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Abstract 

Objective: To develop an oral sustained release formulation of the immunosuppressive drug, 

mycophenolate mofetil (MMF) for once-daily dosing, for use in organ transplant recipients as an 

anti-rejection drug. Formulating mucoadhesive chitosan-coated polymeric nanoparticles (CS-

PNPs) of MMF presents a novel strategy for achieving sustained drug release of an essential drug 

for transplant patients, which could improve medication adherence and therefore transplant 

outcomes.     

Methods: MMF CS-PNPs were prepared by a single emulsion solvent evaporation method in 

chloroform with slight modifications. All the formulations are evaluated for particle size, 

encapsulation efficiency as well as in vitro drug release in USP simulated gastric fluid (SGF) and 

simulated intestinal fluid (SIF).  Differential scanning calorimetry (DSC), surface morphology by 

scanning electron microscopy (SEM), and in vitro mucin binding of the nanoparticles were 

performed for further characterization.  

Results: Two optimal formulations [MMF: PLA: MMWC= 1:7:7 and MMF: HMWPLGA: 

HMWC= 1:7:7] had high encapsulation efficiency (94.34% and 75.44% respectively) and 

sustained drug release with a minimal burst phase. DSC experiments reveal an amorphous form of 

MMF in the nanoparticle formulations.  The surface morphology of CS-PNPs observed by SEM 

showed spherical nanoparticles with minimal visible porosity. Mucin binding was assessed by 

changes in zeta potential after incubation of the nanoparticles in mucin.  

Conclusion: Two CS-PNP formulations; MMF: HMWPLGA: HMWC= 1:7:7 (w/w/w) and MMF: 

PLA: MMW= 1:7:7(w/w/w) had high drug loading and sustained drug release of MMF, 

representing lead candidates in the effort to design a once-daily dosage form for MMF. 
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Chapter-I. Background 

Transplant patients are prescribed immunosuppressive therapy after organ 

transplantation. Immunosuppressive therapy is needed to prevent organ rejection, which occurs 

when the immune system of the transplant patient recognizes the antigens on the transplant organ 

as foreign and signals an attack. Adherence generally describes the degree to which the patient 

correctly follows medical advice. Adherence to medications is essential in the field of transplant, 

for preventing organ rejection. Typically, a healthcare provider can expect 23 non-adherent 

patients out of 100 transplant patients (Dew et al. 2007a). Every day, on an average, a transplant 

patient takes 11 pills that include immunosuppressive and other supportive drugs (Ponticelli et al. 

2010). This a huge burden on a patient, and missing doses can lead to many negative outcomes 

such as graft impairment, increased mortality and increased healthcare costs (Dew et al. 2007a). 

Decreasing pill burden may be an important strategy for improving transplant adherence.  

Oral drug delivery continues to be the preferred route of administration because of the 

ease of administration. The time required for a drug given as an oral immediate release 

formulation to reach 95% of steady-state plasma concentration is 4.3 biological half-lives when 

equal doses are administered at equal amount of time. Mycophenolate mofetil (MMF, trade name 

Cellcept®) is an immunosuppressive agent used in most solid organ transplant regimens. With a 

half-life of 8-16h, it would take around two and half days to attain 95% of steady-state plasma 

concentration of mycophenolate mofetil (Banker and Rhodes 1996). As the attainment of steady-

state plasma concentration is related to the clinical effectiveness of the drug, a patient taking 

Cellcept® must wait for two and half days to get a maximum therapeutic effect of the drug. This 

lag time could play a significant role in an immunocompromised patient. If a transplant patient 
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misses a dose or two, the steady-state would fall off and the patient has to wait for two and half 

days to attain the steady-state concentration. A potential approach to reduce the fluctuations in 

plasma drug concentrations with immediate release dosage forms is to formulate sustained 

release dosage forms. With sustained release dosage forms, the steady-state concentrations can 

be reached more promptly than immediate release dosage forms and the next doses will help 

maintain the steady-state concentrations effortlessly. Sustained release dosage forms release drug 

for a long period thereby limiting the number of doses needed per day.  

Of all the sustained release formulations, nanoparticles (NPs) are more preferred due to 

several advantages such as small particle size, large surface area and modifiable surface. Besides 

these advantages, NPs are more stable in the gastrointestinal tract compared to other drug 

delivery systems such as liposomes and lipid-based systems, except solid lipid nanoparticles 

(Palacio et al. 2016). There are different kinds of nanoparticles depending on the material used to 

prepare them such as polymeric NP, inorganic NP and biomolecular NP. Formulation scientists 

face many challenges with respect to drug solubility, permeability and bioavailability. Polymeric 

NPs (PNPs) have been successfully employed to achieve several formulation strategies such as 

protection of the drug in gastric environment, enhanced bioavailability, enhanced absorption into 

a specific tissue and increased GI retention time (Alexis et al. 2008). Therefore, formulating 

PNPs of MMF with sustained release and mucoadhesive properties can help reduce the dosing 

frequency and release the drug for a long time. This can be achieved by preparing PNPs with 

PLGA/PLA as polymer and coating them with chitosan to achieve mucoadhesive properties. The 

MMF is entrapped in the polymeric matrix and the PNPs prepared are stable in gastric 

environment thereby reducing the gastric irritation caused by MMF. The NPs could help to 

achieve a once a day dosage formulation. Moving forward, the bigger goal of the project is to 
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incorporate another immunosuppressive drug such as tacrolimus, in addition to MMF to further 

decrease pill burden.  
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Chapter-II. Literature review 

2.1. Organ transplantation and organ rejection 

Solid organ transplantation is a lifesaving procedure for patients with end-stage organ 

failure. Over 126, 670 solid organ transplants were performed in 102 countries across the world 

in 2015, an increase by 5.7% from the previous year of 2014 (Carmona et al. 2017), indicating 

that transplantation is on the rise. One of the major barriers to the field of transplantation has 

been the development of organ rejection which can also be termed as transplant or graft 

rejection. This is when the immune system identifies the transplant as foreign, triggering a 

complex response that will ultimately destroy the new organ (Tse and Marson 2014). There are 

different types of organ rejection, which can occur either acutely or chronically. While organ 

rejection is complex, it often occurs due to the innate and adaptive immunity interactions with T 

cells (Ingulli 2010).  

2.2. Immunosuppressive therapy 

To prevent graft rejection and maintain a successful transplant, a complex regimen of 

immunosuppressive medications is necessary for blocking the body’s immune response. The 

importance of adhering to these immunosuppressive regimens cannot be understated. Missing 

doses leads to negative outcomes such as graft impairment, increased mortality and increased healthcare 

expenditures (Dew et al. 2007b).  Nevertheless, approximately  one  in  four  patients  fails  to take their 

medications as prescribed for a multitude of reasons, which may include high pill burden, 

uncomfortable side effects and/or high cost of medication (Butler et al. 2004). Immunosuppressive 

agents are generally categorized into two types which include induction agents and maintenance 

agents. Induction agents act when the host’s immune system is first exposed to antigens, while 
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maintenance drugs help provide continuous protection against organ rejection. Induction agents 

include antithymocyte globulin (rATG) (Brennan et al. 1999), interleukin-2 receptor antagonists 

(Webster et al. 2004) and alemtuzumab (Hanaway et al. 2011). Maintenance drug include 

azathioprine (Tiede et al. 2003), glucocorticoids (Rhen and Cidlowski 2005; Pascual et al. 2009), 

calcineurin inhibitors (tacrolimus and cyclosporine) (Kehrl et al. 1986), mycophenolate mofetil 

and mycophenolic acid (Sollinger 1995; Mele and Halloran 2000), mTOR inhibitors (sirolimus 

(Webster et al. 2006), everolimus (Nashan et al. 2004)) and belatacept (Durrbach et al. 2010).  

Table 1. Immunosuppressive drugs commonly used in solid organ transplantation, products, 

dosing regimen and mechanism of action. 

Drug Products Mechanism of 

Action 

Dosage forms 

rATG PrTHYMOGLOBULIN® 

Powder for solution 

Polyclonal 

antibodies 

against CD2, 

CD4, CD8, 

CD11a, CD18, 

CD25 and CD 

44. 

Injection, 25mg 

and 5mg/mL 

Belatacept Nulojix Blocks 

B7/CD28 

costimulatory 

proteins 

Injection 

powder for 

solution (250 

mg).  
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Basiliximab Simulect® Chimeric 

human/murine 

monoclonal IgG 

against CD25 

10mg and 20mg 

Alemtuzumab Lemtrada® and 

Mabcampath® 

Humanized 

monoclonal IgG 

against CD52 

Lemtrada® 

solution- 12 mg 

Mabcampath® 

solution- (10mg 

and 30 mg).  

 

Glucocorticoids 

(Ex- 

Prednisone) 

Multiple generic Inhibits 

formation of 

free NF-kB and 

down-regulates 

expression of 

proinflammatory 

cytokines 

Multiple dosage 

forms 

Cyclosporine   Neoral® (capsule and 

solution) 

 

inhibits 

calcineurin, 

prevents 

activation of IL-

Neoral® capsule 

(10, 25, 50 and 

100mg) 

Neoral® 
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2, stimulates 

TGF-β 

expression 

solution 100 mg 

 

Tacrolimus Prograf® inhibits 

calcineurin, 

prevents 

activation of IL-

2, stimulates 

TGF-β 

expression 

Prograf® 

injection 

solution (5 

mg/mL) 

capsule (0.5, 

1mg and 5mg) 

Advagraf® 

extended 

release capsule 

(0.5, 1, 3 and 

5mg). 

Mycophenolate 

mofetil and 

Mycophenolic 

acid 

Cellcept® and Myfortic® Inhibits inosine 

monophosphate 

dehydrogenase 

and de novo 

purine 

biosynthetic 

pathway 

Cellcept® 

powder for 

suspension 

(200mg), 

capsule 

(250mg), tablet 

(500mg) and IV 

(500mg) 
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Myfortic 

delayed-release 

tablet (180mg 

and 360mg).  

Sirolimus  Rapamune®  

 

Binding to 

mTOR complex 

1 

Rapamune® 

tablet (1mg), 

and solution 

(1mg).  

 

Everolimus Certican® Binding to 

mTOR complex 

1 

Certican® tablet 

(0.25, 0.5 and 

0.75 mg) 

 

Mycophenolic acid (MPA) is a reversible inhibitor of inosine monophosphate 

dehydrogenase that inhibits the de novo pathway of guanosine nucleotide synthesis without 

incorporation into DNA. The pathway critical for proliferation of T and B lymphocytes. One of 

the most common immunosuppressant regimens in solid organ transplant recipients includes a 

combination of tacrolimus, mycophenolic acid derivative and prednisone. The marketed 

formulations of mycophenolate acid (MPA) derivative are Cellcept® (mycophenolate mofetil) 

and Myfortic® (mycophenolate sodium). Mycophenolate mofetil (MMF) has been developed to 

enhance the bioavailability of mycophenolic acid while mycophenolate sodium has been 

developed to reduce the GI effects caused by MMF and delivered as delayed-release tablet. The 
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chemical formula of MMF is C23H31NO7 and Figure 1 depicts the chemical structure.  

 

Figure 1. Chemical structure of mycophenolate mofetil.  

Cellcept® is an immediate release formulation of mycophenolate mofetil. Cellcept® for 

oral administration is available as 250mg capsules and 500mg tablets. The oral adult dose of 

Cellcept® for a renal transplant patient is 1g twice a day, for cardiac and hepatic transplant 

patient is 1.5g twice a day. The Tmax and Cmax of Cellcept® in healthy volunteers are 0.8h and 

24.5µg/ml respectively. Myfortic® is a delayed-release tablet formulation of mycophenolate 

sodium. Myfortic® is available as 180mg and 360mg tablets. The oral adult dose of Myfortic® is 

720mg twice daily.  A comparison of Cellcept® and Myfortic® is provided below within the 

discussion on sustained release formulations.  

Shirali and colleagues investigated intraperitoneal delivery MPA nanoparticles and 

confirmed that MPA nanoparticles significantly enhances the graft survival by effectively 

delivering MPA at a 1000-fold lower dose compared to the conventional tablet dosage form. 

They also confirmed that drug toxicity was less when MPA was delivered as nanoparticles 

whereas conventional drug delivery led to cytopenias (Shirali et al. 2011). Similarly, 

nanoparticles of tacrolimus and surface modified nanoparticles of tacrolimus were prepared to 

evaluate the pharmacokinetics and lymphatic targeting ability of tacrolimus. These formulations 

along with Prograf® injectable (commercial tacrolimus product) were administered intravenously 

to rats and results showed that surface modified tacrolimus nanoparticles provide better therapy 
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than the commercial Prograf®  (Shin et al. 2010). The above two examples have driven 

formulation scientists in developing an oral sustained release polymeric nanoparticle 

formulation. 

2.3. Sustained release formulations 

In conventional oral dosage forms, generally termed as immediate release (IR) 

formulations, drug release from the dosage form is prompt and achieving an effective steady-

state concentration of the drug in necessitates regular dosing intervals of the IR formulations 

(Amidon et al. 1995), i.e. not missing doses. With IR formulations, one of the disadvantages is 

fluctuations in the plasma drug concentration, and therefore more difficulty in maintaining 

steady-state concentration for drugs with short biological half-lives drives the development of 

modified release formulations. Modified release oral formulations consist of various types of 

formulations such as delayed-release (DR), prolonged release, sustained release (SR), extended 

release (ER) and controlled release (CR). In DR formulations, the drug is not released 

immediately in the GI tract and this can be achieved by enteric-coating (Aulton 2002). SR 

dosage forms generally release drug slowly enough to provide therapeutic action followed by 

gradual release over time. While ER formulations release drug immediately for therapeutic 

action and sustain the drug levels for prolonged time, generally 8-12 h. CR dosage forms release 

drug at a constant rate so that the drug levels in plasma does not change over time. According to 

United States Pharmacopoeia (USP), ER, PR and SR dosage forms are generally 

interchangeable. A general comparison of IR and SR formulations can be seen in Figure 2. With 

the modified release formulations, there are several advantages over conventional formulations 

which include; control over drug release and maintenance of plasma drug levels, improved 
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patient compliance as dosing frequency is reduce, cost-effective, ability to deliver potent drugs 

and avoiding dose dumping (Chien 1983).  

  

 

Figure 2. A graphical comparison in the plasma drug concentration levels of IR formulations (A) 

and SR formulation (B).  

One of the important components in formulating SR dosage forms other than the drug 

itself is to include a drug release modifier or release controlling agent. Oral SR dosage forms can 

be categorized into monolithic or matrix systems, reservoir or membrane controlled systems and 

osmotic pump systems depending on their make. As the name indicates, monolithic systems are 

unit dosage forms in which the drug is dispersed in either a soluble or an insoluble matrix. In 

case of soluble matrices, matrix solubilizes releasing the drug which then undergoes dissolution. 

In the latter, the drug must dissolve in situ and diffuse out.  Reservoir systems contain drug in the 

core surrounded by a rate controlling membrane. This membrane becomes permeable as it 

reaches GI lumen, slowly diffusing the drug out through the membrane. Osmotic pump systems 

are also a type of reservoir system, but the drug is either solubilized or dispersed in an aqueous 
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core surrounded by a hole containing a semipermeable membrane. Upon administration, the rate 

at which fluids cross the semipermeable membrane and expel the drug from the hole governs the 

drug release rate (Banker and Rhodes 1996).   

 Monolithic systems generally contain drug dispersed in a matrix. Several polymers are 

generally used in these systems such as alginates, carbomer, cellulose and its derivatives 

(hydroxypropyl, hydroxypropyl methyl and methyl cellulose). In monolithic systems, drug 

release is governed by diffusion or dissolution. When the drug is dispersed in a polymeric 

matrix, some extent of immediate release can be expected as a result of erosion from the outer 

surface followed by slow release. With the advent of nanoparticle drug delivery systems, 

development of additional sustained release systems was facilitated, which further improved 

several areas of applications (Aulton 2002). Nanosizing helps control the particle size and 

surface properties which further control the drug release. There are several factors that limit the 

applications of monolithic systems which include: permeability of the drug through GI mucosa, 

drug solubility, dose dumping and an absorption window in a specific area of the gastrointestinal 

tract. Nanoparticles have helped resolve such issues with their versatility, providing sustained 

release or increased residence time by mucoadhesion or improving the membrane permeability 

and oral bioavailability (Zhang et al. 2013).   

 As mentioned earlier, Myfortic® (enteric-coated mycophenolate sodium) is a delayed-

release formulation of mycophenolic acid. It has been developed with an intention of reducing 

the GI effects and dosing frequency of Cellcept® (mycophenolate mofetil) yet maintaining the 

similar plasma drug concentration. The delayed-release is achieved by coating with 

hydroxypropyl methylcellulose phthalate. Although, literature suggests that Myfortic® can be 

safely administered to renal transplant patients to provide similar safe and efficacy profile as that 
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of MMF (Budde et al. 2004), GI side effects such as diarrhea and abdominal distention were 

similar with both the formulations (Aptaramanov et al. 2011), by mechanisms that are unclear. 

Both Cellcept® and Myfortic® are dosed twice a day. Sometimes, prescribers suggest splitting the 

dose for patients with severe/adverse gastric effects to increase tolerability which makes 

adherence towards immunosuppressive therapy difficult. An ideal formulation of a 

mycophenolic acid derivative would be dosed every 24 hours to improve medication adherence 

and have reduced gastrointestinal side effects (Daughton and Ruhoy 2013). It is possible that the 

reformulation of MMF into polymeric nanoparticles can be applied to this situation in order to; 

1) achieve sustained drug release by mucoadhesion and slow drug diffusion in the intestine; and 

2) reducing drug release in stomach to minimize direct irritant effects which may be part of the 

cause of nausea associated with this drug.   

2.4. Nanoparticle drug delivery systems 

Solid particles and particulate dispersions with a size range of 10 to 1000 nm are 

considered as nanoparticles (NPs). NPs offer several advantages over conventional drug delivery 

systems, such as control over particle size which further has an effect on drug release, control 

over the features of the particle surface which can be altered to achieve site-specific delivery or 

targeted drug delivery, as well as scalability. NPs have the ability to encapsulate hydrophilic or 

hydrophobic drugs because of the wide variety of materials available. Common nanoparticle 

drug delivery systems include: polymeric nanoparticles (PNPs), dendrimers, micelles, liposomes, 

carbon nanotubes, metallic nanoparticles, silica nanoparticles and quantum dots (Bhatia 2016). 

Of all the nanoparticle drug delivery systems, PNPs have gained significant importance because 

there are now commercially available polymers which are biodegradable, biocompatible and 

easy to formulate (Nagpal et al. 2010), and polymer chemistry has advanced to provide many 
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examples of synthetic modifications to impart specific properties or targeting moieties. However, 

targeting is not within the scope of this discussion, as it is typically applied to parenteral systems. 

Non-biodegradable PNPs have applications in drug delivery, implants, wound healing and 

antimicrobial activity but chronic toxicity is a major concern with these particles (Banik et al. 

2016). This led to a focus on PNPs made with biodegradable polymers. The most commonly 

used polymers in formulating drug delivery PNPs include poly-D, L-lactide-co-glycolide 

(PLGA), polylactic acid (PLA), poly-ε-caprolactone, poly-alkyl-cyanoacrylates, chitosan and 

gelatin.  

2.4.1. Poly (D, L-lactide-co-glycolide) (PLGA):  

One of the most widely used polymers for preparing PNPs is PLGA because it is 

biodegradable, biocompatible and can be removed by normal metabolic pathways (Alexis et al. 

2008). Both hydrophilic and lipophilic drugs can be incorporated into PLGA NPs (Barichello et 

al. 1999) and they are used for both oral and parenteral drug delivery (Avgoustakis 2004), and 

the US-FDA has approved this polymer for human use (Bala et al. 2004). Drug release from a 

PLGA matrix can be at a sustained rate through the dual processes of drug diffusion through the 

polymer matrix and polymer matrix degradation (Shive and Anderson 1997). Degradation of the 

polymer can be altered by changing the composition or ratio of copolymers and polymer 

molecular weight (S.-Y. Lin, K.-S. Chen, H.-H. Teng, 2000). Formulation of PLGA NPs can be 

readily scaled in industry because there are several extrusion methods which maintain small 

particle size (Berkland et al. 2002). PLGA is available in different forms depending on the ratio 

of lactide to glycolide used in polymerization. For example, PLGA 75:25 contains 75% lactic 

acid and 25% glycolic acid (Gentile et al. 2014). PLGA polymers are generally ester-capped and 

this category of polymers has an extended degradation time, over weeks. PLGA after 
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degradation forms glycolic and lactic acid constituents which enter into the citric acid cycle in 

the body thereby by eliminating the problem of accumulation (Doiron et al. 2009). For achieving 

faster degradation and drug delivery, PLGA polymers are acid-capped because ester-capped 

PLGA undergoes  a long degradation time through  the processes of hydrolysis and de-

esterification (Bret et al. 2011; Gentile et al. 2014).  

Specific examples can illustrate the flexibility of formulation approaches using PNPs 

with various drugs. Mittal and co-workers have successfully prepared estradiol-loaded PLGA 

PNPs by an emulsion–diffusion-evaporation method. The size of the PNPs prepared was ~100-

150nm. The PNPs prepared were found to have sustained drug release properties (Mittal et al. 

2007). Similarly, nelfinavir-PLGA NPs were prepared by a nanoprecipitation method. Drug: 

polymer weight ratio was varied from 1:1 to 1:5 and particle size, encapsulation efficiency and 

drug loading were measured. Among the drug: polymer weight ratios prepared, 1:4 ratio was 

chosen as optimal based on drug loading. The nelfinavir NPs were found to exhibit sustained 

drug release up to 24 h and there was a 4.94-fold increase in relative bioavailability compared to 

pure drug (Venkatesh et al. 2015). Detailed information about PLGA properties and applications 

are summarized in several reviews (Kumari et al. 2010; Danhier et al. 2012; Sharma et al. 2016b; 

Roointan et al. 2018). Delivery of a pH-sensitive drug might not be feasible as degradation of 

PLGA forms acids. Usually with PLGA, an initial or burst release of the drug is expected, which 

is generally attributed to surface-adsorbed drug (Sadat Tabatabaei Mirakabad et al. 2014). The 

surface charge of PLGA PNPs is negative which may reduce the appropriateness of this system 

for oral delivery as charge repulsion may reduce binding to the GI mucosal membrane (Zhang et 

al. 2012a).  
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2.4.2. Polylactic acid (PLA):  

PLA is biocompatible and biodegradable with the main degradation product being 

monomers of lactic acid. PLA NPs are generally prepared by the solvent evaporation, solvent 

displacement and salting-out methods (Lee et al. 2016). However, PLA has many limitations 

which are significant in oral delivery. NPs made with PLA undergo precipitation in gastric fluids 

and have stability issues in gastrointestinal fluids (El-Say and El-Sawy 2017). PLA NPs of 

progesterone were prepared with good entrapment efficiency of 70% but the particle size was 

320nm which was comparatively high compared to those of PLGA NPs (Palacio et al. 2016). 

2.4.3. Poly-ε-caprolactone (PCL):  

PCL is highly processible polymer that is soluble in a variety of organic solvents. It 

is biodegradable via hydrolysis of ester linkages. Due to its slow degradation in a biological 

environment, its high permeability to many drugs and non-toxic nature, it is generally 

employed in implantable devices. Capronor®, a contraceptive device containing 

levonorgestrel is made of this polymer that provides prolonged zero order release (Nair and 

Laurencin 2007). Taxol-loaded PCL NPs have been prepared, exhibiting high drug loading 

but the encapsulation efficiency was found to be low, 20.79%. Surface modification of the 

polymer with MePEG, Pluronics or PEO has been to show increase in vivo activity (Kumari 

et al. 2010). However, PCL by itself has not been widely employed in NP for oral drug 

delivery due to the very slow drug release rate. 

2.4.4. Chitosan:  

Chitosan is the most important derivative of chitin produced by removing the acetate 

moiety. It is derived from crustacean cells, prawns, crabs and cell walls of fungi. It is a naturally 

occurring polysaccharide, cationic, highly basic, mucoadhesive and biocompatible polymer, 
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Chitosan has been approved by the US-FDA for tissue engineering and biocompatible. Chitosan 

acts a penetration enhancer by opening the tight junctions of the epithelium, thus facilitating the 

paracellular transport of drugs. Chitosan interacts with mucus (negatively charged) to form a 

complex by any of the processes such as ionic, hydrogen and hydrophobic bonds. The pKa value 

of chitosan is 6.5 owing to which, chitosan is soluble in acidic pH and aggregates at neutral pH 

(Chen et al. 2013). The primary amine (-NH2) groups in the chitosan can be modified to achieve 

various pharmaceutical applications (Shukla et al. 2013). The amino groups interact with 

sulphates, citrates and phosphates (Dambies et al. 2001) thereby increasing the stability and 

encapsulation efficiency (Al-Qadi et al. 2012). To improve the solubility and absorption of 

chitosan in intestinal media, N-trimethyl chitosan chloride (TMC), quaternized chitosan has been 

produced (Thanou et al. 2000). The mucoadhesive property of chitosan has been further 

enhanced by formulating NP with thiolated chitosan (Bernkop-Schnürch et al. 2003). Because of 

these properties and successful applications, chitosan is one of the most widely used polymer in 

the pharmaceutical industry.  

As discussed earlier, the mucoadhesive property of the chitosan is attributed to its strong 

positive charge which helps in forming bonds with negatively charged mucus. Mucus is present 

in the organs of the gastrointestinal tract (GIT) and the respiratory tract. The GIT is characterized 

by varying pH as well as a changing enzyme environment along its length which makes it 

difficult for oral delivery of protein/peptide drugs and DNA. Chitosan is an excellent carrier for 

such drugs as it is mucoadhesive, functions as a permeation enhancer and forms a protective 

sheath across the drugs (George and Abraham 2006). 
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2.5. Properties of polymeric nanoparticles 

The characteristics of polymeric nanoparticles which play a key role in drug delivery 

include particle size, surface charge, encapsulation efficiency, degradation rate and drug release. 

Particle size and size distribution are important properties of PNPs which influence drug release 

from the PNPs. NPs of 100 nm size range when compared to microparticles (1µm diameter) 

show greater uptake in a Caco-2 cell line (Desai et al. 1997). In oral delivery, studies show that 

NPs below 200nm can effectively cross the intestinal mucus layer (Yun et al. 2013). Particle size 

has a strong influence on drug release. NPs have large surface area as virtue of their small 

particle size, therefore provide fast drug release (Mohanraj and Chen 2006). Small particles have 

a greater risk of particle aggregation that may have further effect on drug release and stability. 

As nanoparticles have high surface area to volume ratio, strong cohesive forces and greater 

surface energy exist in between the particles which generally leads to aggregation (Honary and 

Zahir 2013). An excellent way to avoid particle aggregation is by altering the surface properties 

of NPs. NPs with a zeta potential of at least +/-30mV are known to prevent aggregation of 

particles due to electrostatic repulsion.   

 There are several mechanisms which govern drug release from polymeric nanoparticles 

such as: swelling of the polymer (Liu et al. 2017), diffusion of the adsorbed drug, drug diffusion 

through the polymeric matrix, polymer erosion or degradation, and a combination of both 

erosion and degradation (Singh and Jr 2009) as represented in Figure 3. The initial burst release 

from the chitosan nanoparticles is either because of swelling of the polymer, creating pores,  or 

diffusion of the drug from the surface of the polymer (Yuan et al. 2013). Chitosan nanoparticles 

also exhibit a pH-dependent drug release because of the solubility of chitosan. Chitosan has 

solubility in acidic solutions and exhibits poor solubility in neutral conditions (Miladi et al. 
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2015) but molecular weight of chitosan also plays important role in the solubility of chitosan 

(Sun et al. 2009).  

 

 

Figure 3. Diagram representing the possible mechanisms of drug release by diffusion, swelling 

and erosion of polymer (chitosan) matrix. 

 In diffusion-controlled release, drug permeates through the interior of the polymeric 

matrix to the surrounding medium. Polymer chains form the diffusion barrier making it difficult 

for the drug to pass through and this barrier serves as the rate-limiting membrane for drug 

release. Sometimes, diffusion is associated with polymer swelling or erosion. The mathematical 

representation of diffusion is given by Fick’s law of diffusion.  

𝐹 = −𝐷 %&
%'

………………. Equation 1 

where F is the rate of transfer per unit area of section (flux), c is the concentration of the drug 

and D is the diffusion coefficient (diffusivity). To derive the parameters of Fick’s law, there are a 

few assumptions to be made such as: pseudo-steady state is maintained during drug release, the 

diameter of the drug particles is less than average distance of drug diffusion through the 
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polymeric matrix, and sink conditions are always provided by the medium surrounding the 

nanoparticles (Siepmann and Siepmann 2012).  

 The swelling of the polymer is characterized by imbibition of water into the polymer until 

the polymer dissolves. This drug release mechanism is characterized by the solubility of the 

polymer in water, or the surrounding biological medium when administered through a specific 

route. When the polymer encounters the surrounding medium and swelling commences, the 

polymer chains detangle. This is followed by drug release from that region of the polymer 

matrix. Generally, the hydrophilicity of the polymer, the polymer swelling rate and the density 

between the polymeric chains play a key role in the drug release profile (Fonseca-Santos and 

Chorilli 2017). Subsequently, this will affect the rate of drug absorption from the site of delivery 

in vivo, as it will affect the rate at which drug is available for membrane transport or cellular 

uptake. 

 Erosion and degradation of polymers are interrelated features. Sometimes, degradation of 

the polymer may cause subsequent physical erosion as bonds break. Erosion of polymers is a 

complex phenomenon as it involves swelling, diffusion and dissolution. Erosion occurs by two 

ways: homogenous and heterogeneous. Homogenous erosion is erosion of the polymer at the 

same rates throughout the matrix while heterogenous erosion is erosion of the polymer from the 

surface towards the inner core. Polymer degradation may be due to the surrounding media or the 

presence of enzymes. The degradation of the polymer also depends on the pH of the surrounding 

media, the copolymer composition and water uptake by the polymer. Drug release depends on 

the type of polymer and internal bonding, any additives (chitosan derivatives), as well as the 

shape and size of the nanoparticles as this reflects surface area and free energy (Göpferich 1996).  
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Generally, drug release from the chitosan nanoparticles is similar to that of PLGA 

nanoparticles (Pawar et al. 2013) but the drug release from chitosan nanoparticles is more pH-

dependent on the surrounding media (Manca et al. 2008).  As an example, exendin-4 loaded 

PLGA and chitosan-PLGA nanoparticles have been studied. Exendin-4 is generally used for the 

treatment of type-2 diabetes. The NPs were evaluated for transmembrane permeability studies in 

MDCK cells and in an in vivo study in male Wistar rats. The in vitro transmembrane 

permeability studies revealed that exendin-4 was transported across the cell layer by active 

transport when formulated as PLGA or chitosan-PLGA NP compared to the free drug solution. 

The permeability coefficient (Papp) with PLGA and chitosan-PLGA NP was 1.52 × 10-6 and 2.5-

3.0 × 10-6, respectively, significantly greater than exendin-4 solution alone. Some of the PLGA 

NPs that enter the cell are trafficked into endosomes and suffer degradation while some reach the 

basolateral membrane via the trans-Golgi pathway. Similar such mechanisms occur with 

chitosan-PLGA NPs, however, due to their positive charge electrostatic interactions occur with 

the negatively charged cell membrane resulting in a higher Papp. The in vivo study revealed  

higher plasma drug levels and longer retention times of exendin-4 when administered as 

chitosan-PLGA NP compared to PLGA NP (Wang et al. 2013).  

2.6. Mucoadhesive formulations 

Mucus is basically a hydrogel composed of at least 20 proteins, carbohydrates, lipids, 

salts, bacteria and cellular debris. Mucus lines the gastrointestinal and respiratory tract mostly 

forming a protective barrier. Mucins are the primary protein component of mucus also 

responsible for the gel-like properties of mucus (MacAdam 1993). Besides mucin, the 

viscoelasticity of mucus is regulated by water, lipid and ion content. The thickness of mucus 

layer varies in GIT where it is thickest in stomach (to protect from gastric acid) and colon (to 
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protect from bacteria). Thickness of the mucus is dependent on the diet (Hollingsworth and 

Swanson 2004). Mucus pH is around 1-2 in stomach, neutral in the duodenum and 7-8 in colon 

and rectum (Kararli 1995).  

 Mucus acts as a barrier in the GI tract. It helps protect the stomach from acid secretions 

and enzymes (Cone 2009). Gastric acid cannot penetrate the mucus barrier and affect the 

stomach lining because mucus acts as a selective barrier against gastric acid. The presence of 

gastric acid and enzymes continuously degrade mucus which is why mucus is secreted 

continuously by goblet cells in the epithelium. Besides, mucus also acts as a protective barrier 

against pathogenic bacteria and foreign particles via non-specific interactions while enabling 

colonization of beneficial bacteria.  Mucins, on the other hand, help prevent adhesion of bacteria 

to epithelial cells (Albanese et al. 1994). Mucus secretions contain antimicrobial agents and 

immunoglobulins which also act as protective mechanism (McGuckin et al. 2011). Therefore, 

there are two strategies of delivering the drug through mucus barrier; mucus penetrating systems 

and mucoadhesive systems (Olmsted et al. 2001). Mucus penetrating systems are prepared by 

several ways such as; using permeation enhancers (Suk et al. 2011), formulating minute particles 

that can avoid blocking by mucin, densely coating the nanoparticles with both negative and 

positive charges, formulating nanoparticles with highly hydrophilic surface (coating with 

polyethylene glycol ) (Lai et al. 2007; Wang et al. 2008). Whereas mucoadhesive formulations 

adhere to the mucus thereby increasing the residence time and releasing the drug over time. 

Mucoadhesive formulations adhere to mucus by mechanisms such as; electrostatic attraction, 

hydrophobic interactions, van der Waals interactions and polymer chain intercalation (Woodley 

2001). This mucus adhering strategy is employed in this study to enhance the residence time of 

nanoparticles in the small intestine thereby releasing drug over time.  
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One of the major disadvantages with oral nanoparticulate systems is rapid transit through 

the GIT (Kreuter et al. 1989; Galindo-Rodriguez et al. 2005) and mucoadhesive nanoparticulate 

systems have been successfully developed to address this issue. The applications include either 

enhancing the retention time in the gut or improving the oral bioavailability. Poly (sebacic acid) 

(PSA), Eudragit® RL-100, PLGA and PLA are some of the polymers that help mucoadhesion by 

hydrophobic interactions, while coating the nanoparticles with chitosan enhances mucoadhesion 

by electrostatic attractions. It has been reported that electrostatic attraction induces stronger 

mucoadhesion compared to hydrophobic/ hydrophilic interactions (Takeuchi et al. 2005; Bravo-

osuna et al. 2007; Park et al. 2010).  

Several cases are presented here to exemplify the use of chitosan NPs in drug delivery.  

Catechin and epigallocatechin are flavonoids present in green tea and are strong antioxidants. 

These undergo degradation in simulated intestinal fluid and are poorly absorbed across intestinal 

membranes. The intestinal absorption of catechin and epigallocatechin gallate was improved by 

encapsulating them in chitosan nanoparticles (Dube et al. 2010). Tamoxifen, an anti-cancer drug, 

is slightly water soluble and a good candidate for oral cancer drug delivery. Permeation of 

tamoxifen across the intestinal epithelium was increased by formulating tamoxifen as lecithin-

chitosan nanoparticles (Barbieri et al. 2015). These NPs are mucoadhesive and increase the 

permeation of tamoxifen by a paracellular pathway. Feng et al. has reported oral delivery of 

doxorubicin hydrochloride (DOX) NPs comprised of chitosan and carboxymethyl chitosan. 

These nanostructures were found to enhance the intestinal absorption of DOX throughout the 

small intestine (Feng et al. 2013). Alendronate sodium is used in the treatment of osteoporosis 

and suffers from low oral bioavailability and GI side effects. Encapsulation efficiency of 

alendronate sodium is increased by formulating chitosan nanoparticles via an ion gelation 
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technique. The drug release profile of NP was different in 0.1N HCl compared to phosphate 

buffer saline (PBS) (pH 6.8) owing to the solubility of chitosan in different media (Miladi et al. 

2015). For effective sustained delivery of sunitinib, a tyrosine kinase inhibitor, chitosan NPs 

were prepared by an ion cross linking method. The encapsulation efficiency of NP was 98% and 

sustained drug release was achieved up to 72h (John et al. 2016). The harsh conditions of the 

GIT denature proteins (consider the well-known example of insulin) when administered orally. 

Insulin-loaded chitosan NP were prepared, crosslinked with tripolyphosphate and freeze-dried. 

The particle size was reduced by crosslinking and the stability of the NPs was increased by 

freeze drying. Uptake of the insulin NPs was significant in the intestinal epithelium however, the 

NP were unstable in the gastric pH (Diop et al. 2015). Bhosale et al. has prepared mucoadhesive 

oral nanoparticles of acyclovir. The nanoparticles were prepared by solvent deposition method 

with PLGA as matrix polymer, polycarbophil as mucoadhesive polymer and Pluronic F68 as 

stabilizer. The drug release from the nanoparticles was sustained until 32h and the in vitro 

mucoadhesion studies reveal that the mucoadhesion of nanoparticles increased with increasing 

content of polycarbophil (Bhosale et al. 2011). In order to evaluate the ability to load proteins 

and to transport them across nasal and intestinal mucosa, PEG-coated PLA and chitosan coated 

PLGA nanoparticles of insulin and tetanus toxoid were prepared respectively (Vila et al. 2002). 

Coating of PLGA nanoparticles with chitosan, poly (acrylic acid) and sodium alginate was done 

to evaluate their mucoadhesive abilities. PLGA nanoparticles of elcatonin were prepared and 

coated with chitosan, poly (acrylic acid) and sodium alginate to evaluate their mucoadhesive 

abilities. In this attempt, it was concluded that chitosan coating of PLGA nanoparticles imparts 

superior mucoadhesion as demonstrated with a rat everted intestinal sac model (in vitro) 

(Kawashima et al. 2000).   
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 Gelatin nanoparticles are another possibility to achieve enhanced oral bioavailability by 

mucoadhesion and increased GI residence time. Kharia and Singhai have prepared gelatin 

nanoparticles of acyclovir with mucoadhesive properties. The nanoparticles were prepared with 

gelatin (type-A) as the polymer and Pluronic F-68 as stabilizer. The optimized NPs were found 

to be spherical with size of 217nm, PDI of 0.268 and entrapment efficiency of 70.68%. The 

optimized NPs were found to have 12h residence time in gastrointestinal tract while the 

conventional tablet dispersion had a residence time of 8h (Kharia and Singhai 2015). It can be 

established that mucoadhesive formulations help in achieving sustained drug release by 

enhancing the residence time in the intestine and usage of polymers such as chitosan and gelatin 

help in formulating mucoadhesive formulations.  

2.7. Preparation of polymeric nanoparticles 

Ionotropic gelation, microemulsion, emulsification solvent diffusion and emulsion-based 

solvent evaporation are the most common methods to prepare chitosan-based polymeric 

nanoparticles. However, solvent evaporation and solvent diffusion methods are commonly used 

in formulations PLGA or PLA based nanoparticle. Usages of less organic solvent and avoidance 

of high force are two of the main advantages these methods offer. The key characteristics that 

found to affect the particle size and surface charge of PNPs prepared by these methods were 

found to be molecular weight and degree of acetylation of chitosan (Sreekumar et al. 2018).  

Entrapment mechanisms to incorporate drug within the polymeric matrix include electrostatic 

interaction, hydrogen bonding and hydrophobic interaction. 
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2.7.1. Ionotropic gelation 

This is a simple technique where the chitosan solution (positively charged) is dissolved in 

acetic acid or any polyanionic solution (negatively charged) with or without stabilizing agent 

such as poloxamer. Nanoparticles were readily formed due to complexation between positive and 

negative charged species during mechanical stirring at room temperature resulting in 

precipitation of chitosan in spherical particles of different size and surface charge. Generally, the 

reported particle size ranges from 20-200 and 550-900nm. A few of the advantages of ionotropic 

gelation include; the processing uses mild conditions and an aqueous environment, low-toxicity 

and no change in drug chemistry. The main disadvantages of this method are its poor stability of 

the nanoparticles in acidic conditions and difficulty in entrapping high molecular weight drugs 

(Nagpal et al. 2010; Gonçalves et al. 2014).  

2.7.2. Complex coacervation method 

In this method, chitosan forms coacervates (precipitates) when blown into an alkali 

solution (sodium hydroxide, ethane diamine) with the help of a blower. The formed particles are 

separated and purified by filtration/centrifugation. DNA-chitosan nanoparticles are formed by 

coacervation of positive charge on amine groups of chitosan and negatively charge DNA 

phosphate groups (Zhao et al. 2011; Zhuo et al. 2014). Ionotropic gelation involves cross-linking 

while the coacervation method involves polyvalent interactions between the cationic chitosan 

and anionic polyanions. Entrapment efficiency and drug release are governed by the molecular 

weights of the two polymers (chitosan and nucleic acid), with a general trend of better 

encapsulation with higher molecular weight (Leong et al. 1998; Chen et al. 2007).  A few 

advantages of complex coacervation include: this process can be entirely performed in an 

aqueous solution at low temperature and it has a better chance of encapsulating substances 
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because of the encapsulation method (Solanki et al. 2013). The main disadvantages of this 

method are poor stability of the nanoparticles, low drug loading and the fact that crosslinking of 

the complex by a toxic chemical reagent such as glutaraldehyde is necessary (Tiyaboonchai 

2003; Huang et al. 2005; Hembram et al. 2014).  

2.7.3. Coprecipitation method 

The addition of chitosan solution, prepared in a low pH acetic acid solution, to a high pH 

8.5–9.0 solution such as ammonium hydroxide results in coprecipitation and the formation of 

highly monodisperse uniform size nanoparticle. This method is similar to coacervation method 

but rather produces microspheres. Nanoparticles of size as low as 10 nm can be prepared with 

high encapsulation efficiency (Tiyaboonchai 2003; Hembram et al. 2014). The coprecipitation 

method was used to prepare bovine serum albumin loaded lactic acid-grafted chitosan (LA-g-

chitosan) nanoparticles of ammonium hydroxide to form coacervate drops. This method yielded 

spherical and uniformly distributed nanoparticles (Bhattarai et al. 2006). 

2.7.4. Polyelectrolyte complex (PEC)  

Anionic (dextran sulfate DNA solution) solution is added to the cationic polymer 

(chitosan solution dissolved in acetic acid, gelatin, polyethylenimine), under mechanical stirring 

under room temperature followed by charge neutralization. Advantages include:  a simple 

preparation method and the absence of harsh conditions. The nanoparticles form spontaneously 

upon mixing anionic solution with chitosan under mechanical stirring (Nagpal et al. 2010; 

Hembram et al. 2014). Low molecular weight water soluble chitosan (LMWSC) nanocarriers 

were developed by similar methods for insulin delivery. Insulin nanoparticles developed by the 

PEC method were reported to be approximately 200 nm in diameter and released drug for 120 h. 
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(Nam et al. 2010). 

2.7.5. Microemulsion method 

In this method, chitosan in acetic acid solution and glutaraldehyde are added to a 

surfactant in n-hexane. This mixture is subject to continuous stirring at room temperature, 

allowing the formation of nanoparticles, followed by overnight stirring to complete the cross-

linking process. Organic solvent is removed by evaporating under low pressure. The product at 

this point has excess surfactant which can be removed by precipitating with calcium chloride 

followed by centrifugation. The final nanoparticle suspension is then dialyzed and then may be 

lyophilized (Maitra et al. 1999). A very narrow size distribution is seen with this method and the 

size can be controlled by a large amount of glutaraldehyde before stirring in the preparation on 

NP. Some disadvantages with this method include usage of organic solvent, a lengthy process 

and a complex washing step (Nagpal et al. 2010).  

2.7.6. Emulsification solvent diffusion method 

An o/w emulsion is prepared by mixing organic solvent with a solution of chitosan and 

stabilizer or surfactant (e.g. poloxamer or lecithin) under mechanical stirring followed by high-

pressure homogenization (Niwa et al. 1993; El-Shabouri 2002). Polymer precipitation occurs 

when a large amount of water is added to the emulsion, thereby forming nanoparticles. This 

method is best suited for entrapment of hydrophobic drugs and the entrapment efficiency is 

found to be high. The major disadvantage of the method includes usage of high shear forces.  

2.7.7. Emulsion based solvent evaporation method 

This method is a slight modification of the above method to avoid high shear forces 

because high shear forces can’t help control particle size effectively. An emulsion is prepared by 
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adding organic solvent to a solution of chitosan with surfactant followed by ultrasonication. The 

emulsion formed is then added to a surfactant solution and allowed to stir until the organic 

solvent is evaporated, forming nanoparticles. The NP were washed and centrifuged multiple 

times to remove excess surfactant followed by lyophilization (Vila et al. 2002; Wang et al. 

2013). 

2.7.8. Reverse micellar method 

The surfactant is dissolved in an organic solvent followed by the addition of chitosan, 

drug and crosslinking agent, under constant overnight vortexing. The organic solvent is 

evaporated and this results in the formation of a dry mass. The dry mass is dispersed in water and 

then a suitable salt is added for precipitating the surfactant and removed by centrifugation 

(Malmsten 2002; Zeinab Sadat et al. 2017). A very narrow size range of nanoparticles is seen. 

Unfortunately, however, organic solvents are used, which is less preferable because organic 

solvents are flammable and create hazardous waste that is costly to dispose-off (Cristina 2014). 

Doxorubicin-dextran conjugate loaded chitosan nanoparticles were prepared by a reverse 

micellar method. The surfactant used in this method was sodium bis (ethyl hexyl) sulfosuccinate 

(AOT), which was dissolved in n-hexane. The NP were formed by adding liquid ammonia and 

0.01% glutaraldehyde to the AOT solution, containing 0.1% chitosan in acetic acid and 

doxorubicin-dextran conjugate, from which NP formed upon continuous stirring at room 

temperature (Mitra et al. 2001; Liu et al. 2007). 

 As per the above discussion of MMF, sustained drug release, nanoparticle properties and 

preparation methods, preparing nanoparticles of MMF with either PLGA or PLA (acid-capped) 

coating with chitosan by emulsion based solvent evaporation method was deemed a suitable 

approach to designing an oral controlled release drug delivery system. MMF was chosen over 
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mycophenolic acid because of its somewhat more hydrophobic nature which might increase its 

interaction with the polymers. MMF has slight water solubility, 43 mg/mL while mycophenolic 

acid is water insoluble. The pKa of MMF is 9.76 while the pKa of mycophenolic acid is 3.57. 

Acid-capped PLGA and PLA were chosen as polymers because of their properties discussed 

above and faster drug release compared to ester type (Doiron et al. 2009). Chitosan coating was 

considered to achieve a mucoadhesive NP surface and also to potentially restrict the amount of 

drug release in the first few hours in the acidic stomach environment. An emulsion-based solvent 

evaporation method was chosen because of its feasibility and advantages it offers such as 

simplicity, feasibility and ability to use non-toxic solvents in preparing the nanoparticles of this 

type.  
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2.8. Hypothesis 

(1) MMF encapsulation in PLGA or PLA polymeric nanoparticles (PNPs) is dependant on 

polymer molecular weight and drug to polymer ratio. 

(2) Chitosan coated nanoparticles of MMF in PLGA/PLA matrix (CS-PNPs) will achieve an 

entrapment efficiency of >75%.  

(3) CS-PNPs will provide sustained release of MMF up to 24h in simulated gastric fluid 

(SGF) for 2h followed by simulated intestinal fluid (SIF), USP and minimal burst release 

compared to PNPs. 

(4) CS-PNPs have mucoadhesive potential as demonstrated by zeta potential alteration 

following mucin interaction.  

2.9. Specific aims 

(1) To prepare PNPs with low MW PLGA/ high MW PLGA/ medium MW PLA and analyze 

for particle size, zeta potential, encapsulation efficiency and in vitro drug release.  

(2) To prepare CS-PNPs with low MW PLGA/ high MW PLGA/medium MW PLA in 

combination with low/ medium/ high molecular weight chitosan separately and analyze 

for particle size, zeta potential, encapsulation efficiency and in vitro drug release. 

(3) To assess the morphological features of optimal formulations. 

(4) To evaluate mucoadhesive property of the optimal formulations by assessing changes in 

zeta potential following interaction with mucin. 
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Chapter-III. Materials and methods 

3.1. Materials 

Mycophenolate mofetil ( MMF) (≥98% pure), D-α-tocopherol polyethylene glycol 1000 

succinate (Vitamin E TPGS), polyvinyl alcohol (9000-10000 MW, 80% hydrolyzed), Resomer 

RG 752H (acid end polylactic-co-glycolic acid (PLGA) 75:25, MW: 4000-15000), Resomer RG 

653H (acid end polylactic-co-glycolic acid (PLGA) 65:35, MW: 24000-38000) and Resomer R 

203H (acid end polylactic acid (PLA), MW: 18000-24000); low (50-190kDa and 75-85% 

deacetylated), medium (190-310kDa and 75-85% deacetylated), high (310-375kDa and >75% 

deacetylated) molecular weight chitosan, acetone (HPLC grade) and methanol (HPLC grade) 

were all purchased from Sigma-Aldrich Canada. Cellcept® i.v. purchased from Roche Canada.  

3.2. Preparation of nanoparticles 

3.2.1. Preparation of PNPs.  

PNPs were prepared by an emulsion-based solvent evaporation method (Sharma et al. 

2016a) with slight modifications. Briefly, MMF and low MW PLGA/ high MW PLGA/ med 

MW PLA [at drug: polymer ratios of 1:3, 1:5 or 1:7 (w/w)] were dissolved in 1mL chloroform 

and added to 0.5% w/v polyvinyl alcohol (PVA) in 2mL water on a vortex mixer at a constant 

rate of 20mL/min with a syringe pump (NE-1000, New Era syringe pump, USA). The primary 

emulsion was then size-reduced by ultra-sonication for 5 min at 40% amplitude using a 1/8” 

probe tip (Branson Sonifier 250). Next, the emulsion was added at a constant rate of 20mL/min 

using a syringe pump to 5mL of 0.5% w/v PVA in a beaker and allowed to harden for 3h by 

constant stirring at 300rpm. After hardening, the PNPs were ultracentrifuged at 50,310×g for 

25min and washed for three times to remove excess surfactant. The PNP pellet after the third 

wash was suspended in 4mL of deionized water.  For cryoprotection 1mL of sucrose (5% w/w) 
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was added to each formulation. The final PNP suspension (5mL) was frozen to -80oC and 

lyophilized for 72h. PNPs after lyophilization were stored at 4oC until further characterization.   

3.2.2. Preparation of chitosan coated PNPs. 

Chitosan coated PNPs (CS-PNPs) were prepared in  a similar manner as the above 

method with slight modifications (Vila et al. 2002) as follows. MMF-loaded nanoparticles 

(PLGA or PLA) were prepared as described above, but during the hardening step in 0.5% PVA, 

chitosan (low, medium or high MW as described in Materials) in dilute acetic acid (2% v/v) was 

added. The coating/hardening process continued with stirring 6h at 23°C. Thus, the CS-PNP 

compositions could be easily varied as 1:3:3, 1:5:5 or 1:7:7 drug: polymer: chitosan (w/w/w) 

ratios for each of the PLGA and PLA compositions. The added drug content remained constant 

for all formulations. 

3.3. HPLC method development of mycophenolate mofetil (MMF). 

An HPLC method for quantification of MMF was developed on Waters 2695 Separations 

module equipped with Waters 2996 photodiode array detector. MMF was separated on XTerra® 

C18 column (Waters, USA) with 5 µm particle size and 4.6 × 100mm dimensions. Mobile phase 

used was 0.3% triethylamine in water (pH 5.3, adjusted with orthophosphoric acid): acetonitrile 

(90:10) as solvent A and acetonitrile as solvent B at gradient level. The gradient system was set 

as 100% solvent A at the start of run and 50% each solvent by the end of run. A calibration curve 

was developed by preparing standard solutions in methanol and the range was 10-60 µg/mL and 

was found to be linear with r2 value of 0.997. The retention time of MMF was found to be at 12.8 

min. This method was having issues such as varied column pressure, repeatability and equipment 

blockade because of orthophosphoric acid. Then, another method was developed on a C8 column 

to reduce the retention time which is discussed in detail below.  
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An HPLC method for the quantification of MMF was developed on Waters 2695 

Separations module equipped with Waters 2996 photodiode array detector. MMF was separated 

on Luna® C8 column (Phenomenex®, USA) with 5µm particle size and 30 × 2mm dimensions. 

The mobile phase used was 0.3% triethylamine (TEA), pH 5.3 [pH adjusted with trifluoro acetic 

acid (TFA)] and acetonitrile at a ratio of 70:30 (v/v) respectively, and the flow rate was 

0.4mL/min. A calibration curve was developed by preparing standard solutions in methanol, and 

the range was 2-60µg/mL and was found to be linear with r2 value of 0.996. The percentage 

relative standard deviation (RSD) of inter-day precision (0.85%) was within limits (<2%). The 

limit of detection (LLOD) and lower limit of quantification (LLOQ) were found to be 0.1 µg/mL 

and 2 µg/mL respectively. The retention times of mycophenolic acid (MPA) and MMF were 

found to be non-overlapping and at 2.1 min, and 2.8min respectively.  

3.4. Particle size, polydispersity and zeta potential. 

The mean particle size (nm), polydispersity index (PDI) and zeta potential (mV) of PNPs 

and CS-PNPs were determined by dynamic light scattering (Nano ZS, Malvern). Briefly, 300µg 

of the sample was dispersed in 1mL deionized water and ultrasonicated (1/8” probe) for 10s at 

10% amplitude before analysis. All the measurements were made in triplicates at 25oC and 

reported as mean±SD.  

3.5. Encapsulation efficiency. 

The encapsulation efficiency (EE) was measured by weighing 500 µg of PNP and adding 

1mL of acetone followed by bath sonication for 1h. The acetone was evaporated under a 

vacuum, and a triple solvent extraction was performed: in the first extraction step, methanol was 

added to extract the drug, followed by centrifugation at 14000 rpm for 10 min. The supernatant 

(first extract) was gently separated with the help of pipette and saved for quantification of drug 
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content. This procedure was repeated with the PNP sample twice more to maximize drug 

extraction, yielding second and third extract (Mu and Feng 2003). Drug content was quantified in 

all the extractions and the encapsulation efficiency was calculated according to equation-2.  

 The encapsulation efficiency of CS-PNPs was estimated in a manner similar to the above 

method, except for the addition of 2% (v/v) acetic acid (AA), bath sonication for 1h and 

evaporation of AA, prior to addition of acetone.  

EE = (**+	-.	/01	23145617**+	-.	8.9	23145617**+	-.	:49	2314561)
**+	59929	-.	<=<	>4	?@A<=<

× 100_______Equation 2 

3.6. In vitro drug release study. 

In vitro drug release studies were performed by the dialysis bag method with slight 

modification (Venkatesh et al. 2015). Instead of drawing the sample from dissolution medium, 

PNP samples were collected from the dialysis bag to be within the quantifiable range of the 

HPLC analytical method (LLOQ = 2µg/mL). Pre-weighed (6mg) PNPs or CS-PNPs were 

suspended in deionized water (2mL) and introduced into a dialysis membrane (MW cut off 

12000 -14000 Da). The dialysis bag was suspended in 900mL simulated gastric fluid, USP 

(SGF) for the first two hours, followed by 900mL simulated intestinal fluid, USP (SIF) for the 

remaining time to 24h. The media were stirred in a 1L beaker at 100rpm and maintained at 37± 

2oC. At predetermined time intervals; 0, 1, 2, 4, 6, 12 and 24h, 100µL of sample was collected 

from the dialysis bag and the drug content was determined by procedure described above.  

3.7. Morphological study. 

The surface morphology of PNPs and CS-PNPs was studied using a scanning electron 

microscope (SEM), Hitachi SU8000. In SEM, a strong electron beam focused onto a solid 
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sample scans point by point resulting in an image (Klang et al. 2012). SEM provides greater 

depth of focus while projecting areas casts shadows. Another advantage of SEM includes, 

individual particle analysis unlike to that of dynamic light scattering. There is no or minimal 

sample preparation while analyzing samples through SEM (Klang et al. 2013). Prior to the 

analysis, the samples were fixed on a brass stub using double-sided tape and the samples were 

coated with chromium (to render them electrically conductive). The images were then captured 

using SEM set at an excitation voltage of (3.0 kV). The magnification selected (400-10K) was 

sufficient to appreciate in detail the general morphology of the samples under study (Hecq et al. 

2015). 

3.8. Differential scanning calorimetric (DSC) study. 

Thermal properties of drugs and drug formulations can be estimated by calorimetric 

analysis. Differential scanning calorimetric (DSC) analysis measures energy differences between 

a sample and a reference. It analyzes the change in physical properties upon temperature 

fluctuations over time (Gill et al. 2010). To study the physical state of MMF in CS-PNPs and 

compatibility of MMF with other excipients, thermal analysis was performed on DSC-Q2000, 

TA instruments, USA. A small amount of sample (<10mg) was sealed into Tzero hermetic pans 

and the temperature was raised at 1oC/min over a scanning range of 4-350oC under nitrogen 

atmosphere (Patel et al. 2016). The data collected was analyzed for melting points and enthalpies 

using TA Advantage software, version 5.5.24.  

3.9. Potential mucoadhesive properties. 

The mucoadhesive potential of CS-PNPs was assessed by measuring zeta potential 

changes upon addition of mucin protein solution (Takeuchi et al. 2005). Zeta potential is a 

measurement of the electrical potential difference between the surface of the particle and the 
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bulk phase in which it is suspended. Therefore, it represents indirectly the available charge for 

binding or repelling oppositely or similarly charged particles, respectively. Likewise, if a particle 

with a given zeta potential binds another material, such as protein, the surface charge of the 

particles in suspension would be expected to change. Briefly, 300µg of CS-PNP were added to 

mucin (porcine gastric mucus type-II, 5mg/mL), incubated for 1h at 37°C and diluted 100-fold in 

deionized water before analyzing zeta potential at ambient temperature (23°C). The zeta 

potentials of mucin alone and of the CS-PNPs in water without mucin were also measured, 

serving as controls. 

3.10. Statistical Analysis. 

The data obtained was subjected to one-way analysis of variance (ANOVA), and the 

significance of differences between any two formulations was calculated by Tukey’s post-hoc 

test with SPSS software (IBM, New York, USA). The level of significance chosen was p<0.05.  
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Chapter IV. Results and Discussion 

4.1. Preparation of nanoparticles. 

There are several methods used for preparing PNPs or CS-PNPS such as variations on 

emulsion-based solvent evaporation methods, ionotropic gelation and complex coacervation 

techniques (Mohammed et al. 2017). PLGA and PLA are biodegradable, biocompatible polymers 

approved by the US FDA for human use (El-Say and El-Sawy 2017) and represent polymers 

particularly amenable to nanoparticle formulations because they are readily available at various 

MW ranges and can be obtained with acid or ester end-capping. PLGA is also available at 

several polylactic: polyglycolic ratios. These variables aid the formulator to make rational 

choices suiting the drug properties as well as permitting empiric optimization with minor 

compositional changes using the same particle formation method. The method utilized here for 

the preparation of PNPs and CS-PNPs was an emulsion-based solvent evaporation method with 

slight modifications. Although our aim was to develop CS-PNPs, initially uncoated PNPs were 

prepared with three molecular weight ranges of PLGA or PLA (low, medium high) in order to 

determine an optimal formulation maximizing encapsulation efficiency.  

 In the preliminary experiments, nanoparticles (NPs) were prepared with Cellcept® 

(intravenous formulation of MMF), ester end polylactic-co-glycolic acid (PLGA 75:25, lactic 

acid: glycolic acid), D-α-tocopherol polyethylene glycol 1000 succinate (vitamin E TPGS) as the 

surfactant and chloroform as solvent by single emulsion based solvent evaporation method. Each 

NP formulation had 7mg Cellcept® (6.6 mg of MMF), 21mg PLGA and concentration of 

Vitamin-E TPGS was varied at 0.1%, 0.5% and 1.0% (w/v) respectively. The NPs were then 

analyzed for particle size and encapsulation efficiency. the formed nanoparticles exhibited a 

bimodal size distribution, which can be considered as centred around two different mean 
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diameters (population 1, population 2) indicating heterogeneity [Figure 4]. All nanoparticle 

preparations had a negative zeta potential of -30 to -40 mV.  More than 95% of the drug was 

found to be in the washes. Upon repeating these NP formulations, clumps were seen after the NP 

hardening step. Generally, an oil-in-water emulsion requires an HLB of approximately 8-18. 

Vitamin-E TPGS has an HLB value of 13.2 and it is a hydrophilic surfactant (Zhang et al. 

2012b). The concentration of Vitamin-E TPGS chosen was 0.1, 0.3 and 0.5% (w/v). The PNPs 

prepared with Vitamin-E TPGS had very low encapsulation efficiency, suggesting it may be an 

unsuitable surfactant for PLGA-MMF nanoparticles by this method. The reason for low MMF 

encapsulation efficiency into PLGA with this surfactant can be speculated to be due to the 

formation of micelles of MMF and Vitamin-E TPGS, although this was not tested. So, vitamin-E 

TPGS was replaced with polyvinyl alcohol (PVA) in preparing further NPs. Polyvinyl alcohol 

(PVA) is a synthetic water-soluble polymer (log P = 0.5) often used as an emulsifier in the 

fabrication of polymeric nanoparticles by emulsion techniques. 

 

Figure 4. Particle size of nanoparticles made with Cellcept®, PLGA and vitamin-E TPGS as 

surfactant. NP formulations show heterogeneity.  
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NPs made with PVA (0.5% w/v) showed particle size below 300nm and polydispersity 

index below 0.4 indicating a single homogenous NP population. But, the loss of drug in the 

washes was still an issue. Moreover, as the goal of this project is to develop NPs with 

mucoadhesive nature, a second polymer, medium molecular weight chitosan (MMWC) was used 

and NPs were prepared by double emulsion solvent evaporation method (Giovino et al. 2012). 

Theoretically, NPs prepared by double emulsion method using chitosan should possess positive 

zeta potential but that was not the case here. Moreover, the drug loss (>95%) in washes was not 

reduced.  

The next step to achieve high (>75%) encapsulation efficiency was a slight change in the 

nanoparticle preparation (modified single emulsion method) explained further (Vila et al. 2002) 

with slight modifications. In this modified method, MMWC was added during the hardening 

step. Another important factor behind achieving high encapsulation efficiency was the type of 

surfactant and the concentration of the surfactant. NPs were prepared by a modified single 

emulsion method containing Cellcept®=7mg, PLGA=21mg, MMWC= 21mg and two different 

concentrations of PVA; 0.5 and 2.5% w/v. Figure-5 indicates the particle size of the NPs with 

0.5% w/v as 580nm and positive zeta potential (0.72 mV) in comparison with NPs prepared 

without MMWC but >95% of drug was lost in washes.  
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Figure 5. Particle size and zeta potential of NPs made with and without medium molecular 

weight chitosan.  

In another trial of NP preparation with Cellcept®=7mg, PLGA=70mg and 0.5% w/v PVA 

particle size of 264 nm, negative (-36.4mV) zeta potential and 21±5% encapsulation efficiency 

was achieved. Although, 21% encapsulation is less compared to the desired, it was promising to 

continue further trials in enhancing the encapsulation efficiency. The main reason behind failure 

of encapsulating MMF was usage of Cellcept® in all the formulations as Cellcept® is an 

intravenous formulation of MMF which also has 25mg of polysorbate-80 per vial of Cellcept®. 

So, for further trials, MMF (98% pure) was used. Moreover, as MMF is slightly soluble in water, 

acid capped PLGA/PLA polymers were chosen to improve encapsulation efficiency. 

Subsequently, CS-PNPs were prepared by adding either low, medium or high MW 

chitosan to the polymer nanoparticles (PLGA or PLA) loaded with MMF. The concentration of 

PVA to be used as a surfactant in the preparation of PNPs was then optimized to 0.5% (w/v) 

based on encapsulation efficiency. The hardening time for CS-PNPs was increased to 6h to 

facilitate the coating of chitosan onto PNPs by electrostatic attraction between PLGA/PLA and 

chitosan. While quantification of chitosan coating on the nanoparticles is ideal, low drug release 
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from CS-PNPs in the first two hours and charge reversal upon chitosan coating provide evidence 

to report chitosan coating on PNPs. Ninhydrin reagent is generally used in the determination of 

chitosan and degree of acetylation (Khan et al. 2002) and Fourier transform infrared 

spectroscopy (FTIR) may used to confirm chitosan conjugation with PLGA/PLA (Curotto and 

Aros 1993). All the PNP and CS-PNP formulations contained 7mg of MMF for ease of 

comparison.  In vivo pharmacokinetic studies will be required to estimate the dose required to 

achieve an efficacious drug exposure level, but it is anticipated that similar to other sustained 

release drug formulations, a lower total drug amount per day will be required. 

4.2. Particle size, polydispersity and zeta potential.  

One of the key parameters for nanoparticle performance is size and size distribution. For 

example, controlling mean diameter affects the surface area available for dissolution from the 

exterior. Furthermore, monodisperse particles permit more predictable control over drug release. 

The polydispersity index (PDI) of most of the PNP formulations discussed here was < 0.2 [Table 

2], which indicates a reasonably narrow unimodal size distribution. As the ratio of polymer to 

drug content was increased, the mean particle diameter also increased correspondingly, as 

expected.  The addition of chitosan coating to the nanoparticles comprised of MMF/PLGA or 

MMF PLA did increase the mean diameter slightly (compare Table 2 vs. Table 3), but the 

particle size is still submicron at all drug: polymer ratios, acceptable for oral drug delivery.  The 

observed negative zeta potential of the PLGA and PLA nanoparticle formulations was likewise 

consistent [Table 3]. An indication of successful chitosan coating was the significant increase in 

zeta potential, corresponding to the amount of chitosan in the formulation [Tables 3, 4 and 5]. A 

positive zeta potential is desirable for the CS-PNPs in order to promote mucoadhesion following 

in vivo administration (Lubben et al. 2001). The zeta potential of CS-PNPs made of either low 
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MW PLGA or medium MW PLA in combination with low MW chitosan was still negative, 

possibly due to incomplete coating with chitosan, or an insufficient amount to cause the particle 

surface charge to become positive [Table 3 and 5 respectively].  Similarly, CS-PNPs made with 

MMF, high MW PLGA and low MW chitosan in 1:3:3 and 1:5:5 ratios show a negative zeta 

potential [Table 4]. Other compositions incorporating medium or high MW chitosan did 

successfully generate cationic nanoparticles. Stress during lyophilization can significantly affect 

the particle size (Fonte et al. 2016). The particle size data in Table 6 indicate that there was a 

significant difference in particle size before and after lyophilization. Generally, cryoprotectants 

are added during lyophilization to reduce freezing or drying stress thereby enhancing the stability 

of PNPs. Trehalose, sucrose and mannitol are most commonly used cryoprotectants which yield 

different sized PNPs and effect their stability (Abdelwahed et al. 2006; Almalik et al. 2017). In 

this first foray, we chose to use sucrose, generating nanoparticles that were non-aggregated and 

readily redispersible. It is possible that alternative cryoprotectants may also be effective. 
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Table 2. Particle size, PDI and zeta potential of PNPs made with MMF and low MW PLGA/ 

high MW PLGA/ medium MW PLA.  

Formulation 
Particle size (nm) PDI Zeta potential (mV) 

Mean SD Mean SD Mean SD 
MMF: Low MW PLGA = 1:3 316 33.3 0.27 0.02 -42.5 1.33 

MMF: Low MW PLGA = 1:5 405 25.6 0.29 0.05 -45.2 1.75 

MMF: Low MW PLGA = 1:7 752 28.2 0.32 0.03 -49.5 0.71 
MMF: High MW PLGA = 1:3 230 15.4 0.38 0.04 -41 1.3 
MMF: High MW PLGA = 1:5 319 27.3 0.25 0.16 -41.3 1.86 
MMF: High MW PLGA = 1:7 841 26.5 0.26 0.04 -43.5 0.46 
MMF: Med MW PLA = 1:3 369 19.2 0.16 0.13 -30.2 0.88 
MMF: Med MW PLA = 1:5 580 24.7 0.34 0.04 -30.5 1.97 
MMF: Med MW PLA = 1:7 931 12.2 0.31 0.04 -37 1.43 

MMF= mycophenolate mofetil, low MW PLGA= low molecular weight poly lactic-co-glycolic 

acid, high MW PLGA= high molecular weight poly lactic-co-glycolic acid and med MW PLA= 

medium molecular weight poly(lactic) acid. PDI=polydispersity index, nm=nanometers, 

mV=millivolts. Data represented as n=3, mean±SD.  
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Table 3. Particle size, PDI and zeta potential of CS-PNPs made with MMF, low MW PLGA and 

three types of chitosan.  

Formulation 
Particle size 

(nm) PDI Zeta potential 
(mV) 

Mean SD Mean SD Mean SD 
MMF: LMWPLGA: LMWC= 

1:3:3 405 38.5 0.47 0.04 -29.5 0.31 

MMF: LMWPLGA: LMWC= 
1:5:5 600 45.8 0.62 0.02 -26.5 0.98 

MMF: LMWPLGA: LMWC= 
1:7:7 823 43.8 0.67 0.03 -27.1 1.13 

MMF: LMWPLGA: MMWC= 
1:3:3 414 43.1 0.51 0.06 31.5 0.20 

MMF: LMWPLGA: MMWC= 
1:5:5 568 53.4 0.43 0.04 35.6 0.79 

MMF: LMWPLGA: MMWC= 
1:7:7 957 57.4 0.24 0.01 39.2 1.03 

MMF: LMWPLGA: HMWC= 
1:3:3 471 13.3 0.33 0.05 41.8 0.85 

MMF: LMWPLGA: HMWC= 
1:5:5 750 22.2 0.24 0.04 45.3 1.49 

MMF: LMWPLGA: HMWC= 
1:7:7 955 20.6 0.60 0.02 44.2 0.80 

MMF – mycophenolate mofetil, LMWPLGA: low molecular weight polylactic-co-glycolic acid, 

LMWC: low molecular weight chitosan, MMWC: medium molecular weight chitosan, HMWC: 

high molecular weight chitosan. PDI=polydispersity index, nm=nanometers, mV=millivolts. 

Data represented as n=3, mean±SD. 

 

  



 46 

Table 4. Particle size, PDI and zeta potential of CS-PNPs made with MMF, high MW PLGA 

and three types of chitosan.  

Formulation 
Particle size 

(nm) PDI Zeta potential 
(mV) 

Mean SD Mean SD Mean SD 
MMF: HMWPLGA: LMWC= 

1:3:3 366 26.8 0.40 0.04 -27.2 0.6 

MMF: HMWPLGA: LMWC= 
1:5:5 420 37.4 0.45 0.02 -7.53 0.3 

MMF: HMWPLGA: LMWC= 
1:7:7 571 20.9 0.73 0.03 28.5 1.14 

MMF: HMWPLGA: MMWC= 
1:3:3 417 46 0.51 0.06 7.41 0.83 

MMF: HMWPLGA: MMWC= 
1:5:5 568 36.2 0.65 0.04 25.6 0.9 

MMF: HMWPLGA: MMWC= 
1:7:7 796 28.8 0.75 0.01 26.5 2.51 

MMF: HMWPLGA: HMWC= 
1:3:3 674 14.9 0.77 0.05 10.4 0.93 

MMF: HMWPLGA: HMWC= 
1:5:5 763 21.4 0.69 0.04 25.5 1.34 

MMF: HMWPLGA: HMWC= 
1:7:7 816 16.8 0.60 0.02 31 1.22 

MMF – mycophenolate mofetil, HMWPLGA: high molecular weight polylactic-co-glycolic acid, 

LMWC: low molecular weight chitosan, MMWC: medium molecular weight chitosan, HMWC: 

high molecular weight chitosan. PDI=polydispersity index, nm=nanometers, mV=millivolts. 

Data represented as n=3, mean±SD. 
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Table 5. Particle size, PDI and zeta potential of PNPs made with MMF, PLA and LMWC/ 

MMWC/ HMWC. 

Formulation 
Particle size (nm) PDI Zeta potential 

(mV) 
Mean SD Mean SD Mean SD 

MMF: PLA: LMWC=1:3:3 221 35.9 0.27 0.04 -22.1 1.35 

MMF: PLA: LMWC=1:5:5 340 49.2 0.32 0.02 -24.8 1.53 
MMF: PLA: LMWC=1:7:7 532 52.7 0.37 0.03 -14.9 2.48 
MMF: PLA: MMWC=1:3:3 281 53.3 0.31 0.06 24.4 1 
MMF: PLA: MMWC=1:5:5 995 34.7 0.23 0.04 53.8 1.31 
MMF: PLA: MMWC=1:7:7 1194 51.4 0.14 0.01 67.6 1.29 
MMF: PLA: HMWC=1:3:3 390 69 0.33 0.05 41.8 0.98 

MMF: PLA: HMWC=1:5:5 1079 63.9 0.24 0.04 50.4 2.53 

MMF: PLA: HMWC=1:7:7 1336 63.8 0.20 0.02 61.2 1.42 

MMF – mycophenolate mofetil, PLA: medium molecular weight poly(lactic) acid, LMWC: low 

molecular weight chitosan, MMWC: medium molecular weight chitosan, HMWC: high 

molecular weight chitosan. PDI=polydispersity index, nm=nanometers, mV=millivolts. Data 

represented as n=3, mean±SD.  
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Table 6. Particle size comparison of CS-PNPs before and after lyophilization. 

Formulation 
Particle size (nm) 

before lyophilization 
Particle size (nm) 

after lyophilization 
Mean SD Mean SD 

MMF: PLA: LMWC=1:3:3 182.7 36.5 221.8 35.99 
MMF: PLA: LMWC=1:5:5 284.6 54.2 340.4 49.21 
MMF: PLA: LMWC=1:7:7 447.2 46.8 532.6 52.7 
MMF: PLA: MMWC=1:3:3 196.8 43 281.2 53.36 
MMF: PLA: MMWC=1:5:5 257.8* 37.2 995** 34.7 
MMF: PLA: MMWC=1:7:7 430.4* 24.6 1194** 51.4 
MMF: PLA: HMWC=1:3:3 160.8* 66.1 390.5** 69 
MMF: PLA: HMWC=1:5:5 319.4* 79.1 1079** 63.9 
MMF: PLA: HMWC=1:7:7 440.2* 35.1 1336** 63.88 

MMF – mycophenolate mofetil, PLA: medium molecular weight poly(lactic) acid, LMWC: low 

molecular weight chitosan, MMWC: medium molecular weight chitosan, HMWC: high 

molecular weight chitosan. nm=nanometers. Data represented as n=3, mean±SD. *, ** mean 

particle size was significantly different before and after lyophilization (p<0.05).  

4.3. Encapsulation efficiency (EE) 

The encapsulation efficiency (EE) of PNPs made with low MW PLGA ranged from 66.7-

97.3% [Figure 6a]. Similarly, the EE of PNPs made with high MW PLGA and medium MW 

PLA raged from 61.4-92.1% and 86.8-100% [Figures 6b and 6c respectively]. The EE of MMF 

increases with increasing drug: polymer ratios [Figures 6a, 6b and 6c]. Of note, both PLGA and 

PLA are available with carboxylic acid terminus or as the corresponding ester terminus. In the 

present study, the acid-terminated form of PLGA was far more effective in encapsulating MMF 

than the ester terminated. In theory, this may have contributed to the encapsulation of MMF by 

its more hydrophilic nature compared to the ester form (Félix Lanao et al. 2013);  MMF with its 

slight water solubility (43mg/mL) showed high (>75%) EE in almost all the PNP formulations 
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using acid-terminated polymers. Another consideration is the ratio of glycolic to lactic acid 

monomers within the block copolymer. Specifically, the encapsulation of MMF in formulations 

comprised of MMF: low MW PLGA (1:5 w/w, 92.6% EE) was significantly different (p<0.05) 

when compared to MMF: high MW PLGA (1:5 w/w, 74.1% EE), where there is a higher (75%) 

lactic acid content in low MW PLGA compared to that of high MW PLGA (65%). Lactic acid 

(log P= -0.72) is more hydrophobic than glycolic acid (log P= -1.11).  Furthermore, 

nanoparticles with drug: polymer ratios of 1:7 (w/w) show very high encapsulation (EE >92%) 

which could be due to high lactic acid content (Félix Lanao et al. 2013) or alternatively, it may 

simply be that at the higher MW polymer content and higher polymer: drug ratio there is a 

critical quantity of available polymer to incorporate the drug. However, greater polymer content 

did not significantly improve encapsulation for low MW PLGA (1:5 vs 1:7) or for PLA (1:5 vs. 

1:7) [Figures 6b and 6c]. Hence, even with rational design, there is a need for systematic empiric 

testing within a range of compositions. 
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Figure 6. Graphical representation of encapsulation efficiency of PNPs made with MMF and 

low MW PLGA (a), high MW PLGA(b) and medium MW PLA (c). Data represented as 

mean±SD. MMF= mycophenolate mofetil, low MW PLGA= low molecular weight poly lactic-

co-glycolic acid, high MW PLGA= high molecular weight poly lactic-co-glycolic acid and 

medium MW PLA= medium molecular weight poly(lactic) acid. EE was significantly different 

when the ratio of drug to polymer has changed within same types of polymer (*p=0.004, 

**p<0.001).  

 The chitosan coating of the nanoparticles is a critical component for mucoadhesion and 

sustained release. The effect of chitosan coating on the PNPs was investigated as a function of 

drug, type of core polymer (low MW PLGA/ high MW PLGA/ medium MW PLA) and chitosan 

at various molecular weights (low, medium, high) in the ratios of 1:3:3, 1:5:5 or 1:7:7 (w/w/w) 

respectively. The EEs of CS-PNPs made with low MW PLGA and all types of chitosan are 

represented in Figure 7. Here, in Figure 4a, the EE ranges from 13.5-59.4% which is 

comparatively low compared to PNPs in Figure 6a. With CS-PNPs made with low MW PLGA 

and MMWC, the EE range from 19-79% and with low MW PLGA and HMWC, the EE range 
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from 26.7-95.1%. The EE increased with CS-PNPs from low MW chitosan to high MW chitosan 

in Figure 7a-7c. The EE of CS-PNPs made with high MW PLGA in combination with LMWC, 

MMWC and HMWC separately ranged from 17.1-67.3%, 21.3-74% and 25.1-75.4% 

respectively [Figures 8a-8c]. Similarly, the EE of CS-PNPs made with medium MW PLA and 

LMWC, MMWC, HMWC separately ranged from 26.1-83.5%, 21.2-94.3% and 33-86.2% 

respectively [Figures 9a-9c]. The EE of CS-PNPs increases upon increasing the drug to polymer 

ratio. The EE of CS-PNPs in Figure 7a-7c are relatively low when compared to PNPs made with 

LMW PLGA alone [Figure 6a] except in case of MMF: LMWPLGA: HMWC= 1:7:7 (95.1 % 

EE). The reason might be drug loss in the washing step, however, drug loss in the washing step 

of nanoparticle preparation should be measured. Similarly, chitosan-coated- HMW PLGA PNPs 

[Figure 8] exhibited significantly less drug loading compared to PNPs comprised of HMW 

PLGA without chitosan [Figure 6b]. Likewise, a significant difference in EE was observed 

comparing nanoparticles comprised of MMF: PLA: LMWC=1:3:3 and MMF: PLA= 1:3 without 

chitosan, where the latter had a lower EE. However, when the core polymer was PLA, the 

addition of different types of chitosan (low, medium or high MW ranges) did not reduce the EE 

significantly at the highest polymer: drug ratios (1:7:7), achieving up to 94% encapsulation 

efficiency [Figure 9].  

 The drug loading (DL) of chitosan coated PNPs was calculated according to the 

following formula as indicated in table 7.  

DL = (**+	-.	/01	23145617**+	-.	8.9	23145617**+	-.	:49	2314561)-.	GH
5G>I.1	>J	?@A<=<	-.	GH

× 100________Equation 3 

With the CS-PNP formulations made with HMWPLGA and HMWC, drug loading was found to 

increase with increase in drug to polymer ratio. 
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Table 7. Drug loading of MMF in CS-PNP formulations. Data represented as n=9, mean ± SD. 

Formulation % drug loading 
MMF: HMWPLGA: HMWC=1:3:3 3.49 ± 0.71 
MMF: HMWPLGA: HMWC=1:5:5 4.11 ± 0.58 
MMF: HMWPLGA: HMWC=1:7:7 4.91 ± 0.42 

MMF: PLA: MMWC= 1:3:3 2.95 ± 0.21 
MMF: PLA: MMWC= 1:5:5 7.21 ± 0.42 
MMF: PLA: MMWC= 1:7:7 6.12 ± 0.24 

 

 

Figure 7. Graphical representation of encapsulation efficiency of CS-PNPs made with MMF, 

low MW PLGA and low (a), medium (b) and high (c) molecular weight chitosan. Data 

represented as mean±SD. MMF – mycophenolate mofetil, LMWPLGA: low molecular weight 

poly lactic-co-glycolic acid, LMWC: low molecular weight chitosan, MMWC: medium 

molecular weight chitosan, HMWC: high molecular weight chitosan. EE was significantly 

different when the ratio of drug to polymer has changed within same types of polymer 

(*p=0.002, ** p=0.005, ***p<0.001). 
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Figure 8. Graphical representation of encapsulation efficiency and in vitro drug release of CS-

PNPs made with MMF, high MW PLGA and low (a), medium (b) and high (c) molecular weight 

chitosan. Data represented as mean±SD. MMF – mycophenolate mofetil, HMWPLGA: high 

molecular weight poly lactic-co-glycolic acid, LMWC: low molecular weight chitosan, MMWC: 

medium molecular weight chitosan, HMWC: high molecular weight chitosan. EE was 

significantly different when the ratio of drug to polymer has changed within same types of 

polymer (*p=0.007, ** p=0.002, ***p<0.001). 
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Figure 9. Graphical representation of encapsulation efficiency and in vitro drug release of CS-

PNPs made with MMF, PLA and low (a), medium (b) and high (c) molecular weight chitosan. 

Data represented as mean±SD. MMF – mycophenolate mofetil, PLA: medium molecular weight 

poly(lactic) acid, LMWC: low molecular weight chitosan, MMWC: medium molecular weight 

chitosan, HMWC: high molecular weight chitosan. EE was significantly different when the ratio 

of drug to polymer has changed within same types of polymer (*p=0.003, ** p=0.005, 

***p<0.001). 
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4.4. In vitro drug release study. 

In order to determine a composition most likely to achieve the desired slow release in 

vivo, drug release was evaluated in simulated gastric fluid, USP (SGF) over two hours followed 

by simulated intestinal fluid without enzymes, USP (SIF) over the next 22hrs. Both the media 

were enzyme-free because enzymatic action on PLGA/PLA is not the cause of its degradation  

(Makadia and Siegel 2011), which is rather due to hydrolysis.  The objective was to determine if 

chitosan coating might delay burst release at acid pH, representing drug release in the stomach. 

At pH 5, the solubility of chitosan is 9.9 mg/mL but during our laboratory experiments, chitosan 

solubility in acidic solutions required time and energy in the form of bath sonication.  

Comparisons in release rate and extent were made between nanoparticles comprised of PLGA vs. 

PLA, and between two different molecular weight ranges of PLGA (low vs. high). The ratio of 

drug: polymer was also varied stepwise in the same manner as the drug loading studies, in order 

to determine the minimum of polymer needed not only for optimal encapsulation efficiency but 

also to retard drug release appropriately. The effect of chitosan coating on the core polymer 

nanoparticles (PLGA or PLA) was also investigated for impact on drug release rate for each core 

polymer composition, and also varying chitosan type (low, medium and high molecular weight 

range). The ratio of chitosan to PLGA or PLA was kept the same [e.g. 1:7:7 or 1:5:5 (w/w/w) 

refers to drug: polymer: chitosan ratio] as a reasonable limit on the number of combinations, 

although future studies may include a greater proportion of chitosan relative to the core polymer. 

Several mechanisms are understood by which drug is released from nanoparticles; (i) 

diffusion through polymer matrix (ii) desorption of drug bound to surface (iii) nanoparticles 

matrix erosion and (iv) combines erosion-diffusion process (Danhier et al. 2012). Drug release 

from PLGA and PLA nanoparticles is generally governed by a diffusion-degradation process. 
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More specifically, in the early hours of drug release in media, a diffusion process dominates, 

which is then followed by degradation of the polymer matrix in the later hours (Mogi et al. 

2000). A significant burst effect (>50% of drug) was seen in PNPs made with low MW PLGA or 

high MW PLGA within 2 h in SGF [Figure 10a and 10b], which has a pH of 2.0. With the PNPs 

made with low MW PLGA; at 1:3 drug: polymer ratio almost all the drug was released in 6h, 

while with 1:5 and 1:7 drug: polymer ratio, approximately 65% of the drug was released within 

2h in SGF and the rest of the drug was more slowly released in SIF until 24 h, consistent with the 

concept of a longer time to erode the larger amount of polymer. The slight delay in the drug 

release with high MW PLGA compared to low MW PLGA at 1:7 ratio [Figure 10b and 10a 

respectively] was likely due to polymer length and lactic acid content (Mittal et al. 2007); high 

molecular weight corresponds to a greater hydrophobicity due to lactic acid, thereby theoretically 

delaying water ingress and therefore drug solubilization and release (Félix Lanao et al. 2013).  

This effect can be seen comparing Figures 10a and 10b (PLGA) 10c (PLA) where drug release is 

slower in PLA-based NPs.  Overall, a significant burst release within first 2 h was observed in 

PNPs made with low MW PLGA and high MW PLGA likely due to PLGA autocatalysis in acid 

environment (Pamula and Menaszek 2008). The ratio of drug to polymer plays a key role in drug 

release, as is evident in Figure 10b. Since PLA is the most lipophilic of all the polymers used, 

drug release was further delayed and with 1:7 drug to PLA polymer ratio, a minimal burst release 

(20%) and a desirable sustained release profile until 24 h was observed [Figure 10c]. Overall, the 

PLA nanoparticles showed a sustained release of MMF over at least 12-15h and in some cases, 

up to 24 h with minimal burst release.  
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Figure 10. Graphical representation of in vitro drug release of PNPs made with MMF and low 

MW PLGA (a), high MW PLGA(b) and medium MW PLA (c). Data represented as mean±SD. 

MMF= mycophenolate mofetil, low MW PLGA= low molecular weight poly lactic-co-glycolic 

acid, high MW PLGA= high molecular weight poly lactic-co-glycolic acid and medium MW 

PLA= medium molecular weight poly(lactic) acid. Drug release at 2h was found to be different 

with different formulations prepared (ƚp=0.004, ƚƚp=0.006, ƚƚƚ p<0.001). 
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 Around 60% of drug was released in the first 2h from CS-PNPs made with low 

MW PLGA plus LMWC or MMWC [Figure 11a and 11b] but when HMWC was substituted, 

only 40% of drug was released at this early timepoint [Figure 11c]. Almost 90% of the drug was 

released by the end of 12h [Figure 11]. Significant burst release from most the CS-PNP 

formulations made with HMW PLGA and all three types of chitosan could be due to the HMW 

PLGA [Figure 12]. The presence of 35% glycolic acid in HMW PLGA makes it more 

hydrophilic and degradable in SGF (Alexis 2005). With MMF: PLA: LMWC= 1:3:3, about 45% 

of drug released within 2 h, which may suggest that a lesser degree of chitosan coating was 

achieved, which was supported by zeta potential data (-22.1 mV). The CS-PNPs made with PLA 

and medium MW chitosan showed minimal burst release (<25%) within 2 h with the ratio 1:5:5 

and 1:7:7 [Figure 13b], reflecting the low solubility of chitosan at this pH (Kumar et al. 2004). 

Although there was no significant difference at 1, 2 and 4h between CS-PNPs with PLA and 

MMWC at 1:5:5 and 1:7:7 ratios [Figures 13b], MMF: PLA: MMWC= 1:7:7 showed a sustained 

released of up to 24h. CS-PNPs made with PLA and HMWC showed a significant burst release. 

Even though there was burst release, the drug release after 2 h was well controlled with MMF: 

PLA: HMWC= 1:5:5 and 1:7:7.  

 

 

 

Table 8. Factors affecting burst release from the nanoparticles 

Factors Cause Effect 

Surface drug Fabrication of nanoparticles, presence of Rapid release 
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media, absence of second coating 

Presence of pores 

(increased surface 

area) 

Solvent evaporation, solvent type and 

temperature at which the solvent is 

evaporating. 

Rapid release 

Particle size Mixing conditions while preparing 

nanoparticles, type of surfactant and 

surfactant concentration.  

Large particle size-

decreased surface area 

hence, slow release. 

Small particle size- 

increased surface area 

hence, faster release. 

Drug crystals in pores Differential solubility of the drug in the 

solvents while fabricating nanoparticles.  

Faster release or 

dissolution limited 

formulation. 

pH of the media Polymer solubility, polymer degradation 

and drug pKa. 

Rapid release at pH where 

drug solubility is 

maximum. 

Delayed release at all other 

pH(s).  

Internal structure of 

nanoparticles 

Fabrication method, choice of the solvent, 

solvent evaporation conditions and vapour 

pressure of the solvent 

Variable drug release.  

 

 

With the above results, MMF: HMW PLGA: HMWC= 1:7:7 and MMF: PLA: MMWC= 

1:7:7 [Figures 12c and 13b respectively] were chosen as optimal formulations and were 

subjected to further characterization such as differential scanning calorimetry, surface 
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morphology and mucoadhesion potential via mucin binding studies. Moving forward, the oral 

pharmacokinetics of MMF will be assessed in vivo to understand the relationship between in 

vitro drug release and blood concentrations over time, and therefore whether this formulation 

approach will be suitable for achieving oral sustained release in the more rigorous environment 

of the gastrointestinal tract. 
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Figure 11. Graphical representation of in vitro drug release of CS-PNPs made with MMF, low 

MW PLGA and low (a), medium (b) and high (c) molecular weight chitosan. Data represented as 

mean±SD. MMF – mycophenolate mofetil, LMWPLGA: low molecular weight poly lactic-co-

glycolic acid, LMWC: low molecular weight chitosan, MMWC: medium molecular weight 

chitosan, HMWC: high molecular weight chitosan. Drug release at 2h was found to be different 

with different formulations prepared (ƚp=0.004, ƚƚp=0.002).   
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Figure 12. Graphical representation of in vitro drug release of CS-PNPs made with MMF, high 

MW PLGA and low (a), medium (b) and high (c) molecular weight chitosan. Data represented as 

mean±SD. MMF – mycophenolate mofetil, HMWPLGA: high molecular weight poly lactic-co-

glycolic acid, LMWC: low molecular weight chitosan, MMWC: medium molecular weight 

chitosan, HMWC: high molecular weight chitosan. Drug release at 2h was found to be different 

with different formulations prepared (ƚp=0.002, ƚƚp=0.007, ƚƚƚ p<0.001).   
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Figure 13. Graphical representation of in vitro drug release of CS-PNPs made with MMF, PLA 

and low (a), medium (b) and high (c) molecular weight chitosan. Data represented as mean±SD. 

MMF – mycophenolate mofetil, PLA: medium molecular weight poly(lactic) acid, LMWC: low 

molecular weight chitosan, MMWC: medium molecular weight chitosan, HMWC: high 

molecular weight chitosan. Drug release at 2h was found to be different with different 

formulations prepared (ƚp=0.005, ƚƚp=0.003, ƚƚƚ p<0.001).   
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4.4. Scanning Electron Microscopy (SEM). 

One of the advantage of analyzing nanoparticles with SEM rather than transmission 

electron microscopy (TEM) is the ability to look at the particle surface (Klang et al. 2012). 

SEM analysis revealed that the PNPs and CS-PNPs are spherical and correspond to the 

unimodal size distribution seen by dynamic light scattering (DLS) experiments. As 

mentioned above, SEM can help look at individual NPs unlike DLS. In DLS, average 

particle size of the sample is obtained. The nanoparticles exhibit smooth surface and 

minimal pores as indicated in Figure 14. Presence of pores can be evidently seen in the 

Figure 14C. Evaporation of the organic solvent while fabricating the nanoparticles is 

responsible for the formation of pores. Moreover, presence of pores increases the surface 

area of the particles, hence, rapid or burst release from the nanoparticles. Pore size depends 

on the rate of evaporation of the organic solvent and the temperature conditions. Elevated 

temperatures generally increase the rate of evaporation of organic solvent which further 

increases the pore size of nanoparticles(Liu et al. 2014). Absence of pores in the Figure 14D 

reflects chitosan coating when compared to the Figure 14C. Some of the SEM images 

(Figure 14C) also contain crystals which could either MMF or sucrose added before 

lyophilization. The bar on the SEM images help depict the size of nanoparticles. The optimal 

PNPs described above in the drug release studies are of 500 nm size while the optimal CS-

PNPs are in between 500-1000 nm.  
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Figure 14. Scanning electron microscopy (SEM) images of MMF: PLA= 1:7 (A), MMF: 

PLA: MMWC= 1:7:7 (B), MMF: HMWPLGA= 1:7 (C) and MMF: HMWPLGA: HMWC= 

1:7:7 (D). Sample magnification is 5000 (A) & 10000 (B, C and D). 

4.5. Differential Scanning Calorimetry (DSC) analysis 

DSC measures all the reactions where energy changes are involved. In particular, 

DSC can help analyze, specific heat, glass transition, melting, boiling, sublimation, 

decomposition and isomeration of a compound (Giron 1986). Apart from the above analysis, 

DSC can also help evaluate purity of a compound, quantification of crystallinity, 

polymorphism, stability and decomposition kinetics, presence of molecular water and 

hydrates (Sophie-Dorothée et al. 1999). As a result, DSC analysis is generally used as a 
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screening techniques in pharmaceutical formulations and dosage forms (Pyramides et al. 

1995; Mora et al. 2006; Demetzos 2008). A typical DSC thermogram of any pharmaceutical 

dosage form would include analysis of the drug, excipients and the formulation. The changes 

in the DSC can help us understand physical and chemical transitions within the formulations. 

Physical interactions affect solubility, formation of eutectic mixture while chemical 

interactions are a serious concerns because it leads to drug degradation (Mathkar et al. 

2009).  

The thermotropic behavior and physical state of MMF in CS-PNPs was evaluated by 

DSC. Figure 15 illustrates the thermograms of MMF, PVA, MMWPLA and MMWC and the 

optimal formulations. The thermogram indicates an endothermic peak of medium MW PLA 

around 51oC indicating glass transition temperature. The phase transition peak of pure MMF 

at 96oC reveals the crystalline nature of the MMF starting material and the absence of this 

peak in the optimal formulation indicating that the amorphous form of MMF is present in the 

nanoparticles. The absence of MMF peak in the optimal formulation proves complete 

incorporation of drug into polymeric matrix (Joshi et al. 2014).  
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Figure 15. DSC thermograms of MMF, PVA, PLA, MMWC and MMF: PLA: MMWC= 1:7:7. 

*indicates sample degradation.  

4.6. Potential mucoadhesive properties. 

There are several methods of assessing mucin binding properties of nanoparticles 

which include, colorimetric assay (Yin et al. 2009; Pawar et al. 2013), mucoadhesive 

capacity (%) by spectrofluorimetry (Yin et al. 2009), detachment from porcine mucosa 

(Bernkop-Schnürch et al. 2003), force required to detach dosage form from mucosa using 

texture analyzer (Sogias et al. 2012), rheological method (Hassan and Gallo 1990), surface 

plasmon resonance imaging (Rupert et al. 2016) and in vivo imaging (Liu et al. 2017). In this 

project, zeta potential is evaluated upon incubating NPs in mucin. Although this method has 

a disadvantage such as determining gross mucoadhesive ability, it is simple and easy to 
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perform. Ideally, mucoadhesive properties can be confirmed by robust techniques like 

surface plasmon resonance or in vivo imaging. In surface plasmon resonance, molecular 

interactions can be evaluated yielding images.  

Mucin alone in aqueous suspension (pH 7.2) exhibited a negative zeta potential, 

whereas freshly prepared nanoparticles comprised of MMF: HMW PLGA: HMWC= 1:7:7 

and MMF: PLA: MMWC= 1:7:7 had a positive zeta potential. When the nanoparticles were 

incubated in mucin at 37° for 1h, there was a reversal to a negative zeta potential for both of 

these nanoparticle formulations [Figure 16a and 16b].  These changes in zeta potential 

indicate surface interaction of the nanoparticles with mucin but does not indicate affinity. 

Mucin binding is suggestive that in vivo the nanoparticles may be mucoadhesive, that is, 

stick to the mucosal surfaces of the GI tract, delaying transit through the GI tract. This would 

provide additional residence time in the gut during which the drug may be slowly released 

from the nanoparticles for systemic absorption of the free drug. The absorption of 

nanoparticles into the bloodstream is not anticipated due to their size. A mean diameter in 

the submicron range, however, may facilitate a deeper penetration into the mucosal layer, 

further enhancing retention. The base polymers, PLA and PLGA are subject to hydrolysis 

over time and would degrade, leaving lactic acid and glycolic acid, which are readily 

metabolized. 
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Figure 16. Potential mucoadhesive properties of CS-PNP formulations at 1:7:7 drug: polymer: 

chitosan ratio made with HMWPLGA (a) or PLA (b) and different grades of chitosan (n=3, 

mean± SD). 

 While testing the individual hypothesis, we were able to develop a formulation for 

improved therapy of MMF with in vitro characterization. The formulation developed could 

address the issues with current dosing of MMF however, further in-depth analysis has to be 

performed for some concrete conclusion.  
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Chapter V. Conclusion 

Ideally, a sustained release formulation delivers drug over long time (24 h) when 

compared to an immediate release formulation. Formulating a sustained release dosage form 

has several advantages, of which, reducing the dosing frequency is a critical one for this 

project. Mycophenolate mofetil (MMF) is generally given to transplant patients as 

immediate release dosage form (Cellcept®) bid as 500mg tablets for the life of the organ 

transplant. A sustained release formulation would decrease the number of required doses per 

day, and potentially improve medication adherence with immunosuppressive therapy, 

thereby decreasing the risk of organ rejection.  

Mucoadhesive polymeric nanoparticles were chosen as the formulation type to 

achieve sustained drug release and minimal burst release. During the first phase of 

formulation development, polymeric nanoparticles without chitosan were prepared to 

evaluate whether emulsion based solvent evaporation method is suitable to prepare 

nanoparticles in this study. However, some modifications were performed in the method to 

achieve  nanoparticles suitable for sustained release and particle size. In this phase, the NPs 

were made with Cellcept®, ester-capped PLGA and vitamin-E TPGS as surfactant. The 

nanoparticles were within 300nm size, but encapsulation efficiency was less than 10%. In 

this study, several attempts were made to increase the encapsulation efficiency, but changing 

the polymer (acid-capped) and using MMF (pure drug) was successful.  

During the next phase of formulation development, nanoparticles were prepared with 

just the core polymers to confirm the best core polymer suited for MMF. Of the three core 

polymers used which include; low MW PLGA, high MW PLGA and medium MW PLGA, 

NPs made with MMF, medium MW PLA at ratio of 1:7 (w: w) was chosen as the optimal 
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formulation. Nevertheless, for formulating chitosan coated polymeric nanoparticles all the 

core polymers at various molecular weights and chitosan at various molecular weights were 

chosen. Polyvinyl alcohol was chosen as the surfactant in fabricating the nanoparticles 

because it produced a stable emulsion while fabricating NPs. Several formulations were 

made in triplicates with different combination of core and/or coating polymer by emulsion 

based solvent evaporation method. All the formulations were evaluated for size analysis, 

encapsulation efficiency and in vitro drug release. The optimal formulations for any drug-

excipient incompatibility were also evaluated with differential scanning calorimetry. The 

surface morphology of the nanoparticles was analyzed using scanning electron microscopy 

and the potential mucoadhesive properties were evaluated by charge reversal of NPs upon 

incubation in mucin.  

The results envisage that mucoadhesive polymeric nanoparticle formulations 

containing MMF: HMW PLGA: HMWC= 1:7:7 and MMF: PLA: MMWC= 1:7:7 ratio may 

be most suitable for providing sustained drug delivery, with additional alternative candidates 

also identified. The particle size of these formulations was found to be 816nm and 1194nm 

with positive zeta potential (+31mV and +67.6mV) respectively. The encapsulation 

efficiency of the optimal formulations were 75.44% and 94.34% respectively. The positive 

zeta potential imparted by the chitosan coating may enable mucoadhesiveness of the 

nanoparticle formulation. The minimal burst release in SGF (<25%) and complete release 

over a prolonged time in SIF from the optimal formulations could be an advantage in 

maintaining a controlled rate of release from the nanoparticles in the gastrointestinal 

environment.  
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Chapter VI. Future Directions 

Moving forward, a liquid chromatography- mass spectrometry (LC-MS) method for 

quantification of mycophenolate mofetil (MMF) and mycophenolic acid (MPA) will be 

developed (Maddela et al. 2017). This method is necessary for analyzing MMF and MPA in 

biological samples. Analyzing samples with LC-MS has advantages of specificity and 

sensitivity (Das and Kumar Pal 2014). Moreover, for in vivo, bioavailability and 

bioequivalence studies, it is necessary for analyzing the drug in biological samples with LC-

MS because of the sensitivity, rapidity and resolution. Following are the details of the LC-

MS method that will be used, 

LC-MS instrument and conditions: A 4000 QTRAP® (AB Sciex, Ontario, Canada) mass 

spectrometer coupled with HPLC system (Agilent Technologies, USA) will be used for the 

study. Acetonitrile and 0.1% formic acid (80:20 v/v) mixture is chosen as mobile phase at 1 

mL/min flow rate. The HPLC column for this study in Pursuit XRs C18 column (100 × 4.6 

mm dimensions, Agilent). All the solvents used will be of LC-MS grade. Internal standards 

for this study include isotopic labelled compounds of MMF and MPA.  

Sample preparation and conditions: All the plasma samples will be extracted by liquid-

liquid extraction (LLE). The solvents generally used in LLE are methanol, acetone or 

acetonitrile. A solvent will be chosen depending on the extraction efficiency. Stock 

solutions, internal standards and quality control samples will be prepared in LC-MS grade 

solvents and stored in refrigerator until analysis.  

 Validation parameters such as selectivity, specificity, sensitivity, stability, linearity, 

accuracy, precision, recovery, dilution integrity and stability will be evaluated according to 

US-FDA guidelines.  
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The efficacy and performance of the optimal formulations will be assessed in vivo. 

Oral suspensions of two optimal formulations, MMF in carboxymethyl cellulose and 

Cellcept® will be evaluated in male Sprague-Dawley rats in vivo for pharmacokinetic 

parameters approved by animal ethics committee of the University of Saskatchewan. The 

proposed study will need male Sprague-Dawley rats as these are the commonly used rat 

species for pharmacokinetic studies with polymeric nanoparticles as per literature (Mittal et 

al. 2007; Wang et al. 2017). There are 16 animals which will be grouped into four groups, 

each with four animals. The test compounds will be randomly administered to the rats within 

each group. The animals will be administered all the test compounds by oral gavage at a 

dose of 28.5mg/kg × 1mL/dose. After the administration of dose, 0.5mL of blood will be 

collected from jugular vein cannula at predetermined time points; 0.5, 1, 2, 4, 6, 8, 12 and 24 

h. Following completion of blood sampling, animals will be terminated by anesthetic 

overdose and exsanguination via cardiac puncture. As this is a pilot study and we are looking 

at optimizing a formulation whether it can release drug over time and not cause any 

significant effect on animals. Success in this animal work may further demand an animal 

trial with transplant organs. 

Tacrolimus based nanoparticles were prepared by emulsion based solvent 

evaporation method for the treatment of inflammatory bowel disease (IBD) (Meissner et al. 

2006). This research can be readdressed and checked for any possible application in 

formulating nanoparticles with sustained release properties. Similar to MMF nanoparticles, 

tacrolimus NPs will also be tested for effects of polymer molecular weight and type. 

Nanoparticle characterization such as particle size analysis, encapsulation efficiency, in vitro 

drug release, potential mucoadhesive properties and in vivo pharmacokinetics should be 
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performed. Ideally, a capsule dosage form containing nanoparticles of both tacrolimus and 

MMF can provide sustained drug release and reduce the dosage burden on transplant 

patients.  
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