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ABSTRACT 
The plant phenylpropanoid pathway is initiated from deamination of phenylalanine to form 

cinnamic acid followed by hydroxylation and methylation of the aromatic ring to generate a 

variety of phenolic compounds including lignin monomers, flavonoid compounds and sinapate 

esters. The incorporation of phenylpropanoid metabolism served as a key step in the early land-

colonization of plants from aqueous environment since phenolic compounds play important roles 

in plant development and abiotic/biotic stress responses. Lignin is a heteropolymer of 

hydroxycinnamyl alcohols that are derived from the major branch of plant phenylpropanoid 

pathway. The main function of lignin is to enhance the strength of plant cell wall and waterproof 

the vascular system for long-distance transportation of water and solutes. In addition, lignin is 

also involved in protecting plants against pathogen attack. My Ph.D. research is to investigate 

how lignin biosynthesis contributes to plant immunity. The results showed that the expression of 

major lignin biosynthetic genes was induced upon host fungal pathogen infection. Moreover, a 

mutant disrupted in the lignin gene F5H1 showed enhanced susceptibility when challenged with 

several fungal pathogens. F5H1 encodes a ferulic acid 5-hydroxylase that is uniquely present in 

angiosperm plants, leading to the biosynthesis of syringyl lignin monomer, which is not present 

in gymnosperm plants. Subsequent research demonstrated that f5h1 mutation impaired the 

penetration (pre-invasion) resistance but did not impact post-invasion resistance. Furthermore, 

the pathogen-induced expression of lignin genes was independent of well-characterized 

defensive signaling pathways, and regulated by a novel regulating mechanism. F5H1 contributes 

to pmr2-mediated resistance but acts independently of other molecular components of 

penetration resistance including PEN1, PEN2, and PEN3. In contrast to f5h1, a knockout mutant 

of flavonoid pathway gene chalcone isomerase (CHI/TT5) showed enhanced resistance to host 

anthracnose pathogen Colletotrichum higginsianum in a salicylic acid (SA)-dependent manner. 

Taken together, our results for the first time provide genetic evidence demonstrating that lignin 

biosynthetic gene F5H1 plays critical roles in plant penetration resistance and that an uncharted 

pathway in flavonoid metabolism confers an SA-dependent resistance pathway in Arabidopsis. 
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1.1 Plant disease resistance 

1.1.1 Overview of plant-pathogen interactions. 

Plants constantly confront numerous pathogens in nature, ranging from bacteria, fungi to 

nematodes. Different from animals, plants lack of mobile defender cells and rely on innate 

immunity that is gradually reinforced during the evolution of plant-pathogen interactions. Plant 

immunity consists of both constitutive defenses and inducible defenses, the latter of which is 

activated upon the successful elimination of constitutive defenses by a potential pathogen and 

mediated by non-self recognitio (Lipka et al., 2008). This non-self recognition is accomplished 

by either direct recognition of the pathogen itself, or indirectly by its infectious activities. Direct 

recognition requires membrane-bound pattern recognition receptors (PRRs) of host plant cell to 

recognize highly conserved microbial- or pathogen-associated molecular patterns (MAMPs or 

PAMPs) of pathogens and activate PAMP-triggered immunity (PTI; Schwessinger and Zipfel, 

2008). Several PRR-MAMP/PAMP pairs have been characterized in various plant pathosystems, 

including Arabidopsis Flagellin Sensitive 2 (FLS2)/bacterial flagellin (Gomez-Gomez and Boller, 

2000), EF-Tu Receptor (EFR)/bacterial elongation factor EF-Tu (Zipfel et al., 2006) and LysM 

DOMAIN Receptor-like Kinase 1 (LysM-RLK1)/fungal chitin (Wan et al., 2008). 

 Indirect non-self recognition usually detects fungal pathogenic activities; especially the 

debris generated from pathogen penetration activities. Many plant pathogens secrete multiple 

cutinases and cell wall degrading enzymes (CWDEs) to degrade the plant epidermal cuticle and 

cell wall. As a result, derivatives generated from the degradation of cuticle and cell wall will be 

recognized by host cell as damage-associated molecular patterns (DAMPs) and further activate 

defensive responses. A well-characterized example is the oligogalacturonides, fragments of 

pectin derived from polygalacturonase (Ridley et al., 2001), which can be detected by Wall-

Associated Kinase 1 (WAK1; Brutus et al., 2010). Either type of non-self recognition will 

subsequently activate various signaling transmissions and finally induce defensive responses to 

prevent further colonization. 

Successful pathogens are able to suppress PTI by employing effector molecules to target 

distinct plant metabolism to either suppress defensive reactions or hijack plant cell metabolisms 

for their own benefits (O’Connell and Panstruga, 2006; Speth et al., 2007). This results in 

effector-triggered-susceptibility (ETS). Correspondingly, plants have evolved resistance (R) 

genes that can specially recognize effector molecules and trigger effector-triggered immunity 
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(ETI), which is usually featured by hypersenstitive response (HR)-cell death at the infected cell 

(Spoel and Dong, 2012). In this scenario, natural selection will force the pathogen to adapt new 

mechanisms to overcome ETI. Such evolutionary steps occur back and forth between plants and 

pathogens ad infinitum. 

Due to innate plant immunity, only a small group of pathogens (referred to as 

host/compatible/adapted pathogens) are able to cause disease on plants. Most potential pathogens 

(referred to as nonhost/incompatible/non-adapted pathogens) fail to cause disease due to unique 

plant nonhost resistance. 

 Nonhost resistance refers to the ability of one entire plant species to resist all genetic 

variants of one pathogen species (Heath, 1997). In general, nonhost resistance can be divided 

into penetration (or pre-invasion) resistance and post-invasion resistance (Thordal-Christensen, 

2003; Lipka et al., 2005). Upon the arrival at a host plant cell, many pathogens, especially fungal 

pathogens, will have to obtain nutrients from host cells to support subsequent development and 

reproduction. However, the rigid plant cell wall separates pathogens from host cell metabolites. 

Therefore, plant pathogens deploy various strategies to break this obstacle and obtain access to 

intracellular nutrients. Fungal pathogens usually directly penetrate through plant cell walls to 

form intracellular hyphae (such as anthracnose pathogens) or feeding organ haustoria followed 

by development of extracellular hyphae on the top of infected cells (such as powdery mildew; 

Jones and Dangl, 2006). Penetration resistance is mainly focused against this positive penetration 

process and results in a failure of entry into the host cell. For example, the nonhost powdery 

mildew pathogen Blumeria graminis f.sp. hordei displays as low as a 5% entry rate on the model 

plant Arabidopsis (Lipka et al., 2005). For the 5% successfully penetrated B. graminis f.sp. 

hordei spores, post-invasion resistance including HR-like cell death will eventually terminate 

further fungal development.  

In contrast, host pathogens are able to overcome both penetration and post-invasion 

resistance and subsequently complete their life cycles on host plants. For example, the host 

powdery mildew pathogen Golovinomyces orontii achieves 70% entry frequency on Arabidopsis, 

indicating the failure of penetration resistance (Lipka et al., 2005). Post-invasion resistance of 

Arabidopsis such as jasmonic acid/ethylene-mediated resistance is not activated upon the 

infection of host powdery mildew as well (Zimmerli et al., 2004). In the subsequent sections, 
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common mechanisms of plant disease resistance, including both constitutive and inducible 

defenses, will be discussed in detail.  

1.1.2 Constitutive defenses. 

 The first layer of plant disease resistance is pre-formed or constitutive defenses, including 

physical barriers such as cuticular layers and plant cell wall and toxic chemical compounds such 

as phytoanticipins to kill the pathogens (Dixon, 2001; Heath, 2000; Kamoun, 2001; Numberger 

et al., 2004; Curvers et al., 2010). Although little evidence is available, pre-formed defenses are 

capable of terminating infection of nonhost pathogens without further activation of inducible 

defenses. A well-characterized example is avenacin, a phytoanticipin identified from oat plants 

(Papadopoulou et al., 1999). Wheat root pathogen Gaeumannomyces graminis var. tritici is 

unable to infect oat, while a closely related pathogen Gaeumannomyces graminis var. avenae is a 

host pathogen to oats. Research points out that G.graminis var. tritici is unable to detoxify 

avenacin (Bowyer et al., 1995).  

1.1.3 Penetration resistance. 

 If a potential pathogen overcomes or evades constitutive defenses, a host cell will first 

recognize the intruder and subsequently activate inducible defense reactions, including 

penetration and post-invasion resistance. Penetration resistance mainly occurs in the apoplastic 

region of epidermal cells since its major task is to prevent the entry of pathogens into the host 

cell. Three main strategies are employed by plants for penetration resistance: inhibiting CWDEs 

secreated by pathogens, “poisoning” the apoplastic region and finally, forming cell wall 

appositions (CWAs; papillae) as a reinforcement of host cell wall at specific plant-pathogen 

interaction sites (Hückelhoven, 2007).  

 Plant pathogens are able to secrete multiple enzymes to hydrolyze the structural polymers 

of cell wall to generate an ingress port. The cell-wall degrading secretome includes cellulases, 

polygalacturonases (PGs), xylanases and proteinases (Juge, 2006). One of the most characterized 

examples is the fungal PGs degrading pectin polymers. Pectin is a major constituent in the 

middle lamella, which holds neighboring plant cells together. Hydrolysis of pectin demolishes 

the integrity of plant cell wall and exposes other structural polymers such as cellulose and 

hemicelluloses to other hydrolytic enzymes. PG is able to hydrolyze pectin to generate 

galacturonic acid oligomers with different chain lengths, depending on the different action 
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modes on the pectin substrates (Parenicova et al., 2000). PG inhibiting proteins (PGIP) are 

membrane-bound proteins which are specific to PG but not to other pectin degrading enzymes 

(De Lorenzo et al., 2001). The contribution of PGIP to plant penetration resistance has been 

characterized in various plants including Arabidopsis (Powell et al., 2000; Ferrari et al., 2003). 

 In addition to cell wall degrading enzyme inhibitors, plant cells are also able to secrete 

toxic compounds into the apoplastic region to attack potential intruders upon recognizing their 

presence. These toxic compounds, which are termed as antimicrobial agents, include low-

molecule-weight chemical compounds and antimicrobial proteins. The low-molecular-weight 

compounds, or phytoalexins, are synthesized de novo and accumulate in plants in response to 

infection or stress due to wounding, freezing, ultraviolet light exposure, and exposure to 

microorganisms (Darvil and Albersheim, 1984; Graham and Graham, 1991; Paxton, 1991). For 

example, the powdery mildew resistant barley mutant mlo accumulates a higher amount of ρ-

coumaroyl-hydroxyagmatine, a type of phenolic phytoalexin, at the infection site and, thererby, 

is able to inhibit the formation of haustorium in vivo (von Röpenack et al., 1998). In addition to 

phenolic phytoalexins, Arabidopsis also accumulates tryptophan-derived phytoalexins such as 

camalexin that confer nonhost resistance against necrotrophic fungi Plectosphaerella 

cucumerina (Sanchez-Vallet et al., 2010). Antimicrobial proteins are mainly the enzymes that 

can influence the integrity of pathogen cell wall or plasma membrane, such as chitinase, 

glucanases, thionins, osmotins, proteases and defensins (Hükelhoven, 2007). Additionally, 

pathogenesis related protein 1 (PR-1) also shows antifungal activity by inhibiting the 

differentiation of the Uromyces fabae infection hyphae in resistant broad bean plants (Rauscher 

et al., 1999).  

 The focused formation of papilla at the infection site is considered to be the most 

important strategy in penetration resistance. The formation of papilla occurs in both compatible 

and incompatible plant-pathogen interactions, indicating its common role in plant-pathogen 

interactions (Aist, 1976). The main structural components of papilla are callose and lignin or 

lignin-like phenolic compounds that confer autofluorescence (McLusky et al., 1999). Moreover, 

papillae also contain other cell wall polymers (cellulose and pectin), phytoalexins, silicon, 

reactive oxygen species (ROS), and proteins such as peroxidase and hydroxyproline-rich 

glycoproteins (Aist, 1976; Schmelzer, 2002; Zeyen et al., 2002; An et al., 2006). Lignin, callose 

and other cell wall polymeric deposits in papillae might function together as a physical barrier 
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against physical forces generated by pathogens (Bechinger et al., 1999). In addition, lignin could 

also generate a hydrophobic environment in papilla to reduce the activities of CWDEs secreted 

by pathogens (Hückelhoven, 2007). As result, treatment with phenylpropanoid enzyme inhibitors 

that suppress lignin formation always impairs the papilla-based penetration resistance (Carver et 

al., 1992; Kruger et al., 2002). 

 The generation and accumulation of ROS molecules, such as hydrogen peroxide (H2O2), 

and nitric oxide (NO), occur at papillae and serve multiple purposes (Hüeckelhoven et al., 1999; 

2000; Prats et al., 2005; Trujillo et al., 2006). Firstly, they facilitate the hardening of papillae 

structure by enhancing the cross-linking of lignin precursors and cell wall associated proteins 

(Hüeckelhoven et al., 1999). Secondly, they might also cause direct toxic effects on invading 

pathogens (such as inhibiting spore germination; Peng and Huc, 1992). Finally, ROS could also 

function potentially as signaling molecules in the activation of downstream defense genes 

(Desikan et al., 2000).  

 A noticeable observation is that all defensive reactions described in penetration resistance 

are focused beneath the attempted penetration sites of pathogens. Therefore, directed transport is 

required to convey various molecules (from phytoalexins to building blocks of papillae) to the 

right site for proper function. Such directed intracellular transport requires the cytoskeleton 

system, including actin filaments and microtubules (Schmelzer, 2002). Similar activities, 

including cytoplasmic streaming and aggregation underneath the plant-pathogen interaction site 

and translocation of cellular organelles are correlated with the polarized re-organization of 

cytoskeleton components (Kobayashi, et al., 1992, 1997a, b; McLusky, et al., 1999; Lipka and 

Panstruga, 2005; Takemoto et al., 2003; 2006). Interference with actin dynamics disrupts 

penetration resistance and enhances the entry of fungal pathogen in various plant species 

(Kobayashi, et al., 1997a, b; Yun et al., 2003). In comparison with actin filaments, the role of 

microtubules in penetration resistance is not clear. However, Lee et al. (2012) characterized a 

type III secreted effector from Pseudomonas syringae, HopZ1, which is able to interfere the 

microtubule network in Arabidopsis and block the deposition of callose, suggesting that 

microtubules might be responsible for the transport of callose in defensive responses. 

 Recent forward genetic analyses have already characterized a number of molecular 

components contributing to plant penetration resistance, including PENETRATION 1 (PEN1), 

PEN2, PEN3, as well as MILDEW RESISTANCE LOCUS O 2 (MLO2)/POWERY MILDEW 
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RESISTANCE 2 (PMR2) (Jorgensen, 1992; Vogel and Somerville, 2000; Collins et al., 2003; 

Lipka et al., 2005; Stein et al., 2006). PEN1 encodes an Arabidopsis syntaxin (SYP121), which 

is required for the fusion of vesicle membrane with plasma membrane, with partner proteins 

SOLUBLE N-ETHYLMALEIMIDE-SENSITIVE FACTOR ADAPTOR PROTEIN 33 

(SNAP33) and VESICLE-ASSOCIATED MEMBRANE PROTEIN 721/722 (VAMP721/722; 

Kwon et al., 2008) and plays an indispensable role in the timely formation of papillae during 

fungal penetration activities (Assaad et al., 2004). Noticeably, PEN1 protein only accumulates at 

attempted penetration sites by powdery mildew pathogens, but not by other ascomycete fungi 

(Meyer et al., 2009). PEN2 encodes a peroxisome-localized glycoside hydrolase belonging to the 

Arabidopsis family 1 glycosyl hydrolase group of enzymes (myrosinases; Lipka et al., 2005) and 

PEN3 encodes an ATP-binding cassette (ABC) transporter (Stein et al., 2006). Further research 

pointed out that both PEN2 and PEN3 are required for the bacterial flagellin Flg22-induced 

callose deposition (Clay et al., 2009): PEN2 catalyzes the hydrolysis of 4-methoxy-indole-3-

ylmethylglucosinolate (4-methoxyl-I3G; Bednarek et al., 2009) and PEN3 is responsible for 

directing the hydrolytic products generated by PEN2 to the apoplastic region (Stein et al., 2006). 

Different from PEN1, PEN2 and PEN3 is required for resistance against a broad spectrum of 

pathogens (Lipka et al., 2005; Stein et al., 2006). 

 The MLO locus was first identified in barley and mediates resistance against powdery 

mildew (Jorgensen, 1992; Piffanelli et al., 2004). Later, MLO loci with similar functions were 

also identified from Arabidopsis, tomato and pea (Chen et al., 2006; Bai et al., 2008; Humphry et 

al., 2011). In the Arabidopsis, several mutants with enhanced resistance against powdery mildew 

have been characterized (pmr; Vogel and Somerville, 2000). The PMR2 is allelic to MLO2, and 

mutants of this gene display enhanced penetration resistance (Consonni et al., 2006). The 

specific function of MLO2/PMR2 proteins remains unknown, but pmr2/mlo2-mediated 

resistance in Arabidopsis requires PEN1, PEN2, PEN3, and tryptophan-derived metabolism, but 

not the SA/JA/ET signaling pathway (Consonni et al., 2006; 2010). Upon challenge of host 

powdery mildew, barley MLO proteins are accumulated underneath the pathogen penetration 

sites, suggesting its contribution to the successful entry of pathogen into host plant cell (Bhat, et 

al., 2005). Based on these observations, PMR2/MLO2 is proposed to be a negative regulator 

controlling PEN gene function in penetration resistance through an unknown mechanism 

(Underwood and Somerville, 2008). 
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1.1.4 Post-invasion resistance.  

Usually, penetration resistance cannot completely block pathogen entry. For example, 

nonhost powdery mildew B. graminis f.sp. hordei is able to successfully penetrate to form 

haustoria on Arabidopsis. In this circumstance, post-invasion resistance will be induced to 

restrict post-haustorial fungal development. The induction of post-invasion resistance can be 

characterized by the expression of marker genes, including Pathogenesis Related Gene-1 (PR-1; 

At2g14610) for the salicylic acid (SA) signaling pathway and Plant Defensin 1.2 (PDF1.2; 

At5g44420) for the jasmonic acid/ethylene (JA/ET) signaling pathway (Niu et al., 2011). Both 

the SA and JA/ET signaling pathways will further induce various defense responses such as a 

HR-like programmed cell death (PCD) in penetrated cells (Lipka et al., 2005). Various 

components of the SA/JA/ET metabolism/signaling pathways and their corresponding genes 

have been identified, including SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), 

PHYTOALEXIN DEFICIENT 4 (PAD4)/SENESCENCE-ASSOCIATED GENE 101 (SAG101), 

JASMONATE RESISTANT 1 (JAR1) and ETHYLENE INSENSITIVE 2 (EIN2; Wildermuth et al., 

2001; Gfeller et al., 2010; Lu, 2009; Stepanova and Alonso, 2009). Arabidopsis lines disrupted 

in the SA/JA/ET signaling pathways either by gene mutations or expression of a bacterial gene 

NahG to degrade SA molecule in Arabidopsis displayed enhanced suscpetibility against various 

plant pathogens (Lawton et al., 1995; Zimmerli et al., 2004; Lipka et al., 2005; Guo and Stotz, 

2007). In summary, both penetration and post-invasion resistance play essential roles in nonhost 

resistance of Arabidopsis against powdery mildew since a triple mutant pen2/pad4/sag101 

disrupted in both penetration and post-invasion resistance allowed the establishment of basic 

compatibility of nonhost powdery mildew B. graminis f.sp. hordei on Arabidopsis (Lipka et al., 

2005).  

1.2 Plant phenylpropanoid pathway. 
 Approximately 450 million years ago, plants began to migrate from water to the land. 

During this process, plants have incorporated various molecular, physiological and 

morphological adaptations to accommodate to the terrestrial environment (Waters, 2003). The 

phenylpropanoid pathway, which gives rise to a large group of secondary metabolites with 

common aromatic rings and hydroxy groups, is a critical evolutionary strategy during the 

“landing” of plants due to the significant contribution of phenylpropanoid compounds in plant 
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growth and development. For example, the major products of the phenylpropanoid pathway, 

hydroxycinnamyl alcohols, serve as the building units of lignin polymers that provide plants with 

strong mechanical support and waterproofing barriers (Boerjan et al., 2003). Phenolic 

compounds play indispensable roles in the survival of land plants.  

 Phenylpropanoid metabolism is initiated with phenylalanine (Figure 1.1). Phenylalanine 

is derived from shikimate pathway that also generates other aromatic acids, tyrosine and 

tryptophan (Hermann and Weaver, 1999; Triz and Galili, 2010). The initial three steps, which are 

catalyzed sequentially by phenylalanine ammonia lyase (PAL), cinnamic acid 4-hydroxylase 

(C4H) and 4-hydroxycinnamoyl CoA ligase (4CL) to form ρ-coumaroyl CoA, comprise the 

general pathway of phenylpropanoid metabolism (Figure 1.1). Subsequently, ρ-coumaroyl CoA 

is fluxed into both the flavonoid pathway and the lignin pathway, catalyzed by chalcone synthase 

(CHS) and hydroxycinnamoyl-CoA shikimate/quinate hydroxyxinnamoyl transferase (HCT), 

respectively (reviewed by Fraser and Chapple, 2011). The third branch of the phenylpropanoid 

pathway, the sinapate esters pathway, originates from intermediates of lignin pathway, 

coniferaldehyde and sinapaldehyde, which are catalyzed by an aldehyde dehydrogenase 

REDUCED EPIDERMAL FLUORESCENCE1 (REF1; Vogt, 2010).  
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Figure 1.1 Plant phenylpropanoid pathway. 

Schematic image of plant phenylpropanoid pathway including the chemical structures of each 
metabolite and the genes encoding the enzymes involved in this metabolism. Three branches that 
are derived from the general phenylpropanoid pathway are highlighted by color shadows: green 
shadow for monolignol biosynthetic pathway, blue for sinapate ester pathway and yellow for 
flavonoid pathway. The major research object gene of this project, F5H, is highlighted by red 
font. Gene abbreviations: PAL, phenyalanine ammonia-lyase; 4CL, 4-hydroxy cinnamoyl CoA 
ligase; C4H, cinnamate 4-hydroxylase; HCT, hydroxycinnamoyl-CoA shikimate/quinate 
hydroxyxinnamoyl transferase; C3’H, p-coumaroyl shikimate/quinate 3’-hydroxylase; 
CCoAOMT, caffeoyl CoA O-methyl transferase; CCR, cinnamoyl CoA reductase; F5H, ferulic 
acid 5’-hydroxylase; COMT, caffeic acid/5-hydroxyferulic acid O-methyl transferase; CAD, 
cinnamyl alcohol dehydrogenase; CHS, chalcone synthase; TT4, transparent testa 4; CHI, 
chalcone isomerase; TT5, transparent testa 5; F3H, flavanone 3-hydroxylase; TT6, transparent 
testa 6; REF1, Reduced Epidermal Fluorescence 1; SNG1, sinapoylglucose 1, SNG2, 
sinapoylglucose 2, BRT1, bright trichome 1. Gene REF1 encodes an Arabidopsis aldehyde 
dehydrogenase. This figure is drawn by the author of this thesis based on information collected 
from (Liu, 2012); Buer and Muday, (2004); Shirley et al., (2001). 
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1.2.1 Plant lignification process. 

1.2.1.1 Lignin: form and functions. 

Lignin is a generic term for a heteropolymer which is mainly composed of three types of 

hydroxycinnamyl alcohols (monolignols): ρ-coumaryl, coniferyl and sinapyl alcohols, which are 

converted to ρ-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units respectively when 

incorporated into lignin polymers during the polymerization process (Figure 1.2A; Boerjan et al., 

2003). Lignin polymers are mainly deposited in the secondary plant cell walls of various tissues 

including xylem vessels, fibers and sclereids. The composition of lignin monomers varies among 

different plant species. Generally, gymnosperm plants mainly consist of G units with minor 

amount of H units while angiosperm plants contain both G and S lignin monomers with variable 

ratios (Baucher et al., 1998). The deposition and composition of lignin are also under 

developmental and environmental regulations (Campbell and Sederoff, 1996). In addition to 

these three major monolignols, other phenolic compounds, such as 5-hydroxyconiferyl alcohols, 

hydroxyl-cinnamaldehyde, and hydroxycinnamic acids, are also incorporated into lignin 

polymers (Boerjan et al., 2003, Leple et al., 2007, Morreel et al., 2004, Ralph et al., 2008).  
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Figure 1.2 Chemical structures of monolignol and lignin polymerization bonds. 

(A) Chemical structures of classical monolignols. Numerical designations of carbon atoms are 
labeled in ρ-coumaryl alcohol. Coniferyl alcohol and sinapyl alcohol share the same numerical 
designation as ρ-coumaryl alcohol. Peroxidase and laccase are involved in the oxidative 
polymerization process. G, guaiacyl unit; S, syringyl unit. The polymerization bonds between 
monolignols are highlighted by yellow shadows. (B) Chemical structures of 5-hydroxyconiferyl 
alcohol and the dimer of benzodioxane formed by 5-hydroxyconiferyl alcohol with either G or S 
monolignols. The hydroxyl group at 5-position is labeled by red font. Red shadow highlights the 
special α-O-5 bond in benzodioxane. The oxidative polymerization process is catalyzed by 
peroxidase and laccase. R=H for G unit; R=OCH3 for S unit. The image is adapted from 
Albersheim et al., 2010. 
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As the second most abundant biopolymer in nature, lignin plays critical roles in resistance 

against environmental stresses. Firstly, it provides rigid mechanical support required for upright 

growth. Arabidopsis mutants with a significantly reduced level of lignin deposition, such as irx4 

and ref3 mutants, result in developmental deficiencies, including slower growth rate, failure of 

maintaining upright growth, dwarfism, and male sterility (Jones et al., 2001; Schilmiller et al., 

2009). Secondly, lignin generates a waterproofing surface for vascular elements, which enables 

the long-distance transportation of water and soluble nutrients from roots to aboveground organs. 

Finally, lignin is an extremely degradation-resistant and stress-inducible polymer that makes it 

an ideal barrier against various types of environment stresses, especially plant pathogens and 

herbivores.  

 The entire lignification process consists of three stages: biosynthesis of monolignols, 

intracellular transportation of monolignols to the cell wall, and oxidative dehydrogenation and 

polymerization to form heterogeneous macromolecules. Decades of research on plant 

lignification process have accumulated intensive knowledge of the biosynthesis and regulation of 

monolignols by characterization of participating gene members as illustrated in Figure 1.1. 

However, our understanding of subsequent transportation of monolignols to the plant cell wall 

and the polymerization remains fragmentary.  

1.2.1.2 Biosynthesis of monolignols. 

 Biosynthesis of monolignols comprises the major branch of plant phenylpropanoid 

pathway and involves more than ten metabolic enzymes (Table 1.1; Figure 1.1; Costa et al., 

2003). Following the general phenylpropanoid pathway, ρ-coumaric CoA serves as the common 

precursor of all three types of monolignols; firstly, hydroxycinnamoyl CoA reductase (CCR) 

leads to the biosynthesis of ρ-coumaraldehyde which will be used by (hydroxy)cinnamyl alcohol 

dehydrogenase (CAD) to generate ρ-coumaryl alcohol; secondly, ρ-coumaroyl-CoA can also be 

catalyzed by hydroxycinnamoyl-CoA shikimate/quinate hydroxyxinnamoly transferase (HCT) 

and ρ-coumaroylshikimate 3’-hydroxylase (C3’H) to from caffeoyl CoA. Caffeoyl CoA can be 

either converted to feruloyl CoA by a caffeoyl CoA O-methyltransferase (CCoAOMT), or to 

caffeoyl CoA by CCR and subsequently to caffeoyl alcohol by CAD. Feruloyl CoA will be 

converted to coniferaldehyde by CCR and subsequently to coniferyl alcohol by CAD. Moreover, 

caffeoyl CoA and caffeoyl alcohol can be also converted to coniferaldehyde and coniferyl 

alcohol by caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT), respectively. Both 
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coniferaldehyde and coniferyl alcohol can be catalyzed by ferulic acid 5’-hydroxylase (F5H) to 

form 5-hydroxyconiferaldehyde and 5-hydroxyconiferyl alcohol, respectively. 5-

Hydroxyconiferaldehyde can be converted to sinapaldehyde by COMT. The final monolignol 

unit, sinapyl alcohol can be either directly generated from 5-hydroxyconiferyl alcohol by COMT, 

or from sinapaldehyde by CAD (Fraser and Chapple, 2011; Liu, 2012). 

Table 1.1 Monolignol biosynthetic genes in Arabidopsis.  
(Adapted from Coasta et al., 2003) 

Enzymes Gene redundancy in 
Arabidopsis Genome 

Reference 

Phenylalanine ammonia lyase (PAL) Multi gene family; 4 members Koukol and Conn, 1961 
Cinnamate-4-hydroxylase (C4H) Single copy Benveniste et al., 1986 
4-Coumarate CoA ligase (4CL) Multi gene family; 14 members Lee et al., 1995 
Hydroxycinnamoyl-Coenzyme A 
shikimate/quinate 
hydroxycinnamoyltransferase (HCT) 

Single copy Hoffmann, et al., 2004 

ρ-Coumaroylshikimate 3’-hydroxylase (C3H) Single copy Schoch et al., 2001 
Caffeoyl-CoA O-methyltransferase 
(CCoAOMT) 

Multi gene family; 4 members Ye et al., 1994 

Cinnamoyl CoA reductase (CCR) Multi gene family; 12 members Jones et al., 2001 

Cinnamyl alcohol dehydrogenase (CAD) Multi gene family; 9 members Baucher et al., 1995 
Ferulate 5-hydroxylase (F5H) Multi gene family; 2 members Meyer et al., 1998 
Caffeic acid O-methyltransferase (COMT) Multi gene family; 17 members Muzac et al., 2000 

 Although monolignol biosynthetic genes have defined above, the specific subcellular 

locations of monolignol biosynthesis remain contentious. Phenylalanine is generated by the 

plastid-localized shikimate pathway (Herrmann and Weaver, 1999; Rippert et al., 2009), but the 

subsequent lignin biosynthetic enzymes are located in two different cellular locations: the three 

cytochrome P450 proteins, C4H, C3’H and F5H, are predicted to be anchored at the outer 

surface of endoplasmic reticulum (ER) membranes (Dunkley et al., 2006), while other enzymes 

are soluble proteins in the cytosol (Takabe et al., 1985, Nakashima et al., 1997, Chen et al., 

2000). Recently, ER-localizations of C4H and C3’H have been confirmed in Populus by 

fluorescence fusion proteins, which is consistent with previous publications (Ro, et al., 2001; 

Chen et al., 2011). The two different subcellular locations of monolignol biosynthetic enzymes, 

as well as the plastid localization of the original substrate phenylalanine, suggest a possible 

sequential translocation of intermediates between enzymes that are located in different cellular 

organelles. This translocation procedure might result in an efficient metabolism process. For 
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example, it may help to reduce the potential toxicity of intermediate phenolic metabolites to the 

plant and/or to enhance enzymatic reaction efficiencies (Srere, 1987; Hrazdina and Jensen, 1992; 

Burbulis and Winkel-Shirley, 1999; Winkel-Shirley, 1999). In fact, several cytosolic lignin 

biosynthetic enzymes, including PAL, CAD, COMT and 4CL have been shown to transiently 

associate with ER-Golgi derived vesicles and disperse into cytosol (Takabe, et al., 2001; 

Takeuchi, et al., 2001). Moreover, immunolocalization analysis of the poplar PAL enzyme and a 

fluorescence fusion protein of the tobacco C4H enzyme further demonstrated that PAL is in 

close physical association with C4H on ER microsomes (Achnine et al., 2004; Sato et al., 2004). 

Together with the observation that PAL enzyme activities are reduced in transgenic tobacco with 

down-regulated C4H (Blount et al., 2000), all of the evidence implies that the three cytochrome 

P450 monooxygenases C4H, C3’H and F5H may coordinate the entire lignin biosynthesis by 

anchoring other soluble lignin biosynthetic enzymes to the outer-surface of ER for specific 

reactions. However, a massive amount of work is required in the future to fully demonstrate this 

hypothesis, such as determination of F5H subcellular location, a dynamic analysis of whether 

spatial and physical locations change for all monolignol biosynthetic enzymes, and how this 

process affects biosynthesis, intracellular transportation and eventual deposition of monolignols.  

1.2.1.3 Intracellular transportation and polymerization of monolignols. 

 Monolignols must be transported to the cell wall where oxidative polymerization of the 

lignin polymer occurs. The molecular mechanism of intracellular transportation remains unclear. 

Previous research has revealed that the hydroxycinnamyl alcohols undergo a glycosylation 

process in plant cell: the ρ-coumaryl, coniferyl and sinapyl alcohols were glucosylated to form 4-

O-β-D-glucosides, named as ρ-coumaryl alcohol glucoside, coniferin and syringin, respectively. 

Coniferin and syringin have been identified mostly in gymnosperm and some angiosperm plants 

(Terazawa and Miyake, 1984; Whetten and Sederoff, 1995; Hemm et al., 2004). This 

glucosylation process is catalyzed by coniferyl/sinapyl alcohol glucosyltransferase (Steeves et al., 

2001). Previous research pointed out that these glucocojugates possibly exist in the vacuoles of 

cambial cells. Therefore, it was thought that they function in storage and subsequent transport of 

monolignols at least in these gymnosperm species and relatively less advanced angiosperm 

plants such as Magnoliaceae and Oleaceae families (Leinhos and Savidge, 1993; 

Dharmawardhana et al., 1995; Steeves et al., 2001; Tsuji and Fukushima, 2004). From vacuoles, 

it was thought that monolignol-glucosides are exported to the cell wall through an unknown 
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mechanism and undergo deglucosylation that is catalyzed by specific β-glucosidases before 

polymerization occurs. Such a glucosidase has been characterized from various plant species, 

including Arabidopsis (Marcinowski and Grisebach, 1978, Leinhos et al., 1994, 

Dharmawardhana et al., 1995; Escamilla-Trevino et al., 2006). The coniferyl/sinapyl alcohol 

glucosyltransferase and the corresponding glucosidase had given rise to the hypothesis of 

monolignol regulation of storage and transportation for lignin biosynthesis. 

 However, recent research has obtained negative evidence regarding this hypothesis and 

has complicated the issue. The most surprising observation is that ectopic expression of 

glucosyltransferses only affects the content of soluble monolignol glucosides, but does not alter 

overall lignin deposition (Lanot et al., 2006; Vanholme et al., 2008). Moreover, feeding 

radioisotope labeled phenylalanine showed specific incorporation of 3H-Phe into monolignols 

and lignin constituents, but not monolignol glucosides (Kaneda et al., 2008). Therefore, 

monolignol glucosylation-deglucosylation is believed to be part of a regulation or storage 

mechanism for monolignols preventing free diffusion of monolignols, and monolignol aglycone 

is the chemical form of monolignols for transport to the cell wall.  

 Another critical step of lignin transportation is the cross-membrane transfer of 

monoligols to reach the apoplastic region. Three hypothetical mechanisms regarding the cross 

membrane transport of monolignols have been proposed: exocytosis via ER-Golgi derived 

vesicles, passive diffusion, and active transportation via membrane-located transporters (as 

reviewed by Liu et al., 2011). Other cell wall materials, such as pectin and hemicellulose, are 

synthesized in the Golgi and exported to the apoplastic region by ER-Golgi-mediated exocytosis 

(Lerouxel et al., 2006; Sandhu et al., 2009). Early feeding experiments with radioisotope-labeled 

phenylalanine and autoradiographic and immunochemical studies also supported the ER-Golgi-

mediated exocytosis of monolignols (Pickett-Heaps, 1968; Fujita and Harada, 1979; Takbe et al., 

1985). However, recent research pointed out that observed isotope labels in the ER-Golgi are 

derived from phenylalanine incorporated into proteins, rather than monolignols (Kanede et al., 

2008). Although subcellular locations of monolignol biosynthetic enzymes C3’H and C4H had 

suggested ER as the location of lignin biosynthesis (Chen et al., 2011), it may not play 

significant roles in monolignol transportation.  

 The passive fusion hypothesis originated from the facts that “non-traditional” 

monolignols (rather than H, G and S units) can be detected in lignin polymers both in natural 
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plants and in transgenic plants with altered lignin biosynthesis (reviewed by Vanholme et al., 

2008; 2010). Furthermore, lignin precursor analogs are easily partitioned into artificial 

membranes such lipid bilayer discs in vitro (Bojia et al., 2007, 2008). However, the selection 

mechanism is not clear regarding how the monolignols and derives are sorted and incorporated 

into the apoplastic region.  

 Finally, recent research highlights the hypothesis that transporter-mediated active trans-

membrane transport may play a significant role in transportation of monolignols across the 

plasma membrane. This hypothesis is based on the observation of a highly spatial deposition 

pattern of various monolignols in plant cells. For example, in birch woods, coniferyl alcohols are 

deposited in both vessel and fiber cell walls while sinapyl alcohols are only deposited in the 

latter (Fergus and Goring, 1970). A similar distribution is also reported in Arabidopsis thaliana 

(Chapple et al., 1994). Even within one type of cell, the middle lamella region and the secondary 

cell wall consist of different monolignols (Terashima et al., 1993) and the S1, S2 and S3 layers 

of secondary cell wall consist of sequentially deposited ρ-coumaryl alcohols, coniferyl alcohols 

and sinapyl alcohols (Terashima et al., 1993; Terashima et al., 1986a; 1986b). Such a highly 

organized distribution of different monolignols suggests that the deposition of lignin monomers 

in the plant cell wall is a highly regulated process in which an active transport mechanism is 

possibly involved.  

 ABC transporters represent a large, ubiquitous superfamily with up to 120 putative 

members in Arabidopsis (Sanchez-Fernandez et al., 2001). Most of the ABC members are 

membrane-bound proteins that participate in translocation of a wide range of molecules, 

including mineral ions, lipids, and peptides (Higgins, 1992; Sanchez-Fernandez et al., 2001; Rea, 

2007; Verrier et al., 2008). Moreover, ABC transporters ABCG11/WBC11 and ABCG12/CER5 

export wax and cutin precursors to the apoplast region to generate cuticle, the lipid layer 

covering plant epidermal cells (Pighin et al., 2004; McFarlane et al., 2010). 

 Numerous reports suggest the possible role of ABC transporters in lignin export. For 

example, expressed sequence tags (ESTs) encoding putative ABC transporters are frequently 

identified in lignifying or lignified tissues, such as xylem and tracheary elements, as measured by 

transcriptome profiling conducted on gymnosperm and angiosperm plants (Allona et al., 1998; 

Hertzberg et al., 2001; Kirst et al., 2003; Egertsdotter et al., 2004; Paux et al., 2004; Pesquet et 

al., 2005). Proteomic analysis also showed tissue-specific distribution of ABC transporter 



	
   19	
  

subfamilies B and G in cambium/phloem (Nilsson et al., 2010). In Arabidopsis, seven ABC 

transporter genes were co-expressed with lignin biosynthetic genes in the tissues described above 

(Ehlting et al., 2005). The maize mutant bm2, which deposits a reduced level of guaiacyl lignin 

also displays decreased transcription of one ABC transporter gene. All of these results suggested 

that ABC transporters might play a significant role in transporting monolignols to the cell wall 

(Samuels et al., 2002; Douglas and Ehlting, 2005). Recently, Miao and Liu (2010) showed that 

the uptake of monolignol coniferyl alcohol by prepared plasma and vacuolar membrane vesicles 

from Arabidopsis is ATP-dependent and inhibited by ABC transporter inhibitor, demonstrating 

the participation of ABC transporter in the cross-membrane transportation of monolignols. 

Moreover, their work also demonstrated that monolignol aglycones and glucocojugate can be 

recognized by and taken up by plasma membrane and vacuole membranes, respectively. Such 

selective uptake of monolignols by different membrane preparations further supported the 

opinion that glucocojugate is for storage of monolignol in central vacuoles while monolignol 

aglycones for transmembrane export. 

It remains a challenge to identify the particular ABC transporter(s) for lignin export due 

to the natural properties of lignin and ABC transporters. Many ABC transporter genes showed 

correlated expression with lignification process (Ethlting et al., 2005), but none of the mutants 

disrupted in these genes shows altered lignin deposition in xylem vessels (Kaneda et al. 2011). 

As described, the lignification process is complicated and highly organized in a “cell type-

specific” manner. Therefore, distinct membrane transporters might be involved. Since many 

ABC transporters displayed overlapping transcription patterns, functional redundancy may have 

resulted in the unaltered lignin depositions in single mutants when the lignin profiling is 

performed as pooled samples from various tissues. In addition, some ABC transporters, such as 

ABCB14, show low substrate specificity and are able to carry unrelated molecules in order to 

execute various biological processes, and this low specificity enhances the complexity of the 

ABC transporter story in lignin biosynthesis (Verrier et al., 2008; Ruzicka et al., 2010; Lee et al., 

2008; Kaneda et al., 2011). Therefore, mutants disrupted in multiple ABC transporter genes and 

a precise “cell type-specific” lignin profiling are required for future research in this area of lignin 

deposition. 

 The final step of lignification is the polymerization of lignin monomers by oxidative-

coupling process catalyzed by perxidases, laccases and other phenol oxidases (Freudenberg, 
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1959; Ralph et al., 2004; Davin et al., 2008). Various bonds are formed to construct a 

heteropolymer of lignin, with the most abundant, but least strong interaction bond being β-Ο-4 

(Figure 1.2A). Other bonds, including β-O-5, β-β, β-1, 5-5, 4-O-5, are present in less amount but 

are more resistant to chemical degradation (Figure 1.2A; Boerjan et al., 2003). Peroxidase uses 

hydrogen peroxide (H2O2) as its electron receptor to oxidize various phenolic compounds, 

preferrably the coniferyl alcohol to generate a monolignol radical (Harkin and Obst, 1973). In 

contrast, sinapyl alcohol is a poor substrate for oxidation and only specific peroxidases are able 

to directly oxidase sinapyl alcohols (Sasaki et al., 2006; 2008). Thus, a radical-mediated lignin 

polymerization model was initially described by Hatfield and Vermerris (2001), such that 

peroxidase will first oxidize a coniferyl alcohol to form a highly oxidative coniferyl alcohol 

radical. Subsequently, the coniferyl alcohol radical, in one aspect, can be directly polymerized to 

lignin monomer at a higher oxidation state through a coupling reaction; in the other aspect, the 

highly oxidative state of the coniferyl alcohol radical can be transferred to sinapyl alchol or to a 

lignin polymer with a basic oxidative state to generate sinapyl alcohol radicals and high-

oxidative state lignin polymers, respectively. Later a diffusible redox shuttle-peroxidase system 

was proposed regarding the mechanism of lignin monomer/polymer oxidation as a supplement to 

the model. In this case, a manganese ion will be oxidized by a membrane-bound peroxidase and 

diffuse through small pores in the plant cell wall to the apoplastic region, where the oxidative ion 

will subsequently oxidize both monolignols and polymers (Onnerud et al., 2002). However, the 

finding of a sinapyl alcohol-specific peroxidase that is able to directly oxidase sinapyl alcohol 

and lignin polymer strongly challenges the hypothetical radical-/redox-shuttle-mediated 

polymerization model described above (Sasaki et al., 2004). 

 Laccases are a group of copper-containing enzymes that oxidize phenolics and inorganic 

and aromatic amines using O2 as an electron receiver (Reinhammar and Malmstroem, 1981). The 

ability of laccase to oxidize monoligols has been demonstrated in vitro (Freugdenberg, 1959; 

Sterjiades et al., 1992; Bao et al., 1993; Takahama, 1995; Richardson et al., 1997). Laccase-like 

activities are also detected in various lignifying tissues (Driouich t al., 1992; Bao et al., 1993; Liu 

et al., 1994; Richardson et al., 2000). The most well studied examples are Arabidopsis LAC4 and 

-17 genes, the double mutant of which displays a 30~40% reduction of lignin content (Berthet et 

al., 2011). Like most of the peroxidases, LAC17 shows a preference for conferyl alcohols as 

substrates. Currently, no sinapyl alcohol-specific LAC members are known. Moreover, the 
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double mutant lac4lac17 displays unique suppression of lignin biosynthetic gene transcriptions 

suggesting the existence of a feedback regulation mechanism (Berthet et al., 2011). 

 Generally, peroxidase/laccase-mediated polymerization process results in a “random-

coupled”, optically inactive and racemic lignin heteropolymer (Vanholme et al., 2010). The 

characterization of non-enzymatic dirigent protein challenges this hypothesis. Dirigent protein 

was originally identified as a guide protein for the biosynthesis of pinoresinol, an optically active 

dimer of coniferyl alcohols through β-β bond (Davin, et al., 1997). This guiding function of 

dirigent protein was then further expanded to lignin polymerization where it was thought to 

guide the coupling process of phenolic radicals and serve as the initiation site of lignin 

polymerization (Davin and Lewis, 2000; 2005; Davin et al., 2008; Donaldson, 2001). However, 

this hypothesis remains imperfect since no biochemical or genetic evidence is available to define 

the roles of characterized dirigent proteins. 

1.2.1.4 Regulation of lignin metabolism in plants. 

 As described above, the deposition of lignin occurs at specific developmental stages and 

displays complicated spatial deposition patterns, which together imply the existence of a 

sophisticated regulation system controlling the entire lignification process. How lignin genes are 

coordinately regulated remained a mystery until the characterization of AC-elements in the 

promoter region of the bean PAL2 gene (Hatton et al., 1995). The presence of AC-I (ACCTACC), 

AC-II (ACCAACC), and AC-III (ACCTAAC) is indispensable for the xylem-specific expression 

pattern of the PAL2 promoter by a GUS-reporter gene assay (Seguin et al., 1997). AC-elements 

have been discovered in the promoter regions of most of the lignin genes, including PALs, 4CL, 

C3’H, CCoAOMT, CCR and CAD (Raes et al., 2003). None of the AC-elements were discovered 

from the promoter regions of C4H and COMT1 genes. However, they may contain degenerate 

AC-elements since they are responding to the same type of MYB transcription factors as the 

lignin genes containing AC-elements (Zhou et al., 2009). The only exception is the S-lignin-

specific gene F5H1, since no AC-element is present in its gene sequence and it is not regulated 

by lignin specific transcription factors MYB58 and -63 (Zhou et al., 2009), suggesting a 

differential regulation of F5H1 from other lignin biosynthetic genes (Figure 1.3). Zhao et al. 

(2010) demonstrated that the Medicago F5H gene was regulated by the Arabidopsis secondary 

cell wall master switch NST3/SND1 by direct binding of SND1 to the promoter of Medicago F5H. 

However, in Arabidopsis, no interaction between F5H1 and SND1 was reported (Ohman et al., 
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2012). Zhong et al. (2010) also did not report the activation of Arabidopsis F5H as a direct target 

of SND1. Instead, the decrease of both S monolignols and F5H1 transcription were reported in 

mutant myb103 (Ohman et al., 2012), suggesting the Arabidopsis F5H1 is under regulation of 

this transcription factor MYB103. However, MYB103 failed to transactivate F5H1 promoter; 

other MYB and SND transcription factors were also down regulated in myb103 mutant (Ohman 

et al., 2012). Taken together, these observations suggest the existence of additional transcription 

factor(s) as the target of MYB103 and that further activate F5H1 (Figure 1.3). The direct binding 

of Arabidopsis SND1 with Medicago F5H might be a species-specific observation and may not 

be a general regulation pattern among other plant species. 
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Figure 1.3 Network of transcription factors regulating lignification in Arabidopsis. 

The schematic image of the Arabidopsis genetic regulation of lignification; The first level of 
“master switch” transcription factors NST3/SND1 and NST1 are regulated by organ identity 
genes IND and SHP2 (Mitsuda and Ohme-Takagi, 2008); while NST1 and NST2 are regulated by 
MYB26/MS35 (Yang et al., 2007). The upstream regulating of VND6 and -7 are not reported. 
First level of “master switch” transcription factors will further activate second level of “master 
switch” transcription factors, MYB46 and MYB83. The second level of “master switch” 
transcription factors will further activate lignin specific transcription factors MYB58, -63 and -85, 
which will subsequently activate the lignin biosynthetic genes containing AC-elements, except 
gene F5H1 which is under regulation of MYB103. The interaction between MYB103 and F5H1 
are not clearly identified (as indicated by “?”). Negative regulators of lignin biosynthetic genes 
include MYB32, -4, KNAT7 and BP. The figure is adapted from Zhao and Dixon, 2011 with new 
published data. The regulations of other secondary cell wall polymers by the two levels of 
“master switch” are omitted. Gene Abbreviations: IND, INDEHISCENT; SHP, 
SHATTERPROOF; MS, MALE STERILE; NST, NAC SECONDARY WALL THICKENING 
PROMOTING; SND, SECONDARY WALL-ASSOCIATED NAC DOMAIN; BP, 
BREVIPENDICELLUS; KNAT7, KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS 
THALIANA; F5H, FERULIC ACID 5’-HYDROXYLASE.  
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The ability of MYB transcription factors to activate phenylpropanoid genes was 

identified even before the discovery of AC elements in the bean PAL2 gene (Sablowski et al., 

1994; 1995). Subsequent research conducted on transgenic tobacco plants over-expressing 

Antirrhinum MYB308 and MYB330, as well as MYB proteins identified from Arabidopsis 

thaliana, Pinus taeda, Eucalyptus gunnii and Populus trichocarpa, reinforced the observation 

that MYB transcription factors regulate lignin biosynthetic genes (Tamagnone, et al., 1998; 

Borevitz et al., 2000; Patzlaff et al., 2003; Zhou et al., 2009; Legay et al., 2007; Lacombe et al., 

2000; Bomal et al., 2008; Anjanirina et al., 2010; Goicoechea et al., 2005; McCarthy et al., 2010; 

McCarthey et al., 2009; Zhong et al., 2007). Therefore, MYB transcription factors are the direct 

regulators of plant secondary cell wall lignification. Lignin-specific transcription factors were 

first characterized in Arabidopsis, including MYB85, MYB58 and MYB63 (Zhong et al., 2008; 

Zhou et al., 2009; Figure 1.3). Later Pinus taeda PtMYB1 was demonstrated to be a homologue 

of Arabidopsis MYB85 (Bomal et al., 2008). Based on their functions, these transcription factors 

are classified as negative repressors including MYB4, MYB32 and BREVIPEDICELLUS (BP), 

and positive regulators including MYB83, MYB58/63, MYB85 and MYB61 (Zhao and Dixon, 

2011; Figure 1.3). In addition to MYB transcription factors, LIM domain containing 

transcription factors have been identified from tobacco plants were also shown to regulate lignin 

genes PAL, 4CL and CAD and affect lignin deposition (Kawaoka and Ebinuma, 2000; 2001).  

Some of the MYB transcription factors are able to control the formation of entire 

secondary cell walls by regulating the biosynthesis of other polymers such as cellulose and 

hemicellulose. Typical examples of this type of MYB transcription factors include Arabidopsis 

MYB46 and its homologues MYB83 in Arabidopsis; EgMYB2, PtMYB4, PtMYB8, PtrMYB3, and 

PtrMYB20 in other plant species (Bomal et al., 2008). Due to the ability to regulate entire 

secondary cell wall metabolism and activate other MYB transcription factors such as MYB58 and 

MYB63 (Zhou et al., 2009), MYB46/MYB83 is considered as a “master switch” of secondary cell 

wall biosynthesis program. Similarly, another group of Arabidopsis transcription factors 

containing NAC domain, including NAC SECONDARY WALL THICKENING PROMOTING 

FACTOR1 (NST1), NST2, SECONDARY WALL-ASSOCIATED NAC DOMAIN 1 (SND1)/NST3, 

VASCULAR-RELATED NAC-DOMAIN 6 (VND6) and -7 are also controlling the entire 

secondary cell wall metabolism (Kubo et al., 2005; Zhong et al., 2006; 2007; Mitsuda et al., 

2007; Zhao et al., 2010). Subsequent research demonstrated that MYB46/MYB83, together with 
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SND3, MYB103, and KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (KNAT7) 

are direct targets of SND1/NST3 (Zhong et al., 2008). VND6 and -7 are also able to up-regulate 

MYB46 directly (McCarthy et al., 2009). Based on this observation, SND1/NST3, NST1, VND6 

and -7 are classified as first-level master switch and MYB46 and its homologue MYB83 as 

“second-level master regulator”. The master regulators activate down-stream transcription 

factors that will eventually activate lignin biosynthetic genes. All of the transcription factors 

described above form a complicated, multi-layered regulation network which is capable of 

coordinately regulating lignin metabolism in secondary cell wall metabolism (Zhao and Dixon, 

2011; Figure 1.3). However, experimental data suggests that such a network is not complete. For 

example, NST3 itself cannot activate lignification in developing interfascicular fiber cells (in 

which no MYB46 activity is detected), suggesting that an unknown negative repressor is present 

and able to suppress the expression of MYB46 and further prevent lignification at improper 

timing points of fiber cell development (Zhong et al., 2006; 2007).  

 Many lignin transcription factors display unique expression patterns and are responding 

to phytohormones and environmental stimuli. First-level master switches display tissue-specific 

expression patterns. SND1 specially controls the secondary cell wall metabolism in fibers while 

VND6 and -7 are indispensable to the secondary cell wall thickening in vessels (Kubo et al., 

2005; Zhong et al., 2006; Mitsuda and Ohme-Takegi, 2008; Mitsuda et al., 2008; Yamaguchi et 

al., 2008; Zhong et al., 2008). Both fiber-specific and vessel-specific first-level master switches 

can activate MYB46/83. In the case of other lignin activating transcription factors, most are 

expressed in lignifying tissues, while lignin repressors are expressed in tissues with little or no 

lignin deposition as well as at particular times in lignifying tissues to prevent lignification at 

improper developmental stages. For example, the Arabidopsis lignin repressor MYB32 is highly 

expressed in flowers rather than in stems and greatly activated by auxin (Preston et al., 2004). 

The aspen lignin repressor MYB21 is also induced by auxin, but highly expressed in lignifying 

zones (Karpinska et al., 2004). In addition to auxin, gibberellin, cytokinin, jasmonic acid, 

ethylene and brassinosteroid are also involved in regulating lignification process (Ellis et al., 

2002; Zhong et al., 2002; Karpinska et al., 2004; Burx et al., 2008; Hossain et al., 2012). 

However, the evidence is fragmentary and the connecting signaling components linking 

phytohormones and lignification remain to be identified. A mitogen-activated protein kinase 
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(MAPK) cascade is very likely to play a role in this connection due to the fact that PtMAPK6 is 

able to phosphorylate PtMYB1 and -4 (Morse et al., 2009).  

1.2.2 Flavonoid metabolism. 

In addition to the monolignol pathway, the flavonoid pathway generates another group of 

important secondary metabolites, which have essential physiological functions in plants 

(Ververidis et al., 2007; Buer et al., 2010). For instance, some metabolites of flavonoid pathway, 

such as anthocyanins, serve as visual attractors of pollinator insects to facilitate pollination 

process (Mol et al., 1998). They can also influence the transport of auxin (Peer and Murphy, 

2007). In legume plants, flavonoids are known to provide critical contributions in the legume-

bacterium symbiosis (Redmond et al., 1986; Djordjevic et al., 1987; Wasson et al., 2006; Zhang 

et al., 2009). In addition, flavonoid compounds also contribute to plant immunity. For instance, 

flax over-expressing a GT Family 1 Solanum sogarandinum Glycosyltransferase (SsGT1) 

displays enhanced resistance against fungal pathogen Fusarium and such enhance resistance is 

dependent on an increase of flavonoid glycoside (Lorenc-Kukuła et al., 2009).   

 Recently, plant flavonoids are receiving more and more attention due to their therapeutic 

effects in animals. The diversities of flavonoid biochemical structures allow them to interact with 

different target molecules identified from animals, including humans (William and Grayer, 2004; 

Taylor and Grotewold, 2005; Peer and Murphy, 2007).  Flavonoids act as anti-oxidant, anti-

proliferative, anti-tumor, anti-inflammatory and pro-apoptotic agents in animals and are 

potentially benefical at contributing to cure of many human diseases such as cancer, Alzheimer’s 

disease and cardiovascular disease (Williams et al., 2004; Taylor and Grotewold, 2005; Garcia-

Mediavilla et al., 2007; Pandey et al., 2007; Sung et al., 2007; Kim et al., 2008; Singh et al., 

2008). Some of the molecular targets of flavonoids in animals have been characterized in the 

work described above (eg. quercetin affects cancer by inhibiting a group of kinases; Boly et al., 

2011), which opens the gate for genetic engineering of plant flavonoids for pharmaceutical 

purposes. Taken together, a comprehensive understanding of plant flavonoid metabolism can 

benefit to both agriculture and other related industries, such as the health of human beings. 

The biosynthesis of flavonoids is branched from the general phenylpropanoid pathway 

from ρ-coumaroyl-CoA (Figure 1.1). The subsequent biosynthetic process has been extensively 

studied in the model plant Arabidopsis (Figure 1.4), due to the availability of mutants disrupted 

in each individual flavonoid biosynthetic gene, as well as transcription factors regulating 
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flavonoid metabolism (Buer et al., 2010). Most of these mutants, commonly known as 

transparent testa (tt) lines, can be easily identified by their seed testa colors; wild type seeds 

display a dark red-brown color while flavonoid mutant seed shows a range from lighter brown, 

tan colors through to the lemon-yellow color of mutant tt4 seeds due to the different levels of 

seed coat proanthocyanidin (Debeaujon et al., 2000).  

 

 

 

 

 

 

 

 

 



	
   28	
  

 

Figure 1.4 Flavonoid biosynthesis pathway. 

The schematic image of plant flavonoid biosynthesis. Image is adapted from Buer et al., (2010). 
Only the chemical structures of metabolites involved in early steps are shown. Green shadow 
box with dashed line highlights the isoflavonoid branch, which is not normally in Arabidopsis 
and is mainly restricted to legume plants. All genes are labeled with red fonts. Gene 
abbreviations: TT, transparent testa; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, 
flavonone 3-hydroxylase; F3’H, flavonol 3’-hydroxylase; DFR, dihydroflavonol reductase; PPO, 
polyphenol oxidase; 3GT, anthocyanidin 3-O-glycosyltransferase; ANR, anthocyanidin 
reductase; LDOX, leucoanthocyanidin dioxygenase. FLS, flavonol synthase; CHR, chalcone 
reductase; IFS, isoflavone synthase.  
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Flavonoid pathways in other plant species have also been analyzed, especially in legume 

plants, which lead to the discovery of isoflavone metabolism (Figure 1.4, green box with dash 

line; Buer et al., 2010). Isoflavone metaoblism is mediated by chalcone reductase (CHR) and 

isoflavone synthase (IFS; Akashi, et al., 1999; Steele et al., 1999; Jung et al., 2000; Overkamp et 

al., 2000). It is commonly believed that Arabidopsis does not possess CHR and IFS enzymes 

(Aoki et al., 2000). However, transgenic Arabidopsis expressing the legume gene IFS is able to 

produce isoflavone metabolites, suggesting that isoflavone metabolism may exist in Arabidopsis 

at an undetectable level (Jung et al., 2000; Yu et al., 2000; Liu et al., 2002). In fact, isoflavone 

metabolites have been detected at low level by high performance liquid chromatography-mass 

spectrometry (HPLC-MS) assay in wild type Arabidopsis Col-0 and Lepidium sativa (Lapcik et 

al., 2006). Therefore, it has been hypothesized that Arabidopsis might be able to generate 

isoflavone through putative CHR-like genes and another unknown gene for the construction of 

the isoflavone skeleton (Lapcik et al., 2006). 

1.2.3 Roles of phenolic metabolites in plant defense. 

 Phenylpropanoid compounds also play essential roles in plant defense against pathogen 

attacks (Dixon et al., 2002). As described in section 1.1, the plant defense system consists of 

both constitutive and inducible defenses. Phenylpropanoid compounds have been commonly 

identified in all defensive reactions, including constitutive phytoanticipin, inducible phytoalexins, 

and the signaling molecules, which regulate the plant defense system (VanEtten et al., 1994; 

Naoumkina, et al., 2010). 

 As a major branch of phenylpropanoid metabolism, lignin has been shown to be part of 

plant defense against plant pathogens. Pathogen-induced up-regulation of lignin biosynthetic 

genes has been characterized in various pathosystems (such as wheat-Blumeria. gramins f.sp. 

tritici; Bhuiyan et al., 2009). Lignin also accumulates at pathogen-induced hypersensitive 

reaction regions (Reimers and Leach, 1991; Lange et al., 1995; Bhuiyan et al., 2009) and serves 

as an important structural component of papillae in penetration resistance against fungal 

pathogens (McLusky et al., 1999). The major function of lignin is assumed to be its physical 

barrier and structural property (Moerschbacher et al., 1990), although evidence also implies other 

functions in plant defense. For example, lignan, a dimer of cinnamic alcohols, functions in plant 

defense system as a phytoanticipin and phytoalexin with anti-bacterial and anti-fungal activities 

(Carpinelle et al., 2005; Ralph et al., 2006; Akiyama et al., 2007). Coumarins comprise another 
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group of phenolic compounds derived from intermediates of lignin metabolism (including 

caffeoyl CoA and feruloyl CoA) and are induced under stress conditions (Gachon et al., 2004; 

Shimizu et al., 2005). Some coumarin compounds, such as scopoletin and its glucose derivatives, 

show special effects on plant viruses by possibly regulating the accumulation of reactive oxygen 

intermediates (Chong, et al., 2002; Matros and Mock, 2004). 

 The major function of flavonoid metabolites in plant defense is as anti-microbial 

compounds (Treutter, 2005). Different flavonoid compounds target different functions within 

microbial cells to achieve their anti-microbial activities. For example, quercetin is able to inhibit 

Escherichia coli DNA gyrase by binding to the GyrB subunit (Plaper et al., 2003) while 

sophoraflavanone and catechins can disturb the normal function of bacterial plasma membrane 

(Tsuchiya and Iinuma, 2000; Tamba et al., 2007).  

 Isoflavonoid compounds uniquely exist in legume plant and many of them also have 

shown antimicrobial activities. Pterocarpans characterized from various species of legume plants 

represent a major class of isoflavonoid phytoalexins. For instance, disruption of pisatin 

biosynthesis in pea results in enhanced susceptibility against the fungal pathogen Nectria 

haematococca (Wu and VanEtten, 2004).  

1.3 Overview of research hypothesis and objectives. 
 Although it is commonly agreed that lignin polymers may serve as physical barriers 

against pathogen infection, the role of lignin in plant immunity has not been proven with direct 

genetic evidence. Especially, the role of the lignin gene, F5H1 that mediates S lignin 

biosynthesis is unclear. S lignin is uniquely present in angiosperm plants among spermatophytes. 

It is a relatively recent innovation (~125 million years ago) during the long period of land plant 

evolution (~450 million years ago), although the lycophyte Selaginellales incorporates S lignin 

metabolism via a route distinct from angiosperm plants (Weng et al., 2010a). The biosynthesis of 

the S lignin unit is initiated by the cytochrome P450-dependent monooxygenase ferulic acid 

5‘ hydroxylase (F5H; Figure 1.1). Mutant lines with lignin gene alleles that result in reduced 

deposition of total lignin, such as irx4/ccr1, usually have a collapsed form of vascular tissue 

(Jones et al., 2001). However, elimination of S lignin by knockout of the F5H1 gene does not 

significantly affect the normal growth of plants nor the formation of the vascular system (Meyer 

et al., 1998; Weng et al., 2010a) suggesting that the S lignin unit may not be indispensable to the 
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functioning of lignin polymers as a mechanical support. Moreover, previous research conducted 

on wheat revealed the pathogen-induced transcription of all lignin genes with a particularly 

strong induction at 24 hours post inoculation (hpi) of F5H by B. graminis f.sp. tritici in a CWA-

based resistant cultivar (Bhuiyan et al., 2009). This observation suggests that F5H gene may play 

a role in plant immunity system. Considering the fact that broad leaf morphology of angiosperm 

plants should receive more microbial pathogens (fungal conidia, bacterial, etc.) than needle-

shape leaves of gymnosperm plants, I hypothesized that F5H plays a critical role in angiosperm 

plant immunity system against pathogen infections. 

 The putative roles of S lignin in plant defense have been investigated in several plant-

pathogen interaction studies. A sinapyl alcohol-specific cinnamyl alcohol dehydrogenase (CAD) 

is induced in elicitor-treated wheat leaves (Mitchell et al., 1999), and S lignin is accumulated in 

wheat leaves challenged by rice rust or fungal elicitors (Menden et al., 2007). An Arabidopsis 

transgenic line with an enhanced level of S lignin restricts the reproduction of the nematode 

pathogen Moleoidegyne incognita (Wuyts et al., 2006). Moreover, disease screening with host 

pathogen Colleotrichum higginsianum on Arabidopsis mutants disrupted in each lignin genes has 

shown that only the f5h1-1 mutant was more susceptible than the wild type Col-0; mutants 

disrupted in other lignin genes displayed similar level of susceptibility as wild type Col-0 (Liu G 

and Wei Y, unpublished data). Based on all the knowledge and experimental results as described 

above, the hypothesis is proposed that F5H1 might play critical role in the plant immunity 

system against pathogen infections.  

 In addition to the lignin branch study, mutants of flavonoid genes are also examined for 

their resistance against pathogens. Since flavonoid compounds might contribute to plant 

immunity as anti-microbial agents, Arabidopsis mutants eliminating the biosynthesis of majority 

of flavonoid compounds, including mutants of tt4, tt5 and tt6 are tested in this project for their 

resistance against pathogens. Since they eliminate the generation of downstream flavonoid 

compounds by blocking the initial three metabolic steps of Arabidopsis flavonoid pathway 

(Figure 1.4), an enhanced susceptibility is expected upon host pathogens due to the absence of 

potential flavonoid anti-microbial agents. 

The goal of this project was to investigate the roles of phenylpropanoid pathway, 

especially the lignin branch and part of the flavonoid pathway, in plant immunity using 

molecular genetic tools. In particular, the project was divided into four aspects described below: 
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1. Characterizing the transcriptional responses of lignin biosynthetic genes to pathogen 

attack within a complete pathogen infection cycle; 

2. Identifying the role of F5H1 in Arabidopsis defense against pathogen attack; 

3. Revealing the interaction between F5H1 and other defensive components such as pen1, 

pen2, pen3, pmr2 and pmr4; 

4. Investigating the role of loci in the upstream flavonoid pathway in the Arabidopsis 

defense system.  

 Two different types of fungal pathogens were used in this project, the anthracnose 

pathogen Colletotrichum and powdery mildew. Colletotrichum is a large group of ascomycete 

genus causing plant anthracnose disease or blight worldwide on a broad spectrum of host plants 

and many of them are important economic crops such as grain, legumes, cereals and fruits 

(Bailey and Jeger, 1992). As a haploid organism in most stages of its life cycle, Colletotrichum 

can be cultured axenically and is easily manipulated by transformation to generate mutants. 

Moreover, many Colletotrichum species undergo a hemibiotrophic life cycle: pathogens begin 

their infection process in a biotrophic stage on living host cells and subsequently switch to a 

necrotrophic stage to eventually kill host cells (O’Connell et al., 2004). Therefore, 

Colletotrichum has been widely employed together with Arabidopsis as a model pathosystem to 

analyze plant defense responses.  

 Different species of Colletotrichum possess distinct levels of pathogenicity on 

Arabidopsis. One host species Colletotrichum higginsianum and one nonhost species 

Colletotrichum destructivum were used in this project. C. higginsianum and Arabidopsis have 

been widely used as a compatible pathosystem (Liu et al., 2007). C. destructivum usually fails to 

infect Arabidopsis and instead induces callose-containing papillae at attempted penetration sites 

similar to other nonhost species of Colletotrichum (O’Connell, et al., 2004; Shimada, et al., 

2006). In general, after landing on the plant epidermis, the Colletotrichum conidia first germinate 

and form melanized appressoria on the surface of plant cell. The appressoria further penetrate 

through the host epidermal cuticle and cell wall by two alternative penetration models: turgor-

mediated invasion and hyphal tip-based entry (Hiruma et al., 2010). Successful penetration will 

facilitate the development of primary hyphae in the living cell, the typical hallmark of biotrophic 

stage. The development of secondary hyphae indicates the switch from biotrophic to 

necrotrophic stage, and the pathogen will eventually kill infected host cells.  
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 Powdery mildew pathogens are obligate biotrophic pathogens with a broad host spectrum 

on both dicot and monocot plant species (Inuma et al., 2007). They feed on living host cells by 

direct penetration through the host cell wall and formation of feeding organs, haustoria, to obtain 

nutrients from host cell. Subsequently, they extend hyphae over the surface of infected cells and 

accomplish their life cycle by formation of conidiophores (Lipka et al., 2008). Two species of 

powdery mildew pathogens, Blumeria graminis f.sp. hordei (barley powdery mildew) and 

Erysiphe cichoracearum (cucumber powdery mildew), were used in this study. B. graminis f.sp. 

hordei is a non-host pathogen to Arabidopsis, while E. cichoracearum is a host pathogen. Most B. 

graminis f.sp. hordei conidia fail to penetrate through host cell wall. The post-invasive growth of 

occasionally successful B. graminis f.sp. hordei conidia will be restricted by post-invasion 

resistance of the infected plant cells. E. cichoracearum is able to complete the entire life cycle on 

Arabidopsis (Lipka et al., 2005). Both B. graminis f.sp. hordei and E. cichoracearum have been 

used by many researchers to study Arabidopsis immunity, especially penetration resistance 

(Lipka et al., 2005, Mang et al., 2009).  
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CHAPTER 2 

MATERIALS & METHODS 
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2.1 Plant materials and growing conditions. 
 All of the Arabidopsis thaliana lines used in the experiments described in this thesis are 

summarized in Table 2.1. All of these mutant alleles were created in Arabidopsis ecotype Col-0 

background as described in each corresponding reference. Plants were grown at 22˚C with a 16-

hr light/8-hr dark photoperiod and a light intensity at 100 µmol m-2 s-1 in a controlled-

environment growing chamber. Sunshine® Mix 1 professional growing mix was purchased from 

Sun Gro Horticulture (Seba Beach, CA) and used to prepare the growth bed in pots. The seeds 

were initially sown out in round pots (4-inch diameter; Kord Product, Toronto, CA) for bulk 

growth. After sowing seeds, the pot was covered by a piece of plastic wrap and incubated in 4˚C 

fridge for 3 days to break dormancy and synchronize germination (Weigel and Glazebrook, 

2002). When plants reached the 4-leaf stage (the development of the first pair of true leaves), 

seedlings were transferred manually to square pots (3.5-inch by 3.5-inch; Kord Product, Toronto, 

CA) at a density of 5 plants per pot for all subsequent experiments.  
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Table 2.1 List of plant materials. 
Mutant 
Name 

Corresponding 
locus 

Type of 
plant 

TAIR annotation of 
corresponding gene 

Commet/Source Reference 

f5h1-1 At4g36220 SNS Encodes ferulate 5-
hydroxylase (F5H). 
Involved in lignin 
biosynthesis. 

Used as the major 
mutant in this study 

Meyer et al., 
1998 

f5h1-2 At4g36220 SNS Same as above Originally identified 
as fah1-7; ABRC 
stock CS8604 

Chapple et 
al., 1992 

f5h1-3 At4g36220 T-DNA Same as above SALK_063792 from 
ABRC 

This project 

f5h2-1 At5g04330 T-DNA Cytochrome P450 
superfamily protein 

SALK_064404c from 
ABRC 

This project 

C4H-F5H n/a TP n/a Overexpression of 
F5H1 under C4H 
promoter. 

Meyer et al., 
1998 

sid2-1 At1g74710 SNS Encodes a protein with 
isochorismate synthase 
activity.  

 Wildermuth 
et al., 2001 

pad4-1 At3g52430 SNS Encodes a lipase-like gene 
that is important for salicylic 
acid signaling and function 
in resistance (R) gene-
mediated and basal plant 
disease resistance. 

CS3806 from ABRC Glazerbrook 
et al., 1997 

sag101 At5g14930 T-DNA Encodes an acyl hydrolase 
involved in senescence. 

 Fey et al., 
2005 

NahGox n/a TP n/a Transgenic plant 
expressing 
Pseudomonas gene 
NahG; disrupted in 
SA signaling pathway 
by degrading SA; 

Lawton et 
al., 1995 

jar1-1 At2g46370 SNS Encodes a jasmonate-amido 
synthetase that is a member 
of the GH3 family of 
proteins. 

CS8072 from ABRC Staswick et 
al., 1992 

ein2-1 At5g03280 SNS Involved in ethylene signal 
transduction. Acts 
downstream of CTR1. 
Positively regulates ORE1 
and negatively regulates 
mir164A,B,C to regulate 
leaf senescence. 

CS3071 from ABRC Guzmán and 
Ecker, 1990 

pmr2-1 At1g11310 SNS A member of a large family 
of seven-transmembrane 
domain proteins specific to 
plants, homologs of the 
barley mildew resistance 
locus o (MLO) protein.  

 Vogel and 
Somerville, 
2000 
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pmr4-1 At4g03550 SNS Encodes a callose synthase 
that is required for wound 
and papillary callose 
formation in response to 
fungal pathogens Erysiphe 
and Blumeria 

  Vogel and 
Somerville, 
2001 

pen1-1 At3g11820 SNS Encodes a syntaxin localized 
at the plasma membrane 
(SYR1, Syntaxin Related 
Protein 1, also known as 
SYP121, 
PENETRATION1/PEN1). 

 Collins et al., 
2003 

pen2-1 At2g44490 SNS Encodes a glycosyl 
hydrolase that localizes to 
peroxisomes and acts as a 
component of an inducible 
preinvasion resistance 
mechanism. Required for 
mlo resistance. 

 Lipka et al., 
2005 

pen3-1 At1g59870 T-DNA ATP binding cassette 
transporter. 

SALK_000578 from 
ABRC 

Stein et al., 
2006 

tt4-T1 At5g13930 T-DNA Encodes chalcone synthase 
(CHS), a key enzyme 
involved in the biosynthesis 
of flavonoids. Required for 
the accumulation of purple 
anthocyanins in leaves and 
stems.  

GK_304D03 from 
NASC 

Shirley et al., 
1995 

tt5-T1 At3g55120 T-DNA Catalyzes the conversion of 
chalcones into flavanones. 
Required for the 
accumulation of purple 
anthocyanins in leaves and 
stems. 

SALK_034145 from 
ABRC 

Shirley et al., 
1995 

tt6-T1 At3g51240 T-DNA Encodes flavanone 3-
hydroxylase that is coordinately 
expressed with chalcone 
synthase and chalcone 
isomerases. Regulates 
flavonoid biosynthesis. 

SALK_113321 from 
ABRC 

Wisman et al., 
1998 

SNS: single nucleotide substitution; SND: single nucleotide deletion; T-DNA: T-DNA insertion; TP: 
transgenic plant. Seeds were purchased from ABRC if there is a stock number assigned in the “Source” 
column (tt4-T1 is from Nottingham Arabidopsis Stock Centre/NASC). Other seeds were provided by the 
original authors who characterized the mutant as listed in the reference column. 
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2.2 Pathogenic fungal materials, cultivation and inoculation protocol. 
 Colletotrichum higginsianum: C. higginsianum (IMI349061) was obtained from CABI 

Bioscience (Egham, UK) and maintained in Dr. Yangdou Wei’s lab. C. higginsianum was 

cultured on potato dextrose agar (PDA) plates. PDA medium was prepared by mixing 39 g of 

Difco® PDA (Becton Dickinson and Company; Sparks, US) in 1 L of distilled water. The 

medium was autoclaved at 121˚C/15 psi for 25 min and poured into 100 mm×15 mm polystyrene 

petri dish (Fisher Scientific; Ottawa, CA) to make a PDA plate. To prepare fresh plate inoculum, 

an inoculation loop was used to collect conidia from a stock plate and, subsequently, the surface 

of the newly prepared PDA plates were touched in five evenly distributed spots to inoculate the 

conidia from the stock plate. After inoculation, the PDA plate was incubated at room temperature 

until the generation of mature conidia, which normally show a pink color on the plates from 10 

to 14 days after inoculation. The conidia were later collected by an inoculation loop and 

suspended in sterile water. After gently centrifuging at 5000 revolutions per min (rpm) in an 

Eppendorf 5415R centrifuge equipped with an Eppendorf F45-24-11 rotor (Mississauga, CA) for 

1 min, the supernatant was carefully removed by a micropipette and the conidia were re-

suspended in 1 ml of sterile water and further diluted with desired amount of water, depending 

on the number of plants to be inoculated: for 12 pots of Arabidopsis with 5 plants per pots, 45 ml 

of conidia suspension was sprayed evenly to cover the surface of rosette leaves. The density of 

conidia was measured by a hemocytometer to maintain 1×106 conidia per ml. The prepared 

inoculum solution was sprayed on 3~4 weeks old Arabidopsis plants with a Continental E-Z 

sprayer (Brampton, CA). To maintain a high humidity for better pathogen growth, the tray 

containing inoculated plants was covered by a transparent plastic lid and sealed with tape.  For 

the experiments shown in Figure 3.4a, 11a, 15, 23 and 31, the lid was maintained on the 

inoculated plants until the time of photography. The plants shown in Figure 3.9, after 

photography and sampling for microscopic analysis at 2 dpi, were returned to the growing 

chamber for another two days without plastic lid covered on the plants. The plants were further 

photographed at 4 dpi. The leaf tissue leision spots were photographed by a Nikon D70 digital 

camera (Mississauga, CA). 

 Colletotrichum destructivum: C. destructivum isolate AJ558106 was originally obtained 

from Dr. Gary Peng’s lab in Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan and 

maintained in the lab. The culture and preparation of C. destructivum inoculum were performed 
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in same method as C. higginsianum. The conidia suspension of C. destructivum was inoculated 

by placing a 15-µl droplet on the center of Arabidopsis rosette leaves (approximately 3~4 weeks 

old before the bolting of the floral stem). After inoculation, the tray containing inoculated plants 

was covered by a transparent plastic lid and sealed with tape to maintain humidity required for 

the fungal development. 

 Magnaporthe oryzae: M. oryzae isolate P131 was kindly provided by Dr. Youliang Peng 

(China Agricultural University) and cultured on oatmeal medium plates. The oatmeal medium 

was prepared by mixing 30 g of No Name® natural oat bran (Loblaws Inc.; Calgary, CA) and 15 

g of agar (EMD Chemicals; San Diego, US) in 1 L of distilled water. The medium was 

autoclaved at 121˚C/15 psi for 25 min and poured into 100 mm×15 mm polystyrene petri dish 

(Fisher Scientific; Ottawa, CA) to make oatmeal medium plates. Six agar blocks (1-cm by 2-cm) 

covered with M. oryzae mycelium were cut from a stock plate with a sterile scalpel and placed 

evenly on 1 fresh made oat meal medium plate and the plate was incubated at room temperature 

with light for 1~2 weeks. To prepare inoculum, 1 ml of sterile distilled water was added to the 

surface of the oatmeal plate and a spreader was used to suspend the fungal material by gently 

scrapping the entire surface without damaging the medium below. The suspension of fungal 

materials was collected and filtered through a piece of Miracloth (EMD Chemicals; San Diego, 

US) to separate conidia from other fungal materials. The suspension with conidia was gently 

centrifuged at 5000 rpm for 1 min and the supernatant was removed. The resulting M. oryzae 

conidia were further suspended in sterile distilled water to reach a density of 1×104 conidia per 

ml (Koga and Nakayashi, 2004) and sprayed on Arabodposis plants as above. To maintain a high 

humidity for better pathogen growth, the tray containing inoculated plants was covered by 

transparent plastic lid and sealed with tape. 

 Powdery mildew: two different species Blumeria graminis f.sp. hordei and Erysiphe 

cichoracearum were used in the experiment described in this thesis. Both of these powdery 

mildew pathogens had been previously isolated from field in Saskatoon and maintained in Dr. 

Yangdou Wei’s lab. B.graminis f.sp. hordei was cultured on six-row spring hulless barley “CDC 

Silky” and E. cichoracearum was cultured on cucumber “National Pickling” (Early’s Farm & 

Garden Center; Saskatoon, CA). Inoculation was performed by shaking heavily infected 

barley/cucumber leaves within a paperboard box containing Arabidopsis plants (appximately 3~4 

weeks old with development of matured rosette leaves). After inoculation, the box was sealed 
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and left still for at least 3 hours (hrs) to facilitate the settlement of conidia onto the surface of 

Arabidopsis plant leaves. The inoculated Arabidopsis plants were then transferred to their 

original growing environment and samplings were performed at specific timing points for each 

experiment described. 

2.3 Genetic crossing of Arabidopsis. 
 In order to investigate the interaction between F5H1 and other characterized components 

of plant defense system, as well as the putative F5H gene F5H2, the f5h1-1 mutant was crossed 

with f5h2-1 and other single mutants and transgenic plant disrupted in the SA signaling pathway 

(sid2, pad4/sag101 and NahGox), the JA/ET signaling pathway (jar1 and ein2), in penetration 

resistance (pen1, pen2 and pen3) or with Arabidopsis pmr mutants (pmr2 and pmr4), 

respectively. Mutant f5h1-1 plants were used as female parental plants for all crossings since the 

F1 generation of a successful cross can be verified by the fluorescence response under UV 

radiation. F1 generation of successful crossings should display a blue-green fluorescence similar 

to wild type Col-0 since it is heterozygous of f5h1 mutation, while unsuccessful crossing, which 

results from self-fertilized female f5h1-1 plants, should show a red fluorescence.  

 All crossings were performed with 5-6 week-old Arabidopsis plants. The double/triple 

progeny mutant lines are summarized in Table 2.2. To perform crosses, unopened buds of female 

parental plants were selected and opened with sharp tweezers under a dissection microscope 

(Wild of Canada; Ottawa, CA). Sepals, petals and stamens were carefully removed by fine 

tweezers without damaging the pistil. For each inflorescence, 3 buds were treated as described 

and other remaining buds were removed without damaging the stem. Opened flowers were 

selected from male parental plants (pollen donors). The bottom of the flower was held by 

tweezers to further widen the flower in order to expose the anthers. Carefully holding the 

tweezers with the opened flower, the exposed anthers were used to brush the stigma of the 

emasculated female flower to initiate fertilization. The coverage of pollen on the stigma was 

verified by viewing under dissection microscope. After fertilization, each pistil was wrapped 

with a small piece of plastic wrap to avoid cross contamination of pollen from other plants in the 

same growing chamber. Successfully fertilized pistils elongated and finally formed mature 

siliques. F1 seeds were collected and F1 plants were grown and self-fertilized to produce F2 

seeds for the subsequent screening work to identify homozygous mutants.  
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All homozygous double and triple mutants were identified in the F2 generation by either 

PCR for all T-DNA insertions (f5h2-1, sag101 and pen3-1) or by sequencing PCR fragments of 

mutated gene containing mutation site (f5h1-1, sid2-1, pad4-1, jar1-1, ein2-1, pmr2-1, pmr4-1, 

pen1-1 and pen2-1). The identified homozygous plants were self-fertilized to generate F3 seeds, 

the homozygosity of which was further verified by the same method as the F2 generation. All 

experiments were performed on F3 generation plants.  

Table 2.2 Double/triple mutants generated in this study. 

Lignin-related Mutants 

f5h1/f5h2 

f5h1/pmr2 

f5h1/tt5 

f5h1/sid2 

f5h1/pmr4 

f5h1/tt6 

f5h1/NahGox 

f5h1/pen1 

 

f5h1-pad4/sag101 

f5h1/pen2 

f5h1/jar1 

f5h1/pen3 

f5h1/ein2 

f5h1/tt4 

Flavonoid-related Mutants 

tt4/tt5 tt5/sid2 tt5/pad4/sag101 tt5/NahGox tt5/jar1 tt5/ein2 

All mutants were generated by crossing; f5h1-1 is uses as female (pollen receiver) in all lignin-related mutants 

and tt5-T1 is used as female (pollen receiver) for all flavonoid-related mutants. See Figure 2.1 for an example 

for pedigree charts of crossing and screening for homozygous double/triple mutants. 
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Figure 2.1 Schematic diagram of the creation of Arabidopsis double mutant. 

Flowchart of the generation of Arabidopsis double mutant using genetic crossing. Assume that 
the two mutated genes are localized at different chromosomes, which are distinguished by red 
and blue colors. Two parental gametes (P1, P2) fuse to generate F1 generation. F1 plants are 
allowed to self-fertilize and generate F2 generation. Segretation occurs in F2 generation 
following Mendel’s second law and 1/16 of F2 plants are target homozygous double mutant. For 
the creation of a triple mutant f5h1pad4sag101, one of the parental plants (either P1 or P2) is a 
homozygous double mutant pad4sag101 and the ratio of homozygous triple mutants in the F2 
population is 1/64. Black line on the upper arm of chromosome represents the mutation site. In 
F2 generation, other genotype combinations are omitted. 
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2.4 Determination of UV-responses of f5h1 mutant alleles. 
 To analyze the UV-responses of f5h1 mutant alleles, plants were grown as described in 

section 2.1 until the development of the 2nd pair of true leaves (the Arabidopsis seedling should 

have 6 leaves at this stage). Fresh leaves were collected and immediately mounted in water and 

examined on an Axioplan epifluorescence microscope with a FluoArc UV generator (Carl Zeiss 

Canada; Toronto, CA). Images were captured by an AxioCam ICc1 digital CCD camera 

equipped with the epifluorescence microscope.  

2.5 Isolation of plant genomic DNA for polymerase chain reaction (PCR). 
 All chemicals and organic reagents described in this section and below were purchased 

from Fisher Scientific (Ottawa, CA) unless specially addressed. All sterile solutions were 

autoclaved at 121˚C/15 psi for 25 min unless specified.  

The genomic DNA samples from plants were isolated following a quick DNA miniprep 

method kindly provided by Dr. Tamara Western (McGill University). One piece of a 3-week old 

plant leaf was used for each DNA isolation. The rosette leaf was removed from a plant by scissor 

and ground into a homogenate liquid by a plastic pestle in a 1.5-ml eppendorf microcentrifuge 

tube (Fisher Scientific; Ottawa, CA). A 400 µl aliquote of sterile DNA extraction buffer (200 

mM Tris-Cl pH 7.5, 250 mM NaCl, 25 mM EDTA pH 8.0, 0.5% SDS; SDS was added after 

autoclaving) was added into the ground plant tissue and the mixture was vortexed to form a 

homogenous solution. After centrifugation at 13,200 rpm for 5 min in a Beckman-Coulter 

Allegra 25R centrifuge equipped with a Beckman-Coulter TA-15-1.5 rotor (Mississauga, CA), 

300 µl of supernatant was transferred to a new microcentrifuge tube and 300 µl of isopropanol 

was added to precipitate DNA. After incubation at room temperature for 10 min, the tube was 

centrifuged as described above for 2 min. The supernatant was carefully removed and the DNA 

sample was washed with 500 µl of 70% ethanol. After air-drying for 20 min, the DNA pellet was 

dissolved in 50 µl of sterile TE buffer (100 mM Tris-Cl pH 7.5, 10 mM EDTA pH 8.0) and was 

be directly used for PCR reactions. All DNA samples were stored in -20 ˚C freezer for long term 

storage. 

2.6 PCR reactions and DNA precipitation for sequencing. 
 Most of the PCR reactions were used to screening for T-DNA insertions or to amplify 

target gene fragments for sequencing. PCR reactions were conducted using a home-made Taq 
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DNA polymerase recipe from Dr. Boham-Smith’s lab, Department of Biology, University of 

Saskatchewan. The general PCR reaction system is as below:  

10× PCR buffer (homemade; 500 mM KCl, 100 mM Tris-Cl pH 8.3) 2 µl   

50 mM MgCl2         0.6 µl   

10 mM dNTPs (Invitrogen; Burlington, CA)     0.25 µl   

Taq DNA polymerase        0.1 µl   

H2O          12.05 µl  

Forward Primer (5µM)       2 µl   

Reverse Primer (5µM)       2 µl   

Template DNA        1 µl   

------------------------------------------------------------------------------------------------------------ 

Total          20 µl   

 The PCR reaction was performed in an Eppendorf Mastercycler (Westbury, US). The 

program was initiated with incubation at 94 ˚C for 3 min, followed by the three-step 

amplification cycle: 94 ˚C for 45 s, 57 ˚C for 30 s and 70 ˚C for 1 min. The extension time was 

adjusted according to the size of target product based. A 1 min extension time usually amplifies a 

1000 bp PCR product. The three-step amplification cycle was repeated for 35 times and a final 

incubation was performed at 70 ˚C for 10 min to ensure the PCR products were amplified in full 

length. 

 For T-DNA insertion screening, two types of primer pairs were used and then the PCR 

products were electrophoresed on a 0.8% agarose gel to check band patterns (see Figure 2.2 for 

an example of the strategy and results using pen3-1 mutant as an example). The primers were 

designed by a web-based tool iSct-Primers provided by the Salk Institute Genomic Analysis 

Laboratory (http://signal.salk.edu/ tdnaprimers.2.html; Sequences of all primers used in this 

project was listed in Appendix Table 1). For sequencing reactions, the PCR product solution was 

transferred to new 1.5-ml eppendorf microcentrifuge tube (Fisher Scientific; Ottawa, CA); 1/10 

volume of NaAc (3 M, pH 5.2) and 2.5 volume of 100% ethanol were added into the PCR 

solution to precipitate DNA. After precipitation at -20˚C overnight, the tube was centrifuged as 

described above for 10 min to collect precipitated DNA. After a wash with 70% ethanol, the 

DNA samples were air-dried and dissolved in 30 µl of distilled water. The concentrations of 

DNA samples were measured at 260/280 nm by a UV spectrophotometer (Beckman-Coulter; 
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Mississauga, CA). Finally sample was then diluted to desired concentration depending on the 

size of PCR products and sent to the DNA lab at the National Research Council-Plant 

Biotechnology Institute (NRC-PBI) for sequencing. 
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Figure 2.2 Example of T-DNA insert verification in insertion lines. 

Verification of T-DNA insert mutation by PCR. (A) Schematic image of T-DNA insertion 
screening method. For each candidate of an insertion mutant line, 2 PCR reactions were set up, 
using gene-specific left and right primers for one reaction, and T-DNA-specific left primer and a 
gene-specific right primer for the other one. The presence of T-DNA will interfere with the PCR 
amplification reaction containing gene-specific left and right primers. Therefore, homozygous 
mutants should have only T-DNA insert bands; heterozygous mutants should have both wild 
type and T-DNA insert bands. Wild type plants should have wild type band only. (B) An 
example of PCR electrophoresis result from a pen3 T-DNA insert mutant screening PCR results. 
C1, wild type band amplified from control plant Col-0 genomic DNA with gene-specific left and 
right primer; C2, T-DNA insert band amplified from verified control plant pen3-1 single mutant 
genomic DNA with T-DNA specific left primer and gene-specific right primer. Failure to 
amplify the wild type band and success to amplify T-DNA insert band was the marker of 
homozygous T-DNA insert mutants. All 5 candidates were homozygous pen3-1 mutants. The 
bands at bottom were primer dimers. Black arrows indicate the position of DNA bands. 
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2.7 RNA isolation. 
 The pathogen-challenged and hormone-treated samples for RNA isolation were collected 

and frozen in -80˚C freezer for subsequent RNA isolation. All operations and centrifugation 

described below were conducted on ice or at 4˚C, respectively. Tissue collected from 15 plants 

was first ground into a fine powder by mortar and pestle with liquid nitrogen. After the nitrogen 

was completely evaporated, the powder was transferred into a new 50 ml centrifuge tube (Fisher 

Scientific; Ottawa, CA) and 15 ml of extraction buffer (150 mM LiCl, 5 mM EDTA, 50 mM 

Tris-Cl pH 9.0, 5% SDS) was added. The tube was capped and shaken to form a homogenous 

solution.  A 15 ml aliquot of phenol-chloroform (1:1. v:v) was then added and tube was capped 

and shaken vigorously ~100 times. After centrifuge at 1328g in a Beckman-Coulter Allegra 25R 

centrifuge (Mississauga, CA) for 20 min, the aqueous supernatant was transferred to a new 50ml 

centrifuge tube with 15ml of phenol-chloroform. After shaken for ~100 times, the tube was 

centrifuged at 850g for 20 min. Aqueous phase was transferred to a new 50ml centrifuge tube 

with 15 ml of chloroform. After shaken ~100 times, the tube was centrifuged at 850g for 20 min. 

15 ml of aqueous phase was transferred to corex glass centrifuge tubes (Krackeler Scientific; 

Albany, US).  A 1.5 ml aliquot of NaAc (4 M, pH 5.3) and 12 ml of cold isopropanol were added 

to precipitate the DNA/RNA mixture. After overnight precipitation in -20˚C freezer, the tube 

was centrifuged at 6869g in the same centrifuge as described above for 30 min. The supernatant 

was removed and the pellet was re-dissolved in 6 ml of sterile water, then 2 ml of LiCl (8 M) 

was added and the tube was placed on ice for 2 hrs to precipitate RNA. The tube was 

subsequently centrifuged at same condition for 10 min. The supernatant was removed and pellet 

was washed with 1 ml of 70% ethanol and transferred into cold 1.5-ml microcentrifuge tube, 

which was centrifuged at 21913g in a the same centrifuge for 5 min. The supernatant was 

discarded and RNA pellet was air-dried for 20 min, and then finally dissolved in 80 µl of sterile 

water. The concentration was determined by a UV spectrophotometer (Beckman-Coulter; 

Mississauga, CA). The quality of RNA samples was verified by electrophoresis in agrose gel.  

All RNA samples were stored in -80 ˚C freezer until use. 

2.8 Synthesis of cDNA. 
 Synthesis of cDNA was carried out by Superscript II reverse transcriptase (Invitrogen, 

Burlington, CA) following the manufacturer’s protocol. One µg of RNA was used to synthesize 
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cDNA. After synthesis, 5 µl of cDNA was used to make 20 times dilution for the synthesis of 

northern blotting probes.   

2.9 Northern blotting. 

 For northern blotting probe synthesis, PCR reactions were carried out using the condition 

described above for normal PCR using 1 µl of diluted cDNA template. To obtain enough PCR 

products for purification, 35 cycles were used. The resulting PCR product was examined by 

agarose electrophoresis and the gel block containing the probe band was cut out using a new 

sterile scalpel and collected into a new 1.5-ml microcentrifuge tube (Fisher Scientific; Ottawa, 

CA). The volume of the gel block was determined at an approximate density of 1 g/ml. Three 

volumes of 6 M NaI and 1/10 volume of 3 M NaAc (pH 5.5) were added to the tube containing 

the gel block, which was subsequently incubated at 50 ˚C for 5 min or until the agarose block 

melted. Ten µl of well-suspended glassmilk ((1000 mg/ml of silica (Sigma-Aldrich, Oakville, 

CA) suspended in 3 M NaI)) was added to the melted agarose solution and vortexed to form an 

evenly suspended solution. The solution was incubated at room temperature for 10 min with 

vortexing every 2 min to maintain a glass milk suspension and then centrifuged in an Eppendorf 

5415R centrifuge equipped with an Eppendorf F45-24-11 rotor at room temperature for 15 sec. 

The supernatant was removed completely and the pellet was washed twice with wash buffer (50 

mM NaCl, 10 mm Tris-Cl pH 7.0, 2.5 mM EDTA and 50% v/v ethanol). The pellet was air-dried 

and DNA was eluted by incubating pellet suspended in 50 µl of sterile water for 10 min at 50 ˚C. 

The purified probe was quantified at 260/280 nm by UV spectrophotometer (Beckman-Coulter, 

Mississauga, CA) to determine its concentration and then sequenced as above to verify its 

correctness.  

 RNA samples from plants were separated on formaldehyde agarose gel. The gel was 

prepared by mixing 5.4 g of agarose in 393.75 ml of sterile water and 45 ml of 10×MOPS buffer 

(200 mM MOPS, 50 mM NaAc, 10 mM EDTA). The agarose was dissolved by heating in a 

commercial Panasonic microwave oven. After cool down to approximately 60˚C, 13.5ml of 

formaldehyde was added into the gel solution and thoroughly mixed by shaking the flask. 

Eventually, 281 µl of 200 µg/ml ethidium bromide was added and the gel solution was poured 

into a casting tray to stand at room temperature for at least 45 min until fully solidified. 
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 To pre-aliquoted RNA samples (6 µg per mutant line per blot), 1.5 µl of loading buffer 

was added to make a total volume of 15~16 µl. The samples were vortexed, centrifuged to 

collect liquid and heated in a PCR machine at 55˚C for 15 minutes. Samples were then 

immediately cooled down on ice for 2 minute, then the liquid was collected as above collect and 

loaded onto the solidified gel, which were electrophoresed at 70 volts for 3 hrs. 

 After washing in distilled water for 15 min twice, the gel was trimmed to remove area 

without RNA samples and transferred to a solid support covered with a filter paper bridge soaked 

with 20×SSc buffer (175.3 g of sodium chloride and 88.2 g of sodium citrate dissolved in 1 L of 

distilled water). The support was placed in a tray filled with 20×SSc buffer and the 4 ends of the 

paper bridge were immersed in 20×SSc buffer. A piece of Amersham Hybond-XL membrane 

(GE Healthcare; Mississauga, CA) and 3 pieces of Waterman filter paper were cut according to 

the size of the gel, then membrane was wet with sterile water and placed over the gel without 

trapping any air bubbles. The 3 pieces of filter paper were also wet and placed onto the 

membrane one by one, and any observed air bubbles removed by rolling a 15-ml centrifuge tube 

on the surface of the filter paper. Tissue paper was cut according to the size of gel and piled on 

top up to 5~8 cm, then a glass plate and a 400 g weight were used to compress the whole blotting 

sandwich. Blots were left overnight at room temperature, and then the membrane was transferred 

with RNA side up to a baking plate with sufficient 2×SSc buffer to cover the membrane. The 

membrane was washed in 2×SSc buffer twice for 10 min of each wash, laid on a transparent 

glass plate and exposed to UV for 1 min 30 sec, and then stained in 0.02% methylene blue for 3 

min and distained the membrane in 1×SSc buffer for no more than 10 min with at least 1 change 

of fresh buffer. The stained membrane was photographed in an Alphaimager 2200 gel-doc 

system and finally baked for 1 hr at 80˚C.  

 Each gene-specific probe was amplified from cDNA as described above and for radiation 

labeling and hybridization. 32P was purchased from Perkin Elmer (Waltham, USA). The Prime-It 

random primer labeling kit and Quickhyb hybridization solution were purchased from Stratagene 

(Mississauga, CA). The labeling of probes was carried out following manufactures’ instruction. 

The hybridization was performed according to the manufacturer’s instruction with minor 

changes: the hybridization time was increased to 3 hr rather than 1 hr as described in the manual. 

Hybridized membranes were exposed overnight and image was captured in a phosphorimager 

system (GE healthcare; Mississauga, CA). 
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2.10 Histochemical staining.  
Aniline blue staining 

 The inoculated leaves were collected and fixed in a fixation solution (methanol : 

chloroform : acetic acid = 6 : 3 : 1) (with an occasional change of fresh fixation solution) until 

the original green color was completed faded. The fixation solution was then removed and the 

samples were incubated in 100% (or 95%) ethanol overnight. Rehydration of fixed samples was 

carried out by incubating leaves 2 hrs in each of five gradient concentrations of ethanol starting 

from 95%, 80%, 70%, 50% and finally in 25% ethanol. For callose staining, residual ethanol was 

removed and samples were rinsed with pure water and stained in 150 mM K2HPO4 (pH 9.5) 

containing 0.05% aniline blue (Fisher Scientific; Ottawa, CA) overnight. For fungal hyphae 

staining, residual ethanol was removed by washing with acidic water (pH 2.0; adjusted with 

hydrochloric acid) and sample was stained in acidic water containing 0.05% aniline blue for 5 

min. After staining, the plant samples were rinsed to remove excessive staining solution in 

K2HPO4 (150 mM pH 9.5) for callose staining or acidic water (pH 2.0) for fungal hyphae 

staining, respectively. To view callose staining, the samples were mounted in 30% glycerol and 

photographed under an Axioplan epifluorescence microscope (Carl Zeiss Canada, Toronto, CA) 

with UV application. To view fungal hypha staining, the samples were mounted in acidic water 

(pH 2.0) and photographed using the same microscope without UV application. 

Trypan blue staining 

 For trypan blue staining, samples were collected and treated as described in aniline blue 

staining until the final rehydration step with 25% ethanol. Residual ethanol was removed and 

samples treated with pure water overnight. Subsequently, samples were stained with 0.05% 

trypan blue (Hartman-Leddon; Philadelphia, US) dissolved in pure water overnight. Stained 

samples were washed in pure water and observed under microscope after mounted in water.  

In situ histochemical detection of H2O2 

 The in situ histochemical detection of H2O2 was characterized by a 3,3’-

diaminobenzidine (DAB; Sigma-Aldrich; Oakville, CA) uptake experiment (Liu et al., 2010). 

DAB uptake was carried out by incubating fresh collected inoculated Arabidopsis leaves in 1 

mg/ml DAB solution for 8 hrs. After incubation, the samples were fixed in fixation solution as 

described in section 2.10 for microscopy analysis. The brownish color indicates the accumulation 

of H2O2 molecule. 
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2.11 Plant hormone treatments. 
 The concentration of each hormone used was: salicylic acid (SA), 1 mM; jasmonic acid 

(JA), 50 mM; sodium nitroprussid (SNP; NO releasing agent), 10mM; ethephon (ethylene 

releasing agnet), 100 µM; H2O2, 10 mM (SA to H2O2; Liu G, personal communication); abscisic 

acid (ABA), 50 µM (Yang et al., 2009); 3-indole acetic acid (IAA), 100 µM (Arteca and Arteca, 

2008); gibberellic acid (GA), 100 µM (Day et al., 2004); 6-benzylaminopurine (BAP), 20 µM 

(Yang et al., 2009).  

 Plant hormone treatments (including water treatment as a mock control) were carried out 

by spraying hormone solution on 3 weeks old Col-0 Arabidopsis plants. For each hormone 

treatment, 3 pots (5 plants per pot) were treated. To facilitate the absorbance of sprayed hormone, 

sterile water was sprayed to all plants 1 hr after hormone solution was sprayed to maintain 

humidity at the leaf surface. At 24 hrs after treatment, the total above-ground tissues were 

harvested and immediately frozen in -80˚C freezer for subsequent RNA isolation as described in 

section 2.7. 

2.12 Transmission electron microscopy. 
 All steps, unless specified, were performed at room temperature. Col-0 and f5h1-1 plants 

were grown and B. gramins f.sp. hordei inoculation was performed as described above with high 

conidia density. At 48 hpi, inoculated leaves were harvested and cut into 1-mm × 2-mm pieces, 

which were immediately fixed with 2% glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) in 

4˚C overnight. After three washes of 0.1 M phosphate buffer (pH 7.2), samples were post-fixed 

in osmium tetroxide (1% in phosphate buffer) at room temperature for 3 hrs. Following three 

washes of phosphate buffer (pH 7.2), the samples were dehydrated in an ethanol series (15%, 

30%, 45%, 60%, 70%, 85%, 95%, 100%, 100%) for 10 min per level. After dehydration, 

samples were incubated twice in acetone for 10 min and infiltrated with acetone/LR White resin 

(3:1, 30 min; 1:1, 1~2 hr; London Resin Company; Reading, UK) and eventually 100% resin 

overnight. Finally, samples were embedded in a mold in 100% resin and incubated at 50˚C for 

polymerization.  

 Ultra-thin sections (60nm) were generated with a Microstar diamond knife (Huntsville, 

US) on a Reichert-Jung microtome (Reichert microscopic service; Depew, US) and captured 

onto single slot copper grids (Ted Pella; Redding, US) coated with Formvar. Grids were stained 
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with 2% uranyl acetate and Reynold’s lead citrate solution (Reynolds, 1963), and observed with 

a Philip CM10 transmission electron microscope (Netherlands).  

2.13 Data collection and statistical analysis. 

 Statistical analysis was performed on all penetration efficiencies data, hyphae 

development data and total haustoria formation per colony data to compare the significant 

differences between mutant lines and wild type Col-0. To collect data for statistical analysis, 

Arabidopsis plants were placed in growing chamber and selected for pathogen inoculation, 

following the manner of “Completely Random Design”. When collecting samples for 

microscopic analysis, fully matured leaves in same developmental stages were collected from 

different plants within one pot at the specific timing post pathogen inoculation as indicated in the 

corresponding figures. The penetration frequencies of B. graminis f.sp. hordei and E. 

cichoracearum were determined by the ratio of successful penetrations per 100 germinated 

conidia. The formation of fungal haustoria was counted as a “successful” penetration. The entire 

leaf was divided into three equal areas from the tip to the petiole. For each area, a value of 

penetration frequency was determined as described and the average of the 3 values from the 

three areas was used to represent the penetration frequency of this leaf. This is to avoid the 

different penetration resistance of different areas within the leaf. The value of 1 leaf was 

considered as 1 observation and 5 observations were obtained for each plant line in each 

replicate of experiment. The total hyphae length of E. cichoracearum colony was measured with 

Image J software (http://rsbweb.nih.gov/ij/) on the digital images photographed after staining 

with aniline blue. At least 20 colonies were randomly chosen from collected leaves of each plant 

line in each replicate of experiment. The total haustoria formation per colony of E. 

cichoracearum at 7 dpi was directly counted on leaves stained with aniline blue as described 

above. At least 15 colonies that were randomly selected from 5 different sampled leaves were 

examined for each plant line in each replicate of experiment. All of the data were summarized, 

and the mean values and standard deviations were calculated in Excel of Microsoft Office 

software (Microsoft Company; Mississauga, CA). Analysis of variance (ANOVA) test (P < 0.05 

and P < 0.01) with Fisher's Least Significant Difference (LSD) was performed to compare the 

mean values in IBM Statistical Product and Service Solutions (SPSS; Ver. 20.0) package 



	
   53	
  

licensed to University of Saskatchewan (IBM; Markham, CA). The output tables of ANOVA 

analyses were listed as Appendix Table 2. 

 All experiments described in this chapter were repeated three times except northern 

blotting experiments. Northern blotting experiments shown in the Chapter 3 below were repeated 

biologically twice except the experiment shown in panel B of Figure 3.15 that was performed 

only once.  
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RESULTS 
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3.1 Expression of lignin genes is induced by pathogen in Arabidopsis. 
 The expressions of five Arabidopsis lignin genes upon pathogen infection were examined. 

Wild type Arabidopsis ecotype Col-0 was challenged with host pathogen C. higginsianum. 

Expression was determined at 7 different timing points post inoculation using northern blotting. 

Key lignin genes that were tested are as follows: phenylalanine lyase 1 (PAL1), cinnamic acid 4-

hydroxylase (C4H), hydroxycinnamoyl CoA shikimate/quinate hydroxyl-cinnamoyltransferase 

(HCT), ferulic acid 5’-hydroxylase 1 (F5H1) and caffeic acid/5-hydroxyferulic acid Ο-

methyltransferase 1 (COMT1). PAL1 and C4H were chosen since they catalyze the first two 

steps of the phenylpropanoid pathway; HCT was chosen since it catalyzes the first step of the 

monolignol pathway; F5H1 and COMT1 were chosen since they are involved in the metabolism 

of the S lignin monomer (Figure 1.1). As shown in Figure 3.1, all the lignin genes tested, 

together with two marker genes of plant defense PR-1 and PDF1.2 displayed an induced 

expression pattern upon the infection of host pathogen C. higginsianum, suggesting that the 

entire lignin pathway was induced by host pathogen infection. Noticeably, all lignin genes tested 

showed a similar increasing trend in expression, which reached to a maximum level at 96 hpi, 

was maintained at 120 hpi and decreased at 144 hpi except for PAL1 that remained high at 144 

hpi. 
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Figure 3.1 Expression of lignin genes upon host pathogen inoculation. 

Northern blotting analysis of lignin genes’ expression upon infection of host anthracnose 
pathogen Colletotrichum higginsianum. 3-week-old wild type Arabidopsis Col-0 plants were 
inoculated with C. higginsianum and total above-ground tissues were collected at specific timing 
points as indicated above for RNA isolation. Non-inoculated sample was labeled as “Mock”. 
Mock samples were also collected at the 7 time points as inoculated samples. The gene 
expression patterns were consistent at all 7 mock samples. Thus, only one of them is presented 
here to avoid redundancy. Loading of total RNA was viewed by ethidium bromide staining of the 
RNA gel. The sequences of primers used to synthesize probes can be found in Appendix Table 1. 
Gene abbreviations: PAL1, phenylalanine ammonia lyase 1; F5H1, ferulic acid 5-hydroxylase 1; 
C4H, cinnamate 4-hydroxylase; HCT, hydroxycinnamoyl-Coenzyme A shikimate/quinate 
hydroxycinnamoyltransferase; COMT1, caffeic acid O-methyltransferase 1; PR-1, pathogenesis 
related gene-1; PDF1.2, plant defensing 1.2. 
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3.2 Characterization of f5h1 and f5h2 mutant alleles.  
 Previous disease tests of Arabidopsis mutants disrupted in individual lignin genes 

revealed that only mutant f5h1-1 showed enhanced susceptibility when inoculated with the host 

pathogen C. higginsianum (Liu G and Wei Y, unpublished data). To verify this observation, two 

additional alleles of f5h1 mutants were obtained in a Col-0 background from ABRC. Allele f5h1-

1 carries a single nucleotide mutation “T→C” at position 292 (from the ATG start codon) and 

was confirmed by sequencing PCR-amplified F5H1 gene fragments (data not shown). Mutant 

allele f5h1-2 was originally characterized as fah1-7 (Chapple et al., 1992), but the specific f5h1-2 

mutation site was not available from the ABRC database and original publication. As described 

by Chapple et al. (1992), this mutation of gene F5H1 resulted in a red fluorescence of leave cells 

under ultraviolet (UV) light. Therefore, the fluorescence response upon UV application was 

determined. As shown in Figure 3.2C, the red fluorescence was observed in both f5h1-1 and 

f5h1-2 mutants. Thus, f5h1-2 was considered to be a homozygous mutant line since plants 

carrying a heterozygous f5h1 mutation displayed a blue-green fluorescence indistinguishable 

from the wild type Arabiodpsis ecotype Col-0 (Figure 3.2C). Allele f5h1-3 was identified from 

SALK T-DNA insertion mutant SALK_063792 by PCR verification following the seed 

provider’s instruction (Figure 3.2A). Red fluorescence phenotype was also observed for the f5h1-

3 allele (Figure 3.2C). 
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Figure 3.2 Gene structures and phenotype of mutant f5h1 and f5h2. 

Schematic diagrams of gene F5H1 (At4g36220; A) and F5H2 (At5g04330; B). Red boxes 
represent exons and horizontal black lines represent 5’ untranslated region (UTR) before the 
ATG start codon, introns and 3‘UTR after the TAA/TGA stop codons. The lengths of each red 
box and segment of black line were scaled to match the sizes of actual gene sequences based on 
the information of TAIR database (http://www.arabidopsis.org). Arrows indicate the position of 
mutation site (f5h1-1) and insertion flanking sequences (f5h1-3 and f5h2-1). The mutation site of 
f5h1-2 (fah1-7) was not available and not annoted in image. (C) The fluorescence responses of 
leaf cells of f5h1 and f5h2 mutants, wild type Col-0 and plant carrying both wild type and mutant 
F5H1 alleles (heterozygous; HZ) under exogenous UV application. Scale bar=50µm. 
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 In the Arabidopsis genome, there is another putative gene encoding ferulic acid 5’ 

hydroxylase, At5g04330, which is named as F5H2 in this thesis. F5H1 and F5H2 showed 76.6% 

similarity in the nucleotide sequence (Costa et al., 2003; see Figure 3.3 for gene alignment). 

Mutant f5h2-1 (SALK_064404c) was obtained from ABRC and homozygosity was verified by 

PCR. Homozygous f5h2-1 mutant did not show enhanced red fluorescence (Figure 3.2C). 

 To investigate the interactions between F5H1 and other genes involved in plant immunity, 

various double/triple mutants were generated as described in “Chapter 2 Materials and Methods”. 

Under ordinary growing condition without pathogen challenge, all of these double/triple mutants 

displayed normal growth similar to wild type Arabidopsis Col-0 (data not shown). 
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Figure 3.3 Alignment of F5H1 (At4g36220) and F5H2 (At5g04330). 

Performed by ClustalW2 - Multiple Sequence Alignment tool of The European Bioinformatics 
Institute (EBI), part of the European Molecular Biology Laboratory (EMBL; 
http://www.ebi.ac.uk/Tools/msa/clustalw2/). Asterisks indicate the identical sequence between 
F5H1 and F5H2.  
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3.3 Knockout of F5H1 results in enhanced susceptibility. 
 Since only the mutant f5h1-1 was susceptible to the host pathogen C. higginsianum 

among all lignin gene mutants previously tested (Liu G and Wei Y, unpublished data), two 

additional f5h1 allelic mutants were tested with host pathogens C. higginsianum and E. 

cichoracearum together with f5h1-1 and Col-0 to identify their response toward host fungal 

pathogens. As shown in Figure 3.4A, all three f5h1 mutant alleles showed similar levels of 

disease symptoms (tissue collapse) as early as 48 hpi after exposure to C. higginsianum, while 

wild type Arabidopsis Col-0 still maintained a healthy appearance. Further microscopic analysis 

revealed that this pathogen had switched from biotrophic stages to necrotrophic stages due to the 

development of secondary hyphae on f5h1 mutant alleles (indicated by red arrows in Figure 

3.4A) as described by Kleemann et al., 2008; while remaining at a biotrophic stage on Col-0 wild 

type plants. Consistent with the C. higginsianum disease assay, E. cichoracearum formed 

significantly more conidiophores on all three allelic f5h1 mutants tested, suggesting that f5h1 

mutants were also susceptible to host powdery mildew in addition to the anthracnose pathogen 

(Figure 3.4B). This result confirmed that the f5h1 mutation impaired immunity of Arabidopsis 

and conferred enhanced susceptibility against two host pathogens.  
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Figure 3.4 Enhanced pathogen susceptibilities in f5h1 mutant alleles. 

Disease symptoms of host fungal pathogens on f5h1 mutant alleles and wild type Col-0. (A) 
Disease symptoms at 3 days post inoculation (dpi) with Colletotrichum higginsianum. 
Representative leaves of each allele were selected and enlarged to show the collapse of plant 
tissue. Microscopic images show the development of fungal hyphae. Yellow arrow indicates 
primary hyphae on Col-0 and red arrows indicate secondary hyphae on f5h1 mutant alleles. Scale 
bar=20µm. (B) Erysiphe cichoracearum conidiophore formation was photographed at 7 dpi after 
acidic aniline blue staining. The density of fungal conidiophore reflects the severity of disease on 
the plant lines tested. Scale bar=100µm. Images are representative of 3 independent experiments 
and 5 observations of each independent experiment. 
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In addition to f5h1-1 mutant alleles, f5h2-1 and the double mutant f5h1/f5h2 were tested 

with C. higginsianum to investigate the possible roles of F5H2 in plant immunity. As shown in 

Figure 3.5, f5h2-1 did not show a significantly susceptible phenotype compared with Col-0 wild 

type. Moreover, double mutants f5h1/f5h2 showed a similar level of susceptibility as the f5h1-1 

single mutant. Taken together, F5H2 did not contribute in plant immunity. Therefore, all 

subsequent experiments, except where stated, were performed on f5h1, rather than on the 

f5h1/f5h2 progeny line. 
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Figure 3.5 F5H2 is not involved in plant disease resistance. 

Disease symptoms of host fungal pathogens infected on f5h1 and f5h2 mutant lines and wild type 
Col-0. (A) Disease symptoms, as indicated by tissue collaps, of Colletotrichum higginsianum at 
3 days post inoculation (dpi). (B) Conidiation of Erysiphe cichoracearum at 7 dpi was 
photographed after aniline blue staining. The density of fungal conidiophore reflects the severity 
of disease on the plant line tested. Scale bar=100µm Images are representative of 3 independent 
experiments and 5 observations of each independent experiment. 
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3.4 Plant penetration resistance is disrupted by mutation of F5H1. 
 Penetration resistance represents the first level of plant nonhost resistance aiming to 

prevent the entry of pathogen infection structures into host cell. Therefore, penetration resistance 

was analyzed in the f5h1-1 mutant. First, penetration frequency of a nonhost pathogen B. 

graminis f.sp. hordei on the f5h1 mutant was determined by measuring the proportion of 

successful entries per 100 interaction sites. At 48 hpi, a 2.5-fold increase of the penetration 

frequency of B. graminis f.sp. hordei was observed on f5h1-1 mutant in comparison with Col-0, 

suggesting that penetration resistance was impaired by f5h1-1 mutant (Figure 3.6A). Successful 

penetrations were characterized by the formation of unilateral haustoria (uh) while unsuccessful 

penetration was prevented by papillae (pa; Figure 3.6B). Further development of hyphae was 

also observed on the f5h1-1 mutant but not on Col-0 (Figure 3.6B). However, B. graminis f.sp. 

hordei could not complete its entire life cycle to form conidiophore on either Col-0 or f5h1-1 

mutant, since further post-invasion growth of B. graminis f.sp. hordei was inhibited by a 

hypersensitive reaction (HR) responses in mutant f5h1-1 (Figure 3.6C). Moreover, no significant 

difference in penetration ratio was determined for the f5h2-1 mutant and a similar penetration 

ratio was observed for the double mutant f5h1/f5h2 as for the single mutant f5h1-1 (Figure 3.6A), 

which further supported the previous observation that F5H2 gene was not involved in plant 

disease resistance. 
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Figure 3.6 Penetration frequencies of nonhost powdery mildew for various mutant lines 
and wild type plants at 48 hpi. 

(A) Penetration frequency of nonhost powdery mildew Blumeria graminis f.sp. hordei was 
determined by measuring the ratio of successful penetrations per 100 interaction sites. The 
formation of haustoria was counted as a successful penetration. Plant samples were collected at 
48 hpi of nonhost powdery mildew B. graminis f.sp. hordei and stained with aniline blue before 
collecting the penetration frequency data. The mean and standard deviation (SD; as indicated by 
error bar) were calculated from 3 independent experiments (n=3). Different letters denoted 
significant differences of the means as determined by ANOVA with Fisher’s Least Significant 
Difference (LSD; P < 0.01). (B) Acidic aniline blue (pH=2.0) staining showing the fungal 
structures. pa, papillae; uh, unilateral haustoria. (C) Alkaline aniline blue (pH=9.5) staining 
showing deposition of callose at cells with a hypersensitive response (HR). hr, hypersensitive 
response; uh, unilateral haustoria. Scale bar=10µm. 
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To further test the penetration resistance of the f5h1 mutant, three additional pathogens 

were employed to evaluate the penetration resistance of this mutant allele, including host 

powdery mildew E. cichoracearum, nonhost Colletotrichum destructivum and host C. 

higginsianum. Consistent with nonhost powdery mildew B. graminis f.sp. hordei, E. 

cichoracearum also displayed a higher penetration frequency on f5h1-1 than on Col-0 (Figure 

3.7). On other mutants disrupted in post-invasion signaling pathways such as sid2, pad4/sag101, 

jar1, ein2 and transgenic line NahGox, E. cichoracearum displayed similar levels of penetration 

frequency as on wild type Arabidopsis Col-0. Knockout of F5H1 in these mutant backgrounds 

enhanced the penetration frequencies to the same extent as f5h1 single mutant compared with 

wild type Col-0. Taken together, penetration resistance against host powdery mildew was also 

impaired by f5h1 mutation. 

 

Figure 3.7 Penetration frequency of host powdery mildew. 

Penetration efficiencies of host powdery mildew Erysiphe cichoracearum were determined as 
the proportion of successful penetrations per 100 interaction sites at 2 dpi of E. cichoracearum. 
The mean and standard diviation (SD; as indicated by error bar) were calculated from 3 
independent experiments (n=3). Different letters denoted significant differences of the means as 
determined by ANOVA with Fisher’s Least Significant Difference (LSD; P < 0.01).  
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 Different species of Colletotrichum have different levels of pathogenicity on Arabidopsis 

(O’Connell, et al., 2004). Contrasting nonhost and host Colletotrichum species were applied to 

test the penetration resistance of Arabidopsis against anthracnose pathogens. The nonhost C. 

destructivum usually cannot penetrate through the Arabidopsis cell wall and complete its entire 

pathogenicity cycle. Germination of conidia and formation of appressoria of C. destructivum 

were as successful on all mutants tested as a wild type Arabidopsis Col-0 (Figure 3.9). However, 

for single f5h1 mutant and double/triple mutants carrying the f5h1 mutation, successful 

penetrations resulting in the formation of primary hyphae (pointed by red triangles) were widely 

observed at 3 dpi, while Col-0 and mutants carrying wild type allele F5H1 and disruption in 

post-invasion resistance were strongly resistant to penetration of C. destructivum (Figure 3.9). 

This result further confirms that penetration resistance against nonhost C. destructivum was 

significantly impaired by the f5h1 mutation.  
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Figure 3.8 Mutant f5h1 results in penetration of nonhost fungal pathogen. 

Successful penetration of Colletotrichum destructivum was observed on single f5h1 mutant and 
double/triple mutants carrying f5h1 mutation. C. destructivum was inoculated on mature rosette 
leaves by a single droplet (15µl) of conidia suspension. Samples were collected at 3 days post 
inoculation (dpi) and photographed after trypan blue staining. Red triangles point the primary 
hyphae. Scale bar=20µm. Images are representative of 3 independent experiments and 5 
observations of each independent experiment. 
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Finally, the host pathogen C. higginsianum was used to challenge the same collection of 

mutants used with C. destructivum. Since C. higginsianum is able to complete its pathogenicity 

cycle and cause disease symptoms in Arabidopsis, the f5h1 mutant might accelerate the 

development of disease due to more and faster penetrations. As shown in Figure 3.9, significant 

disease symptoms of tissue collapse were clearly observed on all mutant lines containing the 

f5h1 mutation as early as 2 dpi while Col-0 and other mutants with the wild type F5H1 allele 

maintained a healthier appearance at the same time point. The tissue collapse within the lesion 

indicated the switch in C. higginsianum from a biotrophic stage to a necrotrophic stage, which 

was verified by microscopic analysis showing the existence of secondary hyphae at 48 hpi 

(Figure 3.9). Taken together, a wild type F5H1 gene contributes to plant penetration resistance 

against a broad spectrum of pathogens, including both host and nonhost pathogens of powdery 

mildew and anthracnose pathogens. 
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Figure 3.9 Mutant f5h1 promotes disease development of host fungal pathogen. 

The disease symptom of Colletotrichum higginsianum at 2 days post inoculation (dpi). All plant 
lines as labeled in the image were inoculated with C. higginsianum by spraying conidia 
suspension at density of 1×106 spore/ml. Whole plants were photographed at 2 dpi. Leaves were 
also collected at 2 dpi and microscopic images photographed after trypan blue staining. White 
arrows indicate the tissue lesion spots caused by C. higginsianum on leaves. Red arrows indicate 
the development of secondary hyphae. Scale bar=20µm. Images are representative of 3 
independent experiments and 5 observations of each independent experiment. 
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3.5 Papillae structure is altered by the f5h1 mutation.  
 The formation of fortified cell wall structures in papillae is the major strategy of 

penetration resistance. In general, callose and lignin have been considered as major structural 

components of pathogen induced papillae. Reduction of callose deposition by knocking out the 

PMR4 gene does not alter the overall size and shape of papillae but changes the internal 

structures of papillae (Nishimura et al., 2003). Therefore, the internal structure of papillae 

formed by the infection of B. graminis f.sp. hordei pathogen on the f5h1 mutant was examined 

by transmission electron microscopy (TEM). As shown in Figure 3.10, the general size and 

shape of papillae on mutant f5h1-1 were not significantly altered in comparison with the papillae 

formed on wild type Arabidopsis Col-0. However, the layered structures observed in papillae of 

Col-0 wild type leaves were impaired within papillae in the f5h1 mutant line. Thus, a wild type 

F5H1 gene is required for the construction of functional papillae structures.  
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Figure 3.10 Transmission electron microscopy analysis of papillae induced by nonhost 
powdery midlew. 

The ultra structure of papillae formed upon inoculation of nonhost powdery mildew Blumeria. 
graminis f.sp. hordei were analyzed by transmission electron micrscope (TEM). Wild type 
Arabiopsis Col-0 and mutant f5h1 were inoculated with B. graminis f.sp. hordei. Samples were 
collected at 48 hpi, fixed and embeded in resin, which will be subsequently sectioned and 
observed using TEM after staining. hcw, host cell wall; pp, penetration peg. Scale bar=0.5µm. 
Images are representative of 2 independent experiments and 4 observations of each independent 
experiment. 
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3.6 Plant post-invasion resistance is not affected by the mutation in f5h1. 
 In addition to penetration resistance, plant cells also possess post-invasion resistance 

against the successful entry of fungi and such post-invasion resistance is regulated by SA, JA and 

ET signaling pathway (Dodds and Rathjen, 2010). Therefore, subsequent research was to 

investigate if F5H1 is involved in post-invasion resistance.  

 Several disease tests described above in this thesis had provided clues about the 

relationship of F5H1 and post-invasion resistance. If F5H1 was also involved in post-invasion 

resistance, the knockout mutant f5h1-1 should impair both penetration and post-invasion 

resistance. Therefore, the mutant f5h1-1 should display more severe disease symptoms to host 

pathogens than other mutants which have a wild type F5H1 allele and are only disrupted in post-

invasion resistance such as pad4/sag101 and NahGox. The host pathogen C. higginsianum 

generated severe disease symptoms on several single mutants compared with Col-0, including 

pad4/sag101 and NahGox (Figure 3.11). Even though the disease symptom observed on sid2, 

jar1 and ein2 appeared similar as f5h1-1, double mutants f5h1/sid2, f5h1/jar1 and f5h1/ein2 

displayed more severe disease symptoms than the single parental mutants (Figure 3.11). 

Similarly, the conidiophore formation of E. cichoracearum on the f5h1-1 single mutant was 

much less than pad4/sag101 and NahGox lines (Figure 3.12). All of these results strongly 

suggest that F5H1 might not be associated with post-invasion resistance. 
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Figure 3.11 Disease symptoms of host fungal pathogen at 4 dpi. 

After photographed at 2 dpi, as shown in Figure 3.9, the plants were kept in the same growing 
conditions for additional two days without lids covered. Removal of lids’ cover will reduce the 
humidity and slow down the impairment of disease caused by Colletotrichum higginsianum. In 
this condition, the pathogenicity of C. higginsianum is slightly weakened, which will allow the 
generation of distinguishable responses from mutant with various levels of disease resistance. 
Subsequently, images were photographed at 4 dpi. Images are representative of 3 independent 
experiments. 
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Figure 3.12 Conidiophore formation of host powdery mildew. 

Conidiophore formation of host powdery mildew Erysiphe cichoracearum was photographed at 
7 days post inoculation (dpi) after acidic aniline blue staining (pH=2.0). The density of fungal 
conidiophore reflects the severity of disease on the plant line tested. Scale bar=100µm. Images 
are representative of 3 independent experiments and 5 observations of each independent 
experiment. 
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 To further test this possibility at a molecular level, the expression of marker genes of the 

SA and JA/ET signaling pathway mediating post-invasion resistance, PR-1 and PDF1.2 (Niu et 

al., 2011) were characterized by northern blotting. As shown in Figure 3.13, both PR-1 and 

PDF1.2 were induced upon C. higginsianum infection on the wild type Col-0 and such induction 

was not altered in f5h1-1 mutant, indicating that neither signaling pathway was affected by the 

knockout of F5H1. Together with the disease test analysis, all of the evidence demonstrates that 

mutation of the F5H1 gene does not affect post-invasion resistance. 

 

Figure 3.13 Expression of defensive genes and lignin genes in the f5h1 mutatn during 
pathogen infection for 12 dpi. 

Expression of lignin genes and defensive genes were determined by northern blotting in Col-0 
wild type and a f5h1 mutation background after inoculation with Colletotrichum higginsianum. 
Total aboveground tissues were collected at specific timing points as indicated for RNA isolation. 
Images were captured by a phosperimager system. Loading of total RNA was visualized under 
UV light after ethidium bromide staining. Images are representative of 2 independent 
experiments. Gene abbreviations: PAL1, phenylalanine ammonia lyase 1; F5H1, ferulic acid 5-
hydroxylase 1; C4H, cinnamate 4-hydroxylase; HCT, hydroxycinnamoyl-Coenzyme A 
shikimate/quinate hydroxycinnamoyltransferase; COMT1, caffeic acid O-methyltransferase 1; 
PR-1, pathogenesis related gene-1; PDF1.2, plant defensing 1.2. 
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3.7 The induction of lignin biosynthetic genes by pathogen is regulated by novel 
signaling pathway(s) 

 Previous research had pointed out that almost all of the lignin biosynthetic genes 

displayed an upregulated expression pattern upon fungal pathogen infection in wheat (Bhuiyan et 

al., 2009). However, the relevant signaling pathway controlling this reaction remains unknown. 

Since SA, JA and ET are well-studied hormones regulating plant resistance, the induction of 

lignin biosynthetic gene expression was tested for dependence on any of the characterized 

defensive signaling pathways. The expression pattern of F5H1 and other lignin genes in mutants 

disrupted in the SA, JA or ET signaling pathways was determined by northern blotting. As 

shown in Figure 3.14, the induced expression of F5H1 was slightly increased in transgenic 

Arabidopsis NahGox, mutant sid2 and ein2 while not affected in pad4sag101 and jar1. PAL1 

displayed similar pattern as F5H1. Both C4H and COMT1 were not significantly altered in any 

mutant tested. HCT was not affected in mutant sid2, f5h1sids, transgenic Arabidopsis NahGox 

and Arabidopsis line f5h1/NahGox but slightly down-regulated in other mutants. Wild type 

Arabidopsis Col-0 was also treated with SA, JA, ET and two defense signaling molecules as well 

as four developmental hormones including abscisic acid (ABA), auxin (IAA), gibberellin (GA) 

and cytokinin (BAP). The expression of lignin genes was determined by northern blotting. This 

experiment showed that exogenous application of SA/JA/ET hormones was not able to affect the 

expression of lignin genes (Figure 3.15A). Treatment of SNP and H2O2 and other hormones 

failed to induce lignin genes in a pattern that mimicked pathogen-induced expression of lignin 

genes. Although auxin appeared to induce F5H1 and COMT1, such induction was not observed 

in a subsequent experiment with a gradient of different auxin concentrations (Liu X, unpublished 

data).  
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Figure 3.14 Expression of lignin genes and defensive genes in hormone signaling pathway 
mutants. 

All plant lines were inoculated with the host pathogen Colletotrichum higginsianum and total 
above-ground tissues were collected at 3 dpi for RNA isolation. Expression level of each gene 
was determined by northern blotting and images were captured by a phosphorimager system. 
Loadings of total RNA was determined by ethidium bromide staining of RNA gel and visualized 
under UV light. The less intense RNA in Col-0 and f5h1 samples was due to uneven UV light 
application during photography, not to lower RNA loading. Images are representative of 2 
independent experiments. Gene abbreviations: PAL1, phenylalanine ammonia lyase 1; F5H1, 
ferulic acid 5-hydroxylase 1; C4H, cinnamate 4-hydroxylase; HCT, hydroxycinnamoyl-
Coenzyme A shikimate/quinate hydroxycinnamoyltransferase; COMT1, caffeic acid O-
methyltransferase 1; PR-1, Pathogenesis Related Gene-1; PDF1.2, Plant defensing 1.2. 
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Figure 3.15 Expression of lignin genes and defensive genes after exogenous treatment of 
signaling molecules. 

Expression of lignin genes and defensive genes were characterized by northern blotting. Total 
above-ground tissues were collected 24 hours post treatment of defensive signaling molecules 
(A) and developmental hormones (B) for RNA isolation and northern blotting. Treatment 
abbreviations: M, solvent control treatment; SA, salicylic acid; JA, jasmonic acids; ET, ethephon 
(ethylene releasing agents); SNP, sodium nitro prussid (NO releasing agent); H2O2, hydrogen 
peroxide; ABA, abscisic acid; IAA, indole-3 acetic acid; GA, gibberellic acid; BAP, 6-
benzylaminopurine. Gene abbreviations: PAL1, phenylalanine ammonia lyase 1; F5H1, ferulic 
acid 5-hydroxylase 1; C4H, cinnamate 4-hydroxylase; HCT, hydroxycinnamoyl-Coenzyme A 
shikimate/quinate hydroxycinnamoyltransferase; COMT1, caffeic acid O-methyltransferase 1; 
PR-1, pathogenesis related gene-1; PDF1.2, plant defensing 1.2. 
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3.8 F5H1 acts independently of PEN1, PEN2 and PEN3 in penetration resistance. 

 PEN1, PEN2 and PEN3 are well-characterized plant penetration resistance components 

by the failure of penetration resistance against varieties of powdery mildew pathogens after PEN 

gene mutation (Collins, et al., 2003; Lipka et al., 2005; Stein et al., 2006). Therefore, it is 

important to analyze the interactions between F5H1 and PEN genes in penetration resistance. To 

achieve this purpose, double mutants carrying mutations in f5h1 and individual pen mutants were 

created. Nonhost powdery mildew B. graminis f.sp. hordei displayed increased penetration 

frequencies on all f5h1/pen double mutants in comparison with corresponding single pen mutants 

(Figure 3.16), suggesting that F5H1 acts independently of PEN genes during penetration 

resistance against powdery mildew. 

 

 

Figure 3.16 F5H1 acts independently of PENs in penetration resistance against nonhost 
powdery mildew. 

Penetration frequencies of Blumeria graminis f.sp. hordei at 40 hpi on wild type Arabidopsis 
Col-0 and mutants were determined by ratio of successful penetrations per 100 plant-pathogen 
interaction sites. The mean and standard deviation (SD; as indicated by error bar) were 
calculated from 3 independent experiments (n=3). Different letters denoted significant 
differences of the means as determined by ANOVA with Fisher’s Least Significant Difference 
(LSD; P < 0.01). 
  



	
   84	
  

Subsequently, the host anthracnose pathogen C. higginsianum was employed to verify the 

additive effect of f5h1 towards pen mutants against other fungal pathogens. At 2 dpi, mutant f5h1, 

pen2 and pen3 displayed increased penetration frequencies compared with Col-0 and the pen1 

mutant (Figure 3.17A) and as expected, all three double mutants showed more severe 

impairment of penetration resistance as indicated by enhanced penetration frequencies of the 

pathogen (Figure 3.17A). Moreover, at 3 dpi, this pathogen had already switched to a 

necrotrophic stage on all double mutants as shown by the development of secondary hyphae (red 

arrows) while remaining in a biotrophic stage on Col-0 as well as all single mutants (Figure 

3.17B). Consistently, this pathogen had caused significant disease symptoms (lesion pointed by 

white arrows) on all f5h1-pen double mutants. 
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Figure 3.17 Disease test of host fungal pathogen on f5h1/pen mutants. 

(A) Penetration frequencies of Colletotrichum higginsianum at 2 dpi. Value is determined by 
ratio of successful penetrations per 100 germinated conidia. The mean and standard deviation 
(SD; as indicated by error bar) were calculated from 3 independent experiments (n=3). Different 
letters denoted significant differences of the means as determined by ANOVA with Fisher’s 
Least Significant Difference (LSD; P < 0.01).  (B) Disease symptom of C. higginsianum at 3 dpi. 
C. higginsianum was inoculated at Col-0 wild type, f5h1, pen single mutants, and all double 
mutants as indicated in images. Plants were photographed at 3 dpi and leaves were collected and 
fixed for histochemical analysis. Microscopic images were taken after trypan blue staining. 
White arrows indicate the tissue lesions. Red arrows indicate the secondary hyphae. Scale 
bar=20µm. Images are representative of 3 independent experiments and 5 observations of each 
independent experiment. 
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Finally, the rice blast pathogen Magnaporthe oryzae was applied to further verify the 

relationship between F5H1 and PENs. M. oryzae did not successfully penetrate on wild type 

Arabidopsis (Figure 3.18A) but occasionally penetrated on the f5h1 mutant (Figure 3.17B). 

Surprisingly, a large number of successful penetration sites was observed on f5h1/pen2 double 

mutants, but not on the pen2 single mutant (Figure 3.18C, D). The germination of fungal conidia 

and formation of appressoria were not affected (Figure 3.18E). Since no penetration of M. oryzae 

was detected on other pen single mutants and f5h1-pen double mutants (data not shown), F5H1 

is likely the major component of penetration resistance against pathogen M. oryzae. Moreover, 

this fungal pathogen was able develop longer hyphae on the f5h1/pen2 double mutant (Figure 

3.18F). This suggested that PEN2 might have additional roles that restrict the post-invasion 

growth of M. oryzae hyphae. The HR response due to the activation of post-invasion resistance 

was observed in the host cells that were penetrated by M. oryzae (Figure 3.18G). In sum, all of 

these data demonstrate that F5H1 and PEN genes probably act independently in penetration 

resistance against fungal pathogens. 
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Figure 3.18 Typical Penetrations of Magnaporthe oryzae on Arabidopsis f5h1pen2 double 
mutants and wild type Col-0. 

Magnaporthe oryzae was inoculated by droplet inoculation and leaves were collected at 2 dpi. 
After fixation and rehydration, leaves were stained with trypan blue and observed under 
microscope. Yellow triangles in panels B and D indicate successful penetration sites. E and F 
show enlarged views of the area labeled by the rectangle on D with various focusing depths. G 
shows the same area as E and F but stained with alkaline aniline blue staining to display callose 
deposition (blue-green color). c, conidia; app, appressorium; ih, intracellular hyphae. Scale 
bar=10µm. Images are representative of 3 independent experiments and 5 observations of each 
independent experiment. 
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Another unexpected observation was the ectopic deposition of callose on the pen1 mutant 

upon pathogen infection. As shown in Figure 3.19A, after B. graminis f.sp. hordei inoculation at 

a lower density than disease tests described above, the pen1 mutant and f5h1/pen1 double mutant 

showed a much higher density of callose than the Col-0 wild type and the f5h1 single mutant. 

Close investigation of callose deposition on the pen1 single mutant and the f5h1pen1 double 

mutant revealed that most of these callose depositions displayed an altered shape that was 

different from the circular papillae-associated callose deposition (Figure 3.19B). This data 

suggested that the ectopic callose deposition was associated with the pen1 mutant, not f5h1.  
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Figure 3.19 B. graminis f.sp. hordei induced ectopic deposition of callose in pen1 mutant. 

(A) Callose deposition (blue-green color spots) before/after inoculation on Col-0, f5h1, pen1 and 
f5h1pen1 after alkaline aniline blue (pH=9.5) staining. Scale bar=100µm (B) Enlarged images of 
pen1 and f5h1pen1 showing the deposition of callose with three different shapes: papillae shape 
(p), hasustorium shape (h; wrapping up fungal haustorium) and ectopic shape (ec). Scale 
bar=50µm. All samples were collected at 2 days post inoculation. 
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3.9 F5H1 is involved in pmr2-mediated resistance but not pmr4.  
 Arabidopsis PMR2 is an ortholog of the barley MLO gene that negatively modulates 

resistance against powdery mildew (Consonni et al., 2010). Similar to barley loss-of-function 

mlo resistance, Arabidopsis pmr2-mediated resistance is characterized by enhanced penetration 

resistance that requires PEN1, PEN2 and PEN3 gene functions as well as a tryptophan-derived 

metabolism pathway (Consonni et al., 2006; 2010). Since previous results described in this thesis 

demonstrated that F5H1 contributed to penetration resistance independently of PEN genes, 

pmr2-mediated resistance may also require the participation of F5H1 for its enhanced 

penetration resistance. Therefore, a double mutant carrying pmr2 and f5h1 alleles was generated 

and challenged with both host and nonhost powdery mildew to investigate the interaction 

between pmr2 and F5H1. The disease symptoms caused by this fungal pathogen were analyzed 

at 40 hpi for penetration efficiencies by identifying micro-colonies with extended hyphae, at 72 

hpi for hyphae development and at 168 hpi for conidiation.  

 The disease development of E. cichoracearum was monitored at the 3 time points 

described on Col-0 wild type (Figure 3.20A to C), the f5h1 single mutant (Figure 3.20D to F), 

the pmr2 single mutant (Figure 3.20 G to I) and the f5h1/pmr2 double mutant (Figure 3.20J to L). 

At 40 hpi, this fungal pathogen was able to develop micro-colonies with short hyphae on wild 

type Col-0, the f5h1 single mutant and the f5h1/pmr2 double mutant but not on the pmr2 single 

mutant. The development of fungal hyphae on the f5h1/pmr2 double mutant but not on the pmr2 

single mutant implied that the f5h1 mutation impaired the penetration resistance of the pmr2 

single mutant. This was verified by the quantification of penetration frequencies at 40 hpi 

(Figure 3.20 M). E. cichoracearum achieved significantly higher penetration frequency on the 

f5h1/pmr2 double mutant in comparison with the pmr2 single mutant, but such penetration 

frequency remained significantly lower than the value obtained on wild type Col-0 and the single 

mutant f5h1 (Figure 3.20M).  

 At 3 dpi, this fungal pathogen developed very tiny colonies with fewer branches on both 

the pmr2 single mutant and the f5h1/pmr2 double mutant compared with wild type Col-0 and 

f5h1 single mutant. This was further confirmed by the quantification of total hyphae length per 

colony (Figure 3.20N). However, at 7 dpi, E. cichoracearum colonies observed on the f5h1/pmr2 

double mutant were significantly bigger and had more hyphal branches than the colonies 

observed on pmr2 single mutants. Since the E. cichoracearum underwent secondary penetration 
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during the hyphae development, the total haustoria formed per colony were counted (Figure 

3.20O). The reduced penetration resistance of the f5h1/pmr2 double mutant resulted in an 

increase of the total haustoria formed per colony than found on single mutants. Although the 

f5h1/pmr2 double mutant showed a weaker penetration resistance than pmr2 single mutant, the 

overall resistance was not affected since no conidiophore was formed. These results 

demonstrated that knockout of F5H1 in pmr2 mutant partially impaired the penetration resistance 

but did not affect overall resistance against host powdery mildew. 
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Figure 3.20 F5H1 is involved in pmr2-mediated resistance against host powdery mildew. 

Histochemical analysis of typical Erysiphe cichoracearum colony development at 40 hours post 
inoculation (hpi), 3 and 7 days post inoculation (dpi) on Col-0 (A)-(C); f5h1-1 (D)-(F); pmr2 
(G)-(I) and f5h1/pmr2 (J)-(L). Samples were collected at appointed timing points as shown in 
image and stained with acidic aniline blue (pH=2.0) after fixation treatment. (M) Penetration 
frequencies at 40 hpi. The value is determined by successful penetrations per 100 interaction 
sites. (N) Total hyphae length per colony of E. cichoracearum at 3 dpi. (O) Numbers of haustoria 
formed per colony of E.cichoracearum at 7 dpi. For panel M, N and O, the mean and standard 
deviation (SD; as indicated by error bar) were calculated from 3 independent experiments (n=3). 
Different letters denoted significant differences of the means as determined by ANOVA with 
Fisher’s Least Significant Difference (LSD; P < 0.05). 
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However, when challenged with nonhost pathogen B. graminis f.sp. hordei, the f5h1 

mutation in the pmr2 background did not significantly enhance fungal entry ratio (Figure 3.21). 

This was probably due to the weak infection capacity of nonhost pathogen B. graminis f.sp. 

hordei that could not the overcome partially impaired penetration resistance resulting from the 

f5h1 mutation in a pmr2 background. Moreover, the over accumulation of hydrogen peroxide at 

papillae formed on the pmr2 single mutant (indicated by the enhanced brownish color post DAB 

staining) remained unaltered on the f5h1/pmr2 double mutant (Figure 3.22). All of these results 

pointed out that F5H1 was only contributing to the penetration resistance of the pmr2 mutant and 

was not associated with its other resistance mechanisms. 

 

Figure 3.21 Penetration efficiencies of nonhost powdery mildew on pmr-related mutants. 

Penetration efficiencies of Blumeria graminis f.sp. hordei on wild type Arabidopsis Col-0 and 
mutants of f5h1, pmr2, f5h1/pmr2, pmr4 and f5h1/pmr4. Values were determined as successful 
penetration/100 interaction sites. The mean and standard deviation (SD; as indicated by error 
bar) were calculated from 3 independent experiments (n=3). Different letters denoted significant 
differences of the means as determined by ANOVA with Fisher’s Least Significant Difference 
(LSD; P < 0.05). 
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Figure 3.22 Accumulation of hydrogen peroxide at papillae site induced by nonhost 
powdery mildew infection. 

Leaves of Arabidopsis wild type Col-0 and mutants pmr2, f5h1, f5h1/pmr2 were inoculated with 
the nonhost pathogen Blumeria graminis f.sp. hordei. Inoculated leaves at 60 hpi were detached 
for 3,3'-Diaminobenzidine (DAB) uptake. After 6 hr incubation, the leaves were fixed for 
microscopy analysis. The brownish color reactions indicated the accumulation of hydrogen 
peroxide. c, conidia; p, papilla; Scale bar=10µm. Images are representative of 3 independent 
experiments and 5 observations of each independent experiment. 
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 Similarly, double mutant f5h1pmr4 was also analyzed using both nonhost and host 

powdery mildews. In Arabidopsis, PMR4 encodes pathogen-induced callose synthase 

(Nishimura et al., 2003). Since callose is also important structural component of papillae, the 

penetration resistance was tested to see if it was affected by the pmr4 mutation. Single pmr4 

mutant resulted in a significant increase in the penetration ratio when challenged with nonhost B. 

graminis f.sp. hordei, suggesting that loss of callose impaired penetration resistance (Figure 

3.21). Double mutant f5h1/pmr4 allowed a significantly higher penetration ratio of nonhost 

powdery mildew pathogen, suggesting the independency of F5H1 and PMR4 (Figure 3.21).  

When challenged with host powdery mildew E. cichoracearum, the disease development 

was recorded at 40 hpi, 3 dpi and 7 dpi on Col-0 (Figure 3.23A to C), f5h1 single mutant (Figure 

3.23D to F), pmr4 single mutant (Figure 3.23G to I) and f5h1/pmr4 double mutant (Figure 3.23J 

to L). At 40 hpi, the morphologies of E. cichoracearum fungal colonies observed on all of the 

four plant lines were comparable (Figure 3.23A, D, G). Quantification of penetration resistance 

at this time point also revealed that values obtained for the pmr4 single mutant and the f5h1/pmr4 

double mutant were comparable to wild type Col-0 and the f5h1 single mutant. This observation 

implied a similar level of penetration resistance of pmr4 single mutants and f5h1/pmr4 double 

mutant. However, the colonies of host powdery mildew E. cichoracearum observed on the 

f5h1/pmr4 double mutant displayed more aggressive hyphae development at 3 dpi and 7 dpi 

compared to their development on the pmr4 single mutant, and even occasional conidiation (data 

not shown), suggesting a possibly weaker penetration resistance of the f5h1/pmr4 double mutants 

in comparison with the pmr4 single mutant. In addition, previous reports have characterized that 

loss-of-function pmr4-mediated resistance was dependent on the SA signaling pathway 

(Nishimura et al., 2003). The SA-dependent pattern conferred by pmr4 mutant, such as HR 

responses associated with penetrated epidermal cell and constitutive expression of PR-1, was not 

affected by f5h1 mutation (Figure 3.23I; L; O). Therefore, the f5h1 mutation in the pmr4 mutant 

background must allow more secondary penetrations and resulted in enhanced disease 

development, but does not affect the mechanism of pmr4-mediated resistance.  
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Figure 3.23 F5H1 is not involved in pmr4-mediated resistance against host powdery 
mildew. 

Histochemical analysis of Erysiphe cichoracearum colony development at 40 hours post 
inoculation (hpi), 3 and 7 days post inoculation (dpi) on Col-0 (A)-(C); f5h1-1 (D)-(F); pmr4 
(G)-(I) and f5h1pmr4 (J)-(L). The panel A to F was reproduced from Figure 3.21 since the 
experiment was conducted at the same time. Samples were collected at appointed timing points 
listed in image and stained with acidic aniline blue (pH=2.0) after fixation treatment. Scale bars 
are labeled in the images. Inserts of panel I and L show cells with hypersensitive response (HR) 
as indicated by the brown color reaction. hr, hypersensitive response. (M) Penetration 
frequencies of E. cichoracearum at 40 hpi. (N) Total hyphae length per colony of E. 
cichoracearum at 3 dpi For panel M and N, the mean and standard deviation (SD; as indicated by 
error bar) were calculated from 3 independent experiments (n=3). Different letters denoted 
significant differences of the means as determined by ANOVA with Fisher’s Least Significant 
Difference (LSD; P < 0.05). (O) Expression of PR-1 gene was determined by northern blotting 
with phosphorimager system. Equal loading of total RNA was determined by ethidium bromide 
staining and photographed in Alphaimager 2200 system. 
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3.10 Characterization of Arabidopsis mutants disrupted in flavonoid. 

 As described in Chapter 1, a few legume flavonoid compounds show anti-microbial 

activities and function in disease resistance. Such anti-microbial flavonoids were not commonly 

identified in the model plant Arabidopsis. To investigate the role of flavonoid compounds in 

immunity of Arabidopsis, the mutants disrupted in genes encoding chalcone synthase (CHS), 

chalcone isomerase (CHI) and flavonone 3-hydroxylase (F3H) were analyzed for their resistance 

against host fungal pathogen. CHS, CHI and F3H catalyze the initial three steps of the flavonoids 

pathway and generate dihydrokaempferol and dihydroquercetin, the general precursors of other 

flavonoids compounds (Figure 1.3 for detailed metabolism pathway). The three corresponding 

genes, TT4 (At5g13930; CHS; Koornneef, 1990), TT5 (At3g55120; CHI; Shirley et al., 1995) 

and TT6 (At3g51240; F3H; Pelletier and Shirley, 1996), exist as single copy genes in the 

Arabidopsis genome. Therefore, one mutant of each gene was obtained from the SALK T-DNA 

insertion collection (Figure 3.24A, B and C). Homozygous lines for mutants were verified by 

PCR according to the instructions of the seed supplier. All three mutants lacked anthocyanin 

pigment at petioles, which is consistent with previous phenotype reports (Figure 3.24D; Dong et 

al., 2001). Moreover, mutants tt4-T1 and tt6-T1 showed leaf and whole plant developmental 

phenotypes indistinct from Col-0 wild type plants, while tt5-T1 displayed a reduction in plant 

size under normal “long day” photoperiod conditions as well as etched leaf edges (Figure 3.24D; 

32). 
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Figure 3.24 Evaluation of flavonoid upper pathway mutants. 

(A)-(C) Gene structures of TT4, TT5 and TT6. Red boxes represent excons. Black lines represent 
5’-UTR and promoter region if prior to the ATG start codon, 3‘-UTR if after the TAA/TGA stop 
codons and introns if between ATG and TAA/TGA. Arrows indicate the position of the T-DNA 
insertion. (D) Developmental phenotypes of mutants tt4-T1, tt5-T1 and tt6-T1 under a long day 
photoperiod. Plants shown in images were two weeks old. One representative leaf of each mutant 
was selected and magnified to show the morphology and the absence of pigment at petioles of 
the mutants, as indicated by yellow arrows. 
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3.11 Mutation of TT5 confers enhanced resistance in Arabidopsis against host pathogen. 

 Based on current knowledge of Arabidopsis flavonoid metabolism, mutants of tt4, tt5 and 

tt6 should eliminate the large proportion of downstream metabolic steps (Figure 1.4). Due to the 

putative anti-microbial activities of flavonoid compounds, an enhanced susceptibility should be 

expected upon challenge with a host pathogen. To analyze the disease resistance of these mutants, 

host pathogen C. higginsianum was applied to all three Arabidopsis flavonoid mutants to 

determine their responses. By 5 dpi, more tissue lesions were observed on tt4-T1 and tt6-T1 than 

on the Col-0 wild type (Figure 3.25), suggesting that both mutations conferred enhanced 

susceptibility against host pathogen C. higginsianum on Arabidopsis. In contrast, more healthy 

tissues were observed for tt5-T1, especially in the mature leaf tissues, suggesting that this mutant 

was more resistant to C. higginsianum than Col-0 wild type (Figure 3.25).  
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Figure 3.25 Distinct disease responses of flavonoid mutants challenged with host fungal 
pathogen. 

Three weeks old plants were inoculated with host pathogen Colletotricum higginsianum. Plants 
were photographed at 5 days post inoculation (dpi). The healthy tissues on tt5-T1 mutant were 
indicated by the red triangles. Images are representative of 3 independent experiments and 2 
observations of each independent experiment. 
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3.12 The tt5-mediated phenotype is associated with salicylic acid signaling pathway. 

  To analyze the molecular mechanism of this unique tt5-mediated enhanced disease 

resistance, tt5 single mutants were crossed with various mutants that showed more susceptible 

phenotype against host pathogen C. higginsianum, including tt4-T1, pad4/sag101, jar1 and ein2. 

As shown in Figure 3.26, the developmental phenotypes including small plant size and altered 

leaf morphology of tt5-T1 were rescued by knockout of the up-stream gene TT4 and in a mutant 

of the SA signaling pathway, pad4/sag101, suggesting that tt5-mediated developmental 

phenotype required the generation of naringenin chalcone and depended on a functional SA-

signaling pathway. Mutation of jar1 and ein2 that are disrupted in JA and ET signaling pathway 

did not affect the developmental phenotype of the tt5 mutant, suggesting that the phenotype of 

the tt5 mutant is independent of the JA and ET signaling pathways. 

 

Figure 3.26 Restoration of developmental phenotype of tt5-T1 mutant. 

Plants shown in images were two weeks old under normal growing environment with a light 
periode of (16-hr light/8-hr dark). One representative pot of each mutant was selected. Images 
are representative of 3 independent experiments and 2 observations of each independent 
experiment. 
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CHAPTER 4 

DISCUSSION & FUTURE PERSPECTIVES 
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4.1 Induced expression of lignin genes is a common plant defensive response. 

 As the major metabolites of the phenylpropanoid pathway, lignin polymers reinforce 

plant cell walls for upright growth and waterproof vascular tissues for water and soluble nutrient 

transportation (Boerjan et al., 2003). Moreover, lignin also contributes to plant immunity. The 

earliest report addressing the role of lignin in plant disease resistance can be traced back to the 

1970s (Ride, 1975). However, the specific role of lignin polymers in plant immunity and the 

importance of specific lignin composition remain a mystery even after decades of research. This 

Ph.D. study mainly provided genetic evidence that clearly demonstrates that a functional F5H1 is 

the key lignin biosynthetic gene required for plant immunity, and further defines its specific roles 

in plant defense. Pathogen-induced expression of lignin genes has been found in various plant-

pathogen interactions, including Triticum monococcum challenged by B. graminis f.sp. tritici 

(Bhuiyan et al., 2009), Camelina sativa by Sclerotinia sclerotiorum (Eynck et al., 2012), and 

Gossympium barbadense by Verticillium dahlia (Xu et al., 2011). This Ph.D. work demonstrated 

that induced expression of lignin genes was also observed for Arabidopsis challenged by C. 

higginsianum. Subsequently, Arabidopsis lignin biosynthetic genes were also induced upon 

inoculation of B. graminis f.sp. hordei (Liu X and Wei Y, unpublished data), suggesting that up-

regulation of lignin genes is a common defensive response among angiosperm plants against 

pathogens. Moreover, this fungus-induced up-regulation of lignin genes may also represent a 

broader resistance mechanism against non-fungal pathogens. For example, 3 members of the 

Arabidopsis CAD gene family were induced upon inoculation of bacterial pathogen 

Pseudomonas syringae (Tronchet et al., 2010).  The rice lignin gene, Snl6, also displays 

enhanced susceptibility against bacterial pathogens (Bart et al., 2010). Since bacteria and fungi 

employ distinctly different infection strategies, this study was limited to demonstrate the role of 

F5H1 in defense only against fungal pathogens.   

4.2 F5H1 plays critical roles in plant defense against fungal pathogens. 

 A preliminary screening of mutants of lignin genes with pathogen C. higginsianum 

indicated that f5h1 was the only mutant showing enhanced susceptibility (Liu G and Wei Y, 

unpublished data). Two F5H genes exist in Arabidopsis genome, F5H1 (CYP84A1; At4g36220) 

and F5H2 (CYP84A4; At5g04330; Raes et al., 2003). The Arabidopsis mutant f5h1 (also known 

as sin1, fah1) was characterized 20 years ago by its reduced level of sinapoylmalate 

accumulation (Chapple et al., 1992). F5H1 encodes a class of cytochrome P450-dependent 
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monoxygenases (CYP84A1) that is able to catalyze the C5-hydroxylation of coniferaldehyde and 

coniferyl alcohol to 5-hydroxyconiferaldehyde and 5-hydroxyconiferyl alcohol leading to the 

biosynthesis of syringyl (S) lignin monomer biosynthesis and sinapate ester metabolism (Landry 

et al., 1995; Meyer et al., 1995; Humphreys et al., 1999). BLAST search of F5H1 nucleotide 

sequence retrieved from Arabidopsis ecotype Col-0 in other 4 ecotypes’ assembled genome 

sequences, including Ler-1, Bur-0, C24 and Kro-0, revealed the existence of same genee 

with >99% nucleotide identities (http://1001genomes.org/cgi-bin/blast/blast.cgi). Interestingly, 

the single mutant f5h1 shows undetectable level of syringyl lignin monomer in spite of the 

presence of the F5H2 gene (Meyer et al., 1998). This observation suggested that F5H2 might not 

be a functional F5H gene in S lignin metabolism. To demonstrate the roles of F5H genes in plant 

immunity, 3 alleles of f5h1 mutant and f5h2-1 single mutant were obtained and challenged with 

host pathogen C. higginsianum and E. cichoracearum. Double mutant f5h1/f5h2 was generated 

by genetic crossing of f5h1-1 with f5h2-1 to investigate the redundancy between F5H1 and F5H2. 

Disease tests revealed that all 3 alleles of f5h1 mutant displayed enhanced susceptibility against 

the two host fungal pathogens tested. This result demonstrated that F5H1 plays a critical role in 

plant immunity against fungal pathogens. In contrast, the f5h2-1 mutant displayed a level of 

susceptibility comparable to that of Arabidopsis wild type Col-0. Moreover, the double mutant 

f5h1f5h2 showed a similar level of disease symptom as f5h1-1 single mutants, suggesting that 

F5H2 does not contribute to plant immunity. Considering it is undetectable in most of the organs 

except in the 2nd internode and hypocotyl (by Arabidopsis eFP browser; Winter et al., 2007), 

F5H2 might not be a functional gene in Arabidopsis, or it might be responsive only to a specific 

stimulus that has not been determined yet.  

 Mutant f5h1 disrupted not only S lignin metabolism, but also sinapate ester accumulation 

that is responsible for ultraviolet (UV) responses (Landry et al., 1995). Enzyme REF1 catalyzes 

sinapaldehyde, an intermediate metabolite derived from the F5H1-catalyzed reaction and is 

involved sinapate ester biosynthesis (Figure 1; Chapple et al., 1992; Nair, et al., 2004). S lignin 

composition is not dependent on the sinapate ester pathway, since mutant ref1 with similar 

phenotype accumulates normal level of syringyl lignin monomer (Ruegger and Chapple, 2001). 

The ref1 mutant also did not show altered disease resistance when inoculated with C. 

higginsianum (Liu G and Wei Y, unpublished data). Thus, all of the results described above 
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demonstrate the critical role of F5H1 and not F5H2, other lignin genes, or other sinapyl-related 

gene in plant resistance against fungal pathogens.  

4.3 Mutation f5h1 affects penetration resistance, but not post-invasion resistance. 

 Plant penetration resistance represents the first layer of inducible plant defense to prevent 

the direct penetration activities of pathogens in their effort to reach host intracellular nutrients. 

Previous research had only implied a potential role for the F5H gene in penetration resistance 

against fungal pathogens, but it was only correlative evidence. For instance, the wheat F5H gene 

displayed distinct expression patterns that differed between a susceptible cultivar and the cell 

wall appositions (CWAs)-based resistant cultivar (Bhuiyan et al., 2009). In particular, the 

expression of F5H is transiently and highly induced at 24 hpi during very early fungal 

penetration, but not detected at other pathogen progression stages in the resistance cultivar. Such 

a unique pathogen-induced expression pattern was not observed for other wheat lignin genes.  

 To identify the specific role of F5H1 in disease resistance, powdery mildew pathogens 

and mutant f5h1 were used to directly examine the penetration resistance of this Arabidopsis 

mutant line. Mutants disrupted in penetration resistance components, such as pen1, pen2 and 

pen3, allow more entries of powdery mildew conidia, especially nonhost powdery mildew B. 

graminis f.sp. hordei that normally cannot invade (Collins et al., 2003; Lipka et al., 2005; Stein 

et al., 2006). Consistently, the f5h1 mutant allowed significantly higher penetration frequencies 

of nonhost powdery mildew B. graminis f.sp. hordei (a 2.5-fold increase over wild type Col-0), 

confirming the role of F5H1 in penetration resistance of Arabidopsis to a nonhost pathogen. 

Entry frequency on f5h2-1 was comparable to wild type, which further confirmed that F5H2 

plays no role in plant immunity. Moreover, f5h1-1 also showed reduced penetration resistance 

against a host pathogen E. cichoracearum as well: a ~10% increase of penetration frequency at 

48 hpi and 30% more formation of haustoria (a hallmark of secondary penetrations during 

hyphae development) compared with the Col-0 wild type plant.   

 Previously characterized penetration resistance genes contribute to resistance against 

pathogens with varied resistance spectra. PEN1 is particularly focused against nonhost powdery 

mildew pathogens while PEN2 affects a much broader spectrum of pathogens, including the 

oomycete Phytophthora infestans, Pythium irregulare, Plectosphaerella cucumerina and the 

anthracnose pathogen Colletotrichum species (Hiruma et al., 2010). Therefore, the f5h1 mutant 

was challenged with several additional fungal pathogens to investigate its penetration resistance 
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spectrum. Consistent with the powdery mildew tests, f5h1 mutant also affected penetration 

resistance against two other nonhost fungal pathogens C. destructivum and M. oryzae. Moreover, 

f5h1 mutation was also able to accelerate the disease symptom development of host anthracnose 

pathogen C. higginsianum and attenuate resistance against host powdery mildew E. 

cichoracearum. Taken together, the mutant f5h1 showed impaired penetration resistance against 

five species of fungal pathogens, each with distinct compatibilities and infection strategies, 

indicating that F5H1 is involved in a general penetration resistance mechanism that is active 

against a broad spectrum of fungal pathogens. 

 All of the results described above clearly demonstrate the vital role of F5H1 in 

penetration resistance. However, it was not clear whether impaired penetration resistance in the 

f5h1 mutant was the sole reason causing the enhanced susceptibility against host pathogens C. 

higginsianum and E. cichoracearum since the role of F5H1 in post-invasion resistance was not 

fully clarified in these experiments. To test this, the occasional penetrations of nonhost powdery 

mildew B. graminis f.sp. hordei were exploited, since they should induce subsequent post-

invasion resistance featured by hypersensitive reaction (HR) responses, which will ultimately 

terminate the further development of fungi. Disrupted post-invasion resistance by knockout of 

the PAD4/SAG101 signaling pathway allows the development of large colonies of B. graminis 

f.sp. hordei and the triple mutant pen2/pad4/sag101 increases the frequency of such large 

colonies (Lipka et al., 2005). In this thesis work, HR responses were commonly observed 

without such large colonies on the f5h1 mutant infected with B. graminis f.sp. hordei, suggesting 

that post-invasion resistance remains functional in the f5h1 mutant plant. Moreover, C. 

destructivum was not able to cause substantial disease symptoms on the f5h1 mutant but only on 

pad4/sag101 and f5h1/pad4/sag101 mutants (Yang L and Wei Y, unpublished data), which also 

implied a functional post-invasion resistance.   

 When challenged with C. higginsianum and E. cichoracearum, the f5h1 single mutant 

should display much more severe disease symptoms than other single mutants disrupted only in 

post-invasion resistance at later disease progression points if F5H1 is involved in both 

penetration and post-invasion resistance. However, such a severe disease phenotype did not 

appear in the f5h1 mutant at 4 dpi. To confirm this, the expression patterns of two marker genes 

of SA/JA/ET-mediated post-invasion resistance, including PR-1 and PDF1.2, were determined 

by northern blotting in f5h1 mutant. As expected, no altered expression pattern was observed, 
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which confirmed that the f5h1 mutation does not affect post-invasion resistance mediated by SA, 

JA and ET. In sum, all of the results above demonstrate the critical role of F5H1 in penetration 

resistance but not in post-invasion resistance. 

 A noticeable observation is that when analyzing the gene expression of Arabidopsis upon 

challenge with C. higginsianum, the expression level of F5H1 peaked at a maximum level at 96 

hpi, which is far later than the timing of early penetration activities. Such delayed induction of 

F5H1 gene is possibly due to secretion of effector molecules of host pathogen C. hissginsianum 

to suppress host defense responses, including the induction of lignin biosynthetic genes. 

 Secretion of effector molecules that manipulate and re-programme metabolism of host 

cells is critical to the pathogenesis of host pathogens. One of the most important functions of 

effectors is to defeat PAMP-triggered immunity (PTI) responses. For instance, multiple effectors 

characterized from oomycete Hyaloperonospora arabidopsidis are able to suppress host plant 

immunity when they are delivered into host cells via bacterial type-three secretion system or by 

constitutive expression in Arabidopsis (Fabro et al., 2011). The bacterial effector HopZ1 can 

interfere with plant microtubule networks and suppresses cell wall-mediated defense (Lee et al., 

2012).  

 Although such specific effectors have not been isolated from C. higginsianum, Kleemann 

et al. (2012) reported a collection of candidate plant-inducible effector genes from this host 

anthracnose pathogen. These genes are expressed in a biotrophic stage and their proteins are 

secreted from appressoria and intracellular hyphae. Moreover, Shimada et al. (2006) also 

demonstrated that C. higginsianum is able to suppress Arabidopsis papilla formation at entry 

sites by monitoring the formation of papillary callose deposition. Knockout of these candidate 

genes in C. higginsianum and infection on the host plant Arabidopsis may reveal their specific 

functions and whether these genes actually specify effector molecules, including whether they 

delay the timing of pathogen-induced up-regulation of lignin genes, and impair the pathogenesis 

of C. higginsianum. Futhermore, it is also important to test the expression pattern of F5H1 using 

incompatible Arabidopsis pathosystem, such as the Arabidopsis thaliana-B. graminis f.sp. hordei 

pathosystem, to determine if F5H1 is induced at an early time corresponding to the penetration 

activities. The peak expression at 24 hpi of wheat F5H reported by Bhuiyan et al. (2009) was 

observed on a resistant cultivar upon infection of host powdery mildew; in other words, in an 

incompatible pathosystem. Therefore, the pathogen-induced expression of the F5H1 gene in an 
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incompatible pathosystem may differ from the compatible pathosystem, such as the Arabidopsis 

thaliana-C. higginsianum used in this thesis. 

4.4 Papillae morphology is involved in penetration resistance. 

 The formation of papillae upon fungal penetration is a major step in penetration 

resistance. Papillae play critical a role in successful penetration resistance against nonhost 

powdery mildew B. graminis f.sp. hordei. A 2-hr delay of papilla formation is observed in the 

pen1 mutant, which is hypersusceptible to penetration of the nonhost pathogen B. graminis f.sp. 

hordei (Assaad et al., 2004). Since lignin is an important structural component of papillae 

(McLusky et al., 1999), the morphology of papillae in the f5h1 mutant was examined by 

transmission electron microscopy. Although the general shape and size of papillae were 

indistinguishable between wild type and f5h1 mutant, the highly organized layered structures of 

papillae formed on Col-0 was absent in the f5h1 mutant. Such internal structure may be 

indispensable for the normal function of papillae during penetration resistance. This data is 

reminiscent of the pmr4 mutant, which lacks papillary callose and the lacks same layered internal 

structure of papillae without change of size and shape (Nishimura et al., 2003). After challenging 

the pmr4 mutant, B. graminis f.sp. hordei also showed a similar level of impaired penetration 

resistance as that seen on the f5h1 mutant. Thus, the internal structures of papillae appear critical 

to their functions in penetration resistance against powdery mildew functions and both PMR4 

and F5H1 genes are required for the generation of such internal structures.  

4.5 The unique 5-hydroxyconiferyl alcohol might be the real contributor of F5H1-
dependent penetration resistance. 

 Based on the available knowledge of lignin monomer polymerization, a model regarding 

how F5H1 contributes to the organization of papillae internal structure is proposed. During plant 

growth, lignin polymers provide enhanced mechanical support and act as barriers in various 

tissues in order to satisfy their specific physiological functions (Moerschbacher et a., 1990). 

Therefore, a specific lignin deposited in papillae might also strengthen the papillae as a physical 

barrier against fungal penetration. As described in section 1.3, the unique existence of the 

syringyl unit in angiosperm lignin suggests that it might play a role in strengthening the defense 

system of angiosperm plants. Since the F5H1 gene is the only key step in lignin biosynthesis 

involved in penetration resistance, it is reasonable to deduce that the syringyl lignin monomer is 
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responsible for a more rigid structure that enhances the lignin barrier against the physical 

penetration of fungal pathogens. In the development of lignin polymer, the β-O-4 linkage is the 

most abundant polymerization bond, suggesting that the active C4 site is the preferred position 

for the oxidative coupling process (as reviewed by Boerjan et al., 2003). However, if we 

compare the chemical structures of guaiacyl and syringyl lignin monomers, both of them have 

the same unmethylated (active) hydroxyl group attached at the C4-position of the benzene ring 

(Figure 1.2). Moreover, lignin composed mainly of G monomers contains more chemically 

resistant bonds than S/G lignin polymers likely since the C5-position of S lignin is occupied by a 

methyl group which would prevent the formation of bonds with strong chemical resistance 

(Boerjan et al., 2003).  

 Based on our current knowledge of F5H1-mediated lignin biosynthesis, the model would 

be better served by the immediate products of the F5H-catalyzed reaction, which are 5-

hydroxyconiferaldehyde and 5-hydroxyconiferyl alcohol (the latter of which is known as a 5-

hydroxy-guaiacyl unit; Figure 1; 2B). The 5-hydroxyconiferaldehydes can be converted to the 5-

hydroxyconiferyl alcohols by a CAD enzyme. The 5-hydroxyconiferyl alcohols contain two 

active hydroxyl groups at C4- and C5-position of benzene ring. In comt mutants of poplar and 

Arabidopsis, 5-hydroxyconiferyl alcohol can be incorporated into a natural lignin polymer to 

generate this unique 5-hydroxy-guaiacyl monolignol (Lu et al., 2010; Weng et al., 2010b). 

Moreover, a special benzodioxane structure can be formed between the 5-hydroxy-guaiacyl unit 

and G or S lignin monomers through both 5-O-α and 4-O-β ether linkages (Figure 1.2B), and this 

“bridge” is too strong to be cleaved by a traditional DFRC method, the “derivatization, followed 

by reductive cleavage” method which is able to degrade the usual angiosperm lignin polymer to 

release G and S units (Lu and Ralph, 1998). Therefore, it is highly likely that the 5-hydroxy-

guaiacyl monolignol is the real contributor to a reinforced papillary structure, not the syringyl 

lignin monomers. In support of this hypothesis, the Arabidopsis mutant comt1, which does not 

generate syringyl lignin monomer but is still able to generate 5-hydroxy-guaiacyl monolignols 

(Weng et al., 2010b), showed no reduction in disease resistance against host anthracnose 

pathogen C. higginsianum (Liu G and Wei Y, unpublished data). 

 In future research, a series of experiments should be performed to confirm the chemical 

components of papillary lignin. The most direct evidence would be to demonstrate the lignin 

deposition pattern in papillae upon pathogen infection. This could be achieved by immuno-
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histochemical labeling of lignin epitopes that would determine visually the distribution pattern of 

different lignin units (Ruel et al., 2002) and chemical analysis to determine the composition of 

lignin monomers. Due to the tiny size of papillae, special techniques such as laser-micro 

dissection will be required to separate papillae from host cell wall for subsequent chemical 

analysis with additional methods such as a revised DFRC method and NMR spectroscopy to 

verify the existence of the 5-hydroxy-guaiacyl unit and the benzodioxane structure in papillae. 

Moreover, Weng et al. (2010b) demonstrated that the Arabidopsis line comt1/C4H-F5H 

(crossing of mutant comt1 and transgenic plant overexpressing F5H under a C4H-promoter) 

deposits a much higher proportion of 5-hydroxy-guaiacyl derived benzodioxane than 

Arabidopsis wild type Col-0. Thus, if 5-hydroxy-guaiacyl units are able to enhance penetration 

resistance, such an Arabidopsis line comt1/C4H-F5H should be tested for enhanced penetration 

resistance with fungal pathogens that use direct penetration strategies, such as B. graminis f.sp. 

hordei and E. cichoracearum.  

 In addition to the hypothetical model described above, other possibilities should also be 

considered in tfuture research to illustrate the mechanism of F5H1-dependent penetration 

resistance. Secretion of anti-microbial agents is another important strategy of penetration 

resistance besides the formation of papillae (Hückelhoven, 2007). As described in section 1.2.3, 

lignan and coumarins are derived from intermediates of lignin biosynthesis and function in plant 

immunity against bacteria, fungi and virus. Therefore, it is also possible that there is an unknown 

pathway derived from 5-coniferaldehyde and 5-hydroxyconiferyl alcohols, the immediate 

products of the F5H-catalyzed reaction, to generate defensive compounds involved in plant 

penetration resistance. A metabolites profiling of phenolic compounds deposited at papillae 

formed on both wild type Col-0 and f5h1 mutant upon challenge of nonhost pathogen such as B. 

graminis f.sp. hordei would provide biochemical evidence to identify if any new phenolic 

compounds are generated and deposited in papillae against fungal penetration. 

4.6 Unknown signaling pathway regulates expression of Arabidopsis lignin genes in defense. 

 Lignin metabolism plays such critical roles in plant defense, but the signaling pathway 

responsible for the activation of lignin metabolism for defensive purpose remains mystery. 

Several defensive signaling molecules have been characterized in plants, such as SA, JA, ET, 

ROS molecules, etc. ROS is involved in signaling pathway of early defensive responses and able 

to induce a serie of disease resistance responses including formation of papillae (Hückelhoven, 
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2007) while SA, JA and ET are functional in post-invasion resistance (Niu et al., 2011). The 

expression of lignin genes in mutants disrupted in SA/JA/ET signaling pathways displayed 

confusing patterns in this thesis. For example, the expression of F5H1 seemed to be up regulated 

in transgenic Arabidopsis NahGox and mutant sid2, but in pad4/sag101, no up-regulation of 

F5H1 was observed. All of these three Arabidopsis lines are disrupted in SA metabolism. 

Importantly, exogenous application of SA, JA and ET, as well as the ROS signaling molecules 

NO and H2O2, also failed to induce the expression of lignin genes in a pattern that mimiced the 

inducible pattern by the pathogen. Therefore, traditional plant defensive signaling pathways are 

not responsible for pathogen defensive lignin biosynthesis. 

 In addition to defense-associated phytohormones, plants also produce various hormones 

that regulate plant development, including abscisic acid, auxin, gibberellin, cytokinin, etc. Many 

of these hormones are associated with developmental lignification processes (see section 1.2.1.4 

“Regulation of lignin metabolism in plants”). The traditional “growth regulator” auxin is 

associated with plant defense as well (as reviewed by Kazan and Manners, 2009). For example, 

the mutant of auxin signaling component, SGT1b, confers enhanced resistance to Arabidopsis 

against the fungal pathogen Fusarium culmorum (Cuzick et al., 2009). Gene Ontology (GO) 

analysis revealed that cytokinin, gibberellin and abscisic acid responses are modulated during the 

incompatible interactions between Phaseolus vulgaris L. and Colletotrichum lindemuthianum 

(Oblessuc et al., 2012). Thus, they are also great candidates to regulate defensive lignin 

metabolism. Unfortunately, treatments of abscisic acid, auxin, gibberellin and cytokinin on Col-0 

wild type failed to induce the expression of all lignin genes in a pattern similar to the induction 

during pathogen inoculation. The induction of F5H1 and COMT1 by auxin were also not 

reproduced in another independent experiment with application of auxin at various 

concentrations on wild type Arabidopsis Col-0 for northern blotting analysis (Liu X, unpublished 

data). In future research, the exogenous treatments of other hormones need to be repeated to 

obtain solid evidence in addition to this preliminary experiment described in this thesis. For 

example, each hormone needs to be tested with different concentrations since their functional 

concentrations in defense might not be the same as their physiological functional concentrations. 

 In addition, we obtained a collection of Arabidopsis mutants disrupted in lignin-

associated transcription factors, including nst1, nst2, snd1-1, snd1-2, myb46, myb83, myb63, and 

a nst1/snd1 double mutant. None of these mutants displayed enhanced susceptibility similar to 
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the f5h1 mutant after a C. higginsianum disease test; northern blotting also showed that the 

expression pattern of lignin genes upon pathogen infection was not affected by any of these 

mutants as well (Liu X and Wei Y, unpublished data). Taken together, all of these results suggest 

that defensive lignification and development lignification are independently regulated. In the 

future research, this possibility should also be considered that a novel signaling pathway might 

be responsible for the pathogen-induced up-regulation of lignin genes. 

 What, then, is a suitable candidate(s) to regulate the defensive activation of lignin 

metabolism? Considering the fact that F5H1 contributes to papillae-based penetration resistance, 

the early signaling events soon after the recognition of pathogens are likely involved in the 

stimulation of lignin biosynthesis in plant penetration resistance.   

 Fungal pathogens usually secrete a set of cell wall degrading enzymes (CWDEs) to 

damage the integrity of host cell wall. One of the well-characterized CWDEs is 

polygalacturonase (PG), which degrades pectin polymers. It has been demonstrated that cell wall 

debris derived from pathogen penetrations activities, such as oligogalacturonides (OGs), can be 

recognized as damage associated molecular patterns (DAMPs) and signal the further activating 

of defensive signaling pathways (D’Ovidio et al., 2004). In addition, PG itself displays elicitor 

effects regardless of its enzymatic activities (Poinssot et al., 2003). Recently, an increased level 

of lignification has been characterized in tobacco plants over-expressing a grapevine 

polygalacturonase-inhibiting protein (PGIP) in the absence of pathogen infection (Alexandersson 

et al., 2011). Thus, a PG/OGs/PGIP-mediated signaling pathway might be responsible to induce 

lignification for defensive purposes.  

 Recently, wall associated kinase 1 (WAK1) has been demonstrated as a receptor of OGs 

(Brutus et al., 2010). In addition, among three defense-related MAPKs, OGs induce 

phosphorylation of MPK 3 and -6 (Asai, et al., 2002; Galletti et al., 2011). Since protein kinase 

signaling has been well studied in plant innate immunity (reviewed by Tena et al., 2011), the 

MAPK kinase signaling pathway is likely involved in regulating lignification in plant defense by 

PG/OGs/PGIP. However, future work needs to fill in the gaps between MAPK cascade and 

lignin biosynthetic genes. Currently, F5H1 is thought to be regulated by the master switch of 

secondary cell wall SND1/NST3 (Zhao et al., 2010). Recently, MYB103 was shown to regulate 

the expression of F5H1 (Ohman et al., 2012). However, MYB103 might not be the immediate 

transcription factor to directly induce expression of F5H1 since MYB103 failed to transactivate 
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F5H1 promoter (Ohman et al., 2012). Thus, identification of the immediate transcription factors 

of F5H1 in plant defensive responses is critical. This could be achieved by a transcriptome 

analysis, such as by using microarrays to identify novel genes induced upon pathogen infection. 

The mutant of such a new regulatory gene should show a reduced or eliminated expression of 

F5H1 and enhanced susceptibility upon pathogen challenge. Once the immediate regulator of 

F5H1 is identified, research could be further conducted to link this immediate regulator to the 

possible MAPK cascade and finally to the initial receptor of DAMPs. 

4.7 Relationships between F5H1 with other molecular components involved in penetration 
resistance. 

4.7.1 F5H1 and PEN genes. 

 Penetration resistance represents the first layer of Arabidopsis nonhost resistance and 

several molecular components involved have been determined other than F5H1, including PEN1, 

PEN2 and PEN3 (Collins et al., 2003; Lipka et al., 2005; Stein et al., 2006). To investigate the 

relationships between F5H1 and PEN genes, double mutants were generated and tested with 

various plant pathogens. Disease tests with the nonhost powdery mildew B. graminis f.sp. hordei 

and host anthracnose pathogens C. higginsianum demonstrated the lack of interaction between 

F5H1 and PEN genes in penetration resistance since in general both pathogens displayed more 

aggressive infections on double mutants than the parental single mutants. However, the 

responses varied somewhat among the 3 different pathogens tested.   

 B. graminis f.sp. hordei displayed significantly higher penetration frequencies on pen1 

than an f5h1, suggesting that PEN1 contributes more than F5H1 to penetration resistance against 

nonhost powdery mildew. However, when challenged with anthracnose pathogen C. 

higginsianum, F5H1 is playing a more important role than PEN1 since the pathogen displays 

more enhanced penetration frequencies on f5h1 mutant than pen1 mutant. Moreover, the higher 

penetration frequencies on double mutant f5h1pen1 than single mutant f5h1 might suggest a 

minor function of PEN1 in penetration resistance against C. higginsianum. The role of F5H1 in 

penetration resistance against C. higginsianum is more like PEN2/PEN3, since f5h1, pen2 and 

pen3 single mutants shows similar susceptiblities than wild type Col-0. This observasion is 

consistent with previous reports that also demonstrated the enhanced susceptibility of the pen2 

and pen3 mutants against host and nonhost Colletotrichum species (Huser et al., 2009; Hiruma et 

a., 2010).  
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 The F5H1-dependent in penetration resistance was further examined by a disease test 

with the rice blast pathogen Magnaprothe oryzae. M. oryzae is a nonhost pathogen to the 

Arabidopsis ecotype Col-0, and this host restriction is mainly based on a complete block of M. 

oryzae penetration (Maeda et al., 2009). Penetrations were not observed on any pen1 or pen3-

related mutants (including both single and double mutants with pen1 mutation; data not shown), 

as well as pen2 single mutants. But, successful penetrations were occasionally observed on f5h1 

single mutant. However, pen2 is known to be susceptible to penetration by M. oryzae (Maeda et 

al., 2009). This inconsistency is probably due to the relatively weaker pathogenicity of the M. 

oryzae isolate used in this study, rather than the lack of involvement of PEN2 in penetration 

resistance against M. oryzae.  

 Successful penetration sites with significantly extended intracellular hyphae were 

observed more frequently for M. oryzae on f5h1/pen2 double mutants than on f5h1 single mutant. 

Furthermore, no extended hyphae were observed at successful penetration sites on f5h1 mutant. 

This result further confirms that F5H1 acts independently of PEN2 in penetration resistance 

against this pathogen and F5H1 is likely the critical determinant of penetration resistance against 

M. oryzae rather than PEN2. Moreover, the extended hyphae implies that PEN2 plays additional 

roles in post-invasion resistance against M. oryzae to restrict the hyphae development after 

penetration, which is distinct from the F5H1. Cell death accompanied the penetrated f5h1/pen2 

cell, which suggests that other components (such as PMR5, AGB1, and SA signaling pathway) 

may also be functioning to terminate further aggressive growth of M. oryzae in these cells 

(Nakao et al., 2011).  

 Taken together, F5H1 represents a unique component of Arabidopsis resistance 

combining characteristics of both PEN1 and PEN2. In one aspect, F5H1 is only involved in 

penetration resistance as PEN1 (Consonni et al., 2006) but not in post-invasion resistance. In the 

other aspect, F5H1-mediated resistance is against broad spectrum of fungal pathogens as PEN2 

while PEN1 is highly specialized against to nonhost powdery mildew pathogens.  

 A surprising observation in the F5H1-PEN interaction experiment is the abnormal callose 

deposition pattern in pathogen-challenged pen1 and f5h1pen1 mutants. Based on the shape of 

alkaline aniline blue stained callose deposition, it is clear that such callose deposition is neither 

localized in papillae nor wrapping aroud the haustoria. In other words, the localized deposition of 

callose normally underneath the plant pathogen interaction sites in Col-0 was disrupted in 
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pathogen-challenged pen1 and f5h1/pen1 mutants and resulted in ectopic callose deposition at 

locations which were devoid of pathogen-response plant structure. This observation seems to 

imply the dependence of callose deposition on the PEN1 syntaxin-mediated secretary pathway, 

which is inconsistent with a previous report suggesting that callose deposition and PEN1 are 

independent (Meyer et al., 2009). This might be due to the existence of a homologue of PEN1, 

SYNTAXIN PROTEINS OF PLANTS 122 (SYP122) and the different time points of 

observation in this work (at 2 dpi) and in Meyer et al. (2009)’s work (at 7 dpi). SYP122 is also 

induced upon pathogen infection but mutant syp122 showed no effects on penetration resistance 

(Assaad et al., 2004). Although both PEN1 and SYP122 are accumulated in papillae, SYP122 

shows much less degree of accumulation at papillae than PEN1 as indicated by their fluorescence 

signal ratio of papillae and plasma membranes. The signal of PEN1 at papillae is 6 times higher 

than its signal on plasma membrane upon pathogen challenge, while such ratio of SYP122 is 

only 2 (Assaad, et al., 2004). These results suggest that the response of SYP122 to pathogen-

induced papillae formation might be slower than PEN1 and result in delayed formation of 

papillae in pen1 mutant (Assaad et al., 2004). Therefore, in pen1 mutant, since no PEN1 protein 

is incorporated into papillae, part of pathogen-induced callose may be guided by membrane-

bound SYP122 and results in the ectopic deposition as observed. Meyer et al. (2009)’s results 

were observed at 7 dpi. Plants may have eliminated such ectopic callose deposition at such later 

timing through an unknown mechanism.  

4.7.2 F5H1 and PMR4. 

 Several Arabidopsis mutants showing enhanced resistance against powdery mildew 

(powdery mildew resistance; pmr) have been characterized (Vogel and Somerville, 2000). 

Among them, PMR4 encodes a pathogen-inducible callose synthase that synthesizes papillary 

callose. Mutant pmr4 show an abnormal fibrillar network of ultrastructure in powdery mildew-

induced papillae (Nishimura et al., 2003) and impairs penetration resistance. Mutant pmr4-

mediated resistance depends on the SA signaling pathway, and is not affected by the f5h1 

mutation, since HR responses and PR-1 expression without pathogen infection remained 

unaltered in f5h1/pmr4 double mutants in comparison with the single mutant pmr4. These results 

demonstrate that F5H1 is not associated with SA-dependent pmr4 resistance. Therefore, the 

enhanced hyphae development observed on the f5h1/pmr4 double mutant compared with the 
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single mutant pmr4 is likely due to the reduced penetration resistance of the f5h1 mutation which 

allowed more secondary penetrations during hyphae development.  

4.7.3 F5H1 and PMR2. 

 MILDEW RESISTANCE LOCUS O (MLO) loci were first characterized from barley as 

a negative regulator of resistance against powdery mildew B. graminis f.sp. hordei (Jorgensen, 

1992), and subsequently these loci were also found in the model plant Arabidopsis (Consonni et 

al., 2006). Subsequent research demonstrated that Arabidopsis PMR2 is allelic to MLO2 and is 

proposed to be a negative regulator of plant defense (Consonni et al., 2006). Arabidopsis pmr2-

mediated resistance requires PEN1, PEN2, PEN3 and tryptophan-derived metabolism (Consonni 

et al., 2006; 2010). In addition to these published observations, this work identified F5H1 as a 

novel component contributing to the pmr2-mediated resistance independently of other 

components described above (Figure 4.1), since the enhanced penetration resistance against host 

powdery mildew E. cichoracearum of pmr2 was partially impaired after mutation of f5h1 in 

pmr2 mutant background. However, knockout of F5H1 in a pmr2 background did not affect the 

overall resistance against powdery mildew because no conidiation was observed on double 

mutant f5h1/pmr2. Even within penetration resistance, F5H1 might solely contribute to a 

physical barrier in papillae since the over-accumulation of ROS, as indicated by DAB staining in 

the pmr2 mutant, was not affected by a mutation in F5H1.  
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Figure 4.1 Current model of Arabidopsis pmr2-mediated penetration resistance against 
host powdery mildew. 

Schematic images summarizing the characterized molecular components required for plant 
penetration resistance in both wild type (A) and pmr2 mutant (B) of Arabidopsis against host 
powdery mildew Erysiphe cichoracearum. The images are adapted from Underwood and 
Somerville (2008). References for each components identified refers to the text. F5H1 and 
CYP79B2/B3 represent their corresponding metabolism pathways respectively. The subcellular 
localization of F5H protein is proposed to be ER (Dunkley et al., 2006). PEN1 syntaxin and its 
interacting partner SNAP33 are incorporated into extracellular encasements surrounding 
haustoria of the powdery mildew and entrapped into the papillary matrix (Meyer et al., 2009). 
Black dots represent the putative metabolites from PEN2-mediated metabolism and delivered by 
PEN3. The hypethatical inhibitory effects of PMR2 are illustrated by the thick black line against 
each target. In wild type plant (A), the presence of functional PMR2 will inhibit the functions of 
each individual component in penetration resistance and the pathogen is able to form haustorium. 
The molecular mechanism of PMR2’s inhibitory effects on defensive responses of penetration 
resistance remained mystery; in pmr2 mutant (B), the inhibitory effects of PMR2 on other 
penetration resistance components were not present. Therefore, the penetration resistance 
responses are induced to prevent the penetration of powdery mildew by the formation of papillae. 
C, conidia; A, appresorium; CW, cell wall; PM, plasma membrane; H, haustorium; E, 
encasement; P, papillae; Ch, chloroplast; Pe, peroxisome; ER, endoplasmic reticulum.  
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4.7.4 A hypothetical model of PMR2 in plant immunity. 

 The full function of the PMR2 protein remains a mystery even though the gene has been 

known for decades. PMR2 gene encodes a plant-specific seven transmembrane-domain protein 

without characterized function (Chen et al., 2006). Current results implied that PMR2 functions 

as a negative regulator of broad defense affecting both pre- and post-invasion resistance. 

Although pmr2-mediated resistance requires PEN genes, F5H1 and tryptophan-derived 

metabolites, it does not directly regulate the expression of these genes, since PMR2 is a 

structural protein and none of these genes were induced in the Arabidopsis  pmr2 mutant in 

comparison with a wild type (Supplementary data of Consonni et al., 2010).  

 Recently, another MLO family member, MLO7/NORTIA (NTA), has been demonstrated 

to regulate plant pollen tube reception in the synergids together with a receptor like kinase 

FERONIA (FER; Kessler, et al., 2010; Escobar-Restrepo et al., 2007). Both pollen tube 

reception within the synergids and powdery mildew infection of an epidermal cell undergo a 

similar “physical piercing” process requiring communication between two cells and penetration 

of one cell into another with a tip-structure. NTA/MLO7 proteins are found throughout an 

unfertilized ovule and undergo a directed re-location beneath pollen tube tip (Kessler et al., 

2010). Such redistribution is also reported for MLO2/PMR2 proteins. They are evenly 

distributed on plasma membrane until approximately 13 hours post inoculation of the powdery 

mildew, when they are accumulated beneath the fungal appressoria (Bhat et al., 2005). This 

observation implies possibly similar functions of MLO protein in these two seemingly irrelevant 

processes.  

 The focal localization of the NTA protein upon arrival of pollen tube tip requires the 

FER-mediated pathway and both genes are expressed in synergids (Kessler et al., 2010). Both fer 

and nta single mutants disrupt the reception of pollen tube by synergids, suggesting that the 

interaction between FER/NTA is indispensable for the successful communication between pollen 

tube and synergids. Unexpectedly, a homogyzgous fer mutant displayed similar resistance 

against powdery mildew as pmr2 (Kessler et al., 2010). Therefore, an audacious, but reasonable 

model can be proposed to illustrate the role of PMR2/MLO2 in plant immunity: a MLO2/FER-

mediated reception mechanism is hijacked by host powdery mildew pathogens to facilitate the 

entry of penetration pegs into host cell. FER and MLO members together may serve as a 

conserved recognition mechanism within plant cell in response to exogenous physical stimuli. In 
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Arabidopsis, the MLO family has 15 members that show tissue-specific expression patterns and 

are regulated by different stimuli, suggesting the common roles of MLO protein in diverse 

developmental and responses processes. In addition to MLO2 and MLO7, MLO4 and MLO11 

are required for touch-induced root tropism (Chen et al., 2009). Mutant mlo4 resulted in a tight 

curling root response to a tactile stimulus. Physical stimulus detection is the common 

characteristic of the functions of MLO2, MLO7 and MLO4/11, strongly implying that the MLO 

is involved in response against physical stimulus. In epidermal cells, FER/MLO2 may become 

repressed since most of physical stimuli from environment should be considered as dangerous 

signals indicating potential intruders or physical damages. Thus, epidermal cells tend to repel 

these exogenous physical touches, rather than prepare to accept them; this is opposite to the 

synergids that accept pollen tube tips. However, during the evolution of plant-pathogen 

interactions, some host powdery mildew pathogens, such as E. cichoracearum, might obtain the 

ability to disguise their penetration peg as a “pollen tip” to be recognized by FER and further 

activate the FER-MLO pathway to “positively accept” a penetration peg or suppress the defense 

responses. Thus, these host powdery mildew pathogens display extremely high penetration 

frequencies with the presence of powerful penetration resistance mediated by PEN genes, F5H1 

and other putative components. Nonhost powdery mildew pathogens, such as B. graminis f.sp. 

hordei, fail to activate the MLO/FER pathway to facilitate the invasion process. As a result, their 

penetration activities are largely terminated by penetration resistance.  

 Based on this hypothesis, both fer and pmr2 mutants shut down this pathway and E. 

cichoracearum cannot bypass the penetration resistance. Therefore, the penetration frequency 

decreased to 25% of the wile type level on the pmr2 mutant. This is probably due to the fact that 

other gene members within same clade of PMR2, such as MLO6 or MLO12 (Chen et al., 2006), 

may partially execute PMR2’s function. Thus, a triple mutant of pmr2mlo6mlo12 even reduced 

the penetration frequency of host powdery mildew to an undetectable level (Consonni et al., 

2006).  

 An immediate experiment to verify this hypothesis is to determine if the polarized re-

localization of the PMR2 protein underneath fungal appressoria is altered in the fer mutant. If the 

hypothesis described above was true, the fer mutant should be able to disrupt such re-localization 

of PMR2/MLO2 similar to the disrupted re-localization of NTA/MLO7 in synergids of the fer 

mutant. Moreover, it is also important to determine the recognition mechanism between receptor-
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like kinase FER and pollen tube tip. Is there any specific molecular pattern existing on the pollen 

tube tip, which can be recognized by the FER, or simply is the physical force detected by FER? 

If the former exists, does the penetration peg generated by host powdery mildew possess a 

similar molecular pattern that mimics a pollen tube tip? The answer will provide strong evidence 

to support this hypothesis.  

4.8 A preliminary investigation of the contribution of the flavonoid pathway in Arabidopsis 
disease resistance. 
 In addition to the physiological functions in plant development, flavonoid compounds 

provide resistance against environmental challenges, including drought, toxic metal 

contamination, ultraviolet radiation and excess light (reviewed by Treutter, 2005). In addition, 

many flavonoid compounds characterized in legume plants, such as luteolin, have shown anti-

microbial activities: eg. in the susceptible sorghum cultivar BTx623, the replacement (by 

apigenin) of luteolin as the major flavone that inhibits germination of Colletotrichum 

sublineolum spores results in spore germination (Du et al., 2010).  

 Although most defense-related flavonoid compounds are characterized from legumes, a 

few reports indicating the role of flavonoids in Arabidopsis defense recently become available. 

For example, pre-treatment of Arabidopsis by spraying quercetin shows enhanced resistance 

against Pseudomonas syringae pv. tomato DC3000. Such resistance is attenuated by the presence 

of catalase to scavenge H2O2 or the blocking of the SA signaling pathway, suggesting that 

quercetin confers Arabidopsis resistance against this bacterial pathogen via the H2O2 burst and 

requires a functional SA signaling pathway (Jia et al., 2010). Therefore, in a preliminary 

investigation of the genetic components that impact on the Arabidopsis flavonoid-dependent 

defense pattern, pathogen susceptibility was tested using knockouts of several upstream genes in 

a Col-0 background, including TT4/CHS, TT5/CHI and TT6/F3H, to eliminate a large portion of 

antimicrobial compound variation (Figure 1.3). As expected, mutant tt4-T1 (which eliminates all 

flavonoids) and tt6-T1 (which eliminates flavonols and anthocyanins) display enhanced 

susceptibility to the host anthracnose pathogen C. higginsianum in comparison with wild type 

Col-0.  This result revealed critical roles for Arabidopsis flavonoid compounds in the immunity 

system against fungal pathogens. However, the mutant tt5-T1 (which should accumulate 

chalcone based on current knowledge of flavonoid biosynthetic pathway in Arabidopsis) 

unexpectedly conferred enhanced resistance to Arabidopsis. The enhanced resistance against C. 
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higginsianum was also observed in previous experiments with another tt5 mutant allele in a Ler 

ecotype background (Wei Y, unpublished data). In addition, tt5-T1 also displays reduced plant 

size and altered leaf morphology. To analyze the molecular mechanism behind tt5-dependent 

disease resistance and developmental deficiencies, tt5-T1 was crossed with the tt4-T1. Knockout 

of gene TT4, the immediate upstream gene of TT5, in a tt5 mutant background was able to 

completely restore the altered development of tt5 mutant to a wild type appearance, suggesting 

the critical role of naringenin chalcone in tt5-dependent growth deficiencies. According to 

current understanding of Arabidopsis flavonoid biosynthesis, no branch pathway has been 

identified in Arabidopsis until the generation of dihydroflavonols (Figure 1.3). Therefore, the 

real contributor of tt5-mediated resistance remains a mystery until a comprehensive metabolite 

profiling is conducted in the future. Gene TT5 encodes chalcone isomerase, catalyzing the 

generation of chalcone that serves as the precursor of all classes of flavonoids (Figure 1.4). If 

naringenin chalcone is accumulated without any new metabolites, then it must be responsible for 

the tt5 mutant phenotype. Chalcone has shown inhibitory effects in animal cells on NF-κB-

mediated inflammation and cancer (reviewed by Yadav et al., 2011), but it is not known if 

chalcone has any bioactivity on plant cells, which could be investigated in the future research. 

 Other pathways that could be initiated from naringenin chalcone or its upstream 

metabolite ρ-coumaroyl CoA in tt5 mutant may result in accumulation of novel metabolites. This 

could be verified in the metabolite profiling as described above. Such branches have been 

reported in other plant species, including the aurone pathway in snapdragon (Ono et al., 2006) 

and chalcone reductase-isoflavone synthase (CHR-IFS) pathway in legume plants (Buer et al., 

2010). Aurone confers a bright yellow color to some ornamental flowers, such as snapdragon 

(Schwarz-Sommer et al., 2003). In snapdragon, chalcone will be first glycosylated by the 

chalcone 4’-O glucosyltransferase (4’CGT) and then catalyzed in vacuole by aurone synthase to 

generate aurone, as represented by aureusidin 6-O-glucoside (Ono et al., 2006). Although such a 

chalcone glucosyltransferase is not reported in Arabidopsis, a functionally unknown Arabidopsis 

glucosyltranferase UDP-GLUCOSYL TRANSFERASE 88A1 (UGT88A1) shows 40% of its 

amino acid sequence identical to snapdragon 4’CGT (Ono et al., 2006). If a pathway similar to 

aurone synthesis of snapdragon is activated in Arabidopsis tt5 mutant, UGT88A1 is likely 

involved in this process and generate novel metabolites in the mutant.   
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 Although chalcone reductase (CHR) and isoflavone synthase (IFS)-mediated biosynthesis 

of isoflavonoid from naringenin chalcone is generally legume-specific (Buer et al., 2010), 

Arabidopsis still maintains the ability to metabolize the isoflavonoid genistein, which was 

generated after expressing the soybean isoflavone synthase in Arabidopsis (Yu et al., 2000). 

Moreover, Lapcik and associates (2006) recently detected low levels of isoflavones from 

Arabidopsis Col-0 by HPLC-MS and pointed out putative chalcone reductase genes in the 

Arabidopsis genome. These suggest a potential CHR pathway in Arabidopsis. Based on their 

results, the gene expression patterns of putative CHR genes were examined in tt5-T1 mutant 

background in this thesis. The candidate genes were selected from Lapcik’s publication and a 

Basic Local Alignment Search Tool (BLAST) search of the Arabidopsis genome against a 

soybean (Glycine max) chalcone reductase (Liu, 2008).  Surprisingly, one of the putative genes, 

At2g37760 (we named as CHR3), showed exclusive induction in tt5-T1 mutant but not in the tt4-

T1 nor in the double mutant tt4/tt5 and Arabidopsis wild type Col-0 (Yang L, Song T and Wei Y, 

unpublished data), suggesting that this gene might be involved in tt5-mediated resistance. 

Therefore, a T-DNA insertion mutant of this gene, SALK_065186C from ABRC, has been 

recently crossed with tt5-T1 to generate double mutants. If CHR3 contributes to the phenotype of 

tt5, we should expect a wild type-like growth in the homozygous double mutant and a wild type-

level of susceptibility to host anthracnose pathogen C. higginsianum.  

 Some intermediate flavonoid compounds show an ability to induce defense responses and 

cell growth inhibition effects and may be present in low levels in tt5-T1 if the mutation is 

somewhat “leaky” due to the spontaneous isomerization reaction of naringenin chalcone to 

generate naringenin (Ralston, et al., 2005). One example of downstream flavonoid compounds is 

quercetin, which is able to induce resistance against Pseudomonas syringae pv. tomato DC3000 

in Arabidopsis if sprayed before pathogen inoculation (Jia et al., 2010). Transgenic flax plants 

expressing a Solanum sogarandinum-derived glucosyltransferase accumulate an increased level 

of a more stable quercetin glycoside and an enhanced resistance against Fusarium infection 

(Lorenc-Kukula, et al., 2009). Quercetin has been extensively studied as an anti-cancer agent 

since it is able to inhibit cell growth and cause apoptosis of cancer cells (Kuo et al., 2004; Vidya 

et al., 2010). Such cell growth inhibitory effects of quercetin may also function on plant cells and 

result in reduced plant development as observed in tt5 mutant. Therefore, metabolic profiling is 

critical to conduct with the tt5-T1 line to illustrate how the flavonoid biosynthesis is affected by 
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the tt5 mutation and to identify the metabolite(s) that is/are responsible for the developmental 

deficiency and enhanced disease resistance of the tt5-T1 mutant. 

 Genetic evidence confirming that the SA signaling pathway is affected in the tt5 mutant 

was provided in this thesis by crossing of tt5-T1 with signaling mutants and tries to restore tt5 

mutant to a wild type phenotype. The developmental deficiencies of tt5 mutant were partially 

restored to a wild type phenotype in a genetic background blocked in the SA signaling pathway 

but not affected in a disrupted JA/ET signaling background. Moreover, preliminary semi-

quantitative RT-PCR has revealed that the marker gene of the SA signaling pathway, PR-1, is 

spontaneously expressed in the tt5-T1 mutant in the absence of pathogen infection (Yang L, 

Song T and Wei Y, unpublished data), suggesting that the whole SA signaling pathway might be 

turned on in the tt5 mutant even without pathogen infection. Although time constraint on this 

thesis prevented the disease responses of all these double/triple mutants to be tested, it is very 

likely that the enhanced resistance of tt5 mutant will be eliminated on the tt4/tt5 double mutant 

and tt5/pad4/sag101 triple mutant since the developmental change of tt5 were overcome in these 

deficient backgrounds. 

 The roles of the SA pathway in plant defense have been extensively studied (reviewed by 

An and Mou, 2011), but its role in plant development is not clearly understood. However, 

genetic evidence has closely related the SA signaling pathway to plant development and 

senescence process. For example, Arabidopsis mutants senescence-associated ubiquitin ligase 1 

(saul1) and necrotic spotted lesion 1 (nsl1) display early senescence and growth retardation 

phenotypes in a SA-dependent manner (Noutoshi et al., 2006; Vogelmann et al., 2012). A 

functional SA signaling pathway is also required for the pmr2-dependent early senescence but 

not its powdery mildew resistance phenotype (Consonni et al., 2006). The SA signaling pathway 

may affect plant growth through crosstalk with other plant hormones such as auxin and abscisic 

acid. Recently, numerous reports have been addressing the interactions between SA and other 

hormones in defense (reviewed by Robert-Seilaniantz et al., 2011b). Thus, in the mutants 

described above, such crosstalk between SA and other hormones may be responsible for the 

growth retardation phenotypes and auxin is the most promising candidate that is involved in the 

SA-dependency of tt5 mutant phenotype. 

 Auxin is involved in almost every aspect of plant development and functions 

antagonistically to SA (Robert-Seilaniantz et al., 2011b). SA is able to negetively regulating the 
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auxin signaling pathway by stabilizing the auxin AUX-IAA negative regulators (Wang et al., 

2007). Thus, the developmental deficiencies of the tt5 mutant may be result from the inhibitory 

effects of increased level of SA on the auxin signaling pathway. Such reduced auxin signaling 

may subsequently result in an enhanced metabolism of indole-glucosinolate that is an important 

antimicrobial compounds. Auxin has four potential biosynthetical pathways and one of them is 

shared with the biosynthesis of indole-glucosinolate and camalexin (Mano and Nemoto, 2012). 

Inhibition of auxin signaling pathway by overexpression of microRNA miR393 results in the 

metabolic flux from camalexin to indole-glucosinolate throught tow auxin responsive factor 

ARF1 and -9 (Robert-Seilaniantz et al., 2011a). Such increased level of indole-glucosinolate 

might be responsible for the enhanced disease resistance of the tt5 mutant. The antagonistic 

interactions between SA, auxin and glucosinolate metabolism could be another direction in the 

subsequent research regarding the molecular mechanism behind tt5 mutant-mediated disease 

resistance. 

  In the future, the disease responses will need to be examined in all the tt5 double/triple 

mutants above to confirm if the tt5-dependent enhanced disease resistance is also attenuated by 

knockout of TT4, PAD4/SAG101. Moreover, transcriptome and metabotome profiling in the tt5 

mutant should be carried out to determine the expression pattern of signaling and pathogen-

related genes such as PR-1 and PDF1.2, as well as any other gene with altered expression pattern 

in comparison with wild type, in case the metabolite profile within the tt5-T1 mutant contains 

signaling compounds themselves or compounds that bind to and inactivate a molecule that 

controls SA signaling pathway. Special attention should be focused on auxin-related genes, since 

flavonoid compounds are involved in auxin transportation (Peer and Murphy, 2007). SA and 

auxin signaling have antagonistic cross talk (Kazan and Manners, 2009) and the developmental 

deficiency of the tt5 mutant could be a result of an altered or suppressed auxin 

metabolism/signaling pathway due to the alteration of the flavonoid composition. 

4.9 Conclusion. 

 In this thesis, the roles of phenylpropanoid pathway in plant immunity system against 

pathogen attack were investigated with genetic materials disrupted in lignin pathway and 

flavonoid pathway. For the first time, genetic evidence is provided to demonstrate that the 

induced expression of lignin genes is part of plant resistance against fungal pathogens and might 

be regulated by a novel signaling pathway that has not been characterized before. Moreover, 
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F5H1 was shown to be a key gene particularly involved in resistance against penetration by a 

broad spectrum of pathogens, but with no impact on post-invasion resistance. Mutant f5h1 

accelerates penetration, the initial process of pathogen infection and thereby, facilitates pathogen 

adaptation on the host plant. The impaired penetration resistance of f5h1 mutation was shown to 

be due to the loss of highly organized layered internal structures within pathogen-induced 

papillae. Lignin (formed through F5H1) and callose are important to the formation of such 

functional structures in papillae.  

 Arabidopsis requires many molecular components for its resistance against powdery 

mildew. In addition to the already characterized PEN1, PEN2 and PEN3 penetration resistance 

genes, and tryptophan-derived metabolism, this thesis further demonstrates that a functional 

F5H1 gene has a role in penetration resistance of both wild type Arabidopsis and mutant 

pmr2/mlo2-dependent powdery mildew resistance. F5H1 acts independently of all characterized 

molecular components described above and contributes only to enhanced penetration resistance 

but not to other phenotypes of the pmr2 mutant. 

In addition to the monolignol biosynthesis pathway, the flavonoid pathway is also of 

great importance to plant immunity. Results from this thesis indicate that post-F3H metabolites 

include fungal resistance compounds in wild type Arabidopsis, but also point to metabolites 

originating from naringenin chalcone that affect both plant development and disease resistance in 

a SA-dependent manner when the main flavonoid pathway is depressed in tt5 mutant. The CHR 

pathway may be involved in these tt5 mutant phenotypes since one putative Arabidopsis CHR 

gene displayed upregulated expression in the tt5 mutant during a preliminary experiment. This 

observation suggests that CHR pathway that is currently believed to be restricted yo legume 

plants might also be active under some certain conditions in Arabidopsis. 

 While genetic evidence in this study confirms the roles in plant defense for several steps 

in the phenylpropanoid pathway, this thesis also raises several questions that remain to be 

answered in the future. Which form of F5H1-dependent lignin is the real contributor to papilla 

defensive structure and are any small metabolites also generated by F5H1? Which signaling 

pathway regulates the defensive lignification process in response to fungal pathogen? What is the 

real function of MLO protein in wild type Arabidopsis plants upon pathogen infection? What is 

the chalcone-dependent resistance branch pathway in Arabidopsis and exactly how is it regulated 

or exploited for plant defense? The answers to these questions will not only expand our 
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knowledge of phenolic compounds involved in plant defense, but also provide novel information 

to the signaling network regulating plant defense and development, the two critical aspects of 

plant physiology. Eventually, our knowledge of plant phenylpropanoid metabolism will 

contribute to the agricultural research and help to generate plants with enhanced disease without 

significant loss of biomass. 
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APPENDIX TABLES 

Appendix Table 1 List of primers sequences. 

Primer Name Purpose Sequence (5’ – 3’) 

F5H1-F1 Mutation verification CACGACGTCTCTTGTCATCG 

F5H1-R1 Mutation verification TCTCGCAGGCTGACCCAAAC 

F5H1-3F1 Mutation verification CGTCGATACTAGTGTCCTCCG 

F5H1-3R1 Mutation verification GTAAGCCTATAAACGTCGGGG 

F5H1-RT-F1 Amplification of hybridization probe CTCTTGTAACGTTGGTAAGCC 

F5H1-RT-R1 Amplification of hybridization probe GGCAAACGCGTTGATCATCACACG 

F5H2-1-F1 Mutation verification GATGCTTCTGAAACCCTACCC 

F5H2-1-R1 Mutation verification CTCAGTGTCCTTCACCGTCTC 

F5H2-RT-F1 Amplification of hybridization probe GTCCAGGACGAGCTAACGCG 

F5H2-RT-R1 Amplification of hybridization probe AAAGGTGGAGGCTTCACGAGACGA 

SID2-F1 Mutation verification TGTCTGCAGTGAAGCTTTGG 

SID2-R1 Mutation verification TAGATCAATGCCCCAAGACC 

PAD4-F1 Mutation verification TTGTTCGGGCTCCTATTCT 

PAD4-R1 Mutation verification TGGCTCGGCTAAGAGTTGAT 

SAG101-F3 Mutation verification ATGCAAGGAGGTCAAGATCG 

SAG101-R3 Mutation verification TCTCGCAATGACACACTTTTG 

dSpm11 Mutation verification GGTGCAGCAAAACCCACACTTTTACTTC 

SAG101-BF53 Mutation verification ACTTCCGGGTGTTCATAAACTCGGTCAG 

NahG-F1 Mutation verification ACTCTGCCGCTACTCCCATA 

NahG-R1 Mutation verification CGAGCCCTAGGTACATCTGC 

JAR1-F1 Mutation verification GGAAACGCTACTGACCCTGA 

JAR-R1 Mutation verification TCGGGACTACAGGAAGGAGA 

EIN2-F1 Mutation verification TGGAACATGGATGCTCAAAA 

EIN2-R1 Mutation verification CTTAAGCTGCGGAATGAAGG 

PMR2-F1 Mutation verification CCTGAGAGGTTCAGGTTTGC 

PMR2-R1 Mutation verification TTGCGAGTAAGCAATGAACG 

PMR4-F1 Mutation verification AGATCAGGGACATGGGACAG 

PMR4-R1 Mutation verification TTACCAGCCCAACCAATTTC 

PEN1-F1 Mutation verification ACGGAGTTCAGATGGCGAAT 

PEN1-R1 Mutation verification CCCTCAATCGGTTGAAACTA 
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PEN2-F1 Mutation verification CAGGTAAATCAGTTCGAATCAAG 

PEN2-R1 Mutation verification GGTAGAACTCGTGGCCAAGC 

PEN3-F1 Mutation verification TCACCCAACTAAATCCTCACG 

PEN3-R1 Mutation verification CCCAGCTAAAGCCAACAAAA 

PAD3-F1 Mutation verification CATCGGAAACTTACACCA 

PAD3-R1 Mutation verification CAAGATCCACGACTCTATCA 

TT4-T1-F1 Mutation verification TACAACAAAGCCCTTTGTTGG 

TT4-T1-R1 Mutation verification TACATCATGAGACGCTTGACG 

TT5-T1-F1 Mutation verification GGAGGGAATGTTTCTTCCTTG 

TT5-T1-R1 Mutation verification TTTTTCTTTGATTTTCCGAAAG 

TT6-T1-F1 Mutation verification AAACAGAACCAACGCAACAAC 

TT6-T1-R1 Mutation verification AAAGAGGAGAGATCTGCCGTC 

PAL1-RT-F1 Amplification of hybridization probe ACTTATTAGATTCCTTAACGCCGG 

PAL1-RT-R1 Amplification of hybridization probe GTTACCACCGTGAATCGCCTTGTT 

C4H-RT-F1 Amplification of hybridization probe GATGAGAGGAAGCAAATTGCGAG 

C4H-RT-R1 Amplification of hybridization probe GGAGTGGTTAAGGATGTGCAAGC 

HCT-RT-F1 Amplification of hybridization probe CTCGTTTTGCAGGTGACTTTC 

HCT-RT-R1 Amplification of hybridization probe TGTCCTGCAGCATACCATGT 

COMT1-RT-F1 Amplification of hybridization probe GAGAGAGAAATGGCGACGAC 

COMT1-RT-R1 Amplification of hybridization probe GGTTCTTCTCGTCAGCAACG 

C3H-RT-F1 Amplification of hybridization probe CTGTAACCTTCCTGAAAACAGAGC 

C3H-RT-R1 Amplification of hybridization probe GTGATCATATCCCATAGAAGACCA 

PR-1-F2 Amplification of hybridization probe ATAACACAACAATAACCATTATCAACTT 

PR-1-R2 Amplification of hybridization probe TTTTAAAAAGGCCACATATTTTACAT 

PDF1.2-F2 Amplification of hybridization probe ACACAACACATACATCTATACATTGAAA 

PDF1.2-R2 Amplification of hybridization probe AACAACAACGGGAAAATAAACA 

T-DNA LBb1 Mutation verification (T-DNA specific) GCGTGGACCGCTTGCTGCAACT 
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Appendix Table 2 ANOVA tables of statistical analysis 

Figure 3.6A 
ANOVA 

Ratios 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups .014 3 .005 167.947 .000 
Within Groups .000 8 .000   
Total .014 11    

Post-Hoc Tests 
Multiple Comparisons 

Dependent Variable: Ratios  
 LSD 
(I) Genotype (J) Genotype Mean 

Difference (I-J) 
Std. Error Sig. 99% Confidence Interval 

Lower Bound Upper Bound 

Col-0 
f5h1 -.06333* .00424 .000 -.0776 -.0491 
f5h2 -.00200 .00424 .650 -.0162 .0122 
f5h1/f5h2 -.07267* .00424 .000 -.0869 -.0584 

f5h1 
Col-0 .06333* .00424 .000 .0491 .0776 
f5h2 .06133* .00424 .000 .0471 .0756 
f5h1/f5h2 -.00933 .00424 .059 -.0236 .0049 

f5h2 
Col-0 .00200 .00424 .650 -.0122 .0162 
f5h1 -.06133* .00424 .000 -.0756 -.0471 
f5h1/f5h2 -.07067* .00424 .000 -.0849 -.0564 

f5h1/f5h2 
Col-0 .07267* .00424 .000 .0584 .0869 
f5h1 .00933 .00424 .059 -.0049 .0236 
f5h2 .07067* .00424 .000 .0564 .0849 

*. The mean difference is significant at the 0.01 level. 
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Figure 3.7 
ANOVA 

Ratios 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups .055 11 .005 9.476 .000 
Within Groups .013 24 .001   
Total .067 35    

Post-Hoc Tests 
Multiple Comparisons 

Dependent Variable: Ratios  
 LSD 
(I) Genotypes (J) Genotypes Mean 

Difference 
(I-J) 

Std. Error Sig. 99% Confidence Interval 
Lower 
Bound 

Upper Bound 

Col-0 

f5h1 -.10000* .01871 .000 -.1523 -.0477 
sid2 -.02333 .01871 .224 -.0757 .0290 
f5h1/sid2 -.08667* .01871 .000 -.1390 -.0343 
pad4/sag101 -.03000 .01871 .122 -.0823 .0223 
f5h1/pad4/sag101 -.10000* .01871 .000 -.1523 -.0477 
NahGox -.01333 .01871 .483 -.0657 .0390 
f5h1/NahGox -.09667* .01871 .000 -.1490 -.0443 
jar1 -.00333 .01871 .860 -.0557 .0490 
f5h1/jar1 -.08333* .01871 .000 -.1357 -.0310 
ein2 -.02667 .01871 .167 -.0790 .0257 
f5h1/ein2 -.08333* .01871 .000 -.1357 -.0310 

f5h1 

Col-0 .10000* .01871 .000 .0477 .1523 
sid2 .07667* .01871 .000 .0243 .1290 
f5h1/sid2 .01333 .01871 .483 -.0390 .0657 
pad4/sag101 .07000* .01871 .001 .0177 .1223 
f5h1/pad4/sag101 .00000 .01871 1.000 -.0523 .0523 
NahGox .08667* .01871 .000 .0343 .1390 
f5h1/NahGox .00333 .01871 .860 -.0490 .0557 
jar1 .09667* .01871 .000 .0443 .1490 
f5h1/jar1 .01667 .01871 .382 -.0357 .0690 
ein2 .07333* .01871 .001 .0210 .1257 
f5h1/ein2 .01667 .01871 .382 -.0357 .0690 

sid2 

Col-0 .02333 .01871 .224 -.0290 .0757 
f5h1 -.07667* .01871 .000 -.1290 -.0243 
f5h1/sid2 -.06333* .01871 .002 -.1157 -.0110 
pad4/sag101 -.00667 .01871 .725 -.0590 .0457 
f5h1/pad4/sag101 -.07667* .01871 .000 -.1290 -.0243 
NahGox .01000 .01871 .598 -.0423 .0623 
f5h1/NahGox -.07333* .01871 .001 -.1257 -.0210 
jar1 .02000 .01871 .296 -.0323 .0723 
f5h1/jar1 -.06000* .01871 .004 -.1123 -.0077 
ein2 -.00333 .01871 .860 -.0557 .0490 
f5h1/ein2 -.06000* .01871 .004 -.1123 -.0077 

f5h1/sid2 Col-0 .08667* .01871 .000 .0343 .1390 
f5h1 -.01333 .01871 .483 -.0657 .0390 



	
   169	
  

sid2 .06333* .01871 .002 .0110 .1157 
pad4/sag101 .05667* .01871 .006 .0043 .1090 
f5h1/pad4/sag101 -.01333 .01871 .483 -.0657 .0390 
NahGox .07333* .01871 .001 .0210 .1257 
f5h1/NahGox -.01000 .01871 .598 -.0623 .0423 
jar1 .08333* .01871 .000 .0310 .1357 
f5h1/jar1 .00333 .01871 .860 -.0490 .0557 
ein2 .06000* .01871 .004 .0077 .1123 
f5h1/ein2 .00333 .01871 .860 -.0490 .0557 

pad4/sag101 

Col-0 .03000 .01871 .122 -.0223 .0823 
f5h1 -.07000* .01871 .001 -.1223 -.0177 
sid2 .00667 .01871 .725 -.0457 .0590 
f5h1/sid2 -.05667* .01871 .006 -.1090 -.0043 
f5h1/pad4/sag101 -.07000* .01871 .001 -.1223 -.0177 
NahGox .01667 .01871 .382 -.0357 .0690 
f5h1/NahGox -.06667* .01871 .002 -.1190 -.0143 
jar1 .02667 .01871 .167 -.0257 .0790 
f5h1/jar1 -.05333* .01871 .009 -.1057 -.0010 
ein2 .00333 .01871 .860 -.0490 .0557 
f5h1/ein2 -.05333* .01871 .009 -.1057 -.0010 

f5h1/pad4/sag101 

Col-0 .10000* .01871 .000 .0477 .1523 
f5h1 .00000 .01871 1.000 -.0523 .0523 
sid2 .07667* .01871 .000 .0243 .1290 
f5h1/sid2 .01333 .01871 .483 -.0390 .0657 
pad4/sag101 .07000* .01871 .001 .0177 .1223 
NahGox .08667* .01871 .000 .0343 .1390 
f5h1/NahGox .00333 .01871 .860 -.0490 .0557 
jar1 .09667* .01871 .000 .0443 .1490 
f5h1/jar1 .01667 .01871 .382 -.0357 .0690 
ein2 .07333* .01871 .001 .0210 .1257 
f5h1/ein2 .01667 .01871 .382 -.0357 .0690 

NahGox 

Col-0 .01333 .01871 .483 -.0390 .0657 
f5h1 -.08667* .01871 .000 -.1390 -.0343 
sid2 -.01000 .01871 .598 -.0623 .0423 
f5h1/sid2 -.07333* .01871 .001 -.1257 -.0210 
pad4/sag101 -.01667 .01871 .382 -.0690 .0357 
f5h1/pad4/sag101 -.08667* .01871 .000 -.1390 -.0343 
f5h1/NahGox -.08333* .01871 .000 -.1357 -.0310 
jar1 .01000 .01871 .598 -.0423 .0623 
f5h1/jar1 -.07000* .01871 .001 -.1223 -.0177 
ein2 -.01333 .01871 .483 -.0657 .0390 
f5h1/ein2 -.07000* .01871 .001 -.1223 -.0177 

f5h1/NahGox 

Col-0 .09667* .01871 .000 .0443 .1490 
f5h1 -.00333 .01871 .860 -.0557 .0490 
sid2 .07333* .01871 .001 .0210 .1257 
f5h1/sid2 .01000 .01871 .598 -.0423 .0623 
pad4/sag101 .06667* .01871 .002 .0143 .1190 
f5h1/pad4/sag101 -.00333 .01871 .860 -.0557 .0490 
NahGox .08333* .01871 .000 .0310 .1357 
jar1 .09333* .01871 .000 .0410 .1457 
f5h1/jar1 .01333 .01871 .483 -.0390 .0657 
ein2 .07000* .01871 .001 .0177 .1223 
f5h1/ein2 .01333 .01871 .483 -.0390 .0657 
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jar1 

Col-0 .00333 .01871 .860 -.0490 .0557 
f5h1 -.09667* .01871 .000 -.1490 -.0443 
sid2 -.02000 .01871 .296 -.0723 .0323 
f5h1/sid2 -.08333* .01871 .000 -.1357 -.0310 
pad4/sag101 -.02667 .01871 .167 -.0790 .0257 
f5h1/pad4/sag101 -.09667* .01871 .000 -.1490 -.0443 
NahGox -.01000 .01871 .598 -.0623 .0423 
f5h1/NahGox -.09333* .01871 .000 -.1457 -.0410 
f5h1/jar1 -.08000* .01871 .000 -.1323 -.0277 
ein2 -.02333 .01871 .224 -.0757 .0290 
f5h1/ein2 -.08000* .01871 .000 -.1323 -.0277 

f5h1/jar1 

Col-0 .08333* .01871 .000 .0310 .1357 
f5h1 -.01667 .01871 .382 -.0690 .0357 
sid2 .06000* .01871 .004 .0077 .1123 
f5h1/sid2 -.00333 .01871 .860 -.0557 .0490 
pad4/sag101 .05333* .01871 .009 .0010 .1057 
f5h1/pad4/sag101 -.01667 .01871 .382 -.0690 .0357 
NahGox .07000* .01871 .001 .0177 .1223 
f5h1/NahGox -.01333 .01871 .483 -.0657 .0390 
jar1 .08000* .01871 .000 .0277 .1323 
ein2 .05667* .01871 .006 .0043 .1090 
f5h1/ein2 .00000 .01871 1.000 -.0523 .0523 

ein2 

Col-0 .02667 .01871 .167 -.0257 .0790 
f5h1 -.07333* .01871 .001 -.1257 -.0210 
sid2 .00333 .01871 .860 -.0490 .0557 
f5h1/sid2 -.06000* .01871 .004 -.1123 -.0077 
pad4/sag101 -.00333 .01871 .860 -.0557 .0490 
f5h1/pad4/sag101 -.07333* .01871 .001 -.1257 -.0210 
NahGox .01333 .01871 .483 -.0390 .0657 
f5h1/NahGox -.07000* .01871 .001 -.1223 -.0177 
jar1 .02333 .01871 .224 -.0290 .0757 
f5h1/jar1 -.05667* .01871 .006 -.1090 -.0043 
f5h1/ein2 -.05667* .01871 .006 -.1090 -.0043 

f5h1/ein2 

Col-0 .08333* .01871 .000 .0310 .1357 
f5h1 -.01667 .01871 .382 -.0690 .0357 
sid2 .06000* .01871 .004 .0077 .1123 
f5h1/sid2 -.00333 .01871 .860 -.0557 .0490 
pad4/sag101 .05333* .01871 .009 .0010 .1057 
f5h1/pad4/sag101 -.01667 .01871 .382 -.0690 .0357 
NahGox .07000* .01871 .001 .0177 .1223 
f5h1/NahGox -.01333 .01871 .483 -.0657 .0390 
jar1 .08000* .01871 .000 .0277 .1323 
f5h1/jar1 .00000 .01871 1.000 -.0523 .0523 
ein2 .05667* .01871 .006 .0043 .1090 

*. The mean difference is significant at the 0.01 level. 
  



	
   171	
  

Figure 3.16 

ANOVA 
Ratios 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups .989 7 .141 124.620 .000 
Within Groups .018 16 .001   
Total 1.007 23    

Post-Hoc Tests 

Multiple Comparisons 
Dependent Variable: Ratios  
 LSD 
(I) Genotypes (J) Genotypes Mean 

Difference (I-J) 
Std. Error Sig. 99% Confidence Interval 

Lower Bound Upper Bound 

Col-0 

f5h1 -.07333 .02749 .017 -.1536 .0070 
pen1 -.52667* .02749 .000 -.6070 -.4464 
f5h1/pen1 -.65000* .02749 .000 -.7303 -.5697 
pen2 -.29000* .02749 .000 -.3703 -.2097 
f5h1/pen2 -.39667* .02749 .000 -.4770 -.3164 
pen3 -.23667* .02749 .000 -.3170 -.1564 
f5h1/pen3 -.35333* .02749 .000 -.4336 -.2730 

f5h1 

Col-0 .07333 .02749 .017 -.0070 .1536 
pen1 -.45333* .02749 .000 -.5336 -.3730 
f5h1/pen1 -.57667* .02749 .000 -.6570 -.4964 
pen2 -.21667* .02749 .000 -.2970 -.1364 
f5h1/pen2 -.32333* .02749 .000 -.4036 -.2430 
pen3 -.16333* .02749 .000 -.2436 -.0830 
f5h1/pen3 -.28000* .02749 .000 -.3603 -.1997 

pen1 

Col-0 .52667* .02749 .000 .4464 .6070 
f5h1 .45333* .02749 .000 .3730 .5336 
f5h1/pen1 -.12333* .02749 .000 -.2036 -.0430 
pen2 .23667* .02749 .000 .1564 .3170 
f5h1/pen2 .13000* .02749 .000 .0497 .2103 
pen3 .29000* .02749 .000 .2097 .3703 
f5h1/pen3 .17333* .02749 .000 .0930 .2536 

f5h1/pen1 

Col-0 .65000* .02749 .000 .5697 .7303 
f5h1 .57667* .02749 .000 .4964 .6570 
pen1 .12333* .02749 .000 .0430 .2036 
pen2 .36000* .02749 .000 .2797 .4403 
f5h1/pen2 .25333* .02749 .000 .1730 .3336 
pen3 .41333* .02749 .000 .3330 .4936 
f5h1/pen3 .29667* .02749 .000 .2164 .3770 

pen2 

Col-0 .29000* .02749 .000 .2097 .3703 
f5h1 .21667* .02749 .000 .1364 .2970 
pen1 -.23667* .02749 .000 -.3170 -.1564 
f5h1/pen1 -.36000* .02749 .000 -.4403 -.2797 
f5h1/pen2 -.10667* .02749 .001 -.1870 -.0264 
pen3 .05333 .02749 .070 -.0270 .1336 
f5h1/pen3 -.06333 .02749 .035 -.1436 .0170 
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f5h1/pen2 

Col-0 .39667* .02749 .000 .3164 .4770 
f5h1 .32333* .02749 .000 .2430 .4036 
pen1 -.13000* .02749 .000 -.2103 -.0497 
f5h1/pen1 -.25333* .02749 .000 -.3336 -.1730 
pen2 .10667* .02749 .001 .0264 .1870 
pen3 .16000* .02749 .000 .0797 .2403 
f5h1/pen3 .04333 .02749 .134 -.0370 .1236 

pen3 

Col-0 .23667* .02749 .000 .1564 .3170 
f5h1 .16333* .02749 .000 .0830 .2436 
pen1 -.29000* .02749 .000 -.3703 -.2097 
f5h1/pen1 -.41333* .02749 .000 -.4936 -.3330 
pen2 -.05333 .02749 .070 -.1336 .0270 
f5h1/pen2 -.16000* .02749 .000 -.2403 -.0797 
f5h1/pen3 -.11667* .02749 .001 -.1970 -.0364 

f5h1/pen3 

Col-0 .35333* .02749 .000 .2730 .4336 
f5h1 .28000* .02749 .000 .1997 .3603 
pen1 -.17333* .02749 .000 -.2536 -.0930 
f5h1/pen1 -.29667* .02749 .000 -.3770 -.2164 
pen2 .06333 .02749 .035 -.0170 .1436 
f5h1/pen2 -.04333 .02749 .134 -.1236 .0370 
pen3 .11667* .02749 .001 .0364 .1970 

*. The mean difference is significant at the 0.01 level. 
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Figure 3.17A 
ANOVA 

Ratios 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups .596 7 .085 292.862 .000 
Within Groups .005 16 .000   
Total .600 23    

Post-Hoc Tests 
Multiple Comparisons 

Dependent Variable: Ratios  
 LSD 
(I) Genotypes (J) Genotypes Mean 

Difference (I-J) 
Std. Error Sig. 99% Confidence Interval 

Lower Bound Upper Bound 

Col-0 

f5h1 -.15667* .01392 .000 -.1973 -.1160 
pen1 -.01500 .01392 .297 -.0557 .0257 
f5h1/pen1 -.33333* .01392 .000 -.3740 -.2927 
pen2 -.22500* .01392 .000 -.2657 -.1843 
f5h1/pen2 -.47833* .01392 .000 -.5190 -.4377 
pen3 -.15167* .01392 .000 -.1923 -.1110 
f5h1/pen3 -.36167* .01392 .000 -.4023 -.3210 

f5h1 

Col-0 .15667* .01392 .000 .1160 .1973 
pen1 .14167* .01392 .000 .1010 .1823 
f5h1/pen1 -.17667* .01392 .000 -.2173 -.1360 
pen2 -.06833* .01392 .000 -.1090 -.0277 
f5h1/pen2 -.32167* .01392 .000 -.3623 -.2810 
pen3 .00500 .01392 .724 -.0357 .0457 
f5h1/pen3 -.20500* .01392 .000 -.2457 -.1643 

pen1 

Col-0 .01500 .01392 .297 -.0257 .0557 
f5h1 -.14167* .01392 .000 -.1823 -.1010 
f5h1/pen1 -.31833* .01392 .000 -.3590 -.2777 
pen2 -.21000* .01392 .000 -.2507 -.1693 
f5h1/pen2 -.46333* .01392 .000 -.5040 -.4227 
pen3 -.13667* .01392 .000 -.1773 -.0960 
f5h1/pen3 -.34667* .01392 .000 -.3873 -.3060 

f5h1/pen1 

Col-0 .33333* .01392 .000 .2927 .3740 
f5h1 .17667* .01392 .000 .1360 .2173 
pen1 .31833* .01392 .000 .2777 .3590 
pen2 .10833* .01392 .000 .0677 .1490 
f5h1/pen2 -.14500* .01392 .000 -.1857 -.1043 
pen3 .18167* .01392 .000 .1410 .2223 
f5h1/pen3 -.02833 .01392 .059 -.0690 .0123 

pen2 

Col-0 .22500* .01392 .000 .1843 .2657 
f5h1 .06833* .01392 .000 .0277 .1090 
pen1 .21000* .01392 .000 .1693 .2507 
f5h1/pen1 -.10833* .01392 .000 -.1490 -.0677 
f5h1/pen2 -.25333* .01392 .000 -.2940 -.2127 
pen3 .07333* .01392 .000 .0327 .1140 
f5h1/pen3 -.13667* .01392 .000 -.1773 -.0960 

f5h1/pen2 Col-0 .47833* .01392 .000 .4377 .5190 
f5h1 .32167* .01392 .000 .2810 .3623 
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pen1 .46333* .01392 .000 .4227 .5040 
f5h1/pen1 .14500* .01392 .000 .1043 .1857 
pen2 .25333* .01392 .000 .2127 .2940 
pen3 .32667* .01392 .000 .2860 .3673 
f5h1/pen3 .11667* .01392 .000 .0760 .1573 

pen3 

Col-0 .15167* .01392 .000 .1110 .1923 
f5h1 -.00500 .01392 .724 -.0457 .0357 
pen1 .13667* .01392 .000 .0960 .1773 
f5h1/pen1 -.18167* .01392 .000 -.2223 -.1410 
pen2 -.07333* .01392 .000 -.1140 -.0327 
f5h1/pen2 -.32667* .01392 .000 -.3673 -.2860 
f5h1/pen3 -.21000* .01392 .000 -.2507 -.1693 

f5h1/pen3 

Col-0 .36167* .01392 .000 .3210 .4023 
f5h1 .20500* .01392 .000 .1643 .2457 
pen1 .34667* .01392 .000 .3060 .3873 
f5h1/pen1 .02833 .01392 .059 -.0123 .0690 
pen2 .13667* .01392 .000 .0960 .1773 
f5h1/pen2 -.11667* .01392 .000 -.1573 -.0760 
pen3 .21000* .01392 .000 .1693 .2507 

*. The mean difference is significant at the 0.01 level. 
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Figure 3.20M 
ANOVA 

Ratios 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups .929 3 .310 320.177 .000 
Within Groups .008 8 .001   
Total .937 11    

Post-Hoc Tests 
Multiple Comparisons 

Dependent Variable: Ratios  
 LSD 
(I) Genotypes (J) Genotypes Mean 

Difference (I-J) 
Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Col-0 
f5h1 -.06983* .02540 .025 -.1284 -.0113 
pmr2 .60220* .02540 .000 .5436 .6608 
f5h1pmr2 .39870* .02540 .000 .3401 .4573 

f5h1 
Col-0 .06983* .02540 .025 .0113 .1284 
pmr2 .67203* .02540 .000 .6135 .7306 
f5h1pmr2 .46853* .02540 .000 .4100 .5271 

pmr2 
Col-0 -.60220* .02540 .000 -.6608 -.5436 
f5h1 -.67203* .02540 .000 -.7306 -.6135 
f5h1pmr2 -.20350* .02540 .000 -.2621 -.1449 

f5h1pmr2 
Col-0 -.39870* .02540 .000 -.4573 -.3401 
f5h1 -.46853* .02540 .000 -.5271 -.4100 
pmr2 .20350* .02540 .000 .1449 .2621 

*. The mean difference is significant at the 0.05 level. 
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Figure 3.20N 
ANOVA 

Lengths 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 4912945.967 3 1637648.656 141.721 .000 
Within Groups 92443.753 8 11555.469   
Total 5005389.719 11    

Post-Hoc Tests 
Multiple Comparisons 

Dependent Variable: Lengths  
 LSD 
(I) Genotypes (J) Genotypes Mean 

Difference (I-J) 
Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Col-0 
f5h1 -342.74196* 87.77042 .005 -545.1409 -140.3430 
pmr2 1089.66209* 87.77042 .000 887.2631 1292.0610 
f5h1pmr2 1080.65951* 87.77042 .000 878.2606 1283.0585 

f5h1 
Col-0 342.74196* 87.77042 .005 140.3430 545.1409 
pmr2 1432.40404* 87.77042 .000 1230.0051 1634.8030 
f5h1pmr2 1423.40147* 87.77042 .000 1221.0025 1625.8004 

pmr2 
Col-0 -1089.66209* 87.77042 .000 -1292.0610 -887.2631 
f5h1 -1432.40404* 87.77042 .000 -1634.8030 -1230.0051 
f5h1pmr2 -9.00257 87.77042 .921 -211.4015 193.3964 

f5h1pmr2 
Col-0 -1080.65951* 87.77042 .000 -1283.0585 -878.2606 
f5h1 -1423.40147* 87.77042 .000 -1625.8004 -1221.0025 
pmr2 9.00257 87.77042 .921 -193.3964 211.4015 

*. The mean difference is significant at the 0.05 level. 
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Figure 3.20O 
ANOVA 

Haustoria 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 529.690 3 176.563 154.429 .000 
Within Groups 9.147 8 1.143   
Total 538.837 11    

Post-Hoc Tests 
Multiple Comparisons 

Dependent Variable: Haustoria  
 LSD 
(I) Genotypes (J) Genotypes Mean 

Difference (I-J) 
Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Col-0 
f5h1 -4.86667* .87305 .001 -6.8799 -2.8534 
pmr2 11.80000* .87305 .000 9.7867 13.8133 
f5h1pmr2 8.60000* .87305 .000 6.5867 10.6133 

f5h1 
Col-0 4.86667* .87305 .001 2.8534 6.8799 
pmr2 16.66667* .87305 .000 14.6534 18.6799 
f5h1pmr2 13.46667* .87305 .000 11.4534 15.4799 

pmr2 
Col-0 -11.80000* .87305 .000 -13.8133 -9.7867 
f5h1 -16.66667* .87305 .000 -18.6799 -14.6534 
f5h1pmr2 -3.20000* .87305 .006 -5.2133 -1.1867 

f5h1pmr2 
Col-0 -8.60000* .87305 .000 -10.6133 -6.5867 
f5h1 -13.46667* .87305 .000 -15.4799 -11.4534 
pmr2 3.20000* .87305 .006 1.1867 5.2133 

*. The mean difference is significant at the 0.05 level. 
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Figure 3.21 
 

ANOVA 
Ratios 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups .084 5 .017 66.526 .000 
Within Groups .003 12 .000   
Total .087 17    

Post-Hoc Tests 
Multiple Comparisons 

Dependent Variable: Ratios  
 LSD 
(I) Genotypes (J) Genotypes Mean 

Difference (I-J) 
Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Col-0 

f5h1 -.09685* .01297 .000 -.1251 -.0686 
pmr2 .04515* .01297 .005 .0169 .0734 
f5h1pmr2 .02970* .01297 .041 .0014 .0580 
pmr4 -.09382* .01297 .000 -.1221 -.0656 
f5h1/pmr4 -.13019* .01297 .000 -.1584 -.1019 

f5h1 

Col-0 .09685* .01297 .000 .0686 .1251 
pmr2 .14200* .01297 .000 .1137 .1703 
f5h1pmr2 .12656* .01297 .000 .0983 .1548 
pmr4 .00304 .01297 .819 -.0252 .0313 
f5h1/pmr4 -.03333* .01297 .025 -.0616 -.0051 

pmr2 

Col-0 -.04515* .01297 .005 -.0734 -.0169 
f5h1 -.14200* .01297 .000 -.1703 -.1137 
f5h1pmr2 -.01544 .01297 .257 -.0437 .0128 
pmr4 -.13896* .01297 .000 -.1672 -.1107 
f5h1/pmr4 -.17533* .01297 .000 -.2036 -.1471 

f5h1pmr2 

Col-0 -.02970* .01297 .041 -.0580 -.0014 
f5h1 -.12656* .01297 .000 -.1548 -.0983 
pmr2 .01544 .01297 .257 -.0128 .0437 
pmr4 -.12352* .01297 .000 -.1518 -.0953 
f5h1/pmr4 -.15989* .01297 .000 -.1881 -.1316 

pmr4 

Col-0 .09382* .01297 .000 .0656 .1221 
f5h1 -.00304 .01297 .819 -.0313 .0252 
pmr2 .13896* .01297 .000 .1107 .1672 
f5h1pmr2 .12352* .01297 .000 .0953 .1518 
f5h1/pmr4 -.03637* .01297 .016 -.0646 -.0081 

f5h1/pmr4 

Col-0 .13019* .01297 .000 .1019 .1584 
f5h1 .03333* .01297 .025 .0051 .0616 
pmr2 .17533* .01297 .000 .1471 .2036 
f5h1pmr2 .15989* .01297 .000 .1316 .1881 
pmr4 .03637* .01297 .016 .0081 .0646 

*. The mean difference is significant at the 0.05 level. 
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Figure 3.23M 

ANOVA 
Ratios 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups .008 3 .003 2.643 .121 
Within Groups .008 8 .001   
Total .016 11    

Post-Hoc Tests 
Multiple Comparisons 

Dependent Variable: Ratios  
 LSD 
(I) Genotypes (J) Genotypes Mean 

Difference (I-J) 
Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Col-0 
f5h1 -.06983* .02628 .029 -.1304 -.0092 
pmr4 -.02347 .02628 .398 -.0841 .0371 
f5h1/pmr4 -.04790 .02628 .106 -.1085 .0127 

f5h1 
Col-0 .06983* .02628 .029 .0092 .1304 
pmr4 .04637 .02628 .116 -.0142 .1070 
f5h1/pmr4 .02193 .02628 .428 -.0387 .0825 

pmr4 
Col-0 .02347 .02628 .398 -.0371 .0841 
f5h1 -.04637 .02628 .116 -.1070 .0142 
f5h1/pmr4 -.02443 .02628 .380 -.0850 .0362 

f5h1/pmr4 
Col-0 .04790 .02628 .106 -.0127 .1085 
f5h1 -.02193 .02628 .428 -.0825 .0387 
pmr4 .02443 .02628 .380 -.0362 .0850 

*. The mean difference is significant at the 0.05 level. 
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Figure 3.23N 
ANOVA 

Lengths 
 Sum of 

Squares 
df Mean Square F Sig. 

Between Groups 3206958.475 3 1068986.158 62.448 .000 
Within Groups 136945.188 8 17118.148   
Total 3343903.662 11    

Post-Hoc Tests 
Multiple Comparisons 

Dependent Variable: Lengths  
 LSD 
(I) Genotypes (J) Genotypes Mean 

Difference (I-J) 
Std. Error Sig. 95% Confidence Interval 

Lower Bound Upper Bound 

Col-0 
f5h1 -342.74196* 106.82743 .012 -589.0864 -96.3975 
pmr4 1049.36630* 106.82743 .000 803.0218 1295.7108 
f5h1/pmr4 385.13553* 106.82743 .007 138.7910 631.4800 

f5h1 
Col-0 342.74196* 106.82743 .012 96.3975 589.0864 
pmr4 1392.10826* 106.82743 .000 1145.7638 1638.4527 
f5h1/pmr4 727.87749* 106.82743 .000 481.5330 974.2220 

pmr4 
Col-0 -1049.36630* 106.82743 .000 -1295.7108 -803.0218 
f5h1 -1392.10826* 106.82743 .000 -1638.4527 -1145.7638 
f5h1/pmr4 -664.23077* 106.82743 .000 -910.5753 -417.8863 

f5h1/pmr4 
Col-0 -385.13553* 106.82743 .007 -631.4800 -138.7910 
f5h1 -727.87749* 106.82743 .000 -974.2220 -481.5330 
pmr4 664.23077* 106.82743 .000 417.8863 910.5753 

*. The mean difference is significant at the 0.05 level. 
 
	
  


