid state, the probability that two {3, 3}
FLS become neighbours increase, then the correlation between the local structure around

neighbouring spins increases the probability that the {2, 2} structure appears. This could

account for the increase in the {2, 2}, local structure in the equilibrium fluid, even though

it is not energetically favourable. However, it should be noted that this hypothesis should

also apply to the {4, 1} local structure, which decreases with increasing temperature. This

suggests the possibility of additional correlations that suppress the {4, 1} local structure in

the liquid state, but not the {2, 2} local structure. At the freezing transition, both the {2, 2},
and the {4, 1} local structures increase to the same final value as expected for the crystal of

this model. They follow the same trend till the temperature is close to the crystallization

temperature. The probability of finding {2, 2} FLS and {4, 1} FLS both shoot up in the
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system as the temperature decreases. After visualization of the crystal states of this system,

it has been confirmed that the two local structures are present in the crystal of the {3, 3}
FLS. This highlights the important role local structures other than the FLS may play in the

freezing process. They will also play an important role in nucleation.

c

a

b

Figure 3.3: A diagram showing the correlation between configuration of neighbours. Purple

represents a down spin, while green represents an up spin. The first neighbours around b,

share the two sites on either side of the a − b lattice line. The second neighbours, a − c,

share the two adjacent sites immediately between them

3.1.2 Cluster Criteria

The main goal of the cluster criteria is to identify physical clusters of local structures that

can lead to the formation of the crystal phase. This means that it is necessary to be able to
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distinguish between spins that have a local environment that is solid-like from those that are

liquid-like. It has been established from the characterization of the probabilities of finding

a given FLS in equilibrium fluid (Figure 3.2), that there are only three local structures in

the crystallized state, the {3, 3}, {4, 1} and the {2, 2} structures. This did not give insight

into the identity of an FLS and its surrounding neighbours however. The system studied

contained N = 3600 spins organized in a 60 × 60 triangular lattice. Starting at T = 1.6 to

T = 0.3 with 0.05 decrements, the probability of each of the three local structures present

in the {3, 3} FLS crystal having any of the three local structures as neighbours over a set of

temperatures was determined.

Figure 3.4 shows that the spins have all six neighbours being one of the local structures

present below the freezing temperature. This implies that a spin with all neighbours being

the same as the crystal local structures can be defined as a solid-like spin, since these envi-

ronments appear in the liquid state with a very low probability. From the results obtained

in Figure 3.4, there is a distinction between the liquid and the crystal-like spin in the liquid.

The probabilities were further examined by looking at each of the local structures appearing

in the crystal individually and the probabilities of finding each of them as neighbours, which

is shown in Figure 3.5, 3.6 and 3.7. Results presented in Figure 3.5a clearly show a {2, 2}
spin is not likely to have itself, or a {4, 1} spin, as its neighbour in the crystal state. In

the perfect crystal, the {2, 2} and {4, 1} local structures are never neighbours of the {2, 2}.
However, this is also true in the liquid state. The same is true for a spin with {4, 1} identity.

However, all local structures present in the system have clear distinctions between the solid

and liquid phases in reference to having the {3, 3} FLS as a neighbour, shown in Figure 3.7.

The {2, 2} and {4, 1} spins have 6 of their neighbours having the {3, 3} configuration, while

(Figure 3.5b and 3.7h) the {3, 3} spin has exactly 3 of its neighbours having the {3, 3} con-

figuration beyond freezing, as shown in the Figure 3.6e. A spin with a {3, 3} configuration

will have 1 or 2 of its neighbours with either the {2, 2} or {4, 1} configuration.
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Figure 3.4: The probability of crystal FLS having (n) = 0− 6 other crystal FLS neighbours
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Figure 3.5: Cluster criteria for {3, 3} FLS. This shows how the local structures present in

the crystal relate to each other over the set of temperatures.

0
0.2
0.4
0.6
0.8
1

1.2

0 1 2 3 4 5 6

Pr
ob

ab
ilit
y

Number	of	Neighbours

PROBABILITY	OF	 {2,2}	WITH	{2,2}	NEIGHBOURS	AT	
DIFFERENT	TEMPEATURES

T	=	1.55 T	=	1.35 T	=	0.8 T	=	0.5 T	=	0.4 T	=	0.3a

0
0.2
0.4
0.6
0.8
1

1.2

0 1 2 3 4 5 6

Pr
ob

ab
ilit
y

Number	of	Neighbours

PROBABILITY	OF	 {2,2}	WITH	{3,3}	NEIGHBOURS	AT	
DIFFERENT	TEMPEATURES

T	=	1.55 T	=	1.35 T	=	0.8 T	=	0.5 T	=	0.4 T	=	0.3b

0
0.2
0.4
0.6
0.8
1

1.2

0 1 2 3 4 5 6

Pr
ob

ab
ilit
y

Number	of	Neighbours

PROBABILITY	OF	 {2,2}	WITH	{4,1}	NEIGHBOURS	AT	
DIFFERENT	TEMPEATURES

T	=	1.55 T	=	1.35 T	=	0.8 T	=	0.5 T	=	0.4 T	=	0.3c

42



Figure 3.6: Cluster criteria for {3, 3} FLS. This shows how the local structures present in

the crystal relate to each other over the set of temperatures.
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Figure 3.7: Cluster criteria for {3, 3} FLS. This shows how the local structures present in

the crystal relate to each other over the set of temperatures.
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A spin with a {2, 2} or {4, 1} local structure with 6 of its neighbours, all with {3, 3}
configuration, can therefore be defined as a solid-like spin while a spin with the {3, 3} con-

figuration having exactly 3 of its neighbours with the {3, 3} configuration can be termed a

solid-like spin.

However, in addition to considering the local environment, it is necessary to examine the

relative orientation of the local structures. Figure 3.8 shows one of the configurations of the

{3, 3} FLS system during the nucleation process.

Figure 3.8: Configuration of the {3, 3} FLS system containing multiple crystals with different

orientations. Green dots represent up spins, while the purple dots represent down spins.

There appear to be multiple crystals formed with different orientations before the system

freezes to a single crystal at later times. This is a factor that will need to be accounted for

in the cluster criteria, because classifying a spin with a different orientation from the cluster

as solid-like will lead to poor nucleation analysis.

The orientation of an FLS at a spin site can be defined by assigning a vector from the spin

site itself to the spin site of the first down spin in the longest down spin chain of its neighbours

counting in an anticlockwise direction (see Figure 3.9). To determine if two neighbouring

FLS have the correct orientation, the dot product of the two orientational vectors is taken

and compared to the dot product values allowed in the perfect crystal. For example two

neighbouring {3, 3} FLS must have dot products of +1 or -1 to be considered as having the

correct orientation.
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a

b

Figure 3.9: Finding orientation for {3, 3} FLS.

Figure 3.10, shows a plot of the neighbour probabilities as a function number of neighbours

at different temperatures, with their right orientations. It was established in Figure 3.5 that

the combination needed for the description of a cluster is the local structures having {3, 3}
FLS configuration as neighbour. The results shown in Figure 3.10 are therefore based on

the {2, 2}, {4, 1} or {3, 3} FLS configurations having a spin with {3, 3} FLS configuration

as neighbours with the right orientations.

With orientation included, shown in Figure 3.10, it is evident that a spin with either {2, 2}
or {4, 1} local structures having more than 5 of its neighbours with {3, 3} FLS configuration,

and with the right orientation, is described as a solid-like spin. A spin with {3, 3} FLS

configuration and right orientation also having exactly 3 of its neighbours with {3, 3} FLS

configuration and the right orientation is described as solid-like. Comparing the result with

orientation included (Figure 3.10) to the results without orientation (Figure 3.5), it is evident

that the cluster criteria in terms of numbers doesn’t change much, however, it ensures only

spins that are truly part of the same crystal are counted as being in the same cluster.
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Figure 3.10: Cluster criteria for {3, 3} FLS with right orientation. This shows the local

structures having the {3, 3} FLS as neighbour over the set of temperatures.
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3.1.3 Mean First Passage Times

Before examining the MFPT properties of the system, which are obtained by taking averages

over an ensemble of trajectories, it is useful to examine the general features of a nucleation

trajectory. Figure 3.11 shows the energy as the temperature of the {3, 3} FLS system is

dropped abruptly. The system was equilibrated at a temperature of T = 1.6 then quenched

suddenly to T = 0.687, which is just below the freezing temperature. The simulation time is

a measure of the full Monte Carlo cycles performed. The energy dropped immediately to a

metastable state and fluctuated there for some time until the system finally nucleates. The

system then dropped to a lower energy consistent with that of the crystal. Nucleation is a

stochastic process, so while the nucleation event occurs near T = 0.687 for the trajectory

shown in Figure 3.11, nucleation will occur at different times for each trajectory. Math-

ematica was used to visualize the configurations arising from the nucleation run. Figure

3.12 shows the configurations in terms of the spin states (up or down) for the system. The

configuration number refers to the spin state after the specific number of Monte Carlo cycles

have been completed following the temperature drop. The first two configurations, 3.12a and

3.12b of figure 3.12 are snapshots of the spins in the liquid state, which is consistent with

energy before the drop, while configuration 3.12c is in the transition between the liquid and

the crystal phase. The last configuration, Figure 3.12d, shows the spins after nucleation.
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Figure 3.11: Energy (E) versus time (t) plot for the {3, 3} FLS nucleation run. This shows

how the energy varies with time when the temperature of the system is dropped abruptly to

a temperature T = 0.687, which is below freezing.
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Figure 3.14, is a plot of cluster size (n) as a function of simulation time (t) as the temper-

ature is dropped to 0.687 instantaneously, for the same trajectory. When the temperature is

dropped, the cluster size fluctuates in the order of tens and a few hundreds for a considerable

amount of time. Clusters that grow clearly shrink back to almost zero size, until the system

forms a size known as the critical cluster, beyond which the cluster size keeps growing till

the crystal is fully formed. This critical cluster is very important as the nucleus just grows

after it is formed. The system has very small clusters as well as some isolated single solid

clusters in the metastable state, (crystal 3.13a). Once the system nucleates, the solid cluster

grows rapidly to span the entire system as seen in Figure 3.13c. Once the crystal is formed,

only a few non-crystal sites remain, and these correspond to defects (Figure 3.13d).
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Figure 3.12: Snapshots of spin configuration depicting the nucleation event for {3, 3} FLS.

The green colour represents the up spins, while the purple shows the down spins.

(a) configuration 940 (b) configuration 43391

(c) configuration 43592 (d) configuration 70559

Figure 3.13: Cluster dynamics during nucleation event for {3, 3} FLS system. The green

colour represents the liquid-like spins, while the purple shows the clusters.

(a) crystal 940 (b) crystal 43391

(c) crystal 43592 (d) crystal 70559

50



Figure 3.14: Cluster size (n) as a function of simulation time (t) when the temperature is

dropped to 0.689.
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To find the critical cluster, the simulation was run 300 times, quenching the system to

the same temperature. The data was collected and analyzed by checking for the first time a

cluster of a particular size was formed to obtain the MFPT. The MFPT provides a precise

determination of the rate and location of transition states. There is the possibility of infering

additional information like the activation barrier and lag times. The MFPT method yields

a clear determination of the rate , the size of the critical embryo and the Zeldovich factor.

This method therefore provides a direct way of determining all quantities necessary for

characterizing the nucleation process. The Figure 3.15, is a plot of MFPT (τ) as a function

of cluster size (n), after 300 runs all equilibrated at a temperature of 1.6 and dropped to a

temperature of 0.687 for the {3, 3} FLS system.
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Figure 3.15: MFPT (τ) as a function of cluster size (n). The dark line is the MFPT curve,

while the red line is the best fit of equation 3.1.1 to the data. The green area shows the error

bars, measured as the standard deviation.
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The MFPT data can be fit to the equation

τ(n) =
τJ
2

(1 + erf((n− n∗)c)), (3.1.1)

where n is the cluster size, τJ is the rate, n∗ is the critical cluster size and c is related

to the Zeldovich factor. τJ , n∗ and c were the fit parameters. The MFPT curve fits well

with the equation. The rate JV , which is inversely related to τJ , is found to be 9.4 × 10−5

clusters/(site . MC cycles). The critical cluster n∗ is 396 and the Zeldovich factor, which is

related to the local curvature around the top of the barrier Z is 0.00528. The error bars are

obtained by calculating the standard deviations between the runs. The sigmoidal shape of

the curve obtained in Figure 3.15 indicates the system has a well defined activation barrier.

To understand how changes in temperature affects nucleation, the system was equilibrated

at a high temperature as before, and dropped to a set of different temperatures. The results
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obtained (Figure 3.16) were fitted with Equation 3.1.1 to obtain the parameters shown in

Table 3.1. The critical cluster seems to be fluctuating around the same value for the different

temperatures, indicating the size does not decrease with decreasing temperature, except for

the very lowest temperature studied. According to classical nucleation theory, the critical size

should decrease with decreasing temperature because the driving force for freezing increases.

The rate of crystallization however increases as the temperature decreases, which is consistent

with classical nucleation theory.
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Figure 3.16: A Plot of MFPT as a function of cluster size for different temperatures.
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Table 3.1: Summary of nucleation parameters obtained for the {3, 3} FLS system.

Parameters T=0.667 T=0.685 T=0.687 T=0.689 T=0.691

Rate(J) 1.5× 10−3 9.4× 10−5 5.2× 10−5 3.9× 10−5 3.2× 10−5

MFPT(n*) 260 396 418 391 390

Free energy(n∗) - 330 328 301 303

Simulation(∆n) 243 378 401 377 377

Zeldovich factor (Z) 0.00245 0.00298 0.00287 0.00374 0.00321

Nucleation theorem(∆n∗) - 382 383 383 384

∆H/N 0.273 0.276 0.278 0.281 0.281

∆G∗ - 5.416 5.708 5.677 5.959

∂∆G
∂T

- 952.6 953.8 955.0 956.2

3.1.4 Free Energy Barriers

The free energy barrier for nucleation was calculated using the MFPT analysis described

by Equations 1.5.13 and 1.5.15, where the steady state probability of observing a cluster

of a given size was obtained from the ensemble of configuration sampled in the nucleation

trajectories. The barrier for the {3, 3} FLS system, presented in Figure 3.17, is found

to be around 8.3kT , which is moderately high. The critical cluster sizes for the different

temperatures are however found to be a little smaller in size compared to that given by the

MFPT calculation (Table 3.1). Minor differences have been observed in previous comparisons

[30]. The Figure 3.17, has a minimum at approximately n = 20 because there is a high

probability that a cluster of this size can be found in the supercooled liquid. This is a

system size effect associated with the translational degrees of freedom of the cluster. The

classical nucleation theory free energy can be compared to the current data for cluster sizes

greater than the minimum. The CNT barrier is given by

∆G(n) = −∆µn+ A(n)σ, (3.1.2)

where A(n) is the surface area. Assuming the cluster is a 2D sphere, A(n) = 2πr, where

r =
√

n
π
. The data is fit with the classical nucleation theory (see Equation 3.1.2) using ∆µ
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and σ as fit parameters. It is clear from Figure 3.17 that the fit is not good. The height of

the barrier obtained from the fit is higher than that obtained from our analysis. The system

plateaus earlier than the fit.

Figure 3.18 shows free energy barriers obtained for all temperatures studied. The barrier

height ranges from 7.9kT to 8.6kT not showing very much differences and within 1kT of

each other so it can be assumed the barrier height of the system is approximately same. The

critical cluster sizes obtained from the barrier calculations are listed in Table 3.1.
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Figure 3.17: A plot of free energy (β∆G) as a function of cluster size (n) at T = 0.687

.
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Figure 3.18: A Plot of Free Energy (β∆G) as a function of cluster size (n) for different

temperatures
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3.1.5 The nucleation theorem

The nucleation theorem is usually expressed as,

∂∆G∗

∂∆µ
= −∆n∗, (3.1.3)

where ∆G∗ is the Gibbs free energy of forming a critical nucleus, ∆µ is the chemical potential

difference between the liquid and the solid, and ∆n∗ is the excess number of particles in the

critical cluster. This excess is simply the difference in the number of spins in the critical

cluster relative to the number of spins that would be present in the uniform metastable

phase before the cluster is created. The theorem was originally derived by Anismov et al

[51] and Kashchiev [52] to describe classical nucleation, but was later shown to be a general

thermodynamic relation applicable to the formation of any inhomogeneity from a uniform

fluid [53]. The nucleation theorem has been used to check the validity of different methods
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of free energy barrier calculation in the nucleation field [8]. Here the nucleation theorem will

be used as a consistency check on the free energy calculations described in Section 3.1.4.

To evaluate Equation 3.1.3, it is necessary to obtain an expression for the difference in

chemical potential between the metastable liquid and the solid below the freezing temper-

ature. The chemical potential is the molar Gibbs free energy, µ = G/N . Thermodynamics

defines the following relation,

(
∂Gl

∂T

)
p

−
(
∂Gs

∂T

)
p

= −Sl + Ss =
−Hl

T
+
−Hs

T
, (3.1.4)

where S is the entropy, H is the enthalpy and the subscripts l and s refer to the liquid and

solid phases, respectively. The Gibbs free energy can be obtained as

∆G = −∆H

∫ T

Tm

∂T

T
= −∆H ln

(
T

Tm

)
, (3.1.5)

where ∆H = Hl −Hs is assumed to be constant over the temperature range considered, Tm

is the melting temperature and it is noted that ∆G = 0 at the equilibrium phase transition

temperature. If the temperature range considered below Tm is small, the log term in Equation

3.1.5 can be expanded using a Taylor expansion to yield,

∆µ =
∆H

N

(
1− T

Tm

)
, (3.1.6)

where the molar quantity is obtained by dividing by the number of spins, N . Finally to make

use of the free energy barriers obtained in Section 3.1.4, it is necessary to transform 3.1.3

into a temperature dependent form. Taking the derivative of equation 3.1.6 with respect to

T gives,

∂∆µ

∂T
= −∆H

N

1

Tm
, (3.1.7)

and substituting this into 3.1.3 gives(
∂∆G

∂T

)
P

= − N

∆H
Tm∆n. (3.1.8)

The enthalpy difference, ∆H = El − Es + P (Vl − Vs) = El − Es, where El and Es are the

energies in the metastable liquid and solid respectively, because there is no volume difference

between the phases in a lattice model. The energy of the solid phase is obtained directly from

the equilibrium measurements of the crystal energy performed in Section 3.1.1 (see Figure
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3.1 ). The estimate of El is obtained by averaging the energy over the metastable region

of the dynamic trajectories, i.e, the time the temperature is decreased to the time where

the critical nucleus is observed. The energies are averaged over all 300 trajectories for each

temperature. The enthalpy per particle, ∆H/N , for each temperature is tabulated in Table

3.1. There is a small temperature dependence but the values are essentially constant within

error. Averaging over all the temperatures gives ∆H/N = 0.278. The melting temperature

is estimated as the average temperature within the hysteresis limits (see Figure 3.1), which

yields Tm = 0.693. The temperature derivative of the Gibbs Free energy barrier is obtained

by fitting the values of ∆G∗ as a function of T , obtained in Section 3.1.4, to a second order

polynomial (see Figure 3.19). This data is used to obtain values for the excess number of

spins in the critical nucleus and these are listed in Table 3.1 .
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Figure 3.19: A plot of free energy (∆G) as a function of temperature (T). The points

represent the data, and are joined by solid lines to guide the eye. The dashed line represents

the polynomial fit.
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It is also possible to estimate the excess number of spins directly from the simulation

results as ∆n = n∗−n∗p(n), where p(n) is the probability that a site in the metastable fluid

is a solid-like spin, so that n∗p(n) represents the background solid spins that occupied the

cluster sites before the cluster was formed. Configurations of the metastable state (Figure

3.13a) suggest that most of the solid-like spins are contained in the largest cluster, so p(n) ≈<
n > /N is the average cluster size in the metastable state divided by N . This definition

obviously underestimates the background because some solid-like spins are not in the largest

cluster, but it should provide a reasonable estimate. The excess obtained by simulation is

listed in Table 3.1, for comparison with the values obtained from equation 3.1.8.

This FLS model system has some ordering even in the equilibrium liquid, so it is suspected

that the critical clusters obtained from the MFPT fitting does not reflect the true critical

sizes because of the background clusters present in the equilibrium liquid. The excess (∆n)

is obtained by subtracting the background crystal from the critical clusters(n∗) obtained

from MFPT fitting.

59



3.2 {1, 5} FLS

3.2.1 Equilibrium properties

Figure 3.20 shows the cooling and heating cycles for the {1, 5} FLS model, that is, when the

temperature is being decreased and increased, respectively, with 0.05 increments. The {1, 5}
system accumulates lots of order while remaining liquid, as indicated by the low energy of the

liquid phase. In contrast, the {3, 3} achieves most of the local ordering as a phase transition,

which is evident from the plot of average energy per site, E, against the temperature. It

should also be noted that while the energy shows a sharp drop at the freezing temperature,

there is no hysteresis, and the cooling and heating curves follow the same behaviour for all

temperatures. This is characteristic of a weak first order phase transition.
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Figure 3.20: The energy per spin, E, of the {1, 5} FLS model as a function of temperature,

T . The symbols represent the data points for cooling (circles) and heating (squares). The

solid line provides a guide to the eye.

60



Looking at the probability distribution for the {1, 5} FLS system shown in Figure 3.22,

all the local structure probabilities decrease as a function of temperature, with the exception

of the {0, 6} and the {1, 5}, which make up the perfect crystal. The {0, 6}, {2, 4} and {1, 5}
local structures still remain in the frozen state. It is interesting to note that the {2, 4} FLS

appears in the crystal with low percentage, but it actually appears in greater percentage in

the liquid state. This might be related to the fact that the perfect {1, 5} FLS crystal can

be achieved without the {2, 4} configuration. However, the {2, 4} local structure appears in

the system as a defect (see Figure 3.21).

Figure 3.21: Ground-state crystal for the {1, 5} FLS model with {2, 4} configuration as

defects. The green colour represent the up spins, while the purple shows the down spins.
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Figure 3.22: Probability distribution of FLS (P ) as a function of temperature (T ) for the

{1, 5} FLS model for both cooling and heating cycles.
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3.2.2 Cluster Criteria

In order to fully understand how this crystal structure forms, a cluster criterion needs to

be developed for the system. This is to ensure a solid-like spin can be distinguished from a

liquid-like one. The {1, 5} FLS system is known to have two other local structures from the

equilibrium studies. A solid-like spin in this system can only be defined by its neighbours

for this system. The results presented in Figure 3.23 show the probability of each of the

local structures present in the crystal structure of the {1, 5} FLS system having any of

the crystal local structures as neighbours. For example, it shows the probability of a {1, 5}
particle having either {0, 6} FLS, {1, 5} FLS or {2, 4} FLS spin as neighbour. Below freezing

the crystal local structures are surrounded by six of the other crystal local structures, but

there are also a significant number of spins in the liquid phase that have the same local

environment. This makes it difficult to distinguish a liquid-like spin from a solid-like spin.
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Figure 3.23: Initial Cluster criteria for {1, 5} FLS. This shows how the local structures relates

to each other over a set of temperatures.
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Figure 3.24: Cluster criteria for {1, 5} FLS.
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Figure 3.25: Cluster criteria for {1, 5} FLS.
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Figure 3.26: Cluster criteria for {1, 5} FLS.
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The local structures probabilities do not show significant differences between the liquid

and the crystal structure except for the probability of the {0, 6} FLS spin having {1, 5}
FLS spin as neighbours and the {1, 5} FLS having {1, 5} FLS as neighbours as shown in

figure 3.24b and 3.25e, respectively. Because the {2, 4} FLS is part of the local structures

that appears in the crystal, it was expected that it would be required for the cluster criteria

but it appears to be a defect in the system and not required for the formation of the crystal

structure. In conclusion, a spin with a {0, 6} FLS configuration having six neighbouring spins

with a {1, 5} FLS configuration is termed solid-like. A spin with a {1, 5} FLS configuration

having five neighbouring spins with a {1, 5} FLS configuration is also termed solid-like for this

system. A cluster for this system therefore comprises spins that are immediate neighbours

and fulfil the cluster criteria. In principle, it is possible to assign an orientation to the {1, 5}
FLS, as was done with the {3, 3} system. However, all orientations of the FLS appear in

the local environment around a given {0, 6} local structure. As a result, there is no correct

orientation.

3.2.3 Mean First Passage Time

The MFPT is obtained by averaging an ensemble of nucleation trajectories, but it is also

useful to examine the properties of the individual trajectories. The system was equilibrated

at a temperature of T = 1.6. The temperature was abruptly dropped to a temperature

of T = 0.51, which is directly below freezing. The energy was recorded for each Monte

Carlo cycle. The Figure 3.27, shows how the energy changes with simulation time after the

temperature of the system has been dropped. The energy of the system rapidly drops to a

metastable state, where it fluctuated around E = −0.77, which is an energy very close to

that of the ground-state crystal. The energy difference between the metastable phase and

the crystal is not large.
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Figure 3.27: Energy (E) versus time (t) plot for {1, 5} FLS system after temperature has

been dropped to 0.51.
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The spin configuration for each time step was saved, and using Mathematica, these were

visualized (see Figure 3.28). The configuration numbers correspond to the simulation time.

Figures 3.28a and 3.28b show the arrangement of the spins when the system’s energy is

consistent with the liquid, while Figures 3.28c and 3.28d are snapshots of the spins after the

drop to an energy consistent with that of the crystal. The system started becoming ordered

to attain the desired ground-state crystal structure once the temperature was dropped.

The Figure 3.29, shows the cluster evolution as a function of time. The purple repre-

sents solid spins, while the green represents liquid spins in Figure 3.29. Even before the

freezing transition, the metastable liquid configuration at time 32410 (Figure 3.29b) has a

large number of solid-like clusters, proving the system organizes itself above the freezing

temperature.
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Figure 3.28: Spin configuration for nucleation in the {1, 5} FLS system. The green colour

represents the up spins, while the purple shows the down spins.

(a) configuration 48 (b) configuration 32410

(c) configuration 44744 (d) configuration 70559

Figure 3.29: Cluster dynamics for the nucleation event in the {1, 5} FLS system. The green

colour represents the liquid-like spins, while the purple shows the solid-like spins.

(a) crystal 48 (b) crystal 32410

(c) crystal 44744 (d) crystal 70559
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Figure 3.30: Cluster size as a function of simulation time after temperature drop
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The Figure 3.30 shows a plot of cluster sizes as a function of simulation time after the

temperature has been dropped from T = 1.6 to T = 0.51. The system fluctuates around a

large cluster size presented in Figure 3.30. The cluster size goes a little over a 1000 and still

does not nucleate, indicating the critical cluster is likely to be over a 1000 spins, which is

more than half the number of particles in the system. This system already has a lot of order

before freezing, which confirms that the system has very little ordering to do. It is also clear

that the system has a large equilibrium cluster, that is, the cluster size does not decay to

zero.

The MFPT data fits well with Equation 3.1.1. The rate JV , which is inversely related to

τJ , is found to be 4.6× 10−5 clusters/(site.MC cycles). The critical cluster, n∗ is 1036, and

the Zeldovich factor, Z, which is related to the local curvature around the top of the barrier,

is 0.00495295. The MFPT analysis is carried out over a range of temperatures as described

earlier. The data is plotted in Figure 3.32, and parameters extracted from the fitted plots

are listed in Table 3.2. The rate for this system increases as the temperature decreases, as
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shown in Table 3.2, however, the critical cluster size seems to change very little, or even

grows with decreasing temperature. It is expected that as temperature decreases, critical

size decreases.
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Figure 3.31: A Plot of MFPT (τ) as a function of cluster size (n) for the {1, 5} FLS at

T = 0.51. The red curve is the fitted data, while the green is the error bar.
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Figure 3.32: A Plot of MFPT (τ) as a function of cluster size (n) for different temperatures.
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Table 3.2: Summary of the nucleation parameters obtained for the {1, 5} FLS system

Parameters T=0.48 T=0.49 T=0.50 T=0.505 T=0.51 T=0.52

Rate(J) 1.4× 10−4 1.3× 10−4 8.9× 10−5 5.9× 10−5 4.6× 10−5 3.1× 10−5

MFPT (n∗) 1117 1073 1038 1067 1036 985

Free energy (n∗) - - - 742 796 858

Zeldovich factor (Z) 0.00196 0.00210 0.00241 0.00242 0.00279 0.00309

Excess(∆n) 692 707 725 767 776 789

3.2.4 Free Energy Barrier

Figure 3.33 shows the free energy barrier obtained from the barrier reconstruction analysis

for the {1, 5} FLS at a temperature, T = 0.51, which is just below the freezing temperature
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for the model. The minimum at n ≈ 200 indicates the presence of a large equilibrium

cluster in the system. This is consistent with observations made by examining the individual

trajectories and configurations. The minimum is also very broad and shallow, which would

allow for large fluctuations in the equilibrium cluster size. The critical size appears to be

approximately 800 sites, which represents a significant fraction of the system. This could

lead to potential problems associated with system size effects, where large clusters interact

with themselves through the periodic boundary conditions.

Figure 3.34 shows the free energy barriers for a range of temperatures. The minimum

associated with the equilibrium practical cluster shifts to larger sizes as the temperature is

decreased and the barrier seems to slowly disappear. At T=0.50, the free energy surface

decreases monotonically as a function of cluster size. This suggests that the clusters are able

to increase without having to cross an activation barrier. However, this is potentially also a

system size effect [54, 55, 56]. Unfortunately, it was not possible to get the simulation code

to work for larger system sizes to check this effect.
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Figure 3.33: Plot of free energy (β∆G) as a function of cluster size (n) for the {1, 5} FLS

system at T = 0.51 .

73



Figure 3.34: The free energy (β∆G) as a function of cluster size (n) for the {1, 5} FLS

system at different temperatures.
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3.2.5 Nucleation Theorem

In section 3.1.5 the nucleation theorem was used to examine the excess number of spins

associated with the critical cluster for the {3, 3} FLS model. In principle, the same approach

can be used to study the {1, 5} FLS system, but as Figure 3.34 shows, there is no systematic

evolution of the barrier height, or the critical cluster size as a function of temperature. This

makes it impossible to use Equation 3.1.8. However, it is possible to estimate the excess

from the computer simulation by calculating the background and subtracting this from the

critical size obtained from the MFPT analysis. The background is obtained by calculating

the probability that a spin in the metastable liquid is solid-like, as in Section 3.1.5, and the

excess is tabulated in table 3.2. As can be seen, the excess number of particles decreases as

the temperature decreases, which is consistent with the expectations of classical nucleation

theory, while the critical size calculated directly from the MFPT increases with decreasing
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temperature.

To explain this, it should be noted that the equilibrium cluster within the metastable

liquid of the {1, 5} FLS system increases in size as the temperature is decreased, as indicated

by the location of the free energy minimum in Figure 3.34. Lower temperatures enhance

the local order in the metastable liquid. This causes the background to increase. When

this background is removed from the size of the critical cluster, the expected CNT trend is

recovered. This highlights the importance of calculating the excess cluster size in problems

of crystal nucleation rather than just focusing on the critical cluster size.
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Chapter 4

Discussions, Conclusions and Future

work

4.1 Discussion

The goal of this thesis was to explore the difference in nucleation mechanisms between

systems undergoing strong or weak first order phase transitions. The lattice spin favoured

local structure models, developed by Ronceray and Harrowell [5], provide ideal systems for

exploring the effects of local structure on the properties of liquids and solids. By assigning a

low energy to the different possible spin arrangements surrounding a lattice spin, the models

display a wide range of freezing behaviour, which include strong and weak first order phase

transitions, as well as second order phase transitions. The types of crystals formed also

exhibited a wide variety of structures, with unit cell sizes ranging from 1 through to 20,

while some FLS models also display the ability to freeze into multiple crystal forms. This

work is focused on studying the nucleation behaviour of the {3, 3} FLS and the {1, 5} FLS

models, because they undergo strong and weak first order transitions, respectively.

The equilibrium cooling and heating curves (Figures 3.1 and 3.20) clearly show the strong

and weak freezing behaviour. The {3, 3} FLS system has a large decrease in its energy as

the system freezes and it exhibits a clear hysteresis loop. The energy of the {1, 5} FLS

system only decreases by a small amount at freezing and exhibits no hysteresis. The local

structure probabilities also highlight clear differences between the two systems. In the {3, 3}
FLS model, the {3, 2} local structure is the most probable at high temperatures and its

probability changes very little as a function of temperature until the freezing temperature is
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reached. The {3, 3} FLS becomes the most probable as the temperature decreases because

it is energetically favoured. The only other local structure to increase in probability is the

{2, 2} local structure, which appears as part of the crystal. Surprisingly, the {4, 1} local

structure, which also appears in the crystal, decreases with decreasing temperature until

the freezing point is reached. All the other local structures rapidly disappear upon freezing.

Most importantly, the large energy drop at freezing shows that the system gains most of its

order during the freezing process.

In contrast, the liquid phase of the {1, 5} FLS model contains a large amount of order

right from a high temperature, T = 1.6. The {1, 5} FLS is the most probable structure and

has a significant amount even at T = 1.6 and by the time freezing occurs, it has reached 70%

of its crystal structure, only gaining another 10% when it freezes. The {0, 6} FLS, which

also appears in the perfect crystal, increases in probability as the temperature is decreased.

It is interesting to note that the {2, 4} structure does not disappear on freezing, even though

it is not part of the perfect crystal, and creates defects in the crystal.

The nucleation studies also reveal significant differences between the two systems. The

nucleation trajectories of the {3, 3} FLS system appear classical in nature. Small clusters

grow, but they then shrink again to almost zero until they reach the critical cluster size.

However, the CNT fit to the free energy barrier does not provide a proper fit. The {1, 5}
system exhibits a large equilibrium cluster that is stable in the metastable liquid phase. This

is consistent with the large degree of order that the liquid develops before freezing occurs.

The cluster size fluctuates around the equilibrium cluster before nucleation occurs. The

presence of the large cluster is also apparent in the free energy curve for the system. The

equilibrium cluster also increases in size as the temperature is dropped.

The MFPT analysis generally worked well for both systems. The rate of nucleation

increased with decreasing temperature for both systems. This is the expected behaviour

because the drive force for nucleation, which is the difference in chemical potential between

the liquid and the crystal, increases as the temperature moves further below the equilibrium

freezing temperature. According to CNT, the critical cluster size is expected to decrease with

decreasing temperature. The critical cluster sizes predicted by MFPT and the size of the

excess number of spins predicted by the nucleation theorem were approximately the same for

the {3, 3} FLS system. This may be because the temperature range studied was small and

the error bars on the MFPT curves are relatively large. The lowest temperature studied did
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show a decrease in the critical cluster size. However, as the temperature is decreased further,

the nucleation occurs more rapidly and it becomes difficult to establish the metastable liquid

state, which is a necessary feature of the MFPT analysis.

The MFPT analysis showed that the critical cluster size actually increased with decreasing

temperature for the {1, 5} FLS model. Some non-classical theories of nucleation predict that

this is possible as the system approaches a spinodal limit of stability because the fluctuation

in the system begins to diverge. However, spinodals are not expected to occur in liquid-

crystal phase transitions. Subtracting the background from the cluster size to calculate the

excess number of spins in the critical nucleus made the critical sizes decrease as expected .

This work suggests that accounting for the background is important in crystal nucleation,

particularly when the metastable liquid can develop so much order before freezing.

The free energy barrier calculations for the {1, 5} FLS model appear to be in error and

show no consistent behaviour. This is probably due to the large size of the critical nucleus,

which grew to be larger than half the system size. This means that the cluster would

interact with itself across the periodic boundary conditions. This would also affect the

MFPT calculations so the current results should be tested at both a smaller and larger

system size to check for system size effects. Unfortunately, the current simulation code could

not be made to work for larger systems.

The symmetry of the FLS and LS involved in the crystal, along with the correlations the

FLS impose on their environment, may play an important role in the ability of the liquid

phase to develop structural order before freezing occurs, which then affects nucleation. The

{3, 3} FLS belongs to the C2h point group and causes the other local structures to adopt

specific orientations in order to form a crystal nuclei. This makes it difficult to develop order

in the liquid phase without growing a crystal nucleus. This leads to the strong first order

phase transition. The {1, 5} FLS has just the identity and reflection operations, but the {0, 6}
local structure, which also appears in the perfect crystal, is the most symmetric structure.

The {1, 5} FLS can adopt any orientation when it is next to the {0, 6} local structure, that

is, the structural correlations are not as restrictive in this model. The number {1, 5} FLS

structures can therefore grow in the liquid without necessarily forming the crystal structure.

This leads to the weak first order transition behaviour.
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4.2 Conclusion

The {3, 3} FLS model exhibits a strong first order transition and the nucleation behaviour

is characterized by the fluctuations in cluster sizes that grow and shrink from small clusters

in the metastable liquid. The {1, 5} FLS model exhibits a weak first order phase transition

and nucleation involves growth from a large fluctuating cluster that forms in the metastable

liquid. This work also highlights the need to focus on the excess number of spins in the

system, obtained from the nucleation theorem rather than the absolute critical cluster size,

where significant order exists in the metastable phase. The differences in freezing and nucle-

ation behaviour may be understood in terms of the structural correlations the FLS impose

on their environment.

4.3 Future Work

This work focused on studying the {1, 5} FLS and the {3, 3} FLS models. Nucleation studies

on the remaining distinct FLS will be crucial to fully understanding these FLS systems and

could help our understanding of nucleation in more complex systems occurring in nature.

The MFPT method could be used to study systems where nucleation occurs on the time

scale of simulations, but umbrella sampling Monte Carlo simulations could also be used. The

system size effects also need to be checked.

While the spin lattice FLS models provide ideal systems for studying the effect of local

structure on nucleation, the results and observation obtained in this model need to be ex-

amined in more realistic models of liquids and crystals. This remains a challenge because

the FLS in these liquids are difficult to identify. The experimental identification of FLS also

remains a significant challenge, but this may be possible in some colloidal systems where

confocal microscopy allows the structure of the liquid state to be imaged directly.
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