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ABSTRACT 

Fertilizer microdosing, the application of a reduced fertilizer rate next to the seed within 

ten days of sowing, and other Integrated Soil Fertility Management (ISFM) techniques including 

organic matter (OM) application and legume incorporation have shown potential for improving 

crop production of smallholder farmers in the Sahel of West Africa in short-term research. Little 

long-term research on the sustainability of these techniques has been conducted thus far, 

however. The objective of the current research is to determine the long-term effect of the 

microdosed rate of fertilizer at the Sadore research site in Niger running 16 years, as well as the 

impact of ISFM techniques at both Sadore and a 50-year running site at Saria, Burkina Faso on 

SOM dynamics and soil properties including pH, soil organic carbon (C), cation exchange 

capacity, electrical conductivity, total nitrogen (N) and phosphorus (P), and available P. SOM 

dynamics were investigated using the X-ray Absorption Near-Edge Structure (XANES) 

technique for C and N speciation. Yield regression under fertilizer treatments at Sadore was also 

calculated. Treatments at Sadore included three rates of fertilizer: control, microdosed rate of 15 

kg N ha-1 and 4.4 kg P ha-1, and 30 kg N ha-1 and 13.2 kg P ha-1 with P broadcasted and N applied 

using point placement. Crop residue and manure were also applied, each at 300, 900, and 2700 

kg ha-1. At Saria, ISFM treatments included two broadcasted fertilizer rates: 1) 100 kg ha-1 14-23-

14 (NPK) with 50 kg ha-1 urea and 2) NPK with an additional 50 kg ha-1 urea and 50 kg ha-1 KCl, 

with and without crop residue at 4800 kg ha-1, or manure at 5000 kg ha-1 or 40000 kg ha-1. As 

well, mixed cereal-cowpea cropping was compared to continuous cropping of millet at Sadore 

and sorghum at Saria. The microdosed rate at Sadore had significant yield benefits over the 

unfertilized soil; however, yield declined over time under both the microdosed and 

recommended fertilizer rates. Possible soil fertility-related drivers of yield decline include soil 

acidification, low SOM, and mining of nutrients not applied in fertilizer. Soil pH was improved 

with crop residue at the 2700 kg ha-1 rate at Sadore and manure at the 40000 kg ha-1 rate at Saria, 

which also increased SOC and CEC. C and N XANES data showed that soil treated with higher 

OM rates and reduced or no fertilizer was more enriched in aromatic-C, pyrrolic-C, N-bonded 

aromatics and amide-N, organic groups associated with lower levels of humification and/or 

greater input of available microbial substrate, and depletion of ketone- and phenol-C groups 

under continuous cropping also indicated greater levels of OM degradation. For sustainable soil 
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fertility management in the Sahel, applying the microdosed rate of fertilizer with manure and 

crop residue at as a high of rates as possible for smallholders, and including legumes into the 

cropping mix is recommended. 
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1. INTRODUCTION 

Food security is described by the Food and Agriculture Organization (FAO) (1996) as the 

stable access of individuals to sufficient quantities of safe and nutritious food. Sub-Saharan 

Africa (SSA) has the highest prevalence of food insecure people globally, as 26.8% of the 

population is considered undernourished, compared to the world average of 11.3% (Food and 

Agriculture Organization of the United Nations, 2014). To exacerbate the issue of hunger in 

SSA, crop production is increasing at only 1% per year (Chauvin et al., 2012). In SSA, reported 

cereal yields of about 1100 to 1500 kg ha-1 are half to a third of the world average of 3200 kg ha-1 

(Lal and Stewart, 2010; Africa Progress Panel, 2014).  Contrary to crop production, population 

growth in Sub-Saharan Africa is rapid. Sub-Saharan Africa is the most rapidly growing region in 

the world in terms of population, with an annual growth rate of 2.6%, compared to a 1.48% 

growth rate in Asia and a global growth rate of 1.44%. As well, Africa holds the highest 

population of children under the age of 15, and most of the world’s future population growth will 

be in Africa (United Nations Department of Economic and Social Affairs, 2013). This rapid 

population growth has put pressure on land resources and led to a decrease or elimination of 

fallow periods and increased cropping of marginal lands (Saïdou et al., 2004; Abdoulaye and 

Sanders, 2005). Because this population boom is not matched by increased agricultural 

production, the number of undernourished people in SSA is increasing, which will lead to 

continual land degradation if immediate information-based action is not taken. 

 In the Sahel of West Africa (Fig. 1.1), issues of malnourishment, low crop production and 

environmental degradation are even more acute due to a harsh and unstable climate plagued with 

frequent drought and famine, with four food crises in the last ten years (2005-2015) (European 

Commission, 2015). Human welfare is low in the region, which includes Niger, Mauritania, 

Chad, Mali, Burkina Faso, The Gambia, Senegal, northern Cameroon, Nigeria, and Benin. The 

average Human Development Index (HDI) rank, a measure of welfare developed by the United 

Nations Development Programme (UNDP), for these Sahelian countries is 169 out of 187 

countries compared globally. Burkina Faso and Niger, the countries of specific interest to this 

research have exceptionally low HDI’s, at 181 and 187 respectively (UNDP, 2014). Low soil 

fertility and unreliable rainfall patterns in the Sahel, along with extremely high fertilizer prices, 

lack of credit, high labor requirements, and little access to extension services make soil fertility 
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management extremely difficult for subsistence level farmers, which comprise 90% of the 

population in the region (Saïdou et al., 2004; Abdoulaye and Sanders, 2005). As in the rest of 

Africa, population pressure has lead to the breakdown of the traditional rotating cultivation and 

fallow system and there is little opportunity to expand cropped area (Abdoulaye and Sanders, 

2005; Aune and Bationo, 2008). To address hunger in Africa in general and the Sahel in 

particular, production must be increased without degrading the land, through sustainable 

agriculture intensification.   

 Fig. 1.1. Map of the Sahelian region of West Africa (Zeng, 2003). 

Due to the poverty and resource scarcity faced by smallholder Sahelian farmers, rapid 

agricultural intensification and investment in recommended rates of fertilizer is not financially 

feasible (Aune and Bationo, 2008; Vanlauwe et al., 2010). Agricultural intensification in Africa 

follows a step-by-step development pathway, described as a development “ladder” (Abdoulaye 

and Sanders, 2005; Aune and Bationo, 2008). Instead of rapid increase in fertilizer use and other 

capital investments, farmers take small, low-risk steps, with the goal of maximizing their use of 

technologies and inputs available within their means to step to the next rung of the ladder (Aune 



	
  

	
  

	
  

3	
  

and Bationo, 2008; Tabo et al., 2007). First steps in the ladder require increased labor and better 

stewardship of local resources, followed by adoption of low-cost inputs, with gradually higher 

capital investment as capacity is built and production increases. Integrated Soil Fertility 

Management (ISFM) is a set of locally adapted practices that include fertilizer application, 

organic amendments, and use of improved plant genetics, to maximize agronomic use efficiency 

and crop production (Vanlauwe et al., 2010). As with the stepladder concept of agricultural 

intensification, ISFM adoption also follows a stepwise pattern, with adoption of more intensive 

ISFM practices as soil fertility and financial capacity is built. Many ISFM practices including 

mineral fertilizer application, manure and crop residue amendment, and incorporation of N-

fixing legumes into cropping systems may have great benefits for cropping systems in West 

Africa; however, research on the long-term effects of ISFM is required to quantify these benefits. 

Fertilizer microdosing is the application of a reduced rate of fertilizer next to the seed 

within ten days of sowing. Microdosing has been proposed as one component of ISFM and one 

step in the development ladder (Abdoulaye and Sanders, 2005; Vanlauwe et al., 2010). The low 

capital investment of less than 4 kg P ha-1 has been found to more than double yields in the Sahel 

compared to no fertilizer use, and minimizes risk to the smallholder compared to applying 

recommended rates (Twomlow et al., 2008). Microdosed point-placement increases fertilizer use 

efficiency compared to broadcasted fertilizer at higher rates, and provides an economic return to 

farmers, allowing farmers to gradually increase their investment in inorganic fertilizer and other 

soil amendments, developing their agricultural practices (Abdoulaye and Sanders, 2005; Aune 

and Bationo, 2008). Microdosing is a promising technique for maintaining soil fertility and food 

security improvement in the Sahel; however, little research has been done thus far to determine 

the long-term sustainability of microdosing. The microdosed rate is typically less than nutrient 

removal with harvest; however, researchers expect that farmers will apply more fertilizer when 

they see returns from microdosing, and thus the negative nutrient balance will be temporary 

(Aune and Bationo, 2008). Farmers may not increase fertilizer rates beyond microdosed rates 

over the long-term if they do not have access to a steady fertilizer supply, or if money set aside 

for fertilizer purchase must be used to pay for a child’s schooling or a medical emergency. The 

long-term effect of fertilizer microdosing on soil quality and productivity must be determined 

before microdosing can be incorporated into an ISFM strategy for sustainable intensification in 

the Sahel. Research into the long-term sustainability of reduced rate microdosing and other ISFM 
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practices separately and together is important for sustainable intensification of crop production 

and prolonged food security in the Sahel and rest of Sub-Saharan Africa.  

The objective of the research in this thesis is to determine the long-term impact of the 

reduced microdosed rate of fertilizer and other ISFM practices on soil fertility and carbon (C) 

and nitrogen (N) dynamics at two long-term research sites in Sahelian West Africa. In order to 

achieve these objectives, the thesis is organized into two manuscript chapters. The first chapter 

examines the long-term effect of the reduced microdosed rate of commercial fertilizer in 

comparison with the recommended rate and no fertilizer. As well the interaction of the different 

fertilizer rates with crop residue and manure application is analyzed to determine ways to further 

improve sustainability. The second chapter covers the long-term impact of a variety of ISFM 

practices, including manure and crop residue application alone and in combination with fertilizer, 

and mixed cropping with legumes, as well as cultivation. Two long-term research trials were 

used in the studies; one established in 1993 at the International Crop Research Institute for the 

Semi-Arid Tropics (ICRISAT) in Sadore, Niger, and the other established in 1965 in Saria, 

Burkina Faso by INERA (Institut de l’Environnement et de Recherches Agricoles). Only the 

Sadore site compares a microdosed rate of fertilizer to recommended rate, thus this site is the 

focus of the first manuscript. Both the Sadore and Saria trials include a variety of ISFM 

treatments, thus soil from both sites is utilized in the second manuscript. The two research 

chapters follow a literature review intended to give context to the research questions and 

methods used. Finally a synthesis and conclusions chapter is used to draw general conclusions 

from the results of the studies and offer recommendations for policy and future research.  
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2. LITERATURE REVIEW 

2.1 Sahelian Soil  

2.1.1 Soil characteristics and formation 

 The main soil types in the Sahel provide significant challenges to crop production due, in 

part, to their low nutrient retention capacity. In general Sahelian soils are characterized by low 

organic matter, depletion of base cations, and an accumulation of unreactive kaolinitic clay 

minerals and Fe and Al oxides and hydroxides. These characteristics lead to low pH and cation 

exchange capacity (CEC), weak soil structure, and overall low inherent soil fertility (Jones et al., 

2013, Juo and Franzluebbers, 2003). The factors and processes involved in tropical soil 

formation differ greatly from those in temperate regions. Generally, tropical soils are formed on 

more acidic sandstone, quartzite, or granite parent material with lower inherent fertility than the 

basalt, limestone and glacially derived parent material found in temperate regions (Jones et al., 

2013; Juo and Franzluebbers, 2003). Tropical soils are much more weathered than temperate 

soils due to a much longer time since glaciation, and a warm climate year round (Muehlig-

Versen et al., 2003). Soil weathering processes including the leaching of silicate minerals and 

base cations from the soil solution, weathering of primary rock minerals to kaolinite, or Al and 

Fe hydroxides such as gibbsite and goethite, and sorption of P to Al and Fe hydroxides. These 

processes increase acidity, lower CEC, and deplete the soil’s nutrient stores (Tan, 2011; Juo and 

Franzluebbers, 2003). As well, Sahelian soils are highly phosphorus (P) deficient, because of low 

total P reserves and soil organic matter (SOM) content and a high degree of weathering of P 

from soil parent material (Juo and Franzluebbers, 2003). The above factors and processes have 

led to development of soils characteristically low in soil nutrients, with a low capacity to retain 

nutrients and buffer soil pH.  

The dominant clay mineral in sandy Sahelian soil is kaolinite (Si2O5Al2OH4). As a highly 

weathered secondary mineral, it presents challenges for crop production. Kaolinite’s 1:1 

phylosillicate structure, lack of isomorphic substitution, and small surface area means there are 

few ion adsorption sites (Tan, 2011). One beneficial characteristic of kaolinite is that it does not 

fix P as strongly as other minerals found in tropical soils; however, kaolinite is not able to retain 

P and other nutrients well (Muehlig-Versen et al., 2003). Kaolinite is able to retain some H2PO4
- 

when pH is low, however, because Al-OH groups on mineral edges are protonated and thus 
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positively charged (Juo and Franzluebbers, 2003; Fageria, 2009). In the Sahel, kaolinite rich soils 

are prone to surface crusting and compaction, wind erosion, drought stress, nutrient deficiencies, 

and Al toxicity, as well as acidification with continued fertilizer use (Juo and Franzluebbers, 

2003). Kaolinitic-rich Sahelian soils present many challenges that smallholder farmers must 

overcome to achieve food security. 

Figure 2.1. Mean annual precipitation in the Sahelian region (Minielly and Rehman, 
unpublished). 

2.1.2 Agricultural soil types  

The soil types most suitable for agriculture in the Sahel, according to the World 

Reference Base for Soil Resources (WRB), are Arenosols and Lixisols. Soil type changes from 

Arenosols to Lixisols as mean annual precipitation increases from north to south (Fig. 2.1). In 

arid to semi-arid southwestern Niger, the dominant soil type is Arenosols (Jones et al., 2013). 

Arenosols are formed from aeolian sand deposits and thus have low water and nutrient retention, 

and low nutrient content. They are commonly deficient in micronutrients, sulfur (S), and 
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potassium (K), and are prone to wind erosion because of their poor structure. Applied fertilizer is 

easily leached (Jones, 2013; Bationo et al., 2012a). Moving southwest towards Burkina Faso, 

change in parent material, decrease in average temperature, and increase in precipitation and 

vegetation growth allows increased biological and chemical weathering. Increased moisture 

leads to clay mineral illuviation, forming the kaolinite-enriched B horizon characteristic of 

Lixisols, the dominant soil type in Burkina Faso (Jones et al., 2013; Bationo et al., 2012a). 

Lixisols are deeply weathered, high in Fe and Al oxides, and dominated by kaolinitic clays and 

gibbsite, with a low nutrient retention capacity (Bationo et al., 2012a). Lixisols generally have a 

higher base status than other tropical soils, and thus are less prone to acidity and Al toxicity. 

They are suitable for agricultural production but will become rapidly depleted in nutrients if 

fertilizer and organic matter are not applied (Bationo et al., 2012a; Jones et al., 2013). The low 

nutrient retention capacity and low inherent fertility of agricultural soils in the Sahel mean that 

nutrients for crop growth must be provided by outside sources. To ensure the productivity of 

these soils, proper soil fertility management that includes mineral fertilizer application is 

essential. 

2.2 Soil Nitrogen, Phosphorus, and Carbon Function and Cycling in the Sahel 

 Nitrogen is a main component of many organic compounds including amino acids and 

proteins, nucleic acids, enzymes, and chlorophyll, and is an essential nutrient for plant 

physiology (Fageria, 2009; Tan, 2011). The main N inputs in agricultural systems include 

inorganic fertilizer, manure, and crop residue application, biological N fixation by legumes or 

specific soil microorganisms, and N deposition in rainfall. In the Sahel, N inputs to the soil are 

often low because of low access to inorganic fertilizer, scarcity of manure, and competing uses 

for crop residue as animal feed or cooking fuel (Buerkert and Hiernaux, 1998). Nitrogen cycling 

is complex and affects soil functioning in the Sahel in several ways. First, plants and soil 

microbes take up N added to the soil most commonly in the inorganic nitrate (NO3
-,) and 

ammonium (NH4
+) forms, and microbes also mineralize organic crop residues and manure and 

immobilize the N in their biomass. Microbial immobilized N is released as plant available N as 

microbes die and their biomass is recycled (Fageria, 2009). Soil tillage, which is common in the 

Sahel, may aerate soil, stimulating microbes to mineralize N, lowering soil N content (Mando et 

al., 2005). Nitrification is the conversion of NH4
+ to NO3

- and releases H+ ions into the soil, 
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lowering soil pH, increasing soil acidity and potentially inhibiting soil functioning (Fageria, 

2009; Hatfield and Sauer, 2011). Soil erosion and surface runoff from soil crusting are other 

major N-loss pathways in the Sahel, and are caused by low SOM and poor soil structure, which 

is accentuated with tillage (Buerkert and Hiernaux, 1998). As well, NO3
- is mobile in the soil 

solution and thus can be leached from the rooting zone. Leaching is high in the Sahel because the 

sandy soils have a high infiltration capacity and hydraulic conductivity (Buerkert and Hiernaux, 

1998). N can also be volatilized from soil as NH3, which is especially common when rain does 

not soon follow surface application of NH4
+ fertilizer. This pathway of N loss may be of concern 

in the Sahel due to variable rainfalls, but can be minimized through precise placement of 

fertilizer in the soil, as in microdosing (Fageria, 2009). There are many potential pathways for 

loss of scarce N fertilizer from soil in the Sahel, thus research should focus on improving N use 

efficiency. 

 As with nitrogen, phosphorus (P) is also an essential macronutrient for cropping in the 

Sahel. P is needed for storage and transfer of energy, root growth and stem culm strength, and for 

N2 fixation in legumes (Fageria, 2009). The soil P is derived from soil parent material through 

dissolution of P bearing minerals like apatite or is added as a component of inorganic fertilizer or 

manure. The P has low mobility in the soil solution and is easily fixed to clay or complexed with 

organic matter, thus much applied soil P is not directly available for plant use (Juo and 

Franzluebbers, 2003; Fageria, 2009; Tan, 2011). Transformations and plant uptake of P are 

controlled by climatic factors such as soil temperature and moisture, and soil factors such as 

texture, SOM content, soil pH, and concentration of P in the soil solution (Fageria, 2009). The 

SOM content is important for P retention in the soil system because organic matter can absorb 

phosphates (Tan, 2011). Phosphorus is very important for soil functioning but is limited in the 

Sahel. 

 Organic carbon (OC) is very important for soil functioning, improving many physical, 

biological, and chemical characteristics of the soil. Soil carbon improves structure, promoting 

aggregate formation and water retention, which prevents erosion, surface crusting and 

compaction. Carbon provides an energy source for microbes and improves soil aeration, 

increasing biological activity and the cycling of nutrients. Soil organic carbon (SOC) also 

increases cation exchange capacity (CEC) by providing pH dependent exchange sites on humus 
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molecules that retain nutrients. All of the above benefits of C improve and sustain crop yield in 

the tropics (Delgado and Follett, 2002; Fageria, 2009; Gentile et al., 2013). Increasing and 

maintaining soil carbon thus is an essential component of agriculture development and food 

security in the Sahel. The main C inputs to soil in smallholder agriculture in the Sahel include 

organic matter (OM) inputs such as manure, crop residues, plant detritus, microbes, and closer to 

the farm settlement, human waste and food compost (Tittonell et al., 2008). The microbial 

community mineralizes the C in these OM inputs for energy, releasing respired CO2 to the 

atmosphere, and returning organic C to the soil in their waste or biomass to ultimately form more 

stable humus. Microbes eventually degrade organic C into humus, which is further exploited by 

microbes for nutrients and energy (Delgado and Follett, 2002; Grandy and Neff, 2008; Puttaso et 

al., 2013). The C cycle is very important to soil fertility and functioning and is driven by 

microbial degradation of organic matter inputs. 

 The C cycle specifically influences soil nutrient cycling and soil fertility in several ways. 

First, the breakdown of C inputs into humus leads to the release and recycling of nutrients 

contained in the OM for plant use, mainly N, P, S, as well as Zn and Cu (Delgado and Follett, 

2002). The SOM also influences nutrient cycling through buffering pH and creating a pH 

dependent surface charge that increases nutrient retention at higher pH levels. Because of SOM 

oxidation, humus is rich in carboxyl (COOH-) and phenol (OH-) groups that are able to release or 

accept H+ ions as their concentration changes, buffering acidity and its impact on crop growth, 

and contributing to cation retention at certain pH levels (Singer and Munns, 2006).  Because 

humus is colloidal, it is also able to adsorb to clay particles and form stable aggregates with clay 

and other SOM particles. These processes improve soil structure and quality, and protect OM 

from further degradation (Singer and Munns, 2006). C cycling impacts soil fertility and nutrient 

cycling in many ways, and soil nutrients, especially N interact with C to impact soil organic 

matter (SOM) dynamics as a whole.  

2.3 Soil Organic Matter Dynamics  

 SOM contains C, N, P and many other compounds and nutrients, and its deposition and 

decomposition is important for soil fertility. Microbes break down SOM in a decomposition 

sequence, and specific C and N containing organic compounds are present at certain points in the 

sequence (Lutzow et al., 2006; Wickings et al., 2012). Within the humus fraction there are forms 
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or species of C and N with different characteristics such as charge, oxidation state, and 

availability in the soil solution (Conklin, 2005). Some species of C and N are plant derived, 

indicating soil decomposition is less advanced, and other species are microbially derived, 

indicating greater OM turnover (Gillespie et al., 2014b). The decomposition sequence and 

subsequent soil C and N speciation is driven by environmental conditions that impact microbial 

activity, which are determined by inherent soil and climatic characteristics as well as soil 

management practices (Lutzow et al., 2006; Singer and Munns, 2006; Wickings et al., 2012). 

Some soil properties such as soil temperature, water content, structure, texture, and mineralogy 

are difficult to manipulate in smallholder rain fed agriculture (Singer and Munns, 2006). Soil 

texture is especially influential on organic matter (OM) degradation in the Sahel, as there are few 

fine soil particles in the dominantly sandy unreactive soil to form and physically protect OM 

aggregates and stabilize C (Feller and Beare, 1997; Grandy et al., 2008; Grandy and Neff, 2008). 

While inherent soil properties are difficult to manipulate, soil pH, aeration, OM input, and 

nutrient content can be managed, impacting microbial OM decomposition and C and N 

speciation (Singer and Munns, 2006). Soil tillage increases exposure of soil microbes to oxygen, 

also stimulating microbial C and N decomposition (Hatfield and Sauer, 2011). As well, the 

quantity, C:N ratio, and composition of soil inputs all impact microbial C and N dynamics 

(Rasche and Cadisch, 2013; Singer and Munns, 2006). N fertilizer addition also leads to the 

degradation of certain C and N groups through lowering the C:N ratio of the soil (Neff et al., 

2002). Analytical techniques exist to study C and N speciation, useful for determining the impact 

and sustainability of different management techniques. 

2.4 Studying Carbon and Nitrogen Dynamics Using XANES 

 While quantifying SOC and N in the bulk soil through wet chemistry techniques is 

useful, revealing the type of C and N molecules contained in the soil organic matter can also help 

better understand soil nutrient dynamics (Gillespie, 2013). C and N speciation can be determined 

through X-ray Absorption Near Edge Structure (XANES) spectroscopy, in which soil samples 

are exposed to photons across an energy range specific to that element. The light excites a core 

electron, which is then promoted to a higher energy orbital, leaving a core electron hole. An 

electron at a higher orbital relaxes to fill the hole, and energy is released as photon fluorescence 

or electron emission. Beamline detectors measure both these parameters as a proxy for the 
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number of photons absorbed by a compound. The energy at which these photons are absorbed 

gives information on the bonding structure of molecules being measured and the functional 

groups present (Myneni, 2002). The output of C and N XANES is a spectra graph that represents 

a fingerprint of the specific organic C or N compounds in a sample. Peaks at specific energies of 

the spectra for a specific element represent certain species of that element, determined by 

reference compounds in the literature. Fig. 2.2 is an example of reference compounds used to 

determine carbon speciation. The XANES technique has yet to be used to study the effect of soil 

fertility treatments on soil C and N speciation in African soil. In fact, only one case was found in 

the literature where XANES was used to study African soil in general (Solomon et al., 2005). 

Thus use of XANES in this current research will help further develop the technique as a tool for 

characterizing organic C and N forms in diverse soil types and help reveal C and N dynamics as 

affected by soil fertility management in the Sahel. 

Fig. 2.2. C XANES spectra of standard carbon containing compounds. (J.J. Dynes, unpublished 
data). 

2.5 Current Boundaries of Fertilizer Microdosing Research 

 Much research has been done thus far in the Sahel and greater Africa on microdosing, 

with the main research focus being to optimize the technique. Research has been completed to 

determine the yield response of microdosing across growing seasons, in different soil types or 
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climates, under both farmer and researcher management, in various cropping systems (Buerkert 

and Hiernaux, 1998; Tabo et al., 2007; Twomlow et al., 2008; Bagayoko et al., 2011). Results 

from this research indicate that reduced rates of nutrients applied precisely using the microdosing 

approach does not optimize yield but increases fertilizer use efficiency (yield produced per unit 

of fertilizer added) in comparison to the conventional broadcast method of application in a 

variety of agricultural environments (Buerkert and Hiernaux, 1998; Muehlig-Versen et al., 2003; 

Twomlow et al., 2008). Microdosed P at the planting site increases P availability to the seedling, 

stimulating root development, early season plant growth, and stand establishment in comparison 

to broadcast application, doubling phosphorus use efficiency in some instances (Muehlig-Versen 

et al., 2003; Valluru et al., 2010). Certain aspects of microdosing have been researched to date, 

but there are areas where more research is needed, both of which are discussed below. 

2.5.1 Yield response of microdosing 

 Crop yield response to microdosing over the short-term has been researched across Sub-

Saharan Africa. Yield results from pearl millet trials at several controlled research sites in the 

Sahel showed increases in grain yield over the unfertilized control of 27% to 53% under 

microdosing at 3-4.5kg P ha-1 and increases of 50-113% at 4 kg P ha-1 (Buerkert et al., 2001; 

Muehlig-Versen et al., 2003). In Sudan, rates as low as 1.5 kg of N and P ha-1 increased yield by 

31% in millet and 50% in sorghum, and at 6 kg ha-1, millet yield increased by 47%, and sorghum 

increased by 110% compared to the unfertilized control (Aune and Ousman, 2011). A trial in 

Ethiopia there was no significant difference in yield between three microdose treatments at 13, 

24, and 37 kg N and P ha-1 and one banded treatment at 46 kg N and P ha-1 (Sime and Aune, 

2014). Compared to the control, total dry matter (TDM), which is important for building up 

SOM, increased by 48% at a rate of 3kg P ha-1 and 64% at a rate of 5kg P ha-1. These TDM 

results were 72% and 81% respectively of TDM production at the recommended rate (Bagayoko 

et al., 2011). Another controlled microdosing trial in the Sahel did not have improved production 

of TDM in legumes (Buerkert et al., 2001).  

 Grain and stover yield improvements were also seen in farmer-managed microdosing 

trials across the Sahel. Microdosed rates of 3-9 kg P ha-1 increased millet and sorghum grain 

yield by 36-130% and stover yield increased between 36% and 124% compared to an 

unfertilized control across several Sahel trials (Buerkert and Hiernaux, 1998; Buerkert et al., 



	
  

	
  

	
  

13	
  

2001; Tabo et al., 2007; Aune and Bationo, 2008; Bagayoko et al., 2011; Aune and Ousman, 

2011). There was no significant yield difference between microdosing and the recommended 

dose in some farmer-led research as well (Tabo et al., 2007; Bagayoko et al., 2011). Another 

benefit of microdosing outside of yield was that small doses of P fertilizer reduced invasion of 

the parasitic Striga hermonthica weed that inhibits millet production in the Sahel (Jamil et al., 

2014). There has been extensive research showing the positive yield response of varied 

microdosing rates in different regions of the Sahel and the rest of Africa with different crops, 

under many different management practices. 

2.5.2 Effect of timing and management practices on yield response of microdosing 

 Along with yield response research, work has also been done to understand the nutrient 

dynamics of microdosing under different conditions to optimize the technique. Research includes 

quantifying the effect of previous land management, as well as timing of microdosed rates and 

relative effects of microdosed N and P on yield. Microdosed P at 10 kg ha-1 improved yield more 

than N at the same rate across several trials in Africa and South America, indicating the 

importance of P application (Van der Velde et al., 2013). The most beneficial timing for 

microdosing is reported to be from the time of sowing up to 10 days after sowing (DAS) 

(Hayashi et al., 2008; Valluru et al., 2010). Microdosed fertilizer may also be applied later in the 

growing season, as late as 57 DAS, and still obtain a yield benefit, although it may be a smaller 

improvement than an earlier application. In one study however, yield was not significantly 

different, or even higher in a later application than when applied directly after sowing if the 

fertilizer application was followed by rainfall (Hayashi et al., 2008). Flexibility of microdose 

timing application benefits farmers with a shortage of labour or access to fertilizer at sowing, or 

who want to minimize risk by delaying fertilizer application to see if there will be sufficient 

rainfall (Hayashi et al., 2008). As well, microdosing was found to be the most beneficial on soils 

with low fertility, where there was no previous manure application (Bielders and Gérard, 2015). 

Because of the scarce availability of fertilizer for smallholder farmers, this research has been 

beneficial for determining the best way to apply microdosed fertilizer.  

 The effect of other management practices on yield response and nutrient dynamics in 

microdosing has also been studied. Seed priming, in which seeds are soaked in water for 8-10 

hours before sowing, benefited microdosed yield in comparison to microdosing on its own (Aune 
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and Bationo, 2008; Aune and Ousman, 2011). Certain rainwater harvesting techniques also 

interact with microdosing to further improve yields (Palé et al., 2009). The synergy of organic 

inputs and micro dosed fertilizer were studied at one site, and a rate of 8.5 kg N ha-1 with 6000 

kg ha-1 of manure benefited yield more than a high fertilizer rate of 62 kg N ha-1 without manure 

(Ncube et al., 2006). The joint application of microdosed P with rock phosphate provided a better 

long-term P management strategy, as seed placed P provided early season benefits, while rock P 

released P over the growing season and in the following growing seasons (Muehlig-Versen et al., 

2003). Based on research thus far, the benefits seen with microdosing can be improved with the 

addition of seed priming, rainwater harvesting, and application of manure or rock phosphate; 

however, more research on the benefits of these and other management practices in combination 

with microdosing is still needed.  

2.5.3 Profitability and adoption of microdosing 

 Research has been conducted to determine the profitability and factors affecting adoption 

of microdosing. The conclusion of many of the studies reviewed is that because of the small 

investment and high efficiency of microdosing, it is a profitable technique for farmers 

(Abdoulaye and Sanders, 2005; Tabo et al., 2007; Twomlow et al., 2008; Aune and Ousman, 

2011). Farmer-managed trials in which smallholders are exposed to the benefits of the 

microdosing technique have led farmers to increase their fertilizer rates beyond microdosing and 

experiment with different combinations of inorganic and organic amendments and soil 

conservation techniques. Therefore in the field, microdosing is acting as an initial step in 

agricultural development (Abdoulaye and Sanders, 2005; Twomlow et al., 2008). According to 

the literature, short-term microdosing not only benefits crop production, but also is improving 

returns to farmers, an important component of sustainable agricultural development and food 

security. Comparing three different microdosing rates, the lowest microdose rate was most 

profitable and least risky for farmers and compared to the control, the lowest microdose rate had 

an average yield increase of 37% across three sites (Sime and Aune, 2014). Overall research 

shows microdosing is profitable and lowers risk for Sahelian smallholders.  

2.5.4 Impact of microdosing on soil fertility and environmental sustainability 

 While it is clear that microdosing offers yield and return increases to farmers over the 

short term, if the rate of nutrients added in microdosing is less than the nutrients exported at 
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harvest, the soil is expected to become nutrient-depleted over time. Potential for nutrient mining 

with microdosing, and the impacts of microdosing on soil quality is scarcely mentioned in the 

literature. Some researchers noted that the low quantities of fertilizer used in micro-dosing do not 

meet nutrient requirements, meaning that they likely lead to a highly negative nutrient budget 

and depletion of nutrient stores, restricting yields, especially if there is no alternative source of 

nutrient or OM applied (Buerkert et al., 2001; Muehlig-Versen et al., 2003; Aune and Bationo, 

2008; Twomlow et al., 2008). Buerkert et al. (2001) noted that microdosed application only 

supplies a portion of the nutrients the plant requires, so it should only be used as a first step in a 

long-term soil fertility management plan. Some other researchers briefly discussed the potential 

for microdosing to increase SOC because microdosing increases dry matter production in 

comparison to unfertilized soil (Buerkert et al., 2000). Bagayoko et al. (2011) and Beurkert et al. 

(2001) measured stover yield instead of grain yield in part because of the implications of 

microdosing for soil C inputs. If residue from microdosed crops is left in the field, microdosing 

may lead to increased SOM and improved soil quality (Buerkert et al. 2001; Aune and Bationo, 

2008; Bagayoko et al., 2011). Thus some mention was made in the literature of the influence of 

microdosing on soil quality and environmental sustainability; however, there is much more work 

that needs to be done.  

In reviewing the literature, research focus has been on the yield benefits of microdosing 

and agronomic optimization. The main variable measured in all of these trials is annual grain and 

stover yield response, and total dry matter production. Not only yield response, but yield trends 

over several years must be assessed to determine the sustainability of microdosing, and yield 

trend can only be determined via long-term experiments (Bielders et al., 2002b; Janssen et al., 

2011). There have only been short-term research trials on microdosing thus far, and no trial has 

evaluated impacts for longer than 5 years. Along with yield parameters, effect of microdosing on 

soil properties must also be analyzed. Only one study included the measurement of soil 

properties, and nutrient concentration of plants was a component of another trial (Muehlig-

Versen et al., 2003; Ncube et al., 2006). The long-term effect of microdosing on soil properties 

must be studied to determine if microdosing is a sustainable technique for soil quality 

maintenance. Additionally, very little research was done on the interaction of microdosing and 

other management practices such as manure or crop residue amendment and crop rotation. Only 

one study assessed the impact of application of organic amendments on microdosing yields, and 
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one other trial included a cereal-legume rotation component (Buerkert et al., 2001; Ncube et al., 

2006). Long-term effects of other management practices on microdosing are important to 

consider in sustainability of microdosing. The research work highlighted above has been 

foundational for developing and encouraging the adoption of the microdose technique for 

impoverished smallholder farmers. The aim of my current research is to build on the work done 

thus far by adding the important component of soil resource and environmental sustainability to 

the body of microdosing research.  

2.6 Results from Long-Term ISFM Soil Fertility Studies 

 As discussed in the introduction, agriculture intensification in the Sahel is successful 

when approached as a stepladder, rather than promoting adoption of all practices at once, and 

microdosing is one rung in the ladder. Integrated Soil Fertility Management (ISFM) is a group of 

practices including the combined use of inorganic and organic fertilizers, use of good crop 

germplasm, and mixed cereal-legume cropping systems, which are also steps in the agriculture 

development ladder (Vanlauwe et al., 2010). As with microdosing, it is important to study the 

long-term effects of ISFM to establish its relationship to future food security through its impacts 

on soil quality. Important chemical indicators of soil quality include pH, OC, CEC, total and 

available P, and total N (Bielders et al., 2002a; Van Eerd et al., 2014). Long-term trials, 5-10 

years or greater in length (Reynolds et al., 2014), are important because the impact of long-term 

treatments on these soil chemical properties is analyzed on a similar time-scale to real-life 

farming, where the same practices may be carried out for a farmer’s working life (Bationo et al., 

2012b; Reynolds et al., 2014). Although no long-term research on the effect of microdosing 

exists, some research exists on the long-term effects of different ISFM practices including 

fertilizer application, organic matter amendment, and crop rotation, as well as tillage on yield 

trends, soil quality, and nutrient dynamics. Results from long-term studies applicable to the 

current research, in which yield trends and soil quality parameters are assessed, are synthesized 

below.  

2.6.1 Overall treatment trends 

 In the majority of long-term research trials in Sub-Saharan Africa, a decline in yield over 

time for each treatment from the onset of cultivation was observed (Bado et al., 2012; Bationo et 

al., 2012b; Kibunja et al., 2012). A reduction in SOM from the baseline level was seen in the 
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same trials and continuous cultivation was practiced at each site, thus the decline in yield may be 

a result of SOM decline due to rapid OM mineralization under tillage (Bationo et al., 2012b; 

Kibunja et al., 2012). The reduction in SOM and yield decline was not seen, however, with the 

joint application of cattle manure and PK fertilizer at 37-11-6 (NPK) kg ha-1 for fertilizer and 54 

kg N ha-1 and 9.3 kg P ha-1 as manure in one study, because the amount of OM added to the soil 

in the manure was enough to offset losses from cultivation (Bado et al., 2012). Research 

indicates there is a threshold level for OC, below which yield may be negatively impacted. To 

sustain yield and SOC levels, accumulation rates need to be higher than decomposition rates 

(Janssen et al., 2011). Conservation tillage is an important practice to prevent loss of soil 

nutrients and water, and to maintain SOM levels and microbial activity at the soil surface 

(Fageria, 2009). Reducing or eliminating tillage may be a sustainable soil management practice 

in the well-drained, low OM soils of the Sahel.  

2.6.2 Application of N and P 

 In the tropics, a positive yield response to increased fertilizer rate compared to 

unfertilized treatments was seen in several long-term trials (Bationo et al., 2012b). Yield 

increased with fertilizer rate in a trial at Sadore, Niger (Abdou et al., 2012). The yield response 

to P was at least 40% higher than the response to N in several trials, indicating that P is more 

limiting in the region (Adamou et al., 2007, Kihara et al., 2012). In the long-term studies 

consulted, there was little analysis of crop yield trends as a result of fertilizer application. One 

paper did conclude, however, that treatments involving organic matter and fertilizer sustained 

yield better than fertilizer alone (Kibunja et al., 2012). From these results, application of mineral 

fertilizer, especially P, improved yield response when compared to untreated, and fertilizer with 

organic matter may sustain long-term yield better than fertilizer alone. 

 Long-term application of N and P fertilizer improved SOC at several temperate sites as a 

result of increased biomass production. SOC increase was highest with application of N, with or 

without P, and in the top 30 cm of the soil profile (Guo et al., 2007; Jagadamma et al., 2007; 

Mazzoncini et al., 2011; Congreves et al., 2014; Williams et al., 2014). However, in only a few 

tropical trials did SOC increase with increased fertilizer rate (Kihanda et al., 2012); in others 

SOC decreased with increased fertilizer rate (Bationo et al., 2012b). The difference between 

temperate and tropical trials is likely because cooler temperatures in temperate regions result in 
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lower biodegradation rates, which are more conducive to OM accumulation. As well, soil N is 

lower in the tropics, thus addition of readily available fertilizer N to the system may lower C:N 

and stimulate microbial C mineralization. A decrease in pH over time was observed with 

increased rate of NPK as a whole, and with N fertilizer alone, in both the tropical and temperate 

trials (Divito et al., 2011; Bado et al., 2012; Kibunja et al., 2012; Williams et al., 2014). The 

application of N and P fertilizer in long-term trials led to decreased pH at all sites and SOM 

decrease in the tropics, which indicates degrading soil quality. Thus long-term application of 

mineral fertilizer alone likely is not a sustainable farming practice in the Sahel.  

2.6.3 Joint application of inorganic and organic amendments 

 Applying organic and inorganic fertilizers together is considered a pillar of integrated soil 

fertility management for smallholder farmers because it improves fertilizer use efficiency 

(Vanlauwe et al., 2010). Applying fertilizer to manure or crop residue amended soil lowers the 

C:N, supplying microbes with the N necessary to break down organic materials while preventing 

leaching losses of inorganic N (Rasche and Cadisch, 2013). The inorganic fertilizer application 

meets immediate nutrient requirements and the organic matter provides a store of slow-release 

nutrients (Fageria, 2009). In the short term, synchronized application of crop residues and 

inorganic N improves soil aggregation, increases SOC, and stabilizes soil N, although less N and 

OC is stabilized in sandy soils than finer-textured soils (Gentile et al., 2013). Joint application 

may also reduce acidification commonly seen with prolonged N fertilizer application on 

kaolinitic soils (Juo and Franzluebbers, 2003). In several long-term tropical trials, highest yields 

were observed with combined organic and inorganic fertilizer (Bationo et al., 2012b; Bado et al., 

2012). Manure application also improved fertilizer use efficiency at a trial in Burkina Faso 

because of improved soil structure and water retention (Mando et al., 2005). The combination of 

manure and inorganic fertilizer was found to be the most economical and sustainable treatment in 

many long-term trials in the tropics (Bado et al., 2012; Bationo et al., 2012b; Kibunja et al., 

2012). Joint application of manure or crop residue with inorganic fertilizer increases nutrient use 

efficiency and relieves socioeconomic constraints, and thus may be key to improving the 

sustainability of soil fertility management in the Sahel. 

2.6.4 Manure amendment 

 Application of manure alone provided varying yield, soil quality, and nutrient cycling 
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benefits at long-term research sites across Sub-Saharan Africa. Yield was improved with manure 

amendment compared to unamended soil at several sites, and yield increased with increasing 

manure rate (Mando et al., 2005; Abdou et al., 2012; Bado et al., 2012; Bationo et al., 2012b). 

Manure also sustained long-term sorghum and millet yield better than inorganic fertilizer 

application at one research site in Kenya due to a residual manure-P effect (Kihanda et al., 2012). 

Manure application also led to higher OC and improved acidity parameters in comparison to 

fertilizer application in one trial (Bado et al., 2012). However, in another trial, application of 

fertilizer and manure had similar long-term effects on SOC, but pH increased from the baseline 

with manure and decreased with fertilizer (Kibunja et al., 2012). Manure increased SOC 

compared to unmanured treatments most significantly at the beginning of trials. Accumulation of 

SOC decreased over time, and after long-term treatment at several sites there was little difference 

in SOC between manure and fertilizer (Mando et al., 2005; Bado et al., 2012; Bationo et al., 

2012b; Kihanda et al., 2012). In terms of soil nutrients, manure application had the highest total 

N and available P of all treatments in several trials (Bado et al., 2012; Bationo et al., 2012a, 

Kihanda et al., 2012). One problem with manure amendment mentioned in the literature is that 

the amount required to sustain yields is often higher than is feasible for smallholder farmers to 

apply (Bationo et al., 2012a). Although manure may provide yield and soil quality benefits, 

under the constraints faced by smallholders, manure application alone may not be a realistic 

option, thus the integrated use of fertilizer and manure would appear to be a better soil fertility 

management practice. 

2.6.5 Crop residue amendment 

 Crop residues in tropical conditions provide many benefits to the soil, including 

improved root growth, increased availability of P, molybdenum, and potassium (K), and better 

modulation of soil temperature (Buerkert and Hiernaux, 1998). In long-term trials in Sub-

Saharan Africa, application of crop residues had mixed effects on yield. In some cases residues 

increased yield (Kihara et al., 2012), while at a trial in Sadore, Niger, residues had no significant 

impact on yield (Abdou et al., 2012). At the Sadore trial, however, joint application of inorganic 

fertilizer and crop residue improved yields more than either alone, a result also seen at Saria, 

Burkina Faso (Abdou et al., 2012; Bationo et al., 2012b). At a trial in Kenya, crop residues 

increased soil C and soil aggregation (Kihara et al., 2012). At one of the trials where long-term 



	
  

	
  

	
  

20	
  

manure improved soil pH, crop residue also increased soil pH from the baseline (Kibunja et al., 

2012). As with supply constraints on manure, farmers in the Sahel likely do not have access to 

the amount of crop residues required. This is because residues are often also relied upon as 

cooking fuel, building material, and animal fodder (Buerkert and Hiernaux, 1998; Abdoulaye 

and Sanders, 2005). Based on the socio-economic constraints of organic input use as well as the 

benefits of joint inorganic and organic fertilizer applications, fertilizer and crop residue or 

manure should be applied together.   

2.6.6 Crop rotation and intercropping 

 The diversification of cropping systems by incorporating legumes benefits crop 

production and soil fertility by adding biologically fixed N to the soil. Intercropping and rotation 

also may improve physical and chemical soil characteristics, such as soil water content (Fageria, 

2009). At several long-term trials in West Africa, cereal-legume rotation and intercropping were 

higher yielding than continuous cropping (Bado et al., 2012; Bationo et al., 2012b). One trial in 

Kenya had similar yields between continuous maize and soybean-maize rotation, in which 

soybean did not receive the fertilizer N treatment that maize received, reducing N fertilizer 

requirements (Kihara et al., 2012). Intercrop and rotation may be more sustainable than 

continuous cereals, as mixed cropping systems declined in yield less than continuous cereal in 

other West African long-term trials (Bationo et al., 2012b). Adding legumes to cropping systems 

clearly benefits yield, however, research has shown mixed results for effect of legumes on soil 

properties. At a long-term trial in Guinea, West Africa, there was no difference in pH, 

exchangeable acidity, or concentration of N, Ca, or Al, between mixed cropping systems and 

continuous cereal (Bado et al., 2012). At a long-term site in Niger, the continuous cropping 

system was lower in OC (Adamou et al., 2007; Bado et al., 2012). Available P was lower in crop 

rotation than the continuous at two research sites, because of the higher P requirements of 

legumes (Knewtson et al., 2007; Bado et al., 2012). Rotation and intercrop was, however, found 

to have higher N and P use efficiencies than continuous cropping systems at two sites in Guinea 

and Niger (Adamou et al., 2007; Bado et al., 2012). Results from long-term research sites are 

inconclusive on whether cropping with legumes and cereals improves soil properties, however, 

intercropping and rotation is likely to improve yield sustainability and reduce external N 

fertilizer requirements. 
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 Long-term soil fertility research in Sub-Saharan Africa has been invaluable for developing 

an understanding of the effect of the components of ISFM, including mineral fertilizer, crop 

residue, and manure application, and cropping with legumes, on soil properties and yield. The 

main focus of these trials has been on maximizing production and optimizing fertilizer rates and 

cropping systems. The issue of long-term sustainability has not received much attention. No 

trials have analyzed long-term yield trends under different management techniques, and few 

have considered the impact of several years of the practice on soil fertility and its relationship to 

sustainability. There is a need for research on the long-term effect of fertilizer microdosing and 

more research on the long-term effects of ISFM techniques to develop cropping systems that will 

secure livelihoods for both the current and future generations of Sahelian farmers.  
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3. LONG-TERM EFFECT OF FERTILIZER RATE ON SOIL PROPERTIES AND CARBON 

AND NITROGEN SPECIATION AT SADORE, NIGER. 

3.1 Preface1 

The impact of long-term fertilizer microdosing on soil fertility and soil organic matter 

dynamics is important to determine before it can be recommended as a sustainable soil fertility 

management practice for smallholder Sahelian farmers. A long-term research trial at the 

International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) in Sadore, Niger, 

established in 1993, was used in a study described in this chapter that compares a microdose 

(reduced) rate of fertilizer to the recommended application rate, and unfertilized soil. These long-

term treatments provide opportunity to examine the effect of the microdosed fertilizer rate in the 

Sahel on crop yield trend, soil chemical properties and carbon and nitrogen speciation. As well, 

different rates of crop residue and manure applied along with the fertilizer treatments at Sadore 

allow the impact of organic matter application to be determined. This chapter covers the long-

term effects of the microdosed rate of mineral fertilizer and the interaction of fertilizer 

application with organic amendments on yield trends, soil chemical properties, available nutrient 

levels and carbon and nitrogen speciation. 

3.2 Abstract 

Fertilizer microdosing, where farmers apply a reduced rate of fertilizer next to the seed 

within ten days of sowing, is a promising technique to address fertilizer use constraints faced by 

food insecure smallholder farmers in the Sahel of West Africa. Microdosing has shown yield 

improvements and increased nutrient use efficiency across the Sahel in the short-term; however, 

no long-term research on the effect of microdosing on soil fertility exists to determine the 

sustainability of the technique. The research described in this chapter assesses the impact of a 

reduced fertilizer rate of 15 kg N ha-1 and 4.4 kg P ha-1 on soil fertility compared to unfertilized 
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soil and a recommended rate of 30 kg N ha-1 and 13.2 kg P ha-1 added over sixteen years under 

continuous millet at the International Crop Research Institute for the Semi-Arid Tropics 

(ICRISAT) site in Sadore, Niger. The interaction of fertilizer with crop residue and manure 

amendment at 300, 900, and 2700 kg ha-1 was also analyzed to determine ways to improve the 

sustainability of long-term mineral fertilizer application at a reduced rate. Yield trends and soil 

chemical properties including pH, cation exchange capacity (CEC), electrical conductivity (EC), 

total nitrogen (N) and phosphorus (P), and available P were determined as well as carbon (C) and 

N speciation using the X-ray Absorption Near Edge Structure (XANES) spectroscopic technique. 

Long-term application of a reduced fertilizer rate improved soil nutrient levels compared to 

unfertilized soil, while soil acidification, breakdown of organic matter, and the depletion of soil 

nutrients other than N and P were reduced compared to the recommended rate. Yield trends were 

negative for both the reduced and recommended fertilizer rates indicating mineral fertilizer alone 

is not sustainable over the long-term. Addition of crop residue or manure at 2700 kg ha-1 or 

greater along with fertilizer may better sustain long-term soil productivity. Organic amendments 

along with fertilizer buffered pH decline, provided additional nutrients, and increased the content 

of less humified and more labile organic C and N groups. Overall, application of a reduced 

fertilizer rate is an adequate alternative to the recommended rate for smallholders to manage soil 

fertility, working best with the concomitant application of all crop residue or manure available. 

3.3 Introduction 

 Crop production is increasing at 1% per year across Sub-Saharan Africa (Chauvin et al., 

2012), but is outpaced in the Sahel by a population growth rate of 3.1% (World Bank, 2014). 

Major reasons for low productivity increases include unstable rainfall patterns, low inherent soil 

fertility, low fertilizer use, and competition for organic inputs (Saïdou et al., 2004; Abdoulaye 

and Sanders, 2005). Fertilizer use is low in the Sahel because of high fertilizer cost, as well as 

limited access to fertilizer because of poor infrastructure and a weak private input sector (Saïdou 

et al., 2004; Abdoulaye and Sanders, 2005). Because of high fertilizer costs and uncertainty 

about production potential, it is often too risky for farmers to invest in applying the 

recommended rates of fertilizer to maximize yield (Aune and Bationo, 2008). Fertilizer 

microdosing, which is the application of about half the recommended rate of fertilizer next to the 

seed within ten days of sowing (Twomlow et al., 2008), has potential to ease smallholder 
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fertilizer use constraints in the Sahel. Microdosing has been found in the short term to 

substantially increase yields and nutrient use efficiency, while reducing farmer investment and 

risk and increasing income (Buerkert and Hiernaux, 1998; Buerkert et al., 2001; Muehlig-Versen 

et al., 2003; Abdoulaye and Sanders, 2005; Tabo et al., 2007; Twomlow et al., 2008; Aune and 

Ousman, 2011; Bagayoko et al., 2011; Sime and Aune, 2014). While the short-term benefits of 

microdosing in the Sahel are known, there has been little research on the long-term effects of 

microdosing on soil fertility and agroecosystem sustainability. 

 There is some concern that microdosing may not be sustainable over the long term due to 

eventual soil nutrient depletion, especially without joint application of organic matter or return of 

crop residues (Buerkert et al., 2001; Muehlig-Versen et al., 2003; Aune and Bationo, 2008; 

Twomlow et al., 2008). Other research has indicated that microdosing improves long-term soil 

productivity compared to unfertilized soil through improving yield and biomass and increasing 

soil organic carbon (SOC), which is very important for soil functioning (Buerkert et al. 2001; 

Aune and Bationo, 2008; Bagayoko et al., 2011). No research, however, has been conducted to 

determine the effect of microdosing on SOC. Long-term research is essential to assess 

microdosing as a sustainable soil fertility management practice to meet smallholder nutrient 

requirements in the Sahel. 

 There is potential for the sustainability of microdosing to be improved with joint 

application of crop residue or manure. Understanding the interactions between microdosing and 

organic amendments like crop residue and manure is especially important because integrated soil 

fertility management (ISFM), which includes joint use of inorganic and organic fertilizers, has 

shown great potential for improving soil fertility and productivity in the Sahel (Vanlauwe et al., 

2010; Gentile et al., 2013). For example, long-term application of manure in the Sahel has been 

found to sustain yields (Kihanda et al., 2012), improve SOC, and reduce acidification compared 

to fertilizer alone (Bado et al., 2012). At long-term research sites in the Sahel, crop residue 

amendment was shown to improve root growth, buffer against soil pH decline, and resulted in 

increased SOC and soil nutrient availability (Geiger et al., 1992; Buerkert and Hiernaux, 1998; 

Kihara et al., 2012; Kibunja et al., 2012). Addition of either crop residue or manure with 

fertilizer alters the soil C:N ratio, preventing nutrient losses by slowing the release of fertilizer N 

through immobilization, while at the same time speeding up the breakdown of organic inputs to 
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increase humus formation (Fageria, 2009; Gentile et al., 2013; Rasche and Caddish, 2013). 

Unfortunately, crop residue and manure are both in low supply for smallholders (Buerkert and 

Hiernaux, 1998; Abdoulaye and Sanders, 2005; Bationo et al., 2012a). Research into the effects 

of different rates of organic matter inputs on soil along with fertilizer will improve our 

understanding of amounts that may be needed to provide sustainability benefits.  

 Measuring C and N content of soil is an important step in determining dynamics. 

However, going beyond measuring soil nutrient content by assessing the forms and nature of 

organic C and N in soil provides information on how nutrients and organic matter (OM) are 

cycling through the soil under different management practices. The X-ray Absorption Near-Edge 

Structure (XANES) technique can be used to measure C and N forms, or speciation in soil 

(Gillespie et al., 2014 a, b), and is a powerful technique that has not yet been utilized as a tool in 

Sahelian food security research. The forms of C and N that are in soil organic matter (SOM) 

reflect different points in the decomposition sequence from fresh plant material to polymerized 

humic materials (Wickings et al., 2012). The presence of C and N species found in plants 

indicates low microbial breakdown of organic inputs. Microbial-derived C and N groups indicate 

higher C and N breakdown and assimilation into microbial compounds and decomposition by-

products (Gillespie et al., 2014a). Management practices such as fertilizer amendment, crop 

residue inputs, and tillage affect soil structure, soil pH, and microbial community composition, 

all of which influences SOM (Grandy and Neff, 2008; Wickings et al., 2012). Inherent soil 

properties such as mineralogy and texture are important long-term determinants of C and N 

speciation. Over the long term, SOM stabilization is dictated by access of microbes to substrate 

to break down C and N groups, and protection of OM from degradation through organo-mineral 

interactions (Lutzow et al., 2006; Schmidt et al., 2011). Using C and N XANES spectroscopy in 

the current research aids in understanding how long-term microdosing and organic amendment 

impact C and N dynamics. 

 The objective of this study is to determine the long-term effect of the microdosed rate of 

fertilizer on soil fertility and C and N dynamics, alone and in combination with crop residue and 

manure application. Our methods include analyzing yield trends, soil chemical properties, and C 

and N XANES spectra of soil from the Sadore long-term research site in Niger, West Africa. We 

hypothesize that the reduced rate will negatively affect soil fertility and nutrient cycling 
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compared to the recommended rate, but that application of organic matter along with manure 

will reduce the negative effects of the microdosed rate. 

3.4 Materials and Methods 

3.4.1 Site description 

The Sadore long-term research trial is managed by the Tropical Soil Biology and Fertility 

Institute of the International Centre for Tropical Agriculture (TSBF-CIAT) at the International 

Crop Research Institute for the Semi-Arid Tropics (ICRISAT) in southwestern Niger (Fig. 3.1). 

Annual precipitation at Sadore is 440-587 mm yr-1 and annual temperature is 28.3-28.9 ℃. 

According to the World Reference Base (WRB) for soil resource classification system, the soil is 

a Hypoluvic Arenosol, which is an unstable sandy soil that is low in nutrient and water holding 

capacity and slightly enriched in clay in comparison to other Arenosol subgroups (Jones et al, 

2013). Based on particle size analysis of the soil sand fraction in the control treatments of the 

Sadore trials, soil texture is 92.1% sand, mainly medium (40%) and fine sand (37.6%), with less 

coarse (15.8%), very fine (5.4%), and very coarse (1.2%) sand. The research plot was previously 

kept fallow for ten years and cropping began in 1993, with the first year of the trial beginning in 

1994 (Akponikpe et al., 2008). The experiment was a 33 factorial RCBD layout with three 

replications per treatment (see Fig. A.1. for plot layout diagram). Treatments included varying 

rates of mineral fertilizer, crop residue, and farmyard manure under continuous Pennisetum 

glaucum (millet). The application rates for mineral fertilizer included a control of 0 kg N ha-1 and 

0 kg P ha-1, a reduced rate of 15 kg N ha-1 and 4.4 kg P ha-1, which is equal to a microdosed rate, 

and a recommended rate of 30 kg N ha-1 and 13.2 kg P ha-1. In the reduced and recommended 

treatments, N was applied as calcium ammonium nitrate (CAN), 10 days after sowing (DAS), 10 

cm from the site of sowing and incorporated with a hand hoe. Phosphorus, applied as single 

super phosphate (SSP), was broadcast and ploughed into the soil before sowing for both rates of 

P (Akponikpe et al., 2008). Rates of crop residue and cattle manure amendment were each 300 

kg ha-1, 900 kg ha-1, and 2700 kg ha-1 dry weight. Average manure nutrient contents were 1 ± 

0.05 % N, 0.2 ± 0.01% P and 1.6 ± 0.09% K (mean ± SD) and average crop residue contents 

(weighted leaf and stem content) were, 0.74 ± 0.14 % N, 0.05 ± 0.01% P and 2.54 ± 0.44% K 

(Akponikpe et al., 2008). Crop residue was broadcast as surface mulch and manure was 

broadcast and incorporated, both applied before sowing. There was no control treatment for 
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organic amendments because there are some organic inputs even in traditional low input 

systems; some residue is left in the field after gathering for other uses, and passing grazing 

animals will still deposit manure in the field (Akponikpe et al., 2008). Sowing took place after 

the first rain, which was most commonly in June, but in some years took place in earlier May or 

in July, with delayed rains. Millet was planted at 10000 hills ha-1 and after two to three weeks 

thinned to 30000 plants ha-1. Hand weeding took place two to three times per cropping season to 

control weeds. 

 

3.4.2 Soil sampling and chemical analyses 

 This research project began after soils were already sampled and sent to the University of 

Saskatchewan, thus I did not make first-hand observations and cannot completely ensure the type 

of quality control practices put in place during soil sampling. I was able to, however, 

Fig. 3.1. Soil map of Niger with location of Sadore long-term agronomic research site. Sadore 
site is ARwl, Hypoluvic Arenosol (Adapted from Jones et al., 2013). 
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communicate in person and by email with researchers involved at the sites to understand 

sampling, research design, and history of the plots. Soil samples were collected prior to sowing 

in June 2013; three composited and well-mixed samples were taken from each plot at the 0-20 

cm depth using an auger. A sub-sample was taken from the composite sample, air-dried, ground 

to pass through a 2 mm sieve, packaged in individual airtight sealed bags, and shipped to 

researchers at the University of Saskatchewan in August 2013. After receipt of soils from Niger, 

soil samples were stored in air-tight vials and analyzed from September 2013 to July 2014 for 

pH, electro-conductivity (EC), organic carbon (OC), total phosphorus (P) and nitrogen (N), 

available P, and effective cation exchange capacity (CEC).  Both EC and pH were measured in 

triplicate using a glass electrode in a 2:1 water:soil suspension, with 10 mL of water and 5 g of 

soil (Carter and Gregorich, 2008). The LECO-C632 carbon determinator (LECO© Corporation, 

1987) was used to analyze two 0.3 g replicates of each soil sample for OC concentration. Low 

carbon standard reference materials were used for calibration, and a quality control sample of 

known OC content was measured every 20 analyses. Total N and P were measured in triplicate 

according to the acid block digestion method of Thomas et al. (1967). Digests were then allowed 

to cool to room temperature, diluted and analyzed on an auto-analyzer. A standard soil of known 

concentration of N and P respectively was used for quality control. Available P and CEC were 

determined using a Mehlich-3 extraction, as described by Carter and Gregorich (2008). The 

Mehlich-3 extraction was chosen because of its ability to extract multiple elements of interest to 

this study, and its applicability to tropical acidic soils (Carter and Gregorich, 2008). Available P 

was determined from the Mehlich-3 extracted soil solution using an auto-analyzer and CEC was 

calculated by measuring the concentrations of exchangeable Ca2+, Mg2+, Na+, and K+ cations in 

vacuum filtered Mehlich-3 solutions on the Microwave Plasma Atomic Absorption Spectrometer 

(MP-AES 4100, Agilent Technologies). CEC was then determined as the sum of exchangeable 

base cations. The concentrations of Al3+ and H+, which would also contribute to CEC, were not 

determined because there was not enough soil from each treatment to complete these analyses, 

which require a large amount of soil. 

3.4.3 X-ray absorption spectroscopy 

 Carbon and nitrogen speciation was determined by measuring X-ray Absorption Near 

Edge Structure (XANES) at the C and N K-edges at the Spherical Grating Monochromator 
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(SGM) beamline 11ID-1 at the Canadian Light Source in Saskatoon, Saskatchewan, Canada. At 

the C and N K-edges, the beam line delivers 1011 photons s-1 with a resolving power of (E/ΔE) 

>10,000 (Regier et al., 2007a, b). The energy range for the C K -edge is from 270 to 320 eV, and 

the N XANES K-edge is between 380 and 430 eV. Samples were prepared by slurrying a small 

amount of the soil sample with water, pipetting onto Au-coated Si wafers attached to the sample 

holder using double-sided carbon tape, and allowing to air dry. The rep for each treatment 

highest in OC% was selected for XANES measurement to reduce instrument noise because all 

soil samples were low in C. Soil OC and total N contents, and C:N ratio of samples selected for 

XANES analysis are all in Table A.1 of Appendix A. After sample preparation, samples were 

loaded into the SGM end station and brought under vacuum. Data was collected for the C and N 

K-edges separately using the slew scanning mode, in which the monochromator scans the energy 

range of each element, acquiring data while minimizing X-ray exposure to sample (Gillespie et 

al., 2015). An average of 60 scans were taken per sample at a new spot on the sample for each 

scan to avoid radiation damage. The beam line exit slit was set to 25 μm and partial fluorescence 

yield was collected using one Amptek silicon drift detector. XANES spectral features for C and 

N types were identified from diagnostic peaks, which have been previously identified from 

analysis of reference compounds (Leinweber et al., 2010; Myneni, 2002; Urquhart and Ade, 

2002). Citric acid was used for calibration at the C K-edge where the peak at 288.8 eV was used 

for energy calibration. Normalization to incident flux (I0) was carried out by recording the 

scattering intensity from a freshly sputtered (carbon free) Au surface across the C K-edge 

(Gillespie et al., 2015). The N K-edge data was calibrated to the υ=0 vibration of interstitial N2 

gas (at 400.8 eV) in solid-state ammonium sulfate (Gillespie et al., 2008).  

3.4.4 Data analyses 

 Grain yield data, which was provided to researchers for each year of the trial, was 

analyzed using PROC MIXED in SAS (Version 9.4; SAS Institute, Cary, NC) to calculate the 

regression of yield (y) on time (x). This analysis was conducted to assess the ability of the 

different fertilizer treatments to sustain yield over time. Mean comparisons of soil properties 

were also conducted with PROC MIXED in SAS. See Tables A.2. to A.8. in Appendix A for 

ANOVA results. The Tukey-Kramer test method of multi-treatment comparison for least 

significant differences (LSD) was used for mean comparison, with treatments as fixed effect and 
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replications as block effect. Significance for yield regression and soil property mean comparison 

was declared at p ≤ 0.05. Normality was tested for each yield parameter and soil chemical 

property. C and N XANES data was processed using IGOR Pro v.6 software (Wavemetrics, 

Lake Oswego, Oregon USA).  

3.5 Results  

3.5.1 Yield trends over time 

Regressions of millet grain yield versus time were calculated for each fertilizer rate 

strategy at low, medium, and high manure and crop residue rates, collectively called OM rates, in 

the continuous system (Table 3.1), and the yield trend over time was graphed (Fig. 3.2). Average 

millet crop yield was lowest for the control treatment with low OM, at 184 kg ha-1 and was 

highest for the recommended fertilizer rate with high OM, at 1094 kg ha-1. As well, average yield 

was higher for the reduced fertilizer rate with high OM, at 1062 kg ha-1, than the recommended 

fertilizer rate with low OM, which was 862 kg ha-1. The increase in yield above the control 

(unfertilized) treatment was greatest for the recommended rate, especially in the early years, with 

a 110% increase from the control to reduced fertilizer rate treatment, and a further 16% increase 

between the reduced and recommended rate treatments. There is no significant relationship 

between yield and time for the control fertilizer treatment, but there is a negative relationship 

between yield and time for the reduced and recommended fertilizer rate treatments for each OM 

rate (Table 3.1). The strongest negative relationship between yield and time, where R2 was 

highest, was the recommended fertilizer rate treatment at the low OM rate, explaining about 52% 

of the variation in yield (p<0.01), whereas all other treatments for yield trends explain between 

32% (p<0.05) and 40% (p<0.01) of variation. The reduced fertilizer and medium OM rate has 

the lowest R2 value at 0.32. Although the negative trend in Fig 3.2 is significant, less than 40% 

of yield variation is explained in the model. Regressions of precipitation and variability of 

precipitation on time and yield were not significant, indicating a precipitation decline or increase 

in variability of precipitation does not explain the negative yield trend. Specific drought events, 

which occured in Niger in 2005, 2010, and 2012, may have affected crop production in those and 

subsequent years, however.  
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Fig. 3.2. Regression of millet yield versus time (year) for each fertilization strategy at Sadore site 
from 1998 to 2013 in the continuous millet system. Regression lines only exist for recommended 
and reduced fertilizer treatments, as there was no significant regression for the control. 

 
Table 3.1. Regression of millet yield versus time in the different fertilizer and organic matter 
rate treatments over 16 years (1998-2013) at Sadore site in the continuous millet system. 
    Mean Yield       

Fertilizer Rate Crop Residue and 
Manure Rate kg ha-1 Equation R2   

Control† Low‡ 184 y=246.63-7.3162x 0.0804 ns 

 
Medium  464 y=615.38-17.86x 0.2346 ns 

  High 567 y=706.20-16.37x 0.138 ns 
Reduced Low 656 y=1012.93-41.95x 0.3746 * 

 
Medium  837 y=1126.23-34.05x 0.3217 * 

 
High 1062 y=1423.63-42.50x 0.3968 ** 

Recommended Low 862 y=1196.2-39.34x 0.517 ** 

 
Medium  1005 y=1345.13-40.07x 0.3704 * 

  High 1094 y=1455.03-42.41x 0.343 * 
†Control, reduced and recommended rate correspond to 0 kg ha-1 N and 0 kg ha-1 P, 15 kg ha-1 
N and 4.4 kg ha-1 P, and 30 kg ha-1 N and 13.2 kg ha-1 P respectively applied per year for 16 
years as CAN and SSP fertilizer.  
‡Low, medium, and high crop residue and manure rates correspond to 300, 900, and 2700 kg 
ha-1 each for crop residue and manure added per year for 16 years. 
*significant at p<0.05; **significant at p<0.01 
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3.5.2 Effect of fertilizer rate on soil chemical properties and interaction with organic 

amendments 

Increased fertilizer rate significantly decreased soil pH at Sadore from 5.3 without 

fertilizer to 5.0 at the recommended rate (Table 3.2). Fertilizer rate had no effect on EC or CEC 

(Table 3.2), and crop residue and manure also did not interact with fertilizer to impact EC or 

CEC. CEC measurements are below 2.6 cmolc kg-1 and thus considered very low for all 

treatments (Metson, 1961). Note also that effective CEC does not include exchangeable acidity 

and thus does not reflect the total amount of exchange sites in soil. EC is well below 4 mS cm-1, 

thus soils are far from saline. 

Manure did not interact with fertilizer to impact pH, but crop residue (CR) and fertilizer 

application did interact to buffer soil pH decline (Table 3.3). Increasing the CR rate at the control 

and reduced fertilizer rates resulted in an increase in pH from 5.2 to 5.5 in the control fertilizer 

treatment and from 4.9 to 5.2 at the reduced fertilizer rate. There was no significant effect of crop 

residue rates at the recommended fertilizer rate. 

 

Table 3.2. Soil chemical properties by fertilizer rate in the surface (0-20 cm) soil at Sadore 
site. 

	
   pH EC CEC 
Fertilizer 	
   mS cm-1 cmolc kg-1 

Control†  5.3a‡ 0.048a 0.7a 
Reduced 5.1b 0.053a 0.6a 
Recommended  5.0c 0.052a 0.6a 
†Control, Reduced and Recommended rate correspond to 0 kg ha-1 N and 0 kg ha-1 P, 15 kg 
ha-1 N and 4.4 kg ha-1 P, and 30 kg ha-1 N and 13.2 kg ha-1 P respectively applied per year 
for 16 years as CAN and SSP fertilizer. Crop residue and manure rates are averaged for 
each fertilizer rate. 
‡Means within a column followed by the same letter are not significantly different (P < 
0.05) using Tukey test for LSD. 

 

 

 

 



	
  

	
  

	
  

33	
  

Table 3.3. Effect of fertilizer and crop residue treatments on soil pH (1:2 soil:water 
extract) in the surface (0-20 cm) soil at Sadore site. 
Fertilizer  Crop Residue  pH 
Control† Low‡           5.2bc§ 
	
   Medium           5.3b 
	
   High           5.5a 
Reduced Low           4.9de 
	
   Medium           5.1cd 
	
   High           5.2bc 
Recommended Low           4.9e 
	
   Medium           5.0de 
  High           5.0de 
†Control, Reduced and Recommended rate correspond to 0 kg ha-1 N and 0 kg ha-1 P, 15 
kg ha-1 N and 4.4 kg ha-1 P, and 30 kg ha-1 N and 13.2 kg ha-1 P respectively applied per 
year for 16 years as CAN and SSP fertilizer. 
‡Low, medium, and high crop residue rates correspond to 300, 900, and 2700 kg ha-1 crop 
residue added per year for 16 years. Manure rate is averaged for each combination of 
crop residue and fertilizer. 
§ Means followed by the same letter are not significantly different (P < 0.05) using Tukey 
test for LSD. 

 

3.5.3 Effect of fertilizer rate on soil N, P, and OC, and interaction with organic amendments 

Total and available P and total N concentration in the 0-20 cm depth of soil increased 

with fertilizer rate under amendment treatments of both manure and crop residue (Tables 3.4 and 

3.5). As well, fertilizer and manure rates interacted to significantly affect soil N and P (Table 

3.4). The high manure rate treatment had the highest total P concentration, with no significant 

difference among fertilizer rates at this manure rate. At the low and medium manure rates, 

however, both increased fertilizer and manure rates increased total P. Fertilizer had a greater 

influence on available P and total N than manure. At the recommended rate of fertilizer, 

available P was higher in the low rate than in the high rate treatment of manure. Also, 

unexpectedly for total N, the low manure rate at each fertilizer rate was higher than the other 

manure rates, indicating that increased manure is having a slightly negative effect on soil N 

content.  
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Table 3.4. Effect of fertilizer and manure treatment on soil total and available P and total N in 
the surface (0-20 cm) soil at Sadore site. 

  Total P Available P Total N 
Fertilizer  Manure  mg kg-1 mg kg-1 mg kg-1 
Control† Low‡  116.2f§ 4.2e 111.6bc 

Medium         142.7de          6.7de          95.9cde 

High         173.4abc          6.7de          80.6e 

Reduced Low         127.2ef          9.2de        120.7b 

Medium         166.6bc        10.7cde          97.9cd 

High         191.7a        12.7cd          80.6e 

Recommended Low         152.0cd        30.8a        138.3a 

Medium         180.0ab        17.5bc        118.7b 

High         186.8ab        20.4b        124.1ab 
†Control, reduced and recommended rate correspond to 0 kg N ha-1 and 0 kg P ha-1, 15 kg ha-1 N 
and 4.4 kg ha-1 P, and 30 kg ha-1 N and 13.2 kg ha-1 P respectively applied every years for 16 
years as CAN and SSP fertilizer. 
‡Low, medium, and high manure rates correspond to 300, 900, and 2700 kg ha-1 crop residue 
added per year for 16 years. Crop residue rate is averaged for each combination of manure and 
fertilizer. 
§ Means followed by the same letter are not significantly different (P < 0.05) using Tukey test for 
LSD. 

 

Crop residue and fertilizer application both contribute to improved total P content of the 

soil at Sadore (Table 3.5). Total P was highest with the recommended fertilizer and high rate of 

crop residue and decreased with decreasing fertilizer and crop residue application rates. 

Differences in total P between crop residue rates were significant at the recommended fertilizer 

rate, but there was no significant difference in total P between crop residue rates in the reduced 

or control fertilizer treatments.  
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Table 3.5. Effect of fertilizer and crop residue treatment on soil total P in the surface 
(0-20 cm depth) soil at Sadore site. 

  
Total P 

Fertilizer rate Crop Residue rate mg kg-1 
Control† Low‡ 148.6cd§ 

Medium                135.4d 

High                148.2cd 

Reduced Low                149.0cd 

Medium                168.6abc 

High                167.9abc 

Recommended Low                159.5bc 

Medium                174.2ab 

High                185.1a 

†Control, Reduced and Recommended rate correspond to 0 kg ha-1 N and 0 kg ha-1 P, 15 
kg ha-1 N and 4.4 kg ha-1 P, and 30 kg ha-1 N and 13.2 kg ha-1 P respectively applied per 
year for 16 years as CAN and SSP fertilizer. 
‡Low, medium, and high crop residue rates correspond to 300, 900, and 2700 kg ha-1 
crop residue added per year for 16 years. Manure rate is averaged for each combination 
of crop residue and fertilizer. 
§Means followed by the same letter are not significantly different (P < 0.05) using 
Tukey test for LSD. 

 

The fertilizer treatments had little impact on soil OC at the Sadore site, and OC was very 

low overall (Table 3.6). The history of fertilizer addition resulted in a slight but significant 

increase in soil organic carbon content in the fertilized treatments of 0.03% compared to the 

control. There was no significant interaction between fertilizer and manure or fertilizer and crop 

residue. Fertilizer, crop residue, and manure did jointly interact to impact OC, however (Table 

A.9). OC was very similar for most treatments, but generally higher with higher rates of all 

inputs, and lower with lower rates of all inputs, ranging from 0.20% OC to 0.31% OC.  
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3.5.4 Effect of fertilizer, manure and crop residue rate on C and N XANES spectroscopy 

The results from the C XANES analysis of treatments at Sadore (Fig. 3.3) show 

differences between treatments in aromatics (peak 1), carboxyls (peak 4), and carbohydrates, 

(peak 5), with minimal differences in ketones (peak 2) and phenols (peak 3). The treatment with 

high rate of fertilizer, manure, and crop residue (R2F2M2) is highest in aromatics and both the 

control OM and reduced fertilizer (R0F1M0) and high OM with control fertilizer (R2F0M2) 

treatments were lowest. Abundance of both organic and mineral fertilizer inputs appears to be a 

dominant controller of aromatic abundance.  Treatments with lower fertilizer rates, regardless of 

OM rate, were higher in carboxyl groups. The control treatment (R0F0M0) was highest in 

carboxyl, followed by high OM amendment with no fertilizer (R2F0M2) and control OM 

amendment with reduced fertilizer rate (R0F1M0). R2F2M2, R2F1M2, and R0F2M0 were lower 

in carboxyls, and had the highest mineral fertilizer inputs. Carbohydrates were highest in the 

control OM and recommended fertilizer treatment (R0F2M0), where organic inputs were lowest 

and fertilizer highest. Carbohydrate abundance was more related to organic matter abundance 

relative to mineral fertilizer, whereas aromatics were more related to overall fertility inputs, and 

carboxyls were related to mineral fertilizer inputs. 

 

 

Table 3.6. Soil organic carbon in the surface (0-20 cm) soil as 
affected by fertilizer rate at Sadore site. 

 Organic Carbon 
Fertilizer Rate % 

Control†  0.24b‡ 

Reduced 0.26a 

Recommended 0.27a 
†Control, reduced and recommended rate correspond to 0 kg ha- N 
and 0 kg ha-1 P, 15 kg ha-1 N and 4.4 kg ha-1 P, and 30 kg ha-1 N and 
13.2 kg ha-1 P respectively applied per year for 16 years as CAN and 
SSP fertilizer.  Crop residue and manure rates are averaged for each 
fertilizer rate. 
‡Means followed by the same letter are not significantly different (P 
< 0.05) using Tukey test for LSD. 
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Fig. 3.3. Normalized fluorescence yield of C K-edge XANES spectra of soils at Sadore by 
fertilizer treatment in combination with varying organic amendment rates. R=residue, 
F=fertilizer, M=manure; F0=control, F1=reduced rate, F2=recommended rate; R0 and M0= 300 
kg ha- rate, R1 and M1= 900 kg ha- rate, R2 and M2= 2700 kg ha- rate. Carbon features 
corresponding to specific excitation energy are identified as: 1. aromatic-C at 285 eV; 2. ketones 
at 286.8 eV; 3. phenolic at 287.1 eV; 4. carboxylic at 288.6 eV; 5. carbohydrate hydroxyl at 
289.6 eV. 
 

The N XANES spectra for each fertilizer and amendment treatment at the Sadore site are 

shown in Fig. 3.4. The largest difference between treatments is in the height of the amide peak: 

peak 2. Treatments with the highest organic matter (OM) inputs added as crop residue and 

manure with the control and reduced fertilizer rates (R2F1M2 and R2F0M2) were highest in 

amides. The control (R0F0M0) and highest amendment intensity (R2F2M2) treatment were 

moderate in amides, and the treatments lowest in amides were those with low OM rates and 

fertilizer applied at either rate (R0F1M0 and R0F2M0). The rate of organic inputs compared to 

fertilizer seems to have an impact on amide abundance. The control treatment and treatments 



	
  

	
  

	
  

38	
  

with high OM additions (R2F1M2, R2F0M2, R2F2M2, R0F0M0) that were high and moderate 

in amides were highest in pyrrolics (peak 3). Treatments with fertilizer application and no OM 

amendment (R0F1M0 and R0F2M0) that were lowest in amides were also lowest in pyrrolics. 

There was no difference between treatments for peak 1 (pyridine and pyrazines), or peak 4 (N-

bonded aromatics). The control fertilizer and high OM treatment (R2F0M2), which is abundant 

in amides and pyrrolics, is lower in alkyl-N, peak 5, compared to all other treatments, indicating 

alkyl-N may build up as amides and pyrrolics break down. The alkyl-N peak for R2F0M2 is also 

shifted to the left, along with R2F1M2, although R2F1M2 is not depleted at the alkyl-N peak 

compared to the rest of the treatments. These treatments were both highest in amides.  	
  

 
Fig. 3.4. Normalized fluorescence yield of N K-edge XANES spectra of soils at Sadore by 
fertilizer treatment in combination with varying intensities of organic amendments. 
Abbreviations of soil treatments are same as for Fig. 3.3. Nitrogen features corresponding to 
specific excitation energy are identified as: 1. pyridines and pyrazines, aromatic N in 6-
membered rings at 398.8 eV; 2. amide at 401.2 eV; 3. pyrrolic, N in 5-membered rings with 
unpaired electrons, at 402.5 eV; 4. N-bonded aromatics at 403.5-403.8 eV; 5. alkyl-N at 406 eV. 
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3.6 Discussion 

3.6.1 Yield average and trends 

Based on the yield results, fertilizer greatly improved yield in the initial years of 

application, but yield trend was negative with fertilizer application over time at Sadore. Yield 

was highest with the recommended fertilizer rate, but relative to amount of fertilizer applied, the 

yield response per unit of fertilizer applied was greater for the reduced rate than the 

recommended rate. Similar yield response was seen in short-term microdosing trials in Africa, 

ranging from 46% to 113% depending on the fertilizer rates, cereal crops grown, and climatic 

conditions under which the specific trial was conducted (Buerkert et al., 2001, 2002; Muehlig-

Versen et al., 2003; Aune and Ousman et al., 2011; Bagayoko et al., 2011). Yield benefits from 

fertilizer use has been reported in other long-term studies in the Sahel region (Abdou et al., 2012; 

Bationo et al., 2012b), however, many Sahel studies also report declining yield over time with 

long-term fertilizer application (Bado et al., 2012; Bationo et al., 2012b; Kibunja et al., 2012). As 

mentioned previously, the regression model is significant but time explains less than 40% of 

variation in yield. Yield variations may also be due to drought or pests. Some of the yield decline 

over time may be due to weed and disease accumulation due to lack of rotation. Soil factors that 

may have a hand in yield decline can be elucidated from the following soil fertility and OM 

cycling results. The main lesson from the yield results at Sadore are that fertilizer is important 

for yield improvement but that for both the reduced and recommended fertilizer treatments, yield 

trend is negative and thus one is not sustaining yield better than the other,  

3.6.2 Soil chemical properties 

 Long-term nitrogen fertilizer application at Sadore led to a decrease in soil pH, which may 

be contributing to the observed negative yield trend. A soil pH decrease of similar magnitude 

with nitrogen fertilizer application, attributed to acidity produced in the nitrification of 

ammonium to nitrate, has been noted in other long-term temperate and tropical research (Bado et 

al., 2012; Caires et al., 2015; Divito et al., 2011; Kibunja et al., 2012; Manna et al., 2005; 

Williams et al., 2014). The decrease in pH at Sadore of 0.3 pH units is not large but may slightly 

decrease availability of Ca2+, Mg2+, K+, and S as these nutrients decrease in abundance from pH 

5.5 to 5.0 (Truog, 1947). The reduced rate of fertilizer causes less soil acidification than the 

recommended and thus may be less detrimental to soil productivity over the long-term.  
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Soil acidification may be further prevented through organic matter amendment. Both crop 

residue and manure add base cations to the soil that neutralize acidity through cation exchange, 

and add organic matter that neutralizes acidity through ammonification, decarboxylation, and 

reaction of H+ with organic anions (Haynes and Mokolobate, 2001; Butterly et al., 2013; Cai et 

al., 2014). Crop residue buffered soil against pH decrease at Sadore, which is consistent with 

other Sahelian research (Kretzschmar et al., 1991; Geiger et al., 1992), although only in the 

control and reduced fertilizer treatments. This suggests the recommended fertilizer rate produces 

more acidity than the current crop residue rates can buffer. Manure did not improve pH at 

Sadore, and higher rates may be necessary. In other research where rates were 5000 kg ha-1 or 

higher, manure buffered acidity from N fertilizer application (de Ridder and Van Keulen, 1990; 

Manna et al., 2005; Cai et al., 2014). Crop residue and manure applied at higher rates than at 

Sadore (2700 kg ha-1) may thus be required to stabilize soil pH and yields. 

  Cation exchange capacity (CEC) is very low at Sadore, and neither fertilizer nor organic 

matter application had an impact on CEC. This is likely because both soil pH and OC, properties 

that have a direct relationship with soil CEC, are low at Sadore and treatment effects on these 

properties were not large. Higher rates of organic matter are likely necessary to improve CEC, as 

other Sahel research did show an increase in CEC with pH increase from crop residue 

application (Geiger et al., 1992). CEC is more closely related to SOC content in millet cropland 

in the Sahel than it is to soil clay content or mineralogy (Manu et al., 1991; Bationo et al., 2007).  

3.6.3 Soil nutrient content 

Along with soil acidification, yield decline may also be due to depletion of S, K, or 

micronutrients that are not added to the soil with the N and P fertilizer treatments. An initial 

examination of the N, P and K balances at the Sadore long-term site calculated a positive balance 

for N and P in all treatments but a negative K balance at the recommended fertilizer rate with the 

low and medium crop residue and manure rates because of higher yield and nutrient removal 

(Akponikpe et al., 2008). The negative K balance in these treatments at Sadore has likely 

increased over time since the 2008 study and may be contributing to yield decline. A similar 

negative yield trend occurred at several long-term trials in India where N, P, and K rates were 

imbalanced, and thus nutrients were deficient (Srivastava et al., 2002; Manna et al., 2005). The 

reduced rate, even without organic matter application, would result in a smaller depletion of K 
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and other nutrients than did the recommended rate.  

Yield declines over time from loss of K and other nutrients not added in fertilizer may 

have been minimized by addition of manure with N and P, because manure contains 

micronutrients and base cations (Srivastava et al., 2002; Chaudhary and Narwal et al., 2005) that 

may have provided a yield benefit at Sadore when N and P were not limiting. This is consistent 

with the observation that total N content, for every fertilizer rate, and available P content, at just 

the high fertilizer rate were highest when manure rate was lowest. Higher manure rates increased 

crop yields, leading to greater total N and available P removal from the soil. Both reducing 

fertilizer rate and adding manure may improve content of soil nutrients not added with fertilizer, 

which may reduce yield decline over time. Soil N may also be lower with a higher manure rate 

because manure may stimulate organic N decomposition. One laboratory study found that 

manure application increased nitrate production due to stimulation of microbial activity, which 

could lead to increased N losses through leaching (Müller et al., 2003). This explanation does not 

account for lower available P; however, with either explanation manure and crop residue are not 

improving total N and available P thus fertilizer application is needed to maintain these nutrients. 

Overall, fertilizer application is essential to maintain soil N and P for crop production in 

the Sahel, and the reduced rate helps to maintain N and P levels and reduces depletion of other 

nutrients.  It does come at the expense of reduced yield in the initial years of fertilizer addition. 

Increase in available P (Geiger et al., 1992; Buerkert et al., 2000; Sinaj et al., 2001; Yamoah et 

al., 2002) and total N and P (Van der Eijk et al., 2006; Williams et al., 2013) with fertilizer 

application is also reported in other long-term research both in the Sahel and globally. Available 

N as nitrate is not considered in the current study because amounts were very low and nitrate 

does not typically accumulate in tropical soils.  

Both crop residue and manure improved total P with fertilizer application, but only 

manure impacted available P levels. Crop residue improved total P especially at lower fertilizer 

rates, where there was little difference between residue rates. This may be because any P in 

residues is being mineralized to meet plant P demand through production of extracellular 

phosphatase enzymes (Reddy et al., 2000). A similar demand-induced solubilization of crop 

residue P was reported in other Sahel research (Hafner et al., 1993). Crop residue did not impact 

available P with fertilizer application in other West African trials (Yamoah et al., 2002; Michels 
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and Bielders, 2005; Knewston et al., 2008). This is likely because unlike manures, crop residue 

decomposition does not supply as much organic acids to chelate with P sorbing Fe and Al oxides 

and mineral surfaces and release P to the soil solution (Hue et al., 1991; Manu et al., 1991; Braos 

et al., 2015). Manure would further improve available P if application rates were high enough to 

increase pH (Kihanda et al., 2012), which reduces chelation of P to mineral surfaces and metal 

oxides and improves bioavailability in acidic soils (Sharpley and Moyer, 2000; Braos et al., 

2015). Manure amendment increases total P in soils partly because cattle manures have low N:P 

ratios and can add considerable amounts of both total and labile P to soils (Kar, 2013). As well, 

addition of C in manure may increase total P retention because OC content is highly correlated to 

total P in millet cropping soils of the Sahel (Manu et al., 1991). Build up of residual P with 

manure application may lead to increased total P over time (Kashem et al., 2004), as was 

observed in a long-term trial in Kenya (Janssen et al., 2008; Kihanda et al., 2012). Addition of 

manure can increase residual P stores by stimulating microbial activity leading to conversion of 

inorganic P to organic P (Reddy et al., 2000). At the medium and low manure rates, the amount 

of P added in manure may not be enough to build up substantial residual P because the residence 

time of the residual pool is based on the amount of labile P applied (Wolf et al., 1987). In 

summary, total P build up with fertilizer use is further increased with both crop residue and 

manure application, but only manure application at high rates improves P availability. 

3.6.4 Soil organic carbon 

Soil organic carbon was very low overall, and although application of fertilizer at either 

the reduced or recommended rate significantly increased OC compared to the control, it was only 

by 0.02-0.03%. The slight OC increase with fertilizer is due to improved yield and biomass 

production (Alvarez et al., 2005). SOC may not increase with fertilizer addition because fertilizer 

N is stimulating organic matter degradation (Chivenge et al., 2010). Although C is low, it is not 

declining, because SOC measured in the top 20 cm of the soil at the start of the experiment was 

0.18% C, which is similar to current SOC levels (Akponikpe et al., 2008). Thus, SOC decline, 

which has explained yield decline in other long-term field research (Manna et al., 2005), does not 

explain yield decline at Sadore in comparison to changes in soil acidification and nutrient 

deficiency.  
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SOC also did not improve substantially with crop residue or manure application. These 

results for fertilizer and organic amendment are similar to several other long-term trials in the 

Sahel, where SOC declined over time (Yamoah et al., 2002; Janssen, 2011; Fonte et al., 2009; 

Bationo et al., 2012b; Kibunja et al., 2012). Difficulty in sequestering OC in other Sub-Saharan 

African long-term trials was attributed to rapid mineralization and soil erosion from the arid 

climate and to continuous cultivation and a lack of OM protection in sandy Sahel soil (Kapkiyai 

et al., 1998; Yamoah et al., 2002; Janssen, 2011; Eche et al., 2013). Trials that were successful in 

accumulating OC in West Africa were higher in clay content, which increased aggregation and 

protected SOM from decomposition (Feller and Beare, 1997; Gentile et al., 2013). SOC was also 

increased in the Sahel where manure rates were two to three times higher than this study 

(Nakamura et al., 2012); these rates may not be feasible for smallholder farmers, however. Crop 

residue did not prevent SOC decline in any Sahel research, as the high C:N of residues slowed 

their breakdown and contribution to SOC (Kapkiyai et al.,1998; Ouédraogo et al., 2007). While 

manure, crop residue, and fertilizer have minimal effects on soil carbon content, studying the soil 

C and N speciation should shed light on how the treatments are affecting SOM storage and C and 

N dynamics. 

3.6.5 C and N speciation 

Two components most influenced C and N speciation at Sadore: 1) rates of organic and 

inorganic inputs and their comparative amounts; and 2) the sandy soil texture at Sadore, which 

decreased the retention of certain C and N groups, because coarser soil retains mostly plant 

derived SOM that is rapidly depleted when conditions favor mineralization (Feller and Beare, 

1997; Grandy et al., 2008; Grandy and Neff, 2008; Gillespie et al., 2014a). C and N groups 

produced through microbial degradation are retained in the fine mineral fraction where they are 

protected from breakdown (Grandy and Neff, 2008). The mineral fraction is a very small portion 

of soil particles at Sadore, thus these groups were not retained in the soil to any large extent. 

Both soil texture and fertilizer inputs played a role in the relative abundance of C and N 

functional groups in the soil. 

The N functional groups varying in abundance between treatments are amide-, pyrrolic- 

and alkyl-N at Sadore. Amide- and pyrrolic-N were both abundant and alkyl-N was lowest where 

organic amendment was highest and inorganic fertilizer was reduced or absent. Pyrrolics were 
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also present in similar abundance when organic matter and fertilizer were applied at similar rates, 

however. Both amides and pyrrolics were lowest where there was more fertilizer and less organic 

matter inputs, indicating that a higher amount of inorganic N fertilizer compared to OM addition 

stimulates their break down. Pyrrolics are heterocyclic plant compounds formed through reaction 

of inorganic N with humic and fulvic acid compounds and they generally increase with degree of 

humification (Thorn and Mikita, 1992; Mengel et al., 1996; Mahieu et al., 2000; Vairavamurthy 

and Wang, 2002). Heterocyclic N compounds are produced earlier in the OM decomposition 

pathway and they persist throughout breakdown (Vairavamurthy and Wang, 2002), which is 

likely why pyrrolics are abundant in more treatments than amides. In contrast with this study, at 

a long-term maize trial in Ontario, where only the fine-fraction was measured, heterocyclic N 

was most abundant in treatments with a lower C:N ratio. This was attributed to the fact that the 

added N was broken down and stabilized as pyrrolics and pyridines and protected in the fine 

fraction. At Sadore, pyrrolics did not persist under conditions of high N availability to microbes 

most likely because the sandy soil limited SOM protection. 

Amides are components of protein that generally decrease in abundance over time 

because they are a readily accessible and important source of N for microbes (Mengel et al., 

1996, Vairavamurthy and Wang, 2002; Gillespie et al., 2014b; Albrecht et al., 2015). Amides 

may be lower where total N content is higher because N is stimulating decomposition, which was 

seen in other research (Appel and Mengel, 1990). In the temperate long-term trial mentioned 

above, amides were most abundant in treatments with higher N input because of greater 

synthesis and deposition of protein on mineral surfaces with more supplementary N (Gillespie et 

al., 2014a). In contrast, there are few mineral surfaces at Sadore for microbially synthesized 

amides to be deposited upon, which is likely why amides are low with highest N. Amides may be 

higher in the R2F1M2 and R2F0M2 treatments than the R0F0M0 and R2F2M2 treatments 

because lower fertilizer input relative to organic input stimulated less amide breakdown. 

Alkyl-N was lowest in the treatment with high OM and no fertilizer, where amide-N was 

most abundant, and was similar at all other treatments. N-alkyls are a labile substrate for 

microbes, derived from proteins (Sjorgersten et al., 2003). Alkyl-N is derived from protein, of 

which amides is a component, thus alkyl-N is likely low when amides are highest because they 

have not yet formed from amides. Another important observation is that the alkyl-N peaks for 
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R2F0M2 and R2F1M2, the treatments highest in organic matter as well as amides, are shifted to 

the left. This shift indicates that more N is in the nitrate form relative to ammonium (NH4
+) 

(Leinweber et al., 2007). Addition of higher intensities of crop residue and/or manure may be 

stimulating nitrification of NH4
+ to nitrate (NO3

-). This was seen in another long-term research 

trial where increased manure application led to increased NO3
- production and higher 

nitrification rates (Müller et al., 2011). Manure may impact nitrification more than crop residue, 

as residues did not impact nitrification rates after 2 years of addition in another field trial (Hu et 

al., 2014). These results indicate that the shift in alkyl-N with higher organic matter input may be 

due to increased nitrification from manure addition. Overall, the amide, pyrrolic, and alkyl-N 

groups were strongly influenced by the fertility treatments. 

Aromatic-, carboxyl-, and carbohydrate- C are all impacted by fertility treatments at 

Sadore; there was no difference among treatments in abundance of ketone- and phenol- C. 

Aromatics are more recalcitrant compounds derived through decomposition and humification of 

lignin in plant material, and they are higher with greater overall nutrient addition (Asselman and 

Garnier, 2000; Gillespie et al., 2014a; Albrecht et al., 2015). Aromatics increase in relative 

abundance as humification proceeds and more labile compounds break down or undergo 

transformation (Leinweber et al., 1993; Vinceslas-Akpa and Loquet, 1997; Sjorgersten et al., 

2003; Albrecht et al., 2015). At Sadore, higher abundance of both organic and mineral fertilizer 

input appears to be a dominant controller of aromatic abundance. This may be because higher 

fertilizer and OM rates lead to greater crop production and input of lignin-containing millet 

residues. As well, fertilizer amendment stimulates the breakdown of more labile OM groups, 

which should increase the relative abundance of aromatics. These results correlate with other 

research that found higher crop production and nutrient input to the soil increased aromatics 

(Gillespie et al., 2011). As well, at Sadore where both fertilizer and organic matter input were 

low at Sadore, aromatics were low, reflecting lack of both stimulant and substrate for OM 

cycling.  

 Carboxyls were highest when fertilizer application was low, regardless of the OM rate. 

Carboxyls increase with degree of humification and are found in plant material as carboxylic 

acids, as a component of proteins, and as a product of lignin transformation, as well as in 

microbial matter (Kögel-Knabner, 2002; Mahieu et al., 2000). Carboxyl groups are more 
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resistant against further degradation and their presence represents a higher degree of oxidation 

(Kiem et al., 2000). With low fertilizer application, one would expect slower decomposition of 

lignin and thus lower production of carboxyl groups. However, low nutrient availability may also 

reduce microbial decomposition of carboxyl-containing organic groups that have already formed 

through humification in more oxidized soils. 

 Carbohydrates were highest in samples where organic matter inputs were lowest. 

Carbohydrates are a more readily available and preferentially degraded carbon form, and are 

released from decomposing polysaccharides. Carbohydrate content tends to decrease as 

humification proceeds (Sollins et al., 1996; Kögel-Knabner, 2000; Gillespie et al., 2011). 

Carbohydrates may be higher in the soil with lower OM inputs because the soil is more degraded 

and soil carbon is stabilized (Gillespie et al., 2011). As well, other research found the breakdown 

of plant compounds led to breakdown of aromatic groups to carbohydrates (Gillespie et al., 

2014a). An inverse relationship between aromatics and carbohydrates is also observed in these 

Sahelian samples. In contrast, one study of temperate soils found that carbohydrates were lower 

in depleted soil where fertilizer was not applied, because of lower plant inputs and greater 

turnover of those inputs (Kiem et al., 2000).  Further work is required to elucidate the 

interactions between nutrient amendment and decomposition/humification processes as they 

affect carbohydrate transformations in the soil organic fraction.  

 There may be no difference between any treatments in phenols, recalcitrant plant derived 

compounds found in lignin (Grandy and Neff, 2008; Wickings et al., 2012), due to a combination 

of factors. 1) There is a strong similarity of plant biomass in all cases (millet), which may lead to 

the same abundance of phenols, and 2) phenols are not retained at Sadore because of low content 

of clay, which adsorbs phenols (Clemente et al., 2011), and dominance of kaolinite in clay 

mineralogy, which does not typically retain phenol groups (Asselman and Garnier, 2000). There 

was also no difference among treatments in ketones, which are present in microbial material 

(Chan et al., 2009; Hitchcock et al., 2009), and produced through microbial metabolism of 

aromatic (Gottschalk, 1986) and fatty acid (Dent et al., 2004) compounds. Ketones are mainly 

retained in the fine mineral fraction (Gillespie et al., 2014a), which again is very small at Sadore. 

Overall, low soil carbon at Sadore may in part be explained by the lack of the fine soil fraction to 

retain organic groups. 
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3.7 Conclusions 

This study demonstrates that there are both benefits and drawbacks to long-term 

application of reduced fertilizer rates in the Sahel. The microdosed fertilizer rate provides yield 

and soil nutrient benefits compared to not adding fertilizer. Soil acidification was also slightly 

less in soils receiving the reduced rate of inorganic fertilizer versus the recommended rate, which 

may or may not impact soil functioning. Depletion of plant nutrients not applied in fertilizer, 

especially K, may be higher with the recommended rate than in the reduced rate soils because of 

higher yield. More research on mining of nutrients other than K at Sadore would increase 

understanding on how microdosing impacts soil fertility over time. A potential advantage of the 

reduced fertilizer rate compared to the recommended rate was in the C and N groups present 

under each treatment. Treatments with no fertilizer or at the reduced rate along with higher 

organic inputs were enriched in C and N groups, including amide- and pyrrolic-N, and aromatic-

C, that indicated lower SOM breakdown or more substrate for SOM cycling, whereas groups 

indicating more advanced SOM breakdown, carboxyl-C and alkyl-N, were enriched where 

fertilizer was higher.  

Drawbacks to the reduced rate of fertilizer compared to the recommended rate include 

lower yields and less increase in soil carbon. Based on the decline in yield trend over sixteen 

years for the reduced and recommended fertilizer rates, neither fertilizer rate can be considered 

sustainable; the observed yield decline is likely related to soil acidification, nutrient mining, and 

overall low SOC. Crop residue and manure addition have the potential to improve sustainability 

of the reduced fertilizer rate, as crop residue buffered pH at the reduced fertilizer rate, both 

amendments improved total P, and manure supplied essential plant nutrients that inorganic 

fertilizer did not, shown by lower N and P levels with higher manure rates. Also, as mentioned 

above, treatments with higher organic inputs enriched soil with C and N groups suggesting less 

SOM breakdown. The arid Sahel climate and sandy soil, however, further increase SOM 

mineralization, inhibiting soil functioning. C and N groups that are normally retained in the fine 

mineral fraction, including aromatic-, phenol- and ketone-C, and pyrrolic-N, were not protected 

at Sadore when higher fertilizer inputs favored decomposition. Rates of crop residue and manure 

higher than 2700 kg ha-1, however, may provide more soil fertility benefits, including improved 

CEC and OC, increased pH buffering, and improved SOM cycling. The main finding of this 
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study is that reduced fertilizer rate typical of microdosing is no more detrimental to soil 

functioning than the recommended fertilizer rate; however, application of crop residue and 

manure at as high of rates as attainable for smallholders is essential for long-term soil fertility 

and SOM cycling. 
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4. IMPACT OF INTEGRATED SOIL FERTILITY MANAGEMENT ON SOIL PROPERTIES 

AND CARBON AND NITROGEN SPECIATION AT LONG-TERM RESEARCH SITES IN THE 

SAHEL 

4.1 Preface2 

Short-term research has shown that the Integrated Soil Fertility Management (ISFM) 

approach, which includes the use of mineral fertilizers along with crop residues, manure, and 

mixed cropping, is effective in improving soil fertility and functioning within the limitations 

faced by smallholder farmers. More research on the long-term effects of different ISFM 

techniques on soil fertility is needed. Two long-term research sites, a 16-year trial in Sadore, 

Niger, and a 50-year trial in Saria, Burkina Faso, incorporate several ISFM techniques. This 

chapter covers an evaluation of the impact of different rates of fertilizer, crop residue, and 

manure in both continuous cereal and legume-cereal cropping systems, along with the impact of 

cultivation and cropping on soil chemical properties and carbon and nitrogen speciation at each 

site. Results from this research project help to determine practices that will be effective in 

maintaining soil fertility on smallholder farms. 

4.2 Abstract 

Low soil fertility severely limits smallholder crop production in the West African Sahel. 

Both mineral fertilizers and organic amendments such as crop residue and manure benefit soil 

fertility, but smallholders have difficulty accessing and affording these inputs.  Integrated Soil 

Fertility Management (ISFM) is the joint application of mineral and organic fertilizer inputs 

along with incorporation of legumes into cropping systems.  Short-term research has shown that 

ISFM benefits soil nutrient content and dynamics; however, little long-term research has been 

reported on thus far. The research described in this chapter is intended to determine the long-

term effect of different ISFM treatments at two long-term research sites in the Sahel of West 
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Africa, to develop recommendations for sustainable soil fertility management. ISFM treatments 

at the long-term sites, which have been under cultivation for 16 and 50 years, included several 

different rates of mineral fertilizer, crop residue, and manure, in both continuous cereal and 

mixed legume-cereal cropping systems. The long-term impact of cultivation and cropping was 

also examined by comparison to uncultivated, uncropped soil.  Soil chemical properties 

including pH, soil organic carbon (SOC), cation exchange capacity (CEC), electrical 

conductivity (EC), total nitrogen (N) and phosphorus (P), and available P were determined. Soil 

organic carbon (C) and N speciation was determined using the X-ray Absorption Near Edge 

Structure (XANES) spectroscopic technique. Fertilizer amendment was found to be necessary to 

maintain soil nutrient content, and manure and crop residue application provided further soil 

fertility benefits. Crop residue and manure buffered pH decline from fertilizer application, 

contributed to P fertility, and supplied additional nutrients for plants other than those supplied in 

the mineral fertilizer source. Only manure was effective for improving SOC and only at the 

highest rate of 40,000 kg ha-1. Long-term tillage increased N mineralization. Incorporating 

legumes lowered pH and soil P levels, and only improved soil N at one site. More insoluble P 

was accessed in the mixed than the continuous cropping system, improving P use efficiency. 

Mixed cropping with legumes as well as greater organic input led to increased abundance of C 

and N groups indicative of lower SOM humification. C and N speciation under continuous cereal 

cropping indicated high levels of SOM decomposition, which is more detrimental to soil 

functioning. The application of mineral fertilizer and organic matter, especially manure, under 

mixed cereal-legume cropping is recommended as the best practice to maintain soil fertility and 

crop production in the Sahel. 

4.3 Introduction 

 Sub Saharan Africa experiences crop production that is less than half of the world 

average, largely due to low fertilizer use and soil nutrient depletion (Africa Progress Panel, 2014; 

FAO, 2014). The soil fertility and crop production issues in greater Sub Saharan Africa are 

exacerbated in the Sahel region by the arid climate and unreliable rainfall patterns (Saïdou et al., 

2004). Soil fertility was previously managed through shifting cultivation and expanding cropping 

area; however, this system has broken down with increased population pressure (Abdoulaye and 

Sanders, 2005; Aune and Bationo, 2008). Since there is little land to expand cropping, soil 
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fertility must be managed through sustainable intensification of crop input use. Inorganic 

fertilizer is an important component to meet soil nutrient requirements, but smallholder Sahelian 

farmers are not able to access or afford sufficient quantities of fertilizer because of poorly 

developed infrastructure, limited access to financing, and a weak private sector  (World Bank, 

2014; Vanlauwe et al., 2010). As well, nitrification of N fertilizers increases soil acidity and 

aluminum toxicity and may lead to yield decline (Pichot et al., 1981; Hue et al., 1991). 

Application of nitrogen (N) fertilizers may also stimulate mineralization of soil carbon (C), an 

essential component of soil functioning, further inhibiting yields (Neff et al., 2002; Grandy et al., 

2008). Applying organic fertilizers such as crop residue or manure will potentially buffer soil pH 

decline and improve soil carbon (Bado et al., 2012; Kibunja et al., 2012). Rates of organic 

amendments like manure that are required to meet crop nutrient requirements are higher than 

what Sahel farmers generally have access to (Bationo and Mokwunye, 1991; Bayu et al., 2004), 

thus pairing organic and inorganic inputs is the most feasible way for smallholders to meet crop 

requirements (Vanlauwe et al., 2010). Using a combination of soil fertility management 

practices, known as Integrated Soil Fertility Management (ISFM), is a more practical way for 

farmers to meet crop nutrient demand and build soil fertility.  

 The goal of ISFM is to maximize nutrient use efficiency and boost crop productivity, 

and practices in this management approach include joint amendment of inorganic and organic 

fertilizers, and incorporation of N-fixing legumes into cropping systems (Vanlauwe et al., 2010). 

ISFM may be the best strategy to improve soil fertility and crop production to improve 

livelihoods for the many facing food scarcity in the Sahel. There is great potential for ISFM to 

boost soil fertility and crop production in the Sahel; however more research on the long-term 

effects of ISFM on soil fertility and nutrient dynamics is needed to develop recommendations for 

best practices. Short-term research on the effect of ISFM practices on soil in the Sahel has been 

essential for developing the technique (Geiger et al., 1992; Bagayoko et al., 2000 a,b; Bationo 

and Ntare, 2000; Yamoah et al., 2002; Mando et al., 2005; Akponikpe et al., 2008, Chivenge et 

al., 2010; Bationo et al., 2011; Gentile et al., 2013). Long-term agronomic trials are necessary to 

understand the effect of management practices on long-term soil fertility over several years 

(Reynolds et al., 2014). The two long-term ISFM research sites that are utilized in the current 

research have yet to be assessed for their long-term effects on soil fertility. These trials, one of 

which was established 16 years ago in Niger, and the other over 50 years ago in Burkina Faso, 
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are particularly valuable in revealing long-term effects of IFSM on soil.  

 The objective of this research is to determine the long-term effect of application of 

integrated soil fertility management techniques including manure and crop residue application, 

and mixed cropping with legumes on soil fertility and C and N cycling at two long-term research 

sites in Sahelian West Africa. We hypothesize that ISFM techniques will result in positive 

changes to soil fertility and nutrient cycling compared to fertilizer alone, and this hypothesis will 

be tested through analysis of soil chemical properties and C and N X-ray Absorption Near Edge 

Structure (XANES) spectroscopy. The XANES technique is used to reveal the type of organic C 

and N containing compounds in the soil, as affected by the different ISFM treatments. The 

purpose of this research is to provide scientifically supported recommendations to smallholder 

farmers in the Sahel that will meet their crop nutrient requirements and maintain the soil resource 

most effectively with reduced risk.   

4.4 Materials and Methods 

4.4.1 Site description 

Two long-term research trials were used to study the long-term effects of ISFM 

treatments in the Sahel. The first long-term research trial, known as Sadore, is run by the 

Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture 

(TSBF-CIAT) at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) 

in Sadore, Niger, established 1993 (Figure 4.1). The second long-term trial, referred to as Saria, 

is located at the Environment and Agricultural Research Institute (INERA) centre in Saria, 

Burkina Faso, established in 1965 (Figure 4.1). Annual precipitation at Sadore is 440-587 mm yr-

1 and mean annual temperature (MAT) is 28.3-28.9 oC. Saria has a higher annual precipitation, at 

735-876 mm yr-1 and similar MAT of 27.5-28.2 oC. The soil type at Sadore is a Hypoluvic 

Arenosol, according the World Resource Base for Soil Resources classification, described in the 

previous chapter (Jones et al., 2013). Soil particle size distribution at Sadore is 92% sand. The 

soil at Saria is a Plinthic Lixisol, slightly acidic with a clay enriched B horizon layer dominated 

by kaolinite (Jones et al., 2013). Soil particle size distribution is lower in sand than Sadore, at 

53%, with 36% silt and 11% clay (B. Outtara, personal communication, 2015). 
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 Fig. 4.1. Soil maps of A) Niger with location of Sadore long-term research site, and B) Burkina 
Faso with location of Saria long-term research site. Sadore site soil type is ARwl, Hypoluvic 
Arenosol and Saria site soil type is LXpl, Plinthic Lixisol (Adapted from Jones et al., 2013). 
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The experimental design of the trial at Sadore is RCBD with a 3x3x3x2 factorial layout, 

the factors being three rates each of mineral fertilizer, crop residue, and farmyard manure and 

two cropping systems: continuous Pennisetum glaucum (millet) and intercrop of millet and 

Vigna unguiculata (cowpea). There were three replications per treatment. The application rates 

for mineral fertilizer included a control of 0 kg N ha-1 and 0 kg P ha-1, a reduced rate of 15 kg N 

ha-1 and 4.4 kg P ha-1, and a regionally recommended rate of 30 kg N ha-1 and 13.2 kg P ha-1. In 

both the reduced and recommended treatments, N was applied as calcium ammonium nitrate 

(CAN), 10 days after sowing (DAS), placed 10 cm from the site of sowing and incorporated with 

a hand hoe. P was applied as single super phosphate (SSP), and was broadcast and ploughed into 

the soil before sowing for both rates of P (Akponikpe et al., 2008). The rates of crop residue and 

cattle manure amendment were 300 kg ha-1, 900 kg ha-1, and 2700 kg ha-1 dry weight for each 

type of organic matter. Nutrient additions in manure and crop residue treatments are shown in 

Table 4.1, derived from Akponikpe et al. (2008). Crop residue and manure were applied before 

sowing; crop residue was broadcast on soil surface as mulch, and manure was broadcast and 

incorporated into soil. Sowing took place after the first rain, usually in June, but in some years 

was as early as May or as late as July. In the continuous system, millet was planted with a 

spacing of 1m by 1m (10000 hills ha-1) and thinned to 30000 plants ha-1 after two to three weeks. 

In the millet-cowpea intercrop, row spacing was 1:1, with millet planted first, at 1.5m by 1m and 

thinned to 20000 plants ha-1, followed three weeks later, or longer with low soil moisture, by 

uninoculated cowpea at 1.5 by 0.25m and thinned to 26650 plants ha-1. Hand weeding took place 

two to three times per season and insecticide was sprayed three to five times in the millet-cowpea 

intercrop to protect cowpea, which is susceptible to many insects. 

The Saria long-term trial was an RCBD design and split plot arrangement, with six 

different fertility treatments as the main plot, and cropping system as the sub-plot. There were 

six replications for each treatment and cropping system combination. Cropping systems included 

continuous Sorghum bicolor (sorghum) and a yearly rotation between sorghum and cowpea 

(uninoculated). The fertility treatments were as follows: 1) unfertilized control, 2) fertilizer alone 

with 14 kg N ha-1, 23 kg P ha-1, and 14 kg K ha-1 as NPK broadcast two weeks after sowing, 

followed by 23 kg N ha-1 broadcast as urea applied 30 days after sowing in the continuous 

sorghum system only, 3) fertilizer with biennial sorghum straw application (Fert+Residue), with 

the rate of straw being the amount produced the previous year, which based on average straw 



	
  

	
  

	
  

55	
  

yields during the experiment, is approximately 4800 kg ha-1, 4) fertilizer with a low farmyard 

manure treatment at 5000 kg ha-1 dry weight (Fert+LM) applied every 2 years, 5) fertilizer with 

additional N and K (Fert+NK); fertilizer application from treatment 2, with an additional 23 kg N 

ha-1  as urea for the continuous system only, and an application of K at 30 kg K ha-1 for both 

cropping systems, both broadcast 60 days after sowing, and 6) Fert+NK treatment with 40000 kg 

ha-1 dry weight of farmyard manure (Fert+NK+HM) applied every 2 years. Nutrient addition 

with sorghum straw and manure by rate is provided in Table 4.1. As well, manure at Saria 

contained 1.4% Ca, 0.6% Mg, and 0.2% Na, with a C/N ratio of 14.2 and the C/N ratio of 

sorghum straw at Saria is 304. Organic amendments at Saria were applied before land 

preparation and incorporated into the soil by tillage. Ploughing of soil and sowing at 31250 

planting hills ha-1, with a spacing of 40cm by 80cm for each crop, took place after the first rain, 

which was generally in the last week of June or early July. Millet and cowpea seeds were treated 

with insecticide before sowing, and cowpea seed was not inoculated with Rhizobium spp. 

 
Table 4.1.  Addition of N, P, and K by organic amendment type and rate at Sadore and Saria 
research sites. 

   Rate N P K 
Amendment Type Frequency kg ha-1 

Saria 
      Low manure Biannual 5000   90.0 10.5  150.0 

High manure Biannual 40000 720.0 84.0 1200.0 
Sorghum residue Biannual 4800     9.6   6.2     32.2 
Sadore       
Manure Annual 300  3.0 0.6   4.8 

 
Annual 900  9.0 1.8 14.4 

 
Annual 2700 27.0 5.4 43.2 

Millet residue Annual 300   2.2 0.2   7.6 

 
Annual 900   6.7 0.5 22.9 

  Annual 2700 20.0 1.4 68.6 
 

4.4.2 Soil sampling and chemical analyses 

 As mentioned in the previous chapter, soil samples from both Sadore and Saria were sent 

to the University of Saskatchewan prior to the beginning of my Master’s research. I did not 

personally visit the research sites, collect samples, and make my own observations, which would 
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have undoubtedly enhanced interpretation of the data. At Sadore, soil was sampled before 

sowing in June 2013, and at Saria, soil was sampled nearing the end of the rainy season in 

September 2013, when crops were at maturity but not yet harvested. Site to site variability may 

be due to different sampling times; however, the 16 to 50 years of treatments at each site likely 

account for more of the differences. As well, in the results and discussion, differences within and 

not between sites are dominantly discussed. At both sites three composited samples were taken at 

the 0-20 cm depth using an auger. A sub-sample was air-dried, ground to pass through a 2 mm 

sieve, packaged in individual airtight sealed bags, and shipped to researchers at the University of 

Saskatchewan in August 2013. When received, each soil sample was transferred to an airtight 

vial and analyzed from September 2013 to July 2014. Soil was also sampled from adjacent 

uncultivated land at each site to compare to cropped cultivated land. This soil is covered with 

dominantly perennial gramineous species, which included Andropogon gayanus and Andropogon 

ascinodis at Saria. At Sadore, the adjacent uncultivated soil is mainly dominated by the shrub 

Guera senegalensis.  

Soil samples were analyzed for pH, electrical conductivity (EC), organic carbon (OC), 

total phosphorus (P) and nitrogen (N), available P, and cation exchange capacity (CEC). Three 

measurements for each soil sample were measured for EC and pH using a glass electrode in a 

2:1, water: soil suspension, with 10mL of water and 5 g of soil (Carter and Gregorich, 2008). 

The LECO-C632 carbon determinator (LECO© Corporation, 1987) was used to analyze two 0.3 

g replicates of each soil sample for OC concentration. Low carbon standard reference materials 

were used for calibration, and a quality control sample of known OC content was measured 

every twenty analyses. Total N and P were measured according to the acid block digestion 

method of Thomas et al. (1967). Triplicate samples of 0.25 g ground soil was digested on a 

heating digestion block at 360°C in 5 mL of concentrated sulphuric acid once for 30 minutes, 

and then digested eight consecutive times with addition of 0.5 mL of hydrogen peroxide, 

allowing to cool for 30 minutes between each digestion. Digests are then allowed to cool to room 

temperature, brought to 75 mL with de-ionized water, mixed, subsampled and analyzed on an 

auto-analyzer. A standard soil of known total P concentration was used for quality control. 

Extractable, available P and effective CEC were determined using a Mehlich-3 extraction, as 

described by Carter and Gregorich (2008). The Mehlich-3 extraction was chosen because of its 

ability to extract multiple elements of interest to this study, and its applicability to tropical acidic 
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soils (Carter and Gregorich, 2008). Briefly, 100 mL of an ammonium fluoride and ethylene 

diamine tetra-acetic acid (EDTA) stock solution was added to a solution of ammonium nitrate, 

acetic acid, 10% nitric acid and deionized water. 30 mL of the extracting solution was added to 

3.0 g of soil, shaken for 5 minutes and passed through a Whatman #42 filter paper. Available P 

was then determined from the Mehlich-3 extracted soil solution using a TechniconTM auto-

analyzer. CEC was determined by measuring the concentrations of Ca, Mg, Na, and K in vacuum 

filtered Mehlich-3 solutions on the Microwave Plasma Atomic Absorption Spectrometer (MP-

AES 4100, Agilent Technologies) and concentrations were used to calculate CEC as the sum of 

exchangeable Ca, Mg, Na, and K. As mentioned previously exchangeable acidity, Al3+ and H+ 

concentration, was not determined because of limited soil from each sample 

4.4.3 X-ray absorption spectroscopy 

 Carbon and nitrogen speciation was determined by measuring X-ray Absorption Near 

Edge Structure (XANES) at the C and N K-edges at the Spherical Grating Monochromator 

(SGM) beamline 11ID-1 at the Canadian Light Source in Saskatoon, Saskatchewan, Canada. At 

the C and N K-edges, the beam line delivers 1011 photons s-1 with a resolving power of (E/ΔE) 

>10,000 (Regier et al., 2007a, b). The energy range for the C K -edge is from 270 to 320 eV, and 

the N XANES K-edge is between 380 and 430 eV. Samples were prepared by slurrying a small 

amount of the soil sample with water, pipetting onto Au-coated Si wafers attached to the sample 

holder using double-sided carbon tape, and allowing to air dry. The rep for each treatment 

highest in OC% was selected for XANES measurement to reduce instrument noise because all 

soil samples were low in C. Soil OC and total N contents, and C:N ratio of samples selected for 

XANES analysis are all in Table A.1 of Appendix A. After sample preparation, samples were 

loaded into the SGM end station and brought under vacuum. Data was collected for the C and N 

K-edges separately using the slew scanning mode, in which the monochromator scans the energy 

range of each element, acquiring data while minimizing X-ray exposure to sample (Gillespie et 

al., 2015). An average of 60 scans were taken per sample at a new spot on the sample for each 

scan to avoid radiation damage. The beam line exit slit was set to 25 μm and partial fluorescence 

yield was collected using one Amptek silicon drift detector. XANES spectral features for C and 

N types were identified from diagnostic peaks, which have been previously identified from 

analysis of reference compounds (Leinweber et al., 2010; Myneni, 2002; Urquhart and Ade, 
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2002). Citric acid was used for calibration at the C K-edge where the peak at 288.8 eV was used 

for energy calibration. Normalization to incident flux (I0) was carried out by recording the 

scattering intensity from a freshly sputtered (carbon free) Au surface across the C K-edge 

(Gillespie et al., 2015). The N K-edge data was calibrated to the υ=0 vibration of interstitial N2 

gas (at 400.8 eV) in solid-state ammonium sulfate (Gillespie et al., 2008). C and N XANES data 

was processed using IGOR Pro v.6 software (Wavemetrics, Lake Oswego, Oregon USA). All 

spectra were normalized to the highest peak. The intercrop and continuous cropping systems C 

XANES were measured at separate times due to time limitations, and as such, cannot be 

compared to each other.  

4.4.4 Statistical analyses 

 Mean comparisons of soil properties were performed with PROC MIXED in SAS. The 

Tukey-Kramer test method of multi-treatment comparison for least significant differences (LSD) 

was used for mean comparison. At Saria, treatments were analyzed as split plot RCBD, fertility 

treatments being main plot and cropping system being subplot, with treatments as the main effect 

and replications as the block (random) effect. At Sadore, effect of manure and crop residue soil 

properties on soil properties was analyzed as a RCBD, with treatments as fixed effect, and 

replications as block effect. ANOVA tables for Sadore are found in Appendix A, Tables A.2. to 

A.8., and Saria ANOVA tables in Appendix B, Tables B.1. to B.7. Fertilizer rates at medium 

manure and crop residue rates were compared to the uncultivated and uncropped soil as CRD 

design. Significance for yield regression and soil property mean comparison was declared at 

p≤0.05. Data was tested for normality and log transformation was used to ensure normality for 

EC and available P at both Saria and Sadore, for total P at Saria, and for total N at Sadore. The 

impact of mineral fertilizer on soil properties at Sadore was discussed in the previous chapter to 

determine the long-term impact of the different fertilizer rates. In the current chapter, the impact 

of fertilizer on soil properties at Sadore will only be discussed in comparison to the uncultivated 

and uncropped soil, so as to not repeat the analysis of the previous chapter. All fertility 

treatments at Saria will be analyzed. 
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4.5 Results 

4.5.1 Impact of integrated soil fertility management (ISFM) treatments on soil chemical 
properties at Saria and Sadore 
 Amongst the fertility treatments at Saria, and compared to the uncultivated soil, pH 

ranged from 4.2 to 6.4 (Table 4.2). The fert+NK+HM treatment had the highest soil pH but was 

not significantly different from the control.  The fert+residue, fertilizer, and fert+NK treatments 

had the lowest mean pH. The application of fertilizer decreased pH at Saria, and manure 

application, especially the high manure rate, buffered the pH decline. Overall, CEC was very low 

for all treatments, ranging from 0.6 cmolc kg-1 to 3.7 cmolc kg-1 (Table 4.2). The CEC improved 

with manure application and was reduced through fertilizer application at this site. The EC was 

not affected by treatment and salinity is not an issue as all EC levels are well below 4 mS cm-1. 

Compared to cultivated and cropped soil, the uncultivated soil was lowest in CEC.  

Comparing fertilizer rates to the uncultivated soil at Sadore, pH ranged from 5.0 pH for 

the uncultivated soil to 5.5 pH for the unfertilized soil (Table 4.3). There was no significant 

difference in EC with cultivation and cropping. The CEC at Sadore was even lower than Saria, 

ranging from 0.3 to 0.8 cmolc kg-1. The uncultivated soil was significantly higher in CEC than the 

soil in the fertility rate treatments, which were not different from each other. Soil pH did not 

change with manure rate (Table 4.3), however, increased crop residue rate led to a small but 

statistically significantly higher pH, increasing by 0.1 pH units from the low to medium and 

medium to high rates (Table 4.3). Crop residue or manure rate did not impact soil EC or CEC at 

this site. 
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Table 4.2. Soil chemical properties in the continuous sorghum system treatments and 
uncultivated soil (0-20 cm depth) at Saria. 

Treatment pH Electrical 
Conductivity CEC 

   mS cm- cmolc kg- 
Control†            5.8ab‡ 0.018d           2.1b 
Fertilizer            4.3e            0.052bc           1.3cd 
Fert+Residue            4.6de            0.033bcd           1.3cde 
Fert+LM            5.1cd            0.031cd           1.9bc 
Fert+NK            4.2e            0.061ab           1.2de 
Fert+NK+HM            6.4a            0.096a           3.7a 
Uncultivated/uncropped            5.3bc            0.030cd           0.6e 
†Treatment abbreviations: Fert=fertilizer; LM=low manure; fert+NK=fertilizer plus 
additional nitrogen and potassium; HM=high manure.  
‡Means within a column followed by the same letter are not significantly different (P < 
0.05) using Tukey test for LSD. 

 

Table 4.3. Soil chemical properties in fertilizer, manure, and crop residue treatments in the 
surface (0-20 cm) soil at Sadore site.  
  pH EC CEC 
Treatment Rate  mS cm- cmolc kg- 
       

Fertilized versus 
uncropped/uncultivated 
soil 

Control† 5.5a§ 0.035a 0.4b 
Reduced 5.2ab 0.045a 0.3b 
Recommended 5.3ab 0.043a 0.5b 
Uncultivated/uncropped 5.0b 0.052a 0.8a 

	
   	
      Manure Low‡ 5.1b 0.056a 0.6a 

	
  
Medium 5.2a 0.052a 0.6a 

	
  
High 5.1b 0.046a 0.7a 

	
       Crop residue Low‡ 5.0c 0.047a 0.5a 
Medium 5.1b 0.053a 0.6a 

  High 5.2a 0.054a 0.7a 
†Control, reduced and recommended rate correspond to 0 kg ha-1 N and 0 kg ha-1 P, 15 kg ha-1 
N and 4.4 kg ha-1 P, and 30 kg ha-1 N and 13.2 kg ha-1 P respectively applied per year for 16 
years as CAN and SSP fertilizer.  
‡Low, medium, and high crop residue and manure rates correspond to 300, 900, and 2700 kg 
ha-1 crop residue added per year for 16 years. 
§ Means followed by the same letter within each treatment in a column are not significantly 
different at P < 0.05 according to Tukey's LSD test. 
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At both Saria and Sadore (Table 4.4), the mixed cropping systems incorporating legumes 

had slightly (about 0.1 pH unit) lower pH than the continuous cereal systems. There was no 

significant difference in EC between cropping systems at either site. At Saria, the continuous 

cropping system had significantly higher CEC, but there was no difference in CEC between 

systems at Sadore. 

 

4.5.2 Impact of ISFM treatments on soil carbon and nutrients  

 Comparing effects of fertility treatments on soil at Saria (Table 4.5), the fert+NK+HM 

treatment had higher OC, total and available P, and total N than all the other treatments. No other 

treatments were significantly different from each other in SOC concentration, including the 

uncultivated and uncropped soil. There was no difference in total P between any other fertilizer 

treatments, which were all higher than the control treatment and the uncultivated and uncropped 

soil. After the fert+NK+HM treatment, the fertilizer alone, fert+NK, and fert+LM treatments 

were next highest in available P, followed by the fert+residue treatment. The control and 

uncultivated/uncropped soils were much lower in available P than all fertilized treatments. The 

uncultivated/uncropped soil was next highest in total N, after fert+NK+HM, and was not 

significantly different from the other fertilizer treatments, which were not significantly different 

from the control. 

 

 

 

Table 4.4. Soil chemical properties in surface (0-20 cm) soil of cropping treatments at Saria 
and Sadore sites. 

	
   	
  
pH EC CEC 

Research 
Site Cropping System  mS cm- cmolc kg- 

Saria Continuous sorghum 5.1a† 0.049a 2.2a 

 
Sorghum-cowpea rotation 5.0b 0.058a 2.0b 

Sadore Continuous millet 5.2a† 0.049a 0.4a 
  Millet-cowpea intercrop 5.1b 0.053a 0.8a 
†Means followed by the same letter within each site in a column are not significantly different 
at P < 0.05 according to Tukey's LSD test. 
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Table 4.5. Soil carbon, total and available P, and total N in surface (0-20 cm) soil in 
continuous sorghum system treatments and uncultivated soil at Saria. 

 OC Total P Available P Total N 
 Treatment % mg kg- mg kg- mg kg- 
Control 0.30b† 88.0c 5.9d 77.4c 

Fertilizer       0.40b        165.1b         62.4b     123.0bc 

Fert+Residue       0.29b        126.9b         37.6c       99.5bc  

Fert+LM       0.48b        152.7b         54.8bc     148.8bc 

Fert+NK       0.35b        139.7b         46.9bc     111.7bc 

Fert+NK+HM       0.98a        256.7a       135.2a     426.4a 

Uncultivated/uncropped       0.45b          69.4c           0.1d     179.7b 
†Treatment abbreviations: Fert=fertilizer; LM=low manure; fert+NK=fertilizer plus 
additional nitrogen and potassium; HM=high manure.  
‡Means within a column followed by the same letter are not significantly different (P < 0.05) 
using Tukey test for LSD. 

 

At Sadore, the soil OC was low for all fertilizer treatments, and increasing manure and 

crop residue rates led to small increases in OC, increasing from 0.24% to 0.27% OC with both 

amendments (Table 4.6). The medium manure rate was not significantly different from either the 

low or high manure rate and the medium crop residue rate was not different from the low rate. 

Total P increased significantly with both manure and crop residue application. Manure 

amendment had a greater effect on soil total P content than crop residue. Increased manure rate 

did not increase available P, as levels were highest at the low manure rate and lowest at the 

medium manure rate. There was no significant difference in available P or total N among crop 

residue rates. Manure applied at the lowest rate was highest in total N and there was no 

difference between the medium and high manure rates. In general, at Sadore, total P content of 

the soil was improved with manure and crop residue application, however, neither amendment 

greatly improved soil OC, available P or total N.  

At Sadore, cultivation and cropping did not impact soil OC, as there was no significant 

difference in OC between the uncultivated uncropped soil and the cultivated soils despite 

fertilizer amendment (Table 4.6). The recommended fertilizer rate and uncultivated soil had 

similar total N concentration and the control and reduced fertilizer rates were significantly lower 

in total N. All fertilizer rate treatments had significantly higher total P than the uncropped and 
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uncultivated soil, and were not different from each other. Available P increased with fertilizer 

rate from the control to the high rate, and there was no difference in available P between the 

control and uncultivated/uncropped soil.  

 
Table 4.6. Soil OC, total and available P, and total N in the surface (0-20 cm) soil of treatments 
at Sadore site. 
Treatment Rate OC Total P Available P Total N 

	
  
  % mg kg- mg kg- mg kg- 

Fertilized 
versus 
uncropped/unc
ultivated soil 

Control†  0.26a† 163.0a   4.0bc 79.4b 
Reduced 0.26a 190.2a 6.8b 89.8b 
Recommended 0.26a 194.4a      24.5a      133.9a 
Uncultivated/u
ncropped 

0.21a        82.3c        3.0c      131.0a 

Manure Low§ 0.24b 131.8c 14.7a 123.5a 

	
  
Medium   0.26ab 163.1b 11.6b 104.2b 

	
  
High 0.27a 184.0a  13.3ab   99.9b 

	
    	
   	
   	
   	
  Crop residue Low§ 0.24b 152.4b 13.4a 107.0a 
Medium 0.25b  159.4ab 14.5a 107.1a 

  High 0.27a 167.1a 11.8a 113.5a 
†Control, reduced and recommended rate correspond to 0 kg ha-1 N and 0 kg ha-1 P, 15 kg ha-1 N 
and 4.4 kg ha-1 P, and 30 kg ha-1 N and 13.2 kg ha-1 P respectively applied per year for 16 years 
as CAN and SSP fertilizer.  
‡Low, medium, and high crop residue and manure rates correspond to 300, 900, and 2700 kg ha-1 
crop residue added per year for 16 years. 
§ Means followed by the same letter within each treatment in a column are not significantly 
different at P < 0.05 according to Tukey's LSD test. 

 

At both Saria and Sadore there was no significant difference in OC between the cropping 

systems (Table 4.7). For both research sites, the continuous cereal system was significantly 

higher in total P than the mixed legume cropping system. At Saria, available P was higher in the 

continuous system compared to the sorghum-cowpea rotation. There was no difference between 

systems in available P at Sadore and levels were much lower than at Saria. At Saria, there was no 

significant difference in total N. At Sadore, however, total N was significantly higher in the 

intercrop than the continuous millet system. 
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Table 4.7. Soil carbon, total and available P and total N by cropping system in surface (0-20 
cm) soil at Saria and Sadore sites. 

	
   	
  
OC Total P Available P Total N 

Site Cropping System % mg kg- mg kg- mg kg- 
Saria Continuous sorghum  0.49a† 172.3a 46.9a 208.7a 

	
  
Sorghum-cowpea rotation 0.46a 134.8b 30.7b 207.1a 

	
   	
   	
   	
   	
   	
  Sadore Continuous millet 0.26a 180.6a 13.4a 102.3b 
  Millet-cowpea intercrop 0.25a 138.6b 13.0a 116.1a 
†Means followed by the same letter within each site in a column are not significantly different 
at P < 0.05 according to Tukey's LSD test. 

 

4.5.3 Impact of ISFM treatments on C and N forms as identified by XANES 

Based on the XANES analysis, the abundance of both C and N functional groups in soil 

organic matter (SOM) at the Saria site varied between cropping systems, fertility treatments and 

with cultivation and cropping. Differences in C speciation between cropping systems were 

largest for the ketone and phenol groups, peaks 2 and 3 respectively (Fig. 4.2). The rotation was 

higher than the continuous in ketones and phenols for all treatments, except the control and 

fert+residue treatments. The difference between cropping system in ketones and phenols was 

especially high in the fertilizer alone treatment where there were no organic inputs. Continuous 

sorghum was higher in peak 5, carbohydrate-C, than the rotation for the fertilizer, fert+LM, and 

fert+NK treatments.  

Both cultivation and fertility treatments had an impact on C speciation in the continuous 

cropping system (Fig. 4.2). The uncultivated and fert+NK+HM spectra were highest in aromatics 

and ketones and lowest in carbohydrates. The uncultivated soil was higher in phenols than all 

treated soils, of which fert+NK+HM was the highest. The treatments highest in carbohydrates 

were the control, fertilizer alone, and fert+NK treatments. There was no difference between other 

treatments in aromatics, ketones, or phenols. The uncultivated soil was also lower than all 

treatments in carboxyl-C, peak 4. 

Differences in N speciation between cropping systems at Saria was largest for amide-N, 

peak 2; continuous sorghum was depleted in amides compared to the rotation for each fertility 

treatment (Fig 4.3). The continuous system was higher than the rotation in pyrrolic-N, peak 3, for 

only the fert+residue treatment, and was higher in N-bonded aromatic-N, peak 4, for both the 
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fert+residue and fert+NK treatments. Peak 5, alkyl-N, was shifted to the left in the continuous 

system compared to the rotation for all treatments but especially the fert+NK, fertilizer alone, 

fert+LM, and control treatments. The uncultivated soil was higher in amides than all the fertility 

treatments and was lower in peak 1, pyridines and pyrazines, than all treatments except fert+NK. 

 

Fig. 4.2. Normalized fluorescence yield of C K-edge XANES spectra of surface soils at Saria in 
ISFM treatments and adjacent uncropped/uncultivated soil. Continuous sorghum is the dotted 
line and sorghum-cowpea rotation is the solid line. Fert = fertilizer, LM = low manure, HM = 
high manure, fert+NK = fertilizer with additional N and K. Carbon features corresponding to 
specific excitation energy are identified as: 1. aromatic C at 285 eV; 2. ketones at 286.8 eV; 3. 
phenolic at 287.1 eV; 4. carboxylic at 288.6 eV; 5. carbohydrate hydroxyl at 289.6 eV. 
 

The amides were the N group varying most between fertility treatments in the continuous 

system at Saria (Fig. 4.3). Pyrrolic and N-bonded aromatic groups also varied among the 

treatments. The fert+NK+HM treatment was highest in amides, pyrrolics, and N-bonded 

aromatics, followed by the control and fertilizer treatments with lower organic matter rates 

(fert+residue and fert+LM), followed by the fertilizer alone treatment. The fert+NK treatment 
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was similar in N-bonded aromatics abundance as the fertilizer alone treatment, but was lower in 

amides and pyrrolics.  

Cultivation had a large impact on C XANES at Sadore (Fig. 4.4, 4.5). Compared to the 

continuous millet system, the uncultivated/uncropped soil was higher in ketones and phenols. 

The uncultivated soil and R0F0M0 treatment were highest in carboxyls and R2F1M2 and 

R2F2M2 were lowest. As well, the carboxyl peak was shifted to the left for the uncultivated soil 

compared to the cropped and cultivated soil. Both the R2F2M2 and uncultivated soils were 

higher in aromatics than other treatments. R2F1M2 and the uncultivated soil were lower than all  

 

 

 

 

 

 
 

 

 

 

 
 
 
 
 
 
 
 
Fig. 4.3. Normalized fluorescence yield of N K-Edge XANES spectra of surface soils at Saria in 
ISFM treatments for each cropping system and adjacent uncropped/uncultivated soil. Continuous 
sorghum is the dotted line and sorghum-cowpea rotation is the solid line. Treatment 
abbreviations same as in Fig. 4.2. Nitrogen features corresponding to specific excitation energy 
are identified as: 1. pyridines and pyrazines, aromatic N in 6-membered rings at 398.8 eV; 2. 
amides at 401.2 eV; 3. pyrrolic, N in 5-membered rings with unpaired electrons, at 402.5 eV; 4. 
N-bonded aromatics at 403.5-403.8 eV; 5. alkyl-N at 406 eV. 
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Fig. 4.4. Normalized fluorescence yield of C K-edge XANES spectra of surface soils in Sadore 
site treatments. A) continuous millet cropping system, B) continuous millet cropping system with 
treatments overlain at 282 eV to 292 eV. R=residue, F=fertilizer, M=manure; F0=control, 
F1=reduced rate, F2=recommended rate; R0 and M0= low rate, R1 and M1= medium rate, R2 
and M2=high rate. Carbon features corresponding to specific excitation energy are identified as: 
1. aromatic C at 285 eV; 2. ketones at 286.8 eV; 3. phenolic at 287.1 eV; 4. carboxylic at 288.6 
eV; 5. carbohydrate hydroxyl at 289.6 eV.  
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 Fig. 4.5. Normalized fluorescence yield of C K-edge XANES spectra of surface soils in Sadore 
site treatments. A) millet-cowpea intercrop system, and B) millet-cowpea intercrop system with 
treatments overlain at 282 eV to 292 eV. Abbreviations of soil treatments are same as for Fig. 
4.4. Carbon features corresponding to specific excitation energy are identified as: 1. aromatic C 
at 285 eV; 2. ketones at 286.8 eV; 3. phenolic at 287.1 eV; 4. carboxylic at 288.6 eV; 5. 
carbohydrate hydroxyl at 289.6 eV.  
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other treatments in carbohydrates. There was little difference in C group abundance between any 

fertility treatments in the millet-cowpea intercrop. The uncultivated soil was higher in aromatic- 

and carboxyl-C than the treated soils. There was no difference, however, between the 

cropped/cultivated and uncropped/uncultivated soil in ketone and phenol abundance, which was 

notably different from the continuous millet system. 

As with the C XANES, cultivation and cropping also impacted N XANES at Sadore (Fig. 

4.6). Contrary to Saria, at Sadore the uncultivated soil was lower than the cultivated treated soil 

in amides, pyrrolics, N-bonded aromatics, and alkyl-N, with no difference in pyridines and 

pyrazines.  

When comparing cropping systems at Sadore, only the highest intensity treatment 

(R2F2M2) had N speciation differences between cropping systems (Fig. 4.6). For R2F2M2, the 

millet-cowpea intercrop was higher than continuous millet in amides, which was similar to Saria, 

but was also higher in pyrrolic groups, and N-bonded aromatics, which was opposite to 

observations at Saria site.  

Amongst the fertility treatments in the continuous millet system at Sadore, amides and N-

bonded aromatics were both highest in the R2F1M2 treatment (Fig. 4.6). After R2F1M2, all 

other treatments were similar in N-bonded aromatics. The R2F2M2 and R1F1M1 treatments 

were next highest in amides, followed by R0F0M0, then R0F1M0, which was also lower in 

pyrrolics than all treatments, which were similar in abundance. 
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Fig. 4.6. Normalized fluorescence yield of N K-edge XANES spectra of surface soils in Sadore 
site treatments. Continuous millet is the dotted line and millet-cowpea rotation is the solid line. 
Abbreviations of soil treatments are same as Fig. 4.4. Nitrogen features corresponding to specific 
excitation energy are identified as: 1. pyridines and pyrazines, aromatic N in 6-membered rings 
at 398.8 eV; 2. Amides (protein) at 401.2 eV; 3. pyrrolic, N in 5-membered rings with unpaired 
electrons, at 402.5 eV; 4. N-bonded aromatics at 403.5-403.8 eV; 5. alkyl-N at 406 eV. 
 
4.6 Discussion 
4.6.1 Impact of ISFM treatments on soil chemical properties  

The ability of manure and crop residue to improve soil pH and CEC at Sadore and Saria 

is dependent on rate and site. Crop residue application at 4800 kg ha-1 at Saria was not enough to 

significantly increase pH or CEC; however, the medium and high crop residue rates at Sadore 

(900 and 2700 kg ha-1 respectively) did reduce soil acidity. Both pH and CEC were increased in a 

trial in Niger when 10000 kg ha-1 of millet straw was applied (de Ridder and van Keulen, 1990), 

and 2000 kg ha-1 of crop residue improved soil pH compared to fertilized and untreated soil 

without crop residue application in another long-term Sahel trial (Kretzschmar et al., 1991). In a 

long-term trial in Niger, soil pH increased above the untreated soil by the same amount with crop 
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residue either at 1600 kg ha-1 with no fertilizer applied or at 4000 kg ha-1 with N fertilizer applied 

at 30 kg N ha-1, (Geiger et al., 1992). Therefore crop residue is a means to buffer the acidifying 

effect of N fertilizer that has been noted in other research projects in the Sahel (Bado et al., 2012; 

Kibunja et al., 2012). Overall, amendment with crop residue may increase soil pH towards 

neutrality but likely will not greatly increase the soil CEC in the Sahel. 

At Sadore and Saria, only the high manure rate (40000 kg ha-1) with fertilizer at Saria 

increased both pH and CEC above the untreated soil. Manure at rates up to 2700 kg ha-1 did not 

impact pH or CEC at Sadore. The low manure rate (5000 kg ha-1) with fertilizer in the fert+LM 

treatment at Saria did increase soil pH compared to fertilizer alone, but was lower in pH than the 

untreated soil, indicating manure at this rate could not fully buffer the increased acidity arising 

from N fertilizer application (Bado et al., 2012; Kibunja et al., 2012; Manna et al., 2005). Similar 

effects on pH and CEC from manure amendment at 5000 kg ha-1 have been noted in other long-

term tropical research trials (Pichot et al., 1981; de Ridder and Van Keulen, 1990; Goladi and 

Agbenin, 1997; Manna et al., 2005; Eche et al., 2013). Higher manure rates of up to 40000 kg ha-

1 appear necessary to increase both soil pH and CEC as noted in other tropical studies (Pichot et 

al., 1981; de Ridder and Van Keulen, 1990; Cai et al., 2014). CEC did not increase along with 

pH with any residue or manure rate at either site, except for the high manure rate at Saria. This 

may be because soil organic matter is more correlated to CEC than pH in the Sahel (Manu et al., 

1991). Although increased soil pH and CEC can improve soil nutrient retention and availability, 

capacity needs to be built to increase smallholder access to crop residue and manure sources for 

their land. 

 Cultivation and cropping system did not have as great an effect on pH as manure and crop 

residue addition did, and effects were different at the two sites. At Sadore, the uncultivated and 

uncropped soil was lower in pH. The uncropped and uncultivated soil had lower CEC than all 

treatments at Saria, which may be because crop biomass production contributes to greater 

recycling of base cations from depth in the cropped soils (Kretzschmar et al., 1991; Noble and 

Randall, 1999). At Sadore the uncultivated and uncropped soil was slightly higher in CEC, but 

all soils were very low so it is anticipated that the difference would not affect soil functioning. 

Soil pH and CEC was higher in no-till treatments than with ploughing in some West African 

long-term trials (Babalola and Opara-Nadi, 1993; Lal, 1997) that may be related to increases in 
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organic matter content but soil pH did not decline over time with tillage in other trials (Subbarao 

et al., 2000; Jaieyoba, 2003). Factors influencing pH and CEC at Saria and Sadore appear to be 

the addition of fertilizer, which lowers the pH, and addition of crop residue and manure that raise 

soil pH and CEC, as crop residues and manures appear to have value as buffers against the 

acidifying effects of the fertilizer.  

 Soil pH was higher in the continuous system than in the mixed legume cropping system 

at both sites, and CEC was higher in the continuous than the legume containing rotation at Saria, 

but was not different between systems at Sadore. Soil pH may be lower in the mixed systems 

because legume residue contributes more N to the soil than cereals, that will undergo nitrification 

and generate more acidity (Tang and Yu, 1999; Xu et al., 2006; Formowitz et al., 2009). 

However, the pH difference in this study was not large and in other research in the Sahel region 

there was no difference in pH between millet-cowpea rotation and continuous millet in long-term 

trials (Bationo and Ntare, 2000; Bado et al., 2012). In one long-term trial in Mali, the surface soil 

pH was higher in the cowpea-sorghum rotation than continuous sorghum because of greater 

biomass input in the mixed system from higher yields, which decomposed and buffered pH 

(Kouyate et al., 2012). Related to the current research, in some work, pH was lower under 

cowpea residues than millet or sorghum because there was greater release of organic acids from 

cowpea root residues at a Sahel trial (Bagayoko et al., 2000a). This may also explain why CEC is 

lower in the legume containing rotation at Saria in the current research. As at Sadore, there was 

no difference in CEC between systems in other Sahel trials involving both millet and sorghum 

with cowpea (Bationo and Ntare, 2000; Bado et al., 2012; Kouyate et al., 2012). There may be a 

difference in CEC at Saria but not at Sadore because there are similar base cation contents in 

cowpea and millet residues, but cowpea is significantly lower than sorghum in K, and slightly 

higher in Mg, both of which contribute to total CEC (Adamu et al., 2014).  

4.6.2 Impact of ISFM treatments on soil nutrients  

 As with pH and CEC, only the high manure rate (40000 kg ha-1) treatment at Saria 

improved SOC to a large enough extent that it may impact soil functioning. The low manure rate 

(5000 kg ha-1) and residue treatments at Saria were not significantly different in OC% from 

treatments with fertilizer alone. As well, increased manure and crop residue rates at Sadore 

increased OC, but only by 0.03% for each amendment. At long-term trials in more humid regions 
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of Africa with similar soil, manure at 3000 to 10000 kg ha-1 improved SOC compared to 

fertilizer alone (Kapkiyai et al., 1998; Janssen et al., 2011; Bado et al., 2012; Kibunja et al., 

2012). The potential gains in SOC are likely to be lower in the Sahel than these other regions 

because along with high OC decomposition due to year round high temperature, the arid climate 

leads to lower biomass input (Kapkiyai et al., 1998; Yamoah et al., 2002; Janssen, 2011; Eche et 

al., 2013). As well, soil at Sadore is very sandy, and SOC accrual is more difficult in sand than 

clay soil (Zingore et al., 2007; Dunjana et al., 2012; Gentile et al., 2013). In other long-term 

work at Sadore, manure at 6000 kg ha-1 increased SOC, indicating this rate may compensate for 

climate and soil texture favouring SOC decomposition in the Sahel (Nakamura et al., 2012). In 

other long-term Sahel research, retention of crop residues either did not improve OC compared 

to residue removal (Kapkiyai et al., 1998; Buerkert and Lamers, 1999; Yamoah et al., 2002), or 

improved OC compared to no residue application but reduced OC compared to initial values 

(Buerkert et al., 2000). Lack of OC improvement may be because crop residue rates are not high 

enough (Bationo and Buerkert, 2001), because the high C:N slows decomposition of the residue 

to SOC (Ouédraogo et al., 2007), or because residues decompose quickly in Sahel conditions 

(Bationo et al., 1995). Based on the literature and current research, manure application at 6000 

kg ha-1 or higher is the best option to maintain and improve SOM content in the Sahel climate, 

and although the high manure rate at Saria was effective in improving SOC, 40000 kg ha-1 is 

likely not realistic for farmers to apply. 

 As with OC, the high manure rate of 40000 kg ha-1 at Saria increased total and available P 

and total N more than all other treatments. The high manure rate at Saria is eight times higher 

than the low rate, and nearly fifteen times higher than the high manure rate at Sadore, and thus 

adds much more N and P overall. The low manure treatment at Saria does not increase soil total 

N and P or available P compared with fertilizer alone even though it adds 90 kg ha-1 more N and 

10.5 kg ha-1 more P every year. Total P may not be increasing with the low manure and residue 

treatments at Saria because the P added with these amendments is being mineralized and taken 

up by plants to meet P demand (Reddy et al., 2000). The same demand-induced solubilization of 

organic P was noted with crop residue application in other Sahel research (Hafner et al., 1993). 

At Sadore, however, increased organic matter improved soil total P, especially for manure 

because of the greater P content compared to crop residue, but available P and total N were 

unaffected by either organic treatment. Total P also increased with 2000 kg ha-1 of crop residue, 
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with and without fertilizer at a trial in Niger (Kretzschmar et al., 1991). This improvement in 

total P at Sadore indicates that across fertilizer rates, not all P from organic inputs is being taken 

up by plants, and may be contributing to residual P buildup. This is also likely occurring at Saria 

in the high manure treatment because of the large P addition. Residual P is built up when added 

P is dissolved and sorbed to soil components surrounding the point of application and often 

forming less soluble compounds that can later be dissolved and taken up by plants (Wolf et al., 

1987). Manure and fertilizer application together had increased P uptake in research in India 

because manure reduced P sorption and increased the recovery of P added in both manure and 

fertilizer (Reddy et al., 2000). Total P is being taken up at lower crop residue and manure rates at 

Saria because of crop P demand, but total P increases with organic matter amendment rate at 

Sadore likely because P demand is being met with fertilizer application. 

 Except for the high manure rate at Saria, crop residue and manure did not improve 

available P at either site, and fertilizer and residue at Saria was lower in available P compared to 

fertilizer alone. In other Sahelian research, crop residue at 2000 to 5000 kg ha-1 did not increase 

available P concentration compared to control (Yamoah et al., 2002; Knewtson et al., 2008), 

where other research with residues at 1400 to 4000 kg ha-1 did see an increase in available P, 

although it was lower than with fertilizer application (Kretzschmar et al., 1991; Geiger et al., 

1992). Based on the current research and mixed results in the literature, large increases in 

available P from crop residue application would not generally be anticipated in the Sahel region. 

However, available P will likely increase with manure application at higher rates, as 10000 kg 

ha-1 but not 5000 kg ha-1 increased available P over 15 years in Kenya (Kihanda et al., 2012), and 

manure at 17000 kg ha-1 but not 6000 kg ha-1 improved available P over three years in Zimbabwe 

(Zingore et al., 2007). Fertilizer is a more efficient way to improve P availability than manure, as 

5000 kg ha-1 of manure, which supplied 20 kg P ha-1, was 33% lower in available P than the 

addition of 17.5 kg P ha-1 as phosphate rock (Bationo and Mokwunye, 1991). Manure and crop 

residue may not be improving available P as much as fertilizer because OM does not contain as 

much available P (Knewtson et al., 2008). Some P may remain immobilized in the SOM, and the 

OM decomposition may not supply enough organic acids to chelate with P sorbing Fe and Al 

oxides and mineral surfaces to release substantial P to the soil solution (Hue et al., 1991; Manu et 

al., 1991; Sharpley and Moyer, 2000; Braos et al., 2015). Although there are several soil fertility 

benefits of crop residue and manure amendment, application of fertilizer along with organic 
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matter is likely needed to meet immediate crop P requirements. 

At Saria, all manure, crop residue, and fertilizer treatments were higher in total N than the 

control treatment, but only the high manure treatment was higher than with fertilizer alone. At 

Sadore, total N did not increase with organic amendment, and manure may have even negatively 

impacted total N, as the lowest manure rate is highest in total N. Other researchers have noted an 

increase in total N with 5000 kg ha-1 of manure (Bationo and Mokwunye, 1991; de Rouw and 

Rajot, 2004), or an increase in total N with manure application but only with conservation tillage 

practices (Mando et al., 2005). Crop residue at 2000 kg ha-1 did not improve total N in other 

research (Buerkert and Lamers 1999). The lack of a difference in total N between fertilizer alone 

and with manure and crop residue may be because of increased crop growth, N uptake and 

removal in harvest with the organic amendment treatments compared to fertilizer alone. Manure 

and crop residue add micronutrients and base cations above and beyond N and P that may be 

limiting in the soil (de Ridder and van Keulen, 1990; Geiger et al., 1992; Srivastava et al., 2002). 

At Saria, the low manure rate adds 100, 70, 30, and 10 kg ha- of K+, Ca2+, Mg2+, and Na+ 

respectively, along with N and P. Addition of these nutrients not provided in fertilizer would 

further improve yield and increase demand and uptake of N (de Ridder and van Keulen, 1990). N 

uptake may be further maximized through integrated organic and inorganic fertilizer through 

synchronization. OM addition increases C:N ratio leading to microbial immobilization of N 

earlier in the season that is later released to plants through microbial turnover (Sugihara et al., 

2002; Kuzyakov and Xu, 2013). This leads to fewer N losses and greater N use efficiency 

(Vanlauwe et al., 2010; Gentile et al., 2013). Also, organic N is not stabilized and protected in 

sandy Sahel soil as well as in finer textured soils, thus organic N is more easily mineralized and 

taken up by plants or is lost from the system (Gentile et al., 2013). Total N does not increase with 

organic amendment compared to fertilizer because N uptake increases with greater base cation 

supply, better synchronization, and low N stabilization in the Sahel soil. 

 Total N is higher in the uncultivated and uncropped soil at both Sadore and Saria, despite 

receiving no N inputs, likely due to lack of N removal and export in crop harvest. Total N in the 

uncultivated is as high as in the high fertilizer treatment at Sadore, and higher but not 

significantly different than all fertility treatments except the high manure treatment at Saria. No 

till or reduced till was higher in total N than with tillage in other West African research 
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(Babalola and Opara-Nadi, 1993; Mando et al., 2005). Total N decreased over 25 years of 

continuous cultivation in Nigeria (Jaieyoba, 2003). Addition of 10000 kg ha-1 of manure 

improved total N at a long-term trial in Saria and improved total N further when reduced tillage 

practices were used because manure improved biological activity that was further stimulated 

through more intensive tillage (Mando et al., 2005). Adoption of reduced tillage systems and 

return of N in manure may help offset N losses, reducing fertilizer-N requirements for 

smallholder farmers. If reduced tillage is not feasible for farmers, then higher rates of manure or 

fertilizer are necessary to offset N outputs. To offset N losses, at Sadore, fertilizer at 30 kg N ha-1 

is required, and at Saria, between 5000 and 40000 kg ha-1 of manure would be necessary. As 

well, continuous cereal cultivation may be impacting total N as well as tillage, because tillage 

had no effect on total N at a long-term trial under continuous maize in Nigeria, however, total N 

and soil C:N ratio declined regardless of tillage (Lal, 1997). Building up the soil N reserves with 

inorganic or organic amendment or through adopting minimum tillage is important to prevent 

high N losses with cropping and cultivation.  

 Contrary to total N, soil OC was not affected by cultivation at either Sadore or Saria. The 

effect of cultivation and cropping on SOC reported in other studies in West Africa varies. In 

some studies, OC was higher in no-till systems than conventional ploughing systems (Babalola 

and Opara-Nadi, 1993; Beare et al., 1994; Jaieyoba, 2003). Other research in semi-arid soils 

noted only slight increases in SOC of 100-200 kg ha-1 yr-1 with no-till (Lal, 1999). One reason for 

lower C with conventional ploughing in tropical soils is that OM is not protected from 

mineralization because tillage disturbs macroaggregate formation (Beare et al., 1994). There may 

be no difference at Sadore because SOC decomposition rates are already high due to sandy soil 

texture and year round high temperatures (Chivenge et al., 2007; Gentile et al., 2013). 

Continuous tillage may reduce OC accrual with OM amendment, as a long-term Sahel trial found 

that manure application improved SOC under hand hoeing, but not with ox ploughing, which 

disturbs soil more (Mando et al., 2005). Soil OC may be unaffected between the uncropped and 

cropped soils at Sadore and Saria, despite cultivation, because lower plant production in the 

fallow, which was seen in other research and led to lower SOC over the long-term (Farage et al., 

2007). Total and available P were lowest in the uncultivated and uncropped soil that did not 

receive any inputs, which indicates the importance of fertility inputs for building up soil P, and 

that cultivation does not lead to P losses. Cultivation did not have an impact on soil P in other 
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research in West Africa (Lal, 1997, Jaieyoba, 2003). As well, in Nigeria, untilled and unmulched 

soil was lower in available P compared to soil either tilled, mulched, or both, indicating residue 

mulching and not tillage was impacting available P (Henry and Chinedu, 2014). P is likely not 

affected by cultivation because it is more often cycled abiotically through organo-mineral 

interactions and is less impacted by stimulation of microbial activity than N (Juo and 

Franzluebbers, 2003; Knewtson et al., 2007; Fageria, 2009). Cultivation at Sadore and Saria did 

not influence OC and total and available P, however if feasible, adoption of no-till seems more 

likely to influence soil total N and reduce fertilizer-N requirements. 

 Cropping with legumes compared to continuous sorghum or millet did not have an 

impact on soil carbon at either site. This was also observed at other long-term sites in the Sahel 

comparing continuous millet or sorghum to legume intercropped or rotated millet or sorghum 

(Bationo and Ntare, 2000; Kouyate et al., 2012; Nakamura et al., 2012). Other studies showed an 

increase in soil C in mixed legume systems compared to continuous cereal attributed to greater C 

inputs from cowpea leaves dropping on the soil (Bationo and Buerkert, 2001). However, legume 

residues have a lower C:N that may stimulate soil C mineralization, where a higher C:N with 

cereal residues leads to N immobilization and C accrual (Powlson et al., 2001; Formowitz et al., 

2009). Soil OC was not depleted with greater mineralization in the legume-cereal system in other 

research because biomass inputs were higher in the legume-cereal system (Yusuf et al., 2009). 

As well, clearing of crop residues, which occurs at both sites after harvest, may be reducing the 

impact of the different systems on C dynamics.  

At Saria there was no significant difference between continuous sorghum and the 

sorghum-cowpea rotation in total N, but at Sadore, the millet-cowpea intercrop was higher in 

total N than the continuous millet system. Both the rotation and intercrop improved soil N 

fertility in some Sahel research, however, the rotation improved total N more than the intercrop 

because competition with cereal in the intercrop led to low legume yield and very low N inputs 

(Tiessen, 1988; Snapp et al., 1998). In other Sahel research, the millet-cowpea rotation was 

higher than the continuous system in mineral N (Bationo and Ntare, 2000), attributed to higher 

microbial activity in the rotation improving N availability (Keecy et al., 1989; Bagayoko et al., 

2000b). Contrarily there was no difference in inorganic mineral N between continuous cereal and 

cereal in rotation with cowpea in other research (Bagayoko et al., 2000b). Along with different 
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cropping systems, differences between sites may be because legumes are grown every year at 

Sadore and every other year at Saria, thus there is potential for more N fixation over time at 

Sadore. As well, N losses between growing seasons may be high, as less than 5% of total N in 

millet was derived from the previous cowpea crop in a 15N-labelling study in the Sahel (Laberge 

et al., 2011). There may be greater N production in the intercrop overall, as cereal uptake of N 

occurs over the growing season in intercrops and stimulates greater legume N fixation in the 

intercrop (Eaglesham et al., 1981; Ndakidemi, 2006; Bationo et al., 2011). In general, mixed 

cropping may not improve soil N supplying power in the Sahel, but yearly legume N inputs 

through fixation and in-season N supply in the intercrop may improve crop N availability more 

than the rotation. 

Continuous cereal systems are higher in total P at both Saria and Sadore, however, 

available P is higher in the continuous system only at Saria, with no difference between systems 

at Sadore. Total and available P may be higher with continuous cereal because legumes have 

higher P requirements than cereals due to N fixation (Hogh-Jensen et al., 2002; Knewtson et al., 

2008). Available P was more depleted with intercropped bean and maize than maize alone in a 

pot experiment with clay rich, neutral pH soil (Li et al., 2008).  In the same work, microbial P 

and organic P increased with legumes in the intercrop, indicating that under legume cropping, 

microbes were converting P to the organic form, making P less available. This mechanism may 

be at work in the rotation at Saria. As well, available P is higher overall at Saria than Sadore so 

legumes may be drawing P from the available pool at Saria, whereas available P levels are much 

lower at Sadore so legumes may be solubilizing unavailable P to meet their P demands. This 

would induce a change in total but not available P. Legumes, including cowpea, have the ability 

to solubilize less available forms of P, when P availability is low, by releasing organic acids and 

P solubilizing enzymes to the rhizosphere (Bekele et al., 1983; Ae et al., 1990; Jemo et al., 2006; 

Hassan et al., 2012). Incorporating legumes into the cropping system will lead to reduced soil 

total P because of higher P requirements, and may not have an impact on available P if P 

availability is low because of the ability of legumes to solubilize less available P.  

4.6.3 Effect of ISFM treatments on soil C and N speciation and dynamics 

Relative abundance of C and N functional groups in SOM at Saria and Sadore reveal the 

influence of fertility treatments, cropping systems, continuous cropping, and cultivation on C and 
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N dynamics. Amide-N, pyrrolic-N, and N-bonded aromatic abundances were impacted by 

organic matter input relative to fertilizer input at both sites, and cropping system also impacted 

amide abundance. Amides were higher in treatments with greater organic matter input, including 

the fert+NK+HM treatment at Saria, and R2F1M2 at Sadore. Amides were lower in treatments 

with fertilizer input and low or no organic input, including the fert+NK treatment at Saria, and 

R0F1M0 at Sadore. Treatments that were intermediate in amides at each site had balanced 

amounts of fertilizer and organic input. Amides are components of proteins and are broken down 

earlier in the degradation sequence because they are an easily used N source for microbes 

(Mengel et al., 1996, Vairavamurthy and Wang, 2002; Gillespie et al., 2014b; Albrecht et al., 

2015). In the present work, amide abundance decreased when organic input decreased relative to 

fertilizer, which may be because fertilizer is stimulating microbial breakdown of easily 

accessible amide N. In other research, amide abundance was lower when soil N addition 

stimulated mineralization (Appel and Mengel, 1990). Furthermore, at Sadore the extra N 

addition in fertilized treatments stimulated greater amide breakdown. As well, amide N 

abundance is lower in the continuous than rotation for each treatment at Saria, and lower in the 

continuous than intercrop for the R2F2M2 treatment at Sadore. Amides are building up in the 

legume rotation in comparison to the continuous cereal treatments likely as a result of legume 

residues having a higher content of proteins and amino acids.  The R2F2M2 may be the only 

treatment at Sadore where amides differ between cropping systems because the OM input is 

highest in this input and the C may be reducing net amide-N mineralization. Abundance of 

amides in treatments with greater organic input and in the mixed legume cropping systems may 

indicate these treatments lead to lower SOM degradation and/or that inputs and production of 

amides are greater in these treatments.  

Along with amides, pyrrolics are also impacted by organic input in relation to fertilizer 

rate. As with amides, the fert+NK+HM treatment was highest and the fert+NK treatment was 

lowest in pyrrolics at Saria, and at Sadore all treatments were higher than the R0F1M0 treatment. 

At both sites, pyrrolics were lower in treatments where fertilizer input was greater than organic 

input. Pyrrolics are heterocyclic plant-derived compounds that are resistant to further degradation 

and that generally increase in abundance where more humification has taken place (Thorn and 

Mikita, 1992; Mengel et al., 1996; Mahieu et al., 2000; Vairavamurthy and Wang, 2002). Based 

on this, pyrrolics should remain in the soil even when N inputs are high because of their 
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resistance to degradation. Research in Ontario, Canada found that pyrrolics were most abundant 

in high N fertility treatments, where N input stimulated microbial breakdown (Gillespie et al., 

2014a). Only the fine soil fraction was measured in this research, which retains microbial 

degradation products, protecting them from further degradation (Grandy and Neff, 2008). The 

fine fraction is very small at Sadore and Saria, as soil is dominantly sand, which retains plant-

derived compounds much better than those from microbes (Feller and Beare, 1997; Grandy et al., 

2008). Pyrrolics may not be present in the treatments at Saria and Sadore with low or no OM and 

fertilizer application because there is no fine fraction to protect pyrrolics from further 

degradation when more N fertilizer is applied.  

As with amides and pyrrolics, N-bonded aromatics are more abundant in treatments 

higher in organic matter inputs at both Sadore and Saria. At Saria, N-bonded aromatics are 

highest in the fert+NK+HM treatment and lowest in both the fertilizer alone and fert+NK, which 

was different from amides. At Sadore, N-bonded aromatics are highest in the R2F1M2 treatment 

and not different with the other treatments. Organic matter input is important for N-bonded 

aromatic abundance, however, fertilizer-N addition is not impacting abundance as for amides. N-

bonded aromatics were also higher in treatments with greater organic input in other work 

(Asselman and Garnier, 2000; Gillespie et al., 2014a; Albrecht et al., 2015). N-bonded aromatics 

are formed through abiotic incorporation of N into the aromatic-C structure (Davidson et al. 

2003; Palm and Sanchez 1991; Thorn and Mikita 2000). Aromatic-C is derived from 

humification of lignin, thus plant inputs are necessary for N-bonded aromatic formation. As well, 

treatments higher in organic input, the fert+NK+HM treatment at Saria and the R2F2M2 

treatment at Sadore are higher in aromatics than all other treatments. Although the R2F2M2 

treatment is not highest in N-bonded aromatics, it has the same organic input as the most 

abundant treatment, R2F1M2. Nitrite is a precursor for N-bonded aromatic formation, and in 

other research, nitrite was higher where nitrification was occurring and inorganic N was 

accumulating (Thorn and Mikita, 2000; Gillespie et al., 2011; Gillespie et al., 2014a). 

Nitrification rates and inorganic N levels were not determined in the current research, but may 

shed further light on N-bonded aromatic abundance. From these results, however, aromatic-C 

abundance, which is improved with organic input, is an important precursor for higher N-bonded 

aromatic levels. 
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At both research sites, aromatic C is higher where organic input is higher at both Sadore 

and Saria, and opposingly carbohydrate-C is lowest where fertilizer and organic matter input is 

highest. This is unexpected, because similar to amides, carbohydrates are more readily available 

and preferentially degraded, and carbohydrate content tends to decrease as humification proceeds 

(Sollins et al., 1996; Kögel-Knabner, 2000; Gillespie et al., 2011). Carbohydrate breakdown may 

expose lignins to breakdown (Baldock et al., 1992), but carbohydrates are also released from 

decomposing polysaccharides, which includes aromatic C (Gillespie et al., 2014a). As well, in 

other research, carbohydrates accumulated where soil was more degraded because carbon 

mineralization was not stimulated (Gillespie et al., 2011). Carbohydrates may increase in 

abundance as aromatic-C is broken down and then become stabilized in the degraded Sahel soil. 

Carbohydrate abundance in soils with less organic inputs indicates that soils at Sadore and Saria 

may be degraded and stabilizing more available C forms.   

 At both Saria and Sadore, cropping system and cultivation and cropping similarly 

impacted ketone and phenol abundance. At Saria, the uncultivated and uncropped soil was higher 

than the continuous cropped and cultivated soil in ketones and phenols, and the rotation was at a 

similar level to the uncropped soil and also higher than continuous cereal in ketones and phenols. 

At Sadore, the uncultivated and uncropped soil was also higher in ketones and phenols compared 

to the cropped and cultivated soil for each treatment in the continuous cereal system. Contrarily, 

there was no difference between the uncultivated and intercropped soil in ketones and phenols. 

These results indicate that continuous cereal cropping, and not long-term cultivation, is having 

an impact on ketone and phenol abundance. Presence of ketones indicates high microbial OM 

turnover because ketones are a product of microbial aromatic C metabolism (Gottschalk et al., 

1986). The uncultivated soil is higher in aromatic C than cultivated at both sites, indicating 

depletion of aromatics in the cultivated soils is leading to abundance of ketones. Ketones are also 

an end product of microbial fatty-acid metabolism, thus their presence indicates greater 

microbial SOM turnover (Dent et al., 2004; Chan et al., 2009). Phenols are derived from plant 

materials and lignin, which is generally more resistant to breakdown than other organic groups 

(Palm and Sanchez, 1991; Grandy and Neff, 2008; Wickings et al., 2012; Gillespie et al., 2014b). 

Work has shown that phenol-C may break down if it is the least recalcitrant organic compound in 

the soil and conditions are suitable for mineralization (Gillespie et al., 2014b). Ketone and 

phenol abundance in the uncropped and mixed-cropping soils indicates OM degradation is higher 
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in the continuous cereal system. Because ketones and phenols remain in the uncropped and 

mixed-cropping soils, there may be other more labile forms of C available for mineralization, 

indicating SOM is not being degraded to the same extent as the continuous system.  

4.7. Conclusions 
At the Saria and Sadore long-term research sites, the different long-term ISFM 

techniques had variable effects on soil chemical properties and fertility, and OM cycling. Crop 

residue at 2700 kg ha-1 at Sadore, and manure at 5000 kg ha-1 or higher at Saria were both able to 

buffer pH decline, but only the 40000 kg ha-1 manure rate improved SOC and CEC. Such a high 

manure rate may not be feasible for smallholder farmers due to lack of availability of large 

amounts of animal manure for field application, however, from the literature 6000 kg ha-1 of 

manure in the Sahel may improve SOC. Crop residue and manure will not improve P availability 

but will contribute to crop P nutrition if demand is not met with fertilizer application. 

Application of OM, especially manure, may increase N uptake through supplying other nutrients 

along with N that are not supplied with N and P fertilizers. Mixed cropping with legumes may 

lower soil pH because of addition of legume-fixed N to the soil that stimulates nitrification and 

increases soil acidity. P input seems more necessary when cropping with legumes due to their 

higher P demand, but in lower P soils such as Sadore, legumes also can likely access more 

recalcitrant P pools, improving P use efficiency. Long-term cultivation and continuous cereal 

cropping had no impact on most soil properties, but continuously cropped soil was lower in soil 

total N due to increased mineralization from cultivation, and additional N output in crop harvest 

compared to uncropped. Inorganic and organic fertilizer addition and reduced tillage practices 

that are feasible in the Sahel should be adopted to maintain or increase soil N fertility. Greater 

organic matter input, as well as mixed cropping with legumes increased abundance of more 

labile amide groups, which indicates lower levels of SOM degradation and greater supply of 

labile organic matter to fuel C and N turnover. Where organic input was higher, aromatic-C and 

subsequently N-bonded aromatic abundances increased and carbohydrate-C was lower perhaps 

corresponding with aromatic-C breakdown or due to stabilization of C in more degraded soils. 

The coarse soil texture at Sadore and Saria also affects soil C and N dynamics, as pyrrolic-C was 

not protected in soil aggregates when greater fertilizer-N addition favoured decomposition. 

Finally, soil under continuous cereal cropping was lower in ketones and phenols, indicating 

greater degree of OM turnover and less input of more available microbial substrate. Along with 
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application of mineral fertilizer to meet nutrient requirements, increased organic matter input, 

adoption of reduced tillage practices, and integration of legumes with cereal cropping will buffer 

pH decline, reduce soil N requirements, maintain P, and improve soil C and N cycling, 

enhancing soil productivity in the Sahel, leading to improved food security and livelihoods for 

smallholders. 
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5. SYNTHESIS AND CONCLUSIONS 

This research thesis investigated the long-term effect of a fertilizer rate typical of 

microdosing and other integrated soil fertility management practices on soil chemical properties 

and C and N dynamics in order to develop sustainable cropping systems in the Sahel. There are 

several important findings from this work that have implications for soil fertility management 

and policy needs in the Sahel. As well, from this research specific management 

recommendations can also be made to smallholders for sustainable management of their soil 

fertility. Finally, knowledge gaps and suggestions for future research can be identified from this 

work. 

 From the results of this thesis work, covered in detail in chapter 3, I conclude that 

inorganic fertilizer application is necessary to meet soil nutrient requirements, as demonstrated 

by the yield benefits and improvement of soil N and P concentration with addition of fertilizer. 

From the results, the reduced fertilizer rate does not inhibit soil functioning more than the 

recommended fertilizer rate. Yield response is greater between the unfertilized and reduced rate 

than between the reduced rate and recommended rate, and yield trend, which indicates potential 

decline over time, is no less negative for the reduced than recommended rate. Soil acidification 

and potential for depletion of nutrients not supplied in fertilizer is higher with the recommended 

rate than with the microdose rate. The organic C and N groups indicating lower levels of 

decomposition, including amide-N, pyrrolic-N, and aromatic-C, were depleted where there was 

higher inorganic fertilizer application, which indicates greater SOM breakdown with more 

fertilizer application. Soil fertility factors that explain in part the potential yield decline with 

fertilizer treatments include soil acidification, mining of nutrients other than N and P, and 

depletion of readily decomposable SOC. Although important for yield improvement, fertilizer 

application at either rate on its own is likely not the most appropriate approach for maintenance 

of soil fertility.  

 Another key finding outlined in chapter 4 is that applying organic matter along with 

fertilizer at as high a rate as feasible for smallholders is needed to maintain soil fertility. Crop 

residues at greater than 2700 kg ha-1 and at least 5000 kg ha-1 of manure will buffer pH decline 

from fertilizer N application. As well increasing manure and crop residue rates will further 

maintain or improve soil total P content. Manure may also add nutrients other than N and P that 
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inorganic fertilizer treatments typically do not supply. Crop residue did not impact SOC, but 

manure applied at 6000 kg ha-1 or more will likely be effective in improving SOC concentration. 

In terms of SOM dynamics, at both sites soils with higher organic inputs were enriched in more 

labile amide-N species as well as plant derived aromatic-C, pyrrolic-C, and N-bonded aromatics 

indicating lower SOM decomposition levels and/or greater input of organic substrate that will 

fuel biological activity in the soil and nutrient cycling.  

 It is noteworthy that at both of the two sites, and especially at the Sadore site in Niger, 

SOC was very low and difficult to increase. The sandy soil texture does not effectively protect 

SOM from microbial degradation, and when combined with climatic factors that promote 

decomposition, only the 40000 kg ha-1 rate of manure resulted in significant increase in SOC. At 

both sites, C and N organic species, such as aromatic, ketone, phenol, and pyrrolic groups, that 

would normally be retained in the fine mineral soil fraction and in SOM aggregates were 

depleted with increased N application, likely due to microbial mineralization. Little can be done 

to change soil texture; nonetheless, organic matter rates and soil management practices should 

take into consideration the difficulty in sequestering organic carbon in these tropical soils 

compared to soils of temperate regions. Adoption of reduced tillage, if feasible in the Sahel, 

would both lower the amount of fertilizer N needed and increase nutrient use efficiency. 

Cropping with legumes may also improve soil N fertility, but the result of this practice was not 

consistent between the two sites. 

 The mixed cereal-legume system does appear to have several soil benefits compared to 

continuous cereal cropping. Although soil under mixed cropping was slightly lower in pH and 

total P, legumes improved P use efficiency because of their ability to solubilize organic P. As 

well, soil under mixed cropping was higher in amide groups than continuous cereal, suggesting 

lower SOM degradation or more input of readily available substrate. Long-term cereal 

monocropping had a significant impact on C and N speciation, as soil in the continuous system at 

each site was depleted in ketones and phenols compared to both the mixed cropping systems and 

the uncultivated and uncropped soil. Ketones and phenols are more recalcitrant organic C 

groups, and their absence in the continuous cereal system indicates that available substrate for 

microbial activity is low, as even difficult to degrade groups appear to be broken down by 

microbes. Mixed cropping of legumes and cereals may be more beneficial for SOM cycling.  

 There were some inherent limitations in the design of the long-term experiments that 
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restricted their interpretative ability. At Sadore, a microdosed rate was used but fertilizer 

placement, another important component of microdosing, was not included in the design. At 

Saria, fertilizer treatments did not include a reduced and recommended rate, so only ISFM 

practices could be compared. A difficulty of doing this long-term research is that the 

experimental design at each site took place well before my time, thus I had to do the best with 

what I had been given. As well, I did not personally visit the research sites, and depended upon 

communication with the researchers that have experience at those sites for information. Yield 

records at Saria were incomplete because yield data was not recorded for each year and there was 

no yield data collected for some of the treatments included in the analysis. Yield trends for the 

different treatments, which would have added to the sustainability analysis, thus could not be 

calculated at Saria. Finally, controlled research plots may not accurately represent farmer 

conditions and management practices as they occur in the region.  

Despite these limitations, there are many important soil fertility management 

recommendations and policy implications that arise from this research. This research is for 

naught if it cannot be broken down into practice recommendations applicable to smallholder 

farmers in the Sahel. From my work, I recommend that farmers not currently applying fertilizer 

adopt the microdosed rate to increase crop production at a lower risk than higher fertilizer rate 

through improving nutrient use efficiency. A suggested rate is 15 kg N ha-1 and 4.4 kg P ha-1, 

which is 55 kg ha-1 CAN and 24 kg ha-1 SSP. If farmers are not able to apply this microdosed rate 

but can afford an even lower rate, this is better than not applying fertilizer at all. If farmers can 

only apply one type of fertilizer, P should be prioritized, as this nutrient was more limiting than 

N based on lower P than N uptake in response to manure at lower fertilizer rates, and because 

organic P was being solubilized from crop residues at lower fertilizer P rates. As production and 

income increases from fertilizer use, farmers should invest in higher rates of fertilizer to further 

improve production, but only with increased organic matter application. Farmers need to apply 

all crop residue and manure available to them to buffer pH from acidifying N fertilizer, add other 

nutrients beyond N and P, and improve SOC cycling. Farmers must apply organic matter at as 

high of rates as possible along with fertilizer to maintain soil pH, add macro and micronutrients 

other than N and P, and improve C and N cycling. If farmers cannot apply organic matter at all, it 

may not be sustainable to apply fertilizer long term. The amount of fertilizer applied relative to 

organic matter is important for C and N cycling, so farmers should not increase fertilizer rates if 
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they cannot also increase organic matter rates. Retention of crop residues in the field should be 

made a priority by farmers, and capacity should be built to increase farmer access to livestock 

manure. If possible based on soil texture and moisture, farmers should adopt minimal tillage, 

tilling fewer times in a year or perhaps once in 2-5 years as suggested by Baudron et al. (2012), 

to reduce N losses from mineralization. Finally, farmers should incorporate legumes into cereal 

cropping systems as either an intercrop or rotation to improve SOC cycling and add more N to 

soil through fixation. 

Key policy implications for adoption of the above recommendations to be possible are as 

follows. Smallholders need access to a dependable supply of inorganic fertilizer. Development of 

markets, infrastructure, and the private sector is needed. Increased access to financing and crop 

insurance is also likely needed to make fertilizer purchasing more affordable and less risky for 

smallholders. Feasible innovations to retain more crop residues in the field must also be 

developed. Substitutes for cooking fuel and building materials and methods to retain manure 

from crop residue grazing in the field, such as through corralling of animals are areas where 

innovation would be beneficial. When constraints of farmer access to inorganic and organic 

inputs are reduced, extension of these technologies is necessary to educate farmers on the 

benefits of small rates of inorganic fertilizer along with crop residue and manure. Finally, 

decision makers need to continue funding long-term research sites so that research to develop 

sustainable soil fertility management practices and cropping systems in the Sahel can continue. 

Continued funding is especially important with the looming challenge of climate change 

adaptation that is especially serious in West Africa.  

 Future research needs are an investigation of the macro- and micronutrient balances and 

availability, including nutrients other than N and P, with reduced and recommended rates of 

fertilizer. Research on the long-term impact of the microdosed placement as well as rate is also 

necessary. A complete nutrient balance study would be useful to understand nutrient dynamics in 

greater detail. Studying the feasibility of the different agronomic recommendations made in this 

research within the Sahelian smallholder context is also important. Research questions would be 

1) How easily can farmers in the Sahel apply a reduced rate of fertilizer based on their access to 

fertilizer and financing; 2) How can it become feasible for farmers to leave crop residue in the 

field or gain access to more than 6000 kg ha-1 of manure; 3) How can it become viable for 

smallholders to adopt reduced tillage practices and/or incorporation of legumes in cropping 
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systems. In general, as evidence of the benefits of soil fertility management techniques in the 

Sahel and other developing regions increases, efforts should shift from researching new practices 

to building capacity and increasing extension so that farmers can adopt and benefit from those 

practices. Both the development and distribution of soil fertility management tools is important, 

but actually putting the tools in the hands of farmers is what will improve livelihoods and 

sustainably improve food security in the Sahel for generations to come. 
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APPENDIX A: SUPPLEMENTARY TABLES FROM SADORE RESEARCH SITE, NIGER 

 

Fig. A.1. Sadore long-term research site field trial layout provided by ICRISAT researchers. 
Rotation of millet-cowpea/cowpea-millet was not included in current research. 

Table A.1. Organic C, Total N, and C/N ratio of surface (0-20 cm) soil for C 
and N XANES samples at Sadore. 

 
OC Total N 

 Treatment mg kg- C:N 
R0F0M0 2100 74.1 28 
R2F0M2 2200 91.1 24 
R0F1M0 2600 92.5 28 
R2F1M2 2600 105.6 25 
R0F2M0 2700 117.1 23 
R2F2M2 2600 138.0 19 
R=residue, F=fertilizer, M=manure; F0=control, F1=reduced rate, 
F2=recommended rate; R0 and M0= low rate, R1 and M1= medium rate, R2 
and M2=high rate 
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Table A.2. ANOVA for pH of surface (0-20cm) soil at Sadore. 
Source df F value Pr > F 
CR 2 27.78 <.0001 
Fert 2 77.32 <.0001 
Man 2 11.91 <.0001 
System 1 23.54 <.0001 
CR*Fert 4 2.47 0.0488 
CR*Man 4 0.42 0.7915 
CR*System 2 0.67 0.5115 
Fert*Man 4 0.99 0.4163 
Fert*System 2 1.50 0.2267 
Man*System 2 1.28 0.2815 
CR*Fert*Man 8 1.88 0.0701 
CR*Fert*System 4 1.73 0.1482 
Fert*Man*System 4 3.19 0.0161 
CR*Fert*Man*System 12 0.88 0.5692 
CR = crop residue, Fert = fertilizer, Man = manure, * denotes interaction of 
treatment types. Applies to Tables A.4. through A.9. 
 

 
Table A.3. ANOVA for EC of surface (0-20cm) soil at Sadore.  
Source df F value Pr > F 
CR 2 1.57 0.2120 
Fert 2 0.85 0.4301 
Man 2 2.34 0.1014 
System 1 1.35 0.2485 
CR*Fert 4 0.17 0.9533 
CR*Man 4 1.31 0.2701 
CR*System 2 2.41 0.0943 
Fert*Man 4 0.52 0.7236 
Fert*System 2 0.64 0.5304 
Man*System 2 3.05 0.0514 
CR*Fert*Man 8 1.06 0.3947 
CR*Fert*System 4 0.79 0.5354 
Fert*Man*System 4 0.76 0.5510 
CR*Fert*Man*System 12 0.78 0.6685 
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Table A.4. ANOVA for CEC of surface (0-20cm) soil at Sadore.  
Source df F value Pr > F 
CR 2 0.83 0.4404 
Fert 2 0.92 0.4036 
Man 2 2.46 0.0905 
System 1 55.93 <.0001 
CR*Fert 4 0.25 0.9105 
CR*Man 4 0.42 0.7944 
CR*System 2 0.23 0.7987 
Fert*Man 4 0.91 0.4589 
Fert*System 2 1.42 0.2473 
Man*System 2 1.09 0.3395 
CR*Fert*Man 8 2.88 0.0060 
CR*Fert*System 4 0.51 0.7299 
Fert*Man*System 4 1.20 0.3134 
CR*Fert*Man*System 12 1.01 0.4431 
  
       
Table A.5. ANOVA for OC of surface (0-20cm) soil at Sadore.  
Source df F value Pr > F 
CR 2 11.48 <.0001 
Fert 2 6.76 0.0017 
Man 2 5.59 0.0049 
System 1 0.39 0.5323 
CR*Fert 4 0.54 0.7088 
CR*Man 4 1.33 0.2634 
CR*System 2 0.40 0.6732 
Fert*Man 4 2.04 0.0945 
Fert*System 2 0.17 0.8475 
Man*System 2 12.18 <.0001 
CR*Fert*Man 8 5.76 <.0001 
CR*Fert*System 4 1.79 0.1360 
Fert*Man*System 4 0.70 0.5932 
CR*Fert*Man*System 12 1.72 0.0729 
  
 
 
 
 
       



	
  

	
  

	
  

106	
  

Table A.6. ANOVA for Total P of surface (0-20cm) soil at Sadore.  
Source df F value Pr > F 
CR 2 7.13 0.0120 
Fert 2 27.89 <.0001 
Man 2 90.55 <.0001 
System 1 173.82 <.0001 
CR*Fert 4 4.02 0.0045 
CR*Man 4 1.10 0.3601 
CR*System 2 4.43 0.0141 
Fert*Man 4 3.25 0.0146 
Fert*System 2 4.16 0.0182 
Man*System 2 35.15 <.0001 
CR*Fert*Man 8 4.10 0.0003 
CR*Fert*System 4 1.50 0.2064 
Fert*Man*System 4 1.58 0.1851 
CR*Fert*Man*System 12 2.63 0.0040 
 
 

   Table A.7. ANOVA for Available P of surface (0-20cm) soil at Sadore.  
Source df F value Pr > F 
CR 2 2.35 0.1000 
Fert 2 99.32 <.0001 
Man 2 3.06 0.0511 
System 1 0.21 0.6475 
CR*Fert 4 1.86 0.1235 
CR*Man 4 0.69 0.6006 
CR*System 2 0.35 0.7046 
Fert*Man 4 10.19 <.0001 
Fert*System 2 25.34 <.0001 
Man*System 2 1.31 0.2749 
CR*Fert*Man 8 0.42 0.9092 
CR*Fert*System 4 1.43 0.2300 
Fert*Man*System 4 1.46 0.2196 
CR*Fert*Man*System 12 0.41 0.9588 
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Table A.8. ANOVA for Total N of surface (0-20cm) soil at Sadore.  
Source df F value Pr > F 
CR 2 3.21 0.0440 
Fert 2 60.09 <.0001 
Man 2 37.17 <.0001 
System 1 33.62 <.0001 
CR*Fert 4 1.94 0.1087 
CR*Man 4 2.09 0.0871 
CR*System 2 1.92 0.1511 
Fert*Man 4 2.52 0.0454 
Fert*System 2 18.59 <.0001 
Man*System 2 47.82 <.0001 
CR*Fert*Man 8 1.64 0.1220 
CR*Fert*System 4 1.94 0.1086 
Fert*Man*System 4 1.98 0.1030 
CR*Fert*Man*System 12 1.42 0.1671 
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Table A.9. Organic Carbon for crop residue, fertilizer and manure application in surface 
soil (0-20 cm) at Sadore. 

   
Organic Carbon 

Fertilizer Rate Crop residue Rate Manure Rate % 
Low Low Low 0.20 cd 

  
Medium 0.20 d 

  
High 0.28 ab 

 
Medium Low 0.22 bcd 

  
Medium 0.27 abcd 

  
High 0.24 abcd 

 
High Low 0.27 abcd 

  
Medium 0.25 abcd 

  
High 0.25 abcd 

Medium Low Low 0.27 abcd 

  
Medium 0.24 abcd 

  
High 0.25 abcd 

 
Medium Low 0.20 d 

  
Medium 0.24 abcd 

  
High 0.31 a 

 
High Low 0.26 abcd 

  
Medium 0.29 ab 

  
High 0.29 ab 

High Low Low 0.25 abcd 

  
Medium 0.25 abcd 

  
High 0.24 abcd 

 
Medium Low 0.28 ab 

  
Medium 0.28 abc 

  
High 0.24 abcd 

 
High Low 0.27 abcd 

  
Medium 0.28 ab 

    High 0.30 a 
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APPENDIX B: ANOVA TABLES FROM SARIA RESEARCH SITE, BURKINA FASO 

Table B.1. ANOVA for pH of surface (0-20cm) soil at Saria. 
Source df F Value Pr > F 
Treatment 5 92.52 <.0001 
Rotation 1 3.75 0.0576 
Trt*Rotation 5 1.03 0.4067 
 
 

   Table B.2. ANOVA for EC of surface (0-20cm) soil at Saria. 
Source df F Value Pr > F 
Treatment 5 13.61 <.0001 
Rotation 1 0.69 0.4078 
Trt*Rotation 5 0.54 0.7484 
 
 

   Table B.3. ANOVA for CEC of surface (0-20cm) soil at Saria. 
Source df F Value Pr > F 
Treatment 5 62.16 <.0001 
Rotation 1 2.85 0.0968 
Trt*Rotation 5 0.82 0.5388 
 
 

   Table B.4. ANOVA for OC of surface (0-20cm) soil at Saria. 
Source df F Value Pr > F 
Treatment 5 5.40 0.0004 
Rotation 1 1.57 0.2148 
Trt*Rotation 5 1.85 0.1173 
 
 
Table B.5. ANOVA for total P of surface (0-20cm) soil at Saria. 
Source df F Value Pr > F 
Treatment 5 30.56 <.0001 
Rotation 1 19.94 <.0001 
Trt*Rotation 5 1.02 0.4135 
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Table B.6. ANOVA for available P of surface (0-20cm) soil at Saria. 
Source df F Value Pr > F 
Treatment 5 53.72 <.0001 
Rotation 1 15.32 0.0002 
Trt*Rotation 5 1.18 0.3316 
 
 
Table B.7. ANOVA for total N of surface (0-20cm) soil at Saria. 
Source df F Value Pr > F 
Treatment 5 2.15 0.0715 
Rotation 1 1.52 0.2224 
Trt*Rotation 5 1.52 0.1978 

 
 
 
 
	
  


