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ABSTRACT 

Beta-amyloid (Aβ) remains to be the focus of research interest of the pathogenesis of 

Alzheimer’s disease (AD). Aβ is subject to oligomerization and its polymers are cytotoxic. 

Advanced aggregation leads to formation of senile plaques. Depositions of Aβ surrounding the 

cerebral vasculature, i.e. cerebral amyloid angiopathy (CAA), occur in most AD patients. The 

occurrence of Aβ aggregation in AD brains is not due to over-expression of amyloid precursor 

protein in most cases of AD. Factors influencing Aβ polymerization are yet to be established.  

Aldehydes are highly reactive. They can cause protein crosslinkage. It is interesting to study 

whether endogenous aldehydes may be involved in Aβ polymerization process. In order to 

investigate the potential interaction of endogenous aldehydes with Aβ and their effects on its 

aggregation, various techniques including thioflavin T fluometry, dynamic light scattering, 

circular dichroism and atomic force microscopy were employed to assess Aβ aggregation at 

different stages. Formaldehyde, methylglyoxal, malondialdehyde and 4-hydroxyl-nonenal were 

found to enhance Aβ β-sheets formation, oligomerization and fibrillogenesis in vitro. The sizes 

of the oligomers are increased after interaction with the aldehydes. Lysine residues of Aβ were 

identified to be the primary site of interaction with aldehydes by forming Schiff bases, which 

may subsequently lead to intra- and inter-molecular crosslinkage. Aldehydes can also crosslink 

Aβ with other proteins such as apolipoprotein E and α2-macroglobulin (α2M), to form large 

complexes. Results suggest that aldehydes substantially increase the rate of Aβ oligomerization 

at each stage of fibrillogenesis. 

The native and formaldehyde-modified Aβ oligomers were isolated by size exclusion 

chromatography and their cytotoxic effects towards SH-SY5Y neuroblastoma cells were 

assessed using MTT, LDH and caspase-3 activity assays. The aldehyde-modified oligomers are 

slightly but significantly more cytotoxic compared to the native oligomers. Since aldehydes 

significantly increase the production of Aβ oligomers, an increase in aldehydes would enhance 

the total cytotoxicity, suggesting that aldehydes may potentially exacerbate neurovascular 

damage and neurodegeneration caused by Aβ.  

Low-density lipoprotein receptor related protein-1 (LRP-1) plays a crucial role in Aβ 

clearance via the cerebral vasculature. Semicarbazide-sensitive amine oxidase (SSAO) and LRP-

1 are both richly expressed on the vascular smooth muscle cells (VSMCs). We demonstrated that 
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SSAO-mediated deamination affects LRP-1 function using isolated VSMCs. Formaldehyde at 

low concentrations decreases LRP-1-mediated uptake of α2M, a substrate of LRP-1 and a carrier 

for Aβ. Methylamine, an SSAO substrate that is converted to formaldehyde, also inactivates 

LRP-1 function, but not in the presence of an SSAO inhibitor. Increased SSAO-mediated 

deamination can potentially impair Aβ clearance via LRP-1. 

In conclusion, aldehydes derived from oxidative stress and SSAO-mediated deamination 

induce Aβ aggregation, enhance Aβ cytotoxicity and impair Aβ clearance. The exclusive 

localization of SSAO on the cerebral vasculature may be responsible for the perivascular 

deposition of Aβ, i.e. CAA, which is associated both with vascular dementia and with AD. 

Vascular surface SSAO may be a novel pharmacological target for the treatment of AD. 
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1. INTRODUCTION 
 

1.1 Alzheimer’s Disease 

1.1.1 History 

In 1906, a German psychiatrist, Alois Alzheimer reported a case of a dementia patient, Mrs. 

Auguste Deter from the Frankfurt Asylum, to the German Medical Society. He described the 

patient’s symptoms including memory decline and noncognitive behavioral features. Alzheimer 

also presented their association with neuropathological changes: senile plaques and 

neurofibrillary tangles (Alzheimer, 1906). Since this presentation, the symptoms and 

pathological changes of presenile dementia have been used to diagnose Alzheimer’s disease 

(AD).  

 

1.1.2 Symptoms and Pathophysiology 

AD is a neurodegenerative disease. It is the most common form of dementia accounting for 

60% to 80% of all dementia cases (Fratiglioni et al., 1999). Its prevalence increases with age. For 

Canadians, 7.7% of the population older than 65 develop AD or related diseases and it increases 

to 33% among those older than 85 (Ebly et al., 1994). In other words, as the average life 

expectancy increases, so does the disease incidence.  

There are three types of AD, namely, familial, early-onset and late-onset AD, depending on 

the age of onset. In the first type, about 90% of AD cases are diagnosed after age 65, which are 

categorized as late-onset/sporadic AD. In the second type, less than 10% of cases are diagnosed 

before age 65, which are categorized as early-onset AD. Less than 1% of AD cases are diagnosed 

with early-onset familial AD as the last type. Strong genetic links are  associated with early-onset 

and familial AD (Bertram and Tanzi, 2008). 

The characteristic symptom of AD is gradual memory loss. Therefore, the current diagnostic 

criteria (the Diagnostic and Statistical Manual of Mental Disorders) are based on the impairment 

of memory and learning abilities. Overall, both the long-term and short-term memory are 

impaired in AD (Sartori et al., 2004). Other symptoms include deterioration in language skills 

and cognitive functions related to speaking, reading and writing are all affected, eventually 



	
   2	
  

leading to complete loss of speech (Frank, 1994). Very frequently, neuropsychiatric 

manifestations, including depression, aggression and anxiety, develop with the memory loss 

(Mitrushina et al., 1994; Tatsch et al., 2006). 

The pathology of AD involves degeneration of neurons and synaptic connections in the 

cerebral cortex as well as certain subcortical regions. In turn, the degeneration leads to memory 

loss and atrophy in the temporal and parietal lobe, and is observed as shrinkage of brain in 

patients (Wenk, 2003).  Autopsy from AD patients exhibits two histopathological hallmarks: 

senile neuritic plaques and neurofibrillary tangles (NFT).  

There are three major types of plaques: diffuse, neuritic and cerebrovascular. Diffuse plaques 

lack the amyloid core and the abnormal dystrophic neurites seen in neuritic plaques and possess 

amorphous appearance. It is presumed that the diffuse plaques represent the early phase of 

plaque formation. The neuritic plaques have a dense core of amyloid surrounded by abnormal 

neurites (aggregates of axons and dendrites containing lysosomes, mitochondria and paired 

helical filaments), microglia and astrocytes that form a spherical shape. The diameters of neuritic 

plaques range from 50 to 200 µm (Mandybur and Chuirazzi, 1990). Cerebrovascular plaques are 

the amyloid deposits associated with capillaries and arterioles in the cerebral cortex of up to 90% 

of AD patients (Mandybur, 1975; Yamada et al., 1987; Ellis et al., 1996). 

The other histopathological hallmark of AD, the NFT, is comprised of paired helical 

filaments in the cell body and axon and is formed by hyperphosphorylated tau protein (Grundke-

Iqbal et al., 1986a; Grundke-Iqbal et al., 1986b; Lee et al., 1991). Tau is a protein associated with 

microtubules in neurons. It interacts with tubulin, facilitates its assembling, and stabilizes the 

microtubules. Hyperphosphorylated  tau reacts rapidly with each other to form filaments 

especially in large pyramidal cells (Terry et al., 1991). 

 

1.1.3 Aetiology and Potential Mechanisms of Late-Onset AD 

The aetiology of late-onset AD is not fully understood. Current hypotheses about the causes 

of the disease are focused on β-amyloid (Aβ) and formation of senile amyloid plaques, or on tau 

and the accumulation of NFT. These aggregated proteins were thought to cause degeneration of 

synapses and neurons, which consequently cause cognitive impairment (Selkoe, 1991; Roher et 

al., 1993; Selkoe, 1994; Hardy and Selkoe, 2002). A variety of factors may be involved in this 
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process including oxidative stress, inflammation, metal ions and so on (Subbarao et al., 1990; 

Pappolla et al., 1992; Behl et al., 1994; Breitner, 1996; Deibel et al., 1996).  

 

1.1.4 Amyloid Hypothesis 

Aβ aggregation can trigger formation of NFT (Lue et al., 1999; Datki et al., 2004). 

Therefore, the amyloid hypothesis has proposed that Aβ aggregation is the upstream origin of 

other relevant pathologic changes such as NFT, oxidative stress, inflammation and degeneration 

of synapses and neurons, eventually leading to AD (Neve and Robakis, 1998; Hardy and Selkoe, 

2002; Sommer, 2002). 

 

1.1.4.1 Aβ  Production 

Aβ is a peptide composed of 39 to 43 amino acids from proteolysis of a large transmembrane 

glycoprotein, amyloid precursor protein (APP) (Selkoe, 1991). APP is encoded by a gene on 

chromosome 21, and is expressed in all cell types. It is localized on the plasma membrane as 

well as endosomes and shifts between them (Koo and Squazzo, 1994). In the brain, it contributes 

to neuronal migration and synapse formation (Priller et al., 2006; Young-Pearse et al., 2007). Its 

function in the peripheral system is unclear. 

The proteolytic processing of APP is mediated by secretase enzymes. Three types of 

secretase have been identified: α-, β- and γ-secretases. α-secretase is located on the plasma 

membrane and cleaves APP between residues 16 and 17 of the Aβ sequence to form the sAPPα, 

which inhibits Aβ formation (Verbeek et al., 1997). sAPPα is involved in cell adhesion and 

exhibits neuroprotective properties (Selkoe, 1994). β-secretase, also known as beta-site APP 

cleaving enzyme, is expressed on the Golgi apparatus and endosomes, and cleaves APP between 

residues 596 and 597 to form a 99-amino acid membrane-bound fragment containing the C-

terminus of Aβ peptide (Nunan and Small, 2000). Following cleavage by β-secretase, this 

fragment is further cleaved transmembranely on endosomes by γ-secretase, localized in 

endoplasmic reticulum (ER), lysosomes and cell membrane, to form the N-terminus of Aβ 

(Wolfe et al., 1999). The γ-Secretase is able to cleave APP at different sites, between residues 

637 and 639, to generate Aβ monomers of different lengths (Shi et al., 2003; Wolfe, 2006). The 

products of APP cleavage are either secreted into the extracellular compartment or degraded by 

intracellular proteolytic enzymes. 
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Among the Aβ species, Aβ1-40 is the predominant form and Aβ1-42 accounts for 10% of total 

secreted Aβ (Dovey et al., 1993; Asami-Odaka et al., 1995; Citron et al., 1996). Despite its lower 

amount, Aβ1-42 appears to be the major amyloid component in senile plaques (Roher et al., 1993; 

Iwatsubo et al., 1994). Plaques associated with walls of cerebral blood vessels, known as cerebral 

amyloid angiopathy (CAA), contain high levels of Aβ1-40 compared with Aβ1-42 (Joachim et al., 

1988; Prelli et al., 1988; Suzuki et al., 1994; Alonzo et al., 1998; Zipfel et al., 2009). AD patients 

with certain APP mutations in the mid-region of Aβ develop more CAA than senile plaques not 

associated with cerebral vessels (Levy et al., 1990). Hence, APP produced on cerebral 

vasculature may be cleaved differently from that on neurons and astrocytes. Interestingly, initial 

Aβ1-42 deposition around cerebral vasculature triggers massive accumulation of Aβ1-40 (Alonzo et 

al., 1998). In APP transgenic mice, an elevated ratio of Aβ 40:42 in brain extracellular pools and 

a decreased 40:42 ratio in the cerebral spinal fluid (CSF) are associated with increased CAA 

formation (Fryer et al., 2003; Fryer et al., 2005). 

 

1.1.4.2 Factors Affecting Aβ  Production    

Genetic Links 

Early-onset and inherited familial AD account for less than 10% of all AD cases. These cases 

are known to be associated with increased Aβ production. Mutations of genes encoding APP, 

presenilin 1 and presenilin 2 have been identified (Bertram and Tanzi, 2004). For instance, 

presenilins are proteins located near the catalytic center of γ-secretase (Wolfe et al., 1999; 

Hansson et al., 2004). Presenilin mutations cause altered γ-secretase activity (Berezovska et al., 

2000), increased Aβ production (Scheuner et al., 1996; Ikeuchi et al., 2003) and alterations in the 

Aβ1-42/Aβ1-40 ratio (Borchelt et al., 1996; Kaneko et al., 2007). On the other hand, APP mutations 

cause increased APP expression, increased Aβ production and secretion (Mullan et al., 1992; 

Felsenstein et al., 1994). These findings have provided remarkable insights into AD pathology 

and a great number of transgenic mouse models have been created representing Aβ deposition 

and AD pathology (Duff and Suleman, 2004; Marjanska et al., 2005; Muyllaert et al., 2006; 

Crews et al., 2008). 

The ε4 allele of apolipoprotein E (ApoE) has been consistently found as a predisposing factor 

for late-onset AD in various studies (Saunders et al., 1993; Strittmatter et al., 1993; Montine et 
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al., 1997; Holtzman et al., 2000). ApoE is the main apolipoprotein in the central nervous system 

(CNS), secreted by astrocytes and microglia. It is a crucial component of triglyceride-rich 

lipoproteins mediating cholesterol transport in the brain and the peripheral system. It has three 

isoforms: ApoE2, ApoE3 and ApoE4 respectively coded by ε2, ε3 and ε4 alleles (Das et al., 

1985). Carriers of ε4 allele have a more than 2-fold risk of developing AD, whereas ApoE2/3 

seems to have preventive effect on AD (Corder et al., 1993; Corder et al., 1994; Hofman et al., 

1997; Bonarek et al., 2000). The ε4 allele is strongly associated with increased Aβ aggregation in 

mouse models of AD (Holtzman et al., 2000; Buttini et al., 2002). Over the past 10 years, more 

than 20 non-ApoE loci have been identified that are significantly associated with late-onset AD 

(Bertram et al., 2007), such as genes encoding angiotensin converting enzyme-1, cholesterol 25 

hydroxylase, sortilin-related receptor and transferrin (Lee et al., 1999; Kehoe et al., 2003; 

Rogaeva et al., 2007; Zerbinatti et al., 2008). Overall, the identification of gene mutations 

associated with late-onset AD is based on and guided by various hypotheses of AD pathology, 

including Aβ degradation and clearance, signal transduction, cholesterol metabolism and metal 

homeostasis. Whether these genetic mutations play a crucial role in AD pathogenesis, 

particularly in Aβ production, requires further studies.  

 

ApoE, Low Density Lipoprotein Receptor-related Protein-1 and Cholesterol Metabolism 

ApoE seems to influence APP processing and increase Aβ production (Masinovsky et al., 

1990; Vincent and Smith, 2001; Ye et al., 2005). This effect is mediated by the low density 

lipoprotein (LDL) receptors, particularly the LDL receptor-related protein-1 (LRP-1) pathway 

(Li et al., 2001; Herz and Bock, 2002; Ye et al., 2005). LRP-1 has diverse ligands including 

ApoE, α2-macroglobulin (α2M), lactoferrin and APP (Herz, 2001; Li et al., 2001). LRP-1 plays 

a central role in the transport of lipoproteins composed of ApoE and cholesterol. Interestingly, 

polymorphism of LRP-1 gene is associated with late-onset AD (Kang et al., 1997; Baum et al., 

1998; Lambert et al., 1998a). LRP-1 and APP are co-localized on the plasma membrane and 

endosomes. As a result, LRP-1 either directly interacts with the extracellular domain of APP or 

indirectly with the intracellular tail of APP via an adaptor protein  (Trommsdorff et al., 1998; 

Kinoshita et al., 2001). By interaction with APP, LRP-1 influences APP processing, endocytic 

trafficking and turnover, which subsequently affects Aβ production (Kounnas et al., 1995; Ulery 

et al., 2000; Pietrzik et al., 2002; Pietrzik et al., 2004).  
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In humans, high levels of plasma cholesterol have been identified as a risk factor for AD 

(Notkola et al., 1998). Patients treated with cholesterol-lowering statins have significantly 

reduced incidence of AD (Jick et al., 2000; Wolozin et al., 2000). Cholesterol is also abundantly 

present in the brain with a slow turnover (Dietschy and Turley, 2001). The homeostasis of 

cholesterol in the brain is separate from the peripheral system due to function of the blood brain 

barrier (BBB). Cholesterol in the brain is synthesized locally and eliminated by brain-specific 

mechanisms. It is endocytosed by ApoE-LRP interaction and converted into 24(S)-

hydroxycholesterol (Dietschy and Turley, 2001, 2004). The imbalance of cholesterol metabolism 

seems to contribute to AD pathogenesis. For example, alteration in the level of cellular 

cholesterol affects APP processing (Bodovitz and Klein, 1996; Racchi et al., 1997). Elevated 

level of cholesterol is able to increase Aβ production in cell, rabbit and mouse models (Sparks et 

al., 1994; Refolo et al., 2000). Similarly, suppression of de novo cholesterol synthesis leads to 

decreased Aβ production (Simons et al., 1998). One potential mechanism by which cholesterol 

affects APP processing is that cholesterol increases β- and γ- secretase activities, resulting in 

more Aβ formation (Frears et al., 1999; Fassbender et al., 2001; Wahrle et al., 2002).  

In summary, ApoE, LRP-1 and cholesterol appear to be involved in AD pathology by 

affecting Aβ production. Not only are they involved in Aβ production, but also in Aβ 

aggregation, clearance, cytotoxicity and oxidative stress. 

 

1.1.4.3 Aβ  Aggregation 

Under physiological conditions, soluble monomeric Aβ1-40/42 is predominately formed in 

unfolded random coils with almost no α-helix or β-sheet structures (Kelly, 1998; Smith, 1998; 

Kirkitadze et al., 2001). When accumulated, Aβ monomers initially undergo a serial 

conformational change before folding into β-sheets (Thunecke et al., 1998).  

Two hydrophobic regions on the Aβ molecule are critical for its aggregation, particularly in 

the initial phase (Balbach et al., 2000; Ma and Nussinov, 2002; Soto, 2003; Liu et al., 2004). The 

first region is residues 17 to 21 (LVFFA). These residues are all hydrophobic amino acids. This 

region generates a hydrophobic core for subsequent protein folding and “seeds” of aggregation. 

Interestingly, the F19F20 dipeptide in this region aggregates by itself to form stiff nanotubes, 

which further stabilizes Aβ aggregation (Reches and Gazit, 2003). Another hydrophobic region 
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is residues 31 to 35 (IIGLM). This region forms a reverse turn that forms antiparallel strands 

with surrounding residues and facilitates the aggregation (Bond et al., 2003). 

After the initial conformational changes, the hydrophobic regions are exposed to each other. 

These hydrophobic regions form the intra- and intermolecular β-sheet structure (Carrell and 

Lomas, 1997; Capaldi and Radford, 1998). β-sheet (both parallel and antiparallel) formation is 

crucial for this stage. Driven by hydrophobic force, Aβ monomers assemble into dimers, trimers, 

tetramers, and then soluble oligomers (composed of 5 to 16 Aβ monomers). Such a nucleation 

step is the rate-limiting step representing the lag phase of Aβ aggregation (Merlini and Bellotti, 

2003). After the concentration of Aβ oligomers reaches certain threshold, the oligomers as 

building blocks will further assemble into protofibrils and then fibrils (Lomakin et al., 1996; 

Harper et al., 1997; Bitan et al., 2001). The chronic aggregation of Aβ with itself as well as with 

other molecules such as lipoproteins and cholesterol eventually leads to the formation of senile 

plaques. The process of Aβ aggregation is summarized in Figure 1. 

The structures of amyloid fibrils have been elucidated from studies using electron 

microscopy (EM), X-ray diffraction, circular dichroism (CD) and Fourier transform infrared 

spectroscopy (Naiki et al., 1989; Lomakin et al., 1996; Naiki and Nakakuki, 1996; Makin and 

Serpell, 2005). A structural model of Aβ fibrils was proposed by combining results from X-ray 

diffraction, EM and nuclear magnetic resonance (NMR) as shown in Figure 2 (Petkova et al., 

2002). Briefly, the intermolecular backbone is composed of hydrogen bonds. A cross-β unit has 

a double-layer structure with a hydrophobic core and hydrophobic surface formed by residues 12 

to 24 and 30 to 40. Residues 12 to 24 and 30 to 40 display β-strand conformation and they form 

parallel β-sheets via intra- and inter-molecular hydrogen bonds. Lysine 28 and aspartate 23 are 

the only charged residues in hydrophobic core responsible for intramolecular salt-bridge 

formation. Region of residues 25 to 29 forms a β-turn on the peptide backbone, which facilitates 

the side-chain-side-chain interactions by bringing two β-sheets in contact. Cross β-units further 

stack up by juxtaposing the hydrophobic surfaces leading to fibril growth in diameters. 

With the development of more advanced structural technologies, smaller intermediate species 

have been identified during the early phase of aggregation. Fibrils are composed of unbranched 

protofibrils attached laterally or twisted together (Walsh et al., 1999; Kirkitadze et al., 2001). 

Typical protofibrils of Aβ1-40 are around 4 nm in diameter, 20 to 70 nm in length with a 
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Figure 1. Process of Aβ aggregation. Aβ monomers assemble into dimers, trimers, tetramers and 

oligomers (up to 16’mers) by β-sheet structure formation, driven by hydrophobic force. 

Oligomers further aggregate to form protofibrils and fibrils. A number of factors such as pH, 

lipoproteins and ions affect this process, which eventually leads to the formation of senile 

plaques as seen in AD. 
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Figure 2. A structural model of Aβ1-40 fibrils derived from NMR and EM (Petkova et al., 2002). 

(a) A cross-β unit composed of several Aβ1-40 monomers. The direction of the long axis of the 

fibrils is indicated by the arrow. (b) Aβ1-40 viewed down the long axis of its fibril. Residues 1 to 

8 (Asp-Ala-Glu-Phe-Arg-His-Asp-Ser) are omitted as they display fully disordered 

conformation. (c, d) Cross-sections of Aβ1-40 fibril formed by lateral association of β-units. 

Residues 1 to 8 are included in randomly assigned conformation. 
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periodicity of around 20 nm and have a stable core structure (Harper et al., 1997, 1999; 

Kowalewski and Holtzman, 1999; Kheterpal et al., 2003).  

Soluble Aβ oligomers, formed before the protofibrils and composed of 5 to 16 Aβ 

monomers, have also been identified. They have a spherical structure with diameters ranging 

from 2.7 to 5 nm (Huang et al., 2000; Bitan et al., 2001; Urbanc et al., 2004). The 

oligomerization processes of Aβ1-40 and Aβ1-42 are different (Bitan et al., 2003; Urbanc et al., 

2004). Aβ1-40 tends to form more dimers and less pentamers compared to Aβ1-42. The Aβ 

pentamer has a hydrophobic core with a hydrophilic surface formed by N-terminal residues 

(Urbanc et al., 2004). As shown in Figure 3a and 3b, Aβ1-42 pentamers are less spatially 

condensed than those of Aβ1-40. Therefore, the hydrophobic core of Aβ1-42 pentamers is more 

exposed to each other leading to faster aggregation.  

The oligomerization and fibrillogenesis of Aβ are observed not only in AD. It has been 

proposed that most proteins are potentially amyloidogenic under certain conditions (Stefani and 

Dobson, 2003). A number of diseases, including AD, type 2 diabetes, Down’s syndrome, 

Parkinson’s disease, Huntington’s disease and Creutzfeldt-Jakob disease, are associated with 

amyloidosis in which different amyloidogenic proteins deposit in tissues and organs. To date 

approximately 20 proteins that are distinct in sequences and structures have been discovered 

associated with amyloidoses, such as Aβ, tau, islet amyloid polypeptide, α-synuclein, 

polyglutamine, human insulin and prion peptide. These depositions are generally observed in the 

extracellular compartment but exceptions have been found, such as NFT in AD (Grundke-Iqbal 

et al., 1986b) and Lewy bodies composed of α-synuclein in Parkinson’s disease (Serpell et al., 

2000).  

Amyloidoses share some similarities. The general model of protein misfolding is summarized in 

Figure 4. First, initial conformational changes of the proteins into partial folding state are 

required for subsequent aggregation. Secondly, soluble amyloid oligomers form during 

aggregation and they represent the primary cytotoxic species. These oligomers of different 

proteins exhibit a common and unique conformation-dependent structure regardless of their 

primary sequences (Kayed et al., 2003). They are capable of increasing the conductance of 

plasma membrane (Kayed et al., 2004). These findings suggest that these diseases share a 

common mechanism of cytotoxicity. Thirdly, the fibrils of different proteins have similar 

morphologies with a twisted and filamentous structure. 
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Figure 3. A structural model of Aβ pentamers derived from discrete molecular dynamics 

(Urbanc et al., 2004). (a) Aβ1-40 pentamers. (b) Aβ1-42 pentamers. In the Aβ1-42 pentamer, the tails 

and spheres extending out from the hydrophobic core represent the N-terminal Asp-1. (c) 

Intramolecular contacts within Aβ1-40 pentamers. (d) Intramolecular contacts within Aβ1-42 

pentamers. Weaker and stronger hydrophobic interactions are represented by dashed and solid 

lines, respectively. Glycine-37-glycine-38 in Aβ1-42 pentamer is critical for a β-turn that is 

important in pentamer formation. 

 

 

 

 

 



	
   12	
  

 

 

 

 

 

	
  
 

Figure 4. The general model of protein misfolding (Uversky, 2003). At the initial stage of 

misfolding, native soluble proteins with either globular or unfolded structures enter a partial 

folding state, followed by nucleation, oligomerization, fibrillogenesis and fibril elongation. Each 

step during this process is likely to be reversible with unknown relevant equilibrium constant. 

The oligomers are presented as a tetramer for convenience only and will vary depending on each 

protein. 
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1.1.4.4 Technologies of Structural Analysis Applied in the Present Aβ  Aggregation 

Investigation 

The development of high-resolution technologies has made it possible to assess Aβ 

aggregation at various stages.  

Circular dichroism (CD) spectroscopy has been widely used to study the transition of random 

coils and α-helices of Aβ monomer into β-sheet structure during its aggregation (Huang et al., 

2000; Syme et al., 2004). A solution of macromolecules absorbs the left- and right-handed 

polarized light differently dependent on structural asymmetry. CD spectroscopy measures the 

absorption of polarized light of wavelength from 190 nm to 260 nm and compares the 

differences in absorption between left- and right-handed light. CD spectra vary according to 

compositions of secondary structures present in peptides, proteins and nucleic acids. Therefore, 

the analysis of CD spectra can yield valuable information on secondary structures of biological 

macromolecules such as: 

 Percentage of each secondary structure in solution 

 Thermodynamic and solvent effects (pH, salt and organics) on the confirmation of 

macromolecules 

 Kinetic information on protein folding, unfolding and aggregation 

 Effects of chemical denaturants on protein stability and aggregation 

 Protein-protein interactions. 

The limitation of CD spectroscopy is the inability to provide direct information on sizes of 

particles. EM is useful for observing the morphology and the dimensions of Aβ fibrils, but it is 

not practical for real-time kinetic studies (Iwata et al., 2001a; Pallitto and Murphy, 2001). 

Dynamic light scattering (DLS) can overcome such difficulties. DLS uses a beam of 

monochromatic laser light that is scattered by micron-sized particles undergoing Brownian 

motion in solution. The laser light is scattered into a random pattern of spots varying in shape, 

size and intensity. The fluctuation of photon intensity of scattered light is analyzed. The resulting 

spectrum can provide relative information on the sizes of biomolecules, for example, the 

distribution of molecular sizes in solution. It is suitable to study particles with diameters ranging 

from submicron to several microns. Therefore, DLS is applied in protein characterization such as 

confirmation, crystallization, structural stability and aggregation. It is also used in studying 
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macromolecular complexes as well as biological and synthetic polymer characterization. DLS 

applied in studying the oligomerization and fibrillogenesis of Aβ has provided information on 

sizes of Aβ oligomers and fibrils, its nucleation rate and elongation rate (Lomakin et al., 1996; 

Thunecke et al., 1998).  

Atomic force microscopy (AFM) is applied in studying protein structure, protein-protein 

interactions and surface properties of materials at atomic to micron level (Stolz et al., 2000; 

Nazem and Mansoori, 2008). The mechanism of AFM is illustrated in Figure 5. The instrument 

is composed of a sensitive cantilever with an ultra-fine tip at the end, a laser source and a 

photodetector. The cantilever is brought in close proximity to samples absorbed onto a smooth 

surface (e.g. mica) and moves across sample surface by lines. At atomic level, the repulsive force 

between the tip and sample surface is maintained constant. Therefore, AFM is capable of 

observing macromolecular structures at a level of sub-nanometer to microns. A laser beam is 

directed to the top of cantilever. As the cantilever moves, the constant force causes vertical 

displacement measured by laser deflection. The deflection is measured by a position-sensitive 

photodetector. The topography of samples is rastered from single-line scans.  

The AFM instrument housed at the Saskatchewan Structural Sciences Center, University of 

Saskatchewan, can be operated in two modes, namely, contact mode and alternating-contact 

mode. In the contact mode, the force between the tip and sample surface is kept constant during 

scanning by maintaining a constant deflection. This mode is not appropriate for scanning soft 

samples due to the contact between tip and sample that distorts surface morphology.  

In alternating-contact mode, the cantilever is externally oscillated close to its resonance 

frequency. During scanning, the oscillation gets modified by the force of tip-sample interaction. 

More commonly, the changes in oscillation amplitude (also known as intermittent contact or 

tapping mode) are analyzed. With respect to reference of the external oscillation, the changes in 

oscillation amplitude can provide information on the sample topography. Furthermore, under 

tapping mode, changes in the phase of oscillation can be used to discriminate between different 

types of materials on the surface. The alternating-contact mode exerts lower lateral force on 

samples and is widely used in imaging of biological samples.  

Compared to EM that provides two-dimensional images, AFM can generate true three-

dimensional images without special sample treatment as required by EM. Studies using AFM to 

observe Aβ aggregation have yielded useful information on the sizes of Aβ oligomers, 
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Figure 5. The principle of AFM. On the left: the instrument composition. In the middle: typical 

result of a single-line scan. The height of samples above surface can be accurately determined. 

The width is normally overestimated to some extent depending on the shape and finite size of the 

tip. On the right: the topography of samples, e.g. Aβ oligomers, is rastered into a three-

dimensional image. 
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protofibrils and fibrils, their morphologies, kinetic parameters of Aβ oligomerization and 

fibrillogenesis, and factors affecting Aβ aggregation (Harper et al., 1997; Goldsbury et al., 1999; 

Kowalewski and Holtzman, 1999). 

 

1.1.4.5 Factors Affecting Aβ  Aggregation 

A variety of factors, such as pH, metal ions (Cu2+/Zn2+), lipoproteins and cholesterol, are 

capable of affecting Aβ aggregation including oligomerization and fibrillogenesis (Atwood et al., 

1998; Atwood et al., 2000; Harris, 2002; Kakio et al., 2002; Stanyer et al., 2002; Zhang et al., 

2004).  

In AD patients, metal ion homeostasis is severely impaired (Hershey et al., 1983; Basun et 

al., 1991; Deibel et al., 1996; Kala et al., 1996; Gonzalez et al., 1999). Senile amyloid plaques 

contain elevated levels of these metals (Lovell et al., 1998b). Physiological levels of Cu2+ and 

Zn2+ both reach 0.15 to 300 µM during synaptic transmission, and the plasma levels of Cu2+ and 

Zn2+ in AD patients are 19.5 µM and 10.6 µM, respectively (Nischwitz et al., 2008), which are 

capable of accelerating Aβ aggregation in vitro (Assaf and Chung, 1984; Bush et al., 1994). 

Under mild acidic condition (pH ~6.6), Cu2+ is most potent in promoting Aβ aggregation and this 

acidity has been found in tissues during the inflammatory process of AD patients (Atwood et al., 

1998). Specific Cu2+ and Zn2+ chelators are able to reverse Aβ aggregation induced by metals 

(Cherny et al., 1999). In animal studies, transgenic mice overexpressing APP treated with 

Cu2+/Zn2+ chelators exhibit significantly less Aβ deposition (Cherny et al., 2001; Gouras and 

Beal, 2001; Lee et al., 2004b). Aβ seems to play a role in copper redox cycling and produce 

reactive oxygen species (Dikalov et al., 1999). Based on these findings, metal chelators have 

been proposed as a potential preventive/therapeutic strategy for treatment of AD (Cherny et al., 

2001). 

Altered lipid metabolism has been implicated in AD pathogenesis. ApoE4 not only 

stimulates Aβ production, but also accelerates its oligomerization and fibrillogenesis both in 

vitro and in vivo (Kounnas et al., 1995; Holtzman et al., 2000; Fryer et al., 2003). Furthermore, it 

enhances Aβ cytotoxicity in cellular and mouse studies (Dolev and Michaelson, 2004; Fryer et 

al., 2005; Ye et al., 2005; Ji et al., 2006). On the contrary, ApoE3 is neuroprotective by 

sequestering Aβ and preventing its neurotoxicity (Jordan et al., 1998). ApoE has also been 
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proposed to play an important role in Aβ clearance via LRP-1 (Shibata et al., 2000). This will be 

discussed in detail later. Similarly to ApoE, apolipoprotein J also seems to affect Aβ 

aggregation, cytotoxicity and clearance (Boggs et al., 1996; Bell et al., 2007).  

Cholesterol, besides affecting APP processing and Aβ production, also enhances Aβ 

oligomerization and fibrillogenesis either directly or indirectly (Harris, 2002). Studies using EM 

and AFM have shown that cholesterol and its derivatives potentiate Aβ fibrillogenesis in vitro by 

direct interactions (Yip et al., 2001; Harris, 2002). A potential indirect mechanism is through 

enhancing the formation of monosialoganglioside-Aβ complex (Kakio et al., 2001). Gangliosides 

are a group of glycosphingolipids located on the outer leaflet of mammalian plasma membranes 

and they are especially abundant on the neuronal cell surfaces. Monosialoganglioside is one of 

the major subtypes of ganglioside found in brain (Michel and Bakovic, 2007). Some species of 

Aβ bind to GM1-ganglioside tightly and form a complex (Yanagisawa et al., 1995). GM1-

ganglioside-Aβ complex has a distinct conformation and it accelerates Aβ fibrillogenesis in vitro 

(Choo-Smith et al., 1997; Kakio et al., 2001; Kakio et al., 2002). The formation of GM1-

ganglioside-Aβ complex is significantly increased in a cholesterol-rich environment suggesting 

cholesterol can affect Aβ aggregation indirectly (Simons and Ikonen, 1997; Kakio et al., 2001).  

Aβ binds to cell membrane owing to its hydrophobicity (Datki et al., 2004). Interestingly, the 

density of cholesterol in plasma membrane affects the interaction between Aβ and lipid bilayers. 

For example, cholesterol-rich lipid bilayers exhibit lower fluidity and less affinity to Aβ, which 

suppresses Aβ adhesion to plasma membrane, suggesting another indirect mechanism of 

cholesterol affecting Aβ aggregation (Yip et al., 2001). 

Hypercholesterolemia, characterized by elevated level of plasma LDL, is a risk factor for AD 

(Sparks, 1997). In vitro studies have demonstrated that LDL is capable of directly enhancing Aβ 

aggregation (Stanyer et al., 2004b). The potency of LDL on Aβ aggregation is dependent on its 

oxidative state. Oxidized LDL has greater effect than the native LDL does on Aβ polymerization 

(Stanyer et al., 2004a). This suggests that oxidative stress is a contributing factor to Aβ 

aggregation.  
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1.1.4.6 Aβ  Cytotoxicity 

Cytotoxicity of Aβ  Related to its Polymerization Stage 

Aβ is cytotoxic. It probably plays an important role in neurodegeneration. The cytotoxicity of 

Aβ is closely related to its state of polymerization. Earlier studies suggest the amyloid fibrils 

were cytotoxic (Yankner and Mesulam, 1991; Lorenzo and Yankner, 1994). Protofibrils were 

then identified and found to be more potent neurotoxins (Harper et al., 1997; Walsh et al., 1999). 

Further, small Aβ oligomers, particularly of Aβ1-42, have been demonstrated to be the most 

cytotoxic species among all aggregated intermediates, and they are probably responsible for 

neurodegeneration (Walsh et al., 2002; Demuro et al., 2005; Selkoe, 2008). In mouse studies, 

intracranial administered oligomers were shown extremely potent at disrupting cognition and 

synaptic plasticity (Walsh et al., 2002; Cleary et al., 2005). Hippocampal slices shortly after 

exposure to oligomers lose the capability for long-term potentiation (LTP) (Lambert et al., 

1998b). Some studies suggest that the senile plaques are neuroprotective by sequestering the 

soluble neurotoxic Aβ oligomers (Lee et al., 2004a). 

Soluble Aβ oligomeric species were found in the CSF and cortex of AD patients (Pitschke et 

al., 1998; Kayed et al., 2003). The level of Aβ oligomers has a better correlation with dementia 

severity than do other Aβ species (Lue et al., 1999). Moreover, the levels of Aβ oligomers in AD 

brains are elevated as high as 70 fold, with an average of a 12-fold increase over matching 

controls (Gong et al., 2003).  

 

Comparison of Aβ  Generated In Vivo and In Vitro 

Aβ oligomers used in earlier cytotoxicity studies were prepared from synthetic or cell-

generated human Aβ. These oligomers are formed by homologous Aβ peptide. However, 

naturally generated Aβ aggregates in animal and human brains are considerably more 

heterogeneous in sizes (Selkoe, 2008). Synthetic or cell-derived Aβ oligomers are similar to the 

naturally generated Aβ oligomers in their aggregation process and cytotoxicity (Lambert et al., 

1998b; Walsh et al., 2002; Cleary et al., 2005). However, there are some unresolved differences. 

First, Aβ oligomers generated naturally, but not those obtained from synthetic Aβ, were 

found to be SDS (sodium dodecyl sulfate)-resistant (Roher et al., 1996; Enya et al., 1999; Funato 

et al., 1999; Lesne et al., 2006). SDS is an anionic detergent that denatures the secondary and 
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tertiary structures of proteins. SDS-resistant Aβ dodecamers (molecular weight ~ 56 kD) were 

detected in some strains of APP transgenic mice, but have not been identified in human cortical 

extracts (Lesne et al., 2006). Aβ conformation is related to its source and presence of cofactors. 

Why synthetic or cell-derived Aβ oligomers behave in a similar manner as human-derived Aβ is 

still unclear. Secondly, in studies using synthetic Aβ, the concentration of Aβ was usually at µM 

level to allow relatively rapid polymerization, whereas the assembly of Aβ in vivo occurs very 

slowly at sub-nM level (Naslund et al., 2000). Thirdly, dimers and trimers generated from nature, 

but not synthetic Aβ, are active at inhibiting LTP, inducing long-term depression and causing 

cognitive impairment (Walsh et al., 2002; Cleary et al., 2005; Selkoe, 2008). Natural Aβ dimers 

are cytotoxic in vitro (Hung et al., 2008). Therefore, further studies are required to compare the 

precise biochemical properties of the synaptotoxic Aβ species generated from various systems 

and under different conditions. 

 

Mechanisms of Cytotoxicity 

The mechanisms of Aβ cytotoxicity are complicated. Generally, the plasma membrane has 

been proposed to be the primary target of Aβ (Kayed et al., 2003). One potential mechanism is 

via nonspecific hydrophobic binding to the cell membrane (Datki et al., 2004), which alters 

membrane components and integrity. Aβ also exerts its cytotoxicity through a plasma membrane 

receptor-mediated process (Yan et al., 1996; Wilhelmus et al., 2007). Aβ binds to certain 

receptor and subsequently a vaviety of cellular pathways is activated, leading to mitochondrial 

dysfunction, induction of transcription factors and apoptosis. The complex mechanism of Aβ 

cytotoxicity suggests that different types of cells are affected by Aβ through distinct pathways. A 

multitude of synergic dysfunctional processes is responsible for neurodegeneration in AD. 

Regardless of which mechanism, the early phase of Aβ aggregation is crucial for its cytotoxicity 

and account for neurodegeneration. Several major hypotheses of Aβ cytotoxicity are discussed 

below. 

 

Disruption of Cytoplasmic Membrane  

Aβ disrupts the integrity of the cell membrane by its hydrophobic and electrostatic nature 

(Bokvist et al., 2004). In cell models, Aβ1-42 rapidly binds to cell membranes and induces 
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subsequent cellular events during the first hour of treatment including tau hyperphosphorylation 

(Datki et al., 2004). Certain amino acid residues of Aβ peptide are crucial for its binding to 

plasma membrane (Barnham et al., 2003; Tickler et al., 2005). Interactions between Aβ and 

biological membrane components including lipids, membrane proteins and cholesterol have been 

discussed previously. In addition, the interaction between Aβ and Cu (II) causes membrane lipid 

peroxidation, which further damages the functions of membrane components (Dikalov et al., 

1999; Huang et al., 1999a; Huang et al., 1999b; Bush, 2003). 

Soluble Aβ oligomer itself may form a channel-like structure on plasma membrane, which is 

permeable to ions leading to Ca2+ influx and destroyed membrane potential (Arispe et al., 1993b; 

Arispe et al., 1993a; Kourie et al., 2001; Kagan et al., 2002). However, other studies have found 

that antioxidants, but not calcium channel antagonists, are capable of blocking the neurotoxic 

effect of Aβ on calcium homeostasis, suggesting the free radicals produced by Aβ are 

responsible for disrupting membrane integrity (Zhou et al., 1996). Interestingly, regardless of 

different amyloid sequences, oligomers of all amyloidogenic proteins increase membrane 

conductance but without evidence of discrete channel/pore formation or ion selectivity, 

suggesting a common conformation-specific mechanism of cytotoxicity (Kayed et al., 2004). 

These spherical oligomers increase membrane permeability and cause membrane depolarization, 

which is detrimental to cells, particularly neurons. Cellular pathways are also affected by the 

increase in membrane conductance (Mattson et al., 1993). 

 

Membrane Receptor-mediated Cytotoxicity 

Alternatively, Aβ seems to exert its cytotoxicity via a receptor-mediated mechanism 

(Lambert et al., 1998b; Wilhelmus et al., 2007). For example, LRP-1 on cerebral vasculature, 

notably, vascular smooth muscle and endothelial cells, plays a multifunctional role in Aβ 

clearance and cytotoxicity (Shibata et al., 2000; Wilhelmus et al., 2007). LRP-1 mediates Aβ 

endocytosis and its subsequent cytotoxicity in vascular smooth muscle cells (VSMCs), which is 

suppressed by LRP-1 inhibitor, receptor-associated protein (RAP) (Wilhelmus et al., 2007). RAP 

is a general antagonist for LDL receptor family. Moreover, Aβ as a LRP-1 ligand is able to 

upregulate LRP-1 expression in VSMCs (Wilhelmus et al., 2007).  

The receptor for advanced glycation end products (RAGE) expressed on cerebral blood 

vessels and microglia mediates Aβ cytotoxicity as well (Yan et al., 1996; Cho et al., 2009). 
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Activation of RAGE by Aβ triggers the release of various proinflammatory factors and reactive 

oxygen species (Deane et al., 2003). Furthermore, RAGE activation increases intracellular 

expression of β-secretase and its activity, leading to increased Aβ production (Cho et al., 2009). 

 

Mitochondrial Dysfunction 

In AD brains, the mitochondrial morphology is altered as revealed by electron microscopy, 

and the overall numbers of mitochondria are reduced in plaque-affected areas (Hirai et al., 2001; 

Baloyannis et al., 2004). These findings suggest mitochondria are affected by Aβ during the 

development of AD.  

Aβ produced in cells appears to bind to mitochondrial proteins and accumulate in 

mitochondria (Yan et al., 1997; Lustbader et al., 2004). Mitochondria also produce Aβ, since 

both APP and functional γ-secretase activity are present in mitochondria (Hansson et al., 2004; 

Devi et al., 2006). Mitochondria are therefore an intracellular source of Aβ during AD 

pathogenesis.  

Intracellular Aβ directly affects mitochondrial function, but to date, there has been no 

evidence that extracellular Aβ plaques directly impair mitochondrial function. Activities of 

mitochondrial dehydrogenase, cyclo-oxygenase and tricarboxylic acid cycle enzymes are 

affected by Aβ in AD brains (Chagnon et al., 1995; Lustbader et al., 2004; Bubber et al., 2005). 

In vitro studies suggest that Aβ directly impairs mitochondrial calcium uptake (Kumar et al., 

1994) and electron transport chain, which is crucial for energy metabolism but also produces 

reactive oxygen species (ROS) (Parks et al., 2001; Casley et al., 2002; Crouch et al., 2005). In 

addition to electron transport chain inhibition, direct binding of Aβ to mitochondria leads to a 

decrease in mitochondrial membrane potential and respiration rates, mitochondria swelling and 

cytochrome-c release, therefore causing cell death (Kim et al., 2002; Keil et al., 2004; Aleardi et 

al., 2005).  

 

Inhibition of Synaptic Transmission 

LTP plays an important role in neuroplasticity. Aβ oligomers potently inhibit LTP in mice 

(Walsh et al., 2002; Cleary et al., 2005; Selkoe, 2008). If Aβ oligomerization is blocked by 

certain inhibitors, e.g. hydroxyanaline derivatives, the LTP reduction is prevented (Walsh et al., 
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2005). A recent study showed that Aβ dimers obtained from the CSF of AD patients are capable 

of inhibiting LTP in mice, which is blocked by Aβ antibodies (Klyubin et al., 2008). 

The mechanisms of Aβ inhibiting LTP seems to involve the nicotinic acetylcholine receptors 

(Itoh et al., 1999; Dineley et al., 2001). However, other studies suggest that muscarinic 

acetylcholine receptors and several signaling pathways are responsible for this effect (Wang et 

al., 2004a). Aβ oligomers also downregulate N-methyl-D-aspartic acid receptors (Lacor et al., 

2007). An alternative mechanism is the interaction between Aβ and metal ions produces ROS 

(Bush, 2003). At the synaptic cleft the levels of metal ions including Cu2+ and Zn2+, reach as 

high as 300 µM during synaptic transmission (Assaf and Chung, 1984; Frederickson et al., 

2000). ROS subsequently disrupts synaptic transmission. 

Aβ oligomers are potent at disrupting synaptic activity in a rather complex manner 

depending upon Aβ concentration, types of neurons and neurotransmitters, and a number of 

other local factors. 

 

1.1.4.7 Impairment of Aβ  Degradation and Clearance 

Aβ accumulation results from the imbalance between Aβ production and clearance. Current 

transgenic animal models of AD are based on gene mutations involving APP, presenilin 1 or 

ApoE. These models overproduce Aβ and mimic its accumulation in AD.  However, to date over 

90% of AD patients have no apparent genetic links, and in most cases the development of senile 

plaques is not a result of Aβ overproduction. Instead, Aβ accumulation in late-onset AD appears 

to be caused by impaired degradation or clearance of Aβ from the CNS (Iwata et al., 2000; 

Sagare et al., 2007). 

There are two major mechanisms by which Aβ is eliminated from the brain, namely, 

proteolytic degradation and receptor-mediated transcytosis. Several intracellular proteases, such 

as neprilysin, plasmin, and angiotensin-converting enzyme, are involved in Aβ degradation (Hu 

et al., 2001; Iwata et al., 2001b). In mouse models of aging and AD, loss of neprilysin expression 

causes an increase in Aβ accumulation (Farris et al., 2007). The insulin-degrading enzyme 

(IDE/insulysin) exhibits dual effects on Aβ.  In the extracellular compartment, IDE hydrolyzes 

only secreted Aβ monomers, but not oligomers or advanced aggregates (Walsh et al., 2002). 

Inside the cells, IDE enhances APP and Aβ trafficking to the plasma membrane (Vekrellis et al., 
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2000; Gasparini et al., 2001). Deficiency of this proteolytic enzyme system during aging 

contributes to Aβ accumulation and subsequent plaque formation in AD (Caccamo et al., 2005; 

Farris et al., 2007).  

It was hypothesized that the major mechanism of Aβ clearance is dependent on output from 

the CNS into the blood circulation (Hyman et al., 2000; Rosenberg, 2000). Aβ can be transported 

from the interstitial fluid bulk flow into the CSF, which accounts for 10% to 15% of the total Aβ 

output (Silverberg et al., 2003). The main clearance route of Aβ is transcytosis through the 

blood-brain barrier (BBB) via a receptor-mediated process into the bloodstream (Shibata et al., 

2000; DeMattos et al., 2002; Deane et al., 2004; Sagare et al., 2007). 

Two receptors on the cerebral vasculature, notably, LRP-1 and RAGE, are known for 

regulating Aβ homeostasis in the CNS.  LRP-1 facilitates Aβ efflux from the brain into the blood 

by directly binding Aβ monomers on the ablumenal side of cerebral blood vessels and then 

excreting it into the blood (Deane et al., 2004). LRP-1 ligands such as α2M and ApoE also 

influence Aβ transcytosis (Shibata et al., 2000; Ito et al., 2007). α2M is a large tetrameric protein 

and functions as an irreversible pan-proteinase inhibitor and a transporter of small protein 

molecules including cytokines and growth factors. It facilitates endocytosis of Aβ monomers via 

LRP-1, i.e. by forming a transient complex with Aβ (α2M:Aβ ratio: 1:1 to 1:8) (Du et al., 1997; 

Hughes et al., 1998). However, α2M and Aβ also aggregate and form larger complexes 

(molecular ratio: >1:10) which cannot be endocytosed by vascular LRP-1 (Narita et al., 1997; Ito 

et al., 2007). As for ApoE, different isoforms of ApoE exert different effects on Aβ transcytosis. 

ApoE4 slows down its transcytosis process whereas ApoE2/3 facilitates Aβ clearance via LRP-1 

(Deane et al., 2008). Similar to α2M, ApoE4 also forms large complexes with Aβ and enhance 

its aggregation (Fryer et al., 2003; Gunzburg et al., 2007; Ito et al., 2007). 

RAGE, on the other hand, mediates the influx of peripheral Aβ from blood circulation into 

the CNS (Deane et al., 2003). Blood seems to be a chronic and stable source of soluble Aβ for 

the brain (Chow et al., 2007). Endothelial RAGE binds to various forms of Aβ in the blood and 

mediates its transcytosis into the CNS. Subsequent cellular signaling pathways are activated, 

releasing proinflammatory cytokines, ROS and endothelin-1, a cerebral blood flow (CBF) 

suppressor (Deane et al., 2003). These effects of RAGE contribute to Aβ neurotoxicity (Yan et 

al., 1996; Lue et al., 2001a). Moreover, RAGE expression is upregulated by its ligands such as 
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Aβ, AGEs and proinflammatory factors (Yan et al., 2000). The mechanism by which vascular 

LRP and RAGE on cerebral blood vessels regulate Aβ homeostasis in the CNS is illustrated in 

Figure 6. In addition to RAGE, ApoJ and ApoE4 seem to facilitate the plasma-derived Aβ 

transport into the CNS (Zlokovic, 1996; Martel et al., 1997). In mice, the transport of ApoJ-Aβ 

complexes through BBB is mediated by LRP-2. However, in humans, ApoJ is not a major carrier 

for Aβ transport (Sagare et al., 2007), and its role in AD pathology is unclear.  

In most AD cases, a large portion of the Aβ deposits are on the outer surface of the cerebral 

blood vessels. The mechanism is not fully understood. Cerebrovascular dysfunction seems to 

contribute to cognitive impairment and neurodegeneration in AD (Grammas et al., 2002; Dede et 

al., 2007). It has been proposed that neurovascular dysfunction leads to impaired Aβ clearance 

via LRP-1 and enhanced Aβ influx by RAGE through cerebral blood vessels, which represents 

the main cause of Aβ accumulation in AD (Zlokovic, 2005). Emerging evidence supports this 

hypothesis. For example, LRP-1 and its ligands, including ApoE and α2M, have been detected in 

senile plaques (Rebeck et al., 1995; Arelin et al., 2002), and altered LRP-1 and RAGE 

expression are observed in post-mortem AD brains (Lue et al., 2001a; Jeynes and Provias, 2008). 

Increased RAGE expression is associated with Aβ plaques in AD brains (Yan et al., 1996). In 

mouse models, Aβ deposition increases RAGE expression by several folds in affected areas 

which results in downstream neuronal dysfunction (Zlokovic, 2004; Herring et al., 2008). 

Furthermore, people with lower LPR-1 levels exhibit increased incidence of AD (Kang et al., 

2000). Polymorphisms of LRP and α2M genes are also associated with AD (Kang et al., 1997; 

Blacker et al., 1998; Ma et al., 2002).  

In brief, as the cerebrovascular function deteriorates with aging, vascular diseases and AD, 

the balance between LRP-1 and RAGE on cerebral blood vessels becomes changed. This leads to 

the accumulation of Aβ on the cerebral vasculature to form CAA and to activate subsequent 

cascades including neuroinflammation, brain hypoperfusion, cerebrovascular regression and 

neuronal degeneration (Jeynes and Provias, 2008). Indeed, inhibition of RAGE-Aβ interaction 

reduces neuroinflammation, stabilizes cerebral blood vessels and restores the resting CBF 

(Deane et al., 2003). Therefore, the RAGE-Aβ interaction may be an important therapeutic target 

for the treatment of AD. 
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Figure 6. Transport of Aβ through blood-brain barrier regulated by LRP-1 and RAGE 

(Zlokovic, 2008a). LRP-1 on cell surface at ablumenal membrane binds to various forms of Aβ 

and mediates its transcytosis from the brain into blood circulation. LRP ligands including ApoE, 

ApoJ and α2M form complexes with Aβ and facilitate its clearance. RAGE on the luminal side 

of cerebral blood vessels binds to peripheral Aβ circulating in blood and mediates its influx into 

the CNS. After activated by Aβ or other ligands including inflammatory factors and AGEs, 

RAGE activates a number of cellular pathways releasing ROS and proinflammatory factors. 
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1.1.5 Carbonyl and Oxidative Stress in Relationship to AD 

1.1.5.1 Reactive Aldehydes in AD Pathology 

Age-related oxidative stress has been proposed to contribute to the development of 

neurodegenerative diseases including Parkinson’s disease and AD (Gorman et al., 1996; 

Gonzalez-Fraguela et al., 1999; Mancuso et al., 2006). There are several markers for oxidative 

stress, such as reactive aldehydes produced from lipid peroxidation (LPO), notably, 4-hydroxy-2-

nonenal (HNE) and malondialdehyde (MDA) (Esterbauer et al., 1991). Basal peroxidation is 

significantly elevated in AD brains (Subbarao et al., 1990). Higher levels of MDA were found in 

AD brains compared to those of healthy brains, especially in the cortex area (Subbarao et al., 

1990; Palmer and Burns, 1994). In rats, levels of HNE and MDA increase with aging (Draper et 

al., 1995). Elevated activities of antioxidant enzymes such as superoxide dismutase and 

glutathione peroxidase were observed in AD brains (Pappolla et al., 1992; Lovell et al., 1995). 

However, other studies found significantly decreased superoxide dismutase activity in AD brains 

(Chen et al., 1994). 

Accumulated oxidative damage to cellular macromolecules is a major event during cellular 

aging. The cytotoxic effects of reactive aldehydes are summarized in Figure 7. Aldehydes are 

able to modify proteins covalently (Smith et al., 1995). The mechanisms of how aldehydes 

modify proteins are not fully understood. It is known that aldehydes preferably react with the ε 

amino group on lysine, the imadazole nitrogen on histidine and the sulfhydryl group on cysteine 

(Esterbauer et al., 1991; Uchida and Stadtman, 1992). Using anti-HNE and anti-MDA antibodies, 

immunohistological studies revealed that proteins adducts with HNE and MDA significantly are 

increased in the senile plaques of AD patients (Montine et al., 1997; Sayre et al., 1997; Dei et al., 

2002). The HNE-protein adducts are detected mostly in the neuronal cytoplasm or associated 

with NFT but not with neuritic plaques (Montine et al., 1997), whereas MDA is colocalized with 

both tau protein and senile plaques (Dei et al., 2002). HNE covalently modifies the lysine 

residues of Aβ and accelerates its aggregation in vitro (Zhang et al., 2004). Mass spectrometry 

and Western blot analyses also revealed that cortex proteins in AD brains are modified by 

aldehydes produced from LPO (Pamplona et al., 2005). 

HNE and MDA react with a variety of biological macromolecules including plasma 

membrane proteins and organelles and alter their chemical nature and biological functions. A 
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Figure 7. Structures of aldehydes and their toxic effects. Macromolecules such as lipids, 

carbohydrates and proteins, readily react with reactive oxygen species (ROS). Their structures 

are modified leading to impaired biological functions. In this process, a number of reactive 

aldehydes are produced, which further exacerbate oxidative damage to additional biological 

molecules. 
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variety of signaling cascades are activated, leading to cytoskeletal disruption, glutamate toxicity 

and mitochondrial dysfunction (Mattson et al., 1997; Neely et al., 1999; Picklo et al., 1999; 

Lauderback et al., 2001).  

 

1.1.5.2 Advanced Glycation End Products in AD 

Advanced glycation end products (AGEs) are the products of a chain chemical reaction 

during glucose metabolism. Increased production of AGEs is associated with aging and the 

vascular complications of diabetes (Brownlee, 2005). The levels of are elevated by about 70% in 

the CSF of AD patients (Shuvaev et al., 2001). The concentration of methylglyoxal in CSF from 

AD patients is also significantly increased compared to the matching control populations (Kuhla 

et al., 2005). The senile plaques from AD patients contain significantly higher levels of AGE 

adducts which also colocalize with NFT (Vitek et al., 1994; Yan et al., 1994). Interestingly, both 

Aβ and AGEs are ligands for RAGE. Aβ seems to upregulate microglial RAGE and potentiate 

the harmful effects of AGEs (Lue et al., 2001a). 

The process of AGE formation is rather complicated. Sugars are reduced by reacting with 

proteins and forming Schiff bases, and subsequently subject to Amadori rearrangement 

(isomerization of the N-glyocoside of an aldose or the glycosylamine to 1-amino-1-deoxy-ketose) 

(Booth et al., 1997). A variety of toxic compounds, the Amadori products, are produced during 

the process. The oxidation of sugar during glycolysis produces reactive products as well (e.g. 

methylglyoxal), and they also form adducts with proteins (Thornalley et al., 1999; Wang et al., 

2004b; Wang et al., 2005). The reaction pathways are summarized in Figure 8. 

 

1.1.5.3 Impairment of Metal Ions Homeostasis in AD 

Impairment of metal ion homeostasis is implicated in AD (Deibel et al., 1996). Ion is capable 

of enhancing Aβ aggregation (Bush et al., 1994). It also plays a significant role in the production 

of ROS which cause oxidation of sugars, proteins, lipids and other cellular macromolecules. 

Hydroxyl radicals are generated from hydrogen peroxide in the presence of Fe2+ via Fenton 

reactions. Cell and rat studies have shown that ion and Aβ synergistically potentiate their 

cytotoxicity (Dikalov et al., 1999; Huang et al., 1999b; Rottkamp et al., 2001).  

Cu (II) binds to the histidine residues on both monomeric and aggregated Aβ (Curtain et al., 

2001). This interaction reduces Cu (II) to Cu (I) and produces hydrogen peroxide as a by-product  
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Figure 8. Formation of AGEs through various pathways (Monnier, 2003). Glucose reacts with 

the amino groups of proteins to form Schiff bases, followed by Amadori rearrangement. 

Amadori products further form deoxyglucosone, 3-deoxyglucosone lysine dimer and glucospane. 

ROS produced from oxidative stress react with glucose and lipids forming a variety of AGEs. 

Glycolysis produces methylglyoxal and also other AGEs. 
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(Opazo et al., 2002). Hydrogen peroxide is a reactive chemical that can diffuse through cell 

membrane. It further reacts with Aβ-Cu (I) producing hydroxyl radical (OH·) to oxidize lipids 

and proteins. Therefore, the interaction between Cu (II) and Aβ causes membrane lipid 

peroxidation, which damages the functions of membrane components (Dikalov et al., 1999; 

Huang et al., 1999a; Huang et al., 1999b; Bush, 2003). OH· has also been shown capable of 

reacting with Aβ peptide and promoting its aggregation (Atwood et al., 2004). 

 

1.1.5.4 Oxidative Stress Induced by Aβ  

Aβ directly induces oxidative stress and causes cytotoxicity. For instance, Aβ binds to the 

endothelial cells on rat aorta and generates excessive superoxide radicals, leading to oxidative 

damage to the vasculature (Thomas et al., 1996). Aβ oligomers and protofibrils trigger glutamate 

release from glial cells and cause excitotoxicity to adjacent neurons. Overactivation of glutamate 

N-methyl-D-aspartic acid receptors is well known to elevate intracellular Ca2+ levels, which 

activates neuronal nitric oxide synthase. Indeed, Aβ increases intracellular Ca2+ levels (Zhou et 

al., 1996) with decreased glutathione levels in astrocytes (Abramov et al., 2003). Excessive nitric 

oxide reacts with superoxide anion produced from Aβ to form even more reactive species 

(ONOO-) leading to further oxidative and nitrosative stress (Bossy-Wetzel et al., 2004).  

In AD patients, mitochondrial DNA damage is detected in amyloid plaque affected areas and 

cerebral microvessels (Mecocci et al., 1994; Aliev et al., 2002). Aβ inhibits mitochondrial 

electron transport chain. Inhibition of electron transport chain is a mechanism of generating ROS 

in the cell. Therefore, Aβ also indirectly increases oxidative stress by affecting mitochondrial 

functions supported by in vitro studies (Behl et al., 1994; Huang et al., 1999b; Varadarajan et al., 

2001).  

 

1.1.5.5 Deficiency of Carbonyl Clearance in AD 

The toxic carbonyl compounds produced during oxidative stress are scavenged by various 

cellular defense mechanisms. An imbalance between carbonyl production and clearance has been 

proposed to play a central role in aging and in the pathogenesis of neurodegenerative diseases 

(Picklo et al., 2002). For instance, aldehyde dehydrogenases oxidize aldehydes to carboxylic 

acids. They catalyze the catabolism of HNE using NAD+ as a cofactor. A subtype of the enzyme, 

aldehyde dehydrogenase-2, is elevated in senile plaques (Picklo et al., 2001). Moreover, Oriental 
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populations who lack aldehyde dehydrogenase-2 activity due to gene mutation have an increased 

risk of developing AD (Kamino et al., 2000).  

Another major mechanism of carbonyl scavenging is through the conjunction of aldehydes, 

lipid peroxides and hydroperoxides with glutathione, catalyzed by glutathione transferases (Alin 

et al., 1985). Glutathione transferase activity is decreased in AD patients (Lovell et al., 1998a). 

In cell studies, neurons depleted of glutathione are more susceptible to Aβ-Cu cytotoxicity, 

suggesting the importance of glutathione in free radical scavenging (White et al., 1999).  

In summary, carbonyl and oxidative stress contribute to various aspects of the pathology of 

AD such as Aβ aggregation and its cytotoxicity, ion homeostasis, vascular damage and 

neurodegeneration. These findings have provided therapeutic implications for AD, for example, 

clinical trials of antioxidants (Marlatt et al., 2008). 

 

1.1.6 Inflammation and AD 

Inflammation in the CNS is implicated in the pathogenesis of AD (Rogers et al., 1996; 

Halliday et al., 2000). In AD patients, inflammatory factors are elevated (Eikelenboom et al., 

2008). Neuroinflammation can be stimulated by Aβ aggregates including oligomers, protofibrils 

and fibrils. Aβ deposits turn into a nidus for innate inflammatory responses, particularly in the 

cortex area (Akiyama et al., 2000; Griffin, 2006). These inflammatory responses are carried out 

by microglia. Upon activation, microglia migrate to inflammatory sites, secrete a variety of 

inflammatory factors and scavenge damaged tissue and misfolded proteins (Bales et al., 2000). 

The inflammatory mediators secreted by activated microglia include interleukin-1β and -6, tumor 

necrosis factor-α and macrophage inflammatory protein-1α (Lue et al., 2001b). In AD, most of 

the senile plaques are densely associated with activated microglia (Luber-Narod and Rogers, 

1988; Rogers et al., 1988).  

Interestingly, Aβ aggregates selectively attract and activate microglia, but not leukocyte or 

monocyte (Wekerle, 2002). This selectivity seems to result from that some receptors on 

microglia, i.e. the macrophage scavenger receptors, formyl chemotactic receptors and RAGE, are 

highly sensitive to Aβ and bind Aβ as a ligand (Yan et al., 1996; Lorton et al., 2000; El Khoury 

et al., 2003). The expression of RAGE on microglia is significantly increased in AD brains and 

anti-RAGE antibody is capable of inhibiting microglial chemotactic responses (Lue et al., 2001a).  
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In addition to triggering release of inflammatory mediators, Aβ aggregates also activate the 

complement system of inflammatory responses, notably, complement component 1q (C1q) and 

membrane attack complex. The complement system facilitates scavenger cell targeting and lysis. 

The colocalization of Aβ and C1q along with other complement factors have been observed in 

AD brains (Rogers et al., 1992). In AD, Aβ deposits bind to and activate C1q, which triggers the 

subsequent cascade of reactions to draw microglia to Aβ deposits (Rogers et al., 1992; Bradt et 

al., 1998). The activation of cerebral inflammation system is beneficial of scavenging neurotoxic 

Aβ and preventing neuronal toxicity. However, overactivation of the complement system by Aβ 

would destroy healthy bystander cells, which causes elimination of functional neurons and 

astrocytes (Daly and Kotwal, 1998; Shen et al., 1998). In a triple transgenic mouse model, 

increased neuroinflammation and Aβ accumulation have a synergic effect on neuronal apoptosis 

(Xiang et al., 2002). 

Overactivation of neuroinflammation explains why some anti-inflammatory drugs show 

beneficial effects in AD patients. Large-scale epidemiological studies showed that the prevalence 

of AD is significantly reduced in patients with arthritis or leprosy, who take anti-inflammatory 

drugs for treatment (Breitner, 1996; McGeer et al., 1996). Chronic use of non-steroidal anti-

inflammatory drugs (NSAIDs) has been found to exhibit beneficial effects on AD patients and 

reduce AD incidence (in t' Veld et al., 2001; Zandi et al., 2002; Etminan et al., 2003; Vlad et al., 

2008). The effect appears to be due to the anti-inflammatory properties of NSAIDs that suppress 

the destructive effects of overactivated inflammatory factors (Breitner and Zandi, 2001). 

However, there are conflicting reports showing that NSAIDs have no significant therapeutic 

effects on AD (Fourrier et al., 1996). Moreover, new NSAIDs, namely, celecoxib and naproxen, 

did not show preventive or therapeutic effects on AD patients who had no apparent chronic 

inflammatory diseases. Naproxen even exacerbates the cognitive impairment (Martin et al., 

2008). Whether both NSAIDs and inflammatory settings are required for the beneficial effects, 

or whether inflammation is the natural defense mechanism of the CNS and NSAIDs are 

accelerating the development of AD, remains unsolved. Nevertheless, the deposition of Aβ 

remains the primary pathological hallmark and the trigger of various cascade events. 

Inflammation may be the resulting defense system induction by Aβ aggregation.  
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1.1.7 AD and Vascular Diseases 

AD is associated with vascular diseases and they share common pathologies (de la Torre, 

2002a). Metabolic syndrome, which includes symptoms such as obesity, hypercholesterolemia, 

diabetes, hypertension and atherosclerosis, is associated with higher incidence and accelerated 

progression of AD (Voisin et al., 2003; Luchsinger et al., 2005; Mielke et al., 2007; Mills et al., 

2007; Razay et al., 2007).  

 

1.1.7.1 AD and Cerebrovascular Disorders 

Neurovascular dysfunction is a common feature in neurodegenerative diseases (Iadecola, 

2004). Morphological changes of blood vessels during aging and AD have been observed 

(Scheibel, 1987; Hashimura et al., 1991; Yamashita et al., 1991). Initially, the endothelial cells of 

cerebral capillaries and the single layer of the smooth muscle cells in arterioles are degenerated. 

These abnormalities lead to irregular shapes of cerebral blood vessels. The cerebrovascular 

dysregulation will ultimately lead to chronic impairment of CBF, glucose transport, receptor 

expression and signaling cascades (Kalaria and Harik, 1989; Grammas et al., 1995; Marcus and 

Freedman, 1997). Based on autopsy studies, 70% of definite AD patients show coexistent 

cerebrovascular disorders (Kalaria, 2002). Common cerebrovascular disorders in aged or AD 

brains include CAA, atherosclerosis and microinfarcts. 

CAA is predominantly found in small cerebral vessels such as leptomeningeal and 

neocortical vessels, especially in the penetrating arterioles of the cortex, and is less distributed in 

cerebellar cortex (Yamada et al., 1987). Clinical data suggest that the extent of CAA is 

associated with severity of cognitive impairment (Pfeifer et al., 2002). Soluble Aβ, particularly 

Aβ1-40, is vasoactive and causes vasoconstriction, CBF reduction as well as other cerebrovascular 

abnormalities (Iadecola, 2003; Paris et al., 2003). Soluble Aβ causes degeneration of endothelial 

cells and VSMCs via production of ROS and proinflammatory factors (Davis-Salinas et al., 

1995; Iadecola, 2003). CAA was shown to further exacerbate these abnormalities caused by 

soluble Aβ in mice (Christie et al., 2001). The mechanism of how Aβ induces vessel dysfunction 

is complicated and far less clear. The process of CAA formation and its effects on cerebral blood 

vessels is shown in Figure 9.  

The large arteries in AD brains normally do not develop CAA as observed in the cerebral 

microvessels. Large arteries particularly in the striatum, deep white matter and leptomeninges, 
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Figure 9. CAA-induced pathological changes on cerebral blood vessels (Zipfel et al., 2009). 

Using confocal microscopy, the amyloid deposition and vascular smooth muscle cells (VSMCs) 

in leptomeningeal vessels of Tg2576 mice (12- to 15-month-old) were stained blue and green, 

respectively. In vessel segments without CAA (Aβ coverage 0%), VSMCs were closely attached 

in parallel. In vessel segments with CAA, the extent of structural disruption and VSMC loss of 

blood vessel is associated with increased deposition of Aβ (16%, 30% and 76%). During mild 

CAA stage (Aβ coverage <20%), neither vascular wall was disrupted nor VSMCs were lost. In 

moderate CAA stage (20% to 40% of Aβ coverage), disruption of VSMC arrangement appeared 

but without significant loss of VSMCs. In advanced CAA (Aβ coverage >40%), both severe 

disruption of VSMC arrangement and VSMC loss were detected. 
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are frequently affected by atherosclerosis (Skoog et al., 1999; Casserly and Topol, 2004). The 

extent of cerebral atherosclerosis and CAA is correlated with the severity of dementia (Thal et 

al., 2003). Atherosclerosis results from hypercholesterolemia, oxidative stress and inflammation, 

which are also among the important contributing factors to AD pathology (Steinberg, 2002). It is 

hypothesized that atherosclerosis in extracranial and intracranial vessels causes brain 

hypoperfusion and discrete brain microinfarction. Chronic malnutrition of the CNS leads to brain 

hypotrophy, which eventually causes vascular dementia and/or AD (Hofman et al., 1997; de la 

Torre, 2002b; Roher et al., 2003). Alternatively, the  development of atherosclerosis and AD 

seems to be independent but convergent (Casserly and Topol, 2004).  

Cerebral ischemic lesions causing damage of prefrontal subcortical areas are associated with 

a 20-fold increased risk of AD (Riekse et al., 2004). These ischemic lesions are characterized by 

lacunae and microinfarcts. 20 to 40% demented AD individuals experience “silent” strokes 

which result in numerous cortical microinfarctions and white matter lesions (Snowdon et al., 

1997; Heyman et al., 1998; Kalaria, 2003; Vermeer et al., 2003; Roman and Royall, 2004). 

Subcortical ischemic lesions, microinfarcts and demyelination are important contributing factors 

of cognitive deficits in aging and AD (Pantoni et al., 1999; Kalmijn et al., 2000; Kovari et al., 

2004). 

 

1.1.7.2 AD and Obesity 

Obesity has been implicated as a risk factor for AD (Gustafson et al., 2003). It is associated 

with poorer cognitive functions (Elias et al., 2003). Hormonal abnormality, hyperleptinemia and 

inflammatory responses in obesity are associated with obesity linking to cognitive decline 

(Bjorntorp and Rosmond, 2000; Li et al., 2002a; Yaffe et al., 2003). The concurrence of obesity 

and hypertension further impairs cognitive performance (Waldstein and Katzel, 2006).  

 

1.1.7.3 AD and Hyperlipidemia 

Hyperlipidemia is associated with increased risk of late-onset dementia (Notkola et al., 1998; 

Kalmijn et al., 2000; Kivipelto et al., 2001; Whitmer et al., 2005). Drugs that lower LDL-

cholesterol levels are protective against cognitive impairment (Jick et al., 2000). High density 

lipoprotein is the major carrier of cholesterol in the brain and plays a protective role in the 

development of dementia. Decreased levels of High density lipoprotein-cholesterol cause 
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defective cholesterol release to neurons, which leads to formation of NFT and senile plaques 

(Bonarek et al., 2000; Michikawa, 2003).  

 

1.1.7.4 AD and Diabetes 

In clinical studies, diabetes is consistently found to be a strong risk factor for cognitive 

impairment, vascular dementia and AD (Ott et al., 1999; Yaffe et al., 2004; Whitmer et al., 

2005). The Rotterdam study found that elderly patients with diabetes mellitus (DM) have about a 

double chance to develop AD compared to nondiabetic control population (Ott et al., 1999). A 

causal relationship between diabetes and late-onset AD has even been proposed (Craft, 2006).  

In diabetes, insulin resistance and subsequent hyperinsulinaemia increase the risk of AD by 

accelerating memory decline and cognitive impairment (Watson and Craft, 2003; Luchsinger et 

al., 2004). Insulin seems to play an important role in metabolism of Aβ and tau (Ho et al., 2004; 

de la Monte and Wands, 2005). The insulin-degrading enzyme (IDE) breaks down extracellular 

Aβ and this process is competitively inhibited by insulin (Qiu et al., 1998). Insulin also 

stimulates the secretion of Aβ and promote tau hyperphosphorylation in diabetes (Gasparini et 

al., 2001). Therefore, elevated levels of insulin in insulin-resistant brains with diabetes cause 

reduced Aβ degradation, enhanced Aβ secretion and subsequently increased formation of 

plaques and tangles. On the other hand, deficiency of insulin is also associated with cognitive 

impairment based on rat studies, probably by decreasing the expression of insulin-like growth 

factors and causing apoptosis in the CNS (Li et al., 2002b). 

Hyperglycemia in diabetes leads to increased production of AGEs, which plays an important 

role in oxidative stress related to AD pathology. Chronic hyperglycemia disrupts cerebral 

capillaries and leads to brain ischemia (Mankovsky et al., 1996). Interestingly, hemoglobin 

glycosylation is negatively correlated with cognitive function (Kanaya et al., 2004). Other 

diabetic complications such as hypertension, hyperlipidimia and stroke are associated with 

cognitive dysfunction related to AD as previously described (in 1.1.7.2).  

 

1.1.7.5 AD and Hypertension 

Hypertension is a strong risk factor for AD and related dementia (Skoog et al., 1996; Qiu et 

al., 2005; Foroughan et al., 2008). For example, patients with systolic blood pressure greater than 

160 mm Hg have 4-fold higher incidence in developing dementia in their later life time 
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compared to people with systolic blood pressure of 110 to 139 mm Hg (Launer et al., 2000). 

Anti-hypertensive drugs reduce the incidence of AD by up to 70% (Hajjar et al., 2005; 

Khachaturian et al., 2006). The contribution of hypertension to the development of AD is via a 

complicated mechanism.  

First, hypertension is usually associated with other factors or pathological conditions 

including hyperlipidimia, obesity and type 2 DM that are risk factors for AD (Luchsinger et al., 

2005). Therefore, hypertension is the common link among these conditions and they potentiate 

each other.  

Secondly, midlife hypertension is associated with an increased formation of neuritic plaques 

and NFT in AD patients (Petrovitch et al., 2000). Hypertension in elderly with normal cognitive 

functions causes reduced regional CBF, which is associated with cerebrovascular diseases such 

as AD (Dai et al., 2008). BBB dysfunction has been proposed to be the major contributor to AD 

pathology (Hashimura et al., 1991; Shah and Mooradian, 1997; Deane et al., 2003; Zlokovic, 

2008b). Hypertension contributes to BBB dysfunction by disrupting cerebrovascular integrity, 

causing cerebrovascular diseases and atrophy such as subcortical white matter lesions, cerebral 

microinfarctions (“silent” strokes) and atherosclerosis in cerebral arteries, and remodeling 

microvasculature (Moossy, 1993; van Dijk et al., 2004; Struijs et al., 2005).  

Thirdly, peripheral Aβ circulating in the blood causes hypertension. Overactivation of the 

rennin-angiotensin system leading to elevated blood pressure was observed during AD 

development (Savaskan et al., 2001). Plasma Aβ is capable of inducing vasoconstriction and 

elevating blood pressure in rats (Suo et al., 1998; Arendash et al., 1999).  

In summary, various vascular risk factors during midlife predispose the development of 

vascular dementia and/or AD in late life. It has been proposed that such pathological vascular 

conditions lead to cerebral hypoperfusion, which consequently causes an energy crisis in richly 

perfused CNS areas such as the limbic system. Chronic CBF reduction and energy deficits 

trigger a series of downstream events, such as mitochondrial dysfunction, oxidative stress, 

inflammatory responses and transport impairment. Indeed, hypoxia associated with reduced CBF 

downregulates LRP-1 expression on cerebral vessels and impair Aβ clearance (Bell et al., 2009). 

As a result, senile plaques and tangles form (de la Torre, 2006; Fillit et al., 2008; Milionis et al., 

2008). AD dementia develops when the degree of neurodegeneration passes a certain threshold. 

Vascular conditions play a causal role in the development of AD as summarized in Figure 10.  
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Figure 10. The involvement of vascular factors in the development of AD. During aging, 

vascular function deteriorates, which causes cerebral microinfarcts and white matter lesions 

leading to brain hypoperfusion. Chronically, it causes neural energy crisis and 

neurodegeneration. AD and vascular dementia appear, when the neural and vascular 

degeneration passes certain threshold. 
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AD is recognized as a chronic cerebral vascular disease due to the importance of 

cerebrovasculature in regulating Aβ homeostasis in the CNS. This is similar to the pathology of 

other vascular diseases (Zlokovic, 2008b). Effectively managing these vascular risk factors in 

early/midlife seems to be a preventive strategy for late-onset cognitive impairment and dementia 

(Marlatt et al., 2008; Pasinetti and Eberstein, 2008). 
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1.2 Semicarbazide-Sensitive Amine Oxidase 

1.2.1 Classification of Amine Oxidases 

According to the cofactors, amine oxidases (AOs) are classified into two categories, namely, 

the flavin adenine dinucleotide (FAD)- and 2, 4, 5-trihydroxyphenylalanine-quinone (TPQ)-

containing enzymes. FAD-containing enzymes including monoamine oxidase A (MAO-A), 

MAO-B and polyamine oxidases are expressed intracellularly (Shih et al., 1999). TPQ-

containing enzymes include lysyl oxidase, diamine oxidases, plasma membrane and soluble AOs 

(Klinman and Mu, 1994; Klinman, 1996; Lyles, 1996). These later enzymes are sensitive to 

semicarbazide (Tabor et al., 1954).  

MAOs are well-known for catabolizing amine neurotransmitters (Youdim, 1989; Sherry et 

al., 1990), and have been extensively studied for their involvement in neuropsychiatric disorders 

(Aghajanian et al., 1970; Gottfries et al., 1974; Murphy and Wyatt, 1975) and neurodegenerative 

diseases (Steventon et al., 1990; Sparks et al., 1991). TPQ-containing diamine oxidase uses 

histamine, putrescine and cadaverine as substrates. It is an intracellular enzyme mainly 

synthesized in placenta, kidney and intestine (Buffoni, 1966; Robinson-White et al., 1985). The 

other type of TPQ-containing enzyme, semicarbazide-sensitive amine oxidase (SSAO), is found 

dissolved in the blood and in deposits on the surface of cells. SSAO is also called amine oxidase 

copper-containing-3. This enzyme deaminates small aliphatic amines, such as methylamine. 

SSAO is inhibited by semicarbazide which binds to its catalytic cofactor, the TPQ residue (Janes 

and Klinman, 1995; Houen, 1999). SSAO are not inhibited by classic MAO inhibitors 

(Callingham et al., 1995; Lyles, 1996).  

 

1.2.2 Genes, Localization and Structure of SSAO 

1.2.2.1 Genes and Localization of SSAO 

In mammals, two genes encoding SSAO have been identified on chromosome 17 (Zhang and 

McIntire, 1996; Imamura et al., 1997). The amine oxidase copper-containing-3 gene encodes 

SSAO expression in most tissues. The other gene encodes a form of SSAO that seems to only 

exist in retina which has about 64% sequence identity to the SSAO in other mammalian tissues 

(Imamura et al., 1997). Its physiological functions in retina are unclear. 
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Mammalian SSAO presents in either a membrane-bound form or a soluble form in the 

cytoplasm. The membrane-bound SSAO is expressed on the outer surface of endothelial cells, 

smooth muscle cells and adipocytes (Callingham et al., 1995; Boomsma et al., 2000a). It is a 

transmembrane type II protein with a short (4 amino acids) N-terminal tail in the cytoplasm 

(Smith et al., 1998). The expression of SSAO differs markedly among tissues and species (Lyles, 

1996). In the CNS, SSAO is not found on/in neurons or glial cells, but only on large arteries, 

microvessels and capillaries of cerebral vasculature (Zuo and Yu, 1994; Castillo et al., 1999; 

Jiang et al., 2008). 

The source of plasma SSAO is not fully clarified. The N-terminal sequence of plasma SSAO 

is identical to the membrane distal sequence of the membrane-bound SSAO (Kurkijarvi et al., 

1998; Boomsma et al., 2005a). Therefore, it is probably derived from the proteolytic cleavage of 

membrane-bound SSAO in liver and adipose tissue (Abella et al., 2004). Also, vascular injury 

increases SSAO activity and causes “shedding” of membrane-bound SSAO from endothelium 

and smooth muscles into the blood stream (Boomsma et al., 2005a).  

 

1.2.2.2 Structure of SSAO 

SSAO is a homodimeric copper glycoprotein with a molecular weight from 180 to 200 kD 

(with each subunit 90 to 100 kD) (Lyles, 1996). Its primary sequence has been identified (Zhang 

and McIntire, 1996; Smith et al., 1998). X-ray diffraction revealed that the tertiary structure of 

SSAO  contains four domains and has a mushroom-like shape (Parsons et al., 1995; Jakobsson et 

al., 2005). Its catalytic domain is located in the extracellular compartment, which makes SSAO 

unique compared to other AOs (Salminen et al., 1998). The active site is buried in a 400-amino-

acid-long C-terminal β-sandwich domain. This domain is involved in SSAO dimerization. At the 

active site, most SSAOs possess a conserved motif, namely, Asn-TPQ-Asp/Glu-Tyr (Salminen et 

al., 1998). Cu (II) and TPQ cofactor are essential for SSAO activity (Cai et al., 1997; McGuirl 

and Dooley, 1999). The copper atom is coordinated by three histidines. His-X-His motif is about 

50 residues C-terminal from the TPQ cofactor and another His is 20 to 30 residues N-terminal 

from the TPQ motif (Salminen et al., 1998). The structures of inactive and active forms of SSAO 

differ in the geometry of copper coordination as well as TPQ position in the active centre. The 

Asp motif, around 100 residues N-terminal from TPQ, is also important for SSAO activity. The 

conserved motifs of SSAO are shown Figure 11.  
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Figure 11. Structural motifs of the active site on SSAO. Histidine (440) and His-X-His 

coordinate Cu (II). A conserved motif, Asn-TPQ-Asp/Glu-Tyr exists in most SSAOs. 
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SSAOs from various species and organs are considerably different in their accessibility to the 

active-site for substrates (McGuirl and Dooley, 1999). Glycosylation of SSAO also varies 

depending on the sources of SSAO (Holt et al., 1998). Such variations are responsible for the 

distinct selectivity of substrates and sensitivity to inhibitors among SSAOs from various tissues 

and species. 

 

1.2.2.3 Endogenous Substrates for SSAO 

SSAO deaminates various primary amines. In the presence of oxygen and water, SSAO 

converts amines into aldehydes and produces hydrogen peroxide and ammonia as follows: 

RCH2NH2+O2+H2O→RCHO+NH3+H2O2 

The reaction proceeds in two steps. First, the TPQ cofactor of SSAO is reduced by its 

substrates and corresponding aldehydes are generated simultaneously. In this step, SSAO and its 

substrates undergo a sequence of transitions during which a transient covalent Schiff base is 

formed between them (Dooley et al., 1991). In step two, the reduced TPQ cofactor is oxidized 

back to its original state, producing hydrogen peroxide and ammonia.  

The primary known endogenous substrates of SSAO are methylamine and aminoacetone 

(Precious et al., 1988; Yu, 1990; Lyles and Chalmers, 1992; Lyles, 1995). Interestingly, human 

SSAO exhibits none, or very little activity, towards dopamine and histamine, but has high Km 

values towards phenylethylamine and tyramine (Young et al., 1982; Lizcano et al., 1991; Lyles, 

1995). Non-endogenous substrates include allylamine, benzylamine, mescaline and primaquine 

(Elliott et al., 1989; Strolin Benedetti and Tipton, 1998). Aliphatic amines are SSAO substrates 

as well (Yu, 1990).  

Methylamine and aminoacetone are deaminated by SSAO to generate formaldehyde and 

methylglyoxal, respectively (Precious et al., 1988; Lyles and McDougall, 1989; Lyles and 

Chalmers, 1992). Methylamine exists in blood, tissues and urine (Asatoor and Kerr, 1961; Yu 

and Dyck, 1998). Endogenous methylamine is produced from metabolic pathways of several 

molecules including adrenaline, creatine/creatinine and choline (Schayer et al., 1952; Zeisel et 

al., 1983; Yu et al., 1997; Yu and Deng, 2000). The concentration of methylamine in human 

blood is normally around 1 to 5 µM. In plasma of uremia patients, methylamine level is 

increased to 10 to 20 µM (Asatoor and Kerr, 1961; Baba et al., 1984). In rats, SSAO inhibitor is 

able to increase methylamine concentration in urine, suggesting that SSAO is a major enzyme 
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metabolizing methylamine in vivo (Lyles and McDougall, 1989; Yu and Zuo, 1997). 

Endogenous aminoacetone is derived from glycine and threonine (Bird et al., 1984). Similar to 

methylamine, it is mainly metabolized by SSAO (Lyles and Chalmers, 1992). Recently, levels of 

methylamine and aminoacetone in tissues have been reported (Xiao and Yu, 2009).  

 

1.2.3 Roles in Physiological Function 

SSAO has been known for several decades. Since the discovery of its endogenous substrates 

a few years ago, several hypotheses regarding its roles in physiological function have been 

proposed. 

 

1.2.3.1 SSAO and Glucose Uptake 

SSAO is abundant in adipose tissue and accounts for 1% of total membrane proteins of 

adipocytes (Morris et al., 1997; Moldes et al., 1999). In preadipocytes, SSAO expression is 

minimal but is upregulated in differentiated adipocytes (Fontana et al., 2001). SSAO substrates, 

i.e. methylamine and aminoacetone, increase glucose uptake in adipocytes by several folds and 

this effect is blocked by SSAO inhibitors (Enrique-Tarancon et al., 1998; Carpene et al., 2001; 

Fontana et al., 2001; Carpene et al., 2006). This insulin-like effect of SSAO substrates is not 

limited to adipocytes, but was also observed in VSMCs (El Hadri et al., 2002). In SSAO-

knockout mice, SSAO substrates do not have an insulin-like effect, suggesting that SSAO 

activity is responsible for mediating glucose uptake (Bour et al., 2007a). SSAO substrates seems 

to exhibit some beneficial effects on diabetic conditions (Iglesias-Osma et al., 2005). 

Interestingly, SSAO activity in obese dogs is significantly increased (Wanecq et al., 2006).  

The involvement of SSAO activity in mediating glucose uptake suggests the products from 

SSAO-catalyzed reactions are responsible for this effect. Hydrogen peroxide is generated from 

SSAO-catalyzed reactions and catalase abolishes the effect of SSAO substrates on glucose 

uptake (Enrique-Tarancon et al., 1998; Enrique-Tarancon et al., 2000). It suggests that hydrogen 

peroxide is responsible for the insulin-like effect. Indeed, hydrogen peroxide at low 

concentrations functions as a signaling molecule by regulating transcription factors (Finkel, 

1998; Kunsch and Medford, 1999). Moreover, hydrogen peroxide is known to mimic the effect 

of insulin by translocating the GLUT4 glucose transporter from intracellular vesicles onto the 

plasma membrane. In addition, SSAO is colocalized with GLUT4 vesicles (Fontana et al., 2001). 



	
   45	
  

These findings support the role of hydrogen peroxide from SSAO-mediated reactions in 

regulating glucose uptake. 

 

1.2.3.2 SSAO and Blood Pressure 

Abundance of SSAO in the vascular system has triggered some interests whether SSAO is 

related to blood pressure. Methylamine induces vessel relaxation via a nitric oxide independent 

mechanism in isolated human blood vessels, which is blocked by SSAO inhibitor. Formaldehyde 

and hydrogen peroxide have similar effect to that of methylamine. It suggests that products from 

deamination of methylamine mediated by SSAO are responsible for vessel relaxation (Conklin et 

al., 2004). However, inhibition of SSAO was also found to cause vasodilatation. For instance, 

hydralazine, a drug previously used for the treatment of hypertension, inhibits SSAO activity 

(Vidrio, 2003). These studies suggest that SSAO is able to modulate blood pressure. Moreover, 

the effect of SSAO-catalyzed reactions on blood pressure may be dependent on the enzyme 

activity, levels of substrates, signaling pathways activated on vasculature, and perhaps other 

factors in the vicinity.  

 

1.2.3.3 SSAO and Development of Vasculature 

During embryogenesis (Salmi and Jalkanen, 2006), and throughout the early development of 

vasculature (Valente et al., 2008), SSAO is highly expressed on VSMCs. In rats, inhibition of 

SSAO leads to altered elastin architecture within the aortic media characterized by uncontrolled 

proliferation of smooth muscle cells (Langford et al., 1999). Decreased SSAO activity is 

associated with increased disorganization of elastic lamellae with reduced thickness (Sibon et al., 

2008). The properties of blood vessels are also impaired including less strength and higher 

stiffness. Interestingly, in idiopathic annuloaortic ectasia disease, SSAO expression is 

significantly downregulated in affected area where there is reduction in elastic lamellar thickness 

as well (Sibon et al., 2004). 

In mice overexpressing SSAO in VSMCs, the aortic elastic lamellae become abnormally 

straight and unfolded. Elastic fibers are irregularly arranged and form tangled webs between the 

intercalating elastic laminae (Gokturk et al., 2003). These abnormalities reduce artery elasticity 

and impair vessel ability in regulating blood pressure. 
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These studies suggest that SSAO-catalyzed reactions play an important role in deposition of 

extracellular matrix and maintenance of vascular smooth muscles. Vascular SSAO appears to 

crosslink elastin/collagen monomers with other basement membrane components (Langford et 

al., 2002). Aldehydes produced from SSAO-mediated deaminations crosslink vascular structural 

proteins. For example, formaldehyde produced from deamination of methylamine modifies and 

crosslinks proteins (Gubisne-Haberle et al., 2004). In addition to aldehydes, hydrogen peroxide 

produced on the vascular surface from SSAO-mediated deaminations regulates cell proliferation 

and adhesive properties of both endothelium and smooth muscles (Rao and Berk, 1992; de Bono 

and Yang, 1995; Li et al., 1997; Yasuda et al., 1999; Stone and Collins, 2002). 

 

1.2.3.4 SSAO as an Endothelial Adhesion Molecule 

SSAO was discovered independently as vascular adhesion molecule-1 (VAP-1). VAP-1 and 

SSAO have identical sequence at cDNA level (Smith et al., 1998). SSAO/VAP-1 on the surface 

of endothelium contributes to the leukocyte extravasation cascade (Salmi et al., 1998; Lalor et 

al., 2002; Bonder et al., 2005; Koskinen et al., 2007). Leukocyte extravasation from blood 

circulation into tissues is crucial for immune homeostasis and inflammatory responses. Under 

normal conditions, leukocytes flowing in the blood stream reversibly adhere to and roll on the 

endothelium of vasculature. Upon elicitation of inflammation, SSAO stored in intracellular 

granules is recruited to the luminal plasma membrane of endothelial cells, probably triggered by 

inflammatory mediators (Jaakkola et al., 2000). Studies using specific SSAO inhibitors or mutant 

forms of SSAO lacking the catalytic site have found that SSAO activity is important for 

leukocyte extravasation, particularly in the rolling phase and the subsequent transmigration step 

(Tohka et al., 2001). This effect of SSAO/VAP-1 is selective to certain types of leukocyte (Salmi 

et al., 1997).  

The mechanisms of interaction between SSAO and leukocytes have been proposed. SSAO-

mediated amine deaminations on leukocyte surface is important for leukocyte adhesion, because 

both inhibition of SSAO activity and addition of SSAO substrates abolish leukocyte adhesion 

and rolling (Salmi et al., 2001). Therefore, the lymphoid surface-bound amines such as NH2- 

groups on side chains of amino acids and amino sugars rather than soluble SSAO substrates, 

namely, methylamine and aminoacetone, are responsible for SSAO-mediated leukocyte 
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adhesion. A transient link is formed between the enzyme and the cell after the initial sialic acid-

dependent adhesion. However, to date such a surface-bound amine has not been identified. 

In summary, SSAO activity regulates leukocyte trafficking in the peripheral system 

(Marttila-Ichihara et al., 2006), and small-molecule inhibitors of SSAO suppress leukocyte 

extravasation to sites of inappropriate inflammation. Therefore, SSAO is a potential novel target 

for treatment of various chronic inflammatory diseases (Salter-Cid et al., 2005; Xu et al., 2006; 

Smith and Vainio, 2007; Noda et al., 2008b; O'Rourke et al., 2008).  

In the CNS, there are few leukocytes present under normal conditions, but in the presence of 

infection or injury, leukocytes enter the CNS by three routes. The first route is the blood-choroid 

plexus-CSF route. In healthy individuals there are about 3, 000 leukocytes per milliliter of CSF 

(Engelhardt et al., 2001; Kivisakk et al., 2003). The second pathway is leukocytes from blood 

extravagate through postcapillary venules at the brain pial surface into the subarachnoid space 

(Lister and Hickey, 2006). Thirdly, leukocytes continue to enter the Virchow-Robin perivascular 

spaces (Walther et al., 2001), which appear to be the important sites for lymphocytic interactions 

with antigen-expressing cells (Man et al., 2007). The role of SSAO, which is located at this 

compartment, on leukocyte trafficking into the CNS has not been addressed and needs to be 

clarified. 

  

1.2.3.5 Plasma SSAO and Diseases 

The functions of plasma/soluble SSAO are less understood. Similar to the membrane-bound 

form, plasma SSAO facilitates leukocyte adhesion to endothelial cells, probably by inducing 

signaling pathways or mediators in leukocytes (Kurkijarvi et al., 1998). Plasma SSAO activities 

have been measured in a variety of pathological disorders/diseases, which are summarized in 

Table 1.  

 

1.2.4 SSAO and Vascular Disorders 

1.2.4.1 SSAO and Heart Disease 

High plasma SSAO activity is a risk factor for the progression of heart disease (Boomsma et 

al., 1997). Plasma SSAO activity increases with the severity of congestive heart failure. It was 

proposed that the toxic products generated from SSAO-catalyzed deaminations cause endothelial 

dysfunction and damage, which is observed in various vascular disorders  
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Table 1. SSAO activity in various diseases 

	
  

Pathological 
Conditions 

Increased 
SSAO 
activity 

Decreased 
SSAO 
activity 

Unchanged 
SSAO 
activity 

References 

Alzheimer’s disease Cerebral 
vasculature, 
plasma 

  (Ferrer et al., 2002; Jiang et 
al., 2008) 

Congestive heart 
failure 

Plasma   (Boomsma et al., 1997; 
Boomsma et al., 2000b) 

Cardiac disease Plasma   (Boomsma et al., 2000a) 
Diabetes (types 1 
and 2) 

Plasma 
(human, rat 
and sheep), 
rat kidney 

Rat aorta Rat aorta, 
lung and 
pancreas 

(Boomsma et al., 1995; 
Lyles, 1996; Meszaros et al., 
1999b; Gronvall-Nordquist 
et al., 2001; Boomsma et al., 
2005a; Somfai et al., 2006; 
Nunes et al., 2008) 

Diabetic 
retinopathy 

Plasma   (Garpenstrand et al., 1999b; 
Gronvall-Nordquist et al., 
2001) 

Diabetic 
atherosclerosis 

Plasma   (Meszaros et al., 1999a; 
Karadi et al., 2002) 

Hypertension Rat plasma  Plasma, 
aorta 

(Lyles, 1996; Wang et al., 
2005) 

Inflammatory liver 
disease 

Plasma   (Kurkijarvi et al., 1998; 
Kurkijarvi et al., 2000; Lalor 
et al., 2007) 

Kidney transplant 
rejection and 
kidney disease 

Plasma   (Kurkijarvi et al., 2001; Lin 
et al., 2008) 

Stroke Plasma Cerebral 
vasculature 

Plasma (Garpenstrand et al., 1999a; 
Airas et al., 2008) 

Burns  Plasma  (Lyles, 1996) 
Cancer (solid tumor 
in breast) 

 Tumor tissue 
(rat) 

 (Lizcano et al., 1991) 

Cancer (breast)  Plasma  (Lyles, 1996) 
Cancer (lung)  Plasma  (Garpenstrand et al., 2004) 
Obesity Plasma, rat 

and mouse 
adipose 

  (Weiss et al., 2003; Yu et 
al., 2004; Prevot et al., 
2007) 
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(Boomsma et al., 1997). Moreover, heart failure patients with an elevated plasma SSAO activity 

have an increased mortality, and SSAO activity is an independent prognostic marker for chronic 

heart disease (Boomsma et al., 2000b). 

 

1.2.4.2 SSAO and Diabetes Mellitus 

Plasma SSAO activity is increased in both type 1 and 2 DM (Nilsson et al., 1968; Boomsma 

et al., 1995; Gronvall-Nordquist et al., 2001; Monnier, 2003; Boomsma et al., 2005b; Nunes et 

al., 2008). Therefore, elevated plasma SSAO activity has been considered as a potential 

biological marker for diabetes (Nunes et al., 2008). In the presence of obesity, hypertension, 

macrovascular (carotid stenosis) and microvascular (proliferative retinopathy) complications, 

plasma SSAO activity is further elevated (1.5 to 2 folds) compared to control populations 

(Meszaros et al., 1999b; Gronvall-Nordquist et al., 2001; Boomsma et al., 2005b). In diabetic 

mice and rats, plasma SSAO activity is significantly elevated with altered activities of tissue-

bound SSAO (Gokturk et al., 2004; Somfai et al., 2006).  

The increased production of reactive aldehydes by elevated SSAO activity is proposed to 

contribute to diabetic complications (Yu and Zuo, 1993). For instance, in a mouse model of 

diabetes, inhibition of SSAO reduces oxidative damage to blood vessels, which is characterized 

by reduced malondialdehyde excretion and atherosclerotic lesions (Yu et al., 2002). 

Formaldehyde produced from methylamine deamination is involved in diabetic pathology (Yu 

and Zuo, 1993, 1996; Yu et al., 2002; Kazachkov et al., 2007). In addition, increased AGEs 

formation is involved in vascular complications in diabetes (Yamagishi et al., 2005). 

Methylglyoxal generated from aminoacetone deamination, which is catalyzed by SSAO, 

contributes to AGEs formation and subsequent vascular complications of diabetes (Mathys et al., 

2002). Moreover, methylglyoxal directly modifies insulin molecule and impairs its function in 

regulating glucose uptake (Jia et al., 2006).  

 

1.2.4.3 SSAO and Atherosclerosis 

In atherosclerosis patients, plasma SSAO activity is significantly increased (Meszaros et al., 

1999a; Karadi et al., 2002). Plasma SSAO activity is also correlated with various risk factors for 

atherosclerosis such as body mass index, hemoglobin A1c and cholesterol (Meszaros et al., 
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1999b). Therefore, elevated plasma SSAO activity seems to be a potential marker for 

atherosclerosis.  

In rodents, mice strains that are more vulnerable to atherosclerosis, for example, C57BL/6 

mice (Paigen et al., 1985; Paigen et al., 1990), express significantly higher SSAO activity 

compared to other strains (Yu and Deng, 1998). Rabbits, known for their high vulnerability to 

atherosclerosis, also possess very high SSAO activity (Boomsma et al., 2000a). Based on these 

findings, SSAO is involved in the development of atherosclerosis. 

 

1.2.4.4 SSAO and Stroke 

Plasma SSAO activity is significantly increased in patients after acute ischemic stroke, but 

membrane-bound SSAO expression on cerebral vasculature after a stroke is significantly 

diminished in the ipsilateral hemisphere compared to contralateral hemisphere and in control 

brains (Airas et al., 2008). It is known that the post-stroke events are normally more destructive 

than the stroke process itself. Leukocyte extravasation to the affected areas can exacerbate the 

tissue damage. In rats, leukocyte infiltration after ischemic stroke is significantly reduced by 

SSAO inhibitor, suggesting SSAO-mediated leukocyte trafficking plays an important role in this 

process (Xu et al., 2006). 

 

1.2.4.5 SSAO and Obesity 

Plasma SSAO activity is significantly increased in obese people (Weiss et al., 2003). Adipose 

tissue expresses SSAO at high levels, which is involved in regulating glucose uptake and 

lipolysis. Interestingly, during differentiation of human adipocytes, SSAO activity is 

significantly increased, supporting its role in adipogenesis (Bour et al., 2007b). Adipose SSAO 

seems to be associated with the development of obesity (Morin et al., 2001). Inhibition of SSAO 

is able to reduce fat deposition in obese rodents (Yu et al., 2004; Carpene et al., 2007; Prevot et 

al., 2007; Carpene et al., 2008). 

 

1.2.4.6 SSAO and Inflammation 

SSAO is involved in the inflammatory process by facilitating leukocyte trafficking. 

Upregulation of SSAO has been detected in some inflammatory conditions. For example, in 

human and mouse lungs, SSAO expression is increased during inflammation (Singh et al., 2003). 
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In mice with pulmonary inflammation, blocking SSAO activity reduces the number of 

inflammatory cells in bronchoalveolar lavage (Yu et al., 2006). In inflammatory bowl disease 

and in dermatoses, the expression of vascular SSAO is significantly increased (Salmi et al., 

1993; Salter-Cid et al., 2005). In multiple sclerosis patients with ongoing inflammatory activity, 

plasma SSAO activity was found to be significantly elevated (Airas et al., 2006). SSAO is also 

significantly increased in the skin of patients with psoriasis, lichen ruber planus and allergic 

lesions, and SSAO antibodies are able to reduce lymphocyte adhesion by up to 60% (Arvilommi 

et al., 1996). 

In humans, plasma SSAO activity is elevated in chronic inflammatory liver disease and in 

alcoholic hepatitis (Kurkijarvi et al., 1998; Kurkijarvi et al., 2000; Lalor et al., 2007). The 

difference in the concentration of SSAO in portal and hepatic veins suggests that the elevated 

plasma SSAO is caused by shedding from hepatic vascular bed. SSAO plays an important role in 

leukocyte recruitment through hepatic sinusoidal endothelium (Lalor et al., 2002; Bonder et al., 

2005). In a mouse hepatitis model, SSAO inhibitors significantly attenuate inflammatory 

responses (Bonder et al., 2005). A similar effect has been observed in a rat model of liver 

transplantation (Martelius et al., 2004).  

A variety of inflammatory mediators upregulates SSAO, notably, interleukins 1 and 4, 

interferon-γ and tumor necrosis factor-α (Arvilommi et al., 1997; Merinen et al., 2005). Both 

SSAO antibodies and specific inhibitors in these models are able to attenuate the inflammatory 

responses, which suggests potential therapeutic benefits for inflammatory diseases (Kirton et al., 

2005; Merinen et al., 2005; Salter-Cid et al., 2005; Xu et al., 2006; Noda et al., 2008a). 

 

1.2.4.7 SSAO and AD 

In the CNS, SSAO is exclusively localized on cerebral blood vessels (Zuo and Yu, 1994; 

Jiang et al., 2008), and it is colocalized with perivascular Aβ deposition in AD brains (Ferrer et 

al., 2002; Unzeta et al., 2007; Jiang et al., 2008). Plasma SSAO activity has been found 

significantly increased in AD patients (del Mar Hernandez et al., 2005). However, little is known 

on the mechanism of Aβ-SSAO colocalization and upregulation in AD. 
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1.2.5 SSAO as a Pharmacological Target 

Antibodies or small-molecule inhibitors of SSAO inhibit inflammatory responses in 

conditions such as arthritis, peritonitis and liver allograft rejection in rats and mice (Martelius et 

al., 2004; Merinen et al., 2005; Marttila-Ichihara et al., 2006). A murine monoclonal anti-SSAO 

IgM antibody, vepalimomab, has been evaluated and showed therapeutic effects in three Phase I 

clinical trials for treatment of dermatitis (Vainio et al., 2005). Interestingly, SSAO is abundant in 

retina (Zuo and Yu, 1994). SSAO inhibitor has been shown to suppress endotoxin-induced 

uveitis (Noda et al., 2008a). 

Inhibiting SSAO activity also reduces the production of toxic metabolites and thus attenuate 

vascular damages such as retinopathy and nephropathy associated with diabetes, hypertension, 

atherosclerosis and other vascular diseases (Dunkel et al., 2008). 

The mechanism of how plasma activity and tissue expression of SSAO are altered under 

pathological conditions is unclear. Increased SSAO expression may be a compensatory 

upregulation by other factors or its own substrates. Elevated SSAO activity or expression 

produces more cytotoxic chemicals causing more damage to the vasculature. This process forms 

a chronic and accumulative vicious cycle that contributes to the development of a variety of 

chronic vascular and inflammatory diseases. Therefore, SSAO could be a very important 

therapeutic target. 
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2. HYPOTHESES 

In spite of some controversy, Aβ remains at the center of interest regarding the pathology of 

AD (Selkoe, 2008). Products resulting from the aggregation of Aβ, oligomers in particular, are 

neurotoxic and responsible for the neurodegeneration in AD (Cleary et al., 2005; Shankar et al., 

2008). Perivascular Aβ deposition (Pfeifer et al., 2002; Fryer et al., 2003) and cerebral vascular 

damage such as atherosclerosis and cerebral microinfarcts have been observed in AD brains 

(Luchsinger et al., 2005). Impairment of cerebral vasculature and Aβ clearance via vascular 

LRP-1 has been speculated (Zlokovic, 2004). Oxidative stress and inflammation are also 

implicated in AD pathology (Hirai et al., 2001; Griffin, 2006).  

SSAO is involved in a variety of vascular disorders, probably by producing toxic products 

that act on blood vessels (section 1.2.4). Plasma SSAO activity was found to be significantly 

increased in AD patients (del Mar Hernandez et al., 2005). In AD brains, SSAO is colocalized 

with perivascular Aβ deposition  (Ferrer et al., 2002; Unzeta et al., 2007; Jiang et al., 2008). 

SSAO is up-regulated in response to inflammation (Merinen et al., 2005). 

The potential involvement of cerebral vascular SSAO in the pathology of AD has been 

previously proposed (Yu, 2001). An extended version of the model is illustrated in Figure 12. In 

the present study, we hypothesize that: 

 

(1) Reactive aldehydes produced from SSAO-mediated deamination (formaldehyde and 

methylglyoxal) and oxidative stress (malondialdehyde and HNE) crosslink Aβ and enhance 

its oligomerization and fibrillogenesis. These aldehydes also crosslink Aβ with other 

proteins to form large complexes; 

(2) Increased production of Aβ oligomers by aldehydes exerts more cytotoxicity to neuronal 

cells and cerebral vasculature, accelerating neural and vascular degeneration; 

(3) Toxic products from SSAO-catalyzed reactions damage the cerebral vasculature and impair 

its functions. For instance, aldehydes exert in situ modification of vascular LRP-1 and 

impair Aβ clearance. Vascular damage in the brain will release the membrane-bound SSAO 

into blood circulation; 
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Figure 12. Hypothesis concerning the involvement of cerebral SSAO-mediated deamination in 

AD pathology. SSAO-catalyzed deamination produces reactive aldehydes, hydrogen peroxide 

and ammonia. Endogenous aldehydes react with Aβ and crosslink Aβ or with other proteins. 

Toxic products generated by SSAO damage cerebral blood vessels including LRP-1 function. Aβ 

clearance is therefore impaired. These effects of aldehydes contribute to Aβ accumulation in a 

chronic and accumulative manner, which eventually lead to AD. 
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(4) Chronically, enhanced Aβ aggregation, impaired clearance and increased influx lead to the 

accumulation of Aβ in the CNS. Formation of senile and perivascular plaques will be 

increased by aldehydes. 
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3. OBJECTIVES  

(1) To investigate the potential effects of endogenous aldehydes, such as formaldehyde, 

methylglyoxal, malondialdehyde and HNE, on Aβ β-sheet formation, oligomerization, 

fibrillogenesis as well as crosslinking Aβ with other proteins and forming large complexes. 

Formaldehyde is produced from methylamine via SSAO-mediated deamination and lipid 

peroxidation (LPO). Methylglyoxal is derived from aminoacetone through SSAO, LPO and 

glycolysis. Malondialdehyde and HNE are products of LPO which are considered as markers 

for oxidative stress. The mechanism of how aldehydes react and crosslink Aβ peptide will be 

investigated. 

(2) To test whether aldehyde-modified Aβ oligomers exhibit altered cytotoxicity: neuroblastoma 

SH-SY5Y cells will be employed to assess the effect of aldehyde-modified Aβ oligomers on 

cell death and apoptosis. 

(3) To test whether SSAO-produced aldehydes can affect Aβ clearance via LRP-1 associated to 

VSMCs.  

 

The ultimate goal of the investigation is to uncover the potential involvement of 

cerebrovascular SSAO-mediated reactions in Aβ misfolding and clearance and to delineate the 

mechanism of CAA formation in AD. 
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4. METHODOLOGIES 

 

4.1 Part I: Effects of Endogenous Aldehydes on Aβ  β-sheet Formation, Oligomerization 

and Fibrillogenesis In Vitro 

4.1.1 Materials 

Aβ1-40 and A11 anti-Aβ-oligomer antibody were purchased from BioSource (Camarillo, CA, 

USA). 1, 1, 1, 3, 3, 3-Hexafluoro-2-propanol (HFIP), methylglyoxal, Tris-base, Tween-20, 

sodium chloride (NaCl) and anti-rabbit IgG were obtained from Sigma-Aldrich (St. Louis, MO, 

USA). Formaldehyde, malondialdehyde and HNE were obtained from BDH Inc. (Toronto, ON, 

Canada), Fluke (Bucks, Switzerland) and Axis (Portland, OR, USA), respectively. Ninety-six-

well microfluor black plates were purchased from Dynex Technologies Inc. (Chantilly, VA, 

USA). [14C]-Benzylamine, clorgyline, (-)-deprenyl, toluene, ethyl acetate ACS scintillation 

cocktail were purchased from Amersham Radiolabeled Chemicals Inc. (St. Louis, MO, USA). 

MDL-72974A ((E)-2-(4-fluorophenethyl)-3-fluoroallylamine) was a gift from Marion-Merrell-

Dow Inc. (Cincinnati, OH, USA). Amersham enzymatic chemiluminescence (ECL) blotting 

detection reagents were purchased from GE Healthcare (Buckinghamshire, UK). 

 

4.1.2 Animals 

Transgenic mice (mTIEhVAP-1) overexpressing human SSAO were created and provide by 

Dr Stolen. Briefely, transgenic mice were created with a mouse tie-1 promoter to drive the 

expression of human SSAO/VAP-1 specifically on endothelial cells (Stolen et al., 2004). 

Homozygous and nontransgenic lines were derived from heterozygous intercrosses, and were 

routinely checked by PCR (polymerase chain reaction) to ensure the expression of SSAO gene.  

Rodents were housed with free access to food and water on a 12-h light/dark cycle (lights on 

at 6 a.m.) at a temperature of 19 to 20° C. The animal studies were in strict accordance with 

guidelines established by the Canadian Council on Animal Care and were approved by the 

University of Saskatchewan Animal Care Committee.  
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4.1.3 Preparation of Monomeric Aβ1-40 

To ensure the purity of Aβ1-40 monomers (“seed-free” Aβ), the solution of the peptide was 

pretreated immediately before each experiment. Aβ1-40 was dissolved in 100% HFIP (1 mg/mL) 

and incubated in a water bath sonicator at 4º C for 2 h. The HFIP was removed under a gentle 

stream of nitrogen or Aβ was lyophilized (freeze-dried) using a Savant SpeedVac SVC100H 

vacuum concentrator from Thermo Scientific (Waltham, MA, USA). The treated Aβ1-40 crystals 

were dissolved in nanopure water. The preparation of Aβ monomers free of oligomers was 

confirmed by dot-blot tests using A11 specific anti-Aβ-oligomer antibody. The final Aβ 

concentration was determined using Bradford protein assay from Bio-Rad Laboratories 

(Hercules, CA, USA). 

 

4.1.4 Interactions of Aβ  with Endogenous Aldehydes 

Freshly prepared seed-free Aβ1-40 (200 µM) was incubated for 2 h to up to 7 days in a sterile 

environment, in the presence or absence of various concentrations (ranging from 1 µM to 10 mM) 

of formaldehyde, methylglyoxal, malondialdehyde or HNE in phosphate-buffered saline (PBS) 

(pH 7.4, 20 mM). The incubation was carried out at 37º C without shaking or re-pipetting. For 

AFM imaging experiments, to overcome the interference of salt crystallization from PBS buffer, 

ammonia/formic acid (20 mM, pH 7.4) volatile buffer was used. 

 

4.1.5 Isolation of Membrane-Bound SSAO from Transgenic Mice 

Small intestines of mTIEhVAP-1 mice are rich in SSAO and were used for the preparation of 

SSAO. 1.5 mL of PBS was added to each 50 mg of tissue in a 12 X 75 mm glass culture tube 

(VWR International, Mississauga, ON, Canada) on ice. The tissue was then homogenized for 20 

seconds by a polytron homogenizer (Kinematica GMBH, Luzern, Switzerland). Repeat the 

homogenization twice with one minute cooling down at intervals. The homogenate was then 

centrifuged at 900 g for 10 min. The supernatant was further ultracentrifuged at 100,000 g for 30 

min (Beckman, Fullerton, CA, USA). The supernatant was discarded and the pellet was 

resuspended. The last centrifugation was repeated and the pellet which contained SSAO was 

collected. All centrifugation procedures were carried out at 4º C. 
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4.1.6 SSAO Activity Assay 

SSAO activity was assessed by a radioisotope-enzymatic procedure using 14C-labeled 

benzylamine as the substrate. Briefly, 50 µL of SSAO enzyme preparations were incubated with 

clorgyline (1 µM) and (-)-deprenyl (1 µM) at 37° C for 20 min to inhibit MAO activities. 

Aliquots of the enzyme preparation were then incubated with 50 µL of [14C]-benzylamine (0.4 

mM cold benzylamine and 50 nCi of 14C) in 200 µL phosphate buffer (0.1 M, pH 7.4) at 37° C 

for 30 min. 250 µL of 2 M citric acid was added to terminate the enzyme reaction. The oxidized 

products were extracted in 1 mL of toluene: ethyl acetate (1:1, v/v). After centrifugation at 2,000 

g for 10 min, 600 µL of the upper layer was transferred into a counting vial containing 10 mL of 

ACS scintillation cocktail. Radioactivity was measured in a Beckman LS-7500 liquid 

scintillation counter (Fullerton, CA, USA). Sample protein concentrations were determined by 

Bradford assay. SSAO activity is calculated based on the following formula, where Blank was 50 

µL of phosphate buffer instead of SSAO preparation and Standard was 50 µL of [14C]-

benzylamine (0.4 mM cold benzylamine and 50 nCi of 14C-benzylamine) in ACS scintillation 

cocktail. 

 
 

4.1.7 Structural Analysis 

4.1.7.1 Thioflavin-T Fluorometry for Detection of Aβ  β-Sheets Formation  

Thioflavin T (ThT) fluorescence assays reveal the early stage of Aβ1-40 aggregation, namely, 

β-sheet formation (Naiki et al., 1989; Naiki and Nakakuki, 1996). Aβ1-40 (200 µM) was 

incubated with various concentrations of aldehydes at 37° C. At designated time points, Aβ 

samples were diluted in glycine-NaOH buffer (50 mM, pH 9.0, 2 mM ThT) with a final 
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concentration at 2 µM. Aliquots (200 µL) of the reaction solution were transferred to black 

microfluor plates and their fluorescence was measured. Fluorescence (excitation wavelength of 

450 nm and emission wavelength of 482 nm) was measured using a SpectraMax GeminiXS 

fluorescence reader from Molecular Devices (Sunnyvale, CA, USA). 

 

4.1.7.2 Circular Dichroism Spectroscopy for Measurement of Aβ  Secondary Structures 

Aβ1-40 (200 µM) was incubated with various concentrations of aldehydes at 37° C. CD 

spectra were measured at desired time points (from 2 h to 48 h) at room temperature in a 0.1-cm 

cell optical path length cuvette (Hellma, 106-OS) using a PiStar-180 spectrometer (Applied 

Photophysics, Surrey, UK). The sample solutions were scanned from 260 to 190 nm in 0.5-nm 

steps at a scan rate of 10 nm per min and with 4 nm bandwidth. CD spectra of the PBS buffer 

containing the appropriate aldehydes were obtained and subtracted from the protein solutions. 

Percentages of protein secondary structures were calculated using CD Spectra Deconvolution 

(CDNN) software (v 2.1) (Bohm et al., 1992). 

 

4.1.7.3 Dynamic Light Scattering Analysis: Distribution of Aβ  Molecular Sizes  

Aβ1-40 (200 µM) was incubated with various concentrations of aldehydes at 37° C. A time 

course of DLS measurements were conducted using an 824.8-nm (55 mW) Anodisk with a fixed 

catering angle of 90º with a Dyna-Pro 99 MS800 instrument (Protein Solutions, Lakewood, NJ, 

USA) at 25º C. Protein solutions were filtered through a 0.2-µm Anodisk filter, and placed in a 

12-µL cuvette (b = 1.5 nm). Data acquisition time was 5 s and S/N Threshold was set at 2. The 

count rates (signal intensity), which are proportional to the amount of photons reflected from the 

sample solution, were assessed at various time points after incubation. The size distributions 

were analyzed by Dynamic V5.26.60 (Protein Solutions, Lakewood, NJ, USA).  

 

4.1.7.4 Atomic Force Microscopy Imaging of Aβ  Aggregates 

For AFM imaging under ambient conditions, aliquots (1 µL) of the 

formaldehyde/methylglyoxal-incubated Aβ in a volatile buffer as described above were dropped 

on freshly cleaved mica (Structure Probe Inc., West Chester, PA, USA) for 1 min until dry. Aβ 

incubated with malondialdehyde and HNE were also imaged but under wet conditions, where 10-
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µL aliquots were placed onto freshly cleaved mica in a sample well for 2 min, and subsequently 

imaged in 250 µL PBS (20 mM, pH 7.4).  

AFM measurements were carried out on a Pico-SPM (Molecular Imaging Inc., Tempe, AZ, 

USA) with an AFM M-scanner operating in alternating-contact mode. Type I alternating-contact 

mode levers from Molecular Imaging were used and their specifications include a force constant 

of approximately 1.2 to 5.5 N/m, and a resonant frequency of approximately 60 to 90 kHz under 

ambient conditions. All measurements were taken with the ratio of the set-point oscillation 

amplitude to free air oscillation amplitude of 0.80. In addition, all measurements were performed 

with the instrument mounted in a vibration isolation system.  

The scan rate was 1 to 2 lines/s (256 pixels per line) for all images. At least five positions on 

the mica were randomly chosen for scanning and imaging each sample. Each image was 

conducted in two opposite directions simultaneously and the final image was averaged. Size 

distribution within the scanning area, and the final three-dimensional image, were calculated and 

generated by software from Visual SPM Molecular Imaging Inc. (Tempe, AZ, USA). 

 

4.1.7.5 Dot-Blot Assay of Aβ  Oligomers 

In order to quantify the effect of aldehydes on Aβ oligomerization and to ensure a seed-free 

monomeric Aβ preparation for the experiments, a dot-blot assay using a specific anti-Aβ-

oligomer antibody, A11, was used. Aβ1-40 (200 µM) was incubated with various aldehydes (100 

µM each) at 37° C for certain time periods. A 2 µL aliquot of each sample was spotted onto the 

nitrocellulose membrane and air dried. The membrane was blocked in 1X tris buffered saline 

(TBS) buffer containing 5% non-fat dry milk at 4º C overnight with gentle shaking. The 

membrane was then incubated with A11 anti-Aβ-oligomer antibody (1 µg/mL in TBS with 5% 

non-fat dry milk) at room temperature for 1 h and washed in TBST (Tween-20: 0.5% in 1X TBS 

buffer) for 10 min by 3 repeats with gentle shaking. Then the membrane was incubated with anti-

rabbit secondary antibody (dilution factor: 1:16,000 in TBS with 5% non-fat dry milk) for 1 h, 

washed as in the previous step, and revealed with Amersham ECL solution by a developing 

machine. 

10X TBS buffer was prepared by dissolving 24.2 g Tris base and 80 g NaCl in 1 L of 

nanopure water. pH was adjusted to 7.6 with hydrochloric acid (HCl). 
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4.2 Part II: Effect of Formaldehyde-induced Crosslinkage on the Cytotoxicity of Aβ  

Oligomers 

4.2.1 Materials 

Acetic acid, boric acid, bovine serum albumin (BSA), 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), citric acid, dithiothreitol, 9-

fluorenylmethyl chloroformate (FMOC-Cl), glycerol, 4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid-N-(2-Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) (HEPES), HCl, 

isopropanol, lactic acid, MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide), 

nicotinamide adenine dinucleotide (NAD+), phosphoric acid, ribonuclease A, sodium acetate, 

sodium tetrahydridoborate (NaBH4) tetramethylammonium chloride (TMA), thyroglobulin, 

Tris-HCl and Ttriton-X100 were purchased from Sigma–Aldrich (St. Louis, MO, USA). 

Ethylenediaminetetraacetic acid (EDTA), high performance liquid chromatography (HPLC)-

grade acetonitrile, methanol, hexane and hydrochloric acid were obtained from EMD Merck 

(Darmstadt, Germany).  

SH-SY5Y neuroblastoma cell line was purchased from American Type Culture Collection 

(ATCC, Manassas, VA, USA). Dulbecco’s Modified Eagle’s Medium (DMEM, D6429) and 

trypsin EDTA solution were purchased from Sigma (Okaville, ON, Canada). Fetal bovine serum 

(FBS) was obtained from Gibco (Carlsbad, CA, USA). Aβ1-42 was purchased from BioSource 

(Camarillo, CA, USA). Protease inhibitor cocktail tablets were purchased from Roche 

(Indianapolis, IN, USA). Caspase-3 substrate, DEVE-pNA, was purchased from Biomol 

(Plymouth Meeting, PA, USA). Bradford reagent was obtained from Bio-Rad Laboratories 

(Hercules, CA, USA). 

 

4.2.2 Identification of Interaction Sites of Aβ  with Formaldehyde 

Seed-free Aβ1-40 (200 µM) was dissolved in PBS (20 mM, pH 7.4) (see Section 4.1.3) and 

incubated in various concentrations of formaldehyde at 37º C for 24 h. After incubation, Aβ 

aggregates were further incubated with or without sodium borohydride (10 mM) for 24 h to 

convert the Schiff bases into covalent bonds. Aβ aggregates were then subjected to Western blot 

for Aβ analysis. 

To identify the reaction sites, similarly, seed-free Aβ1-40 (200 µM in PBS) was incubated in 

the presence or absence of formaldehyde (10 µM) at 37º C for 48 h followed by incubating with 
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NaBH4 (10 mM) for 24 h. The aggregates were then hydrolyzed by HCl (6 N) at 110º C for 24 h. 

FMOC derivatization and HPLC procedures were conducted as previously described (Kazachkov 

and Yu, 2005). Briefly, one mL of hydrolyzed Aβ sample was diluted with 500 µL potassium-

borate buffer (0.8 M, pH 10) and vortexed for one minute. One mL of FMOC-Cl reagent solution 

(10 mM in acetonitrile) was then added to the buffered samples and vigorously vortexed. The 

derivatization reaction was terminated by extraction in 5.0 mL hexane to remove excess FMOC-

Cl reagent, FMOC-OH from FMOC-Cl and acetonitrile. The upper layer was discarded and the 

extraction procedure was repeated twice. The solution was neutralized by adding 0.1 mL 20% 

(v/v) acetic acid. Aliquots (250 µL) were injected into the HPLC for amino acid detection.  

The HPLC experiments were conducted with a Shimadzu solvent delivery module (LC-10 

ADvp), a Shimadzu auto injector (SIL-10ADvp), a Shimadzu DGU-14A degasser, a Shimadzu 

SPD-10AvpUV-VIS detector with Bio-Rad UV monitor (model 1305), and a Beckman 

Ultrasphere IP reversed phase HPLC column (ID 4.6mm×250 mm; particle size 5 µm; C-18). A 

modified tertiary gradient system was adopted from previous method for amino acids detection 

(Ahmed et al., 1997). The elution gradient of mobile phase is graphically shown in Figure 13. 

The flow rate was set constant at 1.4 mL/min. UV absorbance was measured at 265 nm. All the 

procedures above were carried out at room temperature.  

 

4.2.3 Isolation of Aβ  Oligomers by Size Exclusion Chromatography 

Seed-free Aβ1-42 was prepared by pretreatment with HFIP similarly as that for Aβ1-40. Aβ1-42 

monomers (1 mg/mL in PBS) were then incubated in the presence or absence of formaldehyde 

(10 mM) at 37º C for 12 h. A ProSphereTM size exclusion column (125 HR 4 μm from Alltech) 

was used to separate Aβ oligomers from monomers and dimers based on their molecular sizes. 

The HPLC system was described in Part I. The mobile phase was 0.3 M NaCl, 0.05 M phosphate, 

pH 7.0 and a constant flow at 1 mL/min was employed. The Aβ peptides and its aggregated 

forms were spectrophotometrically detected at 280 nm. The eluent fractions of peaks were 

collected and placed on ice immediately. The collected Aβ oligomers were concentrated by a 

Savant SpeedVac SVC100H vacuum concentrator (ThermoScientific, Waltham, MA, USA) for 1 

h. The concentrations of Aβ oligomers and monomers were determined by Bradford assay. 
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Figure 13. The elution gradient of mobile phase of FMOC-HPLC (Kazachkov and Yu, 2005). 

Solvent A was 20 mM citric acid with 5 mM TMA, adjusted to pH 2.85 with 20 mM sodium 

acetate. Solvent B was 80% (v/v) of 20 mM sodium acetate solution and 20% (v/v) methanol 

with 5 mM TMA adjusted to pH 4.5 by concentrated phosphoric acid. Solvent C was acetonitrile 

(100%). 
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4.2.4 Cytotoxic Effect of Aβ  Monomers and Oligomers on Neuroblastoma SH-SY5Y Cells  

SH-SY5Y cells were cultured in DMEM containing 10% (v/v) of FBS. The cells were seeded 

at a density of 2 X 105 cells/mL and grown at 37º C in a 5% CO2 atmosphere until confluence. 

The medium was changed about every 48 h and the cells were subcultured every 3 to 4 days. 

Cells of passages 5 to 20 were used for Aβ cytotoxicity studies. The toxic effects of both Aβ 

monomers and oligomers were tested at various concentrations. 

SH-SY5Y cells were seeded from dishes into 96-well plates at a density of 2 X 104 cells/well. 

The plates were then incubated for 48 h to allow cells to attach and grow to 90% confluence. 

DMEM media containing FBS (10%) was refreshed and various concentrations of native or 

formaldehyde-modified Aβ1-42 oligomers isolated from SEC were added to cultures and 

incubated for 3 to 24 h. MTT, LDH (lactate dehydrogenase) and caspase-3 assays were used for 

measurement of cell viability. 

 

4.2.5 Cytotoxicity Assays 

4.2.5.1 MTT Assay 

10X MTT stock solution (5 mg/mL) was prepared by dissolving MTT in DMEM or PBS (pH 

7.2) and filtering through a 0.2-µm Acrodisc syringe filter. Stock solution was stored at -20º C. 

The working MTT solution was prepared by diluting one volume of MTT stock solution in 9 

volumes of DMEM containing 1% FBS. MTT solvent was composed of 0.1 N HCl and 10% (v/v) 

Triton-X100 in isopropanol.  

The media supernatant was carefully removed from each well, and 50 µL of MTT reagent 

solution was added. After incubation for 4 h at 37º C, 100 µL of MTT solvent was added and 

thoroughly mixed to dissolve the MTT formazan crystals. The optical density (OD) of each well 

in the plates was immediately read at 570 nm using a SpectraMax microplate reader. The blank 

was without cells but contained MTT solution and solvent. The average OD values of control 

group (without Aβ treatment) were set to 100% of cell viability and other groups treated with Aβ 

were normalized accordingly. 

 

4.2.5.2 LDH Assay 

Cytoplasmic LDH was determined spectrophotometrically based on the conversion of lactic 

acid to pyruvic acid in the presence of NAD+. After treatment with Aβ, cells of each well were 
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collected by trypsin digestion, centrifuged at 500 g for 5 min and resuspended in 200 µL Hank’s 

balanced salts solution (HBSS). The samples were then subjected to freezing and thawing twice 

to release the cytoplasmic LDH. The cell lysates were centrifuged at 10,000 g for 3 min in a 

microcentrifuge (Beckman Coulter, Fullerton, CA USA) to remove the cellular debris. A 50 µL 

aliquot of supernatant was transferred to a 96-well plate and 50 µL of NAD+ (1 mg/mL in 0.05 

M sodium pyrophosphate, pH 9.0) was added to each well. The reaction was initiated by adding 

100 µL of lactic acid (1% in 0.05 M sodium pyrophosphate, pH 9.0). The sample OD was read at 

340 nm by a SpectraMax microplate reader within 1 h of starting reaction. Protein concentrations 

were determined by Bradford assay. The blank was NAD+ and lactic acid solutions without cells. 

Specific LDH activity (µmol/mg protein/min) was estimated as follows. The standard was 0.1 

mmol of pyruvic acid in 0.05 M sodium pyrophosphate, pH 9.0. Relative cell viability/death was 

calculated similarly as described in MTT assay. 

 
 

4.2.5.3 Caspase-3 Assay 

After Aβ treatment for desired time periods, cells were collected and cell numbers were 

counted using a hemocytometer. It is important for the assay that at least 2 X 106 cells are present 

in each sample. The cells were centrifuged at 500 g for 5 min, resuspended in 50 µL of chilled 

cell lysis buffer (25 mM Tris, 1 mM EDTA, 1% Triton-X100, 10% glycerol, pH 7.5 with 

protease inhibitor cocktail) and incubated on ice for 10 min. Cell lysates were centrifuged in a 

microcentrifuge at 10,000 g for 3 min. The supernatants were transferred into new 

microcentrifuge tubes on ice. 50 µL of 2X reaction buffer/dithiothreitol mix (100 mM HEPES, 

pH 7.4, 200 mM NaCl, 0.2% CHAPS, 2 mM EDTA, 20% glycerol and 20 mM dithiothreitol) 

was added to 50 µL of supernatant. 5 µL of Ac-Asp-Glu-Val-Asp-p-nitroaniline (DEVD-pNA, 1 

mM), a caspase-3 substrate from Biomol (Plymouth Meeting, PA, USA), was added to each 

sample with a final concentration of 50 µM. The samples were then incubated at 37º C (Fisher 

Scientific, Hampton, NH, USA) for 1 h or up to 3 h at maximum. After incubation, the sample 

OD was read at 405 nm by a SpectraMax microplate reader. Protein concentrations were 
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determined by Bradford assay. In each experiment, the average OD value of control group 

(without Aβ treatment) was set to 100% of caspase-3 activity and other groups were normalized 

accordingly and adjusted by protein concentrations. 

 

4.3 Part III: Effect of SSAO-Catalyzed Deamination on α2M Uptake via VSMC LRP-1 

4.3.1 Materials 

Acetone was purchased from EMD Merck (Darmstadt, Germany). α2M, ammonium 

persulfate, collagenase (type II), nystatin, penicillin/streptomycin, trypan blue, anti-goat, anti-

mouse and anti-rat IgGs were purchased from Sigma (St. Louis, MO, USA). Collagenase 

inhibitor I (Z-PDLDA-NHOH) and mouse anti-human LRP (5A6) antibody were purchased from 

Calbiochem (EMD Biosciences, La Jolla, CA USA). Rabbit anti-α-actin antibody was obtained 

from Abcam Inc. (Cambridge, MA, USA). Rat anti-mouse SSAO antibody was customized by 

Biotie Therapies (Turku, Finland). Goat anti-human α2M antibody was obtained from GeneTex 

Inc. (Irvine, CA, USA). Mouse anti-human Aβ antibody was purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Acrylamide (30%), nitrocellulose membrane, TEMED, 

Western blot set were purchased from Bio-Rad Laboratories (Hercules, CA, USA). SeeBlue 

Plus2 prestained standard for Western blot was purchased from Invitrogen Inc. (Carlsbad, CA, 

USA). Amersham ECL Western blot blotting detection reagents were purchased from GE 

Healthcare (Buckinghamshire, UK). MDL-72974A ((E)-2-(4-fluorophenethyl)-3-

fluoroallylamine) was provided by Marion-Merrell-Dow Inc. (Cincinnati, OH, USA). 

 

4.3.2 Immunohistochemistry of LRP-1 and SSAO on Blood Vessels and VSMC Primary 

Culture 

Fresh human umbilical cords were collected and arteries were cut into 20 µm thick frozen 

sections at -27º C using a Shandon cryostat from Fisher Scientific (Pittsburgh, PA, USA). The 

sections were then fixed in acetone for 8 min. After fixation, the slices were air dried for 30 min 

and an ImmEdge pen (Vector Laboratories Inc., Burlingame, CA, USA) was used to define the 

edge of slices. The slices were rinsed in PBS for 5 min, then incubated in 0.3% H2O2 for 20 to 30 

min and PBS again for 5 min repeated for 3 times. The slices were then incubated in 2.5% (v/v) 

goat serum (Vector Laboratories Inc.) for 1 h. Anti-LRP-1 or anti-SSAO antibody (dilution 

factor: 1:500 in PBS) was added and incubated at 4º C overnight. After incubation, the slices 
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were warmed up to room temperature for 30 min and rinsed in PBS for 5 min for 3 times. 

Secondary antibody (anti-mouse 2nd antibody for LRP-1 staining; anti-rat 2nd antibody for SSAO 

staining; dilution factor: 1:200 in PBS) was added and incubated for 1 h and rinsed as previously 

described. Finally, streptavidin-horseradish peroxidase (1:200) was added to sample slides and 

incubated for 1 h. Slides were rinsed in PBS as above.  

The sections were then incubated with peroxidase substrate, namely, DAB Kit (Vector 

Laboratories Inc., Burlingame, CA, USA). The development of color was monitored under a 

microscope. These sections were then dehydrated by rinsing in a gradient concentration of 

ethanol: 70% for 30 s, 90% for 1 min, 95% for 1 min, 100% for 1 min and 100% for 2 min, and 

immersed in xyline for 3 times by 1 min, 2 min and 2 to 3 min. 2 to 3 drops of resin were 

dropped on the sections. Sections were covered tightly by glass coverslips (VWR, West Chester, 

PA, USA) with air bubbles removed, dried overnight and stored at room temperature.  

The immunohistochemical images were examined under an Olympus microscope and 

photographed using a SpotRT Slider CCD camera (Diagnostic Instruments Inc., Sterling Heights, 

MI, USA) mounted on an Olympus BH2-RFCA microscope (Olympus Optical Co. Ltd, Tokyo, 

Japan). 

 

4.3.3 Activation of α2M 

α2M needs to be activated in order to bind to LRP-1 (Qiu et al., 1999). Its activation was 

carried out by incubating equal volume of α2M (4 mg/mL) and methylamine (0.4M in 0.1 M 

Tris-HCl, pH 8) for 2 h at room temperature. Unbound methylamine was removed by 

ultrafiltration-centrifugation in a 10 K NMWL Millipore centrifuge tube (Billerica, MA, USA) 

for 5 min with 3 repeats. The final concentration of activated α2M was determined by Bradford 

method. 

 

4.3.4 Effect of Formaldehyde on Binding of Aβ  with α2M or ApoE4 

Aβ requires α2M or ApoE4 as a carrier in transporting via LRP-1. They further form large 

complexes. Seed-free Aβ  (50 µM) was incubated with various concentrations of formaldehyde 

ranging from 1 µM to 1 mM in the presence or absence of activated α2M (1 mg/mL). The 

incubation was conducted in PBS (20 mM, pH 7.4) at 37º C for 24 h. After incubation, the 
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samples were mixed with equal volume of 2X electrophoresis loading buffer, denatured in 

boiling water bath for 5 min and subjected to Western blot analysis of Aβ-α2M complex. 

To reveal the effect of formaldehyde on the interaction between Aβ and ApoE4, Aβ 

monomers (100 µM) and ApoE (100 µM) were incubated in the presence or absence of 

formaldehyde (1 mM) at 37º C for 24 h. The samples were subjected to AFM imaging as 

described in Part I. 

 

4.3.5 Preparation of Primary Mouse Aortic VSMC Culture 

SSAO transgenic mTIEhVAP-1 mice (about 8 weeks old) overexpressing human SSAO were 

euthanized and aortas were collected. According to earlier studies (Ray et al., 2001), each aorta 

(about 2 to 3 cm long) was perfused with 3 mL of Fungizone solution (2.4% v/v of nystatin in 

PBS). The aortas were then rinsed in DMEM with 1% penicillin/streptomycin and cut into fine 

pieces. The aorta pieces were digested by type II collagenase (1.4 mg/mL in DMEM) in a 12-

well plate (Falcon, Becton Dickinson Labware, Franklin Lakes, NJ, USA). The plate was 

incubated at 37º C (Fisher Scientific, Pittsburgh, PA, USA) for 4 h. The progress of digestion 

was monitored under a microscope hourly until most tissue chunks disappeared. All the above 

procedures were carried out under a sterile condition in a biological cabinet. 

After the digestion was completed, the smooth muscle and endothelial cells were collected by 

centrifugation at 500 g for 5 min. Cell pellets were resuspended in DMEM containing 10% FBS 

and 1% penicillin/streptomycin, and cultured in a 12-well plate at 37º C in a 5% CO2 atmosphere. 

On Day 6 of culturing, cells were treated with FBS-free DMEM media for 48 h to reduce the 

number of endothelial cells. The purified VSMCs were subcultured into T25 flasks (Falcon, 

Becton Dickinson Labware, Franklin Lakes, NJ, USA).  

Primary VSMCs were then cultured in DMEM containing 10% (v/v) of FBS. The cells were 

seeded at a density of 2 X 105 cells/mL and grown at 37º C in a 5% CO2 atmosphere until 

confluence. The medium was changed about every 48 h and the cells were subcultured every 3 to 

4 days. 

 

4.3.6 Isolation of VSMCs from Mouse Aorta for Ex Vivo Studies 

Freshly isolated VSMCs from transgenic mouse aorta were used for the studies of α2M 

uptake via LRP-1. mTIEhVAP-1 mice were euthanized and aortas were collected. Aortas were 
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cut into fine pieces in DMEM containing 10% FBS and then incubated with type II collagenase 

(1.4 mg/mL in DMEM). These aortas were immersed in 1 mL of collagenase solution. The 

digestion was conducted at 37º C in a water bath incubator (Precision Scientific) with constant 

slow shaking for 1 to 2 h. After most gross vessel tissue pieces had disintegrated, larger chunks 

of tissue were removed by mesh filtration (Tyler 100) and tissue suspension was centrifuged at 

1,000 g for 5 min. The supernatant was discarded and the cell pellet was resuspended in DMEM 

with 10% FBS.  

Cell viability was quickly determined using trypan blue staining procedure. Trypan blue 

solution (0.8 mM in PBS) was stored at room temperature. VSMCs were mixed 1:1 with trypan 

blue solution and observed under an Olympus microscope. Dead cells stain blue, whereas live 

cells exclude trypan blue and appear as bright dots under a microscope. Viable cells were 

counted on a hemocytometer within 30 min. 

 

4.3.7 Isolation of Microvessels from Rat Brains 

Rats were euthanized with CO2. Meninges were carefully separated from freshly dissected 

brains. The brain tissues were then homogenized in 10 volumes of chilled HBSS containing 1% 

BSA and 10 mM HEPES at pH 7.4 using a glass homogenizer. Ten upward and downward 

strokes were applied during the homogenization. The homogenates were centrifuged at 1,500 g 

for 15 min. The supernatant was discarded and the pellet was resuspended in HBSS and 

centrifuged at 1,000 g for 10 min. The pellet was resuspended again in 10 mL of cold sucrose 

(0.25 M, pH 7.0) and layered over 1.0 to 1.5 M sucrose gradient and centrifuged at 58,000 g for 

30 min. The pellet containing microvessels was checked under a microscope.  

For measurement of SSAO activity, both meninges and microvessel preparations were 

homogenized by a polytron in 0.05 M phosphate butter. For isolation of VSMCs, the meninges 

and microvessels were digested in type II collagenase as in isolation of aortic VSMCs procedures 

described previously. 

 

4.3.8 Uptake of α2M by VSMCs via LRP-1 

4.3.8.1 Determination of Incubation Conditions 

VSMCs (200 µL each in Eppendorf tubes) were incubated with various concentrations of 

activated α2M ranging from 0.1 to 100 nM at 37º C for 2 h. After the incubation, VSMCs were 
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collected by centrifugation at 1,000 g for 5 min and resuspended in 200 µL of DMEM with 10% 

FBS. The centrifugation and resuspending steps were repeated twice to remove the unbound and 

loosely membrane-bound α2M. After three washes, the cell pellets were incubated in lysis buffer 

(25 mM Tris, 1 mM EDTA, 1% Triton X-100, 10% glycerol, pH 7.5 with protease inhibitor 

cocktail) for 1 h on ice with occasional vortexing. The lysates were centrifuged at 10,000 g for 3 

min and the supernatant was collected. Protein concentrations of the supernatant were 

determined by Bradford assay. Aliquots of each sample were mixed with 2X loading buffer and 

denatured in boiling water bath for 5 min. The samples were subjected to Western blot analysis 

of α2M. 

10 nM of α2M was used for time course study (uptake time from 30 min to 4 h). Lactoferrin, 

a competitive LRP-1 substrate, was included to substantiate that α2M uptake by isolated VSMCs 

was via LRP-1 transporter. 

 

4.3.8.2 Effect of Formaldehyde on α2M Uptake 

Aortic VSMCs (200 µL each in DMEM with 10% FBS) were incubated with formaldehyde 

(concentration from 1 µM to 1 mM) for 1 h. Excess formaldehyde was removed by 

centrifugation at 1,000g for 5 min. The supernatant was discarded and cell pellets were 

resuspended in 200 µL of DMEM containing 10% FBS. Activated α2M was then added to make 

a final concentration of 10 nM and the samples were incubated at 37º C in a water bath for 2 h. 

After the incubation, the samples were washed three times, lysed and subjected to Western blot 

analysis of α2M. In the subsequent time-course experiment, 10 µM of formaldehyde was used 

for treatment of VSMCs and incubated for 10 to 90 min. Formaldehyde was removed by 

centrifugation at each designated time period. These treated cells were used for determination of 

α2M (10 nM) uptake assessed by Western blot method as described above. 

 

4.3.8.3 Effect of SSAO-mediated Deamination of Methylamine on α2M Uptake 

Both control and SSAO-blocked (pre-incubation with SSAO inhibitor, MDL-72974A, 1 µM 

for 10 min) aortic VSMCs were incubated in various concentrations of methylamine (10 µM to 1 

mM) for 1 h prior to addition of the activated α2M. The assessment of α2M uptake was 

conducted as described above. In the subsequent time-course experiment, 0.5 mM of 
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methylamine was used for treatment of VSMCs and incubated for 30 min to 2 h. These treated 

cells were used for α2M uptake as described above. In this experiment, the concentration of 

α2M was increased to 20 nM. Other procedures were the same as described above. 

 

4.3.8.4 Effect of SSAO-mediated Deamination of Methylamine on Aβ  Uptake 

Collagenase was used in isolation of VSMCs. In order to test whether residual collagenase 

can degrade Aβ, Aβ (200 µM) was incubated with various concentrations of type II collagenase 

from 0.01 to 1 mg/mL in PBS (20 mM, pH 7.4) at 37º C for 2 h. After incubation, samples were 

subjected to Western blot for Aβ analysis. Consequently, Aβ (100 µM) was incubated with type 

II collagenase (0.01 mg/mL) in the presence of various concentrations of collagenase inhibitor I 

(Z-PDLDA-NHOH, 0.1 to 1 mg/mL) at 37º C for 2 h and then subjected to Western blot. 

This study included 2 experiments: (1) Aβ (10 µM) uptake with activated α2M (20 nM) as a 

carrier and (2) Aβ (10 µM) alone. Collagenase inhibitor I (25 mg/mL in 100% ethanol) was 

added to VSMCs to make a final concentration of 1 mg/mL. Similarly, MDL-72974A (1 µM) 

was used to block SSAO-mediated deamination by 10 min pretreatment. Various concentrations 

of methylamine (from 10 µM to 1 mM) were then added to each sample and incubated for 1 h. 

Activated α2M and Aβ monomers were added to VSMCs and incubated for another 2 h. After 

washing and lysis, the samples were subjected to Western blot for Aβ and α2M measurements as 

previously described. 

 

4.3.8.5 Comparison of Native and Formaldehyde-modified α2M: Uptake by VSMCs 

Finally, the direct effect of formaldehyde on α2M function was assessed. Prior to incubation 

with VSMC suspension, the activated α2M was treated with various concentrations of 

formaldehyde for 2 h. Excess formaldehyde was removed by Millipore centrifugal tube (Billerica, 

MA, USA). Formaldehyde-treated α2M was then added to VSMCs and incubated for 2 h, 

followed by washing and lysis for Western blot. 

 

4.3.9 Western Blot 

Mini-PROTEAN Tetra electrophoresis system and Mini Trans-Blot Cell from Bio-Rad 

Laboratories (Hercules, CA, USA) were used for electrophoresis and blotting in Western blot. A 
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7.5 X 10 cm, 0.75 mm-thick and 15-well gel of 10% acrylamide was used to identify α2M and 

Aβ. Resolving gel was prepared by mixing 5 mL 30% acrylamide, 3.75 mL 4X Tris-HCl/SDS 

(pH 8.8), 6.25 mL DD H2O, 75 µL 10% (w/v) ammonium persulfate and 25 µL TEMED. 4X 

Tris-HCl/SDS was prepared by dissolving 18.45 g of Tris-HCl, 77 g of Tris base and 2 g of SDS 

in 500 mL of DD water with pH adjusted to 8.8. Stacking gel was prepared by mixing 0.65 mL 

30% acrylamide, 1.25 mL 4X Tris base/SDS (pH 6.8), 3.05 mL DD H2O, 25 µL 10% ammonium 

persulfate and 10 µL TEMED. 4X Tris base/SDS was prepared by dissolving 30 g of Tris base 

and 2 g of SDS in 500 mL of DD water with pH adjusted to 6.8. Running buffer contained 25 

mM Tris base, 0.2 M glycine and 0.1% SDS. Transfer buffer contained 25 mM Tris base, 0.2 M 

glycine and 15% (v/v) methanol. Electrophoresis was conducted at constant voltage of 120 v for 

1 to 1.5 h. After the separation, the gel was immersed in transfer buffer at 4º C for 30 min. The 

bands were then transferred to a nitrocellulose membrane. The transfer was set at constant 

current of 230 mA for 1.5 to 2 h on ice with stirring.  

The transferred membrane was blocked using 5% (w/v) skimmed milk in TBS buffer for 1 h 

and incubated with first antibody (dilution factor for anti-α2M: 1:2,000; for anti-Aβ: 1:500; for 

actin: 1:5,000) in 5% milk TBS for 1 h at room temperature (or overnight at 4º C). After the first 

antibody incubation, the membrane was washed for 10 min by TBST (0.5% Tween-20) for 3 

times. The secondary antibody (dilution factors: anti-goat for α2M: 1:8,000; anti-mouse for Aβ 

and actin: 1:8,000) in 5% milk TBS was added and incubated for another hour at room 

temperature. The membrane was washed for 10 min in TBST for 3 times. All the incubation and 

washing steps were carried out on a VWR micro plate shaker (West Chester, PA, USA). The 

membrane was then immediately exposed in Amersham ECL solution from GE Healthcare 

(Buckinghamshire, UK) by a developing machine.  

 

4.3.10 Western Blot Data Analysis 

The exposed films of Western blot were scanned by a UMAX scanner. The image software, 

Umax VistaScan, was set in transmissive mode. Scanned images were analyzed by ImageJ from 

the National Institutes of Health. The total amount of signal of a band was calculated by band 

area divided by its average grey scale. Actin was used as a housekeeping reference protein. The 

ratio of α2M: actin or Aβ: actin from control was set to 100% and experimental groups were 

normalized accordingly in each experiment.  
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4.4 Statistics 

The results were assessed using one-way analysis of variance followed by multiple 

comparisons (Newman-Keuls). The null hypothesis used for all analyses was that the factor has 

no influence on the measured variable and significance was accepted at > 95% confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
   75	
  

 

 

5. RESULTS 

 

5.1 Part I: Aldehydes Enhance Aβ  Aggregation  

5.1.1 Effect of Aldehydes on Aβ  β-sheet Formation Assessed by Thioflavin T Fluorometry 

ThT does not exhibit fluorescence on its own. It reacts with β-sheet structure of proteins and 

produce fluorescence. The intensity of fluorescence represents the amount of β-sheet content 

(Naiki et al., 1989; Naiki and Nakakuki, 1996). As can be seen in Figure 14a, b and c, ThT 

fluorometry revealed that formaldehyde, methylglyoxal and malondialdehyde significantly 

enhance β-sheet formation. HNE (Figure 14d) exhibits relatively small but also significant 

increase under the same experimental conditions. The increase was in a time- and concentration-

dependent manner. The most prominent effect of these aldehydes was detected at 48 h of 

incubation except for HNE. After prolonged incubation, namely, around Day 5, the fluorescence 

intensity reached a plateau and began to decline slightly thereafter. This phenomenon is 

consistent with results from other laboratories. β-sheet formation takes place predominantly in 

the early phase of Aβ aggregation. In the more advanced stages, β-sheets are no longer 

detectable with ThT (Liu et al., 2004; Stanyer et al., 2004a). 

Subsequent experiments demonstrated the effect of formaldehyde produced via methylamine 

deamination catalyzed by SSAO. As shown in Figure 15, methylamine, in the presence of SSAO, 

enhances β-sheet formation of Aβ1-40, even though the enzyme preparation quenched the 

fluorescence. Methylamine alone was insufficient to affect the β-sheet formation of Aβ1-40. 

Separate experiments showed that hydrogen peroxide and ammonia, which are produced from 

SSAO-catalyzed reactions, do not have significant effects on Aβ1-40 β-sheet formation (data not 

shown). SSAO inhibitor, MDL-72974A, significantly blocked the effect of methylamine, 

suggesting that the deaminated product, formaldehyde is responsible for enhancing Aβ1-40 β-

sheet formation.  
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a.                                                                  b. 

   
                                   Formaldehyde                                                   Methylglyoxal 
 
c.                                                                   d. 

   	
  
                                Malondialdehyde                                                         HNE 

	
  

Figure 14. Effect of formaldehyde (FA), methylglyoxal (MG), malondialdehyde (MDA) and 

HNE on the kinetics of Aβ1-40 β-sheet formation assessed by ThT fluorometry. Aβ1-40 (200 µM) 

was incubated in the presence or absence of various concentrations of formaldehyde (a), 

methylglyoxal (b), malondialdehyde (c) and HNE (d) for a period of up to 6 days in a sterile 

environment. The fluorescence was measured at various time points. The measurements were 

carried out in 200 µL reaction solution (2 mM ThT in 50 mM glycine-NaOH buffer, pH 9.0) 

containing Aβ (2 µM). λex = 450 nm, λem = 482 nm. The background fluorescence was 

subtracted. Data represent means ± SD (n=3) of a representative experiment out of three. *p < 

0.05, compared to corresponding control values. 
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Figure 15. Effect of formaldehyde, derived from SSAO-catalyzed deamination of methylamine, 

on Aβ β-sheet formation assessed by ThT fluorometry. Aβ1-40 (200 µM) was incubated with 

methylamine (1 mM), SSAO (specific activity: 1.3 nmol/min/mg protein), in the presence or 

absence of MDL-72974A (10 µM) for 48 h. Data represent mean (n=3) ± SD of a representative 

experiment out of three. *p<0.05, compared to corresponding control values. 
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5.1.2 Analysis of Aβ  Secondary Structures by CD Spectroscopy 

CD spectra provide information not only on β-sheets but also on α-helix and random coils in 

a protein solution. There are several advantages of this technique. First, it can monitor the kinetic 

process of Aβ aggregation over time. Secondly, the samples can be repeatedly measured at 

various time points, thereby reducing inaccuracy caused by changing samples. Also, the 

percentages of various secondary structures in a protein solution can be calculated from CD 

spectrum, providing more information on the dynamics of Aβ aggregation. 

As can be seen in Figure 16, formaldehyde affected the CD spectra of Aβ in a concentration- 

and time-dependent manner. In Figure 16b, the negative peak at 200 nm of the control group 

(representing a mixture of α-helices and random coils) was gradually shifted to around 218 nm 

(the characteristic peak of β-sheet structure) in response to increasing formaldehyde 

concentration after 12 h. Figure 16c and d demonstrated that formaldehyde reduced the 

amplitude of the negative peak, suggesting increased β-sheet content. As seen in Figure 16d, 

methylglyoxal, malondialdehyde and formaldehyde (10 µM each) enhanced Aβ β-sheet 

formation after 24 h of incubation, whereas HNE had no significant effect on Aβ CD spectra. 

Aldehydes themselves exhibited no effect on spectrum background. CDNN software (CD 

Spectra Deconvolution v 2.1, Martin-Luther University Halle-Wittenberg) was used to calculate 

the percentage of each secondary structure in each sample.  

CD spectroscopy results are consistent with the observations from ThT fluorometry. 

Formaldehyde, methylglyoxal and malondialdehyde are capable of facilitating the transition of 

α-helices and random coils in Aβ monomers into β-sheet structure in a concentration- and time-

dependent manner. HNE in comparison with other aldehydes exerts limited but still significant 

effect on Aβ β-sheet formation. 

 

5.1.3 Molecular Assembly of Aβ  Assessed by DLS 

ThT fluorometry and CD spectroscopy reveal the secondary structures of Aβ. These methods 

do not directly examine the molecular sizes of Aβ polymers. Followed DLS data can provide 

useful information regarding the distribution of molecular sizes of polymerized Aβ1-40 in 

solution. As can be seen in Figure 17, aldehydes clearly induced shifts of the molecular sizes to 

the larger side, particularly in the early phases of polymerization. After incubation for 24 h,  
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a.    2 h of incubation 

	
  
b.   12 h of incubation 

 
c.   48 h of incubation                                                         

	
  

 

 random 

coil 

α-helix β-sheet 

Control 55% 42% 3% 

FA 100 µM 53% 46% 1% 

FA 1 mM 51% 48% 1% 

 random 

coil 

α-helix β-sheet 

Control 28% 60% 12% 

FA 10 µM 25% 60% 15% 

FA 100 µM 25% 50% 25% 

FA 1 mM 25% 40% 35% 

 random 

coil 

α-helix β-sheet 

Control 30% 27% 43% 

FA 10 µM 33% 25% 42% 

FA 100 µM 20% 20% 60% 

FA 1 mM 20% 20% 60% 
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d.   24 h of incubation 

	
  
 

 

Figure 16. Effect of aldehydes on Aβ CD spectrum. Aβ (200 µM) was incubated with various 

concentrations of formaldehyde for 2 h (a), 12 h (b), and 48 h (c), or with formaldehyde, 

methylglyoxal, malondialdehyde and HNE (10 µM each) for 24 h (d) in microcentrifuge tubes at 

room temperature (20º C) without stirring. Samples were degassed before measurement. Each 

sample was measured five times and an average was obtained. Corresponding backgrounds with 

respect to each aldehyde in PBS were subtracted for final plotting and comparison. θ[MRW] = 

mean residue weight ellipticity. The percentages of each secondary structure were calculated by 

CDNN software (CD Spectra Deconvolution v 2.1). 

 

 

 

 

 

 

 

 

 

 random 

coil 

α-helix β-sheet 

Control 30% 43% 27% 

HNE 33% 40% 27% 

MDA 33% 36% 31% 

MG 30% 36% 34% 

FA 30% 30% 40% 
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Figure 17. Effect of aldehydes on the size distribution of Aβ1-40 assessed by DLS. Aβ (200 µM) 

was incubated alone (a) or with 5 µM of formaldehyde (b), methylglyoxal (c), malondialdehyde 

(d) and HNE (e). The incubation was carried out at 37º C in 20 mM PBS (pH 7.4) for 24 h 

without stirring. The total number of deflected photons by each sample was normalized as 100% 

intensity. Aggregated Aβ accounts for the majority of the scattering intensities. Rh distribution in 

each sample was calculated individually. The magnitudes of intensity among different samples 

were therefore not comparable. The scattering intensity from the buffer (Rh < 0.2 nm) is not 

shown. 
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native Aβ formed mainly two populations, namely, oligomers with hydrodynamic radius (Rh) 

around 10 nm and protofibrils about 100 nm in length. In the presence of formaldehyde, the Rh 

increased to around 50 nm and 200 nm. Methylglyoxal treated Aβ was composed of a mixed 

population with Rh from 150 to 500 nm. Similarly, malondialdehyde and HNE were also capable 

of increasing molecular sizes of Aβ aggregates. It is important to note that the Rh calculated in 

DLS measurements is not the actual diameter or length of Aβ species. The volume of H2O 

molecules surrounding Aβ aggregates also contributes to the Rh values Therefore, Rh is a 

reflective indicator of the real molecular size.  

In DLS, the numbers of photons deflected per second by particles in solution are converted 

into electrical signals for detection, which is known as count rate. During a measurement, the 

average count rate reflects the general molecular size of particles in the solution. The higher the 

count rate, the larger the particles present in the solution (Chayen et al., 2004). As shown in 

Figure 18, all aldehydes significantly increased the count rate of Aβ in comparison with the 

native Aβ, suggesting that aldehydes increased the average size of Aβ aggregates. Among the 

aldehydes, malondialdehyde was most potent in increasing Aβ sizes.  

For DLS analysis, significantly lower concentrations of aldehydes were applied. The DLS 

results are consistent with earlier observations from ThT fluorometry and CD spectroscopy, 

namely, that Aβ formed significantly more and larger aggregates in the presence of endogenous 

aldehydes. 

The above results have demonstrated that aldehydes are capable of inducing and accelerating 

Aβ aggregation at the initial phase. Whether aldehydes can affect Aβ aggregation in the more 

advanced stages is unclear. To study this, auto-assembly of Aβ for 48 h to form protofibrils were 

used before treatment. Aldehydes were then added to these 2-day aged Aβ solutions and further 

incubated for additional time periods. As can be seen in Figure 19, although the count rate of Aβ 

had reached a plateau after 48-h preincubation, formaldehyde further increased the count rate in 

a concentration-dependent manner, and remained throughout the prolonged incubation. This 

suggests that formaldehyde, and probably other aldehydes, are able to enhance Aβ aggregation 

from the initial stage of β-sheet formation to the advanced stage of fibrillogenesis. It is important 

to note that there is a limitation to the DLS assay, namely, that particles of 1 micron or larger are 

no longer suitable for the DLS analysis. Therefore, the effect of aldehydes on further aggregation  
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Figure 18. Effect of aldehydes on DLS count rate of Aβ polymerization. Aβ1-40 (200 µM) was 

incubated in the presence or absence of various aldehydes (5 µM) for desired time periods at 37º 

C in PBS buffer (20 mM, pH 7.4) without stirring. Count rates of PBS and aldehydes were 

subtracted from corresponding Aβ count rate for comparison. Data represent means ± SD (n=3) 

of a representative experiment out of three. *p < 0.05, compared to corresponding control values. 
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Figure 19. Effect of formaldehyde on aggregation of aged-Aβ assessed by DLS count rate. Aβ 

were preaggregated alone for 48 h at 37º C in PBS (20 mM, pH 7.4). Formaldehyde was added at 

a final concentration of 1, 5, 10 and 50 µM, and further incubated for up to 48 h. Data represent 

the means ± SD (n=3) of a representative experiment out of three. *p < 0.05, compared to 

corresponding control values. 
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of Aβ are not applicable using DLS. 

 

5.1.4 AFM Imaging of Aβ  Aggregation 

The above spectrophotometric techniques revealed the effects of aldehydes on the 

conformation and molecular sizes of Aβ1-40 aggregates. AFM was employed to examine the 

morphological appearance of the Aβ1-40 oligomers, protofibrils and fibrils following incubation 

with aldehydes. At zero time, freshly prepared Aβ monomers did not form any detectable images 

(data not shown). As revealed by AFM “dry” method in Figure 20, during 7-day incubation, both 

native and formaldehyde-treated Aβ formed polymer species including oligomers (started to 

form in approximately 6 h), protofibrils (between 24 to 48 h) and fibrils (after 7 d). 

Formaldehyde significantly increased the production of oligomers and protofibrils. It also 

increased the sizes of Aβ1-40 oligomers. The average diameter of native Aβ1-40 oligomers, based 

on the heights of the oligomers following AFM scans, was about 4 to 5 nm. The sizes were 

increased to 6–7 nm in the presence of formaldehyde after 6-h incubation. The number of 

protofibrils was also significantly increased by formaldehyde. Formaldehyde did not affect the 

average height (about 4 nm) or length (about 50 nm) of protofibrils.  

Similarly, methylglyoxal was capable of accelerating the rate of Aβ aggregation and 

increasing the sizes of Aβ1-40 oligomers and protofibrils. Figure 21a shows the effect of 

methylglyoxal on Aβ1-40 oligomerization in a three-dimensional presentation. After 6 h 

incubation (Figure 21b), the average diameters of Aβ1-40 oligomers, based on the heights, were 

about 5 nm for the native and 7–8 nm for the methylglyoxal-treated Aβ1-40. After prolonged 

incubation (48 h), the average sizes increased to 10 nm and 20 nm for native and the 

methylglyoxal-treated Aβ1-40, respectively (Figure 21d). 

HNE and malondialdehyde by themselves would crystallize at dryness and therefore the 

“dry” AFM scan is not suitable. A wet AFM method was adopted in which Aβ aggregates were 

imaged in PBS solution. The appearances of Aβ aggregates between the dry and wet methods 

were different. The sharpness of the images was decreased in wet method, resulted from the 

interface between Aβ and water molecules. After 12-h aggregation, both native and 

HNE/malondialdehyde-treated Aβ formed a mixture of oligomers and protofibrils. It is evident 

that at this time point, oligomers started to assemble into protofibrils with beaded structures.  
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                        Control (48 h)                                             Formaldehyde (48 h) 

	
  	
  	
  	
  	
  	
   	
  
 

                      Control (7 d)                                               Formaldehyde (7 d) 
 

Figure 20. The effect of formaldehyde on Aβ1-40 aggregation using AFM imaging. Aβ (200 µM) 

was incubated in the absence or presence of formaldehyde (10 mM) for up to 7 days. At each 

time point during incubation, aliquots of samples were diluted 100 times before imaging. One µL 

of diluted sample was dropped, dried and imaged on freshly cleaved mica sheet. Five positions 

on the sample area were randomly picked for each sample. 
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                         Control (6 h)                                         Methylglyoxal (10 µM) (6 h) 
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c. 

	
  	
  	
   	
  

d. 

	
  	
  	
   	
  
                       Control (48 h)                                      Methylglyoxal (10 µM) (48 h) 
 

Figure 21. The effect of methylglyoxal on Aβ1-40 aggregation demonstrated in three-

demensional images and height distribution of AFM. Aβ (200 µM) was incubated in the absence 

or presence of methylglyoxal (10 µM). After 6-h and 48-h incubation, aliquots of samples were 

diluted 100 times before imaging. One µL diluted sample was imaged on freshly cleaved mica 

sheet. Five positions on a sample area were randomly picked for each sample. a: 6-h incubation; 

c: 48-h incubation. The height (diameter) distribution (b, d) was calculated by PicoSPM imaging 

software and shown under each morphology image. 
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Similarly, HNE and malondialdehyde increased the sizes of Aβ oligomers. The effect on the rate 

of aggregation was less pronounced in comparison with those induced by formaldehyde and 

methylglyoxal (Figure 22). This result is consistent with the results seen in ThT fluorometry and 

CD spectroscopy. 

 

5.1.5 Detection of Aβ  Oligomers by Dot-Blot Assay 

An oligomer-specific antibody (A11) of Aβ has been developed for identification of  

neurotoxic oligomers (Kayed et al., 2003). Neither monomers nor advanced aggregates of Aβ 

(protofibrils and fibrils) are recognized by A11 antibody. In the present study, it was employed 

to ensure seed-free preparation of Aβ for all experiments and to investigate the effects of 

aldehydes on Aβ oligomerization. Aβ1-40 was incubated in the presence or absence of aldehydes 

as described previously. Figure 23 shows that freshly prepared Aβ1-40 by HFIP was completely 

not recognized by A11 antibody, suggesting a seed-free preparation. After 6 h of incubation, 

oligomers were formed. Formaldehyde, methylglyoxal and malondialdehyde enhanced the 

formation of oligomers (Figure 23). With prolonged aggregation, namely, after 24 h, the positive 

staining diminished, suggesting the formation of protofibrils. Malondialdehyde also increased the 

amount of Aβ oligomers in a concentration-dependent manner (Figure 23c). Results of dot-blot 

assay are also consistent with findings of previous experiments. In addition, the maximal amount 

of Aβ1-40 oligomers was observed at 6-h incubation, in agreement with AFM studies.  
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                          Control (12 h)                                             HNE (10 µM) (12 h) 

b. 

	
  	
  	
    
                       Control (12 h)                                            HNE (10 µM) (12 h) 

 

 

 



	
   92	
  

c. 

         
                        Control (12 h)                                             Malondialdehyde (10 µM) (12 h) 

d. 

	
  
                        Control (12 h)                                             Malondialdehyde (10 µM) (12 h) 

Figure 22. Effect of HNE and malondialdehyde on Aβ1-40 aggregation using the wet method of 

AFM imaging. Aβ1-40 (200 µM) was incubated in the absence or presence of HNE (a) or 

malondialdehyde (c) (10 µM) for 12 h. Aliquots of samples were imaged in PBS buffer. Size 

(height) distribution (b, d) was statistically calculated by PicoSPM imaging software and shown 

under each morphology image. 
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a. 

 
 

b. 

 
c. 

	
  
 

Figure 23. Effect of aldehydes on Aβ1-40 oligomerization assessed by dot-blot assay. Seed-free 

Aβ1-40 (200 µM) was incubated with formaldehyde (a) and methylglyoxal (b) (both 100 µM) for 

various time periods.  Malondialdehyde of various concentrations (c) were incubated with Aβ1-40 

(200 µM) for up to 12 h. Aliquots were dropped on a nitrocellulose membrane after desired 

incubation periods and assessed immunochemically using A11 oligomer-specific antibody of 

Aβ. 
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5.2 Part II: Mechanism of Interaction between Formaldehyde and Aβ; Relevance to Aβ  

Cytotoxicity Study 

5.2.1 Detection of N-Methyl-Lysine by FMOC-HPLC 

Aldehydes preferably react with the free amino groups of lysine and arginine residues. Aβ1-40 

has 2 lysine (Lys 16 and Lys 28) residues and 1 arginine (Arg 5) residue. To confirm such an 

interaction, Aβ was incubated with or without formaldehyde. The aggregates were then treated 

with or without NaBH4 to convert the non-covalent bonds into covalent. As can be seen in Figure 

24, in presence of NaBH4, the amount of SDS-resistant Aβ aggregates was increased in a 

formaldehyde-concentration dependent manner. This suggests that formaldehyde crosslinked Aβ, 

and that NaBH4 converted the Schiff bases to covalent bonds. The NaBH4-stabilized 

formaldehyde-Aβ adducts were hydrolyzed and the formaldehyde-modified amino acid residues 

were analyzed by HPLC. As shown in Figure 25, the amount of lysine residues in the 

hydrolysates of the formaldehyde-Aβ adducts was reduced in comparison to native Aβ. A new 

N-methyl-lysine peak (confirmed by N-methyl-lysine internal standard) was detected only in the 

hydrolysates of the formaldehyde-Aβ adducts. This is clear evidence that formaldehyde interacts 

with and modifies the lysine residues of Aβ. In addition to lysine, other residues on Aβ including 

glutamate (peak 1) and arginine (peak 2) have also been reduced by formaldehyde, indicating 

that formaldehyde also crosslinks Aβ by reacting with multiple residues, although the 

corresponding adducts were not detected in the present chromatography system.  

 

5.2.2 Isolation of Aβ  Oligomers by Size Exclusion Chromatography 

Aldehydes are capable of modifying Aβ1-40 oligomers by increasing their sizes (see Part I). 

However, Aβ1-40 oligomers exert less cytotoxicity in comparison to Aβ1-42. Aβ1-42 oligomers are 

the most cytotoxic species among all aggregation intermediates and have been proposed to be 

responsible for neurodegeneration in AD (Klein et al., 2004; Lacor et al., 2007). Therefore, in 

order to investigate whether aldehydes can alter the cytotoxicity of other Aβ oligomers, Aβ1-42 

oligomers were used in addition to Aβ1-40 oligomers.  

We confirmed that formaldehyde has a similar effect on Aβ1-42 aggregation as it does on  

Aβ1-40. As can be seen in Figure 26, ThT fluorometry revealed that formaldehyde increased   
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Figure 24. The effect of formaldehyde on Aβ aggregation revealed by Western blot. Aβ (100 

µM) was incubated with various concentrations of formaldehyde at 37º C for 24 h. The 

aggregates were further incubated with or without NaBH4 (10 mM) for 24 h to stabilize Schiff 

bases covalently. Western blot was used for analysis of Aβ aggregates. The Aβ antibodies used 

in these experiments recognize all forms of Aβ1-40, but are not oligomer-specific as A11 antibody 

used in dot-blot. 
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a. 

 
b. 

	
  
 

Figure 25. Detection of N-methyl-lysine in formaldehyde-induced Aβ1-40 aggregates by FMOC-

HPLC. Aβ1-40 (200 µM) was incubated in the absence or presence of formaldehyde (10 µM) for 

48 h. (a) Amino acid standards including lysine and N-methyl-lysine. (b) Left: Aβ1-40 alone and 

arrow indicates the lysine peak; right: formaldehyde-induced Aβ1-40 and arrows indicate the 

lysine and N-methyl-lysine peaks. Other altered peaks of residues are marked as 1 for glutamate 

and 2 for arginine. 
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a. 

 
b. 

  	
  
                             Control                                                             FA 100 µM 

Figure 26. The effect of formaldehyde on Aβ1-42 aggregation revealed by ThT fluoremetry and 

AFM imaging. Similar to studies on Aβ1-40, Aβ1-42 (1 mg/mL) was incubated with various 

concentrations of formaldehyde at 37º C for desired time periods. (a) ThT fluorometry was used 

to measure β-sheet formation. Data represent the means ± SD (n=3) of a representative 

experiment out of three. *p < 0.05, compared to corresponding control values. (b) Morphology of 

Aβ1-42 oligomers was imaged by AFM at 12 h of incubation. 
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Aβ1-42 β-sheet formation in a time- and concentration-dependent manner. The morphologies of 

Aβ1-42 oligomers as revealed by AFM were similar to those of Aβ1-40 with an average diameter of 

4 nm, which was also increased by formaldehyde treatment. In the following cytotoxicity 

experiments, Aβ1-42 was incubated with formaldehyde to produce aldehyde-modified Aβ 

oligomers. Based on studies in Part I, Aβ1-40 forms most oligomeric species at 6 h of aggregation 

followed by protofibril formation. However, Aβ1-42 behaved differently from Aβ1-40 by forming 

most oligomers at 12 h of aggregation. Confirmed by AFM, after 12 h of aggregation under the 

same incubation conditions as for Aβ1-40, Aβ1-42 predominantly formed oligomers with negligible 

protofibrils. 

To study whether formaldehyde can alter Aβ1-42 cytotoxicity, the native and formaldehyde-

induced Aβ oligomers were isolated using size exclusion chromatography (SEC). SEC is capable 

of separating molecules based on their molecular sizes. An SEC column of pore size 125 Å, 

which is suitable for separating proteins of molecular weights from 5 kD to 150 kD, was used for 

separation of amyloid oligomers. Therefore, Aβ1-42 (1 mg/mL) was incubated in the presence or 

absence of formaldehyde (10 mM) for 12 h and then subjected to (SEC) for separation. As 

shown in Figure 27, after 12 h of incubation at 37º C, in both native and formaldehyde-induced 

Aβ aggregate three prominent protein peaks appeared with retention time of 6 min (peak 1), 12 

min (peak 2) and 13 min (peak 3). According to the elution retention time of the marker proteins, 

peak 1 represented a mixture of Aβ1-42 oligomers with molecular weights ranging from 30 kD to 

~100 kD (pentamer to 20’mers). Peak 2 represented Aβ1-42 dimers (8 to 9 kD) and peak 3 was the 

Aβ1-42 monomer (~5 kD). Formaldehyde induced a five-fold increase in oligomer amount along 

with consumption of Aβ1-42 monomers. Peak 1 and peak 3 were collected and concentrated using 

a protein concentrator (ThermoScientific, Waltham, MA, USA). The excess formaldehyde was 

removed during SEC separation. For subsequent cytotoxicity studies, equal amount of Aβ1-42 was 

used to treat cells adjusted by protein concentrations. 
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                               Control                                            Formaldehyde-induced 
 

Figure 27. Isolation of Aβ oligomers by SEC. Aβ1-42 was incubated in the presence or absence 

formaldehyde (10 mM in PBS) at 37º C for 12 h and then subjected to SEC column (4 µm from 

Alltech). The mobile phase was 0.3 M NaCl, 0.05 M phosphate, pH 7.0. The flow rate was 

constant at 1 mL/min. Marker proteins were thyroglobulin (670 kD), BSA (66 kD) and 

ribonuclease A (13 kD). A function of molecular weight with retention time was derived based 

on marker proteins. Aβ1-42 oligomers and monomers were detected at 280 nm. Calculated from 

the molecular weight-retention time function, peak 1 represents a mixture of oligomeric species 

with molecular weights from 30 to 100 kD (Aβ pentamers to 20’mers). Peak 2 represents Aβ1-42 

dimers and peak 3 is the monomers. 
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5.2.3 Comparison of Cytotoxic Effects of Native and Formaldehyde-induced Aβ1-42 

Oligomers on SH-SY5Y Cells 

5.2.3.1 Cell Viability Assessed by MTT Assay 

The MTT assay measures the activity of mitochondrial reductase, which reflects the cell 

viability. Reductase converts MTT into a purple formazan. As can be seen in Figure 28, 5 nM of 

native Aβ oligomers caused about 10% cell death after 24 h of treatment, whereas 5 nM of 

formaldehyde-induced oligomers caused 15% to 25% cell death. The magnitude of cytotoxicity 

caused by 5 nM of Aβ oligomers on this cell line was consistent with results reported by other 

groups (Klein et al., 2004). The quantity difference of cell death between native and 

formaldehyde-induced Aβ oligomers was marginal, but significant and reproducible in 

individual experiment.  

 

5.2.3.2 Cell Death Induced by Aβ  Oligomers Assessed by LDH Assay 

LDH is a group of cytoplasmic enzymes that interconvert pyruvate and lactate in the 

presence of NADH or NAD+. Aβ oligomers result in aberration of cytoplasmic integrity and 

then release of LDH into culture medium. Therefore, LDH activity is widely used as another 

indicator for cell viability.  

After Aβ oligomers were concentrated in a concentrator, higher concentrations (up to 50 nM) 

of Aβ were achieved. Various dilutions of Aβ oligomers were then applied to the SH-SY5Y 

cells. As shown in Figure 29, Aβ oligomers exerted cytotoxicity in a concentration-dependent 

manner. There was no significant difference in cytotoxicity between native and formaldehyde-

induced Aβ oligomers. However, the mean level of cell death caused by formaldehyde-induced 

Aβ oligomers was slightly higher, which was consistent with the results from MTT assay. 

 

5.2.3.3 Measurement of Caspase-3 Activity during Aβ  Oligomer-induced Apoptosis 

MTT and LDH assays require a relative long treatment period (24 h) of Aβ to the cells. 

Based on the previous aggregation studies, Aβ has already formed protofibrils after 24-h 

incubation. Therefore, to examine the oligomer-induced cell death would be complicated, since 

the oligomers begin to form less cytotoxic protofibrils during treatment, and thus interfere with 

results interpretation. Aβ oligomers activate a variety of signaling pathways prior to cell death 
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Figure 28. Comparison of cytotoxicity from native and formaldehyde-induced Aβ oligomers to 

SH-SY5Y cells assessed by MTT assay. Aβ oligomers (5 nM) isolated from size exclusion 

chromatography were added to SH-SY5Y cells and incubated for 24 h. MTT assay was 

described in Methodologies section. Data represent means (n=6) ± SD of three individual 

experiment. *p < 0.05, compared to corresponding control values. 
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Figure 29. The cytotoxicity of native and formaldehyde-induced Aβ oligomers to SH-SY5Y 

cells assessed by LDH assay. Aβ oligomers isolated from SEC were concentrated in a Savant 

SVC100H vacuum concentrator (Thermo Scientific) for 1 h. SH-SY5Y cells were treated with 

various concentrations of Aβ oligomers for 24 h. LDH assay was described in Methodologies 

section. Graph represents means (n=6) ± SD of a representative experiment out of three. 
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(Lambert et al., 1998b; Walsh et al., 2002; Datki et al., 2004; Ronicke et al., 2008). In particular, 

Aβ oligomers induce apoptosis via a caspase-3 activity-dependent mechanism (Yang et al., 1998; 

Su et al., 2000; Eckert et al., 2001; St John, 2007; Paulsson et al., 2008). Based on these findings, 

it is useful to study the early cellular responses to examine the effect of aldehydes on Aβ 

cytotoxicity instead of comparing the final stage of Aβ effect, namely, cell death. In the 

following studies, caspase-3 activities were measured to test whether the apoptotic effects caused 

by native and formaldehyde-modified oligomers are different.  

To validate this method, SH-SY5Y cells were first treated with hydrogen peroxide, which is 

well-known exhibiting apoptotic effect. As can be seen in Figure 30, hydrogen peroxide induced 

caspase-3 activity in a concentration-dependent manner. Figure 31 shows the effects of Aβ 

oligomers on caspase-3 activity in SH-SY5Y cells after incubation for 3 h (a), 12 h (b) and 24 h 

(c). A group of cells was separately treated with hydrogen peroxide as the positive control. After 

3 h of treatment, neither native nor formaldehyde-induced oligomers induced changes in 

caspase-3 activity compared to the control. After 12 h of incubation, both native and 

formaldehyde-induced oligomers significantly increased caspase-3 activity in a concentration-

dependent manner. Formaldehyde-induced Aβ oligomers caused a significantly higher caspase-3 

activity than that by native oligomers after 12 h treatment, but not after shorter (3 h) or prolonged 

(24 h) treatment. This difference in caspase-3 activity induced by native and formaldehyde-

induced oligomer was also in a concentration-dependent manner as shown in Figure 31b. Neither 

native nor formaldehyde-modified Aβ monomers exhibited any significant effect on caspase-3 

activity throughout all treatment periods.  

The data suggest that Aβ oligomers induce an early induction of caspase-3 activity 

(beginning from 3 h of treatment), which diminishes over time. The results were consistent with 

the MTT and LDH experiments, namely, formaldehyde modification slightly increased the 

cytotoxicity of Aβ oligomers by approximately 25%. 
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Figure 30. Induction of caspase-3 activity by hydrogen peroxide in SH-SY5Y cells. The cells 

were treated with various concentrations of hydrogen peroxide for 1 h followed by caspase-3 

activity assay.  Graph represents means (n=6) ± SD of a representative experiment out of three. 

*p < 0.05, compared to corresponding control values. 
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a.                                                                b. 

 
 

c. 

 
	
  

Figure 31. The effect of native and formaldehyde-modified Aβ on caspase-3 activity during 

apoptosis of SH-SY5Y cells. Aβ oligomers and monomers isolated from SEC were concentrated 

and used to treat SH-SY5Y cells for various time periods as indicated in panel a., b., c. Graph 

represents means (n=6) ± SD of a representative experiment out of three. *p < 0.05, compared to 

corresponding control values. 
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5.3 Part III: Effect of Formaldehyde Derived from SSAO-catalyzed Deamination on LRP-

1-mediated Transport 

5.3.1 Expression of Both SSAO and LRP-1 on Human Umbilical Blood Vessels 

VSMCs and endothelial cells of the cerebral vasculature play a crucial role in Aβ clearance. 

In these cells, both SSAO and LRP-1 are localized on the outer surface of plasma membrane. In 

order to investigate whether SSAO affects LRP-1 function, VSMCs were freshly prepared from 

human umbilical arteries. The expression of SSAO and LRP-1 on these blood vessels was 

demonstrated. As shown in Figure 32, immunostaining of artery cross-sections reveals that both 

SSAO and LRP-1 are richly expressed on blood vessel walls. Thus, VSMCs can be a good in 

vitro model for studying the potential interactions between SSAO and LRP-1.  

Transgenic mouse aorta was subsequently used as a source for VSMCs primary culture. 

LRP-1 and SSAO were stained after cell growth was established and stabilized. Figure 33 shows 

that LRP-1 is highly expressed on the cell membrane and concentrated in intracellular granules at 

Day-4 culture. In contrast to LRP-1, SSAO expression was very weak and its activity of this cell 

culture was hardly detectable. VSMC specific α-actin was also stained to confirm the cell type. 

It is known that SSAO is not expressed by VSMCs in primary subcultures. The reason is 

unclear. Neither is SSAO expressed in any endothelial or smooth muscle cell lines. Growth 

factors, cytokines and bile salts were used to stimulate SSAO expression on endothelial cell 

culture from various sources, but without success (Lalor et al., 2002). hSSAO gene has been  

transfected to VSMC cell line (Sole et al., 2007). However, the specific SSAO activity in this 

cell line is still much lower compared to tissues and the sub-cellular localization of transfected 

SSAO has not been determined.  

VSMCs could lose their phenotype after subculture including SSAO expression, which may 

be restored by stimulating its differentiation. A variety of culture conditions was tested in order 

to restore SSAO expression in VSMCs culture. Serum deprivation from culture medium can 

induce cell differentiation. VSMC cell line was therefore incubated in various concentrations of 

FBS (0%, 2%, 5%, 10% and 15%) for 12 h to 24 h. Various types of DMEM culture medium 

were also tested to induce SSAO activity. Yet, SSAO activity was not induced. Sphingosine 1-

phosphate, an intermediate product during sphingolipids degradation, was found to stimulate 

VSMC differentiation by activating multiple signaling pathways (Lockman et al., 2004). VSMCs  
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LRP-1                        40X                                                                  200X 

 

	
   	
  

SSAO                       40X                                                                   200X 

 

Figure 32. Immunostaining of LRP-1 and SSAO on cross-sections of human umbilical arteries. 

Human umbilical arteries were cut into sections (20 µm in thickness) at -27º C in a cryostat. 

Consecutive sections were stained for LRP-1 and SSAO, respectively. Upper: LRP-1 staining 

under magnitude 40X and 200X; lower: SSAO staining under magnitude 40X and 200X. 

 

 

 

 

 



	
   108	
  

a. 

	
  	
   	
  

LRP-1 staining      100X                                                                 400X 

 

b.                                                               c. 

	
  	
  	
   	
  

SSAO staining         100X                                     α-actin staining         200X 

 

Figure 33. Immunostaining of LRP-1 and SSAO on primary culture of VSMCs. VSMCs were 

isolated from mice aorta after digestion by type II collagenase. The cells were cultured in 

DMEM with 10% FBS. Immunostaining of LRP-1 (a), SSAO (b), and VSMC specific α-actin 

(c), were carried out at day 4 after cell culture was established and stabilized. 
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were therefore incubated in sphingosine 1-phosphate (1 µM) for 24 h, but such a treatment also 

failed to induce SSAO expression. Another study reported a dramatic increase in SSAO 

expression and activity by VSMCs after 10-day culture under serum-free DMEM/F-12 Ham plus 

transferrin (50 µg/mL), ascorbate (0.2 mM) and insulin (1 µM) (El Hadri et al., 2002). However, 

this observation was not reproduced in the present study. 

Due to the unavailability of cultured cell line simultaneously expressing both LRP-1 and 

SSAO, freshly isolated VSMCs from transgenic mouse aorta were used for studying the potential 

effect of SSAO-mediated reactions on LRP-1 function. 

 

5.3.2 SSAO Activity of Isolated VSMCs 

The results from previous immunohistochemical staining demonstrated that human umbilical 

arteries possess very high SSAO expression. SSAO with associated to all blood vessels including 

cerebral microvessels. Therefore, human umbilical arteries, mouse aorta, rat aorta, meninges and 

cerebral microvessels were collected, and their SSAO activities were measured and compared 

using radioisotope-labeled substrate (data not shown). With both high specific and total SSAO 

activity, mouse aortic VSMCs were chosen for subsequent experiments. 

During the digestion process by collagenase, the total number of the dissociated cells from 

mouse aorta, and their viability, were monitored routinely. Figure 34a shows that the cell number 

reached a maximum after 1 to 2 h of digestion. Prolonged digestion dramatically reduced the cell 

number, probably due to proteolysis of cell membrane by collagenase. Cell viability measured by 

trypan blue indicates that most isolated cells were viable for at least 6 h as shown in Figure 34b.  

Interestingly, collagenase was found to inactivate SSAO activity and also to release the 

enzyme from the cell surface, i.e. shedding effect. After digestion by type II collagenase for 1 h, 

VSMCs were collected by centrifugation. SSAO activities of the cell pellets, supernatant, 

remaining tissue chunks and aorta without collagenase digestion were measured. As shown in 

Figure 34c, cells digested from aorta had the highest specific activity suggesting relatively 

purified and concentrated preparation of cells, whereas its total SSAO activity was the lowest 

due to limited cell quantity. In the supernatant however substantial SSAO activity was detected, 

suggesting membrane-bound SSAO was cleaved by collagenase during digestion. For the 

subsequent α2M transport experiments, the process of VSMCs isolation by collagenase digestion 

was all completed within 2 h. 
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a.                                                                     b. 

	
  	
  	
   	
  
 

c. 

 
	
  

Figure 34. Isolation of mouse aortic VSMCs by collagenase digestion. (a) During the digestion 

process, the total number of cells digested off aorta was monitored. (b) Cell viability was 

assessed by Trypan blue using a hemocytometer under a microscope. (c) After digestion for 1 h, 

SSAO activities of the supernatant, cell pellets, remaining tissue chunks and aorta without 

digestion were measured and compared. Data represent one typical experiment. 
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5.3.3 α2M Uptake by VSMCs via LRP-1 

LRP-1, a multifunctional cell surface receptor, is responsible for Aβ transcytosis. Its 

substrates such as α2M facilitate this process. In the present study, α2M uptake by isolated 

VSMCs was used as an indicator for LRP-1 function.  

α2M needs to be “activated” first before it can be recognized by LRP-1. In vivo, α2M is 

activated by proteinase cleavage to induce a conformational change in its tetramer. This 

activation traps proteinase in the α2M tetramer, after which proteinase activity is inhibited. It 

also makes α2M a competent ligand for LRP-1 (Bjork et al., 1985; Moestrup and Gliemann, 

1991). In vitro, activation of α2M is achieved by incubation with a high concentration of 

methylamine, which causes similar conformational changes as proteinase does (Bjork and Fish, 

1982; Gonias et al., 1982; Strickland et al., 1984).  

The experimental conditions for the transport of activated α2M by the isolated VSMCs were 

determined. Also, it is necessary to confirm that α2M uptake by isolated VSMCs is specifically 

mediated by LRP-1 function. The isolated VSMCs were incubated with activated α2M (0.1 to 

100 nM) for 2 h. As can be seen in Figure 35a, α2M uptake was increased in a concentration-

dependent manner. VSMCs were then incubated in 20 nM of α2M for various time periods 

(from 30 min to 4 h). Figure 35b shows that α2M uptake level reached the maximum after 2 h of 

incubation. Prolonged incubation caused a decrease in α2M uptake level. This was probably due 

to decreased cell viability, because aortic VSMCs were viable within 3 h after isolation as 

previously observed. Based on these results, the uptake conditions for the subsequent 

experiments were kept as 20 nM of activated α2M and 2 h of incubation period with VSMCs.  

To date, drugs that inhibit LRP-1 are not available. In the present study, lactoferrin, a 

competitive LRP-1 substrate, was used to substantiate that in isolated VSMCs, α2M binds to 

LRP-1. Figure 35c shows that in the presence of lactoferrin, the level of α2M uptake was 

significantly reduced in a lactoferrin-concentration-dependent manner, confirming that α2M 

uptake in this model was mediated by LRP-1 function. Activation of α2M by methylamine was 

essential for its uptake. As shown in Figure 35d, uptake of the native α2M by VSMCs was 

dramatically increased after activation. The non-activated α2M detected by Western blot results 

from nonspecific binding of α2M to cell membrane.  
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Figure 35. The uptake of α2M by isolated VSMCs measured by Western blot. (a) VSMCs were 

incubated with activated α2M (*α2M) at concentrations from 0.1 to 100 nM for 2 h. (b) VSMCs 

were incubated with 20 nM of *α2M for various time periods (0.5 to 4 h). (c) VSMCs were 

incubated with *α2M (20 nM) for 2 h in the presence of lactoferrin, an LRP-1 substrate, as a 

competitive inhibitor. (d) α2M was activated by incubating with methylamine (0.2 M) for 2 h at 

room temperature. Activated α2M (20 nM) and native form of α2M (10 to 500 nM) were 

compared for their uptake by VSMCs. The amount of α2M and actin were calculated by 

multiplying band area and band grayscale, determined by ImageJ software from the National 

Institutes of Health. The α2M: actin ratio of control was converted to 100% and the other groups 

were normalized to corresponding control. Data represent mean (n=3) ± SD of a representative 

experiment out of three. *p < 0.05, compared to corresponding control values. 
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In brief, the above experiments confirmed that in this model, isolated VSMCs bind and take 

up α2M that has been activated by methylamine via LRP-1. The experimental conditions 

including α2M concentration and incubation time with VSMCs were determined and used for 

subsequent experiments. 

 

5.3.4 Effect of Formaldehyde on VSMC LRP-1 

Both LRP-1 and SSAO are richly expressed on the VSMC surface. Therefore, reactive 

aldehydes such as formaldehyde generated via deamination of methylamine could interact with 

the adjacent LRP-1 and thus affect its function. For the first several experiments, freshly isolated 

VSMCs were directly treated with series of concentrations of formaldehyde for 1 h prior to the 

addition of α2M. As shown in Figure 36a, the uptake of α2M was significantly reduced by 

formaldehyde in a concentration-dependent manner. This reduction was aggravated by prolonged 

treatment period. Figure 36b shows that 10 µM of formaldehyde began to reduce α2M uptake 

level after 30 min of treatment and exerted the maximal effect after 90 min. In these experiments, 

cell viability was monitored by trypan blue and formaldehyde of all concentrations did not affect 

cell viability within 90 min of treatment.  

Hydrogen peroxide is another toxic product from SSAO-mediated deaminations. Its potential 

effect on α2M uptake via LRP-1 was also assessed. As shown in Figure 36c, VSMCs were 

treated with various concentrations of hydrogen peroxide in parallel with formaldehyde 

treatment. Hydrogen peroxide did not substantially affect the uptake of α2M as formaldehyde 

did. 

 

5.3.5 Effect of SSAO-mediated Deamination of Methylamine on VSMC LRP-1 

To study the effect of SSAO-mediated deamination on LRP-1, freshly isolated VSMCs were 

incubated with various concentrations of methylamine for 2 h before addition of α2M, instead of 

direct treatment with formaldehyde. Figure 37a shows that methylamine reduced the uptake of 

α2M at higher concentrations. MDL72974A, a selective SSAO inhibitor, attenuated such an 

effect. The effect of methylamine was increased with prolonged incubation time and was also 

alleviated by SSAO inhibitor as seen in Figure 37b. The results indicate that formaldehyde 

produced from SSAO-catalyzed deamination of methylamine is responsible for impairing LRP-1 

function.  
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Figure 36. The effect of formaldehyde on α2M uptake by VSMCs. (a) VSMCs were treated with  

a gradient concentration (1 µM to 1 mM) of formaldehyde for 1 h prior to addition of α2M. (b) 

VSMCs were treated with 10 µM of formaldehyde for various time periods (10 to 90 min). The 

amount of α2M and actin were calculated by multiplying band area and band grayscale, 

determined by ImageJ software from the National Institutes of Health. The α2M: actin ratio of 

control was converted to 100% and the other groups were normalized to corresponding control. 

Data represent mean (n=3) ± SD of a representative experiment out of three. *p < 0.05, 

compared to corresponding control values. (c) VSMCs were treated with H2O2 before incubating 

with α2M. 
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Figure 37. Effect of SSAO-mediated deamination of methylamine on α2M uptake by VSMCs. 

(a) VSMCs were incubated with a series of concentration of methylamine (10 µM to 1 mM) for 2 

h in the presence of absence of SSAO inhibitor. (b) VSMCs were incubated with methylamine 

(0.5 mM) for different time periods (30 to 120 min) in the presence or absence of SSAO 

inhibitor. SSAO inhibitor (1 µM), MDL72974A, was incubated with VSMCs for 10 min before 

addition of methylamine. The α2M: actin ratio of control was converted to 100% and the other 

groups were normalized. Data represent mean (n=3) ± SD of a representative experiment out of 

three. *p < 0.05, compared to corresponding control values. 
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In order to investigate whether SSAO on cerebral VSMCs has a similar effect on LRP-1 

function as was observed in aortic tissue, VSMCs of rat meninges and cerebral microvessels 

were isolated and used for α2M uptake. As can be seen in Figure 38, methylamine (100 µM) was 

capable of reducing the α2M uptake by about 30% and SSAO inhibition by MDL72974A 

reversed this effect, suggesting that in the brain, aldehydes produced from cerebral SSAO-

mediated deamination are potentially harmful to LRP-1 on brain blood vessels. 

The above studies on α2M uptake indicate that LRP-1 function is impaired by formaldehyde 

produced from SSAO-mediated deamination. In order to substantiate whether methylamine 

deamination also affects Aβ endocytosis via LRP-1, isolated VSMCs, treated with methylamine, 

were incubated with Aβ monomers in the presence or absence of α2M. In preliminary 

experiments, Western blot did not detect any Aβ associated with the cells. Aβ was not detected 

in the media either. This puzzling observation was subsequently solved. Collagenase has been 

used for the isolation of VSMCs. Although most of the excess collagenase was removed by 

centrifugation and resuspending the cells, a trace amount of collagenase could remain in the cell 

suspension. To test whether residual collagenase was responsible for proteolysis of Aβ, Aβ was 

incubated with various dilutions of type II collagenase at 37º C for 2 h and subjected to Western 

blot for Aβ analysis. As shown in Figure 39a, indeed, type II collagenase was highly potent in 

digesting Aβ. To overcome this technical problem, a collagenase inhibitor (Z-PDLDA-NHOH 

from Calbiochem, EMD Biosciences, La Jolla, CA USA) was included. Figure 39b shows that 

the recovery of Aβ was significantly increased in the presence of collagenase inhibitor in a 

concentration-dependent manner. It is very interesting to note that Aβ proteolysis by collagenase 

has not been reported previously. 

VSMCs were then incubated with Aβ monomers together with collagenase inhibitor (1 

mg/mL) and various concentrations of methylamine in the presence or absence of α2M. As can 

be seen in Figure 40, consistent with earlier experiments, methylamine at higher concentrations 

significantly reduced α2M uptake level and SSAO inhibitor, MDL72974A, reversed this effect. 

In both groups, i.e. with and without α2M, formaldehyde derived from methylamine increased 

Aβ aggregation by forming more smeared bands in a concentration-dependent manner, which 

was reversed by SSAO inhibitor. Therefore, SSAO-mediated deamination exerts independent 

effects on α2M and Aβ, namely, reducing α2M uptake by VSMCs and increasing Aβ 
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Figure 38. Effect of SSAO-mediated deamination of methylamine on α2M uptake by cerebral 

VSMCs. Cerebral VSMC suspensions were obtained from combined fractions of rat meninges 

and microvessels. VSMCs were treated with 100 µM of methylamine for 1 h in the presence or 

absence of SSAO inhibitor (1 µM). SSAO inhibitor, MDL72974A, was incubated with VSMCs 

for 10 min before methylamine treatment. 20 nM of activated α2M was then added to the cell 

suspensions and further incubated for 2 h. The α2M: actin ratio of control was converted to 

100% and the other groups were normalized to control. Data represent mean (n=3) ± SD of a 

representative experiment out of three. *p < 0.05, compared to corresponding control values. 
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Figure 39. Degradation of Aβ by type II collagenase. (a) Aβ (200 µM) was incubated with 

various concentrations (0.01 to 1 mg/mL) of type II collagenase at 37º C for 2 h. (b) Aβ (100 

µM) was incubated with type II collagenase (0.01 mg/mL) in the presence of various 

concentrations of collagenase inhibitor (0.1 to 1 mg/mL of Z-PDLDA-NHOH from Calbiochem, 

EMD Biosciences, La Jolla, CA USA) at 37º C for 2 h. 
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Figure 40. Effect of SSAO-mediated deamination of methylamine on α2M and Aβ uptake by 

isolated VSMCs. The experiments were designed into 2 groups. One group of VSMCs (left 

panel) was incubated with Aβ (10 µM) and α2M (20 nM) for 2 h for uptake. The other group 

(right panel) was incubated with Aβ (10 µM) only for 2 h. Prior to addition of Aβ and α2M, both 

groups were treated with a series of concentration of methylamine for 1 h in the presence or 
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absence of SSAO inhibitor, MDL72974A. The amount of α2M and actin were calculated by 

multiplying band area and band grayscale, determined by ImageJ software from the National 

Institutes of Health. The α2M: actin ratio of control (without α2M or methylamine treatment) 

was converted to 100% and the other groups were normalized to corresponding control. Data 

represent mean (n=3) ± SD of a representative experiment out of three. *p < 0.05, compared to 

corresponding control values. 
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aggregation. 

α2M facilitates Aβ transcytosis in vivo (Shibata et al., 2000). Aβ also binds to LRP-1 directly 

without a carrier (Deane et al., 2004). In this experiment, the level of Aβ detected in VSMCs was 

not directly affected by α2M. Whether α2M can facilitate Aβ endocytosis in this model requires 

further investigation. Interestingly, α2M enhanced Aβ aggregation by forming more smeared 

bands on the Western blot, especially in the presence of methylamine. Collagenase inhibitor 

itself does not affect Aβ aggregation. This suggests that formaldehyde derived from 

methylamine enhances Aβ aggregation with α2M.  

 

5.3.6 Effect of Formaldehyde on α2M and Its Uptake by VSMCs 

Formaldehyde reacts with a variety of proteins indiscriminately. It was questioned whether 

formaldehyde might also directly interact with α2M, thus modify its configuration, affect its 

binding to LRP-1, and disrupt the endocytosis of α2M. Activated α2M was treated with 

formaldehyde prior to incubation with VSMC suspensions for uptake. As shown in Figure 41, 

pretreatment of formaldehyde to α2M did not cause any change in α2M uptake level, suggesting 

that formaldehyde does not affect the structure, or at least the binding site of α2M to LRP-1. The 

reduction of α2M uptake by VSMCs results from formaldehyde reacting with LRP-1 and 

impairing its function. 

 

In brief, LRP-1 has been shown to be very sensitive to formaldehyde. Formaldehyde derived 

from deamination of methylamine decreases α2M uptake by VSMCs. Elevated SSAO activity on 

VSMCs or increased availability of its substrates, or both, potentially impairs the function of 

vascular LRP-1 and affect the transcytosis of its ligands including α2M and Aβ.  

 

5.3.7 Effect of Formaldehyde on the Complex Formation between Aβ  with  α2M or ApoE  

Aβ and α2M or ApoE form large complexes, which can no longer be eliminated via LRP-1 

(Ito et al., 2007). We demonstrated that aldehydes crosslink Aβ peptides and enhance their 

aggregation. It is interesting to know whether aldehydes can crosslink Aβ with α2M or ApoE to 

form large complexes.  

Aβ was incubated with α2M in the presence or absence of various concentrations of  
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Figure 41. Uptake of native and formaldehyde-modified α2M by isolated VSMCs. Activated 

α2M was pre-treated with various concentrations of formaldehyde for 2 h. Excess formaldehyde 

was then removed by an ultracentrifugation filter tube. Native and formaldehyde-modified α2M 

were incubated with isolated VSMCs as previous described. 
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formaldehyde for 24 h. As can be seen in Figure 42, formaldehyde induced the formation of 

large SDS-resistant aggregates of Aβ in the presence of α2M, whereas in the absence of α2M, 

ormaldehyde did not promote the production of such large aggregates. Formaldehyde-induced 

Aβ aggregates without α2M were blocked in the presence of SDS used in Western blot. 

Formaldehyde also induced smeared bands of α2M on Western blot to higher molecular weights 

in a concentration-dependent manner, suggesting that α2M was crosslinked with Aβ by 

formaldehyde. Our data suggest that indeed, formaldehyde and probably other aldehydes are 

quite capable of crosslinking Aβ with α2M to form complexes that cannot be endocytosed into 

cells.  

Subsequent experiment demonstrated the crosslinkage between ApoE and Aβ. Similar to Aβ, 

ApoE by itself also aggregates into different forms including octamers and even larger 

oligomers. The aggregation was revealed by AFM. Parallel arrays of short fibrils were formed by 

ApoE itself (Figure 43a). Formaldehyde significantly enhanced the self-aggregation of ApoE. 

Figure 43b shows that the aggregation of Aβ was enhanced by formaldehyde. When ApoE and 

Aβ were incubated together, a population of ApoE-Aβ complexes with larger molecular sizes 

was formed (Figure 43c). The morphologies and density of these complexes were not 

significantly affected by formaldehyde. However, formaldehyde increased the sizes of these 

complexes by significantly shifting their size distribution shown in the bearing histogram. 

In brief, we have provided evidence that formaldehyde not only induces Aβ oligomerization 

and fibrillogenesis, but also enhances the formation of protein complexes composed of Aβ and 

α2M and ApoE. 
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Figure 42. Effect of formaldehyde on the formation of aggregated complexes between α2M and 

Aβ, revealed by Western blot. Left panel: activated α2M (1.5 µM) and Aβ (50 µM) were 

together treated with various concentrations of formaldehyde (1 µM to 1 mM) for 24 h. Right 

panel: Aβ (50 µM) alone was incubated with formaldehyde (100  µM to 1 mM) for 24 h. 
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Figure 43. Effect of formaldehyde on Aβ-ApoE4 complex formation. (a) ApoE4 (100 µM) alone 

and (b) Aβ (100 µM) alone were individually incubated in the presence or absence of 

formaldehyde (1 mM) at 37º C for 24 h. (c) ApoE4 (100 µM) and Aβ (100 µM) were incubated 

together in the presence or absence of formaldehyde (1 mM) at 37º C for 24 h. After incubation, 

samples were observed under AFM using wet method as previously described. Bearing 

histograms show the distribution and shift sizes of aggregates sizes. The height (diameter) 

distribution of ApoE, Aβ and ApoE-Aβ complexes was calculated by software from Visual SPM 

Molecular Imaging Inc (Tempe, AZ, USA) and shown under each morphology image. 
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6. DISCUSSIONS 

 

6.1 Overall Rationale 

6.1.1 Endogenous Aldehydes and Aβ  Aggregation 

Aβ remains at the center of attention regarding pathology of Alzheimer’s disease (Selkoe, 

2008). Cytotoxic oligomers of Aβ, especially pentamers to 16’mers of Aβ1-42, are responsible for 

cerebrovascular damage and neurodegeneration (Huang et al., 2000; Walsh et al., 2002; Gong et 

al., 2003). Yet, overproduction of Aβ in AD brains is rare. The accumulation of Aβ in most cases 

is a result of its enhanced oligomerization and impaired clearance.  

Aldehydes produced from oxidative deamination, LPO and other sources including 

methylglyoxal, malondialdehyde and HNE, are elevated in AD patients. Some of these aldehydes 

were also found to be bound to senile plaques (reviewed in Section 1.1.5). However, whether 

elevated aldehyde levels could be involved in Aβ aggregation such as oligomerization and 

fibrillogenesis, cytotoxicity and clearance has not been studied.  

The compartments, where endogenous aldehydes are produced, are crucial for their potential 

interactions with Aβ. Intracellular aldehydes would be quickly metabolized by cellular defense 

system, for example, aldehyde dehydrogenase (in the presence of NAD cofactor), before reacting 

with and denaturing other biological macromolecules. On the vascular surface aldehydes derived 

from SSAO-mediated reactions (formaldehyde and methylglyoxal) or from membrane lipid 

peroxidation (malondialdehyde and HNE) would not be readily metabolized due to absence of 

scavenging enzymes. Aβ is produced on and secreted from the cytoplasmic membranes. These 

aldehydes would have sufficient time and chance to crosslink Aβ and other adjacent proteins. 

Lysine and arginine residues of proteins are the primary targets for aldehydes. Indeed, modified 

lysine by methylglyoxal has been found to be increased during aging (Ahmed et al., 1997).  

In the brain SSAO is exclusively associated with cerebral blood vessels (Zuo and Yu, 1994). 

This is the location, where Aβ clearance takes place as well as Aβ accumulates and forms CAA 

in AD (Alonzo et al., 1998; Shibata et al., 2000). Colocalization of cerebral vascular SSAO and 

perivascular Aβ deposition in AD brains has been observed (Unzeta et al., 2007; Jiang et al., 

2008). 
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Based on these findings, it is reasonable to postulate that aldehydes produced in vicinity of 

Aβ react with Aβ, modify its structure and enhance its aggregation by inducing protein 

crosslinkage. Their interaction occurs in a chronic and accumulative manner, which contributes 

to Aβ accumulation and plaque formation, leading to increased neurotoxicity. 

 

6.1.2 Endogenous Aldehydes and Aβ  Clearance 

Amyloid tends depositions around cerebral blood vessels have been detected in most AD 

cases (Yamada et al., 1987; Ellis et al., 1996). Aβ is eliminated from the CNS into blood 

circulation via cerebrovascular LRP-1 (Shibata et al., 2000). It has been proposed that aging, 

vascular disorders and AD cause dysfunction of cerebrovascular components including LRP-1, 

which impairs Aβ clearance and lead to perivascular Aβ accumulation (Zlokovic, 2005, 2008b). 

Indeed, impaired function and reduced expression of LRP-1 have been observed in AD brains 

(Jeynes and Provias, 2008). However, the mechanism is unclear. 

In the CNS, SSAO and LRP-1 are both richly expressed on the cell surface of cerebral 

vasculature (Zuo and Yu, 1994; Shibata et al., 2000). Vascular SSAO catalyzes the production of 

cytotoxic aldehydes, hydrogen peroxide and ammonia in the extracellular compartment (Yu and 

Zuo, 1996). These toxic products are not readily scavenged and exert oxidative damage of the 

blood vessels. Increased plasma SSAO activity was found to be associated with a number of 

vascular disorders including AD (reviewed in 1.2.3.5). We found that products derived from 

cerebral SSAO-mediated reactions inactivate the adjacent LRP-1. This finding has provided a 

novel mechanism of the chronic Aβ accumulation around blood vessel and formation of CAA. 

 

6.1.3 Methylglyoxal and Aβ  Influx via RAGE 

Aβ is also produced in the peripheral system (Li et al., 1999). Peripheral Aβ peptides can be 

transported from blood circulation into the brain via RAGE on the cerebral blood vessels (Deane 

et al., 2003). RAGE expression was upregulated during aging and in AD patients (Yan et al., 

2000; Lue et al., 2001a; Simm et al., 2004; Jeynes and Provias, 2008; Cho et al., 2009). 

Methylglyoxal produced from glycolysis and SSAO-mediated deamination of aminoacetone 

contributes to AGEs formation (Thornalley et al., 1999; Mathys et al., 2002). Therefore, it is 

reasonable to speculate increased production of methylglyoxal contributes to AGEs formation 

and upregulate RAGE expression, enhancing Aβ influx into the CNS.  
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In summary, the effects of aldehydes produced from SSAO-mediated reactions and other 

sources on Aβ β-sheet formation, oligomerization and fibrillogenesis, oligomer cytotoxicity and 

clearance collectively contribute to Aβ accumulation in the brain, particularly the formation of 

CAA. The process is schematically illustrated in Figure 44.  The potential role of cerebral 

vascular SSAO in Aβ aggregation and clearance explains why a large portion of amyloid is 

associated with brain blood vessels in AD. Moreover, hydrogen peroxide and ammonia from 

SSAO-catalyzed reactions are toxic and cause further oxidative damage to the cerebral 

vasculature, which could contribute to the development of AD. Vascular damage could release 

the membrane-bound SSAO into blood circulation. This explains why plasma SSAO activity in 

AD patients was elevated (del Mar Hernandez et al., 2005). SSAO is upregulated in response to 

inflammatory factors and tissue damage. Formaldehyde produced from SSAO-catalyzed 

reactions induces inflammation and further upregulates SSAO activity. The increased production 

of toxic products causes more damage and inflammation, therefore creating a vicious cycle that 

chronically and accumulatively leads to neurodegeneration and onset of dementia. 

 

6.2 Effects of Endogenous Aldehydes on Aβ  Aggregation 

6.2.1 Enhancing the Rate of Aβ  Oligomerization and Increasing Sizes of Aβ  Oligomers 

Folding of proteins to form functional tertiary configurations is an essential biochemical 

process. The amino acid sequence and environmental factors determine how proteins fold 

(Anfinsen, 1973). In AD, Aβ peptides not only fold but also aggregate with themselves and 

subsequently with other proteins. Although it is unclear whether this process is physiological or a 

metabolic accident, the aggregation products such as Aβ oligomers (5–16’mers) are toxic 

towards neurons (Lambert et al., 1998b; Parks et al., 2001; Demuro et al., 2005) and further 

aggregation leads to formation of senile plaques (Iwatsubo et al., 1994). Aβ oligomers are 

capable of inhibiting LTP that is crucial for memory formation (Walsh et al., 2002; Cleary et al., 

2005). It is therefore considered a process of protein misfolding. Protein misfoldings have been 

found to associate with a variety of disorders (reviewed in section 1.1.4.3).  

A lot of factors affect Aβ aggregation. For instance, ApoE4 enhances Aβ polymerization and 

subsequently deposit in Aβ plaques (Holtzman et al., 2000; Arelin et al., 2002). Reactive 

carbonyl metabolites, for example, aldehydes generated from cholesterol ozonolysis during 

inflammation, have been shown capable of modifying Aβ peptide covalently and accelerating 
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Figure 44. The potential involvement of SSAO-mediated deaminations in Aβ oligomerization 

and fibrillogenesis, cytotoxicity and clearance; implications to CAA (unpublished, modified 

from Dr. Yu with permission). Endogenous aldehydes produced from various sources react with 

Aβ and enhance its aggregation. Increased production of Aβ oligomers leads to more LTP 

inhibition and cytotoxicity.  Formaldehyde and methylglyoxal produced from vascular SSAO 

could exert in situ modification on LRP-1 and impair its function. Aβ clearance is subsequently 

damaged. Methylglyoxal increases AGEs formation, upregulate RAGE expression and cause 

more peripheral Aβ influx into the CNS. These pathways collectively increase Aβ accumulation 

in the brain, accelerating the progression of AD. 
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Aβ aggregation (Wentworth et al., 2003; Zhang et al., 2004). Endogenous aldehydes including 

formaldehyde, methylglyoxal, malondialdehyde and HNE, are derived from various processes, 

such as oxidative deamination, LPO and hyperglycemia-induced glycolysis. These reactions are 

all known risk factors for AD (Dei et al., 2002; Ferrer et al., 2002; de la Monte and Wands, 2005; 

Pamplona et al., 2005). 

The present study revealed the effects of endogenous aldehydes on Aβ aggregation in vitro. 

The concentrations of Aβ and aldehyde have become a limiting factor to study their interactions. 

In order to assess the aggregation process in a relatively short period of time, the concentration 

of Aβ was from 50 to 200 µM and aldehyde concentrations ranged from 1 µM to 10 mM. These 

concentrations seem to be much higher than reported in vivo levels of aldehydes (1 to 10 µM) 

(Cighetti et al., 1999; Kuhla et al., 2005) and Aβ (~nM) (Haass et al., 1992).  However, the 

distribution of Aβ is very uneven. The in situ concentrations, i.e. on the cell surface, could be 

much higher than the circulatory levels such as in the CSF and blood. Formaldehyde and 

methylglyoxal are extremely reactive. Under in vivo situation, the interaction between these 

aldehydes and Aβ takes place over a very long period of time. The reaction is chronic and 

accumulative. It will achieve the same end results as of the acute in vitro experimental situation. 

We applied a variety of structural techniques including ThT-T fluorometry, CD 

spectrometry, DLS and AFM imaging to reveal the potential effects of aldehydes on various 

stages of Aβ aggregation. 

In ThT fluorometry and CD spectroscopy the effect of aldehydes on Aβ β-sheet formation 

diminished over time. This is due to that these methods are unable to detect the β-sheets 

conformation in advanced Aβ assembly. After prolonged incubation (Figure 14 and 20), 

advanced aggregates such as Aβ protofibrils and fibrils, begin to form. Notably, in Figure 14 a, b 

and c, after 120 h of incubation, the β-sheet amount of control group detected by ThT varied 

among experiments. It suggests that a large amount of fibrils have been formed, which made 

ThT unable to detect β-sheet accurately. This observation (Figure 16c) is consistent with other 

studies (Liu et al., 2004; Stanyer et al., 2004b). One study using CD spectroscopy reported that 

the amplitudes of negative peaks representing β-sheet structure were all close to zero after 

prolonged incubation (Stanyer et al., 2004b). A drawback of ThT and CD methods is they cannot 

provide information on the sizes of Aβ aggregates.  
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To study the effect of aldehydes on the sizes of Aβ aggregates, DLS technique was applied. 

The molecular-size distributions of Aβ particles in solution were analyzed. Interestingly, 

formaldehyde and malondialdehyde exhibited similar effect on β-sheet formation in ThT assay. 

Malondialdehyde appeared to be more effective distinctly from other aldehydes, as shown in the 

DLS experiment (Figure 17). Such an effect suggests that in addition to increasing β-sheet 

formation, malondialdehyde is more potent at enhancing Aβ intermolecular interactions. This 

observation is also consistent with an earlier report on protein crosslinking property of 

malondialdehyde and HNE (Esterbauer et al., 1991). DLS analysis is designed for measuring 

globular proteins and it is suitable for analyzing Aβ oligomerization.  

Similar to ThT fluorometry, the count rates of Aβ reached a plateau after 48 h of aggregation, 

when protofibrils began to form. However, the mechanism of assessment of aggregation by DLS 

is different. DLS monitors the Brownian motion of particles by measuring photon deflection. 

Fibril-shaped molecules would cause large variations in the number of scattered and detected 

photons. In this case, the values of measurement will be considered as errors and rejected by the 

instrument. Therefore, DLS is only suitable for analyzing globular Aβ oligomers. During Aβ 

aggregation, when the number of oligomers increases, they start to assemble into protofibrils. In 

this stage, the number of photons scattered by oligomers will be stable, leading to a plateau in 

count rate. 

AFM imaging has been applied in studying morphologies of various biological molecules. 

Compared to the traditional EM, it has some advantages. AFM is capable of providing a true 

three-dimensional surface profile. In AFM, there is no special treatment procedure for samples as 

required in EM that may alter their structures. AFM can work in an ambient or liquid 

environment, whereas EM requires to be operated in a vacuum environment. However, EM can 

observe an area on the order of millimeters with a depth of field on the order of millimeters. 

AFM can only scan a maximum view area of 100 µm by 100 µm with a maximum height of 

several microns.  

In the present studies, AFM imaging not only revealed the effects of aldehydes on the 

morphologies of oligomers, protofibrils and fibrils, but also estimated their reaction rates and 

sizes of the aggregates based on the surface heights in the scans. In the initial AFM experiments, 

prior to imaging, Aβ in PBS buffer was dropped on a mica surface for up to 2 minutes to allow 

adhesion. The mica surface was then rinsed with nanopure water to remove the buffer salts and 
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obtain a relatively even distribution of Aβ. However, as Aβ oligomers are water soluble, rinsing 

the mica piece with water would remove the majority of adhered oligomers, which would 

prevent the observation of Aβ aggregates. Omitting the rinsing step causes crystallization of 

buffer salts that interferes with the AFM scan. This difficulty was overcome by replacing PBS 

buffer with a volatile buffer (ammonia/formic acid) and bringing samples to dryness without 

rinsing. The formaldehyde- and methylglyoxal-modified Aβ were observed under ambient 

condition (known as dry method). Subsequently, a wet AFM method was applied for 

examination of the effects of malondialdehyde and HNE because these aldehydes were in salt 

form and thus would form crystals at dryness. Aldehydes were found not only increase the 

number but also the size of the oligomers (by about 1 to 2 nm in diameter shown in Figure 20 

and 21). The increase in oligomer diameters may result from addition of carbon atoms after 

conjugation with the aldehyde or increase in the number of monomers aggregated into each 

oligomer. Aldehydes could even alter the forms of aggregation. How aldehydes modify the 

tertiary structure of Aβ aggregates needs other technology. 

In general, formaldehyde, methylglyoxal and malondialdehyde exhibit similar effects on Aβ 

oligomerization and fibrillogenesis (Chen et al., 2006). The effect of HNE is somewhat limited 

under present experimental conditions. The longer aliphatic chain of HNE may hinder its kinetic 

property of interacting with proteins. Such a relative weak effect of HNE on Aβ oligomerization 

agrees with an earlier report (Stanyer et al., 2002). Other studies found that HNE is capable of 

modifying and increasing Aβ hydrophobicity to turn it more prone to aggregation (Qahwash et 

al., 2007; Liu et al., 2008). HNE was also found to enhance the formation of Aβ protofibrils 

(Siegel et al., 2007). In these studies, the conditions of interaction between HNE and Aβ were 

different including incubation time, concentration and pH.  

 

 

6.2.2 Potential Mechanisms of Aldehyde-Aβ  Interactions 

Formaldehyde generated via SSAO-mediated deamination of methylamine was shown to 

crosslink with proteins in vivo (Yu and Zuo, 1996). Lysine and arginine residues are the primary 

targets of Aβ for formaldehyde (Gubisne-Haberle et al., 2004). Such an interaction is illustrated 

in Figure 45.  Another mechanism of reaction is by a two-step reaction (Esterbauer et al., 1991; 

Kalasz, 2003): 
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Lysine-NH2 + HCHO  Lysine-NH-CH2-OH 

Lysine-NH-CH2-OH + HCHO  Lysine-NH-CH3 + HCOOH 

Either pathway will add a methyl group to the free ε-amino group on lysine to form N-methyl-

lysine.  

Aβ peptide possesses two lysine (Lys16 and Lys28) residues and one arginine (Arg5) residue 

and therefore readily interacts with aldehydes. We confirmed that lysine residues of Aβ are 

subject to interaction with formaldehyde by detection of N-methyl-lysine using HPLC (Chen et 

al., 2007). Between Lys16 and Lys28 is a lipophilic domain (recall the importance of residues 17 

to 21 in Aβ aggregation) and it interacts and folds with another lipophilic domain at the N-

terminus of Aβ (Petkova et al., 2002). Modification of the lysine residues by aldehydes would 

alter the lipophilicity and flexibility of the lipophilic domain of Aβ in favor of stabilizing the 

folding. Subsequently, it may form intermolecular methylene bridges and stabilize the 

aggregation products. The potential mechanism of interaction between Aβ and aldehydes is 

illustrated in Figure 46. 

Although formaldehyde preferably reacts with lysine residue, depending on the ambient 

conditions, it also interacts with other amino acid residues of proteins in a much more complex 

manner (Metz et al., 2004). In fact, the FMOC-HPLC experiments showed that in the 

formaldehyde-induced Aβ aggregates, not only the lysine residue was modified, but also several 

other amino acids were affected including glutamate and arginine suggesting a complicated 

mechanism of reaction.  

Information on concentrations of aldehydes and Aβ in the brain is limited. Highly reactive 

aldehydes produced would immediately react with adjacent molecules. The assessment of free 

aldehydes in tissues does not directly reflect the concentrations at the compartments of their 

generation. The local concentrations of these aldehydes, such as on the cell surface of vascular 

endothelial and smooth muscle cells, could be much higher. Nevertheless, the concentration of 

methylglyoxal in the CSF from AD patients is 20 to 40 µM, compared to 10 to 15 µM in the 

control population (Kuhla et al., 2005). The concentration of formaldehyde in human blood is 2 

to 3 mg/L (67 to 100 µM) according to World Health Organization. Methylamine in blood is 

normally at 1 to 5 µM and 10 to 20 µM in uremic human plasma (Wingender, 1983; Baba et al., 

1984). It is unclear how much circulatory formaldehyde is derived from deamination of 

methylamine in the blood. Concentrations of malondialdehyde and HNE are as high as 1.3 µM 
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Figure 45. Mechanism of reaction between formaldehyde and lysine. Formaldehyde and the ε-

amino group of lysine form a Schiff base. Under physiological conditions, Schiff bases are not 

stable and when they are close to each other, two Schiff bases form a methylene bridge. As a 

consequence, two lysines groups are crosslinked, which induces both intra- and intermolecular 

crosslinkage. 
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Figure 46. Potential mechanisms of Aβ crosslinkage by aldehydes based on solid NMR 

experiment (Petkova et al., 2002). Aldehydes preferably react with the lysine residues on Aβ 

peptides. One mechanism is that aldehydes modify the lysine residue to form N-methyl-lysine 

and increase Aβ hydrophobicity. Another mechanism is that aldehydes react with lysine residues 

on Aβ and form intermolecular methylene bridges, after which Aβ peptides are crosslinked. Both 

mechanisms enhance Aβ aggregation. 
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and 100 µM, respectively (Benedetti et al., 1984; Cighetti et al., 1999). As for Aβ, its level in  

the CSF is normally at 1 nM (Haass et al., 1992). However, Aβ distribution in the brain is 

probably vastly uneven. The cell membrane surface may possess much higher concentration of 

Aβ since it is subject to translocation and clearance.  

The concentrations of endogenous aldehydes in vivo, which are generated via deamination of 

short chain aliphatic amines, lipid peroxidation and glucose metabolism, are likely insufficient to 

cause massive protein crosslinkage or acute cytotoxicity. However, the interaction of aldehydes 

with proteins, especially structural proteins, is in a chronic, irreversible and accumulative manner 

following a pseudo first-order kinetic mode. Indeed, protein misfolding and subsequent 

formation of plaques, i.e. amyloidosis, is a very slow and chronic process as seen in many 

chronic disorders including type 2 diabetes and AD. 

 

6.3 Effect of Aldehyde Modification on Aβ  Cytotoxicity 

Research on Aβ cytotoxicity has evolved from plaques, fibrils and protofibrils to oligomers 

(Lorenzo and Yankner, 1994; Harper et al., 1999; Bitan et al., 2001). Aβ oligomers (5 to 16’mer) 

induce LTP inhibition and subsequent neurodegeneration (Lambert et al., 1998b; Walsh et al., 

2002). More recently, Aβ dimers and trimers, seem to be the very first toxic intermediates during 

Aβ aggregation (Hung et al., 2008; Selkoe, 2008). It is therefore interesting to delineate whether 

aldehyde may alter the cytotoxicity of Aβ oligomers. 

Aldehydes are able to modify Aβ structure and increase the average size of Aβ oligomers 

probably resulting from addition of extra carbons (Chen et al., 2006). The cell survival assays 

(MTT and LDH assays) indicated that the formaldehyde-induced oligomers are slightly but 

significantly more (~10%) cytotoxic compared to the untreated Aβ oligomers. By measuring 

apoptosis, formaldehyde-modified oligomers triggered an increase (~20%) in caspase-3 activity 

compared to the native oligomers in SH-SY5Y cells. AFM, dot-blot assay and SEC experiments 

have demonstrated that formaldehyde increased the production of oligomers for about 5 folds. 

Moreover, with formaldehyde-induced oligomers being more cytotoxic (10 to 20%), the final 

total cytotoxicity of Aβ would be significantly increased after interactions with aldehydes. It 

remains to be investigated whether/how endogenous aldehydes could affect the oligomers of Aβ 

under physiological or pathological conditions. The reaction between Aβ and aldehydes may not 
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be as dramatic and rapid; yet, increased aldehydes levels provide a constant stressful and toxic 

condition in favor of a slow but accumulative oligomerization process over a very long period of 

time. Such a chronic accumulative cytotoxicity could lead to gradual damage of 

cerebrovasculature as well as neurodegeneration, which consists with the slow progression of 

AD. 

A potential mechanism of Aβ cytotoxicity was proposed, namely, Aβ binds to cell membrane 

by its hydrophobicity and exert nonspecific toxicity by increasing membrane 

conductance/permeability (Klunk et al., 1999; Kayed et al., 2003; Datki et al., 2004; Kayed et al., 

2004). Indeed, HNE is capable of modifying Aβ structure on specific sites and increasing its 

lipophilicity and affinity to cell membrane (Qahwash et al., 2007; Liu et al., 2008). There is 

another aspect towards cytotoxicity of Aβ, namely, it is a receptor-dependent process. In SH-

SY5Y cells, LRP-1 (Fabrizi et al., 2001; Wilhelmus et al., 2007) and RAGE (Yan et al., 1996) 

were claimed involved in mediating Aβ cytotoxicity. SH-SY5Y cells normally express a low 

level of RAGE which is significantly upregulated by Aβ treatment for 24 h (Cho et al., 2009). In 

the present study, SH-SY5Y cells were treated with Aβ for up to 24 h. Therefore, it is possible 

that Aβ oligomers upregulated RAGE expression during the experiments. 

It is important to note that, in the present study the cells were treated with oligomers for a 

period from 3 to 24 h before cell survival assays. The oligomers would probably continuously 

aggregate during this treatment period of time. Based on results shown in Figure 14 and 20, from 

12 h on the oligomers already start to form protofibrils. The cytotoxicity measured by the assays 

could be caused by the mixture of oligomers and less cytotoxic protofibrils. However, the 

concentrations of Aβ oligomers used for treatment of the cells (5 to 50 nM) were much lower 

than those concentrations used in the aggregation study (100 to 200 µM). It is possible that the 

Aβ oligomerization process would be slower at such low concentrations. 

 

6.4 The Role of Vascular Surface SSAO on LRP-1 Function 

6.4.1 LRP-1 and SSAO on Cerebral Vasculature 

The cerebral capillaries are surrounded by pericytes which belong to VSMC lineage (Allt and 

Lawrenson, 2001). VSMCs contribute to the stability of cerebral microvessels by regulating 

matrix deposition (Armulik et al., 2005). VSMCs also regulate angiogenesis and microvascular 

permeability (Dore-Duffy and LaManna, 2007). In AD patients, the total length of cerebral 
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capillaries, microvascular densities and diameters are reduced (Bailey et al., 2004). This 

regression reduces the transport of energy, nutrients, and potential neurotoxins across BBB. 

Subcortical ischemic lesions and microinfarcts are important contributors to cognitive deficits in 

aging and AD (Pantoni et al., 1999; Kalmijn et al., 2000; Kovari et al., 2004).  Therefore, AD is 

recognized as a cerebral vascular disease and it shares many common risk factors with other 

vascular disorders/diseases such as atherosclerosis (Casserly and Topol, 2004).  

SSAO contributes to a number of vascular disorders such as atherosclerosis and stroke, 

which is attenuated by SSAO inhibitor (Yu and Deng, 1998; Meszaros et al., 1999a; Conklin et 

al., 2004; Kazachkov et al., 2007; Airas et al., 2008). In the CNS, SSAO is expressed exclusively 

on cerebral VSMCs and endothelial cells, producing toxic aldehydes from primary amines to 

cause damage to brain blood vessels. Therefore, chronic accumulative carbonyl stress and 

oxidative damage due to increased SSAO-mediated reactions may impair cerebrovascular 

functions, cause vascular disorders in the brain and increase the risk of AD.  

The accumulation of Aβ in AD brains results from impaired Aβ clearance from the CNS. 

Cerebrovascular LRP-1 plays a crucial role in Aβ efflux from the CNS into the blood circulation 

(Shibata et al., 2000). The cause of LRP-1 impairment in AD is unclear. It has been proposed 

that cerebral vasculature dysfunction is responsible for LRP-1 dysfunction (Zlokovic, 2004). We 

have obtained some evidence that cerebral VSMC LRP-1, as the mediator of Aβ clearance, is 

affected by SSAO-catalyzed deaminations. LRP-1 is the largest member of the LDL receptor 

family, with 31 repeats of ligand-binding domains (Nykjaer and Willnow, 2002). These binding 

domains and the interactions with co-receptors are responsible for its wide range of ligands (May 

et al., 2007). The structure of LRP-1 is illustrated in Figure 47. Aldehydes produced from SSAO 

impair nearby LRP-1, probably by modifying its long extracellular domains. The binding sites on 

LRP-1 for its substrates, including α2M, ApoE, and Aβ, can be altered by aldehydes.  

 

6.4.2 Experiment Model 

In order to study the potential effect of SSAO-catalyzed reactions on LRP-1 function, a cell 

model expressing both SSAO and LRP-1 is required. Unfortunately, primary culture of VSMCs 

does not express SSAO after subculture. The exact cause is still unclear. It may result from 

matrix metalloproteinase cleavage, collagenase or trypsin shedding from membrane during 

digestion and subculture, lack of posttranslational modification of the enzyme, i.e. 
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Figure 47. The structure of LRP-1 (Jeon and Blacklow, 2005; Wasan et al., 2008). EGF: 

epidermal growth factor. The β-propeller structure is composed of Tyr-Trp-Thr-Asp. The 

cytosolic NPxY motif is responsible for signal transduction. The asterisks indicate the regions 

stabilized by calcium binding. 
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incorporation of cofactors TPQ or Cu (II), altered environment triggering signaling pathways 

that suppress SSAO expression, or lack of contact with the basement membrane compartment 

that may be required for SSAO expression. Although LRP-1 is expressed, primary culture and 

cells missing of SSAO cannot be applied for the present investigation. 

In the present study, freshly isolated aortic and meningeal VSMCs were used. These cells 

possess both active SSAO and LRP-1. α2M is a well-known substrate for LRP-1 (Shibata et al., 

2000). Its uptake was used as an indicator for LRP-1 function. Methylamine significantly 

reduces α2M uptake in both aortic and meningeal VSMCs. Selective SSAO inhibitor blocks 

such reduction. During the time period of uptake experiments, the cell viability was not affected 

by either formaldehyde or methylamine under the concentrations used. The reduction in α2M 

uptake was therefore not due to decreased cell viability. Formaldehyde but not hydrogen 

peroxide exhibited similar effects as of methylamine. The results suggest that aldehydes 

produced from SSAO-catalyzed reactions are responsible for reduced α2M uptake and thus they 

impair LRP-1 function. It seems reasonable to conclude that aldehydes generated via SSAO-

mediated deaminations inactivate adjacent LRP-1 on the cell membranes. It changes the 

configuration of LRP-1 and affects α2M recognition and binding.  

 

6.4.3 Mechanisms of Aβ  Uptake by Isolated VSMCs 

α2M is able to facilitate Aβ uptake via LRP-1 (Shibata et al., 2000). VSMCs, which express 

both SSAO and LRP-1, are a useful model for studying the effects SSAO-mediated reactions on 

LRP-1 function and on Aβ endocytosis. Logically, the amount of Aβ endocytosis via VSMCs is 

proportional to α2M uptake level. Although deamination of methylamine has been shown to 

reduce α2M uptake by VSMC LRP-1, it did not reduce Aβ uptake. In this model, the level of Aβ 

in VSMCs was not directly correlated to α2M level (Figure 39). The mechanism is currently 

unclear.  

This model has been complicated by the facts, that first, LRP-1 is very sensitive to 

formaldehyde (see section 5.3.4). It modifies the α2M binding site on LRP-1 and thus affect 

α2M uptake via VSMCs. There are conflicting reports regarding whether Aβ absolutely needs 

α2M as a carrier protein for LRP-1 (Shibata et al., 2000; Deane et al., 2004; Ito et al., 2007; 
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Wilhelmus et al., 2007). LRP-1 could possess different binding sites for α2M and Aβ, therefore 

Aβ could bind to LRP-1 independently (without α2M as a carrier).  

Secondly, Aβ binds to cell membrane nonspecifically via hydrophobic interaction (Datki et 

al., 2004). In our experiments, although after incubation the cells were repeatedly washed and 

centrifuged to remove the loosely membrane-bound Aβ, it did not rule out the possibility that 

trace amount of Aβ was still associated with the cell surface. Using isolated VSMCs as a model 

to study Aβ endocytosis, the amount of Aβ measured by Western blot was the sum of uptaken 

Aβ via LRP-1 and the membrane-bound Aβ attached on the cell surface. It is difficult to 

differentiate between the intracellular Aβ and non-specific membrane-bound Aβ.  

Thirdly, formaldehyde derived from methylamine may increase Aβ oligomerization and its 

hydrophobicity. This would be in favor of Aβ deposition on the cell membrane. The results seem 

to suggest that in the presence of α2M, formaldehyde increases Aβ aggregation even more. α2M 

seems to facilitate Aβ aggregation instead of endocytosis in this system. It is therefore difficult to 

determine the precise role of aldehyde on Aβ endocytosis. 

Moreover, the type II collagenase used for isolation of VSMCs is potent at degrading Aβ. 

Residual collagenase activity digests most Aβ in 2 h during experiments. In later experiments a 

collagenase inhibitor (Z-PDLDA-NHOH from Calbiochem, EMD Biosciences, La Jolla, CA 

USA) was included along with Aβ. The recovery of Aβ was improved, but a large portion of Aβ 

was still degraded by the residual collagenase activity. Therefore, it is difficult to determine how 

much Aβ was actually available for VSMCs to uptake. The observation that type II collagenase 

is potent at degrading Aβ is novel. It seems worthy of checking other types of collagenases in 

hydrolyzing Aβ. Currently, only IDE (insulin-degrading enzyme) and neprilysin were reported to 

be involved in proteolysis of Aβ (Iwata et al., 2001b; Walsh et al., 2002). The finding also raises 

a general technical concern, namely, it should be cautious using collagenase in cell culture 

technology, to ensure that it does not affect the experiment. 

Interestingly, Aβ peptides were found to upregulate LRP-1 expression in VSMCs after 

incubation for 3 days (Wilhelmus et al., 2007). In the present model, such an LRP-1 upregulation 

was unlikely, since the incubation time of the VSMCs with Aβ was only 2 h. LRP-1 level was 

assessed in the experiments and there was no significant change after Aβ treatment. 
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In brief, increased production of formaldehyde derived from deamination of methylamine on 

the VSMC surface impairs LRP-1 function. Formaldehyde may alter the configuration of the 

α2M binding site on LRP-1 and reduce its uptake as well as the associated transport of Aβ. 

Formaldehyde simultaneously enhances Aβ aggregation and increases its deposition on cell 

membrane. SSAO inhibitor is able to attenuate such effects. Under the present experimental 

conditions, the measurement of Aβ endocytosis via LRP-1 may be interfered by Aβ 

oligomerization and its binding to cell membrane. More investigations are required to clarify the 

mechanism of effects of formaldehyde on Aβ endocytosis by VSMCs. 

 

6.4.4 Effects of Aldehydes on Aβ-α2M/ApoE Complexes Formation 

α2M or ApoE serves as a carrier for Aβ, form complexes and function as LRP-1 ligands 

(Shibata et al., 2000; Bell et al., 2007; Deane et al., 2008). They are extended to aggregate and to 

form larger complexes, which can no longer be taken up by LRP-1 and cleared through BBB 

(Hughes et al., 1998; Moir et al., 1999; Ito et al., 2007). Subsequently, these complexes may 

deposit on cerebral vasculature and continue aggregation with Aβ as well as other molecules. 

This process eventually leads to typical CAA pathology (Ito et al., 2007). However, this has not 

sufficiently explained why Aβ and α2M or ApoE4 do not deposit on other types of cells in the 

brain. LRP-1 is widely distributed in the brain, including neurons and glia (Bu et al., 2006). In 

the present study, formaldehyde was found to crosslink Aβ with α2M or ApoE and enhance the 

formation of large aggregates. It suggests that aldehydes produced by VSMC SSAO play an 

important role in Aβ oligomerization and crosslinkage with other proteins adjacent to brain 

blood vessels. The unique localization of SSAO, i.e. only on the cerebral vasculature in the CNS, 

is particular interesting. It explains why Aβ deposition is often seen to be associated with blood 

vessels in vascular dementia and AD. 
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7. CONCLUSIONS 

 

7.1 Summary of Major Findings 

(1) Endogenous aldehydes generated from various sources including formaldehyde, 

methylglyoxal, malondialdehyde and HNE are capable of interacting with Aβ and increasing 

the rates of Aβ aggregation; 

(2) Aldehydes affect every stage of Aβ polymerization including β-sheet formation, 

oligomerization and fibrillogenesis in a time- and concentration-dependent manner; 

(3) Aldehydes are also capable of modifying the structure of Aβ peptide and increasing the sizes 

of Aβ oligomers in vitro; 

(4) The primary target of aldehyde interaction is the lysine and/or arginine residues on Aβ 

peptides that forms Schiff bases. The Schiff bases react with each other to form stable 

intermolecular methylene bridges crosslinking Aβ molecules. Aldehydes also react with 

other amino acid residues of Aβ molecule leading to more complicated interactions; 

(5) Aldehydes also crosslink Aβ with other proteins such as ApoE and α2M, to form large 

protein complexes. These large complexes cannot be eliminated from the CNS through 

cerebral vasculature, leading to formation of perivascular Aβ deposits and senile plaques; 

(6) Formaldehyde-modified Aβ oligomers become slightly more cytotoxic compared to those of 

native Aβ; 

(7) Formaldehyde substantially increases the rate of formation of Aβ oligomers. Therefore, the 

final total cytotoxicity would be significantly increased by aldehydes, suggesting the role of 

aldehydes in Aβ induced neurovascular damage and neurodegeneration; 

(8) Aldehydes produced on the membrane surface, i.e. from cerebral vascular SSAO-catalyzed 

reactions or LPO, impair adjacent LRP-1 function. The endocytosis of its ligands, i.e. α2M 

and Aβ, is subsequently reduced. Specific SSAO inhibitors reverse such an effect by 

aldehydes; 
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(9)  Since α2M is an Aβ carrier via LRP-1, the transcytosis of Aβ is affected by SSAO-

mediated reactions. SSAO may contribute to the impairment of Aβ clearance via vascular 

LRP-1, which leads to deposits of Aβ in the brain; 

(10)  Type II collagenase is quite potent in degrading Aβ. This novel finding is implicated in the 

role of collagenase to Aβ degradation, and to other technical remark in cell culture studies 

on Aβ.  

 

7.2 Future Directions of the Research 

7.2.1 Effects of Aldehydes on Protein Misfolding 

The present study has demonstrated that aldehydes are capable of enhancing Aβ aggregation 

in vitro. However, whether aldehydes can react with Aβ and enhance its aggregation in vivo 

remains to be substantiated. Malondialdehyde and HNE have been detected in senile plaques of 

AD brains by immunohistology studies (Montine et al., 1997; Sayre et al., 1997; Dei et al., 2002), 

which strongly supports the hypothesis that reactive aldehydes modify Aβ peptides, enhance 

their aggregation and contribute to plaque formation. To date there has been no reports 

demonstrating whether formaldehyde or methylglyoxal is associated with senile plaques in AD, 

although anti-methylglyoxal antibody is available now commercially. 

Formaldehyde and methylglyoxal can be produced by SSAO-mediated deaminations. 

Transgenic mouse strain overexpressing human SSAO on the endothelium and/or VSMCs would 

be useful. In the future, this mouse strain can be crossed with the APP/PS1 transgenic mice, 

which are widely used for mimicking Aβ accumulation in AD. Using these SSAO/APP/PS1 

triple transgenic mice, and with help of specific SSAO inhibitors, the role of SSAO-mediated 

deaminations in Aβ deposition, especially on the cerebral vasculature, may provide evidence on 

whether formaldehyde or methylglyoxal is involved in Aβ amyloidosis in vivo. 

In addition to Aβ, a number of proteins (tau, islet amyloid polypeptide, α-synuclein, 

polyglutamine, human insulin and prion peptide) can lead to amyloidosis and are associated with 

a variety of diseases, such as type 2 diabetes, Down’s syndrome, Parkinson’s disease, 

Huntington’s disease and Creutzfeldt-Jakob disease (Merlini and Bellotti, 2003; Cleary et al., 

2005; Kovacs and Budka, 2008; Ono et al., 2008). The protein misfolding mechanisms of 

amyloidogenic peptides appear to be very similar (Kayed et al., 2003). HNE modifiess and affect 
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a variety of peptides including Aβ, tau and α-synuclein (Perez et al., 2000; Qin et al., 2007; 

Siegel et al., 2007). It is therefore of great interest to know whether endogenous aldehydes also 

affect amyloidosis of other peptides in general.  

 

7.2.2 Effects of Aldehydes on Aβ  Cytotoxicity 

The mechanism of how Aβ oligomers induce cytotoxicity has not been fully established. 

Two popular mechanisms, namely, nonspecific hydrophobic binding of Aβ oligomers to cell 

membrane which affects membrane integrity, or binding of Aβ oligomers to LRP-1/RAGE 

receptors which triggers apoptotic pathways were proposed (Datki et al., 2004; Wilhelmus et al., 

2007). It would be interesting to test whether the aldehyde-modified Aβ oligomers can affect 

these pathways.  

Aβ oligomers isolated from AD brains including dimer, trimer and tetramer, were recently 

found to be potent in inhibiting LTP in vivo (Klyubin et al., 2008; Shankar et al., 2008). LTP 

inhibition is the early event of Aβ effects responsible for cognitive impairment in AD 

pathogenesis (Walsh et al., 2002; Klyubin et al., 2008; Selkoe, 2008). It is therefore interesting to 

know whether aldehydes alter the potency of Aβ oligomers in inhibiting LTP or inducing long-

term depression. 

 

7.2.3 Effects of Aldehydes on Aβ  Clearance 

An in vivo mouse model has been currently employed to assess Aβ clearance. Either 125I-

labeled or native Aβ was stereotaxically injected into certain brain areas including cortex, 

hippocampus and caudate putamen followed by quantitative measurement of peripheral 

radioactivity or by enzyme-linked immunosorbent assays (Shibata et al., 2000; Deane et al., 2004; 

Bell et al., 2007; Deane et al., 2008). The levels of peripheral Aβ and Aβ remaining in the CNS 

can be measured, and thus the rate of transcytosis through BBB can be determined. Aβ is cleared 

from the CNS into blood circulation. The turnover is very fast (t1/2 = ~30 min) (Shibata et al., 

2000). Aβ1-42 can be cleared faster than Aβ1-40, which was interpreted as why Aβ1-40 tends to 

accumulate around cerebral vasculature to form CAA (Deane et al., 2004; Ito et al., 2007). In 

vivo investigations using Aβ stereotaxic injections in SSAO transgenic mice will provide 

important information on the involvement of SSAO-mediated reactions in Aβ transcytosis. It 
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would be possible to increase SSAO-mediated deamination, i.e. with administration of 

methylamine or using transgenic mice overexpressing SSAO. Also SSAO can be blocked by 

using specific SSAO inhibitors. 

 

7.3 Significance and Clinical Implication 

The present study is closely related to vascular dementia, AD, and perhaps other disease. The 

results have provided a link between elevated levels of aldehydes and amyloid aggregation 

observed in AD, by demonstrating that endogenous aldehydes from SSAO-mediated 

deaminations and other sources affect Aβ aggregation, cytotoxicity, and clearance. Such effects 

contribute to the formation of amyloid plaques, particularly CAA, in vascular dementia and in 

most cases of AD. The increase in Aβ aggregation leads to the production of more toxic 

oligomers causing neurodegeneration and vascular damage.  

If the current hypothesis is further substantiated, SSAO would be an important new 

therapeutic target for the treatment of AD. Reagents that scavenge aldehydes may be beneficial 

in slowing down Aβ aggregation and the formation of perivascular plaques.  
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