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ABSTRACT 

Recent research has focused on the moIecular characterization of null waxy (Wx) 

alleles, Wx-Alb, RK-Bib, and Wx-Dlb, that produce no detectable Wx proteins in the 

endosperm starch of allohexaploid wheat (Triticum aestivrrm L.; 2n=6&2; AABBDD). 

The major objectives of this thesis were to ( I )  isolate and characterize a Wx wheat cDNA 

and (2) to identify aberrant Wx transcripts encoded by the null Wx-A16 allele of CDC 

Wx2, a waxy hexaploid wheat line, which result in an absent Wx-A1 protein ( -59 kD). 

In the Grst study, a cDNA library prepared fiom developing wheat kernels (cv. Fielder; 

Wx-Ala, Wx-Bib, and Kr-Dla alleIes) was screened using a homoIogous PCR- 

digoxigenin labeled wheat cDNA probe. A 2.2 kb cDNA clone denoted GBSSlMMI 

(Accession no. Y16340) was sequenced and identified as encoding a Wx-Dl protein. 

The deduced amino acid sequence showed 94 % similarity with a wheat Wx-A 1 peptide, 

96 % similarity with a wheat Wx-B 1 peptide, and 100 % identity with two wheat Wx-D 1 

peptides. A 33-nucleotide deletion, encoding 1 1  amino acids (AMLCRAVPRRA), was 

detected within h e  GBSSIMMI cDNA relative to a previously isolated wheat cDNA 

(accession no. X57233). Complementation analysis using a glycogen synthase deficient 

E. coii strain and an in vitro starch synthase assay did not indicate that GBSSIMMI 

encoded a functional Wx-Dl protein. In the second study, two sister lines CDC Wx2 and 

CDC Wx6 were obtained by crossing Lines Bai-Huo (carries null KT-Dlb allele; lacks 

Wx-Dl protein) and Kanto 107 (carries null Wx-Alb and -Blb alldes; lacks Wx-A1 and - 
B1 proteins). Waxy protein profiling, amylose concentration determinations, Northern 

blot analysis, and reverse transcriptase PCR (RT-PCR) andysis were conducted. Ten 

RT-PCR derived cDNA cIones were selected fiom each genotype and characterized by 

DNA sequencing analyses. The wavy phenotype of CDC Wx2, tacking Wx-Al , -B 1, and 

-D1 proteins and possessing a reduced arnyhse concentration (- 4 %), was associated 

with dramatically reduced levels of a 2.4 kb KT transcript when compared to the higher 

levels in a wiIdtype contrd line. DNA sequencing of clones h m  Kanto 107 and CDC 

Wx2 characterized two types of aberrant Wx transcripts, one containing intron 1 and 

another containing introns 1 and 4. Intron I in both types of aberrant Wx transcripts 

iii 



contained a premature stop codon which resulted in the translation of a truncated Wx 

protein (- 4 or 1 1 kD). Analysis of CDC Wx6, lacking Wx-B 1 and -D 1 proteins and 

possessing a reduced amylose concentration (- 14 %), failed to reveal aberrant Wx 

transcripts, suggesting that the RNA defects in this study were not responsible for the 

absence of the Wx-B1 or -Dl proteins. Thus, the aberrant Wx transcripts were encoded 

by the null Wx-Alb allele. The presence of a premature stop codon in the Wx transcripts 

encoded by the null Wx-A16 d e l e  explained the absence of the - 59 kD Wx-A1 protein 

in CDC Wx2 and its parental line Kanto 107. 
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1.0 INTRODUCTION 

Wheat ( T r i r m  L.), one of the most important fwd staples of the world's 

popdation, is used in baked goods, pasta and n o d e  products, fish cake (kamaboko), 

imitation crab legs, rice confectioneries, and dumplings (Oleson, 1994; Maningat and Seib, 

1997). Wheat starch is used as a raw material in industrial and non-food end-uses such as 

carbonless paper, adhesive for corrugated boards, drywail textures and joint cements, 

cushioning materials, microc~lluIar foams, cosmetics, fiim, mash fermentation for ethanot 

production, and alcoholic beverages. Common wheat (T. aestivum subsp. wigare pill. 

Host] Mackey; 2n=6x=42, AABBDD) consitutes 95 % of wortd wheat production whereas 

durum wheat (T. hmm Desf.; 2n=4~28, AABB) accounts for 5 %. In L992-19%. Canada 

exported L5 million t o ~ e s  (MTj of common wheat and 4 MT of durum wheat (Canadian 

Wheat Board, personal communication). Canada exports seven classes of highquality 

wheats incIuding six common wheats and one d m  (Table L .I). The wheat ctasses vary in 

kernel hardness, protein content, and gluten strength which together account for most of the 

variance in fimctionaiity among these classes. These hctional differences make each 

market class suitable for particular end-uses. Generally, high protein hard wheats are 

favored for bread production, durums are used for pasta, low protein soft wheats are used to 

produce biscuits, cookies and crackers, and medium protein wheats, hard or soft, are used in 

Asian noodle applications (Chen, 1993). 

In 1992-1996, Asian-Pacific countries imported 33 MT of wheat suggesting that 

their n o d e  markets represent s i m c a n t  high value markets for Canadian wheats 

(Canadian Wheat Board, personal communication). Wheat imports into these countries are 

projected to rise to 40 MT in the year 2007. In Canada, flours destined for noodle 

production are made by bIending flours originating h r n  all classes of wheat, except Canada 

Eastern Soft W t e  Winter, Canada Western Extra Strong, and Canada Western Amber 

Dunrm (Chen, 1993). A reduced amylose concentration has been shown to dramadcdy 

affect the hctional properties of wheat starch and thus its suitablility for producing 



Table 1.1 Characteristic kernel color, kernel hardness, protein, and gluten strength of 

fwe different wheat classes t (Adapted from Williams, 1993). 

Wheat class Kernel Kernel Gluten 

(cultbar) color hardness Protein strength End-uses 

CWRS* 

(AC Barrie) 

CWES~ 

(Glenlea) 

CPSC 

(AC Crystal) 

(AC Karma) 

cwswsd 
(AC Reed) 

C WADC 

( K Y ~  

Red 

Red 

Red 

White 

White 

White 

High Long fermentable pan 
Hard (13.6 %) Strong breads 

Medium high Ve'y Frozen dough. hearth 

Hard (17.5 %) Strong breads, pan breads 

Hard Medium Noodles. steamed breads. 

Medium Hard ( 1  0.5- 1 1.5 %) Medium hearth breads. Flatbreads 

Low Noodles, flatbreads. 

Soft (10.5 %) Weak steamed breads, cakes. 

cookies, pamy, crackers 

High 

E m  hard (13.5 %) Strong Macaroni, spaghetti 

t Canada western red winter and Canada eastern soft white winter not shown. 

' CWRS, Canada western red spring. 

CWES, Canada western extra strong. 

CPS, Canada prairie spring. 

' CWSWS, Canada western soft white spring. 

'CWAD, Canada western amber durum. 



Japanese udon noodles (Zhao et al., 1998). Consequently, promising Asian-Pacific udon 

noodle markets have directed wheat quality improvements towards the deveiopment of 

Canadian Prairie Spring (CPS) cdtivars with flours possessing reduced amylose 

concentrations (Demeke et al., 199%). 

In common wheat three Wx proteins, Wx-A1 (- 59 kD), Wx-B 1 (- 58.8 kD), and 

Wx-Dl (- 58.9 kD), are encoded by three homoeologous Kr loci and are collectively 

respousiile for synthesizing the amyfose component of endosperm starch (Fujita and Taira, 

1998; Nakamura et al., 1998; Murai et at,, 1999). The wildtype alleles of the A, B and D 

genomes of wheat are designated Kr-Ala, Kr-Bla, and Wk-Dla, respectively, whereas 

null alleles that produce no detectable Wx protein are designated Wx-A1 b, Kt-Blb, and 

Kr-Dlb (Yamamori et al., 1994). Null mutations are known as mutations that reduce the 

function of a gene to zero (Russell, 1992). The starch properties important for the eating 

quality and processing of udon noodles include low amylose, higher starch pasting 

characteristics, and swelling properties (Oda et al., 1980; Miura and Tanii, 1994). These 

starch properties have been identified in unadapted partidly Wx (reduced amylose wheats 

with one or two null KK alleles) accessions or cultivars (Yamamori et al.. t994; Demeke ec 

at., 199%; Graybosch et a&., 1998; Zhao and Sharp, 1998). All current Australian soft 

wheat cdtivars accepted for the udon noodle market have a null mutation in the KT-Blb 

allele ( P m o  and Eagles, 1998). Currently. locally adapted partially ~ a x y  cultivars of 

Canadian Prairie Spring wheat are being deveioped through the introgression of null Wx 

alleles ( Wx-ill b, KK-Bl b, and Wx-Dlb) (Demeke et a/., 199%; 1999). 

Waxy starches are one of the most common specialty starches and have been 

identified in various crops such as maize (Echt and Schwartz, 1981), rice (Oryza saliva L.) 

(Sano, 1984: Sano et al., 1985), potato (Solarnun kberosum L.) (Jacobsen ec at., 1989), and 

barley (Hordeurn vulgare L.) (HyIton et al., 1996). In contrast to the one Kr Iocus in 

diploid plants, hexaploid wheat has three Wx loci, that is. one Kr locus ( Wx-AI, Wx-31. and 

Kr-Dl) in each genome. A naturally occurring fuIly Wx hexaploid wheat mutant has yet to 

be identified, possibly because of the complex nature of the genome. That is, the probability 

of wildtype alIeIes Wx-Ala, Wx-BIa, and Kr-Dla mutating simultaneously into nulI alleles 

Wx-Alb, Wx-BIb, and Wx-Dl6 and then recombining to produce a spontaneous Wx h e  is 

expected to be very low. In Japan, waxy common wheat (amylose-fiee wheat with three 



null Wx alleles) has been produced by crossing Kanto 107, a Japanese wheat carrying both 

KK-Alb and Wx-Bl b null alleles, with Bai-Huo, a Chinese wheat wrying a Wx-Dl b null 

allele (Yamammori et al., 1994). Kanto 107 has been identified by researchers as a 

promising breeding line with its Iow amylose content in flour starch and superior texture of 

udon noodles compared to cultivars with normal amylose content (Hoshino et al., 1985). 

Until recently, the Chinese landrace Bai-Huo was the only known mutation source carrying 

a Wx-DIE null allele (Kiribuchi-Otobe et al., 1997; Yasui et al., 1997). Partially waxy 

wheat cultivars are expected to be suitable for the production of highquality noodles. Waxy 

wheat may ultimately be useful for waxy starch production where formerly only waxy 

maize (Zea mays L) has been utilized for these purposes including thickeners, soup mixes, 

cookies, and syrup (Yasui et al., 1996; Demeke et al., 1997b; Kiribuchi-Otobe et al., 1997: 

Graybosch et al., 1998). 

Recently, researchers have produced double haploid lines of all eight homozygous 

genotypes type I ,  Wx-A l a  Mr-Bla. Wx-Dla; Type 2, Wx-.4 lb, Wx-Bla, Wr-Dlo; Type 3, Kr-A l a  KT- 

Blb, Wx-Dla; Type 4, W w f l a  1 - B l a  Kr-Dlb; Type 5. Kr-Ala. Kr-Bib. Nr-Dlb; Type 6, Wx-Alb, Kr- 

Bla, Mr-Dlb; Type 7 ,  Wx-Alb. Kr-Bib. Kr-Dlo; and Type 8, Wx-A lb. Mr-Bib, Wx-Dlb) at KT loci in 

common wheat. These eight genotypes represent a use@ resource for the elucidation of the 

relationships among Wx loci null allele genotypes, Wx protein levels, starch chemical and 

physical properties, and noodle production (Zhao and Sharp, 1998). The availability of 

these genotypes in different backgrounds will facilitate an extensive characterization in 

many areas inchding the molecular characterization null Wx alleles in hexaploid wheat. 

Unlike Wx mutations in rice (Wang er al., 1999, maize (Echt and Sc hwartz, 198 1; Shure er 

al., 1983; Klosgen et al., 1986; White et al., 1994), potato (van der Leij et a!., 199 t a), and 

barley (Domon, 1996), the null mutations in the Wx alleles of wheat have not been 

extensively characterized. Vrinten et al. (1999) have proposed that the absent Wx-BI 

protein in a waxy wheat line derived by crossing Kanto 107 and Bai-Huo results fiom the 

deletion of the KY-BI gene andfor an arm of chromosome 4AL. Their characterization of 

a 117 bp deletion at the 5' end of the Wx-Alb null alleIe and a 588 bp deietion at the 3' 

end of the KT-DIb null allele did not account for absent Wx-A1 or Wx-Dl proteins, 

respectively. Demeke er al. (1999) have produced a waxy hexaploid h e  denoted, CDC 

Wx2 (type 8), and a partially waxy hexaploid h e  denoted, CDC Wx6 (type 5) by crossing 



Kanto 107 (type 7) and Bai-Huo (type 4). These Lines were the basis of the following study 

of Wx transcripts encoded by the null Wx genes of hexaploid wheat. This information will 

contribute to a better understanding of the diversity or redundancy among the Wx alleles 

of hexaploid wheat, The major objectives of the thesis were as folLows: 

To isolate and characterize a wheat cDNA encoding a Waxy protein. 

To identify akrrant Wx transcripts encoded by the null KT-Alb dleLe of CDC 

Wx2, a waxy hexapbid wheat line, which result in an absent Wx-A1 protein 

(-59 kD). 



2.0 LITERATURE REVEW 

2.1 Starch Granule Structure 

Starch, a food reserve in plants, is stored in various storage organs such as in the 

endosperm of cereals, tubers of potato (Solamm tuberosum), and roots of cassava (Manihot 

esculenta) (Preiss and Sivak, 1996, 1998). Most of the starch utilized world-wide comes 

fiom a relatively small number of crops, the most important being maize, potato, wheat, and 

tapioca with smaller amounts h m  rice (Oryza sativa), sorghum (Sorghum bicolor), sweet 

potato (Ipomoea batatas), arrowroot ( M m a  arundinacea), sago (Metroxylon s a p ;  LM. 

ntmphii), and mung beans (Phaseolus vulgaris) (Wang et al., 1998). In general, starches 

fiom tapioca and sorghum are used only for foods whereas those h m  maize, potato, and 

wheat are used for both food and non-food purposes. Starch consists of a m i -  of two 

types of glucose polymers including a relatively unbranched arnylose and a highly branched 

amylopectin hction (Takeda et al., 1986). In the endosperm and roots of plants, starch is 

synthesize and stored as starch p u l e s  within specialized colorless plastids known as 

amyloplasts. Cereal endosperm starches are composed of - 25 % arnylose and - 75 % 

amylopectin, although, as discussed in detail in later sections, mutations affecting starch 

biosynthesis can significantly affect the amomt of amylose molecules in the starch granule. 

Starch granules vary widely in shape and size among species and organs (Hoseney, 

1986). In wheat, starch granules (- 1 pn in diameter) are present in the developing 

endosperm within a few days after anthesis and occupy a minute fiaction of the amyIoplast 

stromal volume (Stark and Lynn, 2992; Rahman et al., 1995). By maturity, starch 

deposition has proceeded to the point where starch granules occupy essentially the entire 

amyloplast stroma. Mature wheat has a bimodal distribution of starch granules composed of 

a lenticular shaped 'A' granule population (10-30 jun in diameter) and a 'B' granule 

population of spherical granules (diameter < 10 p). While the 'B' granules are numerous, 

constituting > 95 % of the totaI grande number, the 'A' granule population contains 70-80 % 

of starch mass. 'A' granules are initiated in the early cell division phase of endosperm 



development, while 'El' granule initiation begins - 16 days post anthesis @PA) and 

continues throughout the cell expansion phase (Morrell et al., 1995). Starch granules exert a 

minimal effect on the osmotic pressure of the cell. Kernel desiccation leads to the disruption 

of amyloptast membranes and the exposure of the starch granules to the protein matrix of 

the endosperm (Hoseney, 1986). The starch granules isolated fiom the mature grain contain 

two types of proteins: the proteins embedded within the starch granule during starch 

deposition in the amyloplast and the proteins exclusively associated with the surface of the 

granule, that have come in contact with the starch granule during maturation or isolation of 

starch granules (Schofield and Greenwell, 1987). 

Glucose is the basic building block of both amylose and amylopectin. Alpha- 

amyiose is an essentially linear polymer made up of several thousands of a-l,44inked 

glucose residues with a molecular weight between 5 x 10' to lo6 (Takeda et al., 1986). In 

contrast, amylopectin has a molecular weight of several millions and is a highly branched 

glucose pdymer consisting mainly of a-1,4 linked ghcose residues with a-1,6 branch 

points (2-4 %; Fig. 2.la). .hylose is not essentiaI to the formation of the granule. The 

basic structure of the granule is dictated by the packing of amylopectin molecules in 

organized arrays (Smith et al., 1997). The chains within the granule are radially arranged 

with their non-reducing ends pointing toward the surface and are organized into alternating 

crystailine and amorphous lamellae with a periodicity of 9 tun. The lamellae reflect the 

arrangement of chains into clusters. Within clusters, chains associate to form double 

helicies that pack together in ordered arrays to give the crystalline Iamellae. The amorphous 

lamelltie contain the branch points (Fig. 2.lb,c). Regions of alternating crystalline and 

amorphous lamellae form concenttic zones within the granules (- hundreds of nm in width). 

These semicrystalline zones alternate with amorphous zones. A semicrystalline-amorphous 

repeat is referred to as  a growth ring pig. 2.14e). Wrthin this basic outline of the 

organization within a starch granule ther is a large amount of genetically, developmentally, 

and environmentally induced variation. 

23 Starch Synthesis 

A generalized pathway for the production of starch will be presented herein. 

Intricate details of the pathway and the enzymes invoIved have been extensively reviewed 



Fig. 2.1 Schematic representation of levels of organization within a starch granule. 

The boxes within the diagrams in panels b, c, and d represent the area occupied by the 

structure in the preceding panel. (a) Structure of two branches of an amylopectin 

molecule, showing individual glucose units. (b) A single cluster within an amylopectin 

lamellae. (c) The crystalline lamellae are produced by the packing of double helices in 

ordered arrays. Chains of 12-16 glucose units span one cluster. Chains of about 40 

glucose units span two clusters. (d) Slice through r granule showing alternating zones 

of semi-crystalline material, consisting of crystalline and amorphous lamellae, and 

amorphous material. Adapted from Smith et al. (1997). (e) Slice through a granule 

(30 pm d i e t e r ) ,  showing crystalline amylopectin (CAP), amorphous amylopectin 

(AAP), amylose molecules (thick unbranched lines), protein molecules associated with 

the surface (open symbols), and proteins located within the granule matrix (tilled 

symbols). Adapted from Morrel et al. (1995). 
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by other reports (Martin and Smith, 1995; Nelson and Pan, 1995; Morrell et al., 1995; Preiss 

and Sivak, 1996, 1998; KoPmann et al., 1997; Smith et al., 1997; Wang et al., 1998). 

The final steps of starch biosynthesis (Fig. 2.2) involve three enzymes including ADP- 

glucose pyrophosphorylase (ADP-GPPase; EC 2-7.7.23), starch synthases (granule-bound 

starch synthase isoforms I and II [GBSS] and soluble starch synthase isoforms I, 11, and tU 

[SSS]; EC 2.4.1.21), and starch branching enzyme isoforms I and I1 (BE or SBE; EC 

2.4.1.18) (Martin and Smith. 1995). ADP-GPPase catalyzes the formation of ADP-Glucose, 

the basic building block of amylose and amylopectin, fiom a-D-glucose-1-phosphate (GI P) 

as follows: 

a-D-glucose-1-phosphate + ATP w ADP-Glucose + pyrophosphate (PPi) 

The first enzyme is responsible for the synthesis of the substrate in all plants (Smith et a!., 

1997) and the other two for the production of amylose and arnylopectin polymers. ADP- 

GPPase is considered by many to be the key enzyme in the regulation of the pathway 

because it is allostericdy regulated by both inorganic phosphate (an inhibitor) and 3- 

phosphoglycerate (an activator) (Preiss and Sivak, 1996). Starch synthases (SS) tbrm wl,4 

linkages between the non-reducing end of a glucose polymer and ADP-glucose molecules as 

follows: 

({ 1,4) -a-D-glycosy 1) , + ADP-Glucose + ( { 1,4)-a-D-glycosyl) ,,+I + ADP 

In vivo, it is uncertain whether all SS use both amylose and amylopectin as substrates. 

Lastly, BE catalyzes the formation of the a-1,6 linkage found in starch polymers. Branched 

chains of a-glucans are produced from linear glycosyl chains of a-glucan through the 

formation of a-1,6 linkage branch points. There are a number of different isofom of each 

enzyme, some of which show differences in organ specificity and temporal regulation. The 

contribution of the different isoforms to the overalI process of starch biosynthesis in most 

tissues is not k n o m  

Debranching enzymes, isoarnylases and puIluIanases, @BE; EC 3.2.1 -41 and EC 

3.2.1 -68) hydrolyze a-(I$)-glucose linkages and are aIso considered to play a roIe in the 

synthesis of starch (James et al, 1995; Ball et al., 1996). Debranching enzymedeficient 

mutants of maize, rice, and ChZamydomo~s have been isolated and all accumuIate 



Fig. 2 3  Steps of starch biosynthesis. ADP-GPPase catalyzes the formation of ADP- 

glucose and inorganic pyrophosphate from glucose-1-phosphate and ATP (step 1). 

Starch synthases (SS) add glucose units from ADP-glucose to the non-reducing end of 

a growing a-(l,4)-linked glucan chain by an a-(l,+liikage and release ADP (step 2). 

Two enzymatic fhctions are associated with starch-branching enzymes (SBE), namely 

cleavage of a-(l,4)-glycosidic linkages on the glucan polymer and reattachment of the 

released chain through an a-(l,6)-linkage to the same or another a-(1,4)-linked glucan 

chain (step 3). Adapted from Martin and Smith (1995). 
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phytoglycogen, a glucose polymer, which is more similar to animal glycogen than to plant 

starch in that it posesses a greater proportion of a-(1,6)-Iinkages and is water soluble. The 

action of debranching enzymes has been suggested to be important in 'pre-amylopectin 

trimming' (Fig. 23a). The pre-amylopectin trimming model proposes a direct involvement 

of DBE in amylopectin synthesis (Ball et aI., 1996; Mouille et al., 1996; Smith et al., 1999). 

It is specdated that a sequence of synthetic events at the surface of the granule creates a 

cluster within an amyIopectin molecde, as follows: (1) short chains are elongated by starch 

synthase; (2) when chains reach a d c i e n t  Length to become substrates for SBE, a highly 

branched pre-mylopectin is formed; (3) selective trimming of this structure by DBE creates 

a bed of short chains h m  which the next round of synthesis can occur. When DBE activity 

is reduced or eliminated, pre-amylopectin accumulates. The production of phytoglycogen 

has been detected in mutants such as sul, sta7, and &el. Mouille et al. (1996) have 

suggested that the production of pre-mylopectin is a mandatory step for the production of 

starch; however, proof that the trimming mechanism actually operates in vivo is stiIl lacking. 

Another explanation for the accumulation of phytoglycogen in DBEdeficient cells 

has led researchers to propose that DBE is not directly invoIved in amyiopectin synthesis 

(Zeernan ef al., 1998). The soIubIe glucan recycling model (Fig. 2.3b) proposes that DBE is 

ody indirectly involved in starch synthesis. Arnyiopectin synthesis requires only SS and 

SBE. In a n o d  pIastid (Fig. 2.3b, top), mall soiuble mdtwligosaccbarides in the 

stroma may be elongated by SS, and then branched by SBE. Any glucans thus synthesized 

will be degraded by a suite of enzymes including DBE (dashed lines), preventing the 

accumulation of such products. Cn plastids in which DBE activity is reduced or eliminated 

(Fig. 2.3b, bottom), this degradative mechanism is incomplete. Soluble branched gIucans 

formed by SS and SBE from malto-oligosaccharides can be fiuther elaborated, providing 

more substrates for SS and SBE, and leading to both an accumulation of phytoglycogen and 

a reduction in the rate of starch synthesis. At present the question of whether DBE is, 

directIy or indirectly, involved in amylopectin synthesis remains open for discussion. 

In wheat, barley, and rice, sucrose is transported fiom leaves through the phkm 

vascular tissue and unloaded at the developing endosperm (Singh and Metha, 1986; Fig. 

2.4). In Leaves, starch is deposited in gmdes in the chloropIasts during active carbon 



Fig. 2 3  Models to explain the involvement of debranching enzyme in starch synthesis. 

(a) Pre-amylopectin trimming model. (b) The soluble glucan recycling model Adapted 

from Smith et al. (1999). 
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Fig. 2.4 General scheme for starch biosynthesis in cereals. Glucosel-phosphate 

(GIP), ADP-glucw pyrophosphorylase (ADP-GPPme), ADPG (ADP-gl~cose), starch 

spthase isdorms (SSI, SSII, and SSIII), grmdebouml starch syathase (GBSS), 

starch branching enzyme isofom @EI and BEIT), and debranching enzyme @BE). 

Adapted from Rsbman et al. (1999). 



dioxide fixation by photosynthesis during the day and degraded by respiration during 

darkness (Preiss and Sivak, 1996). The accumulated starch is required for sucrose synthesis 

at night and subsequently transported fiom the leaf to sink tissues. Starch remobilization 

ensures continuous availability of photosynthates to the whole plant. The biosynthesis and 

degradation of leaf starch is more dynamic than the metabolism in reserve tissues. Sucrose 

is converted to GIP through the action of invertase, sucrose synthase, UDP-glucose 

pyrophosphorylase, hexokinases, and phosphoglucomutase. The supply of substrate to 

ADP-GPPase differs in different tissues and organisms. It is generally accepted that in 

storage tissues such as the endosperm or cotyledons, hexose phosphates are imported into 

the arnyloplast whereas hctose-6-phosphate fiom the reductive pentose phosphate pathway 

is utilized in photosynthetic plastids (Keeling et at., 1988; Bowsher et al., 1996). In cereals, 

there have been clear demonstrations that G1P is the imported substrate rather than ADP- 

glucose or glucose-&phosphate. There is evidence h m  barley and maize that most ADP- 

GPPase activity is located outside the plastid and that ADP-glucose is specifically 

transported into the plastid by a protein (Kleczkowski, 1996). 

The general scheme outlined in Fig. 2.4 is based on studies of starch biosynthesis in 

species such as maize, pea (Pisum sativum), potato, and Chlamydomonas (Ball er at., 1996; 

Martin and Smith, 1995; Smith et al., 1997; Nelson and Pan, 1995). The basic principles of 

starch synthesis in these storage organs are expected to be similar in wheat endospem, 

however, future research will likely identifL significant differences in detail. In cereals, 

there appear to be at least four classes of SS important to starch synthesis in the endosperm: 

GBSS (Shure et al., 1983), SSI (Knight et al., 1998), SSIl (Warn et al., 1998), and SSIZI 

(Gao et al., 1998). GBSS is essential for amylose synthesis, and may also be a contributor 

to amylopectin synthesis. The roles of SSI, SSII, and SSIII are thought to be predominantly 

in amylopectin synthesis although they may be non-essential contributors to the synthesis of 

amylose (Craig et al., 1998; Ciao et al., 1998). Two classes of BE are known as BE1 and 

BEE. The BE11 class in maize contains two members, BEIIa and BEIIb (Boyer and Preiss, 

1978). Currently, it is thought that BEII, instead of BEI, especially BEIIb may have the 

most influence on amylopectin branching (Boyer and Preiss, 1978; Boyer et al., 1980; 

Bhattacharyyaet al., 1990; M-o et ul., 1993). As detailed above, the role of DE in starch 

synthesis is the subject of ongoing discussion, Our understanding of starch biosynthetic 



enzymes (Preiss and Sivak, 1996) has outstripped our understanding of the nature and 

regulation of the starch biosynthetic process. Considerable research will be needed to fully 

understand the highly integrated and regulated process of amylopectin synthesis and its 

organization to form a starch granule. 

23 Bacterial Glycogen 

Many bacteria can accumulate glycogen as an energy reserve during growth or at the 

end of the growth phase (Preiss and Romeo, 1989). Glycogen is a branched glucose 

polymer consisting of - 90 % a-(1,4)-linkages and the rest in a-(l,6)-linkages. Glycogen 

usually accumulates in the bacterial cell when there is excess carbon in the media and when 

growth is limited by a lack of required nutrient for growth. Glycogen can accumulate to 

>50% of dry cell weight; however, levels of accumulation depend on both the nutritional 

content of the media and the growth phase of the organism. The high molecular weight and 

physical properties of stored glycogen, accuiurnated to low or high levels, has litlle effect on 

the internal osmotic pressure of the cell. 

In 1964, it was demonstrated that bacteria possess both ADP-GPPase (Shen and 

Preiss, 1964) and ADP-glucose specific glycogen synthase (Greenberg and Preiss, 1964). 

ADP-GPPase converts ATP and G1P into ADP-glucose and pyrophosphate. Glycogen 

synthase converts ADP-glucose and a-&can into a- 1,4-glucosyl-glucm and hDP. 

Subsequently, it has been shown that branching enzyme activity was also present in many 

bacterial extracts (Holmes et al., 1982). Thus, glycogen accumulating bacteria have the 

enzymes of the ADP-glucose pathway to synthesize a-1,4-glucosidic linkages, as well as 

BE activity for synthesis of the a-1,bgiucosidic linkages of glycogen. 

It is important to note that glycogen is not reqttired for growth since mutants of E. 

coli, including deletion mutants (Govons er al., 1969) which have defective structural genes 

for glycogen biosynthetic enzymes (e.g, gIycogen synthase), and are therefore unable to 

synthesize glycogen, grow as well as their normal parental strains (Preiss and Romeo, 

1989). These energy reserves are degraded and utilized as a source of carbon that is no 

longer available fiom the media or environment The fimction of glycogen, an endogenous 

source of carbon, within bacteria1 celIs remains unclear; however, it is thought to be 

important in the prolongation of cell survival and in the formation and maturation of spores. 



2.4 Polyploid Nature of the Wheat Genome 

Wheat (Tritinrm L.), belonging to the grass famiIy Gramineae, subfamiIy 

Festucoideae, and tribe Festuceae, is thought to have originated in the fertile crescent, 

encompassing Turkey, Syria, Iraq, and Iran (Wiiams, 1993). It was distributed to areas 

such as West Asia, Ethiopia and the north-eastern countries of Africa, and Turkey and 

southern Russia, which became centres of diversification for diploid, tetraploid, and 

hexaptoid wheats, respectively. In contrast, T, spelta, a hexaploid species, had its centre of 

diversification in the upper Rhine area of Germany. Two species, T. boeotimrn h i s s .  em. 

Schiem (Wild einkorn) md T. monococcum L. (Einkom) are b o r n  as diploid wheats 

(2n=2x=14 chromosomes). Eight species, T. dicoccoides Korn. (Wild emrner), T, 

timopheevi Zhukov. (Tiopheevi wheat), T. dicoccum SchubI. (Ermner wheat), T dunrm 

Desf. (Durum wheat), T. turgia'um L. (Rivet wheat), T. twanicum Jakubz (Khorasan 

wheat), T. polonicum L. (Polish wheat), and T. carthlicum Nevski (Persian wheat) belong to 

the tetraploid wheats (2n=4x=28 chromosomes). Six subspecies, T. aestivum L. em. ThelI 

subsp. spelta Q Thell (Spelt wheat), 1: aesrivum subsp. macha (Mach wheat), T. aestivum 

subsp. vavilovi (Tuman) Sears n. comb., T. aesrivum subsp. vulgare (Vi. Host) Mackey 

(Common wheat), T. aestivum subsp. compuctum (Host Mackey), and T. aesfivum subsp. 

sphaerococcum (Perc. Mackey) (Shot wheat), comprise the hexaploid group of wheats 

(2n=6x--42 chromosomes). 

The classical example of alloploidy, plants derived fiom the combination of 

genomes that are different, in crop plants is provided by wheat (Briggs and Knowles, 1967). 

Diploid, tetrrtploid, and hexaploid wheats have two, four, and six 7-chromosome sets or one, 

two and three genomes, respectively (Williams, 1993). Tetraploid wheats (AABB) are 

believed to have origiuated fiom a natural cross between a variety of the species 7'. 

boeoticum known as T. urartu (AA), which contributed the A genome and a diptoid donor 

of the B genome. The exact donor of the B genome remains unctear. Hexaploid wheats 

(AABBDD), betieved to have been derived h m  a natural cross, are composed of the A and 

B genomes in tetraploid wheats and the D genome is contriiuted by Triticum tauschii (syn. 

Aegilops squmosa). Each genome consists of seven pairs of homologous chromosomes 

(Fig. 2.5). Each chromosome pair is genetically similar to one specific chromosome pair of 

each of the two remaining genomes. Wheat chromosomes are divisible into seven 



homoeologous groups. The location and structure of genes on each member of these 

homaeologous groups is virtually identical. Durum wheats are allotetraploid and contain 

only the A and B genomes. The idenscation of mutants in allopolyploids is hindered by 

the ploidy of their genomes, that is, where more than one genome is present, gene mutations 

often fhil to manifest themselves because genes in other genomes will carry on their fimction 

(Briggs and Knowles, 1967). 

chromosame group 

genome 

A II 

Fig. 2.5 Organization of common wheat chromosomes ( 2 1 1 = 6 ~ 2  chromosomes) and 

location of Wx loci. Adapted from Graybosch (1998). 



2.5 Waxy Wheat Mutants 

The Wx protein, also know as GBSSI, encoded by the Wx locus is the key enzyme 

responsible for synthesizing amylose polymers in the amyloplasts of plants (Martin and 

Smith, 1995). Currently, in all species that have been investigated the mature -59 kD Wx 

protein is found embedded within starch granules (Nelson et al., 1978; Echt and Sch- 

1981). The Wx protein is found exclusiveIy within or near the d x e  of the granules and is 

absent fiom the soluble phase of amyloplasts. The -59 kD Wx protein (Yamarnori et al., 

1992) in the endosperm starch of common hexaploid wheat has been separated into three 

isoforms using two-dimensional SDS-PAGE (Nakamura er al.. 1995a). These three Wx 

proteins, Wx-A1 , Wx-B 1, and Wx-D 1, have slightly different molecular weights (Murai et 

al., 1999) and/or isoelectric points (pl), ranging from 5.5 to 6.5 (Nakamura et al., 1995a). 

Zhao and Sharp (1996) developed a 1D-SDS-PAGE system, replacing the cumbersome 2D- 

SDS-PAGE procedure, that separates the Wx-Al, Wx-B 1, and Wx-Dl proteins in hexaploid 

wheat using only the distal half of a single mature grain. Using nulli-tetrasomic lines of 

Chinese Spring wheat the chromosomal location of the three Kr loci have been identified 

(Cbao et al., 1989; Ainsworth et al, 1993; Nakamura et al.. 199%; Fig. 2.5). The Wx-A1 

protein is encoded by the Wx-A1 gene on the short arm of chromosome 7A. The Wx-BI 

protein is encoded by the Wx-BI gene on the long arm of chromosome 4A (translocated 

Liom 7BS). Lastly, the Wx-Dl protein is encoded by the Wx-Dl gene on the short am of 

chromosome 7D of wheat. Recently, genomic DNA sequences encoding Wx-A 1. Wx-B 1. 

and Wx-Dl proteins in hexaploid wheat have been isolated and characterized (Murai er al., 

1999). Deduced molecular weights of 59.0 kD for a Wx-A1 protein, 58.8 kD for a Wx-B1 

protein, and 58.9 kD for a Wx-Dl protein were predicted h m  the isolated FKr genes. 

Ainsworth et al. (1993) have characterized the expression of Wx genes in wheat. 

Developing grains (5, 10, 15,20, and 25 DPA) of Chinese spring wheat accumulated a 2.4 

kb Wx mRNA transcript throughout grain £ilhg with peak expression of the KT genes at 

-10 to 20 DPA. 

The nucleotide sequence of one full length wheat complementary DNA (cDNA) 

clone encoding a Wx-A1 protein has been isolated (Accession number X57233; Clark et al., 

1991). The cDNA sequence (21 86 nucleotides in length) has an open reading h e  of 1845 

nucleotides, a 5' rmtranslated region of 63 nucleotides, a 3' untranslated region of 278 



nucIeotides, and a poly(A) tail of 18 residues. The deduced protein contains 615 amino 

acids with a calculated mo1ecular weight of 67.8 kD, however, this protein includes a 7.7 kD 

transit peptide which likely targets the Wx protein to plastids (KLosgen et al., 1989; Klosgen 

and Weil, 1991). None of the three Wx peptide amino acid sequences reported by Murai et 

al., (1999) contained an 1 1 amino acid insertion, first described by Clark et al. (1991), that is 

thought to be unique to wheat (Ainsworth et al., 1993). cDNA clones encoding for the Wx 

pmtein have been isolated h m  maize (Shm et of., 1983; Klosgen ef al., 1986), rice 

(Okagaki, 1992), cassava (Salehuzzaman et al,  1993), and potato (Visser et a/., 1989). 

These Wx cDNA cIones have subsequently been used to study 1) biological activity, 

expression, and regulation of Wx genes in planfa ( V i r  er ul., 1991qb; van der Leij et al., 

1991a; van der Steege et al., 1992; Flipse et a!., 1996a), 2) co-supression of endogenous Mr 

genes (Flipse er al., 1996b),3) antisense inhibition of the Wx transcript using homologous 

(Visser et al., 1991b; Shimada er al., 1993; Kuipers et al., 1994b) or heterologous FKr genes 

(Salehuzzaman et al., 1993), 4)  inheritance and segregation of Wx transgenes (Flipse et al., 

1996a), and 5 )  formation and deposition of amylose in transgenic potato tubers expressing a 

Wx gene (Kuipers et aZ., t 994a). 

h plants, Wx mutants are characterized by both the lack of Wx proteins (i-e., null 

alleles) and amyiose (Sprague et d., 1943; Nefson and Rines, 1962; Tsai, 1974; Okuno and 

Sakaguchi, 1982; Sano, 1984; Hseih, 1988; Jacobsen et al., 1989; Hylton er al., 1996), with 

the exception of several maize Wx mutants which possessed a non-hctional Wx protein 

(Echt and Schwacz, 1981). In contrast, non-Wx phenotypes are characterized by the 

presence of functional Wx proteins and the production of - 25-30 % amyIose (Homey, 

1986). The absence of a Wx protein in amyiosefiee mutants has led researchers to assume 

that the Wx protein is responsible for synthesizing arnyIose in potato (Hovenkamp 

Hermelink et a!, 1987; Visser et al., 1991b; van der Leij et al., 1991a), wheat (Nakamura et 

al., 1993b; Yamamori and Nakamura, 1994), rice (Sano et al., 1985; Shirnada et 01.. 1993), 

and maize (Imam, 1989)- The best evidence that the Wx protein is responsibie for amybse 

synthesis has been offered by antisense inhiition of the Wx transcript in potato tubers which 

eliminated the production of both amylose and the Wx protein (Viiser et al., 1991 b; Kuipers 

et a/., LWb, 1995; Salehuzzaman et al., 1993) and by transformation of an amyIose-fiee 



potato mutant with a Wx gene resulting in the restoration of amylose synthesis (van der Leij 

et al., 1991a; Flipse ef al., 1994). 

Mutations at the Wx locus do not appear to affect other t ime specific isoforms of 

GBSS in wheat (Fujita and Taira, 1998). The Wx protein is considered to be the only SS 

involved in amybse synthesis in storage organs which permanently store starch. Granule- 

bound starch synthase isofonn II, GBSS II, with a mature molecular weight of 56 kD has 

recently been identified in the pericap (Nakamura et al., 1998), aleurone layer, and 

immature embryos of Wx wheat mutants (Fujita and Taira, 1998). Endosperm and pollen 

starch granules of Wx wheat mutants lacked both arnylose and the 60 kD Wx protein; 

however pericarp, aleurone, and embryo starch granules contained amylose and a 56 kD 

protein (Nakamura ef al., 1998). Ainsworth et al. ( I  993) also identified leaf-tissue qxci£ic 

expression of a 1.6 kb Wx transcript. GBSSIl may prove to have an important function in 

amylose synthesis in non-storage tissues (e.g., photosynthetic tissues, tissues near 

meristematic tissues, flowers, and tiuits) which temporarly store starch. Nucleotide 

sequences of wheat cDNA clones encoding GBSS II currently remain unpublished. 

2.6 Crossing Kanto 107 and Bai-Huo to Produce Fully Waxy Wheat 

The production of Wx wheat using various parental combinations has been 

outlined by various researchers (Ymamori and Nakamura, 1994; Yamamori et al., 1995; 

Hoshino et al., 1996; Kiribuchi-Otobe et al., 1997, 1998; Zhao and Sharp, 1998). This 

section discusses the F2 phenotypes that can be expected when crossing Kanto 107, a 

double null Wx line, and Bai-Huo, a single null Wx h e .  A branch diagram derivation of 

the relative frequencies of the eight phenotypic classes in the F2 of a cross with three Kr 

genes segregating independently is shown in Fig. 2.6. The wildtype alleles of the A, B, 

and D genomes are designated Wx-Ala, Wx-Bla, and Wx-Dla, respectively, whereas null 

alleles that produce no detectable Wx protein are designated Wx-A1 b, Wx-B l b, and Wx- 

DIb (Nakamura et al., 1993a). The independently assorting character pairs in the cross 

are presence versus absence of a Wx-A1 protein, presence versus absence of a Wx-Bl 

protein, and presence versus absence of a Wx-DI protein. There are 64 combinations of 

eight m a t e d  and eight paternal gametes. (Note: In flowering plants, the union of one 



Fig. 2.6. A branch diagram derivation of the relative frequencies of the eight 

phenotypic classes in the F2 of a cross with three Wx genes segregating 

independentiy. Adapted from Russell (1992). 



Kanto 107 (Seed parent) X Bai-Huo (Pollen parent) 

F'2 phenotypes for: F2 phenotypic 

Wx-Aid-Alb Wx-BId-Blb Wx-DId-Dlb Proportions 

Eadosprm starch phenotype using Endosperm starch 

SDS-PACE t phenotype using 

F2 phenotypic proportions Wx-A 1 Wx-B I Wx-D 1 iodine staining 

c + + Blue-Black 

+ -F - 8 lue- B lac k 

-I- - + Blue-Black 

+ - Blue-Black 

- -+ -t Blue-Black 

- + - Blue-Black 

- - + B he-B lack 

- - - Reddish-Brown 

f Presence (+) or absence (-) ofwaxy protein. 



sperm nucleus with the egg nucIeus to form the diploid zygote, and of the other sperm 

nucleus with the two poIar nuclei to form a triploid endosperm nucleus [Genotype F1 

endosperm tissue: Wx-Alb/-Alb, Wx-Bib/-Bib, Wx-Did-DIG two doses from the seed parent, 

and Wx-Ald-Ala, Wx-Bla/-Bla, Wx-Dlb/-D ib, one dose from the pollen parent] is known as 

double fertilization. The embryo derives fiom the dipbid zygote and the tripioid 

endosperm Wx-Alb/-AiWAIa, Wx-BIb/-BIb/BIa, Wx-Dld-DIdD 16, stored food within the 

kernel, derives h r n  the triploid endosperm cell.). Combinations of these haploid FI 

gametes will give rise to 27 diierent genotypes and eight phenotypes. The eight 

different endosperm starch phenotypes can be distinguished using 1 D-SDS-PAGE. 

Iodine staining of the embryo-less portion of the kernel can quickly separate l l l y  Wx 

lines (endosperm starch stains reddish-brown) fiom non-Wx Ft lines (endosperm starch 

stains blue-bIack). 

2.7 Gene Regulation 

Ln eukaryotes, the production of functional proteins involves transcription. a process 

synthesizing RNA molecules Erom a DNA template, within the nucleus and translation, a 

process synthesizing proteins h m  an mRNA template, within the cytoplasm (Farrell, 1993; 

Fig. 2.7). The primary RNA transcript, pre-rnRNA molecule, undergoes post- 

transcriptional processing in the nucleus, including the addition of 5' cap, methyiation, 

polyadenylation, and intron splicing, to produce the mature hctioning rnRNA molecule. 

TransIation of the chemically stable mRNA molecule into a polypeptide occurs only after 

the molecule is transported into the cytoplasm. FunctionaI proteins are usually produced 

after extensive post-translationd modifications. 

In general, four broad levels of gene regulation incIude transcriptional, post- 

transcriptional, translational, and post-translational, Transcriptional regulation can be 

a t t n i e d  to any variabIe that influences the efficiency andor rate of transcription or 

prevents transcription h m  occuing (e.g., an aberration within the coding portion of a 

tocus, or the flanking sequences that infiuwce its expression). Post-transcriptionai 

regulation is any event that influences the splicing of pre-mRNA, pre-mRNA stability in the 

nuckus, nucleocytoplasmic transport, or stability of the RNA molecules in the cytoplasm. 

TransIationaI regulation involves any variable that iduences the translation e4iciency of 



Fig. 2.7 Molecular processes invoived in synthesizing a functional protein in a plant 

cell. Adapted from Farroll (1993). 



the mature mRNA into a peptide or prevents tmnsIation fiom occuring (e.g., absence of 

regulatory factors and sequences acting in trans and cis or inaccessibility of mRNA to the 

protein translation machinery). Post-translational regdation is any event that influences the 

hctionality of a protein (e.g., peptide cleavage, methylation, carboxylation, 

glycosylation, acetylation, hydroxylation, and phosphorylation). The biochemical 

processes directly and indirectly involved in producing biologically fiinctional proteins in 

eukaryotes are far fhm clear and their complexity offers an infjnite number of steps at 

which gene regulation can occur (FarreIl, 1993). 

2.8 Gene Mutations 

The existence of mutants indicates that alterations do occur in genes that often have 

such si@cant consequences to the organism that normal function is no Ionger possible 

(Russell, 1992). A mutation is any detectable and heritable change in the genetic material 

not caused by genetic recombion.  Mutations can arise through changes at the base-pair 

level or at the chromosomal level (i-e., variation h m  the wild-type condition in either 

chromosome structure or number). A gene mutation occurs at the level of a gene and 

involves any one of a number of alterations of the DNA sequence of the gene, including 

base-pair substitutions (e-g., nonsense mutation) and additions or deletions of one or more 

base pairs (e.g., h e s h i f t  mutation). Gene mutations affecting a single base pair of DNA 

are called point mutations. A nonsense mutation is a base-pair change in the DNA that 

results in the change of an mRNA codon fiom one that specifies an amino acid to a 

chain-terminating (nonsense) codon WAG, UAA, or UGA; Fig. 2.8). A frameshift 

mutation results h m  the insertion or deletion of a base pair in a gene. Such insertions or 

deletions can shift the mRNA's reading h e  by one base so that either I) incorrect amino 

acids are translated into the encoded polypeptide resulting in a nonfimctional polypeptide or 

2) a nonsense mutation occurs resulting in a prematurely terminated polypeptide. 

Few mutations in wheat have been characterized to date at the molecular level; 

however, molecular characterization of mutations resulting in human diseases have been 

extensively studied (Watson et d., 1992). For example, P-thalassemias is a disease caused 

by abnormal synthesis of globin chains. Four globin chains, two a-chains and two P-chains, 



Fig. 2.8 Nonsense mutation. A nonsense mutation is a base-pair change in the DNA 

that results in the change of an mRNA codon from one h a t  specifies an amino acid 

to a chain-terminating (nonsense) codon WAG, UAA, or  UGA). For example, a 

mutation in the DNA template strand from 3'-TTC-5' to 3'-ATC-5' would change 

the mRNA codon from St-AAG-3' (lysine) to Sf-UAG3', which is a nonsense codon. 

A nonsense mutation gives rise to chain termination a t  an incorrect place in the 

polypeptide and consequently results in the premature termination of the 

polypeptide. Instead of complete polypeptides, polypeptide fragments (usually non- 

functional) are released from the ribosomes. Adapted from Russell (1992). 
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make up the tetrameric protein known as hemoglobin. Over 50 mutations have been found 

in the P-globin gene among them P'-tfialassemias, characterized by the production of 

reduced $-globin levels and ~'-thalassemias, characterized by a complete absence of P- 
globin synthesis. Mutation types resulting in $*-thalassemias include mutations in 

consensus sequences adjacent to conserved 5' (/GT) or 3' (AGI) dinucleotide intron splice 

sites, mutations within introns or exons producing cryptic 5' or 3' intron splice sites which 

compete with normal splice sites, promoter mutations (relative to the start site), RNA- 

cleavage or polyadenylation signal mutations (e.g., AATAAA+AACAAA), and cap site 

mutations. In con- mutation types resulting in pO-tbalassemias include nonsence 

mutations, firameshift mutations, and splice junction mutations in the conserved 5' GTI or 3' 

AGI dinucleotides of introns. A generalized overview of the mechanism of pre-mRNA 

splicing is presented in Fig. 2.9. Pre-mRNA splicing is carried out in two steps within the 

spliceosome, a large RNA-protein complex, which contains four small ribonuleoprotein 

particles (UI, U2, U4N6, and U5) and numerous protein factors (Filipowicz et al., 1995; 

Simpson and Filipowicz, 1996; Brown, 1996; Schuler, 1998). In the first step of splicing, 

cleavage occurs at the intron 5' border with the formation of a 2'-5' phosphodiester bond 

between the first nucleotide of the intron (+lG) and a branch point located 10-50 

nucleotides upstream of the 3' splice site. In the second step, cleavage at the 3' splice site 

releases the intron lariat and the exons are ligated together. Splice junction mutations in the 

conserved 5' GTI or 3' IAG dinucleotides of introns typically result in the abotition of their 

use and in the activation of adjacent splice sites. 

Few waxy mutants, producing undetectable or reduced levels of protein, in maize 

(Echt and Schwartz, 1981; Shure et al., 1983; Sano, 1985; Klosgen et al., 1986), rice, potato 

(HovenkampHermelink et al., 1987; Visser er al., 1989), and barley have been studied at 

the molecular level. W q  allelle mutations have been characterized as caused by Iarge 

insertionddeletions attributed to transposable elements in maize Kr genes (Wessler and 

Varagona, 1985). Unspliced intron 1 (1 kb) was detected in the Kr transcripts of waxy 

rice cultivars, possessing no amylose, Wx protein, or normal 2.3 kb Kr transcript (Wang 

et al., 1995; Cai et al. 1998). Bligh et al. (1998) later demonstrated that a GT to TT 

mutation at the 5' IGT dinucleotide of ink011 1 reduced the efficiency of Wx pre-mRNA 
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Fig. 2.9 The two transesterification steps used for spliceosome catalyzed pre-mRNA intron 

splicing. Conserved nucleotides and the phosphates at the splice sites are shown. The exons 

are shown as boxes and the intmns as lines. The first transesterification reaction is attack 

by the 2'-hydroxyl (OH) group of an adenosine (A) ribose located 20-60 at upstream from 

the 3' end of the intron, onto the 5' exon 1-iatron boundary. This links the 5' end of the 

intron from the exon and links it to the A residue. The free OH group at the end of exon 1 

generated by the initial reaction, carries out a second tmnsesteriiication onto the 3' intron- 

exon 2 boundary. The final products of these two reactions are the joining of exons 1 and 2 

and the liberation of the intmn in the form of a lariat structure. The four small 

ribonuleoproteins (snRNPs) and the numerous protein Ldors required by these reactions are 

not shown. Adapted from Simpson and Fipowicz (1996). 



processing and resulted in alternative splicing at three cryptic 5' splice sites, tsshiki et al. 

(1998) reported the inefficient excision of intron 1 fiom the 5' untranslated region of the 

Wx transcript of waxy rice and associated the GT to TT mutation with reduced Wx 

transcript and W x  protein levels. They studied a Wx d e l e  (wxb) that resulted in a 10- 

fold decrease in Wx mRNA and protein production when compared to a wildtype Wx 

(KF) allele. As previously reported by other groups, the W? allele had the same GT to 

TT mutation at the 5' splice site of intron 1 and resulted in dternative splicing at three 

cryptic 5' splice sites, isshiki et al. (1998) introduced single base mutations to the 5' 

splice sites of both the Wf (GT mutated to TT) and wxb (CIT mutated to GT) alleles. 

fused them to the GUS reporter gene, and introduced them into rice protoplasts. Their 

results demonstrated that the low expression level of the wxb allele resulted fiom the 

single base mutation at the 5' splice site of intron 1. A b e s h i f t  mutation resulted in the 

pre-mature termination of translation of the Wx protein in waxy potato (van der Leij et 

af., 1991b). A nonfunctional Wx protein with a molecular weight slightly higher than 

expected was detectable in the waxy potato tubers. These researchers hypothesized that 

the mutant (nonfitnctional) Wx-protein was the product of the null Wx allele and its 

presence was explained if the re-initiation of translation took place at an internal, in 

phase, AUG codon. Domon (1996) has characterized barley tines possessing 2 to I0 % 

amylose and reduced Wx protein levels relative to normal barley lines. The study 

detected a 403 bp deletion in the mutant Wx allele, spanning h m  position -149 bp to 

+254 bp (+1 denotes transcription start site), that resulted in the loss of the original 

transcriptional start site. The presence of the nonfimctional Wx protein in the waxy 

barley line was explained if it was assumed that re-initiation of transcription took place at 

an internal transcriptional start site. The 403 bp deletion was suggested to reduce the rate 

of transcription of Wx mRNA transcripts leading to reduced Wx protein levels and 

amylose concentrations. 

Recently, research has focused on the molecular characterization of the n d  Wx- 

AI b, Wx-Blb, and Wx-D lb alleles of a waxy hexaploid wheat line (Vrinten et af. 1999). 

The characterization of a 1 17 bp deletion at the 5' end of the Wx-AIb null allele in waxy 

wheat (Vrinten er al. 1999), derived by crossing Kanto 107 and Bai-Huo, is reviewed in 

chapter 4. Southern bIot analysis suggested that the absent Wx-Bl protein in the waxy 



line resulted fiom the deletion of the Wx-BI gene and/or the end of the long arm of 

chromosome 4A. A 588 bp deletion, including the 3' untranslated region and the 

polyadenylation signal, was detected at the 3' end of a Wx-Dlb cDNA encoded by the 

null Wx-Dlb allele of the waxy line. The aberrant Wx-Dlb cDNA encoded a truncated 

Wx-Dl protein lacking the last 30 amino acids of the protein. The presence of an 

aberrant Wx-Dl protein with an altered molecular weight was not detected in the 

endosperm starch of the waxy line. Thus, the researchers concluded that the aberrant Kc- 

Dlb cDNA in the waxy line was either not translated or the reduced abundance of KY 

transcripts detected by Northern blotting lead to the translation of undetectabIe protein 

levels. Inefficient 3' end formation of aberrant Wx-Dl transcripts was thought to 

contribute, at least in part, to the reduced Wx transcript levels in the waxy line. 



3.0 ISOLATION AND CHARACTERIZATION OF A cDNA ENCODING A 

GRANULE-BOUND STARCH SYNTBASE I (WAXY) PROTEIN ORIGINATING 

FROM GENOME D OF HEXAPLOLD WEEAT 

3.1 Abstract 

Isolation of cDNA encoding enzymes that synthesize the amylose or amylopectin 

component of starch are required for modifying starch structure using genetic engineering 

techniques. The objective of this study was to isolate and characterize a wheat cDNA 

encoding a Wx protein. A h-ZAPII-cDNA Iibrary prepared fiom wheat kernels (Triticum 

aestivum L.; AABBDD) was screened using a digoxigenin labeled 91 I bp probe. A 2.2 

kb cDNA clone denoted GBSSIMMI was sequenced. The translated region of the cDNA 

predicted a 604 amino acid Wx peptide (66.3 kD) that did not possess an 1 1  amino acid 

wheat specific insertion (AMLCRAVPRRA). The deduced amino acid sequence showed 

94 % similarity with a wheat Wx-A1 peptide, 96 % similarity with a wheat Wx-01 

peptide, and 100 % identity with two wheat Wx-Dl peptides. Over expression of the 

mature 60.1 kD Wx-Dl peptide, encoded by GBSSIMMI, in a glycogen synthase 

deficient Escherichia coli strain was detected with antiserum prepared using a wheat Wx 

peptide. Complementation analysis and an in viko arnylopectin-primed starch synthase 

assay were unable to detect a biologically active Wx protein using E. coli cells or solubie 

cell extracts containing the over expressed Wx-Dl protein, respectively. Deduced Wx 

peptide N-terminal sequences, iswlectric points, molecular weights, and amino acid 

sequence similarities indicate that clone GBSSlMMI encodes a Wx-DL peptide 

originating fiom genome D of hexapioid wheat. 

3.2 Introduction 

Starch, a food reserve in plants, is stored in various starch storage organs such as the 

endosperm of cereals, roots of cassava, and tubers of potato (Preiss and Sivak, 1996). In 

cereals, starch consists of a mixture of - 25 % amylose and - 75 % amylopectin poIymers 



which plants synthesize and store within amyloplasts as insoluble gxandes. Glucose is the 

basic building block of both amylose and amylopectin. Alpha-amyIose is a primarily linear 

polymer made up of several thousands of u-1,4-linked glucose residues. In contrast, 

arnylopectin is a highly branched polymer consisting of a-1,4 linked glucose residues with 

hquently occuring a-1,6 branches of glucose residues. Many of the properties of starches 

that determine their suitability for particular end-uses are dependent upon their 

amylose/amylopectin ratios (Gibson et al., 1997). 

The final steps of starch biosynthesis involve four enzymes, including ADP-glucose 

pyrophosphorylase (ADP-GPPase; EC 2.7.7.23), starch synthases (granule-bound starch 

synthase and soluble starch synthase., EC 2.4.1.21), starch branching enzymes (EC 2.4.1 28) 

(Preiss and Sivak, 1996), and debranching enzymes (EC 3.2.1.41 and EC 3.2, I .68; Mouille 

et al., 1996). ADP-Glucose, the basis of both amylose and arnylopectin molecules, and a 

liberated pyrophosphate are formed firom ADP and glucose-l-phosphate by ADP-GPPase. 

Starch synthases form a-1,4 linkages between the non-reducing end of a glucose polymer 

and ADP-glucose molecules. In vitro, it is has been shown that sbrch syothases use both 

amylose and amylopectin as substrates (Denyer et al., 1996). Lastly, starch branching 

enzymes catalyze the formation of a-l,6 linkages between starch polymers, whereas 

debranching enzymes hydrolyze a-1,6 bonds. Of the multiple isoforms of starch synthases 

in plants, including soluble starch synthases (Li et al., 1999) and granule-bound starch 

synthases, the GBSS I isoform commonly known as the Wx protein is primarily 

responsible for the synthesis of amyiose polymers in starch. Since the Wx protein is 

absent in waxy mutants (I 1 % amylose and 1 99 % amylopectin) it has been assumed that 

the Wx protein is responsible for synthesizing amylose in plants (Yamamori and Nakamura, 

1994). Evidence for this association has been offered by antisense inhibition of the Wx 

transcript in potato tubers resulting in the elimination of amylose and the W x  protein 

(Kuipers el ul., 1995) and expression of a Wx gene in an amylose-free potato mutant 

resulting in restoration of amylose synthesis (Flipse er al., 1994). 

In hexaploid wheat, three Wx proteins known as Wx-AL, Wx-B1, and Wx-Dl are 

encoded by Loci on chromosomes 7AS, 4AL (translocated fom 7BS), and 7DS, 

respectively (Chao et al., 1989; Ainsworth et al., 1993). Recentiy, genomic DNA 

sequences encoding Wx-AI, Wx-BI, and Wx-Dl proteins in hexaploid wheat have been 



isolated and characterized (Murai et al., 1999). Deduced molecular weights of 59.0 kD for a 

Wx-A1 protein (accession no. AB019622), 58.8 kD for a Wx-B1 protein (accession no. 

A8019623), and 58.9 kD for a Wx-Dl protein (accession no. AB019624) were predicted 

from the isolated Wx genes. In addition, these peptides have slightly different isoekctric 

points (pH at which protein molecules carry no net charge), ranging fiom - 6.5 to 5.5 (Wx- 

A1 has the most basic pl, Wx-Dl has an intermediate PI, and Wx-Bl the most acidic pi; 

Yamamori et al., 1994). Northern blot analysis has established that the Wx genes of wheat 

produce 2.4 kb transcripts at high levels throughout grain f i g ,  5 to 25 days post 

mthesis (Ainsworth et al., 1993; Vrinten et al., 1999). A wheat cDNA clone encoding a 

Wx peptide has been isolated (Accession no. X57233, Clark et al., 1991). The deduced 

peptide contains 615 amino acids (67.8 kD), including a transit peptide (7.7 kD) which 

targets the peptide to plasticis (Klosgen et al., 1989)- Functional analysis of the transit 

peptide (van der Lei. et al., 1994) or the mature Wx-A1 peptide encoded by cDNA X57233 

has not been performed and the functional significazice, if any, of an 11 amino acid insertion 

(AMLCRAVPRRA) in the encoded peptide sequence remains unciear. Researchers have 

recently established that the Wx cDNA isolated by Clark et al. (1991) encodes a Wx-A1 

peptide, a product of genome A of wheat (Vrinten et al., 1999; Murai et ai., 1999). The 

objective of this study was to isolate and characterize a wheat cDNA encoding a Wx 

protein. 

3 3  Materials and Methods 

3 3  1 Plant Material 

The wildtype alleles of the A, B, md D genomes are designated KT-Ala, NK-Bla, 

and Wx-Dla, respectively, whereas null alleles that produce no detectable Wx peptide are 

designated Wx-Alb, Kr-Blb, and Wx-Dlb. Kernels of Bai-Huo, a Chinese h e  (7'. 

aesrivum; KK-AIa, Wx-BIa, and Wx-Dlb alleles), were surface sterilized using a 1 % 

sodium hypochlorite (bleach) solution and germinated in petri dishes at 4 "C for 30 days 

before transferring to soil. Plants were grown using the following greenhouse conditions: 

28/18 OC (day/night), 16 h Light (250 p o l  m-2 s-') provided by banks of fluorescent tubes 

and incandescent bulbs, and 8 h dark Plants were fertilized every two weeks using Plant 

Products 2.0-0.88-1.65 (N-P-K) at a rate of 3 g L-' of water. Mature kernels were 



harvested, stored at 4 "C until needed, and used for starch extraction as described by 

Zhao and Sharp (1996). 

3 3 3  Screening of cDNA Library 

A I-ZAPII-cDNA library (Stratagene) prepared fiorn poly A+ RNA of wheat 

kernels (cv Fielder; Wx-Ala, Wx-BZb, and KT-D1a alleles, T. Demeke, personai 

communication) at 12 days post-anthesis (Nair et al., 1997; Appendix 7.1) was screened. 

Approximately 1 x lo5 pfu were screened as described by the ZAP-cDNA Synthesis Kit 

(Stratagene; Appendix 7.2). Plaque lifts were conducted using the protocoi provided with 

Hybond-N+ membranes (Amersham). Digoxigenin plaque hybridization was conducted 

as described by Engler-BIum ef al. (1993; Appendix 7.3) using a Wxl probe (91 1 bp PCR 

product; see betow) IabeIed with digoxigenin d m .  Positive plaques were detected 

(Engler-Blum el at., 1993), purified, and excised in vivo from the Uni-ZAP XR vector 

using the ExAssidSOLR system (Stratagene). The longest cDNA was chosen for further 

characterization. The pBluescript SK(-) phagemid containing the 2.3 kb insert was 

designated GBSSMMI. Plasmid DNA suitable for restriction analysis and DNA 

sequencing was isoIated as described by del Sal ef at. (1988; Appendix 7.4). 

3 3 3  Digoxigenin (DIG) dUTP Labeled Probe 

Phage containing cDNA Library inserts packaged in Uni-ZAP XR vector were 

hydrolyzed in a 20 pL reaction volume containing: 0.5% (v/v) Tween 20, IX PCR buffer 

(Boeh. Mann.), I pg/pL Proteinase K (10 rng/mL), and 10 pL phage Lysate. Reactions 

were incubated at 65 "C (45 rnin), 95 OC (10 min), 4 "C (10 min) and centrifbged at 

13000 x g at 4 "C (5 min). A 25 pL PCR reaction was prepared containing: 1X Taq 

DNA polymerase reaction buffer (Boeh. M m . ) ,  0.2 prnoVa each of primer 

GBSSmGBSSR3 (Table 3.1; Appendix 7-51, 200 uM of each dNTT, 2 Units 0 Taq 

DNA Polymerase, and 5 pL of phage Iysate (Appendix 7.6). Amplification conditions 

included 94 "C (5 min), followed by 29 cycles of 94 "C (I min), 64 "C (1 min), and 72 "C 

(2 min). PCR amplification products (I0 pL) were separated by 12 % agarose gel 

electrophoresis and visualized by ethidium bromide staining. The expected 91 I bp PCR 

product was purified h m  the gel and ligated into pCR2.1 (Marchuk et al., 1991), using 

38 



the Original TA Cloning Kit (Invitrogen; Appendix 7.7), to give pWxI. Digoxigenin 

(DIG) dUTP labeling of the WxI fragment was performed in a 50 pL final reaction 

volume containing: 1X Taq DNA polymerase reaction buffer (Boeh. Mann.), 0.2 

pmol/jL each of primers GBSSFUGBSSR3,200 uM of each dNTP (PCR DIG Probe 

Synthesis Kit, Boeh. Mann.; Appendix 7.8); 2 U Taq DNA polymerase; and 35 pg of 

pWxl. Conditions included 94 "C (5 min), followed by 25 cycles of 67 "C (30 sec), 72 

"C (2 min), and 94 "C (30 sec). The DIG labeled WxI probe (91 lbp) was stored at 4 "C, 

without further purification. 

33.4 DNA Sequence Analysis 

DNA sequencing reactions were performed using the Apptied Biosystem Prism 

Dye-deoxy Cycle Sequencing Kit (Appendix 7.9). The reactions were run on an Applied 

Biosystems Prism 373 DNA sequencer (Perkin-Elmer). Sequence was initiated from 

known vector sequences. Based on these runs nested primers were constructed to extend 

the DNA sequence (Table 3.1). Both strands of the cDNA were completely sequenced. 

Primers were synthesized by the DNA Technologies Unit, National Research Council, 

Saskatoon, Canada using a Beckman Oligo IOOOM DNA synthesizer. (Applied 

Biosystems; Appendix 7.10). DNA and deduced amino acid sequences were examined 

with the MEGKIGN program of DNASTAR (Lasergene Biocomputing sohare; 

Appendix 7.1 1) using a PAM 250 residue weight table and Cluster method (pairwise 

alignment parameters: K-tuple = 1 and gap penalty = 3; multiple alignment parameters: 

gap penalty =10 and gap length penalty = 10). 

33.5 Construction of pMWd Expression Plasmid for Expression of the Wasy Protein 

in Escherichia coli 

For expression of the Wx protein, without the 7.4 kD transit peptide, site directed 

mutagenesis was used to incorporate a unique Eco RI restriction site within WxIMMl at bp 

349 using the following mutant primers: WxMUTFl(5'-GCGGTGCGAAmCATGGTGG- 

3') and WxMUTR1 (5'-CCACCATGAATTCGCACCGC-33 as d e s m i d  by the 

Quickchange site directed mutagenesis kit (Stratagene; Appendix 7.12). The insert coding 



Table 3.1. DNA sequences of primers specific to waxy wheat cDNA clone denoted 

GBSSIMMI (Accession no. Y16340). 

Name Sequence Direction 
MM2FP 5'-CGGCATGAACCTCGTGT-3' Forward 

MM3FP 

GBSSF2 

MM4FP 

MMSFP 

MM6W 

MMm 

MMlOFP 

MMl lFP 

MM12FP 

bM13FP 

MM14FP 

GBSSR3 

MMRTRP1 

Forward 

Forward 

Forward 

Forward 

Forward 

Forward 

Reverse 

Reverse 

Reverse 

Reverse 

Reverse 

Reverse 

Reverse 

Position 
380-397 



for the mature Wx peptide (58.9 kD), excluding the trausit peptide, was subcloned as a 1.9 

kb Eco RVKpn I fragment h m  pBluescript (SK-) phagemid to the Eco Rl/Kpn 1 sites of 

bacterial expression vector pKK388-I (Clontech) to give pMWxI. The reconstructed gene 

coding for the Wx peptide was sequenced to verify that no unwanted mutations had 

occurred during this modification step. The modified N-terminus encoded by pM WxI adds 

9 amino acids (MAAEFMVVRATGSGGMNLV; -1.2 kD) to the unmodified mature N- 

terminus of the Wx peptide (ATGSGGMNLV), 

33.6 Complementation Analysis of a Glycogen Synthase Deficient E. coli Strain 

The pMWd expression plasmid was used to complement a glycogen s y n h e  

deficient mutant of E. coli, strain RH98 (MC4100 glgA::TnlO), using standard 

techniques (Muffler er al., 1997; Appendix 7.13). The wildtype E. coli strain JM 10 1 was 

used as a positive control. Transformed cells were ptated on nitrogen limiting ghcose 

enriched medium (0.85 % m2P04, 1.1 % K2HPOc 0.6 % yeast extract [Difcoj, 1.5 % 

agar [Difco], pH 7.0) containing 1 % glucose, LOO mg/L ampicillin, and 1 mM isopropyl- 

P-D-thiogdactopyranoside P T G ]  (Govons ef al., 1969). Cells were plated and 

incubated at 37 "C for 20 h. Differences in their ability to accumulate glycogen, a storage 

carbohydrate in bacteria, were detected by staining cell colonies with Lugol's iodine 

solution (0.03 M Iz, 0.04 M KI; 5 mL per plate). Colonies differing in their ability to 

accumulate glycogen after iodine staining were divided into three classes: colorless (did 

not accumulate glycogen), blue (accumulated a small amount), and dark brown 

(accumulated a large amount). 

33.7 Expression of the Waxy Protein in E. coli 

Bacterial cells were grown at 37 "C in 45 mL LB medium containing I00 mg/L 

ampicillin to an absorbance at 600 nm of 0.6 followed by induction of the lac promoter 

by addition of IPTG to a final concentration of I mM. Cell growth was continued for 

another 4 h at 27 "C, after which the cells were collected by centrifugation at 12 000 x g 

for 10 min at 4 "C, resuspended in 1 mL of ice-cold extraction buffer (50 mM Tris- 

acetate pH 8.5, 10 rnM EDTA, 5 m M  DTT, 100 @mL PMSF, and 2 p g / d  leupeptin), 

and lysed by sonication. Cell debris was removed fiom lysate by centcifugation at 15 000 



x g for 15 min at 4 O C .  The protein content of the soluble cell extract was determined 

using a dye-binding protein assay (Bradford Kit; Bio Rad; Appendix 7.14). Soluble cell 

extracts were used immediately in starch synthase assays. 

33.8 SDS-PAGE and Immunoblotting 

Purified starch granules (10 mg) were resuspended in 280 pL wash buffer [I (0.625 

M Tris-HCl, 2.3 % [wlv] SDS, 10 % [vlv] glycerol, and 0.005 % [whrj bromophenol blue) 

and 20 pL P-mercaptoethanol folIowed by a I0 min boil, 5 min on ice, and 20 min 

centrifirgation at 15 000 x g to pebet the gelatinized starch (Appendix 7.15). The 

supernatant was loaded onto 16 % SDS polyacrylamide gels (Zhao and Sharp, 1996; 

Appendix 7.16) to be immunoblotted (10 @ h e )  or Coomassie Brilliant Blue R stained 

(70 pLAane; Sambrook et al., 1982; Appendix 7.17). Soluble protein extract (60 pg~lane; 

see previous section) was resuspended m wash buffer iI and 5 pL P-mercaptoethanol, boiled 

for 5 min, and loaded on to denaturing gels for electrophoresis. 

Proteins were transferred to irnmobilon-P membrane (Millipore; Appendix 7.1 8) by 

electroblotting in transfer buffer (25 mM Tris base, 192 mM glycine, 0.05 % [wlv] SDS, 

20% [v/v] methanol) at 35 V with 4 OC cooling for 5 h. Blots were incubated in blocking 

buffer (LOO mM Tris HCI pH 7.5, 0.9 % NaCl [wlv], 0.1 % [wlv] Tween-20, 5 % [wlv] 

carnation milk) for 2 h. Blots were incubated with antiserum (1:2000 dilution in blocking 

buffer) for 3 h followed by 4 x 15 min washes in blocking buffer then incubated with 

alkaline phosphatase-conjugated anhibody (15000 dilution in blocking buffer; Stratagene; 

Cat. no. 200374) for 3 h. Antiserum was prepared using the denatured 59-60 kD Wx-Dl 

peptide isdated fkom wheat endosperm starch (Demeke et al., 1997a). Blots were washed 4 

x 15 min in blocking buffer and 1 x 15 min in blocking buffer without Tween-20 before 

incubating in alkaline phosphatase developing solution (100 mM Tris HCl 9.5, 100 rnM 

NaCl, 5 m M  MgCl?) containing 0.4 % (vlv) 5-brom&hloro-3-indolyl phosphate (BCIP; 

Stratagene; Cat- no. 300045) and 0.7 % (v/v) nitroblue tetrazolium (NBT; Stratagene; Cat. 

no. 300130). 



33.9 In V i o  Starch Synthase Enzyme Assay 

The starch synthase activity in E. coli cell extracts (Appendix 7.19) was determined 

using an amylopectin primed starch synthase assay (Denyer et al., 1995; Appendix 7-20), 

The transfer of glucose onto mylopectin primer h m  ADP (14c) glucose was measured 

in a total reaction volume of 200 pL containing: 3, 15, 30, or 60 pg of soluble cell 

extract, 0.1 M bicine pH 8.5, 25 mM potassium acetate, 10 m M  glutathione, 5 mM 

EDTA, 10 m M  DlT, 1 mg potato amyIopectin (Sigma Type III), and 70 nmoI adenosine 

diphospho-~-[~-'4~] glucose (specific activity = 627 cpmhmol, Amersham). Assay 

mixtures containing heatdenatured soluble cell extracts were used as negative controls. 

The enzyme reaction was initiated by the addition of the ADP (I4c) glucose, incubated at 

25 "C for 30 min, and terminated by heating at 100 "C for 2 min. Aliquots of 100 pL 

were removed fiom each reaction and absorbed on Whatman 31 ET filter discs, which 

were washed four times for 30 min with a 75 % (vlv) methanol and 1 % KC! (wlv) 

solution to remove unincorporated ADP (I4c) glucose. The filter discs were air-dried and 

the amount of glucan synthesized was determined using a scintillation counter. The 

starch synthase activity was calculated as nmol of glucose incorporated into glucan per 

milligram of protein per rnin after subtraction of background values obtained from heat 

denatured extracts. Average activity values are based on triplicate determinations. SAS 

programs and procedures (SAS Institute, Cary, NC) were used in the statistical analyses. 

Unpaired t-tests were used to compare means fiom enzyme determinations. 

3.4 Results and Discussion 

3.4.1 Isolation and Characterization of a Wheat cDNA Clone Encoding a Waxy 

Protein 

The 2245 bp cDNA in clone GBSSIMMI includes an open reading frame of I8 12 

nucleotides fiom the initiating ATG at position 156 to the termination codon, TGA, at 

position 1968 (Fig. 3.1). The cDNA indudes a 5' untranslated region of 155 bp, a 3' 

untranslated region of U S  bp, and putative poIy adenyIation signaIs at positions 21 99 and 

2206 preceding a poly (A) tail of 21 residues (Fig. 3.1). The deduced peptide (604 amino 

acids; 66.3 kD) indudes a putative N-terminal transit peptide (70 amino acids, 7.4 kD) 



thought to direct the peptide to the plastids (KIosgen et al., 1989; de Boer et al., 1991). 

The predicted cleavage site of the transit peptide is based on N-terminal sequencing of 

the three mature Wx peptides of hexaploid wheat (Nakamura et al., 1995a). 

Comparison of deduced Wx peptide N-terminal sequences, isoelectric points, 

molecular weights, and amino acid sequence similarities of the Wx-A1 peptide encoded 

by cDNA X57233 with the Wx peptide of cDNA Y 16340 suggest that the latter sequence 

may encode a Wx-Dl peptide. The 14 N-tenninal amino acids of the mature peptides 

Wx-A1 and Wx-Dl are identical (ATGSGGMNLV) (Nakamura et a[., 1995a; Murai et 

al., 1999). Only the N-terminal amino acid sequence of Wx-B 1 varies relative to the 

other two peptides by replacing a glycine residue with an alanine residue in the fifth 

postion (ATGSAGMNLV). The deduced mature Wx-Dl peptide sequence of cDNA 

Y16340 (534 amino acids; 58.9 kD) includes 61 strongly basic (positively charged; K, R); 

70 strongly acidic (negatively charged; D,E); 194 hydrophobic (A, I, L, F, W, V); and 11 1 

poIar residues (N, C, Q, S, T, Y). In contrast, the mature Wx-A1 peptide encoded by cDNA 

X57233 (545 amino acid.; 60.1 kD) includes 64 strongly basic; 70 strongly acidic; 200 

hydrophobic; and 112 polar residues. The deduced isoelectric point @I) of the Wx-A1 

peptide encoded by cDNA X57233 (pI = 6.1) was more basic relative to the pI of the 

peptide encoded by GBSSIMMI @I = 5.6) which is expected when comparing the 

isoelectric points of either Wx-Dl or Wx-B1 peptides with the Wx-A1 peptide (Yamamori 

et a/., 1994). The deduced mature Wx-A1 peptide encoded by cDNA X57233 (60.1 kD) 

has a slightly higher molecular weight relative to the mature Wx-Dl peptide encoded by 

cDNA Y16340 (58.9 kD). This difference agrees with the general trends detected in 

mobility when comparing the Wx-A1 and Wx-Dl peptides (Zhao and Sharp, 1996; Murai 

et al., 1999). The mature Wx-Dl peptide encoded by cDNA Y 16340 has the same 

molecular mass (58.9 kD) as the Wx-Dl peptide encoded by the Wx-DI gene (Accession 

no. AB019624). The Wx-Dl peptide encoded by cDNA Y16340 exhibits a high degree 

of similarity (> 80 %) with the amino acid sequences of Wx genes of monocots (Fig. 3.2). 

The deduced Wx-Dl peptide fiom cDNA Y16340 shows 94 % similarity with the Wx- 

A1 peptide encoded by cDNA X57233 (Fig. 32), 96 % similarity with the Wx-B1 peptide 

encoded by the Wx-Bl gene (Accession no. AE3019623; data not shown), and 100 % 



Fig. 3.1 Nucleotide sequence of a wheat cDNA encoding a Wx-Dl peptide. The 

partial N-terminal sequence of the deduced peptide of the cDNA sequence is shown 

below the nucleotide sequence. The numbers on the left refer to the amino acid 

number and the numbers on the right refer to the number of nucleotides. The 

predicted transit peptide is underlined. The arrow denotes the predicted cleavage 

site of the transit peptide from the Wx peptide. The boxed nucleotides (20-men) 

denote the region that was modified to incorporate a unique Eco R l  restriction site. 

Bolded nucleotides denote forward primer GBSSFZ (17-mers) and reverse primer 

GBSSR3 (lsrners). The translation initiation codon, termination codon, and 

putative poly adenylation signals are double underlined. The wheat cDNA sequence 

and deduced peptide sequences have been deposited in GenBank (Accession no. 

Y 16340). 



AATTCGGCACGAGGAACAACAACAAGGACACTCACTCGCCAGTGCCCGGCCGGCGACTGT 60 
GAGTACGCACGCCGCCCGATCGTCCGTCCGTCCAAGAAGAAGAGGAGATaGATCAGGCA 120 
TCTCTTGCTGCAGCTAGCCACACCCTGCGCGCGCCA_TGGC 180 

M A A L V T S Q  
TCGCCACCTCCGGCACCGTCCTCGGCATCACCGACAGGTTCCGGCGTGGGTTTCCATG 240 

9 L A T S G T V L G I T D R F R R A G F H  - . - - - - - - - - - - -. - - -  - -  - -  - - - -  
GCGTGAGGCCCCGGAGCCCGGCGGATGCGGCTCTCGGCATGAGGACCGTCGGAGCTAGCG 300 
G V R P R S ~ A D A A L G M R T V G A S  
CCGCCCCAACGCAAAGCCGGAAAGCGCACCGCGGGACCC GCCTCTCCATGGTGG~ 

6 9 e & A T G S G G M N L V F V G A E M A P  
GGAGCAAGACCGGCGGCCTCGGCGACGTCCTCGGGGCCTCCCCCCAGCCATGGCCGCCA 460 
ACGGCCACCGGGTCATGGTCATCTCCCCGCGCTACGACCAGTACFAGGACGCCTGGGACA 540 
C C A G C G T C G T C T C C G A G A T C A A G G T C G T T G A C A A G T A C G T  600 
GCTACAAGCGCGGGGTGaCCGCGTGTTCGTCGACCACCCGTGCTTCCTGGAaGGTCC 660 
GGGGCmGACCAAGGAGAAGATCTACGGGCCCGACGCCGGCACGGACTACGAGGACAACC 720 
A G C A G C G C T T C A G C C T T C T C T G C C A G G C G G C G C T G G A A G C T C G  780 
ACAATFACCCCTACTTTTCTGGGCCCTACGGGGAGGACGTGGTGTTCGTGTGCAATGACT 840 
GGCACACGGGCCTTCTGGCCTGCTACCTCAA~GCAACTACCAGTCCAATGGCATCTACA 900 
GGGCCGCMGGTGGCATTCTGCATCCACAACATCTCGTACCAGGGCCGCTTCTCCTCG 960 
ACGACTTCGCGCAGCTCAACCTGCCCGACAGGTTCAAGTCGTCGTCCTTCGACTTaTCGACG 1020 
GCTACGACAAGCCGGTGGAGGGGCGCAAGATCAACTGGATGMGGCCGGGATCCTGaGG 1080 
CCGACFAGGTGCTGACGGTGAGCCCCTACTACGCGGAGGAGCTCATCTCTGGCGGC 1140 
G G G G C T G C G A G C T C G A C A A C A T C A T G C G C C T C A C T G G G A T A  1200 
TGGATGTTAGCGAGTGGGACCCCACCAAGGACAAGTTCCTCGCCGTCTACGATCA 1260 
CCACCGCGTTGGAGGGGAAGGCGCTGAACAAGGAGGCGCTGGGCCGAGGTGGGTGC 1320 
C G G T G G A C C G G A A G G T G C C C C T G G T G G C G T T C A T C G G C A G G G C C  1380 
CCGACGTGATGATCGCCGCCATCCCGGAGATCCTmGGAG~G~CGTCCA~TCGTTC 1440 
T C C T G G G C A C C G G G A A G A A G A A G T T C G A G C G G C T A C T C A A T C  1500 
CGAGCAAGGTGAGGGCCGTGGTCEtGGTTCFACGCGCCGCTGGCTCACCAGATGATGGCCG 1560 
GCGCCGACGTGCTCGCCGTCACCAGCCGCTTCGAGCCCTGCGGCCTCATCCAGCTCAGG 1620 
GGATGCGCTACGGAACGCCGTGCGCGTGCGCGTCCACCGGCCTTGTCGACACGATCG 1680 
TGGAGGGCAAGACCGGGTTCCACATGGGCCGGCTCAGTGTCGATTGCAACGTGGTGGAGC 1740 
CGGCCGACGTGAAGAAGGTGGTGACCACCCTGAAGCGCGCCGTCAAGGTCGTCGGCACGC 1800 
CGGCATACCATGAGATGGTCAAGAACTGCATGATACAGGATCTCTCCTGGGGCA 1860 
CCAAGAACTGGGAGGACGTGCTTCTGGAACTGGGTGTCGAGGGCACCGGGGTA 1920 
TCGGCGAGGAC;ATTGCGCCKTCGCCATGGAG~CGTCGCCGCTCCCmGAGAGG 1980 
AAAAGGAAGTTCTGGTGCATGGAGCGTCCATC~GTCTGCAGGGTTCTATG 20 4 o 
T A G C C G Z T T G T T G T A G C G A A G A A G G G C C G A T A T A T A T A A T T  2100 
AACTTTTGTTGTGCCGCTTGCCTCTTTTACAAACAAAAAAGAAGTTAGGGGTTGTGCTTG 2160 
T T A T A G T G T G C T G A K T G T G C T T C C A T T T T G G T G T G G T A T A T T G C T C G T  2220 
TGTTAAAAAPJlAAAAAAAAAAAFAA 2245 



Wbeat (Y 16340) 94 95 82 82 81 64 63 62 61 59 59 28 

Wheat (X57233) - 93 80 79 79 61 60 60 60 57 56 27 

Barley (X07932) - 83 82 83 65 63 62 62 60 60 28 

Sorghum (U23945) - 94 84 65 65 62 63 60 60 28 

Maize (X03935) - 83 65 64 62 63 60 60 28 

Rice (X53694) - 63 63 62 62 61 61 27 

Snap dragon (AJ006293) - 79 79 78 70 69 25 

Sweet potato (U44126) - 79 74 68 69 26 

Potato (X58453) - 76 68 69 26 

Cassava (X74160) - 68 68 26 

Bean (AB029546) - 73 26 

Pea (X88789) - 26 

Fig. 3.2 Sequence similarity ( O h )  comparison among deduced amino acid sequences 

of waxy peptides. The putative transit peptide sequences are induded in the 

comparison. GenBank accession nos. appear in parentheses. 



identities with Wx-D 1 peptides encoded by a null Wx-D I b allele (accession no. AF I 1 3 844) 

and Wx-DI gene (accession no. AB019624). The Wx-Dl peptide encoded by cDNA 

Y 16340 exhibits a low degree of similarity with the amino acid sequences encoded by Wx 

genes of dicots (< 60 %) and E. coli (28 %; Fig. 3.2). The trends in the comparisons with 

the Wx-A1 peptide and the 100 % identity among the Wx-D 1 peptides offer evidence to 

support that cDNA Y16340 encodes a Wx-Dl peptide, a product of the D genome of 

hexaploid wheat. 

Examination of the amino acid multiple alignment of two wheat cDNA and a 

barley cDNA illustrates that the protein encoded by cDNA X57233 contains an 11 amino 

acid insertion (AMLCRAVPRRA) between positions 219 and 230 (Fig. 3.3). Analysis of 

111-length Wx peptide sequences deduced from plant Wx genes to date (Fig. 3.2) 

confirms that the small insertion is unique to wheat (Aimworth et al., 1993). The mature 

Wx-A1 amino acid sequence encoded by cDNA X57233 (60.1 kD) is 100 % identicd to 

the Wx-A1 peptide encoded by the Wx-A1 gene characterized by Murai et al. (1999), 

except for the 11 amino acid insertion Iirst described by Clark et al.( 1991). Absence of 

the polymorphic insertion in the Wx-Dl protein encoded by cDNA Y16340 and the WK- 

B 1 protein encoded by the Wx-BI gene suggests that the small insertion may be uniquely 

encoded by alleles of the Kr-A1 gene of hexaploid wheat (Matus et at. This study). The 

functional significance of this small insertion remains unclear. The thee conserved 

regions among Wx peptides in plants (Fig. 3.3), including the KTGGL motif, thought to 

be the binding site for substrate ADP-glucose (Furukawa et at., 1990), are maintained in 

the Wx peptides encoded by both wheat cDNA suggesting that the cDNA should encode 

fimctional Wx peptides. 

3.42 Complementation of a Glycogen Synthase Deficient E coli Strain and In Vdro 

Starch Synthase Enzyme Assay 

Mutant RH98 and wiIdtype E. coli strains transformed with either pKK388-1 or 

pMWd were stained with Lugol's iodine solution to visualize giycogen production (Fig. 

3.4). The wildtype JMlO 1 cells transformed with pKK388-1 stained reddish-brown with 

iodine detecting the production of glycogen. Mutant RH98 cells, transformed with 



Fig. 3 3  Amino acid sequences of two independently isolated wheat cDNA 

(Accessions X57233 and Y16340) and a barley cDNA (Accession no. X07932). The 

predicted transit peptide scquence is underlined and its cleavage site is indicated by 

an arrow. The Wx-A1 peptide (67.8 kD) encoded by cDNA X57233 is presented 

directly above the Wx-Bl peptide encoded by the Wx-Bl gene (Accession no. 

AB019623) and the Wx-Dl peptide (66.3 kD) encoded by cDNA Y16340. Amino acid 

numbering is as it appears in GenBank. Residua identical to the first sequence are 

indicated by an asterisk (*). The dashed (-) gap denotes amino acids absent in one 

of the sequences, but present in tbe others. Regions conserved among plant Wx 

peptides are bolded. The KTGGL motif is double underlined. 
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Fig. 3.4 Complementation analysis of starch synthase activity in E cdi. Photograph 

shows color development upon iodine staining (Govons et d., 1969) of the following 

E cdi  strains: A, glycogen synthase producing strain JlMtOl carrying pKK388-1; B, 

glycogen synthase deficient strain RH98 carrying pKK388-1; and C, R898 carrying 

pM Wxi. 



pKK388-1 vector, remained colorless when stained with iodine due to the absence of 

glycogea Expression of pMWxI in the mutant RH98 cells did not change the iodine 

staining phenotype from colorless to reddish-brown. Complementation of strain RH98 

with pM Wxl was u~lfllccessll in indicating that the isolated cDNA was able to code for a 

functional Wx protein. The lack of (glycogen) primer in strain RH98 may explain why the 

Wx-D 1 protein failed to reverse the mutant phenotype. 

Recent reports have suggested that the Wx protein requires the crystalline matrix of 

mylopectin for binding in vivo (Dauvillk et al., 1999). An in vitro amylopectin-primed 

starch syntbase assay was used in an attempt to show that the isolated Wx wheat cDNA 

clone encoded an active Wx protein. Induction of expression in RH98 cells containing 

pM WxI led to production of an - 60.1 kD Wx-Dl peptide which was recognized by 

antiserum made from the Wx-Dl peptide of wheat starch (Fig. 3.5). The expected 

molecular weight of the over expressed Wx-Dl peptide was 58.9 kD, however, the modified 

N-terminus of the deduced mature peptide encoded by pM Wxl (see methods section) added 

an additional 1.2 kD to the overall weight of the Wx-Dl peptide (60.1 kD). This slight 

increase in molecular weight makes it difficult to compare the relative mobility of the over 

expressed Wx-Dl protein in RH98 c e k  (Lane 2; Fig. 3 3 3 )  with the mobility of Wx 

peptides fiom hexaploid wheat (Lane I; Fig. 3SB). RH98 cells transformed with pKK.388- 

1 or pMWxI lacked detectable starch synthase activity using 3,15,30, and 60 pg of soluble 

ceIl extract, respectively (Table 3.2). In JM101 cells transformed with pKK388-1, the 

positive control, high starch synthase activities were detected using all four protein extract 

levels. The high specific activities detected for the positive control reff ect typical results 

seen in standard starch synthase assays using either pudied (Impari-Radosevich et at., 

1998) or cloned (Kurnar et al., 1986; Edwards et a[., 1996; Ham et al., 1998; Knight et 

al., 1998) soluble starch synthases. la contrast, the low spec& activities generally 

detected in standard starch synthase assays using either purified (Smith, 1990; Denyer et 

al-, 1995) or cloned (Edwards et al., 1995) Wx proteins have led some researchers to 

speculate that the Wx protein may require specific conditions for activity which are not 

available in standard amylopectin-primed starch synthase assays @ry et al., 1992). Thus, 

the biological activity of the Wx-Dl protein encoded by GBSSIMMI wiU have to be 



Fig. 3 5  Expression of  the mature Wx-Dl wheat peptide in E cdi. (a) SDS 

polyacrylamide gel @) Immunoblot. Lane I, Wx-A1 and Wx-B1 peptides (- 59-60 

kD) from WHuo wheat kernel starch; lane 2, R898 l!L cdi cells transformed with 

pMWxI cxpnssiag the Wx-Dl peptide (- 60.1 kD); lane 3, RHWI E d  d s  

t rdormed with pKK388-1 vector done not expressing the Wt-Dl peptide Note 

pmencc of a band - 40.1 kD in (2) of immunoblot but not (3) (arrow), 



Table 3 2  Starch synthase activity (nmol glucose incorporated mg 

miil t) in E. coli strains. 

Soluble cell extract (WOO pL reaction) 

E. coli strain $ 3 15 30 60 

RH98 pKK388-1 0 a 0 a O a  0 a 

RH98 pM Wxl 0 a 0 a 0 a 0 a 

JMlOl pKK388-1 472 (* 16) b 166 (5 4) b 88 (A 0) b 45 (k 0) b 

f Values are based on triplicate determinations. 

$ RH98 pKK388-1, Glycogen synthnse deficient strain FUN8 carrying pKK388-1; 

RH!M pMWxl, strain RH98 carrying pMWxl; JMlOl pKK388-1, glycogen syntbase 

producing strain JMlOl carrying pKK388-1. 

Numbers in parentheses are standard emrs.  

a-b Means within columns followed by the same letter are not significantly different 

(p=0.05), based on unpaired t-tests. 



assessed in vivo using a Wx wheat line (possessing no Wx peptides and a reduced 

amylose concentration). 

3 5  Conclusions 

For GBSSMMI, a 2.2 kb cDNA insert within pBlucscript (Accession no. 

Y l634O), the results reported herein indicate that the wheat clone encodes a 66.3 

kD Wx peptide. 

The Wx peptide encoded by cDNA Y 16340 showed 100 % sequence similarities 

with deduced null (Accession no, AF113844) and wildtype Wx-Dl peptides 

(Accession no. AB0 19624). 

I Dedilced Wx peptide N-terminal sequences, isoelectric points, molecular weights, 

and amino acid sequence similarities indicate that clone GBSSIMMI encodes a 

Wx-D 1 peptide origiaating from the D genome of hexaploid wheat. 

Functional analysis assays in glycogen synthase deficient W98 cells were 

unsuccessful in demonstrating that the over expressed Wx-Dl protein possessed 

biological activity. 

The biological activity of the Wx-Dl peptide encoded by GBSSIMMI should be 

assessed in vivo using a waxy wheat Iine. 



4.0 ABERRANT WX TRANSCRIPTS ENCODED BY THE NULL Wx-Alb AUELE 

OF HEXAPLOID WHEAT 

4.1 Abstract 

Recent research has focused on the molecular characterization of null waxy (Wx) 

alleles, Wx-Alb, Wx-BIb, and Wx-Dlb, that produce no detectable Wx proteins in the 

endosperm starch of allohexaploid wheat (Triticum aestivum L.; 2n=6x=42; AABBDD). 

The objective of this study was to identify aberrant Wx transcripts encoded by the null 

Wx-Alb allele of CDC Wx2, a waxy hexaploid wheat line, which result in an absent Wx- 

A1 protein (-59 kD). Two sister lines, CDC Wx2 and CDC Wx6 were obtained by 

crossing Lines Bai-Huo (carries null Wx-Dlb allele; lacks Wx-Dl protein) and Kanto 107 

(carries null Wx-Alb and -Blb alleles; tacks Wx-A1 and -01 proteins). Waxy protein 

profiling, amylose concentration determinations, Northern blot analysis, and reverse 

transcriptase PCR (RT-PCR) analysis were conducted. Ten RT-PCR derived cDNA 

clones were selected h m  each genotype and characterized by DNA sequencing andyses. 

The waxy phenotype of CDC Wx2, lacking Wx-At, -B1, and -Dl proteins and 

possessing a reduced amylose concentration (- 4 %), was associated with dramatically 

reduced levels of a 2.4 kb Wx transcript when compared to the higher levels in a wildtype 

control line. DNA sequencing of clones fiom Kanto 107 and CDC Wx2 characterized 

two types of aberrant Wx transcripts, one containing intron 1 and another containing 

introns 1 and 4, Intron 1 in both types of aberrant Wx transcripts contained a premature 

stop codon which resulted in the translation of a truncated Wx protein (4 or 11 kD). 

Analysis of CDC Wx6, lacking Wx-Bl and -Dl proteins and possessing a reduced 

amylose concentration (- I4 %), failed to reveal aberrant Kr transcripts, suggesting that 

the RNA defects in this study were not responsibIe for the absence of the Wx-B I or -D 1 

proteins. Thus, the aberrant Wx transcripts were encoded by the null Wx-Alb allele. The 

presence of a premature stop codon in the Wx transcripts encoded by the null WX-AIb 



d e l e  explains the absence of the -59 kD Wx-A1 protein in CDC Wx2 and its parental 

line Kanto lo?. 

4 3  Introduction 

In cereals, starch is a carbohydrate stored in water-insoluble granules as - 25 % 

amylose, a(l4)-linked glucose chains, and - 75 % amylopectin, a(I4)-linked 

glucose chains frequently branched by a(i+6)-linkages (Preiss and Sivak, 1996). Plants 

synthesize starch through a sequence of reactions involving four classes of enzymes: 

ADP-glucose pyrophosphorylase (EC 2.7.7.23), starch synthase (EC 2.4.1.21), starch- 

branching enzyme (EC 2.4. I28), and starch-debranching enzyme (EC 3.2.1 Al). Starch 

synthases catalyze the formation of the a (  14)-linkages during the synthesis of amylose 

polymers. Of the multiple isofom of starch synthases in plants, the granule bound 

starch synthase I isoform (GBSSJJ also known as the Wx protein is primarily responsible 

for amylose synthesis (Kuipers et al., 1995; Nelson and Rhines, 1962). In hexaploid 

wheat, the Wx-AI, Wx-B1, and Wx-Dl proteins encoded by homoeologous Wx genes 

located on the group 7 chromosomes (Zhao and Sharp, 1996; Chao et al., 1989) are 

responsible for amylose synthesis in endosperm starch (Miura and Sugawara, 1996). The 

genomic DNA sequences of a Wx-A1 gene encoding a 59 kD Wx-A1 protein (GenBank 

accession no. AB0 l9622), a Wx-BI gene encoding a 58.8 kD Wx-BI protein (accession no. 

AB019623), and a Wx-Dl gene encoding a 58.9 kD Wx-Dl protein (accession no. 

ABO19624) in hexaploid wheat have recently been isolated and characterized (Murai et al., 

1999). 

The development of Iocally adapted wheat cultivars with altered 

arnyloselamylopectin ratios involves the screening of germplasm to identify lines lacking 

Wx proteins (Graybosch, 1998). The wildtype alleles of the A, B and D genomes of 

wheat are designated Wx-Ala, Wx-Bla7 and Wx-Dla, respectively, whereas null alleles 

that produce no detectable Wx protein are designated Wx-Alb, Wx-Blb, and Kr-Dlb 

(Yamamori et al., 1994). Wheat Imes such as Bai-Huo (Wx-Ala, Wx-Bla, Wx-D1b 

alleles), lacking Wx-D 1 protein, and Kauto t 07 ( Wx-Alb, Wx-Bib, Wx-DIa alleles), 

lacking Wx-A1 and Wx-B1 proteins, can be crossed to produce waxy lines (Wx-AIb, Wx- 

Bib, Wx-Dlb nuii aileies), lacking three Wx proteins (Yamamori and Nakamura, 1994). 



Waxy wheat carrying null alleles at all three Wx loci possess no Wx proteins and do not 

produce amylose in their endosperm starch (Yarnamori et al., 1995). Waxy and partially 

waxy lines with altered amylose/amyIopectin ratios possess unique functional starch 

properties which may eventually make these starches suitable for novel niche markets 

(Graybosch, 1998). 

The molecular characterization of the null Wx-Alb allele of a waxy wheat line 

derived by crossing Kanto 107 and Bai-Huo has recently been reported (Vrinten el al., 

1999). An aberrant Wx-A I b cDNA, encoded by the null Wx-A 1 b allele of the waxy line, 

contained a 1 17 bp deletion (accession no. AF113843). The 1 17 bp deletion resulted 

from the splicing of intron 1 through the use of a cryptic 5' GT splice site 117 bp 

upstream of the authentic 5' GT splice site identified in the wildtype Wx-Ala genomic 

sequence. The partial sequence of the null Wx-A16 genomic sequence of the waxy Line 

contained a 23 bp exon-intron junction deletion, and subsequent 4 bp DNA filler insertion 

(nucleotides GGAC) at the 5' end of the deletion, which deleted the authentic 5' GT splice 

junction site of intron 1. The 1 17 bp deletion in the aberrant KK-Alb cDNA resulted in a 

39 amino acid deletion in the resultant Wx-A1 protein which included amino acids of the 

cleavage site of the transit peptide and the putative ADP-glucose binding site (KTGGL). 

The presence of a non-functional Wx-A1 protein with an altered molecular weight of 

-63.3 kD was not detected in the soluble fraction of the endosperm or in the endosperm 

starch of the waxy line. 

Intron splicing is wried out in two steps within the spliceosome, a large RNA- 

protein complex which contains four small ninuleoprotein particles (Ul, U2, U4N6, and 

U5) and numerous protein factors (Schuler, 1998; Simpson and Filipowicz, 1996). The 5' 

splice dinucleotide IGT is conserved in 99 % of introns in monocots (IGC comprises the 

5' splice site of the other 1% of introns). The 3' splice site dinucleotide, AG/, is invariant 

in higher plants. In the first step of splicing, cleavage occurs at the intron 5' border with the 

formation of a 2-5' phosphodiester bond between the first nucleotide of the intron (+I G) 

and a branch point located 10-50 nucleotides (nt) upstream of the 3' splice site. In the 

second step, cleavage at the 3' splice site releases the intron lariat and the exons are ligated 

together. Mutation of either the IGT or AGI dinucleotide in plant introns typicaIly result 

in the abolition of their use and the activation of cryptic splice sites. 



The objective of our study was to identifl aberrant Wx transcripts encoded by the 

null Wx-Al b allele of CDC Wx2, a waxy hexaploid wheat line derived by crossing Kanto 

107 and Bai-Huo, which result in an absent Wx-A1 protein (-59 kD). Two previously 

unreported types of aberrant Wx transcripts encoded by the null Wx-A16 dlele of waxy 

line CDC Wx2 have been identified. These Wx aberrant transcripts contain an in-frame 

premature stop codon (TAA) in the 5' region of the Wx transcripts which has been 

incorporated into the open reading fhme of the protein by the presence of unspliced 

intron I ,  The effects of Wx transcripts containing introns and premature stop codons on 

RNA transcript stability and Wx protein production are discussed. 

4.3 Materials and Methods 

43.1 Plant Material 

Fully waxy wheat, denoted CDC Wx2 ( Wx-Alb, fi-Blb, and Wx-Dlb null 

alleles), was produced by crossing Bai-Huo ( Wx-AI a, Wx-B l a, and Kr- D l b alleles), a 

Chinese line, to Kanto 107 (Wx-Al b, Wx-Blb, and Wx-Dla alleIes), a Japanese line 

@emeke er al., 1999). Two sister lines, CDC Wx2 and CDC Wx6 ( Wx-AIa, Kr-B 16, 

and Wx-Dlb dleles), both in the Fa generation, were used in this study. CDC Wx6 was 

not initially included in the study, but was included only after the detection of aberrant 

mRNA transcripts in CDC Wx2. CDC Ted (Kr-Ala, Kr-Bla, and Wx-Dl a alleles; T. 

Demeke, personal cornmunication), a Canadian hard red spring wheat cultivar, was used 

as a positive control in Northern blot and RT-PCR andyses. The kernels of individual 

plants were harvested and threshed from each line. A seed source for each line was 

established from kernels of a single plant. All kernels with a vernalization requirement, 

except CDC Ted, were surface sterilized using a 1 % sodium hypochIorite (bleach) 

solution and germinated at 4 "C for 30 days in a petri dish before transferring to soil. 

Plants were grown using the following greenhouse conditions: 28/18 "C (dayhight) and 

16 h of Light (250 p o l  m-2 6') provided by banks of fluorescent tubes and incandescent 

bulbs. Plants were fertilized every two weeks using Plant Products 2.0-0.88-1.65 (N-P- 

K) at a rate of 3 g L-' of water. Kernels were collected at 5, 10, and 15 days post anthesis 

(DPA), h z e n  in liquid nitrogen, and stored at - 80 "C until needed. 



43.2 Starch Extractions, SDS-PAGE, and Amylose Determinations 

Starch grade extractions and ID-SDS-PAGE was performed as described by 

Zhao and Sharp (1996). Purified starch granules (10 mg) were resuspended in 140 

wash buffi-r 11 [0.6 mol L-' Ms-HCI, 2.3 g L" SDS, 100 g L-' glycerol, and 0.05 g L-' 

bromophenol bIue] and 10 @ P-mercaptoethanol. Starch samples were boiled (10 min), 

cooled on ice (5 mi), and centrifuged (20 min) at 15 000 x g b pellet the gelatinized starch. 

To visualize the Wx proteins I7  pL of supernatant was loaded per Lane onto gels to be 

silver stained (Bio-Rad, Mississauga, ON; Appendix 721). True amylose concentrations, 

obtained using defatted starch samples, were measured using purified starch granules 

based on the procedure described by Gibson et al. (1997; Appendix 7.22). SAS programs 

and procedures (SAS Institute, Cary, NC) were used in the statistical analyses. Unpaired 

t-tests were used to compare means from amylose determinations. 

4 3 3  Northern Blot Analysis 

Total RNA was isolated from immature endosperm tissue at 5, 10, and 15 DPA 

using TREZOL Reagent (GibcoBRL Life Technologies, Burlington, ON) according to the 

manufacturer's instructions (Appendix 7.23). Total RNA (5 pg) was separated using 1.2 % 

agarose-formaldehyde gel electrophoresis and transfecred on to Hybond N+ nylon 

membranes (Amershatn Pharmacia Biotech, Piscataway, NJ; Appendix 7.24). Digoxigenin 

(DIG)-dUTP hybridization and detection was performed as described by hgler-BIm et al. 

(1993) using a 911 bp fragment amplified fiom Kr wheat cDNA clone denoted 

GBSSIMMI (Accession No. Y16340; Matus Chapter 3). The 91 1 bp Sagnent was DIG- 

dUTP 1abeIed using a PCR DIG Probe Synthesis Kit (Boehringer Mannheim, Lavd. QB). 

Digoxigenin dUTP labeling of the 91 1 bp hgment was performed in a 50 pL fmd 

reaction volume containing: IX Taq DNA polymerase reaction buffier (Boeh. Mann.), 0.2 

pmoVpL each of primers GBSSFUGBSSR3 (Table 3.1), 200 pM of each cNTP (PCR 

DIG Probe Synthesis Kit, Boeh. M a ) ,  2 Units (U) Taq DNA polymerase, and 35 pg of 

GBSSIMMZ. PCR amplification conditions included 94 "C (5 min), folIowed by 25 

cycles of 67 "C (30 sec), 72 "C (2 min), and 94 "C (30 sec). 



43.4 Reverse Transcriptase PCR Experiments 

Primers were designed using Primer Designer version 2.0 (Scientific and 

Educational software) corresponding to regions on published Wx cDNA of hexaploid 

wheat (Accession nos. X57233, Clark et al., 1991 and Y16340, Matus Chapter 3). 

Primers were synthesized using a Beckman Oligo lOOOM DNA synthesizer. Based on 

the two Wx cDNA clones, PCR products ranging &om 1383 or 141 6 bp were expected 

using primer set MM2FPtGBSSR3 and 1200 bp using primer set GBSSFUMMRTRPI. 

A generalized schematic diagram of the Wx genes of hexaploid wheat (Fig. 4.1) has been 

shown to illustrate that primer sets were designed to detect aberrations in regions 

encoding mature Wx proteins, produced after the cleavage of their transit peptides. 

One pg of total RNA isolated &om kernels at I0  DPA was used to synthesize 

first-strand cDNA using Oligo (dn and Superscript I1 reverse transcriptase as described 

by the Superscript Pre-amplification System for First Strand cDNA Synthesis Kit 

(GibcoBRL; Appendix 7.25). The first PCR amplifications were performed on a PTC- 

100 MJ Research DNA Thermal Cycler with 4 pL of first strand cDNA amplified in a 40 

pL reaction volume. The PCR reaction mixture contained: IX Pk DNA polymerase 

buffer* 0.5 jtM of each primer, 200 pM of each dNTP, and 1.25 U Pfu DNA polymerase 

(Stratagene Ltd., Cambridge, UK). Amplification conditions included an initial 

denaturation of 5 min at 94 "C, followed by 20 cycles each of 45 sec at 58 OC. 3 rnin at 

72"C, and 1 rnin at 94 "C. Two primer sets (Table 3.1) were used in the PCR screening 

(MM2FPIGBSSR3 and GBSSF2MIbRTRPl). A 2 pi, aliquot of the first PCR 

amplifications were used to conduct a second set of PCR amptifications as described 

above. Reaction mixtures lacking cDNA were used as controls in both sets of PCR 

amplification reactions. 

Products h m  the second set of PCR amplification reactions were separated by 

eiectrophoresis on a 1.5 % agarose gel containing ethidium bromide , using 1 or 40 pL of 

the reaction per lane, and visualized with W light. An agarose dice containing DNA of 

interest, ranging from 1 to 1.6 kb in size was cut fiom the gel. DNA fragments were 

purified from the agarose by centrifugation through siliconized gIass wool at 16 000 x g 

for 30 min. A 3 pL aliquot of the eluted DNA hgments was added to a PCR reaction 



ATG 
GCC 1 kB 

TGA 

Fig. 4.1 Generalized schematic diagram of the Wx genes of hexaploid wheat showing 

the position of RT-PCR primer sets MM2FWGBSSR3 and GBSSMMMRTRPI. 

Exons are represented by boxes and introns are shown as lines. Abbreviations for 

specific sequences are as follows: translation start codon, ATG; codon encoding the 

first N-terminal amino acid of the mature Wx protein, produced after the cleavage 

of the transit peptide, GCC; and translation stop codon, TGA. 



(15 pL final volume) mixture containing: LX Taq DNA polymerase buffer, 200 jM of 

dATP, and 2.5 U Taq DNA polymerase (Boeh. Mann.). The PCR reaction was incubated 

at 72 "C for 4 h. The extension at 72 "C using Taq DNA polymerase was used to 

facilitate the cloning of the blunt-ended PCR fragments, derived using ffb DNA 

polymerase, into the T-tailed vector (Marchuk et al., 199 1) of the OriginaI TA CIoning 

Kit (Invitrogen, Carlsbad, CA). 

4 3 5  DNA Sequencing 

DNA sequencing reactions were performed using the Applied Biosysterns Prism 

Dye-deoxy Cycle Sequencing Kit and run on an Applied Biosystems Prism 373 DNA 

sequencer (Perkin-Elmer, Markham, ON), Sequence was initiated from known vector 

sequence (pCR2.1; Invitrogen). Based on these runs, primers specific to the wheat !fi 

cDNA clones were constructed to extend the DNA sequence (Table 3.1). Each strand 

was completely sequenced and the entire sequence of each cDNA was confumed on the 

opposite strand. DNA and deduced protein sequences were examined with the 

MEGALIGN program (Lasergene Biocomputing software DNASTAR) using a PAM 250 

residue weight table. Sequences were compared using the Cluster method with pairwise 

dignment parameters set at a K-tuple of 1 and gap penalty of 3 and with mdtiple 

alignment parameters set at a gap penalty and gap length penalty of 10. 

4.4 Results and Discussion 

4.4.1 Characterization of Waxy Protein Profiles and Amyiose Concentrations 

The wheat lines were characterized as possessing distinct Wx protein profiles 

(Fig. 4.2) and normal, intermediate or low amylose concentrations (Tabie 4.1). CDC 

Teal, the control line, possessed a wildtype amylose concentration. The F6 progeny lines. 

CDC Wx2 and CDC Wx6, possessed distinct Wx protein profiles relative to their parental 

tines Kanto 107, lacking Wx-A1 and Wx-B1 proteins, and Bai-Huo, lacking the Wx-Dl 

protein. The waxy protein profiles of both parental Lines were originally characterized by 

Yamamori et ni. (1994). CDC Wx2 lacked aU three Wx proteins and CDC Wx6 iacked 

Wx-D 1 and Wx-B 1 proteins. The parental line Bai-Huo had wildtype amylose 



Fig. 4.2 Polyactylamidc gel eicctrophorcsis separation of the Wx proteins (- 59 kD) 

from wheat endosperm starch of Kanto 107 ( WsAl b WkBl b Wx-Dla), Blli-Huo 

( Wx-Ala Wx-Blrr Wx-Dlb), CDC WIZ ( Wx-AIb Wx-BZb Wx-Dlbh and CDC Wx6 

(WsAla Wx;BIb WkDlb). Gent produets of the t h m  wheat Wx loci are indicated 

on the gel. The migration distances of molecular weight markers are designated on 

the right. 



Table 4.1 Amylose concentratioas of the five wheat lines used in the study. 

Line 

Waxy protein phenotype? Amylose concentration 

CDC Teal + + + 26 (k 1) a 

Bai-Huo + + - 24 (k 2)  a 

CDC Wx6 + - - 14 (* 2) b 

CDC Wx3 - - - 4(* I)c 

t Presence (+) or absence (-) of waxy protein for each wheat line. 

$ Values are based on triplicate determinatioas. 

a-c Means followed by the same Ietter are not significantly different (p=0.05), based 

on unpaired t-tests. 

Numben in parentheses are standard errors. 



concentration when compared to CDC Td. Both the parental line Kanto 107 and CDC 

Wx6 exhibited no si@cant differences in their intermediate amylose concentrations. 

CDC Wx2 possessed a low amylose concentration. Using high-performance size- 

exclusion chromatography to separate de-branched starch samples, the waxy phenotype 

of CDC Wx2 and partially waxy phenotype of CDC Wx6 have been associated with the 

reduced amylose concentrations of 0 % and 13 %, respectively (Demeke et al., 1999). 

The Megazyme procedure described by Gibson er al. (1997) uses Con A to complex and 

selectively precipitate amylopectin. Demeke et al. (1999) compared amylose 

determination procedures and reported that the waxy CDC Wx2 line had an amylose 

concentration of 6 % using the Megazyme procedure and an amylose concentration of 0 

% using high-performance size-exclusion chromatography. These researchers suggested 

that the amylopectin in the waxy line might be Less branched thereby possessing a Lower 

molecular weight. This lower molecular weight amylopectin polymer was assumed to be 

inefficiently precipitated by Con A in the Megazyme procedure. 

4.4.2 Characterization of Waxy Transcript Levels in CDC WxZ and CDC Teal 

The expression of a 2.4 kb Wx trauscript has been shown to accumulate 

throughout grain filling to the highest levels at LO, 15, and 20 DPA in wildtype hexaploid 

Chinese Spring wheat (Ainsworth er nl., 1993). The waxy phenotype of CDC Wx2 (three 

nu11 Wx alleles) is associated with reduced Levels of a 2.4 kb Wx transcript when 

compared to CDC Teal, the wildtype control (Fig. 4.3). Vrinten et al. (1999) also 

detected a very faint hybridizing band in totd RNA from kernels (10 DPA) of a waxy 

line and Kanto 107 (null Wx-Alb and Wx-Blb alleles) relative to Bai-Huo (null KT-Dlb 

allele) and a wildtype Chinese Spring line. Waxy transcript levels in Bai-Huo and 

Chinese Spring were comparable. As reported by Vrinten et al. (1999), our RNA blot 

results using total RNA indicate that Wx transcripts of similar molecular weight are 

detectable in both the waxy and wildtype control lines. We speculated that at least a 

portion of the 2.4 kb Wx transcripts detected in CDC Wx2 were poly(A)+ RNA transcripts. 

Therefore, the screening for aberrations (i-e., small insertions or deletions) in low abundance 

Wx mRNA transcripts was undertaken as outlined in the following section using RT-PCR 

andysis. 



CDC Teal CDC Wx2 

5 10 15 5 10 15 

Days post rnthesis 
(A) 

Fig. 4.3 Northern blot analysis of Wx gene expression in endosperm tissue of wheat. 

(A) RNA analysis performed with S pg total RNA. RNA bands are about 2.4 kb ~JI 

size. (B) The cthidium bromide stained gel has b u n  shown below the Northern blot 

to demonstrate tbat an approximately q u a l  amount of total RNA was loaded across 

lanes. The migration distances of molecular weight markers are designated on the 

left. 



4.4.3 +DNA Clones Detected Using Reverse Transcriptase-PCR 

Reverse transcriptase-PCR analysis was conducted on CDC Wx2 and CDC Wx6 

to detect aberrations within Wx mRNA transcripts. Parental lines were assayed to 

determine the parental origin of any aberrations. CDC Teal was included as a positive 

controI. Using MM2FP and GBSSR3 primers, PCR amplification products of the 

expected 1383 bp size were detected in CDC Teal, Bai-Huo, and CDC Wx6 after 1 pL of 

the second PCR reaction was analyzed on a gel (Fig. 4.4A). PCR amplification products 

of the expected 1383 bp size were detected in Kanto 107, but were d i c u l t  to observe 

even after 40 pL, of the second PCR reaction was anaIyzed on a gel (Fig. 4.4B). Two 

other PCR amplification products, both larger than the expected 1383 bp, were detected 

in CDC Wx2 and Kanto 107 (Fig. 4.4B). These aberrant PCR amplification products 

included a 1446 bp product and a relatively less abundant 1571 bp product. Ten cDNA 

clones fiom each of the five lines were randomly isolated and sequenced. 

The relative frequencies of the three types of Kr transcripts (1383, 1446, or 1371 

bp) detected within the lines are summarized in Table 4.2. The DNA sequences of the 

1383 bp clones of CDC Teal (clone denoted Ted9-2), Bai-Huo (clone BH3-3), CDC 

Wx6 (clone Wx6-I), and Kanto 107 (clone K4-9) contained no aberrations relative to 

wildtype Wx-Ala, Wx-Bla, or Wx-Dla genomic sequences (Murai er al., 1999; Appendix 

7.26). DNA sequence alignments of the clones in this study and the wildtype Wx 

genomic sequences indicated that Teal9-2 and BH3-3 were encoded by the KT-31 gene, 

K4-9 by the Kr-DI gene, and Wx6-1 by the Kr-AI gene. The DNA sequences of the 

1446 bp clones detected in Kanto 107 (clone K4-2) and CDC Wx2 (clone K4-2) were 

100 % identical (Table 4.2). The DNA sequences of the 1571 bp clones detected in Kanto 

107 (clone K4-5) and CDC Wi2 (clone K4-5) were 100 % identical. Clone K4-2 

contained one intron (66 nt), denoted intron 1 in this study. Clone K4-5 contained two 

introns, including intron 1 and another intron (125 nt) denoted intron 4 in this study. 

DNA sequences of clones K4-2 and K4-5 were 100 % identical, except for the presence 

of intron 4 in clone K4-5. Analysis of CDC Wx6 lacking Wx-B1 and Wx-Dl proteins 

failed to reveal aberrant Wx transcripts, suggesting that the RNA defects in this study are 

not responsible for the lack of the Wx-BI or Wx-Dl proteins. DNA sequence alignments 



Fig. 4.4 RT-PCR amplification of Wx cDNA from wheat kernel total RNA. The gel 

analysis of PCR ampliiication products obtained using primers MM2FP and 

GBSSIU. (A) b o n d  PCR amplification reactions (1 p lhn t )  shown in lanes 2 4  

contained cDNA and lanes 7-11 did not contain cDNA (no reverse transcriptase 

controls). (B) Second PCR amplification reactions (40 ClLflrne) shown in lanes 2-5 

contained cDNA and bts  6-9 did not contain cDNA. The migration distances of 

molecular weight mrvken arc designated on the left. 



Table 4.2 Relative frequencies of three types of Wx transcripts detected within the 

Lines. 

Wx protein phenotype f' Type of Wx Transcript $ 

Line War-A1 Wx-B1 Wx-Dl 1383 bp 1446 bp 1571 bp 

CDC Teal + + + 10/IO 0 0 

Bai-Huo + + - 10110 0 0 

CDC Wx6 + - - 10/10 0 0 

Kanto 107 - - + 1/10 8/10 1/10 

CDC Wx2 - - - 0 9/10 1/10 

t Presence (+) or absence (-1 of Wx protein in each wheat line. 

$ Wx transcripts containing no aberrations (1383 bp), intron 1 (1446 bp), and 

introns 1 & 4 (1571 bp). 



of the wildtype Wx-Ala genomic sequence (Murai et al., 1999), the aberrant WX-Alb 

cDNA (Vrinten et al., 1999), the nu11 Wx-Alb genomic sequence (Vrinten et al., 1999), 

clones K4-5, and K4-2 indicated that K4-5 and K4-2 were encoded by the null Wx-Alb 

allele (Fig. 4.5). 

Using GBSSF2 and MMRTRPl primers, only PCR amplification products of the 

expected size (1200 bp) were detected in Kanto 107, Bai-Huo, CDC Wx2, CDC Wx6, 

and CDC Ted (data not shown). Ten cDNA clones fiom each of the Eve lines were 

randomly isolated and sequenced. Clones fiom Kanto 107, Bai-Huo, CDC Wx2, CDC 

Wx6, and CDC Teal did not reveal any aberrations when compared to wildtype Wx-Ala. 

Wx-Bla, or Kr-Dla genomic sequences of wheat (Murai et a/., 1999; Appendix 7.27). 

4.4.4 Deletion of 5' end of intron 1 Abolishes Normal Splicing 

Vrinten et a/. (1999) reported that the deletion of the normal 5' splice site of 

intron I has lead to the activation of at least one cryptic 5' splice site. The report 

described an aberrant Wx-Alb cDNA encoded by the null Wx-Alb allele of the waxy line 

which contained a 1 17 bp deletion (accession no. AFI 13843) when compared to a 

wildtype Wx-A la genomic DNA sequence (Fig. 4.5). The I 17 bp deietion resulted from 

the splicing of intron 1 through the use of a cryptic 5' GT splice site 1 17 bp upstream of 

the authentic 5' GT splice site identified in the wildtype Wx-Ala genomic DNA sequence. 

Similarly, splicing at a number of 5' cryptic splice sites has been detected and attributed 

to a GT to TT mutation at the 5' splice site of the first intron in the waxy gene of rice 

(Isshiki et a/., 1998). Several 5' cryptic splice sites were available upstream of the 

deleted 5' splice site of intron 1; however, no other aberrant Wx transcripts were detected 

by Vrinten et al. (1999). Larkin and Park (1999) have demonstrated that the selection of 

cryptic 5' splice sites in rice Kr transcripts are aff'ected by temperature. A 5' splice site 

-93 nt upstream fiom that used in high arnylose varieties predominated at 18°C. At 

higher temperatures, 25 and 32"C, there was a utilization of a 5' sptice site at -1  and a 

non-consensus site at +l. This research suggests that the utilization of cryptic 5' splice 

sites in wheat W i  transcripts other than those described by Vrinten et d. (1999) may be 

detected using differential temperature regimes. The aberrant Wx-Al b cDNA (Vrinten et 

a/., 



Fig. 4.5 Aberrant Wx transcripts encoded by the null Wx-Alb allele of CDC WrrZ 

and Kanto 107. DNA sequence alignments of the wildtype Wx-Ala genomic 

sequence (Murai et al., 1999), a Wx-Alb cDNA encoded by null Wx-Alb allele 

(Vrinten et al., 1999), the null Wx-Alb genomic sequence (Vrinten et al., 1999), clone 

K4-5, and clone K4-2. The numbers refer to nucleotide numbering as appearing in 

CenBank. Exons are in uppercase letters and introns are in lower case Letters. 

Omitted sequences of introns 2 and 3 are indicated by the symbol ("). An asterisk 

(*) indicates nucleotides identical to the wildtype Wx-Ala genomic sequence. The 

CCC codon encoding the first N-terminal amino acid of the mature protein, 

produced after the cleavage of the transit peptide, is double underlined. Primer 

MM2FP is underlined. Hyphens indicate spliced sequences. The 23 bp deletion 

described in the null Wx-Alb genomic DNA sequence has been bolded in the 

wildtype Wx-Ala genomic DNA sequence. Deduced Wx-A1 proteins are presented 

underneath their respective DNA sequences. The 39 amino acids deleted in the Wx- 

A1 protein of the Wx-Alb cDNA (Vrinten et al., 1999) are represented by the symbol 

'xt. The premature stop codons (TAA) incorporated by the presence of intron 1 in 

clones K4-5 and K4-2 are bolded. The truncated WK-A1 protein sequence encoded 

by clones K4-5 and K4-2 is shown below the latter sequence. 



Ux-Ala Gam3m.i~ 13 ATGGCGGCTCTGGPCACGPCCCAGCTCGCCACCTCC~CCGTCCPCAGCGTCACCGACAGATTCCGCCGT 
M A A L V T S Q L A T S G T V L S V T D R F R P .  

e-u - 32 f f f f f f f f * f f f f f f f f * * * f f * t f T + ~ T ~ ~ T ~ t ~ T t ~ T ~ ~ t t t 1 t t f t t t t ~ ~ T t ~ ~ T t T t ~ t t t t t t t t ~  

M A A L V T S Q L A T S G T V L S V T D R F R R  

N Terminus of mature Wx protein 9 
--=a Cenomic 157 GCCGCCCCAAAGCAAAGCAGGAAACCGCACCGATTCGACCGGCGGTGCCTCTCCATGTGGTGCGC~CG 

A A P K Q S R K P H R F D R R C L S H V V R A T  
w-m ,..= 176 f f * f f * f * ~ f . T f T * f f * * * f * * * f T T T f t * t T ~ A t t ~ ~ ~ * * t t * . * f f t f f ~ f 1 f 1 ~ - - - - - - - - - - - -  

A A P K Q S R K P H R G N R R C L S H V X X X X  ................................. wx-Alb Cenomic 1 

Intron 2 
Wx-Ala Genomic 440 TCCCCGCGCPACGACCA~ACAAGGACGCCTGGGACACCAGCGTCATffCCtAGAAn*nAnAnA*n ATCRAG 

S P R Y D Q Y K D A W D T S V I S E  i iC 
e-m 253 .*T******~.**+*~**..+*********.*.***.**+O*****T*T***+*----------***..+ 



Intron 3 
Wx-Ala G m d e  653 CACCCOPGCTTCCTGCAGAAGAnAAALLAAAAaA GTCCGGGGCAAGACCAAGGAGAACATCTATGGACCCGAC 

H P C F L E K  V R G K T K Z K I Y G P D  
m-m 385 + + ~ t r t t * + ~ + ~ * + + r ~ + + ~ c - C C ~ - C - - - C - C t c + + t * ~ ~ * ~ * + * + + r * r ~ + * t t * t ~ ~ t + + + + + + , , ~ ~ ~  

Intron 4 
Wx-Ala Genoutic 966 gaagaacttgatttctacttgagagcactggatgatratcatc:tccttgtatcttgg:gctqccatpc~ 

A H L  
wx-Alb CDNA -----------------+--+-*------------------------------------------------ 

M-5 cDNA 524 .tttttttttttttw.vttot***tt.tttttttt*t*tt**~tt*t**t**t**t*.*-*.~.*.~*~.* 

K4-2 cDNA ....................................................................... 



1999) does not possess the region for binding primer MM2FP (Fig. 4.5). This explains 

why aberrant Wk transcripts carrying a 117 bp deletion were not detected in our study. 

Forward primer MM2FP is found 21 bp downstream of the cryptic 5' GT splice site 

described by Vrinten et al. (1999). No cryptic 5' splice sites are available within this 21 

bp region. The 1 17 bp deletion in the aberrant Wx-Alb cDNA resulted in a 39 amino acid 

deletion in the resultant Wx-A1 protein. The presence of an aberrant Wx-A1 protein with 

an altered molecular weight (-63.3 kD) was not detected in the endosperm starch of the 

waxy line. Therefore, these researchers concluded that the aberrant Wx-Alb cDNA in the 

waxy line was either not translated or the reduced abundance of Kr transcripts detected 

by Northern blotting lead to the translation of undetectable protein levels. In mammals. 

alternatively spliced mRNA transcripts are generally thought to remain undegraded; 

however, there is some evidence that RNA splicing errors without generation of a 

premature stop codon are associated with low Ievels of processed mRNA transcripts 

(Carstens er al., 1991; Pajunen et a/., 1998). Based on this evidence in mammals, 

Vrinten et al. (1999) suggested that the aberrant Kr-Alb cDNA encoding a 63.3 kD non- 

functional Wx-A1 protein may contribute to reduced Kr transcript levels in their w x y  

wheat line. 

Our results are an extension of the characterization of the null KT-Alb allele 

recently reported by Vrinten et al. (1999). The presence of introns in the abetrant Kt- 

Alb pre-mRNA transcripts detected in this study may play a critical role in the 

establishment of cytosolic Wx-A1 b mRNA transcript levels in CDC Wx2 and Kanto 107. 

It is generally accepted that pre-mRNA transcripts must undergo post-transcriptional 

processing in the nucleus, including the addition of 5' cap, methylation, polyadenylation, 

and intron splicing, to produce mature mRNA transcripts for export Erom the nucleus into 

the cytoplasm (Farrell, 1993). The aberrant Wx-Alb pre-mRNA transcripts detected in our 

study contain one (Clone 4-2) or two introm (Clone K4-5; Fig, 4.5) and are expected to 

be unstable in the nucleus. htron 4 (detectable at position 495 to 619) is ineficiently 

excised fiom clone K4-5 (1571 bp) to produce the reIatively more abundant K4-2 clone 

(1446 bp). This splicing mechanism appears to use the normal 5' and 3' splice sites 

reported in the wildtype Kr-AI genomic sequence. Inefficient intron splicing has also 



been reported for intron 9 of the wmry gene in maize (Zea mays L.; Goodall and 

Filipowicz, 199 I). Both clones K4-2 and K4-5 contain the 23 bp deletion at the 5' end of 

the exon l-intron 1 junction, and 4 bp DNA filler insertion (nucieotides GGAC), 

characterized in the null Wx-Alb genornic DNA sequence of a waxy line (Fig. 4.5). The 

23 bp deIetion eliminated the 5' splice site of intron 1 in the genornic DNA and thus 

clones K4-2 and K4-5 represent Wx-Alb transcripts, containing intron 1, encoded by the 

null Wx-Alb allele. Pre-mRNA transcripts containing unspliced introns are assumed to 

be unstable in the nucleus; however, extensive evidence for the instability or stability of 

pre-mRNA transcripts containing introns in plants is currently limited, Isshiki et al. 

(1998) reported the inefficient excision of &on 1 fiom the 5' untranslated region of the 

Kr transcript of waxy rice and associated the GT to TT mutation with reduced Kr 

transcript and Wx protein levels. They studied a Kr allele (WX? that resulted in a 10- 

fold decrease in Kr mRNA and protein production when compared to a wildtype Kt 

(Wx4 allele. As previously reported by other groups, the wxb aileie had the same GT to 

TT mutation at the 5' splice site of intron 1 and resulted in alternative splicing at three 

cryptic 5' splice sites. They introduced single base mutations to the 5' splice sites of both 

the FW (GT mutated to 'IT) and wxb (TT mutated to GT) alleles, fked them to the GUS 

reporter gene, and introduced them into rice protoplasts. Their results demonstrated that 

the low expression level of the wxb alleIe resulted fiom the single base mutation at the 5' 

splice site of intron I. Therefore. based on our limited knowledge, the Iow abundance of 

Wx-Alb mRNA rranscripts detected using RT-PCR analysis may be explained by the 

decreased formation of mature Wx-Alb rnRNA transcripts in the nucleus due to 

inefficient intron splicing in CDC Wx2 and Kanto 107. 

The presence of premature stop codons in the aberrant Wx-Alb mRNA transcripts 

detected in this study may also play a critical role in the establishment of cytosolic Kt- 

Alb mRNA transcript levels in CDC Wx2 and Kanto 107. htron 1, detectabIe at position 

95 to 160 in clones K4-2 and K4-5, contains a premature termination codon (TAA; Fig. 

4.5). In fact, introns are generafly known to have termination codons in all three reading 

frames (FarreU, 1993). The disruption of the open reading fiame by intron 1 results in the 

production of a severely truncated Wx-A1 protein (-4 kD with the cleavage or -1 1 kD 



without the cleavage of its transit peptide), instead of a mature 59 kD Wx-A1 protein, in 

CDC Wx2 and Kanto 107. The insertion of a premature stop codon in the 5' region of a 

mature mRNA transcript is known to target the transcript for rapid decay in plants 

(Johnson er al., 1998). Thus, the premature stop codans in these two aberrant Wx 

transcripts in CDC Wx2 may contribute to, at Least a portion of, the Kt- RNA transcript 

instability detected by Northern blot analysis in waxy line CDC Wx2 (Fig. 4.5). If the 

Wx transcripts containing premature stop codons in this study are exported from the 

nucleus to the cytoplasm, then the tow accumulation of these aberrant Wx transcripts in 

the cytoplasm may Lead to the translation of a truncated Wx-A1 protein. Unfortunately, it 

would be extremely difficult to differentiate the resultant mca ted  Wx-A1 protein in a 

gelatinized starch sample from the degraded protein products commonly observed on 

silver stained 1 -D SDS polyacrylamide gels. 

Future studies including nuclear runoff assays, in conjunction with Northern blot 

analyses, are required to determine whether the null Kr-Alb genes in CDC Wx2 and 

Kanto 107 are regulated at the transcriptional (variables influencing the efficiency andlor 

rate of transcription; Fml l ,  1993) or post-transcriptional Level. Post-transcriptional 

reguiation is any event that influences the splicing of pre-mRNA, pre-mRNA stability in the 

nucieus, nucleocytoplasmic transport, or stability of the RNA moiecules in the cytoplasm. 

If post-transcriptional regulation of the null Wx-Aib gene is implicated, then the 

differential influence, if any, of the aberrant Wx-A16 transcripts, in our study and of 

Vrinten et af. (1999), on fi RNA transcript stability in the nucleus or cytopiasm can be 

better understood. 

CIark et al. (1991) were the 6rst to clone and sequence a Wx cDNA fiorn hexaploid 

wheat (accession no. X57233; 60.1 kD Wx protein). Other reports later established that the 

Wx cDNA isolated by Clark er al. (1991) was encoded by the Wx-A1 gene of hexapbid 

wheat (Vrinten d ul., 1999; Mtrrai et aim, 1999). Ainsworth et al. (1993) were the 6rst to 

identify that the onIy mjor  difference between the Wx-A1 protein, derived from the KT 

cDNA isolated by Clark ef al. (I991), and other pIant Wx proteins was an I I amino acid 

insertion (AMLCRAVPRRA). The 3' terminat DNA sequence of hen 4 of the wildtype 

Wx-Aia genomic sequence encodes the exact same 11 amino acid insertion (bolded and 



italicized in Fig. 4.5) descnid  by Ainsworth et al. (1993). It is tempting to speculate that the 

Wx-A1 gene encoding the Wx cDNA isolated by Clark et al. (1991) must have had an AGI, 

instead of a TGI, dinucleotide 33 bp upsbeam of the normal 3' spiice site of intron 4. This change 

alters the position of the 3' splice site of intron 4 and results in a 33 bp DNA insertion into the 

resultant Wx-A1 transcript; however, this single basepair change has yet to be characterized at the 

genomic DNA IeveI in wheat (Murai ef al, 1999). The hnctionaI significance, if any, of this 

small insertion in the resultant Wx-At protein remains undetermined (Ainswvorth et a!., 1993). 

This small insertion is likely the product of an atlelic polymorphism corresponding to the KY-AI 

locus of hexaploid wheat. Future studies including the sitedirected mutagenesis of regions 

within or adjacent to intron 4 , for example the 5' or 3' splice sites. branch points, or GC 

nucleotide composition (Goodall and Filipowicz, 1991; Simpson and Filipowicz, 1996), are 

required to determine the exact source(s) of the inefficient splicing of intron 4 in the nu11 WX-Alb 

gene in CDC Wx2 and Kanto 107, improving the match of the 3' splice site of maize waxy intron 

9 to the 3' splice site consensus (TGCAG~GT; arrow denotes intron-exon spiice junction) of 

monocots improved the efficiency of their processing in maize protoplasts (Goodall and 

Filipowicz, 1991). These studies may include the single basepair change (TG to AG) discussed 

in this section to determine the affect of this change on the splicing efficiency of waxy intron 4. 

4 5  Conclusions 

For CDC Wx2 (Wx-Alb, Kr-Bib, and Wx-Dlb alleles), a wavy hexaploid wheat line, the 

results reported herein indicate that the absent Wx-A 1 protein results from aberrant Kr-.4 i b  

transcripts possessing premature stop codons. 

CDC Wx2, with its reduced amylose concentration (4 %) and reduced Rr transcript (2.4 

kb) level, was determined to have an unspliced intron (intron 1) in the abberant Wx-AIb 

transcripts. 

Unspliced intmn I caused reduced Wx-Alb transcript stability by incorporating a pre- 

mature termination codon into the open reading h e  of the WK-A1 protein. 

The resultant Wx-A1 protein product encoded by the aberrant Wx-Alb transcripts was a 

severely truncated Wx-A1 peptide (4 or 11 kD) that would be interpreted as an absent 

-59 kD Wx-A1 protein using standard SDS-PAGE screening protocols. 

These conclusions are based on the evduation of parental lines Kanto to7 and Bai-Huo, 

and partially waxy sister tine CDC Wx6 (Wx-Ala, Kr-BZb. and Wx-Dlb alleles). 



5.0 GENERAL DISCUSSION 

This study has focused on granule-bound starch synthase 1, commonly known as 

the Wx protein, which is responsible for amylose synthesis in wheat kernel starch. The 

major objectives of the project were (1) to isolate and characterize a wheat cDNA 

encoding a Wx protein and (2) to identifL aberrant Wx transcripts encoded by the null 

Kr-Alb allele of CDC Wx2, a waxy hexaploid wheat line, which result in an absent Wx- 

A1 protein ( -59 kD). A s u m m y  of major conclusions and future directions of research 

corresponding to each research objective are outlined below. 

5.1 Isolation and Characterization of a Wheat cDNA Encoding a Waxy Protein 

5.1.1 Conclusions 

For GBSSMMI, a 2.2 kb cDNA insert within pBluescnpt (Accession no. 

Y 16340). the results reported herein indicate that the wheat clone encodes 

a 66.3 kD Wx peptide. 

The Wx peptide encoded by cDNA Y16340 showed 100 % sequence 

similarities with deduced null (Accession no. AF113 844) and wildtype 

Wx-Dl peptides (Accession no. AB019624). 

Deduced Wx peptide N-terminal sequences, isoelectric points, molecular 

weights, and amino acid sequence simiiarities indicate that clone 

GBSSlMMI encodes a Wx-Dl peptide originating From the D genome of 

hexaploid wheat, 

Functional analysis assays in glycogen synthase deficient RH98 cells were 

unsuccessll in demonstrating that the over expressed Wx-Dl protein 

possessed biological activity. 

The biological activity of the Wx-Dl peptide encoded by GBSSIMMI 

should be assessed in vivo using a waxy wheat line. 



5.1.2 Future Directions 

The Wx wheat clone may be used to study (1) the biological activity of Wx 

proteins, expression of Wx transcripts, and regulation of Wx genes in planta, (2) the co- 

supression of endogenous Wx genes, (3) the antisense inhibition of KT transcripts, (4) the 

inheritance and segregation of Wx transgenes, (5) the formation and deposition of amylose 

in transgenic wheat kernels, (6) the in vbo role of the Wx protein in amylopectiu synthesis, 

(7) the fitnctional analysis of Wx transit peptides, and (8) the structure and function of Wx 

proteins using rnutagenesis analysis. These studies, if performed using the various soluble 

and granule-bound starch synthase isoforms, will contribute to a better understanding of the 

exact roles of starch synthase isoforrns in the production of starch, in both non- 

photosynthetic and photosynthetic tissues. 

5.2 Identification of Aberrant Wx Transcripts Encoded by the Null Wx-A16 Allele 

5.2.1 Conclusions 

For CDC Wx2 ( Wx-Alb, Wjr-BIb, and Wx-Dlb alleles), a waxy hexaploid wheat 

line. the results reported herein indicate that the absent Wx-A1 protein results h m  

aberrant Wx-A Ib transcripts possessing premature stop codons. 

8 CDC Wx2, with its reduced amylose concentration and reduced Wx-Alb transcript 

(2.4 kb) level, was determined to have an unspliced intron (intron 1) in the 

abberant Wx transcripts. 

Unspliced intron I caused reduced Wx-A1 b transcript stability by incorporating a 

pre-mature termination codon into the open reading frame of the Wx-A1 protein. 

The resultant Wx-A1 protein product encoded by the aberrant Wx-Alb transcripts 

was a severely truncated Wx-AI peptide (4 or 11 kD) that would be interpreted 

as an absent -59 kD Wx-A1 protein using standard SDS-PAGE screening 

protocols. 

8 These conclusions are based on the evaluation of parental Lines Kanto 107 and 

Bai-Huo, and partially waxy sister line CDC Wx6 (Wx-AIa, Wx-Blb, and Wx- 

Dl b alleles). 



5.2.2 Future Directions 

Future research is needed to determine if similar conclusions can be made for the 

null Wx-Alb alleles in other waxy or partidly waxy lines in other genetic backgrounds. 

These additional studies will be usem in assessing the applicability of primers 

MMZFPfGBSSIU in identifying wheat Iines carrying a Wx-Alb null allele using a PCR- 

based screening assay. AIl c m t  Australian soft wheat cultivars accepted for the udon 

noode market have the null Wx-Blb de le  (Panozzo and Eagles, 1998); however, the 

equivalent useIlness of incorporating null Wx-A16 or Wx-Dlb alIefes in these cultivm has 

not been addressed adequately in the literature. Future studies using all eight genotypes at 

Wx loci in common wheat, in different genetic backgrounds, will be useful in characterizing 

other Wx null alIeles and in elucidating the relationships between Wx loci null allele 

genotypes and noodle production. PCR-based analysis using the methods outlined herein 

wodd likeiy be suitable for screening double-haploid derived lines due to the destruction of 

immature kernels at 10 DPA. The advantage of using a PCR-based analysis using primers 

MM2FPIGBBR3 on cDNA template derived fiom kernel specific mRNA at 10 DPA is 

centered around the use of irnmature kernels, instead of the embryo-less Mf of mature 

kernels; however, the technical difficulties of working with RNA template, and the expense 

of cDNA synthesis and PCR techniques will have to be weighed against c m n t  SDS-PAGE 

screening procedures. Lastly, the results presented herein may aIso contribute to studies of 

the pedigree of Kanto 107 and evolutionary studies of the Kr genes of wheat. 

The studies outlined herein are pre-requisites for applied research such as the 

improvement of wheat grain quality through genetic engineering and the establishment of 

PCR-based assays to hcilitate the screening of potential donor parents and advanced 

breeding lines through a pIant breeding program. Applied research remains limited to the 

pace at which basic research elucidates and understands general prob1em.s important to 

agricultural research. Basic research is slowly accumulated and the questions under 

investigation must be addressed fiom various angies to ensure strong conclusions. The 

d t s  presented herein will likely provide the basis for future research which will lead to a 

better understanding ofthe hexaploid genome of wheat and to applied applications for wheat 

crop improvement 
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7.0 APPENDICES 

 append^ 7.1 Description of the Lambda ZAPII-eDNA Library: 

cDNA libraries represent the information encoded in the messenger RNA (mRNA) of a 

particular tissue or organism. RNA molecules are exceptionally labile and difficult to amplify in 

their natural €om. For this reason, the information encoded by the RNA is converted into a 

stable DNA duplex (cDNA) then inserted into a self-replicating lambda vector. Once the 

information is available in the form of a cDNA library, individual processed segments of the 

original genetic information can be isolated and examined with relative ease. A representative 

cDNA library should contain full-length copies of the original population of rnRNA. cDNA 

libraries provide a method by which the transcription and processing of mRNA can be examined 

and interpreted to produce modets for the Row of information responsible for the ti~ndarnental 

uniqueness of each tissue type and organism. 

The ZAP-cDNA synthesis kit (Cat. no 200400,200401, and 200402; Stratagene) method 

uses a hybrid oligo (dT) linker-primer, which contains an Xho I site (Fig. 7.1). First strand 

synthesis is primed with the linker-primer and is transcribed using reverse transcriptase (RT) and 

5-methyl dCTP. The use of 5-methyl dCTP during first strand synthesis hemimethylates the 

cDNA, protecting it fiom digestion from certain restriction endonucteases such as Xho I. 

Therefore, on Xho I digestion of the cDNA, only the unrnethylated site within the linker-primer 

will be cleaved. 

First strand cDNA synthesis begins when RT, in the presence of nucleotides and buffers, 

finds a template and a primer. The template is mRNA and the primer is a 50 base oligonucleotide 

with the following sequence: 

f G A G A G A G A G A G A G A G A G A G A A C T A G T C T C G A G ~ : '  

" GAGAn Sequence Xho site PO[Y (dT) 

This oligonucleotide was designed with a GAGA sequence to protect the Xho I restriction 

enzyme recognition site and an 18 base p l y  (dl") sequence. The restriction site allows the 

fmished cDNA to k inserted into the Uni-ZAP XR vector in a sense orientation (Eco RI-Xho I) 

with respect to the lac2 promoter. The poty (dT) region binds to the 3' poly (A) region of the 

mRNA template, and RT begins to synthesize the frrst strand cDNA 



[solate mRNA born cells expressing gene of interest 

Linker-primer 
5' CTCGAGTTTTTTTTTTTTTTTTTT 

3 '  AAAAAAAAAAAAAAAAAA 5 ' 

Reverse transcriptase, 
5-methyl dCTP, and 
dATP, dGTP, d m  

RNase H 
ffi DNA Polymerase I 
CINTPs 1 

CH3 CH3 CH3 CHI CH3 
Xho I 

5' CTCGAGTTTTTTTTTTTTTTTTTT 
3 '  GAGCTCAAAAAAAAAAAAAAAAAA 
u 5 3 '  ' 

EcoR I Adaptors 
T4 DNA Ligase 

EcoRI Xho I Eco Rl  
5 ' AATTC ... CTCGAGTTTTTTTTTTTTTTTTTTT 3 ' 
3 ' G . . . G A G C T C P  XTTAA 5 ' 

Xho I restriction 1 CH3 CHI CHI CHI C& 

n o  I 
5' TCGAGTTTTTTTTTTTTTTTTTT 

I I 1 1 1  EcoRI 
... G  3 ' 

3 ' CAAAAAAAAAAAAARFlAAA ..CTTAA 5 ' 

Completed, directional cDNA C 
Cleave bacteriophage lambda DNA (Uni-ZAP XR vector) with Eco EU and Xho I. 

Ligate d i i t i o n d  cDNA into arms of lambda DNA using bacteriophage T4 DNA ligase 

4 
Package in vino into bacteriophage lambda particles and plate on XLI-Blue MRF E. coli 

Fig. 7.1 ZAP-cDNA synthesis flow chart. 
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The nucleotide mixhue for the first strand contains normal dATP, dGTP, and d m  plus 

analog 5-methyl dCTP. The complete first strand will have a methyl group on each cytosine base 

which will protect the cDNA ftom restriction enzymes used in subsequent cloning steps. 

During second strand synthesis, RNase H nicks the RNA bound to the first strand cDNA 

to produce a multitude of hgments, which serve as primers for Pfu DNA polymerase I. Pfu 

DNA polymerase I nick-translates these RNA fragments into second strand cDNA. The second 

strand nucleotide mixture has been suppIemented with dCTP to reduce the probability of 5- 

methyl dCTP becoming incorporated in the second strand. This ensures that the restriction sites 

in the linker-primer will be susceptible to restriction enzyme digestion. The uneven termini of the 

double stranded cDNA are nibbled back or filled in with Klenow hgment (DNA polymerase 

with 3' to 5' exonuclease activity and no 5' to 3' exonuclease activity), and Eco RI adaptors are 

ligated (Ligases catalyze the repair of single-stranded nicks in duplex DNA and joins duplex 

restriction Fragments having either blunt or cohesive ends.) to the blunt ends. The adaptors have 

the sequence shown below. 

5' AATTCGGCACGAG 3' 

3' GCCGTGCTC 5' 

These adaptors are composed of 9 and I3 mer oligonucleotides, which are complimentary 

to each other with an Eco RI cohesive end. The 9 mer is kinased (Kinases catalyze the transfer of 

the terminal phosphate of ATP to the 5' hydroxyl termini of DNA and RNA.), which allows it to 

ligate to the other blunt termini available in the form of cDNA and other adaptors. The I3 mer is 

kept dephosphorylated (Phosphatases catalyze the hydrolysis of 5' phosphate residues from 

nucleic acids to produce dephosphorylated products with 5' hydroxyl termini.) to prevent it from 

ligating to other cohesive ends. After adaptor ligation is complete and the ligase has been heat 

inactivated, the 13 mer is kinased to enable its iigation into the dephosphorylated vector arms. 

The Xho I digestion releases the Eco R[ adaptor and residual linker-primer fiom the 3' 

end of the cDNA. These two fragments are separated on a Sephacryl column. The size- 

fractionated cDNA is then precipitated and ligated to the Uni-ZAP XR vector arms. The lambda 

library is packaged in vitro into bacteriophage lambda particles (Gigapack U Gold packaging 

extract; Cat no. 200402; Stratagene) and is pIated on the E. coli cell line XLI-Blue h4RF' (does 

not digest DNA containing 5'-methyl C). Fragments that have been cloned into the Uni-ZAP XR 

vector can be automatically excised h m  the bacteriophage lambda vector to generate sub-clones 

in the pBluescript SK (-) phagemid vector (vectors containing bacteriophage-derived origins of 



replication), whose sequences are contained within the [ambda DNA vector, eliminating the time 

invotved in sub-cloning. 

The Uni-ZAP XR vector system combines the high efficiency of lambda library 

construction and the convenience of a plasmid system with blue-white color selection, The Uni- 

ZAP XR vector is double digested with Eco RI and Xho I and will accommodate DNA inserts 

€tom 0 to 10 kb in length. The Uni-ZAP XR vector can be screened with DNA probes and allows 

in vivo excision of the Bluescript phagemid, allowing the insert to be characterized in a plasmid 

system, The plylinker of the BIuescript phagemid has 21 unique cloning sites by T3 and T7 

promoters and a choice of 6 different primer sites for DNA sequencing. The phagemid has the 

bacteriophage fl origin of replication, aIlowing rescue of single-stranded DNA. 

The E. coIi host strain XLI-Blue MRF' is supplied with the ZAP-cDNA synthesis kit. 

The F' episome present serves four purposes. (1) The F episome contains the AM 15 mutation of 

the lac2 gene required for alpha-complementation of the amino terminus of the lac2 gene present 

within the Uni-ZAP XR vector. (2) The F episome contains the genes for expression of the 

bacterial F' pith, which are required for filamentous phage infection. The conversion of a 

recombinant Uni-ZAP XR clone to a Bluescript phagemid requires superinfection with a 

fiIamentous helper phage (i-e., in vivo excision of the Bluescript phagemid from the Uni-ZAP XR 

vector). (3) The F' episome contains the Iac repressor, which blocks transcription from the lacZ 

promoter in the absence of the inducer, isopropyCB-D-thio-galactopyranoside (IPTG). (4) The 

tetracycline gene is aIso located on the F episome in both strains; therefore in the presence of 

tetracycline, the episome is selectively maintained. 

The ExAssidSOLR system (Stratagene) is designed to aIIow excision of the Bluescript 

phagemid from the hi-ZAP XR vector while preventing the problems that ace associated with 

helper phage co-infection. The EkAssist helper phage contains an amber mutation that allows 

only the excised phagmid to replicate in the host, removing the possibility of co-infection from 

the ExAssist helper phage. 



Appendii 7.2 Screening of  the Lambda ZAPII-cDNA Library: 

Library screening is outhed below and was conducted as described by the ZAPcDNA 

Synthesis Kit (Cat no 200400,20040 1, and 200402; Stratagene) protocol: 

*:* Preparation o f  E. coli Host Cells: 

J The host strains are included in the kit as bacterial glycerol stocks. For the appropriate 

media and plates, please refer to the following: 

Plates for Media for bacterial cnitures 
Host Strain bacterial streak for titeriog p h a ~ e  (Final conc.) 

SOLR LB-kanamycin LB without a supplement 

(50 Ctglw 

XL 1 -Blue MRF' LB-tetracycline LB with 0.2 % (v/v) maltose-10 mM MgSOJ 

( 12.5 &nL) 

4 Revive the stored cells by scraping off solid ice with a sterile wire loop. 

J Streak the splinters on to an L8 plate containing the appropriate antibiotic (10 mg/mL 

kanamycin in water, aliquot, sterilize through a 0.22 micron filter, and store at - 20 O C  in 

light-tight containers. A bacteriocidal agent (able to kill bacteria) that inhibits protein 

synthesis, transtocation and elicits miscoding. 5 m g h L  tetracyciine in methanol, aliquot, 

and store in light-tight containers without sterilizing. A bacteriostatic agent (inhibition of 

the proliferation of bacteria without killing them) the inhibits protein synthesis by 

preventing binding of aminoacyl tRNA to the ribosome A site.). Re-streak the cells each 

week. 

J Prepare an -80°C bacterial glyceml stock as follows: in a sterile 50 mL tube inoculate 10 

mL of appropriate liquid media containing antibiotic with one colony from the plate. 

Grow the cells to late log phase. Add 4.5 mL of a steriIe glycerol liquid media solution 

(5 mL of glycerol and 5 rnL of appropriate media) to the bacterial culture from step 1. 

Mix well. Atiquot into sterile centrifuge tubes (1 mWnrbe). This preparation may be 

stored at -2(I0C for 1-2 years or at 80°C tbr more than 2 years. 

*:* Plating and Titering: 

J Check the titer of the library using host celIs and serial dilutions of the [ibrary a s  follows: 



To plate the packaged ligation product, mix the following components in 2 mL tubes 

(each sample was done in duplicate): 1 pL of phage cDNA library and 200 pL of XL1- 

Blue MRF' cells at ODm= 0-5; ! pL of a 1:lO dilution of packaged reaction and 200 pL 

of cells; 1 pL of a 1:100 dilution of the library and 200 pL of cells; 1 pL of a 1:1000 

dilution of the library and 200 pL, of cells; 1 @ of a 1:10 000 dilution of the library and 

200 pL of cells; and 1 pL of a I: 100 000 dilution of the Iibrary and 200 pL of cells. 

Further dilutions can be done if required. 

Incubate the phage and the bacteria at 37°C for 15 min to allow the phage to attach to the 

cells with shaking at 200 rpm. 

Add 15 uL of 0.5 M [PTG (in water) and 50 pL of 250 mdmL X-gal (in 

demethylfonnamide) to 2-3 mL of NYZ top agar (48°C). 

Plate immediately onto the NYZ plates (spread agar by tilting plates from side to side) 

and allow the plates to set for LO min. Place the plates upside down in a 37°C incubator. 

Plaques should be visible after 6-8 h. Plaques are a result of the phage infecting the 

bacteria, quickly multiplying within, and subsequent destruction (iysis) of their host cells. 

Determine the titer of the library (plaque forming units [pfb] per mL of library). Store 

plates at 4°C until needed. 

-3 cDNA Library Screening Protocol : 

J Titer library to determine concentration. Use fiesh XL1-Blue MRF' E. coli host cells for 

titering and screening. 

J Plate on large 150 mm NZY plates (> 2 days old; h 800 rnL ddH20 add 5 g NaCL, 2 g 

MgS04 7 HzO, 5 g Yeast Extract, and 10 g NZ mine  [Casein hydrolysate]. Adjust pH 

to 7.5 with NaOH. Add 15 g agar. Adjust volume to 1L. Autoclave. Allow the solution 

to cool to 55 "C. Pour - 80 rnU150 mm plate. Let harden, invert and store at 4°C.) to 50 

000 pfidpiate with 600 pL of OD = 0.5 host cells per plate. (Use 20 plates to screen 1 

x lo6). 

J Incubate phage and bacteria at 37 "C for 15 min with gentle shaking. 

J Add 6.5 mL NZY top agar (In 800 mL ddIW add 5 g NaCL, 2 g MgS04 7 HzO, 5 g 

Yeast Extract, and 10 g NZ amhe [Casein hydrolysate]. Adjust pH to 7.5 with NaOH. 

Add 0.7 % (wlv) agar. Adjust volume to IL. Autoclave. Maintain solution at 55°C.) to 

each phagehost cell mixture. Rub tube between palms to mix the mixture. Plate 



immediately and distribute the top agar evenly over the plate by tilting the plate back and 

forth. 

J Allow the plates to set for 10 min. Invert the plates and incubate at 37°C overnight. 

Plaques should be - 1 mm in diameter. 

J Chill plates 2 h at 4'C to prevent top agar h m  sticking to Nylon membrane. 

J Proceed with plaque lifts using Amersham Hybood-N+ nucleic transfer membranes. 

*:* ColonylPlaque Blotting: (Based on a procedure provided with Amershan Hybond-N+ 

nucleic acid transfer membrane Cat. no. RPN137B 1\37 mm discsl and RPN82B [82 mm 

discs]). 

Use clean forceps and wear gloves during the entire procedure. 

Use a pencil to number each primary and duplicate lift. 

Transfer plaques onto a Hybond-N-t membrane (Cat. no. RPN137B) for 2 min. Use a 

clean needle to prick through the agar and mark the orientation of the lift. 

Place the membrane (DNA side up) on a clean filter paper. Allow the membrane to air 

dry- 

Make a duplicate Iift by allowing the membrane to transfer for 4 min. Use a needle to 

mark the orientation of the lift. 

Store the plates at 4°C to isolate positive plaques after screening. 

Place the dry membranes (DNA side up) on filter papers soaked in denaturing solution 

(1.5 M NaCl, 0.5 M NaOH) for 7 min. 

Transfer the membranes (DNA side up) to filter papers soaked in neutralizing solution 

(1.5 M NaCI, 0.5 M Tris-HCL pH 7.2, 1 mM EDTA) for 3 min. Repeat once again with 

a fresh pad soaked in the same solution. 

Transfer membranes (DNA side up) to filter papers soaked in 0 2  M Tris-HCL pH 7.5 

and 22C SSC buffer solution for 30 sec. 

Allow the membranes (DNA side up) to air dry t h on a 3MM paper and wrap in saran 

wrap. Fix sample to the membrane as described below. 

CrossIink DNA to membrane using autolink setting on a Stratalinker W crosslinker (1.2 

x lo5 pJoules of UV light). Store at 4OC if unable to proceed with hybridization and 

detection as described in appendix 73. 

Store the NZY agar plates at 4°C for use after screening. 



*3 Secondary Library Screening: 

Mark the positions of the needle pokes that were made through the membranes on to the 

film using a permanent marker. 

Identie the strongest putative clones which appeared on duplicate lifts. 

Orient the film and the stock plates using the marker dots on the film and the needle stabs 

through the agar. 

Putative clones were isolated from stock plates using an inverted 50 pL pipette tip and 

put into 1 mL SM buffer [5.8 g of NaCL, 2.0 g MgSOj HzO, 50.0 mL 1M Tris-HCL (pH 

7.9, and 5.0 mL 2 % (wh) gelatin] and 20 pL Chloroform. Vortex for 2 min. Store at 

4°C. 

Dilute and titer with XL1-Blue MEW' E. coli host ceils on small NZY plates so that one 

plate will have approximately 50 plaques. Perform serial dilutions of each putative clone 

sample with 300 pL of OD ~ w ,  = 0.5 host cells per plate. 

Incubate phage and bacteria at 37OC for 15 min with gentle shaking. 

Add 3 mL NZY top agar to the phagehost cell mixture. Rub tube between palms to mix 

the mixture. Plate immediately and distribute the top agar evenly over the plate by tilting 

the plate back and forth. 

Allow the plates to set for 10 min. Invert the plates and incubate at 37OC overnight. 

Plaques should be - I mm in diameter. 

Chill plates 2 h at 4°C to prevent top agar from sticking to Nylon membrane. 

Proceed with plaque lifts using 82 mm Amersham Hybond-N+ nucleic transfer 

membranes (Cat. no. RPN82B) as described above and DIG hybridization and detection 

protocol as  described in appendix 7.3. 

*:* Tertiary Screening: 

J Isolates may be picked h m  a secondary screen. If the positive piques are too close to 

the background plaques then core, re-titer, and perform a tertiary screen to obtain the 

isolates. 

J Follow the same procedure outlined in the secondary screening section above. 

J Remember that phage d i i s e  in agar, so the screening procedure should be done quickly 

after lifts are taken. Once the plaque isolate has been cored h m  the plate and put in SM 

buffer with a drop of chloroform, it is stable at 4OC. 



J When using the Uni-ZAP XR vector, automatic excision may be performed on the 

isolates to obtain the insert-containing i3luescript phagemid. 

*:* In Excision of the Bluescript Phagemid from the Uni-ZAP XR Vector: 

The Uni-ZAP XR vector has been designed to allow in vivo excision and re- 

circularization of any cloned insert contained within the lambda vector to form a phagemid 

containing the cloned insert. This excision is dependent on the DNA sequences that Startagene 

has placed in the lambda phage genome and on the presence of a variety of proteins, including fl 

bacteriophagederived proteins. The proteins From the fl phage recognize a region of DNA, 

which normally serves as the fl bacteriophage origin of replication for positive strand synthesis. 

However, the origin of the plus strand replication can be divided into two overlaying parts: (1) 

the site of initiation and (2) the site of termination for DNA synthesis. These two regions of the 

positive strand origin have been subcloned separately into the Uni-ZAP XR vector. The Iambda 

phage (target) is made accessible to the flderived proteins by simultaneously infecting a strain of 

E. coli with both the lambda vector and the fl bacteriophage. Inside E. coli, the helper proteins 

(i.e., proteins fiom f l  or MI3 phage) recognize the initiator DNA that is within the lambda 

vector. These proteins then nick one of the two DNA strands. At the site of this nick, new DNA 

synthesis begins and duplicates whatever DNA exists in the lambda vector downstream of the 

nicking site. DNA synthesis of a new single strand of DNA continues through the cloned insert 

until a termination signal positioned 3' of the initiator signal is encountered within the constructed 

lambda vector. The single stranded DNA molecule is circularized by a gene II product h m  the 

fl phage forming a circular DNA moiecule, which contains everything between the initiator and 

terminator. In the case of the Uni-ZAP XR vector, this includes all sequences of the phagemid, 

Bluescript SK, (-), and the insert, if one is present. This conversion is a subcloning step, since all 

sequences associated with normal lambda vectors are positioned outside of the initiator and 

terminator signals and are not contained within the circularized DNA. In addition, the 

circularizing of the DNA automatically recreates a hctionai fl origin as found in the Fl 

bacteriophage or phagemids. 

Signals for packaging the newly created phagemid are contained within the fl terminator 

origin DNA sequence. They permit the circularized DNA to be packaged and secreted from the 

E. coli. Once the phagemid is secreted, the E. coli cells used for in vivo excision of the cloned 

DNA can be removed from the supernatant by heating at 70°C. The heat treatment kills all the E. 

coli cells, while the phagemid remains resistant to the heat treatment. For production of double 

stranded DNA, the packaged BIuemipt DNA is mixed with tksh E. coli cells and is spread on 



LB ampicillin plates to produce colonies. DNA from mini-preps of these colonies can be used for 

analysis of insert DNA including sequencing, sub-cloning and mapping. 

The ExAssit/SOLR system is designed to allow efficient excision of the Bluescript 

phagemid from the Uni-ZAP vector, while eliminating problems associated with helper phage co- 

infection. The ExAssit helper phage contains an amber mutation that prevents replication of the 

phage genome in a nonsupressing strain such as SOLR cells. This allows only the excised 

phagemid to repiicate in the host, removing the possibility of productive co-infection from the 

E.xAssist helper phage. 

Core plaque of interest from agar plate and transfer it to a sterile tube containing 500 uL 

of SM buffer and 20 uL of chloroform. Vortex the tube to release the phage particles into 

the buffer. Incubate 1-2 h at morn temperature or overnight at 4'C. (This phage stock is 

stable for up to 1 year). 

Grow an overnight culture of XL1-Blue MRF' and SOLR cells in 25 mL of LB broth at 

30°C. 

Make a 1:100 dilution of the cells grown overnight (50 uL) in 5 mL of LB broth. Grow 

at 37°C for 2-3 h to mid-log phase (OD 600=0.2-0.5). 

Gently spin down the XRL-Blue MRF' cells (1500 x g). Resuspend at OD rn=l.O for 

single ctone excision. 

AIIow the SOLR cells to grow to OD m=0.5-l. Before the SOLR ceIls reach OD 600 

greater than I,  remove the cells from the incubator and let them incubate at room 

temperature. 

In a 50 mL tube combine: 200uL of O D w 4  XLl-Blue MRF cells, 250 uL of phage 

stock (containing approx. 1 x 10' particles), and 1 uL of EltAssist helper phage (approx. 1 

x lo6 pfu/rnL). 

Incubate mixture at 37°C for I5 min. 

Add 3 rnL of LB broth and incubate for 2-2.5 h or overnight at 37'C with shaking. 

Spin down the cells for 15 min at 2000 x g. Transfer the supernatant to a fresh tube. 

Heat the tube at 70°C for 15 min and then spin again for 15 min at 4000 x g. 

Decant the supernatant into a sterile tube. This phage stock contains the excised 

phagemid Bluescript packaged as filamentous phage particIes, and it can be stored at 4OC 

for 1-2 months. 

To plate the excised phagemids, add 200 uL of freshly grown SOLR cells (ODm = I) to 

two 1.5 mL tubes. Add 100 uL of the phage stock to one tube and 10 uL of the phage 



stock to the other tube. Due to the high efficiency of the excision process, it may be 

necessary to titrate the supernatant to achieve single-colony isolation. 

Incubate tubes at 37'C for IS min. 

Plate 10-50 uL from each tube on LB ampicillin plates (50 &nL) and incubate 

overnight at 37°C. 

Colonies appearing on the plate contain the Bluescript double stranded phagemid with the 

cloned DNA insert. Helper phage will not grow, since they are unable to replicate in the 

SOLR strain and do not contain ampicillin resistance genes. SOLR cells are also 

resistant to lambda phage infection, thus preventing lambda phage contamination after 

excision, 

To maintain the Bluescript phagemid, streak the colony on a new LB ampidin plate. 

For long term storage, prepare a bacterial glycerol stock and store at -80°C. 

*% Helper Phage Storage and Amplification: 

Transfer a colony of XLI-Blue MRF' cells From a Fresh LB tetracycline pIate into I0 mL 

of 2X YT broth (10 g of NaCI, I0 g of yeast extract, and 16 g of bacto-tryptone; Adjust 

pH to NaOH; Autoclave) in a 50 mL tube. 

Incubate with shaking at 3 7 T  until growth reaches OD soo=0.3. 

Add the ExAssist helper phage at a multiplicity of infection (MOI) of 20:t (phage to 

cells). 

Grow at 37T far 8 h. 

Heat at 65OC for I5 min. 

Spin down the cell debris and d e r  the supernatant to a fresh tube. 

The titer of the supernatant should be between 7.5 x 10'"d 1.0 x 1012 pWrnL. 

Add DMSO to a final concentration of 7 % and store at -80°C. If titer dmps after 1 year 

of storage prepare a fresh high titer stock of the helper phage as outlined above. 



Appendix 7.3 DigorigenindUTP Hybridization and Detecb'on Protocols: 

The following hybridization and detection protocols are based on En&-Blum et al. 

(1993): 

*:* Hybridization: 

J Wear gloves and use clean glassware and forceps throughout entire procedure, 

J Turn on the hybridization oven and set at 6865OC. Wash hybridization tubes with 

detergent and rinse with distilled water. Check the oven temperature by filling a 

hybridization tube with 25 mL of distilled water and inserting a thermometer into the 

tube. 

J Roll membrane so that the f d  nucleic acids face toward the inside of the tube. 

J Incubate membrane I h in pre-warmed pre-hybridization solution (0.25M NalHP04 pH 

7.2, 1 mM EDTA, 20 % SDS) and 0.5 % blocking reagent (Blocking reagent dissolved in 

maleic acid buffer pH 7.5 [100 rnM maleic acid, (50 mM NaCI pH 7.51 to give a milky 

suspension; Boeh. Mann.; Cat. no. 1096176) at 68-65OC with 20 WlOO crn' with 

consistent redistribution of the solution. 

J In a 500 pL tube, add 200 pL of sterile distiiled water and 25 ng of DIG labeied cDNA 

probe (25 ng cDNA probe/lO rnL of hybridization buffer). Boil the mimure for 10 min. 

Add the denatured pmbe to 10 mL pre-warmed hybridization solution (Pre-hybridization 

solution and 2.5 ng cDNA probdml). 

J Replace the pre-hybridization solution with the hybridization soiution containing 25 ng 

DIG-labeled cDNA probe. 

J Incubate the filters overnight at 68-6SaC with consistent redistribution of the solution. 

Probe solution can be re-used if stored at -2OT in a Falcon tube. For re-use, thaw, and 

denature by heating to 68'C for I0 min. 

J Equilibrate 50 mL of pre-hybridization wash buffer (20 rnM Na2HP04, I mM EDTA, I 

% SDS) at 65-60°C. Replace hybridization solution with 50 IIL of pre-warmed 

hybridization wash buffer. Wash for 20 min. Increase oven rotor speed to maximum for 

washing steps. Repeat step three more times. 

*:* Chemilaminescent Detection of DIGLabeIed Nucleic Acids: 

Using chemi-luminescent detection a light signal is produced on the site of the hybridized 

pmbe. The light signal can be recorded on X-ray fihs, requiring onIy very short exposure times. 

Chemi-luminescent detection is a threestep process. (I)  Membranes are treated with blocking 



reagent to prevent non-specific binding of antibody to the membrane. (2) Membranes are 

incubated with a dilution of anti-DIG, fab fragments, which are conjugated to alkaline 

phosphatase (AP). (3) The membrane canying the hybridized probe and bound antibody 

conjugate is reacted with a chemi-luminescent substrate and exposed to X-ray film to record the 

chemi-luminescent signal. 

J The volumes are calculated for a membrane size of 100 cm'. Check pH of all solutions 

before proceeding with detection. 

J In a clean tray, wash membranes 5 rnin in 25 mL detection wash buffer (0.1 M Maleic 

acid, 3M NaCI, 0 3  % Tween 20 pH 8.0) with shaking at room temperature. 

J In another clean tray, incubate membranes for 1 h in 25 mL blocking buffer 2 (detection 

washing buffer, 0.5 % blocking reagent) with shaking at room temperature. 

J Dilute 1.7 pL anti-Digoxigenin-AP conjugate ([:I5 000; 0.75 UIpL; Cat. no. 1093274; 

Boeh. Mann.; Small antibody aggregates in the Anti-DIG-AP may lead to background in 

the detection. Centrifuge the vial for 5 rnin at 16 000 x g before the first use, After the 

first use it is sufficient to centrifuge the anti-DIG-AP for 1 min directly before dilution) 

in 25 rnL blocking buffer 2 in a 50 mL falcon tube. Incubate membrane in a clean tray 

for 30 min with shaking at room temperature. (Fab fragments from an anti-DIG antibody 

from sheep, conjugated with alkaline phosphatase. After immunization with DIG the 

sheep IgG was purified by ion exchange chromatography and the specific IgG was 

isolated by imrnunosorption. The Fab Fragments were isolated and conjugated with AP). 

*/ Transfer membrane to a dean tray containing 50 mL of detection wash buffer to wash off 

unbound antibody-conjugate for 10 min. Repeat washing three more times using a clean 

tray each time. 

J In a clean tray, equilibrate membrane for 5 min in 50 mL Substrate 4 buffer pH 9.5 (0.1 

M Tris-HCL pH 9.5,O.l M NaCL, 50 rnM MgCI) with shaking at room temperature. 

J Prepare substrate solution 5 by diiuting 0.2 mL CSPD (1:100; 25 m M  Disodiurn 3-(4- 

methoxyspiro ( 1,2- dioxethane- 3,2'- (5' ch~orotricycIo [33.1.1] decan)4yl) pheny l 

phosphate; Cat. no. 1655884; 11.6 m&L; Boeh. Mann.) in 20 mL substrate buffer 4 in a 

50 mL Falcon tube. Incubate the membrane in a clean tray containing 20 mL substrate 

sotution 5 for 5 min at morn temperature with shaking. Dark conditions are not required. 

(CSPD is a chemi-luminescent substrate for aikaline phosphatase that enables extremely 

sensitive and fast detection of biomolecules by producing visible light which is recorded 

with film. Enzymatic dephosphorylation of CSPD by alkaline phosphatase leads to the 

metastable phenolate anion which decomposes and emits light at a maximum wavelength 



of 477 nm. A delay in reaching maximum light emission results since the phenolate 

anion has a haIf-life of less than a minute to several hours, depending on the surrounding 

environment. The chemi-luminescent signal from CSPD persists for days on nylon 

membranes. Since film exposures of a few minutes are usually sufficient, multiple 

images may be acquired). 

J Let the excess liquid drip off membrane and place membrane between a plastic sheet. 

Remove any air bubbles. Do not allow membrane to dry out since the membrane must be 

kept wet if it is to be re-probed. 

J Tape the membrane enclosed within the plastic sheet into a cassette. Incubate the 

cassette at 37OC for 15 min to accelerate the chemi-tuminescence reaction. 

J Allow the cassette to incubate at room temperature for at least 2 h or overnight without x- 

ray film. 

J Expose the membrane to x-ray film for 20 min. Re-expose if necessary. Luminescence 

continues for at least 24 h and signal intensity increases during the first hours. 



Appendix 7.4 DNA Plasmid hhtion and Reatridon Digation Protocols: 

For plasmid isolation and restriction analysis, colonies of interest were grown overnight 

in 2 mL LB broth containing 50 pg/mL ampicillin. The CTAB (Cetyl-tri-mehyCammonium 

bromide) method of plasmid isolation described by del Sal et al, (1988) performed as described 

below. The strategy is based on the use of the cationic detergent CTAB for DNA precipitation. 

Transfer 1.5 mL of a 2 mL LB (50 pg/mL antibiotic) overnight bacterial culture to a 1.5 

mL microfuge tube. Store the remaining culture volume at 4OC till restriction analysis is 

completed. 

Centrihge at 16 000 x g for 2 min. Discard supernatant. 

Add 200 pL of STET (8 % Sucrose, 50 mM Tris-HCL, pH 8.0,50 mM EDTA, and 0.1 % 

TritonX-100). Vortex tubes to resuspend cells. 

Add 4 pL of 50 mg/mL lysozyme (Sigma; Stored as 10 pL aliquots at -20°C). Incubate at 

24°C for 5 rnin. Boil in a water bath for 45 sec. 

Centrifuge at 15 000 x g for 10 min. Discard pellet using a toothpick. 

Add 5 pL of 10 mg/rnL RNase A (Sigma; Stored as 20 pL aliquots at -20°C). Incubate in 

a 68°C water bath for 10 rnin. 

Add 15 pL of 5 % (wh) CTAB. Incubate at 24OC for 3 min. 

Centrifuge at 15 000 x g for 10 min. Discard supernatant. 

Gently resuspend pelleted DNA in 300 pL of 1.2 M NaCI. 

Add 750 pL of cold 95 % ethanol. Invert tube 6 times to mix. Centrifuge for I h at 4°C 

to pellet DNA. Remove supernatant using aspiration. The combination of salt and 

alcohol is used to concentrate the DNA. The DNA complexes with the monovalent 

cations in the solution and is recovered with the addition of ethanol and centrifugation. 

Add 1 mL of 80 % cold ethanol. Dislodge pellet by inverting and flicking the tube. 

Centrifuge and pellet DNA for 15 min at 4OC, Repeat 80 % ethanol wash two more times 

and then remove traces of ethanol using aspiration. Repeated washing of the DNA co- 

precipitate with diluted ethanol removes most of the salt used to drive the precipitation of 

the DNA. 

Vacuumdry pelieted DNA for 5 min. Avoid overdrying pellet. Resuspend DNA in 25 

pL of DNase-free water or TE buffer pH 7.4 (Tris-EDTA buffer: 10 m M  Tris-CL pH 

7.4, ImM EDTA, pH 8.0). Incubate at 60°C for 10 min to promote resuspension of the 

DNA. Partially resuspended DNA samples have an Am-A3zdAZ~-A3~~ ratio < 1.6. 



J Use 2 @ of resuspended DNA per 20 pL redction digest reaction. Store the isolated 

plasmid DNA at 4'C until clones of interest have been identified using restriction 

analysis or sequencing. 

J A 50 % (vlv) giyced bacterial stock of clones of interest was prepared and stored at - 
80°C for long term storage. 

To determine the concentration of the resuspended DNA, dilute the sample 100 fold by 

adding 1 pL of sample to 99 pL of TE buffer. Use TE buffer to blank the DU Series 7400 

Beckman Spectrophotometer at 260 nm. Quantification of DNA in this fashion is predicted on 

the fact that nucleic acids absorb W light maximally at 260 nm. Place the diluted sample into a 

100 pL quartz cuvette and read the absorbance (in optical densities) at 260 nm (Am), 320 nm 

(A3*0), and 280 nm (Azso). Determine the DNA concentration by using the following formula: 

[DNAI pgl& =(AIM - &) x 50 x D x I cnUlOOO pL 

where is the absorbance at 320 nrn and is used as  a background correction (Neither proteins 

nor nucleic acids absorb at this wavelength, so absorbance is due to other components. 

Subtraction of the absorbance at any of the other wavelengths corrects for the background 

contribution); 50 is the extinction coefficient of DNA (an OD lw [optical density] of 1 

corresponds to approximately 50 p&L of double stranded DNA); D is the dilution factor (D = 

100 in the above example); and I d l 0 0 0  pL converts the [DNA] from to pg/mL to pg/pL. 

Determine the DNA yield by multiplying the concentration by the volume of the DNA. Note that 

the Azao must be > 0.1 to give an accurate reading. 

This calculation provides little information on the quality and purity of the sample, 

however in the presence of excess salt, contaminating proteins, andfor carryover organic solvents, 

the absorbance value can be skewed significantly. For these reasons, calculation of the 260:280 

ratio (Azao-A32dA2so-A320) provides a reasonable estimate of the purity of the preparation. 

Absorbance at 280 nm is used for the detection of protein, based upon the presence of aromatic 

amino acids. A pure sample of DNA has a AtdAZSo ratio of 1.8 0.05. If there is contamination 

with protein or phenol, the A&Azso ratio wiII be significantly less than the values given above, 

and accurate quantification of the amount of DNA will not be possible. 

Restriction digests were performed in a 20 pL total reaction volume including 2U (one 

unit of enzyme is typically the enzyme activity that compIeteIy cleaves I pg of DNA under 

optimal reaction conditions) of restriction endonuctease (New England Biolabs, Boehringer 

Mannheim, or Pharmacia Biotech.) per pg of DNA and restriction reaction buffers provided by 



the manufacturer. The reactions were incubated at the recommended temperature as suggested by 

the manufacturer for 1 h. Approximately 10 pL of the reaction volume was analyzed using an 

agarose gel of appropriate concentration to separate DNA fragments (Table 7.3). Restriction 

enzymes recognize and cut specific DNA sequences (e-g., Eco Rl [Escherichia coli RY131 

restriction endonuckase recognizes the sequence 5'-GSAATTC-3' and generates fragments with 

5'-cohesive termini). Enqmatic reactions were terminated by heat inactivation at 85OC for 30 

min. 

Table 7.1 Agarose gel electrophoresis. 

Agarose (76) Size of DNA fragments separated (kb) 7 

0.7 1-30 

t Bromopbenol blue dye migrates approximately at 300 bp, and xylene cyan01 dye 

at 4 kb, independent o f  agarose concentration between 0.5 and 1.4 % in 05X TBE. 



Appendix 7.5 Criteria used to Design PCR Oligonucleotide Primem: 

PCR oligonucleotide primers were designed using Primer Designer Version 2.0 

(Scientific and Educational Software) to meet the following criteria (Innis et d., 1990): 

*:* Primer length ranged from 18 to 28 nucleotides. 

*:* 50-60 % G and C nucleotide composition (greater composition values lead to primer hairpins 

and primerdimers). 

*:* Melting temperature (T,= 2°C [A + + 4°C [G + C]; where the following nucleotides are 

represented: A, adenine; T, thymidine; G, guanidine; or C, cytosine) for the primer pair 

should be balanced (within 5°C) and between 55 and 80°C. An annealing temperature 5OC 

below the T, of the amplification primer pair is typically used to optimize reactions. 

Annealing temperatures in the range of 55 to 72°C generally yield the best results in PCR 

reactions. Taq DNA polymerase is active over a broad range of temperatures thus primer 

extension wiH occur at low temperatures, inctuding the annealing step. Increasing the 

annealing temperature enhances discrimination against incorrectly annealed primers and 

reduces mis-extension of incorrect nucleotides at the 3' end of primers. Caution must be 

taken to avoid T, values lower than 55°C because lower annealing temperatures promote 

decreased PCR primer specificity. 

*:* Avoid complementarity at the 3' ends of primer pair to avoid primer-dimers artifacts and 

reduction of yield of desired product. 

*:* Avoid three or more C or G nucleotide at the 3' ends of primers to avoid mis-priming. 

*:* Primers for rnutagenesis contain mismatches placed internatly for incorporating restriction 

enzyme sites. Mutagenic primers introduce specific experimental mutations. The foliowing 

considerations should be made for designing mutagenic primers for use in the Quick Change 

Site-Directed Mutagenesis Kit described in appendix 7.12. 

J Both the mutagenic primers must contain the desired mutation and anneal to the same 

sequence on opposite strands of the plasmid. 

J Primers shouId be between 25 and 45 bases in iength, and the melting temperature of the 

primers should be 10°C above the extension temperature of 68OC. 

J The desired mutation (deletion or insertion) should be in the middle of the primer 10-15 

bases of correct sequence on both sides. 

J The primers optimally should have a minumum GC content of 40 % and should terminate 

in one or more C or G bases. 



J Primers need not be 5' phosphorylated but must be purified either by fast polynucleotide 

liquid chromatography or by polyacrylamide gel electrophoresis. 

J It is important to keep primer concentration in excess. Vary the amount of template 

while keeping the concentration of the primer constantly in excess. 



Appendix 7.6 PCR Protocol using EDNA Library: 

Most polymerase chain reaction (PCR) protocols use Taq DNA polymerase (EC 2.7.7). 

Taq DNA polymerase is isolated From the thermophilic eubacterium T h e m  a p t i m ,  a strain 

lacking Taq I restriction endonulease and purified free of unspecific endo- or exo-nucleases. The 

enzyme consists of a single polypeptide chain with a molecular weight of - 95 kD. It is a highly 

processive 5'-3' DNA polymerase, that lacks 5'-3' and 3'-5' exonuclease activities. The enzyme 

exhibits the highest activity at pH 9 (adjusted at 20°C) and temperature around 7S°C. Taq DNA 

polymerase activity is stable against prolonged incubations at elevated temperatures (95OC) and 

can therefore be used to amplify DNA-fragments by PCR. Taq DNA polymerase also accepts 

modified deoxyribonucIeoside triphosphates as substrates, and can be used to label DNA- 

fragments either with radionucleotides or digoxigenin. The high processivity, absence of exo- 

nuclease activity and temperature optima of Taq DNA polymerase enable the use of this enzyme 

in DNA sequencing. PCR reactions using total phage cDNA library as the DNA template were 

prepared as follows: 

*:* Prepare a reaction mixture on ice for the appropriate number of samples to be amplified. Add 

the components in order while mixing gently. Table 7.1 provides the reaction mixture for the 

amplification of PCR product fiom phage lysate. Bulk reaction mixture should be enough for 

the number of reactions plus an addition reaction volume. Mix the bulk reaction mixture well 

and briefly centrifuge. The final volume of each sample reaction is 25 pL 

*:* Immediately before thermal cycling, aliquot 20 pL of the bulk reaction mixture into the 

appropriate number of sterile thin-wall PCR tubes and place the tubes on ice. 

Q Overlay each reaction with two drops of mineral oil. 

*:* Add 5 pL of phage lysate per reaction and gently stir reaction volume with pipette tip. 

*3 Perform PCR using optimized cycling conditions as detailed in section 3.3.3. 

9 Analyze 10 pL of the PCR amplification products (resuspend to a final concentration of IX 

with 6X loading buffer N: 0.25 % bromophenol blue dye, 40 % (wlv) sucrose in water; 

Stored at 4T)  on a 100 mL IX Tris-borate (TBE) 1.0 % (wlv) agarose gel (containing 0.2 

pg/mL ethidium bromide) run at 100 V for I h to separate DNA fragments ranging from 0.5 

to 10 kb in size. 

O Ten p.L of Boehringer-Mannheim Type VI DNA marker (50 ng/pL,, including I I DNA 

fiitgrnents ranging fiom 2.2 to 0.2 kb) and Type II DNA marker (50 nglpL, including 8 DNA 

m e a t s  ranging from 23 to 0.5 kb) were loaded to estimate the size of amplification 

products. 



Table 7.2 Reaction mixture for the amplification of PCR products from phage lysate. 
- -- 

Component i Amount per reaction 

De-ionized water 11.1 pL 

Taq DNA poIymerase 10X reaction buffer $ 2.5 pL 

dN'l'Ps (1.25 mM each NTP) 4.0 pL 

GBSSF2 Primer (5 prnoIesfpL) 5 1 PL 

GBSSR3 Primer (5 pmoledpL) 1 PL 

Phage lysate 5.0 pL 

Taq DNA polymerase (5 U/pL) fi 0.4 pL 

Total reaction volume 25 pL 

t All components stored at -20°C. 

$ 10 X reaction buffer: 0.1 M Tris-HCL (pH 8.8),0.5 M KCL, 0.015 M MgClt, and 0.01 % 

gelatim. 

8 Re-suspended in TE: pH 8.0. 

7 Boebringer Mannheim; One unit Taq DNA polymerase is defined as the amount of 

enzyme that incorporates 10 nmol of total deoxyribonuclensetriphosphat~ into acid 

precipitable DNA within 30 min at 7S°C under specific assay conditions. 



Appendix 7.7 Original TA Cloning Kit: 

The Original TA Cloning Kit with vector pCR2.1 provides a quick, one-step cloning 

strategy for the direct insertion of a PCR product into a plasmid vector. Taq DNA polymerase 

has non-templatedependent activity which adds deoxyadenosines (A) to the 3' ends of PCR 

products. The linearized vector supplied in this kit has single 3' deoxythymidine (7') residues. 

This allows PCR inserts to ligate efficiently with the vector. Thermostable polymerases 

containing extensive 3' to 5' exonuclease activity, such as Pfi DNA polymerase, do not leave 3' 

Asverhangs. PCR products generated with Taq polymerase have a high efficiency of cloning in 

the TA Cloning system as the 3' Asverhangs are not removed. If Pfi  DNA polymerase is used, 

then 3' Asverhangs can be added to btuntended PCR fragments by incubation with Taq 

polymerase (10 min at 72 "C) at the end of the cycling program. The Original TA Cloning Kit is 

designed to facilitate the cloning of PCR fragments in a T-tailed plasmid vector known as pCR2.1 

(3.9 kb). Important features found within the pCR2. I vector are outlined in Table 7.2. 

The Original TA Cloning protocol is briefly outlined as follows. ( I )  Generate the PCR 

product to be cloned into pCR2.1. (2) Modification of the PCR primer by phosphorylation or 

addition of a restriction site is not necessary. (3) The PCR product is ligated into pCR2.1 and 

transformed into competent cells. (4) PCR products are ligated into the vector in either 

orientation. Individual recombinant plasmids are analyzed by restriction mapping for orientation. 

(5) Recombinant plasmids of interest are purified for hrther sub-cloning or characterization. 

*:* Ligate PCR Products into pCR2.l Vector: 

Amplify PCR products, the day prior to setting up the ligation reactions, as described in 

section 33.3. Use only fiesh PCR product (less than one day old) because the single 3' A- 

overhangs on the PCR products will degrade over time, reducing ligation efficiency. The TA 

Cloning Reagents Kit (Invitrogn; Cat. no. K2000-01; Stored at -20°C) included IOX Ligation 

Buffer (60 m M  Tris-HCL, pH 7.5, 60 mM MgCIL 50 mM NaCl, 1 rng/mL bovine serum 

albumin, 70 mM 0-mercaptoethanol, 1 rnM ATP, 20 mM dithiothreitol, and I0 m M  spermidine), 

pCR2.1 vector (25 ng/pL), and T4 DNA Ligase (4.0 U/pL). T4 DNA Ligase (EC 6.5.1.1) is 

isolated from an E. coli strain, which does not carry the gene coding for T4 RNA ligase. T4 DNA 

Iigase catalyzes the formation of phosphodiester bonds behveen neighbouring 3' hydroxyl- and 5' 

phosphate ends in double stranded DNA. Single-stranded nicks in double stranded DNA are aIso 

closed by T4 DNA Iigase. DNA tiagments with over-lapping ends are incubated with T4 DNA 

tigase in 1X ligation buffer as follows: 



Table 7.3 Features of pCR2.1 vector. 

Feature Function 

lac promoter For bacterial expression of the IacZa Fragment for a- 

complementation (blue-white screening). 

LacZa fragment 

Ampicillin resistance 

C o E  1 origin 

Encodes the first 146 amino acids of P-gaIactosidase. 

Complementation in frm with the R fragment gives 

active kgalactosidase for blue-white screening. 

Selection and maintenance of E. coli. 

Replication, maintenance, and high copy number in E. 

coli. 

M 13 Froward (-20 and -40) and 

M 13 Reverse priming sites Sequencing of insek 

Two unique Eco R1 sites within T-tailed vector is designed for the inserted PCR 

multiple cloning sitelpolylinker product to be flanked on each side by Eco R1 sites. 

J Briefly centrifuge one vial of pCR2.1. 

J Set-up a 10 pL ligation reaction as follows: (Note: Do not use more than 2-3 pL of PCR 

sample in the reaction as T4 DNA ligase may be inhibited by salts in the PCR sample). 

Components Amount per reaction 

Fresh PCR product 0.5-1 .O pL 

10X Ligation Buffer 1 YL 

pCR2.1 vector (25 ng/pL) 2@- 

T4 DNA Ligase (4 U/pL ) t 1 PL 

Sterile de-ionized water Make up volume to 10 pL 

Total reaction volume LO pL 

t 0.005 units T4 DNA Ligase join more than 95 % of 1 pg Hind IU digested lambda DNA in 

20 pL IX  ligation b a e r  in 1 h at 22OC. 



J Incubate at 14OC overnight 

J If transformation is not performed immediately then, store the ligation reaction at -20°C 

until needed. 

-3 Transform One Shot Competent Cells: 

At this point the ligation reaction contains the PCR insert ligated into the T-tailed vector. 

Transformations were done using the One Shot competent cell kit (tnvitrogen; Cat. no. K2000- 

40) containing SOC Medium (2 % Tryptone, 0.5 % Yeast extract, 10 m M  NaCL, 2.5 rnM KCI, 10 

mM MgCIz I0 mM MgS04, and 20 m M  glucose), pmercaptoethanol, and E. coli competent 

cells. Competent One Shot WaF' cells were transformed as follows: 

J Equilibrate a water bath to 42OC. 

J Thaw I vial of SOC medium and bring to room temperature. 

J Equilibrate Luria-Bertani (LB) plates (1.0 % Tryptone, 0.5 % yeast extract, 1.0 % NaCl 

pH 7.0, 1.5 % agar) containing 50 pg/mL ampicillin (50 mg/mL stock dissolved in water 

and filtered through a 0.22-micron filter. Aliquot and store at - 20°C in a light-tight 

container. Ampicillin is a bacteriocidal agent that kills only growing E. coli. The mode 

of action is to inhibit cell wall synthesis by inhibiting the formation of the peptidoglycan 

cross-link.) at 37OC for 30 min. Spread plates with 40 pL of 40 mg/mL X-GaI (5-bmmo- 

4-chloro-3-indolyl-P-D-galactoside). Let the liquid soak in to plates 15 min. (To make a 

40 mglmL stock solution, dissolve 400 mg X-Gal in 10 mL dimethylformamide using a 

15 mL Falcon tube. Protect from light by wrapping in aluminum foil. Store at -20°C.) 

4 Briefly centrifuge ligation reactions and place them on ice. 

J Thaw on ice a vial of 0.5 M fbmercaptoethanol and one vial (50 pL) vial of fiozen One 

Shot competent cells for each ligationltransformation reaction. 

J Add 2 pL of pmercaptoethanol to competent cell and mix by gentty stirring with the 

pipette tip. 

J Add 2 pL of ligation reaction to competent cells and mix by gently stirring with the 

pipette tip. Incubate vials on ice for 30 min. Store remaining ligation reaction mixtures 

at -20°C. 

J Heat shock for 30 sec in a 42OC water bath without shaking. Immediately place vials on 

ice for 2 min. 

4 Add 250 pL of SOC medium to each vial. 

J Incubate vials at 37°C for 60 min at 225 rpm. Place vials on ice, 



4 Spread 200 pL from each transformation vial on separate labeled LB plates containing 

antibiotic and X-Gal. 

J Allow the liquid to absorb, invert plates and incubate them at 37°C at least 18 h. Transfer 

plates to a 4'C fridge for at least 4 h for proper color development. 

*% Select Colonies for Plasmid Isolation for Restriction Digestion and DNA Sequencing 

For an insert size of 500 bp 50-200 colonies per plate will appear depending on the 

volume plated and of these about 80 % should be white on X-gal plates. Ligation efficiency 

depends on insert size. As insert size increases, the efficiency will decrease. To determine the 

presence and orientation of the insert: 

J Pick at least 10 pure white colonies, without a blue center, for plasmid isolation and 

restriction analysis. 

4 Grow colonies overnight in 2-5 mL LB broth containing either 50 pg/mL of ampicillin. 

J Isolate plasmid and confirm presence and orientation of cloned insert by restriction 

digestion and sequencing. 

The pCR2.1 vector contains a piece of DNA that encodes an a fragment of P- 
galactosidase. This vector exploits the phenomenon called a-complementation. A cell that bears 

any of a number of deletions of the 5' end of the lac2 gene synthesizes an inactive C-terminat 

fragment of P-galactosidase, called an omega fragment. Similarly, a cell that bears a deletion of 

the 3' end of the IacZ encodes an inactive N-terminal fragment of P-galactosidase called an a 

fragment. However, if the cell contains two genes, one directing the synthesis of an a fragment, 

the other directing the synthesis of an omega fragment, the P-galactosidase activity is observed. 

The pCR2.1 vector incorporates a lac a fragment gene, which is small and easily manipulated. 

Exploitation of this vector requires use of a strain such as W a F '  E. coli cells canying the 

complementing omega fragment gene to allow assembly of an active P-galactosidase complex. 

When CNVaF' E. coli cells containing the pCR2.1 vector are grown on medium containing X-gal 

these vector containing cells possess kgalactosidase activity and turn blue. The substrate, X-gal, 

is turned blue by the enzymatic activity of pgalactosidase. 

In order to make it easier to identify plasmids that contain insert DNA, the multiple 

cloning site of pCR2.1 has been engineered so that introduction of DNA into the polyiinker 

results in a scorable phenotype. In W a F '  E. coli cells containing the pCR2.1 vector, production 

of the lac2 a fragment aI1ows for formation of an active kgalactosidase enzyme which results in 



the formation of blue colonies on X-gal indicator plates. Cloning into the polylinker of pCR2.1 

prevents production of a fhctional lac2 a fragment, allowing for rapid identification of plasmid 

containing inserts as white colonies on X-gal plates incorporates a lac a fragment gene. The 

INVa.F' E coli cells do not express the lac repressor. Addition of the inducer CPTG (Isopropyl-I- 

thio-P-D-galactosidase) to X-gal indicator plates is not required. The inducer, PTG, inactivates 

the lac repressor in cell expressing the lac repressor and thus de-represses omega peptide 

synthesis in the bacterial strain. 



Appendix 7.8 PCR DIG Probe Synthesis Kit Protocol: 

The non-radioactive digoxigenin (DIG) system uses DIG, a stemid hapten, to label DNA, 

RNA or oligonucleotides for hybridization and subsequent luminescence detection (Fig. 72). For 

DNA labeling, DIG is coupled to dUTP via an allcali-labile ester-bond. The use of the alkali- 

labile form of DIGdUTP enables easier and more efficient stripping of blots for re-hybridization 

experiments with a second DIG-labeled probe. DNA probes, labeled with DIGdUTP, alkali- 

labile cannot be denatured by alkali treatment (NaOH), but must be denatured by incubation in a 

boiling water bath. 

The PCR DIG synthesis kit (Catalogue no. 1636 090; Boeh. Mann.; Stored at -20°C) 

contains all reagents for the direct DIG-labeling of DNA fragments generated by PCR. The PCR 

DIG mix supplied with the kit enables the synthesis of highly sensitive probes by incorporation of 

D[GdUTP into the PCR product. The kit is designed for generation of sensitive hybridization 

probes suitable for detection of single copy target sequences. PCR products can directly be 

amplified and labeled from low amounts of genomic DNA (1-100 ng) or plasmid DNA (10-100 

pg) and subsequently used as hybridization probes. The PCR DIG mix contains alkali-labile 

DIGdUTP formulation. This enables simple removal of the DIG-label after chemi-luminescent 

detection and subsequent re-hybridization of blots with multiple DIG-labeled probes (Fig.7.3). 

The PCR labeling protocol was performed as follows: 

*:* Add the following components to a sterile microfuge tube. Place the tube on ice during 

Components t Amount per reaction 

Distilled water 34.2 pL 

Taq DNA polymerase 10X reaction buffer 5 PL 
IOX PCR DIG mix f 5 PL 
GBSSF2 Primer (5 pmoledpl) 2 PL 

GBSSR3 Primer (5 pmoledpl) 2FL 

Taq DNA polymerase (5 UlpL) 0.8 pL 

GBSSrPvlMI clone template (50 p&L) I clL 

Total reaction volume 50 @ 

t AH components stored at -20°C- 

$ Contains 2 m M  each of dATP, dCTP, and dGTP; 13 mM d m ;  0.7 mM DIG11-dUTP; 

alkah-hble; pH 7.0. 



Fig. 7.2 Structure of digoxigenin-11-dUTP. 
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Fig. 73. Non-radioactive Northern blotting detection, 



Mix reagents and centrifuge briefly to collect the sample at the bottom of the tube. 

Overlay with two drops of mineral oil to reduce evaporation of the mix during amplification. 

Cycling conditions are as described in section 3.3.3. 

After amplification, analyze an aIiquot of the reaction mixture (I0 yL) by 1.0 (wtv) agarose 

gel electrophoresis. For use of the PCR product as a hybridization probe in blots, a specific 

band should be visible on an ethidiurn stained gel. Even minor amounts of by-products can 

influence the specificity of the hybridization. Optimal reaction conditions have been adapted, 

including incubation times, incubation temperatures, template concentration, and primer 

concentration. Due to the multiple incorporation of DIGdUTP during the PCR process the 

molecular weight of the PCR product is increased significantly compared to the unlabeled 

product (prepare an unlabeled PCR product in parallel for better detection of the shift in 

molecular weight to evaluate the efficiency of DIGdUTP incorporation into the probe). 

Each 50 S labeling reaction typically yietded - 600 ng of DIG labeled probe (12 ng/pL). 

The quantity of DNA in the sample was estimated by comparing the florescent yield of the 

sample with that of a series of a standard (1, 5, LO, 20, and 30 yL of Boehringer Mannheim 

Type VI DNA marker [SO ng/pL], including I 1 DNA fragments ranging from 2.2 to 0.3 kb). 

This PNA] estimation method utilizes the LN-induced florescence emitted by ethidiurn 

bromide molecules intercalated into the DNA. As little as 1 to 5 ng of DNA can be detected 

by this method. 

The labeled PCR product was stored at 4OC and used directly without further purification in 

DIG hybridization and luminescent detection protocols as described in appendix 73. 



Appendix 7.9 ABI PRISM Big Dye Terminator Cycle Sequencing Protocol: 

Dideoxy DNA sequencing requires a clone of the DNA to be pmduced so that a 

homogeneous population of molecules is available for analysis. Preparation of template DNA for 

dideoxy sequencing involves several steps. (I)  Consider a segment of DNA cloned into a 

restriction site of a plasmid cloning vector. The circular plasmid is denatured by heat to single 

strands. (2) An oligonucleotide primer, complimentary to the DNA insert of interest, is annealed 

to the DNA. The primer will anneal to only one of the two DNA strands. The oligonuc1eotide 

acts as a primer for DNA synthesis, and the 5' to 3' orientation chosen ensures that the DNA made 

is a complernenrary copy of the cloned DNA. 

Dideoxy DNA sequencing of this theoretical DNA insert involves the folIowing steps. 

(1) For each DNA fragment to be sequenced, one reaction is set up with single-stranded DNA to 

which the primer has been annealed. The reaction contains four normal precursors of DNA 

(dATP, d'lTP, dCTP, and dGTP), dideoq nucleotides (ddATP, dd'lTP, ddCTP, and ddGTP), and 

DNA poIymerase. The difference between the dideoxy nucleotide and the deoxynucleotides 

normally used in DNA synthesis is dideoxy nucleotide has 3'-H on the deoxyribose sugar rather 

than a 3'-OH. If a dideoxy nucleoside triphosphate (ddNTP) is used in the sequencing reaction, 

the dideolcy nucleotide can be incorporated into the growing chain. However, once that happens, 

no further DNA synthesis can then occur because the absence of a 3'-OH prevents the formation 

of a phosphodiester bond with an incoming DNA precursor. (2) In the reaction, only a small 

proportion of the precursors are dideoxy precursors (1: 100 ratio ddNTPs:dNTPs). The primer is 

extended by DNA polymerase, and when a particular nucleotide is specified by the template 

strand, there is a small chance that the dideoxy nucleotide will be incorporated instead of the 

normal nucleotide in the reaction. For example, if an dNTP is specified by the template strand a 

ddNTP could be incorporated rather than dNTP in the reaction. Once a ddNTF is iacopocated, 

elongation of the chain stops. In a population of molecules in the same DNA synthesis reaction, 

then, new DNA chains will stop at all possible positions where the nucleotide is required because 

of the incorporation of the dideoxy nucleotide. (3) The DNA chains in the reaction are separated 

by polyacrylamide gel electrophoresis and the DNA bands are read by a laser technology within 

the sequencing instrumentation. (4) The DNA bands can be detected by the laser because each of 

the four ddNTPs in the reaction are labeled with a different fluorescent dyes which emit 

maximum fluorescence at different wavelengths. 

The ABI PRISM big dye terminator cycle sequencing ready reaction kit (Cat. no. 

4303 149; Perkin-Elmer) was used to sequence DNA inserts of interest within plasmid cloning 

vectors. The kit formulation contains the sequencing enzyme AmpliTaq DNA Polymerase, This 



enzyme is a variant of TFtenrmr aqudcus DNA polymerase that contains a point mutation in the 

active site. This results in less discrimination against dideoxynucleotides (ddNTPs), which leads 

to a much more even peak intensity pattern. Applied Biosystems (Perkin-Elmer) has developed a 

set of dye terminators labeled with novel, high-sensitivity dyes. The new dye structures contain a 

fluorescein donor dye, e.g., 6-carboxyfluorescein (CFAM), linked to a dichlororhodamine 

(dRhodamine) acceptor dye. The excitation rncximum of each dye label is that of the fluorescein 

donor, and the emission spectrum is that of the dRhodamine acceptor. The donor dye is 

optimized to absorb the excitation energy of the laser in the Applied Biosystems DNA sequencing 

instruments. The linker affords extremely efficient energy transfer (quantum efficiency nearly 

1 .O, i.e., 100 %) between the donor and acceptor dyes. The big dye terminators are 2-3 times 

brighter than the rhodamine dye terminators when incorporated into cycle sequencing products. 

The big dye terminators are labeled with the following dRhodamine acceptor dyes: A terminator, 

green dye dR6G; C terminator, red dye dElOX; G terminator, blue dye dR110; and T terminator, 

yellow dye dTAMRA. Each of these fluorescent dyes emits its maximum fluorescence at a 

different wavelength. During data collection on the ABI PRISM 377 instruments, the software 

collects tight intensities From four specific areas on the camera, each area corresponding to the 

emission wavelength of a particuIar fluorescent dye. The new big dye terminators also have 

narrower emission spectra than the rhodarnine dye terminators, giving less spectral overlap and 

therefore less noise. The brighter signal and decreased noise provide an overall 4-5X 

improvement in sensitivity over older technologies. 

The ABI PRISM big dye terminator cycIe sequencing ready reaction kit combine 

AmpliTaq DNA polymerase, the new big dye terminators, and all the required components for the 

sequencing reaction. [n the ready reaction format, the dye terminators, deoxynucleoside 

tripbosphates, AmpIiTaq DNA Polymerase, MgCh, and buffer are pre-mixed into a single tube of 

Ready Reaction Mix and are ready to use. These reagents are suitable for performing 

fluorescence-based cycle sequencing reactions on double-stranded DNA templates. The dNTP 

mix includes dITP in place of dGTP to minimize band compressions. The dNTP mix also uses 

dUTP in place of dTTP. dUTP improves the incorporation of the T terminator and results in a 

better T pattern. 

Preparing Sequencing Reactions: 

J The ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kits (Store at - 
25 OC) contain sufficient reagents to sequence 100 templates. Terminator Ready 

Reaction M i  contains: NTP mix (ddATP labeled with dichlom~6G]; ddCTP labeled 



with d i c h l o r o ~ 0 ~ ;  ddGTF labeled with dichloro~110]; ddlT'P labeled with 

dichloro[TAMRA]; dATP; dCTP, dITP, and dUTP); AmpliTaq DNA Polymerase, MgClt 

(2 mM fmal conc. per reaction); and Tris-HCI buffer, pH 9.0. 

J Sequencing primers were made using the criteria outlined in appendix 7.5. 

J For each 20 pL reaction, add the following reagents to a separate tube: Terminator ready 

reaction mix 8.0 pL, double-stranded DNA template 20k500 ng; primer 3.2 pmoles; 

make up the final volume to 20 pL with de-ionized water. 

J Mix well and spin briefly. 

J Overlay the reaction mixture with 40 pL of light mineral oil. 

J Place the tubes in a thermal cycIer. Repeat the following for 25 cycles: 96 "C for 10 sec; 

50 OC for 5 sec; 60 OC for 4 min. 

J Rapid thermal ramp to 4 OC and hold until ready to purifj.. 

J Spin down the contents olthe tubes in a microcentrifuge. 

J Proceed to purifying the sequencing products. 

*:* Spin Column Purification to Remove Excess Dye Terminators from Sequencing 

Products: 

Gently tap the column (Centri-Sep spin columns from Princeton Separations; Cat. no. 

CS-90 1) to cause the gel material to settle to the bottom of the column. 

Remove the upper end cap and add 0.8 mL oFde-ionized water. 

Replace the upper end cap and vortex or invert the column a few times to mix the water 

and gel material. 

Allow the gel to hydrate at 24 O C  for at least 2 h. Hydrated columns can be stored for a 

few days at 2-6 "C. Longm storage in water is not recommended. Allow columns that 

have been stored at 2-6 "C to warm to room temperature before use. 

Remove any air bubbles by inverting or tapping the column and allowing the gel to settle. 

Remove the upper end cap first, then remove the bottom cap. Allow the column to drain 

completely by gravity. L f  flow does not begin immediately, apply gentle pressure to the 

column with a pipette bulb. 

tnsert the column into the wash tube provided. 

Spin the column in a microcentrifuge at 730 x g for 2 min to remove the interstitiaI fluid. 

Remove the column fiom the wash tube and insert it into a 1.5 mL tube. 

Remove the extension reaction mixture from its tube and load it carehlly on top of the 

gel material. 



4 Spin the column in a microcentrifuge at 730 x g for 2 min. 

J Discard the column. The sample is in the sample collection tube. 

J Dry the sample in a vacuum centrifige for 10-15 min, or until dry. Do not overdry. 

*:* Electrophoresis on the ABI PRISM 377 DNA Sequencer: 

J Prepare 1 L of 10 X Tl3E pH 83 running buffer (Filter using a 12 micron filter and de- 

gas). 
J Prepare a 40 % acrylamide stock (Store at 4°C for 1 month; 38 g of acrylamide and 2 g of 

bis-acrylamide in 90 mL de-ionized water. Adjust volume to LOO mL. Filter using a IS 

micron filter and de-gas). 

J Prepare a 5 % sequencing gel (20 x 48 cm) by adding the following components to a 200 

mL beaker: 

Components Amount for one gel 

Distilled water Make up final volume to 50 mL 

Urea 

10 X TBE buffer pH 83 

40 % Acrylamide mix 6.25 rnL 

Mix components. Filter using a 1.2 micron filter and de-gas. Just before pouring add: 

I0 % Ammonium persulfate 250 pL 

J Fill the sequencing chamber using 1X TBE running buffer. 

J Pre-run gel at 2300 V until gel temperature reaches 47°C. 

J Prepare a loading buffer by combining the following in a 5: I ratio: de-ionized formamide 

and 25 mM EDTA (pH 8.0) with blue dextran (50 mg/mL). 

J Resuspend each sample pellet (piasmid PCR product) in 6 pL loading buffer if using 64 

well combs. 

J Vortex and spin the samples. 

J Heat the sampIes at 95OC for 2 min to denature. Place on ice until ready to load. 

J Pause the gel nm and flush wells with running gel. 



J Load 1 pL of each sample into a separate lane of the gel. h a d  odd numbered lanes. Run 

gel for 3 min. Flush wells with running buffer. Load even lanes. 

J Run gel at 2300 V for I0 h at a constant temperature of 51°C. 



Appendix 7.10 Oligonuckotide Primer Synthesis Protocol: 

The emergence of quick, convenient methods for the synthesis of moderately long 

oligonucleotides with defined sequences has followed close upon the development of rapid 

sequencing methods. Chemical synthesis is based on the abiIity to protect specifically (i.e., to 

prevent having a chemical reaction occur at) either the 5' or the 3' end of a mono- or 

oligonucleoti~ie. This is done by hanging a large blocking group onto either the 5' or the 3' 

hydroxyl, Different blocking groups are used: some can be removed with acid, some with base. 

Thus, a 5' blocked mononucleotide can be chemically condensed with a 3'-blocked molecule, 

resulting in a dinucleotide that is blocked at both ends. Either the 5' or the 3' blocking group is 

then removed (using either acid or base), and the dinucleotide is reacted with an appropriately 

unblocked mono- or dinucleotide. This cycle of condensation, removal of one or the other 

blocking group, and recondensation can be repeated many times until an oligonucleotide of the 

desired length is obtained. Until a few years ago, synthesis of oligonucleotides was a time 

consuming process that was limited to linking together fewer than 20 nucleotides. Now DNA 

synthesis is performed using programmable machines that are capable of synthesizing 

oligoninleotides as long as 100 bases in - 10 h. The limiting factors are the progressively lower 

yields of oligonucleotides with increasing length and the need to pun@ the products using high 

pertormance liquid chromatography (HPLC). The availability of oligonucleotides for use as 

probes or primers has made possible a wide variety of analytical techniques. 

The Beckrnan OIigo 1000 DNA synthesizer was used to synthesis PCR primers using the 

basic protocol outlined below. Synthesis of an oligonucleotide by solid-phase phosphorarnidite 

chemistry is outlined in Fig. 7.4. The 3' nucleotide is attached to an inert support of smaU glass 

beads, which are placed in a reaction vessel. The oligonuckotide is built up one nucleotide at a 

time from 3' to 5' by a three step cycle. In the ftrst step, the nucleotide precursor containing base 

2 is added to the reaction vessel. The 5' hydroxyl of base 1 couples to the 3' phosphorous of base 

2. In the second step, the unstable trivalent phosphite is oxidized to the stable phosphate. In the 

third step, the dimethoqtrhyl group that protects the 5' hydroxyl of the newly added nucleotide is 

removed, thereby completing one cycle. The process is repeated by addition of the next 

nucleotide precursor. Finally, the completed oligonucleotide is cleaved from the glass support, 

and groups protecting the phosphates and bases are removed. Completed oligonucIeotides 

products are purified from reaction components and incomplete products using HPLC. Re- 

hydrate the vacuum dried primer pellet (final concentration of 5 pmoledpL) using TE buffer pH 

8.0. Prepare SO fl diquots of diluted primer in 0.5 mL vials and store at -20°C. Generally, 100 

PCR reactions require 20 pmoles of each primer (0.2 pmoles/pL). 



DMT - 0 

1 Oxidation 
i D e p r o ~ i o n  
I 

Fig. 7.4. Synthesis of an oligonucleotide by solid-phase phosphoramidite chemistry 

(Adapted from Watson d uf., 1992). 



Appendix 7.11 MEGALIGN Program of DNASTAR: 

MEGALIGN creates alignments between two or more DNA and/or protein sequences. 

MEGALIGN reconstructs phylogeny and allows the user to tailor the alignment output for 

analysis and publication. Alignments are useful in comparing homology, structure, and hnction 

between different sequences. If two or more sequences are highly similar, it is likely that they 

also share common ancestry, morphology, and purpose. For example, all known histone proteins 

share about 95 % of their residues. From crystallogtaphic and catalytic studies of a few species, a 

common hc t ion  and nearly structure has been determined. If the primary sequence of a novel 

protein is nearly identical to any in this group, then it is fair to say it may share structure, 

function, and ancestry with characterized histone proteins. 

To create a MEGALIGN project, enter sequences in the worktable. Perform a multiple 

alignment project. Each alignment algorithm functions differently, so keep this in mind when 

assigning parameters and weights in the alignment, Perfiirm the alignment once the algorithm 

and its parameters have been selected. M e r  MEGALIGN completes the alignment, the user can 

begin analysis with an alignment display, phylogenetic tree, and tabular summaries, such as 

percent divergence, percent similarity and residue substitutions. 

MEGALIGN can align multiple sequences using the cluster method algorithm. The 

cluster algorithm makes no prior assumptions of relatedness. It groups sequences into clusters by 

examining the distances between all pairs. The cIusters are aligned painvise, then as groups. Use 

the cluster method to align sequences whose similarity might not necessarily be evolutionary. In 

the following explanation, pairwise parameters refer to parameters used in scoring alignment 

pain in the original matrix. Multiple alignment parameters refer to values used when scoring 

groups of sequences. 

The pairwise alignment parameters have the following options: k-tuple, gap penalty, 

window, and diagonals saved. A k-tuple is the number of residues compared to each other at a 

time. A k-tuple of 1 provides a more exhaustive search but takes longer. A higher k-tuple value 

finds fewer but longer matching regions. A lower k-tuple value finds shorter matching regions. 

A gap penalty deducts for gaps in the initial pairwise comparisons of the cluster alignment. Use a 

higher gap pendty to suppress painvise gapping and a lower gap penalty to encourage gapping. 

Once a gap is inserted, it can be removed by editing. This forces later clustering to proceed with 

gaps intact The window determines over how long a range the program searches for all possible 

or alternate k-tuples. The search first fmds a dominant region of similarity. It uses this region as 

its starting point and searches out diagonally until it reaches the end of the window. Diagonals 

are saved. In the pairwise caIculation, the diagonals saved are the best s c o ~ g  diagonals that are 



saved for each pair in the matrix. These diagonals are used in the clustering and scoring of 

ancestors. Saving more diagonals provides more options for MEGALIGN to consider. The 

multiple alignment parameters have two options: gap penalty and gap length penalty. For each 

gap introduced in the alignment, the program deducts a penalty from the score. A higher gap 

penalty suppresses gapping; a lower value promotes it. The program also assesses penalties 

based on the length of the gap. The more residues the gap spans, the greater the penalty. The 

program deducts these penalties from the overall score of the alignment. As with the gap penalty, 

the user can suppress or promote gapping by changing the default value. 

In the grouping stages, each method calcuiates ancestral taxa based on a weight table. 

Weight tables assign values for comparing residues based on evolutionary substitutions patterns, 

charge, structural, and chemical similarity. The user needs to select the PAM 250 weight table, 

the default, prior to performing an alignment. PAM stands for percent accepted mutations. One 

PAM represents one mutation per 100 residues; therefore, PAM250 means 2.5 mutations per 

residue. PAM tables are determined empirically by assessing evohtionary changes to sequences 

known to be closely related. 

Once the user have aligned a series of sequences and performed any manual alterations, 

they can visualize results with MEG.4LIGN. Two statisticat and graphical reports are available: 

alignment report and sequence distances. The alignment report displays the gaps, sequence 

names, and the aligned sequences in the project. The sequence distances show a plot of 

calculated similarity between each sequence pair. The table represents the initial painvise matrix 

used in the first step of the multiple alignment. The similarity index compares sequences i and j 

directly, without accounting for phylogenetic relationships. 

Similarity (i, j) = 100 x sum of the matchedlength -gap residues (i)-gap residues (j) 



Appendu 7.12 Quick Change Site-Directed Mntagenesis Kit: 

The Quick change site directed mutagenesis kit can be used to make point mutations and 

is performed using Pfu DNA polymerase, which replicates both plasmid strands with high 

fidelity. The kit allows site specific mutation in virtually any double stranded plasmid. This 

rapid, four-step procedure generates mutants with greater than 80 % efficiency. The protocol is 

simple to perform and uses mini-prep ptasmid DNA. The basic procedure utilizes a supercoiled, 

double-stranded DNA vector with an insert of interest and two synthetic oligonucleotide primers 

containing the desired mutation. The oligonucleotide primers, each complementary to opposite 

strands of the vector, extend during temperature cycling by means of Pfu DNA polymerase. On 

incorporation of the oligonucleotide primers, a mutated plasmid containing staggered nicks is 

generated. Following temperature cycling., the product is treated with Dpn I. The Dpn [ 

endonuclease (target sequence ~'-G~%TC-Y) is specific for methylated and hemi-methylated 

synthesized DNA. DNA isolated from almost all E. coli strains is dam methylated and therefore 

susceptible to Dnp I digestion. The nicked vector DNA incorporating the desired mutations is 

then transformed into E. coli. The small amount of starting DNA template required to perform 

this method, the high fidelity of the Pfu DNA polymerase, and the low cycle number all 

contribute to the high mutation efficiency and decreased potential for random mutations during 

the reaction, The protocol was performed as follows: 

*:* DNA plasmid preparation of clone GBSSlMMI (2.2 kb insert within 3 kb pBluescript = 5.2 

kb) was conducted using the CTAB plasmid isolation method described in appendix 7.4. 

+ Overlay each reaction with two drops of mineral oil. 

*:* Add the following components to a sterile microfuge tube. Place the tube on ice during 

pipetting. 

Components t Amount per reaction 

Distilled water 19.7 pL 

Cloned ffi DNA polymerase IOX reaction buffer # 1.8 pL 

dNTP mix (I0 m M  each) 0.5 pL 

W x M U i  1 Primer (5 pmo led@) 1 ltL 

WxMUTRI Primer (5 pmoles/$) 1 FL 

Clone GBSSIMMI (50 pg/&) 1 clL 

Cloned ffi DNA polymerase (2.5 UIpL) 4 1 a 
Total reaction volume 25 pL 



t All components stored at -20°C. 

$ 10 X reaction buffer: 03  M Tris-HCL (pH 8 4 ,  0.02 M MgSOj, 0.1 M KCL, 0.1 M 

(NB[r)tS04, 1 % Triton X-100, and 1 mg/mL nucleasafree BSA. 

Q Stratagene; One unit of activity is the amount of cloned Pfu DNA polymerase required to 

incorporate 10 nM of [ ~ T T P  into an acid insoluble form in 30 min at 72°C. Cloned Pfu 

DNA polymerase is isolated from the hyperthermophilic marine arcbaebacterium, 

Pyrocuccus furiosus. The multi-functional thermostable enzyme possesses both 5'- to 3'- 

DNA polymerase and 3'- to St-exonuclease activity which results in a 12-fold increase in 

fidelity of DNA synthesis over Taq DNA polymersae. CIoned Pfu DNA polymerase bas a 

temperature optimum between 72 and 78°C and remains > 95 % active following a 1 h 

incubation at 95°C. 

Denature the plasmid and anneal the oligonucleotide primers containing the desired mutation. 

Amplification conditions included 5 min at 9S°C, 18 cycles of 30 sec at 95"C, l min at 5S°C, 

and I I min (5.5 kb DNA template x 2 midkb extension time required by polymerase) at 

68°C. Using the non-strand-displacing action of Pfu DNA polymerase, extend and 

incorporate the mutagenic primers resulting in nicked circular strands. Store at 4OC 

overnight. 

Digest the methylated, non-mutated parental double-stranded DNA ternpiate with Dpn I. 

Add 1 pL of the Dpn I restriction enzyme (10 UIpL) below the mineral oil overlay. Gently 

and thoroughly mix each reaction, spin down for I min and incubate at 37°C for I h. 

Enzymatic reactions were terminated by heat inactivation at 8S°C for 30 min. 

Transform the circular, nicked double stranded DNA into INVaF' E. coli cells as described 

in appendix 7.7. After transformation, the E. coli cells repair the nicks in the mutated 

plasmid. 

Pick LO colonies for plasmid isolation and restriction analysis. 

Grow colonies overnight in 2 mL LB broth containing 50 p g / d  of ampicillin. 

Isolate plasmid using the CTAB method and c o n f m  presence and incorporation of a second 

Eco R[ restriction site by digesting the isolated plasmid DNA samples with Eco RI restriction 

endonuciease. Analyze the digestion products on a 2 % agarose gel- A 350 bp DNA 

fragment wit1 indicate the successful incorporation of the new Eco RI site. 



Appendix 7.13 Preparation of Ultra-Cornpetant E. coli Cells: 

This procedure is based on Inoue et al. (1990) and was performed as follows to make 

competent E. coli strains to be used for transformations: 

*:* Preparation of Ultra-Cornpetant E. coli Cells 

Inoculate a 2 mL LB (100 pglmL ampicillin) with an E. coli strain. Incubate overnight at 

37OC with shaking at 225 rpm. 

[noculate 250 mL of SOB medium (Dissolve 20 g bacto-tryptone, 5 g yeast extract, 0.58 

g NaCI, 0.19 g KCI, 2.0 g MgC12, and 2.5 g MgS04 in 950 rnL of de-ionized water. 

Adjust pH to 6.7-7.0. Adjust final volume to IL. Autoclave.) using an aliquot of the 

overnight culture. Incubate at 18OC with constant shaking at 225 rpm until OD = 0.6. 

Place cells on ice for 10 min. 

Centrifbge at 2500 x g for 10 min at 4°C. 

GentIy resuspend cells in 80 mL of ice cold transformation buffer (Dissolve 3.0 g Pipes, 

2.2 g CaC12, and 18.64 g KC1 in 950 mL of de-ionized water. Adjust pH to 6.7 using 

KOH. Add 10.9 g MnCI?. Adjust final volume to 1 L. Autoclave). 

Place cells of ice for 10 min. 

Centrifuge at 2500 x g for 10 min at 4OC. 

Gently resuspend cells in 20 mL of ice cold transformation buffer. 

Add dimethyl sulphoxide (DMSO) to a fmal concentration of 7 %. 

Place cells on ice for 10 min. 

Aliquot by pouring cells into 1-2 mL microfuge tubes and freeze in liquid nitrogen. 

Store at -70°C until needed. 

*:* Transforming Competent E. coli Cells with Plasmid DNA: 

J Remove a vial of competent E. coli cells from -80°C storage. Allow celis to completely 

thaw on ice. Resuspend ceIls by gently inverting tube. 

J Label 15 mL polypropyIene tubes and chill them on ice. Using a chiIled pipette tip 

transfer 100 pL of competent cells into each tube. Controls that were included in each 

transformation were: (1) competent bacteria that received 2 ng of supercoiled plasmid 

DNA and (2) competent bacteria that received no plasmid DNA. 

J Add 5-10 pL of ligation reaction to the competent cells. DO NOT PIPETIE MIXTURE. 

Use the tip of pipette to stir the mixture. Incubate cells on ice for 30 min. 



J Transfer tubes to a rack placed in a 42°C water bath. Heat shock cells for 90 sec. 

Circulate the water in the bath gentIy. DO NOT SHAKE TIIBES. 

4 Rapidly transfer tubes to an ice bath. Allow cells to chiil 1-2 rnin. 

J Add 800 pL SOC medium (Dissolve 20 g bacto-tryptone, 5 g yeast extract, 0.58 g NaCl, 

0.19 g KCI, 2.0 g MgCh, and 2.5 g Mg SO4 in 950 mL of de-ionized water. Adjust pH 

to 6.7-7.0. Adjust final volume to IL. Autoclave. Add 20 rnL of sterile IM glucose 

solution. To make the glucose stock solution dissolve 18 g glucose in 90 rnL de-ionized 

water. Adjust volume to 100 mL with de-ionized water. Sterilize by filtration through a 

0.22 micron filter.) to each tube Transfer cultures to a 37OC incubator for 1 h with 

constant shaking at 225 rpm. 

J Plate up to 200 pL of cells per 90 mm LB plate containing an antibiotic (100 pg/mL). 

Spread cells on plate. 

J Leave plates at room temperature till liquid has been absorbed. 

J Invert plates and incubate at 37OC. Colonies should appear in 12-16 h. Transfer plates to 

4°C for proper bludwhite colony color development. 

*/ Proceed with CTAB plasmid isolation protocol as described in appendix 7.4. 



Appendix 7.14 Bio-Rad Protein Assay Protocol: 

The Bio-Rad Protein Assay, based on the method of Bradford (measures total protein 

based on a colorimetric reaction between Coomassie Brilliant Blue G-250 and the protein in the 

sample), is a simple and accurate procedure for determining concentration of solubilized protein. 

It involves the addition of an acidic dye to protein solution, and subsequent measurement at 595 

nm with a spectrophotometer. Comparison to a standard curve provides a relative measurement 

of protein concentration. The Bio-kid Protein Assay is a dye-binding assay in which a 

differential color change of a dye occurs in response to various concentrations of protein. The 

absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-250 dye shifts from 

465 nm to 595 nm when binding to protein occurs. The Coomassie blue dye binds to primariIy 

basic and aromatic amino acid residues, especialiy q inine .  From 1 to 140 pg./mL of protein can 

be detected. The standard procedure was performed as follows: 

Prepare 10 mL of a Bovine S e m  Albumin (BSA) to a final concentration of I0 mg/mL. 

Dispense into 300 pL aliquots and store at -20°C until needed. 

Prepare the Bio-Rad Protein Assay Dye Reagent Concentrate (Cat. no. 500-0006) by diluting 

1 part dye reagent with 4 parts distilled, de-ionized (DDI) water. Filter through Whatman # I  

filter to remove particulates. Dilute 20 rnL of Bradford reagent in 80 mL of water. 

Prepare ten 13 x 100 mm test tubes on a test tube rack. Label tubes as 0, 10, 20,30. and 60. 

Each tube was done in duplicate. 

Prepare the six BSA protein standards as follows: 

Extmction 

Tube no. BSA (1 pglpL) Baffer t Water Total volume 

0 0 PL 15 pL 135 pL 150 pL 

10 10 @ 15 pL I25 pL I50 pL 

20 20 pL IS pL 115 pL 150 pL 

30 30 & 15 pL 105 pL 150 pL 

60 60 pL IS pL 75 @ 150 pL 

f Extraction buffer: buffer in which protein sample o f  interest is suspended. Interferences may be 

caused by chemical-protein andlor cbemieakiye interactions between chemicals in the extraction 

buffer and protein in the standards or sample. Thus, it is important to test the affect of each new 

extraction buffer on the protein asmy reaction. 



*:* Prepare six 13 x 100 mm test tubes on a test tube rack per protein sample of interest. Label 

tubes as 5, 10, and 15. Each tube was done in duplicate. 

O Prepare the six test reactions of each protein sample as follows: 

Tube no. Protein Sample t Water Total volume 

5 5 @  145 pL 150 pL 

10 10 pL 140 pL 150 pL 

15 15 pL 135 pL 150 pL 

t Resuspeneded in the same extraction buffer that was used to set up the six protein standards. 

Add 5 mL of the diluted dye reagent to each standard and protein sample tube. Vortex each 

tube and incubate 5 min at room temperature. Absorbance will increase over time; samples 

should not be incubated at 24OC for more than 1 h. 

Measure the absorbance at 595 nm of the protein standards using 3.5 rnL disposable cuvettes 

(Cat. no. 223-9950). Use the duplicate protein standard containing no BSA (0 pg) to blank 

the DU Series 7400 Beckman Spectrophotometer at 260 nm. The protein analysis mode 

calcdates a linear standard curve, as detined 

Absorbance 595 ,,,,,= (Concentration x slope) + A-intercept 

where concentration is the concentration of a known protein standard, slope is the slope of the 

calibration line, and A-intercept is the absorbance value that is intercepted by the calibtation line. 

9 BSA standards were used to set up a linear relationship between absorbance at 595 nm and 

protein concentration (pdpL). The linear range of the assay for BSA has been set up to be 

10-60 pg, 

*:* Measure the absorbance at 595 nm of the protein samples of interest using 3.5 mL disposable 

cuvettes. Protein concentrations (pg/pL) were extrapolated h r n  the absorbance vs. protein 

concentration calibration curve. Each protein concentration value needs to be divided by the 

volume of protein sample (i.e., 5, 10, or 15 pL) used to perform the assay. The final protein 

concentration represents the amount of protein in the sample in &.L. 

*:* Immediately use protein samples to conduct enzyme assays. 



*:* Protein samples can be aliquoted (30 &vial) and stored at - 20°C if re-suspended in 10 % 

glycerol, These frozen samples can be used for SDS-PAGE analysis. 



Appendix 7.15 Starch Granule Isolation: 

Starch granule isolation was performed as described by Zhao and Sharp (1996) as 

described beIow: 

In a 1.5 m L rnicrofuge tube, soak two to three mature grains in 1 mL distilled water at J0C 

overnight. 

Centrifuge at 15 000 x g for 5 min and discard supernatant. 

Crush pellet using a small plastic pestle. Re-suspend in 500 pL distilled water. 

Layer on I rnL of 80 % cesium chloride solution and centrifuge at 15000 x g for 5 rnin to 

pellet starch. Discard supernatant. Re-suspend starch pellet in 300 pL of water. Repeat 

cesium chloride purification two more times. 

Remove the supernatant and wash the starch pellet with I mL washing buffer I(0.055 M Tris- 

HCL pH 6.8,2.3 % SDS, and 10 % Glycerol; Add 5 % a-mercaptoethanol just prior to use of 

buffer). Centrifuge at 15000 x g for 5 min. Repeat wash once again. 

Wash three times with distilled water, once with acetone, and vacuum dry I0 min. 

Centrifbge at 15 000 x g for 5 min after each wash. Store with a desiccant at 4°C. 



Appendix 7.16 One-Dimensional SDS Polyacryhmide Gel Electrophomis: 

Gel electrophoresis is one of the most Frequently used and most powefil techniques in 

laboratory research. This method separates biomolecules in complex mixtures according to their 

physical properties of size and charge, It is helpful to have a basic understanding of 

electrophoresis concepts so that when a new sample is being assessed, a logical approach can be 

taken in selecting the proper tools. This section provides some basic theoretical aspects of gel 

electrophoresis. 

During electrophoresis, there is an intricate interaction of sample, gel matrix, buffers, and 

electricity resulting in separate bands of individual molecules. Applications for electrophoresis 

are very broad, including protein, nucleic acid, and carbohydrate work. Protein electrophoresis is 

generally performed in polyacrylamide gels. while nucleic acid electrophoresis generally uses 

agarose gels, although TBE polyacrylamide gels are common for resolving DNA Fragments of 

50-2000 bp sizes. Polyacrylamide gels are composed of long linear polyacrylamide chains 

crosslinked with bis-acrylamide to create a network of pores interspersed between bundles of 

polymer. The structural features of a gel can be thought of as a threedimensional sieve, made up 

of random distributions of solid material and pores. The ability of proteins or nucleic acids to 

move through the gel depends on their size and structure, relative to the pores of the gel. Large 

molecules can usually be expected to migrate more slowly than small ones, creating separation of 

the distinct particles within the gel. 

By convention, polyacrylamide gets are characterized by % T, which is the weight 

percentage of total monomer including crosslinker (in g/100 mL). The % T gives an indication of 

the relative pore size of the gel. In general. pore size decreases with increasing % T. The % T can 

be calculated by the following equation: 

% T = grams of acrylamide -t grams olbis-acrylamideitotal volume (mL) x 100 

The polyacrylamide % T can be made as a single continuous percentage throughout the gel From 

7.5 up to 20 %. % C is the crosslinker ratio of the monomer solution. The % C can be calculated 

by the following equation: 

% C = grams of bis-acrylamide/grams of acrylamide + grams of bis-acrylamide x 100 

In general, pore size decreases with hicreasing % C. The choice of proper acrylamide 

concentration is critical to the success of the separation. Too high % T can lead to exclusion of 

proteins h m  the gel, and too low % T can decrease sieving. 



The electrolyte buffer is a very important part of the electrophoresis system. It 

determines power requirements and affects separation. Sample proteins vary widely in their 

response to the constituents and make-up of the buffer. The buffer system is composed of both 

the buffer used in the gel and the running buffer. Discontinuous buffer systems were devised 

initially for use with undenatured, or native, proteins. By using different buffers in the gel and in 

the electrode solutions, and adding a stacking gel to the resolving gel, the samples can be 

compressed into a thin starting band, from which finely resolved final bands of individual 

proteins separate. A discontinuous gel has two main parts. The upper gel is known as a stacking 

ge[ and is made o f a  large pore matrix (typically 5 % T) that acts as an anticonvective medium. 

The proteins pass easily through this matrix between leading and trailing ion fronts. Proteins 

become much more compressed into narrow starting zones by this method than is possible with 

any mechanical means. The lower resolving gel is made of a dense matrix that acts as a sieve. 

To overcome the net charge effect (where high molecular weight proteins with high net negative 

charge migrate further into the gel than lower molecular weight, less strongly charged, proteins) 

on protein gels sodium dodecyl sulfate (SDS), a detergent, is incorporated into the system. SDS 

is a strong protein denaturing detergent. SDS is often used in biochemicai preparations because it 

binds tenaciously to proteins (about 1.4 g SDSIg of protein or about one SDS molecule for every 

two amino acid residues) causing them to assume a rod-like shape. The Iarge negative charge 

that the SDS imparts masks the protein's intrinsic charge so that SDS-treated proteins tend to have 

identical charge-to-mass ratios and similar shapes. In the denaturing (SDS) discontinuous 

system, proteins are denatured by heating them in buffer containing SDS and thioI reducing B- 

mercaptoethanol (reductively cleave disulfide bonds, S-S, formed between Cys residues of a 

polypeptide or more than one polypeptide). The resultant polypeptides take on a uniform charge- 

to-mass ratio and rod-like dimensions imparted by the SDS, proportional to their molecular 

weights. 

The denaturing (SDS) discontinuous system can be utilized to estimate the molecular 

weight of a protein of interest. Molecular weights are determined in SDS-PAGE by comparing 

the mobilities of test proteins to the mobilities of known protein markers. The relative mobility, 

Rc, is defined as the mobility of a protein divided by the mobility of the ion fiont. Because the 

ion front is difficult to locate in practice, mobilities can be normalized to the tracking dye that 

migrates only slightly behind the ion front 

Rf = distance to bandldistance to dye h n t  



In each gel, a lane of standard proteins of known molecular weights is run in parallel with the test 

proteins. Plots of the logarithm of protein molecular weight (log Mr) versus the relative mobility, 

Rt fit reasonably straight lines, The Rrs of the test proteins are then interpolated into the standard 

curve to give their approximate molecular weights. 

Regulated DC power supplies for electrophoresis should control voltage, current, and 

power. All modes of operation can produce satisfactory results, but for best results and good 

reproducibility, some form of e[ecmical control is important. The choice of which electrical 

parameter to control is almost a matter of preference. The major limitation is the ability of the 

cell to dissipate the heat generated by the electrical current during an electrophoretic run. This 

Joule heat can have many deleterious consequences, such as band distortion, increased diffusion, 

enzyme inactivation, and protein denaturation. In general, electrophoresis should be performed at 

voltage or current settings at which the run proceeds as rapidly as the chamber's ability to draw 

off heat allows. Constant current conditions, as a rule, result in shorter but hotter runs than do 

constant voltage runs. The increased run times of constaiit voltage conditions give increased time 

for the proteins to diffise, but this appears to be offset by the temperature-dependent increase in 

diffusion rate of the constant current mode. 

A general overview of the stages in protein separation using denaturing discontinuous 

gels is described as follows. (1) Denatured sample proteins are loaded into the wells. (2) Voltage 

is applied and the samples move into the gel. The chloride ions already present in the gel run 

faster than the SDS-proteins and form an ion front. The glycinate ions flow in from the running 

buffer and form a front behind the proteins. (3) A voltage gradient is created between chloride 

and glycinate ions, which sandwich the proteins between. (4) The proteins are tightly stacked 

between the chloride and glycinate ion fmnts. At the interface between the stacking and 

resolving gels, the percentage of acryIarnide increases and the pore size decreases. Movement of 

the proteins into the resolving gel is met with increased resistance. (5) The smaller pore size 

resolving gel begins to separate the proteins based on molecular weight only, since the charge-to- 

mass ratio is equal in all the protein sample. (6) The individual proteins are separated into band 

patterns ordered according to motecular weight 

Onedimensional SDS Polyacrylamide Gel Electrophoresis was performed as described 

by Zhao and Sharp (1996) as descnied below: 

*:* Wash two Protean II xi Bio-Rad outer (183 x 20 cm) and two inner (16 x 20 cm) plates with 

soap, rinse well, and spray with 70% ethanol. AlIow to air dry. 

*:* Place 0.75 mm spacers between gel plates and clamp in place using apparatus setter. 



*:- Prepare 45 mL of a 16 % (% T = 16) or 20 % (% T = 20) resolving gel (0.75 mm) solution by 

adding the following components to a 50 mL Falcon tube: 

Amount for Amount for 

Components two 16 % gels two 20 % gels 

Distilled water 8.8 mL 2.8 ml, 

10% SDS 450 pL 450 pL 

30 % Acrylamide: 

0.1 % Bis-acrylarnide 

Mix components and just before pouring add: 

10 % Ammonium 450 pL 450 pL 

persulfate 

TEMED 

-3 Pour resolving gel mixture using a 10 mL pipette till the mixture reaches - 5 cm From the top 

of the gel. 

*:* Add drops of iso-butanol onto the resolving gel layer. Allow gel to set 30 rnin. 

-3 Pour off the overlay and wash six times with de-ionized water. Remove any remaining water 

with the edge of a piece of filter paper. 

-3 Prepare 24 mL of a 5 % stacking gel (0.75 rnrn) solution by adding the following components 

to a 50 mL Falcon tube: 

Components Amount for two 5 % gels 

Distilled water 16.2 mL 

10 % SDS 240 pL 

29 % Acrylamide: I % Bis-acrylamide 4.2 rnL 

Mix components and just before pouring add: 

10 % Ammonium persdfate 240 pL 

TEMED 24 pL 



*:* Wash 14 well (0.75 mrn thick, 18 mm long , 8 mm wide ) combs with water and dry with 

ethanol. Pour stacking gel mixture onto the polymerized resolving gel. Remove air bubbles 

and insert the comb- Let polymerize for 30 min. 

*:* If gel cannot be run the same day then wrap gels, without removing the combs, in saran wrap 

and store at 4'C until next day. 

*:* Prepare 4 L of Trisglycine running buffer (25 rnM Tris base pH 8.0, 533 mM Glycine pH 

8.3, and 0.1 % SDS). Stir at 4OC until needed. 

*:* While the stacking gel is polymerizing prepare the protein samples for loading onto gel as 

follows: 

J For gels to be Silver stained. prepare the samples by heating 10 mg of starch to 100aC for 

10 min in I40 pL extraction buffer (O.62SM Tris-HCL pH 6.8,4 % SDS, 10 % glycerol, 

and 0.005 % bromophenol blue; add 5 % Rmercaptoethanol just prior to use of buffer ) 

to denature the proteins. (Concurrently prepare and denature a sample containing marker 

proteins of known molecular weight). Cool the gelatinized starch samples on ice for 5 

rnin and centrifuge at 15 000 x g for 20 min at 4OC. Load 17 pL of supernatant/lane 

(avoid loading the gelatinized starch pellet). 

J For gels to be Coornassie stained, prepare 10 mg of starch in 280 pL e.xhaction buffer 

and load 70 pL of supernatant/lane. Other steps are the same as described above. 

J For gels to be Western blotted, prepare 10 rng of starch in 140 pL extraction buffer and 

load 10 pL of supernatanthe. Other steps are the same as described above. 

J A sample containing a final concentration of I pg (silver staining) or 5 pg (Coomassie 

staining) of Bio-Rad High range protein standard (Cat. no. 161-0303; standard includes 

five proteins with molecular weights of 200, 1 16, 97,66, and 45 kD) was prepared in 15 

pL of extraction buffer and denatured at 9S°C for 10 min. A Bio-Rad High range pre- 

stained protein standard was loaded onto gels to be used for Western blotting in order to 

determine the orientation of the gel and to verifL transfer efficiency. 

*:* Remove the combs. Wash wells with distilled water to remove unpotymerized acrylamide. 

Straighten the teeth of the stacking gel. Mark wells with marker. Mount gel into the 

electrophoresis apparatus. 

*:* Test for leaking by adding distilled water to the top of the running apparatus. 

*:* Put the gels in the running chamber. Add running buffer to the top and bottom reservoirs. 

Disperse air bubbles h m  the bottom of gel plates. 

*:* Load samples into the bottom of the wells. 



Q Connect cooling bath hoses to f rotean U xi Bio-Rad vertical electrophoresis apparatus. Turn 

on cooling chamber. Wait till the gel apparatus fills with water and fill cooling chamber to 

brim with distiIled water. Set temperature at 10aC. Set the Bio-Rad 3000 xi power supply at 

a constant current of 15 &gel or 30 mAD gels for 21 h. 

-3 Disassemble gel sandwich by prying the plates apart. Remove stacking gel after making 

transfer buffer for Western blot and/or fmtive for silver stain or Coomassie Brilliant Blue 

stain. 



Appendix 7.17 Protein Detection in Cooma~sie Stmining: 

Polypeptides separated by SDS-polyacrylamide gels can be simultaneously fixed with 

methanol:glacial acetic acid and stained with Coomassie Brilliant Blue R250 dye. The gel is 

immersed for several hours in a concentrated methanoVacetic acid solution of the dye, and excess 

dye is then allowed to diffuse from the gel during a prolonged period of destaining. Staining was 

performed as described by Sarnbrook et aL(1982) as follows: 

*:* Dissolve 0.25 g of Coomassie Brilliant Blue R250 (Fisher Scientific) in 90 mL of 

methanolwater (1:1 vlv) and LO mL of glacial acetic acid. 

*:* Immerse the gel in at least 5 volumes of staining solution and place on a slowly rotating 

platform overnight at room temperature. 

*:* Remove the stain and save it for h r e  use. Destain the gel by soaking it in the 

methanoVacetic acid solution described above without the dye on a slowly rocking platform 

for 4-8 h, changing the destaining solution three or four times. 

*:* The more thoroughly the gel is destained, the smaller the amount of protein that can be 

detected by staining with Coomassie Brilliant Blue. Destaining for 24 h usually allows as 

little as 0.1 pg of protein to be detected in a single band. 

*:* After destaining, gels may be stored indefinitely in a 20 % glycerol solution in a sealed 

plastic bag without any diminution in the intensity of staining, Stained gels should not be 

stored in destaining buffer, which will cause the stained protein bands to fade. 

*:* Photograph the stained gel to make a permanent record. 



Appendix 7.18 Protein Detection in Western Blotting: 

When proteins are transferred from a gel onto a membrane, they are readily accessible to 

antibody probes. This has led to the development of a variety of highly specific and sensitive 

assays collectively known as blots. Frobing of membrane-bound proteins is generally done 

immunologically with antibodies, and is known as immunobioning or Western blotting. A 

typical immunoblotting experiment consists of six interrelated steps. (1) Proteins are first 

fractionated by electrophoresis in a polyacrytamide gel. (2) The proteins are then transferred 

from the gel to a membrane where they become immobilized as a replica of the gel's band pattern, 

(3) Next, unoccupied protein-binding sites on the membrane are saturated to prevent non-specific 

binding of antibodies. (4) The blot is then probed for the proteins of interest with specific, 

primary antibodies. (5) Secondary antibodies, specific for the primary antibody type and 

conjugated to detectable reporter groups, such as enzymes, are then used to Iabel the primary 

antibodies. (6) Finally, the labeled protein bands are made visible by the bound reporter groups 

acting on an added substrate. As little as 1-5 ng of an average-sued protein can be detected by 

Western blotting. The following protocol was used for the detection of proteins by Western 

blotting: 

*:* Transfer of Denatured Proteins to Membrane: 

Prepare two 0.75 mm gels, one for Western blotting and the other for siIver or Coomassie 

Brilliant Blue R250 staining, as described in appendices 7.21 and 7.17, respectively. 

Prepare 3 L of transfer buffer (25 mM Tris base, 192 rnM glycine, 0.05 % SDS, and 20 % 

methano I). 

Pre-chill transfer buffer, with constant stirring, at 4'C before performing the transfer. 

Powder must be washed off gloves at at1 times. Avoid touching gel or membrane with 

hands and metal objects (e.g., tweezers or scalpel). Instead use a clean glass rod to 

manipulate the gels. 

Remove the stacking gel from the gei to be transferred. 

Wash a plastic container using detergent and rinse well. Equilibrate gel 30 min at 24OC 

in 200 mL of transfer buffer. Avoid keeping gel in buffer too long since the gel will 

expand. 

Pre-wet the hob i ton-P  membrane (Millipore; 0.45 micron pore; hydophobicity From 

the polyvinylidene difluoride PVDFJ in the membrane) in 100 % methanoi or an 

aIternative organic solvent For (1-2 sec) until the entire membrane is transtucent. The 

hydophobicity of the PVDF membranes makes it impossible to wet the membrane with 



aqueous solutions. Submerge the membrane using - 200 mL of transfer buffet for 15 

min at room temperature with gentte shaking. At this point the membrane is ready to 

bind proteins in any blotting application. Do not allow membrane to dry OUL 

Use detergent to wash all parts of the transfer apparatus, gel cassettes, and fiber pads. 

Rinse with distilled water. This step is used to reduce background on the blot. 

Wearing gloves, set up the transfer apparatus as follows: 

Lay the bottom electrode (which will become the anode, positive, or red coded end) 

flat on the bench, graphite side up: 

Place on the electrode a porous pad, three sheets of 3 M M  paper that have been 

soaked in transfer buffer. Stack the sheets one on top of the other so that they are 

exactly aligned. Using a glass pipette as a roller, squeeze out any air bubbles. 

Place the membme filter on the stack of 3MM paper. Make sure that the filter is 

exactly aligned and that no air bubbles are trapped between it and the 3 M M  paper. 

Orient the gel so that the mark on the filter corresponds to the bottom left-hand 

comer of the gel. Squeeze out any air bubbles with a gloved hand. 

Place the final three sheets of 3MM paper on the gel, again making sure that they are 

exactly aligned and that no air bubbles are trapped. 

Place a porous pad on the three 3MM paper sheets. Remove air bubbles. 

Place the upper electrode (which will become the cathode, negative, or black coded end) 

on top of the stack, graphite side down. Connect the etecmcal leads (positive or red lead 

to the anode electrode). Fill the electrophoresis tank with cold transfer buffer. 

Connect transfer system to a cooling bath set at 4OC. 

Transfer at 30 V for 6 h with constant cooling at 4'C. 

Twn offthe electric cutrent and disconnect the leads. Disassemble the transfer apparatus 

from the top downward, peeling off each layer in turn. Transfer the gel to a tray 

containing Coomassie Brilliant Blue, and stain it as described in appendk 7.1 7. This will 

alIow the user to check whether e[ecbophoresis aansfer is complete. 

Mark the orientation of the get by cutting off the top left-hand comer of the membrane. 

Remove the membrane &om the sandwich and m s f e r  it to a clean piece of 3MM paper. 

Allow the membrane to dry for at least 2 h before proceeding to the detection of the 

proteins to improve the retention of proteins on the filter during subsequent processing. 

If the user does not plan to probe the membrane within a day then store the membrane 

between 2 pieces of filter paper until needed. 



Just as proteins transfltrred h m  the SDS-polyacrylarnide gel can bind to the PVDF filter, 

so can proteins in the immunological reagents used for probing. The sensitivity of Western 

blotting depends on reducing this background of non-specific binding by blocking potential 

binding sites with irrelevant proteins. Of the several blocking solutions that have been devised, 

the best and least expensive is non-fat dried milk It is easy to use and is compatible with all of 

the immunological detection systems in common use. The Western blot will be probed in two 

stages. An unlabeled antibody specific to the target protein is first incubated with the filter in the 

presence of blocking solution. The filter is then washed and incubated with a secondary reagent- 

anti-immunoglobulin that is coupled to an alkaline phosphatase (AP) enzyme. After t - i e r  

washing, the antigen-antibody-antibody complexes on the filter are located by an enzymatic 

reaction. The substrate 5-bromo-4-chloro-3-indolyl phosphatdnitro blue tetrazolium 

(BCPMBT) is de-phosphorylated into a dense blue compound by immunolocalized alkaline 

phosphatase. NBT is an electron acceptor in an NBT-BCIP reaction. 

*:* Incubate Filter with Primary Antibody: 

J Prepare 1 L of blocking buffer A (100 mM Tris CI, pH 7.5, 225 m M  NaCI, 5 % [wlv] 

non-fat dried milk, and 0.1 % Tween 20). 

Place the filter in a clean plastic dish which is appropriate for the dimensions of the filter. 

Incubate the filter for 2 h in 150 mL of blocking buffer A at 24OC with gentle agitation on 

a platform shaker. 

J Discard the blocking buffer A. [mmediately incubate the filter with a primary antibody 

directed against the target protein (e.g, rabbit antiserum prepared using a 59-60 kD Wx-D 1 

protein isolated fiom the endosperm starch of wheat kernels [Demeke er af., 1997aI; 

Appendix 7.28). Dilute the primary antibody in blocking buffer A (1:2500) by adding 20 

pL of antibody to 50 mL of blocking buffer A. Incubate at 24OC with constant agitation 

for 2 h. Excessive Freeze-thawing of the primary antibody, stored in 0.5 mL aliquots at - 
80aC, can reduce the efficiency of detection of the protein of interest, The background of 

non-specific binding increases as a hnction of the time and temperature of incubation. 

J Wash membrane four times for 10-15 min, with constant agitation, using 200 mL 

blocking buffer A each wash. 

*:* Incubate Filter with Secondary Antibody: 

J Replace last wash solution with a diluted secondary antibody solution. Dilute secondary 

antibody (Goat Anti-Rabbit AIkaline Phosphataseconjugated anh'body; Stratagene; Cat 



no. 200374) in blocking buffer A (1:5000) by adding 10 pL of antibody to 50 m~ of 

blocking buffer A. Incubate 3 h at 24°C with constant agitation. (Note: The goat 

antibodies to rabbit IgG are isolated from serum by affinity chromatography using 

agarme-immobilized antigen. All non-specific antibodies and other senun proteins have 

been removed. The antibodies have been directed against the whole IgG molecule and 

react with both heavy and light chains.) 

J Wash membrane four times for 10-15 min, with constant agitation, using 200 mL of 

blocking buffer A each wash. 

+ Visualization of the Cbromogenic Substrate: 

J Prepare 200 rnL of blocking buffer B (100 mM Tris Cl, pH 7 5 2 2 5  mM NaCl, and 5 % 

[w/v] non-fat dried milk; Tween 20 interferes with the color development in procedure). 

Wash membrane twice for 15 min, with constant agitation, using 100 mL blocking buffer 

B each wash to remove excess Tween 20. 

J Prepare I00 rnL of alkaline phosphate buffer (100 mM Tris HCI, pH 9.5, 100 mM NaCI. 

and 5 mM MgCI2). Rinse filter with 10 mL of alkaline phosphate buffer three times to 

remove excess non-fat milk. 

J Prepare chromogenic substrate mixture by diluting NBT (0.7 % final conc.; Stratagene: 

Cat. no. 300130) and BCIP (0.3 % find c0nc-i Stratagene; Cat, no. 3000045) in alkaline 

phosphate buffer. Add 0.1 mL of chromogenic substrate mixture per square inch of filter. 

Incubate filter in the dark at 24°C with shaking for 10-30 min until the desired band 

intensity is reached. The chromogenic substrate mixture should be used within 30 min. 

If the membrane is left in the color development solution too long, excess precipitate 

formed by the enzyme can settle out on the membrane and cause high background. 

J Immediately rinse the filter with water, dry, and photograph. 



Appendix 7.19 Over Expression of the Wary Protein in RED8 Bacterial Strain: 

The RH98 bacterial strain (glycogen starch synthase deficient) originally obtained from Dr. 

R. Hengge-Aronis (Dept. of Biology, Univ. of Koostanz, Germany; Muffler er of. 1997) 

contained plasmid pGP1-2 which confers kanamycin resistance (Edwards et a2. 1995): 

J Revive the RH98 cells stored at -80 O C  by scraping off solid ice with a sterile wire loop. 

J Streak the splinters on to an LB plate containing kanamycin (10 ug/mL). Incubate at 37 

O C  overnight. 

./ Re-streak cells until large single colonies are growing on the LB plate. Re-streak the 

cells each week to maintain the viability of the bacterial strain. 

Competent RH98 cells (mutant strain), prepared as outlined in appendix 7.13, were 

transformed with pKK388-1 or pMMd vectors which confer ampicillin resistance. RH98 

containing pKK388- I was the negative control. Competent JM I0 1 cells (wildtype strain) were 

transformed with pKK388-1 (positive control). Over expression of the Wx protein in RH98 cells 

was performed as  follows: 

J Inoculate a 45 mL LB culture containing (100 pg/mL ampicillin) in 50 mL Falcon tube 

using a single colony of RH98 containing pMWxI- Prepare separate tubes for negative 

and positive controls. Incubate at 37°C for I I h with shaking at 250 rpm to an OD 600 = 

0.6. 

J Induce cultures with a final conc. of 5 m M  LPTG. Incubate at 27T at 250 rpm 5 h. 

Collect cells by centrifugation at 12 000 x g for 10 min using 50 mL centrifuge tubes at 

4°C. 

J Resuspend cells in 500 pL of ice-cold extraction buffer (9.8 mL 50 rnM Tris-acetate pH 

8.5 and 10 mM EDTA, 0.5 g Sucrose [5  ?$ wiv], 50 pL I M DTT, 57 pL PMSF [I00 

pghnL], 20 pL Leupeptin [2 pg/mL]). 

J Lyse cells (3 x 20 sec sonication) and remove cell debris by cenmfugation for 15 min IS 

000 x g at 4OC. 

J Determine Protein content as described in appendix 7.14. 



Appendix 730 Starch Synthase Assay: 

The transfer of glucose onto exogenous primer (amylopectin) from ADP-glucose was 

measured in a total reaction volume of 0.2 mL containing: 70 nmol ADP [I4c] glucose 

(Arnersharn Life Science; Specific activity of 627 cpmlnmol; Adenosine diphospho-D-{U- 

lJ~]glucose, ammonium salt is prepared by enzymatic synthesis from a l p h a - ~ - ~ - ' ~ ~ ] ~ l u c o s e - ~ -  

phosphate), 0.1M bicine (pH 8.5), 0.025 M potassium acetate, 0.01 M GSH, 0.005 M EDTA, 

0.01 mM DTT., 0.001 g potato amylopectin (Sigma Type UI), and crude protein extract. Starch 

synthases (EC 2.4.1.2 1) cataIyze the foIIowing generalized reaction: 

ADP-glucose + (glucosyl) , - ADP + (glycosyl) ,, 

A generalized enzyme assay has several distinct parts described below. (1) The reaction 

mixture is prepared and the reaction can be started by the addition of the substrate. (2) The 

reaction is incubated at a specific temperature for a predetermined time. (3) The enzymatic 

reaction is terminated by heat inactivation. (4) The substrate is washed away from the product of 

the incubated mixture using a methanol:KCt solution. Large polymers (i.e., Glucan product) 

bind to filter paper and small polymers (i.e., radioactive ADP ["c] glucose substrate) do not bind 

to the tilter paper. Non-incorporated substrate is washed off using a methanol: KCL solution. (5) 

The measurement of radioactivity in each sample is done using a scintillation counter. (6) The 

progress of the reaction is given by the amount of radioactivity product recovered. 

The following starch synthase enzyme assay is based on Denyer ec at. (1995): 

9 Prepare a reaction mixture on ice for the appropriate number of triplicated samples to be 

assayed, The recipe is for one reaction and must be adjusted for multiple reactions, including 

the number of fripiicated sample reactions, positive controls, and negative controls plus an 

additional reaction volume. ADP(U-~'C) glucose (Fig. 7.5) was added to individual reaction 

tubes to activate the reactions. 

. . 
OU OH 

Fig. 7.5 Stroctore of ADP-D-@'CI glucose. 



Components Amount per reaction 

Distilled Water 110 pL 

Potato amy lopectin t 0.001 g 

0.5 M bicine, pH 8.5 40 pL 

0.25 M potassium acetate 20 pL 

1 M D T T  2 PL 

0.5 M EDTA, pH 8.0 2 PL 

Glutathione (GSH) 0.00061 g 

Crude protein extract (3, I5,30, or 60 pg) 25 pL 

ADP(U-I4 C) Glucose(0.32 pCU20 pL aliquoted/vial) 1 PL 

Total reaction volume 200 pL 

7 Add the amylopctin and distilled water and heat the solution 30 min at 90°C to solubilize 

the amylopectin. Oecasionaily invert tube gently 5 times to mix contents. 

*3 Mix the bulk reaction mixture well. The final volume of each sample reaction is 200 pL. 

Aliquot 175 pL of the bulk reaction mixture into the appropriate number of sterile 1.5 rnL 

screw cap tubes and place the tubes on ice. 

*:* Dilute 3, 15, 30, or 60 pg of crude protein extract in a total volume of 25 pL of extraction 

buffer. Add the appropriate protein concentration to the appropriately labeled tube. Cap 

tubes and gently vortex the tubes to mix the reaction components. 

*:* For each protein concentration, triplicated assay mixtures containing heat-denatured cell 

extracts (3, l5,30, or 60 pg) were used as negative controls. 

*:* Add 1 pL of ADP(U-"c) glucose per reaction and incubate the activated reactions in a water 

bath set at 2j°C for 30 rnin. 

*:* Stop reactions by heating for 5 min at 100°C. 

*:* Aliquots of 100 pL (note: muItiple the detected counts per min of each sample by 2 to 

measure the activity in the total 200 pL reaction) were removed from each reaction and 

absorbed on Whatman 3 1 ET filter discs (1 inch sq.), which were washed 4 X 30 min with 75 

% Methanol/ 1 % KCL solution. 



Wash 10 filters per 1 L beaker at a time with 800 mL 75 % Methanol I % KC1 for 30 rnin. 

Repeat wash 4 times in totat to remove unincorporated ADP['~C] glucose. 

Put controt filters in 15 mL of Opti-fluor scintillation liquid (Packard) contained in plastic 

vials. The starch synthase activity was calculated as nmol of ADP-glucose incorporated into 

glucan per milligram of protein per min after subtraction of background values obtained from 

heat denatured extracts. 

Differential incorporated ADP[ '~C] -~~UCOS~ into glucan was determined by reading the 

samples in plastic vids on a 1219 RackBeta Liquid Scintillation Counter (Fisher Scientific). 

The basic principle behind the counter monitor is that the radioactive decay gives rise to 

multiple photon reactions as one disintegration releases energy sufficient for many photons to 

be produced in the scintillation cocktail. Note: It is important that the discs are washed 

carefb[Iy to remove the unincorporated A D ~ [ ~ ~ ~ ] - ~ l u c o s e  because the detector can not 

differentiate between the radiolabel of the ADP["c]-glucose (i-e., substrate) and that of the 

glucan (i-e., product). 

The counts per minute (cpm) data used to calculate the amount of ADP [ '"~]-~lucose 

incorporated into giucan using four d8erent crude protein concentrations From E. coli strains 

JMIOI and W 8  transformed with pKK388-1 or pMWxI is presented in Table 7.4. The 

following equation was used to calculate the nmol ("k) glucose incorporated per mg of 

protein per minute of incubation: 

nmoI ("c) glucose mgl mid' = (cpms - cprnNc)/627 cpmhmot x I/mg protein x [/min 

where cpms is the counts per minute of a given sample, cprn~c is the counts per minute of the 

heat denature negative control, 627 cpmhmol is the specific activity of the ADP(U-"c) glucose, 

rng protein is the milligms of total protein extract used per reaction (0.003,O.Ol SI 0.03, or 0.06 

rng in this study), and min is the time reactions were incubated at 24°C. 

O Statistical Differences Between Means: 

Compare means using an unpaired t-test as described in appendix 7.22. 



Table 7.4. Counts per minute used to calculate starch syntbase activity using diflrerent 

protein concentrations from JMlOl and RH98 (transformed with pKK388-1 or pMWxl) t. 
Soluble protein extract 

(CrgnOO uL reaction) 

Sample Replication 3 15 30 60 

Mean 

1 

2 

3 

Mean 

Positive control: [MI0 1 pKK388-I1 I 

2 

3 

Mean 

Negative control: [JM I01 pKK388-I1 1 

Mean 

f The half-life of "C is 5760 years. 



Appendix 7.21 Protein Detection in Silver Staining: 

A number of methods have been developed to stain polypeptides with silver salts after 

separation by SDS-PAGE. In every case, the process relies on differential reduction of silver ions 

that are bound to the side chains of amino acids. The following method makes use of silver 

nitrate. Silver staining is approximately 100- to 1000-fold more sensitive than staining with 

Coomassie Brilliant Blue R250 and is capable of detecting as little as 0.1-1.0 ng of polypeptide in 

a single band. 

Wear gloves and handle the gel gently because pressure and fingerprints will produce staining 

artifacts. in addition, it is essential to use clean glassware and de-ionized water because 

contaminants can greatly reduce the sensitivity of silver staining. 

Separate the proteins by electrophoresis through an SDS-polyacrylarnide gel as described in 

appendix 7.16. Fk the proteins by incubating the gel for 30 rnin at 24OC with gentle shaking 

in a 300 mL of a soiution of methano1:glacial acetic acid:water (SO: 10:40). 

Discard the f~xing solution using aspiration, and add 300 rnL of a solution of methanol:glacial 

acetic acid:water (5.5:7.5:87). Incubate the gel 30 min at room temperature with gentle 

shaking. 

Discard the fixing solution using aspiration, and rinse the gel with 300 mL of de-ionized 

water. Incubate for 10 min with gentle shaking. Repeat rinse two more times. The gel will 

swell slightly during rehydration. 

Discard the last of the water washes and add 300 mL of a freshly prepared 0.0005 % DTT 

solution. tncubate for 30 min with gentle shaking. 

Discard the D'IT solution and add 300 mL of a 0.1 % AgN03 (freshly diluted from a 20 % 

stock, stored in a tightly closed, brown glass bottle at room ternperature). Incubate for 30 min 

with gentle shaking. 

Discard the silver nitrate solution using aspiration, and rinse the gel 20 sec under a stream of 

de-ionized water. Do not allow the surface of the gel to dry, otherwise staining artifacts will 

occur. 

Prepare 450 mL of developing solution 3 % sodium carbonate, 0.05 % formalin (formalin is a 

LO % formaldehyde solution in water; formaldehyde is usually obtained as a 37 % solution in 

water [check that the pH of the concentrated solution is greater than 43). Add 150 mL of 

freshly prepared developing solution and incubate the gel at 24OC with gentle agitation for 30 

sec. Decant and rinse the gel with water for 20 sec. Repeat once again. 



*:* Add 150 rnL of fieshly prepared developing solution. Incubate the gel at 24°C with gentle 

agitation for 15-30 min or until the stained protein bands reach the desired intensity. 

Prolonged (>I h) incubation leads to a high background of silver staining within the body of 

the gel. 

*:* Terminate the reaction by adding 5 rnL of a 72 % citric acid solution to each IS0 mL of 

developing solution. 

*:* Photograph the stained gel to make a permanent record. 

*:* After staining, gels may be stored indefinitely in a sealed plastic bag containing a 20 % 

glycerol solution without any decrease in staining intensity. 



Appendix 7.22 Amylose Determination using Concanavalin A: 

Many of the properties of cereal starches that determine their suitability for particular 

end-uses are dependent upon their amylose/arnylopectin ratios. These include gelatinization and 

gelation characteristics, solubility, the formation of resistant starch, the cooking md textural 

characteristics of whole grains. Thus, the measurement of the amylose content of starches is an 

important quality parameter for starch processing. 

The Amylose/amylopectin assay kit (Megazyme) is based on the specific formation of 

amylopectin complexes with lectin concanavalin A (Con A). Under defined conditions of pH, 

temperature and ionic strength, Con A specifically complexes branched polysaccharides based on 

alpha-D-glucopyranosyl or alpha-D-rnannopyranosyl units at multiple non-reducing end-groups 

with the formation of a precipitate. Thus, Con A effectively complexes the amylopectin 

component of starch but not the primarily linear amylose component. 

The procedure described below is described by Gibson et a!. (1997) and modifies a Con 

A method developed by Yun and Matheson (1990) by using an ethanol pre-treatment step to 

remove lipids prior to analysis. The prccedure involves the following generalized steps. ( I )  Pure 

starch or cereals flours samples are completely dispersed by heating in dimethyl sulphoxide 

(DMSO). (2) Lipids are removed by precipitating the starch in ethanol and recovering the 

precipitated starch. Pre-treatment of the sample with ethanol has the added advantage of 

removing any soluble sugars in the sample that would otherwise interfere with the assay. (3) 

After dissolution of the precipitated sample in an acetatelsalt solution, amylopectin is specifically 

precipitated by the addition of Con A and removed by centrihgation. (4) The amylose in an 

aliquot of the supernatant is enzymatically hydrolyzed to glucose, which is analyzed using 

glucose oxidasdperoxidase reagent. (5) The total starch in a separate aliquot of the acetatekdt 

solution is similarly hydrolyzed to glucose, using amylogtucosidase (hydrolyzes terminal 1.4- 

linked a-D-glucose residues successively from non-reducing ends of the chains with release of P 
D-glucose) and a-amylase (random endohydrolysis of I,&-glucosidic linkages in 

oligosaccharides and polysaccharides; reducing groups are reduced as a-D-ghcose), and 

measured colorimemcally by glucose oxidaselperoxidase. The reactions involved are: 

Glucose oxidase 

Glucose + O2 + Hfl -b Gluconate + H2O2 

Peroxidase 

2 H202 +pHydroxybenzoic acid + baminoantipyrine -+ Quinoneimine dye + 4 Hz0 



(6) The concentration of amylose in the starch sample is estimated as the ratio of GOPOD 

absorbance at 510 nm of the supernatant of the Con A precipitated sample, to that of the total 

starch sample. (7) Repeated andyses of a set of samples yielded repeatability (within laboratory) 

relative standard deviations of < 5 % for pure starches and approx 10 % for cereal flours. 

(Caution: DMSO is absorbed through the skin and can cause irritation to the skin and eyes. 

Avoid splashing and use in a fume cupboard. Clean up spills with excess water. Con A is 

harmful by inhalation and skin contact). 

*:* Starch Pre-treatment: 

J Accurately weigh starch or flour sample (20-25 mg * 0.1 mg) into a 10 mL screw capped 

sample tube. Record the sample weight to the nearest 0.1 mg. Positive controls included, 

a high amylose reference corn starch sample (74.4 % amylose) provided in the kit and a 

normal corn starch (Sigma 4126; 27 % amylose and 73 % amylopectin). 

J Add 1 rnL of DMSO (BDH; AnalyticaI grade; Cat. no. 10323) to the tube while gently 

stirring it at low speed on a vortex mixer. Cap the tube and heat the tube contents in a 

boiling water bath until the sample is completely dispersed (about 1 min). Ensure that no 

gelatinous lumps of starch are remaining. 

./ Vigorously mix the contents of the sealed tube at high speed on a vortex mixer, place the 

tube in a boiling water bath and heat it for 15 min, with intermittent high-speed stirring 

on a vortex rniuer. 

J Store the tube at 24OC for - 5 rnin and add 2 mL of 95 % ethanol with continuous stirring 

on a vortex mixer. Add a further 4 mL of ethanol, cap the tube, and invert to mix A 

starch precipitate will form. Allow the tube to stand for 15 min. 

J Centrifuge (2000 x g, 5 min), discard the supernatant, and drain the tubes on tissue paper 

for 10 min. Ensure that all the ethanol has drained. The pellet is used for subsequent 

amylose and starch determinations. 

J Add 1 mL of DMSO (with gentle vortexing) to the starch pellet Place the tube in a 

boiling water bath for 15 rnin and m h  occasionally. Ensure that there are no gelatinous 

Imps. 

J Prepare a 1 L stock of concentrated Con A solvent pH 6.4 (600 mM anhydrous sodium 

acetate; 3 M sodium chloride, 3 mM CaC12 2 H20, 3 rnM MgC12 6 Hfl, and 4 rnM 

MnClz 4 Hfl) and store at 4OC. Prepare solution I as follows: add, with mixing, 2 mL 

of diluted Con A solvent (prepared by diluting 30 mL of concentrated Con A solvent to 

100 mL with distilled water on the day of use) and quantitatively transfer the tube 



contents (by repeated washing with Con A solvent) to a 25 mL volumetric flask. Dilute 

to volume with Con A solvent. Analysis of this solution should be performed within 60 

min because the arnylose will tend to retrograde and precipitate. 

*:* Con A Precipitation of Amylopectin and Determination of Amylose: 

J Transfer 1 mL of solution I to a 2 mL microfuge tube. Add 0.5 mL of Con A solution (3 

mglmL of Con A in diluted Con A solvent; stored in aliquots at -20°C), cap the tube and 

gently mix by repeated inversion. Avoid frothing of the sample. 

J Allow the tube to stand for 1 h at 24°C (do not leave more than 2 h as the amylose will 

tend to retrograde). Centrifuge at 20 000 x g for 10 min in a microhge tube at 20°C. 

4 Transfer 1 mL of the supernatant to a 15 mL centrifuge tube. Add 3 mL, of 100 mM 

sodium acetate buffer, pH 4.5. This reduces the pH to 5. Mix the contents, lightly 

stopper (with a marble) and heat in boiling water bath for 5 min to denature the Con A. 

J Place the tube in a water bath at 40°C and allow to equilibrate for 5 min. Add 0.1 mL of 

amyloglucosidase (EC 3.2.I3)/alpha-amylase (EC 3.2.1.1) enzyme mixture (Dissolve 

200 U of amyloglucosidase and 500 U of fungal a-amylase in 20 mL of I00 mM sodium 

acetate buffer; store at -20°C) and incubate at 40°C for 30 min. Centrifuge the tube at 2 

000 x g for 5 min. 

J To 1 mL aliquots of the supernatant add 4 mL GOPOD reagent (Dilute the entire contents 

of the glucose reagent buffer [IM potassium dihydrogen orthophosphate, 200 mM para- 

hydroxybenzoic acid, 0.4 % sodium azidel to I L with distilled water and use this to 

dissolve the glucose determination reagent Reagent concentrations after dissolution in 

buffer are glucose oxidase 12 U/mL, peroxidase 0.65 U/mL, and 0.4 mM 4- 

aminoantipyrine; aliquot GOPOD reagent into aliquots of desired volume for storage for 

up to i year). Incubate at 40°C for 20 min. 

4 Incubate the Reagent Blank (add 1 mL of sodium acetate buffer to 4 mL of GOPOD 

Reagent) and the Glucose Coritrols (consists of 0.1 mL of glucose standard solution 11 
mg/mL in 0 2  % (wlv) benzoic acid], 0.9 mL of sodium acetate buffer and 4 mL of 

GOPOD Reagent) at 40°C for 20 min. This value is not used in the calculation, however, 

it is determined to ensure that there are no problems with this part of the assay) 

concurrently. 

J The absorbance at 510 mn for each sample, and the glucose controls are read against the 

reagent blank. 



+ Determination of Total Starch: 

J Mix 0.5 mL of Solution I with 4 mL of I00 mM sodium acetate buffer, pH 4.5. 

Add 0.1 mL of amylogIucosidaseIa-amylase solution and incubate the mixture at 40°C 

for 10 min. 

J Transfer I mL aliquots (in duplicate) of this solution lo glass test tubes and add 4 mL of 

GOPOD Reagent, Incubate at 40°C for 20 min. This incubation should be performed 

concurrently with samples and standards from the previous section. 

*:* Calculation of Amylose Concentration (%): 

The following equation was used to calculate % amylose for each sample: 

% Amylose = Absslo Con A SupernatantlAbs~lo Total Starch Aliquot x 6.1519.2 x I00 

where Abssl0 is the absorbance at 510 nm, 6.15 is the dilution factor for the Con A e.vtract, and 

9.2 is the dilution factor for the total starch extracts. 

4:. Comparison o f  Means for Quantitative Characters using an Unpaired t-Test: 

Standard deviation and standard error of the mean are two measurements of variability 

that are used in an unpaired t-test (Briggs and Knowles, 1967). The standard deviation, q, of a 

population may be estimated from a sample by the following formula: 

All the deviations from the mean are squared, summed, and divided by a number that is one less 

than the number of measurements. Then the square root is taken of the quotient. The merit of the 

standard deviation is that it will tell rather precisely the range of variability of the population, It 

will say that in the range of the mean rt the standard deviation, 68 % of all measurements will be 

included. It will further say that in the range of the mean twice the standard deviation, 95 % of 

ail measurements will be found. 

If a second sample is drawn from a population it is very likely that its mean and standard 

deviation will differ slightly from those of the fvst sample. These differences are due to chance. 

Such means have a normal distribution, and the standard deviation of the mean is termed the 

standard error of the mean, s ;;. The standard error of the mean, may be determined from the 

standard deviation of the first sample or h m  the original measurements of the sample by the 

following formular 



where n is the number of measurements. This means that for 68 % of the samples drawn from the 

population, the mean will be in the range of the standard error of the mean. Means of variety 

yields, heights, seed weight, and other quantitative characters are usually expressed as the grand 

mean i the standard error of the mean without explanation. 

Significant difference between two means (Table 7.5) is determined by first calculating a 

standard error of a difference, sd. The formula for this calculation is 

where si; and s, are standard errors of the means under comparison. The t-test is used to 

determine the significance of the difference. The t value is obtained by: 

t = d/sd 

where d is the mean difference between the means. The significance o f t  is determined from a t 

table. Degrees of fieedom = n-I. Compare the tabular t value with the calculated t value. If the 

calculated t value is greater than the tabular t value at a probability of 0.05 or 0.01, then chances 

of the samples having the same means are very low. They are significantly different. 



Table 7.5 Amylose concentration data derived from triplicated starch sampfes of CDC Tad, 

Bai-Hno, Kanto 107, CDC Wx2, and CDC Wx6. 

Treatment Replication Amylose Concentration (%) 

CDC Teal 1 25.8 

CDC Teal 2 27.5 

CDC Teal 3 23 -9 

Mean 25.7 

Bai-Huo 1 20.0 

Bai-Huo 

Bai-Huo 

Mean 

Kanto 107 

Kanto 107 

Kanto 107 3 17.7 

Mean 

CDC Wx2 

CDC Wx2 

CDC Wx2 

Mean 

CDC Wx6 

CDC Wx6 

CDC Wx6 

Mean 13.0 



Appendix 7J3 RNA Isolation Using Trizol Reagent: 

Trizol reagent is a ready-to-use reagent for the isolation of total RNA from tissues. The 

reagent, a solution of guanidine isothiocyanate and phenol, maintains the integrity of the RNA 

during sample homogenization while disrupting cells and dissolving cell components, Addition 

of chloroform followed by centrifugation, separates the solution into an aqueous phase and an 

organic phase. RNA remains exclusively in the aqueous phase. After transfer of the aqueous 

phase, the RNA is recovered by precipitation with isopropyl alcohol. The entire procedure can be 

completed in a couple of hours. Total RNA isolated by Trizol can be used for Northern blot 

analysis, dot blot hybridization, and p l y  (A)+ selection. 

Trizol reagent facilitates isolation of a variety of RNA species of large and small 

molecular size. (Caution: Phenol reagent can cause severe bums within seconds of making 

contact with skin. When working with Trizol reagent use extreme caution by wearing gloves, 

face shield, and lab coat to avoid contact with skin, eyes, or clothing. Wash immediately with 

plenty of detergent and water to flush contaminated areas. Use in a chemicai fume hood to avoid 

inhidation of reagent vapor). Unless otherwise noted the procedure is carried out at 24OC: RNA 

isolated from wheat endosperm tissue, separated on a 1.2 % agarose gel (size of DNA Fragments 

separated is 0.4-7 kb), and stained with ethidium bromide, shows discrete bands of two 

predominant ribosomal RNA bands at - 5 kb (28s) and at - 2 kb (18s). The lower molecular 

weight RNA - 0.1-0.3 kb (t RNA, 5s) are not detected using a 1.2 % agarose gel. The isolated 

RNA is expected to have an A2Mlrrso ratio of 1.6-1.8, indicating that a reasonably pure RNA 

preparation has been obtained. Yields of total RNA per 100 mg of endosperm tissue at 5. 10 or 

15 DPA were - 30 pg. The procedure is not recommended for isolating RNA from 20 and 35 

DPA endosperm tissue due to poor RNA yields. The Trizol Reagent (Total RNA Isolation 

Reagent; GibcoBRL Cat. no. 15596) procedure is described below as outlined by the 

manufacturer: 

*:* Pre-cautions for Preventing RNase Contamination and Preparation of Materials used 

for RNA Purification (Sambrwk et ul., 1982). 

J Caution: Diethyl pyrocarbonate (DEPC) is a carcinogen thus handle with care under h e  

hood (DEPC is a strong but not an absolute inhibitor of RNases). 

J Gioves: Wear gloves and change them frequently. 

J Glassware, plastic ware, beakers, tubes, and other item: Individually wrapped plastic 

ware is RNase k. Clean glassware, spatulas, and mortar and pestles with detergent. 

Wrap them in foil and bake at 200°C for 8 h. Fill items (e.g, 50 n;L centrifuge tubes and 



glass bottle caps) with 0.1% DEPC water solution. Let stand for 2 h at 31°C, rinse several 

times with sterile water and autoclave for 15 min at 15 Ib/sq.in. on liquid cycle to destroy 

remaining DEPC. 

J Solutions: All solutions, except Tris solutions, should be prepared using RNase free 

glassware @EPC treated), autoclaved water, and chemicals reserved for work with RNA 

that are handled with baked spatulas. Whenever possible, treat solutions with 0.1% 

DEPC for at least 12 h at 37OC then autoclave. 

J Tris solutions: Tris buffers should be prepared with DEPC treated water and autoclaved. 

Dry chemicals should be purchased new and reserved only for RNA work (e.g., Tris) and 

weighed out with baked or flamed spatulas. 

4 Pipettes and microhge tubes: Treat plastic ware containers with DEPC. Use gloves 

when preparing tips and tubes. Autoclave. 

Homogenization: 

J Remove 100 mg of kernels from -80°C storage. 

J Completely homogenize tissue samples in 1 mL of Trizol Reagent per 100 rng of kernels 

using a mortar and pestle cooled to 4°C. Insufficient homogenization of sampte will 

reduce RNA yields. 

J Following homogenization, remove insoluble material from the homogenate by 

centrifugation at 12 000 x g for 10 rnin at 5OC. 

J Transfer the supernatant off the pellet. 

J Equilibrate a 0.8 micron filter with 0.2 mL of Trizol reagent through a 3 cc syringe. 

Filter the supernatant through the equilibrated filter into a Fresh microfbge tube. 

9 Pbase Separation: 

J Incubate the homogenized samples for 5 min at 24OC to permit the complete dissociation 

of nucleoprotein complexes. 

J Add 0.2 rnL of chloroform per 1 mL of Trizol Reagent. Cap sample tubes securely. 

Shake tubes vigorously by hand for 15 sec and incubate them at 24OC for 3 min. 

4 Centrifuge the samples at no more than 12 000 x g for 10 ruin at 5°C. 

Following centrifugation, the mixture separates into a lower red, phenol-chloroform 

phase, an inter-phase, and a colorless upper phase. The volume of the aqueous phase is 

about 60 % of the volume of Trizol reagent used for homogenization. 



*3 RNA Precipitation: 

J Transfer of the aqueous phase to a fiesh tube. 

J Precipitate the RNA h m  the aqueous phase by mixing with isopropyl alcohol. Use 0.5 

mL of isopropyl akohol per 1 mL of Trizol reagent used for the initial homogenization. 

Incubate samples at 24°C for 10 min. 

J Centrifbge at no more than I2 000 x g for 10 rnin at S°C. The RNA precipitate forms a 

gel-like pellet on the side and bottom of the tube. 

*:* RNA Wash: 

J Remove the supernatant. Wash the RNA pellet once with 75 % ethanol, adding at least 1 

mL of 75 % ethanol per 1 mL of Trizol reagent used for the initial homogenization. 

J Mix the sample by vortexing and centrihge at no more than 7 500 x g for 5 min at j°C. 

*:* Re-dissolving the RNA: 

J Vacuum dry the RNA pellet for 5-10 min. Do not over dry the pellet because this will 

greatly decrease its solubility. 

J Dissolve the RNA pellet in 30 pL of RNase-free water and incubate at 60°C for LO min to 

promote re-suspension of the RNA. Set tube on ice for 5 rnin. 

J Centrifige at 16 000 x g for 10 rnin to pellet gelatinized starch which co-purified with the 

RNA sample. Avoid the starch pellet in M e r  work by using only the clear supernatant. 

To determine the concentration of the resuspended RNA, dilute the sample 100 fold by 

adding 1 pL of sample to 99 pL of RNase-free water. Use RNase-free water to blank the DU 

Series 7400 Beckman Spectrophotorneter at 260 nm. Quantification of RNA in this fashion is 

predicted on the fact that nucieic acids absorb UV light maximaIly at 260 nrn. Place the diluted 

sample into a 100 pL quartz cuvette and read the absorbance (in optical densities) at 260 nm 

320 nm (AJzo), and 280 nm (Atm). Determine the RNA concentration by using the 

following formula: 

[RNAI P ~ P L  = (Azao - A3t0) x 44 x D x 1 mt/1000 pL 

where is the absorbance at 320 nm and is used as a background correction (Neither proteins 

nor nucleic acids absorb at this wavelength, so absorbance is due to other components. 

Subtraction of the absorbance at any of the other wavelengths corrects for the background 



contribution); 44 is the extinction coefficient of RNA (an OD 260 [optical density] of 1 

corresponds to approximateiy 44 pglmL of single stranded RNA and DNA); D is the dilution 

factor @ = 100 in the above example); and 1 mLllOOO pL converts the [RNA] from to p g / d  to 

pg/pL. Determine the RNA yield by multiplying the concentration by the volume of the RNA. 

The AIM) must be > 0.1 to give an accurate reading. 

This calculation provides little information on the quality and purity of the sample. 

however in the presence of excess salt, contaminating proteins, and/or carryover organic solvents, 

the absorbance value can be skewed significantly. For these reasons, caIculation of the 260:280 

ratio (A260-A32dA280-A320) provides a reasonable estimate of the purity of the preparation. 

Absorbance at 280 nrn is used for the detection of protein, based upon the presence of aromatic 

amino acids. A pure sample of RNA has a AzdA2m ratio of 2 * 0.05. If there is contamination 

with protein or phenol, the A26dAlB0 ratio will be significantly less than the values given above, 

and accurate quantification of the amount of RNA will not be possible. 



Appendix 7.24 Northern Blotting Protocol: 

Methods are as described by Sambrook et a1. (1982): 

-3 Electrophoresis of RNA Through Gels Containing Formaldehyde: 

J Caution: Formaldehyde vapors are toxic and solutions containing formaldehyde should 

be prepared in a chemical hood. DEPC is suspected to be a carcinogen and should be 

handled with care. 

J Prepare 5X formaldehyde gel-running buffer pH 7.0 (0.1 M 3-N-morholino- 

propanesulfonic acid MOPS] pH 7.0,40 mM sodium acetate, and 5 mM EDTA pH 8.0). 

J Electrophoresis tanks, gel tray and comb: Clean with detergent, rinse with water, dry 

with ethanol, and fill with a 3 % H202 solution. After 10 min at 24T rinse with DEPC 

treated water, 

J Prepare a 1.2 % gel by melting the appropriate amount of agarose in water, cooling it to 

60°C, and adding 5X formaldehyde gel-running buffer and formaldehyde (at pH 4.0 or 

greater) to give final concentrations of 1X and 2.2 M, respectively. (One part of a stock 

12.3 M formaldehyde solution should be diluted with 3.5 parts of agarose in water and 

1.1 parts of 5X formaldehyde gel running buffer). Cast the gel in a chemical hood. and 

allow the gel to set for at least 30 min at 24OC. The single stranded nature of RNAs allow 

them to form secondary structures by intramolecular base pairing and must therefore be 

electrophoresed under denaturing conditions if good separations are expected. 

Denaturation is achieved by adding formaldehyde to the gel and loading buffer. 

Prepare the samples by mixing the following in a sterile microfuge tube: 4.5 pL of RNA 

{up to 30 pg), 2 @., of 5X formaldehyde gel-running buffer, 3.5 pL of formaldehyde, and 

10 pL of formamide. Incubate the samples for 15 min at 65T, and then chill them on 

ice. Centrifuge the samples for 5 sec to deposit all of the fluid in the bottom of the tubes. 

(Abundant mRNAs [0.1 % or more of the mRNA population can usually be detected by 

Northern analysis of 10-20 pg of totaI cellular RNA. For detection of rare RNAs, 

between 0.5 and 3 pg of poly (A)' RNA should be applied to each lane of the gel). 

Chill on ice and add 2 pL of sterile, DEPC-treated formaldehyde gel-loading buffer (50 

% glycerol, I mM EDTA pH 8.0, and 0.25 % bromophenol blue). 

J Before loading the samples, pre-run the gel for 5 min at 5 Vicm. Immediately load the 

samples into the lanes of the gel. As molecular weight markers, use RNAs of known 

size, for example, 18s and 28s rRNAs, The sizes of these RNAs are 6333 and 2366 

nucieotides, respectively. Alternatively, mixtures of RNAs of known size can be 



purchased from BRL. The markers are usually loaded into the outside lanes of the gel so 

that they can be cut fiom the gel after electrophoresis and stained with ethidium bromide. 

If possible, leave an empty lane between the markers and the samples that are to be 

transferred to a nylon membrane. 

J Run the gel submerged in 1X formaldehyde gel-running buffer at 3-4 Vkm. Afier the 

buffer has been pulled into the gel, wash each well with 500 pL of running buffer. 

Constant recirculation of the buffer is not necessary, but after 1-2 h the buffer from each 

reservoir should be collected, mixed, and returned to the gel apparatus. 

J At the end of the run (when the bromophenol blue has migrated approx. 8 cm), the gel 

may be stained with ethidium bromide (0.5 pg/mL in DEPC-treated water) for 30 min. 

Align a transparent ruler with the gel, and photograph the gel and ruler by ultraviolet 

illumination. Use the photograph to measure the distance from the loading weil to each 

of the molecular weight standard marker bands of RNA. Plot the log 10 of the size of the 

fragments of RNA against the distance migrated. Use the resulting curve to caIculate the 

sizes of the RNA species detected by hybridization after transfer fiom the gel to a nylon 

membrane. 

J Destain gel to remove formaldehyde and ethidium bromide by soaking in DEPC-treated 

20X SSC buffer (3M NaCI, 0.3 M Nayitrate) for 10 min. Decant water and repeat wash 

two more times. 

J Set up capillary blot as described below. 

*:* Transfer of Denatured RNA to Nylon Membranes: 

J Transfer the gel to a glass baking dish, and trim away unused areas of the gel with a razor 

blade. Cut off the bottom left-hand corner of the gel; this serves to orient the gel during 

the succeeding operations. 

4 Place a piece of Whatman 3MM paper on a stack of g1as.s plates to form a support that is 

longer and wider than the gel. Place the support inside a large baking dish. Fill the dish 

with 20X SSC until the level of the Iiquid reaches almost to the top of the support. When 

the 3MM paper on the top of the support is thoroughly wet, smooth out the air bubbles 

with a glass rod. 

J Using a Fresh scalpel, cut a piece of nylon membrane (Hybond N+; positively charged 

nylon membrane; Amersham) filter about the gel dimensions. Use gloves and blunt- 

ended forceps to handle the filter. A nylon membrane filter that has been touched by 

greasy hands will not wet. 



Float the membrane filter on the surface of a dish of deionized water until it wets 

completely h r n  beneath, and then immerse the filter in 2OX SSC for at least 5 min. 

Using a clean scalpel, cut a comer from the filter to match the comer cut from the gel. 

Place the gel on the support in an inverted position so that it is centered on the wet 3MM 

paper. Make sure that thete are no air bubbles between the 3MM paper and the gel. 

Surround, but do not cover, the gel with saran wrap. This serves as a barrier to prevent 

liquid from flowing directly from the reservoir to paper towels placed on the top of the 

gel. If these towels are not precisely stacked, they tend to droop over the edge of the gel 

of the line of slots at the top of the gel. This type of short-circuiting is a major reason for 

inefficient transfer of RNA fiom the gel to the filter. 

Place the wet membrane on top of the gel so that the cut comers are aligned. One edge of 

the filter should just extend over the edge of the line of slots at the top of the gel. Do not 

move the filter once it has been applied to the surface of the get. Make sure that there are 

no air bubbles between the filter and the gel. 

Wet two pieces of 3 M M  paper (cut to exactly the same size as the gel) in 2X SSC and 

place them on top of the wet membrane. Smooth out air bubbles with a glass rod. 

Cut a stack of paper towels (5-8 cm high) just smailer than the 3 MM papers. Place the 

towels on the 3 MM papers. Put a glass plate on top of the stack and weigh it down with 

a 500 g weight. The objective is to set up a flow of liquid from h e  reservoir through the 

get and the membrane, so that RNA molecules are eluted from the get and are deposited 

in the membrane. 

Allow transfer of RNA to proceed for 16-18 h. As the paper towels become wet. they 

should be repIaced. 

Remove the paper towels and the 3MM papers above the gel. Turn over the gel and the 

membrane and lay them, gel side up, on a dry sheet of 3 M M  paper. Mark the position of 

the pl slots an the membrane with a pencil. 

Peel the gel fiom the membrane and discard it. Soak the membrane in 2X SSC for 5 min 

at 24°C. This removes any pieces of agarose sticking to the filter. To access the 

eFficiency of transfer of RNA, the gel may be stained for 45 min in a solution of ethidium 

bromide (0.5 p@mL in 0.1 A.i ammonium acetate) and examined by W ilIumination. 

Place the dried fdter for 1 h on a piece of 3MM paper. Wrap Hybond N-t in saran wrap 

and expose the side of the membrane carrying the RNA to a source of W irradiation for 

2-5 min. 3 12 nm wavelength is recommended. Dry membranes should be exposed to 

0.15 .T/crn2. However, for maximum effect, it is important to make sure that the 



membrane is not over irradiated. The aim is to form cross-links between a small fraction 

of the bases in the RNA and the positively charged mine  groups on the surface of the 

membrane. Over-irradiation results in the covalent attachment of a higher proportion of 

thymines, with a consequent decrease in hybridization signal. 

J If the membrane is not to be used immediately in hybridization experiments it should be 

wrapped loosely in aluminum foil and stored under vacuum at 24°C. 

4. Calibration of UV Transilluminators: 

4 Produce five or six identical strips of a blot of control DNA (e-g., restricted lambda) or 

RNA on Hybond N+. The type of blot will depend on the technique that the calibration is 

being used for. For standard Southern blots load 50 pg of lambda Hind UI. 

J Expose each blot DNA side up on the transilluminator for a different length of time, 

ranging from 30 sec to 10 min. 

J Hybridize all the blots together with a suitable labeled probe, 

./ Following detection, the optimum UV exposure time will be indicated by selecting the 

filter showing the strongest signal. 

03 Hybridization and Detection: 

./ Conducted as described in appendix 7.3. 



Appendix 735 Reverse Transcriptme Polymerase Chain Reaction (RT-PCR): 

The following protocol is as described by the Superscript pre-amplification system for 

first strand cDNA synthesis (Cat. no. 18089-01 1; GibcoBRL). The pre-amplification system is 

designed to synthesize first strand cDNA from purified poly (A)+ or total RNA. Following use of 

this system, target cDNA can be amplified with specific primers by PCR without intermediate 

organic extractions or ethanol precipitations. This process is summarized as follows: 

mRNA ( t -2 % of a total RNA population) 
AAAAAA 

(Oligo dT primer) TTTTTT 

First strand synthesis 

Removal of RNA 

TTTTTT 

First strand cDNA ready for PCR amplification 

The first strand cDNA synthesis reaction is catalyzed by Superscript 11 RNase H- Reverse 

Transcriptase (RT; catalyzes the synthesis of DNA in the 5'+3' direction with RNA template and 

DNA primer). This enzyme has been engineered to eliminate the RNase H activity that degrades 

mRNA during the first strand reaction. Use of the RNase H- RT results in greater full-length 

cDNA synthesis and higher yields of fitst strand cDNA than obtained with other RTs, This 

further improves the enzyme's ability to copy long RNA as compared to other RNase H- 

derivatives. Because Superscript 11 RT is not inhibited significantly by ribosomal and transfer 

RNA, it may be used effectively to synthesize fmt strand cDNA from a total RNA preparation. 

The enzyme exhibits increased thermal stability and may be used at temperatures up to 50°C. 

Amplif?cation of a target cDNA synthesized with this system requires priming with two specific 

oligonucleotides and Pfb DNA polymerase. The sensitivity of PCR amplification can be 

increased if RNase H is added after first strand synthesis is complete, yet before PCR to minimize 



interference h m  the f@JA template. Following amplification, RT-PCR products can be cfoned 

into an appropriate vector for subsequent characterizarion procedures. 

*:* First Strand Synthesis using Oligo (dT): This procedure is designed to convert p l y  A+ 

RNA into first strand cDNA: 

J Mix and briefly centrihge each component before use. Place on ice. 

J Prepare the RNAIprimer mixture in a sterile 0.5 mL tube: 

Components Sample No RT Control 

Total RNA ( I  pg/pL) I @ 1 PL 

Oligo (dT)l2-18 (0.5 ~g/pL)  I pL I pL 

DEPC-treated water 10 pL 10 pL 

J Incubate each sample at 70°C for 10 min and move it directly to 50°C. Using a thermal 

cycler simplifies the multiple temperature shifts in RT-PCR and can help prevent 

formation of secondary structure in RNA. 

J Prepare the following reaction mixture, adding each component in the indicated order. 

For n samples plus one No RT control , prepare the reaction mix for n plus 2 reactions. 

Components Amount per reaction 

10X PCR buffer (200 mM Tris-HCI pH 8.4,500 m M  KCI) 2 pL 

25 mM MgCI2 2 PL 

I0 mM dNTP mix ( I0 mM each dATP, dCTP, dGTP,dTTP) I PL 

0.1 M DTT (Protein reducing agent) 2 pL 

J Pre-warm the 2X reaction mixture at 50°C before adding it to the primer and RNA. Add 

7 pL of 2X reaction mixture to each WNprimer mixture, mix gently, and collect by 

brief centrifugation. 

J Add 1 pL of Superscript D RT (200 U/pL) to sample tubes, mix, and incubate for I2 min 

at each of the following temperatures: 50°C, 4FC, 46OC, 44OC, and 42OC. Do not add RT 

to No RT controis. 

J Terminate the reactions at 70°C for I5 min. Chill on ice. 



J Collect the reactions by brief centrihgation. Add 1 pL of RNase H (2 UIpL; an 

endonuclease that degrades the RNA portion of DNA-RNA hybrids) to each tube and 

incubate for 20 min at 37'C before proceeding to PCR amplification of the target cDNA. 

9 PCR Amplification o f  the Target cDNA: 

The first strand cDNA may be amplified directly using PCR Use only 10 % of the first 

strand reaction for PCR. Adding larger amounts of the first strand reaction may decrease the 

amount of product synthesized. 

J Add the following to a 0.5 mL, thin-walled tube: two primer sets (MM2FPIGBSSR3 and 

GBSSFZMMRTRPI) were used in the PCR screening. 

Components Amount per reaction 

Distilled water 27.3 pL 

Cloned Pfu DNA polymerase IOX reaction buffer 4 PL 

dNTP mix (10 mM each) I PL 

Primer # 1 (5  pmolesIp1) L.6 pL 

Primer #2 (5 pmoledpL) 1.6 pL 

cDNA template 4 FL 

Cloned Pfu DNA polymerase (2.5 U/pL) 0.5 pL 

Total reaction volume 40 pL 

J Gently mix and layer 2 drops of mineral oil over the reactions. 

J Amplification conditions included an initial denaturation of 5 rnin at 94 "C (denatures the 

RNAkDNA hybrid), followed by 20 cycles of 45 sec at 58 "C, 3 min at 72 "C, and 1 min 

at 94 "C. 

J A 2 pL diquot of the first PCR amplifications were used to conduct a second set of PCR 

amplifications as described above. 

J Products fram the second set of PCR ampiification reactions were analyzed by 

electrophoresis on a 1.5 % agarose 1X TBE gel (100 V for 3 h) using or 40 pL of the 

reaction per lane. 

J DNA hgments ranging from 1 to 1.6 kb in size were collectively cut from the gel and 

centrifuged at I6 000 x g for 30 min through siliconized glass wool. 



*/ A 2-3 pL aliquot of blunt-ended DNA hgments (1 to 1.6 kb) was added to a 10- 15 pi, 

PCR reaction mixture containing: LX Taq DNA polymerase buffer; 200 pM of dATP 

(100 mM dATP stock stored at -20°C); and 2.5 U Taq DNA polymerase (Boehringer 

Mannheim). The PCR reaction was incubated at 72°C for 4 h. The extension at 72°C 

using Taq DNA polymerase was used to facilitate the cloning of the blunt-ended PCR 

Fragments derived. 

J RT-PCR products were cloned into pCR2.1 T-vector for subsequent DNA sequencing 

characterization (Appendix 7.9). 



Appendix 7.26 DNA Sequence Alignment of RT-PCR Derived cDNA 

Detected using MM2FP/GBSSR3. Sequences were aligned using the cluster method 

of the Megalign program (DNASTAR) using percent accepted mutation (PAM) 250 

residue weight table. Nucleotides that are identical to the nucleotides of cDNA 

X57233 are indicated by the symbol '.'. Dashes (-) denote nucleotides absent in one 

of the sequences, but present in the others. Wheat cDNA derived from GenBank 

(Accession no. X57233; Clark et al., 1991); wheat cDNA derived from GenBank 

(Accession no. Y16340); Teal 9-2 clone derived from CDC Teal; BH3-3 clone 

derived from Bai-Huo; Wx6-1 clone derived from CDC Wx6; and K4-2, K4-5, and 

KJ-9 clones derived from Kanto 107 and CDC Wx2. The genomic DNA sequences, 

reported by Murai et al. (1999), of the Wx-AI gene encoding a 59 kD Wx-A1 protein 

(GenBank accession no. AB019622), the Wx-BI gene encoding a 58.8 kt) Ws-B1 

protein (accession no. AB01%23), and the Wx-Dl gene encoding a 58.9 kD Wa-Dl 

protein (accession no. AB019624) in hexaploid wheat are shown to differentiate 

intervening intron sequences. Primer sequences are presented at the extreme ends of 

done sequences. 



Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
W X - A L G E N E A C A G A T T C C G G C G T C C A G G T T T T C A G G G C C T G A G G  105 
W X - B l G E N E A C A G G T T C C G G C G T G C A G G T T T T C A G G G T G T G A G G  105 
W X - D L G E N E A C A G G T T C C G G C G T G C A C G T T T C C A G G G C G T G A G G  105 

X57233 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  1 
y163Qo - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  1 
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
BH3-3 - - - - - - - - - - - - * - - - - - - - - - - - - - - * - - - - - - -  1 
K4 -2 - - - - - - - - - - - - - - - - - - - - * - - - - - - - - - - - - - -  1 
K4 -5 - - - - - - - - - - - - * - - - - - - - - - - - - - - - - - - - - - -  1 
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
01x6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
W X - N G E N E C C C C G G A A C C C G G C G G A T G C G G C G C T C G G C A T G A G  140 
UX-B1 G E N E C C C C G G A G C C C G G C A G A T G C G C C G C T C G G C A T G A G  140 
W X - D l G E N e C C C C G G A G C C C G G C G G A T G C G G C T C T C G G C A T G A G  140 





X57233 G G A G C A A G A C T G G C G G C C T C G G C G A C G T C C T C G G G  76  
Y16340 . . . . . . . . . .  C .  . . . . . . . . . . . . . . . . . . . . . . .  76 
Tea19-2 . . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . 76  
BH3-3 . . . . . . . . . .  C .  . . . . . . . . . . . . . . . . . . . . . . .  7 6  
K4 -2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76  
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76  
K4-9 . . . . . . . . . .  C . . . . .  . . . . . . . . . . . . . . . . .  76  
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 
WX-A1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . 312 
WX-81 GENE.  . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . 315 
WX-Dl GENE. . . . . . . . . . C . . . . . . . . . . . . . . . . . . . . . . . . 312 

ktror 1 
X57233 G G C C T C C C C G C C G C C A T G G C C - - - - - - - - - - - - - -  9 8 
Y16340 . . . . . . . . .  C . A .  . . . . . . . .  - - - - - - - - - - - - - -  98 
Tea19-2 . . . . . . , , . C . A .  . . . . , . . . - - - - - - - - - - - - - -  98 
BH3-3 . . . . . . . . .  C . A . . . . . .  . . .  - - - - - - - - - - - - - -  98 
K4-2 . . . . . .  . . . . . . . .  G G A C - - - - - - - - - - - - - - - - -  9 5 
K4 -5 . . . . . .  . . . . . . . .  G G A C - - - - - - - - - - - - - - - - -  95 
K4-9 . . . . . . . . .  C . A . . .  . . . . , .  - - - - - - - - - - - - - -  98 
Wx6-I . . . . . . . . . . . . . . . . . . . . .  - - - - - - - - - - - - - -  9 8 
W X - A l G E N E . . . . . . . . . . . . . . . . . . . . . G T A A G C T T G C - - - -  344 
WX-B1 GENE.. . . . . . . . C . A . .  . . . . . . . G T A A G C T A G C T A G C  350 
WX-DlGENE.. . . . . . . . C . A . .  . . . . . . . G T A A - - - - G C T A G A  343 



............... ~ 5 7 2 3 3  ... G C C A A C G G T C A C C G G G T  114 

.................. yL634Q c 114 . . . . . . . .  . . . . . . . .  

.................. Tea19-2 114 . . . . . . . . . . . . . . . . .  

.................. BH3-3 . . . . . . . . . . . . . . . . .  114 
K4 -2 G T G C C G . T G T C C G T G C A G  . . . . . . . . . . . . . . . . .  177 
K4-5 G T G C C G - T G T C C G T G C A G  . . . . . . . . . . . . . . . . . . .  177 

.................. R4-9 . . . . . . . .  C . . . . . . . .  114 
Wx6-1 - * - - - - - - - - - - - - - - - -  114 . . . . . . . . . . . . . . . . .  
W . A l G E N E G T G C C G . T G T C C G T G C A G  . . . . . . . . . . . . . . . . .  432 
W X . B L G E N E C T G A T G C T G T G T C T G C A G  . . . . . . . . . . . . . . . . .  452 

. . . . . . .  W X . D l G E N E G T G G T G * T G T C C G T G C A G  . C  . . . . . . . .  440 
W7233 C A T G G T C A T C T C C C C G C G C T A C G A C C A G T A C A A G G  149 
Y16340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 
BH3-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  L49 
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212 
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 4 9  
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  149 
WX-A1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  467 
m-B1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  487 
WX-Dl GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  475 

I n t m  2 
X57233 A C G C C T G G G A C A C C A G C G T C A T C T C C G A G - - - - - -  179 
Y16340 . . . . . . . . . . . . . . . . . . . .  G . . . . . . . .  - - - - - -  179 
Tea19-2 . . . . . . . . . . . . . . . . . . . .  G . . . . . . . .  - - - - - -  179 
883-3 . . . . . . . . . . . . . . . . . . . .  G . .  . . . . . .  - - - - -  .. 179 
K4 -2 . . . . . . . . . . . . . . . . . . . - . . . . . . .  * * - - - -  242 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - - - - -  242 
K4-9 . . . . . . . . . . . . . . . . . . . .  G . . . . . . . .  . . - - - - -  179 
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  - - - - - -  179 
HX-A1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  G T A - - - 500 
WX-B1 GENE . . . . . . . . . . . . . . . . . . . .  G . . . . . . . .  G T A C A C 522 

. . . . . . . .  WX-DI GENE . . . . . . . . . . . . . . . . . . . .  G G T A C T T 510 

~57233 179 
Y16340 ................................... 179 
Tea19-2 ................................... 179 

................................... 883-3 179 
K4 -2 242 

................................... K4-5 242 

................................... K4-9 179 

................................... Wx6-1 179 
WX-A1 G E N E - T A - - - T A T C C G C C A C A T G A A T T A T C A C A A T T C A C  530 
WX-61 GENEAT&.** T A T C C G C C A C A T G A A T T A T C A C A G T T C A C  554 
YX-Dl G E N E G A A C C C T A C C C G C A A C T T T A A C G A T C A A A A T T C G C  545 



X57233 
Y16340 
T e a 1 9 - 2  
BH3-3 
K4-2 
K4-5 
K4-9 
Wx6-1 
WX-A1 GENE 
WX-Bl GENE 
m - D l  GENE 

- - - - - - - - - - - - -  
- - - - - - - - - - - - -  - - - -  - - - - - - - - -  
- - - - - - - - - - - - -  
- - - - - - - - - - - - -  
- - - - - - - - - - - - -  
- - - - - - - - - - - - -  
- - - - - - - - - - - - -  
A T G C T C C T G C A C A  
A T G C T C C T G C A C A  
A T G C T C C T G C A C A  

T T T  
T T T  
T T T  

X57233 
Y16340 
Tea19-2  
8 8 3 - 3  
K4 -2 
K4-5 
KI-9 
Hx6-1 
WX-AI GENE 
WX-61 GENE 
W - D l  GENE 

X57233 
Y16340 
Tea19-2  
BH3-3 
X4 -2 
K4-5 
K4-9 
Wx6-1 
=-a GENE 
WX-Bl GENE 
a - D l  GENE 

G G T A C G A G A G G G T G A G G T A C T T C C A C T G C T A C A A G  
A . . . . . . . . - - . - . . . . * -  * - . . * * . . . - . . . . . .  
A . . . . . . . . . . * * . . . * . . . . . . . . . . . - . . . . . .  
A . . . . . . . . . . . . . . . . . . . . . . .  







X57233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
y16340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tea19-2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
BH3 - 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-2 - - - - - - - * - - - - - - - - - - - - - - - - - - - - - - - - - - -  

K4-5 T T G A T T T C T A C T T G A G A G C A C T G G A T G A T T A T C A T  
K4-9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - * - - - - -  

Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W X - A I G E N E T T G A T T T C T A C T T G A G A G C A C T G G A T G A T T A T C A T  
WX-B1 G E N E T T G A T T T C T T C T T G A G A G C A C T G G A T G A T T A T C A T  
W X - D l G E m T T G A T A T T T T C T T G A G A G A G C T G G A T G A T C A C C A T  

Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W X - A l G E N E C T T C C T T - G T A T C T T G G T G C T G . . .  . . . . . . . . . .  
a-81 G E N E C T T C C C T  - G T G T C T T G G T G C T G . .  . C . .  C . .  . .  T A  
N X - D I G E N E T T T T T T T T G T A T C T G G G T G C C G T .  - -  . T C G . C .  . T  



X57233 T G C C G T G C C G C G C C G C G C A G G G G A A G A C G T G G T G T  
.................... y16340 . . . .  G . . . . . . . . . .  
.................... Tea19-2 . . . . . . . . . . . . . . .  
.................... 883-3 . . . . . . . . . . . . . . .  
.................... K4-2 . . . . . . . . . . . . . . .  

K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
.................... K4 -9 . . . .  G . . . . . . . . . .  
.................... Wx6-1 . . . . . . . . . . . . . . .  

WX.AlGENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WC-El GENE . . . . .  C . . .  A . . . . . . . . . . . . . . . . . . . . . . . . .  

. WX.DlGENE .TT.... . . . . . . . . . . . . . . . .  G ......,... 
X57233 T T G T G T G C A A C G A C T G G C A C A C G G G C C T T C T G G C C  

. . . . . . . .  Y16340 . C  T........................ 
Tea19-2 . C  . . . . . . . .  T . . . . . . . . . . . . . . . . . . . . . . . .  
BH3-3 
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-9 . C  . . . . . . . .  T . .  . . . . . . . . . . . . . . . . . . . . . .  
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-A1 G E M  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  WX-B1GENE.C 
WX-Dl GENE . C . . . . . . . .  T . . . . . . . . . . . . . . . . . .  . . . .  . .  
X57233 T G C T A C C T C A A G A G C A A C T A C C A G T C C A A T G G C A T  549 
Y16340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  516 
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  G . . . . . .  516 
BB3 - 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  G . . . . . .  516 
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  579 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  704 
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  516 
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  516 
WX-R1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1152 
WX-81 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . .  G . . . . . .  1188 
WX-Dl GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1193 

htron 5 
X57233 C T A T A G G A C G G C C A A G - - - - - - - - - - - - - - - - - - -  566 
Y16340 . . .  C . . .  G . C . .  A . . .  - - - - - - - - - - - - - - - - - - -  533 
Tea19-2 - - - - - - - - - - - - - - - - - - -  . . . . . . . . . . . . . . . .  533 
883-3 . . . . . . . . . . . . . . . .  - - - - - - - - - - - - - - - - - - -  533 
K4 -2 . . . . . . . . . . . . . . . .  - - - - - - - - - - - - - - - - - - -  596 
K4-5 . . . . . . . . . . . . . . . .  - - - - - - - - - - - - - - - - - - -  721 

. .  . .  . . .  K4-9 C . . . G . C  A .  - - - - - - - - - - - - - - * - - - -  533 
Wx6-1 . . . . . . . . . . . . . . . .  - - - - - - - - - - - - - - - - - - -  533 

. . . . . . . . . . . . . . . .  WX-AlGEM G T T T T G C A T C T T C T - - -  G A 1184 
WX-81 GENE . . . . . . . . . . . . . . . .  G T T T T G C A T C T T C T - - -  C A 1220 

. .  . .  . . .  WX-DlGENE . C  . G .  C .  . A  G T T T T G C A T C T T C T T C T C A  1228 



K4-9 - - - - - - - - - - - - - - - - - - - - - - - * - - - - - - - - - - -  

Wx6-1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
W X - A l G E N E A A C T T T A T A T T C G C T C T G C A T - - A T - - - C A - - - - -  
WX-B1 G E N E A A C T T T A T A T T C T C T C T G C A - - - - - - - - - - - - - - -  
=-Dl G E N E A A C T A T A T A T C C T C T C T G C A T T C A T A T G C A T G C A T G C A T  

~ 5 7 2 3 3  .. - - -  - - -  - - - - - - - - - - G T G G C A T T C T G C A T C C A C  
Yl6340 - - - - - - - - - - - - - - - - -  . . . . . . * . * . . - . . - . . *  
~ a a 1 9 - 2  - - - - - - - - - - - - -  - - - -  . . A - . G  . . . . -  - . a  - . .  
883-3 - - - - - - - - - - - - - - * - -  . .  A . . G . . . . . . . . . . . .  

K4-2 - - - - - - - - - * - - - - - - -  . . * . . . . * . * - * . * . . . -  
K4-5 - * * - - - - - - - - - - - * - -  . . . . . . . . . . . - . * . . -  * 

Wx6-1 - - - - * - - - - - - - - - - - -  . - . . - . . . . . . . . . . * * .  
W X - A l G E N E C T C C A T T T C A T G G C T A G . .  . . . . . . . . . . . . . . . . 
W X - B l G E N E C T T C A T T T C A T G T C C A G .  . A * .  G . .  . . . . . . . . . . 
W X - D l G E N E C T T C A T T T C A T G G C C A G . . . . . . . . . . . . . . . . . .  



X57233 A A C A T C T C G T A C C A G G G C C G C T T C T C C T T C G A C G A  
Y16340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Teal9-2 . . . . . . . . . . .  T . . . . . . . . . . . . .  .,.. ...... 
BH3-3 . . . . . . . . . . .  T . . . . . . . . . . . . . . . . . . . . . . .  
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-A1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-B1 GENE . . . . . . . . . . .  T . . . . . . . . . . . . . . . . . . . . . . .  
WX-Dl GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
X57233 C T T C G C G C A G C T C A A C C T G C C T G A C A G G T T C A A G T  
Y16340 . . . . . . . . . . . . . . . . . . .  . . C . . . . .  . ,... 
Tea19-2 . . . . . . . . . . . . . . . . . . . . .  C . . . . . . . . . . . . .  
BH3-3 . . . . . . . . . . . . . . . . . . . . .  C . . . . . . . . . . . . .  
K4-2 . . . . . . . . . . . . . . . . . . . . .  C . . . . . . . . . . . . .  

. . . . . . . . . . . . .  . . . . . . . .  . . . . . . . . . . . .  K4-5 G C 

. . . . . . . . . . . . .  K4-9 . . . . . . . . . . . . . . . . . . . . .  C 
Wx6-1 . . . . . . . . . . . . . . . . . . . . .  C . . . . . . . . . . . . .  
WX-A1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-El GENE . . . . . . . . . . . . . . . . . . . . .  C . . . . . . . . . . . . .  
rX-Dl GGNE . . . . . . . . . . . . . . . . . . . . .  C . . . . . . . . . . . . .  

X57233 C G T C C T T C G A C T T C A T C G A C G G C T A C G A C A A G C C G  688 
Y16340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  655 
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  655 
883-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 5 5  
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  718 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  843 
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  655 
Wx6-l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  655 
WX-A1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1390 
wX-Bl GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1396 
wX-DL GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1473 

X57233 G T G G A G G G G C G C A A G A T C A A C T G G A T G A A G G C C G G  723 
Y16340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  690 
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  690 
883-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  690 
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  753 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  878 
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  690 
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  690 
WX-A1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1425 
WX-BlCXtE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1431 
wX-Dl GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1508 



X57233 G A T C C T G C A G G C C G A C A A G G T G C T G A C T G T G A G C C  758 
Y16340 G . . . . . . .  725 . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . .  C . .  G . . . . . . .  725 
883-3 . .  . . . . . . . . . . . . . . . . . . . . . . C . . G . . . . . . .  725 
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  788 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  913 
K4-9 ...........................G....... 725 
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  725 
WX-A1 GENE 1460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-B1 GENE . . . . . . . . . . . . . . . . . . . . . . . .  C . .  G . . . . . . .  1466 
WX-DlGENE G .  . . . . . .  1543 . . . . . . . . . . . . . . . . . . . . . . . . . . .  
X57233 C C T A C T A T G C T G A G G A G C T A A T C T C T G G C G A A G C C  793 
Y16340 . . . . . . .  C . .  G........C...........,,,, 760 
Tea19-2 . . . . . . .  C . .  G . . . . . . . .  C . . . . .  C . . . . . . . . .  760 
883-3 . . . . . . .  C . .  G . . . . . . . . C . . . . . C . . . . . . .  760 
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  823 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  948 
K4-9 . . . . . . .  C . .  G........C,................ 760 
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  760 
WX-Al GENE 1495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-B1 GENE . . . . . . .  C . .  G . . . . . . . .  C . . . . .  C . . . . . . . . .  1501 
WX-DI GENE . . . . . . .  C . .  G . . . . . . . .  C . . . . . . . . . . . . . . .  1578 
X57233 A G G G G C T G C G A G C T C G A C A A C A T C A T G C G C C T C A C  
Y16340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
883-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4 -2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Wx6-1 . . . . . . . . . . . .  . . . . . . . . . . . . . . - .  
m-Al GENE . . . . . . . . . . . . . .  .., . . . . . . . . . . . . . . . . . . .  
WX-B1 GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-D1GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

X57233 T G G G A T C A C C G G C A T C G T C A A C G G C k T G G A C G T C A  863 
Y16340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T . .  T . 8 3 0  
Tea19-2 G . .  C 030 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BkU-3 G . .  C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  830 
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  093 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1018 
K4-9 ..............................T.. T . 8 3 0  
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  830 
WX-AT GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1565 
WX-B1 GENE G . .  C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1571 

- *  . WX-Dl GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  T T 1648 



X57233 G C G A G T G G G A C C C C A T C A A G G A C A A G T T C C T C A C C  898 
Y16340 . . . . . . . . . . . . . . .  C . . . . . . . , . . . . . . . . . . G . 8 6 5  
Tea19-2 . . . . . . . . . . . . . . G C . . . . . . . . . . . . . . . . G . T 865 
BH3-3 . . . . . . . . . . . . . .  G C . . . . . . . . . . . . . . . . G . T 8 6 5  
K4 -2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  928 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1053 
K4-9 . . . . . . . . . . . . . . .  C . . . . . . . . . . . . . . - . G . . B 6 5  
Wx6-L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  865 
WX-A1 GENE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1600 
WX-BI GENE. . . . . . . . . . . . . . G C . . . . . . . . . . . . . . . . G . . 1606 
WX-01 G E 2 E .  . . . . . . . . . . . . . , C . . . . . . . . . . . . . . . . G . . 1683 

Intror 6 
X57233 G T C A A C T A C G A C G T C A C C A C C - - - - - - - - - - - - - -  920 
Y16340 . . . . . . . . . . . .  A........ - - - - - - - - - - - - - -  887 
Tea19-2 . C . . . . . . . . . . . . . . . . . . . - - - - - - - - - - - - - -  887 
BH3-3 .C................... - - - - - - - - - - - - - -  887 
K4-2 . . . . . . . . . . . . . . . . . . . . .  - - - - - - - - - - - - - -  950 
K4-5 . . . . . . . . . . . . . . . . . . . . .  - - - - - - - - - - - - - -  107 5 
K4-9 . . . . , . . . . . . .  A . . . .  . . . .  - - - - - - - - - - - - - -  887 
wxfi-1 * . . . . - * . . . . * . . . . . . . - -  - - - - - - - - - - - - - -  887 
WX-AlGENZ.. . . . . . . . . . . . . . . . . . . . G T G A G C A C C C A C C C  1635 
WX-B1 GENE. C . . . . . . . . . . . . . . . . . . . G T G A G C A C C C G C C C 1641 
WX-DlGENE.. . . . . . . . . . . A . .  . . . . . . G T G A G C A A C C A - - C  1716 



~ 5 7 2 3 3  ............... G C G T T G G A G G G G A A G G C G C T  
............... Y16340 . . . . . . . . . . . . . . . . . . . .  

Tea19-2 ............... . . . . . . . . . . . . . . . . . . . .  
............... M 3 - 3  . . . . . . . . . . . . . . . . . . . .  
............... K4 -2 . . . . . . . . . . . . . . . . . . . .  
............... K4 -5 . . . . . . . .  A . . . . . . . . . . .  
............... K4-9 . . . . . . . . . . . . . . . . . . . .  
............... Wx6-1 . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . .  W . A l G C N E G A G G C A A A G T G A C A G  

. . . . . . . . . . . . . . . . . . . .  9 1 ) [ . 3 1 G E N E G A G G C A A A G T G A C A G  

. . . . . . . . . . . . . . . . . . . .  U X . D I G E N E G A G G C A A A G T G A C A G  

XS7233 G A A C A A G G A G G C G C T G C A G G C C G A G G T G G G G C T G C  
Y16340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Tea19-2 
BH3-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  K4-5 
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-AlGENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W - B 1  GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
UX-Dl GENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
X57233 C G G T G G A C C G G R A G G T G C C C C T G G T G G C G T T C A T C  1009 
Yl634O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  976 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  Tea19-2 C . . . . . .  976 
BH3-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C C C C C C  . 976 
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1039 
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1164 
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . ,  976 
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  976 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  WX-A1 GENE 1802 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  WX-31 GENE C . . . . . .  1809 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  UX-Dl GENE 1879 

X57233 G 

Y16340 
Tea19-2 . 
Bii3 . 3 
K4-2 
K4-5 
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Wx6-1 
WX-RT GENE . 
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WX-Dl GENE . 
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~57233 - - - - - - - - - - - -  G G C A C C G G G A A G A A G A A G T T T G A  
y16340 - - - - - - - - - - - -  -....-..............c.. 
Tea19-2 - - - - - - - - - - - - . -  l . . . . . . . . . . . * . . . . . f . .  

883 - 3 - - - - - - - - - - - -  . . . . . . . . . . . . . . . . . . . . . . .  
K4-2 - - - - - - - - - - - -  

. . . - . . . . . - - . . . . - . . . I . * *  

Kt-5 - - - - - - - - - - - -  - * . . . . . . *  - . . . . - . . . . . . . .  
K4-9 * - - - * - - - - - - -  . . . . . . . . . - . . . . . . . . . . C . .  

Wx6-1 - - - - - - - - - - - -  
. . . . . . . . . I . .  t . . . . . . . . . .  

W X - A I G E N E A A T G C A T T G C A G - . . . . . . . . . . . . . . . . . . . . . .  
W K - B L G E N E G A T G C A T T G C A G . . . . . . . . . . . . . . . . . . . . . . .  
W X - D l G E N E A A T G C A T T G C A G . . . . . . . . . . . . . . . . . - . . C . .  

X57233 G C G G C T G C T C A A G A G C G T G G A G G A G A A G T T C C C G A  
Y16340 . . . . . .  A.........A.T.......A....,....A.T,,......A.....,.......A....,....A.T,,......A.....,..........A....,....A.T,,......A.....,.......A....,....A.T,,......A.....,.A..A...A 
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BH3-3 . . . . . . . . . . . . . . . . . - . r . f . . . . . . f . . . - . .  
K4 -2 . . . .  r . . . . . . . f . . . f . . . . . . . t . t . . . . . . . .  
K4 -5 . .  f . . . . . . . . . t . t . . . . t . . . . . . . . . . . . . . . . . . .  
K4-9 . . . . . .  A . . . . . . . . . A . T . . . . . . . . A . . . . . . .  
Wx6-L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-A1 GENE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
W X - B l G E N E . . . . . . . . . . . . . . . . . . . . . . - . . , . . . . . . . . -  
WX-Dl GENE. . . . . . A .  . . . . . . . . A .  T . . . . . . . . A .  . . . . . . 
X57233 C C A A G G T G A G G G C C G T G G T C A G G T T C A A C G C G C C G  
Y16340 G . . . . . . . . . . . . . . . . . . . . . - . . . - . . - . . . . .  
Tea19-2 G . .  . , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - 
BH3-3 G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -  
K4 -2 . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-5 ........... . . . . . . . . . . . . . . . . . . . . . . . .  
K4-9 G . . . . . . . . . . . . . . . . , . . . . . . - . . . . . . . . . .  

Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-AlG E N E . . . . . . . .  T . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-01 GENE G . . . . . . . . . . . . . . . . . . - . . - . . . . . . . . . . . . 
W % - D l G E N E G . . . . . . . . . . . . . . . . -  . . . . . . . . . . . . . , . . -  
X57233 C T G G C T C A C C A G A T G A T G G C C G G C G C C G A C G T G C T  
Y16340 . . . . . . . . . . . . . . . . . . . . .  . . . . . _ . . . . . . . .  
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
BH3-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4 -2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
K4-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V X - A l G E N E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
W X - B l G E N E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
WX-DIGENE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  





a 7 2 3 3  .............. C C G T G C G C C T G C G C G T C G A C A  1 3 1 2  
~ 1 6 3 4 0  .............. . . . . . . . .  G . . . . . . . .  c . .  c 1 2 7 9  
Tea19-2 .............. . . . . . . . .  G . . . . . . . .  C . .  C 1 2 7 9  

.............. BH3-3 . . . . . . .  . G  . . . . . . . .  C C 1 2 7 9  . .  

.............. K4-2 . . . . . . . . . . . . . . . . . . . . .  1 3 4 2  

.............. K4 -5 . . . . . . . . . . . . . . . . . . . . .  1 4 6 7  

.............. K4-9 . . . . . . . .  G . . . . . . . .  C C 1 2 7 9  . .  

.............. Wx6-1 . . . . . . . . . . . . . . . . . . . . .  1 2 7 9  
W X 4 U G E N E T T T C A A A T T T T C A G  . . . . . . . . . . . . . . . . . . . . .  2290 
W X . B l G E N E T T T C A A A T T T G C A G  . . . . . . .  . G  . . . . . . .  .C.. C 2282  

. .  W X . D l G E N E T T C C A A A T T T T C A G  . . . . . . . .  G . . . . . . .  . C  C 2348 

X57233 G G C G G G C T C G T C G A C A C T A T C G T G G A A G G C A A G A C  1 3 4 7  
. . . . . . . .  Y16340 . . . . . . . .  T G . . . . . . . .  G . . . . . . . .  1314  

. . . . . . . . . . . . . . . . .  Tea19-2 G . . . . . . . .  G . . . . . . . .  1314  
883-3 . . . . . . . . . . . . . . . . .  G . . . . . . . .  G .  . . . . . . .  1314 
K4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 3 7 7  
K4-5 . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 5 0 2  
K4-9 . . . . . . . .  T . . . . . . . .  G . . . . . . . . G . . . . . .  . . I 3 1 4  
Wx6-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1314  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  WX-Al GENE 2325  

. . . . . . . . . . . . . . . . .  WX-81 GENE G . . .  A . . . .  6 . . . . . . . .  2317  
WX-Dl GENE . . . . . . . .  T . . . . . . . .  G . . . . . . . .  G . . . . . . . .  2 3 8 3  

htrom 9 
X57233 C G G G T T C C A C A T G G G C C G C C T C A G C G T T G A C - - - -  1 3 7 9  

. . . . .  . . . . . . . . . . . . . . . . . .  Y16340 G T . . C . . T - - - - - -  1 3 4 6  
Tea19-2 . . . . . . . . . . . . . . . . . . . . . . . . . . .  C . . .  - - - - 1 3 4 6  

883-3 . . . . . . . . . . . . . . . . . . . . . . . . . . .  C . . .  - - - -  1 3 4 6  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  K4-2 - - - -  1 4 0 9  

K4-5 . . . . . . . . . . . . . . . . . . . . . .  . . - - . .  . . .  - - - -  1534  
. . . . .  K4-9 . . . . . . . . . . . . . . . . . .  G T . . C . . T - - - -  1 3 4 6  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Wx6-1 - - - -  1 3 4 6  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  WX-A1 GENE G T A T 2360  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .  UX-61 GENE C G T A G 2352 

. . . . . . . . . . . . . . . . . .  . . . . .  . .  . .  WX-Dl GENE G T C T G T A A 2418 





X 5 7 2 3 3  
Y 1 6 3 4 0  
T e a 1 9 - 2  
BH3-3 
K4 -2 
K4-5 
K4-9 
Wx6-1 
WX-A1 GENE 
UX-Bl GENE 
WX-Dl GENE 

G A T C T C T C C T G G A A G G T A A G T C - G T C T C T G G T T C A  
G A T C T C T C C T G G A A G G T A A G T C - G T C T C T G G T C T G  
G A T C T C T C C T G G A A G G T A A G T C A G T C T C T G G T C T G  

Wx6-1 
W X - A l G E N E G T - - - - - A T G C A C T T C C T G G A A C A A C T A A G A G T G A  
WX-B1 G E N E G T T T A G G A T G C A T T T T C C A G A A C A A C T A A G A G T T G  
WX-Dl G E N E G T T T A G G A T G C A T T T T C C A G A A C A A C T A A G A G T T A  

X 5 7 2 3 3  
Y 1 6 3 4 0  
T e a 1 9 - 2  
BH3-3 
K4-2 
K4-5 
K4-9 
Wx6-1 
WX-Al GENE 
WX-BI GENE 
WX-Dl GENE 

A G - - - - - - - -  G G C - - - - - - - - -  C G A T G T A T C C A T T  

A G A C T A C A A T G G T G C T C G T G C T C G A T G C A T C C A T T  
A G A C T A C A A T G G T G C T C T T G T T C G A T G T A T C C A T T  



X57233 1416 
116340 1383 
Tea19-2 1383 
B83-3 1383 
K4-2 1446 
K4-5 1571 
K4-9 1383 
Wx6-1 1383 
W X - A I G E N E A A T G G T G G C T T G C G C A T A T G A T G C A G G G G C C T G C C  2685 
W X - B l G E N E A A T G G T G G C T T G C G C A T A T G G T G C A G G G G C C A G C C  2698 
W X - D l G E N E A A T G G T G G C T T G C G C A T A T G G T G C A G G G G C C A G C C  2766 

X57233 1416 
Y16340 1383 
Tea19-2 1383 
BH3-3 1383 
K4-2 1446 
K4 -5 1571 
K4-9 1383 
Wx6-1 1383 
WX-A1 G E N E G G A G G G G A G C G A G C C G G G C A T C G T C G G C G A G G A G A  2755 
m - B l G E N E C G A G G G G A G C G A G C C A G G G G T C A T C G G C G A G G A G A  2768 
W X - D I G E N E C G A G G G G A G C G A G C C G G G G G T C A T C G G C G A G G A G A  2836 

- ~ - -  

K4-5 1571 
K4-9 1383 
Wx6-1 1383 
W X - A l G E N E T C G C G C C t C T C G C C C T G G A G A A C G T C G C C G C T C C C  2790 
W X - B I G E N E T T G C G C C G C T C G C C A T G G A G A A C G T C G C C G C T C C C  2803 
W X - D I G E N E T T G C G C C G C T C G C C A T G G A G A A C G T C G C C G C T C C C  2871 



X 5 7 2 3 3  
Y16340 
Tea19-2 
BB3-3 
K4-2 
K4-5 
K4-9 
01x6-1 
WX-Al G E N E T G A A G A G A G A A A G A A  
WX-01 G E N E T G A A G A G A G G A A A G A  
WX-Dl G E N E T G A A G A G A G A A A G A A  



Appendix 7.27 DNA Sequence Alignment of RT-PCR Derived cDNA Detected using 

GBSSF2fMMRTRPl. Sequences were aligned using the cluster method of the 

Megalign program ONASTAR) using percent accepted mutation (PAM) 250 

residue weight table. Nucleotides that are identical to the nucleotides of cDNA 

X57233 are indicated by the symbol '.'. . Dashes (-) denote nucleotides absent in one 

of the sequences, but present in the others. Wheat cDNA derived from CenBank 

(Accession no. X57233; Clark et of., 1991); wheat cDNA derived from CenBank 

(Accession no. Y 16340); FW 2-10 clone derived from CDC Wx2; BH13-3 and BH13- 

4 clones derived from Bai-Huo; and K14-9 clone derived from Kanto 107. 

MMRTRP1 is presented at the 3' end of the sequences. 



C G A C G T G A A G A A G G T G G T C A C C A C C C T G A A G C G C G  35 
. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  G 35 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 
. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  G  35 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 
. . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  G  35 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 

. . . . . . . . . . . . . . . . . . . . . .  A . .  C . .  ....... 70 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 
A . . . . . . . . .  70 . . . . . . . . . . . . . . . . . . . . . . . . .  

T G G A A C T G G G G G T G G A G G G G A G C G A G C C G G G C A T C  175 
. . . . . . . . . .  T . . C  . . . . . . . . . . . . . . . . .  G G . .  175 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17s 

. . . . . . . . . . . . . .  . . . . . . . . . . . . .  C A . . G G  . . I 7 5  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175 

. .  . . . . . . . . . .  T C . . . . . . . . . . . . . . . . . G G . .  175 

G T C G G C G A G G A G A T C G C G C C G C T C G C C C T G G A G A A 2 1 0  
A . . . . . . . . . . . . .  T . . . . . . . . . .  . . A A A . . . . .  210 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 
A . . . . . . . . . . . . .  T . .  . . . . . . . . . .  A .  . . . . . .  210 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 

. . . . . . . . . . . .  . . . . . .  . .  A .  T . . . . . .  A . .  2 1 0  

C G T C G C C G C T C C C T G A A G A G A G A A A G A A G A G G A G C  245 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . A . . . .  A G 2 4 5  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245 

. . G . . - - - -  . . A G  . T 241 . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  A A A A A A G  245 



T T C T C G T A T G G G G A G A T A G C C G C T T G T T G T A G  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. .  . . . . . . . . . . . . . . . . . . . . .  . . .  . . .  C G A 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



Appendix 738 Polyclond Antibodies used in Western Blotting: 

In response to the injection of a foreign substance into a higher animal (e-g., rabbit), an 

antibody (Ab) is produced that can react with the substance (Sambrook at al., 1982). Antibodies 

are proteins found in the bloodstream and are part of a class of serum proteins known as 

immunoglobulins. Any substance (e.g., the denatured form of the 59-60 kD Wx-D! protein 

isolated fiom the endosperm starch of wheat kernels) that can elicit antibody production is called an 

antigen (Ag). An antibody produced by exposure to an antigen has the important property of 

reacting specifically with the antigen that stimulated its production and not with most other 

antigens. Similarly, the antigen fails to react with any antibody other than that which it elicited. 

In addition to the original antigen, denoted antigen A, there are other substances that react 

with a specific antibody, denoted antibody A (elicited by antigen A), though often with a 

somewhat lower efficiency. This weaker reaction is called a cross-reaction. One kind of cross- 

reaction is that which takes place when antigen B reacts partially with antibody A and antigen A 

with antibody B. Asymmetric cross-reactivity also occurs that is, antigen A reacts with antibody 

B, but antigen B does not react with antibody A. Cross-reactions occur when there is chemical 

similarity but not identity. 

There are many &es of antibody proteins found in serum. For the purpose of analytical 

immunological procedures, the most important family of antibodies is the immunoglobuh G or 

IgG (gamma globulin) class (e.g., IgG comprises - 85 % of the immunoglobulins in adult 

humans). These proteins, whose basic structure is shown schematically in Fig. 7.6 consists of 

three principal regions. Two of these regions are identical and are termed F* (F stands for 

Fragment and ab for antigen-binding). The third section is called F,. The central portion of an 

IgG molecule is a flexible region known as the hinge. Each F* branch contains a terminal 

antigen-binding site. Thus, each IgG molecule can bind two antigen molecules. 

Since antibodies are produced in the bloodstream of an animal in response to the injection 

of a foreign substance then, the antibody can be obtained by bleeding an animal that has been 

repeatedly injected with the same antigen. Due to the specificity of the reaction of the Ag-Ab 

reaction, it is rarely necessary to isolate the specific antibody, or even the immunological fraction 

(i.e., IgG). Hence, in most immunologicaI work, blood serum from which all cells have been 

removed by centrifugation is used. Serum known to contain a particular antibody is called 

antiserum. 



Antigen-binding 
sites 

7.6 Generalized Y shape of immunoglobulin C. Adapted from Sambmk et al. (1982) 




