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ABSTRACT 

The involvement of the sensorimotor system in visual object processing is at the forefront 

of cognitive neuroscience research. Since the discovery of the mirror neuron system, a plethora of 

research has been dedicated to understanding how action influences cognition. Of particular 

interest to the current work is the way in which two-dimensional objects are represented in the 

human brain. Embodied cognition theories assert that the sensorimotor system plays a large (if 

not entire) role in the conceptual representation of objects. Interestingly, however, although 

somatosensation provides the first means of acquiring information from our environments and 

thus is integral to the development of conceptual representation, research has generally focused 

on motor system contributions to object processing. Therefore, this series of experiments will 

focus on unravelling the relationship between the somatosensory system and object processing. 

To do this, we employed two different priming paradigms, one in which vibratory stimulation 

served as a prime and an object picture as the target (Experiments 1 to 4), and the other where the 

object was the prime and the vibration the target (reverse priming task; Experiments 5 and 6). In 

Experiments 1 to 3, the participant was required to indicate how they would interact with the 

presented object (i.e., a semantic generation task). Results from Experiments 1 and 2 showed that 

object processing of graspable objects could be facilitated by a vibratory hand prime, compared 

to non-graspable objects (Experiment 1) and objects with foot related action affordances 

(Experiment 2), both of which showed no priming effects. Experiment 3 used a vibratory foot 

prime to investigate whether the priming effects in Experiments 1 and 2 were due semantic 

matching effects, such that drawing attention to a modality serves to enhance processing of 

objects related to that modality, and found no evidence to support this account. Experiment 4 

assessed the degree to which sensorimotor representations are automatically activated using an 

object-naming paradigm, which showed no somatosensory priming effects, and thus no evidence 

for automatic somatosensory involvement. Experiment 5 utilized the reverse priming task 

(described above), and found evidence for faster somatosensory detection when primed with a 

hand object, providing converging evidence of a reciprocal relationship between the 

somatosensory system and object processing. Finally, Experiment 6 examined whether the results 

from Experiment 5 were due to matching effects (similar to Experiment 3), and found no 

evidence for this account. Taken together, our research provides corroborative, converging 

evidence that semantic knowledge about how one interacts with manipulable objects involves 
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sensorimotor representations in the somatosensory system. This supports theories of embodied 

cognition and the mirror neuron system, and extends them from the motor domain to 

accommodate somatosensory influences, opening a new window into exploration of how touch 

may be incorporated into these theories. Implications for models of the mirror neuron system, and 

future directions for localizing these effects using neuroimaging are discussed.  
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CHAPTER 1 

AN INTRODUCTION TO SENSORIMOTOR INVOLVEMENT IN CONCEPTUAL 

REPRESENTATION 

 

Experiments 1 and 2 of this chapter are based on one journal manuscript: 

Ekstrand, C., Lorentz, E., Gould, L., Mickleborough, M., & Borowsky, R. (2016). More than a 

feeling: Semantic knowledge of graspable objects is influenced by somatosensory priming. Under 

revision for Psychological Science.  

 

 The ability to process the objects in our environment is an essential component in 

understanding and interacting with the physical world around us. From birth, our first means of 

exploring the objects in our environment is through our sense of touch, and yet touch remains one 

of the most underresearched senses in cognitive research. Although both the motor and 

somatosensory systems are engaged during object manipulation, research has generally focused 

on the contributions of the motor system in shaping, and eventually becoming incorporated into, 

semantic (i.e., conceptual) representation. However, this focus on the motor system provides an 

incomplete picture of the nature of how conceptual information is represented in the brain and 

mind, as it does not take into account how touch may play an integral role in object 

understanding. Therefore, it is imperative that the contribution of the somatosensory system to 

conceptual knowledge is investigated, in order to broaden our understanding of the way in which 

objects are processed and represented in the mind. Based on this, the present research focuses on 

examining the intrinsic relationship between the conceptual representation of objects and the 

somatosensory system, in order to gain insight into how our sense of touch is involved in our 

knowledge about the objects in the world around us.  

 

The Mirror Neuron System and Conceptual Representation 

 The idea that the motor and sensory systems are involved in conceptual processing was 

previously elevated from the discovery of mirror neurons. Mirror neurons represent specific 

populations of neurons that activate both when an animal performs a specific object-directed 

action, as well as during observation of that action. They were originally discovered in the ventral 

premotor cortex of the macaque monkey by di Pelligrino, Fadiga, Fogassi, Gallese, Rizzolatti 
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(1992), and were subsequently named mirror neurons in a later publication (Gallese, Fadiga, 

Fogassi, and Rizzolatti, 1996). In their seminal study, di Pelligrino et al. (1992) used single cell 

recording of neurons in area F5 of the premotor cortex of macaque monkeys while the animal 

either engaged in a specific action, or observed the experimenter engaging in the same action. 

Their results indicated that the same neurons were activated both during motor execution as well 

as during action observation. The researchers interpreted the bimodal (i.e., visual and motor) 

nature of these neurons as an indication that they are sensitive to the meaning of actions. 

Subsequently, evidence of a similar group of neurons has been shown in the parietal cortices, 

including parietal area PFG (Fogassi, Ferrari, Gesierich, Rozzi, Chersi, & Rizzolatti, 2005), as 

well as in the intraparietal area (Pani, Theys, Romero, & Janssen, 2014), suggesting that the 

mirror neuron system operates as a highly interconnected network in the primate brain.  

 Interestingly, mirror neurons have been shown to discharge not only upon the live 

execution of a motor act (i.e., when an actor is present and performing the action), but also during 

the observation of filmed actions. Caggiano et al. (2011) compared the magnitude of mirror 

neuron response in both a live setting as well as filmed setting. The monkeys observed goal-

directed actions carried out by the experimenter in the live setting (in this case, watching them 

pick up a raisin from a stick), whereas in the filmed setting, the animals watched another monkey 

reach for a pepper and eat it. The results indicated that the majority of mirror neurons were 

activated for both live and filmed action. This is an important finding, as it allows for greater 

experimental control in assessing the mirror neuron system, as well as providing evidence that 

stimuli need not be physically present in order to elicit this neuronal response. However, it was 

found that a large number of neurons that responded to both filmed and live action presentation 

were activated more strongly by the live action than the filmed action, showing differential 

neuronal responses to these differing types of stimuli, which should be taken into account when 

examining the mirror neuron system using any type of two dimensional stimuli (including 

pictures).  

 Mirror neurons have also been shown to be activated during the observation of motor acts 

performed by specific tools, suggesting that information coded by mirror neurons is related to the 

goal of the observed motor act, regardless of how this goal is achieved. Specifically, previous 

research has found that mirror neuron involvement can occur when the tool of interest is known 

to the monkey (Ferrari, Rozzi, & Fogassi, 2005; Umiltà et al., 2008; Rochat et al., 2010; Peeters 
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et al., 2009; Iriki, 2006). Ferrari et al. (2005) had monkeys engage in an extended training 

paradigm (i.e., two months), whereby the animals observed the experimenter repeatedly perform 

an action with a tool. Tools in this experiment included both a stick (which was used to pick up 

food as well as to feed the monkey), and a pair of pliers (which were used to grasp the food in 

addition to feeding it to the monkey), however the monkeys did not interact with the tools 

directly. Single neuron recording was then performed after this exposure training. The results 

indicated that there was a population of neurons that responded to viewing actions carried out by 

the tools, but this response did not extend to tools not viewed in training. As well, they showed 

that neuronal responses were highest when the tool produced actions and effects that were 

congruent with actions in the monkey’s own motor repertoire (e.g., using pliers to pick up an 

object is similar to picking up the object with the hands). Interestingly, however, when the 

monkeys were subsequently placed in an environment where use of the tool was necessary in 

order for them to reach a food reward, they did not engage in tool use. These results suggest that 

while the monkey was able to identify that the tool could achieve a certain goal, they were unable 

to use this information in order to perform the same action. 

Canonical Neurons and Canonical Mirror Neurons 

The literature reviewed thus far suggests that actions can be integrated into the body 

schema of monkeys, however it provides little insight into the nature of object representation. 

The affordances of objects (i.e., the sites where a goal directed action can be achieved with an 

object) are directly related to goal-directed actions (Gibson, 1979), and thus, should also have 

representations in the mirror neuron system. Evidence of another class of visuomotor neurons, 

known as canonical neurons, has also been found, supporting this conclusion (Murata et al., 

1997; Rizzolatti & Luppino, 2001). Canonical neurons are bimodal neurons that have both motor 

and visual properties and are found in the lower portion of area F5. They differ from mirror 

neurons in that rather than firing in response to observed actions, they respond selectively to the 

presentation of a three-dimensional object within peripersonal (i.e., reaching) space, in addition 

to firing during action execution. These neurons have been shown to be relatively object specific, 

such that neurons that code for whole-hand grasping actions also fire in response to the 

observation of a large object but not a small object, whereas neurons that code for precise 

prehension fire during observation of a small object but not a large object. Further, they also 

respond to presentation of objects with similar affordances, based on the types of interactions the 
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object permits. This suggests that canonical neurons code for the types of actions for which a 

particular class of objects allow, thus supporting the conclusion that motor information is 

intrinsically bound to the representation of an object when it can be interacted with. Further, an 

additional class of neurons has been found, termed canonical-mirror neurons, which have 

properties of both canonical and mirror neurons.  Canonical-mirror neurons have been shown to 

respond during action execution, object presentation in peripersonal space and, unlike canonical 

neurons, to observation of an action upon an object (Bonini, Maranesi, Livi, Fogassi, & Rizzolatti, 

2014). As such, these neurons code not only the grasping of an object (regardless of the agent), 

but also the graspability of a presented object. Thus, canonical neurons and canonical mirror 

neurons may provide a mechanism by which object shape and function are coupled in the 

monkey brain, allowing for comprehension and interaction with objects in their visual world. 

However, as stated previously, both canonical and canonical-mirror neurons are only 

active when the object is within peripersonal space, and thus activation of these neurons does not 

indicate that the conceptual representation of an object is reliant upon sensorimotor involvement. 

As well, while these results provide evidence that objects that are behaviourly relevant to the 

primate recruit the mirror neuron system, there is currently little to no evidence for mirror system 

involvement in representing objects that are presented in extrapersonal space. This does not, 

however, rule out the possibility of mirror system involvement in conceptual representation in 

humans, as humans have an advanced ability to understand the relationships between objects and 

the actions for which they afford, which is not necessarily the case for primates (Povinelli, Reaux, 

Theall, & Giambrone, 2000). Thus, the mirror neuron system in humans has been shown to be 

much more complex than in primates.  

The Human Mirror Neuron System 

While the mirror neuron system has been well delineated in primates, the mirror neuron 

system in humans has been less clear-cut. Homologues of the mirror neuron regions of monkeys 

have been found, suggesting the existence of an equivalent mirror system (see Figure 1). 

Generally well accepted is the presence of human homologue areas in the parietal cortex, 

including the anterior intraparietal (AIP) area, which is involved in integrating visual and motor 

information (Durand, Peeters, Norman, Todd, Orban, 2009), as well as the homolog for the PFG, 

thought to be located in the inferior parietal lobule (IPL; Orban & Caruana, 2014). Early evidence 

had previously implicated Brodmann area 44 in the human inferior frontal gyrus (IFG) as a 
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possible homologue of area F5 in the monkey cortex (Preuss, 1995; Rizzolatti & Arbib, 1998, 

Rizzolatti & Craighero, 2004), and some neuroimaging studies have supported this conclusion 

(Cattaneo, Sandrini, & Schwarzbach, 2010; see also Avenanti, Candidi, and Urgesi, 2013 for a 

review). However, it has recently been suggested that task differences in these earlier studies may 

have led to activation in this area that is not related to the mirror neuron system and, indeed, 

when a recent meta-analysis was constrained to examine only studies using hand actions and 

passive observers, this area was not active, and instead it appears that Brodmann area 6 of the 

precentral gyrus is more likely to be the homologue of F5 (ventral premotor cortex; vPM; 

Grosbras, Beaton, & Eickhoff, 2012; see also Cerri et al., 2014). Temporal mirror neuron areas 

have also been identified (including the superior temporal sulcus, STS), however we will focus 

primarily on the parietal and frontal mirror neuron system areas. Thus, while the primate mirror 

neuron system is generally well understood, obtaining direct evidence for the areas involved in 

the human mirror neuron system using neuroimaging and physiological methods is still necessary.  

 
Figure 1. Key areas of the human mirror system. From anterior to posterior: IFG = inferior 
frontal gyrus, vPM = ventral premotor cortex, dPM = dorsal premotor cortex, MC = primary 
motor cortex, hMC = hand primary motor cortex, SI = primary somatosensory cortex, hSI = hand 
primary somatosensory cortex, AIP = anterior intraparietal sulcus, IPL = inferior parietal lobule, 
SPL = superior parietal lobule, SMG = supramarginal gyrus, IPS = intraparietal sulcus, STS = 
superior temporal sulcus. Adapted from Cattaneo and Rizzolatti (2009). 
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Indirect evidence for a mirror neuron system has been shown using various imaging 

techniques. For example, Cross, Torrisi, Losin, and Iacoboni (2013) used an imitation control 

paradigm during functional magnetic resonance imaging (fMRI), whereby participants viewed a 

video cue of a hand either lifting its index or middle finger (the imitative condition) or a video 

cue where a moving dot was presented on either the index or middle finger. Participants were 

required to make a motor response that was either congruent with the video cue (e.g., lifting the 

index finger when the cue index finger was lifted, or when the moving dots were presented on 

that finger) or incongruent. Their results indicated that there was a system of brain regions 

involved in identifying and resolving the imitative conflict (including the prefrontal cortex and 

the IFG) when the participant was required to make an incongruent action in the imitative 

condition. The researchers took this as evidence that the IFG and prefrontal cortex are integral 

components of the human mirror neuron system.  

Further, evidence from Sartori, Begliomini, and Castiello (2013) used transcranial 

magnetic stimulation (TMS) to invoke reversible lesions in the primary motor cortex (MC). Left- 

and right-handed participants observed a model performing object-directed grasping actions with 

either their left or right hand while the experimenters monitored the participant’s motor-evoked 

potentials (MEPs) induced by the TMS pulse. MEP amplitude acts as a measure of motor tract 

excitability (in this case, the corticospinal tract) associated with a specific action. Results 

indicated that there was a change in the MEP in the dominant hemisphere in response to the 

observed action regardless of whether the dominant or non-dominant effector performed the 

action. This suggests that motor representations are effector-independent, providing evidence of 

abstract encoding of movement in a higher order system that translates motor information into a 

format that matches the participant’s hand preference. Thus, this research provides evidence of a 

mirror system in humans that encodes actions in terms of an individual’s motor repertoire.  

Of particular interest to the current studies, somatosensory activation has also been shown 

during the processing of action related stimuli. Tactile sensory information is processed initially 

in the primary somatosensory cortex (SI) before undergoing further processing in the SPL, AIP, 

and IPL, whereby these areas then have bidirectional projections to the dPM and vPM cortices 

(Hari & Forss, 1999; Petrides & Pandya, 2002). As the somatosensory cortices have been shown 

to have this extensive connectivity with the motor system, Avikainen, Forss, and Hari (2002) 

hypothesized the action observation should impact somatosensory activation. Somatosensory 
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evoked fields (a measure of somatosensory system involvement, which were produced in this 

experiment using median nerve stimulation) were recorded during a rest condition (where no task 

was performed), a manipulation condition (whereby the participant manipulated a small object in 

their hand), and an observation condition (whereby the participant observed another person 

manipulating the object). Results indicated that in the action observation condition, activation in 

SI was enhanced. Further, Woods, Hernandez, Wagner, and Beilock (2014) extended these 

findings beyond the visual domain, showing that when experts listened to familiar sports sounds 

(e.g., a basketball dribble), there was extensive activation in motor planning regions of the brain, 

as well as SI. Finally, somatosensory stimulation has been shown to enhance motor plasticity as a 

function of action observation. Bisio et al. (2015) had participants observe finger-tapping 

movements in conjunction with somatosensory stimulation to the median nerve of the arm. Their 

results indicated that there was greater corticomotor excitability in MC when visual and 

somatosensory information were combined, suggesting that the somatosensory system plays an 

important role in processing action information. Overall, these studies help to gain valuable 

insight into the mirror neuron system in humans, however based on the indirect nature of the 

tasks it is difficult to definitively identify the specific neural regions that encompass this system.  

The Sensorimotor System and Three Dimensional Objects 

In the absence of a complete understanding of the mirror neuron system in humans, an 

interesting question arises as to how objects (including tools) are represented in the human brain. 

As discussed earlier, while primates do engage in some tool use, it is to a much lesser extent than 

humans. Further, humans have an advanced ability to understand the causal relationship between 

tool use and the obtained results, however this is not the case for primates (Povinelli et al., 2000). 

Thus, the use of primate models in assessing the degree of sensorimotor and mirror system 

involvement in object representation in humans may not be entirely feasible, as it appears that 

they do not share equivalent representations among species. Indeed, even between primate 

species (e.g., between macaque monkeys and chimpanzees), the mirror neuron system has been 

shown to be quite variable and appears to have substantially evolved over time (whereby the 

mirror neuron system in chimpanzees is more complex than that of macaques; e.g., Hecht et al., 

2013; Rozzi et al., 2006; see also Hecht & Parr, 2015 for a review). Coupled with our limited 

knowledge of the human mirror neuron system, exploration of the systems involved in object 
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representation (with an emphasis on tool use) has largely used indirect measures, which will be 

discussed below.  

Patient research has provided compelling evidence for the integration of objects into an 

individual’s body schema. For example, Aglioti, Smania, Manfredi, and Berlucchi (1996) 

reported on a patient with damage to her right hemisphere who was unable to perceive her left 

hand as her own. This disownership was also found to extend to objects associated with her left 

hand (such as a wedding ring) suggesting that the semantic representation of these objects had 

been incorporated into sensorimotor areas associated with that hand. In line with this, Pegna et al. 

(2001) reported on a patient with left spatial neglect in peripersonal space that was also apparent 

when engaging in tool use that extended this space. When performing a typical line bisection task 

(whereby individuals are asked to bisect a line in what they perceive to be the center of it, see 

Bowers & Heilman, 1980), the patient showed the characteristic rightward bias found in most 

neglect patients. Further, when asked to bisect a line beyond their reach with a tool (in this case a 

long stick), this rightward bias was also apparent. Interestingly, however, the patient showed no 

deficits in line bisection when asked to bisect the distant line using a laser pointer, suggesting that 

tools that extend peripersonal space may become integrated into the sensorimotor system. As 

such, patient data has provided further evidence that objects have the ability to become 

incorporated into our neural representations based on our action experience with them. 

Skill Learning  

Expertise has also been linked to the mirror neuron system and sensorimotor activity. 

Specifically, gaining expertise in motor acts through practice has been shown to result in changes 

in plasticity at the level of not only the brain, but also the spinal and peripheral levels. For 

example, Pearce, Thickbroom, Byrnes, & Mastaglia (2000) used TMS to examine possible 

functional reorganization of corticomotor projections of elite racquet players. Their results 

indicated that, in comparison to non-elite players, elite players showed enhanced corticomotor 

excitability in MC, in conjunction with larger asymmetries in the topographic motor map of the 

hand, between the dominant (playing) hand and the non-dominant hand. Further, Vogt et al. 

(2007) used event-related fMRI to examine changes in neural activity associated with developing 

motor expertise. Their results showed that novel skill learning (via observation) leads to 

heightened involvement of areas implicated in the mirror neuron system in comparison to 

observation of previously learned actions. Further, the prefrontal cortex was shown to be 
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selectively recruited during observation and response preparation for non-practiced actions, as 

opposed to the practiced actions (see also Buccino et al., 2004). Thus, the mirror neuron system 

appears to be engaged more strongly during motor acquisition, whereas the sensorimotor system 

appears to be more related to skilled actions.  

Further, this effect of expertise also extends to action observation. Simple observation of 

a motor act in the absence of motor execution has been shown to lead to reorganization of the 

motor system, although to a much lesser extent than actually performing the action. In a TMS 

study, Stefan et al. (2005) had participants view the same action repeatedly (e.g., watching 

repetitive thumb movements) over a period of 30 minutes. Prior to observation, thumb 

movements were repeatedly elicited via a TMS pulse to MC, in order to establish a baseline 

direction of movement. Following the action observation training period, their results indicated 

that the TMS pulse elicited thumb movements that deviated in the direction of the observed 

thumb movements. This suggests that there was functional reorganization of the cortical regions 

associated with the muscles performing the action, even though the participants themselves did 

not actually perform the action. In addition, in a magnetoencephalography (MEG) study 

performed by Järvelänen, Shürman, and Hari (2004), when participants viewed the experimenter 

using chopsticks to transfer small objects from one plate to another, there was larger mu rhythm 

rebound (the recovery of a frequency band associated with sensorimotor involvement, which is 

indicative of the extent of motor cortex activation elicited) than if the experimenter performed a 

similar action without actually engaging with the object. However, mu rhythm rebound was still 

present during the non-goal directed action, showing that actual interaction with an object is not 

necessary for sensorimotor involvement. Importantly, this change in activation was positively 

correlated with the frequency of the participants’ chopstick use, suggesting that involvement of 

sensorimotor areas varies as a function of personal motor experience.  

Extending upon these findings, Fourkas, Bonavolontà, Avenanti, and Aglioti (2008) 

examined how tools may become integrated into an individual’s body representation and whether 

or not these representations could be evoked by engaging in motor imagery (i.e., visualizing 

oneself performing an action). The researchers measured corticospinal excitability of the muscles 

in the forearm and hand of expert and non-expert tennis players while asking them to visualize 

themselves performing a tennis swing, a table tennis swing, or a golf drive. Results indicated that 

expert tennis players showed increased corticospinal activity during tennis motor imagery, but 
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not in the other conditions, whereas novice players showed no differences throughout the three 

motor imagery tasks. Thus, drawing upon semantic motor imagery also has the ability to engage 

sensorimotor processes, resulting in sensorimotor modulation at the peripheral level. Further, 

using fMRI, Grèzes, Armony, Rowe, & Passingham (2003) found evidence for canonical neurons, 

which responded both to object presentation as well as action execution towards the object, in the 

human intraparietal area and precentral sulcus, providing additional evidence that objects can be 

represented in the mirror neuron system. 

The evidence reviewed thus far in humans has highlighted the interconnectivity of 

perception and action by focusing primarily on observed motor acts towards an object, but a 

critical question arises as to whether static object presentation evokes sensorimotor involvement. 

That is, are the conceptual representations of objects inherently bound to the sensorimotor system 

in humans? This has been a hotly debated topic in cognitive neuroscience over the past three 

decades. Almost in parallel with the discoveries related to the mirror neuron system, the extent to 

which there is involvement of the motor and sensory systems in conceptual representation 

became a prominent topic in the field of psychology. In regards to the mirror neuron system, the 

presence of canonical and canonical mirror neurons in monkeys (i.e., neurons that respond to 

mere presentation of an object) may provide a potential mechanism for a perception-action 

representation of objects in humans, thus rendering it plausible that the conceptual representation 

of at least some object-action pairs are represented in the sensorimotor system. This is supported 

by research by Goodale, Milner, and colleagues, who have performed extensive research on the 

relationship between perception and action and how it relates to the dorsal (‘where/how’) and 

ventral (‘what’) processing streams (see Milner & Goodale, 2006, for a review). Of particular 

interest, areas in the parietal lobe (most notably the IPL) have been implicated to be involved in 

integrating perceptual and action information, and thus as the locus of semantic action knowledge 

pertaining to objects. Theories that assert that the sensorimotor system plays a large part in 

conceptual representation are referred to as modal or embodied theories of cognition, whereas 

theories that assert that concepts are not inherently linked to the sensorimotor system are referred 

to as amodal or disembodied. This debate has led to a plethora of interesting research 

investigating the way that objects (such as tools) are represented in the human brain, which will 

be reviewed in the upcoming section.  

 



 11 

Embodied Cognition and Conceptual Object Representation 

Amodal theories of cognition posit that conceptual representations are inherently distinct 

from the sensorimotor system of the brain. Therefore, concepts are seen as symbolic and abstract, 

requiring transformation from their sensorimotor origins (see Lachman, Lachman, & Butterfield, 

1979). In contrast, modality-specific/embodied theories posit that the perceptual and motor 

representations that the concept arose from are intrinsically bound to the cognitive representation 

of that concept, both functionally and neuroanatomically (Barsalou, Simmons, Barbey, & Wilson, 

2003; Kiefer & Spitzer, 2001; Warrington & McCarthy, 1987; Martin & Chao, 2001; Lakoff & 

Johnson, 1999). Embodied cognition theories generally converge upon two main points. First, 

they assert that semantic knowledge is carried by sensorimotor representations, such that the 

neural systems involved in forming semantic knowledge are also the systems retrieving it and 

thus that conceptual knowledge is based in our perceptual and motor systems (e.g., Barsalou, 

2008; Gallese & Lakoff, 2005). Second, they assert that semantic representations are essentially 

simulations of the perceptual and motor information used to encode these representations, thus 

recruiting modality specific sensorimotor systems.  

Of particular interest to the controversy of what degree of conceptual representation 

resides in the sensorimotor system is the issue of how tools are represented in the human brain, 

which are perhaps the most well studied object stimuli in the embodied cognition literature. Tools 

represent an interesting class of objects as they allow for goal-directed actions to occur by 

extending our body space, in order to interact with and manipulate the environment. Previous 

research has indicated that tool use has the ability to alter conceptual representations at the neural 

level. In a review by Maravita and Iriki (2004), it was concluded that tools become integrated 

into the body schema in such a way that leads to plastic modification of the body representation 

in the brain, such that the tool acts as an extension of the body. Presentation of tools has been 

shown to activate parietal motor areas (particularly the anterior supramarginal gyrus; SMG), thus 

providing evidence that action properties are intrinsically bound to this type of stimuli (Chao & 

Martin, 2000). Further, research by Culham, Valyear, and Stiglick (2004) found that when 

participants silently named two-dimensional images of tools, there was activation in the AIP, an 

area implicated in the human mirror neuron system (as discussed previously). Importantly, this 

activation overlapped with activation found when the participant engaged in visually-guided 

action, suggesting that even in the absence of an overt task, tools recruit neural areas that are 
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critical to visually-guided grasping (see also Lewis, 2007 for a review). This research also 

suggested that the three-dimensional object need not be physically present to engage parietal 

motor areas, which is critical for theories of embodiment. The anterior SMG has also been 

implicated in tool processing, which is in close proximity to the AIP. Further, these two 

structures are thought to be highly interconnected via the dorsal IPS (Orban & Caruana, 2014), 

suggesting that a network of posterior parietal areas may be involved in tool processing. Thus, 

this research supports the conclusion that tools can become integrated into the sensorimotor 

system. 

Behavioural evidence has also supported the idea of sensorimotor simulation in response 

to a presented object, therefore supporting theories of embodiment. Early research by Craighero, 

Fadiga, Umiltà, and Rizzolatti (1996) found evidence of a visuomotor priming effect following 

presentation of an object. Prior to performing a motor task (in this case, grasping a bar) 

participants were presented with a rectangle that was oriented at either 45 degrees clockwise or 

45 degrees counterclockwise. The bar was either at the same orientation as the rectangle prime 

(i.e., congruent trials) or at a different orientation (i.e., incongruent trials). The participants were 

then required to reach out and grasp the target bar, which was occluded from their view, and a 

verbal cue prior to each trial indicated what orientation the target bar would occur in. The results 

indicated that participants were significantly faster at grasping the bar if it was at a congruent 

orientation to the prime. The researchers took this result to indicate that motor actions can be 

primed by visual stimuli, thus supporting the idea that passive viewing of an object can evoke 

action representations. In addition, seminal work in embodied cognition by Tucker and Ellis 

(1998) showed similar results when the prime was a real-world object, rather than a simple 

geometric shape. Participants were primed with a picture of an object with a unilateral affordance 

(e.g., a frying pan, whereby the object’s affordance is for grasping the handle). Following this, 

they were asked to perform a categorization judgment of whether the object was upright or 

inverted using either a left or right keypress (counterbalanced between participants), thus 

rendering the position of the affordance irrelevant to the behavioural task. Their results indicated 

that participants were faster at making a motor response with the hand to which the affordance 

was oriented towards, suggesting that presentation of the object primed the motor system related 

to the relevant hand. Similarly to Craighero et al. (1996) they concluded that the object 
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automatically evoked sensorimotor representations that then facilitated the participant’s motor 

response.  

Further, Helbig, Graf, and Kiefer (2006) extended this finding to show that performing 

action is not required in order to facilitate object processing and that objects with specific 

affordances can facilitate processing of objects with similar affordances. Participants were 

primed with a picture of an object that either had a similar affordance to a target object, for 

example if the target was a frying pan, a dust pan prime would have a congruent action 

affordance for grasping, or a dissimilar action affordance, for example a banjo. Participants had 

significantly higher naming accuracy of the target objects when the prime had a congruent action 

affordance, thereby suggesting that objects automatically evoke motor representations during 

processing. In addition, Witt, Kemmerer, Linkenauger, and Culham (2010) found evidence for a 

functional role of motor simulation in the processing of manipulable objects. When participants 

performed a motor task (squeezing a ball) while identifying tools, it was found that the motor 

task interfered with processing when the object’s affordance was on the same side. Finally, 

interference effects also vary as a function of an individual’s sensory experience with an object. 

Yee, Chrysikou, Hoffman, and Thompson-Schill (2013) found that the more sensory experience a 

participant had with an object, the larger the observed motor interference effect, which highlights 

the integral role of the sensorimotor system in object representation. Thus, the above research 

supports the conclusion that action affordances of manipulable objects are intrinsically bound to 

their conceptual representation, therefore supporting embodied theories of object representation. 

However, these results were contested in subsequent years, thus making it difficult to 

come to a clear conclusion about the involvement of the sensorimotor system in conceptual 

representation. Cant, Westwood, Valyear, and Goodale (2005) argued that Craighero et al.’s 

(1996) results arose primarily as a function of the prime facilitating memory-guided grasping, as 

opposed to visually-guided grasping, as the authors argued. As such, the prime may have served 

to simply facilitate the memory of a specific orientation of grasping action, rather than the 

grasping action itself. In their series of experiments, Cant et al. (2005) replicated the findings of 

Craighero et al. (1996) in the memory-guided grasping condition only. When participants were 

not told about the upcoming orientation of the target object (i.e., were unable to rely on previous 

memory of an action), no priming effects were found for grasping as a function of the visual 

prime. In addition, the findings of Tucker and Ellis (1998) have failed to be replicated in at least 



 14 

two separate studies (Bub & Masson, 2010; Yu, Abrams, & Zacks, 2014) and further evidence 

from Cho & Proctor (2011) has shown that alignment effects associated with the site of the object 

affordance can be produced by asymmetries in the visual display rather than by motor 

affordances themselves. Their results indicated that the salient feature of an object biased 

responses with the corresponding hand, regardless of its affordance (e.g., when a teapot was 

presented without a handle, the location of the spout elicited similar biases to the handle as those 

shown in the Tucker & Ellis, 1998 study, even though the spout does not have the same action 

affordance). Thus, it has remained contentious as to whether the passive viewing of objects 

automatically triggers inherent sensorimotor system involvement that is functionally involved in 

semantic processing. 

In light of this, however, and similar to the research discussed above in regards to 

expertise in motor imagery, compelling evidence from Kiefer, Sim, Liebich, Hauk, and Tanaka 

(2007) has shown that sensorimotor involvement in conceptual processing is dependent upon 

action experience with an object. Participants were required to categorize objects based on their 

motor affordances and, depending on the group, either pantomime interacting with, or point at, 

the object during a training period of 16 sessions lasting one hour each. Results at test indicated 

that objects in the pantomime group showed sensorimotor involvement during object processing, 

suggesting that motor information contributes to semantic processing depending on specific 

learning experience. Hence, it appears that the semantic representation of objects in the 

sensorimotor system is reliant on past individual experience. Further, Weisberg, van Turennout, 

and Martin (2007) trained participants to use novel objects in a goal-directed, tool-like manner, in 

order to examine the neural activity associated with training. Prior to motor training, participants 

viewed pictures of the objects during fMRI, whereby activation was limited to areas involved in 

object processing. Following training, an extensive network of activation was found in not only 

object processing areas, but also action areas (including the premotor cortex). Thus, it is possible 

that the lack of visuomotor priming effects in the experiments by Cant et al. (2005), Bub and 

Masson (2010), and Yu et al. (2014) may be in part due to participants lacking a certain amount 

of motor experience with the presented objects, as well as task demands that were not optimal for 

observing an effect.  

 While it remains contentious as to whether passive viewing of an object inherently 

necessitates sensorimotor involvement, passive viewing is not the only way to tap into the 
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semantic knowledge about an object. Retrieving semantic information about sensory- and motor-

based properties of objects can also be used to investigate sensorimotor involvement in object 

representation. For example, Simmons, Ramjee, McRae, Martin, and Barsalou (2006) had 

participants retrieve information about an object’s colour and found that, in comparison to 

retrieving information about the object’s motion, there was heightened activity in colour 

perception areas of the brain (including V4). Further, in regards to word stimuli, Hauk, Johnsrude, 

and Pulvermuller (2004) found that when participants simply read words denoting actions 

associated with certain modalities (e.g., the word ‘lick’ is related to the tongue), there was 

activation in the premotor cortices associated with that modality. In addition, evidence from 

Schendan and Ganis (2012) has shown that engaging in motor imagery prior to presentation of an 

object has the ability to enhance object processing, suggesting that mental simulation mimics 

perception and can lead to a sustained imagistic representation that is similar to actual perceptual 

mechanisms. Of particular relevance to the current studies, another way of evoking semantic 

representation is by asking participants to retrieve information about the functional properties of 

objects, thus drawing upon their personal semantic knowledge of interacting with that object. 

Esopenko et al. (2012) had participants engage in a semantic generation task, during which they 

were required to indicate how they would interact with a presented object (in picture format) as 

quickly and accurately as possible during fMRI (see also Boronat et al., 2004 for a similar 

manipulation identification task). The stimuli in this experiment consisted of objects with 

primarily hand (e.g., a pen) or foot related affordances (e.g., a soccer ball). Their results indicated 

that there was somatotopically-organized activation in the sensorimotor and premotor cortices 

associated with the primary modality of interaction with the object, that were in close proximity 

to the activation found using motor localizer tasks for these modalities. As such, having the 

participant rely on their own semantic action knowledge of an object provides optimal task 

demands for investigating sensorimotor involvement in object representation.  

It is interesting to note, however, that although touch (i.e., somatosensation) is the first 

sense to develop (see Gallace & Spence, 2010) and therefore provides the first means of 

acquiring of essential information from our environments, it has been relatively overshadowed by 

research focused on the motor, as well as other cognitive, systems. Thus, it remains one of the 

most underresearched senses in behavioural research. In light of this, a few studies have sought to 

investigate how somatosensory information may play a role in some types of conceptual 
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processing. For example, early research from Klatzky, Lederman, and Metzger (1985) 

contradicted the prevalent assumption at the time that the haptic system is a poor recognition 

device by showing that, unlike when individuals are trained to haptically identify nonsense 

shapes, participants showed rapid and accurate object recognition when they explored familiar, 

real-world objects. Further, Connell and Lynott (2010) had participants classify briefly presented 

words based on their sensory properties (auditory, gustatory, tactile, olfactory, visual, 

visuotactile; e.g., the word ‘itchy’ has tactile sensory properties). Their results indicated that 

participants showed a selective disadvantage in the conceptual processing of somatosensory 

stimuli, such that participants were considerably slower at classifying the tactile words into the 

tactile sensory category. The researchers interpreted these results as support for embodied 

theories of cognition, such that the conceptual system recruits the perceptual system (including 

the somatosensory system) for the purposes of representation, as these results are in direct 

concordance with the tactile disadvantage shown in perception tasks of a similar nature (Spence, 

Nicholls, & Driver, 2001; Turatto, Galfano, Bridgeman, & Umiltà, 2004). In addition, Ackerman, 

Nocera, and Bargh (2010) found evidence of somatosensory involvement in influencing social 

judgments and decision-making. In a series of experiments, participants were provided with an 

object with irrelevant tactile properties to the task (e.g., in one experiment, either a heavy or a 

light clipboard) and were asked to give impressions of, and make decisions about, both people 

and situations. Overall, their results showed that the tactile information was able to influence 

impressions and judgments in a systematic, metaphor-specific way (e.g., in one experiment, when 

the participants were holding a heavier clipboard, as opposed to a lighter one, they perceived 

potential job candidates as more important). Finally, James et al. (2002) found that objects 

previously explored haptically were responded to faster when that object was presented visually 

at test. As well, participants showed enhanced object processing when haptically exploring a 

novel object simultaneously with visual processing. Based on this, is becomes clear that the 

somatosensory system appears to play an essential role in conceptual processing, however its 

contribution in the domain of visual object processing and object representation has remained 

comparatively unexplored.  

Therefore, this series of experiments will focus on unravelling the relationship between 

the somatosensory system and its involvement in object representation. Experiments 1 and 2 will 

examine whether the processing of manipulable objects can be enhanced using a somatosensory 
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prime, in comparison to non-manipulable objects (Experiment 1) and objects with foot related 

action affordances (Experiment 2). Following this, Experiment 3 will seek to provide evidence 

that this effect is not due to semantic matching, such that simply drawing attention to a specific 

body part serves to enhance processing of objects related to that modality, rather than a direct 

influence of the somatosensory system. Experiment 4 will examine the extent to which the 

somatosensory system is automatically involved in object processing using a naming paradigm, 

as it is contentious as to whether picture stimuli automatically evoke strong sensorimotor 

involvement. Following this, Experiment 5 will seek to provide converging evidence of a 

reciprocal relationship between the somatosensory system and object processing by reversing the 

paradigm and making the object the prime and the vibratory stimulus the target, in order to 

examine whether the picture prime has the ability to influence somatosensory detection. Finally, 

Experiment 6 will be analogous to Experiment 3, to test if the results from Experiment 5 may be 

due to semantic matching effects, as opposed to a direct influence of the somatosensory system.  
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CHAPTER 2 

SOMATOSENSORY INFLUENCES ON THE PROCESSING OF MANIPULABLE OBJECTS 

Experiment 1 

This experiment focuses on examining the impact of somatosensory stimulation on object 

processing based on whether the object can be easily interacted with (i.e., graspable objects) or is 

difficult to interact with (i.e., non-graspable objects) using the semantic generation task 

developed by Esopenko et al. (2012). This task will optimize our ability to examine embodiment 

effects by maximizing the amount of personally-relevant sensorimotor activation elicited, thus 

remediating some of the limitations of previous experiments that used naming reaction times 

(RTs) as their dependent variable (e.g., Helbig et al., 2006). Further, by having participants draw 

upon their own action knowledge, we are increasing the likelihood that they will engage in motor 

simulation, thus maximizing the probability that the mirror system will be engaged in this task. 

Importantly, this paradigm allows for examination of purely somatosensory influences on object 

processing, without confounding somatosensory involvement with motor involvement, by using a 

passive somatosensory prime. Because the participant is not required to engage in any overt hand 

movements (as was the case in James et al.’s, 2002 study, whereby the participant actively 

manipulated the object to gain haptic information about it) we are able to assess the extent to 

which the somatosensory system is tied to semantic knowledge independently of the motor 

system, which, as of yet, has not been explored.    

Hypotheses 

We hypothesize that the action affordances of the graspable objects should necessitate 

semantic processing in the sensorimotor system (in concordance with embodied theories of object 

representation) and, thus, that somatosensory priming should lead to faster responses to these 

objects. In contrast, as the non-graspable objects do not have inherent action affordances, 

somatosensory priming should not lead to faster responses to these objects.  

Methods 

Participants. Twenty-eight university students who spoke English as their first language 

(Mage = 21.2, 24 right-handed) participated in this study. All participants had normal or corrected-

to-normal vision. This study received ethical approval from the University of Saskatchewan 

Behavioral Research Ethics Board.  
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Stimuli. Objects consisted of coloured pictures of 30 ‘graspable’ objects (e.g., a frying pan, 

a razor; see Appendix A) and 30 ‘non-graspable’ objects (e.g., an elephant, a tractor; see 

Appendix B) presented randomly on a white background acquired from Google Images. A small 

subset of the graspable and non-graspable items were adapted from an fMRI study by Wilf, 

Holmes, Schwartz, and Making (2013) that were matched on visual complexity, which we used 

when piloting an fMRI variant of our task, resulting in four of the same objects being presented 

twice (i.e., two different cups, two different frying pans, two different staplers, and two different 

spoons). 

Procedure and Apparatus. Participants were asked to identify how they would interact with 

a picture of a presented coloured object as quickly and accurately as possible (similar to Martin, 

Haxby, Lalonde, Wiggs, & Ungerleider, 1995; see also Boronat et al., 2004 for a similar 

manipulation identification task). This task was chosen in order to maximize personally relevant 

sensorimotor activation (e.g., Borowsky et al., 2005; Borowsky, Esopenko, Cummine, & Sarty, 

2007; Esopenko et al., 2012), which would serve to optimize the potential impact of the 

somatosensory prime. The experiment was completed on a standard Mac computer operating as a 

PC with Windows OS and E-Prime 2.0 software was used to program and run the experiment 

(Psychology Software Tools, Inc., http://www.pstnet.com). Participants were seated 

approximately 100 cm from a 15-inch Compaq 7500 CRT monitor, on which the object pictures 

were presented. Directly in front of the participant was a 12-inch Alpine SWR-T12 Type-R 

subwoofer on which they placed their dominant hand, which served to provide the somatosensory 

prime. The subwoofer was interfaced to the E-Prime program on the computer via a Memphis 

PRX4.50 4-Channel amplifier. 

 The trial progression was as follows: participants were required to fixate on a central 

fixation cross until the researcher initiated each trial (see Figure 2 for a general trial progression 

for Experiments 1 to 4). After trial initiation, on half of the trials, a 250 ms subsonic 20 Hz tone 

was played through the subwoofer that served to provide the vibratory prime to the participant’s 

dominant hand. This frequency was chosen in order to render the prime inaudible to the 

participant, as well as to maximize somatosensory activation at the level of the cortex by 

primarily activating Meissner corpuscles (sensitive to frequencies in the 2-40 Hz range), which 

have projections through the dorsal column/medial lemniscus pathway to the thalamus and 

subsequently to the primary somatosensory cortex (see McGlone & Reilly, 2010 for a review). 
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On the other half of the trials there was no vibration (i.e., a 250 ms gap). Coincident with this 250 

ms interval (i.e., the vibration or the gap), a 6000 Hz tone was played through a different set of 

speakers than the subwoofers. As the experiment was being recorded for later playback, this tone 

was used to indicate trial onset for use during data examination, as well as to control for possible 

alerting effects of the somatosensory prime in comparison to the no prime condition (as alerting 

signals have been shown to reliably reduce reaction time; see Callejas, Lupiàñez, Jesús Funes, & 

Tudela, 2005). Immediately following the prime or gap, an object picture was presented in the 

center of the screen. Each object appeared in both the prime and no prime conditions and the 

order of trials was randomly selected. Each primed and non-primed object pair was presented 

twice, thus resulting in 120 experimental trials.  

 
Figure 2. General trial progression for Experiments 1 to 4. 

 

Participants were required to visualize themselves interacting with the presented object 

and report how they would interact with it, as quickly and accurately as possible, in order to 

optimally engage semantic systems involved in action representation. A LabTec AM-22 

microphone interfaced with the E-Prime serial response box was triggered upon the participant’s 

vocal response in order to obtain their RT for each trial. The researcher then coded ‘1’ for a 

correct response, ‘2’ for an incorrect response (i.e., if the response did not accurately describe the 

functionality of the presented object), and ‘3’ for a spoil (if the microphone was triggered 

prematurely or failed to be triggered upon initial response). Any reasonable response to an object 

was accepted based on the personally relevant nature of the task. For example, if ‘razor’ was the 
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target ‘shave with’ or ‘pick-up’ would both be considered acceptable responses. There was no 

time limit on how long the participant had to respond and the object disappeared from the screen 

when the microphone voice key was triggered. Following the experimental trials, participants 

were required to give interaction familiarity ratings for each of the objects. The objects were 

randomly presented on the screen and the participant vocally indicated how familiar they 

personally were with interacting with the object on a scale of one to seven, whereby one was 

‘Very Familiar’ (i.e., on a daily or near-daily basis) and seven was ‘Very Unfamiliar’ (i.e., never 

interacted with). The researcher then coded their response. Once again, there was no time limit on 

how long the participant had to respond. 

Results 

All errors and spoils were removed prior to analysis (8.5% of the total trials). We 

conducted a 2 (Object [Graspable, Non-graspable]) x 2 (Prime [Hand Prime, No Prime]) general 

linear model ANOVA on median RTs. We found a main effect of Object, F(1, 27) = 68.00, MSE 

= 8163.35, p < .001, ηp
2 = .72, such that graspable objects were responded to significantly faster 

than non-graspable objects (M = 911.87 and M = 1052.70, respectively), reflecting the expected 

effect of participants having greater ease describing how they would interact with the graspable 

objects as opposed to the non-graspable objects. The main effect for Prime was not significant, 

F(1, 27) = .99, MSE = 7455.97, p = .33, ηp
2 = .035, nor was the Object x Prime interaction, F(1, 

27) = 1.17, MSE = 5135.49, p = .29, ηp
2 = .042 (see Figure 3 for median RTs and 95% confidence 

intervals using the Loftus & Masson, 1994 method. Each of the following experiments will also 

use these confidence intervals as error bars).  
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Figure 3. Median semantic generation task RT (ms) for the graspable and non-graspable objects. 
Graspable objects were responded to faster when preceded by the somatosensory prime. No 
significant RT differences were found between the Prime and No-Prime conditions for the non-
graspable objects. Error bars represent 95% confidence intervals (±31.1 ms); see Loftus and 
Masson (1994). 

 

Percent error rates were quite low (all less than 3.57% in each condition). There was a 

significant main effect of Object, F(1, 27) = 10.45, MSE = 9.12, p = .003, ηp
2 = .28. The main 

effect of Prime, F(1, 27) = .37, MSE = 6.80, p = .55, ηp
2 = .013, and the Object x Prime 

interaction were not significant, F(1, 27) = .073, MSE = 12.21, p = .79, ηp
2 = .003. The means 

and standard deviations were M = 1.55, SD = 2.79 for the Primed Graspable Object condition, M 

= 3.57, SD = 4.70 for the Primed Non-graspable Object condition, M = 1.42, SD = 2.47 for the 

No-Prime Graspable Object condition, and M = 3.09, SD = 2.71 for the No-Prime Non-graspable 

Object condition (see Figure 4). There was no evidence for any significant speed-accuracy trade 

offs. 
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Figure 4. Percent error for the graspable and non-graspable objects. Results indicate no 
significant speed accuracy trade-offs. Error bars ±0.57. 

 

Planned paired t-tests between the prime and no-prime conditions were then conducted 

for each object type. In support of our hypotheses on median RTs and consistent with the 

confidence intervals in Figure 3 (i.e., if the mean being compared is outside of the other mean’s 

confidence interval, it supports a significant difference), results indicated that graspable objects 

were responded to significantly faster when preceded by the vibratory prime (M = 896.41, SD = 

114.58) than when they were not primed (M = 927.32, SD = 144.24), t(27) = -2.21, p = .036, ηp
2 

= .15. Non-graspable objects showed no significant differences between the prime (M = 1051.88, 

SD = 204.72) and no prime (M = 1053.46, SD = 197.87) conditions, t(27) = -.060, p = .95, ηp
2 

< .001. When examining ratings for interaction familiarity, the non-graspable objects were found 

to be interacted with significantly less than the graspable objects (M = 4.50, SD = .54 and M = 

2.01, SD = .49, respectively), t(27) = -20.30, p < .001, showing that participants had more motor 

experience with the graspable objects than the non-graspable objects.  

These results were also examined using Bayesian analyses following Rouder, Speckman, 

Sun, Morey & Iverson (2009). This analysis allows for the researcher to examine whether the 

obtained results favour the null or alterative hypothesis, rather than just the alternative hypothesis 

(as with a standard t-test). Using the t ratios from the above t-tests, we obtained a Bayes factor of 

1.29 in favour of a priming effect with the graspable items. Assuming prior odds of one for the 

null and alternative hypotheses, we obtained a posterior probability of .56 in favour of the 

alternative hypothesis, providing only weak evidence of a somatosensory priming effect 
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(according to the strength of evidence ranges proposed by Raftery, 1995, see also Masson, 2011). 

The non-graspable objects resulted in a Bayes factor of 6.84 in favour of the null, and thus a 

posterior probability of 0.13 in favour of an effect. As well, the Bayes factor for the Object x 

Prime interaction (calculated using a t-test of difference scores) was 3.92, resulting in a posterior 

probability of .203 in favour of the alternative hypothesis. 

Discussion 

 The results of this experiment provide preliminary evidence that graspable objects have 

inherent sensorimotor representations that can be influenced by a purely somatosensory prime. 

The somatosensory prime was shown to facilitate the processing of the graspable objects while 

having no impact on the non-graspable objects, which suggests that the processing of these 

objects relies on neural resources in the sensorimotor system, specifically, the somatosensory 

system, either through direct somatosensory involvement, or through its extensive 

interconnectivity with the motor system. However, one limitation of this experiment is the 

relative degree of difficulty between responding how to interact with the graspable and non-

graspable objects. In the absence of a significant interaction between somatosensory stimulation 

and object type, it is difficult to definitively conclude that stimulation selectively improved object 

processing for graspable objects, but not non-graspable objects.  

In support of this interpretation, the non-graspable items showed significantly longer 

reaction times and increased variability in comparison to the non-graspable objects, and 

anecdotally, participants reported greater difficulty in describing the potential interaction with 

these objects. It would appear that the increased reaction times in the non-graspable object 

condition were accompanied by too much variability in this condition to detect a potential 

somatosensory priming effect. Therefore, it may be tempting to argue that the somatosensory 

priming effect may have been due to the alerting quality of the prime rather than facilitation. 

Specifically, it may be possible that the vibratory prime served to facilitate responding to the 

graspable objects in comparison to the blank screen condition, and the lack of power in the non-

graspable condition may have dampened this matching effect. However, we argue that this 

interpretation is unlikely based on the presence of the 6000 Hz tone prior to each trial, which 

should have equally alerted the participant to trial onset regardless of whether the vibratory prime 

was administered. Nevertheless, in the absence of a significant Object x Prime interaction, this 

possibility cannot be ruled out and, therefore, a more powerful experiment was sought. 
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Experiments 2 and 3 address the concern of increased variability in the non-graspable condition 

by using objects that have more easily identifiable action affordances, specifically, objects with 

action affordances for the feet (thus reducing the relative degree of difficulty of responding to the 

different types of objects).  
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Experiment 2 

In this experiment, the graspable objects (objects associated with hand affordances; i.e., 

‘hand’ objects) were the same as those in Experiment 1, however the non-graspable objects were 

replaced with items with action affordances related to the feet (i.e., ‘foot’ objects). These stimuli 

differ from the non-graspable objects from Experiment 1 in that their motor affordances are 

easily identifiable (e.g., ‘kick’ for a soccer ball). Further, if these objects do happen to evoke 

sensorimotor representations, they should be associated more strongly with the foot than with the 

hand (see Esopenko et al., 2012), and therefore the vibratory hand prime should not facilitate 

processing. This experiment will serve to help reduce the variability of responding to the two 

classes of objects, therefore maximizing the potential of finding interaction effects due to 

somatosensory priming for hand object but not foot objects.  

Hypotheses 

Similar to Experiment 1, we hypothesized that the hand objects will show processing 

benefits in the form of faster RTs when preceded by the hand vibratory prime, as these objects 

are thought to have inherent representations in the sensorimotor system. In contrast, the foot 

objects should show no processing benefits as a result of the hand prime. In addition, we expect 

that the two types of stimuli will be differentially influenced by the vibratory prime, resulting in a 

significant Object x Prime interaction.  

Methods 

The methods were the same as for Experiment 1, with the following exceptions. 

Participants. Twenty-eight university students who spoke English as their first language 

(Mage = 20.75, 25 right-handed) participated in this study.  

Stimuli. In this experiment, the non-graspable objects were replaced with ‘foot’ objects 

(e.g., a soccer ball, an ice skate; see Appendix C).  

Procedure. As in Experiment 1, participants were asked to respond how they would 

interact with the target objects as quickly and accurately as possible. For the foot items, 

participants were encouraged to say actions related to the feet, rather than the hands (e.g., ‘kick’ 

for soccer ball instead of ‘throw’) in order to ensure that the foot objects elicited minimal 

sensorimotor involvement from areas associated with the hands. Trials in which the participant 

responded by saying hand related actions were marked as errors and removed prior to analysis.  
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Results 

All errors and spoils were removed prior to analysis (7.4% of the total trials). We 

conducted a 2 (Object [Hand Item, Foot Item]) x 2 (Prime [Hand Prime, No Prime]) general 

linear model ANOVA on median RTs. We found a significant main effect of Object, F(1, 27) = 

22.50, MSE = 5318.47, p < .001, ηp
2 = .46, such that hand items were responded to significantly 

faster than foot items (M = 771.49 and M = 836.94, respectively). The main effect for Prime was 

not significant, F(1, 27) = .91, MSE = 2743.31, p > .25, ηp
2 = .033. Importantly, there was 

significant Object x Prime interaction, F(1, 27) = 10.22, MSE = 1531.89, p = .004, ηp
2 = .28 (see 

Figure 5).  

 

 
Figure 5. Median semantic generation task RT (ms) for the hand and foot objects as a function of 
priming. Hand objects were responded to faster when preceded by the somatosensory prime. 
Error bars ±21.3. 

 

Percent error rates were less than 3.57% in each condition.  We found a significant main 

effect of Object, F(1, 27) = 6.08, MSE = 9.41, p = .020, ηp
2 = .18. The main effect for Prime was 

not significant, F(1, 27) = .94, MSE = 6.76, p = .34, ηp
2 = .034, nor was there a significant Object 

x Prime interaction, F(1, 27) = .30, MSE = 5.29, p = .59, ηp
2 = .011. The means and standard 

deviations were M = 1.90, SD = 2.79 for the Primed Hand Object condition, M = 3.57, SD = 4.70 

for the Primed Foot Object condition, M = 1.67, SD = 2.31 for the No-Prime Hand Object 

condition, and M = 2.86, SD = 3.23 for the No-Prime Foot Object condition (see Figure 6). There 

was no evidence of any significant speed-accuracy trade-offs. 
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Figure 6. Percent error for the hand and foot objects as a function of priming. There is no 
evidence of any significant speed/accuracy trade-offs. Error bars ±1.01. 

 

Planned paired t-tests on median RTs between the prime and no-prime conditions were 

conducted for each object type. Results indicated that hand items were responded to significantly 

faster when preceded by the vibratory prime (M = 754.95, SD = 102.25) than when they were not 

primed (M = 788.04, SD = 106.19), t(27) = -3.62, p = .001, ηp
2 = .33. Foot items showed no 

significant differences between the prime (M = 844.04, SD = 136.52) and no prime (M = 829.84, 

SD = 122.44) conditions, t(27) = .95, p > .25, ηp
2 = .033.  

Bayesian analysis examining priming effects in the hand items showed a Bayes factor of 

26.13 in favour of an effect. Assuming prior odds of one for the null and alternative hypotheses, 

we obtained a posterior probability of .963 in favour of the alternative hypothesis, providing 

strong evidence of an effect. The priming effects for the foot objects resulted in a Bayes factor of 

4.44 in favour of the null, and thus a posterior probability of 0.184 in favour of an effect. As well, 

the Bayes factor for the Object x Prime interaction was 9.82, resulting in a strong posterior 

probability of .908 in favour of the alternative hypothesis. 

Once again, when examining ratings for interaction familiarity, the foot objects were 

found to be interacted with significantly less than the hand objects (M  = 5.02, SD = .56 and M = 

2.37, SD = .43, respectively), t(27) = -32.59, p < .001, showing a similar pattern to the non-

graspable objects from Experiment 1. In comparing the non-graspable objects from Experiment 1 
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with the foot items in this experiment we found that, as expected, the response times to the foot 

items were significantly faster than the response times to the non-graspable items, F(1, 54) = 

25.62, MSE = 50870.04, p < .001, ηp
2 = .32. Further, Levene’s test showed significantly different 

variances between the non-graspable and foot objects, such that the foot objects had less variance 

than the non-graspable objects, F(1, 54) = 6.44, p = .014 in the Prime condition, and F(1, 54) = 

4.99, p = .030 in the No Prime condition.  

Discussion 

 Similar to Experiment 1, results from Experiment 2 show that pre-activating the 

somatosensory system has the ability to aid processing of objects with hand affordances. As the 

hand objects were shown to be processed faster when preceded by the somatosensory prime 

while foot objects showed no processing benefits, our results provide strong support that the 

conceptual representation of how one interacts with these hand objects is held, at least in part, in 

the somatosensory system. Further, as both the hand and foot objects had easily identifiable 

action affordances, but differed based on the site of action affordance, we were able to examine 

the contribution of the somatosensory system to the objects with hand affordances only. 

Importantly, the presence of an interaction between priming and object type illustrates differential 

effects between these two types of stimuli as a function of somatosensory stimulation. This 

indicates that vibratory priming of the hand does not simply serve to better alert one to the 

upcoming target (as discussed as a possible interpretation of the results of Experiment 1) and, 

instead, that it aids retrieval of semantic knowledge about how one interacts with objects. As well, 

based on the significantly different interactability ratings between the hand and the foot objects, 

this experiment also supports research that has found effects of expertise in sensorimotor 

involvement in object processing (e.g., Kiefer et al., 2007; Weisberg et al., 2007). As the hand 

objects were found to be interacted with significantly more than the foot objects and were shown 

to influenced by the somatosensory prime, this provides evidence that the extent to which an 

individual is familiar with interacting with an object influences the extent of its representations in 

the somatosensory system.  

A potential limitation of this study is, however, that it is possible that drawing attention to 

the hand (via the vibration) served to simply evoke the semantic concept of a hand, thus speeding 

responses to objects associated with the hand that was not directly related to activation of the 

somatosensory cortex. Thus, it is possible that the results of this experiment are due to simple 
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matching between the target and the prime, such that a drawing attention the hand (via the hand 

vibration) creates expectations that a hand object will occur. In order to address this question, 

Experiment 3 will examine whether there are similar matching processes found for the foot 

objects, such that drawing attention to the foot (via a foot vibratory prime) serves to enhance 

processing of the foot objects.  
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Experiment 3 

 This experiment seeks to examine the impact of a foot vibratory prime on object 

processing, in order to assess whether vibration from a modality other than the hand has the 

ability to influence object processing. As well, it seeks to examine whether the priming effects 

found in Experiments 1 and 2 may be due to matching processes, such that the vibratory prime 

creates an expectation of which target will appear (i.e., a hand object following a hand prime). To 

test this, the hand vibratory prime will be replaced with a foot vibratory prime, which will allow 

us to examine whether foot objects show a matching effect with the foot prime. 

Hypotheses 

 In this experiment, it is hypothesized that there will be no influence of the foot 

somatosensory prime on object processing and no evidence of matching effects. Specifically, the 

foot objects should not show systematically faster reaction times as a function of the foot prime, 

as these objects should not evoke strong somatosensory representations based on their primarily 

foot affordances. Further, as evidenced in Experiment 2, the foot objects lack the same degree of 

interactive experience as the hand objects, thus further supporting the idea that they should have 

minimal somatosensory representations. As such, for both the foot and hand objects, it is not 

expected that there will be any influence of the foot prime. 

Methods 

The methods and participants were the same as for Experiment 2, with the following 

exceptions. 

Procedure. In this experiment, the hand vibratory prime was replaced with a foot 

vibratory prime. 

Results 

All errors and spoils were removed prior to analysis (7.8% of the total trials). We 

conducted a 2 (Object [Hand Item, Foot Item]) x 2 (Prime [Foot Prime, No Prime]) general linear 

model ANOVA on median RTs. We found a main effect of Object, F(1, 27) = 18.25, MSE = 

10460.52, p < .001, ηp
2 = .40, such that hand items were responded to significantly faster than 

foot items (M = 781.58 and M = 864.16, respectively). The main effect for Prime was not 

significant, F(1, 27) = .19, MSE = 2178.34, p > .25, ηp
2 = .063. The Object x Prime interaction 

was also not significant, F(1, 27) = .46, MSE = 5134.00, p = .50, ηp
2 = .017 (see Figure 7).  
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Figure 7. Median semantic generation RT (ms) for the hand and foot objects as a function of foot 
priming. No significant RT differences were found between the Prime and No-Prime conditions 
for either the hand or foot objects. Error bars ±28.9 ms. 

 

Percent error rates were less than 3.57% in each condition.  There was a significant main 

effect of Object, F(1, 27) = 11.79, MSE = 6.07, p = .002, ηp
2 = .30. The main effect for Prime was 

not significant, F(1, 27) = .10, MSE = 7.66, p = .75, ηp
2 = .004, nor was there a significant Object 

x Prime interaction, F(1, 27) = .057, MSE = 5.17, p = .81, ηp
2 = .002. The means and standard 

deviations were M = 1.87, SD = 2.78 for the Primed Hand Object condition, M = 3.57, SD = 3.25 

for the Primed Foot Object condition, M = 1.80, SD = 2.84 for the No-Prime Hand Object 

condition, and M = 3.30, SD = 3.70 for the No-Prime Foot Object condition (see Figure 8). There 

was no evidence of any significant speed-accuracy trade-offs. 
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Figure 8. Percent error for the hand and foot objects as a function of foot priming. There is no 
evidence of any significant speed/accuracy trade-offs. Error bars ±0.95. 

 

Planned paired t-tests on median RTs between the prime and no-prime conditions were 

conducted for each object type. Results indicated no significant differences for the hand objects 

in the prime condition (M = 771.02, SD = 106.47) versus the no-prime condition (M = 792.14, SD 

= 142.96), t(27) = -1.61, p = .12, ηp
2 = .087. Foot items also showed no significant differences 

between the prime (M = 862.82, SD = 182.24) and no prime (M = 865.50, SD = 137.44) 

conditions, t(27) = -.14, p = .89, ηp
2 = .001.  

Bayesian analysis examining priming effects in the hand items showed a Bayes factor of 

2.06 in favour of the null. Assuming prior odds of one for the null and alternative hypotheses, we 

obtained a posterior probability of .327 in favour of the alternative hypothesis. The priming 

effects for the foot objects resulted in a Bayes factor of 6.79 in favour of the null, and thus a 

posterior probability of 0.128 in favour of an effect. As well, the Bayes factor for the Object x 

Prime interaction was 5.48 in favour of the null, resulting in a posterior probability of .15 in 

favour of the alternative hypothesis. 

The ratings for interaction familiarity are shown in Experiment 2, as participants 

performed both the hand vibration and foot vibration conditions in the same session.  

Comparison of Experiments 2 and 3 

Because the hand vibration and foot vibration experiments were performed within 

subjects, we also conducted comparisons between them. This allowed us to examine whether 
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participants were responding similarly to the objects in both of the experiments (i.e., differential 

results are not confounded by inherent differences in RT).  

Impact of experiment on object processing. To examine whether or not responses to the 

objects were similar between Experiment 2 (hand vibration) and Experiment 3 (foot vibration), 

we conducted a 2 (Experiment [Experiment 2, Experiment 3]) x 2 (Prime [Prime, No Prime]) x 2 

(Object [Hand Object, Foot Object]) general linear model ANOVA. Results showed a significant 

main effect of Object, F(1, 27) = 24.70, MSE = 9272.68, p < .001, ηp
2 = .48, such that hand items 

were responded to significantly faster than foot items (M = 762.99 and M = 853.43, respectively). 

The main effect for Prime was significant, F(1, 27) = 33.62, MSE = 3620.37, p < .001, ηp
2 = .56. 

The main effect for Experiment was not significant, F(1, 27) = 3.48, MSE = 48048.74, p = .073, 

ηp
2 = .11. There was a significant Experiment x Prime interaction, F(1, 27) = 40.88, MSE = 

1892.78, p < .001, ηp
2 = .60. The Experiment x Object interaction was not significant, F(1, 27) = 

1.19, MSE = 5416.19, p = .28, ηp
2 = .042, nor was the Object x Prime interaction, F(1, 27) = .3.21, 

MSE = 3540.84, p = .084, ηp
2 = .11. The Experiment x Prime x Object interaction was also not 

significant, F(1, 27) = 1.71, MSE = 2893.90, p = .20, ηp
2 = .059.  

Of particular interest, to investigate whether the type of prime differentially impacted 

processing of the objects, we performed a 2(Experiment [Experiment 2, Experiment 3]) x 

2(Object [Hand Object, Foot Object]) on the primed conditions only. Results showed a 

significant main effect of Object, F(1, 27) = 24.70, MSE = 9272.68, p < .001, ηp
2 = .48, such that 

hand items were responded to significantly faster than foot items (M = 762.99 and M = 853.43, 

respectively). The main effect for Experiment was not significant, F(1, 27) = .33, MSE = 

26081.19, p = .57, ηp
2 = .012. The Object x Prime interaction was also not significant, F(1, 27) 

= .011, MSE = 4799.86, p = .92, ηp
2 = .000, suggesting that regardless of the vibration location, 

both the hand and foot objects were responded to similarly in both experiments and thus that the 

nature of the prime is not responsible for the differential results found between these experiments.	
  

Discussion 

 Results from Experiment 3 provide evidence that the results from Experiment 2 did not 

arise as a function of matching effects between the prime and the object type. As participants did 

not show facilitated responses to the foot items when primed with a vibration to the foot, there is 

no evidence that simply drawing attention to the relevant modality serves to aid in object 

processing. This is an important finding, as it suggests that the somatosensory stimulation itself, 



 35 

and not other stimulus properties, is driving the facilitative effect for the hand objects. Further, 

this experiment supports the idea that somatosensory involvement is modality-specific, as 

somatosensory stimulation to the foot did not significantly influence responses to the hand 

objects, and thus the sensorimotor representation of the hand objects appears to be isolated to the 

hand modality. However, based on the obtained p-value of .12, there is a trend towards the foot 

vibration increasing response times to the hand objects, which may reflect some degree of 

interconnectivity between foot somatosensation and hand object processing. Thus, future research 

is necessary to uncover in which instances somatosensory stimulation can enhance object 

processing in order to more fully address whether somatosensory influences are modality specific 

(e.g., somatosensory stimulation to the arm or torso, which are in close proximity 

somatotopically to the hand region of SI). Regardless, these results do not provide support that 

the somatosensory priming effects for the hand objects in Experiments 1 and 2 are a result of 

matching processes between the prime and the object type. 
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CHAPTER 3 

DEPTH OF PROCESSING AND THE AUTOMATICITY OF SOMATOSENSORY 

REPRESENTATIONS 

Experiment 4 

 In the experiments reported thus far, participants have been required to rely on the action 

characteristics of objects to tap into their semantic representations. However, based on the 

controversy in the field as to whether shallow processing of objects inherently leads to 

sensorimotor involvement, it is important to also examine how the somatosensory prime may 

influence simple object naming. While research by Tucker and Ellis (1998) and Helbig et al. 

(2006; as discussed in the introduction) provided support for automatic sensorimotor simulation 

when processing pictures of objects, evidence from Bub and Masson (2010), Yu et al. (2014), 

and Cho and Proctor (2011) has contested these results. Therefore, this experiment will utilize a 

naming paradigm in order to examine whether the results found when requiring the participant to 

attend to the action related semantic representation of the object would be similar to those found 

when they are not required to retrieve this information. By making the action information 

irrelevant to the task, it would be expected that the sensorimotor activation evoked from viewing 

the two-dimensional object stimuli would be greatly diminished or, potentially, entirely absent, 

thus dampening the influence of the somatosensory prime. 

Hypotheses 

 In line with the findings of Bub and Masson (2010), Yu et al. (2014), and Cho and Proctor 

(2011), it is hypothesized that there will be no effect of somatosensory stimulation on naming for 

either of the object types. Thus, in contrast to Experiment 2, the somatosensory prime should not 

facilitate processing of the hand objects. 

Methods 

The methods were the same as for Experiment 2, with the following exceptions. 

Participants. Twenty-eight university students who spoke English as their first language 

(Mage = 19.14, 26 right-handed) participated in this study.  

Procedure. Instead of responding how they would interact with the object (Experiments 1, 

2, and 3), participants were asked to simply name the object presented on the screen as quickly 

and accurately as possible.  
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Results 

In concordance with the results reported above, we conducted a 2 (Object [Hand Item, 

Foot Item]) x 2 (Prime [Hand Prime, No Prime]) general linear model ANOVA on median RTs, 

and all errors and spoils were removed prior to analysis (9.6% of the total trials). We found a 

main effect of Object, F(1, 27) = 53.84, MSE = 3442.06, p < .001, ηp
2 = .67, such that hand items 

were responded to significantly faster than foot items (M = 605.70 and M = 687.05, respectively). 

The main effect for Prime was not significant, F(1, 27) = 2.19, MSE = 956.95, p = .15, ηp
2 = .075. 

The Object x Prime interaction was also not significant, F(1, 27) = .001, MSE = 1367.54, p = .97, 

ηp
2 = .000 (see Figure 9).  

 

 
Figure 9. Median naming RT (ms) for the hand and foot objects. No significant RT differences 
were found between the Prime and No-Prime conditions for either the hand or foot objects. Error 
bars ±16.5 ms. 

 

Percent error rates were less than 5.83% in each condition. There was a significant main 

effect of Object, F(1, 27) = 34.02, MSE = 19.92, p < .001, ηp
2 = .56. The main effect for Prime 

was not significant, F(1, 27) = .15, MSE = 12.07, p = . 70, ηp
2 = .006, nor was there a significant 

Object x Prime interaction, F(1, 27) = .003, MSE = 12.14, p = .96, ηp
2 = .000. The means and 

standard deviations were M = .88, SD = 1.81 for the Primed Hand Object condition, M = 5.83, SD 

= 6.38 for the Primed Foot Object condition, M = .65, SD = 1.42 for the No-Prime Hand Object 

condition, and M = 5.54, SD = 5.08 for the No-Prime Foot Object condition (see Figure 10). 

There was no evidence of any significant speed-accuracy trade-offs. 
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Figure 10. Percent error for the hand and foot objects as a function of hand priming. There is no 
evidence of any significant speed/accuracy trade-offs. Error bars ±1.45. 

 

Planned paired t-tests on median RTs between the prime and no-prime conditions were 

conducted for each object type. Results indicated no significant differences for the hand objects 

in the prime condition (M = 601.50, SD = 50.72) versus the no-prime condition (M = 609.89, SD 

= 61.93), t(27) = -1.17, p = .25, ηp
2 = .048. Foot items also showed no significant differences 

between the prime (M = 682.61, SD = 94.00) and no prime (M = 691.50, SD = 90.14) conditions, 

t(27) = -.83, p = .41, ηp
2 = .025.  

Bayesian analysis examining priming effects in the hand items showed a Bayes factor of 

3.58 in favour of the null. Assuming prior odds of one for the null and alternative hypotheses, we 

obtained a posterior probability of .22 in favour of the alternative hypothesis. The priming effects 

for the foot objects resulted in a Bayes factor of 4.92 in favour of the null, and thus a posterior 

probability of 0.17 in favour of an effect. As well, the Bayes factor for the Object x Prime 

interaction was 6.85 in favour of the null, resulting in a posterior probability of .13 in favour of 

the alternative hypothesis. 

Similarly to Experiments 2 and 3, when examining ratings for interaction familiarity, the 

foot objects were found to be interacted with significantly less than the hand objects (M  = 5.20, 

SD = .51 and M = 2.49, SD = .40, respectively), t(26) = -32.93, p < .001. The data of one 

participant’s ratings was lost due to a program malfunction.  
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Discussion 

 Results from this experiment suggest that simple viewing and naming of two-dimensional 

objects is not sufficient to evoke strong sensorimotor involvement, and thus no somatosensory 

priming effects. This may be due to two possible explanations. First, two-dimensional stimuli 

may not automatically recruit the sensorimotor system and, thus when action features of the 

object are not necessary for the task this system is not involved. Conversely, it may be possible 

that this type of stimulus does still necessitate sensorimotor involvement, however it is to a much 

lesser degree than during the semantic generation task.  

The results from this experiment provide interesting implications for the effect of context 

on the degree to which there is involvement of the sensorimotor system. Further, these results 

suggest that it is possible that inconsistencies in task demands of previous researchers 

experiments may contribute to differential results and, therefore, that researchers should employ a 

variety of tasks that elicit differing levels of processing to tap into the semantic representation of 

objects when attempting to investigate sensorimotor involvement. However, it is also possible 

that the variability in this task (i.e., responses to foot objects were still significantly slower than 

responses to hand objects), though greatly reduced from the above experiments, may still serve to 

diminish the power available to see an effect of the somatosensory prime. Therefore, Experiment 

5 will attempt to remediate this by rendering the object stimuli irrelevant to the task, thus 

eliminating this variability. As well, flipping the task will allow us to examine whether 

significant somatosensory priming effects can be found in the reverse direction, such that hand 

objects prime sensory detection of hand stimulation. This would be an important demonstration 

for illustrating that these objects have somatosensory representations, as it follows logically that 

if they do elicit somatosensory system activation, this should be able to influence somatosensory 

detection.  
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CHAPTER 4 

THE IMPACT OF OBJECT PRIMES ON SOMATOSENSORY DETECTION 

Experiment 5 

 This experiment seeks to provide converging evidence for a relationship between 

somatosensory involvement and the processing of hand objects by flipping the task in the earlier 

experiments. Participants were required to detect whether the hand vibration was present or 

absent after being primed by either a hand or foot object. This also serves to eliminate the 

apparent differences between responding to the hand and foot items in order to see if the objects 

have the ability to prime the somatosensory system and therefore aid in detection of the vibratory 

stimulus.  

Hypotheses 

We hypothesized that hand object primes will lead to faster ‘yes’ responses in the 

presence of a hand vibration than ‘no’ responses in the absence of a vibration, whereas foot 

object primes should not speed detection of a vibration. Further, we hypothesize that RTs will be 

fastest in the hand object prime/vibration present condition in comparison to all other conditions, 

particularly the foot object prime/vibration condition, as this would indicate that hand objects are 

affecting somatosensory detection.  

Methods 

 The methods for Experiment 5 were similar to Experiment 2, with the following 

exceptions.  

Participants. Twenty-eight university students who spoke English as their first language 

(Mage = 20.71, 25 right-handed) participated in this study.  

Procedure. In Experiment 2, presentation of either the hand or foot object (the prime) 

preceded the hand vibration (the target). The object prime was presented on the screen for the 

same duration as the vibratory prime in the previous experiments (250 ms) and was followed by 

either a hand vibration or no vibration. The same 6000 Hz tone as in Experiment 1 coincided 

presentation of the object prime. Participants were required to say ‘yes’ if they felt a vibration 

and ‘no’ if they did not feel a vibration as quickly and accurately as possible.  

Results 

 All errors and spoils were removed prior to analysis (12.9% of the total trials). We 

conducted a 2 (Object [Hand Item, Foot Item]) x 2(Vibration [Hand Vibration, No Vibration]) 
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general linear model ANOVA on median RTs. There was a significant main effect of Vibration, 

F(1, 27) = 12.62, MSE = 838.79, p = .001,  ηp
2 = .32, whereas the main effect of Object was not 

significant, F(1, 27) = .011, MSE = 680.92, p = .92, ηp
2 < .001, suggesting that, unlike 

Experiment 1, there were no inherent differences in difficulty for responding based on the 

different object categories. Importantly, there was a significant Object x Vibration interaction, 

F(1, 27) = 4.46, MSE = 537.26, p = .044, ηp
2 = .14 (see Figure 11).  

 

 
Figure 11. Median somatosensory detection RT (ms) of the hand vibration for the hand and foot 
objects. Error bars represent 95% confidence intervals (±9.85 ms); see Loftus and Masson (1994). 
 

When examining percent error rates, there was no significant main effect of Object, F(1, 

27) = 1.64, MSE = 37.28, p = .21, ηp
2 = .057, nor a main effect for Vibration, F(1, 27) = 3.36, 

MSE = 51.33, p = .078, ηp
2 = .11 The Object x Vibration interaction was not significant, F(1, 27) 

= 1.27 MSE = 30.09, p > .25, ηp
2 = .045. The means and standard deviations were M = 11.02, SD 

= 5.09 for the Hand Vibration Hand Object condition, M = 13.67, SD = 9.42 for the Hand 

Vibration Foot Object condition, M = 9.71, SD = 7.77 for the No-Vibration Hand Object 

condition, and M = 10.02, SD = 6.56 for the No-Vibration Foot Object condition (see Figure 12). 

Post-hoc t-tests indicated a potential speed-accuracy trade-off in the foot object condition, 

whereby there was a marginally significant difference between the Vibration and No-Vibration 

conditions for these objects. Specifically, participants appeared to be less accurate in the vibration 

condition than the no vibration condition, t(27) = 2.02, p = .053, ηp
2 = .13. No significant speed 
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accuracy trade-offs were present for the hand vibration hand object conditions, t(27) = .82, p 

= .42, ηp
2 = .024.  

 

 
Figure 12. Percent error for somatosensory detection as a function of object type. There appears 
to be a significant speed-accuracy trade-off for the foot objects. Error bars ±2.37. 

 

Planned paired t-tests on median RT between the hand object prime and foot object prime 

conditions were conducted for each object type. Results indicated that for the hand object primes, 

participants were significantly faster at detecting the presence of the hand vibration (M = 459.82, 

SD = 77.92) than when they were at detecting its absence (M = 488.52, SD = 81.34), t(27) = -3.65, 

p = .001, ηp
2 = .33. The foot object primes resulted in no significant differences between 

detecting the presence of the vibration (M = 469.59, SD = 74.65) versus its absence (M = 479.82, 

SD = 76.21), t(27) = -1.69, p = .10, ηp
2 = .096, however the 95% confidence intervals do indicate 

that there is a small but significant difference between these two conditions. As well, based on 

the 95% confidence intervals, the detection of a present vibration was significantly slower in the 

foot object condition than the hand object condition (however this did not reach significance 

using a paired t-test, t(27) = -1.61, p = .12, ηp
2 = .087). 

Bayesian Analyses. Bayesian analysis examining priming effects in the hand items 

showed a Bayes factor of 28.05 in favour of an effect. Assuming prior odds of one for the null 

and alternative hypotheses, we obtained a posterior probability of .97 in favour of the alternative 

hypothesis, providing strong evidence of an effect. The priming effects for the foot objects 
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resulted in a Bayes factor of 1.83 in favour of the null, and thus a posterior probability of 0.353 in 

favour of an effect. The Bayes factor for the Object x Vibration interaction was 1.09, resulting in 

a posterior probability of .53 in favour of the alternative hypothesis.  

Once again, when examining ratings for interaction familiarity, the foot objects were 

found to be interacted with significantly less than the hand objects (M  = 5.21, SD = .54 and M = 

2.52, SD = .41, respectively), t(27) = -34.25, p < .001, showing a similar pattern to Experiment 2.  

Discussion 

 Results from this experiment show a reciprocal relationship between object processing 

and the somatosensory system. Although the foot objects also showed faster ‘yes’ responses to 

the prime, this effect is most likely due to a well-known phenomena in psychological research 

that participants are generally faster at identifying that a stimulus is present than they are at 

reporting that a stimulus is absent (e.g., in object detection, Biederman, Glass, and Stacy, 1973). 

However, this bias would be apparent for both the hand and the foot objects and, thus the 

presence of the interaction becomes crucial for interpreting the results. As participants were faster 

at detecting the somatosensory prime when it was preceded by a hand object, and the degree of 

this facilitation differed significantly between the object types (as indexed by the significant 

Object x Prime interaction), it appears that the hand objects automatically evoked activation in 

the somatosensory system that subsequently facilitated detection time. Importantly, based on the 

95% confidence intervals, detection of the target when the prime was a hand object was found to 

be significantly faster than when the prime was a foot object, further supporting this 

interpretation. Finally, the foot object results also appear to be compromised by a speed accuracy 

trade-off, thus suggesting that although the participants were significantly faster at detecting the 

hand vibration when it was preceded by a foot object, they made significantly more errors. This 

was not the case with the hand object primes, further supporting our conclusions.  

 It is important to note that in this experiment, the participants were not instructed to 

imagine themselves interacting with the prime object, and thus were not explicitly asked to draw 

upon semantic action knowledge of that object. This is an interesting finding, as it suggests that 

the hand objects automatically evoked sensorimotor programs in the absence of explicit 

instructions to do so. This is interesting in comparison to the results of Experiment 4, which 

found no effect of the somatosensory prime on object naming. However, we propose two possible 

explanations to this apparent difference. First, it may be the case that the visual information is 
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more salient than the somatosensory information, and therefore the participants are more able to 

ignore the somatosensory prime (Experiment 4) compared to the visual prime. This is in 

concordance with research by Buelte et al. (2008) who found applying repetitive TMS to 

virtually lesion the anterior IPS selectively impaired trials where the participants engaged in 

visual encoding of an object followed by a tactile recognition task, but not when they engaged in 

tactile encoding of an object followed by a visual recognition task. Thus, it follows that visual 

information may be more salient than haptic information, therefore leading to less influence of 

the somatosensory cue when it precedes object processing and more influence of the object prime 

when it precedes somatosensory detection. Alternatively, it may be the case that the context of 

the task in this experiment made it favourable for the sensorimotor representations of the objects 

to the drawn upon. Specifically, it is possible that in the context of a detection task, participants 

placed more weight on the object cue in order to perform the task as quickly as possible. This 

may help to explain the trend for a speed/accuracy trade-off seen in the foot object condition, as 

participants were more likely to say ‘no’ in the presence of a hand prime (i.e., greater percent 

error) when the foot object prime was presented than any other condition, suggesting that the foot 

object may have biased the participant to report that the hand prime was not detected. Regardless, 

this experiment provides further evidence for an intrinsic relationship between processing 

manipulable objects and the somatosensory system, as well as extending the aforementioned 

results to accommodate some level of automaticity of the sensorimotor representations evoked by 

viewing the object pictures.   
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Experiment 6 

This Experiment will use a foot vibration target in place of the hand vibration target used 

in Experiment 5, in order to examine whether the nature of the object prime has the ability to aid 

sensory detection of the vibratory stimulus to the foot. Thus, this experiment is analogous to 

Experiment 3, which sought to examine whether the facilitatory effects in response to the hand 

prime were due primarily to matching processes, except with a similar procedure to Experiment 5.  

Hypotheses 

 We hypothesize that, because the benefits of somatosensory priming were exclusive to the 

hand vibration in Experiments 1 and 2, there should be no impact of object type on detection of 

the foot somatosensory prime. Therefore, we expect to find no evidence of matching effects in 

this experiment, and therefore that the object type should not differentially speed detection of the 

foot somatosensory prime. 

Methods 

The methods and participants were the same as for Experiment 5, with the following 

exceptions. 

Procedure. In this experiment, the hand vibratory prime was replaced with a foot 

vibratory prime (similar to Experiment 3).  

Results 

 All errors and spoils were removed prior to analysis (13.9% of the total trials). We 

conducted a 2 (Object [Hand Item, Foot Item]) x 2 (Vibration [Foot Vibration, No Vibration]) 

general linear model ANOVA on median RTs. There was a significant main effect of Vibration, 

F(1, 27) = 12.29, MSE = 1555.71, p = .002,  ηp
2 = .31, such that participants were faster at 

responding ‘yes’ in the presence of the vibration than responding ‘no’ in the absence of the 

vibration (M = 461.56 and M = 487.70, respectively). Similarly to Experiment 5, the main effect 

of Object was not significant, F(1, 27) = .23, MSE = 714.39, p = .64, ηp
2 = .008. Importantly 

however, unlike Experiment 5, there was no significant Object x Vibration interaction, F(1, 27) 

= .62, MSE = 655.71, p = .44, ηp
2 = .022 (see Figure 13). This indicates that the object category is 

not differentially influencing vibration detection.  
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Figure 13. Median somatosensory detection RT (ms) of the foot vibration for the hand and foot 
objects. Error bars ±13 ms. 

 

When examining percent error rates, there was a significant main effect of Vibration, F(1, 

27) = 6.74, MSE = 96.80, p = .015, ηp
2 = .20. The main effect for Object was not significant, F(1, 

27) = 1.72, MSE = 26.32, p = .20, ηp
2 = .060. The Object x Vibration interaction was not 

significant, F(1, 27) = .53, MSE = 52.26, p =.47, ηp
2 = .019. The means and standard deviations 

were M = 12.24, SD = 10.00 for the Foot Vibration Hand Object condition, M = 12.51, SD = 

10.43 for the Foot Vibration Foot Object condition, M = 6.42, SD = 5.67 for the No-Vibration 

Hand Object condition, and M = 8.69, SD = 8.05 for the No-Vibration Foot Object condition (see 

Figure 14). Based on these results, it appears that there may be a significant speed accuracy trade-

off, such that the faster ‘yes’ detection responses are compromised by increased errors. 
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Figure 14. Percent error for somatosensory detection as a function of object type. There appears 
to significant speed accuracy trade offs in vibration detection for both object types. Error bars 
±2.89. 

 

Planned paired t-tests between the vibration and no-vibration conditions were conducted 

for each object type. Results indicated that hand object primes led to significantly faster detection 

of the vibratory prime (M = 464.68, SD = 75.61) than reporting the vibration’s absence (M = 

487.00, SD = 62.90), t(27) = -2.63, p = .014, ηp
2 = .20. Foot object primes also showed significant 

differences between detecting the presence of the vibration (M = 458.45, SD = 72.31) versus 

detecting its absence (M = 488.39, SD = 72.14), t(27) = -3.24, p = .003, ηp
2 = .28.  

Bayesian Analyses. Bayesian analysis examining priming effects in the hand items 

showed a Bayes factor of 2.89 in favour of an effect. Assuming prior odds of one for the null and 

alternative hypotheses, we obtained a posterior probability of .743 in favour of the alternative 

hypothesis. The priming effect for the foot objects resulted in a Bayes factor of 10.71 in favour of 

the alternative hypothesis, and thus a posterior probability of 0.915 in favour of an effect. The 

Bayes factor for the Object x Vibration interaction was 5.08 in favour of the null, resulting in a 

posterior probability of .164 in favour of the alternative hypothesis. Ratings for interaction 

familiarity were the same as Experiment 5.  

Discussion 

 The results from this experiment serve to provide a more comprehensive picture of the 

impact of object processing on somatosensory detection. Based on the results of Experiments 1 
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and 2, we expected that the relationship between object processing and the somatosensory system 

was exclusive to hand objects and hand vibration, which is supported by the findings of this 

experiment. As the priming effects from the hand object primes were not shown to vary from the 

priming effects from the foot object primes, we have found no evidence to suggest that the nature 

of the object prime led to differentially faster foot vibration detection. Further, these results 

provide evidence that the pattern found in Experiment 5 is (similarly to Experiment 2) not due to 

matching processes between the object prime and the vibration target, as both the hand and foot 

objects showed a similar pattern of results. Overall, participants were significantly faster at 

detecting the prime when it was present as opposed to stating it was absent (congruent with the 

results of Experiment 5). However, this did not vary differentially based on the nature of the 

object prime (as indicated by the lack of a significant Object x Prime interaction) and thus the 

object prime did not influence somatosensory processing. As well, there was a significant speed-

accuracy trade-off for target detection regardless of the object type, whereby although 

participants were faster at indicating that they detected the vibration, they were also less accurate. 

Overall, these results support our interpretation of the findings from Experiment 5 being due to 

an intrinsic relationship between the somatosensory system and hand object processing, rather 

than simple matching processes. 
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CHAPTER 5 

GENERAL DISCUSSION 

This series of experiments provides support for the idea that the conceptual 

representations of objects are in part encompassed in the somatosensory system, thus supporting 

theories of embodied cognition. Taken together, results from Experiments 1 and 2 provide direct 

evidence that at least part of the semantic representation of graspable objects involves the 

somatosensory system. As processing benefits were found for hand objects when the 

somatosensory system was primed, we have shown that these two processes share at least some 

underlying neural resources in the sensorimotor system. In contrast, the non-graspable 

(Experiment 1) and foot objects (Experiment 2) did not show processing benefits as a result of 

the prime, suggesting that the representation of these objects is not held within the sensorimotor 

areas associated with the hand. Importantly, based on the presence of the 6000 Hz tone at the 

onset of each of the trials, our results cannot be attributed to alerting effects, such that faster RTs 

in the vibration condition can be attributed to decreased temporal uncertainty (Callejas et al., 

2005), which would lead to larger cuing effects in the faster hand object condition than the 

slower foot object condition. 

Further, Experiment 3 provides evidence that these priming effects cannot be attributed to 

semantic matching, such that drawing attention to the hand aids processing of hand related 

objects, as this effect did not arise with the foot objects when using a foot prime. This suggests 

that the effects from Experiments 1 and 2 were due to the somatosensory nature of the prime, and 

not simply the prime itself. This experiment also suggests that general somatosensory activation 

(in this case, via the foot prime) is not sufficient to influence object processing, as the hand 

objects showed no processing benefits in the presence of the foot prime, and thus that conceptual 

representations have domain specific sensorimotor activation. Further, based on the ratings of 

interaction familiarity, it appears that prior experience with an object influences whether or not 

the conceptual representation of the object will be held in the sensorimotor system (in 

concordance with Kiefer et al., 2007; Weisberg et al., 2007; James et al., 2002), as the foot 

objects were shown to be interacted with significantly less than the hand objects. Thus, results 

from Experiments 1 to 3 support the conclusion that the somatosensory system has the ability to 

influence object processing in a way that is dependent upon prior action experience with the 

object. 
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The evidence provided from Experiment 4 has important implications for evaluating the 

sensorimotor involvement automatically evoked upon presentation of picture of an object. If 

simply viewing an object relies on the same neural mechanisms as those employed when 

performing the semantic generation task in Experiments 1 and 2, we would have expected to see 

a similar pattern of results in naming. This was not the case, however, as the somatosensory 

prime was not shown to impact object processing when participants were not required to access 

the action characteristics of the object. Thus, this experiment provides evidence that the semantic 

representation of objects can be accessed in more than one way, with different forms of access 

leading to differential involvement of the sensorimotor system (see also Borowsky & Masson, 

1996 for an additional example where naming was not as effective at eliciting semantic effects 

compared to other tasks). It is important to note that although no effects of the somatosensory 

prime were found in this experiment, this does not necessarily indicate that there is no automatic 

sensorimotor activation. Indeed, the results from Experiment 5 provide evidence that there is 

some degree of automatic somatosensory involvement during object processing, as mere 

presentation of the hand object primes led to differentially faster detection of the somatosensory 

stimulus. In addition, the findings from this experiment further corroborate the findings from 

Experiments 1 and 2, providing converging evidence of a reciprocal relationship between the 

somatosensory system and the representation of manipulable objects. Finally, Experiment 6 

examined how object processing influenced foot vibration detection, finding that somatosensory 

detection did not vary differentially as a function of the type of object prime. This provides 

further support that the reciprocal relationship between somatosensory and object processing is 

constrained to hand items and hand vibration. As well, the results from Experiment 6 showed that 

the results found in Experiment 5 were once again not due to matching effects between the prime 

and the target and, instead, that the manipulable nature of the object prime influenced 

somatosensory detection. Overall, this series of experiments serves to provide insight into the 

complex relationship between object processing and the somatosensory system. Implications of 

these findings for theories of embodied cognition will now be discussed.  

Implications for Embodied Cognition  

To begin, these results support theories of embodied cognition that posit that some, but 

not all, of the conceptual representation of objects are held in the sensorimotor systems 

associated with obtaining semantic knowledge of that object. This is in concordance with the 
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theories of Barsalou (2008) and Gallese and Lakoff (2005), which assert that semantic 

representations arise as partial simulations of the perceptual and motor information used in 

encoding. In addition, these results are in support of studies that have found a functional role of 

the sensorimotor system in object processing (e.g., Witt et al., 2010; Yee et al., 2013), as well as 

studies that have found differential sensorimotor involvement as a function of motor experience 

(e.g., Kiefer et al., 2007; Weisberg et al., 2007). Similarly to Witt et al. (2010), activation of the 

sensorimotor system (in this case, the somatosensory system) had the ability to influence object 

processing. While their study showed interference between naming manipulable objects while 

engaging in a motor task (indicating that processing the object required some of the same neural 

resources as performing the motor task), our results show that priming the somatosensory system 

facilitates processing. This is similar to the results obtained by Yee et al. (2013), who showed 

that haptic exploration of an object had the ability to facilitate the identification of degraded 

pictures of objects.  

It is important to note that based on the nature of our task (which sought to maximize 

personally-relevant sensorimotor involvement) we are not arguing that viewing of pictures of 

objects inherently leads to strong sensorimotor system involvement (congruent with the findings 

of Bub & Masson, 2010 and Yu et al., 2014, who failed to replicate the results of Tucker & Ellis, 

1998 and of Cant et al., 2005, who failed to replicate the findings of Craighero et al., 1996; see 

also Mahon & Caramazza, 2008, who purport that sensorimotor involvement is an automatic by-

product of perception). Instead, we suggest that contextual and top-down processing cues can 

influence the degree of motor and sensory involvement (a conclusion that is supported by 

research examining embodiment of words; see Tomasino & Rumiati, 2013 for a review) and, 

therefore, that by having participants rely on their own subjective experience with a given object, 

maximal recruitment of sensorimotor areas would be an effective, top-down processing strategy. 

However, results from Experiment 5 provide evidence of at least some level of automatic 

somatosensory system involvement, as the hand objects were able to prime the somatosensory 

system in the absence of specific instructions to process the object. This has important 

implications for research investigating embodied cognition, as it suggests that some tasks are not 

optimal for examining the extent of sensorimotor system involvement. If the representation of an 

object can be accessed in a variety of ways, it becomes pertinent to understand the conditions by 

which embodiment can be most effectively assessed. Therefore, our research shows that semantic 
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generation is a valuable task that may be more sensitive to examining embodiment effects than 

standard naming paradigms, opening a new avenue of exploration to potentially subtle 

sensorimotor effects.  

In line with this, our research also provides evidence that embodiment effects arise 

primarily as a result of mental simulation. As the semantic generation task used in Experiments 1 

to 3 encouraged participants to draw upon their own action knowledge of how to interact with an 

object, we have optimized the likelihood that mental simulation will take place when processing 

the picture of an object. Thus, it can be inferred that because only the hand objects were 

influenced by the somatosensory prime, embodiment effects arise as a function of engaging in 

mental imagery with familiar objects. Further, the semantic generation task also maximized the 

probability that the participant would engage in kinesthetic mental imagery, whereby individuals 

imagine themselves performing the action from a first person perspective. This is important, as 

Stinear, Byblow, Steyvens, Levin, and Swinnen (2006) found that only this type of motor 

imagery modulated corticomotor excitability. As well, Ruby and Decety (2003) found that only 

kinesthetic motor imagery led to activation in the left IPL and the left SI (important areas in the 

human mirror neuron system). This provides further evidence that the task demands in these 

experiments were optimal for maximizing the amount of sensorimotor involvement elicited, thus 

allowing us to examine the extent to which action simulation and the somatosensory system 

interact. 

Perhaps most importantly, our research draws attention to the relatively neglected 

contribution of touch to embodied cognition, which has been overshadowed by examinations of 

motor influences on object processing. Thus, this research begins to provide a more 

comprehensive picture of the nature of sensorimotor involvement in conceptual representation by 

elucidating the role of the somatosensory system during object processing in isolation of overt 

movements, such that objects that we have experience with are represented more strongly not 

only in the motor system (e.g., Kiefer et al., 2007), but also in the somatosensory system. As 

previous research has proposed convergence of information from all modalities to form 

conceptual representations (see Patterson, Nestor, and Rogers, 2007 for a review), our research 

provides bi-directional evidence for this claim in regards to the convergence of somatosensory 

information and object representation. This is in concordance with the research of Connell and 

Lynott (2010) and Ackerman et al. (2010) who have also shed valuable light on how sensory 
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contributions influence conceptual processing (in the domains of word processing and social 

judgments and decision making, respectively). Thus, in a broader context, our research supports 

theories that propose integrated and distributed representation of concepts throughout the mind, 

such that concepts consist of unified information from different modalities (see Patterson et al., 

2007; in this case, the somatosensory system).  

Implications for the Human Mirror Neuron System 

 This research also has important implications for extending our understanding of the 

human mirror neuron system. It is clear that the human mirror neuron system is undoubtedly 

more complex than the primate mirror neuron system, and while our understanding of this system 

in primates is quite comprehensive, there is still much to be learned about the nature of the mirror 

neuron system in humans. Neuroimaging research has thus far provided compelling evidence that, 

similarly to the monkey mirror system, the human motor system has mirror properties, as 

evidenced by the work of Cross et al. (2013) who, as discussed in the introduction, showed using 

fMRI prefrontal and inferior frontal activation in an imitation control paradigm. Similarly, Sartori 

et al. (2013) showed that the primary motor cortex also has mirror properties, as invoking 

reversible lesions to this area had the ability to modulate activity of the corticospinal tract in 

response to action observation. Further, this has been extended to the somatosensory system, as 

evidenced by the research of Avikainen et al. (2002), Hernandez et al. (2014), and Bisio et al. 

(2015), who all showed that the somatosensory system is involved in processing action 

information. Therefore, it may be interesting to examine whether there are a subset of mirror 

neurons that are activated both to somatosensation as well as motor observation, which would 

provide evidence of somatosensory mirroring. While the above research begins to shed light on 

how actions are represented in sensorimotor regions, as well as highlights the similarities 

between primate and human mirror systems, it does not address how conceptual representation 

may manifest itself in the mirror neuron system.  

Ideally, examination of the mirror neuron system in humans would be investigated using 

electrophysiological recording (similar to primate models), however this currently cannot be 

performed in normal populations. Some recent studies have used clinical populations undergoing 

surgery to examine the mirror neuron system, specifically individuals undergoing surgery for 

intractable epilepsy. For example, Mukamel, Ekstrom, Kaplan, Iacoboni, and Fried (2010) used 

single neuron recording of the medial temporal and medial frontal cortex and found neurons that 
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were sensitive to both motor execution and observation. Similarly, Babiloni et al. (2016) used 

electrocorticography (in which an electrode grid is placed directly upon the cortex during brain 

surgery) to record brain activity of the primary somatosensory, primary motor, prefrontal, and 

premotor cortex of drug-resistant epileptic patients while the patients either executed or observed 

a movement. Their results found support for the existence of a human mirror neuron system, and 

that different regions contribute differentially during motor execution and observation, in order to 

allow for dissociation of ‘self’ versus ‘other’ actions. Because of the limited ability to perform 

electrophysiological recording of mirror neurons in humans, behavioural and neuroimaging 

studies provide invaluable information about the nature of action understanding and conceptual 

representation. This is especially important in regards to understanding how objects are 

represented in the mirror neuron system, as primates do not have the same understanding of the 

causal influence of an object for achieving a specific goal. Indeed, while primates appear to have 

the preliminary neural structures to integrate objects into the mirror neuron system (i.e., canonical 

and canonical-mirror neurons), the representation of objects in the primate mirror neuron system 

is highly dependent upon experience with the object and quite transient. Further, this does not 

extend to objects presented in extrapersonal space (Bonini et al., 2014), and presumably pictures 

of objects.  

In light of this, the research presented in this thesis begins to shed light on the issue of 

whether pictures of objects are represented in the mirror neuron system- a phenomenon that, as of 

yet, has not been investigated using electrocorticography. Based on the results of Experiments 1, 

2, and 5, we have shown that pictures of objects appear to initiate at least some level of action 

simulation, as evidenced by the somatosensory priming effects in Experiments 1 and 2, and more 

compellingly by the object priming effects in Experiment 5. Without direct instructions to do so, 

it appears that viewing the object picture automatically activated the somatosensory system in 

such a way that facilitated detection of the vibratory stimulus. As the somatosensory system has 

been shown to be a part of the mirror neuron system in humans (both independently and through 

its extensive connectivity with the motor cortex; Avikainen et al., 2002; Hernandez et al., 2014; 

Bisio et al., 2015), these priming effects suggest that presentation of picture of objects that have 

familiar action affordances can evoke mirror neuron system involvement. Thus, this research may 

serve to highlight some of the differences in complexity between the primate and human mirror 

system. Specifically, while both primates and humans have been shown to have canonical and 
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canonical mirror neurons that are active in response to three-dimensional objects presented in 

peripersonal space (e.g., Murata et al., 1997 and Grèzes et al., 2003, respectively), humans may 

also have a similar subtype of neurons that respond to the presentation of two-dimensional 

pictures of objects. Further, it is possible that this may be the mechanism by which the conceptual 

representation of objects becomes embodied, however future research is needed to explore this 

possibility.  

Limitations and Future Directions 

A particularly interesting avenue for exploration would be to have participants perform 

the same tasks using novel objects in a training paradigm. Similar to Kiefer et al. (2007), 

participants could be required to learn how to interact with novel, manipulable objects over a 

training period, whereby half of the participants had active motor experience interacting with it, 

while the other half have an equivalent amount of experience observing another individual 

interacting with it (this manipulation could also be performed within subjects, similar to our 

experiments). This would help to alleviate one of the limitations found in Experiments 1 to 4 

such that there was significantly less variability in responses to the hand objects than to the non-

graspable (Experiment 1) and foot objects (Experiments 2 to 4). This point is exemplified by a 

comparison of the results of Experiment 1 to Experiment 2, whereby the overall means show a 

similar pattern of results, however the critical interaction is not significant in Experiment 1. By 

reducing the variability in responding by introducing the foot objects, our task became much 

more sensitive to observing somatosensory priming interaction effects. While the substitution of 

the foot objects for the non-graspable objects significantly reduced response variability, there 

were still variability differences found between the foot and the hand items, most likely due to 

the participants’ decreased familiarity with these objects. Thus, a training paradigm would serve 

to equate how familiar an individual is with how to interact with a specific object (either through 

observation or overt action), whereby the only difference between the groups would be action 

experience with the object. We predict that somatosensory priming effects would be much larger 

for the objects that participants had overt motor experience with in comparison to the objects that 

they did not interact with. By implementing a training paradigm, this task may become more 

sensitive to somatosensory priming effects, perhaps making it more sensitive in the naming 

condition to picking up somatosensory priming effects.  
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As well, in order to further test the conclusions drawn from this research, neuroimaging 

using these tasks is imperative. Currently, we are adapting these tasks for the fMRI environment 

in order to determine the locus of somatosensory priming effects on object processing. We 

predict that these two processes may overlap in the posterior parietal cortex, specifically the AIP 

and the anterior SMG, as these areas have been shown to be essential in tool processing (Orban & 

Caruana, 2014; Culham et al., 2004) and are in close proximity to the somatosensory cortex 

associated with the hand (see Figure 1). However, as stated above, these processes occur in a 

network of related brain regions, and thus electrocorticography may provide the most temporally 

and anatomically accurate picture of how and where these two processes may be interacting. 

Further, TMS may also provide valuable insight into these processes, as it allows for the 

possibility of selectively stimulating or inhibiting the hand somatosensory cortex. We would 

predict based on our results that when the somatosensory cortex is stimulated, hand object 

processing in the semantic generation task should be facilitated. Conversely, when the 

somatosensory cortex is inhibited, impairments in semantic generation would occur. This 

paradigm would be nearly analogous with the research presented in this thesis (with the 

somatosensory prime being replaced with the TMS pulse), and thus would provide important 

converging evidence for the presented effects. Thus, examining the neural mechanisms that 

underlie the results found in these experiments will provide valuable information into the nature 

of embodiment, as well as examining the possibility that the mirror neuron system is the 

mechanism for embodiment. 

Another interesting future direction would be to study the implications of somatosensory 

stimulation for conceptual development and learning. The findings of Witt et al. (2010), who 

found interference between motor execution and conceptual processing of objects with congruent 

motor affordances, would suggest that motor system activation has the ability to impair 

conceptual processing, and thus interfere with conceptual development. However, throughout our 

experiments (as well as through evidence from Yee et al., 2013) it appears that somatosensory 

stimulation facilitates, rather than interferes with, conceptual processing. Therefore, it may be 

possible to integrate somatosensory stimulation during the acquisition of new concepts, in order 

to strengthen their subsequent representations. This would have important implications for 

learning, as it would provide a simple and cost effective way of integrating multisensory 
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information during the learning process, leading to more efficient semantic knowledge 

acquisition. 

In line with this, another prospective application for this research is the potential for 

alleviating some of the perceptual deficits shown in those with autism. Dysfunction of the mirror 

neuron system has been proposed to play a critical role in the core behavioural deficits of autism 

spectrum disorder (see Oberman & Ramachandran, 2015). Although the majority of the research 

on perceptual deficits in autism has focused on face processing (see Golarai, Grill-Spector, & 

Reiss, 2008 for a review), previous research has also shown that these individuals have additional 

deficits in general object processing. For example, Blair, Frith, Smith, Abell, and Cipolotti (2002) 

found evidence for selective recognition memory impairments for objects that are capable of self-

propelled motion (such as motorbikes and cats) relative to age-matched controls. Further, 

Behrmann et al. (2006) showed that individuals with autism were slower at discriminating 

between objects than controls (see also Behrmann, Thomas, & Humphreys, 2006 for a review). 

While more research is still necessary to determine the types of object stimuli that show the most 

impaired processing (as the object stimuli used in the aforementioned studies was quite limited), 

the possibility of strengthening conceptual representations using somatosensory stimulation 

during a training paradigm may serve to diminish some of these object-specific deficits.   

Further, it may be possible to couple somatosensory stimulation with semantic generation 

of motor imagery in order to strengthen not only conceptual representation, but also aid in skill 

development and, potentially, rehabilitation. Somatosensory input from the environment is 

essential for motor learning and accurate motor task performance, based on the feedback that it 

provides to the motor system (Gentilucci, Toni, Daprati, & Gangitano, 1997; Rosenkranz & 

Rothwell, 2012; Pavlides, Miyashita, & Asanuma, 1993). Thus, it has been shown that reduced 

somatosensory function leads to decreased motor function (Rothwell et al., 1982), as well as 

disrupts recovery of movement after a stroke as occurred (Nudo, Friel, & Delia, 2000). In line 

with this, Ekstrand et al. (2016) provided evidence that integrating somatosensory stimulation 

into pre-surgical planning can improve surgical outcomes by helping to avoid disrupting 

somatosensory function. Interestingly, Rosenkranz and Rothwell (2012) showed that when 

participants performed a vibrotactile detection task (during which the participant was required to 

report when they detected a change in vibration frequency or the presence of a cutaneous 

stimulus), the somatosensory priming from this task increased plasticity of MC when they 
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engaged in subsequent motor execution. Thus, there is an intrinsic relationship between the 

somatosensory and motor systems such that the somatosensory system has the ability to influence 

the functioning and plasticity of the motor system. 

In concordance with this, and similar to the semantic generation task used in these 

experiments, engaging in motor imagery has been shown to be a valuable tool in developing 

motor skills independent of actual motor execution. For example, Zijdewind, Toering, Bessem, 

Van Der Laan, and Diercks (2003) found that seven weeks of motor imagery training (whereby 

the participant imagined themselves repeatedly pointing their toe) had the ability increase the 

force exerted by the ankle muscles involved in performing this action in comparison to groups 

that did not engage in motor imagery. Similarly, research with clinical populations, such as 

individuals with stroke, spinal cord injury, and Parkinson’s disease, has shown that engaging in 

motor imagery has the ability to aid in motor rehabilitation (see Stoykov & Madhavan, 2015 for a 

review). Further, research by Veldman et al. (2015) showed that modality specific somatosensory 

electrical stimulation has the ability to increase motor performance in normal populations of both 

the contralateral and ipsilateral limb in the presence of actual motor execution, as well as 

independently. Thus, our research has important implications for providing an effective and cost 

efficient paradigm for motor skill development in both normal and clinical populations through a 

combination of general somatosensory stimulation (via the vibratory stimulus) and semantic 

generation. This may be especially useful for patients with limited limb mobility who show 

impaired ability to engage in overt motor movements, as it may provide an alternative means of 

strengthening connectivity between the somatosensory and motor systems, in order to maximize 

motor recovery.  

Our results may also have particularly interesting implications for examining individuals 

with object apraxia (i.e., individuals with impairments in their knowledge of how to interact with 

particular objects; see Stamenova, Roy, & Black, 2010). The existence of object apraxia has been 

presented as evidence that concepts are distributed across the sensory and motor domains, as this 

disorder results in a selective deficit in understanding the action semantics of objects. Of 

particular relevance, previous research has indicated that individuals with apraxia show 

impairments in drawing upon manipulation-based action information about objects (Lee, Mirman, 

& Buxbaum, 2014). When participants were asked to name an object in a visual display, apraxics 

showed abnormalities in the automatic activation of action information related to an object (in the 
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form of delayed responses). Based on this, in our task it would be expected that individuals with 

apraxia would most likely show significant impairments in the semantic generation task in 

comparison to control participants, as retrieval of this action information would presumably be 

impaired. What is less clear however, is how the somatosensory prime may influence object 

processing in individuals with apraxia. As described above, the somatosensory system does not 

appear to interact with object processing in the same way that the motor system does, and thus it 

is possible that somatosensory stimulation may facilitate semantic generation performance of 

individuals with apraxia in a similar manner to which it facilitates performance in the participants 

in our study. This would suggest that while action representations of objects may be impaired in 

apraxia, somatosensory representations are not. Although this is currently speculative, research 

focused on how the somatosensory system is involved in conceptual processing in individuals 

with object apraxia will help to shed valuable light on the nature of semantic knowledge in both 

clinical and normal populations.    

Conclusions 

To summarize, the importance of the present research is threefold. First, it extends 

theories of embodied cognition to accommodate somatosensory influences, such that the 

conceptual representations of objects that we interact with become integrated into not only the 

motor system, but also the somatosensory system. In line with this, we propose that the 

somatosensory priming effects shown in these experiments provide evidence of mirroring 

processes for pictures, suggesting that the mechanism by which concepts become embodied is 

based in the mirror system, thus providing a link between the mirror neuron system and the 

embodiment of conceptual representations. Second, in light of this, it expands our understanding 

of the human mirror system by providing evidence that picture processing (particularly semantic 

level processing) may also evoke mirror system involvement, as the somatosensory system has 

been shown to play an integral role in the mirror system (e.g., Avikainen et al., 2002) and object 

processing and somatosensory stimulation were shown here to interact. Third, and more broadly, 

this research elucidates the importance of research examining how touch and somatosensation 

contribute to cognition, which may have important applications for developing learning 

paradigms as well as exploring how somatosensation may be integrated with semantic generation 

tasks to aid in motor skill development and rehabilitation.  
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In conclusion, our results provide corroborative evidence that hand objects have 

sensorimotor representations that differ as a function of action experience, supporting theories of 

semantic representation that highlight convergence of modality-specific information, as well as 

theories purporting sensorimotor involvement in conceptual representations. Further, we also 

provide the first demonstration of a purely somatosensory influence on semantic processing of 

graspable objects, as well as the reciprocal relationship of object processing impacting 

somatosensory detection. It is important to note that while this evidence suggests that the 

somatosensory system is a part of object representation, that is not to say that the somatosensory 

system houses the only representation of that concept. In fact, our results further serve to 

highlight the complexities of object representation in the semantic system. By showing that the 

somatosensory system influences sensorimotor involvement in object processing and vice versa, 

we have provided a richer understanding of how objects are represented within our semantic 

system in such a way that accommodates somatosensory influences. We hope that this research 

will serve as the impetus for future experiments that continue to explore the characteristics and 

limits of somatosensory priming, as well as the contributions of other sensory modalities to 

object representation, in order to broaden our understanding of the mechanisms that underlie 

conceptual processing.  

  



 61 

References 

Ackerman, J. M., Nocera, C. C., & Bargh, J. A. (2010). Incidental haptic sensations influence 

social judgments and decisions. Science, 25, 1712-1715. 

Aglioti, S., Smania, N., Manfredi, M., & Berlucchi, G. (1996). Disownership of left hand and 

objects related to it in a patient with right brain damage. Neuroreport, 8, 293-296.  

Avenanti, A., Candidi, M., & Urgesi, C. (2013). Vicarious motor activation during action 

perception: Beyond correlational evidence. Frontiers in Human Neuroscience, 7, 185. 

Avikainen, S., Forss, N., & Hari, R. (2002). Modulated activation of the human SI and SII 

cortices during observation of hand actions. NeuroImage, 15, 640-646.  

Babiloni, C., Del Percio, C., Vecchio, F., Sebastiano, F., Di Gennaro, G., Quarato, P. P., … 

Mirabella, G. (2016). Alpha, beta and gamma electrocorticographic rhythms in 

somatosensory, motor, premotor and prefrontal cortical areas differ in movement 

execution and observation in humans. Clinical Neurophysiology, 127, 641-654. 

Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617-645.  

Barsalou, L. W., Simmons, W. K., Barbey, A. K., & Wilson, C. D. (2003). Grounding conceptual 

knowledge in modality-specific systems. Trends in Cognitive Sciences, 7(2), 84-91.  

Behrmann, M., Avidan, G., Leonard, G. L., Kimchi, R., Luna, B., Humphreys, K., & Minshew, N. 

(2006). Configural processing in autism and its relationship to face processing. 

Neuropsychologia, 44, 110-129.  

Behrmann, M., Thomas, C., & Humphreys, K. (2006). Seeing it differently: Visual processing in 

autism. Trends in Cognitive Sciences, 10(6), 258-264. 

Biederman, I., Glass, A. L., & Stacy, E. W. (1973). Searching for objects in real-world scenes. 

Journal of Experimental Psychology, 1, 22-27.  

Bisio, A., Avanzino, L., Gueugneau, N., Pozzo, T., Ruggeri, P., & Bove, M. (2015). Observing 

and perceiving: A combined approach to induce plasticity in human motor cortex. 

Clinical Neurophysiology, 126, 1212-1220. 

Blair, R. J. R., Frith, U., Smith, N., Abell, F., & Cipolotti, L. (2001). Fractionation of visual 

memory: Agency detection and its impairment in autism. Neuropsychologia, 40, 108-118. 

Bonini, L., Maranesi, M., Livi, A., Fogassi, L., & Rizzolatti, G. (2014). Space-dependent 

representation of objects and other’s action in monkey ventral premotor grasping neurons. 

Journal of Neuroscience, 34, 4108-4119.  



 62 

Boronat, C. B., Buxbaum, L. J., Coslett, H. B., Tang, K., Saffran, E. M., Kimberg, D. Y., & Detre, 

J. A. (2004). Distinctions between manipulation and function knowledge of objects: 

Evidence from functional magnetic resonance imaging. Cognitive Brain Research, 23, 

361-373. 

Borowsky, R., Esopenko, C., Cummine, J., & Sarty, G. E. (2007). Neural representations of 

visual words and object: A functional MRI study on the modularity of reading and object 

processing.  Brain Topography, 20(2), 89-96.  

Borowsky, R., Loehr, J., Friesen, C. K., Kraushaar, G., Kingstone, A., & Sarty, G. (2005). 

Modularity and intersection of “what”, “where” and “how” processing of visual stimuli: 

A new method of fMRI localization. Brain Topography, 18(2), 67-75.  

Borowsky, R., & Masson, M. E. J. (1996). Semantic ambiguity effects in word identification. 

Journal of Experimental Psychology: Learning, Memory, and Cognition, 22, 63-85. 

Bowers, D., & Heilman, K. M. (1980). Pseudoneglect: Effects of hemispace on a tactile line 

bisection task. Neuropsychologia, 18, 491-498. 

Bub, D. N., & Masson, M. E. J. (2010). Grasping beer mugs: On the dynamics of alignment 

effects induced by handled objects. Journal of Experimental Psychology: Human 

Perception and Performance, 36(2), 341-358.  

Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H., & Rizzolatti, G. (2004). 

Neural circuits underlying imitation learning of hand actions: An event-related fMRI 

study. Neuron, 42, 323-334.  

Buelte, D., Meister, I. G., Staedtgen, M., Dambeck, N., Sparing, R., Grefkes, C., & Boroojerdi, B. 

(2008). The role of the anterior intraparietal sulcus in crossmodal processing of object 

features in humans: An rTMS study. Brain Research, 1217, 110-118. 

Caggiano, V., Fogassi, L., Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A., et al. (2011). 

View-based encoding of actions in mirror neurons of area F5 in macaque premotor cortex.  

Current Biology, 21, 144-148.  

Callejas, A., Lupiàñez, J., Jesús Funes, M., & Tudela, P. (2005). Modulations among the alerting, 

orienting and executive control networks. Experimental Brain Research, 167, 27-37. 

Cant, J. S., Westwood, D. A., Valyear, K. F., & Goodale, M. A. (2005). No evidence for 

visuomotor priming in a visually guided action task. Neuropsychologia, 43, 216-226. 



 63 

Cattaneo, L., & Rizzolatti, G. (2009). The mirror neuron system. Neurological Review. 66(5), 

557-560. 

Cattaneo, L., Sandrini, M., & Schwarzbach, J. (2010). State-dependent TMS reveals hierarchical 

representation of observed acts in the temporal, parietal, and premotor cortices. Cerebral 

Cortex, 20, 2252-2258. 

Cerri, G., Cabinio, M., Blasi, V., Borroni, P., Iadanza, A., Fava, E., … Bello, L. (2014). The 

mirror neuron system and the strange case of Broca’s area. Human Brain Mapping, 36(3), 

1010-1027. 

Chao, L. L., & Martin, A. (2000). Representation of manipulable man-made objects in the dorsal 

stream. NeuroImage, 12, 478-484.  

Cho, D., & Proctor, R. W. (2011). Correspondence effects for objects with opposing left and right 

protrusions. Journal of Experimental Psychology, 37(3), 737-739.  

Connell, L., & Lynott, D. (2010). Look but don’t touch: Tactile disadvantage in processing 

modality-specific words. Cognition, 115, 1-9. 

Craighero, L., Fadiga, L., Umiltà, C. A., & Rizzolatti, G. (1996). Evidence for visuomotor 

priming effect. NeuroReport, 8, 347-349.  

Cross, K.A., Torrisi, S., Losin, E. A., & Iacoboni, M. (2013). Controlling automatic imitative 

tendencies: Interactions between mirror neuron and cognitive control systems. 

NeuroImage, 83, 493-504. 

Culham, J. C., Valyear, K. F., & Stiglick, A. J. (2004). fMRI activation in grasp-related regions 

during naming of tools and other graspable objects. Journal of Vision, 4(8), 410.  

di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding 

motor events, a neurophysiological study. Experimental Brain Research, 91, 176-180.  

Durand, J. B., Peeters, R., Norman, J. F., Todd, J. T., & Orban, G. A. (2009). Parietal regions 

processing visual 3D shape extracted from disparity. NeuroImage, 46, 1114-1126. 

Ekstrand, C. L., Mickleborough, M. J. S., Fourney, D. R., Gould, L. A., Lorentz, E. J., Ellchuk, 

T., & Borowsky, R. W. (2016). Pre-surgical integration of fMRI and DTI of the 

sensorimotor system in transcortical research of a high-grade insular astrocytoma. 

Frontiers in Integrative Neuroscience, 10, 15.  



 64 

Esopenko, C., Gould, L., Cummine, J., Sarty, G. E., Kuhlmann, N., & Borowsky, R. (2012). A 

neuroanatomical examination of embodied cognition: Semantic generation to action-

related stimuli. Frontiers in Human Neuroscience, 6(84). 

Ferrari, P. F., Rozzi, L., & Fogassi, L. (2005). Mirror neurons responding to observation of 

actions made with tools in monkey ventral premotor cortex. Journal of Cognitive 

Neuroscience, 17, 212-226.   

Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal 

lobe: From action organization to intention understanding. Science, 308(5722), 662-667. 

Fourkas, A. D., Bonavolontà, V., Avenanti, A., & Aglioti, S. M. (2008). Kinesthetic imagery and 

tool-specific modulation of corticospinal representations in expert tennis players. 

Cerebral Cortex, 18(10), 2382-2390.  

Gallace, A., & Spence, C. (2010). The science of interpersonal touch: An overview. 

Neuroscience and Biobehavioral Reviews, 34, 246-259.  

Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in 

conceptual knowledge. Cognitive Neuropsychology, 22, 455-479.  

Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor 

cortex. Brain, 119, 593-609.  

Gentilucci, M., Toni, I., Daprati, E., & Gangitano, M. (1997). Tactile input of the hand and the 

control of reaching to grasp movements. Experimental Brain Research, 114, 130-137. 

Gibson, J. J. (1979). The ecological approach to visual perception. London: Erlbaum.  

Golarai, G., Grill-Spector, K., & Reiss, A. L. (2008). Autism and the development of face 

processing. Clinical Neuroscience Research, 6(3), 145-160. 

Grèzes, J., Armony, J. L., Rowe, J., & Passingham, R. E. (2003). Activations related to “mirror” 

and “canonical” neurons in the human brain: An fMRI study. NeuroImage, 18, 928-937. 

Grosbras, M. H., Beaton, S., & Eickhoff, S. B. (2012). Brain regions involved in human 

movement perception. A quantitative voxel-based meta-analysis. Human Brain Mapping, 

33, 431-454. 

Hari, R., & Forss, N. (1999). Magnetoencephalography in the study of human somatosensory 

cortical processing. Philosophical Transactions of the Royal Society of London B: 

Biological Science, 354(1387), 1145-1154. 



 65 

Hauk, O., Johnsrude, I., & Pulvermuller, F. (2004). Somatotopic representation of action words 

in human motor and premotor cortex. Neuron, 41, 301-307. 

Hecht, E. E., & Parr, L. A. (2015). The chimpanzee mirror system and the evolution of 

frontoparietal circuits for action observation and social learning. In P. F. Ferrari & G. 

Rizzolatti (Eds.), New Frontiers in Mirror Neuron Research (153-181). Oxford, UK: 

Oxford University Press. 

Hecht, E. E., Gutman, D. A., Preuss, T. M., Sanchez, M. M., Parr, L. A., & Rilling, J. K. (2013). 

Process versus product in social learning: Comparative diffusion tensor imaging of neural 

system for action execution-observation matching in macaques, chimpanzees, and 

humans. Cerebral Cortex, 23, 1014-1024.  

Helbig, H. B., Graf, M., & Kiefer, M. (2006). The role of action representations in visual object 

recognition. Exp Brain Res, 174, 221-228.  

Iriki, A. (2006).The neural origins and implications of imitation, mirror neurons and tool use. 

Current Opinion in Neurobiology, 16, 660-667. 

James, T. W., Humphrey, K., Gati, J. S., Servos, P., Menon, R. S., Goodale, M. A. (2002). Haptic 

study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia, 

40, 1706-1714.  

Järvelänen, J., Shürman, M., & Hari, R. (2004). Activation of the human primary motor cortex 

during observation of tool use. NeuroImage, 23, 187-192. 

Kiefer, M., & Spitzer, M. (2001). The limits of a distributed account of conceptual knowledge. 

Trends in Cognitive Sciences, 5(11), 469-471.  

Kiefer, M., Sim, E., Liebich, S., Hauk, O., & Tanaka, J. (2007). Experience-dependent plasticity 

of conceptual representations in human sensory-motor areas. Journal of Cognitive 

Neuroscience, 19(3), 525-542.  

Klatzky, R. L., Lederman, S. J., & Metzger, V. A. (1985). Identifying objects by touch: An 

“expert system”. Perception & Psychophysics, 37(4), 299-302. 

Lachman, R., Lachman, J. T., & Butterfield, E. C. (1979). Cognitive psychology and information 

processing. Hillsdale, NJ: Erlbaum. 

Lakoff, G., & Johnson, M. (1999). Philosophy in the Flesh: The Embodied Mind and its 

Challenge to Western Though. New York: Basic Books.  



 66 

Lee, C., Mirman, D., & Buxbaum, L. J. (2014). Abnormal dynamics of activation of object use 

information in apraxia: Evidence from eyetracking. Neuropsychologia, 59, 13-26. 

Loftus, G. R. & Masson, M. E. (1994). Using confidence intervals in within-subject designs. 

Psychonomic Bulletin and Review, 1(4), 476-490. 

Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8(2), 

79-86.  

Martin, A., & Chao, L. L. (2001). Semantic memory and the brain: Structure and processes. 

Current Opinion in Neurobiology, 11(2), 194-201. 

Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., & Ungerleider, L. G. (1995). Discrete 

cortical regions associated with knowledge of color and knowledge of action. Science, 6, 

102-105. 

Masson, M. E. J. (2011). A tutorial on a practical Bayesian alternative to null-hypothesis 

significance testing. Behavioral Research, 43, 679-690. 

McClone, F., & Reilly, D. (2010). The cutaneous sensory system. Neuroscience & Behavioral 

Reviews, 34(2), 148-159.  

Milner, A. D., & Goodale, M. A. (2006). The visual brain in action: Second edition. Oxford, UK: 

Oxford University Press. 

Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron 

responses in humans during execution and observations of actions. Current Biology, 20(8), 

750-756.  

Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., & Rizzolatti, G. (1997). Object 

representation in the ventral premotor cortex (area F5) of the monkey. Journal of 

Neurophysiology, 78, 2226-2230. 

Nudo, R. J., Friel, K. M., & Delia, S. W. (2000). Role of sensory deficits in motor impairments 

after injury to primary motor cortex. Neuropharmacology, 39, 733-742. 

Oberman, L. M., & Ramachandran, V. S. (2015). The role of the mirror neuron system in the 

pathophysiology of autism spectrum disorder. In P. F. Ferrari & B. B. Rizzolatti (Eds.), 

New frontiers in mirror neurons research. (pp. 380-396). Oxford, UK: Oxford University 

Press.  

Orban, G. A., & Caruana, F. (2014). The neural basis of human tool use. Frontiers in Psychology, 

5, 310. 



 67 

Pani, P., Theys, T., Romero, M. C., & Janssen, P. (2014). Grasping execution and grasping 

observation in single neuons in the macaque anterior intraparietal area. Journal of 

Cognitive Neuroscience, 26, 2342-2355. 

Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The 

representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 

8(12), 976-987. 

Pavlides, C., Miyashita, E., & Asanuma, H. (1993). Projection from the sensory to the motor 

cortex is important in learning motor skills in the monkey. Journal of Neurophysiology, 

70, 733-741. 

Pearce, A. J., Thickbroom, G. W., Byrnes, M. L., & Mastaglia, F. L. (2000). Functional 

reorganization of the corticomotor projection to the hand in skilled racquet players. 

Experimental Brain Research, 130, 238-243. 

Peeters, R., Simone, L., Nelissen, K., Fabbri-Destro, M., Vanduffel, W., Rizzolatti, G., & Orban, 

G. A. (2009). The representation of tool use in humans and monkeys: Common and 

uniquely human features. Journal of Neuroscience, 29, 11523-11539.  

Pegna, A. J., Petit, L., Caldara-Schnetzer, A. S., Khateb, A., Annoni, J. M., Sztajzel, R., & Landis, 

T. (2001). So near yet so far: Neglect in far or near space depends on tool use. Annals of 

Neurology, 50(6), 820-822. 

Petrides, M., & Pandya, D. N. (2002). Comparative cytoarchitectonic analysis of the human and 

the macaque ventrolateral prefrontal cortex and the corticocortical connection patterns in 

the monkey. European Journal of Neuroscience, 16(2), 291-310. 

Povinelli, D. J., Reaux, J. E., Theall, L. A., & Giambrone, S. (2000). Folk Psychics for Apes: The 

Chimpanzee’s Theory of How the World Works. Oxford: Oxford University Press. 

Preus, T. M. (1995). Do rats have prefrontal cortex? The Rose-Woolsey-Akert program 

reconsidered. Journal of Cognitive Neuroscience, 27, 12675-12683. 

Raftery, A. E. (1995). Bayesian model selection in social research. In P. V. Masden (Ed.) 

Sociological methodology, 1995 (pp. 11-196). Cambridge: Blackwell.  

Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21, 

188-194.  

Rizzolatti, G., & Craighero, L. (2004). The mirror neuron system. Annual Review of 

Neuroscience, 27, 169-192. 



 68 

Rizzolatti, G., & Luppino, G. (2001). The cortical motor system. Neuron, 31, 889-901.  

Rochat, M. J., Caruana, F., Jezzini, A., Escola, L., Intskirveli, I., Grammont, F., … Umilta, M. A. 

(2010). Responses of mirror neurons in area F5 to hand and tool grasping observation. 

Experimental Brain Research, 204, 605-616.  

Rosenkranz, K., & Rothwell, J. C. (2012). Modulation of proprioceptive integration in the motor 

cortex shapes human motor learning. Journal of Neuroscience, 32, 9000-9006. 

Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K., & Marsden, C. D. (1982). 

Manual motor performance in a deafferented man. Brain, 105(3), 515-542. 

Rouder, J. N., Speckman, P. L., Sun, D., & Morey, R. D. (2009). Bayesian t tests for accepting 

and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225-237. 

Rozzi, S., Calzavara, R., Belmalih, A., Borra, E., Gregoriou, G. G., Matelli, M., et al. (2006). 

Cortical connections of the inferior parietal cortical convexity of the macaque monkey. 

Cerebral Cortex, 16, 1389-1417. 

Ruby, P., & Decety, J. (2003). What you believe versus what you think they believe: A 

neuroimaging study of conceptual perspective-taking. European Journal of Neuroscience, 

17(11), 2475-2480. 

Sartori, L., Begliomini, C., & Castiello, U. (2013). Motor resonance in left- and right-handers: 

Evidence for effector-independent motor representations. Frontiers in Human 

Neuroscience, 7(33). 

Schendan, H. E., & Ganis, G. (2012). Electrophysiological potentials reveal cortical mechanisms 

for mental imagery, mental simulation, and grounded (embodied) cognition. Frontiers in 

Psychology, 3, 329.  

Simmons, W. K., Ramjee, V., McRae, K., Martin, A., & Barsalou, L. W. (2006). fMRI evidence 

for an overlap in the neural bases of color perception and color knowledge. NeuroImage, 

31, S182.  

Spence, C., Nicholls, M. E. R., & Driver, J. (2001). The cost of expecting events in the wrong 

sensory modality. Perception & Psychophysics, 63, 330-336. 

Stamenova, V., Roy, E. A., & Black, S. E. (2010). Associations and dissociations of transitive 

and intransitive gestures in left and right hemisphere stroke patients. Brain and Cognition, 

72(3), 483-490. 



 69 

Stefan, K., Cohen, L. G., Duque, J., Mazzocchio, R., Celnik, P., Sawaki, L., Ungerleider, L., & 

Classen, J. (2005). Formation of a motor memory by action observation.  Journal of 

Neuroscience, 25(41), 9339-9346.  

Stinear, C. M., Byblow, W. D., Steyvers, M., Levin, O., & Swinnen, S. P. (2006). Kinesthetic, 

but not visual, motor imagery modulates corticomotor excitability.  Experimental Brain 

Research, 168(1-2), 33-42. 

Stoykov, M. E., & Madhavan, S. (2015). Motor priming in neurorehabilitation. Journal of 

Neurologic Physical Therapy, 39, 33-42. 

Tomasino, B., & Rumiati, R. I. (2013). At the mercy of strategies: The role of motor 

representations in language understanding. Frontiers in Psychology, 4(27).  

Tucker, M., & Ellis, R. (1998). On the relations between seen objects and components of 

potential actions. Journal of Experimental Psychology: Human Perception and 

Performance, 24(3), 830-846. 

Turatto, M., Galfano, G., Bridgeman, B., & Umiltà, C. (2004). Space independent modality-

driven attentional capture in auditory, tactile and visual systems. Experimental Brain 

Research, 155, 301-310. 

Umiltà, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Cruana, F., et al. (2008). 

When pliers become fingers in the monkey motor system. Proceedings of the National 

Academy of Sciences of the United States of America, 105, 2209-2213.  

Veldman, M. P., Zijdewind, I., Solnik, S., Maffiuletti, N. A., Berghuis, K. M. M., Javet, M., 

Négyesi, J., & Hortobágyi, T. (2015). Direct and crossed effects of somatosensory 

electrical stimulation on motor learning and neuronal plasticity in humans. European 

Journal of Applied Physiology, 115, 2505-2519. 

Vogt, S., Buccino, G., Wohlschläger, A. M., Canessa, N., Shah, N. J., Zilles, K., Eickhoff, S. B., 

Freund, H., Rizzolatti, G., & Fink, G. R. (2007). Prefrontal involvement in imitation 

learning of hand actions: Effects of practice and expertise.  NeuroImage, 37(4), 1371-

1383. 

Warrington, E. K., & McCarthy, R. (1987). Categories of knowledge. Brain, 110(5), 1273-1296.  

Weisberg, J., van Turrennout, M., & Martin, A. (2007). A neural system for learning about object 

function.  Cerebral Cortex, 17(3), 513-521. 



 70 

Wilf, M., Holmes, N. P., Schwartz, I., & Makin, T. R. (2013). Dissociating between object 

affordances and spatial compatibility effects using early response components. Frontiers 

in Psychology, 4, 591. 

Witt, J. K., Kemmerer, D., Linkenauger, S. A., & Culham, J. (2010). A functional role for motor 

simulation in identifying tools. Psychological Science, 21(9), 1215-1219.  

Woods, E. A., Hernandez, A. E., Wagner, V. E., & Beilock, S. L. (2014). Expert athletes activate 

somatosensory and motor planning regions in the brain when passively listening to 

familiar sports sounds. Brain and Cognition, 87, 122-133. 

Yu, A. B., Abrams, R. A., & Zacks, J. M. (2014). Limits on action priming by pictures of objects. 

Journal of Experimental Psychology: Human Perception and Performance, 40(5), 1861-

1873.  

Zijdewind, I., Toering, S. T., Bessem, B., Van Der Laan, O., & Diercks, R. L. (2003). Effects of 

imagery motor training on torque production of ankle plantar flexor muscles. Muscle 

Nerve, 28(2), 168-173. 

  



 71 

Appendix A 

Graspable/Hand Objects 

	
  
	
  

	
  
	
  

	
  
	
  
	
  

	
  



 72 

	
  
	
  

	
  
	
  

	
  
  



 73 

Appendix B 

Non-Graspable Objects 
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