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Abstract

Specialization of programs and meta-programs written in high-level languages
has been an active area of research for some time. Specialization contributes to
improvement in program performance. We begin with a hypothesis that partial
evaluation provides a framework for several traditional back-end optimizations. The
present work proposes a new compiler back-end optimization technique based on
specialization of low-level RISC-like machine code. Partial evaluation is used to
specialize the low-level code. Berkeley Abstract Machine (BAM) code generated
during compilation of Prolog is used as the candidate low-level language to test the
hypothesis. A partial evaluator of BAM code was designed and implemented to
demonstrate the proposed optimization technique and to study its design issues.

The major contributions of the present work are as follows: It demonstrates a
new low-level compiler back-end optimization technique. This technique provides
a framework for several conventional optimizations apart from providing opportu-
nity for machine-specific optimizations. It presents a study of various issues and
solutions to several problems encountered during design and implementation of a
low-level language partial evaluator that is designed to be a back-end phase in a
real-world Prolog compiler. We also present an implementation-independent deno-
tational semantics of BAM code - a low-level language. This provides a vehicle for
showing the correctness of instruction transformations.

We believe this work to provide the first concrete step towards usage of partial
evaluation on low-level code as a compiler back-end optimization technique in real-
world compilers.
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Chapter 1

Introduction

Specializing high-level language programs for some subset of program data that
is known to be constant across independent invocations of the program has been
an active research area for several years now. Such specialization is commonly
referred to as partial evaluation. Complete program data is available to the program
at execution-time. In comparison, any constant data available at compile-time is
partial. Hence the term partial. The term evaluation seems to originate from early
usage of this technique on programs written in functional programming languages
like Lisp [44,49]. Subsequently, partial evaluation of programs written in logic
programming languages like Prolog [58, 69], imperative languages like C [5] and
object-oriented languages like C++ {22] was also studied. Partial evaluation research
was done with such goals as reducing the level of abstraction in meta-programs
for execution efficiency, generating compilers and generating compiler-compilers via
self-applicable partial evaluators [43], to name a few. Various techniques have been
employed to achieve these goals. Using minimal user annotations to guide the partial
evaluation process [33], automating discovery of the constant portion of a given
program and not relying on user annotations [58] are some of the more effective
ones. Partial evaluation was also used to generate specialized programs that are
more efficient than the original [6,42].

Jones [40] discusses several interesting open problems regarding issues such as
program control, data and correctness that play an important role during partial

evaluation. Several of these have been worked on since. However, the question “Can



partial evaluation yield efficient low-level machine code?” which he poses seems
unanswered as far as we know. Efficient low-level code generation is a requirement
in several system-related tools like compilers, binary translators, emulators. This
thesis investigates efficient code generation using partial evaluation in a compiler
back-end. Before deciding whether “efficient” code may be generated or not, we
need to understand the techniques needed to implement a low-level language partial
evaluator. Further, it is well-known that several conventional back-end optimiza-
tions are inter-related. The benefits of performing partial evaluation as a back-end
with relation to conventional optimizations needs to be understood. Hence, this
thesis investigates low-level language partial evaluation techniques and the potential
benefits/relationship of partial evaluation with traditional back-end optimizations.
The candidate low-level language may either be machine-level language or an in-
termediate abstract machine-level language. We begin with the hypothesis that by
performing partial evaluation several conventional compiler optimizations such as
constant propagation, dead-code elimination, and loop-unrolling are automatically
performed. This hypothesis is tested by building a framework within which a par-
tial evaluator of a real world abstract machine code is designed and implemented.
Several traditional optimizations are shown to result from the partial evaluation.
The framework provides a basis to study the issues involved in designing and im-
plementing a low-level language partial evaluator.

In general, partial evaluation is done with the knowledge of two distinct pieces of
information, viz., candidate program unit to be specialized and the invariant data
for which the program unit is being specialized. Partial evaluation of high-level
languages benefits from the inherent higher-level program abstraction and structure.
For example, a function is the program unit with well-known structure and behaviour
that facilitate partial evaluation. It has zero or more arguments of which some may
be input arguments and some output arguments. The function argument and return
value variables hold potential program invariants. The programming language model
defines the behaviour of a function call. For example, the control fiow returns to
the calling function after returning from the callee and the callee does not alter the

2



return address. In the world of low-level code, neither a structure nor a well-defined
behaviour of program units may be expected. Hence the first step is to correctly
identify program units and invariant code variables in any given low-level code to
prepare for partial evaluation. These form the input for a partial evaluator.

Partial evaluation research has largely focused on high-level programming lan-
guages. The present work describes partial evaluation of Berkeley Abstract ma-
chine (BAM) code generated during compilation of Prolog sources by the Aquarius
Prolog compiler. The partial evaluation phase is intended to fit non-intrusively into
the existing phases of the Aquarius Prolog compiler. Further, the BAM code partial
evaluator is designed not to depend on any user annotations: it is an automatic
partial evaluator. There is no investigation into use of partial evaluation on low-
level languages in the context of compiler optimizations in general to the best of our
knowledge. More specifically, this is the first such attempt in the context of Prolog
compilation as far as we know. Nonetheless, the techniques described herein are
applicable during partial evaluation of any low-level language code.

The present work is in the context of a Prolog compilation model that translates
Prolog source to abstract machine instructions that are in turn compiled to native
executable code. Prolog is a dynamic-typed language. Hence, the abstract machine
code generated during Prolog program compilation contains one code stream for each
basic abstract machine data type a Prolog variable can assume at run-time. It also
contains run-time type-checks that dispatch execution flow to the appropriate code
stream depending on the type of the variable. In other words, the abstract machine
code is generic enough to facilitate execution of code corresponding to data-types
that would be known at run-time. The motivation for partial evaluation of abstract
machine code is to eliminate any generic code and to specialize it for its data-types.

In an effort to improve code performance, several new ideas are being studied and
implemented in the research community. Various types of profile-directed schemes
have been recently shown to hold promise [14,17]. We view the profile-directed
schemes as partial evaluation schemes. A profile is a record of some invariant run-

time behaviour of the program that is used to optimize the executable. For example,
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a profile might record the number of calls made to call-site in the executable or a
library. Thus the profile provides invariants that are used to specialize the exe-
cutable. The profile collection and subsequent specialization may occur after one or
more runs of the program. Alternately, some of the more recent research attempts
to perform profile collection and specialization at run-time. This technique is often
referred to as Dynamic optimization [23,31]. Several of the techniques described here
are directly applicable in the context of such efforts to improve code performance.

The thesis is laid out as follows. A brief introduction to Prolog, Berkeley Ab-
stract Machine and the compilation model of the Aquarius Prolog compiler is given
in Chapter 2. The denotational semantics of BAM instructions are presented in
Chapter 3. This implementation-independent specification facilitates proof of in-
struction specialization. It also provides a precise definition of instructions for the
implementation of the partial evaluator. Program specialization is introduced in
Chapter 4. The correctness of all possible instruction transformations is shown and
opportunities for program specialization are detailed with the help of examples in
this chapter. The design and implementation of the BAM partial evaluator is de-
scribed in the Chapter 5. Various data structures that extend the BAM to facilitate
analysis of run-time information are described along with the analysis algorithms.
Chapter 6 describes partial evaluation of each individual BAM instruction and all
the issues involved in maintaining the correctness of program state during partial
evaluation. In Chapter 7 the results are summarized and the conclusions of the
work are discussed. The relevance of the work in the context of current research
and future work are discussed in Chapter 9.



Chapter 2

Prolog and Berkeley Abstract Machine

This thesis deals with optimizing Berkeley Abstract Machine (BAM) code using
program specialization during Prolog compilation. Section 2.1 presents an overview
of Prolog. Section 2.2 details the BAM. An implementation-independent and com-
plete denotational semantics specification of BAM presented in Chapter 3 allows us
to show the correctness of the specializations in Chapter 3.

2.1 The Prolog Programming Language

Prolog is a dynamic-typed logic programming language. In other words, the program
must be executed to compute the types of Prolog data items [60]. This section briefly

presents the language syntax and execution model.

2.1.1 Syntax
2.1.1.1 Data Representation in Prolog

We use the typewriter font to represent language tokens (or terminals {2]) while
describing Prolog syntax. All Prolog programs in this thesis also appear in this
font. The sanserif font is used for meta-language constructs. [talics are used when
a new term is being defined or described for the first time. A similar convention is
followed while describing BAM code. However, the syntactic conventions followed
in BAM denotational semantics specification is different. Corresponding syntactic
conventions are discussed in more detail at appropriate places.

5



Prolog has a single data type known as term. A term is one of the following:

® a constant symbol that stands for an individual entity all through the program.
Prolog constants are either atoms, integers or floating-point numbers. An atom
is an alpha-numeric string whose first character is lower-case. Any character
may be part of such a string if it is enclosed within single quotes “’”. Any se-
quence of characters from the set {+,~,*,/,\,~,<,>,=,¢,7,:,.,7,0,#,8,k}
is also an atom. abc, varl, ’Prolog’, '80x86 Architecture’, 1024,
3.141 are Prolog constants.

a vartable symbol that stands for a distinct but as yet unidentified entity. It is
represented by an alpha-numeric string whose first character is either upper-
case or “.". If a variable is only referred to once in a Prolog construct’s scope
(Section 2.1.1.2), it does not need to be named and may be written as an
anonymous variable. A variable whose first character is “.” is an anonymous

variable. A, Var, _1ist are some Prolog variables.

a compound term that stands for a collection of entities. This allows grouping
of data elements similar to structures in C and records in Pascal. It con-
sists of a structure name known as a functor and constituent entities known
as components. A functor symbol is an atom and the components (or ar-
guments) are themselves terms. A compound term with no components is
an atom. The number of arguments of a compound term is the arity of
the functor and the compound term is uniquely represented as functor/arity.
capital(’India’, ’New_Delhi’) is an instance of a compound term with

arity 2 and we write the compound term as capital/2.

A Prolog list of terms is a special kind of compound term. An empty list is
denoted by the atom [l A non-empty list is a compound term with “.” as
functor and two arguments, viz., the first element of the list, called the head
of the list and the rest of the list, called the fail of the list. Thus a list of

the two terms a and b is . (a, .(b, [J)) and is conveniently represented in



short-hand notation as [a, b]l. A list is also be represented as [head|tail].
Hence the list [a, b] is also represented as [al [b]] or [a|[bl[]]].

2.1.1.2 Prolog Program Constructs

Prolog program constructs are a subset of first-order logic known as Horn clause
logic {48]. However, the terminology used is various places in this thesis to describe
Prolog constructs follows the traditional Prolog terminology [16] rather than than
that of predicate calculus [48]. A Prolog program consists of set of clauses that
represent a consequent of a conjunction or disjunction of a (possibly empty) set of
antecedents. The sequence of two or more antecedents separated by commas(“,”)
represent their conjunction. Let conseq represent a consequent and antec represent
a sequence of antecedents. The representation
conseq :- antec.
is interpreted as “conseq is true if antec are true”. The symbol “:-" is read as “if”.

A clause is terminated by a period(“."). For example, the clause
sibling(X,Y) :- parent(Z,X), parent(Z,Y).

can represent “X is the sibling of Y if Z is the parent of X and Z is the parent of Y”.
A clause is also known as a rule. The consequent is known as the kead of the clause,
and the antecedent as the body of the clause. The above clause is said to define the
predicate sibling/2. A predicate definition may consist of more than one clause
indicating several choices to satisfy the relationship. For example,

p(X) :- q(X,a).
p(X) :- q(X,b).

defines the predicate p(X) to be true if either q(X,a) or q(X,b) is true. A disjunction
of two or more clause bodies represents the definition of those clauses using only

one clause. The above example may be written as

p(X) :- q(X,a);q(X,b).



where “;” stands for the disjunction.
A clause with no body is known as a fact or a unit clause. It represents a
relationship of zero or more Prolog terms that is a tautology. For example, the

relationship between knife and knives may be represented by the fact
plural (knife, knives).

The scope of a Prolog variable is restricted to the clause it occurs in.

2.1.1.3 The Goal Clause

Prolog program execution involves verifying whether a goal or a query clause is true
or false in the program context. In interpreted Prolog it is common to represent a
goal that finds the siblings of john as ?- sibling(john,X). But in compiled Prolog,
the goal clause provides the entry point to a compiled Prolog program. This is similar
to the (default) entry point main() to a C program which otherwise is a listing of
several function definitions. Thus the compiler either uses a reserved keyword to
identify the goal clause head or adopts some other mechanism to identify the goal
clause for a given program. The compiler used for the present work considers the
first clause in the program to be the goal clause and it expects the clause to be of
arity 0.

2.1.2 Execution model

Given a goal clause, Prolog program execution is based on SLD-resolution [48]. A
typical operational semantics of Prolog execution are given by the Algorithm 1. This
algorithm does not address the presence of negation, built-ins and similar advanced
clause body Prolog constructs nor does it handle the cut operator [63] that prunes
Algorithm 1’s naive depth-first clause traversal.

GStack, the goal stack, keeps track of the goals still to be satisfied. The set of
goals in GStack represents the resolvant. Since Prolog execution attempts to satisfy
body goals left-to-right in their order of listing in the body, the goals in the list in



Algorithm 1 Prolog Execution Semantics

ezecute_prolog(G: goal):boolean

Let GStack be a stack of the pairs (goal, indez)
Let ChStack be a stack of the tuples (indez,goal, bindlist)

1: push (G,1) onto GStack

2: while GStack # empty do

3  (Ger i) = pop(GStack)

4:  V:= List of unbound variables in G,

/* H,Hy,... H, are the clause heads with */

/* same functor and arity as Gu,. */

n := number of clauses with same functor/arity as G-

while ((Gr does not unify with H;) A (i < n)) do
= 1+1

end while

/* The clause with head H; has a body By, Bs,...,Bn */

/* with m varying for different i */

9: if (i <n) then

10: push (i +1,Guy, V) onto ChStack

11: push ((B,1),(Ba,1), .. ,(Bm,1)) onto GStack

12: else

13: if (ChStack == empty) then

@ 3>

14: return false /* No more choices */

15: else

16: (¢,G,V) := pop ChStack

17 restore variable bindings from V to goal G
18: push (G, i) onto GStack

19: end if

20: endif

21: end while

22: return true




Step 11 are pushed onto GStack such that B, is at the top of the stack. ChStack,
the choice stack, keeps track of the next possible choice to unify a current goal with.

The algorithm assumes variables of the clause whose head is H; are uniquely
named to avoid duplication with the variable names of G, and the variables al-
ready built in the program before performing the pattern-matching operation called
unification of G, and H; at Step 6. Unification equates (unifies) two identical
constants, or a constant and a variable, or a variable and a compound term in which
the variable does not occur, or two compound terms. For example, the terms £(A,
s(s(0)), c) and f(a, s(B), C) unify to produce the substitution: A with a, B
with s(0) and C with c¢. A formal specification of unification algorithm is given
by Lloyd [48]. If the current goal fails to unify with any program clause, execution
attempts to re-satisfy the previously successful goal (Steps 16-18). Execution upon
successful unification is known as forward ezecution and upon its failure is known
as backtracking.

The algorithm starts with a Prolog goal term and indicates the success of the
goal in the context of a given program. Bindings of the variables in the goal G, if
any, resulting from the function execution give the computed answer.

Several built-in arithmetic, input-output, term inspection and control manipu-
lation operators make the language practical. Clocksin and Mellish [16] provide a
complete description of Prolog. Sterling and Shapiro [63] and O’'Keefe [55] provide

advanced material about programming in Prolog.

2.2 Berkeley Abstract Machine

Prolog was initially implemented as an interpreter. David H. D. Warren developed
the first Prolog compiler in 1977 and an improved execution model for compiled
Prolog, the Warren Abstract Machine(WAM) [3,28,70], in 1983.

The Berkeley Abstract Machine(BAM) [67] retains the fundamental features of
the WAM but, defines a finer-grained instruction set that facilitates compiler opti-
mizations and maps more directly to general purpose processor architectures [68].

10



Aquarius, an optimizing Prolog compiler to BAM [35,67] was also a part of the BAM
project. A global flow analysis (GFA) phase [67] in the Aquarius Prolog compiler
derives information used for optimized BAM code generation, exploiting the finer-
grained instruction set. An overview of the BAM architecture and its instruction

set follows.

We use lowercase alphabet with typewriter font for BAM instructions.

2.2.1 Memory Areas and Data Structures

The memory areas of BAM (Figure 2.1) are similar to those of the WAM.

Current
choice
point m(b) r(tr)
> >
] r(ec)
.'(_hb ) Trail Stack
Choice Poiat Stack
r(h) r(sda_queue)
l - - o(cp)
fp—
Current Global Stack .'(_u" wpext) .’(_"”
Eaviroument (Heap)
.r(:) Program Code
l SDA Quene
Enviroament Stack

Figure 2.1: BAM Memory Areas

The BAM has six memory areas: the environment stack, the choice point stack, the
global stack (heap), the trail, the SDA queue and the program code area. During
forward execution, a Prolog variable can be assigned only one value and the vari-
able may not be re-assigned. For efficiency reasons, the Aquarius Prolog compiler
recognizes a Prolog extension known as stepped destructive assignment [35] that is

supported by the memory area SDA queue. However, the present work does not
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consider Prolog programs with stepped destructive assignment. Hence neither this
memory region nor its associated registers are discussed further.

Algorithm 1 presents the Prolog execution algorithm. We introduce the BAM
memory areas by referring to corresponding data structures of the algorithm. Uni-
fications result in variables being bound to data values as the execution progresses.
The algorithm does not specify any data structure to store these data values. The
heap stores these data values built at run-time. Further, in the algorithm variable
binding information of the current predicate is saved (Step 4) in a variable V to be
restored at the time of re-trial (Step 17) of the current goal. The trail stack stores
this information.

The environment stack and choicepoint stack provide the functionality of GStack,
the goal stack and ChStack the choice stack. The stack items stored on these stacks
are known as environments and choicepoints respectively. The structure of these

run-time entities is as follows.

2.2.1.1 Environment

Information needed during procedure execution of an imperative language program
is maintained in an activation record [2]. An environment is similar to an activation
record, both in content and intent. A clause is referred to as a procedure and a
predicate call is also referred to procedure call. An environment stores values of the
variables that occur across the clause. It also contains a pointer to the call return

location (which is an instruction) and the previous environment on the stack.

2.2.1.2 Choicepoint

A choicepoint records the next available code location to be tried if a predicate call
fails. Since the abstract machine state needs to be restored for the re-trial, the
following information is stored prior to trying an execution path in the choicepoint:

o values of the current procedure variables to facilitate their restoration.
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e current heap top such that all the data values built on the heap during the
failed path can be discarded.

e current trail top such that currently all unbound variables can be restored to

their unbound state.

Further, the return address of the current procedure call and the previous choicepoint
address on the choicepoint stack are also stored.

The environment stack and choicepoint stack may either be implemented in a
single memory space, known as the local stack or separately as shown in Figure 2.1.
The symbol table is arranged as a hash table whose form and hashing function are
not specified as part of the BAM semantics.

2.2.2 Data Types and Registers

A BAM data entity is called a dataword. BAM supports two dataword formats:
tagged and untagged words. Untagged datawords represent machine integers and
memory addresses. Tagged datawords contain a tag representing the data type and
a value representing the data value with a tag-dependent interpretation. The tag
and value components of a dataword will henceforth be referred to as datatag and
datavalue respectively to avoid any confusion that may arise from the usage of the
general terms “tag” and “value”. A tagged dataword is written as TV where T is the
datatag and V is the datavalue. Table 2.1 shows datatags and their corresponding
datavalue interpretations. An unbound variable is represented as a dataword on the
heap with a datatag tvar and a self-referential address as datavalue. A compound
term is represented by a dataword with a datatag tstr and address of a fixed
number of contiguous heap cells that store its functor and arguments. A list term
is represented by a dataword with a datatag t1st and an address of two contiguous
heap cells indicating its head and tail. The other datatags and their datavalues are
evident from the table.

BAM has three types of registers — state, argument and permanent registers
(Table 2.2). Eight state registers contain untagged datawords that point to various
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Table 2.1: Datatags in BAM

Tag Datatype represented

tvar | An unbound variable or a general pointer

tstr | Pointer to a structure — a compound term with a functor and fixed
number of arguments.

tlst | Pointer to a cons cell — a compound term consisting of two parts, a
head and a tail.

tatm | An atom.

tpos | A nonnegative integer.

tneg | A negative integer.

tint | A integer.

tflt | A floating-point number.

_ Table 2.2: BAM registers
Registers Description
r(pc) Program counter
r(e) Pointer to current environment on environment stack
r(b) Pointer to top-most choice point on choice point stack
r(h) Pointer top of the heap (i.e., global stack)
r(cp) Continuation pointer (return address)
r{tmp_cp) Continuation pointer to interface with assembly code
r(tr) Top of trail
r(hb) Heap backtrack point - top of heap when current choice
point was created.
r(0), ..., r(N) | argument and temporary registers
p(0), ..., p(N) | permanent variables

BAM memory areas and execution information. Of these registers, only the heap
register r (h) and the backtrack pointer r(b) are explicitly visible in the instructions
generated by the Aquarius compiler. The rest are implicitly manipulated by the
various BAM instructions.

The argument registers correspond to the arguments of the current predicate
call. They are represented as r(0), r(1),...,r(N) where N is arbitrarily finite.
They may contain either tagged or untagged datawords. The permanent registers
correspond to the variables of the current predicate call whose scope spans over the
current clause. They are represented as p(0), p(1),...,p(M) where Mis arbitrarily
finite. They may contain either tagged or untagged datawords. To the use of

argument and permanent registers, consider the clause,
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p(X,Y,2) :- q(Y,X), r(Z,V), t(Y.,X).

The three variables X, Y and Z are in the scope of p/3. At the procedure entry
their values are in argument registers r(0), r(1) and r(2) in accordance to their
argument positions. They are stored in three permanent registers p(0), p(1) and
p{(2) in the environment which is created upon procedure entry. Similarly, the
variables Y and X of the predicate q(Y,X) correspond to the argument registers
r(0), r(1). Hence before a call to q/2 is made, the registers r(0) and r(1) are
correctly set using the permanent registers p(1) and p(0) respectively. Based on
this basic calling convention, several optimizations exist to reduce the number of

permanent variables based on their occurrence in the clause [3,13,70].

2.2.2.1 Addressing Modes

The following are the addressable entities of BAM along with the values they evaluate

to:

¢ atomic terms referred to as directly addressable entities. These evaluate to

themselves and are also called to as immediate values.

e registers referred to as directly addressable entities. These evaluate to their

contents.

¢ entities of the form T"X, where X is an addressable entity. These evaluate to a

dataword with datatag T and datavalue X.

e entities of the form [X] referred to as indirect addressables. These evaluate to

the contents of X, where X is an addressable.

e entities of the form X+N referred to as offset addressables. These evaluate to
the address N locations beyond X in the memory.

2.2.3 Instruction Set
The BAM instruction set may be divided into four categories [29]:
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e Procedural Control Flow Instructions: These instructions provide un-

conditional flow of control. Table 2.3 summarizes these instructions.

e Conditional control flow instructions: These instructions provide clause
selection and backtracking mechanisms. Table 2.4 summarizes these instruc-

tions.

¢ Unification Instructions: These instructions implement term unification.

Table 2.5 summarizes these instructions.

o Arithmetic Instructions: These instructions perform the binary operations
add, sub, mul, div, mod, and, or and xor and the unary operations log-
ical shift left (sl1), arithmetic shift right (sra), and bit-complement (not).
Further, instructions that convert between integer and floating point and be-
tween tagged and untagged values are also provided. As these instructions are
similar to those of a general purpose RISC processor, they are not detailed

here.

o Pragma instructions: pragma instructions embed information that may be
used in the Aquarius Prolog compiler back-end for better translation of the
target machine to assembly language. A summary of these instructions is given
in Table 2.6.

2.2.4 Compilation of Prolog to BAM Code

Here we outline how Aquarius compiles Prolog programs into BAM code. This is
similar to that of a WAM-based Prolog compiler. The GFA phase of the Aquarius
compiler however is not discussed.

The first clause of the Prolog program text is deemed to be the program entry
point. Its arity needs to be zero. In other words, the body of the entry point
predicate is the query to the program. Consider the following Prolog program.

main :- foo(a,B,c).
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Table 2.3: Procedural Control Flow Instructions of BAM

| Instruction ___ Description

procedure (P) Marks the entry point to procedure P.

entry(P,N) Marks an acceptable point where memory overflow check and
garbage collection can occur.

allocate(N) Create an environment of size N on the local stack.

deallocate(N) | Remove the top-most environment, of size N, from the environment
stack.

call(pP) Call the procedure P.

return Return from a procedure call.

label (L) Marks L as a branch target.

jump(L) Jump unconditionally to label L.

jump_ind (X) Jump to address in X

simple_call(P) | Non-nestable call used to interface with routines written in BAM
assembly language of the VLSI realization of BAM and of no rele-
vance in the present work.

simple_return | Non-nestable return used for routines written in BAM assembly
language and hence of no relevance in the present work.

Instruction

Table 2.4: Conditional Control Flow Instructions of BAM

Description

hash(V,T)

switch(V,T,L1,L2,L3)

test(E,T,X,L)

jump(T,C,A,B,L)

cut (V)
choice(1/N,Rs,L)
choice(I/N,Rs,L)

choice(N/N,Rs,L)

Look up value V in a hash table, T.

Branch to L1, L2, L3 depending on the tag of V being tvar,
T or any other value respectively.

Branch to L if tag of X is equal to or not equal to T depending
on whether E is eq or ne, respectively.

Conditional branch to L if numeric comparison C between A
and B holds; data types of A and B need be consistent with

'lli'l.emovm latest choice point from local stack. V contains the
address of previous choice point.

Create a choice point containing the registers listed in Rs
and set the retry address toL. N > &

(1<I<N) Restore argument registers listed in Rs from the
current choice point and modify the retry address to L.
Restore the argument registers listed in Rs from the current
choice point and pop the current choice point from the local
stack. N is a positive integer.

trail(X) Push address of X onto trail stack if trail condition X < r(h)
holds.

fail Restore trailed variables and jump to retry address in current
choice point.
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Instruction

Table 2.5: Unification Instructions

Description

deref(S,D)

equal(S1,S2,L)
unify(vV1i,V2,F1,F2,L)

Dereference § and store result in D; F indicates mode of
8, if known.

Branch to L if S1 and S2 are not equal; else fall through.
General Unification of V1 and V2 branch to L on failure.
Trailing is done by this instruction. F1,F2 € {?, var,
nonvar}. var and nonvar indicate whether V1 and V2
are known to be variables or nonvariabes. ? indicates

nothing is known about them.
unify_atomic(V,A,L) | Unify ¥ with atom A and branch to L if it fails. No trailing
is done by this instruction.
move(S,D) Move S to D.
push(S,R,N) Push S onto the stack with stack pointer R and increment
R by N.
adda(s,0,D) Add offset O to the tagged pointer in § and store result
in D.
pad(N) Add N words to the heap pointer.
Table 2.6: Embedded information (pragmas)
Instruction Description

pragma(align(X,N))
pragma(tag(X,Tag))
pragma(push(term(N)))

pragma(push(cons))

pragma(push(structure(N))} | A structure of arity N is about to be created

pragma(push(variable))

pragma(hash length)

The contents of location X are a multiple of N.
The contents of location X have a tag Tag.

A term of size N is about to be created

on the heap.

A cons cell is about to be created on the heap.

on the heap.
An unbound variable is about to be created

on the heap.
A hash table of length hash length is about

to be created.
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foo(X,Y,2) :- q(¥,X), s(Z,Y), t(Y,X).
The basic compilation scheme of the above program is illustrated as follows.

o Body goal compilation:

1. Generate code to create an environment that holds permanent variables

used across the clause if there are more than one body goals.

The clause main/0 has no permanent variables. So no environment need
be created during its execution. Hence no corresponding BAM code is

generated while compiling the clause main/0.

The predicate foo/3 has a body with more than one predicate call.
Hence, compilation of the body of foo/3 begins by generating code that
creates an environment. The environment stores the values of the three
permanent variables X, Y and Z in permanent registers p(0), p(1) and

p(2) respectively.

2. Generate code to load the argument registers with corresponding argu-

ment values to set up for a procedure call.

Thus code to load the argument registers r(0), r(1) and r(2) with
tatm”a, tvar-r(h) and tatm"c is generated during compilation of the
body of main/0 to set up for a call to foo/3.

Compilation of the body of foo/3 next generates code to load the argu-
ment registers of q/2, viz., r(0) and r(1) from p(1) and p(0) respec-
tively to set up the ensuing call to q/2.

Each body predicate is compiled similarly. However, instead of generat-
ing a call to the last predicate in the body, i.e., t/2, code to deallocate the
current environment followed by a jump to /2 is emitted. This may be
done since there are no more body predicates to use the permanent regis-
ter values in the environment. This technique is often referred to as last
call optimization and allows all arbitrarily deep tail-recursive predicates

to run with a constant number of environments.
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® Head compilation: The head of a clause is compiled to BAM code that uni-
fies the argument registers with the non-variable arguments, if any. Multiple
clauses of a predicate definition are compiled using choicepoint instructions.
The example program does not result in choicepoint instructions. An example
of compiling to choicepoint instructions is given in Section 4.3.2.

Summarizing, Figure 2.2 shows the stylized form of BAM code for the two clauses
listed above .

main/Q : load tatm"a r(0)
load tvar-r(h) r(i)
load tatm~c¢ r(2)
call foo/3

foo/3 : /+ head argument unification not done */
/* as no non-variable arguments exist */
allocate enviromment with 3 variables
move r(0) to p(l)
move r(1l) to p(0)
move r(2) to p(2)
/* Set argument registers to call q/2 */
move r(l) to r(0)
move p(0) to r(l)
call q/2
move p(2) to r(0)
move p(1) to r(1)
call s/2
move p(1) to r(0)
move p(0) to r(1)
deallocate environment with 3 variables
jump to t/2

Figure 2.2: A simple compiled BAM code format

With this background, we present a complete denotational semantics specifica-
tion of all BAM instructions generated by the Aquarius Prolog compiler in the next
chapter. We also present the BAM execution model. The semantics specification
provides the basis to show the correctness of various instruction specializations. It
further provides an implementation-independent specification for the partial execu-
tor that is implemented.
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Chapter 3

Denotational Semantics of BAM

This chapter presents the denotational semantics of BAM. These semantics are
implementation-independent and provide a basis for the implementation of a BAM
partial evaluator as well as for proof of correctness of the transformations performed
by the BAM partial evaluator.

3.1 Notational Conventions

An overview of the terminology, primitive domains and the operators used in the
definition of the denotational semantics is provided. bold letters are used for domain
names; typewriter font for syntactic constructs, domain tags and BAM instruction
opcodes and operands. We continue to use italics while defining or introducing
new terminology in running text. We also use stalics to represent a set element in
set notation and to represent function or operator names and their arguments in
mathematical notation. The context shall make the meaning unambiguous. The
CALLIGRAPHIC font is used for valuation functions.

The notational conventions used closely follow those of Schmidt [59]. The natural
number domain N, rational number domain Q, truth value domain B, and character
domain C are the primitive domains used to build the semantic domains of BAM.
The character domain C is defined as follows.

C = {z | z is an ASCII character}.
Given a domain D, the power set of D i.e., the set of all subsets of D is denoted

21



as P(D).

3.2 Domain Constructors

The following conventional domain constructors, along with their corresponding
assembly and disassembly operators, are used.
The product of n domains, Ay, As,...,Aq where n > 1, is defined as
Ap xAxx...x Ay ={(z1,%2,- .. ,%n) | T1 €Ay,... , T4 € Ag}.
The disassembly operator of a product domain, denoted }i, maps an element of the
domain to its ith element.
(z1,Z2s ... ,Za )i = 25
The union of two or more disjoint domains is known as disjoint union. We denote
the disjoint union of two domains A and C as A + C which is defined as
A +C ={(zero,z) |z € A} U {(one,y) | y € C}.
Entities zero and one “flag” members of A and C and are referred to as domain
tags. The entities  and y are referred to as value components of an element of the
disjoint domain A + C.
The assembly operators inA and inC are defined as
Vz € A, inA(z) =( zero, z) and Vy € C, inC(y) = (one, y).
To define the disassembly operator of any p € A + C, we quote Schmidt [59] to
avoid any confusion this notation might result due to its uniqueness.

To remove the tag from an element p € A + B, we can simply say pl2,
but will instead resort to a better structured operation called cases. For
any p € A + C, the value of
cases p of
isA(z) =z
[isCz) 2y
end
is “z” when p = (zero,z) and “y” when p = (one,y). The cases oper-

ation makes good use of the tag on the sum element; it checks the tag
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before removing it and using the value. Do not be confused by the isA
and isC phrases. They are not new operations. You should read the
phrase isA(z) — z as saying “if p is an element whose tag component
is zero and whose value component is z, then the answer is z”. As an
example, for

f(m) = cases m of

isN(n) »n+1
[isB(b) = 0
end
f(inN(2)) = f(zero,2) = 2+1 = 3, but f(inB(true)) = f(one,true) =

0.

The disjoint union operation may be extended to more than two domains. Corre-
spondingly the definition for assembly and disassembly operators may be extended.
We assume the definition of these operators on each disjoint domain and thus are

not specified explicitly whenever one is constructed.

3.3 Functions and Function Domains

A function is most commonly represented as an equation. For example, the function
between the domains N and N that doubles a natural number may be defined as
double(z) = 2*z
In general, a function fbetween a domain A and a codomain C is represented (or
defined as) as
flx) =e
where z € A and e is an expression that may contain occurrences of z and that
evaluates to an element in C. The notation f : A — C is used to refer to the
function f.
The function fis alternately represented using typed lambda notation as Az.e.
This form is known as abstraction. In equational representation, the abstractions
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are given names such as f. Using this notation a function need not be named.

The application of a function f : A — C to a € A is denoted by f a when
unambiguous and as f(a) otherwise. The result of function application is ¢ € C,
such that f maps a to c.

Following is the description of another domain constructor known as function
space builder. For domains A and C, a function space is a domain of all functions
from domain A to codomain C and is denoted by A — C. Function application is
the disassembly operator of this domain building operation, i.e.,

some function(someargs) : (A - C)x A = C.
It may be noted here that function application is represented as an infix operator
for clarity purposes. The following is (the more familiar) prefix representation of
the same:

()(some function, someargs) : (A - C) x A = C.
where somefunction € A — C and someargs € A. The function application
produces ¢ € C, where some function maps a to c.

Given a function space fs : A — C we designate [a — c]fs to represent the
function which is exactly the same as fs except that it maps the value ¢ € A to
ceC.

We now define the notation used in the context of finite sequences of elements
of a domain. Let D be any domain. D* denotes a domain of all finite sequences of
elements of D. If d € D* then either d is the empty sequence nil ord = d; :: dp ::
... 2 dy = nil, where n > 0 and d; € D such that 1 < i < n. The ith element in
a sequence d is represented by elem i d; the first element (head) by hd d and the
remainder (tail) by ¢/ d. We assume the standard operator cons, represented as :,
maps d; € D and sequence d € D* to a sequence d' =d; :: d € D*. Given a non-nil
finite sequence d =dy ::ds i: ... 2 dy i mil, any sequence d; = dp : i+ 1... 2 dy il
such that 1 < i < n is referred to as a suffiz of d.

An undefined element is represented by L. Given a domain A we represent the
corresponding lified domain as A; to represent AU {Ll}.

The if-then-else conditional expression is represented as
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zay[z
and is read as “if z then y else 2”. The expression evaluates to y if z is true or to
y otherwise. The if-then-else conditional is in no way related to the cases operator
defined earlier. The symbol || happens to be part of the syntax of these. For clarity,
the expression is sometimes written on multiple lines. The infix operator == is used

to test equality while the infix operator = is used for definition of an expression.

3.4 Semantic Domains

The semantic domain String consists of character strings:
String = C*

A Prolog atom is a character sequence that uniquely denotes some entity, as
defined in Section 2.1.1.1, in the problem domain. Let Atom denote the domain of
Prolog atoms. Thus,

Atom = {z | z € String and z satisfies the syntactic conditions
specified in Section 2.1.1.1}.

A functor designates the name and arity of a structure. The domain of functors
Funct is

Funct = {f/n | £ in Atom and n € N}
For example p(a,b) has functor p/2 with name p and arity 2.

The computer memory is characterised by an address and its contents. An
address is a natural number:

Address = N +1IV,
where IV is a domain consisting of initial values of various memory areas of BAM.
These are identified when specifying the domains corresponding to the memory
areas.

The content of a BAM memory location is a dataword. A dataword in BAM
is one of the two types: tagged or untagged. Let Untagged and Tagged denote
the domain of untagged and tagged datawords, respectively. An untagged dataword
denotes a memory address (a pointer) or an integer value. Thus,
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Untagged = Address.
It may be noted that an element of the domain Untagged is distinguished as an
address or an integer by its use only. Further, the domain element does not restrict
the address to be of any one of the possibly several memory areas of an architecture
such as heap, stack or code area.

A tagged dataword consists of a tag and a value. Tags indicate the data type
represented. There are two pointer types — atomic and pointer. The three atomic
tag domains are defined as

T, = {tatm}
T; = {tint, tpos, tneg}
Ty = {tflt}
The domain of pointer tag types, is defined as
T, = {tvar, tlst, tstr},
The tag domain T is defined as
T=Ta+Ti+Te+ T,
The tags and corresponding value interpretation of a tagged dataword is given in
Table 2.1 of Section 2.2.2.

The atomic tagged dataword domains are defined as
DW, = T, x (Atom + Funct)
DW;=T;xN
DWe=T¢xQ

The pointer tagged dataword domain is defined as
DW, =T, x Address

Thus the tagged dataword domain is defined as
Tagged = DW, + DW; + DW¢ + DW,.

DW, the domain of datawords is defined as
DW = Tagged + Untagged.

BAM registers are classified as state registers, argument registers and permanent
registers. Each register contains a dataword.
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3.4.1 State Register Domain

R,, the domain of BAM state registers is
R, = {pc,e,b,h,cp,tr,hb}.

The function domain StRegVal maps state registers to their contents and is

defined as
StRegVal = R, - DW

An operator initstatereg € StRegVal initializes state registers. The domain
Untagged is expanded to include the initial values of the state registers. These
initial values point to respective initialized but empty memory areas. Thus the
domain

Untagged = {init_pc, init_e, init b, init_h, init_tr}
contains initial values of state registers pc,e,b,h, and tr, respectively. The initial
value of cp along with specification of initstatereg is discussed in Section 3.4.8.

The operator getstreg that maps r € R, and s € StRegVal to the current

content of r is defined as
getstreg : Ry — StRegVal - DW
getstreg = Ar.As.(sr)

The operator setstreg that maps r € Rs, its new content d € DW and register
state s € StRegVal to a new register state s’ that contains the updated value of r
as d, is defined as

setstreg : R, - DW — StRegVal — StRegVal
setstreg = Ar.Ad.As.[r — d}s

3.4.2 Argument Register Domain

The BAM architecture assumes an arbitrary but finite number of argument registers.
The argument register domain, Ry, is defined as
R, = {x0, r1, r2,...,xn} forn > 0.
The function domain ArgRegVal that maps the argument registers to their

contents is
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ArgRegVal =R, - DW
Let L signify that no argument registers are mapped yet. This is represented
by lifting ArgRegVal. The operators of ArgRegVal are defined slightly differ-
ently from those of StRegVal owing to the availability of an arbitrary number of
argument registers.
The initialization operator of ArgRegVal is
initargreg : ArgRegVal
initargreg =1
The operator to access an argument register value is defined as
getargreg : R, — ArgRegVal, - DW,
getargreg = Ar.Av.(v r)
The underlined lambda specifies that the curried function Av.(v r) maps L€ ArgRegVal,
to 1€ DW. This signifies the undefined value resulting from a register value access
from an uninitialized register value mapping. This is in accordance with the usual
interpretation. Further the definition of function space ArgRegVal: R, - DW
implies that for a function v € ArgRegVal and r € R, the function application
(v ) either results in a value in DW mapped to r if such a mapping exists, or
results in 1 otherwise.
The operator to update a register value is defined as
setargreg : R, - DW — ArgRegVal, — ArgRegVal
setargreg = Ar.Ad.As.[r — d|s
The domain of registers, Registers, is
Registers = R, + R,.
A domain RegState is
RegState = StRegVal x ArgRegVal, .
Permanent registers are not included since they are accessible only via the environ-
ment stack.
The initialization operator of RegState is defined as
initregstate : RegState
initregstate=(initstatereg, initargreg)
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getregualue that accesses values of a register r € Registers given s € RegState
is defined as
getregualue : Registers — RegState - DW
getregualue = Ar.\s.(cases r of
isR4(v) — getstreg v s{l
[l isRa(v) — getargreg v s|2
end)
setregvalue that maps a register r € Registers, a value d € DW and a register
state s € RegState to a new register state s’ € RegState that has the value of r
updated to d, is defined as
setregualue : Registers - DW — RegState — RegState
setregualue = Ar.\d.)s.(cases 7 of
isRy(v) = ((setstreg v d s}1),5|2)
[ isRa(v) = (si1, (setargreg v d s42))
end)
The environment and choicepoint stacks are considered to be separate stacks in

the memory throughout our discussion, as shown in Figure 2.1.

3.4.3 Permanent Register Domain

Permanent registers are stored in the environment stack whose semantic domain
is specified in Section 3.4.4. The BAM architecture assumes the availability of an
arbitrary (but finite) number of permanent registers.
The permanent register domain, Ry, is defined as
R; = {p0, p1, p2,...pn} forn > 0.
The function domain PermRegVal maps permanent registers to their contents
PermRegVal= R, -+ DW
The initialization operator for the domain PermRegVal is
initpermstate : N —» PermRegVal,
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.. L ifn=0
initpermstate(n) =

{(pz,L),Vz|0<z<n} ifn>0
where n € N is the number of permanent registers to be created. Since permanent
registers exist in an environment, specification of the access and updating operators
of these registers is given in Section 3.4.4 where the semantic domains of environment

and environment stack are specified.

3.4.4 Environment and Environment Stack Domain

An environment contains (a finite number of) permanent register values, address of
the previous active environment and return address for the current predicate. Thus
the environment domain Env is defined as
Env = PermRegVal, x Address x Address.
Consequently the environment stack domain EnvStack is defined as
EnvStack = (Address x Env) )*.
The access and update operators on the domain PermRegVal are defined as
getpermreg : R, — EnvStack ~ DW
getpermreg = Ar.Je.(((hd e){2)i1 1)
and
setpermreg : R, -+ DW — EnvStack — EnvStack
setpermreg = Ar.Av.Xe.(cons ([r — v]((hd €)i2)l1) (¢ €))

3.4.5 Choicepoint and Choicepoint Stack Domain

A choicepoint contains a finite number of argument register values, pointers to the
top of the heap, trail and environment stack when the current choicepoint was
created; value of the register cp when the current choicepoint was created; address
of the previous choicepoint; and address of the next choice associated with the
current choicepoint. Thus the choicepoint domain ChoicePt is defined as
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ChoicePt = DW* x Address x Address x Address x Addressx
Address x Address.
Consequently the choicepoint stack domain ChPtStack is defined as
ChPtStack = (Address x ChoicePt, ).
Let init_b € Address be the initial location of the choicepoint stack.

An operator chpsuffic which maps addr € Address and chpt € ChPtStack to
chpt’ € ChPtStack such that chpt’' is a suffix of chpt and the head of chpt’ is a
mapping of addr to its corresponding choicepoint, is defined as

chpsuffiz:Address -+ ChPtStack -+ ChPtStack;
chpsuffiz= Aa.As.(((hd 8) == (initb, L)) -1
D(((hd s)i1==0) > s
[] chpsuffiz a (8 s)))
This operator may be seen as a multiple pop operation on the choicepoint stack that
pops the stack elements until the top of the stack has the given address.

3.4.6 Heap Domain

The heap contains datawords. Thus the domain Heap is defined as
Heap = (Address x DW,)*
Let init_h € Address be the initial location of the heap.
A heap access operator getheapvalue that maps ¢ € Address, h € Heap to
dataword d € DW,, which is the content of @ in k, is
getheapvalue: Address — Heap - DW ;.
getheapualue = Aa.Ah.(((hd h) == (init.h, 1)) =L
0(((hd R)1 == a) - (hd h)J2
{] (getheapualue a (tl h))))

3.4.7 Trail Domain

The trail contains argument registers that need be unbound upon backtracking.
Thus the argument registers and the heap addresses of the variable they represent
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are stored on the trail stack. The domain Trail is
Trail = (Address x (R, x DW))*
Let init_tr € Address be the initial location of the trail.

The operator trsuffiz maps addr € Address and tr € Trail to &' € Trail such
that ¢r' is a suffix of tr and the head of ¢+’ is 2 mapping of addr to its corresponding
register value pair. It is defined as

trsuffiz:Address — Trail — Trail,
trsuffic= Aa.As.(((hd ) == (inittr, 1)) =L
J(hds)ll==a—s
[ trsuffiz a (# 5)))
This operator may be seen as a multiple pop operation on the trail stack which pops
the trail until the top of the stack has the given address.

3.4.8 Memory State Domain

The internal state of BAM at any given time of execution may be characterized by
the collective state of its registers, heap, environment stack, choicepoint stack and
trail. Hence Memory is

Memory = RegState x Heap x EnvStack x ChPtStack x Trail
BAM instructions use only a subset of the addressing modes as defined in Sec-
tion 2.2.2.1. Thus an addressable entity is an immediate value and is one of the

following.
e immediate value i.e., a dataword
e argument register
e permanent register
e r(h), r(b)
e [R], where R is an addressable entity
o [R+N], where R is an addressable entity and N € N
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Thus the domain Adrable is defined as
Adrable: DW+R, + R, + HB + Indirect + Offset
where HB = {r(h), r(b)}
Indirect = {z | z =[R]}, where R is an addressable entity
Offset = {z | z =[R+N1},
where R is an addressable entity and N € N
getvalue that accesses the value of addressable entity is defined as
getvalue: Adrable > Memory — DW
getvalue = Aa.\m.cases a of
isDW(d) - d
[isRa(d) — getargreg d 5|2
[JisRp(d) — getpermreg d e
[ isHB(d) — getstreg d s}l
[ isIndirect([d]) — getheapvalue (getvalue d m) h
[ isOffset([d+n]) — getheapualue ((getvalue d m)+n) h
end
where m =(s,h,e,c,t).
setvalue that updates the value of addressable entity is defined as
setvalue: Adrable - DW — Memory — Memory
setvalue = Aa.Av.A\m.cases a of
isDW(d) — (s,[d — v]h,e,c,t)
[isRa(d) — ((s41,(setargreg d v s2)),h,e,6,¢)
DisRo(d) — (s,h, (setpermreg d v ¢),c,1)
[isHB(d) — (((setstreg d v s11), 342),h,,6,1
[ isIndirect(d) — setvalue (getvalue d m) v m
[ isOffset([d+n]) — setvalue ((getvalue d m)+n) m
end
where m =(s,h,e,c,1).
The access and update operators specify the addressing modes allowed in BAM.
The input and output to the program are considered to be a sequences of char-
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acter strings. Thus,
Input=String*
Output=String*
The instruction set is denoted by Instr. The program code is defined as follows:
ProgCode = Address — Instr
These initial state register values are described as follows:

e pc: The address of the first executable instruction in the program p € ProgCode
denoted by init_pc € DW.

o e: The address of the first location in the environment stack denoted by
init.e € DW. (init_e, 1) denotes the initialized environment stack.

e b: The address of the first location in the choicepoint stack denoted by init_b €
DW. (init.b, L) denotes the initialized choicepoint stack.

e h: The address of the first location in the heap denoted by init_h € DW.
(init_h, L) denotes the initialized heap.

e tr: The address of the first location in the trail stack denoted by init_tr €
DW. (init_tr, L) denotes the initialized trail.

e hb: Its initial value is init_.h € DW.

3.4.9 BAM Code Execution

A BAM code execution is deemed to have terminated if pc is mapped to one of the
special values success and failure or to a value that points to an address outside the
address area of ProgCode. The execution is said to have successfully terminated if
pc maps to success. It is deemed to be a failure in other cases. Correspondingly the
initial value of the continuation pointer is mapped to success to indicate no code
need be executed upon the return of the first call.

We digress to modify the domain DW to include these special values and corre-
spondingly define the necessary disassembly operators.

34



DW = Tagged+Untagged+Spl
where Spl={success, failure}
The operator gettag on a domain element of DW is defined as
gettag: DW > T,
gettag = As. cases s of

isTagged(d) = cases d of
isDW,(da) = dall
[ isDW(d?) = dill
[ isDW,(df) = df}1
[|isDW,(dp) = dpil

end
[ isUntagged(d) =L
[ isSpl(d) =L
end
The operator getdataval on a domain element of DW is defined as
getdataval : DW - DW
getdataval = )As. cases s of

isTagged(d) = cases d of

isDW,(da) = cases da{2 of
isAtom(dat) = dat
{} isFunct(daf) = daf

end
[ isDWi(di) = di|2
(isDWe(df) = dfi2
[isDWp(dp) = dp|2
end
[ isUntagged(d) = d
[isSpl(d) =d
end

The initialization operator of the domain StRegVal, initstatereg left unspec-
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ified in Section 3.4.1, is defined as a mapping of the state registers R, to their
corresponding initial values.
initstatereg = R, — StRegVal
initstatereg = ((pc, init_pc), (e, init_e), (b, initb), (h, init_h),
(cp, success), (tr, init_tr), (hb, init_hb))
An operator initpgmcode that maps a sequence of instructions to its correspond-
ing function in ProgCode is assumed to be defined.
The memory initialization operator initmem is defined as follows.
initmem : Memory
initmem = (initstatereg, (init_h, L), (init_e, L), (initb, L), (init_tr, 1)).
An element of the domain ProgState, defined as
ProgState : ProgCode x Memory x Input x OQutput,
represents the BAM state along with the current position in the code, the input
consumed and the output produced till that point of program execution. The oper-
ator that initializes a new program state is defined as
initprogstate : Instr® — Input — ProgState.
initprogstate = Ap.)i.(({(initpgmcode p), initstatereg, initmem, i, nil))
Now we return to definition of operators relevant to program execution and
termination. The termination test operator for BAM on a given s € ProgState is
defined as
terminate : ProgState -+ B
terminate((code, mem, in, out)) =
(getregualue pc s) == success — true
[ ((getregualue pc s} == failure — true
[ ((getregvalue pc s} ==1— true
[ false))
where mem = (s, h, se, sc, tr)
An operator that performs the “fetch” operation upon a given program state is
defined as
fetchinstr : ProgState — Instr,
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fetchinstr((code, mem, in, out)) = code (getregualue pc s)
where mem = (s, h, se, sc, tr)
Conventionally, instructions that are targets of a branch or that start a procedure
are attributed a label. A separate instruction label instruction designates such

entry points in BAM code. For example, consider the following pseudo-code of a
typical RISC architecture:

move rl, r2
compare 0, r2, r3

jump_on_not_zero ’zlbl’

'2lbl’ : move r4, r2

Using the style of BAM code, this code segment is written as

move(ri,r2).
compare(0, r2, r3).

jump_on_not_zero(’zlbl’).

label(’z1bl°’).

move(rs, r2).

The label £ail in the instructions does not correspond to a program label. A
transfer of BAM execution to fail results in execution of global failure whose se-
mantics are given by the valuation function for the instruction fail., viz., Z{[fail]
] in the following section.
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An address look-up operator for a given label or procedure instruction instr, on
a code is defined as

fetchaddr : Instr — ProgCode -+ DW
fetchaddr(instr, code) = (instr == fail) — I[[fail]] [| addr
where (code addr) = instr

3.5 Valuation Functions

The semantics of BAM execution model is provided by a valuation function B defined
on an instruction sequence and an input.

B : Instr* — Input — ProgState

B = Ap.\i.S(initprogstate p 1)

The valuation function S maps a program state p to a new program state p’ by
evaluating a sequence of instructions whose first instruction address is in the register
pc.

S : ProgState — ProgState

8§ = Ap.terminate p = p
1S (Z[[fetchinstr p] p)
BAM instructions that are syntactic constructs are distinguished by enclosing them
in [[ II No other semantics are attributed to the usage of this notation.
The valuation function Z maps an instruction ¢ and a program state p to a new

program state p’ by evaluating ¢ with respect to program state p.

T : Instr — ProgState — ProgState
The specification of T for each of the BAM instructions follows. We assume the
definition of an operator incr that maps a register r € Registers, a valued € Z
and a register state s € RegState to a new register state s’ where the value of
the register r is incremented by d. Further, the components of an element of a
product domain are explicitly specified in a where expression to simplify complex
compositions. If the compositions are simple, the disassembly operator | is used.



3.5.1 Procedure Control Flow Instructions

I [[procedure( /) ((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, h, se, sc, tr), f € Funct,
mem' = (¢, h, se, sc, tr),

§ =incr inRy(pc) 1 s

Z[[entry(f, n)]| ((code, mem, in, out)) = ((code, mem’, in, out))
where mem = (s, h, se, s¢, tr), f € Funct and n € N,
mem' = (¢, h, se, sc, tr),
¢ =incr inRy(pc) 1 s

z |Iallocate (n)]] ((code, mem, in, out)) = ((code, mem’, in, out))
where mem = (s, h, se, sc,tr), n € N,
mem' = (8", h, s€, s, tr),
se’ = cons ((addr, (p, et, ct)) se),
addr = (getregvalue inR4(e) s) + 1,
p = initpermstate n,
et = (getregvalue inR,(e) s),
ct = (getreguvalue inR4(cp) s),
§ = incr inRq4(e) (n+2) s,
§" =incr inRy(pc) 1 ¢

¥ [Ideallocate(n)]]((code, mem, in, out)) = ((code, mem’, in, out})
where mem = (s, h, se, sc,tr), n € N,
mem’ = (§", h, s€, s, tr),
se =tls,
¢ = incr inR4(e) (—n—2) s,
§" =incr inRy{pc) 1 ¢
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I[ca11(p)]((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, k, se, sc, tr),
mem' = (3", h, se, sc, tr),
¢ = setregualue inR4(cp) ((getregualue inR4(pc) s) +1) s,
¢ = setregualue inR,(pc) (fetchaddr procedure(p) code) s’

I[[return]|((code, mem, in, out)) = ((code, meny, in, out))
where mem = (s, h, se, sc, tr),
mem' = (8, h, se, sc, tr),

¢ = setregualue inR4(pc) (getregualue inR4(cp) s) s

I [[label(l)]] ((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, h, se, s¢, tr), | € String,
mem' = (¢, h, se, sc, tr),

¢ =incr inRy(pe) 1 s

T [Ijump(l)]] ((code, mem, in, out)) = ((code, mem/, in, out))
where mem = (s, h, se, s¢, tr), | € String
mem' = (¢, h, se, sc, ir),

¢ = setregualue inR,(pc) (fetchaddr label(l) code) s

3.5.2 Conditional Control Flow Instructions

I[[switch(t, 7,11, 12, 13)]|((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, h, se, sc,tr), t € T,
z € Adrable and [1,12,[3 € String
mem’ = (¢, h, se, sc, tr),
¢ = (tvar == gettag (getvalue z mem)) =
setregualue inR4(pc) (fetchaddr 1abel(l1) code) s,
[l ((t == gettag (getvalue z mem)) —
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setregvalue inR,(pc) (fetchaddr label(i2) code) s,
[ setregvalue inR,(pc) (fetchaddr 1abel(l3) code) s)

I[[jump(t, c, z, y, )| ((code, mem, in, out)) = {(code, mem', in, out))
where mem = (s, h, se, sc, tr),
mem’ = (¢', h, se, sc, tr),
§ = (compare (getvalue T mem) (getvalue y mem) t ¢) -
setreguvalue inR4(pc) (fetchaddr 1abel(l) code) s,
| incr inR,(pe) 1 s
The comparison operation, ¢, of values of z,y € Adrable whose tag type is indi-
cated by t as integer, float or untagged, is one of the following: equality, inequality,
<, &, >, 2. We assume this operator is defined.

I{cut(v)][ ((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, h, se, sc, tr), v € Adrable,
mem’ = (8", h, se, 3¢, tr),
§' = setregualue inR,(b) (getvalue v mem) s,
s¢ =chpsuffiz (getvalue v mem) sc,
§" = setregualue inR,(hb) {(hd s¢)]2)]2 ¢,
s" = incr inR,(pc) 1 ¢”

Following are the semantics of the three instances of choicepoint management
instruction.
I choice(1/n,r,1)]((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, h, se, sc, tr), n € N,
mem’' = (5", h, se, sc, tr),
s¢/ = cons (addr, cp) sc,
addr = (getvalue b mem) + 1,
cp = ((regslots r s|2), (getregualue inR4(h) s),
(getregualue inR4(tr) 8), (getregualue inRq(e) s),
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(getregualue inRq(cp) s),

(getvalue b mem), (fetchaddr | code)),
¢ =incr inR4(b) ((length r) +6) s,
¢" = setregualue inR,(hb) (getvalue h mem) &',
8" = incr inR,(pc) 1 ¢

The operator regslots is defined as follows:
regsiots : R," — ArgRegVal - DW*
regslots = Ar.As.((r == nil) — nil,

[} cons (getargreg (hd r) s) (regslots (¢l r) s))

I[[choice(i/n, T, I)]]((code, mem, in, out)) = ({code, mem’, in, out))
where mem = (s, h, se, sc,tr), i€ N, n€ N, i<n,
mem’ = (§", h, se, s¢, tr),
(hd scl{2 = (rl, h,tr,e,cp, b, re),
sc = cons (rl, h,tr,e,cp, b, (fetchaddr [ code)) (t sc),
§ = loadregs r rl s,
¢ =incr inR,(pc) 1 ¢

The operator loadregs is defined as follows.
loadregs: Ry| - DW™ — RegState — RegState
loadregs : Ar. \v.)s.((r = nil) - s,
0((hd 1} = L— true
[} loadregs (¢l 1) (tl v) (setregvalue (hd r) (hd v) 3)))
The list of registers may also contain L to signify an argument register that need
not be restored. The domain of such register lists is denoted as {R4, }" in the above
operator definition.
I [[choice(n/ n,r, l)]] ((code, mem, in, out)) = ((code, mem/, in, out))
where mem = (s, h,se, sc/,tr), n € N,

mem’ = (g, h, se, sc, tr),
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(hd sc¢) = (rl, h,tr,e, cp, b, Te),
sc = (tl sc),

sy = loadregs r rl s,

39 = setregvalue inR4(b) b sy,
83 = setregvalue inR4(hb} h s,
¢ =incr inRq(pc) 1 s3

I [[fail]] ((code, mem, in, out}) = ({code, mem’, in, out))

where mem = (s, h, se, sc, tr),
mem’ = (¢, h, se, sc, tr')
81 = restoreregs ((hd s¢){2)13 tr s,
tr' =trsuffiz ({(hd 3c){2)13 tr,
32 = setregvalue inR4(e) ((hd sc)l2)4 s,
33 = setregvalue inR,(cp) ((hd s¢){2)15 so,
34 = setregualue inRq(h) (getregualue inR4(hb) s;) s3,
¢ = setregualue inRy(pc) ((hd s¢)i2)17 s4

The operator restoreregs is defined as follows.
restoreregs: DW — Trail - RegState
restoreregs = Aa.Mt.As.((a == ((hd t){1)) > s
[ restoreregs a (¢ t) (setregualue ((hd tr){2)1 ((hd tr}i2}i2 5))

I[test(c,t, z,1)]| ((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, h, se, sc, tr),
mem’ = (¢, h, se, sc, tr),
¢’ = (((gettag (getvalue  mem)) ==t) —
((c==eq) =
setregualue inRy(pe) (fetchaddr 1abel(l) code) s
[ incr inR,(pe) 1 )

0((c==1¢) »
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setregualue inR,(pc) (fetchaddr 1abel(l) code) s
[ incr inR4(pc) 1 s))

3.5.3 Unification Instructions

I[[deret(z, y)]}((code, mem, in, out)) = ((code, mem', in, out))
where (s, h, se, sc, tr) = setvalue y (deref (getvalue T mem) mem) mem,
mem’ = (¢, h, se, sc, tr),
¢ =incr inRy(pc) 1 s

The operator deref is defined as
deref : Adrable — Memory - DW
deref = Ad.Am.((gettag (getvalue d m) == tvar) —
((getheapvalue (getdataval (getvalue dm)) b == d) - d
[ deref (getheapvalue (getdataval (getvalue d m)) k) m)
(d)
where m = (s, h, se, sc, tr).
I [[equal(:c, ¥ l)]] ((code, mem, in, out)) = ((code, mem’', in, out))
where mem = (s, h, se, sc, tr),
mem’ = (&', h, se, s¢, tr),
8’ = (getvalue £ mem == getvalue y mem) —
incr inR4(pe) 1 s,
[ setregualue inRy(pc) (fetchaddr 1abel(l) code) s

Tfunify(z,y, 81,22, I)]]((code, mem, in, out)) = ((code, mem”, in, out))
where mem’' = unify z y mem,
mem” = ((mem’ ==1) =
setregualue pc (fetchaddr 1abel(l) code) s,
[ ((iner pe 1 mem’{1), mem'|2, mem’|3, mem' |4, mem'}5)

The values of {1,12 are either any, var or nonvar indicating the tag values of



z,y € Adrable respectively, if known. Their value is any if no information is
known. These values are used to optimize the unification operation. Thus they
are ignored in the semantics of the unify instruction. The unification operator
unify : Adrable -+ Adrable -+ Memory — Memory, maps unification of
two addressable entities given a memory state either to another memory state if
unification succeeds or to L if it fails. The unify operator is defined as follows.
unify = Az Ay m.(
let tz = gettag (getvalue z m),
ty = gettag (getvalue y m),
vz = getdataval (getvalue z m),
vy = getdataval (getvalue y m),
m = (8, h, se, sc, tr))
in ((tz == tvar) A((ty # tvar) V(vz > vy))) —
((¢', h, se, sc, tr")
where ¢ = incr inR,4(tr) 1 (setvalue z (getvalue y m) m){1
tr' = cons ((getregvalue inRq(tx) 38) + 1,
(z, (getvalue z m))) tr
[ ((ty == tvar) = ((¢, h, se, sc, tr'),
where ¢ = incr inR,(tr) 1 (setvalue y (getvalue y m) m)i1,
tr' = cons ((getregualue inRg(tr) s)+1, (z, (getvalue y m))) tr
[ ((tz == tint) \/(tz == tflt) \/(tz == tatm)) =
(vz #vy) =L
im)
[ ((tz == tlst) —»
((ty # tlst) =L
[l (m” where m’ = unify (getheapvalue (getdataval z) h)
(getheapualue {getdataval y) h) m,
m" = unify (getheapualue (getdatavel x) + 1 h)
(getheapualue (getdataval y) +1 h) m),
0 ((tz == tstr) =
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((ty == tstr) oL
[ (unifystr 1 (arity vz) vz vy m))))))))

The operator that iteratively unifies two heap addresses is defined as follows.
unify.str : N - N — Address —+ Address - Memory — Memory |

unify_str = M.Af Az Ay m.((i > j) = m,
Junifystr (i+1)jzy

(unify (getheepualue (z + i) ml2)

(getheapualue (y +1) ml2) m)
I[[trail(z)]|((code, mem, in, out)) = ((code, memn’, in, out))
where mem’ = (¢, mem|2, meml3, meml4, tr'),
tr' = cons ((getregvalue inR,(tr) memll) + 1,
(z, (getvalue z mem))) memls,
¢ =iner inR,y(pc) 1 (incr inR4(tr) 1 memil)

I ﬂmove(z, y)]]((code, mem, in, out)) = {(code, mem”, in, out))
where mem” = ((incr inR,(pc) 1 memn'}1), mem'i2, mem/l3,
mem’ |4, mem'}5),

mem’ = setvalue y (getvalue £ mem) mem

I[[push(d, r, n)]| ((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, h, se, sc, tr),
mem’ = (incr inR,(pc) 1 (incr (getvalue r mem) n) s},
(cons (((getvalue r mem)+1), (getvalue d mem)) h)

se, sc, tr)

VA 'Iadda(d, n, r)]]((code, mem, in, out)) = ((code, mem’', in, out))
where mem = (s, h, se, se, tr),

mem' = (incr inR4(pc) 1 setvalue v
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(incr (getvalue d mem) n) mem)

The pragma instructions contain information that allows better native code trans-
lation. The pad instruction is provided to facilitate double word load and store on
some architectures. These instructions do not contribute to the functionality of the
BAM in any way. The semantics of hash table instructions hash and pair are also
not provided. Their functionality of table look-up and entry specification in the
hash table is assumed. Further, the semantics of arithmetic operation instructions
are not provided as they are evident.

The state, argument and permanent registers in the BAM code generated by the
Aquarius compiler are represented as r(e), r(b), ..., r(0), r(1),... and po, p1, ...
respectively. These are however represented as e, b,..., r0,r1,... and p0, p1, ...,
respectively in the above semantics specification to avoid any possible confusion with
the usage of parentheses for unambiguous representation of function application.
Further, in the BAM code generated, a tagged dataword is denoted as T*V where T
is the tag and V is the data value as opposed to its representation as (T, V) in our

semantics.

3.6 Summary

The theme of this dissertation is partial evaluation of the abstract machine code gen-
erated by an optimizing Prolog compiler. Issues involved in partial evaluation of a
low-level language have not been studied yet, as far as we know. This work attempts
to study partial evaluation of abstract machine code generated by an optimizing Pro-
log compiler with a GFA phase. The primary goal of performing partial evaluation is
to expose opportunities of code optimizations. Consequently, an overview of Prolog
— the language and its execution model — was presented in Section 2.1.1. Partial
evaluation is done of the abstract machine code generated by Aquarius Prolog com-
piler that compiles Prolog to native code via Berkeley Abstract Machine (BAM). A
detailed description of the Berkeley Abstract Machine (BAM) architecture is pre-
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sented. Section 2.2 provides the basic process of Prolog compilation to BAM using
a simple example.

This chapter defines an implementation-independent specification of BAM to
provide the foundation for showing the correctness of these specializations detailed
in Chapter 4. It further provides the specification for the implementation of the
BAM code specializer. The implementation of the specializer provides a basis for
exposing various issues involved in partial evaluation of BAM code.



Chapter 4

Program Specialization

This chapter presents a concise introduction to a program transformation technique
known as program specialization. The goal of this transformation is to improve
program performance. Specialization of high-level language programs such as Lisp,
Prolog, and C has been studied for several years. This dissertation studies program
specialization of a low-level language viz., BAM code.

Program specialization of low-level languages is conceptually similar to that of
high-level languages. However, the difference in the data abstraction and the context
of its usage, viz., as a compiler optimization phase, lead to an entirely different
specialization algorithm and a different set of issues related to the machine model of
the language. As a simple example, high-level language programs have well-defined
program modules such as functions and/or procedures. Such program modules are
typically specialized for certain values of their parameters. Low-level language code
lacks such modularization and needs to be analyzed to identify “modules” along
with their “parameters”. The specialization algorithm must then respect any such
“modularization” in the context of the machine model to discover opportunities for
specialization and affect them. The transformations performed need to be correct in
the context of the machine execution model. These considerations entail a BAM code
specialization algorithm and proof of correctness of the transformations affected.

This chapter presents an algorithm to perform BAM code specialization followed
by the various possible BAM code transformations and a proof of their correctness
using the denotational semantics presented in Chapter 3.
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Section 4.1 gives a brief introduction to program specialization and some ter-
minology. The reasons for perceived opportunities to optimize BAM code using
program specialization (Section 4.1.1) and the structural partitioning of the BAM
code to facilitate specialization (Section 4.2) are presented. Given the partitioning
and denotational semantics of BAM, transformations that result in optimizations
are shown to be correct (Section 4.3). Program specialization is illustrated and
pertinent issues such as choicepoint optimization in the context of BAM code spe-
cialization are discussed with the help of two examples (Section 4.4). This provides
the necessary background to the various issues of BAM code specialization discussed
in the subsequent chapters.

4.1 Introduction

Specializing programs by using the portion of (any possibly known) program input
that remains constant during repeated runs is termed as partial evaluation. This
technique may be used at compile-time to improve program performance. Such
specialization results in a (possibly) new program, called a residue. Stipulating the
program input is termed as input specification. Stipulating the program input that
remains constant across several runs of the program is termed as constant input
specification. Given a program and its constant input specification, performance
of the residue is no worse than that of the original program for any input whose
constant portion is the same as specified by the constant input specification. A
formal characterization of a partial evaluator follows.

Let £ denote a language and P the set of programs written in £. Let V be the
domain of values that expressions of £ may be assigned to. P(V) denotes the power-
domain of V. Let E; : P =+ V = V be the evaluation function corresponding to
the language £. Let S be the set of possible specifications of values in V and
f S = P(V), be the “concretization” function that maps a specification to a
set of values it denotes. For any input specification s € S of program p € P,
(f 8) = vs U vy, where v, € V is the set of values that are constant during repeated
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runs of p, termed as “known” at specialization time or static values, and vg € V is
the set of values “unknown” at specialization time, i.e., non-static values or dynamic
values.

For any program p € P and any input specification s; € S,

Ep(f s)=(f s)
where s, € T is an output specification and (f s,) € P(V), denotes the set of cutput
values. If a program fails to terminate, the output is undefined and is represented
by 1.
A program specializer £ : P =+ S — P is a function such that
Yv € (f s:) ((Bepa) #L= (E; pa) = (B¢ (€ psi) a)), where a = v,Uvy.
The program (£ p s;) is the residue. The above succinctly captures the definition of
program specialization given by Ershov [26], Jones [42] and Ruf [57] but does not
indicate the specialization process that resuits in the residue. Further, the behavior
of the residue is undefined when the program p fails to terminate for an input
specification thus allowing any value to be output by the residue in that case. A
description of the specialization process in general and for BAM code in particular
are discussed later in this chapter.

Note from the above definition of the program specializer that p and its residue
(€ p s;) take different inputs, viz., v, U vq4 and v4 respectively. It is so defined to
emphasize that the output of the residue solely depends on the dynamic part of
the input and that the static values are “hard-wired” into the program to form the
residue. Equivalently, the inputs to the program and the residue may be the same,
viz., v, U vg with an understanding that the residue does not consume the static
input values, v,, during its execution.

A program may contain constructs that evaluate to constant values either de-
pending on static input or independently. Thus, for a program p and an input
specification s;, the set of static values, v, = v,, U v,., where v, is the set of static
values that depend on input static values specified by s; and v, is the set of static
values independent of those specified in ;.

Program specialization involves the following two tasks:

al



e computation of constructs that are completely dependent on static values, v,.

This is referred to as reducing the constructs to “simpler” versions.

e retaining those that depend on the dynamic values, v4. This is referred to as

residualizing the construct to be computed at run-time.

These are accomplished by symbolically executing the program in the context of
static values during which the specializer needs to decide whether the construct can
be reduced or residualized.

Specialization may be performed even if it is only known that an input value
is static but not necessarily the actual input value. The program constructs are
annotated as static or dynamic by a pre-specialization analysis done according to
congruence principle and is known as Binding Time Analysis (BTA) [42]. The
congruence principle states that a program construct is classified as static only
if all its constituents are static. Otherwise, it is classified as dynamic. Program
constructs are reduced or residualized by the specialization phase according to these
annotations. Such a specialization process, during which the reduce/residualize
decision is made based on analysis performed prior to specialization step, is known
as off-line specialization. If the reduce/residualize decision is made based on analysis
done at specialization time when the static values are also available, then it is called
online specialization. Program variable binding information is computed and used
“on the fly”. Online specialization does not involve a pre-specialization analysis
phase.

The specialization may also take advantage of user annotations to help the re-
duce/residualize decisions. Such annotations may be used to provide hints to the
analysis regarding the static/dynamic properties of a variable. If a specializer does
not use user annotations to make these decisions, then it is referred to as an auto-
matic specializer.

If the specializer can specialize itself then it is termed to be self-applicable. Self-
applicability has been an important topic in program specialization and automatic
program generation. Traditionally, Futamura’s three projections [26, 42} for gener-
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ating program specializers, compilers and compiler-compilers leverage on the self-
applicability of the program specializer.

This thesis addresses the issue of generating optimized BAM code using special-
ization during Prolog compilation. In an effort to verify usability of specialization as
a compilation phase in a real-world compiler, every attempt is made to minimize the
time added to compilation time by designing efficient data structures using the C
language. Consequently, the implementation ianguage of the specializer is different
from the language being specialized (BAM code). Hence, self-applicability is not an
issue in this thesis and will not be discussed further.

The mathematical foundations of program specialization have been traced to
Kleene's s-m-n theorem [45]. This theorem states that for any function

f(z1, %2, ... ,Zn, Y1, Y2s - - 1 Ym), there is a computable function sz, z,.....z,}
such that

Siz1.zzem an} (Y11 Y20 - 1 Um) = f(T1, T2, - 1 Tns Y1, Y20+ - - 2 Ym)
forallz),za,... ,Zn, Y1, ¥2:- - - » Y- The function sz, z,,... z,) is referred to as special-
ized version of f for the arguments z,, z,, ... , Z,. Jones [42] provides a chronological
history of the development of the field of program specialization. Program special-
ization has been applied to functional programming languages such as a subset of
Lisp [44] and Scheme [9,19,57], logic programming languages such as Prolog {47,58],
constraint logic programming languages [37] and imperative languages like C [4].
Program specialization has in general been used for high-level languages where both
the data and the control abstraction are much higher than that of the machine
language.

The present work studies partial evaluation of BAM, a low-level abstract ma-
chine with data and control abstraction very close to that of a RISC architecture.
Partial evaluation of BAM described in the following chapters has two fandamental
differences with partial evaluation of a high-level language. Firstly, no source lan-
guage or source program knowledge is assumed or used during partial evaluation of
BAM. Often such information is both available and is used during partial evalua-
tion of high-level languages. As an example, consider Mixtus [58] — an automatic
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partial evaluator of Prolog. It uses predicate parameter information, Prolog execu-
tion semantics that builds a goal stack (GStack in Algorithm 1 in Chapter 2) and
cut placement and existence information along with other information during vari-
ous phases of partial evaluation. The BAM code partial evaluator described herein
assumes no knowledge of Prolog nor has any access to the Prolog sources used to
generate the BAM code being partial evaluated. It does not depend on the GFA
phase which generates the mode/type information regarding the predicates of the
Prolog source. It depends solely on the BAM machine model, a multi-stack ma-
chine, and its instruction semantics. Thus this work demonstrates the compile-time
optimizations achievable by partial evaluation of low-level code.

BAM stacks are tailored to facilitate execution of Prolog-specific features such
as backtracking. This leads to the second difference between partial evaluation of
high-level language and low-level code. The explicit memory and stack manipula-
tions possible using instructions of a low-level machine like BAM, present a different
set of issues to be discussed later. The BAM instruction set facilitates memory ac-
cesses in a manner similar to that of a RISC architecture. Such opportunities in
a high-level language (or even C) are restricted by the type system. We present
the required background for specialization of BAM, outline the BAM specializa-
tion process and show the correctness of the transformations employed during the

specialization process.

4.1.1 Opportunities to specialize BAM Code

Prolog is a dynamic-typed language. BAM has a finite set of data types. Hence each
Prolog variable of a predicate in its corresponding BAM translation can potentially
assume any of the BAM data types at run-time. Consequently, the compiled BAM
code consists of a code stream for each basic BAM data type a Prolog variable can
assume at run-time. Run-time type checks dispatch execution flow to corresponding
code stream depending on the type of the variable.

In other words, the abstract machine code is generic enough to facilitate execu-



tion of code corresponding to data-types that are known only at run-time. Global
Flow Analysis of Prolog programs have been traditionally [2] used to restrict the
generic code to those code streams corresponding only to data types of the values a
variable may be assigned at run-time and not all of the possible ones.

Abstract interpretation (AI) based GFA [20,21] of Prolog programs was shown
to provide a means for inference of predicate variable run-time data type informa-
tion that may be used to generate optimized code [65,67,71] or less generic code.
The basic methodology employed in Al-based GFA is to map the program value do-
main to an abstract domain and to analyze/execute the program over the abstract
domain instead of the value domain. Several different abstract domains along with
corresponding abstract execution and analysis algorithms for pure logic programs
and Prolog programs have been proposed for mode, type and data dependence anal-
yses [10,24,53,66]. Getzinger (29] presents a taxonomy of several domains and
analyses algorithms. Abstract machine code streams generated for each predicate
are then restricted to those predicate variable data types inferred by the GFA al-
gorithm. Similarly, run-time checks are also reduced with this information. Thus,
code that handles run-time data types which a variable is known not to have are op-
timized away. Al-based GFA has been used in this manner to improve code quality
and speed-up the resulting executable.

We propose that performing partial evaluation or program specialization at
compile-time exposes opportunities for further optimizations. Figure 4.1 shows two
options for performing PE during the compilation phases of the Aquarius compiler.
If performed on Prolog source as a pre-GFA phase, PE can result in inference of
more specific types by the GFA whenever possible. PE may also be performed as a
post-GFA phase. This work focuses on further optimizations that can be achieved
by a post-GFA partial evaluation.

As pointed out in Section 4.1 program invariants that depend on the input
static values, v,, and that are independent of these, u,. are used during program
specialization. BAM code specialization done here is intended to be used as a
compilation phase. It does not require any explicit input specification. Thus v,,
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= ¢. Only the static values uncovered during partial evaluation are used by the
process. Thus the partial evaluation of BAM code done here is independent of the
input static values and of any user annotations. It is automatic.

An alternate view may be taken of the partial evaluation described in this thesis.
As explained in Section 4.1, a pre-specialization analysis step typically annotates the
program to facilitate the specialization process. Traditionally, Binding Time Analy-
sis (BTA) is used to annotate the program constructs. For the PE process described
here, we may view the GFA of the Prolog source as a pre-specialization analysis.
The process is then guided by the results of the analysis. The Aquarius compiler
supports several user annotations that are may be used by the GFA algorithm to
increase the granularity of the deduced data types [35]. The resulting BAM code
is thus restricted to code streams for possibly lesser number of data types of the
predicate variables of a given program. Partial execution specializes BAM code for
these data types. As the language on which GFA is performed is different from that
on which PE is performed, the usage of the analysis information in the PE is not di-
rectly evident. Thus it may be argued the specialization process is not purely online.
However, since the reduce/residualize decision is made at PE-time (as explained in
Chapter 5), we consider it to be online partial execution.

WAM, as mentioned briefly in Chapter 2 is the precursor to BAM. It is also the
fundamental abstract machine for several popular Prolog compilers and interpreters
such as SICStus Prolog {32] and Quintus Prolog [1]. However, the instruction set
of WAM consists of complex or coarse-grained instructions that provide little op-
portunity for specialization. Several efforts were made to create opportunities for
specialization to improve the performance of compiled Prolog by “extending” or
“specializing” WAM instructions. SEPIA [51,52], SICStus Prolog [12] and the spe-
cial purpose instruction set of Quintus Prolog are some of the many realizations of
such extensions. However, the finer-grained RISC-like instruction set of BAM offers
greater specialization opportunities as will be discussed in Section 4.4.

Partial evaluation of BAM code at compile-time has the following potential ben-
efits:
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e traditional optimizations such as dead-code and dead-check elimination, ex-
pression evaluation and constant propagation are done automatically. Ruf’s
work [57] on online partial evaluation of a substantial subset of Scheme ar-
rives at a similar conclusion as well in the context of functional programming
languages.

e these optimizations/transformations, in turn, enable further back-end opti-

mizations.

It is generally recognized [7] that the above mentioned traditional optimizations
are based on partial evaluation. However, there seems little online partial evalu-
ation effort during abstract machine based compilation — particularly to generate
optimized code. More specifically, it has not been used to compile high-level, dy-
namically typed logic programming languages like Prolog. Bulyonkov (11] proposes
an algorithm for performing polyvariant partial evaluation for programs written in
a low level language much simpler than BAM. Thus the focus of the present work is
to investigate the various issues involved in optimizing abstract machine code using
partial evaluation.

The definition of program specialization given in Section 4.1 does not specify the
specialization process. Such a process for BAM code specialization is discussed in
the following section.

4.2 Overview of BAM Code Specialization

Most specializers symbolically execute the program with the available static val-
ues and transform the program constructs to simpler equivalents. The constructs
of a program are evaluated in the context of partial knowledge. As the constructs
of BAM code are instructions and instruction evaluation is usually known as in-
struction execution, we refer to the process of specialization of BAM code as partial
ezecution(PE). Note that such a specialization process consists of two phases; first
symbolic execution in which the program is executed with available static values;
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second code transformation in which program constructs are transformed to less
expensive equivalents.

Program execution involves a series of transitions from one computation (or ex-
ecution) state to another. Syntactic constructs in program source corresponding to
these computation states are referred to as program points. Further, the state of
program execution can be meaningfully comprehended at these points. The compu-
tation state at a program point is referred to as a program state. Syntactic structures
such as functions, procedures and predicates in a program are designated as pro-
gram points during execution of high-level language programs. Unlike high-level
languages, BAM code has no pre-defined syntactic structure. Any sequence of BAM
instructions is a syntactically legal BAM program. A structure is provided to a
BAM instruction sequence by partitioning it into a control flow graph (CFG) [2]
of basic blocks. Section 4.2.1 discusses the semantics of CFG representation. Such
a partitioning facilitates characterization of basic block entry points as program
points.

4.2.1 Partitioning BAM Code into CFG

A basic block is conventionally defined as “a sequence of (zero or more) instructions
with no branch instructions, except perhaps the last instruction, and no branch
targets or labels, except perhaps at the first instruction” [72] (known as the leader
of the block). Thus a basic block has a single control flow entry point and a single
control flow exit point. A block entry point represented by the unique block label is
a program point. A CFG representation of a given BAM code is a graph with basic
blocks as nodes and with edges between these nodes representing the program'’s
control flow. Each basic block has a unique number associated with it.

In a conventional CFG, an edge between two basic blocks denotes a transfer
of control from the predecessor to its successor node. Two or more out-edges of a
node denote transfer of control from the predecessor to one of the successors. These
edge semantics capture the control flow due to conventional branch instructions
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of three-address code [2]. The BAM instruction set has several of such branch
instructions. However, choice/3 and £ail/0 instructions do not have conventional

branch instruction semantics. Further, the CFG does not explicitly represent the
control flow transfer due to call/i and return/0. Thus, an edge in the CFG

of a BAM code may either represent a conventional or a BAM-specific branching
instruction.

The branching or flow change instructions of BAM are classified into the following
categories based on the way they affect the control flow and the information they

create and access.

1.

Regular flow change instructions:

The instructions equal/3, jump/1, jump/5, jump_ind/1, switch/3, switch/5
and test/4 either change the control flow to an address label that is an explicit
operand or to the next instruction. None of these instructions creates or saves
information to facilitate return of the control flow to a following block at a
later program execution point. These are similar to the conventional branch

instructions.

. Procedural flow change instructions:

The instructions call/1 and return/0 create and access data not explicitly
present as an instruction operand. The control flow changes are same as the
conventional stack-based procedure calls [2]. The flow change target is an
explicit operand of call/1 instruction. The return/0 instruction returns the
control flow to the following block in accordance with the information stored

on the environment stack by the immediately preceding call/1 instruction.

Choicepoint flow change instructions:

The choice/3 instructions create and access data that are both explicitly
present as instruction operands and are on the choicepoint stack. The control
falls through to the basic block containing the next instruction but can return
to the current biock to go through the alternate path as indicated by the data
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created. Thus a block with a choice/3 instruction has two edges - a fall
through edge and a retry edge.

4. Backtracking instruction:
The instruction £ail/0 accesses choicepoint stack data and has no explicit
operands specified. Execution of this instruction sets the control flow to a
basic block determined at run-time. Thus a basic block with fail/0 as last

instruction has no successors.

The out-edge semantics of basic blocks with procedural flow change instructions
can be illustrated by an example BAM code. Instead of presenting an arbitrary BAM
code sequence we use a simple Prolog example and present BAM code generated
during its compilation. This will also provide an opportunity to relate program
points in the BAM code with those of the Prolog program for the purposes of
comprehension. Consider the program sample.pl in Figure 4.2 whose BAM code is
shown as a CFG in Figure 4.3.

main :- p(X),q(X).

p(X) :- r(X). q3).
p(X) :- s(X). r(3).

s(4).

Figure 4.2: Program sample.pl

Edges out of nodes 6, 10 and 14 are examples of regular flow control change.
Control flow transfer occurs exactly along one of the edges. The control transfer
occurring due to call(p/1) instruction in block 0 to block 2 is not represented by an
edge. Similarly the control transfer back to block 1 due to return instruction either
in in block 13 or 17 is also not explicitly shown as an edge. Such transfer of control
due to call/1 and return/0 might occur at various program points. The location
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of control transfer due to procedure/1 can be uniquely determined by its operand.
Similarly, the return address is available in the continuation pointer cp. Hence,
successors of blocks with call/1 and return/0 instructions are not represented in
the CFG explicitly. Consequently, a basic block with a call/1 instruction has only
one successor — the block executed upon returning from the called procedure. The
basic block with return/0 instruction has no successors.

The edges out of blocks 2 and 4 in Figure 4.3 are examples of control flow change
due to choice/3 instruction. Exactly two edges represent control flow. The first
one denotes flow control to the biock beginning with the instruction following the
choice/3 instruction in the code and the second to the block whose leader has the
label specified as alternate choice in the choice/3 instruction. Thus the control
flow along the edges out of a block with choice/3 instruction are not necessarily
mutually exclusive for a given set of register values unlike the case of the out-edges
of blocks with regular flow control instructions. The control might return to flow
through the alternate edge.

The instruction fail/0 that triggers control flow to backtrack is represented in
a basic block by itself as shown in Figure 4.3. This block has no successors.

4.2.2 Polyvariant Specialization of BAM Code

With the description of a partitioning of given BAM code, we proceed to describe
the process of its partial execution. This is done by traversing the basic blocks
of the CFG starting at the program entry point. Recall that a compiled Prolog
program has only one designated entry point. Instructions in each basic block are
executed in the order they occur by building datawords in the registers and on the
BAM stacks. However, at PE-time, the datawords built might be incomplete as only
their data tags are known. The corresponding data values are usually known only
at run-time. Thus the BAM code execution is performed with partial datawords
only. During partial execution, if the direction of control flow due to a regular flow
change instruction is not decidable, the CFG is traversed depth-first along each



of the mutually exclusive edges. BAM memory is constructed along each of the
ensuing paths. Such traversal is termed as speculative traversal since the result of
the condition in the flow change instruction is assumed to hold along the respective
paths. Opportunities to transform instructions are exposed and utilized during
partial execution to result in basic block residues.

A basic block may lie on more than one of the traversal paths of partial execution.
Partial execution of such a block might have to be performed with respect to different
partial information along each of these traversal paths. This might result in different
residues for the same block. Such a specialization process, where multiple specialized
versions of code at program points is generated, is known as polyvariant partial
evaluation [11,42].

Performing the above partial execution process naively will often lead to non-
termination of the process and possible code explosion [39,41]. Non-termination
occurs due to repeated traversal of the same basic blocks. Such repeated traversal
also results in code explosion as the process yields the same residue for each of the
block partial executions. Criteria to recognize such attempts to partial execution
of blocks previously traversed are required to correctly terminate the PE process as
well as to limit the generated residue.

Partial execution, as mentioned earlier, involves transformations of instructions
whenever possible. A very common transformation involves replacing an instruction
that transfers control flow to a program point (such as a procedure/function/predicate
call) with an instance of the code corresponding to the program point. Such a trans-
formation is called unfolding [50] at program points. Non-termination of the partial
execution can result from repeated unfolding of directly or indirectly recursive pro-
cedures. Even if the procedures are not recursive, naive unfolding might result in
code explosion. Criteria to recognize such attempts to perform repeated unfolding
are required to let the PE process terminate and limit the generated residue.

Consider a loop in the BAM code. Partial execution of a loop whose upper
bound is known at compiler-time could alse lead to code explosion. This is similar

to problems ercountered in loop unrolling [72] performed during conventional com-
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piler optimizations. Criteria to prune the depth to which a loop may profitably be
unrolled are required to minimize the code explosion.

In essence, criteria to decide whether partial execution may proceed further at
a program point or not is crucial both to the partial execution termination and to
avoid needless code explosion. Such a criteria allow specialization to occur only a
finite number of times at any given program point. Consequently, at each program
point, several of its versions may be created each corresponding to the repeated but
finite partial executions that specialize the program point to the set of static values.

Such criteria make use of the results of partial execution of program units (basic
blocks) that are recorded. This technique of recording the results is usually referred
to as caching or tabling. The criteria help in deciding whether to proceed with
PE of a basic biock or a previously computed specialization use a previous result.
Chapter 6 discusses the issues relating to the criteria used in this work.

Traditionally, the following three steps are used to perform polyvariant program
specialization irrespective of the language [39,42].

1. Obtain a description of all computation states reachable during program exe-
cution with the available variable values. The variable values may be available
as invariant inputs known at specialization time or run-time invariants exposed

at specialization time.

2. Restrict these computation states to those reachable from the entry point of
the program being specialized. Also incorporate the known data into these
states to yield possibly several specialized versions of the program’s control

points.
3. Optimize the residue further using traditional optimizations to yield a residue.

4.2.2.1 Residue Generation During Partial Execution

Partial execution of BAM code outlined in the previous section may be viewed as

involving a series of transitions from one computation state to another. A state
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transition occurs due to partial execution of one instruction. The BAM registers
and memory built with (possibly) partial datawords, constitutes the computation
state. PE of an instruction transitions a given computation state to a new one. The
two states, viz., one transitioned from and the one transitioned to are abstract rep-
resentations of the corresponding states resulting from execution of the instruction.
The run-time computation state data values are abstracted to their data tags in the
corresponding PE-time computation state. The cumulative state transitions due to
partial execution of instructions in a basic block are referred to as block state transi-
tions. Correspondingly the cumulative state transitions due to partial execution of
instructions immediately after a call/1 and a corresponding return/0 instruction
are referred to as procedure state transitions. Instructions to which execution control
transfers are usually referred to as targets. Leaders of all basic blocks are considered
as program points during partial execution of BAM code. The computation state
at the program point is the memory state of BAM. Thus, PE of the basic block at
a given program point is performed in the context of its memory state. This deci-
sion to perform the PE of a block or not, is made at PE-time based on the criteria
detailed in Chapter 6.

Partial execution of basic block instructions in the context of the current memory
state and their transformation to simpler instructions whenever possible results in
a residue. Residues of all basic blocks of the CFG are thus generated for all the
program states possible at all run-time entries of the blocks. PE of a basic block
is performed if its residue for the current memory state was not generated earlier.
Additionally, as a procedure entry may also be a program point, PE of the procedure
entry basic block is performed if the residue of the procedure for the current memory
state was not generated earlier.

As mentioned earlier, the results of PE of each basic block are recorded. To check
whether PE of a block was performed earlier for a given memory state, the memory
state and the resulting residue need to be recorded after each PE of a block. This
means that a block is “parameterized” by a memory state. It may be noted that
the granularity of data accesses by most of the BAM instructions is a dataword.
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All such accesses are done either via argument registers or permanent registers.
Further the architecture specification assumes that all instruction operands to be
dereferenced, except those of the instruction deref/2 [67]. Thus execution of the
instructions in a basic block are characterized by contents and accesses made by
the registers in the block. In other words, the memory state at the end of the
PE of a basic block reflects changes due PE of the block instructions only while
the rest of the memory areas remain the same. Consequently, a block need not
be parameterized by a memory state it executes in. Instead, it is sufficient to
parameterize the block with the argument and permanent registers live at that
program point. Such registers are referred to as reference registers. Similarly, to
answer the question “Is a residue generated for the block at current program point
given the context of current memory state?”, it is sufficient to check if PE of the
block was performed for the current reference register contents instead of the whole
memory state. Additional analysis of instructions with larger data access granuiarity
allows augmenting reference registers with other instruction operands, if needed, to
parameterize the block. This is illustrated in Section 4.4.2.

The above discussion provides a background for various issues that need be
addressed while performing partial execution of BAM code. We now outline an
algorithm to perform partial execution of the CFG by iterative depth-first traversal
in Algorithm 2. The goal is to provide details of the process of partial execution of
BAM code using the algorithm.

Algorithm 2 Empirical Partial Execution Algorithm
1: Perform depth-first traversal of the CFG.
2: for all basic blocks bb of the CFG do
3:  if no residue for bb with respect to current memory state exists then
Partial Execute bb to get a residue, bby,,.
else
Let bb,., be the residue of bb.
end if
Record the current control flow path from parent of bb to bb,., for code gen-
eration.
9: end for

Lol B A
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The test for a previous partial execution of a basic block and a resulting residue
is done at Step 3 of the algorithm. This is referred to as version check. As explained
earlier, since a basic block may be parameterized with reference registers, the version
check tests if a residue for the block was previously generated for static reference
registers. This test ensures that code explosion and non-termination do not occur.
The version check is described in Chapter 6.

The amount of residue generated during the execution of this partial execution
algorithm depends on the size of static value domain of the reference registers at PE-
time. We show that this domain is indeed finitely small within the PE framework
described above.

There are a finite number of registers in a given basic block. At PE-time, each of
these registers may contain dataword whose datatag is one of the finite set {tvar,
tint, tpos, tflt, tstr, tneg, tatm, tlst}. Thus even if one residue for each
of the registers with each of these datatags were generated, only a finite number of
residues for a block are generated. Consequently, the number of residues generated
during the whole process of partial execution is finite and the partial execution
process is will terminate. An algorithm to optimize the number of reference registers
used for version check is discussed in Chapter 5. Further the reasons for termination
given here are in concurrence with bounded static variable conditions laid out by

Glenstrup and Jones [30] and Holst [38].

4.2.2.2 Consolidation of Residue

The BAM code partial execution outlined above generates residues of the basic
blocks along all possible run-time CFG paths. All such run-time paths traversed
during partial execution are recorded. The residues generated are consolidated to
yield an optimized version of the BAM code on which PE was performed. This is
done after the completion of partial execution. It involves adjustment of control flow
targets to residues instead of the original basic blocks. Further, trivial transition
eliminations such as removal of unconditional jumps to a following instruction are
also affected. Issues relating to the formation of a run-time path during partial
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execution, introducing a residue into the path, code generation corresponding to

a given run-time path and related optimizations done are discussed in detail in
Chapter 7.

4.3 Specialization of Instructions

Transforming instructions of a basic block during its partial execution results in a
residue. If two different instructions I; and I, transform a given memory state, M, to
the same memory state M’, then the instructions are transformable to one another
in the code in the context of the memory state M. If the transformed instructions
execute in lesser number of cycles than the original instructions, then the residue
may be expected to execute more efficiently. The most important criterion for any
transformation is to ensure that the program output remains the same as that of the
original. Hence any possible instruction transformation should be ensured to be cor-
rect. The memory state transformations done by all BAM instructions are specified
by the denotational semantics of BAM (Chapter 3). Using the denotational se-
mantics specification, the correctness of all instruction transformations done during
partial execution is shown in Section 4.3.

As a first step towards showing correctness of instruction transformations, the
following classification of registers that occur in a basic block is performed.

If a register content has known datatags or a known dataword (i.e., both datatag
and datavalue) at partial execution time, then the register is termed as static register.
A static register is called either tag-static or data-static to signify the knowledge of
tag or complete datavalues (i.e., datatag and datavalue). Registers whose tag values
or dataword values are known only at execution time are called as dynamic registers.

As specified in the previous section, an instruction or a sequence of instructions
maps (or transforms) a memory state to another. Let p € ProgState denote a
memory state during the execution of a sequence of BAM instructions. Let instr
be a sequence of one or more instructions to be executed next. Let instr mapptoa

memory state p’ € ProgState. If a sequence of one or more instructions instr’ also
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maps p to ¢ then instr and instr’ are termed equivalent instructions. Thus the
sequence instr may be replaced with instr’ in a code fragment containing instr
provided the program state is p prior to the execution of instr’.

We now present instructions and their equivalents specialized for partially known
memory/operand contents represented by the current program state p. We show the
equivalence of the instructions and their specialized versions within the denotational
semantics framework presented above. Thus a foundation is laid out for showing
that the partial execution methodology presented is correct.

We introduce a no-operation instruction nop similar to that found in several pro-
cessor architectures. The execution of this instruction has no effect on the memory
state except incrementing the program counter pc. Its semantics are

I [[nop]] ((code, mem, in, out)) = ((code, mem/, in, out))
where mem = (s, h, se, sc, tr),
mem’ = (¢, h, se, s¢, tr),
¢ = (incr inR4(pc) 1 s)

Correctness is shown for only those instructions that present an opportunity to
be transformed.

4.3.1 Specialization of Conditional Control Flow Instruc-
tions

As shown below, it is often possible to use the tag information of a register value
to eliminate redundant tests and reduce the conditional control flow instructions to
unconditional jumps or eliminate them altogether.

Consider the valuation function of switch/5 instruction given in Section 3.5.2.
This three-way branch instruction depends on the tag information of the addressable
entity £ available from program state p = (code, mem, in, out). The value of z may
either be static or dynamic. In case of a static z, the equivalent instructions for the

three cases are as follows:
Case 1. tag of z known to be tvar.
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Case 2.

Case 3.

This implies that the condition (tvar == gettag (getvalue T mem)) is true

and the semantics reduce to
I IIsvitch(t, z,11,12, 13)]] ((code, mem, in, out)) = ((code, mem’', in, out))
where mem = (s, h, se, sc, tr),
t € T, z € Adrable and 11, 2,3 € String

mem’ = (¢, h, se, sc, tr),

3 = (setregualue inR,(pc) (fetchaddr 1abel(l1) code) s)
The semantics of the instruction jump(lf) are exactly the same as above.
Thus the switch/S instruction is equivalent to jump/1 instruction. This
unconditional jump is a simpler instruction involving no tag comparison

unlike the original switch/5 instruction.

tag of z is as specified by ¢.
This implies that the condition (t = gettag (getvalue z mem)) is true and
the semantics reduce to
I{lswitch(t, z, 11,12, 3)])((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, h, se, se, tr},
t e T, z € Adrable and [1, /2,13 € String
mem’ = (¢, h, se, se, tr),

§' = (setregualue inR4(pc) (fetchaddr 1abel(l2) code) s).

This is equivalent to the semantics of the instruction jump(l2).

tag of z is neither tvar nor as specified by ¢. The semantics reduce to

Iﬁsvitch(t, z,l1,12, l3)I] ((code, mem, in, out)) = ((code, mem’, in, out)}
where mem = (s, h, se, sc, tr),
t €T, z € Adrable and [1,[2,[3 € String
mem’ = (¢, h, se, sc, tr),

¢ = (setregualue inR,(pc) (fetchaddr 1abel(i3) code) 5)

This is equivalent to the semantics of the instruction jump(l$).
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In each case, the evaluation function reduces to a jump/1 to the appropriate
label. Thus with a tag-static value switch/5 instruction is equivalent to jump/1 in-
struction. In case of a dynamic addressable entity, the switch/5 instruction remains
unchanged.

Next consider the valuation function for test/4 instruction given in Section 3.5.2.
This is a two-way branch instruction — depending on equality or inequality as spec-
ified by eq or ne - of the tag of z and a given tag t. If the addressable entity z is
static, the teat/4 instruction may be simplified as follows.

Case 1. If the tag of z is the same as ¢ and c is specified as eq the semantics of

test/4 reduce to

VA [[test(c, t, T, I)]] ((code, mem, in, out)) = ((code, mem’, in, out))
where mem = (s, h, se, sc, tr},
mem’ = (¢, h, se, sc, tr),

§' = setregualue inR,(pc) (fetchaddr 1abel(l) code) s

This is equivalent to the semantics of the instruction jump(l).

Case 2. If the tag of z is the same as ¢ and ¢ is specified as ne the semantics of

test/4 reduce to

II[test(c, t,z, I)]] ((code, mem, in, out)) = {(code, mem', in, out))
where mem = (s, h, se, sc, ir),
mem' = (¢, h, se, s, tr),

¢ = incr inR4(pe) 1 s))

This is exactly the same semar:ics as those of the nop instruction indicating
that the execution of text/4 in the current program state is redundant and
thus may be replaced with a nop.

Case 3. If the tag of z is different from ¢ and c is specified as eq the semantics of
test/4 reduce to that of nop.



procedure(pred/2) .
...Argument dereferencing instructionms...
choice(1/4,ArgReglstl,1(pred/2,2)).
...Head unifications and body instructioms...
return.

label(l(pred/2,2)).
choice(2/4,ArgReglst2,1(pred/2,3)).
...Head unifications and body imstructions..
return.

label(1(pred/2,3)).
choice(3/4,ArgRegLst3,1(pred/2,4)).
...Head unifications and body instructioms...
return.

label(1(pred/2,4)).
choice(4/4,ArgReglst4,fail).
...Head unifications and body imstructioms...
jump/1.

Figure 4.4: Schematic of choicepoint creation in BAM

Case 4. If the tag of z is different from ¢ and c is specified as ne the semantics of

test/4 reduce to that of jump(l).

Similarly, it may be shown that the semantics of jump/5 reduce to those of
jump/1 or to nop with data-static values of the operands z and y.

4.3.2 Specialization of Choicepoint Instructions

Specializing choicepoint instructions by partial execution may reduce (or even elim-
inate) the number of choicepoints created at execution time. Here we discuss the
methodology for specializing choicepoint instructions that will serve as a background
for the choicepoint optimization detailed later.

First, a brief review of how choicepoint creation code is generated by the Aquarius
Prolog compiler is in order. Suppose a predicate pred/2 consists of four clauses and
each of these clauses is compiled to BAM code with labels, say, 1(pred/2,2),
1(pred/2,3), and 1(pred/2,4) respectively, as shown in Figure 4.4. A schematic
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of this BAM code partitioned as CFG is shown in Figure 4.5.

The choice/3 instruction in basic block A creates a choicepoint which con-
tains the address of next alternative to be tried, i.e., address of the instruction
label(1(pred/2,2)), along with the argument register values given in ArgRegLst1.
First, the control flow proceeds along path P, . If the execution fails, the control flow
enters block B and the choice/3 instruction in B restores the argument registers
listed in ArgRegLst2 from the choicepoint. It also updates the next alternative to

A

choice(l/4,ArgRegLstl, l(pred/2,2)).

P 1

B
label (1(pred/2,2)).
choice(2/4,ArgRegLst2,1(pred/2,3)).

C

label(l(pred/2,3)).
choice(3/4,ArgRegLst3, l{pred/2.4).

L

Pc

label(l{pred/2,4)).
choice(4/4,ArgRegLst4, fail).

Pp

fail.

Figure 4.5: Schematic CFG of a predicate pred/2 with four alternate choices

try with the address of the instruction label(1(pred/2,3)). Execution proceeds
along the edge Pgp. The rest of the choices of pred/2 are attempted similarly if
the current choice is a failure. The choice/3 instruction in the last alternative D
restores the argument registers to those listed in ArgReglst4 from the choicepoint

T4



and pops the choicepoint off the choicepoint stack. If the last alternative fails, the
call pred/2 fails.

Given the static register information at the entry of procedure(pred/2), sup-
pose partial execution reveals that execution along the path P¢ fails. Then the choi-
cepoint instruction in the code block with label 1 (pred/2,2) may be transformed to
bypass block with label 1(pred/2,3). In other words, choice(2/4, ArgRegLst2,
1(pred/2,3)) in block B, can be transformed to choice(2/4, ArgRegLst3, 1(p-
red/2,4)). The correctness of this transformation may be shown using the deno-
tational semantics of choice/3 and fail/0 instructions as follows.

Let mem be the memory state at the time of entry into block A and b, and h, be
the values of b and h. The memory state at the exit of block A results from applica-
tion of valuation function of choice(1/n, r,!) specified in section 3.5.2 to the memory
state mem. The register hb contains h, at the exit of A. Let by be the value of b after
the choicepoint is created by the instruction choice(1/4,Arglst1,1(pred/2,2)).
Let hy, cpw, @ and try be the values of h, cp, e and tr respectively at the exit
of block A. Hence (hd sc), which represents the top of choicepoint stack, is (by,
{ArgRegLst1, hy, try, €y, Cpy, by, addr_pred_2_2) where addr_pred 2.2 = fetchaddr
1(pred/2,2)) code at the entry of block B.

The top of choicepoint stack at the exit of B i.e., entry of block C is

(bw, ((ArgRegLst1), by, try, €y, Cpy, by, addr_pred 2_3),
where addr_pred.2_3) = fetchaddr 1(pred/2,3) code and (ArgRegLst1) represents
the contents of the argument registers in ArgRegLst1. Further, the registers listed in
ArgRegLst2 have the values restored from ArgRegLst1 that were stored in the choi-
cepoint. The register pc has the address of the instruction following the choice/3
instruction in block B. Now, suppose it was revealed that partial execution exe-
cutes £ail/0 along the each of the paths on P¢. This implies that execution along
the path Pc fails and partial execution of fail instruction restores the memory
state to the correct state. Let mem, be the memory state before the execution of
this fail instruction. State transformation of memory due to execution of fail
may be computed by applying its valuation function (code, mems, in,out), where
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code € ProcCode is the BAM code on which partial execution is being performed,
in and out are its input and output.
ZI[[£ai1])((code, memy, in, out)) = ((code, mem,, in, out))
where mem, = (s, h, se, sc, tr),
mem, = (¢, h, se, sc, tr')
81 = restoreregs tr, ir s,
tr' =trsuffic try tr,
3y = getregvalue inR,(e) ey 3y,
33 = setregualue inRy(cp) cpy 32,
84 = setregualue inR4(h) b, s3,
& = setregualue inR,(pc) addr_pred 2 3 s,

Evidently, the valuation function of fail maps mem; to mem, wherein the state
registers e, tr, cp are restored from the top of the choicepoint stack.

Now partial execution proceeds to block C wherein PE of instruction choice(3/4,
ArgReglst3, 1(pred/2,4)) transforms mem, as specified by the following valuation
function:

A [Ichoice(3/4, ArgRegLst3, 1(pred/2,4)) II ((code, mem,, in, out)) =
((code, memy, in, out))
where mem, = (s, h, se, s¢, tr),
memyq = (5", h, se, sc, tr),
sc = cons ((ArgRegLst1), by, try, ey, Cpy, by, addr_pred 2 4) (¢ sc),
¢’ = loadregs r (ArgRegLstl) s,
§" =incr inR,(pc) 1 ¢

Knowing that partial execution fails along P fails, given mem,, the instruc-
tion choice(2/4, ArgRegLst2,1(pred/2,3)) may be transformed to choice(2/4,
ArgRegist3,1(pred/2,4)) as explained above. The memory state transformation
of mem, done by this transformed instruction is as follows:

ZI[[choice(2/3, ArgRegLst3, 1(pred/2, 4)) ] ((code, mems, in, out)) =
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((code, mem, in, out)}
where mem, = (s, h, se, sc, tr),
mem' = (s, h, se, s, tr),
s¢ = cons ((ArgregLst1), hy, tTy, @, CPy, by, addr_pred 2 4) (tl sc),
s =loadregs r rl s,
§" =incr inRy(pe) 1 &'

mem' is exactly the same as memy. Hence the transformation is correct. This
transformation renders block C to be dead-code. This type of choicepoint special-
ization may be performed if the fall-through path following a choicepoint update
instruction may be shown to fail during partial execution of the BAM code. The
implementation of the associated analysis is detailed in Section 6.4.

Two special cases of this optimization occur. The first is when all alternatives to
the first choice can be shown to fail at PE time but the first choice can not be shown
to fail. In Figure 4.5, it may be shown that partial execution fails along Pg, P¢ and
Pp, but not along P4. In such a case the choicepoint creation itself may be inhibited
as shown in Section 4.4.2. The second case, when it may be shown that partial
execution fails along P4, an entirely different kind of choicepoint transformation is
done (Section 6.4). The correctness of these transformations follows from the proof
of the general case given above.

The basic idea behind choicepoint optimization is to avoid creation and/or ma-
nipulation of a choicepoint with retry addresses that fail. Choicepoint optimization
can save the time of manipulation as well as attempting to execute code on paths
known to fail. Also in programs that can generate exponential number of choice-
points, this optimization can result in reducing potential swapping problems.

4.3.3 Specialization of Unification Instructions

Using static registers, some unification instructions may be specialized as follows.
The semantics of deref/2 instruction are specified in Section 3.5.3. The follow-
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ing possibilities exit for specializing this instruction depending on the compile-time
information available.

Case 1.

Case 2.

T is tag-static,  and y refer to the same register and z has a tag other than

tvar.
The semantics of deref/2 reduce to

ZI[[deret(z, z)] ((code, mem, in, out)) = ((code, mem', in, out))
where (s, h, se, sc, tr) = setvalue z ((getvalue z mem)) mem,
mem’ = (¢, h, se, sc, tr),
¢ =incr inR4(pc) 1 s
since the condition (gettag (getvalue z m) == tvar) in the deref operator
evaluates to false thus evaluating deref (getvalue z mem) mem to (getvalue z
mem) which in turn, evaluates to the contents of x which are re-mapped to
= by the expression setvalue z ((getvalue = mem)) mem. In other words,
the content of z is re-mapped to itself - a vacuous operation. Thus the

semantics reduce to

I{deret(z, )]} ((code, mem, in, out)) = ((code, mem', in, out))
where mem = (s, h, se, sc, tr)
mem’ = (¢, h, se, se, tr),
' = incr inR,(pe) 1 s
These semantics are equivalent to those of nop instruction. In other words,
deref/2 instruction can be replaced by the nop instruction in this case.

z is tag-static, z and y are different registers and z has a tag other than

tvar.

As above, (deref (getvalue £ mem) mem) in the specification of deref/2
reduces to {getvalue z mem). The expression

setvalue y (deref (getvalue z mem) mem) mem
reduces to setvalue y (getvalue z mem) mem. Thus the semantics of
deref/2 reduce to
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Case 3.

I[[deret(z, y)]|((code, mem, in, out)) = ((code, mem’, in, out))
where (s, h, se, sc, tr) = setvalue y ((getvalue £ mem)) mem,
mem' = (¢, h, se, sc, tr),
8 = incr inR,(pc) 1 s
which may be rewritten as
I IIderef (z, y)II((code, mem, in, out)) = ((code, mem”, in, out))
where mem” = ((incr inRq4(pc) 1 mem'}1), mem'}2, mem']3,
mem’ |4, mem']5),
mem’' = setvalue y (getvalue £ mem) mem.
This is exactly the same as the semantics of the move/2 instruction. Thus
the deref/2 instruction is equivalent to move/2 given the above static mem-

ory information.

In all other cases, the instruction deref/2 may not be further specialized

at compile time.

Next consider the semantics of the unify/5 instruction as given in Section 3.5.3.

The following specialization options exist based on the static memory information
available.

Case 1.

Case 2.

z and y are tag-static and have tag values other than tvar.

If the tag values of = and y are different, the unify/5 instruction is reduced
to jump(l) as the condition (mem ==.1) in the semantics specification of

unify/5 holds in this situation.

z and y are tag-static, and z has a tag other than tvar and y a tag tvar,
the unify/5 instruction is equivalent to the sequence of instructions
trail(y).
move(z,y).

The equivalence is shown as follows.
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Given the above static information, a unify/5 instruction maps a program
state (code, mem, in, out) € ProgState to a new program state
(code, mem”, in, out)
where mem = (s, A, se, sc, tr),
mem' = (¢, k, se, sc, tr')
§ = incr inRy(tx) 1 (setvalue y (getvalue T mem) mem)il,
tr' = cons ((getregvalue tr 3) + 1, (y, (getvalue y mem))) tr,
mem” = ((incr pc 1 &), h, se, sc, tr)
by applying appropriate simplifications to the semantic specification of
unify/s.

Given the same static information, a sequence of trail/1 and move/2 in-
structions map the program state (code, mem, in,out) € ProgState to a

new program state (code, mem”, in, out) as follows:

The trail(y) instruction maps to (code, mem!, in, out)
where mem, = (sq, h, se, sc, try)
8 = incr inRy(pc) 1 (incr inR,(tr) 1 s),
tre = cons ((getregval inR,(tr) 3)+1, (v, getvalue y mem)) tr.
The move(z,y) instruction then maps (code, mem,, in, out) to
(code, memy,, in, out)
where mem,, = (sm, A, se, sc, tr;), and
sm = incr inRy(pc) 1 (setvalue y (getvalue  mem,) mem,)l1

Neither the heap(h), the environment stack(se), nor the choicepoint stack(sc)
are changed during the partial execution of unify/5 or the sequence trail/1,
move/2. Further in both cases y € Adrable and the trail stack are updated
in the same manner. Since the instruction sequence consists of two instruc-
tions, the pc register is updated twice. The instruction unify(z,y, £1,%1,0)
and the sequence

trail(y).

move(z,y) .
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Case 3.

perform exactly same memory updates except for the value of pc. The value
of pc in both the cases is equivalent as it points to the instruction following
original unify/5 instruction. Thus the transformation may be shown to be

correct for the given static information.

A similar transformation may be shown to hold if z has a static tvar tag
and y either has a static tvar tag with the value part that is lesser than
that of z or has a static tag other than tvar. The unify/S in either of
these cases is semaantically equivalent to

trail(z).

move(y,z).

z and y are data-static with non-pointer datatags.

If z and y are equal, the instruction may be reduced to nop/0. Otherwise,
it may be reduced to jump(l).
The condition
((tz == tint) \/(tz == t£lt) \/(ix == tatm))
in the unify operator is true given the static information, viz., z and y are

non-pointer datatags.

(a) If the data value is not the same:

The semantics of unify/S reduces to L . This means that the condi-
tion (mem ==.) holds in the semantics of unify/5 and (fetchaddr
label(fail) code) evaluates to the execution of fail/0 instruction
as explained earlier. Thus in this case the unify/5 instruction may be
replaced with £ail/0 without any change in execution semantics.

(b) If the data value is the same:

control falls through to the next instruction and hence the unify/S
instruction may be replaced by nop/0.
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The equal/3 instruction whose semantics are given in Section 3.5.3 may be
specialized using static register information as follows.

Case 1. Let z and y be tag-static. If their tag values are not the same, the semantics
of equal/3 reduce to

Iflequai(z,y, 1) ((code, mem, in, out)) = ((code, mem’, in, out))
where mem = (s, h, se, sc, tr),
mem' = (¢, h, se, sc, tr),
¢ = setregualue inR4(pc) (fetchaddr 1abel(l} code) s
since the comparison (getvalue T mem == getvalue y mem) fails as the
datatags of z and y are unequal. The above semantics are the same as the
semantics of jump({). Thus equal/3 is equivalent to jump/1 given the above

static memory information.

Case 2. Let z and y be data-static registers with same tag values. equal/3 reduces
to to jump({) if the data values of z and y are equal. Else it reduces to nop.

With this background, the partial execution process and instruction transforma-
tion are iilustrated in the following section.

4.4 Illustration of Partial Execution

4.4.1 Example 1

The following example illustrates partial execution outlined in Algorithm 2. Fig-
ure 4.6 shows a simple Prolog program and the BAM code generated during Aquar-
ius compilation using global flow analysis. CFG representation of the BAM code is
shown in Figure 4.7.

Partial execution of the BAM code may be viewed as application of the valu-
ation function B to the BAM code stream in Figure 4.6. Associated instruction
transformations are also illustrated in the example below. For easy reference, BAM

instructions are annotated in the code with numbers.
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:~ option(analyze).

main :- num(X),p(X,Y), write(Y).

p(2,Y) :- Y = 10.
p(3,Y) := Y = 20.
num(3) .

% Aquarius Prolog compiler

% Copyright (C) 1989-92 Peter Van Roy

% All rights reserved.

% Creation date Wed Aug 12 19:31:38 PDT 1992

% Modes generated:

% mode(main,true,true,true,n)

% mode(num(A) ,uninit_reg(A) ,true, (ground(A) ,rderef(A})),n)

% mode(p(A,B) ,uninit_reg(B), (ground(A) ,rderef(A)), (ground(B),
% ground(A) ,rderef (B) ,rderef (A)),n)
% mode(’$ init_main/0’,true,true,true,n)

0: procedure(main/0). 12: procedure(p/2).
1: entry(main/0,0). 13: entry(p/2,2).
2 allocate(0). 14: test(ne,tint,r(0),fail).
3: call(num/1). 15: equal (r(0),tint~2,1(p/2,2)).
4: call(p/2). 16: move(tint~10,r(1)).
5: move(r(1),r(0))}. 17: return.
6 deallocate(0). 18: label(l(p/2,2)).
7 jump(write/1). 19: equal(r(0),tint"3,fail).
20: move(tint~20,r(1)).
21: return.
8: procedure(num/1).
9: entry(num/1,1). 22: procedure(’$ init_main/0’/0).
10: move(tint~3,r(0)). 23: entry(’$ init_main/0’/0,0).
11: return. 24: return.

Figure 4.6: Program examplel.pl along with its BAM code
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Block 9 consists of code that identifies the entry point for the assembler and
linker. It is not used during the PE process but is retained. In subsequent examples,
it is assumed to exist and is not explicitly shown in the CFG of BAM code.

Block 0 is the entry point of the CFG in Figure 4.7. Execution of instruction
3 and consequently of basic block 3 loads register r (0) with the dataword tint~3.
Execution continues to block 1. Execution of the call instruction 4 transfers control
to block 4. At the entry of block 4, r(0) is a static register. In the context of
current program state, the flow change instruction 14 may be replaced with a nop
since tag of the static register r(0) is known to be tint as shown in Section 4.3.1.

This results in a specialized basic block 4’ with the following instructions.

12: procedure(p/2).
13: entry(p/2,2).
14: nop.

Control flow then falls through to block 5.

In block 5, since the value of r(0) in current memory state is tint~3, the
equality test of instruction 15 fails. Thus the equal/3 instruction is equivalent to
jump(1(p/2,2)) as shown in Section 4.3.1. This results in a specialized basic block
5’ with the following instruction.

15: jump(1(p/2,2)).

The control flows to block 7 in which instruction 19 is equivalent to a nop as the
data-static register r(0) is equal to tint~3. This resuits in the following specialized
basic block 7'.

18: label(1(p/2,2)).
19: nop.

The symbolic execution continues to block 8 where tint~20 is loaded into r(1).
The control then flows to block 2 where instruction 5 with data-static r(1) may be
transformed to move(tint~20,r(0)) resulting in the following specialized block 2'.
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0: procedure(main/0). 12: procedure(p/2).
1: entry(main/0,0) . 13: entry(p/2,2).
2 allocate(0). 14:
3: call(num/1). 15:
4: call(p/2). 16:
5: move(tint~20,r(0)). 17:
6 deallocate(0). 18: label(1(p/2,2)).
7 jump(write/1). 19:
20: move(tint~20,r(1)).
21: return.
8: procedure(aum/1).
9: entry(num/1,1). 22: procedure(’$ init_main/0’/0).
10: move(tint~3,r(0)). 23: entry(’$ init_main/0°/0,0).
11: return. 24: return.

Figure 4.8: Residue of the BAM code of examplel.pl

5: move (tint~20,r(0)).
6: deallocate(0).
T: jump(write/1).

Thus the run-time path of code shown in Figure 4.7is0-3-1-4-5-7-8 - 2.
As shown above, the blocks 2, 4, 5 and 2 may be specialized and replaced with their
corresponding residues.

Figure 4.8 shows the residue resulting after the nop instructions and trivial jumps
to following instruction are eliminated. Such a step is referred to as code consoli-
dation. Instruction numbers of dead blocks and nop instructions are left behind to
highlight the redundancies.

The jump(1(p/2,2)) instruction at 15 is eliminated since it is a trivial jump
to an immediately following location. This simple example illustrates elimination
of three redundant comparisons otherwise performed at run-time, thus contributing
to an improvement in its execution time. This program may also be optimized by
performing partial evaluation of the Prolog source [58] to achieve a result similar to
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that obtained by partial execution of the BAM representation. However the finer
granularity of the data structures at the BAM level offer greater opportunities for
optimizing BAM code by partial execution than optimizing Prolog code by partial

evaluation.

4.4.2 Example 2

main :- read(List),
last(List, Last),
write(Last).

% last(List, LastElement).
last([Element] ,Element).
last([_|Rest],Last):~ last(Rest,Last).

Figure 4.9: Program last.pl

A second example illustrates choicepoint optimization by partial execution as
explained in Section 4.3.2.

Consider the standard definition of the predicate last/2 shown in Figure 4.9.
Figure 4.10 shows the CFG representation of its BAM code generated by the Aquar-
ius compiler with global flow analysis. It is well known that most WAM-based com-
pilers compile last/2 to abstract machine code that creates a choicepoint left on
the stack upon successful exit of a call to 1ast/2. This choicepoint is removed only
when control backtracks to 1ast/2 for alternative solutions and fails. It is the case
with Aquarius Prolog compiler as well. The choicepoint created in block 11 is left
on the stack upon successful exit via block 12. By performing partial execution, the
choicepoint creation may be inhibited when the predicate call 1ast(List,LElem)
succeeds with LElem instantiated to some non-variable value which is an element of

List.

Symbolic execution of the instructions in the entry block O results in allocation
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of an environment on the environment stack, and creation of a variable on the heap.
The memory updates resulting from the call to built-in read/1 are not determinable
at PE time. Thus the only information known about r(0) and p(0) is that their
tag values are tvar. The value read is built on the heap and r(0) holds its address.

Execution of block 1 loads the contents of the address stored in p(0) to r(0).
Thus r(0) and p(0) are the reference registers of block 1. Of these r(0) is the
dynamic register. A call to 1ast/2 results in the transfer of control to block 3.

The reference register set of block 3 is {r(0), r(1)}. Of these r(0) is the only
register whose values are used in block 3. At entry time it is not static. Register
r(1) is dynamic since instruction 18 dereferences r(0) to r(1). As the flow change
instruction 19 depends on dynamic register r(1), partial execution is to be per-
formed along all possible control flow paths. Choicepoint elimination is illustrated
on the path going through block 7.

Control proceeds on this path when the tag of r(1) is t1st. Symbolic execution
of the block instructions load r(2) with the head of the list pointed to by r(1). As
the head value is not known at PE time, r(2) is dynamic. Similarly, register r(0)
that has a pointer to the tail of the list, is dynamic. Thus partial execution must be
done on both the possible flow directions upon execution of instruction 44. We focus
on the flow that executes the block 10 where tag of r(0) is not tvar. Since r(0)
is dynamic, two possible flow directions exist upon the execution of 52. Consider
the path leading to block 11 when r(0) contains tatm”[]. Execution of instruction
§3 in block 11 dereferences r(2) — a dynamic register — into itself and creates
a choicepoint which contains the current value of r(0) — tatm~[]. Execution the
flows to block 12 where instruction 55 copies the contents of register r(1) to r(2).
Control transfers to block 2 where r(1) is dereferenced and loaded into r(0). Thus
the current execution path is 0-1-3-7-10-11-12-2. As there is a choicepoint created
in this path, it is evident that this is only one of the several possible speculative
paths. All the other speculative paths due to the choicepoint have to be traversed
for PE to discover the run-time execution path as illustrated in the following.

The alternate path from block 11 goes to block 13. The choice/3 instruc-
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tion at 58 restores tatm~[] to r(0) and removes the choicepoint and control flows
to block 14. Of the reference register set {r(0), r(1)}, r(0) is static. PE of in-
struction 61 results in failure. As there are no more alternate execution paths
in the choicepoint, the program exits with failure. Thus all alternate paths from
the choicepoint created in block 11 fail leading to the safe removal of the choice-
point instruction 54 and correspondingly at 58 to yield a complete specialized path
0-1-3-7-10-11-12 -2 where block 11’ is

53. deref(r(2),r(2)).
54. nop.

Partial execution detailed above follows the final loop of the iterative traversal
of the call 1ast(List,LElem) that succeeds with an instantiation for LElem given
a list List with a non-variable last element and an uninitialized LE1em.

The memory usage will be reduced by avoiding redundant choicepoints. Less
time is spent in manipulation of such choicepoints. Savings corresponding to above
optimization in last.pl are measured as follows. Since the optimizations affect
the execution speed upon first backtracking into the call, a failure driven loop that
calls last([1],L) 100000 times is used to test the gains. On a lightly loaded
SPARCstation 1+ with 16MB main memory the unoptimized executable takes 2.0s
of user time whereas the optimized version takes 1.4s of user time - a speedup of
1.4 using Amdahl’s law [36]. The user time corresponds to user time — time spent
in the program itself — as reported by System V version of the command time.
The memory usage improvement is too small to measure in the present case as one
choicepoint occupies only a few bytes. The predicate call with only one element is
chosen so that the speed-up resulting from avoiding the creation of the redundant
choicepoint is not over shadowed by the rest of the computations in the predicate.
The memory usage improvement can potentially be significant in larger programs
where more choicepoint optimizations are possible.

It is well known that unnecessary choicepoint creation may be avoided by rewrit-
ing last/2 as shown in Figure 4.11 wherein the first arguments of the two clauses
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% last(List, LastElement).
last([X|Xs], Last) :- last_2(Xs, Last, X).

last_2([J, Last, Last).
last_2([XIXs], Last, _) :- last_2(Xs, Last, X).

Figure 4.11: Program last-tweaked.pl

of the predicate definition last_2/3 (Figure 4.9) represent two mutually exclusive
choices. This is evident in its BAM code shown in Figure 4.12. It may be observed
that a redundant choicepoint is created in the BAM code of last/2 when the first
two arguments are not mutually exclusive. There is no necessity to transform the
“pure” version of last/2 predicate (Figure 4.9) to avoid redundant choicepoint
creation. Such redundant choicepoint creation may be optimized away by partial
execution of BAM code of the pure version itself as shown above. The resultant
optimized BAM code has the same quality as that of the BAM code of Figure 4.11
with regards to choicepoint creation.

The instruction 30 viz., test/4 in BAM code shown in Figure 4.10 may be
transformed to nop since the tag of r(0) is known to be tvar owing to instruction
28. Although the redundant choicepoint creation was optimized away by re-writing
the predicate last/2, the test/4 instruction at 41 in Figure 4.12 is not. Both
these optimizations may be achieved by partial execution of the BAM code of the
pure version itself. This implies that the programmers need not spend extra time
to design predicates with mutually exclusive arguments.

A similar choicepoint optimization may be performed on the code of another
standard predicate min_1ist/2 that finds the minimum of a given list of numbers.

min_list([X].X).
min_list({XIL] M) :-

min_list(L,Y),
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Figure 4.12: CFG for hand-optimized 1ast/2
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minimum(X,Y,M).

minimum(A,B,A) :- A<B,!.

minimum(A,B,B) :~ A>=B.

The choicepoint optimization created in the predicate min_list/2 results in a speedup
by a factor of 1.2 on a lightly loaded SPARCstation 1+ with 16MB main memory.

4.5 Summary

In this chapter, a brief introduction to program specialization and associated termi-
nology is presented. Then opportunities for performing BAM code specialization,
called partial execution, are discussed. The partial execution frame work is then
sketched out by providing a structure to the BAM code. A high-level algorithm to
perform PE is presented to provide the starting point of the detailed partial execu-
tion process that follows in later chapters. All possible individual transformations
are shown to retain semantic correctness using the denotational semantics described
in Chapter 3. With this background and introduction to the partial execution pro-
cess, two complete examples are presented to illustrate the various optimization
opportunities.

Any code transformation has to be based on different types of analyses to preserve
correctness of the results of the code. Transformations performed during BAM
code partial execution also rely on several analyses as well as the results of partial
execution itself. Chapter 5 presents BAM code analyses employed in conjunction
with PE to affect optimizations.
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Chapter 5

Structure of a BAM Partial Executor

5.1 Introduction

The PE-based optimization process designed and implemented in this thesis con-
stantly ensures the correctness of two abstractions - viz., program semantics and the
BAM memory abstraction of the program. The program semantics are maintained
with the help of an internal representation (IR) of the candidate BAM code. This
IR is built with its CFG at the core. As explained in earlier chapters, the process
consists of two interleaved phases - viz., symbolic execution of the code and code
transformation. The BAM memory model is used to ensure correct symbolic execu-
tion. The correctness of code transformation is ensured by maintaining additional
information. This additional information pertains both to the candidate BAM code
structure and to its run-time behavior. The PE-based optimization process consists
of three components: a front end, a partial execution driver (PE driver) and a code
consolidator. In the front end, BAM code is partitioned and syntactically analyzed.
Code partitioning was described in Section 4.2.1. Since BAM code parsing and
partitioning code to basic blocks uses standard techniques, a detailed description of
the front end is not given. However, syntactic analysis carried out in the front end
is described in various sections of this chapter. The PE driver controls the partial
execution that is comprised of symbolic execution and code transformation. It en-
sures that the BAM memory model is consistent with the symbolic execution and
updates the internal representation of the BAM code. The PE driver maintains a
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control stack to control the entire partial execution process.

This chapter begins with a description of extensions of BAM data structures.
These provide place holders for run-time characteristics of the BAM code. This is
followed by the PE driver algorithm. We take a top-down approach to describe the
the data structures that are built around the CFG. In other words, we illustrate the
need of the data structures when explaining the appropriate algorithm step rather
than lay them out before presenting the algorithm.

5.2 Augmenting BAM Memory Areas To Sup-
port PE

The BAM memory areas described in Chapter 2 are designed to hold run-time
information. To analyze and characterize the run-time behavior of BAM code,

additional place holders are necessary and these are described in this section.

5.2.1 Partial Execution Registers

The following pieces of information are maintained to ensure correct partial execu-
tion. Each of the pieces is stored in a register or other data structure as indicated in
its description. A non-BAM register defined to hold any such additional information
is called a partial execution register or PE register.

¢ Basic block information — The current block number being partially executed
is stored in a PE register bb. The parent block number of bb, i.e., the block
from which control passed to the current block, is stored in a PE register pb.

e Continuation block information — The number of the basic block to which the
control flow returns upon successful completion of current procedure is stored
in the PE register cbb. The number of the parent basic block, i.e., the block
with a call/1 instruction to the current procedure, is stored in PE register

cp-par.
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® The PE register, proc_blk, stores the number of the entry block of the current
procedure being partially executed.

o The index into a table of input-output value pairs associated with the current

procedure is stored.

® A new stack called the allocate stack whose items hold environment allocation
information and information about the block containing the call to the current

procedure. This data structure is discussed in Section 5.2.2.

5.2.2 Augmenting Environment Stack for PE

BAM code resulting from compiling a Prolog predicate is referred to as a procedure.
A procedure begins with the instruction procedure/1. As described in Section 2.2.4,
two different BAM code streams for a predicate are generated depending on the
number of predicates in the clause body. If the body has more than one predicate,
code to allocate an environment is generated. It is followed by code to set up call
arguments and the call instruction call/i. An unconditional jump, jump/1, is
generated instead of a call to the last predicate in the body. Code to deallocate the
environment is generated before that unconditional jump. If the predicate body has
one predicate call it is translated to an unconditional jump, jump/1. No environment
allocation or deallocation instructions are generated in this case.

Thus a procedure is entered via a call/1 or a jump/1 instruction. Further, an
environment is not created at every procedure entry. These run-time BAM execu-
tion characteristics necessitate additional mechanisms to keep track of procedure
entries and environment creation during partial execution. A separate stack, re-
ferred to as an allocate stack, is used for this purpose. Partial execution of a call
or a jump to a procedure creates an allocate stack item irrespective of the alloca-
tion of an environment by the procedure. A jump to an instruction procedure/1 is
treated as a procedure call except that the values of cp (the continuation register),
cbb (the block continuation PE register) and cp_par (the continuation block parent
PE register), are not updated. Partial execution of allocate/1 sets a flag alloc_flag
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in the top allocate stack item to indicate environment creation in the procedure.
Correspondingly, during partial execution of deallocate/1, the alloc.dirty flag is
set to indicate that the current procedure has deallocated an environment from the

top of the environment stack. An allocate stack item consists of the following:
e The entry block number of the current procedure.

e The alloc_flag flag to record whether an environment is allocated. The same
flag is used to record whether the current procedure was a last call optimized
to a jump. This may be done without inconsistency since an environment is
deallocated before the last call and no access to the environment stack is done
during the call.

e A pointer into a table holding the current input value set of the calling pro-
cedure. This table also holds output value sets of the calling procedure. This

table is referred to as in-out table.
e The alloc_dirty flag.

As discussed in Section 2.2.1.1, a BAM environment stores the permanent reg-
ister values that occur in the predicate body clauses, a pointer to the previous
environment and the return instruction address of the current predicate, namely,
the current value of continuation pointer cp. For the purposes of partial execution,

the environment is augmented with the following additional information:

e The return block address of the current predicate, i.e., the current value of
cbb. Note that cp stored in the environment points to the first instruction of
this block.

o The predecessor of the return block address stored above. This is stored since
the CFG has no edge representing the control flow due to a procedure call or
a return from a procedure call, as described in Section 4.2.1.

Chapter 6 describes how this additional information is used.
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5.2.3 Augmenting the Choicepoint Stack for PE

Section 2.2.1.2 described the information stored in a BAM choicepoint. The follow-
ing values are additionally stored in a choicepoint to aid analysis performed during
partial execution.

¢ Basic block number, cbb;

e Basic block number of the parent of the continuation block, i.e., the value of

PE register cp_par;

e Basic block number of the parent of the current block, i.e., the value of PE
register pb;

e Control stack top (described in Section 5.4.2);

o Allocate stack;
e Choice success information, described below.

Speculative symbolic execution involves symbolic execution that assumes a dy-
namic register to have a certain static value. We refer to partial execution that
involves speculative symbolic execution as symbolic partial execution. Speculative
symbolic execution is done while an alternative retry address is attempted or while
continuing PE along several possible successors of a basic block. All alternate choices
available via a choicepoint are speculatively symbolic executed during partial execu-
tion. PE thus proceeds on several corresponding execution paths. Success or failure
of the alternate choices is recorded in a data structure, called the choice success
information. A choice is recorded as failure only if it can be shown to fail at PE
time. Otherwise, it is recorded as a success. This may be viewed as a conservative
approximation of run-time behavior of the program.

The heap and trail stacks are not augmented with any additional information
for the purposes of PE.



5.3 BAM Code Partial Execution Driver

Consider a program P and its CFG Pg. The sub-graph of P¢ traversed from the
beginning to the termination of one invocation of P is referred to as an ezecution
thread. Any given program has several possible execution threads each of which
is characterized by a sub-graph of the CFG rooted at the block containing the
program entry point procedure(main/0). One and only sub-graph corresponds
to any single program invocation. Every subsequent invocation of the program
might be characterized by a different sub-graph. This variation of execution threads
between different program invocations depends on run-time inputs, if any. Since
run-time inputs are not known at PE time, it is not possible to find the precise
execution thread of a program invocation and its sub-graph. Consequently, all sub-
graphs that represent possible run-time execution paths are discovered by performing
partial execution. Imstructions in blocks along each of these paths are optimized
whenever possible by transforming them to simpler but equivalent ones. The PE
driver traverses the CFG built by the front end to schedule basic block partial
execution. Partial execution results in basic blocks that either are specialized, if
enough information is available in the current program state, or belong to the original
CFG otherwise. The PE driver schedules speculative symbolic execution when more
than one PE-time control flow option exist. The code generation phase uses the
resultant sub-graphs recorded in the PE-flow graph to generate optimized code while
eliminating trivial transitions.

Algorithm 3 presents a PE driver algorithm based on the empirical partial execu-
tion algorithm outlined in Chapter 4. The driver traverses the CFG in a depth-first
manner using a control stack to schedule partial execution along all execution threads
of the given BAM code. Algorithm 3 hinges of three fundamental phases:

1. Checking and updating BAM memory state to ensure correct partial execution,

2. Checking if a residue(version) of the current basic block exists for the current

memory state, and



Algorithm 3 Partial Execution Driver Algorithm

1:

oo e W

©w e

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

Let G be the control flow graph of the BAM code being partially executed and
Giroot be its root node.

: Let E be a graph called PE-flow graph.

: Let cur.mem_state be the current BAM memory state.

: Let totalinstructions be the total number of instructions in the BAM code.

: For any basic block, blk, let contyr hold resumptions resuiting from partial

execution of blk.

Set node = 0.

Set CStack = nil.

Set initial BAM memory state.

push (Grgat,cur-mem._state) onto CStack.

while CStack # nil do
(node,mem) = pop(CStack)
if (pc = success or pc = fatlure) then
Record the edge between the parent of node and node in E
else if pc > totalinstructions then
Flag error indicating out of code space access.
else /* Continue partial execution */
if node has no residue for the reference registers in mem then
Set current memory state to mem.
(nodeyes, controge) = partial_ezecute(node)

if node,., is same as node then
nodeq,,, := node.
else
Nodepey = N0des,,-
Record node,,, as the residue of node.
Record nodep,y in E.
end if
update_cstack(contoge)
end if
end if
end while
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3. Transforming instructions to their simpler equivalents whenever possible.

The rest of the chapter is devoted to explaining various aspects of the Algorithm 3.
The algorithm uses several characteristics of a basic block and a procedure. A

description of these characteristics is follows.

5.3.1 Characteristics of a Basic Block

Several syntactic and run-time characteristics of a basic block are used by the PE

driver. The following information is associated with a given basic block.

e Pointers to its successors and ancestors.

o A list of focus registers that parameterize the block (Section 5.3.2).
e Pointers to its versions generated during partial execution.

o A flag indicating whether the block contains a choice/3 instruction.

e Procedure analysis information viz., register and in-out table information of

the procedure containing this basic block (Section 5.3.3).

e Strongly Connected Component (SCC) related information used to identify
loops in CFG (Section 5.5.2).

We discuss focus registers, procedure and SCC related information in the follow-
ing sections. The rest are self-explanatory.

5.3.2 Parameterizing a Basic Block With Optimal Refer-
ence Registers

Each basic block may be parameterized with the reference registers introduced in
Chapter 4. When a basic block is partially executed with respect to a certain set

of static reference register values producing a residue, we say a version of the basic
block is generated. The PE driver in Algorithm 3 checks whether a version of the
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current basic block corresponding to current values of all the reference registers
exists in the current memory. However, only some of the reference registers (i.e.,
permanent and argument registers accessed by the instructions in a basic block) are
affected during the partial execution of the basic block. These registers are called
active registers. Thus, associated with every basic block is a set of active registers.
Consequently, it is sufficient to partially execute a basic block only when it has not
been specialized for the current values of the active registers.

Specializing a basic block with respect to all dynamic registers leads to code
explosion. Thus the specialization must be restricted to static active registers. This
technique is similar to that of specializing a function with respect to its static ar-
guments as done in partial evaluation of functional programming languages (42, 57].
Specialization of programs with respect to static/invariant entities has been studied
in various contexts. Haraldsson’s online partial evaluator Redfun {34] is considered to
be the first attempt at this. Consel and Khoo [18] define facets that a provide means
for user-specification of static properties in the context of both online and offline
partial evaluation of a first-order language and provide a formal framework. The
current work follows the conventional methodology of specialization with respect to
static properties. However, no user-specification, either of static properties or of
input values are expected during the online specialization. Further, we specialize a
low-level language and do not attempt a self-applicable specializer. Additionally, the
partial execution algorithm has no information about the Prolog predicates whose
BAM code translation is being partially executed nor of their arguments. [n sum-
mary, this work differs from others by not relying on user specifications or on any
syntactic knowledge of the Prolog sources. Further, the low-level of abstraction of
its source allows the technique to be used as a compiler phase.

BAM registers may be accessed for two purposes — to read or to update their
contents. The terms read and define, respectively, are used to distinguish these
accesses. The first access of some of the active registers in a basic block may be
to define before reading, irrespective of their value at block entry. Thus, instead
of specializing the basic block for all static active register values, it is sufficient to
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specialize it for the current values of only those active registers that are read from in
the basic block and ignore the static active registers that are defined. Four distinct

cases of active register accesses occur within a basic block. A register may be

1. read before being defined within the block
2. read after being defined within the block
3. only read within the block

4. only defined within the block

Let Rread and Ryer denote the set of read and defined registers in a basic block,
respectively. Static active registers that are either read before being defined (type 1),
or only read (type 3), contain relevant static values. At any prograin point, the
contents of these registers provide the invariants for specialization of the basic block.
Thus, a basic block is specialized for static active registers of this set. The set
containing the union of registers of types 1 and 3 is called the focus register set,
denoted R Consequently, a basic block is specialized if it has not been specialized
for the current static values of its focus register set. The focus registers in a given
basic block may be found using Algorithm 4.

A basic block is thus parameterized with its focus register set. The read/defined
classification of an active register is based on its operand position in an instruction
and so can be performed in the front end. Static-dynamic classification of focus
registers is a PE-time property and is done while symbolically executing the BAM
instructions.

A CFG may contain basic blocks with no active registers. However, PE of the
block still needs to be done to correctly set the BAM memory state for partial

execution of any of its successor basic blocks.

5.3.3 Characteristics of a Procedure

Recall that a basic block is a collection of instructions with only one entry and
one exit. A collection of basic blocks with only one entry and many possible exits
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Algorithm 4 Find focus registers

1: We assume that instructions in the basic block are arranged in a linked list
whose head is [Lhd. [L.nd—instr is the instruction pointed to by ILnd.
2 Reeaa =P

3: Rdaf =¢
4: Repe =0
5: while ll.nd # nil do
6: for each operand, r, of ILnd—instr do
7: if r is a read register then
8: Rread = Rreaa|J {r}
9: if r € Ryer then
10: Roe = Reoe U {1‘}
11: end if
12: if ris a defined register then
13: Raer = RaerU {7}
14: end if
15: end if
16: end for
17 llnd = lLnd—nezt
18: end while

is a procedure. These two levels of partitioning of BAM code facilitate analyses
of instruction sequences in BAM code. These analyses result in recognizing various
basic block and procedure properties that guide the PE driver. The previous section
described one such property of a basic block, reference registers of the block that
parameterize it.

A procedure has two kinds of properties that are used during partial execution
process — syntactic and run-time. For example, the number of argument registers
that appear in the procedure is a syntactic property. Syntactic analysis of a proce-
dure begins with building of the call graph [2| and a list of argument registers that
occur in the procedure code. The number of permanent registers used in the pro-
cedure is not recorded separately. This information is readily available at PE-time
from the current environment. This initial internal representation is augmented with
several other syntactic analyses that are described in this chapter.

Prolog predicates may be written so that the same positional argument is used
to pass a value into its body (i.e., used as an input argument) at one call site and
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to pass a value out of the body (i.e., used as an output argument) at another site.

Further, the type of the argument can vary from one call site to another. Consider
the following definition of add/3

add(X,Y,Sum) :- integer(X), integer(Y), Sum is X + Y.
add(X,Y,Sum) :- list(X), list(Y), append(X,Y,Sum).

append([J,L,L).
append([HIT], L, [K[R]) :- append(T,L,R).

where, integer(X) and list(X) are built-in type checking predicates that succeed
if X is of integer type and list type, respectively. The addition operation is overloaded
or extended to list arguments. Thus the arguments X and Y may be of integer type
at one call site and of list type at another. Further, in the case that the arguments
of add/3 are of list type, any two of the three arguments may be used as input
arguments to compute the third.

BAM code for such predicate calls may be specialized according to the type of
arguments at a given call site. Thus a predicate call may be made with more than one
set of input instantiations. Each of these calls may result in corresponding output
instantiations. A table that records the mapping of input-output static values is
maintained per procedure. This table is referred to as the in-out table and is part
of information associated with the basic block, as detailed earlier. It is updated at
every procedure entry and exit.

Any given procedure may have more than one exit. Thus more than one set of
output values may be associated with a given input value set. Additionally, by PE
we may discover that some procedure exits lead to failure. Consequently, an in-out
table entry is a pair, {Via, Vo) such that

Vin = {(r,v) | r is an argument register and
v is its static value at procedure entry}
and

Vot ={0 | O = {{r,v) | r is an argument. register and
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v is its static value at procedure exit}

5.4 PE Driver Execution

The PE driver, given in Algorithm 3, traverses the CFG using a stack-based version
of the traditional depth-first traversal algorithm [2] beginning at the procedure with
first instruction procedure(main/0)! It builds successor basic block information
on a stack referred to as the control stack - CStack. A CStack item contains a
pointer to the successor block and a pointer to the program state with which the
block’s partial execution is to proceed. CStack is referred to as control stack since
its contents, detailed in Section 5.4.2, control and drive the partial execution.

The PE driver initializes the BAM memory areas to their respective start states
before the CFG traversal begins. Thus heap, choicepoint stack, environment stack
and trail stack are set to empty and the corresponding register values h, b, e, and
tr are set to uninitialized values. Program counter pc is set to the first instruction
to be executed viz., procedure(main/0). The continuation pointer cp is uninitial-
ized. Either of the two special values of p¢, viz., success and failure (as defined in
Section 3.4.9), are used to designate successful and unsuccessful completion of an
execution thread, respectively.

The state of augmented BAM memory areas (Section 5.2) along with the ad-
ditional information maintained to support partial execution is referred to as the
memory state and forms the CStack item. The memory state is ensured to be
correct at all program points to guarantee the correctness of the partial execution
process. Memory state is used in various stages of partial execution such as loop-
checking, updating PE-flow graph, restoring BAM memory state correctly upon loop
detection and performing choicepoint optimizations.

1 Aquarins Prolog considers the first predicate in the first program file being compiled as the
program entry point. This predicate should be of arity zero [35]. For ease of notation we always
use main/0 to denote entry point.
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5.4.1 Semantics of Dereferencing during Partial Execution

Following is a discussion of issues that resulted in the ultimate choice to represent
a dynamic BAM register in the implementation of the partial executor. A dynamic
register denotes a Prolog variable that is unbound at PE-time. In BAM, it is rep-
resented as a self-referential heap location, as described in Chapter 2. Since any
value of a register whose tag is known at PE-time is considered static, we need
a distinguish a self-referential, pointer-tagged value from its dereferenced dynamic
value. We begin by designating a BAM register with a special unique datum § as a
dynamic register. Thus dereferencing a self-referential heap location yields the value
4. Although this representation is inadequate, it is used as a preliminary step to
reveal some subtle design considerations and subsequently arrive at a correct rep-
resentation. This is done with the help of the CFG in Figure 5.2 for the predicates
main/0 and num/1 of the program in Figure 5.1. The BAM code in Figure 5.2 is
generated by the Aquarius compiler with GFA phase turned on.

:~ option(analyze).

main :- num(X),p(X,Y), write(Y).

p(2,Y) :- Y = 10.
p(3,V) :- Y = 20.
num(3) .

Figure 5.1: Program simple.pl

Consider partial execution of the call to num/1 in block 0. At the entry of block 3
the register r(0) contains tvar~0. Further, heap location 0 contains tvar~0. Sym-
bolic execution of deref (r(0),r(0)) in block 3 sets r(0) to § thus revealing it to
be a dynamic register due to the content of heap location 0 which is a self-referential
dataword with the tvar tag. Since the branch instruction test (ne,tvar,r(0),1(num/1,1))
involves a dynamic register, a speculative symbolic execution is performed along
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[]

0. procedure(mein/0).
1. entry(main/0,0).

2. allocata(2).

3. move(tvar-r{h) ,r(0)).

5. pragma(push(variable)).
6. push(r(1),r(h),1).

7. pad(1).

8. call(mm/1).

21. procedurs(mm/1) .

22. ntry(num/1,1) .

23. deref(r(0},r{0}).

24. test(ne,tvar,~(0),1(na/t,833.

1
l;. mave(tvar-T(h),r (1)),
10. mave(r(1),p(8]).
r [] 11. pragma(push(variasbia))}.
25, trailtr() 268. labe1(1(nm/1,1)). 12. push(r(1),r(h},1).

" I [27. unify_stamic(r(0) ,tint*8,fai1). ] [13. pad(1).
14. pragea(tag(p(1) ,tvar)l.
15, sova([p(1)],rC0)).
16. cali(p/2).

2
17. pragma(tag(p(0),tvar)).

|f.n| 18. deref((p(0)),r(0)).
19. deallocats(2).
20. jump(urita/1).

;-

Figure 5.2: Example to demonstrate deferred dereferencing of a dynamic register
with tvar-tagged value
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both successors of 3, viz., 4 and 5, by setting r(0) to have the tag tvar and to have
a non-tvar tag at entry time respectively. Partial execution of blocks 4 and 5 are
otherwise done with exactly the same memory state.

Consider the PE along the execution thread 3-5-6 of Figure 5.2. At the entry of
block 5, r(0) is known to have a non-tvar tag. Hence, the speculative successful
PE of unify_atomic(r(0),tint"3,fail) sets the value of r(0) to atomic value
tint~3. By examining what happens at run-time, this is revealed to be only partially
correct. At run-time, the BAM memory at this program point (i.e., at the entry
of block 6) not only contains the dataword tint~3 in register r(0) but also in the
heap address z. The heap address 0 contains the dataword tint"z. In essence, PE
of unify atomic/3 can not set the heap to the correct state since r(0) contains
only data-tag information, that indicates it as having a non-tvar tag. r(0) has no
datavalue which at run-time is the heap address. The datavalue information lost
due to dereferencing tvar~0 to 4 is the heap address 0 pointing to the heap location
of the atomic value unifying with tint*3.

tvar+x tvar*x
X! tvarty X| tvar‘y
Y| tvaz*y Y| tvar*3’

Figure 5.3: Example dereferencing chains

The loss of heap address described above also results in incorrect partial execu-
tion on the path 3-4-5-6 as follows. PE on this execution thread simulates run-time
execution of procedure num/1 with a r(0) containing a dataword tvar~0 at the en-
try of block 3. In general, the heap address indicated by the datavalue of r(0) might
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be the beginning of a dereference chain with either a self-referential dataword with
tag tvar or a non-tvar tagged dataword as shown in Figure 5.3. It will be resolved
by the deref/2 instruction to the dataword at the end of the chain. In the current
example, dereferencing r(0) (instruction 23) sets r(0) to 4 thus losing the last heap
pointer in the chain of heap pointers. Hence, PE of trail(r(0)) in block 4, trails
nothing. The run-time execution of unify atomic(r(0),tint*3,fail) not only
sets r(0) to tvar~0 but also sets the heap location whose address is the datavalue
of £(0) before it is updated. However, as described earlier, during PE of block 5
the heap is not updated. This leads to the conclusion that the representation of
a dynamic value needs to carry the datavalue that indicates the heap location to
ensure correct trailing and heap update during term unification.

A new technique is designed to avoid this loss of information. A self-referential
dataword is dereferenced to a dataword with a special datatag dvar. The new
tag dvar is only known to and used by the PE driver to perform and maintain
run-time information of the program. Hence neither BAM execution semantics nor
the memory model need be changed. The datavalue of the dvar tagged dataword
is the heap address of the self-referential dataword at the end of a possibly long
dereferencing chain. This scheme allows us to indicate that the current register
is dynamic while retaining the heap address of the atomic value generated during
unification. This preserves correctness of partial execution and loses no information.
This new technique is referred to as deferred dereferencing.

Now we examine similar issues involved in dereferencing dynamic register that
dereferences to a tstr-tagged dataword at partial execution time. As noted in Sec-
tion 2.2.2, a tstr-tagged dataword also holds a pointer to the sequence of heap
memory addresses that contain the functor and arguments of the structure. The
number of contiguous heap locations holding the structure information is embedded
in the atomic representation of the functor. Such a representation necessitates an-
other special tag to identify a dynamic register that dereferences to a tstr-tagged
dataword at partial execution time. Similar to the tag dvar, this new tag is only
known to and used by the PE driver to perform and maintain run-time information
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of the program. The need for this new tab is discussed with the help the following
example. Figure 5.5 shows the CFG of the BAM code of the predicate str/1 defined
in program given in Figure 5.4.

main :- str(X),p(X,Y), write(Y).

10.
20.

p{f(a,b),Y) :~ Y
plglc,d),Y) :- ¥

str(£(a,b)).

Figure 5.4: Program to illustrate the need for dstr

Consider what happens at run-time entry into procedure str/1 with X instanti-
ated to a structure, say f(a,b). Register r(0) contains a dataword tvar~z where
T is the heap address containing the contiguous structure information at the time
of entry into block 33 as shown in Figure 5.5. Dereferencing r(0) in block 33 sets
r(0) to tstr”y where is the heap address of the beginning of the contiguous heap
locations that hold the structure.

Now, consider partial execution of an arbitrary call to str/1 with a dynamic
r(0). At the entry of block 33, the register r(0) contains the dataword tvar-z,
where z is the heap address holding the value of X. For simplicity, suppose the
heap address contains the self-referential dataword tvar~z. (That is, assume the
dereference chain is of length zero). Partial execution of deref/2 in block 33 sets
r(0) to dvar~z. Speculative partial execution along edge 33-35 needs to proceed as
if the variable X is a structure. Thus the tag value of r(0) is set to tstr. To avoid
loss of the last heap address at the end of the dereferenced chain, we retain z as
the datavalue in r(0). The speculative partial execution needs to build a structure
on the heap. PE proceeds along the path 36-38-39-41-42 by speculating r(0) to be
instantiated to this structure.

Thus during partial execution, the value of r(0) needs to record that the datavalue
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3

10S. prucsdurs(str/1).

106. sntry(str/1,1).

107. dersf(r(3),r(8)).

108. switch(tstr r(0},1(str/2,1),1C0tr/1,2),f0i).

]

109. labsl(1(str/1,1)).

110, trail(r(0)).

i et

112. mave(tstror D13,
’ 120. label(i(str/1,2)).

113. pragma(push(term(4))) . - 121. ma(ug(r(ﬁ),mr)).

ﬁ; %%‘gp;ﬂfm?(” N.| |fait 122. pragma(align(r(0),2)).

. rCh),1). 4 :
116, push(um‘a,rfh),i). i 123. equal([r(0)],tatm~f/2,fail).
117. push(tawn~b,rCh),1).
118. pad(1).

119, return.

1

]

124. pragma(tag(r(0),tstr)).

175. move([rCD)+1],~(1)).

126, deref(r(1),r(1)).

127, test(ne,tvar,r(1),1(str/1,5)).

a2
129. label1(1(s2r/1,5)).

]
130. unify_atomic(r(1),tatamy, fail). [=]128: trail(rl)).

|

131. prages(tsg(r(0),tstr)).

132, pragealalign(r(0),2)).

133, move([r(0)+2],r(0)).

134, deref(r(0),~C0)).

135, tast(ne,tvar,r(0),1(str/1,6)).

44
137. label(1(str/1,6)).

49
138. unify_atomic(r(0),tatm~h,fail). 1136 trail(r()).

r

2
139. return.

Figure 5.5: CFG of code with deferred depeferencing of dynamic register with tstr-
tag



is in fact a self-referential tvar-tagged dataword that dereferences to tstr~z where
z is only known later. Such a dataword is represented using a special tag, dstr.
This new tag also maintains the semantics of a tstr-tagged dataword since a self-
referential tstr-tagged dataword has no well-defined meaning.

At run-time, a compound term built on the heap is accessed by indirectly address-
ing its tstr-tagged dataword. If the structure is unknown during partial execution
and indicated by a dstr-tagged value, the location of the structure’s functor/arity
and its arguments can not be determined. The dstr tag provides the required hint
to update the heap along with the register involved.

In summary, a structure, whose form and heap location are not known, is repre-
sented on the heap by a self-referencing dataword with a tag dstr. The tag dstr,
distinct from BAM tag tstr, is used to signify a dynamic structure. Its heap loca-
tion is retained to facilitate subsequent access of this dataword when the structure’s
form and heap space become known and is created.

Thus, a dataword with either of the tags —dvar or dstr —is dynamic. A dataword
dvar“V stands for a heap value obtainable by dereferencing the heap location V. A
dataword dstr-V denotes an unknown structure whose preamble dataword on the
heap is at location V. A dvar-tagged dataword will never be formed on the heap
but a dstr-tagged dataword may. Datawords with tags dvar or dstr are created by
the dereferencing operation. However, since they are only known to the PE-driver,
the semantics of dereferencing operation described in earlier chapters need not be
changed. These tags are part of extensions made by the PE-driver to maintain
run-time information.

Deferred dereferencing is not required of datawords with tlst tag, the third
dataword of “pointer” type. This is because the heap space needed to store its
constituents viz., the head and that tail, is known and may be created accordingly
at PE-time even if the contents of list itself are unknown.
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5.4.2 Control Stack

The PE driver uses the control stack to control the partial execution process. Each
control stack item holds a pointer to the block along with the memory state in which
the block is to be partially executed. A CStack item is comprised of the following:

o current values of BAM registers and PE registers.

® a pointer into the in-out table entry that corresponds to the current input-

output values of the procedure being partially executed;
e current heap, choicepoint, environment and trail stack values;
e current allocate stack value;

® any additional register values that need setting upon restoration of BAM mem-
ory done at step 18 of Algorithm 3.

As shown in Algorithm 3, partial execution of a block, blk, results in a set of
data items, conty, and a residue res. conty; is called a resumption set of blk. Each
of the data items in the set corresponds to one block to be partial executed after
blk and is called the resumption of blk. A resumption holds three items - memory
state, resumption target and resumption register values. A resumption target is a pair
(pce, bb;) where bb, is the block at which PE resumes and pe, is its first instruction.
resumption register values holds one or more register-value pairs. These registers are
set to the corresponding values when PE resumes at block bb,. update_cstack uses
this resumption set to form control stack items. The resumption set is formed as

follows, depending on the control flow change instruction of the block res.

1. The block res has only one successor whose pointer is explicitly available in
bik. In this case, the resumption set of blk contains only one resumption that

holds the current memory state and the successor block as resumption target.

2. The block res has several successors whose pointers are explicitly available

in blk. In this case, the resumption set of blk contains one resumption for
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each of the successors. Each resumption holds the current memory state, the

corresponding resumption target and resumption register values, if any.

3. The last instruction of res is fail/0. The run-time behavior of BAM in
this situation is to resume execution from the next choice stored in the cur-
rent choicepoint. In this case, the resumption set of bk contains only one
resumption that holds the memory state saved in the current choicepoint, the
alternative choice as resumption target and resumption register values, if any.
update_cstack also records a failure of the current choice in the choicepoint
apart from forming a control stack item. Note that the values of pc and bb
will never be FAILURE except when the partial execution is complete and when

there are no more choicepoints available in the choicepoint stack.

4. The last instruction of res is either a return/0, a jump/1 or a call/0 to a
non-local target that is assumed to succeed and thus is treated as equivalent
to return/0. Partial execution of return/0 sets the current memory such
that partial execution may continue along the block number cbb. In this case,
the resumption set of bik contains a single resumption that holds the current
memory state, resumption target pair (cbb, first instruction number of cbb)
and resumption register values, if any. update_cstack also records success of

the current choice in the current choicepoint.

Thus, the control stack keeps track of all the run-time execution threads to be
traversed after completing partial execution of the current block. The additional
block specific speculative information mentioned above constitutes all the register
datavalues set on a speculative PE path.
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5.5 Loop Detection and Termination of Partial

Execution

In presenting the details of Algorithm 3, we have already described the properties of
a basic block and a procedure, their parameterization with reference registers, and
the control stack that controls PE. We now describe the loop-handling mechanism
used in the algorithm.

The depth-first traversal of the CFG schedules blocks to be partially executed.
However, partial execution of the block is actually performed only if it was not
performed earlier with respect to the reference registers (more precisely, static focus
registers). A PE-loop is detected if a residue exists for the block scheduled for partial
execution for its reference registers. A PE-loop may or may not correspond to a loop
in the BAM code. This section discusses detecting and handling of PE-loops (Step
15 in Algorithm 3).

Recall that the top of CStack contains both the block, blk, and the memory
state, mem, in which blk must be partial executed. The PE driver restores the
memory state to mem, but before partial executing blk it considers the following

options.

1. blk may be the entry block of a procedure. Let P;, be the set of input
argument-static value pairs for the current memory. The PE driver performs
partial execution of the procedure block based on the in-out table entry for

P;. as follows.

(a) If the in-out table has a record of output values P, corresponding to
P;, then the procedure need not be partially executed. The existence
of output value information corresponding to the current static input
argument registers implies that the procedure has already been partially
executed. The current memory is updated with the set of output values
in Puy to reflect the execution of the procedure and partial execution
continues as if the procedure has been partially executed.
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If P,y has more than one set of output values that correspond to Py,
speculative partial execution is set up by setting the current memory state
to each of these output values in turn and continuing partial execution

along the execution threads that correspond to those output values.

Figure 5.6 illustrates this case. Partial execution of call(p/n) in block
A results in a resumption that holds the current memory state and block
C as resumption target. Hence PE of C is scheduled. Let Aoyt be the
static output values at the exit of A. Then the input static values Cy, of
block C are a proper subset of Aoy Let D, E, F and G be the exit {or
leaf) blocks of p/n. Assume p/n was previously partially executed for the
static input values C;;. The in-out table corresponding to procedure p/n
will have an entry (Cin, (Dout, Eout, Fout, Gout)) Where Doue, Eoue, Foue
and Gy are the output static value sets corresponding to the procedure

exit points.
AggsC
A W= c In-Out Table Entry
procedure(p/n) Ch— Oox Eow Fout Sou
call (p/n). . .
os I
1 D 7T T 5 i G
return. M retuzn.
[}
return. ratura
Eom Foa

Figure 5.6: Schematic illustration of procedure in-out value usage

Since the p/n has been previously partially executed for Ci,, the PE
driver schedules four speculative partial execution threads through block
B with memory set to the output values Dgye, Eout, Fout, Gout respec-
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tively.
Thus this technique results in specialization of procedure calls for specific

call sites while ensuring termination of partial execution.

(b) If in-out table has no record of output values P, that correspond to
P;,, then the procedure is partially executed.

2. bikis a non-procedure block. Then, a check is performed similar to one used to
determine whether a procedure was previously partially executed. This check
determines if the current block has a residue corresponding to the current static
focus registers of the block. The version check is made possible by maintaining

the following run-time basic block residue information.

o The static registers for which a residue was generated along with a pointer

to the residue;
e A unique identification of the residue block;

o The result of partial execution of the block.

Thus the version check simply verifies whether the current basic block has
been partially executed given the current static focus registers. If so, a loop is
said to be detected and the residue is recorded in the flow graph that records
the partial execution flow. Otherwise, the block is partially executed.

5.5.1 Handling a Basic Block Execution Loop

Assume that bk’ is the residue of block bik for static focus registers s. Let the static
focus registers at the current stage of partial execution also be s and hence a loop
is detected. Once a loop is detected prior to partial execution of blk, three alternate
situations exist.
¢ Previous partial execution of blk resulted in a local failure. This would have
set the partial execution along the retry address, say r, in the choicepoint.
Presently, since the loop is detected, it is incorrect to let partial execution
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continue along r since the retry address in the current choicepoint could be
different. Instead, partial execution is set to continue along the retry address
in the current choicepoint and the residue is recorded in the execution flow

graph.

® Previous partial execution of blk resulted in global failure due to PE of an
instruction like jump(’$ flt_error/2’), where ’$ flt_error/2’ is the label
to the built in floating-point error condition handler. Then, the current block
is not partiaily executed. Instead, global failure is recorded in the PE-flow
graph and depth-first traversal of the CFG continues.

o Partial execution of blk was successful and generated a residue blk’. This
is the most common case. We assume partial execution will succeed along
the current path ard return out of the current procedure by restoring the
continuation pointer (cp). The memory is set to the static output values

recorded in the in-out table of the procedure being returned from.

Here, we take advantage of the fact that control low does not enter a block from
outside the procedure to which the block belongs. In other words, all target labels of
jump, switch and test instructions are either within the procedure or are built-ins.
Any previous partial execution thread through ik with static values s would have
traversed the same blocks as the current partial execution through blk will traverse.
Thus it is sufficient and correct to return out of the current procedure thereby
setting memory state with the static output recorded during previous PE of the
current procedure. This is accomplished by simulating ¢ return using Algorithm 5.

5.5.2 PE Loops and Code Loops

Strongly connected components (SCCs) are commonly used to identify loops in a
CFG. SCCs in the BAM code CFG are computed in the front end. Syntactic loops
within each closed procedure of the CFG are found with the well-known algorithm
of Tarjan [64], detailed by Wolfe [72] and sketched in Algorithm 6.
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Algorithm 5 Simulation of a return out of a procedure when a loop is detected

—

: if an environment was allocated by the current procedure then
Restore the values of ¢p, cpp, cp-par and e from the environment top.
Pop the environment stack top.
: end if
: if blk is a choicepoint block then
if CStack has no blocks that are scheduled to be partially executed after
creation of current choicepoint then
Set retry address in the current choicepoint to next retry address.
end if
: end if
: Partial execute the instruction return/0

R

@ e

Following are the data structures used in the algorithm.

e n is the global counter for assigning pre-order numbers, initialized to zero. V'

is the set of graph nodes.

e CountSCC is the total number of strongly connected components found, ini-
tially zero.

e Stack is a stack of nodes, initially empty.

e NPre(z) is the pre-order number assigned to each node, initially zero for each

node.

o Lowlink(z) keeps track of whether each node has a path to a spanning forest

ancestor.

e SCC(z) is the SCC number assigned to each node; two nodes with the same
SCC number are in the same strongly connected component.

¢ InStack(z) is a flag indicating whether the node is on the stack; initially set
FALSF for every node.

A conventional loop in the given code is called a syntactic loop to distinguish
it from the PE-loop described above. Each SCC denotes a syntactic loop in the
BAM code. Each syntactic loop entry need not correspond to a PE-loop. Consider
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Algorithm 6 Algorithm for finding strongly connected components

—

bttt
T =

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

24:
25:
26:
27:

REBE

32:

-

© 0D W

forzeVdo
NPre(z) =0
InStack(z) = FALSE
end for
n=20
CountSCC =0

: Stack =

forzeV do
if NPre(z) == 0 then
SCCRecurse(z)
end if

: end for

Procedure SCCRecurse(z)
Lowlink(z) = NPre(z)=n=n=n+1
Push z onto Stack
InStack(z) = TRUE
for y € suce(z) do
if NPre(y) == 0 then
SCCRecurse(y)
Lowlink(z) = min{Lowlink{z), Lowlink(y))
else if NPre(y) < NPre(z) A\ InStack(y) then
Lowlink(z) = min{Lowlink(z), NPre(y))
end if
end for
if NPre(z) == Lowlink(z) then
CountSCC = CountSCC + 1
repeat
pop w off Stack
InStack(w) = FALSE
SCC(w) = CountSCC
until w ===z
end if
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o3

Figure 5.7: Schematic to Illustrate PE-loop and Syntactic Loop

the schematic illustrating a syntactic loop A-...-B-A in Figure 5.7. Assume that
when the block A is partial executed for the first time with static focus registers sfI
it generates a residue Al. If the static focus register values at the exit of partial
execution of B, say sf2, are a proper subset of sfl, a PE-loop is detected. In such
a case the syntactic loop A-...-B-A is the same as the PE-loop. However, if sf2 is
not a proper subset of sf! the PE driver schedules the partial execution of A in the
context of sf2 to generate a possibly different residue. In such a case, the syntactic
loop is different from the PE-loop. Such characterization represents a conservative
form of classical loop unrolling [54,72]. The conservative nature is due to the loop
checking criterion (as implemented) that tests for the equality of only the datatags
of static register values. However, the effect of aggressive loop unrolling can be
achieved within the partial execution framework presented here by extending the
equality test to the entire dataword contents.

5.5.3 Termination of Partial Execution

Partial execution of given BAM code terminates upon traversing all the blocks
of its CFG. With the loop detection and handling techniques described in earlier
sections and the finite number of residues generated as described in Section 4.2.2,
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termination of partial execution is straightforward. Partial execution of the complete
CFG traverses all the possible execution threads. Thus any path in the graph not
traversed during partial execution exposes dead code. Thus dead-code elimination
is a by-product of partial execution.

5.6 Partial Execution of a Basic Block

Partial execution of a given basic block in the context of current memory can be
performed by a simple loop that performs symbolic instruction execution and in-
struction transformation together using Algorithm 7.

Algorithm 7 Basic block partial execution

1: for all basic block instructions do
2.  if static operand information available then

3 transform the instruction according to the transformations detailed in Sec-
tion 4.3.

4: endif

5. Symbolically execute the instruction.

6: end for

An instruction is transformed to a simpler equivalent if sufficient static informa-
tion is available as detailed in Section 4.3. Symbolic execution of an instruction is
done after instruction transformation to ensure correctness of the transformation in
the context of correct BAM memory state.

Depending on the result of basic block partial execution, the CStack is updated
so that partial execution continues correctly. Further, the result of block PE is
recorded in the residue information.

The following information, pertaining to the run-time behavior of the block and
results of the partial execution, is collected during partial execution of a block:

o Residue generation: If at least one of the instructions in the block is trans-

formed, it is recorded that a residue is generated.

o Local failure: If PE of the block resulted in failure, a local failure is recorded.
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o Global failure: If the PE of the block resulted in failure, a global failure is
recorded.

5.7 Implementation of BAM Partial Executor

It is highly desirable that the partial execution phase does not significantly add
to the compilation time of Aquarius Prolog compiler. The front end first parses
the candidate BAM code, builds the CFG and syntactically analyses it. The PE
driver then performs the partial execution process by building and maintaining the
various data structures described earlier. Except for the implementation of parsing
functionality, the partial executor is implemented using C. The Aquarius compiler
can generate a BAM code listing during compilation of a Prolog program, BAM
instructions emitted as Prolog terms. Hence, Sicstus Prolog is called by the partial
executor to parse them. The implementation consists of over 15,000 lines of C code

along with over 200 lines of Prolog code.

5.8 Summary

The main contribution of this chapter is a description of the partial execution driver.
A description is provided of additional memory areas and data structures. These
augment BAM memory areas such as PE registers, allocate stack, control stack to
facilitate partial execution. A description is given of partitioning the BAM code
at two levels - viz., procedure and basic block level — and parameterizing these
partitions to facilitate block-level and procedure-level analyses. Such partitioning is
crucial since BAM code is RISC-like and attributing a form to such code facilitates
definition of program points and program states. Techniques to identify dynramic
registers and dereferencing are described.

The PE driver traverses the partitioned BAM code while collecting its run-time
behavior in the augmented data structures. A combination of syntactic analyses and
run-time analyses guides the partial execution with the help of a control stack and
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a loop-handling mechanism. These techniques are also discussed in this chapter.
Code loops are syntactically identified while parsing the BAM code. The loop
recognition and handling discussed in this chapter ensures termination of partial
execution process as well as limits code explosion.

Partial execution of instructions uses syntactic and run-time information ex-
tracted as discussed in this chapter. Section 5.6 described the algorithm to partially
execute a basic block. We describe in the next chapter the symbolic execution and
transformation of individual BAM instructions within the framework layed out in
this chapter.
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Chapter 6

Instruction Level Partial Execution and Analyses

While partially executing BAM code, the PE driver utilizes information relating to
one or more of the following aspects of the program:

e syntactic representation of the BAM instructions;
o run-time behavior of the BAM triggered by execution of the given code;
e run-time behavior of the BAM independent of the current code sequence.

Program-related information is collected during several analyses phases and is used
to control partial execution as well as to perform transformation of instruction se-
quences.

Symbolic execution of each of the BAM instructions is done according to the
denotational semantics presented in Chapter 3. This phase of the BAM partial ex-
ecutor also relies on program information obtained by the program analysis phases.
This chapter describes the partial execution of all BAM instructions whose denota-
tional semantics were presented earlier. After an instruction is partially executed,
the PE driver employs various techniques to ensure BAM memory correctness and
to continue partial execution. These techniques use several analyses results and are
described in this chapter.
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6.1 PE of BAM Instructions

In general, PE of an instruction involves three steps: symbolic execution, trans-
formation and analysis. When an instruction is not transformed to a simpler one,
an identity transformation is said to have applied. When an instruction may be
eliminated, a nop transformation is said to have applied. A resumption set is gen-
erated using the successor information of a block during partial execution of the
last instruction in a block. The analysis associated with each instruction refines the
resumption set, as necessary. The PE driver updates the control stack according
to the resumption set as explained in Section 5.4.2. When an instruction refines
a resumption, it is explicitly specified in the following description of instruction
PE. Otherwise, it is omitted. Further, PE of instructions not described below in-
volves only symbolic execution. The implementation of symbolic execution of such

instructions ensures that the memory state is maintained correctly.

6.1.1 PE of Procedural Control Flow Instructions
6.1.1.1 PE of procedure(P)
e Symbolic execution: Increment pc by 1.
¢ Analysis: Perform the following steps:
— Record current static argument register values in the in-out table associ-

ated with the current procedure.

— Set the current value of the PE register proc.blk to the current block,
i.e., entry block of the current procedure.

— Save the current index into the in-out table of the calling procedure in
the corresponding allocate stack item. This value is restored upon return
from the current procedure so that partial execution continues in the

calling procedure.
e Transformation: An identity transformation is applied.
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6.1.1.2 PE of allocate(N)

o Symbolic Execution: Create an environment on the top of the environment

stack with the current values of e, ¢p, cp_par and cbb, along with space for N

permanent registers.

o Analysis: Set the env.alloc flag of the topmost non-dirty environment on the

environment stack to indicate allocation of the environment.

¢ Transformation: An identity transformation is applied.

6.1.1.3 PE of deallocate(N)

e Symbolic Execution: Pop the environment top off the environment stack.

e Analysis: The allocate stack top corresponds to the environment just popped
off. Set the allocate stack top to “dirty” indicating that the corresponding

environment was popped off.

o Transformation: An identity transformation is applied.

6.1.1.4 PE of call(N)

e Symbolic Execution: The called procedure may be a translation of a Prolog
predicate accessible during compilation, a Prolog built-in (e.g., =/2, +/2) or
a Prolog predicate whose definition is unknown at compile-time but will be
available at link-time. In the first case, the current value of pc is saved in ¢p
and pc is set to the address of the call site with label N. In the latter two cases,
partial execution assumes that the called procedure will return successfully
and simply increment the pc to the next instruction.

e Analysis: The value of cbb is appropriately set to the successor of the current
block. A new allocate stack item is created and pushed on to the allocate stack.
This new item records the current block. The env_alloc and alloc. dirty
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flags are set to indicate no environment allocation and no environment deal-
location. A pointer to the current input-output values is also saved in the
allocate stack item to enable their restoration upon successful return to the

current procedure’s partial execution.

o Transformation: An identity transformation is applied.

Partial execution of the call/1 instruction distinguishes between a procedure
call known at PE-time and one unknown at PE-time. Code is available for further
analysis in the former case. It is conservatively assumed that the call succeeds in the
later case unless the call is to global failure. This allows the PE driver to perform

basic block and procedure analyses as described in Section 5.3.

6.1.1.5 PE of return/0

e Symbolic Execution: Restore the value of cp to pc resulting in return from a
procedure call.

e Analysis: The values of proc_blk - current procedure to which partial execu-
tion returns - and the pointer to the current in-out values are restored from
the allocate stack item. The top of allocate stack is popped. Recall that the
in-out table records the argument register values of the current procedure. The
input values corresponding to the current procedure will not change due to the
return. Current argument register values, that represent the procedure being
returned from, are registered in the in-out table. When a block is recognized
as having a residue resulting from a previous partial execution (as discussed

in Section 5.5.1), a call return is simulated using algorithm 5.

e Transformation: An identity transformation is applied.

6.1.1.6 PE of jump(L)

e Symbolic Execution: If the jump target, L, is a user-defined procedure, the
values of pc and bb are set to those of the target block’s first instruction and
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the target block number respectively. The value of cbb is adjusted accordingly.
If the jump target is a known failure label, partial execution of the instruction
fail/0 is performed. The resumption target in the resumption is indicated
with a special value. This triggers the PE driver to set the control along an

alternate choice and records the failure in the current choicepoint as explained

in Section 5.4.2.

® Analysis: The jump target is tested for a procedure/1 label. If it is a pro-
cedure, the jump is in fact a last call that was optimized to a jump. In such
a case, an allocate block with appropriate initialization is pushed onto the

allocate stack.

o Transformation: An identity transformation is appliied.

6.1.2 PE of Conditional Control Flow Instructions
6.1.2.1 PE of switch(T,R,L1,L2,L3)

e Symbolic execution: If the tag of R is static, its symbolic execution updates pc
and cbb to the jump target. Only one resumption is created. If R is dynamic,
speculative PE is set up along the paths leading to blocks labelled L1, L2
and L3 respectively. This is done by creating a resumption set with three
resumptions: each with an encapsulation of current BAM memory state, L1,
L2 and L3 as branch targets, respectively, and (R,tvar), (R, T) and (R, none)
respectively as resumption resister values. The PE driver pushes three control

stack items using these resumptions.
o Analysis: No additional analysis necessary.

o Transformation: If the tag of R is static at PE-time, the instruction is trans-
formed to jump(L), where L is L1 if the datatag of R is tvar, L2 if T or L3 if
any other. If R is a dynamic register, the identity transformation is applied.
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6.1.2.2 PE of test(E,T,R,L) instruction

o Symbolic execution: If R is static, the pe¢ is set to the address of the instruction

at label L if either of the following is true:

L. IfE is eq and if the tag of R is equal to T or

2. If E is ne and if the tag of R is not equal to T.

If R is static, the pe is set to the address of the following instruction in all

other cases.

If R is dynamic, two speculative PE is set up — one along the path leading to
block labelled L and the other leading to the fall-through block. This is done
by creating a resumption set with two resumptions. Both of them contain an
encapsulation of current BAM memory state. One resumption has the block
with label L as resumption target and the other has fall-through block as its

resumption target.
Analysis: No additional analysis necessary.

Transformation: If R is static, the instruction is transformed to jump(L) if
the above tag tests succeed; else the instruction is transformed to nop/0. No

transformation is done if R is dynamic.

6.1.2.3 PE of jump(T,C,A,B,L)

PE of jump/5 occurs in one of the following three scenarios:

L.

Values of the registers A and B are static and the condition specified in C

evaluates to true.

. Values of the registers A and B are static and the condition specified in C

evaluates to false.

. Values of A and B are dynamic.
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e Symbolic execution: In case 1, symbolic execution results in creation of a
resumption containing the block with label L as resumption target. In case 2,
symbolic execution results in creation of a resumption containing (ni, nb) as
resumption target, where ni is the next instruction and nb is the fall-through
block. In case 3, speculative execution is set up by creating a resumption
set containing two resumptions each with the current BAM memory state
encapsulated. One resumption has the block with label L as its resumption
target and the other has the fall-through block as its resumption target.

o Analysis: No additional analysis necessary.

s Transformation: In case 1, the instruction is transformed to jump(L). In case 2,
the instruction is transformed to nop/0. In case 3, the identity transformation
is applied.

6.1.2.4 PE of choice(I/N, Rs, L)

e IfI =1,

- Symbolic execution: a new choicepoint is created on the choicepoint stack.
Apart from the current BAM memory state, the choice success informa-

tion of the current choicepoint, if one exists, is saved in the choicepoint.

— Analysis: A resumption containing the current memory state and address

of next instruction as resumption target is created.
e f1<IKN,

— Symbolic execution: The BAM memory state is restored from the cur-
rent choicepoint. The next choice is set to the label L in the current
choicepoint.

- Analysis: A resumption containing the restored memory state and the
address of next choice in the current choicepoint as resumption target is

created.
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e Further Analysis and transformation: In all cases where 1 < I <N, success or
failure of the choice whose PE was just completed is registered in its choice
success information. However, during the symbolic execution of a choice/3
instruction with I = N, the choicepoint is not popped off the choicepoint stack.
The retry address in the choicepoint stack top is set to a special value FAILURE
to indicate that the choicepoint is merely left on the stack for the purpaoses of
analysis done for choicepoint optimization. This choicepoint is popped off the
stack during choicepoint optimization described in Section 6.4. Any possible
choice instruction transformation is also done during this phase.

6.1.2.5 PE of cut(R)

The compiler generates a move(r(b),R) instruction that stores the value of the
choicepoint stack top b in argument register R at the entry of the predicate with a
cut in its body. The built-in predicate ! is compiled to the instruction cut (R} which
restores b and hb to their values at predicate entry thus rolling back the choicepoint
state to that at the entry of predicate. This results in ignoring all choicepoints
created in the body goals of the current clause, thus committing the choices made
by the body goals.

o Symbolic execution: Sets the values of b to that stored in R and restores hb

from the current choicepoint.

o Analysis: If the choicepoint stack has not grown since eatry into the procedure,
it follows that the value of b (and hence hb) has not changed.

e Transformation: If b is unchanged, the cut/1 instruction is transformed to a
nop/0 instruction. If the value of b {and hence that of hb) has changed, no

transformation is done.

The transformation of a cut/1 instruction is illustrated using the “steadfast”
version of max/3 [55] shown in Figure 6.1. Figure 6.2 shows CFG of the BAM code
generated with the GFA-based optimization turned on. The cut/1 instructions in
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:-option(analyze) .

main :-
read(X),
read(Y),
max(X,Y,Z),
write(Z),
nl.

max(X,¥,Z) :- X >= Y, I, Z=K.
max(X,Y,Y).

Figure 6.1: Definition of max/3 Predicate

block 19 and block 15 may be transformed to nop/0 as it can be shown at PE-time
that the value of r(b) remains unchanged between its storage in block 5 and its
restoration in blocks 19 and 15.

6.1.2.6 PE of trail(v)

¢ Symbolic execution: Only tvar-tagged datawords are trailed. Thus V contains
a PE-time dataword with tvar tag. Its datavalue is pushed on the trail stack.

e Transformation: None needed.

o Analysis: None needed.

6.1.2.7 PE of fail/0

e Symbolic execution: Untrails all variable bindings from the trail stack, restores
the BAM memory state from the current choicepoint and forms a resumption
containing current memory state and current retry address in the choicepoint

as resumption target.

e Analysis: Several BAM memory areas are updated to assist analysis performed
during partial execution of the fail/0 instruction as described below. First,

the choice success information corresponding to the current choice is updated
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41, i28(r(1),r(1)).
42, testine,tfi1t,r(0), (man/3,13)).
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return.

[
33. movelr(0),r(2)).
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1
37, 1260(0),0(0))
3. jump(iCaan/2,100).
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43. test(ne,tfit,r(1),1(nax/3,13)).

r

T
48. 1abel()(man/3,10)).
49, test{ne,tfit,~(0),1(man/3,13)).
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|su. test(ne, Lt ,r(1),1(n0/3,13)).

;

M
44, jumpCtf,its,rC0),r(1), 1 (man/3,4).

15
45, cut(r{3)).
45 . move(r(0),r(2)).
47 . return.

.

"
51. jump(tf,lrs,r(0),r(1),10man/3,4}).

il

2
55. Tabel(1(max/3,13)).
55. jusp(’3 flr_error-/2).

'

19

2. ent(r(3)).

5. move(r(0),r(2)).
4. retun.

n

S7. label(1(max/3,4)).
58. move(r(1),r(2)).
93, reten.

Figure 6.2: CFG of BAM Code for predicate max/3
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ck. gucc.

Choicepoint Stack

fail.

Figure 6.3: Schematic CFG to illustrate choice success update

in the current choicepoint. The current choice is marked as failure in the
choice success information only if all previous speculative partial execution
paths traversed via the current choice are also false. For exampie, consider
the CFG structure in Figure 6.3. Let the choice/3 instruction in block A
be the choicepoint creating instruction (i.e., with first argument 1/N where
N > 1). Let the path A-E be the path of next alternate choice (retry address).
Let B... Cand B... D be two speculative execution paths along the first
choice attempted. Partial execution along each path can eventually lead to
success or to failure. The choice success information stored in the current
choicepoint records a failure of the current choice only if PE along all such
speculative paths results in failure. recorded. Thus failure is recorded in the
current choicepoint during partial execution of £ail/0 instruction in block D
only if PE along the path B ... C does not fail.

Partial execution of the choice/3 instruction with first argument N/N (de-
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scribed earlier) does not simulate the run-time BAM behavior of popping the
top of the choicepoint stack. It is left on the choicepoint stack with the next
retry address set to FAILURE to indicate completion of all speculative PE paths
to be traversed via the current choicepoint. Hence, if the retry address in the
choicepoint is FAILURE, the choicepoint optimization is performed.

¢ Transformation: This phase either transforms some of the choice/3 instruc-

tions to nop/0 or to jump/1 instructions.

6.1.3 PE of Unification Instructions
6.1.3.1 PE of deref(X,Y)

Since several subcases exist, the following discussion is not presented under the
headings of symbolic execution, analysis and transformation, as done till now.
Depending on whether the content of X is a non-pointer tag or a pointer tag,
there exist two possibilities for partial execution of deref(X,Y).
Consider the case when the content of X has a non-pointer tag. There exist two

possibilities:

¢ the second operand Y is the same as the first, i.e, the instruction is deref (X,X),
then the instruction is transformed to a nop/0 since at run-time the first

operand dereferences to itself in the same register.

o the second operand Y is different from the first; the deref (X,Y) instruction is
transformed to a move(X,Y), since no further dereferencing of the non-pointer

tagged value may be done.

Consider the case where X has a pointer-tagged content that dereferences (Sec-
tion 2.2.3) to a non-pointer tagged dataword V. Then the instruction can be trans-
formed to a move(V,Y) instruction. This is similar to constant propagation as done
in conventional compilers. However, the static values propagated in the current

work are not restricted to known constant values - viz., fully known non-pointer
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tagged datawords. The values propagated are datawords whose tags are known at
PE-time. Hence partial execution may be considered as a more general technique
that encompasses “conventional” constant propagation.

If the pointer-tagged dataword content of X does not dereference to a non-pointer
PE-time dataword, symbolic execution and analysis steps for each of the possible

pointer tags is done as described below. No transformation of instructions is possible

in these cases.

o Let X dereference to a dataword with a tag tvar or dvar and data-value
dv. At run-time, dereferercing tvar-tagged dataword results in either a self-
referential heap location or a non-pointer tagged dataword at heap location dv.
At PE-time, this is indicated by setting the second operand to dvar-tagged
dataword. This dataword indicates that its run-time value is actually obtained

by dereferencing of this dataword as described in Section 5.4.1.

o Let X dereference to a dataword with a tag tstr or tlst. The second operand

value is set to this dataword.

6.1.3.2 PE of equal(V1, V2, L)

e Symbolic execution: If datavalues of V1 and V2 are fully known at PE time, set
pc to L or to the following instruction according to the equality test. Otherwise,
schedule speculative PE is performed by forming a resumption set with two
resumptions, each containing the current memory state. One of them has
the next instruction as resumption target and the other has the instruction

label(L) as resumption target.

o Transformation: If the datavalues of V1 and V2 are fully known at PE time,
the instruction is transformed to either a nop/0 or to jump(L) depending on
whether the datavalues are equal. However, if the datavalues are not fully
known, but have static data-tags (i.e.,data-tags other than dvar or dstr), the
instruction may be transformed to nop/0 or to jump(L) depending on whether
the data-tags are equal.
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If the instruction is transformed to a nop, a resumption with current memory
and the next instruction as resumption target is formed. If it is transformed
to jump/1, a resumption with current memory and the instruction label (L)

as resumption target is formed.

o Transformation: If the datavalues of V1 and V2 are fully known at PE-time
and are equal, the instruction is transformed to a nop/0. If they are fully
known but not equal, the instruction is transformed to jump(L). If the dataval-
ues of V1 and V2 are not fully known at PE-time, but have same static
datatags (i.e.,datatags other than dvar or dstr), the instruction is trans-
formed to nop/0. If they have different static datatags, it is transformed to
jump(L).

If the instruction is transformed to a nop, a resumption with current memory
and the next instruction as resumption target is formed. If it is transformed to
jump/1, a resumption with the current memory and the instruction label (L)

as resumption target is formed.

e Analysis: No analysis needed.

6.1.3.3 PE of unify(R1,R2,F1,F2,fail)

Partial execution of unify/5 depends on the static or dynamic nature of R1 and R2
as described below.

Let contents of R1 and R2 be T1°V1 and T2°V2 respectively.

e Case 1:

— Symbolic execution: If both T1 and T2 are dvar, then symbolic execution
of unify/5 trails V, the greater of the heap addresses V1 and V2. In other
words, the most recently created heap location is trailed. Then the value
of the operand containing datavalue V is set to that of the other operand.

— Transformation: None.
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— Analysis: None.
e Case 2:

— Symbolic execution: If only one of T1 and T2 is dvar, then symbolic exe-
cution of unify/5 trails the corresponding datavalue and sets the operand
with dvar-tagged dataword to the value of the other.

~ Transformation: None.

—~ Analysis: None
® Case 3:

— Symbolic execution: If T1 is tvar and T2 is a non-tvar tag or if V1 is
more recently created heap address than V2 (i.e., V1 > V2), the heap value
V1 is pushed onto the trail stack and R1 is set to the value of R2.

~ Transformation: The instruction unify(R1,R2,F1,F2,fail) is trans-
formed to the sequence:

trail(R1). move(R2,R1).

— Analysis: None.
®» Case 4:

— Symbolic execution: If T2 is tvar and T1 is a non-tvar tag or if V2 is
a more recently created heap address than Vi (i.e., V2 > V1), the heap
value V2 is pushed onto trail stack and R2 is set to the value of R1.

— Transformation: The instruction unify(R1,R2,F1,F2,fail) is trans-
formed to the sequence:

trail(R2). move(R1i,R2).

— Analysis: None.

e Case 5:
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— Symbolic execution: If T1 is different from T2 and neither is a dvar nor
tvar tag, symbolic execution of the instruction fail is performed such
that PE continues along alternate execution threads.

— Transformation: The instruction is transformed to fail.

— Analysis: None.
e Case 6:

— Symbolic execution: If Tt and T2 have the same tag other than dvar,
dstr, tvar, tstr or tlst, either pc is set to the next instruction or
symbolic execution of instruction fail is done depending on whether V1
and V2 being equal or not, respectively.

— Transformation: The instruction is transformed either to nop or to fail
depending on whether V1 and V2 being equal or not, respectively. Cor-
respondingly, the partial execution continues to the next instruction or
to fail/0. PE will continue along alternate execution threads, if they
exist, in the latter case as explained in Section 6.1.2.7.

— Analysis: None.
o Case T:

— Symbolic execution: If T1 and T2 are either tstr or tlst, the heap
locations V1 and V2 are unified using Algorithm 8. It adapts the classi-
cal unification algorithm (3] that facilitates unification of heap addresses
containing only partial information. It unifies two heap locations k&, and
h, and builds any necessary heap data as much as possible to maintain

correctness of partial execution.
- Transformation: None.

— Analysis: None.
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Algorithm 8 unify(hy, h,) : boolean

1: Let the contents of h, and A, be T1"V1 and T2"V2.

2: If T1 and T2 are both dvar, there is insufficient information to do anything

further. Return success.

3: Ifonly T1 (T2) is dvar, trail the heap location V1 (V2) and set it to T2°V2 (T1-V1).

Return success.

4: If both T1 and T2 are tvar, trail the most recently created heap address among
Vi and V2 and set it to tvar~V where V is the greater of V1 and V2. Return
success.

: If Tt and T2 are different non-pointer tags, or if they are same non-pointer
datawords with different datavalues, unification is not possible; return failure.
6: If T1 and T2 are both tstr or tlst, dereference V1 and V2 to W1 and W2. Return

unify(Wl, W2).

o

6.1.3.4 PE of unify_atomic(V,A, fail)

1. If V contains a static non-tvar or non-dvar tagged value and the contents of

V are the same as A:

e Symbolic execution: The pc is incremented. A resumption with current

memory state and the next instruction as resumption target is formed.

e Transformation: The instruction is transformed to a nop/0.

2. If either the (non-tvar and non-dvar) datatag or the datavalue of the content

of V is different from that of A:

e Symbolic execution: PE of the instruction £ail/0 is carried out.

¢ Transformation: The instruction is transformed to £ail/o0.
3. If V contains a PE-time datatag:

¢ Symbolic execution: The pc¢ is incremented. The datavalue is trailed and

V is set to A.

e Transformation: Not done.

4. Analysis: No additional analysis is needed.
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6.1.3.5 PE of move(S,D)

e Symbolic execution: The PE-time contents of $ are moved into D. The pc is

incremented.
e Transformation: None needed.

e Analysis: None needed.

6.1.3.6 PE of push(S,R,N)

¢ Symbolic execution: The pc is incremented. The PE-time contents of S onto

the stack with stack pointer R.
¢ Transformation: None needed.

e Analysis: None needed.

6.1.3.7 PE of adda(5,0,D)

e Symbolic execution: The pc is incremented. If S is static, D is set to a value
whose tag is that of S and data value is (datavalue of S + 0). If S is not static,
only the tag of D is set to that of S.

e Transformation: None needed.

e Analysis: None needed.

6.1.4 PE of Arithmetic Instructions

Partial execution of arithmetic instructions mainly invoives symbolic execution. The
instruction is transformed only if the block containing it is not part of a program
loop. Program loops may be unrolled to achieve the effect of classical loop un-
rolling [54] as discussed in Section 5.5. Since the present work does not perform
limited loop unrolling, arithmetic instructions in a program loop are only symboli-
cally executed and not transformed.
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However, if an arithmetic instruction is not in a block that is part of a program
loop and its operands have static datavalues then it is transformed into move(S,D)
instructions where S is the result of the arithmetic computation to be done by the
instruction and D is the destination of the operation. Additionally, the following
cases are handled accordingly during partial execution of arithmetic instructions

with one static operand that is the identity value for that operation:

o Either of the source operands of an add/4 or sub/4 instruction has a static

non-pointer tag and a datavalue of 0.

o Either of the source operands of mul/4 has a static non-pointer tag and a
datavalue of 1 or 0.

e The numerator operand of div/4 has a static non-pointer tag and a datavalue
of 0.

o The denominator operand of div/4 has a static non-pointer tag and a datavalue

of 0. This is transformed to a jump to arithmetic failure.

o Either of the source operands of an and/4 instruction has a static non-pointer

tag and a datavalue of 0.

6.2 Maintaining BAM Memory Correctness

The BAM memory state at any given program point during partial execution is an
abstraction of its corresponding run-time state at that program point. By abstrac-
tion, we mean the following. The register contents either have the same data tags
or a dynamic tag; heap locations differ only by the size of the run-time data struc-
ture. This is illustrated using the following code whose BAM code CFG is shown in
Figure 6.4.

main :- read(X), p(X,Y), write(Y).

p(a,1).

144



If the PE-time BAM memory state abstracts the corresponding run-time BAM mem-
ory state at a given program point, then we say that BAM memory correctness is
maintained at that program point. The BAM memory correctness is said to have
been maintained for a given program if is correctness is maintained at every pro-
gram point in the program. We further illustrate in this example the use of SCC
information to ensure the correctness of an instruction transformation involving a
static operand.

Consider the content of the register r(0) at the entry of block 1. Its contents
have the same PE-time and run-time data tag, viz., tvar. Now let us consider
the heap. Instruction 6 in block 0 pushes a dataword onto the heap. The call to
read/1 builds datawords on the heap that are unknown at PE time. Instruction 12
in block 1 pushes another dataword. At PE-time there are no datawords between
the datawords pushed by instructions 6 and 12. However, at run-time they are
separated by datawords pushed by the call to read/1. Top of the heap, r(h), at
entry into block 3 at PE-time is different from that at run-time for the same reason.
The partial execution algorithm does not assume the size of data that might be
written on the heap by calls whose code is not available. Instead PE continues
with the present value of r(h). In this example, r(h) contains 0 both before and
after the call to read/1, which is assumed to succeed. The heap is adjusted later
to approximate its run-time state once more information about the heap iocation
becomes available (Section 6.2.1).

In the present example, since tvar~r(h) is a static term, it is possible to trans-
form instruction 3 to move(tvar-0,r(0)) and consequently consider r(0) to be
static. However, r(h) points to a BAM memory area whose PE-time and run-time
values differ. So, the above transformation is not performed because it does not
preserve the correctness of BAM memory. Transformations involving only static
datavalues are performed and those involving pointers to BAM memory areas are

not performed.

145



0

0. procedure(main/0).

1. entry(main/0,0). 3

2. allocate(2).

3. move(tvar~r(h),r(0)). %é g:::;g:;;(%n .

. ,2).

s Eﬁl;ﬁ:?:ﬂéﬁﬁiliabm)) g |2 deref(rCO),rC0)).
6. push(r(0),~Ch),1). 24, test(ne,tvar,r(0),1(p/2,1)).
7. pad(1).

8. call(read/1).

y
1

8. move(tvar~r(h),r(1)).
10. move(r(1),p(2)).

11. pragna%push(va)lriable)). 4
12. push(r(1),rCh),1). .
13. pad(1). 25. trail(r(0)).

14. pragma(tag(p(1),tvar)).
15. mave((p(1)],r€0)).
16. cali(p/2).

4 4
2 §

17. pragma(tag(p(0),tvar)).| |26. label(1(p/2,1)).

18. deref([p(0)],r(0)). 27. unify_atomic(r(0),tatm~a,fail).
19. deallocate(2). 28. deref(r(l),r(1)).

20. jump(urite/1). 29. test(ne,tvar,r(1),1(p/2,2)).

]
30. trail(r(1)).

+

1

31. label(1(p/2,2)). )
32. unify_atomic(r(1),tint~1,faill.
33. return.

Figure 6.4: Example to illustrate transformation of an instruction with static
pointer-tagged operand
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6.2.1 Speculative Partial Execution

BAM memory correctness has to be maintained not only at every program point but
also before and after partial execution of each instruction. Symbolic execution of
instructions as detailed earlier in the chapter maintains correct BAM memory state.
Resumption plays a crucial role in ensuring correctness of BAM memory state at the
entry and exit of basic blocks. This section discusses techniques employed to ensure
BAM memory correctness when a block is partially executed speculatively. On the
other hand let S be a block not being speculatively partially executed speculatively
and let P be its parent from which PE control reached S. Partial execution of S is
simply started with the memory state encapsulated in the resumption at the end of
PE of P. We refer to such PE as deterministic partial execution.

Speculative partial execution is set up when a retry address is being attempted
or when a conditional control instruction involves a dynamic register. With spec-
ulative PE, more than one block successor is partially executed. Hence, additional
argument register values must be set along each execution path. For example, as-
sume the flow change instruction in the current block being partially executed is
switch(T,R,L1,L2,L3) with a dynamic operand R. As explained in Section 6.1.2.1,
a resumption set with three resumptions each containing a copy of the current mem-
ory state results from its PE. Further, two of the three resumptions correspond to
flow control along blocks labeled L1 and L2. These resumptions indicate that R has
a tag tvar and T. The third resumption indicates failure.

The resumption set is used to form a CStack item. The resumption registers
are stored in the CStack frame as a set of argument register-dataword pairs. The
CStack top indicates the block to be partially executed and the memory state in
which it needs to be partially executed. The memory state is set to that indicated
in the CStack top. Resumption register information is used to adjust the memory
state set using Algorithm 9. This phase ensures that the heap at PE-time is correctly
approximated to that at run-time. The value of each register r being set depends

on the addressing mode of r as well as its current content. Since speculative PE
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Figure 6.5: Setting a non-state register r to a tvar-tagged dataword

is scheduled, each r is a dynamic register. If r is an immediate operand then it
is considered to be a heap address and the heap location r is set to st*sv; if r is
r(h) or r(b) then the register r(h) or r(b) is set to st~sv accordingly. If r is
neither a state register nor an immediate operand then the heap is built to reflect
its run-time state depending on the current value of r. Algorithm 10 is used to
build the heap. The case constructs used in this algorithm do not fall through to
the next case. Figures 6.5 and 6.6 depict the heap before and after setting r to a
tvar-tagged dataword and tatm-tagged functor dataword, respectively.

Algorithm 9 Algorithm to set memory correctly for speculative partial execution
1: for all (r, st“sv) in resumption register list do
2:  Let r be the argument register.
Let the current content of r be ct~cv.
Let h represent the current heap top i.e., content of the register r(h).
if r is an immediate operand then
Set heap location h to st~sv; increment content of r(h) by 1.
else if ris r(h) or r(b) then
Set the value of the register r(h) or r(b) to st~sv.
else
Adjust heap and set the non-state register r using Algorithm 10.
11: endif
12: end for

eI NHE@

—t
(=]
g
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Algorithm 10 Algorithm to adjust the heap while speculatively setting a dynamic
non-state register

1: switch (st)
2:  case TPOS or TNEG or TINT or TINT :
3: Set heap location h to contain st"sv.
4 Point heap location cv to h i.e., set the contents of heap location cv to
¢t™h; increment content of r(h) by 1.
5 Set r to contain st”sv.
6: case TVAR:
T Set the value of sv to h.
8: Set heap location h to contain st“sv.
9: Point heap location ¢v to h i.e., set the contents of heap location cv to
ct”h;
10: Ensure the tag of the contents of heap location ct is TVAR; increment content
of r(h) by 1.
11: Set r to contain st*sv.
12: case TATM :
13: if sv is known and is of the form £/n then
14: Set heap location h to contain st~sv.
15: Point heap location cv to h i.e., set the contents of heap location cv to
ct™h;
16: Ensure the tag of the contents of heap location ct is TSTR;
17: Create n self-referential TVAR-tagged datawords on the heap starting at
heap location h; increment content of r(h) by n.
18: Set r to contain st"sv.
19: else
20: Set heap location h to contain st~sv.
21: Point heap location cv to h i.e., set the contents of heap location cv to
ct"h; increment content of r(h) by 1.
22: Set r to contain st"sv.
23: end if
24: case TLST:
25: Set heap location h to contain TLST"h+1; increment content of r(h) by 1.
26: Point heap location ¢v to h ie., set the contents of heap location cv to
ct°h;
27: Create two self-referential TVAR-tagged datawords on the heap starting at
heap location h; increment content of r(h) by 2.
: Set r to contain st~sv.
29: case TSTR:
30: Set heap location h to contain DSTR"h; increment content of r(h) by 1.
31 Point heap location cv to h i.e., set the contents of heap location cv to
¢t h.
32: Set r to contain DSTR"h; increment content of r(h) by 1.
33: end switch
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Figure 6.6: Setting a non-state register r to a tatm-tagged dataword
6.3 Memory Correctness When a PE-Loop Exists

BAM memory state needs to be maintained correctly as part of the loop handling
mechanism explained in Section 5.5. This is done with the help of the allocate stack
as explained in this section.

A loop detected during partial execution is deemed to be a return out of the
current procedure. In other words, it is assumed that there is a run-time path that
eventually succeeds and returns from the current procedure. The memory state is set
to reflect this assumption. Although this is true for most general cases, exceptions
arise and the memory state is set accordingly as explained in the following.

To illustrate such a situation, let blk be the block which is to be partially exe-
cuted, and blk,., the residue of blk resulting from its previous PE with respect to
the current state of static focus registers. This implies that a loop has been detected
and no further PE of blk is necessary. The previous PE could have indicated that

the run-time execution of the block blk would result in a success or failure.

e PE of previous block indicates run-time success, the most general case. Then,
PE proceeds by returning from the current procedure. The simulated return

from the procedure performs the following:

— Sets the environment stack in preparation for the partial execution to
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allocate(3). allocase(3).
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Figure 6.7: Schematic illustration of PE-loops detected

continue at instruction cp, the first instruction the block cbb.

— Sets the correct values of PE registers.

Partial execution of return/0 simply sets the value of pc to that of cp (see
Section 6.1.1.5).

The current procedure might or might not have created an environment. In the
first case when one is created, the PE-loop could occur either before or after
deallocation of the current procedure’s environment, as shown in Figure 6.7.
Partial execution of deallocate/1 sets the alloc_dirty flag on the top allocate
stack item to indicate a deallocation of the environment. The values of cp and
cbb are restored off the top of environment stack if the top allocate stack item
indicates an environment was created by the current procedure and that en-
vironment was not deallocated prior to the loop. This ensures the correctness

of the register values for the correct PE of return/0.

In the second case, an environment is not created by the current procedure.
Since the allocate stack top indicates no environment creation for the cur-
rent procedure, the current values of ¢p and cbb are correct and need not be

restored from the environment. Thus the partial execution of return/0 pro-
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ceeds correctly. The environment adjustment and continuation register update
is shown in Algorithm 11.

e Previous block PE indicates possible run-time failure as illustrated with the
help of the following basic block.

move([r(0)],r(1)).
move([r(0)+1],r(0)).
equal(r(1),tint"7,fail).

Suppose that the tag of [r(0)] is t1st. Then equal(r(1), tint“7, fail)
will be transformed to fail and partial execution of the block reveals run-time
execution of the block will fail.

In this situation, the failure is recorded in the current choicepoint as detailed
in Section 6.1.2.4 and CStack is not updated allowing PE to continue in
the depth-first order. Thus PE proceeds along either an alternate speculative
execution path available in the current choice or an alternate choice if one is
available. In case no more alternate choices exist in the current choicepoint,
PE continues by popping the top of the CStack. The allocate stack is adjusted

either by a return/0 or a simulated return out of the current procedure.

6.4 Choicepoint Optimization

The basic idea behind the choicepoint optimization is to transform choice/3 instruc-
tions such that run-time execution does not attempt choices along which execution
is known to fail at PE-time. The PE driver uses Algorithm 12 to perform this
optimization as described below.

Let ChPt be the current choicepoint. Let B be the set of blocks containing
choice/3 instructions that access ChPt. Let ChS = {(B;, R;) | B; € B}, where
R; is either success or faslure indicating success or failure of PE along all paths
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Algorithm 11 Setting BAM memory upon loop detection

1: if blk,., indicates a local failure then

2:  Simulate local failure by partial execution of £ail/0 (Section 6.1.2.7).

3: else if olk,., indicates a global failure then

4:  Set partial execution path along the next alternative in the depth first order.
5: else

6: if alloc_flag of itm indicates environment allocated in current procedure

then
7 if alloc dirty of itm is not set then
8: Restore ¢p, cbb and the PE registers from top environment stack item.
9: pop environment stack.
10: end if
11: endif
12: end if

13: if blk has a choice/3 instruction then

14:  Adjust next choice in current choicepoint.
15: end if

16: Partially execute return/0

accessible via the fall-through edge of block B;. Assume the set ChS is sorted in
the order the partial executor attempts to execute blocks B. For any two blocks B;,
By € B such that the label of B; is a retry address that is partially executed before
that of By, there exists an ordering between B; and By. The notation Bj < By
means that zero or more blocks in B might have been partially executed after B; and
before By. Biy; and B;_; indicate the block tried j blocks after and before trying
B;, respectively, during partial execution. B, indicates the block that contains the
choice/3 instruction that creates the choicepoint on the stack.

Figure 6.8 shows a sequence of choice/3 instructions. The sequence of blocks
containing the choice instructions correspond to the choicepoint created by the
choice/3 instruction in block A. The sequence L1, L2, ..., La-1 represents retry
addresses attempted during PE. If, for example, PE along the edge marked P4 fails
and that along the edge marked Pp succeeds, the choice/3 instruction in block A
may be transformed to jump(L1). A complete choicepoint optimization was illus-
trated for the code shown in Figure 4.10 in Section 4.4.2.
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Algorithm 12 Choicepoint optimization

1: Find the block By such that (Be, failure) € ChS and Vi where B; < By,

(B4, success) € ChS.

2: Find the block B, such that (B,, success) € ChS and Vi where By < B; and

B; < B,, (B, failure) € ChS.

3: while (B, exists) do

4: if (B¢ is By) then
5: Let choice(1/N,Re, L) be the choicepoint instruction in Bg.
6: Let choice(I/N,R,,L,) be the choicepoint instruction in B, and L, be the
label of B,.
T: Transform choice(1/N,Re¢,Le) in By to jump(L,).
8: Transform choice(I/N,R,,L,) to choice(1/N,Re,L,).
9: Let M be an empty list of instructions.
10: for i =1 to length(R,) do
1k: if (Re(i] # Ra[i] ARs[i] # n0) then
12: Append the instruction move(R,[i], Ry[i]) to M.
13: end if
14: end for
15: Insert M after the choice/3 instruction in block Ry, if M is not empty.
16: else
17: Transform choice(I/N,R;,L;) in Be_; to choice(I/N,R;,L,), where Ly is
the label of B,.
18: end if
19: Find the block By such that (By, failure) € ChS and Vi where Be < B; <
By, (B:, success) € ChS. Set By to be By.
20:  Find the block B, such that (B,, success) € ChS and Vi where By < B; and
B; < B, (B, failure) € ChS. Set B, to be B,.
21: end while
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Figure 6.8: Schematic CFG to illustrate choicepoint optimization
6.5 Summary

This chapter provides the details of partial execution of BAM instructions. The
run-time semantics of BAM instructions (Chapter 2) are extended to accomodate
run-time analyses whose results are used by the PE driver to affect transforma-
tion/optimization appropriately. Further, the crucial aspect of maintaining the
PE-time memory state to be an abstraction of the corresponding run-time state
is discussed. The choicepoint optimization algorithm used is presented. The next
chapter discusses consolidation of the residues generated during partial execution
along with benchmarking of the resulting residues.
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Chapter 7

BAM Code Regeneration

Partial execution described in the earlier chapters results in residues for each basic
block. This chapter describes the last step of the PE process which includes re-
generation of BAM code of all the block residues. The regenerated BAM code of
a given program is referred to as program residue. First a description is given of
simple mechanism that is used to lay out BAM code in the residue blocks into a file.
The code lay out is done according to the PE-flow graph.

7.1 Code Consolidation

As described in Chapter 5, the PE driver records the control flow between all residue
blocks in the PE-flow graph. The partial execution of a block may or may not result
in a block that is different from the original. Yet, the resulting block is referred to as
the residue. The PE-flow graph may hence contain basic blocks in addition to those
in the CFG of the original BAM code. New control flow edges from and to any new
blocks are also recorded in the PE-flow graph. If the PE of a given program does
not result in a residue for even one basic block, then the PE-flow graph is identical
to the original CFG.

Algorithms 13, 14 and 15 is used to regenerate BAM code for the whole program
after the completion of partial execution. It uses the information stored in both PE-
flow graph and the original CFG. The resulting BAM code is input to the Aquarius
Prolog compiler which assembles and links the object file to generate an executable.
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Algorithm 13 Top-level loop for BAM code regeneration

1: Let BStack be a global stack of basic block numbers: ProcList be the global
list of procedures that is initially empty; R be the root of PCFG, the PE-flow
graph.

2: Add R to end of ProcList.

3: for each (procedure block B € ProcList) do

4:  Push residue of B onto BStack.

5: while ( BStack is not empty) do

6 Pop the top of BStack into B

T: regenerate_code(B)

8

9:

end while
end for

The top-level loop shown in Algorithm 13 performs a depth-first traversal of all
procedures in the PE-flow graph, PCFG and maintains two data-structures viz.,
BStack and ProcList. BStack is the stack of basic blocks used for depth-first
traversal of a given procedure. ProcList is a list of procedures still to be traversed
for code regeneration.

Following are the important issues related to the BAM code regeneration algo-
rithm. Firstly, at the time of partial execution of a flow change instruction containing
a label operand, say Lbl, it is not known if partial execution of the block with the
label Lbl will result in a residue different from the original. This necessitates a post-
residue generation patch up phase wherein the control fiow is correctly set. The only
exception where the target labels of an instruction are correctly set during partial
execution is for choice/3 instructions. This is done during choicepoint optimization
phase. Consequently, in Algorithm 14 that the label choice/3 instruction is not
changed during code regeneration. Algorithm 15 replaces the input instruction I
with the transformed one, if any.

Next, the flow change instructions return/0 and fail/0 neither have successors
nor label operands. Thus they are simply emitted without any change during code
regeneration of blocks containing these instructions. The CFG does not record the
called procedure block as a successor to the block with call/1l. Such a calling
procedure block, however, has one and only one successor block whose leader is

the instruction executed after the call returns. Code regeneration for block with a
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Algorithm 14 Algorithm to regenerate BAM code of a basic block

regenerate_code(B: block):SB: black

1: if (code for B is not regenerated) then
2:  Emit all instructions except the last instruction, &, in B.

3:  switch ()
4 case jump(L) :
5: if (L is not fail) then
6: SB := transform_instruction(B, &, L).
7: if (SB is a procedure block) then
8: Add SB to the end of ProcList.
9: else
10: Push SB onto BStack.
11: end if
12 end if
13: case call(L) :
14: SB := transform_instruction(B, I, L).
15: Add SB to the end of ProcList.
16: Push the successor of B onto BStack.
17: case choice(I/N, R, L):
18: if (L is not fail) then
19: Push block with label L onto BStack.
20: end if
21: Push the fall-through successor of B onto BStack.

22 case equal(X, Y, L) or test(E, T, X, L) or jump(T, C, X, Y, L):
23: if L is not fail then

24: SB := transform_instruction(B, li, L).

25: Push SB onto BStack.

26: end if

2 Push the fall-through successor of B onto BStack.
28: case switch(T, R, L1, L3, L3):

29: for allL € {L1, L2, L3} do

30: if (L is not fail) then

31 SB := transform_instruction(B, li, L).

32 Push SB onto BStack.

33: end if

3M: end for

35: Push the fall-through successor onto BStack.

36: case unify(X, Y, T, U, L) or unify.atomic(X, Y, L) :
3r: if (L is not fail) then

38: Push block with label L onto BStack.

39: end if

40: Push the fall-through successor onto BStack.

41: end switch
42: Emit li and mark that code for B is regenerated.
43: end if
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Algorithm 15 Algorithm to regenerate a BAM instruction
transform_instruction(B: block, I: instruction, L: label): block
I: Let T be the block whose label is L in the original CFG.

2: Let T’ be the block whose parent is B and is a residue of T as recorded in
PCFG.

3: if (T” is different from T) then

4: Form a new label unique L,,.

5: Change the label of the block T? to Lpew.

6:  Replace label operand L with Ly, in instruction L

7. end if

8: Return T°.

call/1 instruction is handled accordingly. Due to last call optimization(LCO), the
target of a jump/1 instruction might be a procedure. Code regeneration for block
with jump/1 takes this into consideration.

The root CFG block which is the program entry block may have at most one
version that is different from itseif since the block will be entered only once during PE
resulting in the only time a residue is generated for the program entry block. Finally,
a separate pass is made over the code generated to remove any unconditional jumps

to the next instruction. The resulting BAM code is used to generate an executable.

7.2 Summary

The present work uses the SPARC port of Aquarius Prolog compiler. Its back-end
compiles BAM code to SPARC assembly instructions which in turn are assembled
by the SPARC assembler [35] to generate a native executable. The resultant of
code regeneration phase, described in this chapter, is a stream of BAM instructions.
BAM instructions are Prolog terms and can be compiled by Aquarius compiler which
directly invokes the back-end and the assembler to produce a native executable.
An evaluation of the partial execution process is described in the next chapter by

compiling some benchmark programs to native executables.
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Chapter 8

Evaluation of BAM Code Partial Execution

In this chapter, we present an evaluation of the partial execution described in the
earlier chapters. First we present an discussion to provide the context for the bench-
marking done to evaluate the work. Then we present the benchmarking methodology
and the results.

8.1 Evaluation Context

In an increasingly complex world of programming languages and pracessor archi-
tectures, high performance of applications developed that use these languages is
achieved by a combination of several architecture-independent and architecture-
independent compiler optimizations. It is well-known that a combination of various
analysis and optimizations is needed to expose further optimizations in the later
phases of a compiler [15]. A specific set of optimizations by themselves rarely pro-
duce a highly optimized executable.

The principal focus of the present work is to study the issues involved in de-
sign and implementing a low-level language partial evaluator that enables several
common compiler optimizations. Ideally, the benefits of the set of optimizations
performed by partial evaluation would be fully evident along with low-level opti-
mizations. Conventionally, a high-level language compiler builds mere than one
internal representation of the code in various phases. The low-level optimizations

are performed before the executable is written out. To implement assembly-level
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optimizations we either need to interface with the existing SPARC back-end and/or
assembler, or implement an assembler optimization phase that performs low-level
optimizations. Neither of these is feasible given that this work is a single-person
project. Hence there is no phase that performs any machine-specific optimizations,
such as code motion, inter-procedural code scheduling, software pipelining, to name
a few.

The lack of a machine-specific optimizer can prove to be a handicap in generating
a fully optimized executable thereby hiding the real performance improvement due
to partial execution. The need for such a phase is even more evident when the
program residue is larger than the original, as is often the case when PE is applied.
The code size can affect the load time [27] of the executable. The additional code
will also affect the code layout which in turn can degrade the performance due to
instruction and/or data cache access patterns, despite any speed-up achieved due
to partial execution. A machine-specific code motion optimization can alleviate this
problem whenever possible.

Table 8.1 gives a list of the programs used for benchmarking the partial executor
implementation described in this thesis. These programs are taken from the bench-
marks used in presenting the performance of the Aquarius Prolog compiler [67]. The
Aquarius benchmark suite consists of “examples of realistic programs during compu-
tations representative of Prolog” [67]. We have chosen some small and medium-sized
programs that facilitate manual verification of correctness the entire PE process and
the generated BAM and SPARC assembly code. Keeping the lack of machine-specific
optimizer in context, the performance of these programs was measured to get an

indication of the potential speedup PE optimizations can produce.

8.1.1 Benchmarking Methodology

Here we describe the process used to perform partial execution on benchmark pro-
grams. This process is illustrated using one of the benchmarks, qsort.pl that
implements quick sort. This program contains the definition of qsort/3 and of
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the program entry predicate ! that has no arguments and has a call to qsort/3 in
its body with the appropriate arguments instantiated. We refer to the predicate
gsort/3 as the top-level predicate. The program entry predicate and the top-level
predicate are separated into two Prolog files. The file containing top-level predicate
is compiled using global flow analysis to BAM code, say orig.b. The partial execu-
tor is run with orig.b as input resulting in a BAM code residue, residue.b. Then,
residue.b is compiled along with the file containing the program entry predicate
call resulting an executable corresponding to residue. The performance of this exe-
cutable is compared with that resulting from compiling the file with entry predicate
and the top-level predicate. The following alternate compilation may also be em-
ployed. The entire original Prolog source containing both the top-level and entry
predicates may be compiled to BAM code using global flow analysis. This is fol-
lowed by partial execution of the BAM code to yield a residue. The residue is then
compiled using the Aquarius Prolog compiler to result in an executable. However,
this does not provide the correct measure of effectiveness of partial execution since
both GFA and PE have the additional information about the modes with which of
the top-level predicate are called. This information is not necessarily available in
general programs. Thus this manner of compiling benchmarks was not employed.

The benchmarks were each run 10 times on a lightly-loaded Sun SPARCstation
10/30 with 64MB of memory. The best and worst of these 10 times are discarded
and the rest were averaged to eliminate any extraneous machine states that are
not in a typical run of the program. The benchmarking results are presented in
Table 8.2. The correctness of all the transformations done by the partial executor
and the output of all the programs was manually verified.

By performing PE on allperms and fibo, redundant conditional instructions
and consequently dead-code were discovered. This resulted in a final executable
with 90 and 140 SPARC instructions lesser, respectively. The deadcode corresponds
to BAM code in a never taken subgraph of an execution thread.

1The Aquarius compiler considers main/0 as the program entry predicate by default
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Table 8.1: Benchmarks

=l=’r:ogra.m Name Description
allperms Computing permutations of integers in three ways
- insertion; reverse and append; findall(41 lines)
fibo Computing Fibonacci number with starting
value of 0 (21 lines)
tak Recursive integer arithmetic (12 lines)
ops8 Symbolic differentiation (25 lines)
queens_8 Solve 8 queens puzzle (all solutions)
zebra A logical puzzle based on constraints (37 lines)
gsort Quick sort of a list of numbers (11 lines)

Table 8.2: Execution times

Program | With PE phase | Without PE phase
allperms T
with insertion 0.073s 0.074s
with reverse and append | 4.01s 4.42s
with findall 71.54s 78.6s
fibo 36893ms 38188ms
tak 120ms 120ms
ops8 0.042ms 0.032ms
queen_8 26.1ms 28.5ms
zebra 130ms 100ms
gsort 0.74ms 0.75ms
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No PE-based optimization was possible on tak. This benchmark was chosen
to demonstrate that not all programs benefit from partial execution. It has been
observed that the program has very few alternate execution threads. Consequently,
PE-based optimizations are not possible in its BAM representation. As with all
compiler optimizations, all programs may not benefit from PE-based optimizations.
We observe that programs with several alternate execution threads can potentially
benefit from such optimizations.

A performance degradation was observed due to PE of ops8 and zebra. A
residue that increased the code size by approximately 50% and 20%, respectively. A
visual inspection of SPARC assembly reveals that code layout and the call-graph of
the residue’s executable are different from those of the original. Given the manual
verification done of the correctness of PE transformations, we believe that the dif-
ference in code layout and call-graph contribute to the degradation in performance.
It was not possible to verify this conjuncture due to lack of machine-level optimizer
or sophisticated disassembler. Either of these would have facilitated rearrangement
of SPARC code generated by the post-PE back-end of Aquarius compiler.

The changes in code layout and call graph were observed using the binary dump-
ing tool, objdump, from the GNU tool set. Both redundant branch elimination and
specialization resulted due to PE of queens_8. Although PE of gsort optimizes
away the redundant choicepoint creation which reduces the memory footprint, no

speedup is observed.

8.2 Summary

In summary, the above described evaluation process which is a combination of visual
inspection for transformation correctness, result verification for execution correct-
ness and CPU time utilization for performance measurement indicate the following:
PE-based optimizations do result in speedup in programs with several execution
threads. By inspecting the residue’s executable, we believe that a post-PE machine-
specific optimization phase can enhance the benefits of PE on the low-level code,
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viz., BAM code. For example, machine-specific optimizations, such as code layout
or inter-block instruction scheduling and software pipelining that involve the new
code generated, could enhance the quality of the executable. In their absence, as
is the case now, the resultant change in performance for the better or worse is due
to PE-based optimization alone. Machine-specific optimizations are even more nec-
essary due to potential procedure inlining done by the partial executor in several

cases.
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Chapter 9

Conclusions and Future Work

9.1 Research Contributions

The primary intent of this thesis was to investigate the application of partial evalu-
ation on a low-level language during compilation. This investigation was geared as
an important step towards answering the question “Can PE yield efficient low-level
machine code?” posed by Jones [40]. To achieve the above stated goal, we pro-
posed a new compiler back-end optimization technique based on partial evaluation
of low-level RISC-like code.

9.1.1 New Compiler Back-End Optimization Technique

We studied various issues that are invoived in design and implementation of such
a partial evaluator as a back-end phase in a real-world Prolog compiler. We also
presented solutions to problems that seem unique to partial execution of low-level
code such as deciding correct program units for partial execution (Section 4.2.1),
correctly keeping track of changed return address (Section 5.2.2), deciding candidate
static registers (Section 5.3.2) etc. Based on inspection of resulting executable code
and conclusions of other researchers [7,15,17] we believe that the full impact of such
a PE-based optimization phase would be visible in conjunction with other aggres-
sive machine-specific optimizations that take advantage of opportunities exposed by
transformations done in the PE phase.
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9.1.2 Optimization Framework

Another important contribution of the thesis is the demonstration that PE provides
a framework of several conventional optimizations such as constant propagation,
dead-code elimination, common sub-expression evaluation and, - to a lesser extent
~ loop unrolling. The first three optimizations are illustrated in examples shown in
Figure 4.4. Loop-unrolling is described in Section 5.5. Further a Prolog-specific op-
timization called choicepoint elimination is also demonstrated within the framework
of PE (Section 4.3.2). In conventional compilers, optimizations such as constant
propagation and deadcode elimination are performed as separate phases [54]. We
demonstrated that the effects of these optimizations may be obtained using a PE
phase.

9.1.3 Semantics Specification of Low-Level Code

Further, we present a technique of implementation-independent specification of the
Berkeley Abstract Machine using denotational semantics. Such a specification fa-
cilitates verification of the correctness of any transformation and provides a precise

definition of instructions for an implementation of the partial evaluator.

9.2 Related work and applicability

9.2.1 Partial Evaluation of Prolog

Related work was discussed at several places in the thesis while discussing various
issues such as partial evaluation in general, general language compilation techniques,
Prolog compilation techniques and program transformation issues. A brief summary
of the same along with aspects of the present work that can be prove beneficial in re-
lation to Prolog follows. Partial evaluation typically is applied to programs written
in a high-level language - either functional or Object-oriented {22,39,42]. Sahlin [58]
implemented an automatic partial evaluator for full Prolog called Mixtus. Similar
efforts were made by Prestwich [56] and Lakhotia {47]. These implementations of
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partial evaluation, however, were not aimed to be used as compiler phase. None of
them are geared towards program performance improvement and hence no perfor-
mance evaluation is done. The present work aims at presenting PE as a compiler
back-end phase that generates optimized code. Further, issues such as code par-
titioning and memory models that need to be considered when performing partial
evaluation of high-level language programs differ from those while performing par-
tial evaluation of low-level language programs. However, in this thesis we present
a novel PE termination methodology (Section 5.5) that involves a loop termina-
tion technique. This can be applied during PE of any program with procedure-like
constructs.

9.2.1.1 Prolog Programming Environment

Several data structures were designed augmenting BAM memory model (Section 5.2)
to facilitate speculative partial execution. Similar data structures and associated al-
gorithms can be used during implementation of a Prolog debugger or a Prolog tracer.
We also present a new technique referred to as deferred dereferencing (Section 5.4.1)
and it can find application in Prolog program analyses such as GFA [29,67].

9.2.2 Partial Evaluation of Low-Level Code

Little work has been done in the area of applying partial evaluation to low-level code
except that done by Bulyonkov [11]. Program performance evaluation was, however,
not presented by Bulyonkov. The present work is one of the few that studies the
related design and implementation issues. It finds a utility for partial evaluation as a
compiler backend phase and provides a framework for several conventional compiler

optimizations that are performed often in an unconnected manner.
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9.2.3 Conventional Compiler Technology
9.2.3.1 Binary Translation

Partial execution techniques detailed in this thesis may be applied in several ar-
eas where conventional compiler back-end optimization techniques are widely being
applied. One such area is binary translation [61] whose value has been recognized
in recent years. Binary translation is a technique that translates an arbitrary ex-
ecutable binary of one architecture to executable binary for another architecture.
It usually involves two phases — code translation and optimization. This technique
makes application programs available on platforms on not otherwise supported by
the vendor and when the user has no sources for recompilation. Although, the
source and target languages differ for a binary translator, its primary functionality
is to interpret the source language and emit equivalent target language instructions.
Typically the translation process involves mapping a source instruction to one or
more target machine instructions. Instead of emitting a generic “canned” sequence
of target machine instructions, specialized code for the program memory state can
be generated by performing partial execution during the translation phase. Sev-
eral of the analysis techniques described in this work may be applied during the
binary translation phase to result in an optimized code. The optimization phase

that follows translation phase will receive a more optimized version.

9.2.3.2 Dynamic Optimization

Another potential application area is dynamic optimization or dynamic compila-
tion [8.23,31]. This emerging area of research refers to techniques that facilitate
optimizing a program in memory at run-time. For example, it is common for com-
pilers to generate executables using a common instruction set architecture (ISA)
such as the 80486 to run on an Intel-based system or the 21064(EV4) to run on an
Alpha-based system. If, however, the program is being executed on a later architec-
ture implementation that would most likely support advanced instructions having
higher performance than those in the base architecture, it is possible to recognize
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this fact and replace such instructions with their better performing counterparts. In
essence the executing program is specialized for the architecture implementation it
is running on. For instance, the sequence of instructions used to load a byte in an
executable generated for a base 21064 architecture may be replaced with a single
1db instruction if it is running on a more recent version of Alpha processor. Using
PE techniques, the program can be specialized for the host architecture implementa-
tion in several ways: its instruction schedules may be modified on the fiy for better
performance; its memory access pattern may be tuned with the knowledge of the
cache sizes. For example, a 21164 has a wider instruction pipeline and has more
number of function units in comparison to a 21064 processor. Hence the instruction
scheduling needs to be different to exploit the performance advantage a 21164 offers.
These system parameters provide the static information for the specialization of the
program being executed. Partial execution techniques described in this thesis may
be directly applied in the context of dynamic optimization.

9.2.3.3 Link-Time and Post-Link Optimization

Another potential area of application for the PE techniques described in this thesis
is in tools [17,62] that perform link-time/post-link-time processing. Information
such as relocation, memory aliasing can be extracted from the disassembly of the
executable using PE techniques described in this thesis. Such tools usually {17]
depend on the existence of this information as part of the executable. However,
using partial evaluation this information can be correctly reconstructed to facilitate
further analysis and code optimizations.

9.3 Future Work

The following issues should next be addressed to firmly establish PE as a viable
technique in the mainstream machine-dependent back-end compiler optimizations.
Firstly, a post-PE phase that performs machine specific optimizations such as inter-
procedure instruction scheduling and software pipelining needs te be implemented
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either in the compiler backend or in the assembler. This will complete the environ-
ment in which performance of PE-based optimizations may completely be evaluated.
Further, tools that non-intrusively profile a program at execution time need be de-
veloped to validate the observed performance. These tools will allow us to study
issues such as effects of increase in code size, changes in code layout that seem to
be a very common result of PE.

Next, it will be interesting to study the impact of partial execution based opti-
mizations for the increasingly complex processor architecture implementations with
advanced mechanisms such as pipelined out-of-order instruction issue, simultane-
ous multi-threading (SMT), predicated execution etc., that challenge conventional
back-end optimization techniques.

Two of the main stream processor architectures are taking different approaches
to evolve higher performing implementations. Correspondingly, compilers have to
evolve to incorporate the new processor functionalities and generate efficient code
that exploits processor advances. For example, it was announced that on-chip SMT
will be implemented on the next generation of Alpha processors to allow instructions
from various processes to be in flight at any given time [25]. A partial executor that
maintains a model of the processor execution state during code generation might be
one approach to assist compilation for an SMT processor. The [A-64 architecture
implementation uses predicated execution and relies on sophisticated compilers {46].
Optimized code generation may be done by eliminating all code streams that can
be identified by partial execution. These are two of the examples where partial

evaluation can prove to be a valuable tool in compilers for future processors.
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