
Partial Evaluation in an Optimizing Prolog Compiler

A Thesis Submitted to the College of

Graduate Studies and Research

in Partial l?WIh.nent of the Requirements

For the Degree of Ph-D

in the Department of Computer Science

University of Saskatchewan

Saskatoon, Saskatchewan

@ Copyright Srinivasa Bharadwaj YadavaIli, April 2000. All rights reserved.

Acquisitions and Acquisitiorrs et
Bibliographic Services services bibliiraphiques

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sen
copies of this thesis m microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial e-ts from it
m y be printed or otherwise
reproduced without the author's

L'auteur a accorde une licence non
exclusive pennettant a la
Bibhothkque nationale du Canada de
reproduke, priter, dishiIb~~er ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
&xtronique.

L'aukur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extcah substantieis
de celle-ci ne doivent &re imprim&
ou alltrement reproduits sans son

permission. antorisation.

Permission To Use

In presenting this thesis in partial Mihnent of the requirements for a Post-
graduate degree from the University of Saskatchewan, I agree that the Libraries of
this University may make it freely available for inspection. I further agree that per-
mission for copying of this thesis in any manner, in whole or in part, for scholarIy
purposes may be granted by the professor or professors who supervised my thesis
work or, in their absence, by the Head of the Department or the Dean of the College
in which my thesis work was done. It is understood that any copying or pubkication
or use of this thesis or parts thereof for financial gain shall not be allowed without
my written permission. It is also understood that due recognition shall be given to
me and to the University of Saskatchewan in any scholarly use which may be made
of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis
in whole or part should be addressed to:

Head of the Department of Computer Science
University of Saskatchewan

Saskatoon, Saskatchewan, Canada
S7N 5A9

Abstract

Specialization of program and meta-programs written in high-level languages
has been an active area of research for some time. Specialization contributes to
improvement in program performance. We begin with a hypothesis that partial
evaluation provides a framework for several traditional back-end optimizations. The
present work proposes a new compiler back-end optimization technique based on
specialization of low-level RISC-Like machine code. Partial evaluation is used to
specialize the low-level code. Berkeley Abstract Machine (BAM) code generated
during compilation of Prolog is used as the candidate low-level language to test the
hypothesis. A partial evaluator of BAM code was designed and implemented to
demonstrate the proposed optimization technique and to study its design issues.

The major contributions of the present work are as follows: It demonstrates a
new low-level compiler back-end optimization technique. This technique provides
a framework for several conventional optimizations apart fiom providing opportu-
nity for machine-specific optimizations. It presents a study of various imes and
solutions to several problems encountered during design and implementation of a
tow-level language partial evaluator that is designed to be a back-end phase in a
real-world Prolog compiler. We a h present an implementation-independent den*
tational semantics of BAM code - a low-led language. This provides a vehicle for
showing the correctness of instruction transformations,

We beIieve this work to provide the first concrete step towards usage of partial
evaluation on low-ievei code as a compiler back-end optimization technique in real-
world compiIefs-

Acknowledgements

The period I worked on this thesis was very unique in my life - w t i a g yet
immensely enriching. Being the only researcher in the department working on com-
piler optimizations for all these years has been a challenge. Several inciriduals have
"schemedn together to provide this experience for me. It was a time when I could
passionately learn and experiment with my favorite area of research.
Eric Neufeld gave me the freedom and supported my work unequivocally. I will al-
ways be grateful for Eric's understanding and help during these years. Tony Kusalik,
with his keen attention to detail, helped me sharpen the accuracy and presentation.
This proved invaluable and I believe will only make me a sharper researcher in the
future. I wish to express my sincere thanks to Tony. 1 aIso wish to express my
gratitude for the financial support Eric and Tony have provided during this period.
I deeply d u e Carl Mccrosky's help and guidance with regards to denotation4 se-
mantics. Paul Tremblay was a very great resource for compiler related research
material and advise.
Peter Van Roy was very patient and prompt in his replies to every question I posed
related to -4quacius Prolog compiler and BAM. This helped me sustain the passion
in my work.
My dream of earning a doctorate would not have been realized without the sacri-
fices and the unflinching support of my life partner and the only love of my life -
Nirmala. The very joy of being in the presence of our kids Aditya and Anindita
gave me the much needed balance and perspective during these gears. I can only
promise a lifetime 111 of love and affection to Nirmala, Aditya and Anindita. My
parents have given the freedom to pursue my interests while ensuring that T know
right born wrong. My humblest nomaskammulu (salutations) to them.
I thank NSERC, Canada and IRIS for the funding provided for a significant time of
my thesis work.
I also thank Digital Equipment Corporation/Compaq for providing me with an o p
portunity to work in an exciting group during the later years of this thesis work.

Dedication

To the lotus feet of God

Whose benevolence manifests

as affection of my parents -

Sri. Venkata Ramana Rao and Smt. Annapurna,

as unconditional love and support of my wife -
Nirmala

and as pure love of my children -

Aditya and Anindita.

Table Of Contents

Permission To Use i

Acknowledgements iii

Dedication iv

Table Of Contents v

List of Tables x

List of Figures xi

List of Algorithms xiii

1 Introduction 1

2 Prolog and Berkeley Abstract Macbine 5

2.1 The Prolog Programming Language . . + - - . . - - - - . - - . 5

2.1.1 Synt ax............................... 5

2.1.1.1 Data Representation in Prolog 5

2.1.1.2 Prolog Program Constructs - 7

2.1.1.3 The Goal Clause . 8

2.1.2 hecution model - . . - 8

2.2 Berkeley Abstract Machine . 10
2.2.1 Memory Areas and Data Structures - - - - - 11

2.2.1.1 Environment - . . . 12
2.2.1.2 Choicepoint . 12

2.2.2 Data Types and Registers . 13

2.2.2.1 Addressing Modes 15

2.2.3 Instruction Set . 15

. 2.2.4 Compilation of Prolog to BAM Code 16

3 Denotational Semantics of BAM 21

. 3.1 Notational Conventions 21

. 3.2 Domain Constructors 22

3.3 Functions and h c t i o n Domains . 23

. 3.4 SemanticDomains 25

3.4.1 State Register Domain . 27

3.4.2 .4r gument Register Domain - 27

. 3.4.3 Permanent Register Domain 29

3.4.4 Environment and Environment Stack Domain 30

3.4.5 Choicepoint and Choicepoint Stack Domain 30

. 3.4.6 Heap Domain 31

. 3.4.7 Trail Domain 31

. 3.4.8 Memory State Domain 32

3.4.9 B M Code Execution . 34

. 3.5 Valuation Functions 38

3.5.1 Procedure Control Flow Instructions 39

3.5.2 Conditional Control Flow Instructions 40

3.5.3 Udcation Instructions . 44

. 3.6 Summary 47

4 Program Specialization 49

. 4.1 Introduction 50

. 4.1.1 Opportunities to specialize BAM Code 54

4.2 Overview of BAM Code Specialization 58

. 4.2.1 Partitioning BAM Code into CFG 59

4.2.2 Polyvariant Specialization of BAM Code 63

4.2.2.1 Residue Generation During Partial Execution 65

. 4.2.2.2 Consolidation of Residue 68

. 4.3 Specialization of Instructions 69

4.3.1 Specialization of Conditional Control Flow Instructions 70

4.3.2 Specialization of Choicepoint Instructions 73

4.3.3 Specialization of UniBcation Instructions 77

. 4.4 Illustration of Partial Execution 82

. 4.4.1 Example 1 82

. 4.4.2 Example 2 87

. 4.5 Summary 93

5 Structure of a BAM Partial Executor 94

. 5.1 Introduction 94

5.2 Augmenting BAM Memory Areas To Support PE 95

5.2.1 Partial Execution Registers 95

5.2.2 Augmenting Environment Stack for PE 96

. 5.2.3 -4ugrnenting the Choicepoint Stack for PE 98

5.3 BAM Code Partial Execution Driver 99

. 5.3.1 Characteristics of a Basic Block 101

5.3.2 Parameterizing a Basic Block With Optima1 Reference Registers101

. 5.3.3 Characteristics of a Procedure 103

. 5.4 PE Driver Execution 106

5.4.1 Semantics of Dereferencing during Partial Execution 107

. 5.4.2 Control Stack 114

. 5.5 Loop Detection and Termination of Partial Execution 116

. 5.5.1 Handling a Basic Block Execution Loop 118

. 5.5.2 PE Loops and Code Loops 119

. 5.5.3 Termination of Partial Execution 122

. 5.6 Partial Execution of a Basic Block 123

. 5-7 Implementation of BAM Partial Executor 124

5.8 Summary . -124

6 Instruction Level Partial Execution and Analyses 126

6.1 PE of BAM Instructions . 127

6.1.1 PE of Procedural Control Flow ~ c t i o n s 127
6.1.1.1 PE of procedue8) 127

6.1.1.2 PE of a l locatd l) 128

6.1.1.3 PE of deallocate (8) 128

6.1.1.4 PE of eall(K) . 128

. 6.1.1.5 PE of r e t d 0 129

6.1.1.6 PE of jump(L) . 129

6.1.2 PE of Conditional Control Flow Instructions 130

6.1.2.1 PE of switch(T,R, L1 ,L2, L3) 130

6.1.2.2 PE of t e s t (E,T,R, L) instruction 131

. 6.1.2.3 PEofjtlmp(T,C,A,B, L) 131

6.1.2.4 PE of choice(I/H, Rs , L) 132

. 6.1.2.5 PEofmt(R) 133

. 6.1.2.6 PE of trailCV) 134

. 6.1.2.7 PEoffail/O 134

. 6.1.3 PE of Unification Instructions 237

. 6.1.3.1 PEofderef(X, Y) 137

. 6.1.3.2 PE of equal(Vi, V2, L) 138

. 6.1.3.3 PEofuDify(E11,R2,Fl,F2, fail) 139

. 6.1.3.4 PEofuoify,atomic(V,A, f a i l) 142

. 6.1.3.5 PEofmave(S, D) 143

. 6.1.3.6 PEofpwh(S,R, I) 143

. 6.1.3.7 PEofadda(S,O, D) 143

. 6.1.4 PE of Arithmetic instructions 143

6.2 Maintaining BAM Memory Correctness 144

6.2.1 Speculative Partid Execution 147

. 6.3 Memory Correctness When a PELoop Exists 150

. 6.4 Choicepoint Optimization 152

. 6.5 Summary -155

7 BAM Code Regeneration 156

. 7.1 Code Consolidation 156

. 7.2 Summary 159

8 Evaluation of BAM Code Partial Execution 160

. 8.1 Evaluation Context 160

. 8.1.1 Benchmarking Methodology 161

8.2 Summary . 164

9 Condusions and Future Work 166

. 9.1 Research Contributions 166

. 9.1.1 New Compiler Back-End Optimization Technique 166

. 9.1.2 Optimization Framework 167

. 9.1.3 Semantics Spdca t ion of Low-Level Code 167

. 9.2 Related work and applicability 167

. 9.2.1 Partial Evaluation of Prolog 167

. 9.2.1.1 Prolog Programming Environment 168

. 9.2.2 Partial Evaluation of Low-Level Code 168

. 9.2.3 Conventional Compiler Technology 169

. 9.2.3.1 Binary 'ItansIation 169

. 9.2.3.2 Dynamic Optimization 169

. 9.2.3.3 Link-Time and Pa-Link Optimization 170

. 9.3 Future Work -170

List of Tables

. Datatags in BAM 14

. BAM registers 14

. Procedural Control Flow Instructions of BAM 17

. Conditional Control Flow Instructions of BAM 17

. Uniiicatiaa Lustructions 18

. Embedded information (pragmas) 18

. Benchmarks 163

. Execution times 163

List of Figures

. 2.1 BAM Memory Areas 11

. 2.2 .4 simple compiled BA-M code format 20

. 4.1 Aquarius Prolog compilation phases 56

. 4.2 Programsample.pl 61

. 4.3 CFG of BAM code of sarnple.pl 62

4.4 Schematic of choicepoint creation in BAM 73
4.5 Schematic CFG of a predicate pred/2 with four alternate choices . . 74
4.6 Program example1 . p l dong with its BAM code 83

. 4.7 CFG of BAM code of e x q t l e l . p l program 84

. 4.8 Residue of the BAM code of example1 . p l 86

. 4.9 Program l a s t - p l 87

. 4.10 CFG for last/2 88

. 4.11 Program last-tweaked . p l 91

. 4.12 CFG for hand-optimized l a d 2 92

. 5.1 Program simple . p l -107

5.2 Example to demonstrate deferred dereferencing of a dynamic register

. with tvar-tagged value 108

. 5.3 E?rample dereferencing chains 109

. 5.4 Program to illustrate the need for ds t r 111

5.5 CFG of code with deferred dereferencing of dynamic register with

. tstr-tag 112

. 5.6 Schematic iHustration of procedure in-out value usage 117

. 5.7 Schematic to Illustrate PE-loop and Syntactic Loop 122

Definition of max/3 Predicate . 134

CFG of BAM Code for predicate max/b 135

Schematic CFG to illustrate choice success update 136

Example to illustrate transformation of an instruction with static

. pointer-tagged operand 146

Setting a non-state register r to a tvar-tagged dataword 148

Setting a non-state register r to a tatm-tagged dataword 150

. Schematic illustration of PEloops detected 151

Schematic CFG to illustrate choicepoint optimization 155

List of Algorithms

Prolog Execution Semantics . 9

Empirical Partial Execution Algorithm 67

Partial Execution Driver Algorithm 100

. Find focus registers 104

Simulation of a return out of a procedure when a loop is detected . . 120

-4Igorithm for finding strongly connected components 121

. Basic block partial execution 123

. unify(hl. hz) : bdean 142

Algorithm to set memory correctly for speculative partial execution . 148

Algorithm to adjust the heap while speculatively setting a dynamic

. non-state register 149

Setting BAM memory upon loop detection 153

. Choicepoint optimization 154

Toplevel loop for BAM code regeneration 157

Algorithm to regenerate BAM code of a basic block 158

. Algorithm to regenerate a BAM instruction 159

Chapter 1

Introduction

Specializing high-Ievel language program for some subset of program data that

is known to be constant across independent invocations of the program has been

an active research area for several years now. Such specialization is commonly

referred to as partial eualuation. Complete program data is available to the program

at execution-time. In comparison, any constant data available at compiletime is

parbid. Hence the term partial. The term euuluation seems to originate from early

usage of this technique on programs written in functional programming Ianguages

like Lisp [44,49]. Subsequently, partial evaluation of programs writ ten in logic

programming languages iike Prolog [58,69], imperative languages like C [5] and

object-oriented languages like C++ I221 was also studied. Partial evaluation research

was done with such goals as reducing the Ievel of abstraction in meta-programs

for execution efficiency, generating compilers and generating compiler-compilers via

self-applicable partial evaluators to name a few. Various techniques have been

employed to achieve these go&. Using minimal user annotations to guide the partial

evaluation process [%I, automating discovery of the constant portion of a given

program and not reIying on user annotations [58] are some of the more effective

ones. Partial evaluation was atso used to generate specialized programs that are

more efficient than the original [6,42].

Jones [40] discusses several interesting open problems regarding issues such as

program control, data and correctness that play an important role during partial

evaluation. Several of these have been worked on since. However, the question "Can

partial evaluation yield efficient low-level machine code?" which he poses seems

unanswered as far as we know. Efficient low-level code generation is a requirement

in several system-related tools like compilers, binary translators, emulators. This

thesis investigates efficient code generation using partial evaluation in a compiler

back-end. Before deciding whether "efficientn code may be generated or not, we

need to understand the techniques needed to implement a low-level language partial

evaluator. F'urther, it is well-known that several conventional back-end optimiza-

tions are inter-related. The benefits of performing partial evaluation as a back-end

with relation to conventional optimizations needs to be understood. Hence, this

thesis investigates low-level language partial evaluation techniques and the potential

benefits/relationship of partial evaluation with traditional back-end optimizations.

The candidate low-level language may either be machine-level language or an in-

termediate abstract machinelevel language. We begin with the hypothesis that by

performing partial evaluation several conventional compiler optimizations such as

constant propagation, dead-code elimination, and loopunrolling are automatically

performed. This hypothesis is tested by building a framework within which a par-

tial evaluator of a real world abstract machine code is designed and implemented.

Several traditional optimizations are shown to resuit from the partial evaluation.

The ikamework provides a basis to study the issues involved in designing and im-

plementing a low-level language partial evaluator.

In general, partial evaluation is done with the knowIedge of two distinct pieces of

information, viz., candidate program unit to be specialized and the invariant data

for which the program unit is being specialized. Partial evaluation of high-level

Ianguages benefits from the inherent higher-level program abstraction and structure.

For example, a function is the program unit with well-known structure and behaviour

that facilitate partial evaIuation. It has zero or more arguments of which some may

be input arguments and some output arguments. The function argument and return

value variables hold potential program invariants. The programming language model

d&es the behaviour of a function caIl. For example, the control 0m returns to

the calling function after returning from the callee and the callee does not alter the

return address. In the world of low-level code, neither a structure nor a welldehed

behaviour of program units may be expected* Hence the first step is to correctly

identify program units and invariant code variables in any given low-level code to

prepare for partial evaluation. These form the input for a partial evaluator.

Partial evaluation research has largely focused on high-level programming lan-

guages. The present work describes partial evaluation of Berkeley Abstract ma-

chine (BAM) code generated during compilation of Prolog sources by the Aquarius

Prolog compiler. The partial evaluation phase is intended to fit non-intrusively into

the existing phases of the Aquarius Prolog compiler. Further, the BAM code partial

evaluator is designed not to depend on any user annotations: it is an automatic

partial evaluator. There is no investigation into use of partial evaluation on low-

level languages in the context of compiler optimizations in general to the best of our

knowledge. More specifically, this is the first such attempt in the context of Prolog

compilation as far as we know. Nonetheless, the techniques described herein are

applicable during partial evaluation of any low-level language code.

The present work is in the context of a Prolog compilation model that translates

Prolog source to abstract machine instructions that are in turn compiled to native

executable code. Prolog is a dynamic-typed language. Hence, the abstract machine

code generated during Prolog program compilation contains one code stream for each

basic abstract machine data type a Prolog variable can assume at run-time. It also

contains run-time type-checks that dispatch execution flow to the appropriate code

stream depending on the type of the variable. In other words, the abstract machine

code is generic enough to facilitate execution of code corresponding to data-types

that would be known at run-time. The motivation for partial evaluation of abstract

machine code is to eIiminate any generic code and to specialize it for its data-types.

In an effort to improve code performance, several new ideas are being studied and

implemented in the research community. Various types of profile-directed schemes

have been recently shown to hold promise [14,17]. We view the profile-directed

schemes as partial evaluation schemes. A profile is a record of some invariant run-

time behaviour of the program that is used to optimize the executable- For example,

a profile might record the number of calls made to call-site in the executable or a

library. Thus the profile provides invariants that are used to specialize the exe-

cutable. The profile coUection and subsequent specialization may occur after one or

more runs of the program. Alternately, some of the more recent research attempts

to perform profile collection and specialization at run-time. This technique is often

referred to as Dynamic optimization [23,31]. Several of the techniques described here

are directly applicable in the context of such efforts to improve code performance.

The thesis is laid out as follows. A brief introduction to Prolog, Berkeley Ab-

stract Machine and the compilation model of the Aquarius Prolog compiler is given

in Chapter 2. The denotational semantics of BAM instructions are presented in

Chapter 3. This implementation-independent specification facilitates proof of in-

struction specialization. It a h provides a precise definition of instructions for the

implementation of the partial evaluator. Program specialization is introduced in

Chapter 4. The correctness of all possible instruction transformations is shown and

opportunities for program specialization are detailed with the help of examples in

this chapter. The design and implementation of the BAM partial evaluator is de-

scribed in the Chapter 5. Various data structures that extend the BAM to facilitate

analysis of run-time information are described along with the analysis algorithms.

Chapter 6 describes partial evduation of each individud BAM instruction and aLl

the issues involved in maintaining the correctness of program state during partial

evaluation. In Chapter 7 the results are summarized and the conclusions of the

work are discussed. The relevance of the work in the context of current research

and future work are discussed in Chapter 9.

Chapter 2

Prolog and Berkeley Abstract Machine

This thesis deals with optimidng Berkeley Abstract Machine (BAM) code using

program specidization during Prolog compilation. Section 2.1 presents an overview

of Prolog. Section 2.2 details the BAM. An implementation-independent and com-

plete denotational semantics specification of BAM presented in Chapter 3 allows us

to show the correctness of the specializations in Chapter 3.

2.1 The Prolog Programming Language

Prolog is a dynamic-typed logic programming language. IR other words, the program

must be executed to compute the types of Prolog data items [60]. This section briefly

presents the language syntax and execution model.

2.1.1 Syntax

2.1.1.1 Data Representation in Prolog

We use the typewriter font to represent language tokens (or terminals f2j) while

describing Prolog syntax. All Prolog programs in this thesis aIso appear in this

font. The sanserif font is used for meta-language constructs. Italics are used when

a new term is being defmed or described for the first time. A similar convention is

followed while describing BAM code. However, the syntactic conventions followed

in BAM denotational semantics sp&cation is diErent. Corresponding syntactic

conventions are discnssed in more detail at appropriate places.

Prolog has a single data type known as term A term is one of the following.

a constant symbol that stands for an individual entity all through the program.

Prolog constants are either atoms, integers or floating-point numbers. An atom

is an alpha-numeric string whose first character is lower-case. Any character

may be part of such a string if it is enclosed within single quotes "'" . Any se-

I - quenceofcharactersfrom theset C+,-,*,/,\,',<,>,=, , ,:, . ,?,Q,#,$,t)
is also an atom. abc, varl, 'Prolog', '80x86 Architecture', 1024,

3.141 are Prolog constants.

0 a variable symbol that stands for a distinct but as yet unidentified entity. It is

represented by an alpha-numeric string whose first character is either upper-

case or "-" + If a variable is only referred to once in a Prolog construct's scope

(Section 2.1.1.2), it does not need to be named and may be written as an

anonymous erat.iable, A variable whose first character is "-" is an anonymous

variable. A , Var , list are some Prolog variables.

a compound tam that stands for a coliection of entities. This allows grouping

of data elements similar to structures in C and records in Pascal. It con-

sists of a structure name known as a functor and constituent entities known

as components. -4 functor symbol is an atom and the components (or ar-

guments) are themselves terms. A compound term with no components is

an atom. The number of arguments of a compound term is the arity of

the functor and the compound term is uniquely represented as functor/arity.

capital (Indiaa , 'New-Delhi ' 1 is an instance of a compound term with

arity 2 and we write the compound term as capitaU2.

A Prolog list of terms is a special kind of compound term. -4n empty list is

denoted by the &tom . A non-empty list is a compound term with "." as

functor and two arguments, viz., the first element of the list, d e d the head

of the list and the rest of the list, called the tcriZ of the list. Thus a list of

the two terms a and b is . (a, . (b , D 1) and is conveniently represented in

short-hand notation as [a, b]. A list is also be represented as Cheadl taa.

Hence the list [a, b] is also represented as [a l bl1 or [a 1 b I 0 1 1 .

2.1.1.2 Prolog Program Constructs

Prolog program constructs are a subset of W-order logic known as Horn clause

logic 1481. However, the terminology used is various places in this thesis to describe

Prolog constructs follows the traditional Prolog terminology [16] rather than than

that of predicate calculus [48]. A Prolog program consists of set of clauses that

represent a consequent of a conjunction or disjunction of a (possibly empty) set of

antecedents. The sequence of two or more antecedents separated by cornmas(",")

represent their conjunction. Let conseq represent a consequent and antec represent

a sequence of antecedents. The representation

conseq :- antec.

is interpreted as "conseq is true if antec are truen. The symbol " : -" is read as 'SE" -

-4 clause is terminated by a period("."). For example, the clause

can represent "X is the sibling of Y if Z is the parent of X and Z is the parent of Y.

A clause is also kuown as a rule. The consequent is known as the h a d of the cIause,

and the antecedent as the body of the clause. The above clause is said to define the

p d i c u t e sibling/2. A predicate defmition may consist of more than one clause

indicating several choices to satisfy the relationship. For example,

defines the predicate p (X) to be true if either q(X , a) or q(X , b) is true. A d-ction

of two or more clause bodies represents the definition of those ciauses using only

one clause. The above example may be written as

where ";" stands for the disjunction-

A clause with no body is known as a fact or a unit clause. It represents a

relationship of zero or more Prolog terms that is a tautology. For example, the

relationship between h i f e and knives may be represented by the fact

plura l (knife, knives) .

The scope of a Prolog variable is restricted to the clause it occurs in.

2.1.1.3 The Goal Clause

Prolog program execution involves verifying whether a god or a qugl clause is true

or false in the program context. In interpreted Prolog it is common to represent a

goal that h d s the siblings of john as ?- sibling(john, XI. But in compiled Prolog,

the goal clause provides the entry point to a compiled Prolog program. This is similar

to the (default) entry point main0 to a C program which otherwise is a listing of

several function definitions. Thus the compiIer either uses a reserved keyword to

identify the goal clause head or adopts some other mechanism to identify the goal

clause for a given program. The compiier used for the present work considers the

first clause in the program to be the goal dause and it expects the clause to be of

arity 0.

2.1.2 Execution model

Given a goal cIause, Prolog program execution is based on SLD-resolution [48]. A

typical operational semantics of Pmlog execution ate given by the Algorithm 1. This

algorithm does not address the presence of negation, built-in5 and similar advanced

clause body Prolog constructs nor does it handle the cut operator 1631 that prunes

Ngorithm 1's naiw depth-& danse traversal.

GStack, the goal stack, keeps track of the goals st i l l to be satisfied. The set of

goals in GStack represents the resolvant Since Prolog execution attempts to satis&

body goals left-teright in their order of listing in the body, the goals in the list in

Algorithm 1 Prolog Execution Semantics
execute_pmlog(G: goa1):boolean

Let GStack be a stack of the pairs (goal, indez)
Let ChStack be a stack of the tupIes (indez,god,bindlist)

1: push (G,l) onto GStack
2: while GStack # empty do
3: (G,, a) = pop(GStack)
4: V := List of unbound variabies in G,,

/* HI, Hz,. . . , H,, are the clause heads with */
/* same functor and arity aa G,. */

5: n := number of clauses with same functor/arity as G,.
6: while ((Gar does not unify with Hi) /\ (i 5 n)) do
7: i := i+l
8: end while

/* The clause with head Hi has a body B1, &, . . . , Bm */
/* with m varying for different i */

9: if (i < n) then
lo: push (i + 1, G,,, V) onto ChStack
11: push ((B1,1),(B2,1), . . . ,(B,,l)) onto GStack
12: else
13: if (ChStack == empty) then
14: return false /* l o more choices */
15: else
16: (i, G, V) := pop ChStack
17: restore variable bindings fiom V to goal G
18: push (G, i) onto GStack
19: end if
20: end if
21: end while
22: return true

Step 11 are pushed onto GStack such that Bz is at the top of the stack ChStack,

the choice stack, keeps track of the next possible choice to unifg a current goal with.

The algorithm assumes variables of the clause whose head is Hi are uniquely

named to avoid duplication with the variable names of Gar and the variables d-

ready built in the program before performing the pattern-matching operation called

vnif;mtion of G,, and Hi at Step 6. Unification equates (unifies) two identical

constants, or a constant and a variable, or a variable and a compound term in which

the variable does not occur, or two compound terms. For example, the terms f (A,

s (~ (0) , c) and f (a, s (B) , C) llnifv to produce the substitution: A with a, B

with s(0) and C with c. A formal specification of unification algorithm is given

by Lloyd [48]. If the current goal fails to unify with any program cIause, execution

attempts to resatisfy the previously successful goal (Steps 1618). Execution upon

successful unification is known as fornod erecution and upon its failure is known

as backtmcking.

The algorithm starts with a Prolog goal term and indicates the success of the

goal in the context of a given program. Bindings of the variables in the goal G, if

any, resulting from the function execution give the computed answer.

Several built-in arithmetic, input-output, term inspection and control manipu-

lation operators make the language practical. Clocksin and Mellish [16] provide a

complete description of Prolog. Sterling and Shapiro [63] and O'Keefe [55] provide

advanced material about programming in Prolog.

2.2 Berkeley Abstract Machine

Prolog was initially implemented as an interpreter. David H. D. Warren developed

the first Prolog compiler in 1977 and an improved execution model for compiled

Prolog, the Warren Abstract Machine(WAM) [3,28,70], in 1983.

The Berkeley Abstract Machine(BAM) [67] retains the fundamental feat- of

the WAM but d&es a her-grained instruction set that Cacilitates compiler opti-

mizations and maps more directly to general purpose processor architectures [68].

Aquarius, an optimizing Prolog compiler to BAM [35,67] was also a part of the BAM

project. A global flow analysis (GFA) phase [67] in the Aquarius Prolog compiler

derives information used for optimized BAM code generation, exploiting the finer-

grained instruction set. An overview of the BAM architecture and its instruction

set follows.

We use Iowercase alphabet with typewriter font for BAM instructions.

2.2.1 Memory Areas and Data Structures

The memory areas of BAM (Figure 2.1) are similar to those of the WAM.

Figure 2.1: BAM Memory Areas

The BAM has six memory areas: the enuimnment stack, the choice point stack the

global stack fieup), the trail, the SDA queue and the program mde a m Dnring

forward execution, a Prolog variable can be assigned only one value and the vari-

able may not be reassigned. For efficiency reasons, the Aquarius Prolog compiler

recognizes a Prolog extension known as stepped destnrctive assignment [35] that is

supported by the memory area SDA queue. However, the present work does not

consider Prolog programs with stepped destructive assignment. Hence neither this

memory region nor its associated registers are discussed further.

Algorithm 1 presents the Prolog execution algorithm. We introduce the BAM

memory areas by referring to corresponding data structures of the algorithm. Uni-

fications r d t in variables being bound to data values as the execution progresses.

The algorithm does not specify any data structure to store these data values. The

heap stores these data d u e s built at run-time. Further, in the algorithm variable

binding information of the current predicate is saved (Step 4) in a variable V to be

restored at the time of re-trial (Step 17) of the current goal. The trail stack stores

this information.

The environment stack and choicepoint stack provide the functionality of GStack,

the goal stack and ChStack the choice stack. The stack items stored on these stacks

are known as environments and choicepoints respectively. The structure of these

run-time entities is as follows.

2.2.1.1 Environment

Information needed during procedure execution of an imperative language program

is maintained in an activation m r d [2]. An environment is simiiar to an activation

record, both in content and intent. A clause is teferred to as a procedure and a

predicate call is also referred to p~0cedut.e call. An environment stores values of the

variables that occur across the clause. It also contains a pointer to the call return

location (which is an instruction) and the previous environment on the stack.

2.2.1.2 Choicepoint

A choicepoint records the next available code location to be tried if a predicate call

fails. Since the abstract machine state needs to be restored for the re-trial, the

following information is stored prior to trying an execution path in the choicepoint:

values of the current procedure variables to EaciIitate their restoration.

current heap top such that all the data values built on the heap during the

failed path can be discarded.

cunent trail top such that currently all unbound variables can be restored to

their unbound state.

Further, the return address of the current procedure call and the previous choicepoint

address on the choicepoint stack are also stored.

The environment stack and chokepoint stack may either be implemented in a

single memory space, known as the Id stack or separately as shown in Figure 2.1.

The symbol table is arranged as a hash table whose form and hashing function are

not specified as part of the BAM semantics.

2.2.2 Data Types and Registers

A BAM data entity is called a dataword. BAM supports two dataword formats:

tsgged and untagged words. Untagged datawords represent machine integers and

memory addresses. Tagged datawords contain a tag representing the data type and

a value representing the data value with a tagdependent interpretation. The tag

and value components of a dataword will henceforth be referred to as dototag and

datavalue respectively to avoid any confusion that may arise from the usage of the

general terms "tag" and "valuen. A tagged dataword is written as T V where T is the

datatag and V is the datavalue. Table 2.1 shows datatags and their corresponding

datavalue interpretations. An unbound variable is represented as a dataword on the

heap with a datatag tvar and a self-referential address as datavalue. A compound

term is represented by a dataword wi th a datatag tstr and address of a h e d

number of contiguous heap cells that store its functor and arguments. A list term

is represented by a dataword with a datatag tlst and an address of two contiguous

heap cells indicating its head and tail. The other datatags and their datadues are

evident from the table.

BAM has three types of registers - state, czrgument and germmetat registers

(Table 2.2). Eight state registers contain untagged datawords that point to varioua

tstr

tlst

tatm
tpos
tneg
t i n t
tf lt

- --

Table 2.1: Datatam in BAM

Pointer to a structure - a compound term with a functor and fixed
number of arguments.
Pointer to a cons cell - a compound term consisting of two parts, a
head and a tail.
.An atom.
A nonnegative integer.
A negative integer.
A integer.
A floating-point number.

Tag
tvar

Datatype represented
-4n unbound variable or a general pointer

Pointer to topmost choice point on choice point stack
Pointer top of the heap (Le., globaI stack)

r(pd
r (el

Program counter
Pointer to current environment on environment stack

r (cp)
r (tmp-cp)
r (tr)
r (hb)

BAM memory areas and execution information. Of these registers, only the heap

Continuation pointer (return address)
Continuation pointer to interface with assembIy code
Top of trail
Heap backtrack point - top of heap when current choice

0 , . . . , N
p(O), . . . , p(N)

register r (h) and the backtrack pointer r (b) are explicitly visible in the instructions

point was created.
argument and temporary registers
permanent variables

generated by the Aquarius compiler. The rest are implicitly manipulated by the

various BAM instructions.

The argument registers correspond to the arguments of the current predicate

They may contain either tagged or untagged datawords. The permanent registers

correspond to the variables of the current predicate call whose scope spans over the

finite. They may contain either tagged or untagged datawords. To the use of

argument and permanent registers, consider the &use,

The three variables X, Y and Z are in the scope of p/3. At the procedure entry

their values are in argument registers d o) , r (1) and r(2) in accordance to their

argument positions. They are stored in three permanent registers p(O), p(1) and

p(2) in the environment which is created upon procedure entry. Similarly, the

variabIes Y and X of the predicate q(Y,X) correspond to the argument registers

r (01, r (1). Hence before a call to q/2 is made, the registers r (0) and r (1) are

correctly set using the permanent registers p(1) and p(0) respectively. Based on

this basic calling convention, several optimizations exist to reduce the number of

permanent variables based on their occurrence in the clause [3,13,70].

2.2.2.1 Addressing Modes

The following are the addressable entities of BAM along with the values they evaluate

to:

a atomic terms referred to as directly addressable entities. These evaluate to

themselves and are also called to as immediate values.

registers referred to as directIy addressable entities. These evaluate to their

contents.

4 entities of the form T-X, where X is an addressable entity. These evaluate to a

dataword with datatag T and datavalue X.

entities of the form M referred to as indirect addressables. These edua te to

the contents of X, where X is an addressable.

entities of the form X+I referred to as offset addressables. These evaluate to

the address N locations beyond X in the memory.

2.2.3 Instruction Set

The BAM instruction set may be divided into four categories [29]:

15

Procedural Control Flow Instructions: These instructions provide un-

conditional flow of control. Table 2.3 summarizes these instructions.

Conditional control 0ow instructions: These instructions provide clause

selection and backtracking mechanisms. Table 2.4 summarizes these instruc-

tions.

r Unification Instructions: These instructions implement term unification.

Table 2.5 summarizes these instructions.

Arithmetic Instructions: These instructions perform the binary operations

add, sub, mul, div, mod, and, or and xor and the unary operations log-

ical shift left (all), arithmetic shift right (sra), and bit-complement (not).

Further, instructions that convert between integer and floating point and be-

tween tagged and untagged values are also provided. As these instructions are

similar to those of a general purpose RISC processor, they are not detailed

here.

Pragma instructions: prapa instructions embed information that may be

used in the Aquarius Prolog compiler back-end for better translation of the

target machine to assembly language. A summasy of these instructions is given

in Table 2.6.

2.2.4 Compilation of Prolog to BAM Code

Here we outline how Aquarius compiles Prolog programs into BAM code. This is

similar to that of a WAM-based Prolog compiler. The GFA phase of the .4quarius

compiler however is not discussed.

The first clause of the ProIog program text is deemed to be the program entry

point. Its arity needs to be zero. In other words, the body of the entry point

predicate is the query to the program. Consider the foUowing ProIog program.

e 2.3: Procedural Control Flow lnstructions of BA!!
I Instruction I - -

procedure (PI
entry (P , N)

allocate (I)
deallocate (N)

call(P)
return
label (L)
jump (L)
jump-ind(X)
simplexall (P)

Description
Marks the entry point to procedure P.
Marks an amptable p i n t where memory overflow check and
garbage collection can occur.
Create an environment of size 1P on the local stack.
Remove the topmost environment, of size I, from the environment
stack*
Call the procedure P.
Return h m a procedure call.
Marb L as a branch target.
Jump ~ ~ ~ c o n d i t i o d y t d ~ a b l L.
Jump to address in X
Non-nestable call used to interface with routines written in BAM
ammbly language of the VLSI realization of BAM and of no rele-
vance in the present work.
Non-nestable return used for routines written in BAM assembly
language and hence of no relevance in the present work.

Table 2.4:
Instruction

hash(V,T)
switch(V,T,Ll ,L2,L3)

test (E,T,X,L)

cut (V)

choice (l/N ,Rs , L)

choice (I/N, Rs , L)

choice (N/N, Rs , L)

trail (XI

fai l

londitional Control FIow Iostructions of BAM
Description

Look up value V in a hash table, T.
Branch to L1, L2, L3 depending on the tag of V being tvar,
T or any other value respectively.
Branch to L if tag of X is equd to or not equal to T depending
on whether E is eq or ne, respectively.
Conditional branch to L if numeric comparison C between A
and B holds; data types of A and B need be consistent with
T.
Removes latest choice point horn local stack. V contains the
address of previous choice point.
Create a choice point containing the registers listed in Rs
and set the retry address to L. N > I
(l<I<N) Restore argument registers Listed in Rs from the
current choice point and modify the retry address to L.
Restore the argument registers listed in Rs fiom the current
choice point and pop the current choice point from the local
stack. B is a positive integer.
Push address of X onto trail stack if traiI condition X < r (h)
holds.
Restore trailed variables and jump to retry address in current
choice ~ o i n t .

Instruction
deref (S , D l

Description
Dereference S and store result in D; F indicates mode of
S, if known.
Branch to L if Si and S2 are not equal; else fall through.
General Unification of Vi and V2 branch to L on failure.
'hihug is done by this instruction. F1, F2 E (? , var ,
nonvar). var and nonvar indicate whether V1 and V2
are known to be variables or nonvariabes. ? indicates
nothing is known about them.
Unify V with atom A and branch to L if it faiIs. No trailing
is done by this instruction.
Move S to D.
Push S onto the stack with stack pointer R and increment
R by H.
Add ofkt 0 to the tagged pointer in S and store result
in D.
Add N words to the heap pointer.

Table 2.6: En

pragma(push (variable))

~edded information bagmas) .:
Descri~tion

The contents of location X are a multiple of N.
The contents of location X have a tag Tag.
A term of size K is about to be created
on the heap.
A cons cell is about to be created on the heap.
A structure of arity N is about to be created
on the heap.
An unbound variable is about to be created
on the heap.
A hash tabIe of length hashlength is about
to be created-

The basic compilation scheme of the above program is ilhstrated as follows.

Body goal compilation:

1. Generate code to create an environment that holds permanent variables

used across the clause if there are more than one body goals.

The clause m a W 0 has no permanent variables. So no environment need

be created during its execution- Hence no corresponding BAM code is

generated while compiling the clause main/O.

The predicate foo/3 has a body with more than one predicate call.

Hence, compilation of the body of foo/3 begins by generating code that

creates an environment. The environment stores the values of the three

permanent variables X, Y and Z in permanent registers p(O), p(1) and

p (2) respectively.

2. Generate code to load the argument registers with corresponding argu-

ment values to set up for a procedure call.

Thus code to load the argument registers r (01, r (1) and r (2) with

tatmna, tvarnr(h) and tatm'c is generated during compilation of the

body of maid0 to set up for a c d to foo/3.

Compilation of the body of f00/3 next generates code to load the argu-

ment registers of q/2, viz., r (0) and r (1) from p(1) and p(0) respec-

tively to set up the ensuing call to q/2.

Each body predicate is compiIed similarly. However, instead of generat-

ing a call to the last predicate in the body, i-e., t/2, code to deallocate the

current environment followed by a jump to t/2 is emitted. This may be

done since there are no more body predicates to use the permanent regis-

ter values in the environment. This technique is often referred to as lust

call optimization and allows all arbitrarily deep tailailrecursive predicates

to run with a constant number of enviro~~ments.

Head compilation: The head of a clause is compiIed to BAM code that uni-

fies the argument registers with the non-variable arguments, if any- Multipk

clauses of a predicate definition are compiled using choicepoint instructions.

The example program does not result in chokepoint iastructions. An example

of compiling to choicepoint instructions is given in %tion 4.3.2.

Summarizing, Figure 2.2 shows the stylized form of BAM code for the two clauses

listed above .
maia/O : load tatm'a r(0)

load tvar*r(h) r(i1
load tatm'c r(2)
call f00/3

foo/3 : /* head argument unification not done */
/* as no non-variable arguments exist */
allocate environment o l t h 3 variables
move r(O) to p(1)
move r(1) t o p(0)
move r(2) to p(2)
/* Set argument registers t o call q/2 */
move r(1) t o r(O)
move p(03 to rC1)
ca l l q/2
move p(2) to r(0)
move p(1) t o r (l)
call s/2
move p(l) to r(0)
move p(O> to r(1)
deallocate environment w i t h 3 variables
jump t o t /2

Figure 2.2: A simple compiled BAM code format

With this background, we present a complete denotationd semantics spec%-

tion of all BAM instructions generated by the Aquarius Profog compiler in the next

chapter. We also present the BAM execution model. The semantics speciftcation

provides the basis to show the correctness of various instruction specializations. It

further provides an impIementation-independent spec%cation for the partid execu-

tor that is implemented.

Chapter 3

Denotational Semantics of B AM

This chapter presents the denotational semantics of BAM. These semantics are

implementation-independent and provide a basis for the implementation of a BAM

partial evaluator as well as for proof of correctness of the transformations performed

by the BAii partid evaluator.

3.1 Notational Conventions

An overview of the terminology, primitive domains and the operators used in the

definition of the denotational semantics is provided. bold letters are used for domain

names; typewriter font for syntactic constructs, domain tags and BAM instruction

opcodes and operands. We continue to use italics whiIe defining or introducing

new terminology in running text. We also use italics to represent a set element in

set notation and to represent function or operator names and their arguments in

mathematical notation. The context s h d make the meaning unambiguous. The

C A L A Z G ' R A P W C font is used for dnat ion functions.

The notational conventions used c l d y follow those of Schmidt [59]. The natural

number domain N, rational number domain Q, truth d u e domain B, and character

domain C are the primitive domains used to b d d the semantic domains of BAM.

The character domain C is defined as follows.

C = {z I x is an ASCII character).

Given a domain D, the power set of D i.e., the set of all subsets of D is denoted

3.2 Domain Constructors

The following conventional domain constructors, along with their corresponding

assembly and disassembly operators, are used.

The product of n domains, Al, A*, . . . ,A, where n > 1, is defined as

Al x A2 x ... x Am = { (x ~ , x ~ , . - . ,X*) I xl €Al, ... , x ~ €Am).

The disassembly operator of a product domain, denoted $i, maps an element of the

domain to its ith element.

(x ~ , 2 2 , . -. , xn)@ = Zi.

The union of two or more disjoint domains is known as disjoint union. We denote

the disjoint union of two domains A and C as A + C which is defined as

A + C = ((zero, x) I z E A) u {(one, y) 1 y E C).

Entities zero and one Vag" members of A and C and are referred to as domain

tags. The entities x and y are referred to as value components of an element of the

disjoint domain A + C.

The assembly operators inA and inC are defined as

Vx E A, inA(x) =(zero, I) and Vy E C, inC(y) = (one, y).

To define the disassembly operator of any p E A + C, we quote Schmidt (591 to

avoid any confusion this notation might result due to its uniqueness.

To remove the tag from an element p E A + B, we can simply say ~$2,

but will instead resort to a better s t r u c t d operation called cases. For

any p E A + C, the value of

cases p of

isA(x) + x

0 ~SC(Y) + Y

end

is "2" when p = (zero, z) and "y" when p = (one, y). The cases oper-

ation makes good use of the tag on the sum element; it checks the tag

before removing it and using the value. Do not be confused by the isA

and isC phrases. They are not new operations. You should read the

phrase isA(z) + z as saying "if p is an dement whose tag component

is zero and whose value component is z, then the answer is 2'. As an

example, for

f (m) = cases m of

isN(n) + n + 1
0 isB(b) + 0

end

f (inN(2)) = f (zero,2) = 2+1 = 3, but f (inB(true)) = f (one,true) =

0.

The disjoint union operation may be extended to more than two domains- C o r n

spondingly the definition for assembly and disassembly operators may be extended.

We a m e the definition of these operators on each disjoint domain and thus are

not specified explicitly whenever one is constructed.

3.3 Functions and Function Domains

A function is most commonly represented as an equation. For example, the function

between the domains N and N that doubles a natural number may be defined as

double(x) = 2*z

In general, a function f between a domain A and a codomain C is represented (or

d&ed as) as

Ax) = e

where x E A and e is an expression that may contain occurrences of z and that

evaluates to an element in C. The notation f : A + C is used to refer to the

function f .

The function f is alternately represented using typed lamb& notation as h . e .

This form is known as abstraction. In equational representation, the abstractions

are given names such as f Using this notation a function need not be named.

The application of a function f : A + C to a E A is denoted by f a when

unambiguous and as f (a) otherwise. The result of function application is c E C,

such that f maps a to c.

Following is the description of another domain constructor known as firnch'on

space builder- For domains A and C, a fvnction space is a domain of all functions

from domain A to codomain C and is denoted by A + C. Function application is

the disassembly operator of this domain building operation, i.e.,

same f undion(someclrgs) : (A + C) x A + C.

It may be noted here that function application is represented as an infix operator

for clarity purposes. The following is (the more familiar) prefix representation of

the same:

()(some f unction, someargs) : (A + C) x A + C.

where same function E A + C and smeargs E A. The function apphcation

produces c E C, where some fundion maps a to c.

Given a function space f s : A + C we designate [a I+ c] f s to represent the

function which is exactly the same as fs except that it maps the value a E A to

CEC.

We now d e h e the notation used in the context of finite sequences of elements

of a domain. Let D be any domain. D* denotes a domain of all h i t e sequences of

elements of D. If d E D' then either d is the empty sequence nil or d = dl :: d2 ::

. . . :: d, :: nil, where n > 0 and 4 E D such that 1 5 i 5 n. The zth element in

a sequence d is represented by e l m i d; the first element (head) by M d and the

remainder (tail) by tl d. We assume the standard operator cons, represented as ::,
maps dl E D and sequence d E D* to a sequence d' = dl :: d E D'. Given a non-nil

h i t e sequence d = dl :: & :: . . , :: d, :: nit, any sequence 4 :: 4 : i + I. . - :: 4 :: nil,

such that 1 5 i 5 n is referred to as a su& of d.

An undefined element is represented by I. Given a domain A we represent the

corresponding lifted domain as AL to represent A U (-1).

The if-then-else conditional expression is represented as

X + Y 02

and is read as "if z then y eIse 2'. The expression evaluates to y if z is true or to

y otherwise. The if-then-else conditional is in no way related to the cases operator

defined earlier. The symbol 0 happens to be part of the syntax of these. For clarity,

the expression is sometimes written on multiple lines. The infix operator == is used

to test equality while the operator = is used for definition of an expression.

3.4 Semantic Domains

The semantic domain String consists of character strings:

String = C'

-4 Prolog atom is a character sequence that uniquely denotes some entity, as

d h e d in Section 2.1.1.1, in the problem domain. Let Atom denote the domain of

Prolog atoms. Thus,

Atom = (z (z E String and z satides the syntactic conditions

s p d e d in Section 2.1.1.1).

A functor designates the name and arity of a structure. The domain of functors

Fun& is

Funct = {ffn I f in Atom and n E N)

For example pCa,b) has functor p/2 with name p and arity 2.

The computer memory is characterised by an address and its contents. An

address is a natural number:

Address = N + IV,
where N is a domain consisting of initial values of various memory areas of BAM.

These are identified when specifying the domains corresponding to the memory

areas.

The content of a BAM memory location is a dataword. A dataword in BAM

is one of the two types: tagged or untagged. Let Untagged and Tagged denote

the domain of nntagged and tagged datawords, respectively. An untagged dataword

denotes a memory address (a pointer) or an integer value. Thus,

Untagged = Address.

It may be noted that an element of the domain Untagged is distinguished as an

address or an integer by its use only. Jkther, the domain element does not restrict

the address to be of any one of the possibly several memory areas of an architecture

such as heap, stack or code area.

A tagged dataword consists of a tag and a value. Tags indicate the data type

represented. There are two pointer types - atomic and pointer. The three atomic

tag domains are d&ed as

T, = {t atm)

Ti = {tint, tpos , tneg)

Tr = {tf l t)

The domain of pointer tag types, is defined as

T, = (tvar , tlst, tstr),

The tag domain T is defined as

T=Ta+Tr+Tf+Tp.

The tags and corresponding value interpretation of a tagged dataword is given in

Tabb 2.1 of Section 2.2.2.

The atomic tagged dataword domains are defined as

DW, = T, x (Atom + Ehct)

DWi=Ti x N

DWr = T f x Q

The pointer tagged dataword domain is defined as

DW,, = Tp x Address

Thus the tagged dataword domain is defined as

Tagged = DW, + DWi f DWf f DW,.

DW, the domain of datawords is defined as

DW = Tagged + Untagged.

BAM registers are class%ed as state registers, argument registers and permanent

registers. Each register contains a dataword.

3.4.1 State Register Domain

The function domain StRegVal maps state registers to their contents and is

defined as

StRegVat = R, + DW
Aa operator initstatereg E StRegVal initializes state registers. The domain

Untagged is expanded to include the initial values of the state registers. These

initial values point to respective initialized but empty memory areas. Thus the

domain

Untagged = {initgc, in it^, initb, ini th, initdr}

contains initial values of state registers pc , e , b , h, and tr, respectively. The initial

value of cp along with specification of initstatereg is discussed in Section 3.4.8.

The operator getstreg that maps r E R, and s E StRegVal to the current

content of r is defined as

getstreg : R, -t StRegVal-, DW

getstreg = Xr.As.(s r)

The operator setstreg that maps T E &, its new content d E DW and register

state s E StRegVal to a new register state s' that contains the updated value of r

as d, is defined as

setstreg : % + DW + StRegVal + StRegVal

setstreg = Xr.Xd.Xs.[r H 4s

3.4.2 Argument Register Domain

The BAM architecture assumes an arbitrary but finite number of argument registers.

The argument register domain, &, is defined as

& = (19, r1, r2 ,..., rn) for n 2 0.

The function domain ArgRegVd that maps the argument registers to their

contents is

ArgRegVal= R, + DWL

Let I signify that no argument registers are mapped yet. This is represented

by lifting ArgRegVal. The operators of ArgRegVal are defined slightly difter-

ently from those of StRegVal owing to the availability of an arbitrary number of

argument registers.

The initialization operator of ArgRegVal is

initargreg : ArgRegVal,

inatargreg =I

The operator to access an argument register d u e is defined as

getargreg : R, + ArgRegValI + DWl

getargreg = Xr.Av.(v r)

The underlined lambda specifies that the curried function v . (v r) maps IE ArgRegVal,

to I€ DW. This signifies the undefined value resulting fiom a register value access

Erom an uninitialized register value mapping. This is in accordance with the usual

interpretation. Further the dehition of function space ArgRegVal: R, + DWL

implies that for a function v E ArgRegVal and r E R, the function application

(u r) either r d t s in a value in DW mapped to r if such a mapping exists, or

results in I otherwise.

The operator to update a register value is defined as

setargreg : Ft,, + DW + ArgRegVdL + ArsRegVal

setargreg = Ar.Ad.As.[r H 4 s

The domain of registers, Registers, is

Registers = R, + &.
A domain RegState is

RegState = StRegVal x ArgRegVal,.

Permanent registers are not included since they are accessible ody via the environ-

ment stack.

The initialization operator of RegState is defined as

initregstate : RegState

initregstde=(initstatereg, initargreg)

getregualue that accesses values of a register r f Registers even s E Regstate

is defined as

getregvalue : Registers + RegState + DWL
getregvalue = Xr.Xs.(cases r of

-(TI) + getstreg u sJ.1

fl is-(u) + getargreg u sJ.2

end)

setregualue that maps a register r E Registers, a value d E DW and a register

state s E RegState to a new register state s' E RegState that has the value of r

updated to d, is dehed as

setregvalve : Registers + DW + Regstate + Regstate

setregvalue = Xr.Xd.Xs.(cases r of

isR,(u) + ((setstreg v d sll), ~ $ 2)

[1 isRJv) + (941, (setargreg u d 5 0))

end)

The environment and choicepoint stacks are considered to be separate stacks in

the memory throughout our discussion, as shown in Figure 2.1.

3.4.3 Permanent Register Domain

Permanent registers are stored in the environment stack whose semantic domain

is specified in Section 3.4.4. The BAM architecture assumes the availability of an

arbitrary (but finite) number of permanent registers.

The permanent register domain, &, is defined as

R, = {PO, p i , p2 ,... pz) f o r n l 0.

The function domain PermRegVd maps permanent registers to their contents

PermReqVal= % 4 DWl

The initialization operator for the domain PermRegVal is

initpermstate : N + PermRegVall

where n E N is the number of permanent registers to be created. Since permanent

registers exist in an environment, specification of the access and updating operators

of these registers is given in Section 3.4.4 where the semantic domains of environment

and environment stack are specified.

3.4.4 Environment and Environment Stack Domain

An environment contains (a finite number of) permanent register d u e s , address of

the previous active environment and return address for the current predicate. Thus

the environment domain Env is defined as

Env = PermRegVal, x Address x Address.

Consequently the environment stack domain EnvStack is defined as

EnvStack = (Address x Envl)'.

The access and update operators on the domain Perm.RegV.1 are defined as

getpermreg : R,, + EnvStack -+ DWL

getpemeg = Xr.Ae.(((hd e)4.2)4.1 r)

and

setpermreg : R, + DW + EnvStack + EnvStack

setpermreg = Ar.Au.Ae.(ms ([r I+ u]((hd e)$2)11) (tl e))

3.4.5 Choicepoint and Choicepoint Stack Domain

A chokepoint contains a finite number of argument register dues, pointers to the

top of the heap, trail and environment stack when the current choicepoint was

created; value of the register cp when the current choicepoint was created; address

of the previous choicepoint; and address of the next choice associated with the

merit choicepoint. Thus the choicepoint domain ChoicePt is defined as

ChoicePt = D W x Address x Addreas x Address x Addressx

Address x Address.

Consequently the choicepoint stack domain ChPtStack is d&ed a s

ChPtStack = (Address x ChoicePtl)'.

Let k i t h E Address be the initial location of the chokepoint stack.

An operator chpsum which maps addr E Address and chpt E ChPtStack to

chpt' E ChPtStack such that chpt' is a suffix of chpt and the head of chpt' is a

mapping of addr to its corresponding choicepoint, is defined as

chpsu@:Address + ChPt Stack + ChPtStackL

chpsu@= Aa.As.(((hd s) == (init-b, I)) +I

0 (((hd s) &I== a) -+ s
n ch~sum a (tl s)))

This operator may be seen as a multiple pop operation on the choicepoint stack that

pops the stack elements until the top of the stack has the given address.

3.4.6 Heap Domain

The heap contains datawords. Thus the domain Heap is defined as

Heap = (Address x DWJ'

Let inith E Address be the initial location of the heap.

A heap access operator getheapvalue that maps a f Address, h E Heap to

dataword d E DWL, wbich is the content of a in h, is

getheqva1ue:Address + Heap + DWL

getheapvalue = Xa.Xh. (((hd h) == (inath, 1)) +I

[(((hd h)Jl== a) + (hd h)&2

fl (getheapvalue a (tl h))))

3.4.7 Trail Domain

The trail contains argument registers that need be unbound upon backtracking.

Thus the argument registers and the heap addresses of the variable they represent

are stored on the trail stack. The domain nai l is

Trail = (Address x (R, x DW))'

Let init& E Address be the initial location of the trail.

The operator trsufiz maps crddr E Address and tr E nail to tr' E Trail such

that tr' is a suffix of tr and the head of tr' is a mapping of addr to its corresponding

register value pair. It is isdefined as

trsufi:Address + Trail + Traill

trsu&= Xa.Xs.(((hd s) == (init-tr, I)) +I

0 ((hd s)$l= a -+ s
0 t r w B a (t l s)))

This operator may be seen as a multiple pop operation on the trail stack which pops

the trail until the top of the stack has the given address.

3.4.8 Memory State Domain

The internal state of BAM at any given time of execution may be characterized by

the collective state of its registers, heap, environment stack, choicepoint stack and

trail. Hence Memory is

Memory = Regstate x Heap x EnvStack x ChPtStack x nail

BAM instructions use only a subset of the addressing modes as defined in Sec-

tion 2.2.2.1. Thus an addressable entity is an immediate d u e and is one of the

following.

a immediate value i.e., a dataword

argument register

a permanent register

a CRI, where R is an addressabIe entity

a CR+Nl, where R is an addressable entity and N E N

Thus the domain Adrabie is defined as

Adrable: DW+R, + R,, + HB + Indirect + OGet

where HB = {r(h) , r (b))

Indirect = {x / x =), where R is an addressable entity

O&t = {x (x =CR+Nl),

where R is an addressable entity and N E N

getualue that accesses the value of addressable entity is dehed as

getualue: Adtable + Memory + DW

getvalue = Xa.Xna.cases a of

isDW(d) + d

0 *(d) + getargreg d 4.2

0 %(d) + ge?Pmreg d e

0 =qd) + g® d 41

isIndirect([dJ) + getheapvalue (gdvdue d m) h

isofbet ([dm]) + getheapvalue ((getvalue d m)+n) h

end

where m =(s, h, e, c, t) .
setvalue that updates the d u e of addressable entity is defmed as

setualue: Adrable 4 DW 4 Memory + Memory

The input and output to the program are considered to be a sequences of char-

acter strings. Thus,

Input=String*

Output=Stringa

The instruction set is denoted by Instr. The program code is defined as follows:

ProgCode = Address + lnstr

These initial state register values are described as follows:

pc: The address of the first executable instruction in the program p E ProgCode

denoted by initgc E DW.

e: The address of the first Iocation in the environment stack denoted by

initx E DW. (initx, I) denotes the initialized environment stack.

b: The address of the fist location in the choicepoint stack denoted by inith E

DW. (inatb, I) denotes the initialized choicepoint stack.

0 h: The address of the first location in the heap denoted by ini th E DW.

(inith, I) denotes the initialized heap.

tr: The address of the first location in the trail stack denoted by inatf T E

DW. (initdr, I) denotes the initialized trail.

0 hb: Its initial value is inzth E DW.

3.4.9 BAM Code Execution

A BAM code execution is deemed to have terminated if pc is mapped to one of the

special values success and failure or to a d u e that points to an address outside the

address area of ProgCode. The execution is said to have successfully terminated if

pc maps to success. It is deemed to be a failure in other cases. Correspondingly the

initial value of the continuation pointer is mapped to success to indicate no code

need be executed upon the return of the first call.

We digress to modify the domain DW to include these special values and com-

spondingIy define the necessary disasembly operators.

DW = Tagged+Untagged+Spl

where Spl=(success, f ailure)

The operator gettag on a domain element of DW is defined as

gettag : DW + TI
gettag = As. cases s of

isTagged(d) = cases d of

isDW,(da) = a1

isDWt(d2) = diJl

0 isDWf(df) = dftl

0 iSDW,(dp) = ~ P U
end

n isUntagged(d) =I

0 isSpl(d) =I

end

The operator getdataval on a domain element of DW is dehed as

getdataval : DW + DW,
getdataval= As. cases s of

isTagged(d) = cases d of

isDWJda) = cases di42 of

isAtom(&zt) = dat

fl isFunct (da f) = da f

end

isDWi(di) = di$2

0 WWr(4) = #-C2

0 =W,(~P) = dp12

end

[I isUntagged(d) = d

[isSpl(d) = d

end

The initialization operator of the domain StRegVal, initstatereg left unspec-

ified in Section 3.4.1, is defined as a mapping of the state registers & to their

corresponding initial values.

initstatereg = R, + StfigVal

initstatereg = ((pc, initqc), (el init*), (b, inatb), (h, inith),

(cp, success), (tr, init&), (hb, init&))

An operator initpgmcude that maps a sequence of instructions to its correspond-

ing function in ProgCode is assumed to be defined.

The memory initialization operator initmem is defined as follows.

initmem : Memory

initrnem = (initstatereg, (inith, I) , (initx, I) , (initd, I) , (initdr, I)) .

An element of the domain ProgState, defined as

ProgState : PFogCode x Memory x Input x Output,

represents the BAM state along with the current position in the code, the input

consumed and the output produced till that point of program execution. The oper-

ator that initializes a new program state is defined as

initprogstate : Instr' + Input + ProgState.

initprogstate = Xp.Ai.(((initpgmcode p) , initstatereg, initmem, i , nil))

Now we return to definition of operators relevant to program execution and

termination. The termination test operator for BAM on a given s E ProgState is

dehed as

terminate : ProgState + B

terminate((de, mem, in, out)) =

(getregvufue pc s) == swxess + true

0 ((getregualue pc s) = failure + true

0 ((getrepdue pc s) =I+ h e

0 f dse)

where mem = (s, h, se, sc, tr)

An operator that performs the "fetch" operation upon a given program state is

defined as

f etchznstr : PmgState + InstrL

f etchinstr((code, mem, in, out)) = code (getTegvalue pc s)

where mem = (s, h, se, sc, tr)

Conventionally, instructions that are targets of a branch or that start a procedure

are attributed a label. A separate instruction label instruction designates such

entry points in BAA4 code. For example, consider the foUowing pseudo-code of a

typical RISC architecture:

....
move r1, r2

compare 0, r2, r3

jump,on,not,zero ' zlbl '

....
'zlbl' : move r4, r2

Using the style of BAM code, this code segment is written as

. * . .

move (r1 , r2) .
compare(0, r2, r3).

jump,on,not,zero ('zlbl' .

The label fail in the instructions does not correspond to a program label. A

transfer of BAii execution to f a i l resuIts in execution of global failure whose se-

mantics are given by the valuation function for the instruction fail., viz., fail]
] in the following section.

An address look-up operator for a given label or procedure instruction instr, on

a d is defined as

f etchaddr : Instr + ProgCode + DWL

f etchaddr (instr, mde) = (instr = fail) ~ [f ail1 addr

where (code addr) = instr

3.5 Valuation Functions

The semantics of BAM execution model is provided by a duation function 8 defined

on an instruction sequence and an input.

B : Utr ' + Input -+ ProgState

B = Xp.Xi.S(initprogstate p i)

The valuation function S maps a program state p to a new program state p' by

evaluating a sequence of instructions whose first instruction address is in the register

PC-

S : ProgState + ProgState

S = Xp-tenninate p -+ p

1 S (~([fetchinstt p)

BAM instructions that are syntactic constructs are distinguished by enclosing them

in 1 1. No ather semantics are attributed to the usage of this notation.

The valuation function Z maps an instruction i and a program state p to a new

program state p' by evaluating i with respect to program state p.

2 : Instr + ProgState + ProgState
The specification of Z for each of the BAM instructions follows. We assume the

definition of an operator incr that maps a register r E Registera, a value d f 2

and a register state s E Regstate to a new register state $ where the value of

the register r is incremented by d. Further, the components of an dement of a

product domain are explicitly specified in a where expression to simplify compIex

compositions. If the compositions are simple, the disassembly operator 1 is used.

3.5.1 Procedure Control Flow Instructions

~ ~ r o c e d u r e (f) l ((m d e , m, in, out)) = ((mde, d, in, a t))

where naem = (s, h, se, ac, tr), f E E'unct,

memf = (d, h, se, sc, t r) ,

s' = incr in&(pc) I s

 entry try(f , n)l((eode, mem, in, out)) = ((mde, mem', in, out))

where mem = (s, h, se, sc, tr), f E Funct and n E N ,

mem' = (d, h, se, sc, tr),

s' = incr =(PC) 1 s

~ [a l l o c a t e (n) l ((code, mrm, in, out)) = ((code, mem', in, out))

where mem = (s, h, se, sc, tr) , n E N,

mm' = (d f , h, sd, sc, tr),

se' = cons ((Q d d ~ l b? et, 4) 4,
addr = (getregualue inR,(e) s) + I ,

p = initpermstate n,

et = (getregvalue hR,(e) s),

ct = (getrepdue in&(cp) s),

s' = incr =(a) (n + 2) s,

s"=iminFt,(pc) 1s'

~[deal locate(n)~((eode, man, in, out)) = ((d, meml, in, out))

where mem = (s, h, se, sc, tr) , n E N ,

mem' = (s", h, se', sc, tr),

se' = ti s,

s' = zncr -(e) (-n - 2) s,

s"=iwinR,(pc)ls '

~ [[c a l l (p) l ((cafe, m, in, out)) = ((code, mem', in, a*))

where rnem = (s, h, se, sc, tr),

men2 = ($I, h, se, sc, tr),

s' = setregvalue in&(cp) ((getregvalue =(PC) s) + 1) s,

3" = setregvalue inR.(pc) (fetchaddr procedure(p) code) s'

I [r e t d ((mde, mem, in, out)) = ((code, mem', in, out))

where mem = (s, h, se, sc, tr),

mem' = (s', h, se, sc, tr),

s' = setregvalue -(PC) (getregvalue inft(cp) s) s

I [[labe l (l)~ ((mde, mem, in, out)) = ((mde, mem', in, out))

where mem = (s, h, se, sc, tr), 1 E String,

memr = (s', h, se, sc, tr),

s' = incr id&(pc) 1 s

1 jmp(l) l ((mde, mem, in, out)) = ((code, rnem', in, out))

where mem = (s, h, se, sc, tr), 1 E String

memr = (d, h, se, sc, tr) ,
s' = setregvdue in&(pc) (f etchidr label(1) code) s

3.5.2 Conditional Control Flow Instructions

~[switch(t , z,Ll, 12, B)] ((code, mem, in, out)) = ((code, mem', in, out))

where mem = (s, h, se, sc, tr), t E T ,

z E Adrable and 11,12,13 E String

memt = (s', h, se, sc, tr),

s' = (tvar = gettag (getvalue x mem)) +
setregvalue %(PC) (f etchaddr label(l1) code) s,

[I ((t = gdtag (getvdue z rnem)) +

setregvalue -@c) (f etchaddr label(l2) code) s,

0 setregvalue id.&) (f e f d d d r label(l3) code) s)

s' = (compare (getvalue s m) (getvalue y mem) t c) +
setregualue id,(pc) (f e t c h d r label(1) code) s,

0 in= inEt(pc) 1 s

The comparison operation, c, of values of x, y E Adrable whose tag type is indi-

cated by t as integer, float or untagged, is one of the following: equality, inequality,

I, > , 1. We assume this operator is defined.

r l [~ t (~) l ((c 0 d e , m m , in, out)) = ((d, m m f , in, out))

where mem = (s, h, se, sc, tr), u E Adrable,

mem' = (s"', h, se, sd, tr),

d = setregvalue inR,(b) (getualue u mem) s,

sd =chpsu& (getvalue u rnem) sc,

d' = setregvalue k&(hb) ((hi sd)U)U s',

s"' = incr *kc) 1 s"

FoUoving are the semantics of the three instances of choicepoint management

instruction.

~[choice(l /n , r, I)] ((code, man, in, art)) = ((mde, man', in, out))

where rnem = (s, h, se, sc, tr), n E N,

mem' = (d", h, se, sd, tr),

st? = cons (d r , cp) sc,

addr = (getvalue b m) + 1,
cp = ((regslots r s u) , (getregvalue -(h) s),

(getregvalue in&@) s), (getrepdue m (e) s),

(g ~ e g v a l u e in%(cp) 4,
(getualue b rnena) , (fetctrtrddr 1 code)),

s' = i w in&(b) ((length r) + 6) s,

6 = setregvalue inR,(hb) (getvalue h mem) s',

s"' = incr =(PC) 1 s"

The operator regslots is defined as follows:

regslots : + ArgRegVal+ D W

regslats = Ar.As.((r = nil) + nil,

0 cons (getargreg (hd r) s) (regslds (tl r) s))

~[choice(i /n , r, l) l ((d, rnem, in, art)) = ((code, rnem', in, out))

where mem = (s , h, se, sc, tr) , i E N , n E N , i < n,

mem' = (dl, h, se, sc', tr),

(hd sc)@ = (rl, h, tr, e, cp, 6, re),

sc' = cons (rl, h, tr, e, cp, b, (f etchaddr 1 code)) (ti sc),

s' = loadregs r r1 s,

s" = iw hR,(pc) 1 3'

The operator loadregs is defined as follows.

loadregs: &; + D W + RegState + RegState

lwdregs : Xr.Xu.As.((r = nil) + s,

0 ((hd r) = I+ true

0 loadregs (tl r) (ti v) (setregvalue (hd r) (hd v) 3)))

The list of registers may also contain I to signify an argument register that need

not be restored. The domain of such register lista is denoted as {k)' in the above

operator definition.

~l[choice(n/n, r, i)l ((mde, mem, in, &I) = ((code, mcm', in, art))

where mem = (s, h, se, st?, tr), n E N,

m' = (s', h, se, sc, tr),

(hd sc) = (rl, h, tr, e, cp, b, re),

sc' = (ti sc),

sl = loudregs r rl s,

32 = setregvalue =(b) b sll

93 = setregvalue in&(hb) h 92,

st = incr it&(pc) 1 s3

Il[f ail1 ((code, mem, in, a t)) = ((code, mem', in, out))

where mem = (s , h, se, sc, tr),

nam' = (dl A, se, sc, tr')

81 = restoreregs ((hd sc)12)@ tr s,

t ~ ' =trsum ((hd sc).j2)&3 tr,

s2 = setrepdue -(e) ((hd sc)Q)14 sl,

93 = setregvalue in&(cp) ((hd sc)Q)$5 s2,

S* = setrepdue i&(h) (getregudue inR,(hb) s3) ~3~

s' = setregvalue &(PC) ((hd sc)$2)47 s4

The operator restoreregs is defined as follows.

restoreregs: DW + nail + Regstate

restoreregs = Xa.At.Xs.((a == ((hd t) l l)) + s

0 restoreregs a (ti t) (setregvalue ((hd tr)$2)$1 ((M tr)J2)$2 s))

I[test(c1 t, x, 111 ((code, mem, in, art)) = ((code, mem', in, out))

where m m = (s, h, se, sc, tr),

mem' = (s', h, se, sc, tr),

s' = (((gettog (getvalue z m)) = t) +
((c == eq) +

setregvalue inR, (pc) (f etchaddr label([) code) s

n iw m(pc) I S)

0 ((c = ne) +

setregvdue inR. (pc) (f etchad& label(l) code) s

0 incr id&(pc) 1 s))

3.5.3 Unification Instructions

~[deref (x, r)l ((code, mem, in, out)) = ((code, m m f , in, out))

where Is, h, se, sc, tr) = seCualue y (dere f (getvalue x mem) m m) mem,

rnmf = (s', h, se, sc, tr),

s' = incr i&(pc) 1 s

The operator dere f is d&ed as

d u e f : Adrable + Memory -+ DW
dwef = Xd.Am.((gettag (gduahe d m) == tvar) +

((getheapudue (getdataual (getvalue d m)) h == d) + d

0 dere f (getheapdue (getdataval (getvalue d m)) h) m)

0 4
where m = (s, h, se, sc, tr).

1l[equal(z, y, i)] ((mde, mcm, in, art)) = ((mdc, mem', in, art))

where mem = (s, h, se, sc, tr),

memf = (st, h, se, sc, tr),

s' = (g&due x mem == getudue y mem) +
incr -(PC) 1 s,

sefmguulue h&(pc) ~dchuddr label(I) code) s

z[unifY(r, y, tl, t2, i)l((mdc, m m , in, out)) = ((d, memfr, in, out))

where meml = uni f g x y mem,

mem" = ((mf ==I) +
setregvalue pc (fetchsddr label(1) code) s,

fl ((zncr pc 1 mem'Jl), mt@, rnm1Q, mem'44, memt&5)

The d u e s of tX, t2 are either any, var or nonvar indicating the tag d u e s of

x, y E Adrable respectively, if known. Their value is any if no information is

known. These values are used to optimize the unification operation. Thus they

are ignored in the semantics of the unify instruction. The unification operator

un2fy : Adrable + Adrable + Memory + MemoryI maps unification of

two addressable entities given a memory state either to another memory state if

unification succeeds or to I if it fails. The unify operator is dehed as follows.

un2 f y = Xz.Xy.Xm.(

let tx = gettag (getvalue x m),

ty = gettag (getvalue y m),

vx = getdataual (getualue x m),

uy = getdataval (getvalue y na),

m = (s, h, se, sc, tr))

in ((tx == tvar) I\((ty # tvar) V(vx > vy))) +
(($ 9 h, se, sc, tr')

where s' = incr i&(tr) 1 (setvalue x (getualue y m) m)/l

tr' = cons ((getregvalue m (t r) s) + 1,

(x, (getvalue x m))) tr

[I ((ty == tvar) + ((s', h, se, sc, tf),

where s' = incr inR,(tr) 1 (setvalue y (getualue y m) m)&

tr' = cons ((getregualue ir&(tr) s)+l, (x, (getualue y m))) tr

((tx == tint) V(t z = t f lt) V(tx = tatm)) +
((vx # V Y) +I

O m)

[I ((tx = t l s t) +
((ty # t l s t) +I

1 (m" where m' = unzfv (getheapvalue (getdataual x) h)

(getheapdue (getddaval y) h) m,

m" = uni f p (gdhecpualue (getdataual x) + 1 h)

(getheapvalue (getdcrtaual y) + 1 h) m),

((tx = t s t r) +

The operator that iteratively unifies two heap addresses is defined as follows.

uni f ystr : N + N + Address + Address + Memory + Memory,

uni f y s t r = Xi.Xj.Xz.Xy.Am.((i > j) + m,

1 uni f y A r (i + 1) j x y

(unify (getheapdue (x + i) ~ 4 2)

(g d b p v d u e (y + 2) m12) 4
~[tra i l (x) l ((d e , mem, in, art)) = ((mle, m m l , in, out))

where mm' = (s', m e m , m u , 7ne71L3.4, tr'),

tlJ = cons ((getregvalue inR.(tr) m e d l) + I,
(x, (getvalue x rnem))) rnmJ.5,

s' = i n a -(PC) 1 (incr inR,(tr) 1 rneM1)

~[move(x, y)l ((code, m m , in, out)) = ((code, m", in, out))

where mern" = ((i w inR,,(pc) 1 meml$l), mem'J2, mem'J3,

mmf&4, rnmr45),

m m l = setvalue y (getuaiue x mem) mem

~ b u s h (d , r, n)n ((code, m m , in, a t)) = ((code, man', in, out))

where mern = (s, h, se, sc, tr),

mem' = (incr id&) 1 (zncr (getualue r mem) n) a),

(cons (((getvdue r rnem)+l), (getvdue d mem)) h)

se, sc, tr)

~[[adda(d, n, r)]l((mde, mem, in, md)) = ((d, mem', in, mt))

where mern = (s, h, se, sc, tr),

mem' = (i w 1 setvulue r

sented. Section 2.2 provides the basic process of Prolog compilation to BAM using

a simple example.

This chapter defines an implementation-independent specification of BAM to

provide the foundation for showing the correctness of these specializations detaiied

in Chapter 4. It further provides the specification for the impiementation of the

BAM code specializer. The implementation of the specializer provides a basis for

exposing various issues involved in partial evaluation of BAM code.

Chapter 4

Program Specialization

This chapter presents a concise introduction to a program transformation technique

known as progmm specialization. The goal of this transformation is to improve

program performance. Specialization of high-level language programs such as Lisp,

ProIog, and C has been studied for several years. This dissertation studies program

specialization of a low-Ievel language viz., BAM code.

Program specialization of low-level languages is conceptually similar to that of

high-level languages. However, the difference in the data abstraction and the context

of its usage, viz., as a compiler optimization phase, lead to an entirely different

specialization algorithm and a different set of issues related to the machine model of

the language. As a simple example, high-level language programs have well-dehed

program modules such as functions and/or procedures. Such program modules are

typically specialized for certain values of their parameters. Low-level language code

lacks such moddarization and needs to be analyzed to identify "modules" along

with their "parametersn. The specialization algorithm must then respect any such

"moddarization" in the context of the machine model to discover opportunities for

specialization and affect them. The transformations performed need to be correct in

the context of the machine execution model. These considerations entail a BAM code

specialization algorithm and proof of correctness of the transformations affected.

This chapter presents an algorithm to perform BAM code specialization followed

by the various possible BAM code transformations and a proof of their correctness

using the denotational semantics presented in Chapter 3.

Section 4.1 gives a brief introduction to program specialization and some ter-

minology. The reasons for perceived opportunities to optimize BAM code using

program specialization (Section 4.1.1) and the structural partitioning of the BAM

code to facilitate specialization (Section 4.2) are presented. Given the partitioning

and denotational semantics of BAM, transformations that result in optimizations

are shown to be correct (Section 4.3). Program specialization is illustrated and

pertinent imes such as choicepoint optimization in the context of BAM code spe-

cialization are discussed with the help of two examples (Section 4.4). This provides

the necessary background to the various issues of BAM code specialization discussed

in the subsequent chapters.

4.1 Introduction

Specializing programs by using the portion of (any possibly knom) program input

that remains constant during repeated runs is termed as partial evaluation. This

technique may be used at compile-time to improve program performance. Such

specialization results in s (possibly) new program, called a residue. Stipulating the

program input is termed as input specs$cation. Stipulating the program input that

remains constant across severd runs of the program is termed as constant input

specl$cation. Given a program and its constant input specification, performance

of the residue is no worse than that of the original program for any input whose

constant portion is the same as specified by the constant input specification. A

formal characterization of a partial evaluator follows.

Let L: denote a language and Pr the set of programs written in t. Let V be the

domain of values that expressions of L may be assigned to. B(V) denotes the power-

domain of V. Let EL : PC + V + V be the evaluation function corresponding to

the language C. Let S be the set of possible specificatiom of values in V and

f : S + B(V), be the "concretization" function that maps a specification to a

set of values it denotes. For any input spdca t ion s E S of program p E PC,

(f s) = us U ud, where us E V is the set of d u e s that are constant during repeated

runs of p, termed as %ownn at specialization time or static values, and ud E V is

the set of values "unknownn at specialization time, i.e., non-static values or dynamic

values.

For any program p E PL and any input specification si E S,

E P (f s*) = (f so)

where so E T is an output specif.ication and (f s,) E P(VIL denotes the set of output

values. If a program fails to terminate, the output is undefined and is represented

by I.

A program specializer < : PC + S + PC is a function such that

VU E (f si) ((EL p a) #-L* (Ec p a) = (EL (< p s,) a)) , where a = v , U V ~ .

The program ((p si) is the residue. The above succinctly captures the definition of

program specialization given by Ershov [26], Jones [42] and Ruf [57] but does not

indicate the specialization process that results in the residue. Further, the behavior

of the residue is undefined when the program p fails to terminate for an input

specification thus allowing any value to be output by the residue in that case. A

description of the specialization process in general and for BAM code in particular

are discussed later in this chapter.

Note fiom the above definition of the program spechlizer that p and its residue

(c p si) take different inputs, viz., v, u vd and vd respectively. It is so defined to

emphasize that the output of the residue solely depends on the dynamic part of

the input and that the static values are "hard-wiredn into the program to form the

residue. Equivalently, the inputs to the program and the residue may be the same,

viz., u, U vd with an understanding that the residue does not consume the static

input values, v,, during its execution.

A program may contain constructs that evaluate to constant values either de-

pending on static input or independently. Thus, for a program p and an input

specification si, the set of static values, v, = u, U v,, where u,, is the set of static

values that depend on iuput static dues specified by si and u,, is the set of static

values independent of those s p d d in q.

Program specialization involves the following two tasks:

computation of constructs that are completely dependent on static values, us.

This is referred to as reducing the constructs to "simpler" versions.

retaining those that depend on the dynamic values, vd. This is referred to as

residualking the construct to be computed at run-time.

These are accomplished by symbolically executing the program in the context of

static values during which the specializer needs to decide whether the construct can

be reduced or residualizea

Specialization may be performed even if it is only known that an input value

is static but not necessarily the actual input value. The program constructs are

annotated as static or dynamic by a pre-specialization analysis done according to

congruence principle and is known as Binding Time Analgsis (BTA) [42]. The

congruence principle states that a program construct is classified as static only

if all its constituents are static. Otherwise, it is classified as dynamic. Program

constructs are reduced or residualized by the specialization phase according to these

annotations. Such a specialization process, during which the reduce/residualize

decision is made based on analysis performed prior to specialization step, is known

as 08-line specialization. If the reduce/residu&e decision is made based on analysis

done at specialization time when the static values are also available, then it is called

online specialization. Program variable biding information is computed and used

"on the fly". Online specialization does not involve a pre-specialization analysis

phase.

The specialization may also take advantage of user annotations to help the re-

duce/residualize decisions. Such annotations may be used to provide hints to the

analysis regarding the static/dynamic properties of a variable. If a specializer does

not use user annotations to make these decisions, then it is referred to as an auto-

matic specializer.

If the specializer can specialize itself then it is termed to be self-applicabk SeIf-

applicability has been an important topic in program specialization and automatic

program generation. ThditionaUy, Futammars three projections [26,421 for gener-

ating program specializers, compilers and compiler-compilers leverage on the self-

applicability of the program specializer.

This thesis addresses the issue of generating optimized BAM code using special-

ization during Prolog compilation. In an effort to verify usability of specialization as

a compilation phase in a real-world compiler, every attempt is made to minimize the

time added to compilation time by designing dcient data structures using the C

language. Consequently, the implementation language of the specializer is different

from the language being specialized (BAM code). Hence, self-applicability is not an

issue in this thesis and will not be discussed further.

The mathematical foundations of program specialization have been traced to

Kleene's s-m-n theorem [45]. This theorem states that for any function

f (21, ~ 2 , - , xn, ~r , ~ 2 , . - , pm), there is a computable function S{Z, a ,...
such that

'{ZI,~~,..-J~)(YI, 32, - 1 ~ m) = f (XI, X2r. r xn, YIY 92, , Ym)

for all x 1, ~ 2 , . . . , Xn, 31,312, . . . , ym- The function s(,,,,,-, is referred to as special-

ized version of f for the arguments xl, q, . . . , En. Jones [42] provides a chronological

history of the development of the field of program specialization. Program special-

ization has been applied to functional programming languages such as a subset of

Lisp [44] and Scheme [9,19,57], logic programming languages such as Prolog [47,58],

constraint logic programming languages [37] and imperative languages like C [4].

Program specialization has in general been used for high-level languages where both

the data and the control abstraction are much higher than that of the machine

Ianguage.

The present work studies partial evaluation of BAM, a Iow-level abstract ma-

chine with data and control abstraction very close to that of a FUSC architecture.

Partial evaluation of BAM described in the following chapters has two fundamental

Mkrences with partial evaluation of a high-level langnage. Firstly, no source lan-

guage or source program knowledge is assnmed or used during partial evaluation of

BAM- Often such information is both available and is used during partial evalua-

tion of high-level languages. As an example, consider Mixtus [58] - an automatic

partial evaluator of Prolog. It uses predicate parameter information, Prolog execu-

tion semantics that builds a goal stack (GStack in Algorithm 1 in Chapter 2) and

cut placement and existence information along with other information during vari-

ous phases of partial emhation. The BAM code partial evaluator described herein

assumes no knowledge of Prolog nor has any access to the Prolog sources used to

generate the BAM code being partial evaluated. It does not depend on the GFA

phase which generates the modeltype information regarding the predicates of the

Prolog source. It depends solely on the BAM machine model, a multi-stack ma-

chine, and its instruction semantics. Thus this work demonstrates the compile-time

optimizations achievable by partial evaluation of low-level code.

BhM stacks are tailored to facilitate execution of Prolog-specific features such

as backtracking. This leads to the second difference between partial evaluation of

high-level language and low-level code. The explicit memory and stack manipula-

tions possible using instructions of a low-level machine like BAM, present a different

set of issues to be discussed later. The BAM instruction set facilitates memory ac-

cesses in a manner similar to that of a RISC architecture. Such opportunities in

a high-level language (or even C) are restricted by the type system. We present

the required background for specialization of BAM, outline the BAM specializa-

tion process and show the correctness of the transformations employed during the

specialization process.

4.1.1 Opportunities to specialize BAM Code

Prolog is a dynamic-typed language. BAM has a finite set of data types. Hence each

Prolog variable of a predicate in its corresponding BAM translation can potentially

assume any of the BAM data types at run-time. Consqxently, the compiIed BAM

code consists of a code stream for each basic BAM data type a ProIog variable can

assume at run-time. Run-time type checks dispatch execution flow to corresponding

code stream depending on the type of the variable.

In other words, the abstract machine code is generic enough to facilitate exem-

tion of code corresponding to data-types that are hown only at run-time. Global

Flow halysis of Prolog programs have been traditionally 121 used to restrict the

generic code to those code streams corresponding only to data types of the values a

variable may be assigned at run-time and not all of the possible ones.

Abstract interpretation (AI) based GFA [20,21] of Prolog programs was shown

to provide a means for inference of predicate variable run-time data type informa-

tion that may be used to generate optimized code [65,67,7l] or less generic code.

The basic methodology employed in AI-based GFA is to map the program value d+

main to an abstract domain and to analyze/execute the program over the abstract

domain instead of the value domain. Several different abstract domains along with

corresponding abstract execution and analysis algorithms for pure logic programs

and Prolog programs have been proposed for mode, type and data dependence anal-

yses [lo, 24,93,66]. Getzinger [29] presents a taxonomy of several domains and

analyses algorithms. Abstract machine code streams generated for each predicate

are then restricted to those predicate variable data types inferred by the GFA al-

gorithm. Sirniiarly, run-time checks are also reduced with this information. Thus,

code that handles run-time data types which a variable is known not to have are o p

timized away. ,M-based GFA has been used in this manner to improve code quality

and speed-up the resulting executable.

We propose that performing partial evaluation or program specialization at

compiIe-time exposes opportunities for further optimizations. Figure 4.1 shows two

options for performing PE during the compilation phases of the Aquarius compiler.

If performed on Prolog source as a pre-GFA phase, PE can result in inference of

more specific types by the GFA whenever possible. PE may also be performed as a

post-GFA phase. This work focuses on further optimizations that can be achieved

by a post-GFA partial evaluation.

As pointed out in Section 4.1 program invariants that depend on the input

static values, u, and that are independent of these, v,, are used during program

specialization. BAM code specialization done here is intended to be used as a

compilation phase. It does not require any explicit input spedcation. Thus v,,

V ~ r k w phutr

thrt traallrte
BAM to Native

Figure 4.1: Aquarius Prolog compilation phases

= $. Only the static values uncovered during partial evaluation are used by the

process. Thus the partial evaluation of BAM code done here is independent of the

input static values and of any user annotations. It is automatic,

An alternate view may be taken of the partial evaluation described in this thesis.

As explained in Section 4.1, a pre-specialization analysis step typically annotates the

program to facilitate the specialization process. ThditionaUy, Binding Time -4naly-

sis (BT.4) is used to annotate the program constructs. For the PE process described

here, we may view the GFA of the Prolog source as a pre-specialization analysis.

The process is then guided by the results of the analysis- The Aquarius compiler

supports several user annotations that are may be used by the GF-4 algorithm to

increase the granularity of the deduced data types [35]. The resulting BAM code

is thus restricted to code streams for possibly lesser number of data types of the

predicate variables of a given program. Partial execution specializes BAM code for

these data types. As the language on which GF.4 is performed is different from that

on which PE is performed, the usage of the analysis information in the PE is not di-

rectIy evident. Thus it may be argued the specialization process is not p d y onhe.

However, since the reduce/residualize decision is made at PEtime (as explained in

Chapter 5) , we consider it to be online partial execution.

WAM, as mentioned briefly in Chapter 2 is the precursor to BAM. It is also the

fundamental abstract machine for several popular Prolog compilers and interpreters

such as SICStus Prolog [32] and Quintus Prolog [I]. However, the instruction set

of WAM consists of complex or coarse-grained instructions that provide little o p

portunity for specialization. Several efforts were made to create opportunities for

specialization to improve the performance of compiled Prolog by "extending" or

"specializing" WAM instructions. SEPIA [51,52], SICStus Prolog [12] and the spe-

cial purpose instruction set of Quintus Prolog are some of the many realizations of

such extensions. However, the her-grained RISGlike instruction set of BAM offers

greater specialization opportunities as wiU be discussed in Section 4.4.

Partial evaluation of BAM code at compile-time hss the foIlowing potential ben-

&ts:

traditional optimizations such as dead-code and dead-check elimination, ex-

pression evduation and constant propagation are done automatically. R&s

work [57] on online partial evaluation of a substantial subset of Scheme ar-

rives at a similar conclusion as weU in the context of functional programming

languages.

these optimizations/tdormations, in turn, enable further back-end opti-

mizations.

It is generally recognized [7] that the above mentioned traditional optimizations

are based on partial evaluation. However, there seems little online partial e d u -

ation effort during abstract machine based compilation - particularly to generate

optimized code. More specifically, it has not been used to compile high-level, dy-

namically typed logic programming languages like Prolog. Bdyonkov [ll] proposes

an algorithm for performing polyvariant partial evaluation for programs written in

a low level language much simpler than BAM. Thus the focus of the present work is

to investigate the various issues involved in optimizing abstract machine code using

partial evaluation.

The definition of program specialization given in Section 4.1 does not specify the

specialization process. Such a process for BAM code specialization is discussed in

the following section.

Overview of BAM Code Specialization

Most specializers symbolically execute the program with the available static vd-

ues and transform the program constructs to simpler equivtilents. The constructs

of a program are eualuated in the context of partial knowledge. As the constructs

of BAM code are instructions and instruction evaluation is usually known as in-

struction execution, we refer to the process of specialization of BAM code as partial

aecution(PE). Note that such a specialization proces consists of two phases; 6rst

symbolic execution in which the program is executed with available static dues;

second code transformation in which program constructs are transformed to less

expensive equidents.

Program execution involves a series of transitioru from one computation (or ex-

ecution) state to another. Syntactic constructs in program source corresponding to

these computation states are refisred to as program points. Rvtfier, the state of

program execution can be meaningfully comprehended at these points. The compu-

tation state at a p r o m point is referred to as a pwgmm date. Syntactic structures

such as functions, procedures and predicates in a program are designated as p m

gram points during execution of high-level language programs. Unlike high-level

languages, BAM code has no predefined syntactic structure. Any sequence of BAM

instructions is a syntacticdy legal BAM program. A structure is provided to a

BAM instruction sequence by partitioning it into a control flow graph (CFG) [2]

of basic blocks. Section 4.2.1 discusses the semantics of CFG representation. Such

a partitioning facilitates characterization of basic block entry points as program

points.

4.2.1 Partitioning BAM Code into CFG

A basic block is conventionally defined as "a sequence of (zero or more) instructions

with no branch instructions, except perhaps the last instruction, and no bmch

targets or labels, except perhaps at the first instructionn [72j (known as the leader

of the block). Thus a basic block has a single control flow entry point and a single

control flow exit point. A block entry point represented by the unique block label is

a program point. A CFG representation of a given BAM code is a graph with basic

blocks as nodes and with edges between these nodes representing the program's

control flow. Each basic block has a unique numbet associated with it.

In a conventional CFG, an edge between two basic blocks denotes a transfer

of control horn the predecessor to its successor node, Two or more out-edges of a

node denote transfer of conti01 b m the pI.edecessor to one of the succe580rs. These

edge semantics capture the control flow due to conventional branch instructions

of threeaddress code [2]. The BAM instruction set has several of such branch

instructions. However, choice/3 and f ail /0 instructions do not have conventional

branch instruction semantics. Further, the CFG does not explicitly represent the

control flow transfer due to cal l / i and return/O. Thus, an edge in the CFG

of a BAM code may either represent a conventional or a BAM-specific branching

instruction.

The branching or flow change instructions of BAM are classified into the following

categories based on the way they afk t the control flow and the information they

create and access.

1. Regular flow change instructions:

The instructions equal/3, jump/l, jump/5, jumpind/i, suitch/3, switch/5

and t e d 4 either change the control flow to an address label that is an explicit

operand or to the next instruction. None of these instructions creates or saves

information to facilitate return of the control flow to a following block at a

later program execution point. These are similar to the conventional branch

instructions.

2. Procedural flow change instructions:

The instructions cal l / i and returd0 create and access data not explicitly

present as an instruction operand. The control flow changes are same as the

conventional stack-based procedure calls [2). The Bow change target is an

expbcit operand of ca l l / l instruction. The retaun/O instruction returns the

control flow to the following block in accordance with the information stored

on the environment stack by the immediately preceding c a W 1 instruction.

3- Choicepoint flow change instructions:

The choice/3 instructions create and access data that are both expliutiy

present as instruction operands and are on the choicepoint stack. The control

falls through to the basic block containing the next instruction but can return

to the current block to go through the alternate path as indicated by the data

created. Thus a block with a choice/3 instruction has two edges - a fall

through edge and a retry edge.

4. Backtracking instruction:

The instruction fail10 accesses choicepoint stack data and has no explicit

operands specified. Execution of this instruction sets the control flow to a

basic block determined at nm-time. Thus a basic bIock with f ail/O as last

instruction has no successors.

The out-edge semantics of basic blocks with procedural flow change instructions

can be illustrated by an example BAM code. Instead of presenting an arbitrary BAM

code sequence we use a simple Prolog example and present BAM code generated

during its compilation. This will also provide an opportunity to relate program

points in the BhYI code with those of the Prolog program for the purposes of

comprehension, Consider the program sample . p l in Figure 4.2 whose BAM code is

shown as a CFG in Figure 4.3.

-~ ~ -

Figure 4.2: Program sample . p l

Edges out of nodes 6, 10 and 14 are examples of regular flow control change.

Control flow transfer occurs exactly dong one of the edges. The control transfer

occurring due to call(p/i) instruction in block 0 to block 2 is not represented by an

edge, Similarly the control transfer back to block 1 due to return instruction either

in in bbck 13 or 17 is also not explicitly shown as an edge. Such transfer of control

due to call/l and retarn/O might occur at various program points. The location

Figure 4.3: CFG of BAM code of sample-pl

of control transfer due to procedure/l can be uniquely determined by its operand.

Similarly, the return address is avdabte in the continuation pointer cp. Hence,

successors of blocks with c a l l / l and return/O instructions are not represented in

the CFG explicitly. Consequently, a basic block with a c a W 1 instruction has only

one successor - the block executed upon returning from the called procedure. The

basic bIock with return/O instruction has no successors.

The edges out of blocks 2 and 4 in Figure 4.3 are examples of control flow change

due to choice/3 instruction. Exactly two edges represent control flow. The first

one denotes flow control to the block beginning with the instruction following the

choicd3 instruction in the code and the second to the block whose leader has the

label specified as alternate choice in the choicd3 instruction. Thus the control

flow along the edges out of a block with choice/3 instruction are not necessarily

mutually exclusive for a given set of register values unlike the case of the out-edges

of blocks with regular flow control instructions. The control might return to flow

through the alternate edge.

The instruction f ai l /0 that triggers control flow to backtrack is represented in

a basic block by itself as shown in Figure 4.3. This block has no successors.

4.2.2 Polyvariant Speciaiization of BAM Code

With the description of a partitioning of given BAM code, we proceed to describe

the process of its partial execution. This is done by traversing the basic blocks

of the CFG starting at the program entry point. Recall that a compiled Prolog

program has only one designated entry point. Instructions in each basic block are

executed in the order they occur by building datawords in the registers and on the

BAM stacks. However, at PEtime, the datawords built might be incomplete as only

their data tags are known. The corresponding data values are usually known only

at run-time. Thus the BAM code d o n is performed with partial datawords

ody. During partial execution, if the direction of control flow due to a regular flow

change instruction is not decidable, the CFG is traversed depth-first dong each

of the mutually exclusive edges. BAM memory is constructed along each of the

ensuing paths. Such traversal is termed as spadative traversal since the resuit of

the condition in the flow change instruction is assumed to hold along the respective

paths. Opportunities to transform instructions are exposed and utilized during

partial execution to result in basic block residues.

A basic block may lie on more than one of the traversal paths of partial execution.

Partial execution of such a block might have to be performed with respect to different

partial information along each of these traversal paths. This might result in different

residues for the same block. Such a specialization process, where multiple specialized

versions of code at program points is generated, is known as polyuan'ant partial

evaluation [11,421.

Performing the above partial execution process naively will often lead to non-

termination of the process and possible code explosion [39,411. Non-termination

occurs due to repeated traversal of the same basic blocks. Such repeated traversal

also results in code explosion as the process yields the same residue for each of the

block part i d executions. Criteria to recognize such attempts to partial execution

of blocks previously traversed are required to correctly terminate the PE process as

well as to limit the generated residue.

Partial execution, as mentioned earlier, involves transformations of instructions

whenever possible. A very common transformation involves replacing an instruction

that transfers control flow to a program point (such as a procedure/function/predic8te

call) with an instance of the code corresponding to the program point. Such a trans-

formation is called unfolding [SO] at program points. Non-termination of the partial

execution can resuIt from repeated unfolding of directIy or indirectly recursive pro-

cedures. Even if the procedures are not recursive, naive unfolding might result in

code explosion. Criteria to recognize such attempts to perform repeated unfolding

are required to let the PE process terminate and limit the generated residue.

Consider a loop in the BAM code. Partial execution of a loop whose upper

bound is known at compiler-time could also lead to code explosion. This is similar

to problems encountered in loop unrolling [72] performed during conventional com-

piler optimizations. Criteria to prune the depth to which a loop may profitably be

unrolled are required to minhize the code exp1osion.

In essence, criteria to decide whether partial execution may proceed further at

a program point or not is crucial both to the partial execution termination and to

avoid needless code explosion. Such a criteria d o w specialization to occur only a

finite number of times at any given program point. Consequently, at each program

point, several of its versions may be created each corresponding to the repeated but

b i t e partial executions that specialize the program point to the set of static values.

Such criteria make use of the r d t s of partial execution of program units (basic

blocks) that are recorded. This technique of recording the results is usually referred

to as caching or tabling. The criteria help in deciding whether to proceed with

PE of a basic block or a previously computed specialization use a previous result.

Chapter 6 discusses the issues relating to the criteria used in this work.

Traditionally, the following three steps are used to perform polyvariant program

specialization irrespective of the language €39,421.

1. Obtain a description of all computation states reachable during program exe-

cution with the available variable dues. The variable values may be available

as invariant inputs known at specialization time or run-time invariants exposed

at specialization time.

2. Restrict these computation states to those reachable h m the entry point of

the program being specialized. .Also incorporate the known data into these

states to yield possibly severaI specialized versions of the program's control

points.

3. Optimize the residue further using traditional optimizations to yield a residue.

4.2.2.1 Residue Generation During Partial Execution

PartiaI aecution of BAM code outhed in the previous section may be viewed as

involving a series of transitions from one computation state to another. A state

transition occurs due to partial execution of one instruction. The BAM registers

and memory built with (possibly) partial datawords, constitutes the computation

state. PE of an instruction transitions a given computation state to a new one. The

two states, viz., one transitioned fiom and the one transitioned to are abstract r e p

resentations of the corresponding states resuIting from execution of the instruction.

The run-time computation state data values are abstracted to their data tags in the

corresponding PEtime computation state. The cumulative state transitions due to

partial execution of instructions in a basic block are referred to as block state transi-

tions. Correspondingly the cumuIative state transitions due to partial execution of

instructions immediately after a c a W 1 and a corresponding returd0 instruction

are referred to as procedure state transitions. Instructions to which execution control

transfers are usually r e f d to as targets. Leaders of aIl basic blocks are considered

as program points during partial execution of BAM code. The computation state

at the program point is the memory state of BAM. Thus, PE of the basic block at

a given program point is performed in the context of its memory state. This deci-

sion to perform the PE of a block or not, is made at PEtime based on the criteria

detailed in Chapter 6.

Partial execution of basic block instructions in the context of the current memory

state and their transformation to simpler instructions whenever possible results in

a residue. Residues of aII basic blocks of the CFG are thus generated for all the

program states possible at all run-time entries of the blocks. PE of a basic bIock

is performed if its residue for the current memory state was not generated earlier.

Additionally, as a procedure entry may also be a program point, PE of the procedure

entry basic block is performed if the residue of the procedure for the current memory

state was not generated earlier.

As mentioned earlier, the results of PE of each basic bbck are recorded. To check

whether PE of a block was performed earlier for a given memory state, the memory

state and the resulting residue need to be recorded aRer each PE of a block. This

meam that a block is "parameterized" by a memory state. It may be noted that

the granularity of data accesses by most of the BAM instructions is a dataword.

All such accesses are done either via argument registers or permanent registers.

Further the architecture spdcat ion assumes that all instruction operands to be

dereferenced, except those of the instruction deref/2 [67]. Thus execution of the

instructions in a basic block are characterized by contents and accesses made by

the registers in the block. In other words, the memory state at the end of the

PE of a basic block reflects changes due PE of the block instructions only while

the rest of the memory areas remain the same. Consequently, a block need not

be parameterized by a memory state it executes in. Instead, it is sdicient to

parameterize the block with the argument and permanent registers live at that

program point. Such registers are referred to as reference qisters. SimilarIy, to

answer the question "Is a residue generated for the block at current program point

given the context of current memory state?", it is sufficient to check if PE of the

block was performed for the current reference register contents instead of the whole

memory state. Additional analysis of instructions with larger data access granularity

allows augmenting reference registers with other instruction operands, if needed, to

parameterize the block. This is illustrated in Section 4.4.2.

The above discussion provides a background for various issues that need be

addressed while performing partial execution of BAM code. We now outline an

algorithm to perform partial execution of the CFG by iterative depth-first traversal

in Algorithm 2. The goal is to provide details of the process of partial execution of

%AM code using the algorithm.

Alnorithm 2 Empirical Partial Execution Alnorithm
- - - - - - -- -

1: Perform depth-first traversal of the CFG.
2: for all basic blocks bb of the CFG do
3: if no residue for bb with respect to current memory state exists then
4: Partial Execute 6b to get a residue, &,.
5: else
6: Let &, be the residue of bb.
7: end if
8: Record the current control flow path from parent of bb to &, for code gen-

eration.
9: end for

The test for a previous partial execution of a basic block and a resulting residue

is done at Step 3 of the algorithm. This is referred to as version check. As explained

earlier, since a basic block may be parameterized with reference registers, the version

check tests if a residue for the block was previously generated for static reference

registers. This test ensures that code explosion and non-termination do not occur.

The version check is described in Chapter 6.

The amount of residue generated during the execution of this partial execution

algorithm depends on the size of static value domain of the reference registers at P E

time. We show that this domain is indeed hitely small within the PE hamework

described above.

There are a finite number of registers in a given basic block. At PEtime, each of

these registers may contain dataword whose datatag is one of the finite set {tvar,

tint, tpos, tflt, tstr, tneg, tatm, tlst). Thus even if one residue for each

of the registers with each of these datatags were generated, only a finite number of

residues for a block are generated. Consequently, the number of residues generated

during the whole process of partid execution is finite and the partial execution

process is will terminate. An algorithm to optimize the number of reference registers

used for version check is discussed in Chapter 5. Further the reasons for termination

given here are in concurrence with bounded dafic uariable conditions laid out by

Glenstrup and Jones [30] and Holst [38].

4.2.2.2 Consolidation of Residue

The BAM code partial execution outlined above generates residues of the basic

bIocks along ail possible run-time CFG path. AU such run-time paths traversed

during partial execution are recorded. The residues generated are consolidated to

yield an optimized version of the BAM code on whi& PE was performed. This is

done after the completion of partial execution. It involves adjustment of control flow

targets to residues instead of the original basic blocks. Ehther, trivia1 transition

eliminations such as removal of unconditional jumps to a following instruction are

aIso affected. Issues relating to the formation of a run-time path during partial

execution, introducing a residue into the path, code generation corresponding to

a given run-time path and related optimizations done are discussed in detail in

Chapter 7.

4.3 Specialization of Instructions

Transforming instructions of a basic block during its partial execution results in a

residue. If two different instructions Il and I2 transform a given memory state, M, to

the same memory state M', then the instructions are transformable to one another

in the code in the context of the memory state M. If the transformed instructions

execute in lesser number of cycles than the original instructions, then the residue

may be expected to execute more efficiently. The most important criterion for any

transformation is to ensure that the program output remains the same as that of the

original. Hence any possible instruction transformation should be ensured to be cor-

rect. The memory state transformations done by d BAM instructions are specified

by the denotational semantics af BAM (Chapter 3). Using the denotational se-

mantics specification, the correctness of all instruction transformations done during

partial execution is shown in Section 4.3.

As a first step towards showing correctness of instruction transformations, the

folIowing classification of registers that occur isi a basic block is performed.

If a register content has known datatags or a known dataword (i.e., both datatag

and datavalue) at partial execution time, then the register is termed as static register.

A static register is called either tag-static or data-static to signify the knowledge of

tag or complete datadues (i.e., datatag and datavalue). Registers whose tag values

or dataword values are known only at execution time are called as dynamic registers.

As specified in the previous section, an instruction or a sequence of instructions

maps (or transforms) a memory state to another. Let p E ProgState denote a

memory state during the execution of a seqnence of BAM instructions. Let instr

be a sequence of one or more instructions to be executed next. Let instr map p to a

memory state p' E ProgState. I£ a sequence of one or more instructions Wtr' also

maps p to # then instr and instr' are termed equiualent instructions. Thus the

sequence instr may be replaced with insti in a code hgment containing instr

provided the program state is p prior to the execution of insti.

We now present instructions and their equivalents specialized for partially known

memory/operand contents represented by the current program state p. We show the

equivalence of the instructions and their specialized versions within the denotatiod

semantics framework presented above. Thus a foundation is laid out for showing

that the partial execution methodology presented is correct.

We introduce a n&operation instruction nop similar to that found in several pr*

cessor architectures. The execution of this instruction has no effect on the memory

state except incrementing the program counter pc. Its semantics are

 no^] ((code, mem, in, art)) = ((code, mm', in, out))

where mem = (s, h, se, sc, tr) ,
mem1 = (s', h, se, sc, tr) ,
s' = (iw ix&(pc) 1 s)

Correctness is shown for only those instructions that present an opportunity to

be transformed.

4.3.1 Specialization of Conditional Control Flow Instruc-

tions

As shown below, it is often possible to use the tag information of a register d u e

to eliminate redundant testa and reduce the conditional control flow instructions to

unconditional jumps or eliminate them altogether.

Consider the valuation function of switch/S instruction given in Section 3.5.2.

This *way branch instruction depends on the tag information of the addressable

entity z available from program state p = (code, mem, in, out). The value of x may

either be static or dynamic- In case of a static z , the equivalent instructions for the

three cases are as ioUows:

Case 1. tag of z known to be tvar.

This impiies that the condition (war --= gettag (getvalue z mem)) is true

and the semantics reduce to

~ [s s i t c h (t , x, 11,12,13)1((mde, m a , in, out)) = ((code, mem', in, out))

where mem = (3, h, se, sc, t r) ,

t E T , x E Adrable and 11,12,13 E String

mem' = (s', h, se, sc, k),

s' = (setregudue inR,(pc) (f etchaddr label(l1) code) s)

The semantics of the instruction jump(l1) are exactly the same as above.

Thus the switch/5 instruction is equivalent to jump/l instruction. This

unconditional jump is a simpler instruction involving no tag comparison

unlike the original switch/5 instruction.

Case 2. tag of z is as spedied by t.

This implies that the condition (t = gettag (gdualue x mem)) is true and

the semantics reduce to

~(Isu i tch(t , x, 11,12,13)1 ((eaie, mem, in, out)) = ((mde, mem', in, out))

where mem = (3, h, se, sc, tr),

t E T, x E Adrable and 11,12,13 E String

mem' = (s', h, se, sc, k),

s' = (setregudue hR&c) (f etchaddr label(l2) d e) s) .

This is equivalent to the semantics of the hstmction jump(l2).

Case 3. tag of x is neither tvar nor as specified by t. The semantics reduce to

l[switch(t, x, 11,12,13)1 ((mde, mem, in, art)) = ((mde, mem', in, out))

where mem = (s, h, se, sc, tr),

t E T , x E Adrable and 11,12,13 E String

m' = (a', h, se, SC, tr),

d = (setregvalue -&@c) (f etchaddr label(I3) code) s)

This is equivalent to the semantics of the instruction jump(@.

I.. each case, the evaluation function reduces to a j q / l to the appropriate

label. Thus with a tag-static d u e suitch/S instruction is equivalent to jump/l in-

struction. In case of a dynamic addressable entity, the suitch/5 instruction remains

unchanged.

I

Next consider the valuation function for test/4 instruction given in Section 3.5.2.

This is a tweway branch instruction - depending on equality or inequality as spec-

i6ed by eq or ne - of the tag of x and a given tag t. If the addressable entity x is

static, the test/4 instruction may be simplified as follows.

Case 1. If the tag of x is the same as t and c is specified as eq the semantics of

test/4 reduce to

 test (c, t, z, l) l ((code, m m , in, art)) = ((code, m', in, out))

where mem = (s, h, se, sc, tr),

m' = (s', h, se, sc, tr),

s' = setregvalue a (p c) (f etchadd7 label(1) code) s

This is equivalent to the semantics of the instruction jump(1).

Case 2. If the tag of x is the same as t and c is specified as ne the semantics of

test/4 reduce to

 test (c, t, x, i)] ((mde, mem, in, out)) = ((eode, mem', in, out))

where me7n = (s, h, se, sc, t r) ,

m d = (s', h, se, sc, tr),

s'= incr bR,(pc) 1 s))

This is exactly the same semm.iics as those of the nop instruction indicating

that the execution of text/4 in the current program state is redundant and

thus may be repIaced with a nop.

Case 3. If the tag of x is diffaent from t and c is specified as eq the semantics of

test/4 reduce to that of nop.

. . .Argument dereferencing instructions. . .
choiceW4, ArgRegLstl, 1 (pred/2,2) .
. . .Head unifications and body instructions.. .
return.

label (1 (pred/2,2)) .
choice(2/4 ,ArgAegLstl, 1 (pred/2,3) .
... Head unifications and body instructions ...
return.

label (1 (pred/2,3)) .
choice (3/4, ArgRegLst3,l (pred/2,4) 1 .
. . .Head unifications and body instruct ions. . .
return.

label (1 (pred/2,4) .
choice (4/4 ,ArgRegLst4, f ail) .
. . .Head unifications and body instructions.. .
jump/l .

Figure 4.4: Schematic of choicepoint creation in BAM

Case 4. If the tag of z is different from t and c is specsed as ne the semantics of

test/4 reduce to that of jump(&

Similarly, it may be shown that the semantics of jump/5 reduce to those of

jump/l or to nop with data-static values of the operands x and y.

4.3.2 Specialization of Choicepoint Instructions

Specializing choicepoint instructions by partial execution may reduce (or even elim-

inate) the number of choicepoints created at execution time. Here we discuss the

methodology for specializing choicepoint instructions that will serve as a background

for the choicepoint optimization detailed later.

First, a brief review of how choicepoint creation code is generated by the Aquarius

Prolog compiler is in order. Suppose a predicate p d / 2 consists of four clauses and

each of these clauses is compiled to BAM code with labels, say, l(pred/2,2),

1 (pred/2,3) , and 1 (pred/2,4) respectively, as shown in Figure 4.4. A schematic

T3

of this BAM code partitioned as CFG is shown in Figure 4.5.

The choice/3 instruction in basic block A creates a choicepoint which con-

tains the address of next alternative to be tried, i.e., address of the instruction

label (1 (pred/2,2) 1, along with the argument register values given in ArgRegLst 1.

First, the control flow proceeds along path PA. If the execution fails, the control flow

enters block B and the choice/3 inst~ction in B restores the argument registers

listed in ArgRegLst2 from the choicepoint. It also updates the next alternative to

Figure 4.5: Schematic CFG of a predicate pred/2 with four alternate choices

try with the address of the instruction label(l(pred/2,3) 1. Execution proceeds

along the edge PB. The rest of the choices of pred/2 are attempted similarly if

the current choice is a failure. The choice/3 instruction in the last alternative D

restores the argument registers to those listed in ArgRegLst4 &om the choicepoint

and pops the choicepoint off the choicepoint stack. If the last alternative fails, the

call pred/2 fails.

Given the static register information at the entry of procedure (pred/2), sup

pose partial execution reveals that execution along the path PC fails. Then the choi-

cepoint instruction in the code block with label l(pred/2,2) may be transformed to

bypass block with label 1 (pred/2,3). In other words, choice W 4 , ArgRegLst2,

l (pred/2,3) in block B, can be transformed to choice (2/4, kgRagLst3, 1 (p-

red/2,4) 1. The correctness of this tramdormation may be shown using the deno-

tational semantics of choice/3 and fail10 instructions as follows.

Let mem be the memory state at the time of entry into block A and b, and h. be

the values of b and h. The memory state at the exit of block A results from applica-

tion of valuation function of choice(l/n, r, I) specified in section 3.5.2 to the memory

state mem. The register hb contains h, at the mit of A. Let bb be the value of b after

the choicepoint is created by the Instruction choice(1/4, ArgLstl , 1 (pred/2,2) 1.

Let hb, cpb, 6 and trb be the dues of h, cp, e and tr respectively at the acit

of bIock A Hence (hd sc), which represents the top of choicepoint stack, is (bb,

(ArgRegLst 1, hb, trb, ht cpbr b, ad&-pred-22) where ad&-pred-22 = f d c h d d r

1 (pred/2,2)) code at the entry of block B.

The top of choicepoint stack at the exit of B i.e., entry of block C is

(bb r ((kgRegLst1) hb t t r b t 8b t CPb, bm addr-preU-3) 1

where a&-pred.23) = f etchaddr l(pred/2,3) and (ArgRegLsti) represents

the contents of the argument registers in ArgRegLstl. Fbrther, the registers Listed in

ArgRegLst2 have the values restored h m ArgRegLstl that were stored in the choi-

cepoint. The register pc has the address of the inst~ct ion following the choice/3

instruction in block B. Now, suppose it was revealed that partial execution exe-

cutes f aW0 along the each of the paths on PC. This implies that execution dong

the path PC fails and partial execution of fai l instruction restores the memory

state to the correct state. Let rnemb be the memory state before the execution of

this f a i l instruction. State transformation of memory due to execution of f a i l

may be computed by applying its valuation b c t i o n (d, m e m b , in, out), where

code E ProcCode is the BAM code on which partial execution is being performed,

in and out are its input and output.

11f ail1 ((&, mmy, in, out)) = ((code, memc, in, out))

where mema = (s, h, se, sc, tr),

mc = (dl h, se, sc, t f)

sl = restoreregs trb t r S,

tr' =trsufi trb tr,

82 = setregvalve S (e) eb 81,

s3 = setregvalue inR.,(cp) cpb 32,

sh = sdregvdue =(h) h. s3,

s' = setregvalue inR.(pc) a&-pred23 34

Evidently, the valuation function d f ail maps m b to mem, wherein the state

remers e, tr, cp are restored from the top of the choicepoint stack.

Now partial execution proceeds to block C wherein PE of instruction choice(3/4,

ArgilegLst3, 1 (pred/2,4)) transforma mem, as specified by the foUowing valuation

function:

1[choice(3/4, ArgRegLat3,l(pred/2, 4)) l ((code, meme, in, out)) =

((code, M d , 2% out))

where mem, = (3, h, se, sc, t ~) ,

memd = (8, h, se, st?, tr),

st? = urns ((ArgRegLst 1) , hb, trb, 6, cpbt b., addr-pred2-4) (tl sc) ,
s' = loudregs r (ArgRegLstl) s,

s"=incrinR,(pc) 1s'

Knowing that partial execution fails along PC fails, given mema, the instruc-

tion choice (2/4, ArgRegLat2 , l(pred2,3)) may be trauhrmed to choice (2/4,

ArgRegLst3,l (pred/2,4)) as explained above. The memory state transformation

of mema done by this transformed instruction is as foIIows:

1[choice(2/3, ArgRegLst3, l(pred/2,4))1((mde, m r m b , in, out)) =

((code, m e d , in, out))

where menzb = (3, h, se, sc, tr),

mem' = (6, h, se, sc', tr),

sc' = m s ((ArgregLst I), hb, trb, 6, q,, b., addr_pred_2-4) (tl sc),

s' = loadregs r rl s,

s " = i w ixtR,(pc) 1 d

mem' is exactly the same as men%. Hence the transformation is correct. This

transformation renders block C to be dead-code. This type of choicepoint special-

ization may be performed if the fall-through path following a choicepoint update

instruction may be shown to fd during partial execution of the BAM code. The

implementation of the associated analysis is detailed in Section 6.4.

Two special cases of this optimization occur. The first is when all alternatives to

the first choice can be shown to fail at PE time but the first choice can not be shown

to fail. In Figure 4.5, it may be shown that partial execution fails along PB, PC and

Po, but not dong PA. In such a case the choicepoint creation itself may be inhibited

as shown in Section 4.4.2. The second case, when it may be shown that partial

execution fails along PA, an entirely Merent kind of choicepoint transformation is

done (Section 6.4). The correctness of these transformations follows &om the proof

of the general case given above.

The basic idea behind choicepoint optimization is to avoid creation and/or ma-

nipulation of a choicepoint with retry addresses that fail. Choicepoint optimization

can save the time of manipulation as well as attempting to execute code on paths

known to fail. Also in programs that can generate exponentid number of choice-

points, this optimization can result in reducing potential swapping problems.

4.3.3 Specialization of UnXcation Instructions

Using static registers, some d c a t i o n instructions may be specialized as follows.

The semantics of deref/2 instruction are specified in Section 3.5.3. The follow-

ing possibilities exit for specializing this instruction depending on the compile-time

information available,

Case 1. x is tag-static, x and y refer to the same register and x has a tag other than

tvar.

The semantics of deref /2 reduce to

~ [d e r e f (2, x)l ((code, mem, in, out)) = ((mde, m', in, out))

where (s , h, se, sc, tr) = setvalue x ((getvalue x mem)) mem,

meml = (s', h, se, sc, tr),

s ' = i c p ~ (p c) 1 s

since the condition (gettag (getvalue x m) = tvar) in the den$ operator

evaluates to false thus evaluating den$ (getvalue z m m) mem to (getvalue z

mem) which in turn, evaluates to the contents of x which are remapped to

z by the expression setvalue x ((getvalue x mem)) m m . In other words,

the content of x is remapped to itself - a vacuous operation. Thus the

semantics reduce to

~[dere f (x, o)l ((cude, mem, in, out)) = ((mde, meml, in, art))

where mem = (s , h, se, sc, tr)

mem' = (s', h, se, sc, tr),

s' = i w in&(pc) 1 s

These semantics are equivalent to those of nop instruction. In other words,

deref/2 instruction can be replaced by the nop instruction in this case.

Case 2. z is tag-static, x and y are difterent registers and x has a tag other than

t va r .

As above, (&ref (getvalue x m m) mm) in the specification of deref /2

reduces to (getvalue x m). The expression

setualue y (deref (getvalue z m) m) m

reduces to setualue y (getvalue x mem) m m . Thus the semantics of

deref /2 reduce to

~[deref (x, g)l ((code, mrm, in, out)) = ((cock, mem', in, art))

where (s, h, se, sc, tr) = setudue y ((getvalue x mem)) mem,

mem' = (sl, h, se, sc, tr),

s' = inm *(PC) 1 s

which may be rewritten as

~[deref (x, y)D((code, mem, in, out)) = ((mde, meml', in, out))

where m'' = ((am in&(pc) 1 med&l) , rnem'J2, rnem'J.3,

memr&4, meml@),

mem' = setvalue y (getvalue x m) mem.

This is exactly the same as the semantics of the move/2 instruction. Thus

the deref /2 instruction is equivalent to move/2 given the above static mem-

ory information.

Case 3. In all other cases, the instruction deref/2 may not be M h e r specialized

at compile time,

H

Next consider the semantics of the unify/5 instruction as given in Section 3.5.3.

The foUowing specialization options exist based on the static memory information

available.

Case 1. x and y are tag-static and have tag values other than tvar.

If the tag values of z and y are different, the unify/5 instruction is reduced

to jump(I) as the condition (mem --=I) in the semantics specification of

unify/5 holds in this situation.

Case 2. z and y are tag-static, and x has a tag other than tvar and y a tag war,

the anify/5 instruction is equivalent to the sequence of instructions

trail(y1.

move (x, y) .
The equivalence is shown as folIows.

Given the above static information, a unify/5 instruction maps a program

state (code, mem, in, out) E ProgState to a new program state

(d e , mem", in, out)

where mem = (8, h, se, sc, tr),

mem' = (s', h, se, sc, W)

s' =zr incr b&(tr) 1 (setvalue y (getvalue x mem) mem)$l,

tr' = cons ((getregvalue tr s) + 1, (y, (getvalue y mem))) tr,

mem" = ((incr pc 1 st), h, se, sc, ttJ)

by applying appropriate simplXcations to the semantic specification of

unif y/5.

Given the same static information, a sequence of t r a i l / i and move/2 in-

structions map the program state (code, mem, in, out) E ProgState to a

new program state (d e , rnem", in, out) as fo110w9:

The t r a i l (y instruction maps to (code, memt , in, out)

where mew = (st, h, se, sc, trt)

st = incr inR,(pc) 1 (incr inR.,(tr) 1 s),

trt = cons ((getregval inR,(tr) s)+l, (y, getvalue y mem)) tr.

The move (2, y) instruction then maps (code, memt, in, out) to

(code, mem,,,, in, out)

where mem,,, = (s,, h, St?, sc, trt), and

s,,, = incr inR,(pc) 1 (setvalue y (getvalue x m m) memt)ll

Neither the heap(h), the environment stack(se), nor the choicepoint stack(sc)

are changed during the partial execution of unify/5 or the sequence trail/l ,

move/2. M h e r in both cases y E Adrable and the trail stack are updated

in the same manner. Since the instruction sequence consists of two instruc-

tions, the pc register is updated twice. The instruction uuif y (x, y, tl, tl, 1)

and the sequence

trail(y1.

move (2, y) .

perform exactIy same memory updates except for the value of pc. The value

of pc in both the cases is equivalent as it points to the instruction following

original unify/5 instruction. Thus the transformation may be shown to be

correct for the given static information,

A similar transformation may be shown to hold if x has a static tvar tag

and y either has a static mar tag with the vdue part that is lesser than

that of x or has a static tag other than tvar. The unifyis in either of

these cases is semantically equivalent to

trail (XI .
move(y,r).

Case 3. x and y are data-static with non-pointer datatags.

If z and y are equaI, the instruction may be reduced to nop/O. Otherwise,

it may be reduced to jamp(9.

The condition

((tx == tint) V (t x = tflt) V(tx == tatm))

in the unih operator is true given the static information, viz., x and y are

non-pointer datatags.

(a) If the data value is not the same:

The semantics of unify/S reduces to I . This means that the condi-

tion (man ==I) holds in the semantics of unif y/5 and (f dchculdr

label (f ail) code) evaluates to the execution of f ail10 instruction

as explained earlier. 'Thus in this case the d y / 5 instruction may be

replaced with f a i l / 0 without any change in execution semantics.

(b) If the data value is the same:

control f a through to the next instruction and hence the nnify/5

instruction may be replaced by nop/O.

The equal/3 instruction whose semantics are gien in Section 3.5.3 may be

specialized using static register information as follows.

Case 1. Let x and y be tag-static. I£ their tag values are not the same, the semantics

of equdl/3 reduce to

~[equal(x, y, l) l ((code, mem, in, art)) = ((code, mem', in, out))

where mem = (s, h, se, sc, tr),

mm' = ($, h, se, sc, tr) ,

s' = sdregvdue id& (pc) (fetchaddr label(E) code) s

since the comparison (getudue z mem == getvalue y mem) faiIs as the

datatags of x and y are unequal. The above semantics are the same as the

semantics of jump(1). Thus equal/3 is equivalent to jump/l given the above

static memory information.

Case 2. Let x and y be datastatic registers with game tag values. equal/3 reduces

to to jump (I) if the data values of x and y are equal. EIse it reduces to nop.

With this background, the partial execution process and instruction transforma-

tion are illustrated in the following section.

4.4 Illustration of Part i d Execution

4.4.1 Example 1

The following example illustrates partial execution outlined in Ngorithm 2. Fig-

ure 4.6 shows a simple Prolog program and the BAM code generated during Aquar-

ius compilation using global flow analysis. CFG representation of the BAM code is

shown in Figure 4.7.

Partid execution of the BAM code may be viewed as application of the vah-

ation function B to the BAM code stream in Fignre 4.6. Associated irtstruction

tradomations are aIso illustrated in the exampIe below. For easy reference, BAM

instmctions are annotated in the code with numbers.

82

X Aquarius Prolog compiler
% Copyright (C) 1989-92 Peter Van Roy
% All rights reserved.
% Creation date Wed Aug 12 19:31:38 PDT 1992

0 : procedure (main/O) .
1 : entry (main/O, 0) .
2 : allocate(0) .
3: call(num/l) .
4: call(p/2) *

5 : move(r(1) ,r(O)).
6 : deallocate(0) .
7 : jump(write/l) .

8 : procedure(nd1) .
9 : entry(num/l,l) .
10: move(tint'3,r(O)) .
11 : return.

12: procedure(p/2) .
13 : =try (p/2,2)
14 : test(ne,tint ,fail) .
15: equal(r(0) , tintn2, l(p/2,2) -
16 : move(tint-10 ,dl) .
17 : return -
18 : label (1 (p/2,2)) .
19 : equal(r(0) ,tintn3,fail).
20 : move(tintn20,r(l)).
21: return.

22: procedure ('$ init~ain/O'/O) .
23: entry('$ init,main/O1/O,O).
24 : return.

Figure 4.6: Program example1 .pl dong with its BAM code

83

1 ig,
3 Err E
u w w L m 3
U L >r,
0 4 0 0
L C E L Q r(

"tZl*dd

Block 9 comkts of code that identifies the entry point for the assembler and

linker- It is not used during the PE process but is retained. In subsequent =amples,

it is assumed to exist and is not explicitly shown in the CFG of BAM code.

Block 0 is the entry point of the CFG in Figure 4.7. Execution of instruction

3 and consequently of basic block 3 loads register r(0) with the dataword tint-3.

Execution continues to block 1. Execution of the call instruction 4 transfers control

to block 4. -4t the entry of block 4, r(0) is a static register. In the context of

current program state, the flow change instruction 14 may be replaced with a nop

since tag of the static register r(0) is known to be tint as shown in Section 4.3.1.

This results in a specialized basic block 4' with the following instructions.

12: procedure(pl2) .
13 : entry (p/2,2) .
14: nop.

Control flow then falls through to block 5.

In block 5, since the value of r(0) in current memory state is tinta3, the

equality test of instruction 15 fails. Thus the equal/3 instruction is equivalent to

jump(l(p/2,2) as shown in Section 4.3.1. This results in a specialized basic block

5' with the following instruction.

The control flows to block 7 in which instruction 19 is equivalent to a nop as the

data-static register r(0) is equal to tint-3. Tbis results in the following specialized

basic block 7'.

18 : label (1 (p/2,2)) .
19: nop.

The symbolic execution continues to block 8 where tint-20 is loaded into r (1).

The control then flows to block 2 where instruction 5 with data-datic r (1 may be

transformed to move(tint̂ 20 ,r(O)) resulting in the following specialized block 2'.

0 : procedure (main/O) .
1: entry (main/O, 0) .
2 : allocate (0) .
3 : call (num/ 1) .
4: call(p/2) .
5 : move(tinta20,r(0)).
6 : deallocate (0) .
7 : jump(write/l) .

8: procedure(num/i) .
9 : entry(numl1,l) .
10 : mova(tint'3,r(O)).
11 : return.

12 : procedure (p/2) .
13 : entry (p/2,2) .
14 :
15 :
16 :
17 :
18 : label (l(p/2,2) .
19 :
20 : move(tint*20,r(l)).
21 : return.

22 : procedure ('$ i.nit,main/O /0) .
23 : entry('$ init,main/O'/O ,0).
24 : return.

Figure 4.8: Residue of the BAM code of examplei. pl

Thus the run-time path of code shown in Figure 4.7 is 0 - 3 - 1 - 4 - 5 - 7 - 8 - 2.

As shown above, the blocks 2,4,5 and 2 may be specialized and replaced with their

corresponding residues.

Figure 4.8 shows the residue resulting after the nop instructions and trivial jumps

to following instruction are m a t e d . Such a step is referred to as code consoli-

dation. Instruction numbers of dead blockg and nap instructions are left behind to

highlight the redundancies.

The jamp(l(p/2,2) 1 instruction at 15 is eliminated since it is a trivial jump

to an immediately following location. This simple example illustrates elimination

of three redundant comparisons otherwise performed at run-time, thus contributing

to an improvement in its execution time. This program may also be optimized by

performing partial evaluation of the Prdog source [58] to achieve a result similar to

that obtained by partial execution of the BAM representation. However the finer

granularity of the data structures at the BAM level offer greater opportunities for

optimizing BAM code by partial execution than optimizing Prolog code by partial

evaluation.

maia : - read(List),
last (List, Laat) ,
write(Last1.

X last (List, LastElement) .
last ([Element] ,Element),
last (/I Restl , L a s t) : - last (Rest ,Last) .

-

Figure 4.9: Program last. pl

.4 second example illustrates choicepoint optimization by partid execution as

explained in Section 4.3.2.

Consider the standard definition of the predicate last/2 shown in Figure 4.9.

Figure 4.10 shows the CFG representation of its BAM code generated by the Aquar-

ius compiler with global flow analysis. It is well known that most WAM-based com-

piIers compile last/2 to abstract machine code that creates a choicepoint left on

the stack upon successful exit of a call to last/2. This choicepoint is removed only

when control backtracks to last/2 for alternative solutions and fails. It is the case

with Aquarius Prolog compiler as well. The choicepoint created in block 11 is left

on the stack upon successful exit via block 12. By performing partial execution, the

chokepoint creation may be inhibited when the predicate d last (List , tEled

succeeds w i t h E l a m instantiated to some non-variable vahe which is an element of

List.

Symbolic execution of the instructions in the entry bIock 0 results in allocation

of an environment on the environment stack, and creation of a variable on the heap.

The memory updates resulting from the call to built-in read/l are not determinable

at PE time. Thus the only information known about r (0) and p(0) is that their

tag values are tvar. The value read is built on the heap and r (0) holds its address.

Execution of block 1 loads the contents of the address stored in p(O) to r(O1.

Thus r(0) and p(0) are the reference registers of block 1. Of these r(O) is the

dynamic register. A call to laat/2 results in the transfer of control to block 3.

The reference register set of block 3 is {r(O), r(1)). Of these r(0) is the only

register whose values are used in block 3. At entry time it is not static. Register

r(1) is dynamic since instruction 18 dereferences r(0) to d l) . As the flow change

instruction 19 depends on dynamic register r (i) , partial execution is to be per-

formed along all possible control flow paths. Choicepoint elimination is illustrated

on the path going through block 7.

Control proceeds on this path when the tag of r (1) is t l s t . Symbolic execution

of the block instructions load r(2) with the head of the list pointed to by r (1). As

the head value is not known at PE time, r(2) is dynamic. Similarly, register r(O)

that has a pointer to the tail of the list, is dynamic. Thus partial execution must be

done on both the possible flow directions upon execution of instruction 44. We focus

on the flow that executes the block 10 where tag of r(0) is not tvar. Since r(0)

is dynamic, two possible flow directions d s t upon the execution of 52. Consider

the path leading to block 11 when r(0) contains tatm-0. Execution of instruction

53 in block 11 dereferences r(2) - a dynamic register - into itself and creates

a choicepoint which contains the current value of r(0) - tatmall. Execution the

flows to block 12 where instruction 55 copies the contents of register r(1) to r(2).

Control transfers to block 2 where r(1) is dereferenced and loaded into r(0). Thus

the current execution path is 0-1-3-7-10-11-12-2. As there is a choicepoint created

in this path, it is evident that this is only one of the several possibIe specdative

paths. All the other speculative paths due to the choicepoint have to be traversed

for PE to discover the run-time execution path as illustrated in the following.

The alternate path from block 11 goes to block 13. The choice/3 instmc-

tion at 58 restores tatm' 0 to r(0) and removes the choicepoint and control Bows

to block 14. Of the reference register set (r(O), r(l)), r(0) is static. PE of in-

struction 61 results in failure. As there are no more alternate execution paths

in the choicepoint, the program exits with failure. Thus all alternate paths From

the choicepoint created in block 11 fail leading to the safe remod of the choice-

point instruction 54 and correspondingly at 58 to yield a complete specialized path

O-1-3-7-10-11'-12-2where blockll'is

53 - deref (r (2) ,r (2) 1 .
54. nop.

Partial execution detailed above follows the final loop of the iterative traversal

of the call last (List ,LElem) that succeeds with an instantiation for LElem given

a Iist List with a non-variable Iast element and an uninitialized LElem.

The memory usage will be reduced by avoiding redundant chokepoints. Less

time is spent in manipulation of such choicepoints. Savings corresponding to above

optimization in last . p l are measured as foIlows. Since the optimizations dec t

the execution speed upon first backtracking into the call, a failure driven Ioop that

calls last (C1J ,L) 100000 times is used to test the gains. On a lightly loaded

SP.4RCstation 1+ with 16MB main memory the unoptimized executable takes 2.0s

of user time whereas the optimized version takes 1.4s of user time - a speedup of

1.4 using Amdahl's law [36]. The user time corresponds to user time - time spent

in the program itself - as reported by System V version of the command time.

The memory usage improvement is too small to m e m e in the present case as one

choicepoint occupies only a few bytes. The predicate calI with only one element is

chosen so that the speed-up resulting from avoiding the creation of the redundant

choicepoint is not over shadowed by the rest of the computations in the predicate.

The memory usage improvement can potentially be significant in larger programs

where more choicepoint optimizations are possibIe-

It is well known that u n . n v choicepoint creation may be avoided by rewrit-

ing last12 as shown in Figure 4.11 wherein the first arguments of the two &uses

last,2(0 , Last, Last).
last,2(CX I Xs] , Last, ,) : - last,2(Xs, Last, X) .

Figure 4.11: Program last-tweaked. pl

of the predicate definition last2/3 (Figure 4.9) represent two mutually exclusive

choices. This is evident in its BAM code shown in Figure 4.12. It may be observed

that a redundant choicepoint is created in the BAM code of last/:! when the first

tTRO arguments are not mutually exclusive. There is no necessity to transform the

"pure" version of last/2 predicate (Figure 4.9) to avoid redundant choicepoint

creation. Such redundant choicepoint creation may be optimized away by partial

execution of BAM code of the pure version itself as shown above. The resultant

optimized BAM code has the same quality as that of the BAM code of Figure 4.11

with regards to choicepoint creation.

The instruction 30 viz., t08t/4 in BAM code shown in Figure 4.10 may be

transformed to nop since the tag of r(0) is known to be tvar owing to instruction

28. Although the redundant choicepoint creation was optimized away by rewriting

the predicate laat/2, the test/4 instruction at 41 in Figure 4.12 is not. Both

these optimizations may be achieved by partial execution of the BAM code of the

pure version itself. This implies that the programmers need not spend extra time

to design predicates with mutually exclusive arguments.

A similar choicepoint optimization may be performed on the code of another

standard predicate m i n t i t / 2 that h d s the minimum of a given list of numbers.

Figure 4.12: CFG for hand-optimized last/:!

The choicepoint optimization created in the predicate minist/;! results in a speedup

by a factor of 1.2 on a lightly loaded SPARCstation 1+ with 16MB main memory.

In this chapter, a brief introduction to program specialization and associated termi-

nology is presented. Then opportunities for performing BAM code specialization,

called partial execution, are discussed. The partial execution frame work is then

sketched out by providing a structure to the BAM code. A high-level algorithm to

perform PE is presented to provide the starting point of the detailed partial execu-

tion process that follows in later chapters. All possible individual transformations

are shown to retain semantic correctness using the denotational semantics described

in Chapter 3. With this background and introduction to the partial execution pro-

cess, two complete examples are presented to illustrate the various optimization

opportunities.

Any code transformation has to be based on different types of analyses to preserve

correctness of the results of the code. llansformations performed during BAM

code partial execution also rely on several analyses as well as the results of partial

execution itself. Chapter 5 presents BAM code analyses employed in conjunction

with PE to affect optimizations.

Chapter 5

Structure of a BAM Partial Executor

Introduction

The PEbased optimization process designed and implemented in this thesis con-

stantly ensures the correctness of two abstractions - viz., program semantics and the

BAM memory abstraction of the program. The program semantics are maintained

with the help of an internaI representation (IR) of the candidate BAM code. This

IR is built with its CFG at the core. As explained in earlier chapters, the process

consists of two interleaved phases - viz., symbolic execution of the code and code

transformation. The BAM memory mode1 is used to ensure correct symbolic execu-

tion. The correctness of code transformation is ensured by maintaining additional

information. This additional information pertains both to the candidate BAM code

structure and to its runtime behavior. The PEbased optimization process consists

of three components: a front end, a partial execution driver (PE driver) and a code

consolidator. In the front end, BAM code is partitioned and syntactically andyzed.

Code partitioning was described in Section 4.2.1. Since BAM code parsing and

partitioning code to basic blocks uses standard techniques, a detailed description of

the front end is not given. However, syntactic analysis carried out in the front end

is described in various sections of this chapter. The PE driver controls the partial

execution that is comprised of symbolic execution and code transformation. It en-

sures that the BAM memory model is consistent with the symbolic execution and

updates the internal representation of the BAM code. The PE driver maintains a

control stack to control the entire partial execution process.

This chapter begins with a description of extensions of BAM data structures.

These provide place holders for run-time characteristics of the BAM code. This is

followed by the PE driver algorithm. We take a topdown approach to describe the

the data structures that are built around the CFG. In other words, we illustrate the

need of the data structures when explaining the appropriate algorithm step rather

than lay them out before presenting the algorithm.

5.2 Augmenting BAM Memory Areas To Sup

port PE

The BAM memory areas described in Chapter 2 are designed to hold run-time

information. To analyze and characterize the run-time behavior of BAM code,

additional place holders are necessary and these are described in this section.

5.2.1 Partial Execution Registers

The following pieces of information are maintained to ensure correct partial execu-

tion. Each of the pieces is stored in a register or other data structure a s indicated in

its description. A non-BAM register defined to hold any such additional information

is called a partial execution register or PE register.

Basic block information - The current block number being partially executed

is stored in a PE register bb. The parent block number of bb, i.e., the block

from which control passed to the current block, is stored in a PE register pb.

Continuation block information - The number of the basic block to which the

control flow returns upon successful completion of current procedure is stored

in the PE register cbb. The number of the parent basic block, i-e., the block

with a call/ l instruction to the current procedure, is stored in PE register

cp-Pa=*

The PE register, prochllr, stores the number of the entry block of the current

procedure being partiaIly executed.

The index into a table of input-output value pairs associated with the current

procedure is stored.

A new stack cded the allocate stack whose items hold environment allocation

information and information about the block containing the call to the current

procedure. This data structure is discussed in Section 5.2.2.

5.2.2 Augmenting Environment Stack for PE

BAM code resulting from compiling a Prolog predicate is referred to as a procedure.

A procedure begins with the instruction procedure/i. As described in Section 2.2.4,

two different BAM code streams for a predicate are generated depending on the

number of predicates in the clause body. If the body has more than one predicate,

code to docate an environment is generated. It is foUowed by code to set up call

arguments and the caU instruction callli. An unconditional jump, jumpll, is

generated instead of a call to the last predicate in the body. Code to deallocate the

environment is generated before that unconditional jump. If the predicate body has

one predicate c d it is translated to an unconditional jump, jump/l. No environment

docation or deallocation instructions are generated in this case.

Thus a procedure is entered via a call11 or a j q / i instruction. Further, an

environment is not created at every procedure entry. These run-time BAM execu-

tion characteristics necessitate additional mechanisms to keep track of procedure

entries and environment creation during partial execution. A separate stack, re-

ferred to as an atlocute stack, is used for this purpose. Partial execution of a call

or a jump to a procedure creates an allocate stack item irrespective of the alloca-

tion of an environment by the procedure. A jump to an instruction procedure/l is

treated as a procedure calI except that the values of cp (the continuation register),

cbb (the block continuation PE register) and cp-par (the continnation block parent

PE register), are not updated. Partial execution of allocate/l sets a flag a l l o c f i g

in the top allocate stack itan to indicate environment creation in Ghe procedure.

Correspondingly, during partial execution of deallocate/l, the crlloc-dirty flag is

set to indicate that the current procedure has deallocated an environulent £tom the

top of the environment stack. An docate stack item consists of the following:

The entry block number of the current procedure.

The allot-Rag Bag to recotd whether an environment is allocated. The same

flag is used to record whether the current procedure was a last call optimized

to a jump. This may be done without inconsistency since an environment is

deallocated before the last call and no access to the environment stack is done

during the call.

A pointer into a table holding the current input value set of the calling pr*

cedure. This table also holds output value sets of the calling procedure. This

table is referred to as in-out table.

The a l l ~ d i r t y flag.

As discussed in Section 2.2.1.1, a BAM environment stores the permanent reg-

ister values that occur in the predicate body clauses, a pointer to the previous

environment and the return instruction address of the current predicate, namely,

the current value of continuation pointer cp, For the purposes of partial execution,

the environment is augmented with the fo11owing additional information:

0 The return bIock address of the current predicate, i.e., the current value of

cbb. Note that cp stored in the environment points to the first instruction of

this block.

The predecessor of the return block address stored above. This is stored since

the CFG has no edge representing the control flow due to a procedure call or

a return from a procedure call, as described in Section 4.2.1.

Chapter 6 describes how this additiond information is used.

5.2.3 Augmenting the Choicepoint Stack for PE

Section 2.2.1.2 described the information stored in a BAM choicepoint. The follow-

ing values are additionally stored in a choicepoint to aid analysis performed during

partial execution.

0 Basic block number, cbb;

0 Basic block number of the parent of the continuation bIock, i.e., the value of

PE register cp-par;

0 Basic block number of the parent of the current block, i.e., the value of PE

register pb;

Control stack top (described in Section 5.4.2);

0 Allocate stack;

Choice success information, described below.

Speculative symbolic execution involves symbolic execution that assumes a dy-

namic register to have a certain static value. We refer to partial execution that

involves speculative symboIic execution as symbolic partial execution. Speculative

symbolic execution is done while an alternative retry address is attempted or while

continuing PE along several possible successors of a basic block. All alternate choices

available via a choicepoint are spedatively symbolic executed during partial execu-

tion. PE thus proceeds on several corresponding execution paths. Success or failure

of the alternate choices is recorded in a data structure, called the choice success

information. A choice is recorded as failure only if it can be shown to fail at PE

time. Otherwise, it is recorded as a success. This may be viewed as a conservative

approximation of run-time behavior of the program.

The heap and trail stacks are not augmented wi th any additional information

for the purposes of PE.

BAM Code Partial Execution Driver

Consider a program P and its CFG PG. The subgraph of PG traversed from the

beginning to the termination of one invocation of P is referred to as an ezecution

thread. Any given program has several possible execution threads each of which

is characterized by a subgraph of the CFG rooted at the block containing the

program entry point procedure (main/O). One and only subgraph cor~esponds

to any single program invocation. Every subsequent invocation of the program

might be characterized by a Merent subgraph. This variation of execution threads

between different program invocations depends on run-time inputs, if any. Since

run-time inputs are not known at PE time, it is not pansibIe to find the precise

execution thread of a program invocation and its subgraph. Consequently, all sub

graphs that represent possible run-time execution paths are discovered by performing

partial execution. Instructions in blocks along each of these paths are optimized

whenever possible by transforming them to simpler but equivalent ones. The PE

driver traverses the CFG built by the front end to schedule basic bIock partial

execution. Partial execution resuits in basic blocks that either are specialized, if

enough information is available in the current program state, or belong to the original

CFG otherwise. The PE driver schedules speculative symbolic execution when more

than one PEtime control flow option exist. The code generation phase uses the

resultant subgraphs recorded in the PEflow graph to generate optimized code while

eliminating trivial transitions.

AIgorithm 3 presents a PE driver algorithm based on the empirical partial execu-

tion algorithm outlined in Chapter 4. The driver traverses the CFG in a depth-fiirst

manner using a control stack to schedule partial execution along all execution threads

of the given BAM code. Algorithm 3 hinges of three fundamental phases:

I. Checking and updating BAM memory state to ensure correct partial execution,

2. Checking if a residue(version) of the current baaic bbck exists for the cnrrent

memory state, and

Algorithm 3 Partial Execution Driver Algorithm
1: Let G be the control flow graph of the BAM code being partially executed and

Gmt be its root node.

2: Let E be a graph called P E - j h graph
3: Let cur-memstate be the current BAM memory state.
4: Let t o t a l z ~ c t i o w be the total number of instructions in the BAM code.
5: For any basic block, blk, let cantark hold resumptimu resulting from partial

execution of bl k.
6: Set node = 0.
7: Set CStack = nil.
8: Set initial Bkihi memory state.
9: push (Gmt,cur-menutate) onto CStack.

10: while CStack # nil do
11: (node,mem) = pop(CStack)
12: if (pc = success or pc = faiiure) then
13: Record the edge between the parent of node and node in E
14: else if pc > totdinstructions then
15: Flag error indicating out of code space access.
16: eke /* Continue partial execution */
17: if node has no residue for the reference registers in mem then
18: Set current memory state to mem.
19: (node,-, cunt&) := partidezecute(node)
20: if no&, is same as node then
21: node- := node.
22: else
23: n& := n*,.
24: Record node- as the residue of nude.
25: Record n& in E.
26: end if
27: updatccstack@n&)
zs: end if
zs: end if
30: end while

loo

3. ~ausforming instructions to their simpler equivalents whenever possible.

The rest of the chapter is devoted to explaining various aspects of the Algorithm 3.

The algorithm uses several characteristics of a basic block and a procedure. A

description of these characteristics is follows.

5.3.1 Characteristics of a Basic Block

Several syntactic and run-time characteristics of a basic block are used by the PE

drives. The following information is associated with a given basic block.

Pointers to its successors and ancestors.

A list of focus registers that parameterize the block (Section 5.3.2).

Pointers to its versions generated during partial execution.

A flag indicating whether the block contains a choicd3 instruction.

0 Procedure analysis information viz., register and &out table information of

the procedure containing this basic block (Section 5.3.3).

Strongly Connected Component (SCC) related information used to identify

loops in CFG (Section 5.5.2).

We discuss focus registers, procedure and SCC related information in the follow-

ing sections. The rest are self-explanatory,

5.3.2 Parameterizing a Basic Block With Optimal Refer-

ence Registers

Each basic block map be parameterized with the reference registers introduced in

Chapter 4. When a basic block is partially executed with respect to a certain set

of static reference register values producing a residue, we say a version of the basic

block is generated. The PE driver in Algorithm 3 checks whether a version of the

current basic block corresponding to current values of all the reterence registers

exists in the current memory- However, only some of the reference registers (i-e.,

permanent and argument registers accessed by the instructions in a basic block) are

affected during the partial execution of the basic block. These registers are called

active registers. Thus, associated with every basic block is a set of active registers.

Consequently, it is sufficient to partially execute a basic bIock only when it has not

been specialized for the current values of the active registers.

Specializing a basic block with respect to all dynamic registers leads to code

expiosion. Thus the specialization must be restricted to static active registers. This

technique is similar to that of specializing a function with respect to its static ar-

guments as done in partial evaluation of functional programming languages [42,57j.

Specialization of programs with respect to static/invariant entities has been studied

in various contexts. Haratdsson's online partial evaluator Redfin [34] is considered to

be the first attempt at this. Consel and Khoo [18] define facets that a provide means

for user-specification of static properties in the context of both online and of3ine

partial evaluation of a first-order language and provide a formal framework. The

current work folIows the conventional methodology of speciahation with respect to

static properties. However, no user-specification, either of static properties or of

input values are expected during the online specialization. M e r , we specialize a

low-level Ianguage and do not attempt a self-applicable specialher. AdditionalIy, the

partial execution algorithm has no information about the Prolog predicates whose

BAM code translation is being partially executed nor of their arguments. In sum-

mary, this work differs from others by not relying on user specifications or on any

syntactic knowledge of the Prolog sources. F'urther, the low-level of abstraction of

its source allows the technique to be used as a compiler phase.

BAM registers may be Bccessed for two purposes - to read or to update their

contents. The tenns read and define, respectively, are used to distinguish these

accesses. The first access of some of the active registers in a basic block may be

to define before reading, irrespective of their value at block entry. Thus, instead

of specializing the basic block for all static active register values, it is fllfficient to

specialize it for the current values of only those active registers that are read from in

the basic block and ignore the static active registers that are defined. Four distinct

cases of active register accesses occur within a basic block. A register may be

1. read before being defined within the block

2. read after being defined within the block

3. only read within the block

4. only defined within the block

Let and R,jd denote the set of read and d&ed registers in a basic block,

respectively. Static active registers that are either read before being defined (type 1):

or only read (type 3), contain relevant static values. At any program point, the

contents of these registers provide the invariants for specialization of the basic block.

Thus, a basic block is specialized for static active registers of this set. The set

containing the union of registers of types 1 and 3 is called the focus register set,

denoted h. Consequently, a basic block is specialized if it has not been specialized

for the current static values of its focus register set. The focus registers in a given

basic block may be found using Algorithm 4.

A basic block is thus parameterized with its focus register set. The read/d&ed

classification of an active register is based on its operand position in an instruction

and so can be performed in the front end. Staticdynamic classification of focus

registers is a PEtime property and is done while symbolically executing the BAM

instructions.

A CFG may contain basic blocks with no active registers. However, PE of the

block still needs to be done to correctly set the BAM memory state for partial

execution of any of its successor basic blocks.

5.3.3 Characteristics of a Procedure

Recall that a basic block is a collection of instructions with only one entry and

one exit. A collection of basic blocks with only one entry and many possible exits

Algorithm 4 Find focus registers
We assume that instructions in the basic block are arranged in a linked list
whose head is 1Ud. Zlnd-hstr is the instruction pointed to by l h d
k=@
&af =
& = a

while lLnd # nil do
for each operand, r, of lLnd+instr do

if r is a read register then
Rtaad = L U { r)
if r 4 Rdd then

R r o c = R i b c U (7)

end if
if r is a defined register then

Rief = Rdal U { f)
end if

end if
end for
lLnd = llnd+next

end while

is a procedure. These two levels of partitioning of BAM code facilitate analyses

of instruction sequences in BAM code. These analyses result in recognizing various

basic block and procedure properties that guide the PE driver. The previous section

described one such property of a basic block, reference registers of the block that

parameterize it.

A procedure has two kinds of properties that are used during partial execution

process - syntactic and run-time. For example, the number of argument registers

that appear in the procedure is a syntactic property. Syntactic analysis of a proce-

dure begins with building of the call graph [2] and a Iist of argument registers that

occur in the procedure code. The number of permanent registers used in the pro-

cedure is not recorded separately. This information is readily available at PEtirne

from the current environment. This initial internal representation is augmented with

several other syntactic analyses that are described in this chapter-

ProIog predicates may be written so that the same positional argument is used

to pass a value into its body (i.e., used as an input argument) at one call site and

to pass a value out of the body (i.e., used as an output argument) at another site.

F'urther, the type of the argument can vary from one call site to another. Consider

the following definition of add/3

where, integer (XI and list (XI are built-in type checking predicates that succeed

if X is of integer type and list type, respectively. The addition operation is overloaded

or extended to list arguments. Thus the arguments X and Y may be of integer type

at one call site and of list type at another, Further, in the case that the arguments

of add/3 are of list type, any two of the three arguments may be used as input

arguments to compute the third.

BAM code for such predicate c a b may be specialized according to the type of

arguments at a gim call site. Thus a predicate call may be made with more than one

set of input instantiations. Each of these calls may result in corresponding output

instantiations. -4 table that records the mapping of input-output static values is

maintained per procedure. This table is referred to as the in-out table and is part

of information associated with the basic bbck, as detailed earlier. It is updated at

every procedure entry and exit.

Any given procedure may have more than one exit. Thus more than one set of

output values may be associated with a given input value set. Additionally, by PE

we may discover that some procedure exits lead to failure. Consequently, an in-out

table entry is a pair, win, Vout) such that

Vi, = {(r, u) 1 r is an argument register and

u is its static value at procedure entry)

and

Vord = (0 I 0 = { (r , ~) I r is an argument register and

u is its static value at procedure exit)

PE Driver Execution

The PE driver, given in AIgorithm 3, traverses the CE'G using a stack-based version

of the traditional depth-fmt traversal algorithm (21 beginning at the procedure with

fkst instruction procedure (main/0) ' It builds successor basic block information

on a stack referred to as the control stack - CStack. A CStack item contains a

pointer to the successor block and a pointer to the program state with which the

block's partial execution is to proceed. CStack is referred to as control stack since

its contents, detailed in Section 5.4.2, control and drive the partial execution.

The PE driver initializes the BAM memory areas to their respective start states

before the CFG traversal begins. Thus heap, choicepoint stack, environment stack

and trail stack are set to empty and the corresponding register values h, b, e, and

tr are set to uninitialized values. Program counter pc is set to the first instruction

to be executed viz., procedure(main/O). The continuation pointer cp is uninitial-

ized. Either of the two special values of pc, viz., success and failure (as defined in

Section 3.4.9), are used to designate successful and u n s u c c d completion of an

execution thread, respectively.

The state of augmented BAM memory areas (Section 5.2) along with the ad-

ditional information maintained to +support partial execution is referred to as the

memory state and forms the CStack item. The memory state is ensured to be

correct at aU program points to guarantee the correctness of the partial execution

process. Memory state is used in various stages of partial execution such as loop

checking, updating PEflow graph, restoring BAM memory state correctly upon loop

detection and performing choicepoint optimizations.

'rlqumius ProIog considers the 6rst pRdicate m the k t program fiIe being compiled as the
program entry point. This predicate &odd be of arity [35]. For w e of notation we dways
use maid0 to denote entry point.

5.4.1 Semantics of Dereferencing during Partial Execution

Following is a discussion of issues that resulted in the ultimate choice to represent

a dynamic BAM register in the implementation of the partial executor. A dynamic

register denotes a Prolog variable that is unbound at PEtirne. In BAM, it is r e p

resented as a self-referential heap location, as described in Chapter 2. Since any

value of a register whose tag is known at PEtime is considered static, we need

a distinguish a self-referential, pointer-tagged value from its dereferenced dynamic

value. We begin by designating a BAM register with a special unique datum 6 as a

dynamic register. Thus dereferencing a self-referential heap location yields the value

6. Although this representation is inadequate, it is used as a preliminary step to

reveal some subtle design considerations and subsequently arrive at a correct rep

resentation. This is done with the help of the CFG in Figure 5.2 for the predicates

main/O and num/i of the program in Figure 5.1. The BAii code in Figure 5.2 is

generated by the Aquarius compiler with GFA phase turned on.

Figure 5.1: Program simple . p l

Consider partial execution of the caIl to n d l in block 0. At the entry of block 3

the register r(0) contains tvarAO. Fuaher, heap Iocation 0 contains tvaraO. Sym-

bolic execution of deref (r(0) , r (0)) in block 3 sets r(0) to 6 thus revealing it to

be a dynamic register due to the content of heap location 0 which is a self-referential

datawordwiththetvartag. Sincethebranchinstructiontest(ne,tvar,r(O) ,l(nam/l,I))

involves a dynamic register, a specdative symbolic execution is performed along

107

Figure 5.2: Example to demonstrate deferred dereferencing of a dynamic register
with tvar-tagged value

both successors of 3, viz., 4 and 5, by setting r(O) to have the tag tvar and to have

a non-tvar tag at entry time respectively. Partial execution of blocks 4 and 5 are

otherwise done with exactly the same memory state.

Consider the PE along the execution thread 3-5-6 of Figure 5.2. At the entry of

block 5, r(0) is known to have a non-tvar tag. Hence, the speculative successll

PE of unify-atomic(r(0) , t in t -3 ,fail) sets the value of r (0) to atomic value

tint-3. By examining what happens at run-time, this is reveaIed to be only partially

correct, .4t run-time, the BAM memory at this program point (i.e., at the entry

of block 6) not only contains the dataword tint'3 in register r(O) but also in the

heap address x. The heap address 0 contains the dataword tint -z. In essence, PE

of unify,atomic/3 can not set the heap to the correct state since r(O) contains

only data-tag information, that indicates it as having a non-tvar tag. r(0) has no

datavalue which at run-time is the heap address. The datavalue information lost

due to dereferencing tvar-0 to d is the heap address 0 pointing to the heap location

of the atomic value unifying with tinta3.

-

Figure 5.3: Example dereferencing chains

The loss of heap address described above also results in incorrect partial execu-

tion on the path 345-6 as follows. PE on this execution thread simulates run-time

execution of procedure n d l with a r(0) containing a dataword tvar-0 at the en-

try of block 3. In general, the heap address indicated by the datavalue of r (0) might

be the beginning of a dereference chain with either a self-referential dataword with

tag tvar or a non-tvar tagged dataword as shown in Figure 5.3. It will be resolved

by the deref/2 instruction to the dataword at the end of the chain. In the current

example, dereferencing r (0) (instruction 23) sets r (0) to 6 thus losing the last heap

pointer in the chain of heap pointers. Hence, PE of t ra i l (r (0)) in block 4, trails

nothing. The run-time execution of unif yatomic (r (0) , tint-3, f ail) not only

sets r (0) to tvaraO but also sets the heap location whose address is the datavalue

of r(0) before it is updated. However, as described earlier, during PE of block 5

the heap is not updated. This leads to the conclusion that the representation of

a dynamic value needs to carry the datavalue that indicates the heap location to

ensure correct trailing and heap update during term unification.

A new technique is designed to avoid this loss of information. A self-referential

dataword is dereferenced to a dataword with a special datatag dvar. The new

tag dvar is only known to and used by the PE driver to perform and maintain

run-time information of the program. Hence neither BAM execution semantics nor

the memory model need be changed. The datadue of the dvar tagged dataword

is the heap address of the self-referential dataword at the end of a possibly long

dereferencing chain. This scheme allows us to indicate that the current register

is dynamic while retaining the heap address of the atomic value generated during

unification. This preserves correctness of partial execution and loses no information.

This new technique is referred to as deferred derefemcing.

Now we examine similar issues inwived in dereferencing dynamic register that

dereferences to a t str-tagged dataword at partial execution time. As noted in Sec-

tion 2.2.2, a tstr-tagged dataword aIso holds a pointer to the sequence of heap

memory addresses that contain the functor and arguments of the structure. The

number of contiguous heap locations holding the structure information is embedded

in the atomic representation of the functor. Such a representation necessitates an-

other special tag to identify a dynamic register that dereferences to a tstr-tagged

dataword at partial execution time. Similar to the tag dvar, this new tag is only

known to and used by the PE driver to perform and maintain run-time information

of the program. The need for this new tab is discussed with the help the following

example. Figure 5.5 shows the CFG of the BAM code of the predicate str/i dehed

in program given in Figure 5.4.

main :- str(X>,p(X,Y), urite(Y1.

Figure 5.4: Program to illustrate the need for d s t r

Consider what happens at run-time entry into procedure str/i with X instanti-

ated to a structure, say f (a, b). Register r(O) contains a dataword tvar'x where

x is the heap address containing the contiguous structure information at the time

of entry into block 33 as shown in Figure 5.5. Dereferencing r(0) in block 33 sets

r (01 to t s t r a y where is the heap address of the beginning of the contiguous heap

Iocations that hold the structure.

Now, consider partial execution of an arbitrary call to str/l with a dynamic

r(0). At the entry of block 33, the register r(0) contains the dataword tvar-x,

where x is the heap address holding the d u e of X. For simplicity, suppose the

heap address contains the self-referential dataword t v a f x . (That is, assume the

dereference chain is of length zero). Partial execution of deref /2 in block 33 sets

r (03 to dvar-x. Speculative partial execution along edge 33-35 needs to proceed as

if the variable X is a structure. Thus the tag value of r(0) is set to tstr. To avoid

loss of the last heap address at the end of the dereferenced chain, we retain x as

the datavalue in r(0). The speculative partial execution needs to build a structure

on the heap. PE proceeds along the path 36-38-39-41-42 by specuIating r(0) to be

instantiated to this structure.

Thus during partial execution, the value of r (0) needs to record that the datavalue

Figure 5.5: CFG of code with deferred dgqqferencing of dynamic register with tstr-
tag

is in fact a self-referential tvar-tagged dataword that dereferences to t s t r5 where

x is only known later. Such a dataword is represented using a special tag, dstr.

This new tag also maintains the semantics of a tstr-tagged dataword since a self-

referential tstr-tagged dataword has no welldefined meaning.

At run-time, a compound term built on the heap is accessed by indirectly address

ing its tstr-tagged dataword. If the structure is unknown during partid execution

and indicated by a dstr-tagged value, the location of the structure's functor/arity

and its arguments can not be determined. The ds t r tag provides the required hint

to update the heap dong with the register involved.

In summary, a stmcture, whose form and heap location are not known, is repre-

sented on the heap by a sdf-refefencing dataword with a tag dstr. The tag dstr,

distinct irom BAM tag t s t r , is used to signify a dynamic structure. Its heap Loca-

tion is retained to facilitate subsequent access of this dataword when the structure's

form and heap space become known and is created.

Thus, a dataword with either ofthe tags - dvar or datr - is dynamic. A dataword

dvaraV stands for a heap value obtainable by dereferencing the heap location V. A

dataword dstr'V denotes an unknown structure whose preamble dataword on the

heap is at location V. A dvar-tagged dataword will never be formed on the heap

but a dstr-tagged dataword may. Datawords with tags dvar or d s t r are created by

the dereferencing operation. However, since they are only known to the PEdriver,

the semantics of dereferencing operation described in earlier chapters need not be

changed. These tags are part of extensions made by the PEdriver to maintain

run-time information.

Deferred dereferencing is not required of datawords with tlst tag, the third

dataword of "pointer" type. This is because the heap space needed to store its

constituents triz., the head and that tail, is known and may be created accordingly

at PEtime even if the contents of list itself are unknown.

5.4.2 Control Stack

The PE driver uses the control stack to control the partial execution process. Each

control stack item holds a pointer to the block along with the memory state in which

the block is to be partidy executed. A CStack item is comprised of the following:

current values of BAM registers and PE registers.

a pointer into the in-out table entry that corresponds to the current input-

output values of the procedure being partially executed;

current heap, choicepoint, environment and trail stack values;

current allocate stack value;

any additional register values that need setting upon restoration of BAM mem-

ory done at step 18 of Algorithm 3.

As shown in Algorithm 3, partial execution of a block, blk, results in a set of

data items, wntu and a residue res. contuk is called a resumption set of blk. Each

of the data items in the set corresponds to one block to be partial executed after

blk and is called the resumption of blk. A resumption holds three items - memory

state, resumption target and resumption register values. A resumption target is a pair

(pc,, bb,) where bb, is the block at which PE resumes and pc, is its first instruction.

resumption register values holds one or more register-value pairs. These registers are

set to the corresponding d u e s when PE resumes at bIock bk. update-cstack uses

this resumption set to form control stack items. The resumption set is formed as

follows, depending on the control flow change instruction of the block res.

1. The block res has only one successor whose pointer is explicitly available in

blk. In this case, the resumption set of blk contains only one resumption that

holds the current memory state and the successor block as resumption target.

2. The block res has several SUCC~SSO~S whose pointers are explicitly available

in blk. In this case, the resumption set of Mk contains one resumption for

each of the successoss. Each resumption holds the current memory state, the

corresponding resumption target and resumption register values, if any.

3. The last instruction of res is fail/O. The run-time behavior of BAM in

this situation is to resume execution from the next choice stored in the cur-

rent choicepoint. In this cam, the resumption set of blk contains only one

resumption that holds the memory state saved in the current choicepoint, the

alternative choice as resumption target and resumption register values, if any.

updatemtack also records a failure of the current choice in the choicepoint

apart from forming a control stack item. Note that the values of pc and bb

wi l l never be FAILURE except when the partial execution is complete and when

there are no more choicepoints available in the choicepoint st&.

4. The last instruction of res is either a return/O, a jump/l or a call/O to a

non-local target that is assumed to succeed and thus is treated as equivalent

to return/O. Partial execution of retum/O sets the m e n t memory such

that partial execution may continue along the block number cbb. In this case,

the resumption set of blk contains a single resumption that holds the current

memory state, resumption target pair (cbb, 6.rst instruction number of cbb)

and resumption register values, if any. updateduck also records success of

the current choice in the current choicepoint.

Thus, the control stack keeps track of all the run-time execution threads to be

traversed after completing partial execution of the current block. The additional

block specific speculative information mentioned above constitutes all the register

datavalues set on a speculative PE path.

5.5 Loop Detection and Termination of Partial

Execution

In presenting the details of Algorithm 3, we have already described the properties of

a basic block and a procedure, their parameterization with reference registers, and

the control stack that controls PE. We now describe the loophandling mechanism

used in the algorithm.

The depth-first traversal of the CFG schedules blocks to be partidy executed.

However, partial execution of the block is actually performed ody if it was not

performed earlier with respect to the reference registers (more precisely, static focus

registers). A PE-loop is detected if a residue exists for the bIock scheduled for partial

execution for its reference registers. A PE-bop may or may not correspond to a loop

in the BAM code. This section discusses detecting and handling of PEloops (Step

IS in Algorithm 3).

Recall that the top of CStack contains both the bIock, bik, and the memory

state, mem, in which blk must be partid executed. The PE driver restores the

memory state to mem, but before partial executing blk it considers the following

options.

1. 611; may be the entry block of a procedure. Let Pi, be the set of input

argument-static value pairs for the current memory. The PE driver performs

partial execution of the procedure block based on the b o u t table entry for

Pi, as follows*

(a) If the insu t table has a record of output values Pout corresponding to

Pi,, then the procedure need not be partially executed. The existence

of output d u e information corresponding to the current static input

argument registers implies that the procedure has already been partially

executed. The current memory is updated with the set of output values

in Pa to d e c t the execution of the procedure and partial atecution

continues as if the procedure has been partially executed.

If P,t has more than one set of output values that correspond to Ph,

speculative partial execution is set up by setting the current memory state

to each of these output values in turn and continuing partial execution

abng the execution threads that correspond to those output values.

Figure 5.6 illustrates this case. Partial execution of call[p/n) in block

A results in a resumption that holds the current memory state and block

C as resumption target. Hence PE of C is scheduled. Let &d be the

static output values at the exit of A. Then the input static values CI, of

block C are a proper subset of be. Let D, E, F and G be the exit (or

leaf) blocks of p/n. Assume pin was prwiously partially executed for the

static input values Gin. The b u t table corresponding to procedure pln

have an entry (G, (Doe, Eoutl Fo*, Go,& where &a, Eout, Foe

and G,, are the output static value sets corresponding to the procedure

exit points.

- - -

Figure 5.6: Schematic illustration of procedure in-out value usage

Since the p/n has been previody partially executed for Ch, the PE

driver schedules four specuIative partiaI execution threads through bbck

B with memory set to the ontpnt d u e s Dorrt, Eoat, Fout, G , ~ respec-

tively.

Thus this technique results in specialization of procedure calls for specific

call sites while ensuring termination of partial execution.

(b) If in-out tabie has no record of output d u e s Part that correspond to

Ph, then the procedure is partially executed.

2- blk is a non-procedure block. Then, a check is performed similar to one used to

determine whether a procedure was previously partially executed. This check

determines if the current block has a residue corresponding to the current static

focus registers of the block. The version check is made possible by maintaining

the following run-time basic block residue information.

The static registers for which a residue was generated along with a pointer

to the residue;

A unique identification of the residue block;

0 The r d t of partial execution of the block.

Thus the version check simply verifies whether the current basic block has

been partially executed given the current static focus registers. If so, a Ioop is

said to be detected and the residue is recorded in the flaw graph that records

the parfiial execution flow. Otherwise, the block is partially executed.

5.5.1 Handling a Basic Block Execution Loop

-4ssume that b1K is the residue of block blk for static focus regiders s. Let the static

focus registers at the current stage of partial execution also be s and hence a loop

is detected. Once a loop is detected prior to partial execution of Hk, three alternate

situations a i d .

0 Previous partial execution of blk resalted in a local failure. This wodd have

set the partial execution along the retry address, say r, in the choicepoint.

Presently, since the loop is detected, it is incorrect to let partial execution

continue dong r since the retry address in the current choicepoint could be

different. Instead, partial execution is set to continue dong the retry address

in the current choicepoint and the residue is recorded in the execution flow

graph.

Previous partial execution of blk resulted in global failure due to PE of an

instruction like jump ($ f lt_error/2' 1, where '3 f lt_error/2' is the label

to the built in floating-point error condition handler. Then, the current block

is not partiaily executed. Instead, global failure is recorded in the PEflow

graph and depth-first traversal of the CFG continues.

Partial execution of blk was successful and generated a residue blk'. This

is the most common case. We assume partial execution will succeed along

the current path and return out of the current procedure by restoring the

continuation pointer (cp). The memory is set to the static output values

recorded in the in-out table of the procedure being returned from.

Here, we take advantage of the fact that control flow does not enter a block from

outside the procedure to which the block belongs. In other words, all target labels of

jump, switch and t e s t instructions are either within the procedure or are built-ins.

Any previous partid execution thread through blk with static values s would have

traversed the same blocks as the current partial execution through blk will traverse.

Thus it is sacient and correct to return out of the current procedure thereby

setting memory state with the static output recorded during previous PE of the

current procedure. This is accomplished by simulating a return using AIgorithm 5.

5.5.2 PE Loops and Code Loops

Strongly connected components (SCCs) are commoniy used to identify loops in a

CFG. SCCs in the BAM cade CFG are computed in the front end. Syntactic Ioops

within each closed procedure of the CFG are found with the well-known algorithm

of Tarjan [a], detailed by Wolfe [72] and sketched in AIgorithm 6.

Akorithm 5 Simulation of a return out of a ~rocedure when a loop is detected
1: if an environment was allocated by the current procedure then
2: Restore the values of cp, cpp, cppar and e horn the environment top.
3: Pop the environment stack top.
4: end if
5: if blk is a choicepoint block then
6: if CStack has no blocks that are scheduled to be partially executed after

creation of current choicepoint then
7: Set retry address in the current choicepoint to next retry address.
8: end if
9: end if

10: Partial execute the instruction returd0

Following are the data structures used in the algorithm.

a n is the global counter for assigning pre-order numbers, initialized to zero. V

is the set of graph nodes.

a CountSCC is the total number of strongly connected components found, ini-

tially zero.

Stack is a stack of nodes, initially empty.

NPre(x) is the pre-order number assigned to each node, initially zero for each

node.

a h l i n k (x) keeps track of whether each node has a path to a spanning forest

ancestor.

SCC(x) is the SCC number assigned to each node; two nodes with the same

SCC number are in the same strongly connected component.

a InStack(z) is a flag indicating whether the node is on the stack; initially set

FALSE for every node.

A conventional loop in the given code is d e d a syntactic Cq to distinguish

it from the P E l q described above. Each SCC denotes a syntactic loop in the

BAM code. Each syntactic Loop entry need not correspond to a PEloop. Consider

Algorithm 6 Algorithm for finding strongly ~ 0 ~ e C t e d components
1: for x E V do
2: NPre(x) = 0
3: InStack(x) = FALSE
4: end for
5: n = O
6: CauntSCC = 0
7: Stack = a
8: for x E v do
9: if NPre(x) == 0 then

10: SCCRecuf~e(x)
11: end if
12: end for

13: Procedure SCCRecurse(x)
14: Lowlink(x) = NPre(x) = n = n = n f 1
15: Push z onto Stack
16: InStack(x) = TRUE
17: for y E succ(x) do
18: if NPre(y) == 0 then
19: sccRecurse(y)
20: Lowlznk(x) = min(h l ink (x) , hl ink(y))
21: else if NPre(y) < NPre(x) A InStack(y) then
22: Lmlink(x) = min(Lorulink(x), NPre(y))
23: end if
24: end for
25: if NPre(x) = Lmlink(x) then
26: Countscc -- CountSCC + 1
27: repeat
28: pop w off stack
29: InSt&(w) = FALSE
30r SCC(w) = CuuntSCC
31: untfiw=x
32: end if

Figure 5.7: Schematic to Illustrate PEloop and Syntactic Loop

the schematic illustrating a syntactic loop A-...-&A in Figure 5.7. Assume that

when the bbck A is partial executed for the first time with static focus registers sf1

it generates a residue Al. If the static focus register values at the exit of partial

execution of B, say sf2, are a proper subset of sfl, a PEloop is detected. In such

a case the syntactic loop A-...-&A is the same as the PEloop. However, if sf2 is

not a proper subset of sf1 the PE driver schedules the partial execution of A in the

context of Sf2 to generate a possibly different residue. In such a case, the syntactic

loop is different From the PEloop. Such characterization represents a conservative

form of classical loop unrolling [54,72]. The conservative nature is due to the loop

checking criterion (as impIemented) that tests for the equality of only the datatags

of static register values, However, the effect of aggressive loop unrolling can be

achieved within the partid execution h e w o r k presented here by extending the

equality test to the entire dataword contents-

5.5.3 Termination of Partial Execution

Partid execution of giwn BAM code terminates upon traversing all the blocks

of its CFG. With the Ioop detection and handling techniques described in earlier

sections and the bite number of residues generated as described in Section 4.2.2,

termination of partial execution is straightforward. Partial execution of the complete

CFG traverses all the possible execution threads. Thus any path in the graph not

traversed during partial execution exposes dead code. Thus dead-code elimination

is a by-product of partial execution.

Partial Execution of a Basic Block

Partial execution of a given basic block in the context of current memory can be

performed by a simple loop that performs symbolic instruction execution and in-

struction transformation together using Algorithm ?.

Algorithm 7 Basic block partial execution
1: for a11 basic block instructions do
2: if static operand information available then
3: transform the instruction according to the transformations detailed in Sec-

tion 4.3.
4: end if
5: Symbolically execute the instruction.
6: end for

.4n instruction is transformed to a simpler equivalent if sacient static informa-

tion is a d a b l e as detailed in Section 4.3. Symbolic execution of an instruction is

done after instruction transformation to ensure correctness of the transformation in

the context of correct BAM memory state.

Depending on the result of basic block partial execution, the CStack is updated

so that partial execution continues correctly. Further, the result of block PE is

recorded in the residue information.

The following information, pertaining to the run-time behavior of the block and

results of the partial execution, is collected during partial execution of a block.

a Residue generation: If at least one of the instructions in the block is trans-

formed, it is recorded that a residue is generated.

a Local failure: If PE of the block resulted in Mure, a local Mure is recorded.

Global failure: If the PE of the block resulted in failure, a global faiIure is

recorded.

5.7 Implementation of BAM Partial Executor

It is highly desirable that the partial execution phase does not significantly add

to the compilation time of Aquarius Prolog compiler. The front end first panes

the candidate BAM code, builds the CFG and syntactically analyses it. The PE

driver then performs the partial execution process by building and maintaining the

various data structures described earlier. Except for the implementation of parsing

functionality, the partial executor is implemented using C. The Aquarius compiler

can generate a BAM code listing during compilation of a Prolog program, BAM

instructions emitted as Prolog terms. Hence, Sicstus Prolog is called by the partial

executor to parse them. The implementation consists of over 15,000 lines of C code

along with over 200 lines of Prolog code.

5.8 Summary

The main contribution of this chapter is a description of the partial execution driver.

A description is provided of additional memory areas and data structures. These

augment BAM memory areas such as PE registers, allocate stack, control stack to

facilitate partial execution. A description is given of partitioning the BAM code

at two levels - viz., procedure and basic block level - and parameterizing these

partitions to facilitate block-level and procedure-level analyses. Such partitioning is

crucial since BAM code is RISGlike and attributing a form to such code facilitates

definition of program points and program states. Techniques to identifp dynamic

registers and dereferencing are described.

The PE driver traverses the partitioned BAM code while collecting its run-time

behavior in the augmented data structures. A combination of syntactic analyses and

run-time analyses guides the partial execution with the help of a control stack and

a loophandling mechanism. These techniques are also discussed in this chapter.

Code loops are syntactically identified while parsing the BAM code. The loop

recognition and handling discussed in this chapter ensues termination of partial

execution process as well as limits code explosion.

Partial execution of instructions uses syntactic and m-time information ex-

tracted as discussed in this chapter. Section 5.6 described the algorithm to partially

execute a basic block. We describe in the next chapter the symbolic execution and

transformation of individual BAM instructions within the framework layed out in

this chapter.

Chapter 6

Instruction Level Partial Execution and Analyses

While partially executing BAM code, the PE driver utilizes information relating to

one or more of the following aspects of the program:

syntactic representation of the BAM instructions;

run-time behavior of the BAM triggered by execution of the given code;

a run-time behavior of the BAM independent of the current code sequence.

Program-related information is collected during several analyses phases and is used

to control partial execution as well as to perform transformation of instruction se-

quences.

Symbolic execution of each of the BAM instructions is done according to the

denotational semantics presented in Chapter 3. This phase of the BAM partial ex-

ecutor also relies on program information obtained by the program analysis ph-.

This chapter describes the partial execution of all BAM instructions whose denota-

tional semantics were presented earlier. ARer an instruction is partially executed,

the PE driver employs various techniques to ensure BAM memory correctness and

to continue partial execution. These techniques use several a n a l p results and are

described in this chapter.

PE of BAM Instructions

In general, PE of an instruction involves three steps: symbolic execution, tram-

formation and analysis. When an instruction is not transformed to a simpIer one,

an identity transformation is said to have applied. When an instruction may be

eliminated, a nop transformation is said to have applied. A resumption set is gen-

erated using the successor information of a block during partial execution of the

last instruction in a block. The analysis associated with each instruction refines the

resumption set, as necessary. The PE driver updates the control stack according

to the resumption set as explained in Section 5.4.2. When an instruction refines

a resumption, it is explicitly specified in the following description of instruction

f E. Otherwise, it is omitted. Further, PE of instructions not described below in-

volves only symbolic execution. The implementation of symbolic execution of such

instructions ensures that the memory state is maintained correctly.

6.1.1 PE of Procedural Control Flow Instructions

6.1.1.1 PE of procedure (PI

Symbolic execution: Increment pc by 1.

a Analysis: Perform the following steps:

- Record current static argument register values in the in-out table associ-

ated with the current procedure.

- Set the current value of the PE register proc-bllr to the current block,

i.e., entry bIock of the current procedure.

- Save the current index into the b o u t table of the calling procedure in

the corresponding allocate stack item. This value is restored upon return

£rom the current procedure so that partial execution continues in the

calling procedure.

Transformation: An identity t rdormat ion is applied.

Symbolic Execution: Create an environment on the top of the environment

stack with the current values of e, cp, cp-par and ebb, along with space for N

permanent registers.

a Analysis: Set the env,alloc flag of the topmost non-dirty environment on the

environment stack to indicate allocation of the environment.

a Transformation: An identity transformation is applied.

a Symbolic Execution: Pop the enviro~lent top off the environment stack.

-Analysis: The allocate stack top corresponds to the environment just popped

off. Set the allocate stack top to "dirty" indicating that the corresponding

environment was popped off.

0 Transformation: An identity transformation is applied.

a Symbolic Execution: The called procedure may be a translation of a Prolog

predicate accessibIe during compilation, a ProIog built-in (e.g., 4 2 , +/2) or

a ProIog predicate whose definition is unknown at compile-time but will be

available at link-time. In the first case, the current value of pc is saved in cp

and pc is set to the address of the call site with label N. In the latter two cases,

partial execution assumes that the cded procedure will return successfully

and simply increment the pc to the next instruction.

0 Analysis: The value of cbb is appropriately set to the successor of the current

block. A new allocate stack item is created and pushed on to the allocate stack.

This new item records the current block- The envdloc and alloc-dirty

flags are set to indicate no environment allocation and no environment deal-

location. A pointer to the current input-output values is also saved in the

allocate stack item to enable their restoration upon successful return to the

current procedure's partial execution.

Tkansformation: An identity transformation is applied.

Partial execution of the ca l l / l instruction distinguishes between a procedure

call known at PEtime and one unknown at PEtime. Code is available for further

analysis in the former case. It is conservatively assumed that the call succeeds in the

later case unless the call is to gIobal failure. This allows the PE driver to perform

basic block and procedure analyses as described in Section 5.3.

Symbolic Execution: Restore the value of cp to pc resulting in return from a

procedure call.

Analysis: The values of proc-blk - current procedure to which partial execu-

tion returns - and the pointer to the current in-out values are restored born

the allocate stack item. The top of allocate stack is popped. Recall that the

in-out table records the argument register values of the current procedure. The

input values corresponding to the current procedure will not change due to the

return. Current argument register values, that represent the procedure being

returned from, are registered in the h u t table. When a block is recognized

as having a residue resulting from a previous partial execution (as discussed

in Section 5.5.1), a call return is simulated using algorithm 5.

Transformation: An identity transformation is applied.

Symbolic Execution: If the jump target, L, is a userdefined procedure, the

values of pc and bb are set to those of the target block's first instruction and

the target block number respectively. The value of cbb is adjusted accordingly.

If the jump target is a known failure label, partial execution of the instruction

faW0 is performed. The resumption target in the resumption is indicated

with a special value- This triggers the PE driver to set the control along an

alternate choice and records the failure in the current choicepoint as explained

in Section 5.4.2.

Analysis: The jump target is tested for a procedudl label. If it is a pro-

cedure, the jump is in fact a last call that was optimized to a jump. In such

a case, an allocate block with appropriate initialization is pushed onto the

allocate stack.

Transformation: An identity transformation is applied.

6.1.2 PE of Conditional Control Flow Instructions

Symbolic excution: If the tag of R is static, its symbolic execution updates pc

and cbb to the jump target. Only one resumption is created. If R is dynamic,

speculative PE is set up dong the paths leading to blocks labelled L1, L2

and L3 respectively. This is done by creating a resumption set with three

resumptions: each with an encapsulation of current BAM memory state, L1,

L2 and L3 as branch targets, respectively, and (R,tvar), (R, T) and (R, none)

respectively as resumption resister values. The PE driver pushes three control

stack items using these resumptions.

-Analysis: No additional analysis necessary.

Transformation: If the tag of R is static at PEtime, the instruction is trans-

formed to jamp(L), where L is Ll if the datatag of R is tvar, L2 if T or L3 if

any other. If R is a dynamic register, the identi@ transformation is applied.

6.1.2.2 PE of test (E,T,R,L) instruction

Symbolic execution: I f R is static, the pc is set to the address of the instruction

at label L if either of the following is true:

1. If E is eq and if the tag of R is equal to T or

2. If E is ne and if the tag of R is not equal to T.

If R is static, the pc is set to the address of the following instruction in all

other cases.

If R is dynamic, two speculative PE is set up - one along the path leading to

block labelled L and the other leading to the fall-through block. This is done

by creating a resumption set with two resumptions. Both of them contain an

encapsulation of current BAM memory state. One resumption has the block

with label L as resumption target and the other has fall-through block as its

resumption target.

Analysis: No additional analysis necessary.

0 Transformation: If R is static, the instruction is transformed to jump(L) if

the above tag tests succeed; else the instruction is transformed to nop/O. No

transformation is done if R is dynamic.

6.1.2.3 PEof jump(T,C,A,B,L)

PE of jump/5 occurs in one of the following three scenarios:

1. Values of the registers A and B are static and the condition specified in C

evaiuates to true.

2. Values of the registers A and B are static and the condition specified in C

evaluates to false.

3. Values of A and B are dynamic.

Symbolic execution: In case 1, symbolic execution r d t s in creation of a

resumption containing the block with label L as resumption target. In case 2,

symbolic execution results in creation of a resumption containing (ni, nb) as

resumption target, where n i is the next instruction and nb is the fd-through

block. In case 3, speculative execution is set up by creating a resumption

set containing two resumptions each with the current BAM memory state

encapsulated. One resumption has the block with labd L as its resumption

target and the other has the fall-through block as its resumption target.

r ,4naIysis: No additional analysis necessary.

r Transformation: In case 1, the instmction is transformed to jump (l) . In case 2,

the instruction is transformed to nop/O. In case 3, the identity transformation

is applied.

- Symbolic execution: a new choicepoint is created on the choicepoint stack-

Apart from the current BAM memory state, the choice success informa-

tion of the current choicepoint, if one exists, is saved in the choicepoint.

- AnaIysis: A resumption containing the current memory state and address

of next instruction as resumption target is created.

- Symbolic execution: The BAM memory state is restored from the cur-

rent choicepoint. The next choice is set to the label L in the current

choicepoint.

- Analysis: A rezumption containing the restored memory state and the

address of next choice in the m e n t choicepoint as resumption target is

created.

Further Analysis and transformation: In all cases where i < I 5 N, success or

failure of the choice whose PE was just completed is registered in its choice

success inf0111~ation. However, during the symbolic execution of a choice/3

instruction with I = N, the choicepoint is not popped off the choicepoint stack.

The retry address in the choicepoint stack top is set to a special value FAILURE

to indicate that the choicepoint is merely [eft on the stack for the purposes of

analysis done for choicepoint optimization. This choicepoint is popped off the

stack during choicepoint optimization described in Section 6.4. Any possible

choice instruction transformation is also done during this phase.

The compiler generates a move (r (b) , R) instruction that stores the value of the

choicepoint stack top b in argument register R at the entry of the predicate with a

cut in its body. The built-in predicate ! is compiled to the instruction cut (R) which

restores b and hb to their values a t predicate entry thus rolling back the choicepoint

state to that at the entry of predicate. This results in ignoring all choicepoints

created in the body goals d the current clause, thus committing the choices made

by the body goals.

Symbolic execution: Sets the values of b to that stored in R and restores hb

from the current choicepoint.

Analysis: If the choicepoint stack has not grown since entry into the procedure,

it follows that the d u e of b (and hence hb) has not changed.

'kansformation: If b is unchanged, the cut/l instruction is traadomed to a

nop/O instruction. If the value of b (and hence that of hb) has changed, no

transformation is done.

The transformation of a mt/l instruction is illustrated using the "steadfastn

version of max/3 [55] shown in Figure 6.1. Figure 6.2 shows CFG of the BAM code

generated with the GFA-based optimization turned on. The cut/l instructions in

Figure 6.1: Definition of mad3 Predicate

block 19 and block 15 may be transformed to nop/0 as it can be shown at PEtime

that the value of r(b) remains unchanged between its storage in block 5 and its

restoration in blocks 19 and 15.

r Symbolic execution: Only tvar-tagged datawords are trailed. Thus V contains

a PEtirne dataword with tvar tag. Its datavalue is pushed on the trail stack.

0 Il.ansformation: None needed.

r .4nalysis: None needed.

Symbolic execution: Untrails all variable bindings from the trail stack, restores

the BAM memory state from the current choicepoint and forms a resumption

containing current memov state and current retry address in the choicepoint

as resumption target.

Analysis: Several BAM memory areas are updated to assist analysis performed

during partial execution of the faW0 instruction as described below. First,

the choice success information corresponding to the current choice is updated

Figure 6.2: CFG of BAM Code for predicate max/3

135

- -

Figure 6.3: Schematic CFG to illustrate choice success update

in the current choicepoint. The current choice is marked as failure in the

choice success information only if all previous speculative partial execution

paths traversed via the current choice are also false. For exampie, consider

the CFG structure in Figure 6.3. Let the choice/3 instruction iu block A

be the choicepoint creating instruction (i-e., with 6rst argument i / N where

M > 1). Let the path A-E be the path of next alternate choice (retry address) -

Let B . . . C and B . . . D be two speculative execution paths dong the fmt

choice attempted. Partial execution along each path can eventudy lead to

success or to failure. The choice success information stored in the current

choicepoint records a failure of the current cboice only if PE along all such

specdative paths results in failure. recorded. Thus failure is recorded in the

CuIcIent choicepoint during partial execution of fail/() instruction in block D

only if PE along the path B . . . C does not faiI.

Partial execution of the choice/3 instruction with first argument I/N (de-

scribed earlier) does not simulate the run-time BAhl behavior of popping the

top of the choicepoint stack. It is left on the choicepoint stack with the next

retry address set to FAILURE to indicate completion of all speculative PE paths

to be traversed via the current choicepoint. Hence, if the retry address in the

choicepoint is FAILURE, the choicepoint optimization is performed.

0 Transformation: This p k either transforma some of the choice/3 instruc-

tions to nop/O or to jump/L instructions.

6.1.3 PE of Unification Instructions

6.1.3.1 PE of deref (X,Y)

Since several subcases mist, the following discussion is not presented under the

headings of symbolic execution, analysis and transformation, as done till now.

Depending on whether the content of X is a non-pointer tag or a pointer tag,

there exist two possibilities for partid execution of deref (X ,Y).

Consider the case when the content of X has a non-pointer tag. There mist two

possibilities:

0 the second operand Y is the same as the first, i.e, the instruction is deref (X,X),

then the instruction is transformed to a nop/O since at -time the first

operand dereferences to itself in the same register.

0 the second operand Y is different from the first; the deref (X, Y) instruction is

transformed to a move (X ,Y) , since no further dereferencing of the non-pointer

tagged value may be done.

Consider the case where X has a pointer-tagged content that dereferences (Sec-

tion 2.2.3) to a non-pointer tagged dataword V. Then the instruction can be trans-

formed to a move(V,Y) instruction. This is similar to constant propagation as done

in conventional compilers. However, the static values propagated in the current

work are not restricted to known constant values - viz., N y known non-pointer

tagged datawords. The values propagated are datawords whose tags are known at

PEtime. Hence partial execution may be considered as a more general technique

that encompasses "conventionaln constant propagation.

If the pointer-tagged dataword content of X does not dereference to a non-pointer

PEtime dataword, symbolic execution and analysis steps for each of the possible

pointer tags is done as described below. No transformation of instructions is possible

in these cases.

Let X dereference to a dataword with a tag tvar or dvar and data-value

dv. At run-time, derefereccing tvar-tagged dataword results in either a self-

referential heap location or a non-pointer tagged dataword at heap Iocation dv.

At PEtime, this is indicated by setting the second operand to dvar-tagged

dataword. This dataword indicates that its run-time d u e is actually obtained

by dereferencing of this dataword as described in Section 5.4.1.

Let X dereference to a dataword with a tag tstr or tlst. The second operand

value is set to this dataword.

Symbolic execution: If datavalues of Vi and V2 are fully known at PE time, set

pc to L or to the following instruction according to the equality test. Otherwise,

schedule specdative PE is performed by forming a resumption set with two

resumptions, each containing the current memory state. One of them has

the next instruction as resumption target and the other has the instruction

label (L) as resumption target.

lhmiforrnation: If the datavalues of V1 and V2 are fully known at PE time,

the instruction is transformed to either a nop/0 or to jump(L1 depending on

whether the datavalues are equal. However, if the datavalues are not fully

known, but have static data-tags (i.e.,data-tags other than dvar or dstr), the

instruction may be transformed to nop/o or to jump(t) depending on whether

the data-tags .we equal.

If the instruction is transformed to a nop, a resumption with current memory

and the next instruction as resumption target is formed. If it is transformed

to jump/l, a resumption with a n e n t memory and the instructim label(L)

as resumption target is formed.

Transformation: If the datavalues of Vl and V 2 are fully known at PEtime

and are equal, the instruction is transformed to a nop/O. If they are fully

known but not equal, the instruction is transformed to jump (L) . If the dataval-

ues of V1 and V2 are not fully bown at PEtirne, but have same static

datatags (i.e.,datatags other than dvar or dstr), the iastruction is trans-

formed to nop/0. If they have different static datatags, it is transformed to

jump (L) .

If the instruction is transformed to a nap, a resumption with current memory

and the next instruction as resumption target is formed. If it is transformed to

jump/l, a resumption with the current memory and the instruction label (L)

as resumption target is formed.

0 Analysis: No analysis needed.

Partial execution of unify/5 depends on the static or dynamic nature of R1 and R2

as described below.

Let contents of R1 and R2 be TI'VI and T2T2 respectively.

Case 1:

- Symbolic execution: If both TI and T2 are d m , then symbolic execution

ofunify/5 trails V, the greater of the heap addresses V1 and V2. In other

words, the most recently created heap location is trailed. Then the value

of the operand containing datadue V is set to that of the other operand.

- Transformation: None.

- Analysis: None.

. Case 2:

- Symbolic execution: If only one of T l and T2 is dvar, then symbolic exe-

cution of unif y/5 trails the corresponding datavaiue and sets the operand

with dvar-tagged dataword to the value of the other.

- Transformation: None.

- .Analysis: None

Case 3:

- Symbolic execution: If T1 is tvar and T2 is a non-tvar tag or if V 1 is

more recently created heap address than V2 (i-e., V i > V2), the heap value

V 1 is pushed onto the trail stack and R l is set to the value of R2.

- Transformation: The instruction unify (R1, R2, F1 , F2, f ail) is t rans

formed to the sequence:

trail (R1) . move (R2 ,R1) .
- .halysis: ?lone.

Case 4:

- Symbolic execution: If T2 is tvar and T1 is a non-tvar tag or if V2 is

a more recently created heap address than V 1 (i.e., V2 > Vl), the heap

value V2 is pushed onto trail stack and R2 is set to the value of Ri.

- TkatlSformation: The instruction unify (R1 , R2, F1, F2, f ail) is trans-

formed to the sequence:

trail (R2) . move (Ri 32) .

Case 3:

- Symbolic execution: If T1 is different from T2 and neither is a dvar nor

tvar tag, symbolic execution of the instruction fail is performed such

that PE continues along alternate execution threads.

- Transformation: The instruction is transformed to fa i l .

- .Analysis: None.

Case 6:

- Symbolic execution: If TI and T2 have the same tag other than dvar,

dstr, tvar, tstr or t l s t , either pc is set to the next instruction or

symbolic execution of instruction fail is done depending on whether V1

and V2 being equal or not, respectively.

- Transformation: The instruction is transformed either to nop or to f a i l

depending on whether V1 and V2 being equal or not, respectively. Cor-

respondingly, the partial execution continues to the next instruction or

to fail/O. PE will continue along alternate execution threads, if they

exist, in the latter case as explained in Section 6.1.2.7.

- .Analysis: None.

Case 7:

- Symbolic execution: If T1 and T2 are either tstr or t l s t , the heap

locations V1 and V2 are unified using Algorithm 8. It adapts the classi-

cal unification algorithm [3] that facilitates d c a t i o n of heap addresses

containing only partial information. It d e s two heap locations hl and

h2 and builds any necessary heap data as much as possible to maintain

correctness of partial execution.

- Xkansformation: None.

- ,Qnalysis: None.

Algorithm 8 uni f y(h, h2) : hdean

1: Let the contents of hl and be T l ' V l and T 2 V 2 .
2: If Ti and T2 are both dvar, there is indEcient information to do anything

further. Return success.
3: If only T1 (T2) is dvar, trail the heap location V l (V 2) and set it to T2'V2 (Tl'Vl).

Return success.
4: If both T 1 and T2 are tvar, trail the most recently created heap address among
V1 and V2 and set it to t v a r m V where V is the greater of V1 and V2. Return
success.

5: If Ti and T 2 are diflerent non-pointer tags, or if they are same non-pointer
datawords with merent datavalues, unification is not possible; return failure.

6: I f T 1 and T 2 are both tstr or t l s t , dereference V 1 and V 2 to W1 and Y2. Return
uni f y(W1, W2).

1. If V contains a static non-tvar or non-dvar tagged value and the contents of

V are the same as A:

Symbolic execution: The pc is incremented. A resumption with current

memory state and the next instruction as resumption target is Formed.

Transformation: The instruction is transformed to a nop/O.

2. If either the (non-tvar and non-dvar) datatag or the datavalue of the content

of V is different from that of A:

Symbolic execution: PE of the instruction fail/O is carried out.

0 lkansformation: The instruction is transformed to f ail/O.

3. If V contains a PEtime datatag:

a Symbolic execution: The pc is incremented. The datavalue is trailed and

V is set to A.

Transformation: Not done.

4. Analysis: No additional analysis is needed.

6.1.3.5 PE of move (S ,Dl

0 Symbolic execution: The PEtime contents of S are moved into D. The pc is

incremented.

Transformation: None needed.

Analysis: None needed.

0 Symbolic e~ecution: The pc is incremented. The PEtime contents of S onto

the stack with stack pointer R.

0 Transformation: None needed.

0 Analysis: None needed.

Symbolic execution: The pc is incremented. If S is static, D is set to a value

whose tag is that of S and data value is (datavalue of S + 0)- If S is not static,

only the tag of D is set to that of S.

0 Transformation: None needed.

0 Analysis: None needed.

6.1.4 PE of Arithmetic Instructions

Partial execution of arithmetic instntctions mainly involves symbolic execution. The

instruction is transformed only if the block containing it is not part of a program

loop. Program loops may be unrolled to achieve the effect of classical loop un-

rolling [54] as discussed in Section 5.5. Since the present work does not perform

limited loop unrolling, arithmetic instructions in a program loop are only symboli-

cally executed and not transformed.

However, if an arithmetic instruction is not in a block that is part of a program

loop and its operands have static datavalues then it is transformed into move@ ,Dl

instructions where S is the result of the arithmetic computation to be done by the

instruction and D is the destination of the operation. Additionally, the following

cases are handled accordingly during partial execution of arithmetic instructions

with one static operand that is the identity value for that operation:

Either of the source operands of an add/4 or sub/4 instruction has a static

non-pointer tag and a datavalue of 0.

Either of the source operands of mu1/4 has a static non-pointer tag and a

datavalue of 1 or 0.

The numerator operand of div/4 has a static non-pointer tag and a datadue

of 0.

The denominator operand of div/4 has a static non-pointer tag and a datavdue

of 0. This is transformed to a jump to arithmetic failure.

Either of the source operands of an and/4 instruction has a static non-pointer

tag and a datavalue of 0.

6.2 Maintaining BAM Memory Correctness

The BAM memory state at any given program point during partial execution is an

abstraction of its corresponding run-time state at that program point. By abstrac-

tion, we mean the following. The register contents either have the same data tags

or a dynamic tag; heap locations differ only by the size of the run-time data struc-

ture. This is illustrated using the following code whose BAM code CFG is shown in

Figure 6.4.

If the PEtime BAM memory state abstracts the co~~esponding run-time BAM mem-

ory state at a given program point, then we say that BAM memory correctness is

maintained at that program point. The BAM memory correctness is said to have

been maintained for a given program if is correctness is maintained at every pr*

gram point in the program. We further illustrate in this example the use of SCC

information to ensure the correctness of an instruction transformation involving a

static operand.

Consider the content of the register r(0) at the entry of block 1. Its contents

have the same PEtime and run-time data tag, viz., tvar. Now let us consider

the heap. Instruction 6 in block 0 pushes a dataword onto the heap. The calI to

read/l builds datawords on the heap that are unknown at PE time. Instruction 12

in block 1 pushes another dataword. At PE-time there are no datawords between

the datawords pushed by instructions 6 and 12. However, at run-time they are

separated by datawords pushed by the call to read/i. Top of the heap, d h) , at

entry into block 3 at PEtime is different from that at run-time for the same reason.

The partial execution algorithm does not assume the size of data that might be

written on the heap by calls whose code is not available. h e a d PE continues

with the present value of r(h). In this example, r(h) contains 0 both before and

after the call to read/l, which is assumed to succeed. The heap is adjusted later

to approximate its run-time state once more information about the heap location

becomes available (Section 6.2.1).

fn the present example, since tvarAr(h) is a static term, it is possible to trans-

form instruction 3 to move(tvar'0,r(0)) and consequently consider r(O) to be

static. However, r(h) points to a BAM memory area whose PEtime and nm-time

values differ. So, the above transformation is not performed because it does not

preserve the correctness of BAM memory. Ikansformations involving only static

datavalues are performed and those involving pointers to BAM memory areas are

not performed.

0. procedure(mai d o) .
1. entry(maid0,O).
2. a1 1 ocate(2) .
3. move(tvar"r(h) ,r(O)).
4. move(r(0) ,p(l) 1.
5. pragma(push(variab1e)).
6. push(r(0) ,r(h) ,I).
7. pad(1) .
8. c a l l (read/l).

I

11. pragna(push(variab1e) 1.
12. push(r(1) ,r(h) ,I).
13. pad(1).
14. pragna(tag(p(1) ,tvar)) .
15. move([p(l)] ,r(O)).
16. c a l l (p/2).

2
17. pragna(tag(p(0) ,War) 1.
18. deref([p(O)] , r (O)) .
19. deal locate(2) .
20. junp(wri Wl) .

26. label(l(p/2,1)).
27. unify-atanic(r(0) ,tatmAaDfai 1).
28. deref 6-(1) ,r(i)).
29. test(ne,tvar,r(l) ,I (F

I

31. label(l(p/2,2)).
32. unify,atanic(r(l) , t i n tn ID fa i l 1.
33. return. I

Figure 6.4: Example to illustrate transformation of an instruction with static
pointer-tagged operand

6.2.1 Speculative Part i d Execution

BAM memory correctness has to be maintained not only at every program point but

also before and after partial execution of each instruction, Symbolic execution of

instructions as detailed earlier in the chapter maintains correct BAM memory state.

Resumption plays a crucial role in ensuring correctness of BAM memory state at the

entry and exit of basic blocks. This section discusses techniques employed to ensure

BAM memory correctness when a block is partially executed speculatively. On the

other hand let S be a block not being speculatively partially executed speculatively

and let P be its parent from which PE control reached S. Partial execution of S is

simply started with the memory state encapsulated in the resumption at the end of

PE of P. We refer to such PE as det- . .
'c partial execution.

Speculative partial execution is set up when a retry address is being attempted

or when a conditional control instruction involves a dynamic register. With spec-

ulative PE, more than one block successor is partidy executed. Hence, additional

argument register values must be set dong each execution path. For example, as-

sume the flow change instruction in the current block being partially executed is

suitch(T ,R, Li ,L2, L3) with a dynamic operand R. .As explained in Section 6.1.2.1,

a resumption set with three resumptions each containing a copy of the current mem-

ory state results from its PE. Further, two of the three resumptions correspond to

flow control along blocks labeled Li and L2. These resumptions indicate that R has

a tag tvar and T. The third resumption indicates Mure.

The resumption set is used to form a CStack item. The resumption registers

are stored in the CStack frame as a set of argument register-dataword pairs. The

CStack top indicates the block to be partially executed and the memory state in

which it needs to be partially executed. The memory state is set to that indicated

in the CStack top. Resumption register information is used to adjust the memory

state set using Algorithm 9. This phase ensures that the heap at PEtime is correctly

approximated to that a t =-time. The value of each register r being set depends

on the addressing mode of r as well as its current content. Since speculative PE

rh
Heap Top Heap Top

Before After 1
Figure 6.5: Setting a non-state register r to a tvar-tagged dataword

is scheduled, each r is a dynamic register. If r is an immediate operand then it

is considered to be a heap address and the heap location r is set to st'sv; if r is

r(h> or r(b) then the register r(h) or r(b) is set to st"sv accordingly. If r is

neither a state register nor an immediate operand then the heap is built to reflect

its run-time state depending on the current value of r. Algorithm 10 is used to

build the heap. The case constructs used in this algorithm do not fall through to

the next case. Figures 6.5 and 6.6 depict the heap before and after setting r to a

tvar-tagged dataword and tatm-tagged functor dataword, respectively.

Akorithm 9 .4lnorithm to set memow correctly for specdative partial execution
1: for all (r , stnsv) in resumption register list do
2: Let r be the argument register.
3: Let the current content of r be ct'cv.
4: Let h represent the current heap top i.e., content of the register r(h) -
5: if r is an immediate operand then
6: Set heap location h to st-sv; increment content of r(h) by 1.
7: else if r is r(h) or r(b) then
8: Set the value of the register r(h) or r(b) to st-sv.
9: else
lo: Adjust heap and set the non-state register r using Algorithm 10.
11: end if
12: end for

Algorithm 10 Algorithm to adjust the heap while speculatively setting a dynamic
non-state register

1: switch (st)
case TPOS or TNEG or TINT or TINT :

Set heap location h to contain st-sv.
Point heap location cv to h i-e., set the contents of heap location cv to
ct-h; increment content of r(h) by 1.
Set r to contain st'sv.

case TVAR :
Set the value of sv to h.
Set heap location h to contain st'sv.
Point heap location cv to h i.e., set the contents of heap location cv to
ct "h;
Ensure the tag of the contents of heap location c t is WAR; increment content
of r(h1 by I.
Set r to contain stasv.

case TATM :
if so is known and is of the forrn f/n then

Set heap location h to contain st-sv.
Point heap location cv to h i-e., set the contents of heap location cv to
ctah;
E r n e the tag of the contents of heap location c t is TSTR;
Create n self-referential WAR-tagged datawords on the heap starting at
heap location h increment content of r(h) by n.
Set r to contain stnsv.

else
Set heap location h to contain st'sv.
Point heap lacation cv to h i.e., set the contents of heap location cv to
ct'h; increment content of r (h) by 1.
Set r to contain st-sv.

end if
case TLST :

Set heap location h to contain TLSTah+l; increment content of r(h) by 1.
Point heap location cv to h i-e., set the contents of heap location cv to
Ct"h;
Create two self-referential WAR-tagged datawords on the heap starting at
heap Iocation h; increment content of r (h) by 2.
Set r to contain st-sv.

case TSTR :
Set heap location h to contain DSTR̂ h; increment content of r(h) by 1.
Point heap location cv to h i.e., set the contents of heap location cv to
ct-h.
Set r to contain DSTrh; increment content of r(h) by I.

33: end switch

Heap Top
h

Figure 6.6: Setting a non-state register r to a tatl~tagged dataword

Memory Correctness When a PELoop Exists

BAM memory state needs to be maintained correctly as part of the loop handling

mechanism explained in Section 5.5. This is done with the help of the allocate stack

as explained in this section.

A loop detected during partial execution is deemed to be a return out of the

current procedure. In other words, it is assumed that there is a run-time path that

eventually succeeds and returns from the current procedure. The memory state is set

to rdect this assumption. Although this is true for most general cases, exceptions

arise and the memory state is set accordingly as explained in the foUowing.

To illustrate such a situation, let blk be the block which is to be partially ex*

cuted, and bib, the residue of blk resuIting b m its previous PE with respect to

the current state of static focus registers, This implies that a loop has been detected

and no further PE of blk is necessary. The previous PE codd have indicated that

the run-time execution of the block blk wodd result in a success or failure-

PE of previous block indicates run-time success, the most general case. Then,

PE proceeds by returning from the current procedure. The simulated return

fiom the procedure pedorms the following:

- Sets the environment stack in preparation for the partial acecution to

6) Gi)

Figure 6.7: Schematic illustration of PEloops detected

continue at instruction cp, the first instruction the block cbb.

- Sets the correct values of PE registers.

PartiaI execution of rettun/O simply sets the value of pc to that of cp (see

Section 6.1.1.5).

The current procedure might or might not have created an environment. In the

6rst case when one is created, the PEloop could occur either before or after

deallocation of the current procedure's environment, as shown in Figure 6.7.

Partial execution of deallocate/l sets the allocdirty flag on the top allocate

stack item to indicate a deallocation of the environment. The values of cp and

cbb are restored off the top of environment stack if the top allocate stack item

indicates an environment was created by the current procedure and that en-

vironment was not deallocated prior to the loop. This ensures the correctness

of the register values for the correct PE of return/O.

In the second case, an environment is not created by the current procedure.

Since the allocate stack top indicates no environment creation for the cur-

rent procedure, the current values of cp and ebb are correct and need not be

restored from the environment. Thus the partial execution of retarn/O pr*

ceeds conectly. The environment adjustment and continuation register update

is shown in Algorithm 11.

a Previous block PE indicates possible run-time failure as illustrated with the

help of the following basic block.

Suppose that the tag of Cr (0) J is tlst . Then equdl(r(1) , tint-7, fail)

will be transformed to f a i l and partial execution of the block reveals run-time

execution of the block wiU fail.

In this situation, the failure is recorded in the current choicepoint as detailed

in Section 6.1.2.4 and CStack is not updated allowing PE to continue in

the depth-first order. Thus PE proceeds dong either an alternate speculative

~xecution path available in the current choice or an alternate choice if one is

available. In case no more alternate choices exist in the current choicepoint,

PE continues by popping the top of the CStack. The allocate stack is adjusted

either by a returd0 or a simdated return out of the current procedure.

6.4 Choicepoint Optimization

The basic idea behind the choicepoint optimization is to transform choice/3 instmc-

tions such that run-time execution does not attempt choices dong which execution

is known to fail at PEtime- The PE driver uses Algorithm 12 to perform this

optimization as described below.

Let ChPt be the current choicepoint. Let B be the set of blocks containing

choice/3 instructions that access ChPt. Let ChS = ((Bit&)] Bi E B), where

4 is either success or failute indicating success or failure of PE along all paths

Algorithm 11 Setting BAM memory upon loop detection
if Mk, indicates a local failure then

Simulate local failure by partial execution of fail/O (Section 6.1.2.7).
else if b l k , indicates a globd failure then

Set partial execution path dong the next atternative in the depth first order.
else

if alloc-flag of itm indicates environment allocated in current procedure
then

if docd i r t y of itnr is not set then
Restore cp, cbb and the PE registers from top environment stack item.
pop environment stack.

end if
end if

end if
if blk has a choice/3 instruction then

-4djust next choice in current choicepoint.
end if
Partially execute return/O

accessibIe via the fd-through edge of block Bt. .kmme the set ChS is sorted in

the order the partial executor attempts to execute blocks B. For any two blocks Bj,

Bk E B such that the label of Bj is a retry address that is partially executed before

that of Bk, there a s an ordering between Bj and Bk. The notation Bj < Bt

means that zero or more blocks in B might have been partially executed after Bj and

before Bk- Bi+j and Bt-j indicate the block tried j blocks after and before trying

Bi, respectively, during partial execution. B1 indicates the block that contains the

cho ice/3 instruction that creates the choicepoint on the stack.

Figure 6.8 shows a sequence of choice/3 instructions. The sequence of blocks

containing the choice instructions correspond to the choicepoint created by the

choice/3 instruction in block A. The sequence L1, L2, . . . , h-1 represents retry

addresses attempted during PE. If, for example, PE along the edge marked PA fails

and that along the edge marked PB succeeds, the choice/3 instruction in block A

may be transformed to jPrnp(L1). A complete choicepoint optimization was ill-

trated far the code shown in Figure 4.10 in Section 4.4.2-

Algorithm 12 Choicepoint optimization

1: Find the block Bf such that (Bf, failure) E ChS and Vi where Bi < &,
(Bi, success) E ChS.

2: Find the block B, such that (B,, success) E ChS and Vi where Bf < Bi and
Bi < B,, (Bi, failure) E ChS.

3: while (B, exists) do
if (B* is B1) then

Let choice(l/N, Rf, &) be the choicepoint instruction in Br.
Let choice(I/N, &, &) be the choicepoint instruction in B, and L, be the
label of B,.
Transform choice(i/N,&,lf) in Br to jump(L,).
aansform choice(I/N, R,, &) to choice(l/N, ht &).
Let M be an empty list of instructions.
for i = 1 to length(&) do

if (h [il # k [fl A Mi] # no) then
Append the instruction move(& [i], R, [i]) to M.

end if
end for
Insert M after the choice/3 instruction in block R,, if M is not empty.

else
'Ikansform choice(1 /Ht b, ti) in to choice(I/N, Ri, L,), where Lh is
the label of Bs.

end if
Find the block Bk such that (Bk, failure) E ChS and Vi where Br < Br c
Bk, (Bi, success) E ChS. Set Bk to be Br.
Find the block B, such that (B,, success) E ChS and Va where & < Bi and
Bi < Bn, (Bi, failure) E ChS. Set B, to be B,.

21: end while

Figure 6.8: Schematic CFG to illustrate choicepoint optimization

6.5 Summary

This chapter provides the details of partial execution of BAM instructions. The

=-time semantics of BAM instructions (Chapter 2) are extended to sccomodate

run-time analyses whose results are used by the PE driver to affect transforma-

tion/optimization appropriateiy. Further, the crucial aspect of maintaining the

PEtime memory state to be an abstraction of the corresponding run-time state

is discussed. The choicepoint optimization algorithm used is presented. The next

chapter discusses consolidation of the residues generated during partial execution

along with benchmarking of the resuiting residues.

Chapter 7

BAM Code Regeneration

Partial execution described in the earlier chapters results in residues for each basic

block. This chapter describes the last step of the PE process which includes re-

generation of BAM code of all the block residues. The regenerated BAM code of

a given program is referred to as program residue. First a description is given of

simple mechanism that is used to lay out BAM code in the residue blocks into a He.

The code lay out is done according to the PEflow graph.

Code Consolidation

As described in Chapter 5, the PE driver records the control flow between all residue

blocks in the PEflow graph. The partial execution of a block may or may not resuIt

in a block that is different fiom the original. Yet, the resulting block is referred to as

the residue. The PEflow graph may hence contain basic blocks in addition to those

in the CFG of the origind BAM code. New control flow edges bom and to any new

blocks are also recorded in the PEflow graph. If the PE of a given program does

not result in a residue for even one basic block, then the PEflow graph is identical

to the original CFG.

A I g o r i t h 13,14 and 15 is used to regenerate BAM code for the whole program

after the completion of partial execution. It uses the information stored in both P E

flow graph and the original mG. The resulting BAM code is input to the Aquarius

Prolog compiIer which assembles and links the object file to generate an executable.

Algorithm 13 TopleveI Ioop for BAM code regeneration
I: Let BStack be a global stack of basic block numbers; ProcList be the global

List of procedures that is initially empty; R be the root of PCFG, the PEflow
graph-

2: Add R to end of ProcList.
3: for each (procedure block B E ProcList) do
k Push residue of B onto BStack
5: while (BStack is not empty) do
6: Pop the top of BStack into B
7: regenera teade(B)
8: end while
9: end for

The toplevel Ioop shown in Algorithm 13 performs a depth-first traversal of all

procedures in the PEflow graph, PCFG and maintains two data-structures viz.,

BStack and ProcList. BStack is the stack of basic blocks used for depth-&

traversal of a given procedure. ProcList is a list of procedures still to be traversed

for code regeneration.

FoIIowing are the important issues related to the BAM code regeneration algo-

rithm. FirstIy, at the time of partid execution of a flow change instruction containing

a label operand, say Lbl, it is not known if partial execution of the block with the

label Lb1 will result in a residue different from the original. This necessitates a post-

residue generation patch up phase wherein the control flow is correctly set. The only

exception where the target labels of an instruction are correctly set during partial

execution is for choice/3 instructions. This is done during choicepoint optimization

phase. Consequently, in Algorithm 14 that the labe1 choice/3 instruction is not

changed during code regeneration. Algorithm 15 repIaces the input instruction I

with the transformed one, if any.

Next, the flow change instructions retarn/O and f ail/0 neither have successors

nor label operands. Thus they are simpIy emitted without any change during code

regeneration of blocks containing these instructions. The CFG does not record the

called procedure block as a successor to the bIock with call/l- Such a caIIing

procedure block, however, has one and only one successor block whose leader is

the instruction executed after the call returns. Code regeneration for bIock with a

Algorithm 14 Algorithm to regenerate BAM code of a basic block
regenemtawde(B: b1ock):SB: bIock
1: if (code for B is not regenerated) then

Emit all instructions except the last instruction, li, in B.
switch (li)

case jump(L) :
if (L is not fai l) then

SB := trcmsfomanstruction(B, li, L).
if (SB is a procedure block) then

Add SB to the end of ProcList.
else
Push SB onto BStack.

end if
end if

case call(L1 :
SB := transform_anstruction(B, li, L).
-4dd SB to the end of ProcList.
Push the successor of B onto BStack.

case choice(I/N, R, L) :
if (L is not fail) then

Push block with label L onto BStack.
end if
Push the fall-through successor of B onto BStack.

case equal(X, Y, L) or t ea t (E , T, X, L) or jump(T, C , X , Y, L) :
if L is not fail then

SB := tmnsfominstruction(B, ti, L).
Push SB onto BStack.

end if
Push the fall-through successor of B onto BStack.

case suitch(T, R, Ll, L3, L3) :
for ~ L E (L1, L2, L3) do

if (L is not f fail) then
SB := tmnsfominstruction(B, ti, L).
Push SB onto BStack.

end if
end for
Push the fall-through successor onto BStack.

case anify(X, Y, T, O , L) or unify,atomic(f, Y, L) :
if (L is not fail) then

Push block with label L onto BStack.
end if
Push the fdl-through successor onto BStack.

end switch
Emit ti and mark that code for B is regenerated.

43: end if

Algorithm 15 Anorithm to renenerate a BAM instruction

1: Let T be the block whose Label is L in the original CFG.
2: Let T' be the block whose parent is B and is a midue of T as recorded in

PCFG.
3: if (T' is different fiom T) then
e Form a new label unique L-.
5: Change the label of the block T9 to L-,
6: Replace labd operand L with L,, in instruction I.
7: end if
8: Return T'.

call/l instruction is handled accordingly. Due to last call optimization(LCO), the

target of a jump/l instruction might be a procedure. Code regeneration for block

with jump/l takes this into consideration.

The root CFG block which is the program entry block may have at most one

version that is different from itself since the bIock will be entered only once during PE

resulting in the only time a residue is generated for the program entry block. Finally,

a separate pass is made over the code generated to remove any unconditional jumps

to the next instruction. The resulting BAM code is used to generate an executable.

The present work uses the SPARC port of Aquarius Prolog compiler. Its back-end

compiles BAM code to SPARC assembly instructions which in turn are assembled

by the SPARC assembler [35] to generate a native executable. The resultant of

code regeneration phase, described in this chapter, is a stream of BAM instructions.

BhV instructions are Prolog terms and can be compiIed by Aquarius compiler which

directly invokes the back-end and the assembler to produce a native executable.

-h evaluation of the partial execution process is described in the next chapter by

compiling some benchmark programs to native executables.

Chapter 8

Evaluation of BAM Code Partial Execution

In this chapter, we present an evaluation of the partial execution described in the

earlier chapters. First we present an discussion to provide the context for the bench-

marking done to evaluate the work. Then we present the benchmarking methodology

and the results.

Evaluation Context

In an increasingly cornp1e.x world of programming languages and processor archi-

tectures, high performance of applications developed that use these languages is

achieved by a combination of several architecture-independent and architecture-

independent compiler optimizations. It is well-known that a combination of various

analysis and optimizations is needed to expose further optimizations in the later

phases of a compiIer [15]. A specific set of optimizations by themselves rarely pro-

duce a highly optimized executable.

The principd focus of the present work is to study the issues involved in de-

sign and implementing a low-level language partial evaluator that enables several

common compiler optimizations. Ideally, the benefits of the set of optimizations

performed by partial evaluation would be fully evident along with low-level opti-

mizations. Conventionally, a high-level language compiler builds more than one

internal representation of the code in various phases. The low-level optimizations

are performed before the executable is written out. To implement assembly-level

optimizations we either need to interface with the existing SPARC back-end and/or

assembler, or implement an assembler optimization phase that performs low-level

optimizations. Neither of these is feasible given that this work is a single-person

project. Hence there is no phase that performs any machinespecific optimizations,

such as code motion, inter-procedural code scheduling, software pipelining, to name

a few.

The lack of a machine-specific optimizer can prove to be a handicap in generating

a fully optimized executable thereby hiding the red performance improvement due

to partial execution. The need for such a phase is even more evident when the

program residue is larger than the original, as is often the case when PE is applied.

The code size can affect the load time [27] of the executable. The additional code

will also affect the code layout which in turn can degrade the performance due to

instruction and/or data cache access patterns, despite any speed-up achieved due

to partial execution. A machine-specific code motion optimization can deviate this

problem whenever possible.

Table 8.1 gives a list of the programs used for benchmarking the partial executor

implementation described in this thesis. These programs are taken from the bench-

marks used in presenting the performance of the Aquarius Prolog compiler [67]. The

Aquarius benchmark suite consists of "examples of realistic programs during compu-

tations representative of Prolog" [67]. We have chosen some small and medium-sized

programs that facilitate manual verification of correctness the entire PE process and

the generated BAiV and SPARC assembly code. Keeping the lack of machine-speczc

optimizer in context, the performance of these programs was measured to get an

indication of the potential speedup PE optimizations can produce.

8.1.1 Benchmarking Methodology

Here we describe the process used to perform partid execution on benchmark pro-

grams. This process is illustrated using one of the benchmarks, qeort-pl that

implements quick sort. This program contains the definition of qsort/3 and of

the program entry predicate that has no arguments and has a call to qsort/3 in

its body with the appropriate arguments instantiated. We refer to the predicate

qsort13 as the top-level predicute. The program entry predicate and the toplevel

predicate are separated into two Prolog files. The file containing toplevel predicate

is compiled using global flow analysis to BAM code, say orig. b. The partial execu-

tor is run with 0rig.b as input resulting in a BAM code residue, residue. b. Then,

residue. b is compiled along with the 6le containing the program entry predicate

call resulting an executable corresponding to residue. The performance of this exe-

cutable is compared with that resulting &om compiling the file with entry predicate

and the toplevel predicate. The following alternate compilation may also be em-

ployed. The entire original Prolog source containing both the toplevel and entry

predicates may be compiIed to BAM code using global flow analysis. This is fol-

lowed by partial execution of the BhM code to yield a residue. The residue is then

compiled using the Aquarius Prolog compiler to result in an executable. However,

this does not provide the correct measure of effectiveness of partial execution since

both GFA and PE have the additional information about the modes with which of

the toplevel predicate are called. This information is not necessarily available in

general program. Thus this manner of compiling benchmarks was not employed.

The benchmarks were each run 10 times on a lightly-loaded Sun SPARCstation

20/30 with 64MB of memory. The best and worst of these 10 times are discarded

and the rest were averaged to eliminate any extraneous machine states that are

not in a typicd run of the program. The benchmarking results are presented in

Table 8.2. The correctness of aIl the transformations done by the partial executor

and the output of all the programs was manually verified.

By performing PE on allparms and fibo, redundant conditional instructions

and consequently dead-code m e discovered. This resulted in a h a l executable

with 90 and 140 SPARC instructions lesser, respectively. The deadcode corresponds

to BAM code in a never taken subgraph of an execution thread.

'The Aqnarins compiler considers main/O as the pmgram entry predicate by default

Table 8.1: Benchmarks

tak
ops8
queens3
zebra
qsort

Description
Computing permutations of integers in three ways
- insertion; reverse and append; findall(41 lines) -
Computing Fibonacci number with starting
value of 0 (21 lines)
Recursive integer arithmetic (12 lines)
Symbolic differentiation (25 lines)
Solve 8 queens puzzle (all sohtions)
A logical puzzle based on constraints (37 Iines)
Quick sort of a list of numbers (11 lines)

- - - - - --

Table 8.2: Execution times
I

Program

with insertion
with reverse and append
with hdall

fib0
tak
ops8
queen-8
zebra

- 'a

With PE phase
-

Without PE phase

No PEbased optimization was possible on tak- This benchmark was chosen

to demonstrate that not all programs benefit from partial execution. It has been

observed that the program has very few alternate execution threads. Consequently,

PEbased optimizations are not possible in its BAM representation. -4s with ail

compiler optimizations, all programs may not benefit from PEbased optimizations.

We 0 b ~ e ~ e that programs with several alternate execution threads can potentidy

benefit from such optimizations.

-4 performance degradation was observed due to PE of ops8 and zebra. A

residue that increased the code size by approximately 50% and 20%, respectively. A

visual inspection of SPARC assembly reveals that code layout and the call-graph of

the residue's executable are different from those of the original. Given the manud

verification done of the correctness of PE transformations, we believe that the dif-

ference in code layout and call-graph contribute to the degradation in performance.

It was not possibIe to verify this conjuncture due to lack of machine-level optimizer

or sophisticated disassembler. Either of these would have facilitated rearrangement

of SPARC code generated by the post-PE back-end of Aquarius compiler.

The changes in code layout and call graph were o b s d using the b i n q dump

ing tool, ob jdump, from the GNU tool set. Both redundant branch elimination and

specialization resulted due to PE of queens-8. Although PE of qsort optimizes

away the redundant choicepoint creation which reduces the memory footprint, no

speedup is observed.

In summary, the above described evaluation process which is a combination of visual

inspection for transformation correctness, result verification for execution correct-

ness and CPU time utilization for performance measurement indicate the following:

PEbased optimizations do result in speedup in programs with several execution

threads. By inspecting the residue's executable, we believe that a post-PE machine-

specific optimization phase can enhance the bendts of PE on the low-level code,

viz., BAM code. For example, machine-specific optimizations, such as code layout

or inter-block instruction scheduling and software pipelining that involve the new

code generated, could enhance the QuaIity of the executable. In their absence, as

is the case now, the resultant change in performance for the better or worse is due

to PEbased optimization alone. Machine-specific optimizations are even more nec-

essary due to potential procedure inlining done by the partial executor in several

cases.

Chapter 9

Conclusions and hture Work

9.1 Research Contributions

The primary intent of this thesis was to investigate the application of partial evalu-

ation on a low-level language during compilation. This investigation was geared as

an important step towards answering the question "Can PE yield efficient low-level

machine code?" posed by Jones [40]. To achieve the above stated goal, we pro-

posed a new compiler back-end optimization technique based on partial evaluation

of low-level RISGlike code,

9.1.1 New Compiler Back-End Optimization Technique

We studied various issues that are involved in design and implementation of such

a partial evaluator as a back-end phase in a red-world Prolog compiler. We also

presented solutions to problems that seem unique to partial execution of low-level

code such as deciding correct program units for partial execution (Setion 4.2.1),

correctly keeping track of changed return address (Section 5.2.2), deciding candidate

static registers (Section 5.3.2) etc. Based on inspection of resuIting executable code

and conclusions of other researchers [7,15,171 we believe that the full impact of such

a PEbased optimization phase would be visible in conjunction with other a w e s

sive machine-specific optimizations that take advantage of opportunities exposed by

transformations done in the PE phase.

9.1.2 Optimization Framework

Another important contribution of the thesis is the demonstration that PE provides

a framework of several conventionaI optimizations such as constant propagation,

dead-code elimination, common subexpression evaluation and, - to a lesser extent

- loop unrolling. The hit three optimizations are illustrated in examples shown in

Figure 4.4. Loopunroiling is described in Section 5.5, Further a Prolog-specific o p

timization called choicepoint elimination is also demonstrated within the hmework

of PE (Section 4.3.2). In conventional compilers, optimizations such as constant

propagation and deadcode elimination are performed as separate phases [54]. We

demonstrated that the effects of these optimizations may be obtained using a PE

phase.

9.1.3 Semantics Specification of Low-Level Code

Further, we present a technique of implementation-independent specification of the

Berkeley Abstract Machine using denotational semantics. Such a specification fa-

cilitates verification of the correctness of any transformation and provides a precise

definition of instructions for an implementation of the partid evaluator.

9.2 Related work and applicability

9.2.1 Partial Evaluation of Prolog

Related work was discussed at several places in the thesis wide discussing various

issues such as partial evaluation in general, general language compilation techniques,

Prolog compilation techniques and program transformation issues. A brief summary

of the same dong with aspects of the present work that can be prove beneficial in re-

lation to Prolog follows. Partial evaluation typically is applied to programs written

in a high-level language - either fnnctional or Object-oriented [22,39,42]. Sahlin 1581

implemented an automatic partial evaluator for full Prolog called Mixtus. Similar

efforts were made by Prestwich [56] and Lakhotia 1471. These implementati011s of

partial evaluation, however, were not aimed to be used as compiler phase. None of

them are geared towards program performance improvement and hence no perfor-

mance evaluation is done. The present work aims at presenting PE as a compiler

back-end phase that generates optimized code. Further, issues such as code par-

titioning and memory models that need to be considered when performing partial

evduation of high-level language programs differ from those while performing par-

tial evaluation of low-level language programs. However, in this thesis we present

a novel PE termination methodology (Section 5.5) that involves a loop termina-

tion technique. This can be applied during PE of any program with procedure-like

constructs.

9.2.1.1 ProIog Programming Environment

Several data structures were designed augmenting BAM memory model (Section 5.2)

to facilitate speculative partial execution. Similar data structures and associated al-

gorithms can be used during implementation of a Prolog debugger or a ProIog tracer.

We also present a new technique referred to as defend dereferencing (Section 5.4.1)

and it can find appkation in Prolog program analyses such as GFb4 [29,67].

9.2.2 Partial Evaluation of Low-Level Code

Little work has been done in the area of applying partial evaluation to low-level code

except that done by Bulyonkov [ll]. Program performance evaluation was, however,

not presented by Bulyonkov. The present work is one of the few that studies the

related design and implementation issues. It finds a utility for partial evaluation as a

compiler backend phase and provides a framework for several conventional compiler

optimizations that are performed often in an unconnected manner.

9.2.3 Conventional Compiler Technology

9.2.3.1 Binary Tkanslation

Partial execution techniques detailed in this thesis may be applied in several ar-

eas where conventional compiler back-end optimization techniques are widely being

applied. One such area is binary tmnslation (611 whose value has been recognized

in recent years- Binary translation is a technique that translates an arbitrary ex-

ecutable binary of one architecture to executable binary for another architecture.

It usually involves two phases - code translation and optimization. This technique

makes application programs available on platforms on not otherwise supported by

the vendor and when the user has no sources for recompilation. Although, the

source and target languages differ for a binary translator, its primary functionality

is to interpret the source language and emit equivalent target language instructions.

Typically the translation process involves mapping a source instruction to one or

more target machine instructions. Instead of emitting a generic "cannedn sequence

of target machine instructions, specialized code for the program memory state can

be generated by performing partial execution during the translation phase. Sev-

eral of the analysis techniques described in this work may be applied during the

binary translation phase to result in an optimized code. The optimization phase

that follows translation phase will receive a more optimized version.

9.2.3.2 Dynamic Optimization

Another potential application area is dynamic optimization or dynamic compila-

tion [8,23,31]. This emerging area of research refers to techniques that facilitate

optimizing a program in memory at run-time. For example, it is common for com-

pilers to generate executables using a common instruction set architecture (ISA)

such as the 80486 to run on an Intel-based system or the 21064(EV4) to nm on an

Alpha-based system. If, however, the program is being executed on a later architec-

ture implementation that would most likely support advanced instructions having

higher performance than those in the base architecture, it is possible to recognize

this fact and replace such instructions with their better performing counterparts. In

essence the executing program is specidized for the architecture implementation it

is running on. For instance, the sequence of instructions used to load a byte in an

wecutable generated for a base 21064 architecture may be replaced with a single

ldb instruction if it is running on a more recent version of Alpha processor. Using

PE techniques, the program can be speciaIized for the host architecture implementa-

tion in several ways: its instruction schedules may be modified on the fly for better

performance; its memory access pattern may be tuned with the knowledge of the

cache sizes. For example, a 21164 haa a wider instruction pipeline and has more

number of function units in comparison to a 21064 processor. Hence the instruction

scheduling needs to be different to exploit the performance advantage a 21164 offers.

These system parameters provide the static information for the specialization of the

program being executed. Partial execution techniques described in this thesis may

be directly applied in the context of dynamic optimization.

9.2.3.3 Link-Time and Post-Link Optimization

Another potentid area of application for the PE techniques described in this thesis

is in tools [I?, 621 that perform link-time/post-link-time processing- Information

such as relocation, memory aliasing can be extracted from the disassembiy of the

executable using PE techniques described in this thesis. Such tools usually [17]

depend on the existence of this information as part of the executable- However,

using partid evaluation this information can be correctly reconstructed to facilitate

further analysis and code aptimizations.

9.3 Future Work

The following issues should next be addressed to M y establish PE as a viable

technique in the mainstteam machinedependent back-end compiler optimizations.

FirstIy, a post-PE phase that performs machine specific optimizations such as inter-

procedure instruction scheduling and soRTRare pipelining needs to be implemented

either in the compiler backend or in the assembler. This will complete the environ-

ment in which performance of PEbased optimizations may completely be evaluated.

Further, tools that non-intrusively profile a program at execution time need be de-

veloped to validate the observed performance. These tools will allow us to study

issues such as effects of increase in code size, changes in code layout that seem to

be a very common result of PE.

Next, it will be interesting to study the impact of partial execution based opti-

mizations for the increasingly complex processor architecture implementations with

advanced mechanisms such as pipehed out-of-order instruction issue, simultane-

ous multi- threading (SMT), predicated execution etc., that challenge conventional

back-end optimization techniques.

Two of the main stream processor architectures are taking different approaches

to evolve higher performing implementations. Correspondingly, compilers have to

evolve to incorporate the new processor functionalities and generate efficient code

that exploits processor advances. For example, it was announced that on-chip SMT

will be implemented on the next generation of Mpha processors to allow instructions

from various processes to be in flight at any given time [25]. A partial executor that

maintains a model of the processor execution state during code generation might be

one approach to assist compilation for an SMT processor. The LA-64 architecture

implementation uses predicated execution and relies on sophisticated compilers [46).

Optimized code generation may be done by eliminating all code streams that can

be identified by partial execution. These are two of the examples where partial

evaluation can prove to be a vduable too1 in compilers for future processors.

References

[I] Quintus Prolog - Reference Manual, 1990.

[Z] Alfred V. Aho, Ravi Sethi, and Ullman Jeffrey D. Compilers: Principles,
Techniques and Took Addison-Wesley Publishing Company, 1986.

[3] Hassan .&t-Kaci. Warren's Abstmct Machine - A IItrtorial Reconstruction. MIT
Press, Cambridge, MA, 1991.

[4] L. 0. Andersen. Progrrrm Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU
report 94/19 no. D-203).

[5] L.0 .Andemen. Progmm Analysis and Specialization for the C Pmgramming
Language. PhD thesis, DIKU, University of Copenhagen, Denmark, 1994.
DIKU Research Report 94/19.

[6j L.0 Andersen and C. K Gomard. Speedup Analysis in Partial Evaluation
(Preliminary Results). In Partial Euduation and Semantics-Bcrsed Pmgram
Manipulation, pages 1-7. Yale University, 1992.

[7] David F. Bacon, Susan L. Graham, and OIiver J. Sharp. Compiler lkansforma-
tions for High-Performance Computing. Technical Report UCB//CSD-93-781,
University of California, Berkeley, 1993.

[8] V Bala, E DuesterwaId, and S Banerjia. Transparent Dynamic Optimization:
The Design and implementation of Dynamo. Technical report, Hewlett Packard
Laboratories, 1999.

[9j Anders Bondorf. Automatic Autoprojection of Higher Order Recursive Equa-
tions. Science of Computer Pmgmmming, 17(1-3):3-34, December 1991. Se-
lected papers of ESOP '90, the 3rd European Symposium on Programming.

[lo] Maurice Bruynooghe, Gerda Janssens, AIain Callebaut, and Bart Demoen. Ab-
stract Interpretation: Towards the Global Optimization of Prolog Programs.
In Proceedings of the 1987 Symposium on Logic Programming, pages 192-204-
IEEE, August 1987.

[ll] M. A Bulyonkov. Polyvariant Mixed Computation for Analyzer Propms. Ada
Informatics, 21:473484,1984,

1121 Mats Carlsson. On the Efficiency of Optimizing Shallow Backtracking in Com-
piled Prolog. In Logic Programming: Proceedings of the Sixth International
Conference, pages 3-16. MIT Press, 1989.

[13] Mats Carlsson. The SICStus Emulator. Technical Report SICS Technicd Re-
port no. T91:15, Swedish Institute of Computer Science, September 1991.

[14] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin,
Tony Tye, S. Bhafadwaj Yadavalli, and John Yates. FX!32: A Profile-Directed
Binary Translator. IEEE Micm, l8(2), March/April 1998.

[15] Cliff Click and Keith D. Cooper. Combining Analyses, Combining Optimiza-
tions. ACM hnsactions on Programming Languages and Systems (TOPLASJ,
17(2):181-196, March 1995.

I161 Wiam F. Clocksin and Christopher S. Mellish. Programming in Pmlog.
Springer-Verlag, 1987.

[17] Robert Cohn, David Goodwin, P. Geoffrey Lowney, and Norman Rubin. Spike:
An Optimizer for Alpha/NT Executables. In Proceedings of The USENIX Win-
dows NT Workshop, August 1997.

[18] Charles Consel and S. D. Khoo. Parameterized Partial Evaluation. In Prvceed-
ings of ACM SIGPLAN '91 Conference on Programming Language Design and
Implementation, pages 91-106. ACM Press, June 1991.

[19] Charles Consel, C. Pu, and J. WalpoIe. hcremental Partial Evaluation: The
Key to High Performance, Modularity and Portability in Operating Systems. In
Partial Evaluation and Semantics-Based Prugram Manipulation, pages 44-46.
New York: ACM, June 1993.

[20] P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic
Programs. Journal of Logic Pmgromming, 13(2-3):103-179, 1992. .&o Re-
search Report 92-12, June 1992 at LIENS.

[211 P. Cousot and Cousot R Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Conference Record of 4th ACM Symposium on Principles of Pmpmming
Languages, pages 238-252,1977.

[22] Jeffrey Dean, Craig Chambers, and David Grove. Selective Specialization in
Object-Oriented Languages. In Pmceedings of the 1995 SIGPLAN Conference
on Programming Lanpage Design and Implementation (PLDI '95), pages 93-
102, June 1995.

[23] Dean Deaver, Rick Gorton, and Norm Rubin- Wiggins/Redstone: An On-line
Program Specializer. In To appear in Proceedings of Hot Chips 11, August
1999.

[24] Saumya K. Debray. Static Inference of Modes and Data Dependencies in
Logic Programs. ACM hnsactions on Pmgramming Languages and Systems,
11(3):419-450, July 1989.

[25] Joel Emer. Simultaneous Multithreading: Multiplying Alpha's Performance.
Mcroprocessor Forum 1999, October 1999.

[26] Andrei Ershov and Neil D. Jones. Two Characterizations of Partial evaluation
and Mixed Computation. In Andrei Ershov and Neil D. Jones, editors, Partial
Evaluation and Mized Computation, pages xv-xxi. North-Holland, 1988.

[27] Christopher F'raser. Automatic Inference of Models for Statistical Code Corn-
pression. In Proceedings of ACM SIGPLAN '99 Conference on PLDI, pages
242-246, May 1999.

[28] John Gabriel, Tim Lindhoh, E. L. Lusk, and R A. Overbeek. A Tutorial
on the Warren Abstract Machine for Computational Logic. Technical Report
,41UE8484, Argonne National Laboratory, Argonne, Illinois, June 1985.

[29] Thomas Getzinger. Abstract Interpretation for the Compile-time Optimization
of Logic Propms. PhD thesis, University of Southern California, December
1993.

[30] Arne J. GIenstrup and Neil D. Jones. BTA Algorithms to Ensure Termination of
Off-line Partial Evaluation. In Perspectives of System Infomatics: Proceedings
of the Andrei Ershov Second International Memorial Conference, LNCS, June
25-28 1996.

[3I] Brian Grant, Matthai Phiiipose, Markus Mock, Craig Chambers, and Susan Eg-
gas. An Evaluation of Staged Run-Time Optimizations in Dy C. In Proceedings
of ACM SIGPLAN '99 Confmnce on PLDI, pages 293-304, May 1999.

[32] Programming Systems Group. SICStus Pmlog User's Manual. Swedish Insti-
tute of Computer Science, PO Box 1263, S-164 28 Kista, Sweden, release 3 #2
edition, June 1995.

[33] M. A Guzowski. Towards Dweioping a Reflexive Partial Evaluator for an
Interesting Subset of LISP. Master's thesis, Department of Computer Science,
Case Western Reserve University, January 1988.

[34] A. Haraldsson. A Program Manipulation System Based on Partial Eualuation.
PhD thesis, Linkiiping University, 1977. Published as Link6ping Studies in
Science and Technology D i a t i o n No. 14.

[35] RaIph C. Haygood. Aquarius Pmlog - User Manual, March 1993.

[36] John Hennessey and David Patterson. Computer Arclritecture: A Quantitdzue
Approach- Morgan Kaufmann Publishers, Inc., 1990.

[37] T. H. Hickey and D. H. Smith. Toward the Partial Evaluation of CLP Lan-
guages. In Partial Evaluation and Semantics-Based Pmgmm Manipulation,
New Haven, Connecticut (Sigplan Notices, vol. 26, no. 9, September 1991),
pages 43-51. New York: ACM, 1991.

[381 Carsten K Holst. Finiteness Analysis- In John Hughes, editor, Proceedings of
FPCA, 5th ACM Conference, Cambridge, MA, number 523 in Lecture Notes
in Computer Science, pages 473-495. Springer-Verlag, August 1991.

[39] Neil D. Jones. Automatic Program Specialization: A Re-Examination From
Basic Principles. In Dines Bjarner, Andrei P. Ershov, and Neil D. Jones, edi-
tors, Partial Evduataon and Mized Computation, Proceedings of the IFIP TC2
Workshop on Partial Evaluation and Mired Computation, GammeI Avrnzs,
Denmark, 18-24 October, 1987, pages 225-282. North-Holland, 1987.

[401 Neil D. Jones. Challenging ProbIems in Partial Evaluation and Mixed Compu-
tation. In Dines Bj~rner, Andrei P. Ershov, and Neil D. Jones, editors, Partial
Evaluation and Mized Computation, Proceedings of the IFIP TC2 Workshop
on Partial Evaluation and mixed Computation, Gammel Avrnaes, Denmark,
18-24 October, 2987, pages 1-14. North-Holland, 1987.

1411 Neil D. Jones. What Not to Do When Writing an Interpreter for Specializa-
tion. In Oiivier Danvy, Robert GlW, and Peter Thiemann, editors, Parttd
Evaluation, volume 1110 of Lecture Notes in Computer Science, pages 216-237-
Springer-Verlag, 1996.

[42] Neil D. Jones, Carsten K. Gomard, and Sestoft Peter. Partial Evaluation and
Automatic Progmm Generation. Prentice Hall International Series in Computer
Science, 1993.

(431 Neil D. Jones, P Sestoft, and H Sondergaard. An Experiment in Partial Eval-
uation: The Generation of a Compiler Generator. In J.-P Jouannaud, editor,
Reuniting Techniques and Applications, volume 202 of Lecture Nodes in Com-
puter Science, pages 124-140. Springer-VerIag, 1985.

[q NeiI D. Jones, Peter Sestoft, and HaroId Ssndergaard. Mk: A self-appkable
partial evaluator for experiments in compiler generation. Lisp and Symbolic
Computation, 2(1):9-50,1989.

[45] S. C. Kleene. Introduction to Metamathemetics. Van Nostrand, New York,
1952.

[46] Man Knies and Jesse Fang. IA64 Architecture and Compilers, ThtoriaI at Hot
Chips 11, A Symposium on High-Performance Chips, August 1999.

[47] -4run Lakhotia and Leon Sterling. ProMiX: -4 Proiog Partial Evaluation Sys-
tem. In Leon Sterling, editor, The Pmctice of Pmlog, chapter 5, pages 137-179.
MIT Press, 1990.

[48] John W Lloyd. Foundations of Logic Progmmming. Springer-Verlag, 1987.

[49] L.A Lombardi and B. Raphael. LISP as the Language for an Incremental
Computer. In E.C. Berkeley and D.G. Bobrow, editors, The Progmmming
Language Lisp: Its Operation and Applications, pages 204-219. WT Press,
Cambridge, MA, 1964.

[50] Burstall R. M and Darlington John. A Transformation System for Develop
ing Recursive Programs. Journal of the Association of Computing Machinery,
24(1):44-67, January 1977.

(511 Micha Meier. Compilation of Compound Terms in Prolog. In Proceedings of
North American Conference on logic Pmgramming, pages 63-79, October 1990.

[52] Micha Meier et. al. SEPIA - An Extendible Prolog System. In Proceedings of
the 11 th World Computer Congress IFIP'89, pages 1127-1132, August 1989.

[53] C.S Mellish. Some Global Optimizations for a Prolog Compiler. Journal of
Logic Pmgramming, 2:43-66, 1985.

[54] Steven Muchnick. Advanced Compiler Design. Morgan Kaufman, 1997.

[55] Richard O'Keefe. The Crab of Pmlog. MIT Press, Cambridge, Massachusetts,
1990.

[56] Steven Prestwich. The PADDY Partial Deduction System. Technical Report
ECRC-92-6, European Computer-Industry Research Centre, A p d 1993.

[57] Erik Ruf. Topics in Online Partial Eualuation. PhD thesis, Stanford Univer-
sity, Computer Systems Laboratory, Departments of Electrical Engineering &
Computer Science, March 1993.

[58] Dan Sahlin. An Automatic Partial Eualuatorfor Etrll Pmlog. PhD thesis, Royal
Institute of Technology, Stockholm, Sweden, March 1991. SICS Dissertation
Series 04.

[59] David A. Schmidt. Denotational Semantics: A Methodology for Language De-
velopment. Mlyn and Bacon, Inc., 1986.

[60] David A. Schmidt. The Structure of Typed Pmgramming Languages. MIT
Press, 1994.

I611 Richard Sites, Anton Chernoff, Mathew Kirk, Maurice Marks, and Scott Robin-
son. Binary 'Ltanslation. Communications of the ACM, 36(3):69-81, February
1993.

[62] Amitabh Srivastava and David Wall. Link-time optimization of address calm-
Iation on a &bit architecture. In Pmgmmming Language Design and Imple-
mentation, June 1994.

[63] Leon Sterling and Ehud Shapiro. The Art of Pmlog. MIT Press, Cambridge,
MaSSacbusetts, second edition edition, 1994.

[64] Robert E. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM
Journal of Computing, 1(2):14&160, 1972.

[65] Andrew Taylor. High Pe$omance Pmlog Implementation. PhD thesis, Uni-
versity of Sydney, June 1991.

[66] Pascal Van Henteruyck, A. Cortesi, and B. Le Charber. Type ,Analysis of Prolog
Using Type Graphs. Technical Report CS-93-52, Brown University, November
1993.

[67] Peter Van Roy. Can Logic Programming Ezecute as Fast as Impmtiue Pm-
gramming? PhD thesis, University of California at Berkeley, 1990.

[68] Peter Van Roy and Alvin Despain. High-performance Logic Programming with
the Aquarius Prolog Compiler. IEEE Computer, 25(1):54-68, January 1992.

[69] Raf Venken. A Partial Evaluation System for Prolog: Some Practical Cosider-
ations. New generation Computing, 6:27$290, 1988.

[70] David H.D. Warren. An Abstract Prolog Instruction Set. Technical Report
TechnicaI Note 309, SRI International, Artificial Intelligence Center, Menlo
Park, CA, August 1983.

[71] R Warren, Manual Hermenegildo, and Saumya K. Debray. On the Practicality
of Global Flow Analysis. In Robert Kowalski and Kenneth Bowen, editors,
International Conference and Symposium on Logic Pmgrammzng, pages 684-
699. M R Press, August 1988.

[72] Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-
Wesley Publishing Company, 1995.

