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Abstract 

Specialization of program and meta-programs written in high-level languages 
has been an active area of research for some time. Specialization contributes to 
improvement in program performance. We begin with a hypothesis that partial 
evaluation provides a framework for several traditional back-end optimizations. The 
present work proposes a new compiler back-end optimization technique based on 
specialization of low-level RISC-Like machine code. Partial evaluation is used to 
specialize the low-level code. Berkeley Abstract Machine (BAM) code generated 
during compilation of Prolog is used as the candidate low-level language to test the 
hypothesis. A partial evaluator of BAM code was designed and implemented to 
demonstrate the proposed optimization technique and to study its design issues. 

The major contributions of the present work are as follows: It demonstrates a 
new low-level compiler back-end optimization technique. This technique provides 
a framework for several conventional optimizations apart fiom providing opportu- 
nity for machine-specific optimizations. It presents a study of various imes and 
solutions to several problems encountered during design and implementation of a 
tow-level language partial evaluator that is designed to be a back-end phase in a 
real-world Prolog compiler. We a h  present an implementation-independent den* 
tational semantics of BAM code - a low-led language. This provides a vehicle for 
showing the correctness of instruction transformations, 

We beIieve this work to provide the first concrete step towards usage of partial 
evaluation on low-ievei code as a compiler back-end optimization technique in real- 
world compiIefs- 
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Chapter 1 

Introduction 

Specializing high-Ievel language program for some subset of program data that 

is known to be constant across independent invocations of the program has been 

an active research area for several years now. Such specialization is commonly 

referred to as partial eualuation. Complete program data is available to the program 

at execution-time. In comparison, any constant data available at compiletime is 

parbid. Hence the term partial. The term euuluation seems to originate from early 

usage of this technique on programs written in functional programming Ianguages 

like Lisp [44,49]. Subsequently, partial evaluation of programs writ ten in logic 

programming languages iike Prolog [58,69], imperative languages like C [5] and 

object-oriented languages like C++ I221 was also studied. Partial evaluation research 

was done with such goals as reducing the Ievel of abstraction in meta-programs 

for execution efficiency, generating compilers and generating compiler-compilers via 

self-applicable partial evaluators to name a few. Various techniques have been 

employed to achieve these go&. Using minimal user annotations to guide the partial 

evaluation process [%I, automating discovery of the constant portion of a given 

program and not reIying on user annotations [58] are some of the more effective 

ones. Partial evaluation was atso used to generate specialized programs that are 

more efficient than the original [6,42]. 

Jones [40] discusses several interesting open problems regarding issues such as 

program control, data and correctness that play an important role during partial 

evaluation. Several of these have been worked on since. However, the question "Can 



partial evaluation yield efficient low-level machine code?" which he poses seems 

unanswered as far as we know. Efficient low-level code generation is a requirement 

in several system-related tools like compilers, binary translators, emulators. This 

thesis investigates efficient code generation using partial evaluation in a compiler 

back-end. Before deciding whether "efficientn code may be generated or not, we 

need to understand the techniques needed to implement a low-level language partial 

evaluator. F'urther, it is well-known that several conventional back-end optimiza- 

tions are inter-related. The benefits of performing partial evaluation as a back-end 

with relation to conventional optimizations needs to be understood. Hence, this 

thesis investigates low-level language partial evaluation techniques and the potential 

benefits/relationship of partial evaluation with traditional back-end optimizations. 

The candidate low-level language may either be machine-level language or an in- 

termediate abstract machinelevel language. We begin with the hypothesis that by 

performing partial evaluation several conventional compiler optimizations such as 

constant propagation, dead-code elimination, and loopunrolling are automatically 

performed. This hypothesis is tested by building a framework within which a par- 

tial evaluator of a real world abstract machine code is designed and implemented. 

Several traditional optimizations are shown to resuit from the partial evaluation. 

The ikamework provides a basis to study the issues involved in designing and im- 

plementing a low-level language partial evaluator. 

In general, partial evaluation is done with the knowIedge of two distinct pieces of 

information, viz., candidate program unit to be specialized and the invariant data 

for which the program unit is being specialized. Partial evaluation of high-level 

Ianguages benefits from the inherent higher-level program abstraction and structure. 

For example, a function is the program unit with well-known structure and behaviour 

that facilitate partial evaIuation. It has zero or more arguments of which some may 

be input arguments and some output arguments. The function argument and return 

value variables hold potential program invariants. The programming language model 

d&es the behaviour of a function caIl. For example, the control 0m returns to 

the calling function after returning from the callee and the callee does not alter the 



return address. In the world of low-level code, neither a structure nor a welldehed 

behaviour of program units may be expected* Hence the first step is to correctly 

identify program units and invariant code variables in any given low-level code to 

prepare for partial evaluation. These form the input for a partial evaluator. 

Partial evaluation research has largely focused on high-level programming lan- 

guages. The present work describes partial evaluation of Berkeley Abstract ma- 

chine (BAM) code generated during compilation of Prolog sources by the Aquarius 

Prolog compiler. The partial evaluation phase is intended to fit non-intrusively into 

the existing phases of the Aquarius Prolog compiler. Further, the BAM code partial 

evaluator is designed not to depend on any user annotations: it is an automatic 

partial evaluator. There is no investigation into use of partial evaluation on low- 

level languages in the context of compiler optimizations in general to the best of our 

knowledge. More specifically, this is the first such attempt in the context of Prolog 

compilation as far as we know. Nonetheless, the techniques described herein are 

applicable during partial evaluation of any low-level language code. 

The present work is in the context of a Prolog compilation model that translates 

Prolog source to abstract machine instructions that are in turn compiled to native 

executable code. Prolog is a dynamic-typed language. Hence, the abstract machine 

code generated during Prolog program compilation contains one code stream for each 

basic abstract machine data type a Prolog variable can assume at run-time. It also 

contains run-time type-checks that dispatch execution flow to the appropriate code 

stream depending on the type of the variable. In other words, the abstract machine 

code is generic enough to facilitate execution of code corresponding to data-types 

that would be known at run-time. The motivation for partial evaluation of abstract 

machine code is to eIiminate any generic code and to specialize it for its data-types. 

In an effort to improve code performance, several new ideas are being studied and 

implemented in the research community. Various types of profile-directed schemes 

have been recently shown to hold promise [14,17]. We view the profile-directed 

schemes as partial evaluation schemes. A profile is a record of some invariant run- 

time behaviour of the program that is used to optimize the executable- For example, 



a profile might record the number of calls made to call-site in the executable or a 

library. Thus the profile provides invariants that are used to specialize the exe- 

cutable. The profile coUection and subsequent specialization may occur after one or 

more runs of the program. Alternately, some of the more recent research attempts 

to perform profile collection and specialization at  run-time. This technique is often 

referred to as Dynamic optimization [23,31]. Several of the techniques described here 

are directly applicable in the context of such efforts to improve code performance. 

The thesis is laid out as follows. A brief introduction to Prolog, Berkeley Ab- 

stract Machine and the compilation model of the Aquarius Prolog compiler is given 

in Chapter 2. The denotational semantics of BAM instructions are presented in 

Chapter 3. This implementation-independent specification facilitates proof of in- 

struction specialization. It a h  provides a precise definition of instructions for the 

implementation of the partial evaluator. Program specialization is introduced in 

Chapter 4. The correctness of all possible instruction transformations is shown and 

opportunities for program specialization are detailed with the help of examples in 

this chapter. The design and implementation of the BAM partial evaluator is de- 

scribed in the Chapter 5. Various data structures that extend the BAM to facilitate 

analysis of run-time information are described along with the analysis algorithms. 

Chapter 6 describes partial evduation of each individud BAM instruction and aLl 

the issues involved in maintaining the correctness of program state during partial 

evaluation. In Chapter 7 the results are summarized and the conclusions of the 

work are discussed. The relevance of the work in the context of current research 

and future work are discussed in Chapter 9. 



Chapter 2 

Prolog and Berkeley Abstract Machine 

This thesis deals with optimidng Berkeley Abstract Machine (BAM) code using 

program specidization during Prolog compilation. Section 2.1 presents an overview 

of Prolog. Section 2.2 details the BAM. An implementation-independent and com- 

plete denotational semantics specification of BAM presented in Chapter 3 allows us 

to show the correctness of the specializations in Chapter 3. 

2.1 The Prolog Programming Language 

Prolog is a dynamic-typed logic programming language. IR other words, the program 

must be executed to compute the types of Prolog data items [60]. This section briefly 

presents the language syntax and execution model. 

2.1.1 Syntax 

2.1.1.1 Data Representation in Prolog 

We use the typewriter font to represent language tokens (or terminals f2j) while 

describing Prolog syntax. All Prolog programs in this thesis aIso appear in this 

font. The sanserif font is used for meta-language constructs. Italics are used when 

a new term is being defmed or described for the first time. A similar convention is 

followed while describing BAM code. However, the syntactic conventions followed 

in BAM denotational semantics sp&cation is diErent. Corresponding syntactic 

conventions are discnssed in more detail at appropriate places. 



Prolog has a single data type known as term A term is one of the following. 

a constant symbol that stands for an individual entity all through the program. 

Prolog constants are either atoms, integers or floating-point numbers. An atom 

is an alpha-numeric string whose first character is lower-case. Any character 

may be part of such a string if it is enclosed within single quotes "'" . Any se- 

I - quenceofcharactersfrom theset C+,-,*,/,\,',<,>,=, , ,:, . ,?,Q,#,$,t) 
is also an atom. abc, varl, 'Prolog', '80x86 Architecture', 1024, 

3.141 are Prolog constants. 

0 a variable symbol that stands for a distinct but as yet unidentified entity. It is 

represented by an alpha-numeric string whose first character is either upper- 

case or "-" + If a variable is only referred to once in a Prolog construct's scope 

(Section 2.1.1.2), it does not need to be named and may be written as an 

anonymous erat.iable, A variable whose first character is "-" is an anonymous 

variable. A ,  Var , list are some Prolog variables. 

a compound tam that stands for a coliection of entities. This allows grouping 

of data elements similar to structures in C and records in Pascal. It con- 

sists of a structure name known as a functor and constituent entities known 

as components. -4 functor symbol is an atom and the components (or ar- 

guments) are themselves terms. A compound term with no components is 

an atom. The number of arguments of a compound term is the arity of 

the functor and the compound term is uniquely represented as functor/arity. 

capital ( Indiaa , 'New-Delhi ' 1 is an instance of a compound term with 

arity 2 and we write the compound term as capitaU2. 

A Prolog list of terms is a special kind of compound term. -4n empty list is 

denoted by the &tom . A non-empty list is a compound term with "." as 

functor and two arguments, viz., the first element of the list, d e d  the head 

of the list and the rest of the list, called the tcriZ of the list. Thus a list of 

the two terms a and b is . (a, . (b , D 1) and is conveniently represented in 



short-hand notation as [a, b]. A list is also be represented as Cheadl taa. 

Hence the list [a, b] is also represented as [a l bl1 or [a 1 b I 0 1 1 . 

2.1.1.2 Prolog Program Constructs 

Prolog program constructs are a subset of W-order logic known as Horn clause 

logic 1481. However, the terminology used is various places in this thesis to describe 

Prolog constructs follows the traditional Prolog terminology [16] rather than than 

that of predicate calculus [48]. A Prolog program consists of set of clauses that 

represent a consequent of a conjunction or disjunction of a (possibly empty) set of 

antecedents. The sequence of two or more antecedents separated by cornmas(",") 

represent their conjunction. Let conseq represent a consequent and antec represent 

a sequence of antecedents. The representation 

conseq :- antec. 

is interpreted as "conseq is true if antec are truen. The symbol " : -" is read as 'SE" - 

-4 clause is terminated by a period("."). For example, the clause 

can represent "X is the sibling of Y if Z is the parent of X and Z is the parent of Y. 

A clause is also kuown as a rule. The consequent is known as the h a d  of the cIause, 

and the antecedent as the body of the clause. The above clause is said to define the 

p d i c u t e  sibling/2. A predicate defmition may consist of more than one clause 

indicating several choices to satisfy the relationship. For example, 

defines the predicate p (X) to be true if either q(X , a) or q(X , b) is true. A d-ction 

of two or more clause bodies represents the definition of those ciauses using only 

one clause. The above example may be written as 



where ";" stands for the disjunction- 

A clause with no body is known as a fact or a unit clause. It represents a 

relationship of zero or more Prolog terms that is a tautology. For example, the 

relationship between h i f e  and knives may be represented by the fact 

plura l  (knife, knives) . 

The scope of a Prolog variable is restricted to the clause it occurs in. 

2.1.1.3 The Goal Clause 

Prolog program execution involves verifying whether a god or a qugl  clause is true 

or false in the program context. In interpreted Prolog it is common to represent a 

goal that h d s  the siblings of john as ?- sibling( john, XI. But in compiled Prolog, 

the goal clause provides the entry point to a compiled Prolog program. This is similar 

to the (default) entry point main0 to a C program which otherwise is a listing of 

several function definitions. Thus the compiIer either uses a reserved keyword to 

identify the goal clause head or adopts some other mechanism to identify the goal 

clause for a given program. The compiier used for the present work considers the 

first clause in the program to be the goal dause and it expects the clause to be of 

arity 0. 

2.1.2 Execution model 

Given a goal cIause, Prolog program execution is based on SLD-resolution [48]. A 

typical operational semantics of Pmlog execution ate given by the Algorithm 1. This 

algorithm does not address the presence of negation, built-in5 and similar advanced 

clause body Prolog constructs nor does it handle the cut operator 1631 that prunes 

Ngorithm 1's naiw depth-& danse traversal. 

GStack, the goal stack, keeps track of the goals st i l l  to be satisfied. The set of 

goals in GStack represents the resolvant Since Prolog execution attempts to satis& 

body goals left-teright in their order of listing in the body, the goals in the list in 



Algorithm 1 Prolog Execution Semantics 
execute_pmlog(G: goa1):boolean 

Let GStack be a stack of the pairs (goal, indez) 
Let ChStack be a stack of the tupIes (indez,god,bindlist) 

1: push (G,l) onto GStack 
2: while GStack # empty do 
3: (G,, a) = pop(GStack) 
4: V := List of unbound variabies in G,, 

/* HI, Hz,. . . , H,, are the clause heads with */ 
/* same functor and arity aa G,. */ 

5: n := number of clauses with same functor/arity as G,. 
6: while ((Gar does not unify with Hi) /\ (i 5 n)) do 
7: i := i+l 
8: end while 

/* The clause with head Hi has a body B1, &, . . . , Bm */ 
/* with m varying for different i */ 

9: if ( i  < n) then 
lo: push (i + 1, G,,, V) onto ChStack 
11: push ((B1,1),(B2,1), . . . ,(B,,l)) onto GStack 
12: else 
13: if (ChStack == empty) then 
14: return false /* l o  more choices */ 
15: else 
16: (i, G, V) := pop ChStack 
17: restore variable bindings fiom V to goal G 
18: push (G, i )  onto GStack 
19: end if 
20: end if 
21: end while 
22: return true 



Step 11 are pushed onto GStack such that Bz is at the top of the stack ChStack, 

the choice stack, keeps track of the next possible choice to unifg a current goal with. 

The algorithm assumes variables of the clause whose head is Hi are uniquely 

named to avoid duplication with the variable names of Gar and the variables d- 

ready built in the program before performing the pattern-matching operation called 

vnif;mtion of G,, and Hi at Step 6. Unification equates (unifies) two identical 

constants, or a constant and a variable, or a variable and a compound term in which 

the variable does not occur, or two compound terms. For example, the terms f (A, 

s ( ~ ( 0 )  , c) and f (a, s (B) , C) llnifv to produce the substitution: A with a, B 

with s(0) and C with c. A formal specification of unification algorithm is given 

by Lloyd [48]. If the current goal fails to unify with any program cIause, execution 

attempts to resatisfy the previously successful goal (Steps 1618). Execution upon 

successful unification is known as fornod erecution and upon its failure is known 

as backtmcking. 

The algorithm starts with a Prolog goal term and indicates the success of the 

goal in the context of a given program. Bindings of the variables in the goal G, if 

any, resulting from the function execution give the computed answer. 

Several built-in arithmetic, input-output, term inspection and control manipu- 

lation operators make the language practical. Clocksin and Mellish [16] provide a 

complete description of Prolog. Sterling and Shapiro [63] and O'Keefe [55] provide 

advanced material about programming in Prolog. 

2.2 Berkeley Abstract Machine 

Prolog was initially implemented as an interpreter. David H. D. Warren developed 

the first Prolog compiler in 1977 and an improved execution model for compiled 

Prolog, the Warren Abstract Machine(WAM) [3,28,70], in 1983. 

The Berkeley Abstract Machine(BAM) [67] retains the fundamental feat- of 

the WAM but d&es a her-grained instruction set that Cacilitates compiler opti- 

mizations and maps more directly to general purpose processor architectures [68]. 



Aquarius, an optimizing Prolog compiler to BAM [35,67] was also a part of the BAM 

project. A global flow analysis (GFA) phase [67] in the Aquarius Prolog compiler 

derives information used for optimized BAM code generation, exploiting the finer- 

grained instruction set. An overview of the BAM architecture and its instruction 

set follows. 

We use Iowercase alphabet with typewriter font for BAM instructions. 

2.2.1 Memory Areas and Data Structures 

The memory areas of BAM (Figure 2.1) are similar to those of the WAM. 

Figure 2.1: BAM Memory Areas 

The BAM has six memory areas: the enuimnment stack, the choice point stack the 

global stack fieup), the trail, the SDA queue and the program mde a m  Dnring 

forward execution, a Prolog variable can be assigned only one value and the vari- 

able may not be reassigned. For efficiency reasons, the Aquarius Prolog compiler 

recognizes a Prolog extension known as stepped destnrctive assignment [35] that is 

supported by the memory area SDA queue. However, the present work does not 



consider Prolog programs with stepped destructive assignment. Hence neither this 

memory region nor its associated registers are discussed further. 

Algorithm 1 presents the Prolog execution algorithm. We introduce the BAM 

memory areas by referring to corresponding data structures of the algorithm. Uni- 

fications r d t  in variables being bound to data values as the execution progresses. 

The algorithm does not specify any data structure to store these data values. The 

heap stores these data d u e s  built at run-time. Further, in the algorithm variable 

binding information of the current predicate is saved (Step 4) in a variable V to be 

restored at the time of re-trial (Step 17) of the current goal. The trail stack stores 

this information. 

The environment stack and choicepoint stack provide the functionality of GStack, 

the goal stack and ChStack the choice stack. The stack items stored on these stacks 

are known as environments and choicepoints respectively. The structure of these 

run-time entities is as follows. 

2.2.1.1 Environment 

Information needed during procedure execution of an imperative language program 

is maintained in an activation m r d  [2]. An environment is simiiar to an activation 

record, both in content and intent. A clause is teferred to as a procedure and a 

predicate call is also referred to p~0cedut.e call. An environment stores values of the 

variables that occur across the clause. It also contains a pointer to the call return 

location (which is an instruction) and the previous environment on the stack. 

2.2.1.2 Choicepoint 

A choicepoint records the next available code location to be tried if a predicate call 

fails. Since the abstract machine state needs to be restored for the re-trial, the 

following information is stored prior to trying an execution path in the choicepoint: 

values of the current procedure variables to EaciIitate their restoration. 



current heap top such that all the data values built on the heap during the 

failed path can be discarded. 

cunent trail top such that currently all unbound variables can be restored to 

their unbound state. 

Further, the return address of the current procedure call and the previous choicepoint 

address on the choicepoint stack are also stored. 

The environment stack and chokepoint stack may either be implemented in a 

single memory space, known as the Id stack or separately as shown in Figure 2.1. 

The symbol table is arranged as a hash table whose form and hashing function are 

not specified as part of the BAM semantics. 

2.2.2 Data Types and Registers 

A BAM data entity is called a dataword. BAM supports two dataword formats: 

tsgged and untagged words. Untagged datawords represent machine integers and 

memory addresses. Tagged datawords contain a tag representing the data type and 

a value representing the data value with a tagdependent interpretation. The tag 

and value components of a dataword will  henceforth be referred to as dototag and 

datavalue respectively to avoid any confusion that may arise from the usage of the 

general terms "tag" and "valuen. A tagged dataword is written as  T V  where T is the 

datatag and V is the datavalue. Table 2.1 shows datatags and their corresponding 

datavalue interpretations. An unbound variable is represented as a dataword on the 

heap with a datatag tvar and a self-referential address as datavalue. A compound 

term is represented by a dataword wi th  a datatag tstr and address of a h e d  

number of contiguous heap cells that store its functor and arguments. A list term 

is represented by a dataword with a datatag tlst and an address of two contiguous 

heap cells indicating its head and tail. The other datatags and their datadues are 

evident from the table. 

BAM has three types of registers - state, czrgument and germmetat registers 

(Table 2.2). Eight state registers contain untagged datawords that point to varioua 



tstr 

tlst 

tatm 
tpos 
tneg 
t i n t  
tf lt 

- -- 

Table 2.1: Datatam in BAM 

Pointer to a structure - a compound term with a functor and fixed 
number of arguments. 
Pointer to a cons cell - a compound term consisting of two parts, a 
head and a tail. 
.An atom. 
A nonnegative integer. 
A negative integer. 
A integer. 
A floating-point number. 

Tag 
tvar 

Datatype represented 
-4n unbound variable or a general pointer 

Pointer to topmost choice point on choice point stack 
Pointer top of the heap (Le., globaI stack) 

r(pd 
r (el  

Program counter 
Pointer to current environment on environment stack 

r (cp) 
r (tmp-cp) 
r (tr) 
r (hb) 

BAM memory areas and execution information. Of these registers, only the heap 

Continuation pointer (return address) 
Continuation pointer to interface with assembIy code 
Top of trail 
Heap backtrack point - top of heap when current choice 

0 ,  . . . , N 
p(O), . . . , p(N) 

register r (h) and the backtrack pointer r (b) are explicitly visible in the instructions 

point was created. 
argument and temporary registers 
permanent variables 

generated by the Aquarius compiler. The rest are implicitly manipulated by the 

various BAM instructions. 

The argument registers correspond to the arguments of the current predicate 

They may contain either tagged or untagged datawords. The permanent registers 

correspond to the variables of the current predicate call whose scope spans over the 

finite. They may contain either tagged or untagged datawords. To the use of 

argument and permanent registers, consider the &use, 



The three variables X, Y and Z are in the scope of p/3. At the procedure entry 

their values are in argument registers d o ) ,  r (1) and r(2) in accordance to their 

argument positions. They are stored in three permanent registers p(O), p(1) and 

p(2) in the environment which is created upon procedure entry. Similarly, the 

variabIes Y and X of the predicate q(Y,X) correspond to the argument registers 

r (01, r (1). Hence before a call to q/2 is made, the registers r (0) and r (1) are 

correctly set using the permanent registers p(1) and p(0) respectively. Based on 

this basic calling convention, several optimizations exist to reduce the number of 

permanent variables based on their occurrence in the clause [3,13,70]. 

2.2.2.1 Addressing Modes 

The following are the addressable entities of BAM along with the values they evaluate 

to: 

a atomic terms referred to as directly addressable entities. These evaluate to 

themselves and are also called to as immediate values. 

registers referred to as directIy addressable entities. These evaluate to their 

contents. 

4 entities of the form T-X, where X is an addressable entity. These evaluate to a 

dataword with datatag T and datavalue X. 

entities of the form M referred to as indirect addressables. These edua te  to 

the contents of X, where X is an addressable. 

entities of the form X+I referred to as offset addressables. These evaluate to 

the address N locations beyond X in the memory. 

2.2.3 Instruction Set 

The BAM instruction set may be divided into four categories [29]: 
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Procedural Control Flow Instructions: These instructions provide un- 

conditional flow of control. Table 2.3 summarizes these instructions. 

Conditional control 0ow instructions: These instructions provide clause 

selection and backtracking mechanisms. Table 2.4 summarizes these instruc- 

tions. 

r Unification Instructions: These instructions implement term unification. 

Table 2.5 summarizes these instructions. 

Arithmetic Instructions: These instructions perform the binary operations 

add, sub, mul, div, mod, and, or and xor and the unary operations log- 

ical shift left (all), arithmetic shift right (sra), and bit-complement (not). 

Further, instructions that convert between integer and floating point and be- 

tween tagged and untagged values are also provided. As these instructions are 

similar to those of a general purpose RISC processor, they are not detailed 

here. 

Pragma instructions: prapa instructions embed information that may be 

used in the Aquarius Prolog compiler back-end for better translation of the 

target machine to assembly language. A summasy of these instructions is given 

in Table 2.6. 

2.2.4 Compilation of Prolog to BAM Code 

Here we outline how Aquarius compiles Prolog programs into BAM code. This is 

similar to that of a WAM-based Prolog compiler. The GFA phase of the .4quarius 

compiler however is not discussed. 

The first clause of the ProIog program text is deemed to be the program entry 

point. Its arity needs to be zero. In other words, the body of the entry point 

predicate is the query to the program. Consider the foUowing ProIog program. 



e 2.3: Procedural Control Flow lnstructions of BA!! 
I Instruction I - - 

procedure (PI 
entry (P , N) 

allocate (I) 
deallocate (N) 

call(P) 
return 
label (L) 
jump (L) 
jump-ind(X) 
simplexall (P) 

Description 
Marks the entry point to procedure P. 
Marks an amptable p i n t  where memory overflow check and 
garbage collection can occur. 
Create an environment of size 1P on the local stack. 
Remove the topmost environment, of size I, from the environment 
stack* 
Call the procedure P. 
Return h m  a procedure call. 
Marb L as a branch target. 
Jump ~ ~ ~ c o n d i t i o d y  t d ~ a b l  L. 
Jump to address in X 
Non-nestable call used to interface with routines written in BAM 
ammbly language of the VLSI realization of BAM and of no rele- 
vance in the present work. 
Non-nestable return used for routines written in BAM assembly 
language and hence of no relevance in the present work. 

Table 2.4: 
Instruction 

hash(V,T) 
switch(V,T,Ll ,L2,L3) 

test (E,T,X,L) 

cut (V) 

choice (l/N ,Rs , L) 

choice (I/N, Rs , L) 

choice (N/N, Rs , L) 

trail (XI 

fai l  

londitional Control FIow Iostructions of BAM 
Description 

Look up value V in a hash table, T. 
Branch to L1, L2, L3 depending on the tag of V being tvar, 
T or any other value respectively. 
Branch to L if tag of X is equd to or not equal to T depending 
on whether E is eq or ne, respectively. 
Conditional branch to L if numeric comparison C between A 
and B holds; data types of A and B need be consistent with 
T. 
Removes latest choice point horn local stack. V contains the 
address of previous choice point. 
Create a choice point containing the registers listed in Rs 
and set the retry address to L. N > I 
(l<I<N) Restore argument registers Listed in Rs from the 
current choice point and modify the retry address to L. 
Restore the argument registers listed in Rs fiom the current 
choice point and pop the current choice point from the local 
stack. B is a positive integer. 
Push address of X onto trail stack if traiI condition X < r (h) 
holds. 
Restore trailed variables and jump to retry address in current 
choice ~ o i n t  . 



Instruction 
deref (S , D l  

Description 
Dereference S and store result in D; F indicates mode of 
S, if known. 
Branch to L if Si and S2 are not equal; else fall through. 
General Unification of Vi and V2 branch to L on failure. 
'hihug is done by this instruction. F1, F2 E (? , var , 
nonvar). var and nonvar indicate whether V1 and V2 
are known to be variables or nonvariabes. ? indicates 
nothing is known about them. 
Unify V with atom A and branch to L if it faiIs. No trailing 
is done by this instruction. 
Move S to D. 
Push S onto the stack with stack pointer R and increment 
R by H. 
Add ofkt 0 to the tagged pointer in S and store result 
in D. 
Add N words to the heap pointer. 

Table 2.6: En 

pragma(push (variable) ) 

~edded information bagmas) .: 
Descri~tion 

The contents of location X are a multiple of N. 
The contents of location X have a tag Tag. 
A term of size K is about to be created 
on the heap. 
A cons cell is about to be created on the heap. 
A structure of arity N is about to be created 
on the heap. 
An unbound variable is about to be created 
on the heap. 
A hash tabIe of length hashlength is about 
to be created- 



The basic compilation scheme of the above program is ilhstrated as follows. 

Body goal compilation: 

1. Generate code to create an environment that holds permanent variables 

used across the clause if there are more than one body goals. 

The clause m a W 0  has no permanent variables. So no environment need 

be created during its execution- Hence no corresponding BAM code is 

generated while compiling the clause main/O.  

The predicate foo/3 has a body with more than one predicate call. 

Hence, compilation of the body of foo/3 begins by generating code that 

creates an environment. The environment stores the values of the three 

permanent variables X, Y and Z in permanent registers p(O), p(1) and 

p (2) respectively. 

2. Generate code to load the argument registers with corresponding argu- 

ment values to set up for a procedure call. 

Thus code to load the argument registers r (01, r (1) and r (2) with 

tatmna, tvarnr(h) and tatm'c is generated during compilation of the 

body of maid0 to set up for a c d  to foo/3. 

Compilation of the body of f00/3 next generates code to load the argu- 

ment registers of q/2, viz., r (0) and r (1) from p(1) and p(0) respec- 

tively to set up the ensuing call to q/2. 

Each body predicate is compiIed similarly. However, instead of generat- 

ing a call to the last predicate in the body, i-e., t/2, code to deallocate the 

current environment followed by a jump to t/2 is emitted. This may be 

done since there are no more body predicates to use the permanent regis- 

ter values in the environment. This technique is often referred to as lust 

call optimization and allows all arbitrarily deep tailailrecursive predicates 

to run with a constant number of enviro~~ments. 



Head compilation: The head of a clause is compiIed to BAM code that uni- 

fies the argument registers with the non-variable arguments, if any- Multipk 

clauses of a predicate definition are compiled using choicepoint instructions. 

The example program does not result in chokepoint iastructions. An example 

of compiling to choicepoint instructions is given in %tion 4.3.2. 

Summarizing, Figure 2.2 shows the stylized form of BAM code for the two clauses 

listed above . 
maia/O : load tatm'a r(0) 

load tvar*r(h) r(i1 
load tatm'c r(2) 
call f00/3 

foo/3 : /* head argument unification not done */ 
/* as no non-variable arguments exist  */ 
allocate environment o l t h  3 variables 
move r(O) to p(1) 
move r(1) t o  p(0) 
move r(2) to  p(2) 
/* Set argument registers t o  call q/2 */ 
move r(1) t o  r(O) 
move p(03 to  rC1) 
ca l l  q/2 
move p(2) to  r(0) 
move p(1) t o  r ( l )  
call s/2 
move p( l )  to r(0) 
move p(O> to r(1) 
deallocate environment w i t h  3 variables 
jump t o  t /2  

Figure 2.2: A simple compiled BAM code format 

With this background, we present a complete denotationd semantics spec%- 

tion of all BAM instructions generated by the Aquarius Profog compiler in the next 

chapter. We also present the BAM execution model. The semantics speciftcation 

provides the basis to show the correctness of various instruction specializations. It 

further provides an impIementation-independent spec%cation for the partid execu- 

tor that is implemented. 



Chapter 3 

Denotational Semantics of B AM 

This chapter presents the denotational semantics of BAM. These semantics are 

implementation-independent and provide a basis for the implementation of a BAM 

partial evaluator as well as for proof of correctness of the transformations performed 

by the BAii  partid evaluator. 

3.1 Notational Conventions 

An overview of the terminology, primitive domains and the operators used in the 

definition of the denotational semantics is provided. bold letters are used for domain 

names; typewriter font for syntactic constructs, domain tags and BAM instruction 

opcodes and operands. We continue to use italics whiIe defining or introducing 

new terminology in running text. We also use italics to represent a set element in 

set notation and to represent function or operator names and their arguments in 

mathematical notation. The context s h d  make the meaning unambiguous. The 

C A L A Z G ' R A P W C  font is used for dnat ion functions. 

The notational conventions used c l d y  follow those of Schmidt [59]. The natural 

number domain N, rational number domain Q, truth d u e  domain B, and character 

domain C are the primitive domains used to b d d  the semantic domains of BAM. 

The character domain C is defined as follows. 

C = {z I x is an ASCII character). 

Given a domain D, the power set of D i.e., the set of all subsets of D is denoted 



3.2 Domain Constructors 

The following conventional domain constructors, along with their corresponding 

assembly and disassembly operators, are used. 

The product of n domains, Al, A*, . . . ,A, where n > 1, is defined as 

Al x A2 x ... x Am = { ( x ~ , x ~ , . - .  ,X*) I xl €Al, ... , x ~  €Am). 

The disassembly operator of a product domain, denoted $i, maps an element of the 

domain to its ith element. 

( x ~ ,  2 2 , .  -. , xn)@ = Zi. 

The union of two or more disjoint domains is known as disjoint union. We denote 

the disjoint union of two domains A and C as A + C which is defined as 

A + C = ((zero, x) I z E A) u {(one, y )  1 y  E C). 

Entities zero and one Vag" members of A and C and are referred to as domain 

tags. The entities x  and y are referred to as value components of an element of the 

disjoint domain A + C. 

The assembly operators inA and inC are defined as 

Vx E A, inA(x) =( zero, I) and Vy E C, inC(y) = (one, y). 

To define the disassembly operator of any p E A + C, we quote Schmidt (591 to 

avoid any confusion this notation might result due to its uniqueness. 

To remove the tag from an element p E A + B, we can simply say ~$2, 

but will instead resort to a better s t r u c t d  operation called cases. For 

any p E A + C, the value of 

cases p of 

isA(x) + x 

0 ~SC(Y) + Y 

end 

is "2" when p = (zero, z) and "y" when p = (one, y). The cases oper- 

ation makes good use of the tag on the sum element; it checks the tag 



before removing it and using the value. Do not be confused by the isA 

and isC phrases. They are not new operations. You should read the 

phrase isA(z) + z as saying "if p is an dement whose tag component 

is zero and whose value component is z, then the answer is 2'. As an 

example, for 

f (m) = cases m of 

isN(n) + n + 1 
0 isB(b) + 0 

end 

f (inN(2)) = f (zero,2) = 2+1 = 3, but f (inB(true)) = f (one,true) = 

0. 

The disjoint union operation may be extended to more than two domains- C o r n  

spondingly the definition for assembly and disassembly operators may be extended. 

We a m e  the definition of these operators on each disjoint domain and thus are 

not specified explicitly whenever one is constructed. 

3.3 Functions and Function Domains 

A function is most commonly represented as an equation. For example, the function 

between the domains N and N that doubles a natural number may be defined as 

double(x) = 2*z 

In general, a function f between a domain A and a codomain C is represented (or 

d&ed as) as 

Ax) = e 

where x E A and e is an expression that may contain occurrences of z and that 

evaluates to an element in C. The notation f : A + C is used to refer to the 

function f .  

The function f is alternately represented using typed lamb& notation as h . e .  

This form is known as abstraction. In equational representation, the abstractions 



are given names such as f Using this notation a function need not be named. 

The application of a function f : A + C to a E A is denoted by f a when 

unambiguous and as f (a) otherwise. The result of function application is c E C, 

such that f maps a to c. 

Following is the description of another domain constructor known as  firnch'on 

space builder- For domains A and C, a fvnction space is a domain of all functions 

from domain A to codomain C and is denoted by A + C. Function application is 

the disassembly operator of this domain building operation, i.e., 

same f undion(someclrgs) : ( A  + C) x A + C. 

It may be noted here that function application is represented as an infix operator 

for clarity purposes. The following is (the more familiar) prefix representation of 

the same: 

()(some f unction, someargs) : ( A  + C )  x A + C. 

where same function E A + C and smeargs E A. The function apphcation 

produces c E C, where some fundion maps a to c. 

Given a function space f s : A + C we designate [a I+ c] f s to represent the 

function which is exactly the same as fs except that it maps the value a E A to 

CEC. 

We now d e h e  the notation used in the context of finite sequences of elements 

of a domain. Let D be any domain. D* denotes a domain of all h i t e  sequences of 

elements of D. If d E D' then either d is the empty sequence nil or d = dl :: d2 :: 

. . . :: d, :: nil, where n > 0 and 4 E D such that 1 5 i 5 n. The zth element in 

a sequence d is represented by e l m  i d; the first element (head) by M d and the 

remainder (tail) by tl d. We assume the standard operator cons, represented as ::, 
maps dl E D and sequence d E D* to a sequence d' = dl :: d E D'. Given a non-nil 

h i t e  sequence d = dl :: & :: . . , :: d, :: nit, any sequence 4 :: 4 : i + I. . - :: 4 :: nil, 

such that 1 5 i 5 n is referred to as  a su& of d. 

An undefined element is represented by I. Given a domain A we represent the 

corresponding lifted domain as AL to represent A U (-1). 

The if-then-else conditional expression is represented as 



X + Y  02 

and is read as "if z then y eIse 2'. The expression evaluates to y if z is true or to 

y otherwise. The if-then-else conditional is in no way related to the cases operator 

defined earlier. The symbol 0 happens to be part of the syntax of these. For clarity, 

the expression is sometimes written on multiple lines. The infix operator == is used 

to test equality while the operator = is used for definition of an expression. 

3.4 Semantic Domains 

The semantic domain String consists of character strings: 

String = C' 

-4 Prolog atom is a character sequence that uniquely denotes some entity, as 

d h e d  in Section 2.1.1.1, in the problem domain. Let Atom denote the domain of 

Prolog atoms. Thus, 

Atom = (z ( z E String and z satides the syntactic conditions 

s p d e d  in Section 2.1.1.1). 

A functor designates the name and arity of a structure. The domain of functors 

Fun& is 

Funct = {ffn I f in Atom and n E N) 

For example pCa,b) has functor p/2 with name p and arity 2. 

The computer memory is characterised by an address and its contents. An 

address is a natural number: 

Address = N + IV, 
where N is a domain consisting of initial values of various memory areas of BAM. 

These are identified when specifying the domains corresponding to the memory 

areas. 

The content of a BAM memory location is a dataword. A dataword in BAM 

is one of the two types: tagged or untagged. Let Untagged and Tagged denote 

the domain of nntagged and tagged datawords, respectively. An untagged dataword 

denotes a memory address (a pointer) or an integer value. Thus, 



Untagged = Address. 

It may be noted that an element of the domain Untagged is distinguished as an 

address or an integer by its use only. Jkther, the domain element does not restrict 

the address to be of any one of the possibly several memory areas of an architecture 

such as heap, stack or code area. 

A tagged dataword consists of a tag and a value. Tags indicate the data type 

represented. There are two pointer types - atomic and pointer. The three atomic 

tag domains are d&ed as 

T, = {t atm) 

Ti = {tint,  tpos , tneg) 

Tr = {tf l t )  

The domain of pointer tag types, is defined as 

T, = ( tvar ,  tlst, tstr), 

The tag domain T is defined as 

T=Ta+Tr+Tf+Tp.  

The tags and corresponding value interpretation of a tagged dataword is given in 

Tabb 2.1 of Section 2.2.2. 

The atomic tagged dataword domains are defined as 

DW, = T, x (Atom + Ehct)  

DWi=Ti x N 

DWr = T f x  Q 

The pointer tagged dataword domain is defined as 

DW,, = Tp x Address 

Thus the tagged dataword domain is defined as 

Tagged = DW, + DWi f DWf f DW,. 

DW, the domain of datawords is defined as 

DW = Tagged + Untagged. 

BAM registers are class%ed as state registers, argument registers and permanent 

registers. Each register contains a dataword. 



3.4.1 State Register Domain 

The function domain StRegVal maps state registers to their contents and is 

defined as 

StRegVat = R, + DW 
Aa operator initstatereg E StRegVal initializes state registers. The domain 

Untagged is expanded to include the initial values of the state registers. These 

initial values point to respective initialized but empty memory areas. Thus the 

domain 

Untagged = {initgc, in it^, initb, ini th,  initdr} 

contains initial values of state registers pc , e , b , h, and tr, respectively. The initial 

value of cp along with specification of initstatereg is discussed in Section 3.4.8. 

The operator getstreg that maps r E R, and s E StRegVal to the current 

content of r is defined as 

getstreg : R, -t StRegVal-, DW 

getstreg = Xr.As.(s r) 

The operator setstreg that maps T E &, its new content d E DW and register 

state s E StRegVal to a new register state s' that contains the updated value of r 

as d, is defined as 

setstreg : % + DW + StRegVal + StRegVal 

setstreg = Xr.Xd.Xs.[r H 4s 

3.4.2 Argument Register Domain 

The BAM architecture assumes an arbitrary but finite number of argument registers. 

The argument register domain, &, is defined as 

& = (19, r1, r2 ,..., rn) for n 2 0. 

The function domain ArgRegVd that maps the argument registers to their 

contents is 



ArgRegVal= R, + DWL 

Let I signify that no argument registers are mapped yet. This is represented 

by lifting ArgRegVal. The operators of ArgRegVal are defined slightly difter- 

ently from those of StRegVal owing to the availability of an arbitrary number of 

argument registers. 

The initialization operator of ArgRegVal is 

initargreg : ArgRegVal, 

inatargreg =I 

The operator to access an argument register d u e  is defined as 

getargreg : R, + ArgRegValI + DWl 

getargreg = Xr.Av.(v r )  

The underlined lambda specifies that the curried function v . ( v  r )  maps IE ArgRegVal, 

to I€ DW. This signifies the undefined value resulting fiom a register value access 

Erom an uninitialized register value mapping. This is in accordance with the usual 

interpretation. Further the dehition of function space ArgRegVal: R, + DWL 

implies that for a function v E ArgRegVal and r E R, the function application 

(u r )  either r d t s  in a value in DW mapped to r if such a mapping exists, or 

results in I otherwise. 

The operator to update a register value is defined as 

setargreg : Ft,, + DW + ArgRegVdL + ArsRegVal 

setargreg = Ar.Ad.As.[r H 4 s  

The domain of registers, Registers, is 

Registers = R, + &. 
A domain RegState is 

RegState = StRegVal x ArgRegVal,. 

Permanent registers are not included since they are accessible ody via the environ- 

ment stack. 

The initialization operator of RegState is defined as 

initregstate : RegState 

initregstde=(initstatereg, initargreg) 



getregualue that accesses values of a register r f Registers even s E Regstate 

is defined as 

getregvalue : Registers + RegState + DWL 
getregvalue = Xr.Xs.(cases r of 

-(TI) + getstreg u sJ.1 

fl is-(u) + getargreg u sJ.2 

end) 

setregualue that maps a register r E Registers, a value d E DW and a register 

state s E RegState to a new register state s' E RegState that has the value of r 

updated to d, is dehed as 

setregvalve : Registers + DW + Regstate + Regstate 

setregvalue = Xr.Xd.Xs.(cases r of 

isR,(u) + ((setstreg v d sll), ~ $ 2 )  

[1 isRJv) + (941, (setargreg u d 5 0 ) )  

end) 

The environment and choicepoint stacks are considered to be separate stacks in 

the memory throughout our discussion, as shown in Figure 2.1. 

3.4.3 Permanent Register Domain 

Permanent registers are stored in the environment stack whose semantic domain 

is specified in Section 3.4.4. The BAM architecture assumes the availability of an 

arbitrary (but finite) number of permanent registers. 

The permanent register domain, &, is defined as 

R, = {PO, p i ,  p2 ,... pz) f o r n l  0. 

The function domain PermRegVd maps permanent registers to their contents 

PermReqVal= % 4 DWl 

The initialization operator for the domain PermRegVal is 

initpermstate : N + PermRegVall 



where n E N is the number of permanent registers to be created. Since permanent 

registers exist in an environment, specification of the access and updating operators 

of these registers is given in Section 3.4.4 where the semantic domains of environment 

and environment stack are specified. 

3.4.4 Environment and Environment Stack Domain 

An environment contains (a finite number of) permanent register d u e s ,  address of 

the previous active environment and return address for the current predicate. Thus 

the environment domain Env is defined as 

Env = PermRegVal, x Address x Address. 

Consequently the environment stack domain EnvStack is defined as 

EnvStack = (Address x Envl)'. 

The access and update operators on the domain Perm.RegV.1 are defined as 

getpermreg : R,, + EnvStack -+ DWL 

getpemeg = Xr.Ae.(((hd e)4.2)4.1 r )  

and 

setpermreg : R, + DW + EnvStack + EnvStack 

setpermreg = Ar.Au.Ae.(ms ([r  I+ u]((hd e)$2)11) (tl e))  

3.4.5 Choicepoint and Choicepoint Stack Domain 

A chokepoint contains a finite number of argument register dues, pointers to the 

top of the heap, trail and environment stack when the current choicepoint was 

created; value of the register cp when the current choicepoint was created; address 

of the previous choicepoint; and address of the next choice associated with the 

merit choicepoint. Thus the choicepoint domain ChoicePt is defined as 



ChoicePt = D W  x Address x Addreas x Address x Addressx 

Address x Address. 

Consequently the choicepoint stack domain ChPtStack is d&ed a s  

ChPtStack = (Address x ChoicePtl)'. 

Let k i t h  E Address be the initial location of the chokepoint stack. 

An operator chpsum which maps addr E Address and chpt E ChPtStack to 

chpt' E ChPtStack such that chpt' is a suffix of chpt and the head of chpt' is a 

mapping of addr to its corresponding choicepoint, is defined as 

chpsu@:Address + ChPt Stack + ChPtStackL 

chpsu@= Aa.As.(((hd s) == (init-b, I)) +I 

0 (((hd s) &I== a) -+ s 
n ch~sum a (tl s))) 

This operator may be seen as a multiple pop operation on the choicepoint stack that 

pops the stack elements until the top of the stack has the given address. 

3.4.6 Heap Domain 

The heap contains datawords. Thus the domain Heap is defined as 

Heap = (Address x DWJ' 

Let inith E Address be the initial location of the heap. 

A heap access operator getheapvalue that maps a f Address, h E Heap to 

dataword d E DWL, wbich is the content of a in h, is 

getheqva1ue:Address + Heap + DWL 

getheapvalue = Xa.Xh. (((hd h) == (inath, 1)) +I 

[ (((hd h)Jl== a) + (hd h)&2 

fl (getheapvalue a (tl h)))) 

3.4.7 Trail Domain 

The trail contains argument registers that need be unbound upon backtracking. 

Thus the argument registers and the heap addresses of the variable they represent 



are stored on the trail stack. The domain nai l  is 

Trail = (Address x (R, x DW))' 

Let init& E Address be the initial location of the trail. 

The operator trsufiz maps crddr E Address and tr E nail to tr' E Trail such 

that tr' is a suffix of tr and the head of tr' is a mapping of addr to its corresponding 

register value pair. It is isdefined as 

trsufi:Address + Trail + Traill 

trsu&= Xa.Xs.(((hd s) == (init-tr, I ) )  +I 

0 ((hd s)$l= a -+ s 
0 t r w B  a ( t l s ) ) )  

This operator may be seen as a multiple pop operation on the trail stack which pops 

the trail until the top of the stack has the given address. 

3.4.8 Memory State Domain 

The internal state of BAM at any given time of execution may be characterized by 

the collective state of its registers, heap, environment stack, choicepoint stack and 

trail. Hence Memory is 

Memory = Regstate x Heap x EnvStack x ChPtStack x nail 

BAM instructions use only a subset of the addressing modes as defined in Sec- 

tion 2.2.2.1. Thus an addressable entity is an immediate d u e  and is one of the 

following. 

a immediate value i.e., a dataword 

argument register 

a permanent register 

a CRI, where R is an addressabIe entity 

a CR+Nl, where R is an addressable entity and N E N 



Thus the domain Adrabie is defined as 

Adrable: DW+R, + R,, + HB + Indirect + OGet 

where HB = {r(h) , r (b) ) 

Indirect = {x / x = ), where R is an addressable entity 

O&t = {x ( x =CR+Nl), 

where R is an addressable entity and N E N 

getualue that accesses the value of addressable entity is dehed as 

getualue: Adtable + Memory + DW 

getvalue = Xa.Xna.cases a of 

isDW(d) + d 

0 *(d) + getargreg d 4.2 

0 %(d) + ge?Pmreg d e 

0 =qd) + g&reg d 41 

isIndirect([dJ) + getheapvalue (gdvdue d m) h 

isofbet ( [dm] ) + getheapvalue ((getvalue d m)+n) h 

end 

where m =(s, h, e, c, t)  . 
setvalue that updates the d u e  of addressable entity is defmed as 

setualue: Adrable 4 DW 4 Memory + Memory 

The input and output to the program are considered to be a sequences of char- 



acter strings. Thus, 

Input=String* 

Output=Stringa 

The instruction set is denoted by Instr. The program code is defined as follows: 

ProgCode = Address + lnstr 

These initial state register values are described as follows: 

pc: The address of the first executable instruction in the program p E ProgCode 

denoted by initgc E DW. 

e: The address of the first Iocation in the environment stack denoted by 

initx E DW. (initx, I )  denotes the initialized environment stack. 

b: The address of the fist location in the choicepoint stack denoted by inith E 

DW. (inatb, I) denotes the initialized choicepoint stack. 

0 h: The address of the first location in the heap denoted by ini th E DW. 

(inith, I )  denotes the initialized heap. 

tr: The address of the first location in the trail stack denoted by inatf T E 

DW. (initdr, I) denotes the initialized trail. 

0 hb: Its initial value is inzth E DW. 

3.4.9 BAM Code Execution 

A BAM code execution is deemed to have terminated if pc is mapped to one of the 

special values success and failure or to a d u e  that points to an address outside the 

address area of ProgCode. The execution is said to have successfully terminated if 

pc maps to success. It is deemed to be a failure in other cases. Correspondingly the 

initial value of the continuation pointer is mapped to success to indicate no code 

need be executed upon the return of the first call. 

We digress to modify the domain DW to include these special values and com- 

spondingIy define the necessary disasembly operators. 



DW = Tagged+Untagged+Spl 

where Spl=(success, f ailure) 

The operator gettag on a domain element of DW is defined as 

gettag : DW + TI 
gettag = As. cases s of 

isTagged(d) = cases d of 

isDW,(da) = a1 

isDWt(d2) = diJl 

0 isDWf(df) = dftl 

0 iSDW,(dp) = ~ P U  
end 

n isUntagged(d) =I 

0 isSpl(d) =I 

end 

The operator getdataval on a domain element of DW is dehed as 

getdataval : DW + DW, 
getdataval= As. cases s of 

isTagged(d) = cases d of 

isDWJda) = cases di42 of 

isAtom(&zt) = dat 

fl isFunct (da f) = da f 

end 

isDWi(di) = di$2 

0 WWr(4) = #-C2 

0 =W,(~P) = dp12 

end 

[I isUntagged(d) = d 

[ isSpl(d) = d 

end 

The initialization operator of the domain StRegVal, initstatereg left unspec- 



ified in Section 3.4.1, is defined as a mapping of the state registers & to their 

corresponding initial values. 

initstatereg = R, + StfigVal 

initstatereg = ((pc, initqc), (el init*), (b, inatb), (h, inith), 

(cp, success), (tr, init&), (hb, init&)) 

An operator initpgmcude that maps a sequence of instructions to its correspond- 

ing function in ProgCode is assumed to be defined. 

The memory initialization operator initmem is defined as follows. 

initmem : Memory 

initrnem = (initstatereg, (inith, I ) ,  (initx, I ) ,  (initd, I ) ,  (initdr, I ) ) .  

An element of the domain ProgState, defined as 

ProgState : PFogCode x Memory x Input x Output, 

represents the BAM state along with the current position in the code, the input 

consumed and the output produced till that point of program execution. The oper- 

ator that initializes a new program state is defined as 

initprogstate : Instr' + Input + ProgState. 

initprogstate = Xp.Ai.(((initpgmcode p ) ,  initstatereg, initmem, i ,  nil)) 

Now we return to definition of operators relevant to program execution and 

termination. The termination test operator for BAM on a given s E ProgState is 

dehed as 

terminate : ProgState + B 

terminate((de, mem, in, out)) = 

(getregvufue pc s) == swxess + true 

0 ((getregualue pc s) = failure + true 

0 ((getrepdue pc s)  =I+ h e  

0 f dse)  

where mem = (s, h, se, sc, tr) 

An operator that performs the "fetch" operation upon a given program state is 

defined as 

f etchznstr : PmgState + InstrL 



f etchinstr((code, mem, in, out)) = code (getTegvalue pc s) 

where mem = (s,  h, se, sc, tr) 

Conventionally, instructions that are targets of a branch or that start a procedure 

are attributed a label. A separate instruction label instruction designates such 

entry points in BAA4 code. For example, consider the foUowing pseudo-code of a 

typical RISC architecture: 

.... 
move r1, r2 

compare 0, r2, r3 

jump,on,not,zero ' zlbl ' 

.... 
'zlbl' : move r4, r2 

Using the style of BAM code, this code segment is written as 

. * . .  

move (r1 , r2) . 
compare(0, r2, r3). 

jump,on,not,zero ( 'zlbl' . 

The label fail in the instructions does not correspond to a program label. A 

transfer of BAii execution to f a i l  resuIts in execution of global failure whose se- 

mantics are given by the valuation function for the instruction fail., viz.,  fail] 
] in the following section. 



An address look-up operator for a given label or procedure instruction instr, on 

a d is defined as 

f etchaddr : Instr + ProgCode + DWL 

f etchaddr (instr, mde) = (instr = fail) ~ [ f  ail1 addr 

where (code addr) = instr 

3.5 Valuation Functions 

The semantics of BAM execution model is provided by a duation function 8 defined 

on an instruction sequence and an input. 

B : Utr '  + Input -+ ProgState 

B = Xp.Xi.S(initprogstate p i )  

The valuation function S maps a program state p to a new program state p' by 

evaluating a sequence of instructions whose first instruction address is in the register 

PC- 

S : ProgState + ProgState 

S = Xp-tenninate p -+ p 

1 S (~([fetchinstt p)  

BAM instructions that are syntactic constructs are distinguished by enclosing them 

in 1 1. No ather semantics are attributed to the usage of this notation. 

The valuation function Z maps an instruction i and a program state p to a new 

program state p' by evaluating i with respect to program state p. 

2 : Instr + ProgState + ProgState 
The specification of Z for each of the BAM instructions follows. We assume the 

definition of an operator incr that maps a register r E Registera, a value d f 2 

and a register state s E Regstate to a new register state $ where the value of 

the register r is incremented by d. Further, the components of an dement of a 

product domain are explicitly specified in a where expression to simplify compIex 

compositions. If the compositions are simple, the disassembly operator 1 is used. 



3.5.1 Procedure Control Flow Instructions 

~ ~ r o c e d u r e ( f ) l ( ( m d e ,  m, in, out)) = ((mde, d, in, a t ) )  

where naem = (s, h, se, ac, tr), f E E'unct, 

memf = (d, h, se, sc, t r) ,  

s' = incr in&(pc) I s 

 entry try( f ,  n)l((eode, mem, in, out)) = ((mde, mem', in, out)) 

where mem = (s, h, se, sc, tr), f E Funct and n E N ,  

mem' = (d,  h, se, sc, tr), 

s' = incr =(PC) 1 s 

~ [ a l l o c a t e ( n ) l  ((code, mrm, in, out)) = ((code, mem', in, out)) 

where mem = (s, h, se, sc, tr) ,  n E N,  

mm'  = ( d f ,  h, sd, sc, tr), 

se' = cons ( ( Q d d ~ l  b? et, 4) 4, 
addr = (getregualue inR,(e) s) + I ,  

p = initpermstate n, 

et = (getregvalue hR,(e) s), 

ct = (getrepdue in&(cp) s), 

s' = incr =(a) (n + 2 )  s, 

s"=iminFt,(pc) 1s' 

~[deal locate(n)~((eode,  man, in, out)) = ((d, meml, in, out)) 

where mem = (s, h, se, sc, tr) ,  n E N ,  

mem' = (s", h, se', sc, tr), 

se' = ti s, 

s' = zncr -(e) (-n - 2) s, 

s"=iwinR,(pc)ls '  



~ [ [ c a l l ( p ) l  ((cafe, m, in, out)) = ((code, mem', in, a*)) 

where rnem = (s, h, se, sc, tr), 

men2 = ($I, h, se, sc, tr), 

s' = setregvalue in&(cp) ((getregvalue =(PC) s) + 1) s, 

3" = setregvalue inR.(pc) (fetchaddr procedure(p) code) s' 

I [ r e t d  ((mde, mem, in, out)) = ((code, mem', in, out)) 

where mem = (s, h, se, sc, tr), 

mem' = (s', h, se, sc, tr), 

s' = setregvalue -(PC) (getregvalue inft(cp) s) s 

I [ [ labe l ( l )~  ((mde, mem, in, out)) = ((mde, mem', in, out)) 

where mem = (s, h, se, sc, tr), 1 E String, 

memr = (s', h, se, sc, tr), 

s' = incr id&(pc) 1 s 

1 jmp( l ) l  ((mde, mem, in, out)) = ((code, rnem', in, out)) 

where mem = (s,  h, se, sc, tr), 1 E String 

memr = (d,  h, se, sc, tr) , 
s' = setregvdue in&(pc) ( f  etchidr label(1) code) s 

3.5.2 Conditional Control Flow Instructions 

~[switch(t ,  z,Ll, 12, B)] ((code, mem, in, out)) = ((code, mem', in, out)) 

where mem = (s, h, se, sc, tr), t E T ,  

z E Adrable and 11,12,13 E String 

memt = (s', h, se, sc, tr), 

s' = (tvar = gettag (getvalue x mem)) + 
setregvalue %(PC) (f etchaddr label(l1) code) s, 

[I ((t = gdtag (getvdue z rnem)) + 



setregvalue -@c) (f etchaddr label(l2) code) s, 

0 setregvalue id.&) (f e f d d d r  label(l3) code) s) 

s' = (compare (getvalue s m) (getvalue y mem) t c) + 
setregualue id,(pc) ( f e t c h d r  label(1) code) s, 

0 in= inEt(pc) 1 s 

The comparison operation, c, of values of x, y E Adrable whose tag type is indi- 

cated by t as integer, float or untagged, is one of the following: equality, inequality, 

I, > , 1. We assume this operator is defined. 

r l [ ~ t ( ~ ) l ( ( c 0 d e ,  m m ,  in, out)) = ((d, m m f ,  in, out)) 

where mem = (s, h, se, sc, tr), u E Adrable, 

mem' = (s"', h, se, sd, tr), 

d = setregvalue inR,(b) (getualue u mem) s, 

sd =chpsu& (getvalue u rnem) sc, 

d' = setregvalue k&(hb) ((hi sd)U)U s', 

s"' = incr *kc) 1 s" 

FoUoving are the semantics of the three instances of choicepoint management 

instruction. 

~[choice( l /n ,  r, I)] ((code, man, in, art)) = ((mde, man', in, out)) 

where rnem = (s, h, se, sc, tr), n E N, 

mem' = (d", h, se, sd, tr), 

st? = cons ( d r ,  cp) sc, 

addr = (getvalue b m) + 1, 
cp = ((regslots r s u ) ,  (getregvalue -(h) s), 

(getregvalue in&@) s), (getrepdue m ( e )  s), 



( g ~ e g v a l u e  in%(cp) 4, 
(getualue b rnena) , (fetctrtrddr 1 code)), 

s' = i w  in&(b) ((length r )  + 6 )  s, 

6 = setregvalue inR,(hb) (getvalue h mem) s', 

s"' = incr =(PC) 1 s" 

The operator regslots is defined as follows: 

regslots : + ArgRegVal+ D W  

regslats = Ar.As.((r = nil) + nil, 

0 cons (getargreg (hd r )  s)  (regslds (tl r )  s ) )  

~[choice( i /n ,  r, l ) l  ((d, rnem, in, art)) = ((code, rnem', in, out)) 

where mem = (s ,  h, se, sc, tr) ,  i E N ,  n E N ,  i < n, 

mem' = (dl, h, se, sc', tr), 

(hd sc)@ = (rl, h, tr, e, cp, 6, re), 

sc' = cons (rl, h, tr, e, cp, b, ( f  etchaddr 1 code)) (ti sc), 

s' = loadregs r r1 s, 

s" = iw hR,(pc) 1 3' 

The operator loadregs is defined as follows. 

loadregs: &; + D W  + RegState + RegState 

lwdregs : Xr.Xu.As.((r = nil) + s, 

0 ((hd r) = I+ true 

0 loadregs (tl r) (ti v) (setregvalue (hd r )  (hd v) 3))) 

The list of registers may also contain I to signify an argument register that need 

not be restored. The domain of such register lista is denoted as {k)' in the above 

operator definition. 

~l[choice(n/n,  r, i)l ((mde, mem, in, &I) = ((code, mcm', in, art)) 

where mem = (s, h, se, st?, tr), n E N, 

m' = (s', h, se, sc, tr), 



(hd sc) = (rl, h, tr, e, cp, b, re), 

sc' = (ti sc), 

sl = loudregs r rl s, 

32 = setregvalue =(b) b sll 

93 = setregvalue in&(hb) h 92, 

st = incr it&(pc) 1 s3 

Il[f ail1 ((code, mem, in, a t ) )  = ((code, mem', in, out)) 

where mem = (s ,  h, se, sc, tr), 

nam' = (dl A, se, sc, tr') 

81 = restoreregs ((hd sc)12)@ tr s, 

t ~ '  =trsum ((hd sc).j2)&3 tr, 

s2 = setrepdue -(e) ((hd sc)Q)14 sl, 

93 = setregvalue in&(cp) ((hd sc)Q)$5 s2, 

S* = setrepdue i&(h) (getregudue inR,(hb) s3) ~3~ 

s' = setregvalue &(PC) ((hd sc)$2)47 s4 

The operator restoreregs is defined as follows. 

restoreregs: DW + nail + Regstate 

restoreregs = Xa.At.Xs.((a == ((hd t) l l))  + s 

0 restoreregs a (ti t )  (setregvalue ((hd tr)$2)$1 ( (M tr)J2)$2 s)) 

I[ test(c1 t, x, 111 ((code, mem, in, art)) = ((code, mem', in, out)) 

where m m  = (s, h, se, sc, tr), 

mem' = (s', h, se, sc, tr), 

s' = (((gettog (getvalue z m)) = t )  + 
( (c == eq) + 

setregvalue inR, (pc) (f etchaddr label([) code) s 

n iw m(pc) I S )  

0 ((c = ne) + 



setregvdue inR. (pc) ( f  etchad& label(l) code) s 

0 incr id&(pc) 1 s)) 

3.5.3 Unification Instructions 

~[deref  (x, r)l ((code, mem, in, out)) = ((code, m m f ,  in, out)) 

where Is, h, se, sc, tr) = seCualue y (dere f (getvalue x mem) m m )  mem, 

rnmf = (s', h, se, sc, tr), 

s' = incr i&(pc) 1 s 

The operator dere f is d&ed as 

d u e  f : Adrable + Memory -+ DW 
dwef  = Xd.Am.((gettag (gduahe d m) == tvar) + 

((getheapudue (getdataual (getvalue d m)) h == d )  + d 

0 dere f (getheapdue (getdataval (getvalue d m))  h) m) 

0 4 
where m = (s, h, se, sc, tr). 

1l[equal(z, y, i ) ]  ((mde, mcm, in, art)) = ((mdc, mem', in, art)) 

where mem = (s,  h, se, sc, tr), 

memf = (st, h, se, sc, tr), 

s' = (g&due x mem == getudue y mem) + 
incr -(PC) 1 s, 

sefmguulue h&(pc) ~dchuddr label(I) code) s 

z[unifY(r, y, tl, t2, i)l((mdc, m m ,  in, out)) = ((d, memfr, in, out)) 

where meml = uni f g x y mem, 

mem" = ((mf ==I) + 
setregvalue pc (fetchsddr label(1) code) s, 

fl ((zncr pc 1 mem'Jl), mt@, rnm1Q, mem'44, memt&5) 

The d u e s  of tX, t2 are either any, var or nonvar indicating the tag d u e s  of 



x, y E Adrable respectively, if known. Their value is any if no information is 

known. These values are used to optimize the unification operation. Thus they 

are ignored in the semantics of the unify instruction. The unification operator 

un2fy : Adrable + Adrable + Memory + MemoryI maps unification of 

two addressable entities given a memory state either to another memory state if 

unification succeeds or to I if it fails. The unify operator is dehed as follows. 

un2 f y = Xz.Xy.Xm.( 

let tx = gettag (getvalue x m), 

ty = gettag (getvalue y m), 

vx = getdataual (getualue x m), 

uy = getdataval (getvalue y na), 

m = (s, h, se, sc, tr)) 

in ((tx == tvar) I\(( ty # tvar) V(vx  > vy))) + 
( ( $ 9  h, se, sc, tr') 

where s' = incr i&(tr) 1 (setvalue x (getualue y m) m)/l 

tr' = cons ((getregvalue m ( t r )  s) + 1, 

(x, (getvalue x m))) tr 

[I ((ty == tvar) + ((s', h, se, sc, tf), 

where s' = incr inR,(tr) 1 (setvalue y (getualue y m) m)& 

tr' = cons ((getregualue ir&(tr) s)+l, (x,  (getualue y m))) tr 

((tx == tint) V( t z  = t f  lt) V( tx  = tatm)) + 
((vx # V Y )  +I 

O m) 

[I ((tx = t l s t )  + 
((ty # t l s t )  +I 

1 (m" where m' = unzfv (getheapvalue (getdataual x) h) 

(getheapdue (getddaval y) h) m, 

m" = uni f p (gdhecpualue (getdataual x)  + 1 h) 

(getheapvalue (getdcrtaual y) + 1 h) m), 

((tx = t s t r )  + 



The operator that iteratively unifies two heap addresses is defined as follows. 

uni f ystr : N + N + Address + Address + Memory + Memory, 

uni f y s t r  = Xi.Xj.Xz.Xy.Am.((i > j )  + m, 

1 uni f y A r  (i + 1 )  j x y 

(unify (getheapdue (x + i )  ~ 4 2 )  

( g d b p v d u e  (y  + 2) m12) 4 
~[ tra i l (x ) l  ( ( d e ,  mem, in, art)) = ((mle, m m l ,  in, out)) 

where mm' = (s', m e m ,  m u ,  7ne71L3.4, tr'), 

tlJ = cons ((getregvalue inR.(tr) m e d l )  + I, 
(x, (getvalue x rnem))) rnmJ.5, 

s' = i n a  -(PC) 1 (incr inR,(tr) 1 rneM1) 

~[move(x, y)l ((code, m m ,  in, out)) = ((code, m", in, out)) 

where mern" = ( ( i w  inR,,(pc) 1 meml$l), mem'J2, mem'J3, 

mmf&4, rnmr45),  

m m l  = setvalue y (getuaiue x mem) mem 

~ b u s h ( d ,  r, n)n ((code, m m ,  in, a t ) )  = ((code, man', in, out)) 

where mern = (s, h, se, sc, tr), 

mem' = (incr id&) 1 (zncr (getualue r mem) n) a), 

(cons (((getvdue r rnem)+l), (getvdue d mem)) h) 

se, sc, tr) 

~[[adda(d,  n, r)]l((mde, mem, in, md)) = ((d, mem', in, mt)) 

where mern = (s, h, se, sc, tr), 

mem' = ( i w  1 setvulue r 





sented. Section 2.2 provides the basic process of Prolog compilation to BAM using 

a simple example. 

This chapter defines an implementation-independent specification of BAM to 

provide the foundation for showing the correctness of these specializations detaiied 

in Chapter 4. It further provides the specification for the impiementation of the 

BAM code specializer. The implementation of the specializer provides a basis for 

exposing various issues involved in partial evaluation of BAM code. 



Chapter 4 

Program Specialization 

This chapter presents a concise introduction to a program transformation technique 

known as progmm specialization. The goal of this transformation is to improve 

program performance. Specialization of high-level language programs such as Lisp, 

ProIog, and C has been studied for several years. This dissertation studies program 

specialization of a low-Ievel language viz., BAM code. 

Program specialization of low-level languages is conceptually similar to that of 

high-level languages. However, the difference in the data abstraction and the context 

of its usage, viz., as a compiler optimization phase, lead to an entirely different 

specialization algorithm and a different set of issues related to the machine model of 

the language. As a simple example, high-level language programs have well-dehed 

program modules such as functions and/or procedures. Such program modules are 

typically specialized for certain values of their parameters. Low-level language code 

lacks such moddarization and needs to be analyzed to identify "modules" along 

with their "parametersn. The specialization algorithm must then respect any such 

"moddarization" in the context of the machine model to discover opportunities for 

specialization and affect them. The transformations performed need to be correct in 

the context of the machine execution model. These considerations entail a BAM code 

specialization algorithm and proof of correctness of the transformations affected. 

This chapter presents an algorithm to perform BAM code specialization followed 

by the various possible BAM code transformations and a proof of their correctness 

using the denotational semantics presented in Chapter 3. 



Section 4.1 gives a brief introduction to program specialization and some ter- 

minology. The reasons for perceived opportunities to optimize BAM code using 

program specialization (Section 4.1.1) and the structural partitioning of the BAM 

code to facilitate specialization (Section 4.2) are presented. Given the partitioning 

and denotational semantics of BAM, transformations that result in optimizations 

are shown to be correct (Section 4.3). Program specialization is illustrated and 

pertinent imes such as choicepoint optimization in the context of BAM code spe- 

cialization are discussed with the help of two examples (Section 4.4). This provides 

the necessary background to the various issues of BAM code specialization discussed 

in the subsequent chapters. 

4.1 Introduction 

Specializing programs by using the portion of (any possibly knom) program input 

that remains constant during repeated runs is termed as partial evaluation. This 

technique may be used at compile-time to improve program performance. Such 

specialization results in s (possibly) new program, called a residue. Stipulating the 

program input is termed as input specs$cation. Stipulating the program input that 

remains constant across severd runs of the program is termed as constant input 

specl$cation. Given a program and its constant input specification, performance 

of the residue is no worse than that of the original program for any input whose 

constant portion is the same as specified by the constant input specification. A 

formal characterization of a partial evaluator follows. 

Let L: denote a language and Pr the set of programs written in t. Let V be the 

domain of values that expressions of L may be assigned to. B(V) denotes the power- 

domain of V. Let EL : PC + V + V be the evaluation function corresponding to 

the language C. Let S be the set of possible specificatiom of values in V and 

f : S + B(V), be the "concretization" function that maps a specification to a 

set of values it denotes. For any input spdca t ion  s E S of program p E PC, 

(f s)  = us U ud, where us E V is the set of d u e s  that are constant during repeated 



runs of p, termed as %ownn at specialization time or static values, and ud E V is 

the set of values "unknownn at specialization time, i.e., non-static values or dynamic 

values. 

For any program p E PL and any input specification si E S, 

E P (f s*) = (f so) 

where so E T is an output specif.ication and (f s,) E P(VIL denotes the set of output 

values. If a program fails to terminate, the output is undefined and is represented 

by I. 

A program specializer < : PC + S + PC is a function such that 

VU E (f si) ((EL p a) #-L* (Ec p a) = (EL (< p s,) a)) ,  where a = v , U V ~ .  

The program (( p si) is the residue. The above succinctly captures the definition of 

program specialization given by Ershov [26], Jones [42] and Ruf [57] but does not 

indicate the specialization process that results in the residue. Further, the behavior 

of the residue is undefined when the program p fails to terminate for an input 

specification thus allowing any value to be output by the residue in that case. A 

description of the specialization process in general and for BAM code in particular 

are discussed later in this chapter. 

Note fiom the above definition of the program spechlizer that p and its residue 

(c p si) take different inputs, viz., v, u vd and vd respectively. It is so defined to 

emphasize that the output of the residue solely depends on the dynamic part of 

the input and that the static values are "hard-wiredn into the program to form the 

residue. Equivalently, the inputs to the program and the residue may be the same, 

viz., u, U vd with an understanding that the residue does not consume the static 

input values, v,, during its execution. 

A program may contain constructs that evaluate to constant values either de- 

pending on static input or independently. Thus, for a program p and an input 

specification si, the set of static values, v, = u, U v,, where u,, is the set of static 

values that depend on iuput static dues  specified by si and u,, is the set of static 

values independent of those s p d d  in q. 

Program specialization involves the following two tasks: 



computation of constructs that are completely dependent on static values, us. 

This is referred to as reducing the constructs to "simpler" versions. 

retaining those that depend on the dynamic values, vd. This is referred to as 

residualking the construct to be computed at run-time. 

These are accomplished by symbolically executing the program in the context of 

static values during which the specializer needs to decide whether the construct can 

be reduced or residualizea 

Specialization may be performed even if it is only known that an input value 

is static but not necessarily the actual input value. The program constructs are 

annotated as static or dynamic by a pre-specialization analysis done according to 

congruence principle and is known as Binding Time Analgsis (BTA) [42]. The 

congruence principle states that a program construct is classified as static only 

if all its constituents are static. Otherwise, it is classified as dynamic. Program 

constructs are reduced or residualized by the specialization phase according to these 

annotations. Such a specialization process, during which the reduce/residualize 

decision is made based on analysis performed prior to specialization step, is known 

as 08-line specialization. If the reduce/residu&e decision is made based on analysis 

done at specialization time when the static values are also available, then it is called 

online specialization. Program variable biding information is computed and used 

"on the fly". Online specialization does not involve a pre-specialization analysis 

phase. 

The specialization may also take advantage of user annotations to help the re- 

duce/residualize decisions. Such annotations may be used to provide hints to the 

analysis regarding the static/dynamic properties of a variable. If a specializer does 

not use user annotations to make these decisions, then it is referred to as an auto- 

matic specializer. 

If the specializer can specialize itself then it is termed to be self-applicabk SeIf- 

applicability has been an important topic in program specialization and automatic 

program generation. ThditionaUy, Futammars three projections [26,421 for gener- 



ating program specializers, compilers and compiler-compilers leverage on the self- 

applicability of the program specializer. 

This thesis addresses the issue of generating optimized BAM code using special- 

ization during Prolog compilation. In an effort to verify usability of specialization as 

a compilation phase in a real-world compiler, every attempt is made to minimize the 

time added to compilation time by designing dcient data structures using the C 

language. Consequently, the implementation language of the specializer is different 

from the language being specialized (BAM code). Hence, self-applicability is not an 

issue in this thesis and will not be discussed further. 

The mathematical foundations of program specialization have been traced to 

Kleene's s-m-n theorem [45]. This theorem states that for any function 

f (21, ~ 2 ,  - , xn, ~r , ~ 2 ,  . - , pm), there is a computable function S{Z, a ,... 
such that 

'{ZI,~~,..-J~)(YI, 32, - 1 ~ m )  = f (XI, X2r. r xn, YIY 92, , Ym) 

for all x 1, ~ 2 ,  . . . , Xn, 31,312, . . . , ym- The function s( ,,,,,-, is referred to as  special- 

ized version of f for the arguments xl, q, . . . , En. Jones [42] provides a chronological 

history of the development of the field of program specialization. Program special- 

ization has been applied to functional programming languages such as a subset of 

Lisp [44] and Scheme [9,19,57], logic programming languages such as Prolog [47,58], 

constraint logic programming languages [37] and imperative languages like C [4]. 

Program specialization has in general been used for high-level languages where both 

the data and the control abstraction are much higher than that of the machine 

Ianguage. 

The present work studies partial evaluation of BAM, a Iow-level abstract ma- 

chine with data and control abstraction very close to that of a FUSC architecture. 

Partial evaluation of BAM described in the following chapters has two fundamental 

Mkrences with partial evaluation of a high-level langnage. Firstly, no source lan- 

guage or source program knowledge is assnmed or used during partial evaluation of 

BAM- Often such information is both available and is used during partial evalua- 

tion of high-level languages. As an example, consider Mixtus [58] - an automatic 



partial evaluator of Prolog. It uses predicate parameter information, Prolog execu- 

tion semantics that builds a goal stack (GStack in Algorithm 1 in Chapter 2) and 

cut placement and existence information along with other information during vari- 

ous phases of partial emhation. The BAM code partial evaluator described herein 

assumes no knowledge of Prolog nor has any access to the Prolog sources used to 

generate the BAM code being partial evaluated. It does not depend on the GFA 

phase which generates the modeltype information regarding the predicates of the 

Prolog source. It depends solely on the BAM machine model, a multi-stack ma- 

chine, and its instruction semantics. Thus this work demonstrates the compile-time 

optimizations achievable by partial evaluation of low-level code. 

BhM stacks are tailored to facilitate execution of Prolog-specific features such 

as backtracking. This leads to the second difference between partial evaluation of 

high-level language and low-level code. The explicit memory and stack manipula- 

tions possible using instructions of a low-level machine like BAM, present a different 

set of issues to be discussed later. The BAM instruction set facilitates memory ac- 

cesses in a manner similar to that of a RISC architecture. Such opportunities in 

a high-level language (or even C) are restricted by the type system. We present 

the required background for specialization of BAM, outline the BAM specializa- 

tion process and show the correctness of the transformations employed during the 

specialization process. 

4.1.1 Opportunities to specialize BAM Code 

Prolog is a dynamic-typed language. BAM has a finite set of data types. Hence each 

Prolog variable of a predicate in its corresponding BAM translation can potentially 

assume any of the BAM data types at run-time. Consqxently, the compiIed BAM 

code consists of a code stream for each basic BAM data type a ProIog variable can 

assume at run-time. Run-time type checks dispatch execution flow to corresponding 

code stream depending on the type of the variable. 

In other words, the abstract machine code is generic enough to facilitate exem- 



tion of code corresponding to data-types that are hown only at run-time. Global 

Flow halysis of Prolog programs have been traditionally 121 used to restrict the 

generic code to those code streams corresponding only to data types of the values a 

variable may be assigned at run-time and not all of the possible ones. 

Abstract interpretation (AI) based GFA [20,21] of Prolog programs was shown 

to provide a means for inference of predicate variable run-time data type informa- 

tion that may be used to generate optimized code [65,67,7l] or less generic code. 

The basic methodology employed in AI-based GFA is to map the program value d+ 

main to an abstract domain and to analyze/execute the program over the abstract 

domain instead of the value domain. Several different abstract domains along with 

corresponding abstract execution and analysis algorithms for pure logic programs 

and Prolog programs have been proposed for mode, type and data dependence anal- 

yses [lo, 24,93,66]. Getzinger [29] presents a taxonomy of several domains and 

analyses algorithms. Abstract machine code streams generated for each predicate 

are then restricted to those predicate variable data types inferred by the GFA al- 

gorithm. Sirniiarly, run-time checks are also reduced with this information. Thus, 

code that handles run-time data types which a variable is known not to have are o p  

timized away. ,M-based GFA has been used in this manner to improve code quality 

and speed-up the resulting executable. 

We propose that performing partial evaluation or program specialization at 

compiIe-time exposes opportunities for further optimizations. Figure 4.1 shows two 

options for performing PE during the compilation phases of the Aquarius compiler. 

If performed on Prolog source as a pre-GFA phase, PE can result in inference of 

more specific types by the GFA whenever possible. PE may also be performed as a 

post-GFA phase. This work focuses on further optimizations that can be achieved 

by a post-GFA partial evaluation. 

As pointed out in Section 4.1 program invariants that depend on the input 

static values, u, and that are independent of these, v,, are used during program 

specialization. BAM code specialization done here is intended to be used as a 

compilation phase. It does not require any explicit input spedcation. Thus v,, 
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Figure 4.1: Aquarius Prolog compilation phases 



= $. Only the static values uncovered during partial evaluation are used by the 

process. Thus the partial evaluation of BAM code done here is independent of the 

input static values and of any user annotations. It is automatic, 

An alternate view may be taken of the partial evaluation described in this thesis. 

As explained in Section 4.1, a pre-specialization analysis step typically annotates the 

program to facilitate the specialization process. ThditionaUy, Binding Time -4naly- 

sis (BT.4) is used to annotate the program constructs. For the PE process described 

here, we may view the GFA of the Prolog source as a pre-specialization analysis. 

The process is then guided by the results of the analysis- The Aquarius compiler 

supports several user annotations that are may be used by the GF-4 algorithm to 

increase the granularity of the deduced data types [35]. The resulting BAM code 

is thus restricted to code streams for possibly lesser number of data types of the 

predicate variables of a given program. Partial execution specializes BAM code for 

these data types. As the language on which GF.4 is performed is different from that 

on which PE is performed, the usage of the analysis information in the PE is not di- 

rectIy evident. Thus it may be argued the specialization process is not p d y  onhe. 

However, since the reduce/residualize decision is made at PEtime (as explained in 

Chapter 5 ) ,  we consider it to be online partial execution. 

WAM, as mentioned briefly in Chapter 2 is the precursor to BAM. It is also the 

fundamental abstract machine for several popular Prolog compilers and interpreters 

such as SICStus Prolog [32] and Quintus Prolog [I]. However, the instruction set 

of WAM consists of complex or coarse-grained instructions that provide little o p  

portunity for specialization. Several efforts were made to create opportunities for 

specialization to improve the performance of compiled Prolog by "extending" or 

"specializing" WAM instructions. SEPIA [51,52], SICStus Prolog [12] and the spe- 

cial purpose instruction set of Quintus Prolog are some of the many realizations of 

such extensions. However, the her-grained RISGlike instruction set of BAM offers 

greater specialization opportunities as wiU be discussed in Section 4.4. 

Partial evaluation of BAM code at compile-time hss the foIlowing potential ben- 

&ts: 



traditional optimizations such as dead-code and dead-check elimination, ex- 

pression evduation and constant propagation are done automatically. R&s 

work [57] on online partial evaluation of a substantial subset of Scheme ar- 

rives at a similar conclusion as weU in the context of functional programming 

languages. 

these optimizations/tdormations, in turn, enable further back-end opti- 

mizations. 

It is generally recognized [7] that the above mentioned traditional optimizations 

are based on partial evaluation. However, there seems little online partial e d u -  

ation effort during abstract machine based compilation - particularly to generate 

optimized code. More specifically, it has not been used to compile high-level, dy- 

namically typed logic programming languages like Prolog. Bdyonkov [ll] proposes 

an algorithm for performing polyvariant partial evaluation for programs written in 

a low level language much simpler than BAM. Thus the focus of the present work is 

to investigate the various issues involved in optimizing abstract machine code using 

partial evaluation. 

The definition of program specialization given in Section 4.1 does not specify the 

specialization process. Such a process for BAM code specialization is discussed in 

the following section. 

Overview of BAM Code Specialization 

Most specializers symbolically execute the program with the available static vd- 

ues and transform the program constructs to simpler equivtilents. The constructs 

of a program are eualuated in the context of partial knowledge. As the constructs 

of BAM code are instructions and instruction evaluation is usually known as in- 

struction execution, we refer to the process of specialization of BAM code as partial 

aecution(PE). Note that such a specialization proces consists of two phases; 6rst 

symbolic execution in which the program is executed with available static dues; 



second code transformation in which program constructs are transformed to less 

expensive equidents. 

Program execution involves a series of transitioru from one computation (or ex- 

ecution) state to another. Syntactic constructs in program source corresponding to 

these computation states are refisred to as program points. Rvtfier, the state of 

program execution can be meaningfully comprehended at  these points. The compu- 

tation state at a p r o m  point is referred to as a pwgmm date. Syntactic structures 

such as functions, procedures and predicates in a program are designated as p m  

gram points during execution of high-level language programs. Unlike high-level 

languages, BAM code has no predefined syntactic structure. Any sequence of BAM 

instructions is a syntacticdy legal BAM program. A structure is provided to a 

BAM instruction sequence by partitioning it into a control flow graph (CFG) [2] 

of basic blocks. Section 4.2.1 discusses the semantics of CFG representation. Such 

a partitioning facilitates characterization of basic block entry points as program 

points. 

4.2.1 Partitioning BAM Code into CFG 

A basic block is conventionally defined as "a sequence of (zero or more) instructions 

with no branch instructions, except perhaps the last instruction, and no bmch  

targets or labels, except perhaps at the first instructionn [72j (known as the leader 

of the block). Thus a basic block has a single control flow entry point and a single 

control flow exit point. A block entry point represented by the unique block label is 

a program point. A CFG representation of a given BAM code is a graph with basic 

blocks as nodes and with edges between these nodes representing the program's 

control flow. Each basic block has a unique numbet associated with it. 

In a conventional CFG, an edge between two basic blocks denotes a transfer 

of control horn the predecessor to its successor node, Two or more out-edges of a 

node denote transfer of conti01 b m  the pI.edecessor to one of the succe580rs. These 

edge semantics capture the control flow due to conventional branch instructions 



of threeaddress code [2]. The BAM instruction set has several of such branch 

instructions. However, choice/3 and f ail /0 instructions do not have conventional 

branch instruction semantics. Further, the CFG does not explicitly represent the 

control flow transfer due to cal l / i  and return/O. Thus, an edge in the CFG 

of a BAM code may either represent a conventional or a BAM-specific branching 

instruction. 

The branching or flow change instructions of BAM are classified into the following 

categories based on the way they afk t  the control flow and the information they 

create and access. 

1. Regular flow change instructions: 

The instructions equal/3, jump/l, jump/5, jumpind/i, suitch/3, switch/5 

and t e d 4  either change the control flow to an address label that is an explicit 

operand or to the next instruction. None of these instructions creates or saves 

information to facilitate return of the control flow to a following block at a 

later program execution point. These are similar to the conventional branch 

instructions. 

2. Procedural flow change instructions: 

The instructions cal l / i  and returd0 create and access data not explicitly 

present as an instruction operand. The control flow changes are same as the 

conventional stack-based procedure calls [2). The Bow change target is an 

expbcit operand of ca l l / l  instruction. The retaun/O instruction returns the 

control flow to the following block in accordance with the information stored 

on the environment stack by the immediately preceding c a W 1  instruction. 

3- Choicepoint flow change instructions: 

The choice/3 instructions create and access data that are both expliutiy 

present as instruction operands and are on the choicepoint stack. The control 

falls through to the basic block containing the next instruction but can return 

to the current block to go through the alternate path as indicated by the data 



created. Thus a block with a choice/3 instruction has two edges - a fall 

through edge and a retry edge. 

4. Backtracking instruction: 

The instruction fail10 accesses choicepoint stack data and has no explicit 

operands specified. Execution of this instruction sets the control flow to a 

basic block determined at nm-time. Thus a basic bIock with f ail/O as last 

instruction has no successors. 

The out-edge semantics of basic blocks with procedural flow change instructions 

can be illustrated by an example BAM code. Instead of presenting an arbitrary BAM 

code sequence we use a simple Prolog example and present BAM code generated 

during its compilation. This will also provide an opportunity to relate program 

points in the BhYI code with those of the Prolog program for the purposes of 

comprehension, Consider the program sample . p l  in Figure 4.2 whose BAM code is 

shown as a CFG in Figure 4.3. 

-~ ~ - 

Figure 4.2: Program sample . p l  

Edges out of nodes 6, 10 and 14 are examples of regular flow control change. 

Control flow transfer occurs exactly dong one of the edges. The control transfer 

occurring due to call(p/i) instruction in block 0 to block 2 is not represented by an 

edge, Similarly the control transfer back to block 1 due to return instruction either 

in in bbck 13 or 17 is also not explicitly shown as an edge. Such transfer of control 

due to call/l and retarn/O might occur at various program points. The location 



Figure 4.3: CFG of BAM code of sample-pl 



of control transfer due to procedure/l can be uniquely determined by its operand. 

Similarly, the return address is avdabte in the continuation pointer cp. Hence, 

successors of blocks with c a l l / l  and return/O instructions are not represented in 

the CFG explicitly. Consequently, a basic block with a c a W 1  instruction has only 

one successor - the block executed upon returning from the called procedure. The 

basic bIock with return/O instruction has no successors. 

The edges out of blocks 2 and 4 in Figure 4.3 are examples of control flow change 

due to choice/3 instruction. Exactly two edges represent control flow. The first 

one denotes flow control to the block beginning with the instruction following the 

choicd3 instruction in the code and the second to the block whose leader has the 

label specified as alternate choice in the choicd3 instruction. Thus the control 

flow along the edges out of a block with choice/3 instruction are not necessarily 

mutually exclusive for a given set of register values unlike the case of the out-edges 

of blocks with regular flow control instructions. The control might return to flow 

through the alternate edge. 

The instruction f ai l /0  that triggers control flow to backtrack is represented in 

a basic block by itself as shown in Figure 4.3. This block has no successors. 

4.2.2 Polyvariant Speciaiization of BAM Code 

With the description of a partitioning of given BAM code, we proceed to describe 

the process of its partial execution. This is done by traversing the basic blocks 

of the CFG starting at the program entry point. Recall that a compiled Prolog 

program has only one designated entry point. Instructions in each basic block are 

executed in the order they occur by building datawords in the registers and on the 

BAM stacks. However, at PEtime, the datawords built might be incomplete as only 

their data tags are known. The corresponding data values are usually known only 

at run-time. Thus the BAM code d o n  is performed with partial datawords 

ody. During partial execution, if the direction of control flow due to a regular flow 

change instruction is not decidable, the CFG is traversed depth-first dong each 



of the mutually exclusive edges. BAM memory is constructed along each of the 

ensuing paths. Such traversal is termed as spadative traversal since the resuit of 

the condition in the flow change instruction is assumed to hold along the respective 

paths. Opportunities to transform instructions are exposed and utilized during 

partial execution to result in basic block residues. 

A basic block may lie on more than one of the traversal paths of partial execution. 

Partial execution of such a block might have to be performed with respect to different 

partial information along each of these traversal paths. This might result in different 

residues for the same block. Such a specialization process, where multiple specialized 

versions of code at program points is generated, is known as polyuan'ant partial 

evaluation [11,421. 

Performing the above partial execution process naively will often lead to non- 

termination of the process and possible code explosion [39,411. Non-termination 

occurs due to repeated traversal of the same basic blocks. Such repeated traversal 

also results in code explosion as the process yields the same residue for each of the 

block part i d  executions. Criteria to recognize such attempts to partial execution 

of blocks previously traversed are required to correctly terminate the PE process as 

well as to limit the generated residue. 

Partial execution, as mentioned earlier, involves transformations of instructions 

whenever possible. A very common transformation involves replacing an instruction 

that transfers control flow to a program point (such as a procedure/function/predic8te 

call) with an instance of the code corresponding to the program point. Such a trans- 

formation is called unfolding [SO] at program points. Non-termination of the partial 

execution can resuIt from repeated unfolding of directIy or indirectly recursive pro- 

cedures. Even if the procedures are not recursive, naive unfolding might result in 

code explosion. Criteria to recognize such attempts to perform repeated unfolding 

are required to let the PE process terminate and limit the generated residue. 

Consider a loop in the BAM code. Partial execution of a loop whose upper 

bound is known at compiler-time could also lead to code explosion. This is similar 

to problems encountered in loop unrolling [72] performed during conventional com- 



piler optimizations. Criteria to prune the depth to which a loop may profitably be 

unrolled are required to minhize the code exp1osion. 

In essence, criteria to decide whether partial execution may proceed further at 

a program point or not is crucial both to the partial execution termination and to 

avoid needless code explosion. Such a criteria d o w  specialization to occur only a 

finite number of times at any given program point. Consequently, at each program 

point, several of its versions may be created each corresponding to the repeated but 

b i t e  partial executions that specialize the program point to the set of static values. 

Such criteria make use of the r d t s  of partial execution of program units (basic 

blocks) that are recorded. This technique of recording the results is usually referred 

to as caching or tabling. The criteria help in deciding whether to proceed with 

PE of a basic block or a previously computed specialization use a previous result. 

Chapter 6 discusses the issues relating to the criteria used in this work. 

Traditionally, the following three steps are used to perform polyvariant program 

specialization irrespective of the language €39,421. 

1. Obtain a description of all computation states reachable during program exe- 

cution with the available variable dues. The variable values may be available 

as invariant inputs known at specialization time or run-time invariants exposed 

at specialization time. 

2. Restrict these computation states to those reachable h m  the entry point of 

the program being specialized. .Also incorporate the known data into these 

states to yield possibly severaI specialized versions of the program's control 

points. 

3. Optimize the residue further using traditional optimizations to yield a residue. 

4.2.2.1 Residue Generation During Partial Execution 

PartiaI aecution of BAM code outhed in the previous section may be viewed as 

involving a series of transitions from one computation state to another. A state 



transition occurs due to partial execution of one instruction. The BAM registers 

and memory built with (possibly) partial datawords, constitutes the computation 

state. PE of an instruction transitions a given computation state to a new one. The 

two states, viz., one transitioned fiom and the one transitioned to are abstract r e p  

resentations of the corresponding states resuIting from execution of the instruction. 

The run-time computation state data values are abstracted to their data tags in the 

corresponding PEtime computation state. The cumulative state transitions due to 

partial execution of instructions in a basic block are referred to as block state transi- 

tions. Correspondingly the cumuIative state transitions due to partial execution of 

instructions immediately after a c a W 1  and a corresponding returd0 instruction 

are referred to as procedure state transitions. Instructions to which execution control 

transfers are usually r e f d  to as targets. Leaders of aIl basic blocks are considered 

as program points during partial execution of BAM code. The computation state 

at the program point is the memory state of BAM. Thus, PE of the basic block at 

a given program point is performed in the context of its memory state. This deci- 

sion to perform the PE of a block or not, is made at PEtime based on the criteria 

detailed in Chapter 6. 

Partial execution of basic block instructions in the context of the current memory 

state and their transformation to simpler instructions whenever possible results in 

a residue. Residues of aII basic blocks of the CFG are thus generated for all the 

program states possible at all run-time entries of the blocks. PE of a basic bIock 

is performed if its residue for the current memory state was not generated earlier. 

Additionally, as a procedure entry may also be a program point, PE of the procedure 

entry basic block is performed if the residue of the procedure for the current memory 

state was not generated earlier. 

As mentioned earlier, the results of PE of each basic bbck are recorded. To check 

whether PE of a block was performed earlier for a given memory state, the memory 

state and the resulting residue need to be recorded aRer each PE of a block. This 

meam that a block is "parameterized" by a memory state. It may be noted that 

the granularity of data accesses by most of the BAM instructions is a dataword. 



All such accesses are done either via argument registers or permanent registers. 

Further the architecture spdcat ion assumes that all instruction operands to be 

dereferenced, except those of the instruction deref/2 [67]. Thus execution of the 

instructions in a basic block are characterized by contents and accesses made by 

the registers in the block. In other words, the memory state at the end of the 

PE of a basic block reflects changes due PE of the block instructions only while 

the rest of the memory areas remain the same. Consequently, a block need not 

be parameterized by a memory state it executes in. Instead, it is sdicient to 

parameterize the block with the argument and permanent registers live at  that 

program point. Such registers are referred to as  reference qisters. SimilarIy, to 

answer the question "Is a residue generated for the block at current program point 

given the context of current memory state?", it is sufficient to check if PE of the 

block was performed for the current reference register contents instead of the whole 

memory state. Additional analysis of instructions with larger data access granularity 

allows augmenting reference registers with other instruction operands, if needed, to 

parameterize the block. This is illustrated in Section 4.4.2. 

The above discussion provides a background for various issues that need be 

addressed while performing partial execution of BAM code. We now outline an 

algorithm to perform partial execution of the CFG by iterative depth-first traversal 

in Algorithm 2. The goal is to provide details of the process of partial execution of 

%AM code using the algorithm. 

Alnorithm 2 Empirical Partial Execution Alnorithm 
- - - - - - -- - 

1: Perform depth-first traversal of the CFG. 
2: for all basic blocks bb of the CFG do 
3: if no residue for bb with respect to current memory state exists then 
4: Partial Execute 6b to get a residue, &,. 
5: else 
6: Let &, be the residue of bb. 
7: end if 
8: Record the current control flow path from parent of bb to &, for code gen- 

eration. 
9: end for 



The test for a previous partial execution of a basic block and a resulting residue 

is done at Step 3 of the algorithm. This is referred to as version check. As explained 

earlier, since a basic block may be parameterized with reference registers, the version 

check tests if a residue for the block was previously generated for static reference 

registers. This test ensures that code explosion and non-termination do not occur. 

The version check is described in Chapter 6. 

The amount of residue generated during the execution of this partial execution 

algorithm depends on the size of static value domain of the reference registers at P E  

time. We show that this domain is indeed hitely small within the PE hamework 

described above. 

There are a finite number of registers in a given basic block. At PEtime, each of 

these registers may contain dataword whose datatag is one of the finite set {tvar, 

tint, tpos,  tflt, tstr, tneg, tatm, tlst). Thus even if one residue for each 

of the registers with each of these datatags were generated, only a finite number of 

residues for a block are generated. Consequently, the number of residues generated 

during the whole process of partid execution is finite and the partial execution 

process is will terminate. An algorithm to optimize the number of reference registers 

used for version check is discussed in Chapter 5. Further the reasons for termination 

given here are in concurrence with bounded dafic uariable conditions laid out by 

Glenstrup and Jones [30] and Holst [38]. 

4.2.2.2 Consolidation of Residue 

The BAM code partial execution outlined above generates residues of the basic 

bIocks along ail possible run-time CFG path. AU such run-time paths traversed 

during partial execution are recorded. The residues generated are consolidated to 

yield an optimized version of the BAM code on whi& PE was performed. This is 

done after the completion of partial execution. It involves adjustment of control flow 

targets to residues instead of the original basic blocks. Ehther, trivia1 transition 

eliminations such as removal of unconditional jumps to a following instruction are 

aIso affected. Issues relating to the formation of a run-time path during partial 



execution, introducing a residue into the path, code generation corresponding to 

a given run-time path and related optimizations done are discussed in detail in 

Chapter 7. 

4.3 Specialization of Instructions 

Transforming instructions of a basic block during its partial execution results in a 

residue. If two different instructions Il and I2 transform a given memory state, M, to 

the same memory state M', then the instructions are transformable to one another 

in the code in the context of the memory state M. If the transformed instructions 

execute in lesser number of cycles than the original instructions, then the residue 

may be expected to execute more efficiently. The most important criterion for any 

transformation is to ensure that the program output remains the same as that of the 

original. Hence any possible instruction transformation should be ensured to be cor- 

rect. The memory state transformations done by d BAM instructions are specified 

by the denotational semantics af BAM (Chapter 3). Using the denotational se- 

mantics specification, the correctness of all instruction transformations done during 

partial execution is shown in Section 4.3. 

As a first step towards showing correctness of instruction transformations, the 

folIowing classification of registers that occur isi a basic block is performed. 

If a register content has known datatags or a known dataword (i.e., both datatag 

and datavalue) at partial execution time, then the register is termed as static register. 

A static register is called either tag-static or data-static to signify the knowledge of 

tag or complete datadues (i.e., datatag and datavalue). Registers whose tag values 

or dataword values are known only at execution time are called as dynamic registers. 

As specified in the previous section, an instruction or a sequence of instructions 

maps (or transforms) a memory state to another. Let p E ProgState denote a 

memory state during the execution of a seqnence of BAM instructions. Let instr 

be a sequence of one or more instructions to be executed next. Let instr map p to a 

memory state p' E ProgState. I£ a sequence of one or more instructions Wtr' also 



maps p to # then instr and instr' are termed equiualent instructions. Thus the 

sequence instr may be replaced with insti in a code hgment containing instr 

provided the program state is p prior to the execution of insti. 

We now present instructions and their equivalents specialized for partially known 

memory/operand contents represented by the current program state p. We show the 

equivalence of the instructions and their specialized versions within the denotatiod 

semantics framework presented above. Thus a foundation is laid out for showing 

that the partial execution methodology presented is correct. 

We introduce a n&operation instruction nop similar to that found in several pr* 

cessor architectures. The execution of this instruction has no effect on the memory 

state except incrementing the program counter pc. Its semantics are 

 no^] ((code, mem, in, art)) = ((code, mm', in, out)) 

where mem = (s, h, se, sc, tr) , 
mem1 = (s', h, se, sc, tr) , 
s' = (iw ix&(pc) 1 s)  

Correctness is shown for only those instructions that present an opportunity to 

be transformed. 

4.3.1 Specialization of Conditional Control Flow Instruc- 

tions 

As shown below, it is often possible to use the tag information of a register d u e  

to eliminate redundant testa and reduce the conditional control flow instructions to 

unconditional jumps or eliminate them altogether. 

Consider the valuation function of switch/S instruction given in Section 3.5.2. 

This *way branch instruction depends on the tag information of the addressable 

entity z available from program state p = (code, mem, in, out). The value of x may 

either be static or dynamic- In case of a static z ,  the equivalent instructions for the 

three cases are as ioUows: 

Case 1. tag of z known to be tvar. 



This impiies that the condition (war --= gettag (getvalue z mem)) is true 

and the semantics reduce to 

~ [ s s i t c h ( t ,  x, 11,12,13)1((mde, m a ,  in, out)) = ((code, mem', in, out)) 

where mem = (3, h, se, sc, t r ) ,  

t E T ,  x E Adrable and 11,12,13 E String 

mem' = (s', h, se, sc, k), 

s' = (setregudue inR,(pc) (f etchaddr label(l1) code) s) 

The semantics of the instruction jump(l1) are exactly the same as above. 

Thus the switch/5 instruction is equivalent to jump/l instruction. This 

unconditional jump is a simpler instruction involving no tag comparison 

unlike the original switch/5 instruction. 

Case 2. tag of z is as spedied by t. 

This implies that the condition (t = gettag (gdualue x mem)) is true and 

the semantics reduce to 

~(Isu i tch( t ,  x, 11,12,13)1 ((eaie, mem, in, out)) = ((mde, mem', in, out)) 

where mem = (3, h, se, sc, tr), 

t E T, x E Adrable and 11,12,13 E String 

mem' = (s', h, se, sc, k), 

s' = (setregudue hR&c) ( f  etchaddr label(l2) d e )  s) . 

This is equivalent to the semantics of the hstmction jump(l2). 

Case 3. tag of x is neither tvar nor as specified by t. The semantics reduce to 

l[switch(t, x,  11,12,13)1 ((mde, mem, in, art)) = ((mde, mem', in, out)) 

where mem = (s, h, se, sc, tr), 

t E T ,  x E Adrable and 11,12,13 E String 

m' = (a', h, se, SC, tr), 

d = (setregvalue -&@c) (f etchaddr label(I3) code) s) 

This is equivalent to the semantics of the instruction jump(@. 



I.. each case, the evaluation function reduces to a j q / l  to the appropriate 

label. Thus with a tag-static d u e  suitch/S instruction is equivalent to jump/l in- 

struction. In case of a dynamic addressable entity, the suitch/5 instruction remains 

unchanged. 

I 

Next consider the valuation function for test/4 instruction given in Section 3.5.2. 

This is a tweway branch instruction - depending on equality or inequality as spec- 

i6ed by eq or ne - of the tag of x and a given tag t. If the addressable entity x is 

static, the test/4 instruction may be simplified as follows. 

Case 1. If the tag of x is the same as  t and c is specified as eq the semantics of 

test/4 reduce to 

 test (c, t, z, l ) l  ((code, m m ,  in, art)) = ((code, m', in, out)) 

where mem = (s, h, se, sc, tr), 

m' = (s', h, se, sc, tr), 

s' = setregvalue a ( p c )  (f etchadd7 label(1) code) s 

This is equivalent to the semantics of the instruction jump(1). 

Case 2. If the tag of x is the same as t and c is specified as ne the semantics of 

test/4 reduce to 

 test (c, t, x, i)] ((mde, mem, in, out)) = ((eode, mem', in, out)) 

where me7n = (s, h, se, sc, t r ) ,  

m d  = (s', h, se, sc, tr), 

s'= incr bR,(pc) 1 s)) 

This is exactly the same semm.iics as those of the nop instruction indicating 

that the execution of text/4 in the current program state is redundant and 

thus may be repIaced with a nop. 

Case 3. If the tag of x is diffaent from t and c is specified as eq the semantics of 

test/4 reduce to that of nop. 



. . .Argument dereferencing instructions. . . 
choiceW4, ArgRegLstl, 1 (pred/2,2) . 
. . .Head unifications and body instructions.. . 
return. 

label (1 (pred/2,2) ) . 
choice(2/4 ,ArgAegLstl, 1 (pred/2,3) . 
... Head unifications and body instructions ... 
return. 

label (1 (pred/2,3) ) . 
choice (3/4, ArgRegLst3,l (pred/2,4) 1 . 
. . .Head unifications and body instruct ions. . . 
return. 

label (1 (pred/2,4) . 
choice (4/4 ,ArgRegLst4, f ail) . 
. . .Head unifications and body instructions.. . 
jump/l . 

Figure 4.4: Schematic of choicepoint creation in BAM 

Case 4. If the tag of z is different from t and c is specsed as ne the semantics of 

test/4 reduce to that of jump(& 

Similarly, it may be shown that the semantics of jump/5 reduce to those of 

jump/l or to nop with data-static values of the operands x and y. 

4.3.2 Specialization of Choicepoint Instructions 

Specializing choicepoint instructions by partial execution may reduce (or even elim- 

inate) the number of choicepoints created at execution time. Here we discuss the 

methodology for specializing choicepoint instructions that will serve as a background 

for the choicepoint optimization detailed later. 

First, a brief review of how choicepoint creation code is generated by the Aquarius 

Prolog compiler is in order. Suppose a predicate p d / 2  consists of four clauses and 

each of these clauses is compiled to BAM code with labels, say, l(pred/2,2), 

1 (pred/2,3) , and 1 (pred/2,4) respectively, as shown in Figure 4.4. A schematic 

T3 



of this BAM code partitioned as CFG is shown in Figure 4.5. 

The choice/3 instruction in basic block A creates a choicepoint which con- 

tains the address of next alternative to be tried, i.e., address of the instruction 

label (1 (pred/2,2) 1, along with the argument register values given in ArgRegLst 1. 

First, the control flow proceeds along path PA. If the execution fails, the control flow 

enters block B and the choice/3 inst~ction in B restores the argument registers 

listed in ArgRegLst2 from the choicepoint. It also updates the next alternative to 

Figure 4.5: Schematic CFG of a predicate pred/2 with four alternate choices 

try with the address of the instruction label(l(pred/2,3) 1. Execution proceeds 

along the edge PB. The rest of the choices of pred/2 are attempted similarly if 

the current choice is a failure. The choice/3 instruction in the last alternative D 

restores the argument registers to those listed in ArgRegLst4 &om the choicepoint 



and pops the choicepoint off the choicepoint stack. If the last alternative fails, the 

call pred/2 fails. 

Given the static register information at the entry of procedure (pred/2), sup 

pose partial execution reveals that execution along the path PC fails. Then the choi- 

cepoint instruction in the code block with label l(pred/2,2) may be transformed to 

bypass block with label 1 (pred/2,3). In other words, choice W 4 ,  ArgRegLst2, 

l (pred/2,3) in block B, can be transformed to choice (2/4, kgRagLst3, 1 (p- 

red/2,4) 1. The correctness of this tramdormation may be shown using the deno- 

tational semantics of choice/3 and fail10 instructions as follows. 

Let mem be the memory state at the time of entry into block A and b, and h. be 

the values of b and h. The memory state at the exit of block A results from applica- 

tion of valuation function of choice(l/n, r, I) specified in section 3.5.2 to the memory 

state mem. The register hb contains h, at the mit of A. Let bb be the value of b after 

the choicepoint is created by the Instruction choice(1/4, ArgLstl , 1 (pred/2,2) 1. 

Let hb, cpb, 6 and trb be the dues of h, cp, e and tr respectively at the acit 

of bIock A Hence (hd sc), which represents the top of choicepoint stack, is (bb, 

(ArgRegLst 1, hb, trb, ht cpbr b, ad&-pred-22) where ad&-pred-22 = f d c h d d r  

1 (pred/2,2) ) code at the entry of block B. 

The top of choicepoint stack at the exit of B i.e., entry of block C is 

(bb r ( ( kgRegLst1) hb t t r b  t 8b t CPb, bm addr-preU-3) 1 

where a&-pred.23) = f etchaddr l(pred/2,3) and (ArgRegLsti) represents 

the contents of the argument registers in ArgRegLstl. Fbrther, the registers Listed in 

ArgRegLst2 have the values restored h m  ArgRegLstl that were stored in the choi- 

cepoint. The register pc has the address of the inst~ct ion following the choice/3 

instruction in block B. Now, suppose it was revealed that partial execution exe- 

cutes f aW0 along the each of the paths on PC. This implies that execution dong 

the path PC fails and partial execution of fai l  instruction restores the memory 

state to the correct state. Let rnemb be the memory state before the execution of 

this f a i l  instruction. State transformation of memory due to execution of f a i l  

may be computed by applying its valuation b c t i o n  (d, m e m b ,  in, out), where 



code E ProcCode is the BAM code on which partial execution is being performed, 

in and out are its input and output. 

11f ail1 ((&, mmy, in, out)) = ((code, memc, in, out)) 

where mema = (s, h, se, sc, tr), 

mc = (dl h, se, sc, t f )  

sl = restoreregs trb t r  S, 

tr' =trsufi trb tr, 

82 = setregvalve S ( e )  eb 81, 

s3 = setregvalue inR.,(cp) cpb 32, 

sh = sdregvdue =(h) h. s3, 

s' = setregvalue inR.(pc) a&-pred23 34 

Evidently, the valuation function d f ail maps m b  to mem, wherein the state 

remers e, tr, cp are restored from the top of the choicepoint stack. 

Now partial execution proceeds to block C wherein PE of instruction choice(3/4, 

ArgilegLst3, 1 (pred/2,4) ) transforma mem, as specified by the foUowing valuation 

function: 

1[choice(3/4, ArgRegLat3,l(pred/2, 4)) l  ((code, meme, in, out)) = 

((code, M d ,  2% out)) 

where mem, = (3, h, se, sc, t ~ ) ,  

memd = (8, h, se, st?, tr), 

st? = urns (( ArgRegLst 1) , hb, trb, 6, cpbt b., addr-pred2-4) (tl sc) , 
s' = loudregs r (ArgRegLstl) s, 

s"=incrinR,(pc) 1s' 

Knowing that partial execution fails along PC fails, given mema, the instruc- 

tion choice (2/4, ArgRegLat2 , l(pred2,3)) may be trauhrmed to choice (2/4, 

ArgRegLst3,l (pred/2,4) ) as explained above. The memory state transformation 

of mema done by this transformed instruction is as foIIows: 

1[choice(2/3, ArgRegLst3, l(pred/2,4))1((mde, m r m b ,  in, out)) = 



((code, m e d ,  in, out)) 

where menzb = (3, h, se, sc, tr), 

mem' = (6, h, se, sc', tr), 

sc' = m s  (( ArgregLst I), hb, trb, 6, q,, b., addr_pred_2-4) (tl sc), 

s' = loadregs r rl s, 

s " = i w  ixtR,(pc) 1 d 

mem' is exactly the same as men%. Hence the transformation is correct. This 

transformation renders block C to be dead-code. This type of choicepoint special- 

ization may be performed if the fall-through path following a choicepoint update 

instruction may be shown to fd during partial execution of the BAM code. The 

implementation of the associated analysis is detailed in Section 6.4. 

Two special cases of this optimization occur. The first is when all alternatives to 

the first choice can be shown to fail at PE time but the first choice can not be shown 

to fail. In Figure 4.5, it may be shown that partial execution fails along PB, PC and 

Po, but not dong PA. In such a case the choicepoint creation itself may be inhibited 

as shown in Section 4.4.2. The second case, when it may be shown that partial 

execution fails along PA, an entirely Merent kind of choicepoint transformation is 

done (Section 6.4). The correctness of these transformations follows &om the proof 

of the general case given above. 

The basic idea behind choicepoint optimization is to avoid creation and/or ma- 

nipulation of a choicepoint with retry addresses that fail. Choicepoint optimization 

can save the time of manipulation as well as attempting to execute code on paths 

known to fail. Also in programs that can generate exponentid number of choice- 

points, this optimization can result in reducing potential swapping problems. 

4.3.3 Specialization of UnXcation Instructions 

Using static registers, some d c a t i o n  instructions may be specialized as follows. 

The semantics of deref/2 instruction are specified in Section 3.5.3. The follow- 



ing possibilities exit for specializing this instruction depending on the compile-time 

information available, 

Case 1. x is tag-static, x and y refer to the same register and x has a tag other than 

tvar. 

The semantics of deref /2 reduce to 

~ [ d e r e f  (2, x)l ((code, mem, in, out)) = ((mde, m', in, out)) 

where (s ,  h, se, sc, tr) = setvalue x ((getvalue x mem)) mem, 

meml = (s', h, se, sc, tr), 

s ' = i c p ~ ( p c )  1 s  

since the condition (gettag (getvalue x m) = tvar) in the den$ operator 

evaluates to false thus evaluating den$ (getvalue z m m )  mem to (getvalue z 

mem) which in turn, evaluates to the contents of x which are remapped to 

z by the expression setvalue x ((getvalue x mem)) m m .  In other words, 

the content of x is remapped to itself - a vacuous operation. Thus the 

semantics reduce to 

~[dere f  (x, o)l ((cude, mem, in, out)) = ((mde, meml, in, art)) 

where mem = (s ,  h, se, sc, tr) 

mem' = (s', h, se, sc, tr), 

s' = i w  in&(pc) 1 s 

These semantics are equivalent to those of nop instruction. In other words, 

deref/2 instruction can be replaced by the nop instruction in this case. 

Case 2. z is tag-static, x and y are difterent registers and x has a tag other than 

t va r  . 

As above, (&ref (getvalue x m m )  mm) in the specification of deref /2 

reduces to (getvalue x m). The expression 

setualue y (deref (getvalue z m) m) m 

reduces to setualue y (getvalue x mem) m m .  Thus the semantics of 

deref /2 reduce to 



~[deref  (x, g)l ((code, mrm, in, out)) = ((cock, mem', in, art)) 

where (s, h, se, sc, tr) = setudue y ((getvalue x mem)) mem, 

mem' = (sl, h, se, sc, tr), 

s' = inm *(PC) 1 s 

which may be rewritten as 

~[deref  (x, y)D((code, mem, in, out)) = ((mde, meml', in, out)) 

where m'' = ((am in&(pc) 1 med&l) ,  rnem'J2, rnem'J.3, 

memr&4, meml@), 

mem' = setvalue y (getvalue x m) mem. 

This is exactly the same as the semantics of the move/2 instruction. Thus 

the deref /2 instruction is equivalent to move/2 given the above static mem- 

ory information. 

Case 3. In all other cases, the instruction deref/2 may not be M h e r  specialized 

at compile time, 

H 

Next consider the semantics of the unify/5 instruction as given in Section 3.5.3. 

The foUowing specialization options exist based on the static memory information 

available. 

Case 1. x and y are tag-static and have tag values other than tvar. 

If the tag values of z and y are different, the unify/5 instruction is reduced 

to jump(I) as the condition (mem --=I) in the semantics specification of 

unify/5 holds in this situation. 

Case 2. z and y are tag-static, and x has a tag other than tvar and y a tag war, 

the anify/5 instruction is equivalent to the sequence of instructions 

trail(y1. 

move (x, y) . 
The equivalence is shown as folIows. 



Given the above static information, a unify/5 instruction maps a program 

state (code, mem, in, out) E ProgState to a new program state 

( d e ,  mem", in, out) 

where mem = (8, h, se, sc, tr), 

mem' = (s', h, se, sc, W )  

s' =zr incr b&(tr) 1 (setvalue y (getvalue x mem) mem)$l, 

tr' = cons ((getregvalue tr s) + 1, (y, (getvalue y mem))) tr, 

mem" = ((incr pc 1 st), h, se, sc, ttJ) 

by applying appropriate simplXcations to the semantic specification of 

unif y/5. 

Given the same static information, a sequence of t r a i l / i  and move/2 in- 

structions map the program state (code, mem, in, out) E ProgState to a 

new program state ( d e ,  rnem", in, out) as fo110w9: 

The t r a i l  (y instruction maps to (code, memt , in, out) 

where mew = (st, h, se, sc, trt) 

st = incr inR,(pc) 1 (incr inR.,(tr) 1 s), 

trt = cons ((getregval inR,(tr) s)+l, (y, getvalue y mem)) tr. 

The move (2, y) instruction then maps (code, memt, in, out) to 

(code, mem,,,, in, out) 

where mem,,, = (s,, h, St?, sc, trt), and 

s,,, = incr inR,(pc) 1 (setvalue y (getvalue x m m )  memt)ll 

Neither the heap(h), the environment stack(se), nor the choicepoint stack(sc) 

are changed during the partial execution of unify/5 or the sequence trail/l , 

move/2. M h e r  in both cases y E Adrable and the trail stack are updated 

in the same manner. Since the instruction sequence consists of two instruc- 

tions, the pc register is updated twice. The instruction uuif y (x, y, tl, tl, 1) 

and the sequence 

trail(y1. 

move (2, y) . 



perform exactIy same memory updates except for the value of pc. The value 

of pc in both the cases is equivalent as it points to the instruction following 

original unify/5 instruction. Thus the transformation may be shown to be 

correct for the given static information, 

A similar transformation may be shown to hold if x  has a static tvar tag 

and y either has a static mar tag with the vdue part that is lesser than 

that of x or has a static tag other than tvar. The unifyis in either of 

these cases is semantically equivalent to 

trail (XI . 
move(y,r). 

Case 3. x and y are data-static with non-pointer datatags. 

If z and y are equaI, the instruction may be reduced to nop/O. Otherwise, 

it may be reduced to jamp(9. 

The condition 

( ( tx  == tint) V ( t x  = tflt) V(tx == tatm)) 

in the unih operator is true given the static information, viz., x and y are 

non-pointer datatags. 

(a) If the data value is not the same: 

The semantics of unify/S reduces to I . This means that the condi- 

tion (man ==I) holds in the semantics of unif y/5 and (f dchculdr 

label (f ail) code) evaluates to the execution of f ail10 instruction 

as explained earlier. 'Thus in this case the d y / 5  instruction may be 

replaced with f a i l / 0  without any change in execution semantics. 

(b) If the data value is the same: 

control f a  through to the next instruction and hence the nnify/5 

instruction may be replaced by nop/O. 



The equal/3 instruction whose semantics are gien in Section 3.5.3 may be 

specialized using static register information as follows. 

Case 1. Let x and y be tag-static. I£ their tag values are not the same, the semantics 

of equdl/3 reduce to 

~[equal(x, y, l ) l  ((code, mem, in, art)) = ((code, mem', in, out)) 

where mem = (s, h, se, sc, tr), 

mm' = ($, h, se, sc, tr) , 

s' = sdregvdue id& (pc) (fetchaddr label(E) code) s 

since the comparison (getudue z mem == getvalue y mem) faiIs as the 

datatags of x and y are unequal. The above semantics are the same as the 

semantics of jump(1). Thus equal/3 is equivalent to jump/l given the above 

static memory information. 

Case 2. Let x and y be datastatic registers with game tag values. equal/3 reduces 

to to jump ( I )  if the data values of x and y are equal. EIse it reduces to nop. 

With this background, the partial execution process and instruction transforma- 

tion are illustrated in the following section. 

4.4 Illustration of Part i d  Execution 

4.4.1 Example 1 

The following example illustrates partial execution outlined in Ngorithm 2. Fig- 

ure 4.6 shows a simple Prolog program and the BAM code generated during Aquar- 

ius compilation using global flow analysis. CFG representation of the BAM code is 

shown in Figure 4.7. 

Partid execution of the BAM code may be viewed as application of the vah- 

ation function B to the BAM code stream in Fignre 4.6. Associated irtstruction 

tradomations are aIso illustrated in the exampIe below. For easy reference, BAM 

instmctions are annotated in the code with numbers. 
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X Aquarius Prolog compiler 
% Copyright (C) 1989-92 Peter Van Roy 
% All rights reserved. 
% Creation date Wed Aug 12 19:31:38 PDT 1992 

0 : procedure (main/O) . 
1 : entry (main/O, 0) . 
2 : allocate(0) . 
3: call(num/l) . 
4: call(p/2) * 

5 : move(r(1) ,r(O)). 
6 : deallocate(0) . 
7 : jump(write/l) . 

8 : procedure(nd1) . 
9 : entry(num/l,l) . 
10: move(tint'3,r(O)) . 
11 : return. 

12: procedure(p/2) . 
13 : =try (p/2,2) 
14 : test(ne,tint ,fail) . 
15: equal(r(0) , tintn2, l(p/2,2) - 
16 : move(tint-10 ,dl) . 
17 : return - 
18 : label (1 (p/2,2) ) . 
19 : equal(r(0) ,tintn3,fail). 
20 : move(tintn20,r(l)). 
21: return. 

22: procedure ( '$ init~ain/O'/O) . 
23: entry('$ init,main/O1/O,O). 
24 : return. 

Figure 4.6: Program example1 .pl dong with its BAM code 
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Block 9 comkts of code that identifies the entry point for the assembler and 

linker- It is not used during the PE process but is retained. In subsequent =amples, 

it is assumed to exist and is not explicitly shown in the CFG of BAM code. 

Block 0 is the entry point of the CFG in Figure 4.7. Execution of instruction 

3 and consequently of basic block 3 loads register r(0) with the dataword tint-3. 

Execution continues to block 1. Execution of the call instruction 4 transfers control 

to block 4. -4t the entry of block 4, r(0) is a static register. In the context of 

current program state, the flow change instruction 14 may be replaced with a nop 

since tag of the static register r(0) is known to be tint as shown in Section 4.3.1. 

This results in a specialized basic block 4' with the following instructions. 

12: procedure(pl2) . 
13 : entry (p/2,2) . 
14: nop. 

Control flow then falls through to block 5. 

In block 5, since the value of r(0) in current memory state is tinta3, the 

equality test of instruction 15 fails. Thus the equal/3 instruction is equivalent to 

jump(l(p/2,2) as shown in Section 4.3.1. This results in a specialized basic block 

5' with the following instruction. 

The control flows to block 7 in which instruction 19 is equivalent to a nop as the 

data-static register r(0) is equal to tint-3. Tbis results in the following specialized 

basic block 7'. 

18 : label (1 (p/2,2) ) . 
19: nop. 

The symbolic execution continues to block 8 where tint-20 is loaded into r (1). 

The control then flows to block 2 where instruction 5 with data-datic r (1 may be 

transformed to move(tint̂ 20 ,r(O)) resulting in the following specialized block 2'. 



0 : procedure (main/O) . 
1: entry (main/O, 0) . 
2 : allocate (0) . 
3 : call (num/ 1) . 
4: call(p/2) . 
5 : move(tinta20,r(0)). 
6 : deallocate (0) . 
7 : jump(write/l) . 

8: procedure(num/i) . 
9 : entry(numl1,l) . 
10 : mova(tint'3,r(O)). 
11 : return. 

12 : procedure (p/2) . 
13 : entry (p/2,2) . 
14 : 
15 : 
16 : 
17 : 
18 : label (l(p/2,2) . 
19 : 
20 : move(tint*20,r(l)). 
21 : return. 

22 : procedure ('$ i.nit,main/O /0) . 
23 : entry('$ init,main/O'/O ,0). 
24 : return. 

Figure 4.8: Residue of the BAM code of examplei. pl 

Thus the run-time path of code shown in Figure 4.7 is 0 - 3 - 1 - 4 - 5 - 7 - 8 - 2. 

As shown above, the blocks 2,4,5 and 2 may be specialized and replaced with their 

corresponding residues. 

Figure 4.8 shows the residue resulting after the nop instructions and trivial jumps 

to following instruction are m a t e d .  Such a step is referred to as code consoli- 

dation. Instruction numbers of dead blockg and nap instructions are left behind to 

highlight the redundancies. 

The jamp(l(p/2,2) 1 instruction at 15 is eliminated since it is a trivial jump 

to an immediately following location. This simple example illustrates elimination 

of three redundant comparisons otherwise performed at run-time, thus contributing 

to an improvement in its execution time. This program may also be optimized by 

performing partial evaluation of the Prdog source [58] to achieve a result similar to 



that obtained by partial execution of the BAM representation. However the finer 

granularity of the data structures at the BAM level offer greater opportunities for 

optimizing BAM code by partial execution than optimizing Prolog code by partial 

evaluation. 

maia : - read(List), 
last (List, Laat) , 
write(Last1. 

X last (List, LastElement) . 
last ( [Element] ,Element), 
last (/I Restl , L a s t )  : - last (Rest ,Last) . 

- 

Figure 4.9: Program last. pl 

.4 second example illustrates choicepoint optimization by partid execution as 

explained in Section 4.3.2. 

Consider the standard definition of the predicate last/2 shown in Figure 4.9. 

Figure 4.10 shows the CFG representation of its BAM code generated by the Aquar- 

ius compiler with global flow analysis. It is well known that most WAM-based com- 

piIers compile last/2 to abstract machine code that creates a choicepoint left on 

the stack upon successful exit of a call to last/2. This choicepoint is removed only 

when control backtracks to last/2 for alternative solutions and fails. It is the case 

with Aquarius Prolog compiler as well. The choicepoint created in block 11 is left 

on the stack upon successful exit via block 12. By performing partial execution, the 

chokepoint creation may be inhibited when the predicate d last (List , tEled 

succeeds w i t h  E l a m  instantiated to some non-variable vahe which is an element of 

List. 

Symbolic execution of the instructions in the entry bIock 0 results in allocation 





of an environment on the environment stack, and creation of a variable on the heap. 

The memory updates resulting from the call to built-in read/l are not determinable 

at PE time. Thus the only information known about r (0) and p(0) is that their 

tag values are tvar. The value read is built on the heap and r (0) holds its address. 

Execution of block 1 loads the contents of the address stored in p(O) to r(O1. 

Thus r(0) and p(0) are the reference registers of block 1. Of these r(O) is the 

dynamic register. A call to laat/2 results in the transfer of control to block 3. 

The reference register set of block 3 is {r(O), r(1)). Of these r(0) is the only 

register whose values are used in block 3. At entry time it is not static. Register 

r(1) is dynamic since instruction 18 dereferences r(0) to d l ) .  As the flow change 

instruction 19 depends on dynamic register r ( i ) ,  partial execution is to be per- 

formed along all possible control flow paths. Choicepoint elimination is illustrated 

on the path going through block 7. 

Control proceeds on this path when the tag of r ( 1) is t l s t .  Symbolic execution 

of the block instructions load r(2) with the head of the list pointed to by r (1). As 

the head value is not known at PE time, r(2) is dynamic. Similarly, register r(O) 

that has a pointer to the tail of the list, is dynamic. Thus partial execution must be 

done on both the possible flow directions upon execution of instruction 44. We focus 

on the flow that executes the block 10 where tag of r(0) is not tvar. Since r(0) 

is dynamic, two possible flow directions d s t  upon the execution of 52. Consider 

the path leading to block 11 when r(0) contains tatm-0. Execution of instruction 

53 in block 11 dereferences r(2) - a dynamic register - into itself and creates 

a choicepoint which contains the current value of r(0) - tatmall. Execution the 

flows to block 12 where instruction 55 copies the contents of register r(1) to r(2).  

Control transfers to block 2 where r(1) is dereferenced and loaded into r(0).  Thus 

the current execution path is 0-1-3-7-10-11-12-2. As there is a choicepoint created 

in this path, it is evident that this is only one of the several possibIe specdative 

paths. All the other speculative paths due to the choicepoint have to be traversed 

for PE to discover the run-time execution path as illustrated in the following. 

The alternate path from block 11 goes to block 13. The choice/3 instmc- 



tion at 58 restores tatm' 0 to r(0) and removes the choicepoint and control Bows 

to block 14. Of the reference register set (r(O), r(l)), r(0) is static. PE of in- 

struction 61 results in failure. As there are no more alternate execution paths 

in the choicepoint, the program exits with failure. Thus all alternate paths From 

the choicepoint created in block 11 fail leading to the safe remod of the choice- 

point instruction 54 and correspondingly at 58 to yield a complete specialized path 

O-1-3-7-10-11'-12-2where blockll'is 

53 - deref (r (2) ,r (2) 1 . 
54. nop. 

Partial execution detailed above follows the final loop of the iterative traversal 

of the call last (List ,LElem) that succeeds with an instantiation for LElem given 

a Iist List with a non-variable Iast element and an uninitialized LElem. 

The memory usage will be reduced by avoiding redundant chokepoints. Less 

time is spent in manipulation of such choicepoints. Savings corresponding to above 

optimization in last . p l  are measured as foIlows. Since the optimizations dec t  

the execution speed upon first backtracking into the call, a failure driven Ioop that 

calls last (C1J ,L) 100000 times is used to test the gains. On a lightly loaded 

SP.4RCstation 1+ with 16MB main memory the unoptimized executable takes 2.0s 

of user time whereas the optimized version takes 1.4s of user time - a speedup of 

1.4 using Amdahl's law [36]. The user time corresponds to user time - time spent 

in the program itself - as reported by System V version of the command time. 

The memory usage improvement is too small to m e m e  in the present case as one 

choicepoint occupies only a few bytes. The predicate calI with only one element is 

chosen so that the speed-up resulting from avoiding the creation of the redundant 

choicepoint is not over shadowed by the rest of the computations in the predicate. 

The memory usage improvement can potentially be significant in larger programs 

where more choicepoint optimizations are possibIe- 

It is well known that u n . n v  choicepoint creation may be avoided by rewrit- 

ing last12 as shown in Figure 4.11 wherein the first arguments of the two &uses 



last,2( 0 , Last, Last). 
last,2( CX I Xs] , Last, ,) : - last,2(Xs, Last, X) . 

Figure 4.11: Program last-tweaked. pl 

of the predicate definition last2/3 (Figure 4.9) represent two mutually exclusive 

choices. This is evident in its BAM code shown in Figure 4.12. It may be observed 

that a redundant choicepoint is created in the BAM code of last/:! when the first 

tTRO arguments are not mutually exclusive. There is no necessity to transform the 

"pure" version of last/2 predicate (Figure 4.9) to avoid redundant choicepoint 

creation. Such redundant choicepoint creation may be optimized away by partial 

execution of BAM code of the pure version itself as shown above. The resultant 

optimized BAM code has the same quality as that of the BAM code of Figure 4.11 

with regards to choicepoint creation. 

The instruction 30 viz., t08t/4 in BAM code shown in Figure 4.10 may be 

transformed to nop since the tag of r(0) is known to be tvar owing to instruction 

28. Although the redundant choicepoint creation was optimized away by rewriting 

the predicate laat/2, the test/4 instruction at 41 in Figure 4.12 is not. Both 

these optimizations may be achieved by partial execution of the BAM code of the 

pure version itself. This implies that the programmers need not spend extra time 

to design predicates with mutually exclusive arguments. 

A similar choicepoint optimization may be performed on the code of another 

standard predicate m i n t i t / 2  that h d s  the minimum of a given list of numbers. 



Figure 4.12: CFG for hand-optimized last/:! 



The choicepoint optimization created in the predicate minist/;! results in a speedup 

by a factor of 1.2 on a lightly loaded SPARCstation 1+ with 16MB main memory. 

In this chapter, a brief introduction to program specialization and associated termi- 

nology is presented. Then opportunities for performing BAM code specialization, 

called partial execution, are discussed. The partial execution frame work is then 

sketched out by providing a structure to the BAM code. A high-level algorithm to 

perform PE is presented to provide the starting point of the detailed partial execu- 

tion process that follows in later chapters. All possible individual transformations 

are shown to retain semantic correctness using the denotational semantics described 

in Chapter 3. With this background and introduction to the partial execution pro- 

cess, two complete examples are presented to illustrate the various optimization 

opportunities. 

Any code transformation has to be based on different types of analyses to preserve 

correctness of the results of the code. llansformations performed during BAM 

code partial execution also rely on several analyses as well as the results of partial 

execution itself. Chapter 5 presents BAM code analyses employed in conjunction 

with PE to affect optimizations. 



Chapter 5 

Structure of a BAM Partial Executor 

Introduction 

The PEbased optimization process designed and implemented in this thesis con- 

stantly ensures the correctness of two abstractions - viz., program semantics and the 

BAM memory abstraction of the program. The program semantics are maintained 

with the help of an internaI representation (IR) of the candidate BAM code. This 

IR is built with its CFG at the core. As explained in earlier chapters, the process 

consists of two interleaved phases - viz., symbolic execution of the code and code 

transformation. The BAM memory mode1 is used to ensure correct symbolic execu- 

tion. The correctness of code transformation is ensured by maintaining additional 

information. This additional information pertains both to the candidate BAM code 

structure and to its runtime behavior. The PEbased optimization process consists 

of three components: a front end, a partial execution driver (PE driver) and a code 

consolidator. In the front end, BAM code is partitioned and syntactically andyzed. 

Code partitioning was described in Section 4.2.1. Since BAM code parsing and 

partitioning code to basic blocks uses standard techniques, a detailed description of 

the front end is not given. However, syntactic analysis carried out in the front end 

is described in various sections of this chapter. The PE driver controls the partial 

execution that is comprised of symbolic execution and code transformation. It en- 

sures that the BAM memory model is consistent with the symbolic execution and 

updates the internal representation of the BAM code. The PE driver maintains a 



control stack to control the entire partial execution process. 

This chapter begins with a description of extensions of BAM data structures. 

These provide place holders for run-time characteristics of the BAM code. This is 

followed by the PE driver algorithm. We take a topdown approach to describe the 

the data structures that are built around the CFG. In other words, we illustrate the 

need of the data structures when explaining the appropriate algorithm step rather 

than lay them out before presenting the algorithm. 

5.2 Augmenting BAM Memory Areas To Sup 

port PE 

The BAM memory areas described in Chapter 2 are designed to hold run-time 

information. To analyze and characterize the run-time behavior of BAM code, 

additional place holders are necessary and these are described in this section. 

5.2.1 Partial Execution Registers 

The following pieces of information are maintained to ensure correct partial execu- 

tion. Each of the pieces is stored in a register or other data structure a s  indicated in 

its description. A non-BAM register defined to hold any such additional information 

is called a partial execution register or PE register. 

Basic block information - The current block number being partially executed 

is stored in a PE register bb. The parent block number of bb, i.e., the block 

from which control passed to the current block, is stored in a PE register pb. 

Continuation block information - The number of the basic block to which the 

control flow returns upon successful completion of current procedure is stored 

in the PE register cbb. The number of the parent basic block, i-e., the block 

with a call/ l  instruction to the current procedure, is stored in PE register 

cp-Pa=* 



The PE register, prochllr, stores the number of the entry block of the current 

procedure being partiaIly executed. 

The index into a table of input-output value pairs associated with the current 

procedure is stored. 

A new stack cded  the allocate stack whose items hold environment allocation 

information and information about the block containing the call to the current 

procedure. This data structure is discussed in Section 5.2.2. 

5.2.2 Augmenting Environment Stack for PE 

BAM code resulting from compiling a Prolog predicate is referred to as  a procedure. 

A procedure begins with the instruction procedure/i. As described in Section 2.2.4, 

two different BAM code streams for a predicate are generated depending on the 

number of predicates in the clause body. If the body has more than one predicate, 

code to docate an environment is generated. It is foUowed by code to set up call 

arguments and the caU instruction callli. An unconditional jump, jumpll, is 

generated instead of a call to the last predicate in the body. Code to deallocate the 

environment is generated before that unconditional jump. If the predicate body has 

one predicate c d  it is translated to an unconditional jump, jump/l. No environment 

docation or deallocation instructions are generated in this case. 

Thus a procedure is entered via a call11 or a j q / i  instruction. Further, an 

environment is not created at every procedure entry. These run-time BAM execu- 

tion characteristics necessitate additional mechanisms to keep track of procedure 

entries and environment creation during partial execution. A separate stack, re- 

ferred to as an atlocute stack, is used for this purpose. Partial execution of a call 

or a jump to a procedure creates an allocate stack item irrespective of the alloca- 

tion of an environment by the procedure. A jump to an instruction procedure/l is 

treated as a procedure calI except that the values of cp (the continuation register), 

cbb (the block continuation PE register) and cp-par (the continnation block parent 

PE register), are not updated. Partial execution of allocate/l sets a flag a l l o c f i g  



in the top allocate stack itan to indicate environment creation in Ghe procedure. 

Correspondingly, during partial execution of deallocate/l, the crlloc-dirty flag is 

set to indicate that the current procedure has deallocated an environulent £tom the 

top of the environment stack. An docate stack item consists of the following: 

The entry block number of the current procedure. 

The allot-Rag Bag to recotd whether an environment is allocated. The same 

flag is used to record whether the current procedure was a last call optimized 

to a jump. This may be done without inconsistency since an environment is 

deallocated before the last call and no access to the environment stack is done 

during the call. 

A pointer into a table holding the current input value set of the calling pr* 

cedure. This table also holds output value sets of the calling procedure. This 

table is referred to as in-out table. 

The a l l ~ d i r t y  flag. 

As discussed in Section 2.2.1.1, a BAM environment stores the permanent reg- 

ister values that occur in the predicate body clauses, a pointer to the previous 

environment and the return instruction address of the current predicate, namely, 

the current value of continuation pointer cp, For the purposes of partial execution, 

the environment is augmented with the fo11owing additional information: 

0 The return bIock address of the current predicate, i.e., the current value of 

cbb. Note that cp stored in the environment points to the first instruction of 

this block. 

The predecessor of the return block address stored above. This is stored since 

the CFG has no edge representing the control flow due to a procedure call or 

a return from a procedure call, as described in Section 4.2.1. 

Chapter 6 describes how this additiond information is used. 



5.2.3 Augmenting the Choicepoint Stack for PE 

Section 2.2.1.2 described the information stored in a BAM choicepoint. The follow- 

ing values are additionally stored in a choicepoint to aid analysis performed during 

partial execution. 

0 Basic block number, cbb; 

0 Basic block number of the parent of the continuation bIock, i.e., the value of 

PE register cp-par; 

0 Basic block number of the parent of the current block, i.e., the value of PE 

register pb; 

Control stack top (described in Section 5.4.2); 

0 Allocate stack; 

Choice success information, described below. 

Speculative symbolic execution involves symbolic execution that assumes a dy- 

namic register to have a certain static value. We refer to partial execution that 

involves speculative symboIic execution as symbolic partial execution. Speculative 

symbolic execution is done while an alternative retry address is attempted or while 

continuing PE along several possible successors of a basic block. All alternate choices 

available via a choicepoint are spedatively symbolic executed during partial execu- 

tion. PE thus proceeds on several corresponding execution paths. Success or failure 

of the alternate choices is recorded in a data structure, called the choice success 

information. A choice is recorded as failure only if it can be shown to fail at PE 

time. Otherwise, it is recorded as a success. This may be viewed as a conservative 

approximation of run-time behavior of the program. 

The heap and trail stacks are not augmented wi th  any additional information 

for the purposes of PE. 



BAM Code Partial Execution Driver 

Consider a program P and its CFG PG. The subgraph of PG traversed from the 

beginning to the termination of one invocation of P is referred to as an ezecution 

thread. Any given program has several possible execution threads each of which 

is characterized by a subgraph of the CFG rooted at the block containing the 

program entry point procedure (main/O). One and only subgraph cor~esponds 

to any single program invocation. Every subsequent invocation of the program 

might be characterized by a Merent subgraph. This variation of execution threads 

between different program invocations depends on run-time inputs, if any. Since 

run-time inputs are not known at PE time, it is not pansibIe to find the precise 

execution thread of a program invocation and its subgraph. Consequently, all sub 

graphs that represent possible run-time execution paths are discovered by performing 

partial execution. Instructions in blocks along each of these paths are optimized 

whenever possible by transforming them to simpler but equivalent ones. The PE 

driver traverses the CFG built by the front end to schedule basic bIock partial 

execution. Partial execution resuits in basic blocks that either are specialized, if 

enough information is available in the current program state, or belong to the original 

CFG otherwise. The PE driver schedules speculative symbolic execution when more 

than one PEtime control flow option exist. The code generation phase uses the 

resultant subgraphs recorded in the PEflow graph to generate optimized code while 

eliminating trivial transitions. 

AIgorithm 3 presents a PE driver algorithm based on the empirical partial execu- 

tion algorithm outlined in Chapter 4. The driver traverses the CFG in a depth-fiirst 

manner using a control stack to schedule partial execution along all execution threads 

of the given BAM code. Algorithm 3 hinges of three fundamental phases: 

I. Checking and updating BAM memory state to ensure correct partial execution, 

2. Checking if a residue(version) of the current baaic bbck exists for the cnrrent 

memory state, and 



Algorithm 3 Partial Execution Driver Algorithm 
1: Let G be the control flow graph of the BAM code being partially executed and 

Gmt be its root node. 

2: Let E be a graph called P E - j h  graph 
3: Let cur-memstate be the current BAM memory state. 
4: Let t o t a l z ~ c t i o w  be the total number of instructions in the BAM code. 
5: For any basic block, blk, let cantark hold resumptimu resulting from partial 

execution of bl k. 
6: Set node = 0. 
7: Set CStack = nil. 
8: Set initial Bkihi memory state. 
9: push (Gmt,cur-menutate) onto CStack. 

10: while CStack # nil do 
11: (node,mem) = pop(CStack) 
12: if (pc = success or pc = faiiure) then 
13: Record the edge between the parent of node and node in E 
14: else if pc > totdinstructions then 
15: Flag error indicating out of code space access. 
16: eke /* Continue partial execution */ 
17: if node has no residue for the reference registers in mem then 
18: Set current memory state to mem. 
19: (node,-, cunt&) := partidezecute(node) 
20: if no&, is same as node then 
21: node- := node. 
22: else 
23: n& := n*,. 
24: Record node- as the residue of nude. 
25: Record n& in E. 
26: end if 
27: updatccstack@n&) 
zs: end if 
zs: end if 
30: end while 

loo 



3. ~ausforming instructions to their simpler equivalents whenever possible. 

The rest of the chapter is devoted to explaining various aspects of the Algorithm 3. 

The algorithm uses several characteristics of a basic block and a procedure. A 

description of these characteristics is follows. 

5.3.1 Characteristics of a Basic Block 

Several syntactic and run-time characteristics of a basic block are used by the PE 

drives. The following information is associated with a given basic block. 

Pointers to its successors and ancestors. 

A list of focus registers that parameterize the block (Section 5.3.2). 

Pointers to its versions generated during partial execution. 

A flag indicating whether the block contains a choicd3 instruction. 

0 Procedure analysis information viz., register and &out table information of 

the procedure containing this basic block (Section 5.3.3). 

Strongly Connected Component (SCC) related information used to identify 

loops in CFG (Section 5.5.2). 

We discuss focus registers, procedure and SCC related information in the follow- 

ing sections. The rest are self-explanatory, 

5.3.2 Parameterizing a Basic Block With Optimal Refer- 

ence Registers 

Each basic block map be parameterized with the reference registers introduced in 

Chapter 4. When a basic block is partially executed with respect to a certain set 

of static reference register values producing a residue, we say a version of the basic 

block is generated. The PE driver in Algorithm 3 checks whether a version of the 



current basic block corresponding to current values of all the reterence registers 

exists in the current memory- However, only some of the reference registers (i-e., 

permanent and argument registers accessed by the instructions in a basic block) are 

affected during the partial execution of the basic block. These registers are called 

active registers. Thus, associated with every basic block is a set of active registers. 

Consequently, it is sufficient to partially execute a basic bIock only when it has not 

been specialized for the current values of the active registers. 

Specializing a basic block with respect to all dynamic registers leads to code 

expiosion. Thus the specialization must be restricted to static active registers. This 

technique is similar to that of specializing a function with respect to its static ar- 

guments as done in partial evaluation of functional programming languages [42,57j. 

Specialization of programs with respect to static/invariant entities has been studied 

in various contexts. Haratdsson's online partial evaluator Redfin [34] is considered to 

be the first attempt at  this. Consel and Khoo [18] define facets that a provide means 

for user-specification of static properties in the context of both online and of3ine 

partial evaluation of a first-order language and provide a formal framework. The 

current work folIows the conventional methodology of speciahation with respect to 

static properties. However, no user-specification, either of static properties or of 

input values are expected during the online specialization. M e r ,  we specialize a 

low-level Ianguage and do not attempt a self-applicable specialher. AdditionalIy, the 

partial execution algorithm has no information about the Prolog predicates whose 

BAM code translation is being partially executed nor of their arguments. In sum- 

mary, this work differs from others by not relying on user specifications or on any 

syntactic knowledge of the Prolog sources. F'urther, the low-level of abstraction of 

its source allows the technique to be used as a compiler phase. 

BAM registers may be Bccessed for two purposes - to read or to update their 

contents. The tenns read and define, respectively, are used to distinguish these 

accesses. The first access of some of the active registers in a basic block may be 

to define before reading, irrespective of their value at block entry. Thus, instead 

of specializing the basic block for all static active register values, it is fllfficient to 



specialize it for the current values of only those active registers that are read from in 

the basic block and ignore the static active registers that are defined. Four distinct 

cases of active register accesses occur within a basic block. A register may be 

1. read before being defined within the block 

2. read after being defined within the block 

3. only read within the block 

4. only defined within the block 

Let and R,jd denote the set of read and d&ed registers in a basic block, 

respectively. Static active registers that are either read before being defined (type 1): 

or only read (type 3), contain relevant static values. At any program point, the 

contents of these registers provide the invariants for specialization of the basic block. 

Thus, a basic block is specialized for static active registers of this set. The set 

containing the union of registers of types 1 and 3 is called the focus register set, 

denoted h. Consequently, a basic block is specialized if it has not been specialized 

for the current static values of its focus register set. The focus registers in a given 

basic block may be found using Algorithm 4. 

A basic block is thus parameterized with its focus register set. The read/d&ed 

classification of an active register is based on its operand position in an instruction 

and so can be performed in the front end. Staticdynamic classification of focus 

registers is a PEtime property and is done while symbolically executing the BAM 

instructions. 

A CFG may contain basic blocks with no active registers. However, PE of the 

block still needs to be done to correctly set the BAM memory state for partial 

execution of any of its successor basic blocks. 

5.3.3 Characteristics of a Procedure 

Recall that a basic block is a collection of instructions with only one entry and 

one exit. A collection of basic blocks with only one entry and many possible exits 



Algorithm 4 Find focus registers 
We assume that instructions in the basic block are arranged in a linked list 
whose head is 1Ud. Zlnd-hstr is the instruction pointed to by l h d  
k=@ 
&af = 
& = a  

while lLnd # nil do 
for each operand, r, of lLnd+instr do 

if r is a read register then 
Rtaad = L U  { r )  
if r 4 Rdd then 

R r o c = R i b c U  ( 7 )  

end if 
if r is a defined register then 

Rief = Rdal U { f )  
end if 

end if 
end for 
lLnd = llnd+next 

end while 

is a procedure. These two levels of partitioning of BAM code facilitate analyses 

of instruction sequences in BAM code. These analyses result in recognizing various 

basic block and procedure properties that guide the PE driver. The previous section 

described one such property of a basic block, reference registers of the block that 

parameterize it. 

A procedure has two kinds of properties that are used during partial execution 

process - syntactic and run-time. For example, the number of argument registers 

that appear in the procedure is a syntactic property. Syntactic analysis of a proce- 

dure begins with building of the call graph [2] and a Iist of argument registers that 

occur in the procedure code. The number of permanent registers used in the pro- 

cedure is not recorded separately. This information is readily available at PEtirne 

from the current environment. This initial internal representation is augmented with 

several other syntactic analyses that are described in this chapter- 

ProIog predicates may be written so that the same positional argument is used 

to pass a value into its body (i.e., used as an input argument) at one call site and 



to pass a value out of the body (i.e., used as an output argument) at another site. 

F'urther, the type of the argument can vary from one call site to another. Consider 

the following definition of add/3 

where, integer (XI and list (XI  are built-in type checking predicates that succeed 

if X is of integer type and list type, respectively. The addition operation is overloaded 

or extended to list arguments. Thus the arguments X and Y may be of integer type 

at one call site and of list type at another, Further, in the case that the arguments 

of add/3 are of list type, any two of the three arguments may be used as input 

arguments to compute the third. 

BAM code for such predicate c a b  may be specialized according to the type of 

arguments at a gim call site. Thus a predicate call may be made with more than one 

set of input instantiations. Each of these calls may result in corresponding output 

instantiations. -4 table that records the mapping of input-output static values is 

maintained per procedure. This table is referred to as the in-out table and is part 

of information associated with the basic bbck, as detailed earlier. It is updated at 

every procedure entry and exit. 

Any given procedure may have more than one exit. Thus more than one set of 

output values may be associated with a given input value set. Additionally, by PE 

we may discover that some procedure exits lead to failure. Consequently, an in-out 

table entry is a pair, win, Vout) such that 

Vi, = {(r, u)  1 r is an argument register and 

u is its static value at procedure entry) 

and 

Vord = (0 I 0 = { ( r , ~ )  I r is an argument register and 



u is its static value at procedure exit) 

PE Driver Execution 

The PE driver, given in AIgorithm 3, traverses the CE'G using a stack-based version 

of the traditional depth-fmt traversal algorithm (21 beginning at the procedure with 

fkst instruction procedure (main/0) ' It builds successor basic block information 

on a stack referred to as the control stack - CStack. A CStack item contains a 

pointer to the successor block and a pointer to the program state with which the 

block's partial execution is to proceed. CStack is referred to as control stack since 

its contents, detailed in Section 5.4.2, control and drive the partial execution. 

The PE driver initializes the BAM memory areas to their respective start states 

before the CFG traversal begins. Thus heap, choicepoint stack, environment stack 

and trail stack are set to empty and the corresponding register values h, b, e, and 

tr are set to uninitialized values. Program counter pc is set to the first instruction 

to be executed viz., procedure(main/O). The continuation pointer cp is uninitial- 

ized. Either of the two special values of pc, viz., success and failure (as defined in 

Section 3.4.9), are used to designate successful and u n s u c c d  completion of an 

execution thread, respectively. 

The state of augmented BAM memory areas (Section 5.2) along with the ad- 

ditional information maintained to +support partial execution is referred to as the 

memory state and forms the CStack item. The memory state is ensured to be 

correct at aU program points to guarantee the correctness of the partial execution 

process. Memory state is used in various stages of partial execution such as loop 

checking, updating PEflow graph, restoring BAM memory state correctly upon loop 

detection and performing choicepoint optimizations. 

'rlqumius ProIog considers the 6rst pRdicate m the k t  program fiIe being compiled as the 
program entry point. This predicate &odd be of arity [35]. For w e  of notation we dways 
use maid0 to denote entry point. 



5.4.1 Semantics of Dereferencing during Partial Execution 

Following is a discussion of issues that resulted in the ultimate choice to represent 

a dynamic BAM register in the implementation of the partial executor. A dynamic 

register denotes a Prolog variable that is unbound at PEtirne. In BAM, it is r e p  

resented as a self-referential heap location, as described in Chapter 2. Since any 

value of a register whose tag is known at PEtime is considered static, we need 

a distinguish a self-referential, pointer-tagged value from its dereferenced dynamic 

value. We begin by designating a BAM register with a special unique datum 6 as a 

dynamic register. Thus dereferencing a self-referential heap location yields the value 

6. Although this representation is inadequate, it is used as a preliminary step to 

reveal some subtle design considerations and subsequently arrive at a correct rep 

resentation. This is done with the help of the CFG in Figure 5.2 for the predicates 

main/O and num/i of the program in Figure 5.1. The BAii code in Figure 5.2 is 

generated by the Aquarius compiler with GFA phase turned on. 

Figure 5.1: Program simple . p l  

Consider partial execution of the caIl to n d l  in block 0. At the entry of block 3 

the register r(0) contains tvarAO. Fuaher, heap Iocation 0 contains tvaraO. Sym- 

bolic execution of deref (r(0) , r (0) ) in block 3 sets r(0) to 6 thus revealing it to 

be a dynamic register due to the content of heap location 0 which is a self-referential 

datawordwiththetvartag. Sincethebranchinstructiontest(ne,tvar,r(O) ,l(nam/l,I)) 

involves a dynamic register, a specdative symbolic execution is performed along 
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Figure 5.2: Example to demonstrate deferred dereferencing of a dynamic register 
with tvar-tagged value 



both successors of 3, viz., 4 and 5, by setting r(O) to have the tag tvar  and to have 

a non-tvar tag at entry time respectively. Partial execution of blocks 4 and 5 are 

otherwise done with exactly the same memory state. 

Consider the PE along the execution thread 3-5-6 of Figure 5.2. At the entry of 

block 5, r(0) is known to have a non-tvar tag. Hence, the speculative successll 

PE of unify-atomic(r(0) , t in t -3  ,fail) sets the value of r (0) to atomic value 

tint-3. By examining what happens at run-time, this is reveaIed to be only partially 

correct, .4t run-time, the BAM memory at this program point (i.e., at the entry 

of block 6) not only contains the dataword tint'3 in register r(O) but also in the 

heap address x. The heap address 0 contains the dataword tint -z. In essence, PE 

of unify,atomic/3 can not set the heap to the correct state since r(O) contains 

only data-tag information, that indicates it as having a non-tvar tag. r(0) has no 

datavalue which at run-time is the heap address. The datavalue information lost 

due to dereferencing tvar-0 to d is the heap address 0 pointing to the heap location 

of the atomic value unifying with tinta3. 

- 

Figure 5.3: Example dereferencing chains 

The loss of heap address described above also results in incorrect partial execu- 

tion on the path 345-6  as follows. PE on this execution thread simulates run-time 

execution of procedure n d l  with a r(0) containing a dataword tvar-0 at the en- 

try of block 3. In general, the heap address indicated by the datavalue of r (0) might 



be the beginning of a dereference chain with either a self-referential dataword with 

tag tvar or a non-tvar tagged dataword as shown in Figure 5.3. It will be resolved 

by the deref/2 instruction to the dataword at  the end of the chain. In the current 

example, dereferencing r (0) (instruction 23) sets r (0) to 6 thus losing the last heap 

pointer in the chain of heap pointers. Hence, PE of t ra i l ( r (0) )  in block 4, trails 

nothing. The run-time execution of unif yatomic (r (0) , tint-3, f ail) not only 

sets r (0) to tvaraO but also sets the heap location whose address is the datavalue 

of r(0) before it is updated. However, as described earlier, during PE of block 5 

the heap is not updated. This leads to  the conclusion that the representation of 

a dynamic value needs to carry the datavalue that indicates the heap location to 

ensure correct trailing and heap update during term unification. 

A new technique is designed to avoid this loss of information. A self-referential 

dataword is dereferenced to a dataword with a special datatag dvar. The new 

tag dvar is only known to and used by the PE driver to perform and maintain 

run-time information of the program. Hence neither BAM execution semantics nor 

the memory model need be changed. The datadue of the dvar tagged dataword 

is the heap address of the self-referential dataword at the end of a possibly long 

dereferencing chain. This scheme allows us to indicate that the current register 

is dynamic while retaining the heap address of the atomic value generated during 

unification. This preserves correctness of partial execution and loses no information. 

This new technique is referred to as deferred derefemcing. 

Now we examine similar issues inwived in dereferencing dynamic register that 

dereferences to a t str-tagged dataword at partial execution time. As noted in Sec- 

tion 2.2.2, a tstr-tagged dataword aIso holds a pointer to the sequence of heap 

memory addresses that contain the functor and arguments of the structure. The 

number of contiguous heap locations holding the structure information is embedded 

in the atomic representation of the functor. Such a representation necessitates an- 

other special tag to identify a dynamic register that dereferences to a tstr-tagged 

dataword at  partial execution time. Similar to the tag dvar, this new tag is only 

known to and used by the PE driver to perform and maintain run-time information 



of the program. The need for this new tab is discussed with the help the following 

example. Figure 5.5 shows the CFG of the BAM code of the predicate str/i  dehed 

in program given in Figure 5.4. 

main :- str(X>,p(X,Y), urite(Y1. 

Figure 5.4: Program to illustrate the need for d s t r  

Consider what happens at run-time entry into procedure str/i with X instanti- 

ated to a structure, say f (a, b). Register r(O) contains a dataword tvar'x where 

x is the heap address containing the contiguous structure information at the time 

of entry into block 33 as shown in Figure 5.5. Dereferencing r(0)  in block 33 sets 

r (01 to t s t r a y  where is the heap address of the beginning of the contiguous heap 

Iocations that hold the structure. 

Now, consider partial execution of an arbitrary call to str/l with a dynamic 

r(0). At the entry of block 33, the register r(0)  contains the dataword tvar-x, 

where x is the heap address holding the d u e  of X. For simplicity, suppose the 

heap address contains the self-referential dataword t v a f x .  (That is, assume the 

dereference chain is of length zero). Partial execution of deref /2 in block 33 sets 

r (03 to dvar-x. Speculative partial execution along edge 33-35 needs to proceed as 

if the variable X is a structure. Thus the tag value of r(0) is set to tstr. To avoid 

loss of the last heap address at the end of the dereferenced chain, we retain x as 

the datavalue in r(0).  The speculative partial execution needs to build a structure 

on the heap. PE proceeds along the path 36-38-39-41-42 by specuIating r(0)  to be 

instantiated to this structure. 

Thus during partial execution, the value of r (0) needs to record that the datavalue 



Figure 5.5: CFG of code with deferred dgqqferencing of dynamic register with tstr- 
tag 



is in fact a self-referential tvar-tagged dataword that dereferences to t s t r5  where 

x is only known later. Such a dataword is represented using a special tag, dstr. 

This new tag also maintains the semantics of a tstr-tagged dataword since a self- 

referential tstr-tagged dataword has no welldefined meaning. 

At run-time, a compound term built on the heap is accessed by indirectly address 

ing its tstr-tagged dataword. If the structure is unknown during partid execution 

and indicated by a dstr-tagged value, the location of the structure's functor/arity 

and its arguments can not be determined. The ds t r  tag provides the required hint 

to update the heap dong with the register involved. 

In summary, a stmcture, whose form and heap location are not known, is repre- 

sented on the heap by a sdf-refefencing dataword with a tag dstr. The tag dstr, 

distinct irom BAM tag t s t r ,  is used to signify a dynamic structure. Its heap Loca- 

tion is retained to facilitate subsequent access of this dataword when the structure's 

form and heap space become known and is created. 

Thus, a dataword with either ofthe tags - dvar or datr  - is dynamic. A dataword 

dvaraV stands for a heap value obtainable by dereferencing the heap location V. A 

dataword dstr'V denotes an unknown structure whose preamble dataword on the 

heap is at location V. A dvar-tagged dataword will never be formed on the heap 

but a dstr-tagged dataword may. Datawords with tags dvar or d s t r  are created by 

the dereferencing operation. However, since they are only known to the PEdriver, 

the semantics of dereferencing operation described in earlier chapters need not be 

changed. These tags are part of extensions made by the PEdriver to maintain 

run-time information. 

Deferred dereferencing is not required of datawords with tlst tag, the third 

dataword of "pointer" type. This is because the heap space needed to store its 

constituents triz., the head and that tail, is known and may be created accordingly 

at PEtime even if the contents of list itself are unknown. 



5.4.2 Control Stack 

The PE driver uses the control stack to control the partial execution process. Each 

control stack item holds a pointer to the block along with the memory state in which 

the block is to be partidy executed. A CStack item is comprised of the following: 

current values of BAM registers and PE registers. 

a pointer into the in-out table entry that corresponds to the current input- 

output values of the procedure being partially executed; 

current heap, choicepoint, environment and trail stack values; 

current allocate stack value; 

any additional register values that need setting upon restoration of BAM mem- 

ory done at step 18 of Algorithm 3. 

As shown in Algorithm 3, partial execution of a block, blk, results in a set of 

data items, wntu and a residue res. contuk is called a resumption set of blk. Each 

of the data items in the set corresponds to one block to be partial executed after 

blk and is called the resumption of blk. A resumption holds three items - memory 

state, resumption target and resumption register values. A resumption target is a pair 

(pc,, bb,) where bb, is the block at  which PE resumes and pc, is its first instruction. 

resumption register values holds one or more register-value pairs. These registers are 

set to the corresponding d u e s  when PE resumes at bIock bk. update-cstack uses 

this resumption set to form control stack items. The resumption set is formed as 

follows, depending on the control flow change instruction of the block res. 

1. The block res has only one successor whose pointer is explicitly available in 

blk. In this case, the resumption set of blk contains only one resumption that 

holds the current memory state and the successor block as resumption target. 

2. The block res has several SUCC~SSO~S whose pointers are explicitly available 

in blk. In this case, the resumption set of Mk contains one resumption for 



each of the successoss. Each resumption holds the current memory state, the 

corresponding resumption target and resumption register values, if any. 

3. The last instruction of res is fail/O. The run-time behavior of BAM in 

this situation is to resume execution from the next choice stored in the cur- 

rent choicepoint. In this cam, the resumption set of blk contains only one 

resumption that holds the memory state saved in the current choicepoint, the 

alternative choice as  resumption target and resumption register values, if any. 

updatemtack also records a failure of the current choice in the choicepoint 

apart from forming a control stack item. Note that the values of pc and bb 

wi l l  never be FAILURE except when the partial execution is complete and when 

there are no more choicepoints available in the choicepoint st&. 

4. The last instruction of res is either a return/O, a jump/l or a call/O to a 

non-local target that is assumed to succeed and thus is treated as equivalent 

to return/O. Partial execution of retum/O sets the m e n t  memory such 

that partial execution may continue along the block number cbb. In this case, 

the resumption set of blk contains a single resumption that holds the current 

memory state, resumption target pair (cbb, 6.rst instruction number of cbb) 

and resumption register values, if any. updateduck also records success of 

the current choice in the current choicepoint. 

Thus, the control stack keeps track of all the run-time execution threads to be 

traversed after completing partial execution of the current block. The additional 

block specific speculative information mentioned above constitutes all the register 

datavalues set on a speculative PE path. 



5.5 Loop Detection and Termination of Partial 

Execution 

In presenting the details of Algorithm 3, we have already described the properties of 

a basic block and a procedure, their parameterization with reference registers, and 

the control stack that controls PE. We now describe the loophandling mechanism 

used in the algorithm. 

The depth-first traversal of the CFG schedules blocks to be partidy executed. 

However, partial execution of the block is actually performed ody if it was not 

performed earlier with respect to the reference registers (more precisely, static focus 

registers). A PE-loop is detected if a residue exists for the bIock scheduled for partial 

execution for its reference registers. A PE-bop may or may not correspond to a loop 

in the BAM code. This section discusses detecting and handling of PEloops (Step 

IS in Algorithm 3). 

Recall that the top of CStack contains both the bIock, bik, and the memory 

state, mem, in which blk must be partid executed. The PE driver restores the 

memory state to mem, but before partial executing blk it considers the following 

options. 

1. 611; may be the entry block of a procedure. Let Pi, be the set of input 

argument-static value pairs for the current memory. The PE driver performs 

partial execution of the procedure block based on the b o u t  table entry for 

Pi, as follows* 

(a) If the insu t  table has a record of output values Pout corresponding to 

Pi,, then the procedure need not be partially executed. The existence 

of output d u e  information corresponding to the current static input 

argument registers implies that the procedure has already been partially 

executed. The current memory is updated with the set of output values 

in Pa to d e c t  the execution of the procedure and partial atecution 

continues as if the procedure has been partially executed. 



If P,t has more than one set of output values that correspond to Ph, 

speculative partial execution is set up by setting the current memory state 

to each of these output values in turn and continuing partial execution 

abng the execution threads that correspond to those output values. 

Figure 5.6 illustrates this case. Partial execution of call[p/n) in block 

A results in a resumption that holds the current memory state and block 

C as resumption target. Hence PE of C is scheduled. Let &d be the 

static output values at the exit of A. Then the input static values CI, of 

block C are a proper subset of be. Let D, E, F and G be the exit (or 

leaf) blocks of p/n. Assume pin was prwiously partially executed for the 

static input values Gin. The b u t  table corresponding to procedure pln 

have an entry (G, (Doe, Eoutl Fo*, Go,& where &a, Eout, Foe 

and G,, are the output static value sets corresponding to the procedure 

exit points. 

- - - 

Figure 5.6: Schematic illustration of procedure in-out value usage 

Since the p/n has been previody partially executed for Ch, the PE 

driver schedules four specuIative partiaI execution threads through bbck 

B with memory set to the ontpnt d u e s  Dorrt, Eoat, Fout, G , ~  respec- 



tively. 

Thus this technique results in specialization of procedure calls for specific 

call sites while ensuring termination of partial execution. 

(b) If in-out tabie has no record of output d u e s  Part that correspond to 

Ph, then the procedure is partially executed. 

2- blk is a non-procedure block. Then, a check is performed similar to one used to 

determine whether a procedure was previously partially executed. This check 

determines if the current block has a residue corresponding to the current static 

focus registers of the block. The version check is made possible by maintaining 

the following run-time basic block residue information. 

The static registers for which a residue was generated along with a pointer 

to the residue; 

A unique identification of the residue block; 

0 The r d t  of partial execution of the block. 

Thus the version check simply verifies whether the current basic block has 

been partially executed given the current static focus registers. If so, a Ioop is 

said to be detected and the residue is recorded in the flaw graph that records 

the parfiial execution flow. Otherwise, the block is partially executed. 

5.5.1 Handling a Basic Block Execution Loop 

-4ssume that b1K is the residue of block blk for static focus regiders s. Let the static 

focus registers at the current stage of partial execution also be s and hence a loop 

is detected. Once a loop is detected prior to partial execution of Hk, three alternate 

situations a i d .  

0 Previous partial execution of blk resalted in a local failure. This wodd have 

set the partial execution along the retry address, say r, in the choicepoint. 

Presently, since the loop is detected, it is incorrect to let partial execution 



continue dong r since the retry address in the current choicepoint could be 

different. Instead, partial execution is set to continue dong the retry address 

in the current choicepoint and the residue is recorded in the execution flow 

graph. 

Previous partial execution of blk resulted in global failure due to PE of an 

instruction like jump ( $ f lt_error/2' 1, where '3 f lt_error/2' is the label 

to the built in floating-point error condition handler. Then, the current block 

is not partiaily executed. Instead, global failure is recorded in the PEflow 

graph and depth-first traversal of the CFG continues. 

Partial execution of blk was successful and generated a residue blk'. This 

is the most common case. We assume partial execution will succeed along 

the current path and return out of the current procedure by restoring the 

continuation pointer (cp). The memory is set to the static output values 

recorded in the in-out table of the procedure being returned from. 

Here, we take advantage of the fact that control flow does not enter a block from 

outside the procedure to which the block belongs. In other words, all target labels of 

jump, switch and t e s t  instructions are either within the procedure or are built-ins. 

Any previous partid execution thread through blk with static values s would have 

traversed the same blocks as the current partial execution through blk will traverse. 

Thus it is sacient  and correct to return out of the current procedure thereby 

setting memory state with the static output recorded during previous PE of the 

current procedure. This is accomplished by simulating a return using AIgorithm 5. 

5.5.2 PE Loops and Code Loops 

Strongly connected components (SCCs) are commoniy used to identify loops in a 

CFG. SCCs in the BAM cade CFG are computed in the front end. Syntactic Ioops 

within each closed procedure of the CFG are found with the well-known algorithm 

of Tarjan [a], detailed by Wolfe [72] and sketched in AIgorithm 6. 



Akorithm 5 Simulation of a return out of a ~rocedure when a loop is detected 
1: if an environment was allocated by the current procedure then 
2: Restore the values of cp, cpp, cppar and e horn the environment top. 
3: Pop the environment stack top. 
4: end if 
5: if blk is a choicepoint block then 
6: if CStack has no blocks that are scheduled to be partially executed after 

creation of current choicepoint then 
7: Set retry address in the current choicepoint to next retry address. 
8: end if 
9: end if 

10: Partial execute the instruction returd0 

Following are the data structures used in the algorithm. 

a n is the global counter for assigning pre-order numbers, initialized to zero. V 

is the set of graph nodes. 

a CountSCC is the total number of strongly connected components found, ini- 

tially zero. 

Stack is a stack of nodes, initially empty. 

NPre(x) is the pre-order number assigned to each node, initially zero for each 

node. 

a h l i n k ( x )  keeps track of whether each node has a path to a spanning forest 

ancestor. 

SCC(x) is the SCC number assigned to each node; two nodes with the same 

SCC number are in the same strongly connected component. 

a InStack(z) is a flag indicating whether the node is on the stack; initially set 

FALSE for every node. 

A conventional loop in the given code is d e d  a syntactic Cq to distinguish 

it from the P E l q  described above. Each SCC denotes a syntactic loop in the 

BAM code. Each syntactic Loop entry need not correspond to a PEloop. Consider 



Algorithm 6 Algorithm for finding strongly ~ 0 ~ e C t e d  components 
1: for x E V do 
2: NPre(x) = 0 
3: InStack(x) = FALSE 
4: end for 
5: n = O  
6: CauntSCC = 0 
7: Stack = a  
8: for x E v do 
9: if NPre(x) == 0 then 

10: SCCRecuf~e(x) 
11: end if 
12: end for 

13: Procedure SCCRecurse(x) 
14: Lowlink(x) = NPre(x) = n = n = n f 1 
15: Push z onto Stack 
16: InStack(x) = TRUE 
17: for y E succ(x) do 
18: if NPre(y) == 0 then 
19: sccRecurse(y) 
20: Lowlznk(x) = min(h l ink (x ) ,  hl ink(y ) )  
21: else if NPre(y) < NPre(x)  A InStack(y) then 
22: Lmlink(x) = min(Lorulink(x), NPre(y)) 
23: end if 
24: end for 
25: if NPre(x) = Lmlink(x) then 
26: Countscc -- CountSCC + 1 
27: repeat 
28: pop w off stack 
29: InSt&(w) = FALSE 
30r SCC(w) = CuuntSCC 
31: untfiw=x 
32: end if 



Figure 5.7: Schematic to Illustrate PEloop and Syntactic Loop 

the schematic illustrating a syntactic loop A-...-&A in Figure 5.7. Assume that 

when the bbck A is partial executed for the first time with static focus registers sf1 

it generates a residue Al. If the static focus register values at the exit of partial 

execution of B, say sf2, are a proper subset of sfl, a PEloop is detected. In such 

a case the syntactic loop A-...-&A is the same as the PEloop. However, if sf2 is 

not a proper subset of sf1 the PE driver schedules the partial execution of A in the 

context of Sf2 to generate a possibly different residue. In such a case, the syntactic 

loop is different From the PEloop. Such characterization represents a conservative 

form of classical loop unrolling [54,72]. The conservative nature is due to the loop 

checking criterion (as impIemented) that tests for the equality of only the datatags 

of static register values, However, the effect of aggressive loop unrolling can be 

achieved within the partid execution h e w o r k  presented here by extending the 

equality test to the entire dataword contents- 

5.5.3 Termination of Partial Execution 

Partid execution of giwn BAM code terminates upon traversing all the blocks 

of its CFG. With the Ioop detection and handling techniques described in earlier 

sections and the bite number of residues generated as described in Section 4.2.2, 



termination of partial execution is straightforward. Partial execution of the complete 

CFG traverses all the possible execution threads. Thus any path in the graph not 

traversed during partial execution exposes dead code. Thus dead-code elimination 

is a by-product of partial execution. 

Partial Execution of a Basic Block 

Partial execution of a given basic block in the context of current memory can be 

performed by a simple loop that performs symbolic instruction execution and in- 

struction transformation together using Algorithm ?. 

Algorithm 7 Basic block partial execution 
1: for a11 basic block instructions do 
2: if static operand information available then 
3: transform the instruction according to the transformations detailed in Sec- 

tion 4.3. 
4: end if 
5: Symbolically execute the instruction. 
6: end for 

.4n instruction is transformed to a simpler equivalent if sacient  static informa- 

tion is a d a b l e  as detailed in Section 4.3. Symbolic execution of an instruction is 

done after instruction transformation to ensure correctness of the transformation in 

the context of correct BAM memory state. 

Depending on the result of basic block partial execution, the CStack is updated 

so that partial execution continues correctly. Further, the result of block PE is 

recorded in the residue information. 

The following information, pertaining to the run-time behavior of the block and 

results of the partial execution, is collected during partial execution of a block. 

a Residue generation: If at least one of the instructions in the block is trans- 

formed, it is recorded that a residue is generated. 

a Local failure: If PE of the block resulted in Mure, a local Mure is recorded. 



Global failure: If the PE of the block resulted in failure, a global faiIure is 

recorded. 

5.7 Implementation of BAM Partial Executor 

It is highly desirable that the partial execution phase does not significantly add 

to the compilation time of Aquarius Prolog compiler. The front end first panes 

the candidate BAM code, builds the CFG and syntactically analyses it. The PE 

driver then performs the partial execution process by building and maintaining the 

various data structures described earlier. Except for the implementation of parsing 

functionality, the partial executor is implemented using C. The Aquarius compiler 

can generate a BAM code listing during compilation of a Prolog program, BAM 

instructions emitted as Prolog terms. Hence, Sicstus Prolog is called by the partial 

executor to parse them. The implementation consists of over 15,000 lines of C code 

along with over 200 lines of Prolog code. 

5.8 Summary 

The main contribution of this chapter is a description of the partial execution driver. 

A description is provided of additional memory areas and data structures. These 

augment BAM memory areas such as PE registers, allocate stack, control stack to 

facilitate partial execution. A description is given of partitioning the BAM code 

at two levels - viz., procedure and basic block level - and parameterizing these 

partitions to facilitate block-level and procedure-level analyses. Such partitioning is 

crucial since BAM code is RISGlike and attributing a form to such code facilitates 

definition of program points and program states. Techniques to identifp dynamic 

registers and dereferencing are described. 

The PE driver traverses the partitioned BAM code while collecting its run-time 

behavior in the augmented data structures. A combination of syntactic analyses and 

run-time analyses guides the partial execution with the help of a control stack and 



a loophandling mechanism. These techniques are also discussed in this chapter. 

Code loops are syntactically identified while parsing the BAM code. The loop 

recognition and handling discussed in this chapter ensues termination of partial 

execution process as well as limits code explosion. 

Partial execution of instructions uses syntactic and m-time information ex- 

tracted as discussed in this chapter. Section 5.6 described the algorithm to partially 

execute a basic block. We describe in the next chapter the symbolic execution and 

transformation of individual BAM instructions within the framework layed out in 

this chapter. 



Chapter 6 

Instruction Level Partial Execution and Analyses 

While partially executing BAM code, the PE driver utilizes information relating to 

one or more of the following aspects of the program: 

syntactic representation of the BAM instructions; 

run-time behavior of the BAM triggered by execution of the given code; 

a run-time behavior of the BAM independent of the current code sequence. 

Program-related information is collected during several analyses phases and is used 

to control partial execution as well as to perform transformation of instruction se- 

quences. 

Symbolic execution of each of the BAM instructions is done according to the 

denotational semantics presented in Chapter 3. This phase of the BAM partial ex- 

ecutor also relies on program information obtained by the program analysis ph-. 

This chapter describes the partial execution of all BAM instructions whose denota- 

tional semantics were presented earlier. ARer an instruction is partially executed, 

the PE driver employs various techniques to ensure BAM memory correctness and 

to continue partial execution. These techniques use several a n a l p  results and are 

described in this chapter. 



PE of BAM Instructions 

In general, PE of an instruction involves three steps: symbolic execution, tram- 

formation and analysis. When an instruction is not transformed to a simpIer one, 

an identity transformation is said to have applied. When an instruction may be 

eliminated, a nop transformation is said to have applied. A resumption set is gen- 

erated using the successor information of a block during partial execution of the 

last instruction in a block. The analysis associated with each instruction refines the 

resumption set, as necessary. The PE driver updates the control stack according 

to the resumption set as explained in Section 5.4.2. When an instruction refines 

a resumption, it is explicitly specified in the following description of instruction 

f E. Otherwise, it is omitted. Further, PE of instructions not described below in- 

volves only symbolic execution. The implementation of symbolic execution of such 

instructions ensures that the memory state is maintained correctly. 

6.1.1 PE of Procedural Control Flow Instructions 

6.1.1.1 PE of procedure (PI 

Symbolic execution: Increment pc by 1. 

a Analysis: Perform the following steps: 

- Record current static argument register values in the in-out table associ- 

ated with the current procedure. 

- Set the current value of the PE register proc-bllr to the current block, 

i.e., entry bIock of the current procedure. 

- Save the current index into the b o u t  table of the calling procedure in 

the corresponding allocate stack item. This value is restored upon return 

£rom the current procedure so that partial execution continues in the 

calling procedure. 

Transformation: An identity t rdormat ion  is applied. 



Symbolic Execution: Create an environment on the top of the environment 

stack with the current values of e, cp, cp-par and ebb, along with space for N 

permanent registers. 

a Analysis: Set the env,alloc flag of the topmost non-dirty environment on the 

environment stack to indicate allocation of the environment. 

a Transformation: An identity transformation is applied. 

a Symbolic Execution: Pop the enviro~lent top off the environment stack. 

-Analysis: The allocate stack top corresponds to the environment just popped 

off. Set the allocate stack top to "dirty" indicating that the corresponding 

environment was popped off. 

0 Transformation: An identity transformation is applied. 

a Symbolic Execution: The called procedure may be a translation of a Prolog 

predicate accessibIe during compilation, a ProIog built-in (e.g., 4 2 ,  +/2) or 

a ProIog predicate whose definition is unknown at compile-time but will be 

available at link-time. In the first case, the current value of pc is saved in cp 

and pc is set to the address of the call site with label N. In the latter two cases, 

partial execution assumes that the cded procedure will return successfully 

and simply increment the pc to the next instruction. 

0 Analysis: The value of cbb is appropriately set to the successor of the current 

block. A new allocate stack item is created and pushed on to the allocate stack. 

This new item records the current block- The envdloc and alloc-dirty 



flags are set to indicate no environment allocation and no environment deal- 

location. A pointer to the current input-output values is also saved in the 

allocate stack item to enable their restoration upon successful return to the 

current procedure's partial execution. 

Tkansformation: An identity transformation is applied. 

Partial execution of the ca l l / l  instruction distinguishes between a procedure 

call known at PEtime and one unknown at PEtime. Code is available for further 

analysis in the former case. It is conservatively assumed that the call succeeds in the 

later case unless the call is to gIobal failure. This allows the PE driver to perform 

basic block and procedure analyses as described in Section 5.3. 

Symbolic Execution: Restore the value of cp to pc resulting in return from a 

procedure call. 

Analysis: The values of proc-blk - current procedure to which partial execu- 

tion returns - and the pointer to the current in-out values are restored born 

the allocate stack item. The top of allocate stack is popped. Recall that the 

in-out table records the argument register values of the current procedure. The 

input values corresponding to the current procedure will not change due to the 

return. Current argument register values, that represent the procedure being 

returned from, are registered in the h u t  table. When a block is recognized 

as having a residue resulting from a previous partial execution (as discussed 

in Section 5.5.1), a call return is simulated using algorithm 5. 

Transformation: An identity transformation is applied. 

Symbolic Execution: If the jump target, L, is a userdefined procedure, the 

values of pc and bb are set to those of the target block's first instruction and 



the target block number respectively. The value of cbb is adjusted accordingly. 

If the jump target is a known failure label, partial execution of the instruction 

faW0 is performed. The resumption target in the resumption is indicated 

with a special value- This triggers the PE driver to set the control along an 

alternate choice and records the failure in the current choicepoint as explained 

in Section 5.4.2. 

Analysis: The jump target is tested for a procedudl label. If it is a pro- 

cedure, the jump is in fact a last call that was optimized to a jump. In such 

a case, an allocate block with appropriate initialization is pushed onto the 

allocate stack. 

Transformation: An identity transformation is applied. 

6.1.2 PE of Conditional Control Flow Instructions 

Symbolic excution: If the tag of R is static, its symbolic execution updates pc 

and cbb to the jump target. Only one resumption is created. If R is dynamic, 

speculative PE is set up dong the paths leading to blocks labelled L1, L2 

and L3 respectively. This is done by creating a resumption set with three 

resumptions: each with an encapsulation of current BAM memory state, L1, 

L2 and L3 as branch targets, respectively, and (R,tvar), (R, T) and (R, none) 

respectively as resumption resister values. The PE driver pushes three control 

stack items using these resumptions. 

-Analysis: No additional analysis necessary. 

Transformation: If the tag of R is static at PEtime, the instruction is trans- 

formed to jamp(L), where L is Ll if the datatag of R is tvar, L2 if T or L3 if 

any other. If R is a dynamic register, the identi@ transformation is applied. 



6.1.2.2 PE of test (E,T,R,L) instruction 

Symbolic execution: I f R  is static, the pc is set to the address of the instruction 

at label L if either of the following is true: 

1. If E is eq and if the tag of R is equal to T or 

2. If E is ne and if the tag of R is not equal to T. 

If R is static, the pc is set to the address of the following instruction in all 

other cases. 

If R is dynamic, two speculative PE is set up - one along the path leading to 

block labelled L and the other leading to the fall-through block. This is done 

by creating a resumption set with two resumptions. Both of them contain an 

encapsulation of current BAM memory state. One resumption has the block 

with label L as resumption target and the other has fall-through block as its 

resumption target. 

Analysis: No additional analysis necessary. 

0 Transformation: If R is static, the instruction is transformed to jump(L) if 

the above tag tests succeed; else the instruction is transformed to nop/O. No 

transformation is done if R is dynamic. 

6.1.2.3 PEof jump(T,C,A,B,L) 

PE of jump/5 occurs in one of the following three scenarios: 

1. Values of the registers A and B are static and the condition specified in C 

evaiuates to true. 

2. Values of the registers A and B are static and the condition specified in C 

evaluates to false. 

3. Values of A and B are dynamic. 



Symbolic execution: In case 1, symbolic execution r d t s  in creation of a 

resumption containing the block with label L as resumption target. In case 2, 

symbolic execution results in creation of a resumption containing (ni, nb) as 

resumption target, where n i  is the next instruction and nb is the fd-through 

block. In case 3, speculative execution is set up by creating a resumption 

set containing two resumptions each with the current BAM memory state 

encapsulated. One resumption has the block with labd L as its resumption 

target and the other has the fall-through block as its resumption target. 

r ,4naIysis: No additional analysis necessary. 

r Transformation: In case 1, the instmction is transformed to jump (l) . In case 2, 

the instruction is transformed to nop/O. In case 3, the identity transformation 

is applied. 

- Symbolic execution: a new choicepoint is created on the choicepoint stack- 

Apart from the current BAM memory state, the choice success informa- 

tion of the current choicepoint, if one exists, is saved in the choicepoint. 

- AnaIysis: A resumption containing the current memory state and address 

of next instruction as resumption target is created. 

- Symbolic execution: The BAM memory state is restored from the cur- 

rent choicepoint. The next choice is set to the label L in the current 

choicepoint. 

- Analysis: A rezumption containing the restored memory state and the 

address of next choice in the m e n t  choicepoint as resumption target is 

created. 



Further Analysis and transformation: In all cases where i < I 5 N, success or 

failure of the choice whose PE was just completed is registered in its choice 

success inf0111~ation. However, during the symbolic execution of a choice/3 

instruction with I = N, the choicepoint is not popped off the choicepoint stack. 

The retry address in the choicepoint stack top is set to a special value FAILURE 

to indicate that the choicepoint is merely [eft on the stack for the purposes of 

analysis done for choicepoint optimization. This choicepoint is popped off the 

stack during choicepoint optimization described in Section 6.4. Any possible 

choice instruction transformation is also done during this phase. 

The compiler generates a move (r (b) , R) instruction that stores the value of the 

choicepoint stack top b in argument register R at the entry of the predicate with a 

cut in its body. The built-in predicate ! is compiled to the instruction cut (R) which 

restores b and hb to their values a t  predicate entry thus rolling back the choicepoint 

state to that at the entry of predicate. This results in ignoring all choicepoints 

created in the body goals d the current clause, thus committing the choices made 

by the body goals. 

Symbolic execution: Sets the values of b to that stored in R and restores hb 

from the current choicepoint. 

Analysis: If the choicepoint stack has not grown since entry into the procedure, 

it follows that the d u e  of b (and hence hb) has not changed. 

'kansformation: If b is unchanged, the cut/l instruction is traadomed to a 

nop/O instruction. If the value of b (and hence that of hb) has changed, no 

transformation is done. 

The transformation of a mt/l instruction is illustrated using the "steadfastn 

version of max/3 [55] shown in Figure 6.1. Figure 6.2 shows CFG of the BAM code 

generated with the GFA-based optimization turned on. The cut/l  instructions in 



Figure 6.1: Definition of mad3 Predicate 

block 19 and block 15 may be transformed to nop/0 as it can be shown at PEtime 

that the value of r(b) remains unchanged between its storage in block 5 and its 

restoration in blocks 19 and 15. 

r Symbolic execution: Only tvar-tagged datawords are trailed. Thus V contains 

a PEtirne dataword with tvar tag. Its datavalue is pushed on the trail stack. 

0 Il.ansformation: None needed. 

r .4nalysis: None needed. 

Symbolic execution: Untrails all variable bindings from the trail stack, restores 

the BAM memory state from the current choicepoint and forms a resumption 

containing current memov state and current retry address in the choicepoint 

as resumption target. 

Analysis: Several BAM memory areas are updated to assist analysis performed 

during partial execution of the faW0 instruction as described below. First, 

the choice success information corresponding to the current choice is updated 



Figure 6.2: CFG of BAM Code for predicate max/3 
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Figure 6.3: Schematic CFG to illustrate choice success update 

in the current choicepoint. The current choice is marked as failure in the 

choice success information only if all previous speculative partial execution 

paths traversed via the current choice are also false. For exampie, consider 

the CFG structure in Figure 6.3. Let the choice/3 instruction iu block A 

be the choicepoint creating instruction (i-e., with 6rst argument i / N  where 

M > 1). Let the path A-E be the path of next alternate choice (retry address) - 

Let B . . . C and B . . . D be two speculative execution paths dong the fmt 

choice attempted. Partial execution along each path can eventudy lead to 

success or to failure. The choice success information stored in the current 

choicepoint records a failure of the current cboice only if PE along all such 

specdative paths results in failure. recorded. Thus failure is recorded in the 

CuIcIent choicepoint during partial execution of fail/() instruction in block D 

only if PE along the path B . . . C does not faiI. 

Partial execution of the choice/3 instruction with first argument I/N (de- 



scribed earlier) does not simulate the run-time BAhl behavior of popping the 

top of the choicepoint stack. It is left on the choicepoint stack with the next 

retry address set to FAILURE to indicate completion of all speculative PE paths 

to be traversed via the current choicepoint. Hence, if the retry address in the 

choicepoint is FAILURE, the choicepoint optimization is performed. 

0 Transformation: This p k  either transforma some of the choice/3 instruc- 

tions to nop/O or to jump/L instructions. 

6.1.3 PE of Unification Instructions 

6.1.3.1 PE of deref (X,Y) 

Since several subcases mist, the following discussion is not presented under the 

headings of symbolic execution, analysis and transformation, as  done till now. 

Depending on whether the content of X is a non-pointer tag or a pointer tag, 

there exist two possibilities for partid execution of deref (X ,Y). 

Consider the case when the content of X has a non-pointer tag. There mist two 

possibilities: 

0 the second operand Y is the same as the first, i.e, the instruction is deref (X,X), 

then the instruction is transformed to a nop/O since at -time the first 

operand dereferences to itself in the same register. 

0 the second operand Y is different from the first; the deref (X, Y) instruction is 

transformed to a move (X ,Y) , since no further dereferencing of the non-pointer 

tagged value may be done. 

Consider the case where X has a pointer-tagged content that dereferences (Sec- 

tion 2.2.3) to a non-pointer tagged dataword V. Then the instruction can be trans- 

formed to a move(V,Y) instruction. This is similar to constant propagation as done 

in conventional compilers. However, the static values propagated in the current 

work are not restricted to known constant values - viz., N y  known non-pointer 



tagged datawords. The values propagated are datawords whose tags are known at 

PEtime. Hence partial execution may be considered as a more general technique 

that encompasses "conventionaln constant propagation. 

If the pointer-tagged dataword content of X does not dereference to a non-pointer 

PEtime dataword, symbolic execution and analysis steps for each of the possible 

pointer tags is done as described below. No transformation of instructions is possible 

in these cases. 

Let X dereference to a dataword with a tag tvar  or dvar and data-value 

dv. At run-time, derefereccing tvar-tagged dataword results in either a self- 

referential heap location or a non-pointer tagged dataword at heap Iocation dv. 

At PEtime, this is indicated by setting the second operand to dvar-tagged 

dataword. This dataword indicates that its run-time d u e  is actually obtained 

by dereferencing of this dataword as described in Section 5.4.1. 

Let X dereference to a dataword with a tag tstr or tlst. The second operand 

value is set to this dataword. 

Symbolic execution: If datavalues of Vi and V2 are fully known at PE time, set 

pc to L or to the following instruction according to the equality test. Otherwise, 

schedule specdative PE is performed by forming a resumption set with two 

resumptions, each containing the current memory state. One of them has 

the next instruction as resumption target and the other has the instruction 

label (L) as resumption target. 

lhmiforrnation: If the datavalues of V1 and V2 are fully known at PE time, 

the instruction is transformed to either a nop/0 or to jump(L1 depending on 

whether the datavalues are equal. However, if the datavalues are not fully 

known, but have static data-tags (i.e.,data-tags other than dvar or dstr), the 

instruction may be transformed to nop/o or to jump(t) depending on whether 

the data-tags .we equal. 



If the instruction is transformed to a nop, a resumption with current memory 

and the next instruction as resumption target is formed. If it is transformed 

to jump/l, a resumption with a n e n t  memory and the instructim label(L) 

as resumption target is formed. 

Transformation: If the datavalues of Vl and V 2  are fully known at PEtime 

and are equal, the instruction is transformed to a nop/O. If they are fully 

known but not equal, the instruction is transformed to jump (L) . If the dataval- 

ues of V1 and V2 are not fully bown at PEtirne, but have same static 

datatags (i.e.,datatags other than dvar or dstr), the iastruction is trans- 

formed to nop/0. If they have different static datatags, it is transformed to 

jump (L) . 

If the instruction is transformed to a nap, a resumption with current memory 

and the next instruction as resumption target is formed. If it is transformed to 

jump/l, a resumption with the current memory and the instruction label (L) 

as resumption target is formed. 

0 Analysis: No analysis needed. 

Partial execution of unify/5 depends on the static or dynamic nature of R1 and R2 

as described below. 

Let contents of R1 and R2 be TI'VI and T2T2 respectively. 

Case 1: 

- Symbolic execution: If both TI and T2 are d m ,  then symbolic execution 

ofunify/5 trails V, the greater of the heap addresses V1 and V2. In other 

words, the most recently created heap location is trailed. Then the value 

of the operand containing datadue  V is set to that of the other operand. 

- Transformation: None. 



- Analysis: None. 

. Case 2: 

- Symbolic execution: If only one of T l  and T2 is dvar, then symbolic exe- 

cution of unif y/5 trails the corresponding datavaiue and sets the operand 

with dvar-tagged dataword to the value of the other. 

- Transformation: None. 

- .Analysis: None 

Case 3: 

- Symbolic execution: If T1 is tvar and T2 is a non-tvar tag or if V 1  is 

more recently created heap address than V2 (i-e., V i  > V2), the heap value 

V 1  is pushed onto the trail stack and R l  is set to the value of R2. 

- Transformation: The instruction unify (R1,  R2, F1 , F2, f ail) is t rans 

formed to the sequence: 

trail (R1) . move (R2 ,R1) . 
- .halysis: ?lone. 

Case 4: 

- Symbolic execution: If T2 is tvar and T1 is a non-tvar tag or if V2 is 

a more recently created heap address than V 1  (i.e., V2 > Vl), the heap 

value V2 is pushed onto trail stack and R2 is set to the value of Ri. 

- TkatlSformation: The instruction unify (R1 , R2, F1, F2, f ail) is trans- 

formed to the sequence: 

trail (R2) . move (Ri 32) . 

Case 3: 



- Symbolic execution: If T1 is different from T2 and neither is a dvar nor 

tvar tag, symbolic execution of the instruction fail is performed such 

that PE continues along alternate execution threads. 

- Transformation: The instruction is transformed to fa i l .  

- .Analysis: None. 

Case 6: 

- Symbolic execution: If TI and T2 have the same tag other than dvar, 

dstr, tvar, tstr or t l s t ,  either pc is set to the next instruction or 

symbolic execution of instruction fail  is done depending on whether V1 

and V2 being equal or not, respectively. 

- Transformation: The instruction is transformed either to nop or to f a i l  

depending on whether V1 and V2 being equal or not, respectively. Cor- 

respondingly, the partial execution continues to the next instruction or 

to fail/O. PE will continue along alternate execution threads, if they 

exist, in the latter case as explained in Section 6.1.2.7. 

- .Analysis: None. 

Case 7: 

- Symbolic execution: If T1 and T2 are either tstr or t l s t ,  the heap 

locations V1 and V2 are unified using Algorithm 8. It adapts the classi- 

cal unification algorithm [3] that facilitates d c a t i o n  of heap addresses 

containing only partial information. It d e s  two heap locations hl and 

h2 and builds any necessary heap data as much as possible to maintain 

correctness of partial execution. 

- Xkansformation: None. 

- ,Qnalysis: None. 



Algorithm 8 uni f y(h, h2) : hdean 

1: Let the contents of hl and be T l ' V l  and T 2 V 2 .  
2: If Ti and T2 are both dvar, there is indEcient information to do anything 

further. Return success. 
3: If only T1 (T2) is dvar, trail the heap location V l ( V 2 )  and set it to T2'V2 (Tl'Vl).  

Return success. 
4: If both T 1  and T2 are tvar, trail the most recently created heap address among 
V1 and V2 and set it to t v a r m V  where V is the greater of V1 and V2. Return 
success. 

5: If Ti and T 2  are diflerent non-pointer tags, or if they are same non-pointer 
datawords with merent datavalues, unification is not possible; return failure. 

6: I f T 1  and T 2  are both tstr or t l s t ,  dereference V 1  and V 2  to W1 and Y2. Return 
uni f y(W1, W2). 

1. If V contains a static non-tvar or non-dvar tagged value and the contents of 

V are the same as A: 

Symbolic execution: The pc is incremented. A resumption with current 

memory state and the next instruction as resumption target is Formed. 

Transformation: The instruction is transformed to a nop/O. 

2. If either the (non-tvar and non-dvar) datatag or the datavalue of the content 

of V is different from that of A: 

Symbolic execution: PE of the instruction fail/O is carried out. 

0 lkansformation: The instruction is transformed to f ail/O. 

3. If V contains a PEtime datatag: 

a Symbolic execution: The pc is incremented. The datavalue is trailed and 

V is set to A. 

Transformation: Not done. 

4. Analysis: No additional analysis is needed. 



6.1.3.5 PE of move (S ,Dl  

0 Symbolic execution: The PEtime contents of S are moved into D. The pc is 

incremented. 

Transformation: None needed. 

Analysis: None needed. 

0 Symbolic e~ecution: The pc is incremented. The PEtime contents of S onto 

the stack with stack pointer R. 

0 Transformation: None needed. 

0 Analysis: None needed. 

Symbolic execution: The pc is incremented. If S is static, D is set to a value 

whose tag is that of S and data value is (datavalue of S + 0)- If S is not static, 

only the tag of D is set to that of S. 

0 Transformation: None needed. 

0 Analysis: None needed. 

6.1.4 PE of Arithmetic Instructions 

Partial execution of arithmetic instntctions mainly involves symbolic execution. The 

instruction is transformed only if the block containing it is not part of a program 

loop. Program loops may be unrolled to achieve the effect of classical loop un- 

rolling [54] as discussed in Section 5.5. Since the present work does not perform 

limited loop unrolling, arithmetic instructions in a program loop are only symboli- 

cally executed and not transformed. 



However, if an arithmetic instruction is not in a block that is part of a program 

loop and its operands have static datavalues then it is transformed into move@ ,Dl 

instructions where S is the result of the arithmetic computation to be done by the 

instruction and D is the destination of the operation. Additionally, the following 

cases are handled accordingly during partial execution of arithmetic instructions 

with one static operand that is the identity value for that operation: 

Either of the source operands of an add/4 or sub/4 instruction has a static 

non-pointer tag and a datavalue of 0. 

Either of the source operands of mu1/4 has a static non-pointer tag and a 

datavalue of 1 or 0. 

The numerator operand of div/4 has a static non-pointer tag and a datadue 

of 0. 

The denominator operand of div/4 has a static non-pointer tag and a datavdue 

of 0. This is transformed to a jump to arithmetic failure. 

Either of the source operands of an and/4 instruction has a static non-pointer 

tag and a datavalue of 0. 

6.2 Maintaining BAM Memory Correctness 

The BAM memory state at any given program point during partial execution is an 

abstraction of its corresponding run-time state at  that program point. By abstrac- 

tion, we mean the following. The register contents either have the same data tags 

or a dynamic tag; heap locations differ only by the size of the run-time data struc- 

ture. This is illustrated using the following code whose BAM code CFG is shown in 

Figure 6.4. 



If the PEtime BAM memory state abstracts the co~~esponding run-time BAM mem- 

ory state at a given program point, then we say that BAM memory correctness is 

maintained at that program point. The BAM memory correctness is said to have 

been maintained for a given program if is correctness is maintained at  every pr* 

gram point in the program. We further illustrate in this example the use of SCC 

information to ensure the correctness of an instruction transformation involving a 

static operand. 

Consider the content of the register r(0) at the entry of block 1. Its contents 

have the same PEtime and run-time data tag, viz., tvar. Now let us consider 

the heap. Instruction 6 in block 0 pushes a dataword onto the heap. The calI to 

read/l builds datawords on the heap that are unknown at PE time. Instruction 12 

in block 1 pushes another dataword. At PE-time there are no datawords between 

the datawords pushed by instructions 6 and 12. However, at run-time they are 

separated by datawords pushed by the call to read/i. Top of the heap, d h ) ,  at 

entry into block 3 at PEtime is different from that at run-time for the same reason. 

The partial execution algorithm does not assume the size of data that might be 

written on the heap by calls whose code is not available. h e a d  PE continues 

with the present value of r(h). In this example, r(h) contains 0 both before and 

after the call to read/l, which is assumed to succeed. The heap is adjusted later 

to approximate its run-time state once more information about the heap location 

becomes available (Section 6.2.1). 

fn the present example, since tvarAr(h) is a static term, it is possible to trans- 

form instruction 3 to move(tvar'0,r(0)) and consequently consider r(O) to be 

static. However, r(h) points to a BAM memory area whose PEtime and nm-time 

values differ. So, the above transformation is not performed because it does not 

preserve the correctness of BAM memory. Ikansformations involving only static 

datavalues are performed and those involving pointers to BAM memory areas are 

not performed. 



0. procedure(mai d o )  . 
1. entry(maid0,O). 
2. a1 1 ocate(2) . 
3. move(tvar"r(h) ,r(O)). 
4. move(r(0) ,p(l) 1. 
5. pragma(push(variab1e)). 
6. push(r(0) ,r(h) ,I). 
7. pad(1) . 
8. c a l l  (read/l). 

I 

11. pragna(push(variab1e) 1. 
12. push(r(1) ,r(h) ,I). 
13. pad(1). 
14. pragna(tag(p(1) ,tvar)) . 
15. move([p(l)] ,r(O)).  
16. c a l l  (p/2). 

2 
17. pragna(tag(p(0) ,War) 1. 
18. deref([p(O)] , r (O) ) .  
19. deal locate(2) . 
20. junp(wri Wl) . 

26. label(l(p/2,1)). 
27. unify-atanic(r(0) ,tatmAaDfai 1). 
28. deref 6-(1) ,r(i)). 
29. test(ne,tvar,r(l) ,I (F 

I 

31. label(l(p/2,2)). 
32. unify,atanic(r(l) , t i n tn ID fa i l  1. 
33. return. I 

Figure 6.4: Example to illustrate transformation of an instruction with static 
pointer-tagged operand 



6.2.1 Speculative Part i d  Execution 

BAM memory correctness has to be maintained not only at every program point but 

also before and after partial execution of each instruction, Symbolic execution of 

instructions as detailed earlier in the chapter maintains correct BAM memory state. 

Resumption plays a crucial role in ensuring correctness of BAM memory state at the 

entry and exit of basic blocks. This section discusses techniques employed to ensure 

BAM memory correctness when a block is partially executed speculatively. On the 

other hand let S be a block not being speculatively partially executed speculatively 

and let P be its parent from which PE control reached S. Partial execution of S is 

simply started with the memory state encapsulated in the resumption at the end of 

PE of P. We refer to such PE as det- . . 
'c partial execution. 

Speculative partial execution is set up when a retry address is being attempted 

or when a conditional control instruction involves a dynamic register. With spec- 

ulative PE, more than one block successor is partidy executed. Hence, additional 

argument register values must be set dong each execution path. For example, as- 

sume the flow change instruction in the current block being partially executed is 

suitch(T ,R, Li ,L2, L3) with a dynamic operand R. .As explained in Section 6.1.2.1, 

a resumption set with three resumptions each containing a copy of the current mem- 

ory state results from its PE. Further, two of the three resumptions correspond to 

flow control along blocks labeled Li and L2. These resumptions indicate that R has 

a tag tvar and T. The third resumption indicates Mure. 

The resumption set is used to form a CStack item. The resumption registers 

are stored in the CStack frame as a set of argument register-dataword pairs. The 

CStack top indicates the block to be partially executed and the memory state in 

which it needs to be partially executed. The memory state is set to that indicated 

in the CStack top. Resumption register information is used to adjust the memory 

state set using Algorithm 9. This phase ensures that the heap at  PEtime is correctly 

approximated to that a t  =-time. The value of each register r being set depends 

on the addressing mode of r as well as its current content. Since speculative PE 
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Figure 6.5: Setting a non-state register r to a tvar-tagged dataword 

is scheduled, each r is a dynamic register. If r is an immediate operand then it 

is considered to be a heap address and the heap location r is set to st'sv; if r is 

r(h> or r(b) then the register r(h) or r(b) is set to st"sv accordingly. If r is 

neither a state register nor an immediate operand then the heap is built to reflect 

its run-time state depending on the current value of r. Algorithm 10 is used to 

build the heap. The case constructs used in this algorithm do not fall through to 

the next case. Figures 6.5 and 6.6 depict the heap before and after setting r to a 

tvar-tagged dataword and tatm-tagged functor dataword, respectively. 

Akorithm 9 .4lnorithm to set memow correctly for specdative partial execution 
1: for all ( r  , stnsv) in resumption register list do 
2: Let r be the argument register. 
3: Let the current content of r be ct'cv. 
4: Let h represent the current heap top i.e., content of the register r(h) - 
5: if r is an immediate operand then 
6: Set heap location h to st-sv; increment content of r(h) by 1. 
7: else if r is r(h) or r(b) then 
8: Set the value of the register r(h) or r(b) to st-sv. 
9: else 
lo: Adjust heap and set the non-state register r using Algorithm 10. 
11: end if 
12: end for 



Algorithm 10 Algorithm to adjust the heap while speculatively setting a dynamic 
non-state register 

1: switch (st) 
case TPOS or TNEG or TINT or TINT : 

Set heap location h to contain st-sv. 
Point heap location cv to h i-e., set the contents of heap location cv to 
ct-h; increment content of r(h) by 1. 
Set r to contain st'sv. 

case TVAR : 
Set the value of sv to h. 
Set heap location h to contain st'sv. 
Point heap location cv to h i.e., set the contents of heap location cv to 
ct "h; 
Ensure the tag of the contents of heap location c t  is WAR; increment content 
of r(h1 by I. 
Set r to contain stasv. 

case TATM : 
if so is known and is of the forrn f/n then 

Set heap location h to contain st-sv. 
Point heap location cv to h i-e., set the contents of heap location cv to 
ctah; 
E r n e  the tag of the contents of heap location c t  is TSTR; 
Create n self-referential WAR-tagged datawords on the heap starting at 
heap location h increment content of r(h) by n. 
Set r to contain stnsv. 

else 
Set heap location h to contain st'sv. 
Point heap lacation cv to h i.e., set the contents of heap location cv to 
ct'h; increment content of r (h) by 1. 
Set r to contain st-sv. 

end if 
case TLST : 

Set heap location h to contain TLSTah+l; increment content of r(h) by 1. 
Point heap location cv to h i-e., set the contents of heap location cv to 
Ct"h; 
Create two self-referential WAR-tagged datawords on the heap starting at 
heap Iocation h; increment content of r (h) by 2. 
Set r to contain st-sv. 

case TSTR : 
Set heap location h to contain DSTR̂ h; increment content of r(h) by 1. 
Point heap location cv to h i.e., set the contents of heap location cv to 
ct-h. 
Set r to contain DSTrh; increment content of r(h) by I. 

33: end switch 
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Figure 6.6: Setting a non-state register r to a tatl~tagged dataword 

Memory Correctness When a PELoop Exists 

BAM memory state needs to be maintained correctly as part of the loop handling 

mechanism explained in Section 5.5. This is done with the help of the allocate stack 

as explained in this section. 

A loop detected during partial execution is deemed to be a return out of the 

current procedure. In other words, it is assumed that there is a run-time path that 

eventually succeeds and returns from the current procedure. The memory state is set 

to rdect this assumption. Although this is true for most general cases, exceptions 

arise and the memory state is set accordingly as explained in the foUowing. 

To illustrate such a situation, let blk be the block which is to be partially ex* 

cuted, and bib, the residue of blk resuIting b m  its previous PE with respect to 

the current state of static focus registers, This implies that a loop has been detected 

and no further PE of blk is necessary. The previous PE codd have indicated that 

the run-time execution of the block blk wodd result in a success or failure- 

PE of previous block indicates run-time success, the most general case. Then, 

PE proceeds by returning from the current procedure. The simulated return 

fiom the procedure pedorms the following: 

- Sets the environment stack in preparation for the partial acecution to 
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Figure 6.7: Schematic illustration of PEloops detected 

continue at instruction cp, the first instruction the block cbb. 

- Sets the correct values of PE registers. 

PartiaI execution of rettun/O simply sets the value of pc to that of cp (see 

Section 6.1.1.5). 

The current procedure might or might not have created an environment. In the 

6rst case when one is created, the PEloop could occur either before or after 

deallocation of the current procedure's environment, as shown in Figure 6.7. 

Partial execution of deallocate/l sets the allocdirty flag on the top allocate 

stack item to indicate a deallocation of the environment. The values of cp and 

cbb are restored off the top of environment stack if the top allocate stack item 

indicates an environment was created by the current procedure and that en- 

vironment was not deallocated prior to the loop. This ensures the correctness 

of the register values for the correct PE of return/O. 

In the second case, an environment is not created by the current procedure. 

Since the allocate stack top indicates no environment creation for the cur- 

rent procedure, the current values of cp and ebb are correct and need not be 

restored from the environment. Thus the partial execution of retarn/O pr* 



ceeds conectly. The environment adjustment and continuation register update 

is shown in Algorithm 11. 

a Previous block PE indicates possible run-time failure as illustrated with the 

help of the following basic block. 

Suppose that the tag of Cr (0) J is tlst .  Then equdl(r(1) , tint-7, fail) 

will be transformed to f a i l  and partial execution of the block reveals run-time 

execution of the block wiU fail. 

In this situation, the failure is recorded in the current choicepoint as detailed 

in Section 6.1.2.4 and CStack is not updated allowing PE to continue in 

the depth-first order. Thus PE proceeds dong either an alternate speculative 

~xecution path available in the current choice or an alternate choice if one is 

available. In case no more alternate choices exist in the current choicepoint, 

PE continues by popping the top of the CStack. The allocate stack is adjusted 

either by a returd0 or a simdated return out of the current procedure. 

6.4 Choicepoint Optimization 

The basic idea behind the choicepoint optimization is to transform choice/3 instmc- 

tions such that run-time execution does not attempt choices dong which execution 

is known to fail at PEtime- The PE driver uses Algorithm 12 to perform this 

optimization as  described below. 

Let ChPt be the current choicepoint. Let B be the set of blocks containing 

choice/3 instructions that access ChPt. Let ChS = ((Bit&) ] Bi E B), where 

4 is either success or failute indicating success or failure of PE along all paths 



Algorithm 11 Setting BAM memory upon loop detection 
if Mk, indicates a local failure then 

Simulate local failure by partial execution of fail/O (Section 6.1.2.7). 
else if b l k ,  indicates a globd failure then 

Set partial execution path dong the next atternative in the depth first order. 
else 

if alloc-flag of itm indicates environment allocated in current procedure 
then 

if docd i r t y  of itnr is not set then 
Restore cp, cbb and the PE registers from top environment stack item. 
pop environment stack. 

end if 
end if 

end if 
if blk has a choice/3 instruction then 

-4djust next choice in current choicepoint. 
end if 
Partially execute return/O 

accessibIe via the fd-through edge of block Bt. .kmme the set ChS is sorted in 

the order the partial executor attempts to execute blocks B. For any two blocks Bj, 

Bk E B such that the label of Bj is a retry address that is partially executed before 

that of Bk, there a s  an ordering between Bj and Bk. The notation Bj < Bt 

means that zero or more blocks in B might have been partially executed after Bj and 

before Bk- Bi+j and Bt-j indicate the block tried j blocks after and before trying 

Bi, respectively, during partial execution. B1 indicates the block that contains the 

cho ice/3 instruction that creates the choicepoint on the stack. 

Figure 6.8 shows a sequence of choice/3 instructions. The sequence of blocks 

containing the choice instructions correspond to the choicepoint created by the 

choice/3 instruction in block A. The sequence L1, L2, . . . , h-1 represents retry 

addresses attempted during PE. If, for example, PE along the edge marked PA fails 

and that along the edge marked PB succeeds, the choice/3 instruction in block A 

may be transformed to jPrnp(L1). A complete choicepoint optimization was ill- 

trated far the code shown in Figure 4.10 in Section 4.4.2- 



Algorithm 12 Choicepoint optimization 

1: Find the block Bf such that (Bf, failure) E ChS and Vi where Bi < &, 
(Bi, success) E ChS. 

2: Find the block B, such that (B,, success) E ChS and Vi where Bf < Bi and 
Bi < B,, (Bi, failure) E ChS. 

3: while (B, exists) do 
if (B* is B1) then 

Let choice(l/N, Rf, &) be the choicepoint instruction in Br. 
Let choice(I/N, &, &) be the choicepoint instruction in B, and L, be the 
label of B,. 
Transform choice(i/N,&,lf) in Br to jump(L,). 
aansform choice(I/N, R,, &) to choice(l/N, ht &). 
Let M be an empty list of instructions. 
for i = 1 to length(&) do 

if (h [il # k [fl A Mi] # no) then 
Append the instruction move(& [i], R, [i]) to M. 

end if 
end for 
Insert M after the choice/3 instruction in block R,, if M is not empty. 

else 
'Ikansform choice(1 /Ht b, ti) in to choice(I/N, Ri, L,), where Lh is 
the label of Bs. 

end if 
Find the block Bk such that (Bk, failure) E ChS and Vi where Br < Br c 
Bk, (Bi, success) E ChS. Set Bk to be Br. 
Find the block B, such that (B,, success) E ChS and Va where & < Bi and 
Bi < Bn, (Bi, failure) E ChS. Set B, to be B,. 

21: end while 



Figure 6.8: Schematic CFG to illustrate choicepoint optimization 

6.5 Summary 

This chapter provides the details of partial execution of BAM instructions. The 

=-time semantics of BAM instructions (Chapter 2) are extended to sccomodate 

run-time analyses whose results are used by the PE driver to affect transforma- 

tion/optimization appropriateiy. Further, the crucial aspect of maintaining the 

PEtime memory state to be an abstraction of the corresponding run-time state 

is discussed. The choicepoint optimization algorithm used is presented. The next 

chapter discusses consolidation of the residues generated during partial execution 

along with benchmarking of the resuiting residues. 



Chapter 7 

BAM Code Regeneration 

Partial execution described in the earlier chapters results in residues for each basic 

block. This chapter describes the last step of the PE process which includes re- 

generation of BAM code of all the block residues. The regenerated BAM code of 

a given program is referred to as program residue. First a description is given of 

simple mechanism that is used to lay out BAM code in the residue blocks into a He. 

The code lay out is done according to the PEflow graph. 

Code Consolidation 

As described in Chapter 5, the PE driver records the control flow between all residue 

blocks in the PEflow graph. The partial execution of a block may or may not resuIt 

in a block that is different fiom the original. Yet, the resulting block is referred to as 

the residue. The PEflow graph may hence contain basic blocks in addition to those 

in the CFG of the origind BAM code. New control flow edges bom and to any new 

blocks are also recorded in the PEflow graph. If the PE of a given program does 

not result in a residue for even one basic block, then the PEflow graph is identical 

to the original CFG. 

A I g o r i t h  13,14 and 15 is used to regenerate BAM code for the whole program 

after the completion of partial execution. It uses the information stored in both P E  

flow graph and the original mG. The resulting BAM code is input to the Aquarius 

Prolog compiIer which assembles and links the object file to generate an executable. 



Algorithm 13 TopleveI Ioop for BAM code regeneration 
I: Let BStack be a global stack of basic block numbers; ProcList be the global 

List of procedures that is initially empty; R be the root of PCFG, the PEflow 
graph- 

2: Add R to end of ProcList. 
3: for each (procedure block B E ProcList) do 
k Push residue of B onto BStack 
5: while ( BStack is not empty) do 
6: Pop the top of BStack into B 
7: regenera teade(B) 
8: end while 
9: end for 

The toplevel Ioop shown in Algorithm 13 performs a depth-first traversal of all 

procedures in the PEflow graph, PCFG and maintains two data-structures viz., 

BStack and ProcList. BStack is the stack of basic blocks used for depth-& 

traversal of a given procedure. ProcList is a list of procedures still to be traversed 

for code regeneration. 

FoIIowing are the important issues related to the BAM code regeneration algo- 

rithm. FirstIy, at the time of partid execution of a flow change instruction containing 

a label operand, say Lbl, it is not known if partial execution of the block with the 

label Lb1 will result in a residue different from the original. This necessitates a post- 

residue generation patch up phase wherein the control flow is correctly set. The only 

exception where the target labels of an instruction are correctly set during partial 

execution is for choice/3 instructions. This is done during choicepoint optimization 

phase. Consequently, in Algorithm 14 that the labe1 choice/3 instruction is not 

changed during code regeneration. Algorithm 15 repIaces the input instruction I 

with the transformed one, if any. 

Next, the flow change instructions retarn/O and f ail/0 neither have successors 

nor label operands. Thus they are simpIy emitted without any change during code 

regeneration of blocks containing these instructions. The CFG does not record the 

called procedure block as a successor to the bIock with call/l- Such a caIIing 

procedure block, however, has one and only one successor block whose leader is 

the instruction executed after the call returns. Code regeneration for bIock with a 



Algorithm 14 Algorithm to regenerate BAM code of a basic block 
regenemtawde(B: b1ock):SB: bIock 
1: if (code for B is not regenerated) then 

Emit all instructions except the last instruction, li, in B. 
switch (li) 

case jump(L) : 
if (L is not fai l)  then 

SB := trcmsfomanstruction(B, li, L). 
if (SB is a procedure block) then 

Add SB to the end of ProcList. 
else 
Push SB onto BStack. 

end if 
end if 

case call(L1 : 
SB := transform_anstruction(B, li, L). 
-4dd SB to the end of ProcList. 
Push the successor of B onto BStack. 

case choice(I/N, R, L) : 
if (L is not fail) then 

Push block with label L onto BStack. 
end if 
Push the fall-through successor of B onto BStack. 

case equal(X, Y, L) or t ea t (E ,  T, X, L) or jump(T, C ,  X ,  Y, L) : 
if L is not fail then 

SB := tmnsfominstruction(B, ti, L). 
Push SB onto BStack. 

end if 
Push the fall-through successor of B onto BStack. 

case suitch(T, R, Ll, L3, L3) : 
for ~ L E  (L1, L2, L3) do 

if (L is not f fail) then 
SB := tmnsfominstruction(B, ti, L). 
Push SB onto BStack. 

end if 
end for 
Push the fall-through successor onto BStack. 

case anify(X, Y, T, O ,  L) or unify,atomic(f, Y, L) : 
if (L is not fail) then 

Push block with label L onto BStack. 
end if 
Push the fdl-through successor onto BStack. 

end switch 
Emit ti and mark that code for B is regenerated. 

43: end if 



Algorithm 15 Anorithm to renenerate a BAM instruction 

1: Let T be the block whose Label is L in the original CFG. 
2: Let T' be the block whose parent is B and is a midue of T as recorded in 

PCFG. 
3: if (T' is different fiom T) then 
e Form a new label unique L-. 
5: Change the label of the block T9 to L-, 
6: Replace labd operand L with L,, in instruction I. 
7: end if 
8: Return T'. 

call/l instruction is handled accordingly. Due to last call optimization(LCO), the 

target of a jump/l instruction might be a procedure. Code regeneration for block 

with jump/l takes this into consideration. 

The root CFG block which is the program entry block may have at most one 

version that is different from itself since the bIock will be entered only once during PE 

resulting in the only time a residue is generated for the program entry block. Finally, 

a separate pass is made over the code generated to remove any unconditional jumps 

to the next instruction. The resulting BAM code is used to generate an executable. 

The present work uses the SPARC port of Aquarius Prolog compiler. Its back-end 

compiles BAM code to SPARC assembly instructions which in turn are assembled 

by the SPARC assembler [35] to generate a native executable. The resultant of 

code regeneration phase, described in this chapter, is a stream of BAM instructions. 

BhV instructions are Prolog terms and can be compiIed by Aquarius compiler which 

directly invokes the back-end and the assembler to produce a native executable. 

-h evaluation of the partial execution process is described in the next chapter by 

compiling some benchmark programs to native executables. 



Chapter 8 

Evaluation of BAM Code Partial Execution 

In this chapter, we present an evaluation of the partial execution described in the 

earlier chapters. First we present an discussion to provide the context for the bench- 

marking done to evaluate the work. Then we present the benchmarking methodology 

and the results. 

Evaluation Context 

In an increasingly cornp1e.x world of programming languages and processor archi- 

tectures, high performance of applications developed that use these languages is 

achieved by a combination of several architecture-independent and architecture- 

independent compiler optimizations. It is well-known that a combination of various 

analysis and optimizations is needed to expose further optimizations in the later 

phases of a compiIer [15]. A specific set of optimizations by themselves rarely pro- 

duce a highly optimized executable. 

The principd focus of the present work is to study the issues involved in de- 

sign and implementing a low-level language partial evaluator that enables several 

common compiler optimizations. Ideally, the benefits of the set of optimizations 

performed by partial evaluation would be fully evident along with low-level opti- 

mizations. Conventionally, a high-level language compiler builds more than one 

internal representation of the code in various phases. The low-level optimizations 

are performed before the executable is written out. To implement assembly-level 



optimizations we either need to interface with the existing SPARC back-end and/or 

assembler, or implement an assembler optimization phase that performs low-level 

optimizations. Neither of these is feasible given that this work is a single-person 

project. Hence there is no phase that performs any machinespecific optimizations, 

such as code motion, inter-procedural code scheduling, software pipelining, to name 

a few. 

The lack of a machine-specific optimizer can prove to be a handicap in generating 

a fully optimized executable thereby hiding the red performance improvement due 

to partial execution. The need for such a phase is even more evident when the 

program residue is larger than the original, as is often the case when PE is applied. 

The code size can affect the load time [27] of the executable. The additional code 

will also affect the code layout which in turn can degrade the performance due to 

instruction and/or data cache access patterns, despite any speed-up achieved due 

to partial execution. A machine-specific code motion optimization can deviate this 

problem whenever possible. 

Table 8.1 gives a list of the programs used for benchmarking the partial executor 

implementation described in this thesis. These programs are taken from the bench- 

marks used in presenting the performance of the Aquarius Prolog compiler [67]. The 

Aquarius benchmark suite consists of "examples of realistic programs during compu- 

tations representative of Prolog" [67]. We have chosen some small and medium-sized 

programs that facilitate manual verification of correctness the entire PE process and 

the generated BAiV and SPARC assembly code. Keeping the lack of machine-speczc 

optimizer in context, the performance of these programs was measured to get an 

indication of the potential speedup PE optimizations can produce. 

8.1.1 Benchmarking Methodology 

Here we describe the process used to perform partid execution on benchmark pro- 

grams. This process is illustrated using one of the benchmarks, qeort-pl that 

implements quick sort. This program contains the definition of qsort/3 and of 



the program entry predicate that has no arguments and has a call to qsort/3 in 

its body with the appropriate arguments instantiated. We refer to the predicate 

qsort13 as the top-level predicute. The program entry predicate and the toplevel 

predicate are separated into two Prolog files. The file containing toplevel predicate 

is compiled using global flow analysis to BAM code, say orig.  b. The partial execu- 

tor is run with 0rig.b as input resulting in a BAM code residue, residue. b. Then, 

residue. b is compiled along with the 6le containing the program entry predicate 

call resulting an executable corresponding to residue. The performance of this exe- 

cutable is compared with that resulting &om compiling the file with entry predicate 

and the toplevel predicate. The following alternate compilation may also be em- 

ployed. The entire original Prolog source containing both the toplevel and entry 

predicates may be compiIed to BAM code using global flow analysis. This is fol- 

lowed by partial execution of the BhM code to yield a residue. The residue is then 

compiled using the Aquarius Prolog compiler to result in an executable. However, 

this does not provide the correct measure of effectiveness of partial execution since 

both GFA and PE have the additional information about the modes with which of 

the toplevel predicate are called. This information is not necessarily available in 

general program. Thus this manner of compiling benchmarks was not employed. 

The benchmarks were each run 10 times on a lightly-loaded Sun SPARCstation 

20/30 with 64MB of memory. The best and worst of these 10 times are discarded 

and the rest were averaged to eliminate any extraneous machine states that are 

not in a typicd run of the program. The benchmarking results are presented in 

Table 8.2. The correctness of aIl the transformations done by the partial executor 

and the output of all the programs was manually verified. 

By performing PE on allparms and fibo, redundant conditional instructions 

and consequently dead-code m e  discovered. This resulted in a h a l  executable 

with 90 and 140 SPARC instructions lesser, respectively. The deadcode corresponds 

to BAM code in a never taken subgraph of an execution thread. 

'The Aqnarins compiler considers main/O as the pmgram entry predicate by default 



Table 8.1: Benchmarks 

tak 
ops8 
queens3 
zebra 
qsort 

Description 
Computing permutations of integers in three ways 
- insertion; reverse and append; findall(41 lines) - 
Computing Fibonacci number with starting 
value of 0 (21 lines) 
Recursive integer arithmetic (12 lines) 
Symbolic differentiation (25 lines) 
Solve 8 queens puzzle (all sohtions) 
A logical puzzle based on constraints (37 Iines) 
Quick sort of a list of numbers (11 lines) 

- - - - - -- 

Table 8.2: Execution times 
I 

Program 

with insertion 
with reverse and append 
with hdall 

fib0 
tak 
ops8 
queen-8 
zebra 

- 'a 

With PE phase 
- 

Without PE phase 



No PEbased optimization was possible on tak- This benchmark was chosen 

to demonstrate that not all programs benefit from partial execution. It has been 

observed that the program has very few alternate execution threads. Consequently, 

PEbased optimizations are not possible in its BAM representation. -4s with ail 

compiler optimizations, all programs may not benefit from PEbased optimizations. 

We 0 b ~ e ~ e  that programs with several alternate execution threads can potentidy 

benefit from such optimizations. 

-4 performance degradation was observed due to PE of ops8 and zebra. A 

residue that increased the code size by approximately 50% and 20%, respectively. A 

visual inspection of SPARC assembly reveals that code layout and the call-graph of 

the residue's executable are different from those of the original. Given the manud 

verification done of the correctness of PE transformations, we believe that the dif- 

ference in code layout and call-graph contribute to the degradation in performance. 

It was not possibIe to verify this conjuncture due to lack of machine-level optimizer 

or sophisticated disassembler. Either of these would have facilitated rearrangement 

of SPARC code generated by the post-PE back-end of Aquarius compiler. 

The changes in code layout and call graph were o b s d  using the b i n q  dump 

ing tool, ob jdump, from the GNU tool set. Both redundant branch elimination and 

specialization resulted due to PE of queens-8. Although PE of qsort optimizes 

away the redundant choicepoint creation which reduces the memory footprint, no 

speedup is observed. 

In summary, the above described evaluation process which is a combination of visual 

inspection for transformation correctness, result verification for execution correct- 

ness and CPU time utilization for performance measurement indicate the following: 

PEbased optimizations do result in speedup in programs with several execution 

threads. By inspecting the residue's executable, we believe that a post-PE machine- 

specific optimization phase can enhance the bendts of PE on the low-level code, 



viz., BAM code. For example, machine-specific optimizations, such as code layout 

or inter-block instruction scheduling and software pipelining that involve the new 

code generated, could enhance the QuaIity of the executable. In their absence, as 

is the case now, the resultant change in performance for the better or worse is due 

to PEbased optimization alone. Machine-specific optimizations are even more nec- 

essary due to potential procedure inlining done by the partial executor in several 

cases. 



Chapter 9 

Conclusions and hture Work 

9.1 Research Contributions 

The primary intent of this thesis was to investigate the application of partial evalu- 

ation on a low-level language during compilation. This investigation was geared as 

an important step towards answering the question "Can PE yield efficient low-level 

machine code?" posed by Jones [40]. To achieve the above stated goal, we pro- 

posed a new compiler back-end optimization technique based on partial evaluation 

of low-level RISGlike code, 

9.1.1 New Compiler Back-End Optimization Technique 

We studied various issues that are involved in design and implementation of such 

a partial evaluator as a back-end phase in a red-world Prolog compiler. We also 

presented solutions to problems that seem unique to partial execution of low-level 

code such as deciding correct program units for partial execution (Setion 4.2.1), 

correctly keeping track of changed return address (Section 5.2.2), deciding candidate 

static registers (Section 5.3.2) etc. Based on inspection of resuIting executable code 

and conclusions of other researchers [7,15,171 we believe that the full impact of such 

a PEbased optimization phase would be visible in conjunction with other a w e s  

sive machine-specific optimizations that take advantage of opportunities exposed by 

transformations done in the PE phase. 



9.1.2 Optimization Framework 

Another important contribution of the thesis is the demonstration that PE provides 

a framework of several conventionaI optimizations such as constant propagation, 

dead-code elimination, common subexpression evaluation and, - to a lesser extent 

- loop unrolling. The hit  three optimizations are illustrated in examples shown in 

Figure 4.4. Loopunroiling is described in Section 5.5, Further a Prolog-specific o p  

timization called choicepoint elimination is also demonstrated within the hmework 

of PE (Section 4.3.2). In conventional compilers, optimizations such as constant 

propagation and deadcode elimination are performed as separate phases [54]. We 

demonstrated that the effects of these optimizations may be obtained using a PE 

phase. 

9.1.3 Semantics Specification of Low-Level Code 

Further, we present a technique of implementation-independent specification of the 

Berkeley Abstract Machine using denotational semantics. Such a specification fa- 

cilitates verification of the correctness of any transformation and provides a precise 

definition of instructions for an implementation of the partid evaluator. 

9.2 Related work and applicability 

9.2.1 Partial Evaluation of Prolog 

Related work was discussed at several places in the thesis wide discussing various 

issues such as partial evaluation in general, general language compilation techniques, 

Prolog compilation techniques and program transformation issues. A brief summary 

of the same dong with aspects of the present work that can be prove beneficial in re- 

lation to Prolog follows. Partial evaluation typically is applied to programs written 

in a high-level language - either fnnctional or Object-oriented [22,39,42]. Sahlin 1581 

implemented an automatic partial evaluator for full Prolog called Mixtus. Similar 

efforts were made by Prestwich [56] and Lakhotia 1471. These implementati011s of 



partial evaluation, however, were not aimed to be used as compiler phase. None of 

them are geared towards program performance improvement and hence no perfor- 

mance evaluation is done. The present work aims at presenting PE as a compiler 

back-end phase that generates optimized code. Further, issues such as code par- 

titioning and memory models that need to be considered when performing partial 

evduation of high-level language programs differ from those while performing par- 

tial evaluation of low-level language programs. However, in this thesis we present 

a novel PE termination methodology (Section 5.5) that involves a loop termina- 

tion technique. This can be applied during PE of any program with procedure-like 

constructs. 

9.2.1.1 ProIog Programming Environment 

Several data structures were designed augmenting BAM memory model (Section 5.2) 

to facilitate speculative partial execution. Similar data structures and associated al- 

gorithms can be used during implementation of a Prolog debugger or a ProIog tracer. 

We also present a new technique referred to as defend dereferencing (Section 5.4.1) 

and it can find appkation in Prolog program analyses such as GFb4 [29,67]. 

9.2.2 Partial Evaluation of Low-Level Code 

Little work has been done in the area of applying partial evaluation to low-level code 

except that done by Bulyonkov [ll]. Program performance evaluation was, however, 

not presented by Bulyonkov. The present work is one of the few that studies the 

related design and implementation issues. It finds a utility for partial evaluation as a 

compiler backend phase and provides a framework for several conventional compiler 

optimizations that are performed often in an unconnected manner. 



9.2.3 Conventional Compiler Technology 

9.2.3.1 Binary Tkanslation 

Partial execution techniques detailed in this thesis may be applied in several ar- 

eas where conventional compiler back-end optimization techniques are widely being 

applied. One such area is binary tmnslation (611 whose value has been recognized 

in recent years- Binary translation is a technique that translates an arbitrary ex- 

ecutable binary of one architecture to executable binary for another architecture. 

It usually involves two phases - code translation and optimization. This technique 

makes application programs available on platforms on not otherwise supported by 

the vendor and when the user has no sources for recompilation. Although, the 

source and target languages differ for a binary translator, its primary functionality 

is to interpret the source language and emit equivalent target language instructions. 

Typically the translation process involves mapping a source instruction to one or 

more target machine instructions. Instead of emitting a generic "cannedn sequence 

of target machine instructions, specialized code for the program memory state can 

be generated by performing partial execution during the translation phase. Sev- 

eral of the analysis techniques described in this work may be applied during the 

binary translation phase to result in an optimized code. The optimization phase 

that follows translation phase will receive a more optimized version. 

9.2.3.2 Dynamic Optimization 

Another potential application area is dynamic optimization or dynamic compila- 

tion [8,23,31]. This emerging area of research refers to techniques that facilitate 

optimizing a program in memory at run-time. For example, it is common for com- 

pilers to generate executables using a common instruction set architecture (ISA) 

such as the 80486 to run on an Intel-based system or the 21064(EV4) to nm on an 

Alpha-based system. If, however, the program is being executed on a later architec- 

ture implementation that would most likely support advanced instructions having 

higher performance than those in the base architecture, it is possible to recognize 



this fact and replace such instructions with their better performing counterparts. In 

essence the executing program is specidized for the architecture implementation it 

is running on. For instance, the sequence of instructions used to load a byte in an 

wecutable generated for a base 21064 architecture may be replaced with a single 

ldb instruction if it is running on a more recent version of Alpha processor. Using 

PE techniques, the program can be speciaIized for the host architecture implementa- 

tion in several ways: its instruction schedules may be modified on the fly for better 

performance; its memory access pattern may be tuned with the knowledge of the 

cache sizes. For example, a 21164 haa a wider instruction pipeline and has more 

number of function units in comparison to a 21064 processor. Hence the instruction 

scheduling needs to be different to exploit the performance advantage a 21164 offers. 

These system parameters provide the static information for the specialization of the 

program being executed. Partial execution techniques described in this thesis may 

be directly applied in the context of dynamic optimization. 

9.2.3.3 Link-Time and Post-Link Optimization 

Another potentid area of application for the PE techniques described in this thesis 

is in tools [I?, 621 that perform link-time/post-link-time processing- Information 

such as relocation, memory aliasing can be extracted from the disassembiy of the 

executable using PE techniques described in this thesis. Such tools usually [17] 

depend on the existence of this information as part of the executable- However, 

using partid evaluation this information can be correctly reconstructed to facilitate 

further analysis and code aptimizations. 

9.3 Future Work 

The following issues should next be addressed to M y  establish PE as a viable 

technique in the mainstteam machinedependent back-end compiler optimizations. 

FirstIy, a post-PE phase that performs machine specific optimizations such as inter- 

procedure instruction scheduling and soRTRare pipelining needs to be implemented 



either in the compiler backend or in the assembler. This will complete the environ- 

ment in which performance of PEbased optimizations may completely be evaluated. 

Further, tools that non-intrusively profile a program at execution time need be de- 

veloped to validate the observed performance. These tools will allow us to study 

issues such as effects of increase in code size, changes in code layout that seem to 

be a very common result of PE. 

Next, it will be interesting to study the impact of partial execution based opti- 

mizations for the increasingly complex processor architecture implementations with 

advanced mechanisms such as pipehed out-of-order instruction issue, simultane- 

ous multi- threading (SMT), predicated execution etc., that challenge conventional 

back-end optimization techniques. 

Two of the main stream processor architectures are taking different approaches 

to evolve higher performing implementations. Correspondingly, compilers have to 

evolve to incorporate the new processor functionalities and generate efficient code 

that exploits processor advances. For example, it was announced that on-chip SMT 

will be implemented on the next generation of Mpha processors to allow instructions 

from various processes to be in flight at any given time [25]. A partial executor that 

maintains a model of the processor execution state during code generation might be 

one approach to assist compilation for an SMT processor. The LA-64 architecture 

implementation uses predicated execution and relies on sophisticated compilers [46). 

Optimized code generation may be done by eliminating all code streams that can 

be identified by partial execution. These are two of the examples where partial 

evaluation can prove to be a vduable too1 in compilers for future processors. 
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