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ABSTRACT 

Radiofrequency ablation (RFA) is a clinic tool for the treatment of various target tissues. However, one of the major 

limitations with RFA is the ‘small’ size of target tissues that can be effectively ablated. By small it is meant the size 

of the target tissue is less than 3 cm in diameter of the tissue otherwise ‘large’ size of tissue in this thesis. A typical 

problem with RFA for large target tissue is the incompleteness of tumour ablation, which is an important reason for 

tumour recurring. It is widely agreed that two reasons are responsible for the tumour recurring: (1) the tissue 

charring and (2) the ‘heat-sink’ effect of large blood vessels (i.e. ≥3 mm in diameter). This thesis study was 

motivated to more quantitatively understand tissue charring during the RFA procedure and to develop solutions to 

increase the size of target tissues to be ablated. 

 

The thesis study mainly performed three tasks: (1) evaluation of the existing devices and protocols to give a clear 

understanding of the state of arts of RFA devices in clinic, (2) development of an accurate mathematical model for 

the RFA procedure to enable a more quantitative understanding of the small target tissue size problem, and (3) 

development of a new protocol based on the existing device to increase the size of target tissues to be ablated based 

on the knowledge acquired from (1) and (2). In (1), a design theory called axiomatic design theory (ADT) was 

applied in order to make the evaluation more objective. In (2), a two-compartment finite element model was 

developed and verified with in vitro experiments, where liver tissue was taken and a custom-made RFA system was 

employed; after that, three most commonly used internally cooled RFA systems (constant, pulsed, and temperature-

controlled) were employed to demonstrate the maximum size of tumour that can be ablated. In (3) a novel feedback 

temperature-controlled RFA protocol was proposed to overcome the small target tissue size problem, which includes 

(a) the judicious selection of control areas and target control temperatures and (b) the use of the tissue temperature 

instead of electrode tip temperature as a feedback for control. 

 

The conclusions that can be drawn from this thesis are given as follows: (1) the decoupled design in the current RFA 

systems can be a critical reason for the incomplete target tissue necrosis (TTN), (2) using both the constant RFA and 
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pulsed RFA, the largest TTN can be achieved at the maximum voltage applied (MVA) without the roll-off 

occurrence. Furthermore, the largest TTN sizes for both constant RFA and pulsed RFA are all less than 3 cm in 

diameter, (3) for target tissues of different sizes, the MVA without the roll-off occurrence is different and it 

decreases with increase of the target tissue size, (4) the largest TTN achieved by using temperature-controlled RFA 

under the current commercial protocol is still smaller 3 cm in diameter, and (5) the TTN with and over 3 cm in 

diameter can be obtained by using temperature-controlled RFA under a new protocol developed in this thesis study, 

in which the temperature of target tissue around the middle part of electrode is controlled at 90 ℃ for a standard 

ablation time (i.e. 720 s). 

 

There are a couple of contributions with this thesis. First, the underlying reason of the incomplete TTN of the 

current commercially available RFA systems was found, which is their inadequate design (i.e. decoupled design). 

This will help to give a guideline in RFA device design or improvement in the future. Second, the thesis has 

mathematically proved the empirical conclusion in clinic that the limit size of target tissue using the current RFA 

systems is 3 cm in diameter. This has advanced our understanding of the limit of the RFA technology in general. 

Third, the novel protocol proposed by the thesis is promising to increase the size of TTN with RFA technology by 

about 30%. The new protocol also reveals a very complex thermal control problem in the context of human tissues, 

and solving this problem effectively gives implication to similar problems in other thermal-based tumour ablation 

processes. 
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1 INTRODUCTION 

1.1 Background 

Despite significant progress in understanding, diagnosing, treating, and preventing the disease in the past decades, 

tumour still remains the major threat to human beings [1]. Nowadays, open surgery is still recognized as the most 

used curative medical method for patients with various tumours. However, there is only 60% of diagnosed tumours 

that can be treated in this manner (or resected) [2]. Thermal ablation, acting as an alternate method to open surgery, 

has been used in the treatment of various target tissues (tumour tissues or dysfunctional tissues) for a long time [3]. 

Thermal ablation tries to destroy the target tissue by using a fatal high (≥ 43 ℃) or low (≤ −20 ℃) temperature to 

induce the irreversible cellular death of biological tissues. Although thermal ablation is a relative new terminology, 

using heat to treat illness for medical purpose can be traced back to thousands of years ago. For instance, the steam 

baths used by the ancient Greeks, the Chinese herbal baths used in ancient China, and the use of cautery for 

treatment of the breast tumours in ancient Egypt [4]. The following famous statement by Hippocrates (460-370 BC) 

who was considered as one of the most outstanding figures in the history of medicine [4,5] is cited herein regarding 

the history of thermal therapy to signal the importance of thermal therapy: 

‘Those diseases which medicines do not cure, iron cures; those which iron cannot cure, fire cures; and those 

which fire cannot cure, are to be reckoned wholly incurable.’ 

 

The fundamental principle behind any thermal therapy is that when the biological tissue is undergone with a fatal 

high or low temperature for a certain period of time, destroy to tissue cells will be induced at the membrane and 

subcellular levels [3]. For a fatal high temperature, the destroy takes place in the form of cell membrane collapse and 

protein denaturation [6]. For a fatal low temperature, the destroy is due to the cellular dehydration and high 

extracellular solute concentration, which is further attributed to ice crystal formation within the cells and further 

destroy of the integrity of organelles and the cell membrane [6,7]. Details of tissue death due to the fatal 

temperatures (low and high) will be discussed further in Chapter 2. 

 

Thermal ablation can be classified into several methods in terms of how heat is generated, e.g.: 
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Radiofrequency ablation (RFA): it uses an alternating current with high frequency (around 500 kHz) to generate 

heat to kill the target tissue. The heat (frictional or joule heat) is due to the interaction between the ions within the 

biological tissue and electrons that form the alternating current. 

 

Microwave ablation (MWA): similarly with RFA, it also uses an alternating current with higher frequency (900-

2500 MHz) to generate heat to ablate the target tissue. The heat (dielectric heat) is created by forcing the polar 

molecules with intrinsic dipoles (usually water) within the biological tissue to continuously realign with the 

oscillating electric current [8], which is known as rotating dipoles. The rotation of the molecules increase their 

kinetic energy, which leads to the increase in the temperature of the biological tissue [6]. 

 

Laser ablation: it induces electromagnetic heating to elevate the temperature of the target tissue to a cytotoxic 

level [3]. The heat is generated due to the collisions of particles, like atoms within the biological tissue and 

infrared electrons that make up the absorbed light. 

 

Ultrasound or high intensity focused ultrasound (HIFU) ablation: it is to deliver the sound energy to the target 

tissue primarily due to frictional effects, which can elevate the temperature of the target tissue to a fatal level [9]. 

 

Magnetic nanoparticles hyperthermia: it uses the embedded nanoparticles within the target tissue to generate heat 

to kill the target tissue when the nanoparticles are exposed to an alternating magnetic field [10]. The heating 

using magnetic nanoparticles is due to the magnetic effect (magnetic hysteresis losses) in an external alternating 

magnetic field [11]. 

 

Cryoablation: in contrast to the methods mentioned above, it uses cold temperature to kill the target tissue. In the 

current commercial cryoablation system, particularly liquid gas (e.g. argon or nitrogen) is used to reduce the 

temperature of the target tissue when the gas is expanded in a small chamber at the distal part of cryoprobe [3,6]. 

 

Among these thermal ablation methods, RFA has undoubtedly been the most investigated and clinically relevant one 

[3]. This thesis study was mainly focused on the method of RFA. RFA has been used in the treatment of various 
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target tissues in different organ sites, such as liver [12], lung [13], breast [14], and kidney [15] with many favourite 

clinical results and no serious complications. Its efficacy (usually evaluated on the 5-year survival rate) can be 

competitive with the open surgery when the treated target tissue is in small size (i.e. < 3 cm in diameter) and at its 

early stage [3]. Further, it has several advantages over open surgery, such as minimal invasiveness, which reduces 

significantly the time of hospital stay and the rate of complications, reservation of healthy tissue, which benefits the 

patients with weak organs function, and no need to have the general anaesthesia. However, many clinical results 

have also shown that RFA does not have acceptable effective rates for large target tissues ≥3 cm in diameter [16-20]. 

This phenomenon could be caused by various reasons for different patients, but the most important one can be the 

incomplete TTN in the treatment of large target tissues, which leads to the high local recurrence. Details of the 

inefficacy of RFA in the treatment of large target tissues will be discussed in Chapter 2. 

1.2 Motivations and objectives 

To overcome the deficiency of RFA for large target tissues, many works have been done, which include design of 

RF electrode, combination RFA with other adjunct methods, optimization of RF power delivery, and optimal 

displacement of RF electrode [21-25]. However, the clinical results are still not good for large target tissues (see the 

conclusions in Chapter 2). This has motivated this thesis study. Particularly, this thesis study has taken two 

questions: why is RFA not suitable to large target tissues especially ≥3 cm in diameter? Any method can be further 

developed to overcome this limitation? 

 

Based on the discussion above, the research objectives of this study were defined as follows: 

 

Objective 1: To evaluate the efficacy of the current RFA systems in the treatment of target tissues ≥3 cm in 

diameter using engineering design methods. 

 

Objective 2: To investigate the relationship between the size of the target tissue and the size of TTN and 

further theoretically to prove that only target tissues <3 cm in diameter can be ablated completely using the 

current RFA systems. 
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Objective 3: To design a novel RFA protocol to overcome the deficiency of the current RFA systems with the 

help of mathematical modelling and feedback control techniques. 

 

Objective 4: To design and make a RFA system especially for small animals to be useful to verify the 

theoretical development in the aforementioned objectives especially Objectives 2 and 3. 

1.3 Organization of the thesis 

This thesis is organized in a manuscript-based style. It is presented in the form of published or prepared manuscripts. 

At the beginning of each chapter, a brief introduction is included to describe the relation between the manuscript and 

the context of the thesis. The status of each manuscript is also given at the beginning of each chapter. To produce a 

coherent and defendable thesis, all published or prepared manuscripts have been formatted on the consistency of 

format and style. 

 

The remainder of the thesis is organized as follows: Chapter 2 is a comprehensive review of large TTN of 

radiofrequency ablation in clinical results and mathematical modelling techniques. Chapter 3 discusses the 

evaluation of the current radiofrequency ablation systems on the achievement of large TTN using axiomatic design 

theory. By using mathematical modelling techniques, Chapter 4 and 5 verify the existing clinical finding that the 

current constant and pulsed RFA systems are only effective for the target tissues <3 cm in diameter. Chapter 6 

proposes a new protocol potentially to overcome the 3-cm problem of RFA systems. Conclusions and several future 

studies in the context of this thesis are given in Chapter 7. Appendix A introduces a radiofrequency ablation device 

for small animals. The list of published and prepared manuscripts is given in Appendix B, and the copyright 

permissions of all published manuscripts used in this thesis are in Appendix C. 
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1.4 Contributions of the primary investigator 

It is noted that all published or prepared manuscripts are co-authored. However, it is mutual understanding of all 

authors that Bing Zhang, as the first author, is the primary investigator. The contributions of other authors are 

limited to the advisory and editorial capacity. 
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2 LARGE TARGET TISSUE NECROSIS OF 

RADIOFREQUENCY ABLATION: A REVIEW OF CLINICAL 

RESULTS AND MATHEMATICAL MODELLING 

This chapter is submitted as Bing Zhang et al. “Large target tissue necrosis of radiofrequency ablation: A review of 

clinical results and mathematical modelling” to Physica Medica in 2015 (under review). 

Abstract 

Radiofrequency ablation (RFA) is an effective clinical method for tumour ablation with minimum intrusiveness. 

However, the use of RFA is mostly restricted to small tumours, especially those <3 cm in diameter. This paper 

discusses the state-of-the-art of RFA, drawn from clinical results, for large tumours (i.e. ≥3 cm in diameter). In 

particular, the paper investigates clinical results related to target tissue necrosis (TTN) and mathematical modelling 

of the RFA procedure to understand the mechanism behind the small TTN phenomenon with RFA. This paper also 

discusses the control of the temperature of target tissue in the RFA procedure, which has the potential to increase the 

size of TTN. This paper ends with a discussion regarding how to address the so-called 3-cm phenomenon or 

problem with RFA. 

2.1 Introduction 

Radiofrequency ablation (RFA) is a medical procedure that uses heat to eradicate tumours in various locations, 

including the liver [1], lungs [2], kidneys [3], bones [4], and breasts [5]. Figure 2.1 shows a general procedure of an 

RFA system used in current clinical settings. RFA systems usually comprise three parts: (1) an RF power generator 

that generates alternating currents with high frequency, (2) an RF applicator that consists of an RF electrode and 

insulated shaft, and (3) ground pads that are usually placed on the patient's back or thigh. In an RFA procedure, the 

RF applicator is usually inserted percutaneously into the target tissue with the help of an image-guided device 

(computed tomography, ultrasound imaging or magnetic resonance imaging) [6]. With the developments of the last 

several decades, RFA has become an alternative medical modality in the treatment of various tumours for patients, 
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especially those with early and small tumours or those who are not candidates for open surgery. Compared with 

other medical modalities, RFA has two primary advantages: minimal damage to peripheral normal tissue and no 

need for general anaesthetic [7]. In RFA, the target tissue (the tumour or dysfunctional tissue) is ablated by the heat 

generated from a high-frequency alternating current (approximately 500 kHz). 

 

Figure 2.1. Schematic diagram of the current RFA system and its mechanism of heat generation. 

 

The heat in RFA is known as the Joule heat or resistive heat, and it is generated via the interaction between the 

electrons (e-) that form the alternating current and the ions that make up the resistor (e.g. Na+, K+, and Cl- in 

biological tissue). As shown in Figure 2.1, a closed electric circuit can be formed if there is an electric path inside 

the body. It is noted that there are usually two heating areas in the situ of RFA treatment: the direct heating area and 

the indirect heating area [7]. The direct heating area is close to the RF electrode and has high current density. Heat 

generated in this area is due to the interaction between the electrons and ions. The indirect heating area is the effect 
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of heat transfer from the direct heating area. Due to the space limitation, this paper is not intended to be a review of 

all aspects of the current RFA system but rather a review with a focus on the deficiency of treating target tissues ≥3 

cm in diameter with the current RFA system, as well as principles and methods in the current RFA system to tackle 

the small tumour size problem. In particular, this paper will discuss three issues related to RFA: large target tissue 

necrosis (TTN) of RFA from the clinical results, mathematical modelling of RFA, and temperature control of RFA. 

2.2 Large target tissue necrosis of RFA with clinical results 

2.2.1 Limitations of current RFA systems 

One of the deficiencies is the poor efficacy of the treatment of large tumours (i.e. ≥3 cm in diameter). Xu et al. [8] 

concluded that there was a significant difference in terms of complete ablation between a tumour <3 cm in diameter 

and a tumour ≥3 cm in diameter. These researchers treated 137 patients of hepatocellular carcinoma (HCC) with 

RFA in a non-interruptive manner. The rates of complete ablation for tumours ≤3 cm, 3.1 to 5 cm, and >5 cm are 

95.4%, 82.5%, and 50%, respectively. Llovet et al. [9] also reported in a literature review that more than 80% of 

HCCs (<3 cm in diameter) can be ablated completely, but the rate is only 50% for tumours that are 3-5 cm in 

diameter. Gory et al. [10] compared the clinical results from 146 patients who received treatment with RFA (𝑛 = 96) 

or hepatic resection (HR) (𝑛 = 52) for HCCs from 2000 to 2010. They found that, among the patients with HCCs 

(<3 cm in diameter), there was no significant difference in the overall survival rates of 3 and 5 years between RFA 

and HR (hepatic resection) (66% and 39% vs. 69% and 59%, respectively; 𝑃 = 0.41). However, for the patients 

with HCCs in the range of 3-5 cm in diameter, the overall survival rates of 3 and 5 years between RFA and HR were 

62% and 37% vs. 66% and 62%, respectively, concluding that the RFA has a poor survival rate for tumours ≥3 cm 

in diameter. The same conclusions can also be found in [11,12]. These studies showed that there is no significant 

difference in overall and disease-free survival rates between RFA and HR for HCCs <3 cm in diameter. However, 

HR is significantly superior to RFA in the treatment of large HCCs ≥3 cm in diameter [13]. Table 2.1 shows the 

clinical results of tumours with various sizes using RFA treatment in recent years. From Table 2.1, it can be 

concluded that the efficacy of RFA is far from satisfactory in terms of complete ablation, local recurrence, and 
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overall survival rate in the treatment of different tumours ≥3 cm in diameter. Consequently, there seems to be a 

doctrine in effect, that is, no tumour ≥3 in diameter should be treated with RFA. 

2.2.2 Target tissue charring 

From an engineering point of view, there could be three factors responsible for the failure of RFA for tumours ≥3 

cm in diameter: (1) the small size of (TTN) (Figure 2.2A), (2) inaccurate placement of the RF electrode (Figure 

2.2B), and (3) inaccuracy of the current imaging system (Figure 2.2C). This paper is limited to the first factor. 

 

Table 2.1. Clinical results of tumours with various sizes using RFA in recent years. 

Year First author 

No. of patients-

tumours 

Tumour type Complete ablation Local recurrence Overall survival 

2009 
Gillams and 

Less [16] 

309-617* CLM NA NA 

5y: 24%& (𝐷𝑡 < 5 cm) 

5y: 33%& (𝐷𝑡 < 3.5 cm) 

2009 

N'Kontchou 

et al. [17] 
235-307 HCC 94.7% 

100%& 

(𝐷𝑡 = 3.2 ∓ 1.0 cm) 

0%& 

(𝐷𝑡 = 2.8 ∓ 1.0 cm) 

median: 23 months 

5y: 32% 

(𝐷𝑡 = 2.9 ∓ 1.0 cm) 

2011 
Shiina et al. 

[18] 

1170-2982* HCC¥ 99.4% NA 

5y: 65.1%& (𝐷𝑡 ≤ 3 cm) 

5y: 46.5%& (𝐷𝑡 > 3 cm) 

2011 
Zagoria et 

al. [3] 

41-48 RCC NA 

12%& 

median: 𝐷𝑡 = 5.2 cm 

0%& 

median: 𝐷𝑡 = 2.2 cm, 

5y: 66% 

median: 𝐷𝑡 = 2.6 cm 

(range: 0.7-8.2 cm) 

2011 

Hung et al. 

[19] 

190# HCC NA NA 

5y: 67.4% 

(𝐷𝑡 = 2.4 ∓ 0.9 cm) 

2012 

Baldwin et 

al. [20] 

22-33* 

CLM, HCC, 

GBC, HPA 

100% 

4.5% 

median: 24 months 

2y: 100% 

(𝐷𝑡 = 3.6 ∓ 1.3 cm) 

2012 

Solbiati et 

al. [21] 
99-202 CLM NA 

11.9% 

median: 72 months 

5y: 47.8% 

(𝐷𝑡 = 2.2 ∓ 1.1 cm) 
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Table 2.1. Continued 

Year First author 

No. of patients-

tumours 

Tumour type Complete ablation Local recurrence Overall survival 

2013 

Gillams et 

al. [2] 
122-398 CLgM NA NA 

51 months 

(𝐷𝑡 = 0 − 2 cm) 

31 months 

(𝐷𝑡 = 2.1 − 4 cm) 

2013 

Psutka et al. 

[22] 
185# RCC 87% 

6.5% 

median: 30 months 

5y: 73.3% 

median: 𝐷𝑡 = 3 cm 

(range: 1-6.5 cm) 

2011 

Van Tilborg 

et al. [23] 

100-126* CLM NA 

5.6%& (𝐷𝑡 < 3 cm) 

19.5%& (𝐷𝑡 = 3− 5 

cm) 

41.2%& (𝐷𝑡 > 5 cm) 

median: 29 months 

5y: 36% 

median: 𝐷𝑡 = 2.4 cm 

(range: 0.2-8.3 cm) 

*the number of RFA sessions, rather than the number of tumours, was available, #both the number of RFA sessions and the number of tumours 

were unavailable, ¥transarterial chemoembolization was combined with RFA in patients with tumours larger than 3.0 cm in diameter, &statistically 

significant, CLM: Colorectal liver metastases, HCC: Hepatocellular carcinoma, RCC: Renal cell carcinoma, GBC: Gallbladder carcinoma, HPA: 

Hepatic adenoma, CLgM: Colorectal lung metastases, NA: Not available, 5 y: 5 years and 𝐷𝑡: Diameter of tumour. 

 

 

Figure 2.2. Three factors causing the failure of RFA in the treatment of tumours ≥3 cm in diameter. 
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Figure 2.3. Schematic diagrams of the growth of charred tissue (A) and impedance (B) in RFA. 

 

RFA falls into the category of thermal therapeutic methods for tumours, and its small size of TTN is mainly due to 

the tissue charring and the ‘heat-sink’ effect of large blood vessels ≥3 mm in diameter [14]. It is known from 

physics that when the temperature of biological tissue is higher than 100 ℃, the water essentially boils and begins to 

evaporate and the tissue becomes charred. The charred tissue further leads to a noticeable decrease in its electrical 

conductivity [7]. For RFA, the charred tissue usually grows from the areas around the proximal and distal parts of 

the RF electrode to the areas around the middle part of the RF electrode, as shown in Figure 2.3A. Figure 2.3B 

shows the change of impedance between the RF electrode and the ground pads. When the RF electrode is encircled 

completely by the charred tissue, such as at the time of 𝑡3, the impedance will have a marked growth [15]. As we 

mentioned before regarding the mechanism of heating, RFA needs an electrical path to deliver the energy. After 𝑡3, 

the path is closed. In consequence, the actual output of the RF energy drops. In clinical settings, we call this 

phenomenon ‘roll-off’. Thus, the tissue charring is one of the major reasons behind the small size of TTN in RFA, 

especially when the charred tissue completely encircles the RF electrode. 

2.2.3 Current methods to achieve a large size of TTN 

There are a considerable number of methods that have been proposed in an attempt to achieve a large size of TTN 

with RFA in clinical and animal experiments and simulation. These methods are mainly focused on three aspects, 
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namely (1) design of the RF electrode, (2) design of the RF power supply, and (3) combining RFA with adjuvant 

therapies. 

2.2.3.1 Design of the RF electrode 

The most widely used designs of the RF electrode in current clinical settings are the cluster electrode, multitined 

expandable electrode, internally cooled electrode, and perfusion electrode, as shown in Figure 2.4. 

 

For the cluster electrode, there are usually three parallel monopolar electrodes spaced closely together that are 

inserted into the target tissue. These electrodes are usually connected to a monopolar RF power generator. The 

spaces between these electrodes are determined by the size of the target tissue and the ablation area generated by 

each electrode. A relatively large overlapping TTN area is expected to be achieved by aggregating all small TTN 

areas generated by each electrode in the cluster. Furthermore, two operational strategies to activate the electrodes to 

achieve a large size TTN are proposed in the literature, namely, (1) the sequential strategy and (2) the switching 

strategy [24]. The sequential strategy implies that in a session of ablation (i.e. 12 min), only one electrode is at work. 

After the session for the first electrode, the second electrode is activated to work for another session, and then the 

third one follows. In the switching strategy, the pattern is that for instance, the first electrode is energised for a short 

period of time (i.e. 1 second), and the second one is energised for 1 second [24]. Only one electrode is at work in the 

short time interval, but the frequency of switching is notably high. The cluster electrode method is able to achieve a 

relatively large size of TTN. Its shortcomings include: (1) difficulty in placing the electrodes for an overlapped and 

aggregated TTN area, (2) difficulty in ablating tumours that are located in critical positions inaccessible to the multi-

electrode, (3) more normal tissues are ablated to ensure the overlap of TTN areas, and (4) the increase of 

occurrences of RFA-related complications and of patient's pain due to an increased number of electrode insertions. 

 

The multitined expandable electrode usually has several tines that act as the electrodes stored in a single needle 

lumina, as shown in Figure 2.4B. After the RF applicator is inserted into the targeted area, these tines are deployed 

or spanned according to the size of the tumour. Occasionally, a protocol using a stepped deployment with the 

incremental extension of the tines is used in clinical settings [25]. However, this method has fallen out of fashion in 

recent years for the following two reasons. First is that tissues around the tines are easily overheated because there is 
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no internal cooling effect in tines. Thus, the charred tissues tend to stick onto the tines, which makes the retrieval of 

tines difficult and increases the possibility of tumour cell seeding as well. Second is the mismatch between the TTN 

shape forced by the multitined expandable electrode (e.g. an umbrella or Christmas tree shape) and the TTN shape 

in its natural state, which is similar in shape to a sphere or ellipsoid. The mismatch is a reason why incomplete 

ablation or the ablation of more healthy tissues may occur. 

 

 

Figure 2.4. Schematic diagrams for (A) the cluster electrode, (B) the multitined expandable electrode, (C) the 

internally cooled electrode and (D) the perfusion electrode. 

 

The internally cooled electrode has chilly fluids (e.g. water or gas) to cool down the RF electrode to delay the 

overheating and tissue charring. The chilly fluids are usually pumped into the RF electrode through an inner lumina, 

and the fluids subsequently flow into the outer lumina, as shown in Figure 2.4C. This capability makes it possible to 

delivery more RF energy to the target tissue. However, this method cannot avoid tissue charring and just shifts the 

charred tissue 1-2 mm away from the electrode surface according to [26]. Thus, the TTN generated by the 

monopolar internally cooled electrode still cannot meet the requirements of treatment of tumours ≥3 cm in diameter 

with RFA. 

 

The perfusion electrode uses fluids (i.e. hypertonic saline) to cool down the RF electrode. However, the fluids are 

also irrigated into the target tissue, as shown in Figure 2.4D. In such a case, the fluids can cool down the target 

tissue to avoid tissue charring. Furthermore, the thermal and electrical conductivities of a target tissue immersed in 
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hypertonic saline change to more preferable conditions for the large size of TTN. However, a significant issue with 

this method is that the saline solution can flow everywhere, even to healthy tissue and vital organs. Thus, the size 

and shape of the ablation area become unpredictable with this RFA method. 

2.2.3.2 Design of the RF power supply 

The initial method of the power supply for RFA is a continuous and constant high power input (i.e. constant voltage 

or current). This can easily lead to tissue overheating or charring, and the charred tissue ultimately interferes with 

the power supply due to the roll-off [27]. There are various ways to improve the design of the RF power supply. One 

of them is the pulsed power supply method, which applies high levels of voltage or current in a pulsed manner for a 

large size of TTN [28]. The principle of achieving the large size of TTN is the application of low levels of voltage or 

current, which separate the high levels of voltage or current. With an appropriate optimization of high and low levels 

of voltage or current, the tissues around the electrode can be cooled down (within the periods of low levels of 

voltage or current). Thus, more RF energy can be delivered to the target tissue, and a relatively large size of TTN 

may be achieved. However, this method is still unable to avoid tissue charring and roll-off, which makes this method 

inadequate as well in the treatment of tumours ≥3 cm in diameter. 

 

Another method that is now used in clinical settings is the temperature-controlled RFA [29,30]. For this method to 

work, the temperature at a specific location is controlled by a control algorithm embedded in the RF power generator 

to avoid tissue overheating. However, in these systems, the temperature at the tip of the electrode, rather than that of 

the target tissue, is what is measured and controlled. Therefore, there is room to improve this method and push it 

further in the direction of the technological development of sensors to measure the temperature of the target tissue 

directly. 

 

The impedance-controlled RFA is another method of the delivery of RF energy for large TTN [31, 32]. As 

mentioned before, the charred tissue usually has high impedance. Therefore, controlling the impedance between the 

RF electrode and ground pad may be able to control the occurrence of charred tissue. The most commonly used 

control scheme is that in which, when the impedance is higher than a pre-set value, the delivery of RF power stops 

for a given period of time (e.g. 60 s), during which the charred tissue is cooled. After the impedance becomes lower 
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than a pre-set value, the RF power generator resumes delivering the RF power again. In one RF operation, this 

procedure may be performed several times to obtain a large size of TTN. 

2.2.3.3 Combining RFA with adjuvant therapies 

Combining RFA with conventional treatment (e.g. chemotherapy or radiotherapy) is also used in current clinical 

settings for tumours ≥3 cm in diameter [33-35]. Combining RFA with adjuvant therapies has the potential to 

generate the large size of TTN and to achieve complete ablation as well, by filling in untreated gaps within the 

ablation areas [27]. By combining RFA with chemotherapy, a large size of TTN may be achieved because of the 

following three reasons [27]: (1) the ‘two-hit’ effect on the susceptible tumour cells (initial reversible cell injury 

caused by RFA in the more peripheral ablation zone) followed by irreversible injury by chemicals, (2) increased cell 

stress leading to necrosis, and (3) temporary occlusion of the blood supply of the tumour, avoiding the ‘heat-sink’ 

effect. By combining RFA with radiotherapy, two possible reasons can be taken as the principle of generating a 

large size of TTN. The first one is "the sensitization of the tumour to subsequent radiation due to the increased 

oxygenation resulting from hyperthermia-induced increased blood flow to the tumour" [36]. The second one is "an 

inhibition of radiation-induced repair and recovery and increased free radical formation" [37]. However, the 

disadvantages of using chemotherapy and radiotherapy are also obvious. Both of them have a range of side effects 

(e.g. depression of the immune system, gastrointestinal distress, damage to epithelia surfaces, etc.). 

2.2.3.4 Experimental and clinical results 

Although the methods discussed above solely have the ability to generate a relatively large size of TTN, it is worth 

mentioning that a combined method, rather than a sole method, is usually used in the treatment of large tumours (i.e. 

≥3 cm in diameter) in animal experiments or clinical settings. For instance, an RFA treatment can be use the cluster 

electrode method with the internally cooled electrode or the perfusion electrode under the impedance-controlled 

power delivery method followed by an adjuvant therapy of chemotherapy. 

 

Lee et al. [38] used the sequential cluster electrode (three internally cooled electrodes with 2.5 cm exposure length 

each and an inter-electrode distance of 4 cm) with a 200 W and 480 kHz RF generator in in vivo experiments using a 



 

 

18 

 

porcine liver model (𝑛=11). With a 36-min session of ablation (12 min for each electrode), the minimum and 

maximum diameters of the central TTN they obtained were 4.03±0.40 (mean±standard deviation) and 4.91±0.26 

cm, respectively. Similar results were also found in the work of Yoon et al. [39]. They used the switching cluster 

electrode (same monopolar electrode but 2.0- or 2.5-cm inter-electrode distance) with a 200 W and 480 kHz RF 

generator in a 12-min session of ablation. They switched the three electrodes to active based on the occurrence of 

roll-off. The minimum and maximum diameters of the central TTN were 4.1±0.8 and 4.8±0.9 cm, respectively. 

Solbiati et al. [21] reported that a favourable clinical result (93.1% primary technical success, 11.9% local tumour 

progression and 47.8% five-year survival rate) was achieved by using a combination of RFA and chemotherapy for 

CLMs >1.5 cm in diameter. They used a cluster electrode with three internally cooled and 17-gauge electrodes (2.5-

4.0 cm length) and an RF generator that is capable of producing 150-200 W output power. All patients also received 

systemic chemotherapy using the Douillard chemotherapy regimen (irinotecan, leucovorin, and 5-fluorouracil) or 

the FOLFOX regimen (folinic acid, fluorouracil, oxaliplation). Morimoto et al. [40] achieved a large size of TTN 

(5.8±1.3 and 5.0±1.1 cm for the maximum and minimum diameter, respectively) using RFA plus transcatheter 

arterial chemoembolization (TACE) in the treatment of HCCs. Compared with RFA alone, RFA plus TACE 

achieved a significant low local tumour progression rate (6%) at the end of the third year (𝑃 = 0.012). A mildly 

significant 3-year survival rate (93%) was also reached in the group of RFA and TACE (𝑃 = 0.369). Lu et al. [41] 

also concluded that RFA plus TACE significantly improved the 1-, 3- and 5-year survival rates compared with RFA 

alone in patients with HCCs ≥3 cm in diameter (P <0.0004, 0.0002 and 0.0001, respectively). Two types of 

electrode were used in their study, namely, a multitined, 15-gauge and 15-cm long expandable electrode with 

maximum dimensions of 3.5 cm or 4 cm and a 17-gauge internally cooled electrode 3-cm in length. The RF energy 

was applied by a RF generator (RF3000 Generator; Boston Scientific or Series CC-1; Valleylab). 

2.3 Mathematical Modelling of RFA 

Mathematical modelling has been used in the study of RFA for many years, especially in the design of new RFA 

protocols [42-44], optimization and improvement of existing RFA protocols [45-47], and investigation of electrical 

and thermal effects of biological tissue during various RFA procedures [15,26,48,49]. Due to its low cost and low 

time consumption, mathematical modelling can be used to assess the therapeutic feasibility of RFA protocols with 
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devices in different target tissues [50]. Further, mathematical modelling may play a critical role in the development 

of patient-specific RFA protocol plans [51,52]. 

2.3.1 Modelling of heat transfer in biological tissue 

The most widely used model for describing the heat transfer in biological tissue during the procedure of RFA is the 

Pennes bioheat transfer equation, which is as follows [53]: 

𝜌𝑐
𝜕𝑇(𝐱,𝑡)

𝜕𝑡
= ∇ ∙ (𝑘∇𝑇(𝐱, 𝑡)) − 𝜌𝑏𝑐𝑏𝜔𝑏(𝑇(𝐱, 𝑡)−𝑇𝑏) + 𝑄𝑚(𝐱, 𝑡) + 𝑄ℎ𝑠(𝐱, 𝑡)       𝑥 ∈ 𝚲                                  (2.1) 

where 𝜌 (kg m−3) is the density, 𝑐 (J kg−1K−1) is the specific heat, 𝑇(𝐱, t) (℃)  is the temperature, 𝐱 = {𝑥, 𝑦, 𝑧} in 

the Cartesian coordinate system, 𝚲 denotes the analysed spatial domains, 𝑘 (W m−1K−1) is the thermal conductivity, 

𝜌𝑏 (kg m
−3) is the blood density, 𝑐𝑏 (J kg 

−1K−1) is the blood specific heat, 𝜔𝑏 (s
−1) is the blood perfusion rate, 𝑇𝑏  

is the temperature of the blood entering the tissue, 𝑄𝑚(𝐱, 𝑡) (W m
−3)  is the volumetric heat generated by 

metabolism, which is negligible due to the following two reasons: (1) within the ablated area, the biological tissue 

has lost its metabolic ability (due to cell death) and (2) in the non-ablated areas (where the tissues are healthy liver 

tissues in this study), the heat generated by metabolism is small compared with the other terms in Eq. (2.1) (note that 

according to [97], the maximum percentage of the metabolic heat is only 0.2% under 10 volts of the applied voltage 

with 1 MHz), and 𝑄ℎ𝑠(𝐱, 𝑡) (W m
−3) is the spatial heat generated by the RF electrical current, which is given as 

follows: 

𝑄ℎ𝑠(𝐱, 𝑡) = 𝑱 ∙ 𝑬 = (𝜎 + 𝜖0𝜖𝑟
𝜕

𝜕𝑡
) (−∇𝑉) ∙ (−∇𝑉)                                                        (2.2) 

where 𝑱 (A m−2)  is the current density, 𝑬 (V m−1)  is the electric file intensity, 𝜎 (S m−1)  is the electrical 

conductivity, 𝜖0 = 8.8541 × 10−12 (
F

m
) is the vacuum permittivity, 𝜖𝑟 is the relative permittivity of the material and 

relevant to the applied frequency (for example, at the frequency of RFA, 𝜖𝑟 = 2770 for liver tissue. Thus, Eq. (2.2) 

is usually approximated by 𝜎|∇𝑉|2 ), and 𝑉 (V) is the applied voltage, which can be evaluated using Laplace's 

equation as follows: 

∇ ∙ 𝜎∇𝑉 = 0                                                                                      (2.3) 

 



 

 

20 

 

The Pennes bioheat transfer equation approximates the heat transfer between small blood vessels and heated tissue, 

with the term 𝜌𝑏𝑐𝑏𝜔𝑏(𝑇(𝐱, 𝑡)−𝑇𝑏) acting as a heat sink [53]. The Pennes model assumes that blood enters heated 

tissue at the arterial temperature, 𝑇𝑏 , and leaves at an equilibrated temperature, 𝑇(𝐱, 𝑡), which is the same as the 

heated tissue temperature (namely, thermal equilibration presumably occurs in the capillary bed), regardless of the 

size of blood vessels and the counter-current flow in the target tissue. Although these assumptions have been 

questioned for many years, and various improved models have been proposed [54-56], besides RFA, the Pennes 

model is also used in the computational modelling of other thermal therapies, such as microwave ablation (MWA) 

[57], high-intensity focused ultrasound (HIFU) [51], and laser ablation [58]. The reasons can be given as [59]: (1) 

the improved models accounting for the effects of vessel size and counter-current flow require knowledge of the 

complex anatomy of the vasculature in a specific tissue, which is often unknown beforehand and (2) many in vivo 

and in vitro experimental studies have verified the applicability of the Pennes model in tissues where small blood 

vessels <0.3 mm in diameter dominate. However, attention should be paid to the large blood vessels ≥0.3 mm in 

diameter in computational modelling because these blood vessels have a significant cooling effect on heated tissue, 

which is, however, not considered in the Pennes model. The method to solve this problem is to model the structure 

of the blood vessels in the target tissue as realistically as possible. 

 

One of the factors that can significantly affect the accuracy of a computational model using the Pennes model is the 

blood perfusion rate, 𝜔𝑏 . Thus, many studies have focused on the modelling of 𝜔𝑏  by using more realistic 

vasculature data. There are two cases in the modelling of 𝜔𝑏, in vitro and in vivo. For an in vitro situation, the blood 

perfusion is not taken into consideration by setting 𝜔𝑏 = 0 because the blood source is cut off in this situation. For 

an in vivo situation, several models have been used in prior studies to describe the change of blood perfusion rate. In 

the early stages of the computational modelling of RFA, 𝜔𝑏 was usually considered as a constant [60-62]. However, 

further studies have shown that 𝜔𝑏  is strongly dependent on both the heating temperature and the ablation time 

[59,63]. Thus, given the characteristics of the temperature and time dependence, various dynamic models have been 

used in the literature to describe 𝜔𝑏, such as the piecewise function model [63,64] and the models that consider 

injury to the vasculature [65,66]. 
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The accuracy of the computational model of RFA is also dependent on the modelling of physical properties of 

biological tissue (𝜎, 𝑘, 𝜌, and 𝑐). Usually, the values of these properties can be found in previous in vivo or in vitro 

experimental literature [67-71]. Many researchers assume that these properties are taken as constants in the 

computational modelling of RFA. However, more and more studies [72-74] are considering the temperature-

dependence of these properties in a more realistic way, especially thermal and electrical conductivities (𝑘 and 𝜎). 

For 𝑘 and 𝜎, the most used models can be given as follows: below 100 ℃, 𝜎 increases exponentially [72,75] or 

linearly [76,77] with the increase of temperature and then drops to a value close to zero when the temperature is 

above 100 ℃ due to water evaporation. It is noted that 𝜎 is also found to be affected by the frequency of applied RF 

power in a previous study [47]. Below 100 ℃, 𝑘 is also modelled as experiencing linear growth with the increase of 

temperature and then remaining constant when the temperature is above 100 ℃ [72]. By considering the phase 

change of biological tissue, especially at temperatures above 100 ℃, several researchers have also considered the 

temperature dependence of density and specific heat of biological tissues [66,78]. In this situation, 𝜌 and 𝑐 are also 

modelled as functions of the temperature. However, this situation is mainly considered in the procedure of MWA, 

which usually uses a higher temperature than RFA to ablate the target tissue. MWA is able to heat target tissue well 

above 100 ℃ and maintain this temperature for several minutes [57].  

 

Another issue that should be addressed is the inhomogeneity of biological tissues during the RFA treatment. It is 

worth mentioning that computational modelling with realistic human anatomy [50] or a two-compartment model [79] 

is of vital importance for predicting the size of TTN. 

2.3.2 Mechanism and mathematical modelling of RFA-induced biological tissue death 

The process of biological tissue destruction occurs in at least two phases in the procedure of RFA, through direct 

and indirect mechanisms [80]. As shown in Figure 2.5, three zones can be found in the biological tissue under the 

treatment of RFA, such as the coagulation necrosis zone, the sub-lethal damage zone, and the normal tissue zone [7]. 

 

For the coagulation necrosis zone, it exists immediately around the RF electrode, and it undergoes ablation-induced 

coagulation necrosis. Direct destruction occurs in this zone at several levels, from the sub-cellular level to the tissue 
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level. In this zone, cell membrane collapse is considered a major cause of RFA-induced cell death due to the change 

of cell membrane fluidity and permeability. Protein denaturation is also taken as another major cause of tissue death. 

Major protein denaturation starts from 40 to 45 ℃, dependent on the heating rate, and continues to occur at more 

than 100 ℃ [59]. Above 60 ℃, protein denaturation occurs immediately, which leads to coagulation necrosis [80]. 

The inactivation of vital enzymes is an initial feature of injury [35]. Mitochondrial dysfunction has also been 

assumed to be relevant to the heat-induced injury due to the leakage of protons through the inner mitochondrial 

membrane [81]. 

 

For the sub-lethal damage zone, it is either undergoing apoptosis or recovering from reversible injury. Indirect 

destruction of biological tissue usually occurs in this zone. There are various phenomena relating to this area, such 

as metabolite accumulation and the inhibition of DNA replication due to heat-mediated reproductive cell death [82]. 

For tumour ablation, cytokine release and further stimulation of an immune response can be found in this zone 

[80,83]. Various preclinical and clinical studies have shown that the induction of apoptosis, ischaemia due to 

vascular damage and the release of lysosomal contents can occur because of indirect damage, even after cessation of 

RFA [80,83]. 

 

 

Figure 2.5. Zones of biological tissue in the treatment of RFA (adapted from [35]). 
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The normal tissue zone is unaffected by ablation and maintains its natural state with the release of tumour antigens 

from nearby lymph nodes. 

 

To evaluate and compare the tissue death in various RFA protocols, several theoretical models have been used in the 

computational modelling of RFA, such as isotherm contour, thermal isoeffective dose (TID) and Arrhenius models. 

For the method of isotherm contour, 50 ℃ was the most frequently used temperature to evaluate the tissue death in 

the computational modelling of RFA [78,84] because Panescu et al. [85] concluded that the in vivo TTN volume 

after RFA can be defined by the volume enclosed by the 50 ℃ isotherm contour in their study. However, other 

researchers have claimed that using the 50 ℃ isotherm contour may overestimate the size of TTN. Thus, 55 [86] and 

59 ℃ [87] isotherm contours have also been used. As discussed before, the death of biological tissue in RFA is 

dependent not only on the local temperature but also the target tissue type and ablation time. Thus, TID [50,88,89] 

and Arrhenius [26,43,50,84] models have been used in the computational modelling of RFA. 

 

The TID model derives an equivalent ablation time (thermal dose) at a reference temperature (usually 43 ℃) from 

the actual temperature history [90]. Thus, the TID model is usually measured in cumulative equivalent minutes at 43 

℃ (CEM43), which can be calculated as follows: 

CEM43 = ∑ [𝑅𝐶𝐸𝑀]
(43−𝑇𝑖)𝑡𝑖

𝑁
𝑖=1                                                                           (2.4) 

where 𝑅𝐶𝐸𝑀 is a dimensionless factor, and 𝑇𝑖  ℃ is the constant temperature, which is applied for the time 𝑡𝑖 (min). In 

a previous study [88], the value of 𝑅𝐶𝐸𝑀  was set as 0.25 and 0.5 for temperatures below and above 43 ℃ , 

respectively. The tissue can be considered dead when the value of CEM43 equals 120 or 240 min [59]. However, the 

TID model is only able to predict the tissue death caused by lower temperatures, such as 43-50 ℃. For temperatures 

≥50 ℃, it is considered inapplicable [90]. 

 

The Arrhenius model is the most used method for predicting tissue death in the computational modelling of RFA by 

using a first-order irreversible kinetic equation, which is given as follows: 

Ω(𝑡) = ∫ 𝐴𝑒
−Δ𝐸

𝑅𝑇(𝜏)𝑑𝜏
𝑡

0
                                                                                   (2.5) 
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where Ω(𝑡) is the degree of tissue death, 𝐴 (s−1) is the frequency factor, Δ𝐸 (J mol−1) is the activation energy for 

the irreversible damage reaction, 𝑅 (J mol−1 K−1)  is the universal gas constant, and 𝑇(𝜏) (K)  is the absolute 

temperature, which is a function of the ablation time. It is noted that 𝐴 and Δ𝐸  account for the morphological 

changes in tissue related to the thermal degradation of proteins [91] and dependent on the tissue type [92]. There are 

two primary values of Arrhenius damage that are used in the literature, Ω(𝑡) = 1 and Ω(𝑡) = 4.3, corresponding to 

63% and 99% tissue cell death, respectively. It is noted that the TID model is based on the Arrhenius model, but 

assumes that temperature varies only within a small range [90]. However, when the information of 𝐴 and Δ𝐸 in the 

Arrhenius model is unknown, TID model can be used to find 𝐴 and Δ𝐸 with the experiment and model fit procedure 

[90]. 

2.3.3 Validation of the mathematical models of RFA 

Although a computer model using realistic values exists in previous academic literature, validation using in vivo or 

in vitro experimental results is still necessary and important. The primary experimental measurements of interest of 

RFA are the temperature gradient or profile and the TTN size to validate the accuracies of the used computer models 

or the conclusions of new RFA protocols in computational modelling. Several studies have compared numerically 

evaluated TTN size using an isotherm profile with an experimentally measured TTN size using visual examination 

or imaging analysis. For example, Lim et al. [46] compared the temperature profile from a 3D FE model with a 

greyscale image from in vitro experiments after 10 and 15 min treatments of RFA using liver tissues. They 

demonstrated that the TTN sizes of a 3D FE model using an isotherm contour of 47 ℃ have good agreement with 

those determined experimentally, regardless of ablation time. Furthermore, Gonzalez-Suarez et al. [44,93] measured 

the experimentally determined TTN size assessed by the central ‘pale zone’, which corresponds to protein 

denaturation (coagulation necrosis zone) as shown in Figure 2.5. They compared the size of the pale zone in the 

experiments with the size of Ω(𝑡) = 1 in the computer model. Similarly, in a study of Arenas et al. [84], the size of 

the pale zone was measured and compared with the size of an isotherm contour of 60 ℃ obtained from a computer 

model to validate the accuracy of the utilized computer model. However, measuring the central pale zone most 

likely underestimates the size of the dead zone. As shown in Figure 2.5, a narrow zone (sub-lethal damage zone) 
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around the central pale zone, where the tissue cells are dead but the proteins are not denatured completely to become 

whitish, can be revealed by the triphenyl tetrazolium chloride (TTC) staining technique.  

 

Temperature measurement is another method that can be used in the validation of computational modelling. To 

verify the findings obtained from the computer model, Trujillo et al. [15] measured the temperatures of three points 

close to the electrode surface in an experimental study on in vitro bovine liver tissue using three ultra-fine 

thermocouples. The technique of thermo-sensitive MRI contrast agents also has the potential for use in the 

measurement of temperature during the procedure of RFA. The state of the contrast agent will change when the 

temperature increases from the physiological temperature to the phase transition temperature [94]. 

2.4 Temperature-controlled RFA 

Temperature is the most important factor in the RFA procedure and directly determines the death of the target tissue 

cells and the efficacy of various RFA protocols. Therefore, a feedback control strategy for the temperature of the 

target tissue should be a promising method to overcome the deficiency of RFA (failure in the treatment of tumours 

≥3 cm in diameter). A straightforward means to control the charring of the target tissue is to measure the 

temperature of the target tissue in real-time or via the RFA procedure. 

 

There are only a small number of studies [45,95,96] concerning the issue of temperature-controlled RFA in the 

literature. Further, these studies only obtain information of the temperature around the area of the tip of the RF 

electrode for feedback control. This is because it is much easier to have a sensor installed in the RF applicator 

(Figure 2.6) than to have a sensor on the target tissue. For the convenience of subsequent discussions, the feedback 

control strategy based on the temperature information of the electrode is called electrode-based temperature control. 

Alba-Martinez et al. [45] took the electrode-based feedback control strategy and devised a PI controller in an RFA 

system for cardiac tissue using two different RF applicators, as shown in Figure 2.6. They found no significant 

variations in the size of TTN among the tissues with various thermal and electrical properties and different control 

parameters 𝐾𝑝  and 𝐾𝑖 . In a more recent work, Jamil et al. [49] proposed a feedback strategy to control the 

temperature in the entire region of the target tissue such that it is less than a prescribed value (e.g. 100 ℃). No 
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detailed information is given in their work, and moreover, there was seemingly no experiment conducted to 

demonstrate that the approach may increase the size of TTN. 

 

 

Figure 2.6. Typical RF applicators with a thermal sensor embedded at of the tip of RF electrode: no-contact (A) and 

contact (B) with the target tissue. 

 

In contrast to the popular idea that the effective temperature control should be out of the target tissue, especially the 

areas around the middle part of the RF electrode, Trujillo et al. [15] showed that the roll-off usually occurs at the 

point where the charred tissue completely encircles the RF electrode, as shown in Figure 2.3. They have also 

verified that this closure usually completes in the tissue around the middle part of the RF electrode. Thus, the 

temperature of this area is quite critical to the occurrence of roll-off and further, to the size of TTN. 

2.5 Conclusions and future issues 

RFA has been applied in the treatment of different tumours due to its effectiveness, lower invasiveness, and lesser 

damage to normal tissue. RFA has a comparative overall survival rate with open surgery when it is used to treat 
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early and small tumours. Several recent studies also show that RFA can induce an immune response in non-ablated 

areas of the patient’s body. The characteristic of immunotherapy makes RFA have a promising future with regard to 

expanding its application for different phases of tumours in different locations. However, the most critical factor that 

hinders RFA from developing or improving is its failure in the treatment of large tumours (i.e. ≥3 cm in diameter).  

 

To address the 3-cm problem, great efforts should be made in all aspects of the RFA technique, especially in the 

following areas: 

 

First, comprehensive understanding and evaluation of the current commercially available RFA systems is still 

needed. As mentioned above, there are many solutions that have been proposed to attempt to overcome the 

deficiency of current RFA systems. However, there is a lack of knowledge regarding the systematic evaluation of 

these solutions. Analysis and evaluation of current RFA systems from an engineering point of view are worthwhile, 

especially in regard to the failure of RFA in the treatment of large tumours ≥3 cm in diameter. Analysis and 

evaluation using engineering methods are able to touch the solution principles of current RFA systems and help 

researchers understand the deficiency from a conceptual design level. Further, the 3-cm problem of current RFA 

systems is most likely addressable in a comprehensive manner. 

 

Second, understanding of the underlying mechanism behind the 3-cm problem with RFA is needed. All results 

regarding the size limit of 3-cm in diameter of current RFA systems come from clinical settings. There is not any 

understanding of the mechanism of this conclusion in current RFA systems using a theoretical modelling method. 

We are inclined to believe that a proof of the size limit can consolidate the results from clinical settings and assist 

clinicians in strategically planning the protocols of RFA. Several interesting findings regarding the changes of 

temperature and charred tissue when the current RFA systems reach their limit in treating tumours is also worth 

investigating.  

 

Third, improved RFA protocols that are able to overcome the 3-cm restriction are needed. One of the methods that is 

able to overcome the 3-cm restriction of current RFA systems may be the temperature controlled RFA, especially 

when the temperature of the target tissue is going to be controlled and optimised. To measure and control the target 
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tissue temperature, improvements must be made to the RF electrode of current RFA systems for minimal 

invasiveness.  
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3 EVALUATION OF THE CURRENT RADIOFREQUENCY 

ABLATION SYSTEMS USING AXIOMATIC DESIGN THEORY 

This chapter is derived from an article published by SAGE Publications in Proceedings of the Institute of 

Mechanical Engineers, Part H: Journal of Engineering in Medicine on April 1, 2014. Available online: 

http://www.sagepub.com/ doi:10.1177/0954411914530104. 

Abstract 

This paper evaluates current Radiofrequency ablation (RFA) systems using axiomatic design theory (ADT). Due to 

its minimally invasive procedure, short-time hospital stay, low cost, and tumour metastasis treatment, the RFA 

technique has been playing an important role in tumour treatment in recent decades. Although the RFA technique 

has many advantages, some issues still need to be addressed. Among these issues, the two most important are (1) the 

size of tumours to be ablated (has to be larger than 3 cm in diameter) and (2) completeness of the ablation. Many 

device solutions have been proposed to address the two issues. However, there is a lack of knowledge regarding the 

systematic evaluation of these solutions. This paper evaluates these systems in terms of their solution principles (or 

simply called conceptual design in general product design theory) using a design theory called ADT. In addition, 

with the ADT, a better conceptual design in terms of its feasibility to cope with incomplete target tissue necrosis 

(TTN) from the large size of tumours has been found. The detailed analysis and simulation of the new conceptual 

design is conducted using finite element approach. The results in this paper are proved by the information of animal 

experiments and clinical practices obtained from the literature. This study thus contributes to the current knowledge 

to further developments in RFA systems and procedure guidelines for physicians to perform the RFA operation 

more effectively. 

3.1 Introduction 

Radiofrequency ablation (RFA) technique has been an alternative method for excision of many different tumours, 

such as liver, kidney, lung, bone, and so on [1,2]. This technique is usually used for patients who are not eligible for 

http://www.sagepub.com/
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resection due to various reasons, such as too many tumours, tumours in unresectable locations, insufficient tissue 

reserve to tolerate resection and other medical conditions that make patients poor surgical candidates [1]. The 

principle of the RFA technique is to use electromagnetic-generated heat to ablate target tissue (usually tumour tissue 

together with tissues surrounding the tumour tissue). Figure. 3.1 shows a generic RFA system currently available in 

literature and medical institutes, which consists of RF generator, RF applicator (RF electrode and insulated shaft), 

ground pads, and electrical wires. These components constitute a close electric circuit with the inclusion of the 

patient’s body as a part of the circuitry element. Physicians could insert the RF electrode into the tumour tissue 

through a tiny incision on the skin under image guidance (e.g. CT scan or ultrasound) or through open surgery where 

the RF electrode is inserted just through the organ's capsule. The ground pads are placed on the thighs or back of the 

patient, where there is a relatively large contact area with the patient’s skin. Ions (sodium, potassium, and chloride) 

inside the target tissue around the RF electrode are attracted to moving back and forth rapidly along the direction of 

the alternating current with high frequency (100 kHz - 3 MHz). 

 

The frequency selected for the alternating current is in a safe range for the patient in which human nerve and muscle 

stimulation is avoided [3]. Frictional heat will be generated due to the motion of the ions. The immediate 

surrounding tissue around the RF electrode is rapidly heated due to the maximum current density around the RF 

electrode and the peripheral tissue is heated by thermal conduction at a relatively slower rate. When the tissue is 

heated to a temperature of approximately 45-50℃, protein denaturation results in irreversible tissue necrosis; when 

the temperature reaches above 100℃ , tissue charring occurs [4] (Charring tissue could increase suddenly the 

impedance between RF electrode and ground pads, accompanying with a consequent drop of output RF power. We 

call this phenomenon 'roll-off'.). 

 

The mechanism of the foregoing process is related to the conversion of electromagnetic energy into heat energy 

exhibited on the RF electrode. Specifically, when electromagnetic energy flows through a conductor, heat is 

generated from the conductor, which is seen as the conversion of electromagnetic energy into thermal energy. The 

heat transfer inside the target tissue during the RFA procedure is governed by the so-called Pennes bioheat transfer 

equation [5,6] with an outside energy source as shown in Appendix 3.1. 
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Figure 3.1. Overview of the typical current used RFA procedure. 

3.2 Analysis of incomplete TTN 

Although the RFA technique could initiate necrosis in the target tissue, the target tissue cannot be ablated 

completely in a single treatment session, especially for large target tissues (>3 cm in diameter). This incomplete 

ablation of target tissue increases the possibilities of local recurrences. It is well known that local recurrence is the 

main reason of failure with the RFA technique in the treatment of large tumours. 

 

In summary, there are three main causes leading to this deficiency with the RFA technique (i.e. TTN). 

The first cause is that the size of TTN in a single treatment session with the current RFA technique is small. In a 

previous study [7], a monopolar applicator (as shown in Figure 3.2) with a low RF power generator was proposed. 

The size of TTN is approximately 1.5 cm in diameter and 2 cm in length. 
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Figure 3.2. Monopolar RF applicator. (A typical RF applicator contains an insulated shaft and RF electrode. The 

proximal part of the applicator is connected to the RF power generator using electrical wires. The electrode is 

inserted into the target tissue through the percutaneous method, laparotomy, or open surgery.) 

 

Many clinical studies have shown that the effectiveness of the RFA technique is quite low due to the small TTN 

[4,8-12]. Generally, the goal of the RFA technique is to destroy both the tumour and the normal tissue that surrounds 

the tumour tissue with a 0.5-1 cm margin [13]. After accounting for the marginal part of the tumour tissue, the 

largest tumour tissue RFA could ablate is only 1 cm in diameter according to another study [7]. Thus, the initial 

RFA systems cannot completely ablate tumour tissues larger than 1 cm. 

 

The second cause is that the current diagnostic imaging system is not very accurate in measuring the profile of the 

target tissue. The current image-guided methods are Ultrasound Imaging (UI), Computer Tomography (CT), and 

Magnetic Resonance Imaging (MRI), and all of them have their own problems. The interested reader is referred to 

the literature [8] for further details.  

 

The inaccurate placement of RF electrode is the third cause of the incomplete TTN. The image-guided methods are 

used not only to help detect tumour tissues and monitor the effect of the procedure but also to guide the electrode 

placement [14]. Due to inaccuracy with the image-guided methods, the electrode may be placed in the wrong 

position. Moreover, the physician's experience is important for the accurate placement of the electrode. Closely 

related to the placement of the electrode, the literature suggests open surgery [15,16] for the relatively complete 

ablation of the large target tissues by means of multiple electrode punctures at different angles with the RFA 

technique. However, open surgery is usually followed by drawbacks such as high complication rates and long 

hospital stays. 
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The result of incomplete TTN is that a great number of patients have lost their lives or had to accept more RFA 

treatment sessions due to the local recurrence of the tumour [9-12]. Many device solutions have been proposed to 

solve the incomplete TTN problem. Despite some clinic-based evaluations of these solutions, there is a lack of an 

engineering-oriented evaluation. An engineering-oriented evaluation is indeed important because it provides the root 

of the problem and thus is helpful in the development of a rational design of new devices. This paper reports a study 

conducted by our team to evaluate the existing device solutions using a design theory called Axiomatic Design 

Theory (ADT). 

3.3 Brief introduction of ADT 

ADT is a design theory and methodology that helps evaluate a design [17], and it has been applied to both design 

and management (selection) problems [18-22]. Further development of ADT can be found in the literature [23]. 

There are three salient points in ADT, which are design domain, design axiom, and hierarchy. According to the 

ADT, the design process takes place in four domains, as shown in Figure 3.3. In the four domains, there are 

Customer Attributes or Needs (CAs), Functional Requirements (FRs), Design Parameters (DPs), and Process 

Variables (PVs). The “{}” in Figure 3.3 are the characteristic vectors of each domain. The leftmost domain 

represents, "what we want to achieve," whereas the rightmost domain represents the design solution of "how we 

propose to satisfy the requirements in the left domain" [24]. There are two axioms in ADT, which are known as the 

independence and the information axiom. These two axioms could be expressed in detail as follows [17]: 

Axiom 1: maintain the independence of the functional requirements. 

Axiom 2: minimize the information content of the design. 

Axiom 1 is discussed briefly in the following, as it is actually applied by the study described in the present paper. 

 

CAs could be converted into FRs and Constraints (Cs) by the design process through a series of iterations, and in 

turn, FRs and Cs could be embodied into DPs [22]. FRs can be defined as "a minimum set of independent 

requirements that completely characterizes the functional needs of the system in the functional domain"; DPs are the 

"the key physical variables in the physical domain that characterizes the design that specifies the FRs" [17]. 

According to the ADT, the first step in evaluating a system is to determine the customer attributes or needs in the 
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customer domain that the system could satisfy; afterwards, the FRs and Cs in the functional domain are determined. 

The next step is to map these FRs into the physical domain to identify the DPs. DPs must be chosen such that first, 

there is no conflict with the Cs, and second, they fulfil the FRs [25]. 

 

 

Figure 3.3. Design domains in the ADT 

 

The relationship between the FRs and the DPs can be represented by the following equation: 

𝐅𝐑 = [𝐴]𝐃𝐏                                                                                         (3.1) 

where [𝐴] is the design matrix. If matrix [𝐴] is a diagonal matrix, each FR could be satisfied by a particular DP, and 

such a design is called the uncoupled design. If matrix [𝐴]  is a triangular matrix, the design should follow a 

sequence. If and only if the DPs are determined in this sequence, the independent axiom (i.e. Axiom 1) is satisfied, 

and this design is called the decoupled design. If the matrix [𝐴] is neither a diagonal matrix nor a triangular matrix 

(we do not consider all the elements in matrix [𝐴] are zeros), FRs cannot be determined by FRs independently, and 

this design is called the coupled design. Eqs. (3.2) through (3.4) show the three scenarios discussed above, assuming 

n FRs and n DPs. A coupled design can be decoupled by adding more DPs and this always comes at a cost. 

[

FR1
FR2
⋮

FR𝑛

] =

[
 
 
 
𝐴11

𝐴22
⋱

𝐴𝑛𝑛]
 
 
 

[

DP1
DP2
⋮

DP𝑛

]                                                                    (3.2) 
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] = [
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⋮
𝐴𝑛2

⋱
⋯ 𝐴𝑛𝑛

] [

DP1
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⋮
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]                                                                   (3.3) 
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⋮
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] = [
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⋮
𝐴𝑛1

⋮
𝐴𝑛2

⋱
⋯

⋮
𝐴𝑛𝑛

] [

DP1
DP2
⋮

DP𝑛

]                                                                   (3.4) 

3.4 Engineering evaluation 

3.4.1 Current RFA systems 

To overcome the first cause of incomplete TTN in RFA systems (small TTN size), there are several design solutions 

for the RF electrode and RF power supply algorithm in the current RFA systems. 

 

 

Figure 3.4. Schematic diagrams of current RF electrode designs: (A) internally cooled electrode, (B) cluster 

electrode, (C) perfusion electrode, (D) bipolar electrode, and (E) extendable electrode. 
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Figure 3.4 illustrates all of the typical RF electrode designs with the goal of generating large TTN. The designs are 

the internally cooled (Figure 3.4A), cluster (Figure 3.4B), perfusion (Figure 3.4C), bipolar (Figure 3.4D), and 

extendable electrode (Figure 3.4E), respectively. 

 

The internally cooled electrode design usually has an internal lumen through which chilled fluid is circulated during 

RFA treatment. By cooling the electrode during the application of RF energy, it is possible to prevent tissue from 

charring and cavitation immediately adjacent to the electrode so as to increase RF energy output.  

 

In the cluster electrode design, an acrylic guide usually maintains inter-needles distance, and the distance is a key 

parameter for RFA operation in the cluster electrode design. 

 

The perfusion electrode design consists of a hollow electrode with one or more perfusion holes at the electrode 

through which an hypertonic saline solution is injected into the tissue that surrounds the electrode before and during 

the ablation procedure. As the saline solution (with relative lower temperature) could cool the tissue to prevent 

tissue from charring. The saline solution also can change the electrical and thermal properties of target tissue, which 

will make the tissues have better dielectric performance such that more RF energy can be delivered into target tissue. 

 

In the bipolar electrode design, one of the two electrodes used as a ground pad is also inserted into the target tissue 

with a certain inter-needle distance with the active electrode. There are further two types of devices: (i) two 

electrodes and (ii) one electrode with two electrodes. In the case of (i), a larger necrosis area could be generated in 

the plane perpendicular to the electrode axis, and in the case of (ii), a larger necrosis area could be generated in the 

plane parallel to the electrode axis. 

 

There are two main expandable electrode designs, namely Christmas tree-like fashion (i) and Umbrella-like fashion 

(ii). Other electrode designs that are not included in this paper are more or less similar to the foregoing designs. 

 

For the RF power supply systems, there are also four typical designs: continuous, pulsed [26], consecutive, and 

switching supply [27], as shown in Figure 3.5. 
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Figure 3.5. Application of RF energy. ((A) pulsed supply: RF energy is applied with peak power 𝑃2 that is 

maintained for 𝑡1 − 𝑡0 and then the power is reduced to 𝑃1 and maintained for 𝑡2 − 𝑡1. This procedure repeats 

continuously until a single RFA treatment duration (𝑇) is finished. For continuous application, RF energy is applied 

with 𝑃c in a whole single ablation duration. Pulsed application could be applied using any electrode design 

mentioned above, (B) consecutive supply: RF energy is applied with power 𝑃 to electrode A until the target tissue 

around this electrode is killed completely and then the power turns to electrode B and kills the target tissue around 

electrode B, (C) switching supply: RF energy is applied with power p to electrode A for a small time period (1 sec) 

and then electrode B is activated for the same time period. This procedure repeats continuously until a single RFA 
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treatment duration (T) is finished. Consecutive application and switching application could be applied in any 

electrode design having more than one needle.) 

 

For the second cause for incomplete TTN, diagnostic imaging, advanced imaging techniques and the improvement 

of RFA equipment are necessary. Using contrast-enhanced UI could be a relatively good way to acquire high quality 

images and detect minor non-ablated tissue. If the drawbacks of MRI could be solved, MRI would also be an 

alternative way to detect tumour tissue and non-ablated tissue. 

 

For the third reason for incomplete TTN, the placement of the RF electrode, the success rate of placing the electrode 

is almost dependent on the knowing the position of target tissue and the experience of the physicians. 

3.4.2 ADT evaluation 

There are three main issues causing small size of TTN (< 3 cm in diameter) in the current RFA systems that are well 

known, as given below: 

 

Issue 1: target tissue around the RF electrode is getting charred. After the tissue gets charred, its electrical 

impedance increases rapidly, such that the charred tissue will prevent more RF energy from being delivering to deep 

tissue. It is well known that the more electromagnetic heat energy delivered to the target tissue, the larger the size of 

TTN could be generated [14]. 

 

Issue 2: the contact area between the RF electrode and the target tissue is too small. If the contact area is small, the 

density of electric current is so small that little RF energy could be delivered to the target tissue in a single RFA 

treatment session. 

 

Issue 3: target tissue is close to large blood vessels. Large blood vessels (i.e. vessel >3 mm in diameter) have a 

significant cooling effect to RFA because the vessels could absorb the heat energy as ‘heat sinks’. 
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To make use of the ADT, the device designs need to be stated as a design problem in the context of ADT. To 

achieve complete TTN is considered as a customer requirement (CA). Then, three functional requirements (FRs) 

could be derived from the current RFA devices: 

FR1: to achieve large size of TTN; 

FR2: to discover the target tissue precisely; 

FR3: to place the RF electrode in the correct position. 

 

For the FR1, it could be decomposed further into three sub-level functional requirements, which are independent of 

each other: 

FR11: to keep the temperature of the target tissue below the threshold temperature during a single treatment 

(usually the threshold temperature for tissue charring is 100℃ [4]); 

FR12: to increase the contact area between the RF electrode and the target tissue; 

FR13: to eliminate the heat sink effect of blood vessels; 

 

 

Figure 3.6. CAs, FRs, and DPs in the current RFA systems. 

 

The DPs in the physical domain concluded from the current RFA systems are given as follows: 
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DP1: large TTN size RF electrode system; 

DP2a: advanced imaging technology; 

DP2b: open surgery; 

DP3: physician's experience.  

 

For the sub-level FR1, three sub-level DPs could be derived from the current RFA systems as follows: 

DP11: RFA temperature control system; 

DP12: large RF electrode volume; 

DP13a: optimization of the placement of the electrode [28,29]; 

DP13b: blood inflow occlusion [30,31]; 

 

Figure 3.6 shows the FRs and its corresponding DPs in the current RFA systems. DP13a, DP13b, DP2a, and DP2b 

mean that DP13 and DP2 have two alternatives in the current RFA systems, respectively. 

 

Figure 3.6 illustrates the relationship between FRs and DPs in the current RFA systems according to preceding 

discussion. However, in the real clinical practices, there are some different processes performed. Within these 

processes, some relationships between FRs and DPs are decoupled as shown in Table 3.1. For instance, FR3 (to 

place the RF electrode in the correct position) is not only affected by DP3 (physician's experience), but also 

influenced by DP13a (optimization of the placement of the electrode) as this optimization is aimed to get rid of the 

influence of heat sink effect of large blood. So there is an interaction between FR3 and DP13a. The same situation 

occurs at the relationship between FR3 and DP2a (advanced imaging technology). 

 

All the possible situations occurred in the real clinical practices are summarised in Table 3.1. From Table 3.1, we 

could find that some current RF systems (System 1, 2, and 3) are actually decoupled designs, which means that if 

these systems are not performed in a particular sequence, the independence axiom will not be satisfied. Therefore, 

this decoupled design in the current RFA systems is the key reason for incomplete TTN. 
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Table 3.1. Design matrix of the current RFA systems. 

System Design parameter Design matrix 

1 

DP11, DP12, 

DP13a, DP2a, DP3 
[
 
 
 
 
X

X
X

X
X
X X ]

 
 
 
 

 

2 
DP11, DP12, 

DP13b, DP2a, DP3 
[
 
 
 
 
X

X
X

X
X X ]

 
 
 
 

 

3 

DP11, DP12, 

DP13a, DP2b, DP3 
[
 
 
 
 
X

X
X

X
X

X ]
 
 
 
 

 

4 

DP11, DP12, 

DP13b, DP2b, DP3 
[
 
 
 
 
X

X
X

X
X ]
 
 
 
 

 

 

 

System 4 is an uncoupled design, which is the best design according to ADT. In System 4, five functional 

requirements can be satisfied by DP11, DP12, DP13b, DP2b, and DP3. There is no interaction between them as it is 

an uncoupled relationship. Any change from one design parameter just influences its corresponding functional 

requirement. In this system, blood inflow occlusion and open surgery are chosen to be DP13 and DP2, respectively. 

If one RFA treatment could be performed under this design process, the potential to obtain complete TTN will 

increase rapidly. Actually, the results concluded here are consistent with the animal experiments and clinical 

practice reported in the literature [31-33]. 

 

Although System 4 is a relatively good design process for RFA treatment, many issues need to be taken into account 

carefully before performing RFA treatment. The restrictions associated with this design must be examined before 

because both the open surgery and the physician's experience are involved. For instance, with open surgery the 

physician must evaluate the effect of complications of open surgery and local recurrence of incomplete TTN on 

threatening the patient's life. For the physician's experience, the variety is obvious. 
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Another way to have complete TTN is with the System 1 and 2 designs in which open surgery is avoided when they 

are performed in a certain sequence. 

3.5 Case study 

All discussions discussed above are based on the conceptual level of design of the current RFA systems. To verify 

the conclusion from the conceptual level of design, a more detailed investigation of System 4 will be discussed 

through simulation. A detailed case study is given to verify the conclusion that System 4 could generate complete 

TTN, namely to satisfy the design of CAs. 

3.5.1 Case setup 

We assume that a large regular ellipsoid-shaped target tissue (40mm×40mm×30mm) investigated in liver tissue, 

and its geometrical centre is located at (0, -5.77, 50) in the XYZ coordinate, as shown in Figure 3.7A. The function 

describing the profile of the target tissue could be expressed as: 

X2

400
+

(Y+5.77)2

400
+

(Z−50)2

225
= 1                                                                            (3.5) 

The treatment objective is to ablate the target tissue completely with System 4. In this case study, the uncertainty in 

different physicians' experience and anisotropy of the target tissue are ignored. Notably, in many RFA simulations, 

the liver tissue properties are taken as that of the target tissue because there is a lack of data on tumour tissue. This 

acceptable approximation is also adopted in this case study. The five DPs in System 4 are temperature control 

system, large RF electrode volume, blood inflow occlusion, open surgery, and physician's experience. These DPs are 

embodied in the simulation environment, which are given as: 

temperature control system: internally cooled electrode; 

large electrode volume: cluster electrode; 

blood inflow occlusion: omitting large blood vessels in the simulation model; 

open surgery: knowing the precise profile and position of the target tissue; 

and physician's experience: knowing the best position in which the electrode should be placed.  
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Based on the preceding discussion, a simple protocol could be developed in the following. Cluster-internally cooled 

electrode with 3 needles was put into the target tissue. These needles are deployed equidistantly at a 20 mm distance. 

The centre of the cluster-internally cooled electrode is coincident with that of the target tissue in the X-Y plane, as 

shown in Fig. 3.7A. The locations of these three needles in the X-Y plane are (-10, 0), (10, 0), and (0, -17.32), 

respectively. The three needles, with a RF electrode 20 mm in length and 3 mm in diameter for each needle, are 

inserted into the liver tissue 60 mm deep. Large blood vessels are omitted due to blood vessel occlusion. 

 

 

Figure 3.7. FE modelling of the case study. (A) The cylindrical part is modelled as liver tissue with a diameter of 

100 mm and 120 mm in length and (B) this 3D model has 305578 tetrahedral elements and 52513 nodes by 

performing the convergence tests. The spatial meshing size was continuing to be refined until the maximum 

temperature was within 1% of the maximum temperature obtained from the last step size. 

3.5.2 FE modelling for the system 

A finite element model (FEM) of System 4 is established in a finite element analysis software - COMSOL 

Multiphysics (COMSOL, Burlington MA, USA), as shown in Figure 3.7. The material properties used are adopted 

from the literature [34], as shown in Table 3.2, and the blood perfusion in hepatic tissue, 𝜔𝑏, is 6.43 × 10−3 s−1 

[35]. Using the quasi-static approach, the value of ‘Direct-Current’ (DC) voltage could be calculated from the model 
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corresponding with the root mean squared (RMS) value of the RF voltage actually employed. In COMSOL software, 

the analysis uses the Pennes bioheat transfer equation with an outside energy source (Eq. (3.6)) and conductive 

media DC application (Eq. (3.7)) to implement a transient analysis. This single RFA treatment session is simulated 

in COMSOL software for 20 minutes (1200 seconds). 

 

Table 3.2. Thermal and electrical properties of the materials in the case study. 

Model element Material 𝜌(kg m−3) 𝑐(J kg−1 K−1) 𝑘(W m−1 K−1) 𝜎(S m−1) 

Insulated shaft Polyurethane 70 1045 0.026 1× 10−5 

RF electrode Ni-Ti 6450 840 18 1× 108 

Tissue Liver 1060 3600 0.512 0.333 

Blood perfusion Blood 1000 4180 0.543 0.667 

 

3.5.3 Initial and boundary conditions in the model 

For the cluster-internally cooled electrode model, the initial and boundary conditions are distributed as follows: 

The initial temperature equals 37 ℃ in all domains. The boundary conditions at the liver tissue outer boundaries and 

the RF electrode surfaces are 0 V potential (ground) and 50 V potential, respectively. And we assume they are 

continuous in other boundaries. There is a chilled fluid circulating inside of each needle of cluster-internally cooled 

electrodes to cool the needles during the RFA treatment. Therefore, a temperature boundary condition, 0 ℃, is added 

to the RF electrode surfaces to represent the real situation. 

3.5.4 Simulation results and discussion 

Figure 3.8 shows the temperature distribution after a single RFA treatment session, which lasts for 20 minutes. By 

adding the internally cooled system in System 4, the maximum temperature during this RFA treatment is 99.451℃ 

less than 100℃, which means that the roll-off has been avoided in this single RFA treatment. Otherwise, the roll-off 

will occur at a relative early time such that only small size TTN generated. 
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Figure 3.8. Temperature gradient after a single RFA treatment session. (the third needle is not shown in the plot) 

 

The 50℃ isothermal contour is used to represent the profile of TTN in this case study, even if there are some debates 

on its effectiveness [36]. Figure 3.9 depicts the profile of TTN that the RFA System 4 could generate after a single 

RFA treatment session. The green shade and the solid dark lines represent the cubic of TTN and the profile of the 

target tissue, respectively. One could find that the target tissue is covered completely by the cubic of TTN from all 

directions. In other words, the large target tissue could be killed completely by RFA System 4 under the preceding 

protocol. 

 

The result of this case study shows that the conclusion of the above evaluation is meaningful and that the protocol 

proposed in this paper is also acceptable. Although just regular ellipsoid-shape target tissue is used in this case study, 

the uncoupled RFA system and the protocol could be developed to other large target tissues with different shapes. 
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Figure 3.9. The 50℃ isothermal contour. (views of the (A) 3D model, from the (B) X-Y, (C) Y-Z, and (D) Z-X 

planes) 

3.6 Conclusions 

As a minimally invasive technique for tumour treatment, the RFA system has been popular for several decades. 

However, there are several limitations preventing this technique from being developed further. One of these 

limitations is incomplete TTN. This problem has  garnered much interest from biomedical engineers and physicians. 

The contribution of this paper is that the current RFA systems are evaluated in terms of their design concepts by 

ADT in generating complete TTN. The cause of why these systems cannot generate complete TTN is analyzed, and 
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an uncoupled design to increase the possibility of complete TTN is determined. The results of this paper have been 

further verified by the numerical simulation case study and are consistent with the results of other animal 

experiments and clinical practices as well. 

 

However, it is noted that some factors are ignored by this paper to simplify the question. These factors may have a 

large influence on the creation of complete TTN under certain circumstances. Despite this assumption, the results of 

this paper still could provide useful hints to physicians for managing these different RFA systems and facilitate 

designers in developing new RFA systems or improving the existing ones. 
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APPENDIX 3.1 

The governing equation of RFA treatment for target biological tissue can be given as follows: 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛻 ∙ 𝑘𝛻𝑇 + 𝜌𝑏𝑐𝑏𝜔𝑏(𝑇𝑏 − 𝑇) + 𝑄ℎ𝑠 + 𝑄𝑚                                                (3.6) 
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where 𝜌 (kg m−3) is the density, 𝑐 (J kg−1 K−1) is the specific heat, 𝑇 (℃) is the temperature, 𝑘 (W m−1 K−1) is 

the thermal conductivity, 𝜌𝑏 (kg m−3) is the blood density, 𝑐𝑏 (J kg−1 K−1) is the specific heat of the blood, and 𝜔𝑏 

is the blood perfusion (s−1), 𝑇𝑏  is the temperature of the blood entering the tissue, 𝑄𝑚  (W m−3) is the energy 

generated due to metabolic processes, which can be ignored because it is small compared to the other terms in Eq. 

(3.7). 𝑄ℎ𝑠 is the distributed heat source generated by an outside energy source (i.e. RF energy in the case of RFA). 

At such a high frequency employed in the RFA technique and in such a small area of RF electrode, the tissue can be 

considered as a pure resistive lump of material. Thus, a quasi-static approach to represent the behaviour of heat and 

electricity is usually employed to resolve the electrical problem in conductive media; in particular 𝑞̇ℎ𝑠 is calculated 

as follows: 

𝑄ℎ𝑠 = 𝑱 ∙ 𝑬                                                                                              (3.7) 

where 𝑱 (A m−2) is the current density and 𝑬 (V m−1) is the electric field intensity. The two values in Eq. (3.7) are 

further calculated by Eq. (3.8): 

{
𝑬 = −∇𝑉
𝑱 = 𝜎E  

                                                                                           (3.8) 

Furthermore, 𝑱 and 𝑬 could also be evaluated using Laplace's equation: 

∇ ∙ 𝜎∇𝑉 = 0                                                                                          (3.9) 

where 𝑉 (V) is the voltage and 𝜎 (S m−1) is the electrical conductivity. 
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4 STUDY OF THE RELATIONSHIP BETWEEN THE TARGET 

TISSUE NECROSIS VOLUME AND THE TARGET TISSUE SIZE IN 

LIVER TUMOURS USING TWO-COMPARTMENT FINITE 

ELEMENT RFA MODELLING 

This chapter is derived from an article published by Taylor & Francis in International Journal of Hyperthermia on 

November 27, 2014. Available online: http://www.tandfonline.com/ doi:10.3109/02656736.2014.984000. 

Abstract 

Purpose: The aim of this study was to investigate the relationship between the target tissue necrosis volume and the 

target tissue size during the radiofrequency ablation (RFA) procedure. 

Materials and methods: The target tissues with four different sizes (𝑑𝑥𝑦  = 20, 25, 30, and 35 mm) were modelled 

using a two-compartment radiofrequency ablation model. Different voltages were applied to seek the maximum 

target tissue necrosis volume for each target tissue size. The first roll-off occurrence or the standard ablation time 

(12 min) was taken as the sign for the termination of the radiofrequency ablation procedure. 

Results: Four different maximum voltages without the roll-off occurrence were found for the four different sizes of 

target tissues (𝑑𝑥𝑦  = 20, 25, 30, and 35mm), and they were 36.6, 35.4, 33.9, and 32.5 V, respectively. The target 

tissues with diameters of 20, 25 mm can be completely ablated at their own maximum voltages applied (MVA) but 

the same finding was not found for the 35-mm target tissue. For the target tissue with diameter of 30 mm, the 50 ℃ 

isothermal contour (IT50) result showed that the target tissue can be completely ablated, but the same result did not 

show in the Arrhenius damage model result. Furthermore, two optimal RFA protocols with a minimal thermal 

damage to the healthy tissues were found for the target tissues with diameters of 20 and 25 mm, respectively. 

Conclusions: The study suggests that target tissues of different sizes should be treated with different radiofrequency 

ablation protocols. The maximum target tissue volume was achieved with the MVA without the roll-off occurrence 

for each target tissue size when a constant RF power supply was used. 

http://www.tandfonline.com/
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4.1 Introduction 

RFA has been used as an important treatment modality for various tumours and dysfunctional tissues, such as liver 

[1], lung [2], breast [3], kidney [4], and cardiac arrhythmias [5], because of its minimally invasive nature. As a sub-

ablative thermal therapy, RFA is also used to treat hyperopia [6], hyperopic astigmatism [7], and presbyopia [6,8]. 

In recent years, RFA for immune therapy has also attracted some attention [9-11]. However, RFA has a low success 

rate in tumour ablation for the tumours with their sizes larger than 3 cm in diameter, which seems to be likely related 

to the limit in target tissue necrosis (TTN) volume. Xu et al. [12] reported that the complete ablation rate in tumours 

≤ 3 cm was 95.4% after an initial RFA treatment for hepatocellular carcinoma (HCC). However, the same rates in 

tumour between 3.1 to 5.0 cm and > 5 cm were only 82.5% and 50%, respectively. Shiina et al. [13] also found that 

the 5-year survival rate of HCC after the RFA treatment was only 46.5% for the large liver tumour (> 3 cm in 

diameter). The same result also can be found in literature [14,15]. It is widely suggested that this limitation is due to 

the charring of the target tissue. 

 

The engineering pathway of the tissue charring is as follows: The RFA procedure establishes a circuit with a power 

source (RF power generator) and a resistor contributed by the RF electrode, target tissue and ground pads [16]. The 

electrical conductivity of the target tissue, which depends on the water content and cellular makeup, is not a constant 

value. When the temperature of the tissue is higher than 100 ℃, the water essentially boils and begins to evaporate 

[17], the tissue becomes desiccated, and thus the target tissue becomes charred. The charred tissue further leads to a 

notable decrease in its electrical conductivity. This situation is observed in the clinical setting and termed roll-off, 

which is characterized by a marked growth in the impedance between the RF electrode and ground pads, and 

furthermore the actual output of the RF power drops. 

 

The roll-off is a crucial situation in the RFA procedure. In the clinical setting, one of the most popular RF power 

supply algorithms is based on the roll-off occurrence. In particular, the RF power generator is usually turned off for 

a while after a roll-off occurs and during the power off period, there is a cooling process around the probe. Arata et 

al. [18] attempted to build the relationship between the roll-off and the tumour ablation response. These researchers 

used the roll-off as the end-point for the RFA procedure for ablation of the hepatic tumours and found that the local 
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recurrence rate at 6 months without the roll-off (45%) was higher than that with the roll-off (15%). They tended to 

consider the roll-off as a significant sign of local control in RFA procedure. It is well known that the lower local 

recurrence is mainly attributed to the incomplete ablation of target tissue [19]. Thus, the relationship between the 

roll-off and the TTN is crucial in the RFA procedure. Trujillo et al. [20] investigated the relationship between the 

roll-off occurrence and the target tissue dehydration (charring) and concluded that the roll-off usually occurs at the 

moment at which the RF electrode is completely encircled by the charred tissue. Controlling the roll-off is obviously 

an important means to enlarge the TTN volume. Some RF electrodes do have designs to provide chilled fluid inside 

the RF electrode to delay the roll-off occurrence. According to [21], this approach cannot eliminate the tissue 

charring but just shift the charred tissue 1-2 mm away from the RF electrode surface, which may further increases 

the TTN volume by 1-3 times compared to no chilled fluid situation [22]. Other methods to delay the roll-off 

occurrence can be the infusion of hypertonic saline solution into the target tissue [23] and the pulsed RF power 

delivery technique [24]. 

 

To date, many studies have attempted to overcome the deficiency of the RFA technique, such as the design of the 

RF electrode (internal-cooling electrode, cluster electrode, perfusion electrode or extendable electrode), the design 

of the RF power supply method (pulsed, consecutive, or switching), and the combination with other therapeutic 

methods (irreversible electroporation, radiotherapy or chemotherapy) [19]. However, the results achieved so far are 

still not good enough because the target tissue that can be killed is still relatively small in size, especially when a 

monopolar electrode is used. 

 

Pursuing a large TTN volume with a monopolar electrode in a short ablation period is the ultimate objective in RFA 

procedure today. To reach this objective, many questions should be answered in advance. Among them is the impact 

of the target tissue size on the TTN volume. Understanding their relationship may give us a clue to overcome the 

deficiency of RFA in the treating of target tissues with large sizes. However, to the best of our knowledge, few 

studies have investigated in discussing this relationship. Therefore, it is our belief that any additional information 

about the RFA treatment for target tissues of different sizes would be very useful to control TTN volume.  
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In this study, we attempted to investigate the relationship between the TTN volume and the target tissue size based 

on a two-compartment numerical model using the roll-off as the endpoint of the RFA procedure. In the following 

section, the two-compartment RFA model used, the termination of computer simulation and the data collection are 

discussed in detail. The results with discussion are presented in Section 4.3 and several conclusions that can be 

drawn from this study are detailed in the last section. 

4.2 Materials and methods 

4.2.1 Electric-thermal model of two-compartment RFA 

RFA uses the so-called frictional heating (also known as 'resistive' heating) generated by a high-frequency 

alternating current (𝑓RF = 350-500 kHz) to kill tumour cells [25,26]. Thus, two processes need to be considered in 

the mathematical modelling of RFA, namely (1) heat transfer in target tissue (biological tissue) and (2) spatial heat 

generation by the electrical current with high frequency. 

 

For heat transfer in biological tissue, Pennes bioheat transfer equation [27] was used in the present study because it 

has computational efficiency and reasonable accuracy as well. In Pennes model, the perfusion term was considered 

as an isotropic heat sink without considering temperature variations in the arterial and venous blood and the 

structure of the local vasculature, as shown in Eq. (4.1): 

𝜌𝑐
𝜕𝑇(𝐱,𝑡)

𝜕𝑡
= ∇ ∙ (𝑘∇𝑇(𝐱, 𝑡)) + 𝜌𝑏𝑐𝑏𝜔𝑏(𝑇𝑏 − 𝑇(𝐱, 𝑡)) + 𝑄𝑚(𝐱, 𝑡) + 𝑄ℎ𝑠(𝐱, 𝑡)       𝐱 ∈ 𝚲                    (4.1) 

where 𝜌(kg m−3) is the density, 𝑐(J kg−1K−1) is the specific heat, 𝑇(𝐱, 𝑡)(℃) is the temperature, 𝐱 = {𝑥, 𝑦, 𝑧} in the 

Cartesian coordinate system, 𝚲 denotes the analysed spatial domains, 𝑘(W m−1K−1) is the thermal conductivity, 

𝜌𝑏(kg m
−3) is the blood density, 𝑐𝑏(J kg 

−1K−1) is the blood specific heat, 𝜔𝑏(1 s
−1) is the blood perfusion rate, 𝑇𝑏  

is the temperature of the blood entering the tissue, 𝑄𝑚(𝐱, 𝑡)(W m
−3) is the volumetric heat generated by metabolism, 

which is negligible due to its small magnitude compared with the other terms in Eq. (4.1) and 𝑄ℎ𝑠(𝐱, 𝑡)(W m
−3) is 

the spatial heat generated by the RF electrical current. 
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Figure 4.1. Dimensions (out of scale and in mm) and boundary conditions of the two-compartment RFA model used 

in the present study. 

 

Due to the high frequency employed in the RFA and the relative small size of the work domain (RF electrode in this 

case), the biological tissue can be considered as a resistor only because the displacement of charges in the alternating 

current can be negligible. Thus, the spatial heat power generated by the electrical current can be calculated using a 

quasi-static approach, as shown in Eq. (4.2): 
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𝑄ℎ𝑠(𝐱, 𝑡) = 𝑱 ∙ 𝑬 = 𝜎|∇𝑉|
2                                                                                          (4.2) 

where 𝑱(A m−2)  is the current density, 𝑬(V m−1)  is the electric field intensity, 𝜎(S m−1)  is the electrical 

conductivity and 𝑉(V) is the applied voltage. The voltage can be evaluated using Laplace's equation [28]: 

∇ ∙ 𝜎∇𝑉 = 0                                                                                                               (4.3) 

Using the quasi-static approach, the value of the ‘direct-current’ (DC) voltage can be calculated from the model 

corresponding with the root mean squared (RMS) value of the RF voltage [29]. 

 

As shown in Figure 4.1, a healthy liver tissue was modelled as a cylinder with a diameter of 100 mm and a height of 

120 mm. To consider the realistic clinical scenario, an elliptical liver tumour, 36 mm along the long axis, 𝑑𝑥𝑦  along 

the short axis (diameter of tumour tissue) was built in the centre of the healthy liver tissue. In the present study, liver 

tumours of four sizes, namely 𝑑𝑥𝑦 = 20, 25, 30, and 35 mm, were considered as the target tissues. A 17-gauge (1.5 

mm) internal-cooling RF electrode with a 30-mm exposure length (Covidien AG, Zurich, Switzerland) was 

modelled and inserted into the centre of the liver tumour. 

4.2.2 Finite element analysis of the two-compartment RFA model 

The thermal conductivity, electrical conductivity and blood perfusion rate of the biological tissue were modelled as 

temperature dependent. The thermal conductivity was approximated with Eq. (4.4) [30]. For the electrical 

conductivity, an increase of 2 %/℃ was used in this study when the temperature was less than 100 ℃. Between 100 

℃ and 105 ℃, the electrical conductivity exhibited a rapid decrease of two orders of magnitude due to water 

vaporization and desiccation [30], as shown in Eq. (4.5). Because the frequency of the alternating current was not 

the research objective in this study, the dependence of electrical conductivity on frequency was ignored. The 

computation was fixed at a frequency of 460 kHz. There were some debates on how to model the blood perfusion of 

the biological tissue in the computational work. Most of the studies considered blood perfusion as a constant [31,32] 

or a piecewise function [33-35]. Some researchers [36] obtained a good agreement with the in vivo animal 

experiments when using the foregoing constant method. It is worth to mention that Schutt and Haemmerich [37] had 

concluded that there were significant effects on TTN volume using different blood perfusion models. They used the 

piecewise model, a linear decreasing model and a nonlinear decreasing model. In the nonlinear decreasing model, 
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they considered an increase of blood perfusion with an increase of degree of vascular stasis at the ablation zone 

boundary due to the hyperaemia. In the present study, a piecewise function model of vascular coagulation was used. 

Particularly, the perfusion rate was considered as a constant before the biological tissue reached a temperature of 60 

℃; at temperatures higher than 60 ℃, the blood perfusion rate was set to 0 because the coagulation eliminated 

microvascular perfusion [33]. Eq. (4.6) shows that piecewise model of blood perfusion in the present study. 

𝑘(𝑇) =  {
𝑘ref + 0.0013(𝑇(𝐱, 𝑡) − 𝑇ref)                     𝑇(𝐱, 𝑡) ≤ 100℃

𝑘ref + 0.1027                                                  𝑇(𝐱, 𝑡) > 100℃
                                       (4.4) 

𝜎(𝑇) = {

𝜎ref[1 + 0.02(𝑇(𝐱, 𝑡) − 𝑇ref)]                              𝑇(𝐱, 𝑡) ≤ 100℃

(−0.51084𝑇(𝐱, 𝑡) + 53.664)𝜎ref      100℃ < 𝑇(𝐱, 𝑡) ≤ 105℃

0.0258𝜎ref                                                                 𝑇(𝐱, 𝑡) > 105℃

                              (4.5) 

𝜔𝑏(𝑇) = {
𝜔0      𝑇(𝐱, 𝑡) < 60℃ 

0        𝑇(𝐱, 𝑡) ≥ 60℃
                                                                                                (4.6) 

where 𝑇ref = 21 ℃, for the healthy liver tissue, 𝑘ref = 0.52 (W m−1K−1) and 𝜎ref = 0.20 (S m−1) [38], whereas for 

the liver tumour, 𝑘ref = 0.60 (W m−1K−1) and 𝜎ref = 0.50 (S m−1) [38,39]. The material properties used for each 

element are tabulated in Table 4.1. These values were adopted from the literature [38,40-44]. 

 

Table 4.1. Thermal and electrical properties of the modelling elements used in the present study. 

Modelling element Material 

𝜌 

(kg m−3) 

𝑐 

(J kg −1K−1) 

𝑘 

(W m−1K−1) 

 𝜎 

(S m−1) 

𝜔0 

(s−1) 

Biological tissue 

Healthy liver tissue 1080 3455 

Eq. (4.4) Eq. (4.5) 

0.016 

Liver tumour 1045 3760 0.002 

RF electrode Ni-Ti 6450 840 18 1.0×108 - 

Insulated shaft Polyurethane 70 1045 0.026 1.0×10-5 - 

Blood vessel Blood 1000 4180 0.49 0.667 - 

 

The initial temperature was set to 37 ℃. The electrical boundary was set as follows (Figure 4.1): (1) the RF 

electrode was set to a constant voltage (𝑉0 ) boundary condition (Dirichlet boundary), (2) a zero-electric-flux 

(Neumann) boundary condition was applied at the liver tissue exterior boundary, and (3) the other boundaries were 

considered as the ground pads. The voltage at the ground pads was set to 0 V. Electrical continuity conditions were 

applied to the other inner boundaries of the whole two-compartment RFA model. The thermal boundary conditions 
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were as follows: the liver tissue outer boundary temperature was 37 ℃. The ‘heat-sink’ effect of the cooling effect of 

the chilled solution circulating inside the RF electrode was approximated by convective boundary conditions at the 

chilled fluid-electrode interface. Thus, the convective boundary condition of the chilled solution was realised by the 

heat transfer coefficient ℎc = 4416.3 (W m−2K−1) and 𝑇c = 10 ℃. The heat transfer coefficient was calculated using 

Eq. (4.7) [45]. 

{
 
 

 
 Re =

𝜌𝑢𝐷

𝜇

𝑁𝐷 = 4 + 0.48624ln
2[
Re×Pr×𝐷

18×𝐿
]

ℎ =
𝑁𝐷𝑘

𝐷

                                                                              (4.7) 

where Re is the Reynolds number, Pr  = 10.859 is the Prandtl number, 𝐷 is the diameter and 𝐿 is the length. For the 

chilled fluid circulating inside the RF electrode, which has a flow rate of 45 (mL min−1), 𝜌 = 999.7(kg m−3), 𝜇 = 

0.0013 (kg m−1s−1), 𝑘 = 0.588 (W m−1K−1) and 𝑢 = 0.9549 (m s−1) are the density, dynamic viscosity, thermal 

conductivity and average velocity of the fluid, respectively. The electrical and thermal boundary conditions on the 

four interfaces between liver tumour and healthy liver tissue, RF electrode and liver tumour, insulated shaft and liver 

tumour and insulated shaft and healthy liver tissue were considered as continuity, as shown in Figure 4.1. 

 

The two-compartment RFA model was solved using the finite element (FE) software - COMSOL Multiphysics 

(COMSOL Inc., Burlington, MA, USA). FE method was used to solve Eqs. (4.1)-(4.3) on the whole research 

domain as shown in Figure 4.1. The research domain was discretized into tetrahedral elements in this study. At 

every node of the tetrahedral element, Eqs. (4.1)-(4.3) was transferred to algebraic equations and these equations 

were solved by computer program. The FE mesh was generated by the free meshing generator within COMSOL. 

The mesh was progressively refined until the maximum temperature of RFA differed by less than 0.2 ℃ compared 

with the previous mesh. The previous mesh was considered as the final mesh. The meshing results of the models of 

different target tissues with 𝑑𝑥𝑦  = 20, 25, 30, and 35 mm consisted of were 282867, 278951, 280787, and 285765 

tetrahedral elements, respectively. 

 

The IT50 and the first-order kinetics model (Arrhenius damage model) were used to measure tissue death in this 

study. In the first-order kinetics model, the tissue death is related to the temperature and the ablation time using a 

first-order kinetics relation, as shown in Eq. (4.8): 
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Ω(𝑡) = 𝐴∫ 𝑒
−∆𝐸

𝑅𝑇(𝜏)
𝑡

0
𝑑𝜏                                                                                        (4.8) 

where Ω(𝑡) is the degree of tissue death, 𝐴(1 s−1) is the frequency factor, ∆𝐸(J mol−1) is the activation energy for 

the irreversible damage reaction, 𝑅(J mol−1K−1)  is the universal gas constant and 𝑇(𝜏)(K)  is the absolute 

temperature, which is a function of the ablation time. The kinetic parameters 𝐴  and ∆𝐸  account for the 

morphological changes in tissue related to the thermal degradation of proteins [46] and are dependent on the tissue 

type [47]. The two values (𝐴 = 7.390×1039 (1 s−1) and ∆𝐸 = 2.577×105 (J mol−1)) for the healthy liver tissue were 

taken from the literature [48]. For the liver tumour tissue, 𝐴 = 3.247×1043 (1 s−1) and ∆𝐸 = 2.814×105 (J mol−1) 

were taken from the literature [49]. The value of Ω(𝑡) = 1 (D63) was employed as the critical threshold to represent 

tissue death, which corresponds to a 63% probability of cell death [47]. At Ω(𝑡) < 1, the tissue was considered as 

live. 

4.2.3 Computer simulation termination criteria and data collection 

To simulate real clinical scenarios as closely as possible, the standard RFA ablation time (12 min) was chosen, or 

the computer simulation terminates when the first roll-off occurs during the 12-min RFA. In this study, we applied 

the finding reported by Trujillo et al [20] as the roll-off occurrence criterion, which considered that the roll-off 

occurs at the moment at which the RF electrode is completely encircled by the charred tissue (at 100 ℃). 

 

In this study, five particular points were selected for the collection of the temperature data, as shown in Figure 4.2. 

Note that T2, T3, T4, and T5 were deliberately set on the boundaries of the four target tissues of different sizes 

(𝑑𝑥𝑦 = 20, 25, 30, and 35mm, respectively). Thus, the complete TTN of each target tissue size can be investigated 

through an assessment of the temperatures at these particular points. The TTN volume in this study was the total 

volume of thermal damage (IT50 or D63) to the liver tissue, which was found by summation of the volumes of all 

tetrahedral elements in the liver tumour domain and the healthy liver tissue domain. The temperature on every node 

of such tetrahedral elements must be higher and equal to 50 ℃ or Ω(𝑡) = 1 on every node of such tetrahedral 

elements. The thermal damage volume to healthy liver tissue was found in the same way but just in the healthy liver 

tissue domain using Ω(𝑡) = 1. 
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Figure 4.2. Placements of the five measured points (out of scale, dimension in mm). 

4.3 Results and discussion 

Table 4.2 shows the computer simulation results for the TTN area of each size of target tissue size at different 

voltages applied. The TTN area was found using the IT50 and the D63. 𝐷𝑥𝑦  and 𝐷𝑦𝑧 represent the longest length of 

the short (perpendicular to the RF electrode axis) and long (parallel to the RF electrode axis) axes of the TTN, 

respectively. All of the TTN were measured at the moment of the first roll-off occurrence or at 720 s, which was 

close to the clinical situation. For instance, 35 V-720 s means that the voltage applied was 35 and the TTN area was 

found at 720 s (note that no the roll-off occurred at this voltage); 37 V-490 s indicates that the voltage applied was 

37 V and the TTN area was found at 490 s, which is the time when the first roll-off occurred. We found that the 

maximum value of 𝐷𝑥𝑦 can be achieved at a critical voltage. We also found that the critical voltage was the MVA at 

which the roll-off did not occur during a standard 12-min ablation time. It is necessary to note that all the MVAs 

were found using trial and error method and the accuracy of the MVAs was considered to be about 0.1 V. 
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Table 4.2. Computational results for four target tissue sizes during different RFA protocols. 

Target 

tissue (mm) 

Ablation 

protocol 

Maximum 

temperature (℃) 

IT50 (mm) D63 (mm) 

Complete 

ablation 

𝑑𝑥𝑦= 20 

35 V-720 s 105 𝐷𝑥𝑦= 23.445, 𝐷𝑦𝑧= 44.303 𝐷𝑥𝑦= 22.103, 𝐷𝑦𝑧= 42.491 Y 

36.6 V-720 s 105 𝐷𝑥𝑦= 26.270, 𝐷𝑦𝑧= 44.023 𝐷𝑥𝑦= 23.499, 𝐷𝑦𝑧= 42.792 Y 

37 V-490 s 106 𝐷𝑥𝑦= 25.257, 𝐷𝑦𝑧= 43.814 𝐷𝑥𝑦= 22.562, 𝐷𝑦𝑧= 42.476 Y 

40 V-170 s 108 𝐷𝑥𝑦= 22.990, 𝐷𝑦𝑧= 43.165 𝐷𝑥𝑦= 18.312, 𝐷𝑦𝑧= 40.780 Y 

𝑑𝑥𝑦= 25 

34 V-720 s 104 𝐷𝑥𝑦= 26.729, 𝐷𝑦𝑧= 43.597 𝐷𝑥𝑦= 25.744, 𝐷𝑦𝑧= 42.050 Y 

35.4 V-720 s 105 𝐷𝑥𝑦= 27.736, 𝐷𝑦𝑧= 43.997 𝐷𝑥𝑦= 26.785, 𝐷𝑦𝑧= 42.593 Y 

36 V-410 s 107 𝐷𝑥𝑦= 27.057, 𝐷𝑦𝑧= 43.337 𝐷𝑥𝑦= 25.652, 𝐷𝑦𝑧= 41.611 Y 

38 V-200 s 108 𝐷𝑥𝑦= 25.419, 𝐷𝑦𝑧= 42.946 𝐷𝑥𝑦= 20.171, 𝐷𝑦𝑧= 40.771 N 

𝑑𝑥𝑦= 30 

32 V-720 s 104 𝐷𝑥𝑦= 29.196, 𝐷𝑦𝑧= 42.230 𝐷𝑥𝑦= 27.447, 𝐷𝑦𝑧= 41.772 N 

33.9 V-720 s 105 𝐷𝑥𝑦= 30.641, 𝐷𝑦𝑧= 43.400 𝐷𝑥𝑦= 29.806, 𝐷𝑦𝑧= 42.576 Y-N 

34 V-620 s 105 𝐷𝑥𝑦= 30.431, 𝐷𝑦𝑧= 43.208 𝐷𝑥𝑦= 28.340, 𝐷𝑦𝑧= 42.438 Y-N 

37 V-185 s 106 𝐷𝑥𝑦= 26.322, 𝐷𝑦𝑧= 42.407 𝐷𝑥𝑦= 19.802, 𝐷𝑦𝑧= 39.345 N 

𝑑𝑥𝑦= 35 

31 V-720 s 103 𝐷𝑥𝑦= 31.679, 𝐷𝑦𝑧= 41.846 𝐷𝑥𝑦= 29.527, 𝐷𝑦𝑧= 40.831 N 

32.5 V-720 s 104 𝐷𝑥𝑦= 33.193, 𝐷𝑦𝑧= 42.828 𝐷𝑥𝑦= 30.998, 𝐷𝑦𝑧= 41.282 N 

33 V-525 s 105 𝐷𝑥𝑦= 32.561, 𝐷𝑦𝑧= 42.818 𝐷𝑥𝑦= 20.431, 𝐷𝑦𝑧= 39.898 N 

35 V-245 s 107 𝐷𝑥𝑦= 28.893, 𝐷𝑦𝑧= 42.278 𝐷𝑥𝑦= 23.136, 𝐷𝑦𝑧= 40.462 N 

Y: yes, N: no 

 

The same phenomenon can be found from the simulation results of the TTN volume. As shown in Figure 4.3, the 

TTN volume increases with the voltage and reaches the maximum value at the MVA and then decreases with the 

voltage. Due to the roll-off, a large TTN volume cannot be obtained by only increasing the voltage when a constant 

RF power supply is used. 
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Figure 4.3. TTN volume for each target tissue size at different voltages applied: (A) 𝑑𝑥𝑦= 20 mm, (B) 𝑑𝑥𝑦= 25 mm, 

(C) 𝑑𝑥𝑦= 30 mm, and (D) 𝑑𝑥𝑦= 35 mm. 

 

Another useful piece of information that can be observed from the results of this study is the change of MVAs for 

different target tissue sizes, as shown in Figure 4.4. We observed that the MVA decreases with an increase in the 

diameter of the target tissue because the target tissue that has a higher thermal and electrical conductivities and a 

lower blood perfusion is more sensitive to the thermal therapy [43]. For the diameters 𝑑𝑥𝑦 = 20, 25, 30, and 35 mm, 

the MVAs were 36.6, 35.4, 33.9, and 32.5 V, respectively. According to the results obtained in this study, it is worth 

to mention that different RFA protocols should be adopted for different tumour sizes in clinical setting. Thus, the 

same protocol is not the best choice for all clinical scenarios. 

 

As shown in Figure 4.5, for small target tissues (𝑑𝑥𝑦 = 20 and 25 mm), complete TTN can be achieved at the MVA. 

However, for relatively large target tissue, such as 𝑑𝑥𝑦 = 35 mm, complete TTN cannot be achieved at its MVA. 
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This phenomenon indicates that this large target tissue is unable to be ablated completely using the constant RF 

power supply method alone. Some auxiliary methods, such as the pulsed RF power supply method [24] or the 

infusion of hypertonic saline solution into the target tissue [23,50], must be considered. For the critical size of target 

tissue, namely 𝑑𝑥𝑦 = 30 mm, the IT50 result showed that the complete TTN can be obtained at the MVA, but the 

same finding was not demonstrated with the D63 result. It is noteworthy that the 30-mm diameter is a critical target 

tissue size for the prediction of whether the constant RF power supply method is suitable for the RFA protocol. The 

results are also consistent with consensus in the field regarding the RFA, which indicates that the RFA alone is not 

effective for target tissues with diameters larger than 30 mm. 

 

Table 4.3. Volumetric percentage of thermal damage to the healthy liver tissue during different RFA protocols. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Target tissue 

(mm) 

Ablation protocol 
Vℎ 

(mm3) 

V𝑑 

(mm3) 

VP 

(%) 

𝑑𝑥𝑦= 20 

35 V-720 s 

934872.2 

3093.9 0.33 

36.6 V-720 s 5416.9 0.58 

37 V-490 s 3854.1 0.41 

40 V-170 s 851.5 0.09 

𝑑𝑥𝑦= 25 

34 V-720 s 

930631.0 

1326.3 0.14 

35.4 V-720 s 2143.3 0.23 

36 V-410 s 1078.2 0.12 

38 V-200 s 397 0.04 

𝑑𝑥𝑦= 30 

32 V-720 s 

925447.1 

492 0.05 

33.9 V-720 s 1031.1 0.11 

34 V-620 s 861.4 0.09 

37 V-185 s 168.3 0.02 

𝑑𝑥𝑦= 35 

31 V-720 s 

919321.0 

347.2 0.03 

32.5 V-720 s 636.1 0.07 

33 V-525 s 466.5 0.05 

35 V-245 s 188.6 0.02 
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Figure 4.4. MVA without the roll-off occurrence for each target tissue size. 

 

A minimal damage to the surrounding healthy tissue is also a critical requirement for RFA. In an ideal situation, the 

target issue should be completely ablated (100%) but no surrounding healthy tissue should be ablated (0%). In order 

to evaluate the thermal damage to the healthy liver tissue, we proposed a volumetric percentage (VP) of the damaged 

healthy liver tissue, which is expressed by:  

VP =
V𝑑

V𝑙−V𝑙𝑡
× 100% =

V𝑑

Vℎ
× 100%                                                      (2.9) 

where V𝑑 is the volume of thermally damaged healthy liver tissue, V𝑙  is the volume of the liver tissue, V𝑙𝑡  is the 

volume of the liver tumour and Vℎ is the volume of the healthy liver tissue. The VP of thermal damage to the healthy 

liver tissue for each RFA protocol is shown in Table 4.3. Although all the VPs were quite small (< 1%), two optimal 

RFA protocols could be found for the 20-mm and 25-mm target tissues and they were 40 V-170 s with 0.09% 

volumetric damage and 38V-200s with 0.04% volumetric damage, respectively. 
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Figure 4.5. Computer simulation results for the TTN of target tissues of different sizes at the MVA (A) 100 ℃ 

isotherm, (B) temperature distribution (in ℃), (C) Tissue death (IT50), and (D) Tissue death rate (%) (D63). 

 

Figure 4.6 shows the computationally determined temperature gradients for each target tissue size at its own MVA. 

The temperature differences between T1 and T2 decrease with an increase in the target tissue size and the 

temperature differences range from 27.5 ℃  (Figure 4.6A) to 22.5 ℃  (Figure 4.6D) at 720 s. The temperature 

differences between T2 and T3, T3 and T4, and T4 and T5 become more uniform with an increase in the target 
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tissue size. It is noteworthy that T2 through T5 are deliberately set at the boundaries of each target tissue. Using 50 

℃ as the standpoint for evaluating the TTN, we can find the following interesting conclusions. 

 

 

Figure 4.6. Temperature change during the 12-min ablation procedure for each target tissue at its own MVA: (A) 

𝑑𝑥𝑦  = 20 mm, (B) 𝑑𝑥𝑦  = 25 mm, (C) 𝑑𝑥𝑦  = 30 mm, and (D) 𝑑𝑥𝑦  = 35 mm. 

 

For target tissues with 𝑑𝑥𝑦  = 20 and 25 mm, T2 and T3 were greater than 50 ℃ for 10 and 8 minutes respectively, 

which indicates that the specific target tissues have been ablated completely. For a target tissue with 𝑑𝑥𝑦 = 30 mm, 

T4 was greater than 50 ℃ for more than 4 minutes. Thus, this target tissue can also be killed completely based on 

the so-called 50 ℃ thermal criterion. However, for a target tissue with 𝑑𝑥𝑦  = 35 mm, T5 never reached 50 ℃ 

throughout the 12-min RFA ablation period. The size of target tissue that can be ablated was larger than 30 mm, as 

shown in Figure 4.6D. 
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Figure 4.7. Temperature distributions (in ℃) obtained with the two-compartment RFA model (A) and the 

homogenous RFA model (B). 

 

Figure 4.7 compares the temperature gradients obtained from the two-compartment RFA model and the one-

compartment RFA model (homogenous RFA model). This result was simulated considering the 36.6 V-720 s 

scenario, whereas for the homogenous RFA model, the electrical, thermal and perfusion properties were set equal to 

those of the healthy liver tissue. As shown in Figure 4.7, more biological tissues around the RF electrode were 

heated to a temperature greater than 80 ℃ with the two-compartment RFA model compared with those obtained 

with the homogenous RFA model. The 100 ℃ isotherm only appeared in a small area close to the distal and the 

proximal parts of RF electrode in the homogenous RFA model. However, for the two-compartment model, the 100 

℃ isotherm almost encompassed the RF electrode. All of these differences prove that a more realistic RFA model 

should be considered when attempting to investigate the RFA technique using numerical modelling and computer 

simulation. 

 

One of the limitations of the present work could be the lack of experimental validation, but the authors are confident 

that the information presented in this manuscript is useful for understanding the deficiency of the RFA technique for 



 

 

78 

 

the treatment of large tumour tissues and the effective treatment of target tissues of various sizes in clinical practice. 

The cooling effect of large blood vessels was also ignored in this study because the main objective focused was on 

target tissues of difference sizes. Another limitation is that we did not investigate the differences between the 

different types of liver tumours, such as malignant tumours and benign tumours, due to lack of data [51]. Our future 

and upcoming studies will aim to validate and improve the results presented in this manuscript using tumour tissue 

or tumour tissue phantom. Another interesting future work can be the investigation of the relationship between the 

TTN size and target tissue size in the pulsed RFA. 

4.4 Conclusions 

This study investigated the different results in the TTN volume on target tissues of different sizes using a two-

compartment RFA model. The following three conclusions regarding the RFA procedure for the treatment of target 

tissues (liver tumours) can be drawn from the results of this study: 

 

(1) While using the constant RF power supply method, the largest TTN volume can be achieved at the 

maximum voltage applied without the roll-off occurrence. 

 

(2) For target tissues of different sizes, the maximum voltage applied without the roll-off occurrence is 

different and it decreases with an increase in the target tissue diameter. 

 

(3) The result predicted from the two-compartment RFA model is much different from those obtained with the 

homogenous RFA model. 
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5 NUMERICAL ANALYSIS OF THE RELATIONSHIP 

BETWEEN THE AREA OF TARGET TISSUE NECROSIS AND THE 

SIZE OF TARGET TISSUE IN LIVER TUMOURS WITH PULSED 

RADIOFREQUENCY ABLATION 

This chapter is derived from an accepted manuscript published by Taylor & Francis in International Journal of 

Hyperthermia in 2015. Available online: http://www.tandfonline.com/ doi:10.3109/02656736.2015.1058429. 

Abstract 

Purpose: Radiofrequency ablation (RFA) is currently restricted to the treatment of target tissues with a small size 

(<3 cm in diameter). To overcome this problem with RFA, some phenomena need to be understood first. The study 

presented in this paper investigated the relationship between the area of target tissue necrosis (TTN) and the size of 

target tissue in pulsed radiofrequency ablation (PRFA). 

Materials and methods: Liver tumour, one of the common targets of RFA in clinical practice, was used as the target 

tissue in this study. Two types of pulsed RF power supply methods (half-square and half-sine) and three target 

tissues with different sizes (25 mm, 30 mm, and 35 mm in diameter) were studied using finite element modelling. 

The finite element model (FEM) was validated by using in vitro experiments with porcine liver tissues. The first 

roll-off occurrence or 720 s, whichever occurs first, was chosen as the ablation termination criteria in this study. 

Results: For each target tissue size, the largest TTN area was obtained using the maximum voltage applied (MVA) 

without roll-off occurrence. In this study, target tissues with a 25 mm diameter can be ablated completely but target 

tissues with 30-mm and 35-mm failed to be ablated. 

Conclusions: The half-square PRFA could achieve a larger TTN area than the half-sine PRFA. The MVA decreases 

with an increase in the target tissue diameter in both the half-square PRFA and the half-sine PRFA. The findings of 

this study are in agreement with the clinical results that lesions (≥3 cm in diameter) have less favourable results 

from RFA. 

http://www.tandfonline.com/
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5.1 Introduction 

Radiofrequency ablation (RFA) is a thermal therapy technique that has been used to eradicate the tumours in the 

liver and other organs for many years [1,2]. However, this technique has yet to establish good clinical results in the 

treatment of target tissues ≥3 cm in diameter [3-5]. Zhang et al. [6] evaluated the deficiencies of current commercial 

RFA systems using an engineering method (axiomatic design theory) and concluded that the incomplete target tissue 

necrosis (TTN) of RFA for large target tissues is the main reason. Previous studies [7,8] showed that one of the 

determinant factors causing the incomplete TTN is the tissue charring during the procedure of RFA. The tissue 

charring occurs when the tissue is heated to a temperature above 100 ℃ due to water evaporation. 

 

In the RFA technique, alternating electrical currents with high frequency (~500 kHz) are used to generate the heat to 

kill the target tissues. So this technique is heavily influenced by the impedance of external loads, including the target 

tissue and healthy surrounding tissue. When the tissues are getting charred, the impedance of external loads 

increases dramatically and this prevents the RF power generator from delivering further energy into the tissue. In the 

clinical setting, this dramatic increase of impedance, followed by a drop of RF power supply, is called ‘roll-off’. The 

roll-off is a critical factor during the generation of TTN size in RFA. For more information about the roll-off, the 

readers may refer to our previous study [9]. 

 

To overcome this deficiency with the RFA technique, a better understanding of the change of TTN size prior to the 

roll-off occurrence is crucial. In our previous study [9], we investigated the relationship between the size of TTN 

(volume) and the size of target tissue in a constant radiofrequency ablation (CRFA) using a two-compartment finite 

element modelling approach. We concluded that the largest TTN volume can be achieved at the maximum voltage 

applied (MVA) without roll-off occurrence and the MVA was different for different sizes of target tissues. Our 

previous study also confirmed that the CRFA was unable to kill liver tumours ≥3 cm in diameter with the 

mathematical model. Besides, the constant RF power supply, the pulsed RF has also been used as an alternate power 

supply method in the current commercial RFA devices in the pursuit of getting a larger TTN size [10-12]. In the 

present study, we continued our work using a 2D axis symmetric FEM and tried to find the relationship between the 

size of TTN (area) and the size of target tissue in the PRFA. Three different sizes of liver tumours with 25, 30, and 
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35 mm in diameter, respectively, were taken as the target tissues. For the pulsed RF power supply method, the half-

square and the half-sine methods were used in the present study. 

 

The remainder of this paper is as follows. The FEM of PRFA and the TTN area evaluation are discussed in Section 

5.2, followed by the presentation of results with discussion in Section 5.3. Some conclusions drawn from this study 

are given in Section 5.4. 

5.2 Materials and methods 

5.2.1 Finite element modelling of PRFA 

The PRFA process is a coupled thermal-electric problem. The problem was represented as a 2D axis symmetric 

FEM. The model was created and solved numerically using COMSOL Multiphysics 4.0 software (COMSOL, Inc., 

Burlington, MA, USA). As shown in Figure 5.1, a healthy liver tissue was built as a cylinder measuring 50 mm in 

radius and 130 mm in height. An elliptical liver tumour with a 40 mm long axis and a 𝑑𝑥 (25, 30 and 35 mm) short 

axis was considered in this model. An internally cooled RF applicator (Covidien AG, Zurich, Switzerland), 

consisting of a RF electrode and an insulated shaft, was chosen for this liver tumour and created in this 2D axis 

symmetric PRFA model. The RF applicator with a 1.5 mm diameter and 30 mm exposure length (length of the RF 

electrode) was inserted into the liver tumour. The centre of the RF electrode was put on the centre of the liver 

tumour in the pursuit of an optimal RF electrode placement. 

 

The governing equation for this 2D coupled thermal-electric problem is the Pennes bioheat transfer equation [13] 

with the heat source generated by the RF electrical current: 

𝜌𝑐
𝜕𝑇(𝐱,𝑡)

𝜕𝑡
= ∇ ∙ (𝑘∇𝑇(𝐱, 𝑡)) + 𝜌𝑏𝑐𝑏𝜔𝑏(𝑇𝑏 − 𝑇(𝐱, 𝑡)) + 𝑄𝑚(𝐱, 𝑡) + 𝑄ℎ𝑠(𝐱, 𝑡)               𝐱 ∈ 𝚪           (5.1) 

where 𝜌 (kg m−3) is the density, 𝑐 (J kg−1K−1) is the specific heat, 𝑇(𝐱, 𝑡) (℃) is the temperature, 𝐱 = {r, z} in the 

2D axis symmetric coordinate system, 𝚪 denotes the analysed 2D axis symmetric domain, 𝑘 (W m−1K−1) is the 

thermal conductivity, 𝜌𝑏 (kg m
−3) is the blood density, 𝑐𝑏 (J kg 

−1K−1) is the blood specific heat, 𝜔𝑏  (s
−1) is the 

blood perfusion rate, 𝑇𝑏  is the temperature of the blood entering the tissue, 𝑄𝑚(𝐱, 𝑡) (W m
−3) is the volumetric heat 
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power generated by metabolism, which was neglected due to its small magnitude compared with the other terms in 

Eq. (5.1) in this study and 𝑄ℎ𝑠(𝐱, 𝑡) W m
−3 is the spatial heat power generated by the RF electrical current. 

 

 

Figure 5.1. 2D axis symmetric RFA model and its boundary conditions used in the present study (out of scale, 

dimension in mm). 

 

In RFA, 𝑄ℎ𝑠(𝐱, 𝑡)  can be calculated by 𝑄ℎ𝑠 = 𝑱 ∙ 𝑬 =  𝜎|∇𝑉|2 . 𝑱 (A m−2) , 𝑬 (V m−1)  and 𝑉 (V)  are the current 

density, the electrical field intensity and the applied voltage, respectively. By using the quasi-static approach, the 

value of applied voltage can be evaluated by ∇ ∙ 𝜎∇𝑉 = 0. The properties of all the elements in the RFA model were 

found from the literature [14-20] and tabulated in Table 5.1. 
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We considered the temperature dependence of the thermal conductivity and the electrical conductivity for both liver 

tumour and healthy liver tissue. Below 100 ℃ , the thermal conductivity and the electrical conductivity were 

approximated by Eq. (5.2) and Eq. (5.3), respectively. 

𝑘(𝑇) = 𝑘𝑎𝑡 21 ℃ + 0.0013(𝑇(𝐱, 𝑡) − 21)                                                             (5.2) 

𝜎(𝑇) = 𝜎𝑎𝑡 21 ℃[1 + 0.02(𝑇(𝐱, 𝑡) − 21)]                                                             (5.3) 

 

Table 5.1. Thermal and electrical properties of the modelling elements used in the present study. 

Modelling element 

𝜌 

(kg m−3) 

𝑐 

(J kg −1K−1) 

𝑘 

(W m−1K−1) 

𝜎 

(S m−1) 

𝜔0 

(s−1) 

Healthy liver tissue 1080 3455 0.515a 0.203a 0.016 

Liver tumour 1045 3760 0.60a 0.50a 0.002 

RF electrode 6450 840 18 1.0×108 - 

Insulated shaft 70 1045 0.026 1.0×10-5 - 

Blood vessel 1000 4180 0.49 0.667 - 

a evaluated at 21 ℃. 

 

 

Figure 5.2. Thermal and electrical conductivities of healthy liver tissue and liver tumour used in the present study. 
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The thermal conductivity was considered as a constant when temperature was higher than 100 ℃. Between 100 ℃ 

and 105 ℃, the electrical conductivity decreased rapidly with two orders of the magnitude due to water vaporization 

and desiccation [21]. Over 105 ℃, it was considered as a constant, as shown in Figure 5.2. The blood perfusion rates 

in healthy liver tissue and liver tumour were also considered as temperature dependent. They were described by Eq. 

(5.4) [22]. 

𝜔𝑏(𝑇) = {
𝜔0                       (𝑇 < 60℃)
0                          (𝑇 ≥ 60℃)

                                                          (5.4) 

 

The initial temperature of the whole FEM was set to 37 ℃, which is close to the internal temperature of the human 

body. A pulsed voltage (𝑉𝑝) and 0 V were applied on the surface of the RF electrode and ground pads, respectively. 

The inner side of RF electrode lumen and the healthy liver tissue exterior boundary were set as electrical insulation. 

All other interfaces inside the liver tissue were taken as continuity, as shown in Figure 5.1. The cooling effect of the 

RF electrode was approximated by using the Newton cooling law using the thermal convection coefficient (ℎc) and 

the cooling temperature (𝑇c). The ℎc = 3366 (W m−2K−1) was calculated by considering the 30-mm RF electrode 

and an half of the cross section area of the RF electrode lumen [23]. The flow rate of the cooling water was 

considered as 45 (mL min−1). Note that the previous study [24] suggested that the cooling temperature have no 

significant effect on the TTN size. However, we still set the cooling temperature to be 10 ℃ (because it was used in 

many clinical settings and computational models [14,23,25]). 

 

 

Figure 5.3. Two pulsed RF power supply methods: (A) half-square waveform and (B) half-sine waveform. 
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In the present study, two types of the pulsed voltages (half-square and half-sine) were taken as the RF power supply 

methods, as shown in Figure 5.3. Note that the half-square pulsed voltage is used in the current commercial RFA 

systems [11]; the half-sine pulsed voltage was investigated by some researchers [12] and they concluded that the 

half-sine pulsed voltage method had achieved a relatively large TTN size compared with the half-square method in 

the animal tissue experiments [12]. For the pulsed RF power supply method, four parameters such as 𝑉on, 𝑉off, 𝑡on 

and 𝑡off need to be determined. 𝑉on  is the applied voltage which is used to generate the heat; 𝑉off is the cooling 

voltage, which should be small enough so that only negligible heat can be generated; 𝑡on is the heating period during 

which the 𝑉on applied; 𝑡off is the cooling period. To get close to the real clinical setting in the computer simulation, 

10 and 15 seconds in a pulse circle were used for 𝑡on and 𝑡off, respectively [10,11]. 

 

 

Figure 5.4. FEMs and their mesh modes used in the present study for three sizes of target tissues: (A) 25 mm, (B) 

30 mm, and (C) 35 mm. 

 

A sensitive study was performed to determine the value of 𝑉off. We evaluated the maximum temperature at 720 s 

using a fixed 𝑉on (30 V) and a decreasing 𝑉off. When the difference of the maximum temperature between the two 

𝑉offs was less than 0.1 ℃, the previous value of 𝑉off was chosen. In this study, the value of 𝑉off was found as 4 V. In 

order to avoid the boundary effects, the same sensitive analysis was also done for the dimension of the healthy liver 

tissue. Three pairs of dimensions, such as (50 mm, 130 mm), (60 mm, 180 mm), and (80 mm, 200 mm), were 

examined. The differences of the maximum temperatures between these three dimensions were all less than 0.1 ℃. 

So the smallest size of healthy liver tissue was used in this study for saving the computational cost. 
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The convergence tests of the meshing were done using the 𝑉on = 30 V, 𝑉off = 4 V and 0.1 ℃ temperature difference. 

The whole research domain was divided into triangular elements, as shown in Figure 5.4. A fine mesh was set in the 

region of interest to include the RF electrode domain and the liver tumour domain, where higher temperature 

gradients were expected. This iterative process was continued until the convergence test was satisfied. For the target 

tissue with 25 mm, 30 mm and 35 mm in diameter, there were 3878, 4164, and 4477 triangular elements in the FEM, 

respectively. 

5.2.2 TTN area evaluation 

There were several methods used to evaluate the TTN in the previous literature, such as the temperature threshold, 

the Arrhenius model and the cumulative equivalent minutes at 43 ℃. The Arrhenius model was used to evaluate the 

TTN size in this study, which can be given as follows: 

Ω(𝑡) = 𝐴 ∫ 𝑒
−∆𝐸

𝑅𝑇(𝜏)
𝑡

0
𝑑𝜏                                                                      (5.5) 

where Ω(𝑡) is the degree of tissue death, 𝐴 (s−1) is the frequency factor, ∆𝐸 (J mol−1) is the activation energy for 

the irreversible damage reaction, 𝑅 (J mol−1K−1)  is the universal gas constant and 𝑇(𝜏) (K)  is the absolute 

temperature. In this study, 𝐴 = 7.390 × 1039 (s−1) and ∆𝐸 = 2.577 × 105 (J mol−1) were found from the literature 

[26] for healthy liver tissue. For the liver tumour, 𝐴 = 3.247 × 1043 (s−1) and ∆𝐸 = 2.814 × 105 (J mol−1) were 

found from the literature [27]. The tissue was considered as dead, if the value of Ω(𝑡) = 1, which corresponds to the 

63% probability of tissue cell death [28]. 

 

As discussed before in the section of Introduction, this study focused on the change of the TTN area prior to the first 

roll-off occurrence or at 720 s, whichever occurred first. Trujillo et al. [23] concluded that the roll-off usually 

happens at the moment when the RF electrode is encircled by the charred tissue (tissue above 100 ℃). In this study, 

we stopped the ablation procedure using the first roll-off occurrence as a criterion. The TTN area was evaluated by 

summation of the areas of all triangular elements in the liver tumour domain and healthy liver tissue domain that had 

Ω(𝑡) = 1 on all nodes. 
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5.2.3 The in vitro experiment for validation of the FEM 

To validate the accuracy of the FEM used in the present study, in vitro experiments with porcine liver tissue were 

performed. The in vitro experiments followed the regulation of Biosafety Permit Protocol of University of 

Saskatchewan for handling tissues. A custom-made RFA system with 50-W maximum power (450 kHz) and a no-

cooling RF electrode with 1.98 mm of diameter and 30 mm of exposure length were used in the experiment. The 

porcine liver tissues were acquired from a local grocery store. Before the experiment, all the porcine liver tissues 

were heated up to an ambient temperature of 21 ℃ (room temperature). Figure 5.5 shows the experimental set up. 

The liver tissue was put on an aluminium foil (190×210 mm) acting as the ground pad. The electrode was inserted 

into the liver tissue with the insertion of about 50 mm. The distance between the ground pad and the RF electrode 

was set to about 20 mm to avoid the situation where the TTN grows towards the ground pad. Two ablation 

operations with durations of 360 s and 720 s (respectively and with 30 V (CRFA) of applied voltage were performed 

on the tissue. We used a total of 10 pieces of porcine liver tissues (𝑛 = 5 for each ablation time) and the size of each 

tissue was kept at least 80×60×40 mm. The initial temperature and blood perfusion rate in the FEM were set to be 

21 ℃ and 0, respectively, for the consistency with the in vitro experiments. 

 

 

Figure 5.5. In vitro experimental set up for the validation of the FEM. 
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5.3 Results and discussion 

5.3.1 Experimental results for validation of the FEM 

Figure 5.6 shows the computational and experimental results at 360 s and 720 s, respectively. The two ablation times 

(i.e. 360 s and 720 s) were selected based on the experience of the roll-off state in the RFA procedure, learned from 

both the FEM simulation and in vitro experiment; particularly, when time is around 360 s, the tissue charring 

proceeds but prior to the roll-off, while time is around 720 s, the roll-off is certainly presented. The size of TTN in 

the in vitro experiments was determined by visual examinations. As shown in Figure 5.6, an elliptical TTN area 

(‘pale zone’) can be found. The size of TTN in the FEM was determined by the Arrhenius model (Ω(𝑡) = 1), 

discussed in the section of evaluation of TTN area. 

 

 

Figure 5.6. Computational and experimental results for two ablation operations: (A) 360 s, (B) 720 s. 

 

As shown in Table 5.2, a good agreement on TTN area between the FEM and the in vitro experiments can be found, 

regardless of the ablation duration. The results of 𝐷𝑥 and 𝐷𝑦 , obtained from FEM, show that they are all located in 

the corresponding error bars of the results, obtained from the in vitro experiments. There are only acceptable 

discrepancies on TTN areas between the in vitro experiments and FEM at both 360 s and 720 s ablation durations 
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(9.3% and 8.0%, respectively). These discrepancies may come from the following two reasons: (1) not all the sliced 

liver tissues are in the same size and (2) underestimation of TTN size in the in vitro experiments using the pale zone 

method. A narrow zone (sub-lethal damage zone or hemorrhagic rim) around the central pale zone, where the tissue 

cells are dead but the proteins are not denatured completely to become whitish, can be revealed by the triphenyl 

tetrazolium chloride (TTC) staining technique. The comparison shows that the FEM has enough accuracy to be used 

as a test-bed. 

 

Table 5.2. Comparisons of TTN areas from the FEM and in vitro experiments. 

Ablation time (s) TTN area In vitro experiments# FEM 

360 

𝐷𝑥 (mm) 10.9±0.3 11.2 

𝐷𝑦 (mm) 34.4±0.4 34.6 

Area (mm2) 295.6±9.4 325.8 

720 

𝐷𝑥 (mm) 13.3±0.3 13.6 

𝐷𝑦 (mm) 35.9±0.3 36.1 

Area (mm2) 374.9±10.4 407.4 

#the results of the in vitro experiments were given as mean±standard deviation 

5.3.2 Computational results for analysis of the pulsed RFA 

Two types of pulsed RF power supply methods (half-square and half-sine) and three different sizes of target tissues 

(𝑑𝑥= 25, 30, and 35 mm) were then examined on the FEM in this study. Twenty-four PRFA protocols were 

simulated with the FEM. All the TTN areas were evaluated at the time when the first roll-off occurred or at 720 s, 

whichever occurred first. For instance, a RFA protocol, like 47.2 V-720 s for the 25-mm target tissue meant that the 

applied voltage (𝑉on) was 47.2 V and the TTN area was found at 720 s, because in this PRFA protocol there was no 

roll-off occurring, as shown in Figure 5.7. 

 

Figure 5.7 shows the change of the 100 ℃ isotherm and the temperature distributions. The impedance between the 

RF electrode and the ground pads during the whole ablation process was less than a critical value (roll-off occurred 

at this value), as show in Figure 5.7D. In the present study, the critical impedance value was about 45 Ω (not shown 
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in this paper) according to our initial work for this study. Figure 5.8 shows another PRFA protocol (48 V-145 s) in 

which the 𝑉on was 48 V and the first roll-off occurred at 145 s. The RF electrode was encircled completely by 100 ℃ 

isotherm at 145 s when the impedance dramatically increased to about 85 Ω, as shown in Figure 5.8D. 

 

Figure 5.7. 100 ℃ isotherm and temperature distribution of the scenario of 47.2 V-720 s at 50 s (A), 442 s (B), and 

720 s (C) and the change of the impedance (D). 
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Figure 5.8. 100 ℃ isotherm and temperature distribution of the scenario of 48 V-145 s at 25 s (A), 118 s (B), and 

145 s (C) and the change of the impedance (D). 
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Table 5.3. The computational results of TTN area for all PRFA protocols in the present study. 

Target tissue 

(mm) 

Pulsed RF 

waveform 
Ablation protocol 

D63 

(mm) 

Complete 

ablation 

𝑑𝑥= 25 

half-square 

46 V-720 s 𝐷𝑥= 19.90, 𝐷𝑦= 40.00 N 

47.2 V-720 s 𝐷𝑥= 25.00, 𝐷𝑦= 40.00 Y 

48 V-334 s 𝐷𝑥= 15.26, 𝐷𝑦= 36.84 N 

51 V-118 s 𝐷𝑥= 11.16, 𝐷𝑦= 37.36 N 

half-sine 

68 V-720 s 𝐷𝑥= 18.46, 𝐷𝑦= 36.30 N 

69.9 V-720 s 𝐷𝑥= 19.18, 𝐷𝑦= 36.48 N 

70 V-682 s 𝐷𝑥= 18.62, 𝐷𝑦= 35.92 N 

73 V-132 s 𝐷𝑥= 9.06, 𝐷𝑦= 31.72 N 

𝑑𝑥= 30 

half-square 

43 V-720 s 𝐷𝑥= 21.62, 𝐷𝑦= 39.96 N 

44.9 V-720 s 𝐷𝑥= 25.38, 𝐷𝑦= 40.00 N 

45 V-685 s 𝐷𝑥= 23.52, 𝐷𝑦= 39.84 N 

48 V-145 s 𝐷𝑥= 12.90, 𝐷𝑦= 35.00 N 

half-sine 

65 V-720 s 𝐷𝑥= 19.70, 𝐷𝑦= 36.46 N 

66.5 V-720 s 𝐷𝑥= 21.60, 𝐷𝑦= 36.50 N 

67 V-457 s 𝐷𝑥= 17.82, 𝐷𝑦= 35.30 N 

70 V-132 s 𝐷𝑥= 10.02, 𝐷𝑦= 32.56 N 

𝑑𝑥= 35 

half-square 

42 V-720 s 𝐷𝑥= 23.96, 𝐷𝑦= 40.00 N 

43.3 V-720 s 𝐷𝑥= 25.74, 𝐷𝑦= 40.00 N 

44 V-451 s 𝐷𝑥= 20.96, 𝐷𝑦= 37.58 N 

47 V-145 s 𝐷𝑥= 13.54, 𝐷𝑦= 34.98 N 

half-sine 

63 V-720 s 𝐷𝑥= 21.10, 𝐷𝑦= 35.52 N 

64.4 V-720 s 𝐷𝑥= 22.64, 𝐷𝑦= 36.38 N 

65 V-432 s 𝐷𝑥= 19.06, 𝐷𝑦= 35.42 N 

68 V-132 s 𝐷𝑥= 10.70, 𝐷𝑦= 32.60 N 

Y: Yes, N: No 

 

Table 5.3 shows the twenty-four computational results for three different sizes of target tissues using the half-square 

and the half-sine PRFA. In this study, two dimensional parameters (𝐷𝑥 and Dy) and TTN area (Figure 5.9) were 

used to evaluate the PRFA protocols. 𝐷𝑥 and 𝐷𝑦  mean the longest length of the short and the long axis of TTN area, 

respectively, as shown in Figure 5.6. Similar to the results of our previous study [9], the largest TTN area was found 

at a particular voltage for each size of target tissue in both the half-square and the half-sine PRFA, as shown in 

Figure 5.9. This voltage was the MVA without the roll-off occurrence. The MVA was found using the trial and 

error method and the accuracy was about 0.1 V, which was used in our previous study [9]. 
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We also found that the MVA for the half-square PRFA was lower than that for the half-sine PRFA for all three sizes 

of target tissues. The reason for this phenomenon can be explained in the following. In the situation of using the 

same 𝑉on, the half-square PRFA has more energy than the half-sine PRFA in a pulse period (𝑡on + 𝑡off) due to the 

different waveforms. Thus, for the half-sine PRFA, a higher 𝑉on was needed to generate the same amount of TTN 

area with the half-square PRFA. Another salient finding in the present study is that the half-square PRFA achieved a 

higher TTN area than the half-sine PRFA. It is worth mentioning that this result contradicts the results found in the 

work of Lim et al. [12]. In their work, the half-sine PRFA had a slightly better performance on the TTN size than the 

half-square PRFA for 𝐷𝑥 (8.2 vs. 8.0 mm) while for 𝐷𝑦 , the two PRFAs had the same results. The different results 

between the literature [12] and the present study may be due to the following reasons: (1) they did not consider the 

liver tumour tissue in their model and (2) their results were achieved using the same root mean square value (25 V) 

of the half-square and the half-sine waveforms rather than the first roll-off occurrence. We believe that the two 

treatments in their work appear inadequate, and as such, our PRFA model was closer to the real clinical setting. 

 

Figure 5.10 shows the computational results of the tissue death using D63 criteria [28] for the 25-mm, 30-mm, and 

35-mm target tissues. The tissue death was evaluated using MVA, at which the largest TTN area was able to be 

achieved for each size of target tissue. As shown in Figure 5.10A, only a 25-mm target tissue can be killed 

completely using the half-square PRFA. Figure 5.10D shows the differences in the TTN area for three sizes of target 

tissues using the half-square PRFA and the half-sine PRFA. It is interesting to note that the differences in the TTN 

area were almost the same for the three sizes of target tissues before about 360 s. After that time, the larger the target 

tissue is, the larger the TTN area. This phenomenon was found in both the half-square PRFA and the half-sine 

PRFA methods. We speculated the reason for this phenomenon as follows. The target tissue is more sensitive to the 

thermal therapy due to its higher electrical conductivity and lower blood perfusion rate. The larger the target tissue is, 

the higher the sensitivity. After the critical time (about 360 s in the study), the differences in the sensitivities of the 

target tissues were getting larger and larger due to the high temperature. So the large TTN area can be obtained in 

the target tissue with the large size. Further work is necessary to study this phenomenon. 
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Figure 5.9. Computational results of TTN areas for target tissues with different sizes: (A) 𝑑𝑥= 25 mm, (B)  𝑑𝑥= 30 

mm, and (C) 𝑑𝑥= 35 mm. 

 

MVA without the roll-off occurrence decreased with an increase in the target tissue size for the half-square PRFA 

and the half-sine PRFA, as shown in Figure 5.11. For a whole research domain (healthy liver tissue and liver 

tumour), the impedance (𝑅) was the equivalent value of the impedance of healthy liver tissue (𝑅ℎ𝑙𝑡 ) and the 

impedance of liver tumour (𝑅𝑙𝑡) in series, namely, 𝑅 = 𝑅ℎ𝑙𝑡 + 𝑅𝑙𝑡. As such, the larger the liver tumour, the smaller 

the impedance (𝑅 ), as the liver tumour has a higher electrical conductivity than healthy liver tissue [15,29]. 

According to 𝑃 = 𝑈2 𝑅⁄ , when the R is small, the voltage (𝑈) we need is also small because the power (𝑃) needed 

for getting TTN is a constant. 
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Figure 5.10. Target tissue death rate (%) (D63) at its own MVA: (A) 𝑑𝑥= 25 mm, (B)  𝑑𝑥= 30 mm, and (C) 𝑑𝑥= 35 

mm and the changes of the TTN areas (D). 

 

In the current commercial PRFA device, the algorithm of RF power supply is much related to the change of 

impedance. Another algorithm for power supply can be such that a constant RF power is usually used until the first 

roll-off occurs. Then, the algorithm is changed to the pulsed RF power supply because the PRFA is able to deliver 

more power to target tissue even after the roll-off occurrence. The reason behind this is that PRFA has the cooling 
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period (𝑡off) for heat dissipation from the area in the proximity of the RF electrode, which can relieve the roll-off. 

Although a relatively large TTN size can be obtained using PRFA compared with the CRFA, the TTN size is still a 

small size and PRFA is not efficient enough on the large target tissues. It is worth noting that unlike other studies 

[10,30], a relatively large TTN area was not achieved using the PRFA in this study because of the different ablation 

termination criteria. We mainly focused on the ablation duration before the first roll-off occurrence for different 

sizes of target tissues as we discussed above. The reason of choosing this ablation termination is that we believe that 

the growth of TTN before the first roll-off is worth investigating such that an optimal PRFA algorithm in a roll-off 

for the large TTN area can be achieved. Using the optimal algorithm within several roll-offs, a further large TTN 

area is expected to be achieved. 

 

 

Figure 5.11. MVA without the roll-off occurrence for each size of target tissue in the present study. 

5.3.3 Limitations 

There are some limitations in the present study. One of them is the approximation of the blood perfusion model. 

There were some debates on how to model the blood perfusion of the liver tissue in the computational work. Most of 

the studies considered blood perfusion as a constant [6,31,32] or a piecewise function [9,22,33,34]. Some 
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researchers [35] obtained a good agreement with the in vivo animal experiments when using the foregoing constant 

method. However, It is worth mentioning that Schutt and Haemmerich [36] had concluded that there were 

significant effects on TTN size using different blood perfusion models. They used the piecewise model, a linear 

decreasing model and a nonlinear decreasing model. In the nonlinear decreasing model, they considered an increase 

of blood perfusion with an increase of degree of vascular stasis at the ablation zone boundary due to the hyperaemia. 

Similarly, a dynamic model of blood perfusion rate with the temperature and damaged tissue was used in a work of 

Bourantas et al. [37]. In their model, blood perfusion was taken as a product of constitutive perfusion rate and a 

dimensionless function that accounts for vessel dilation at slightly elevated temperatures [38]. In the present study, a 

piecewise function model of vascular coagulation was used. Particularly, the perfusion rate was considered as a 

constant before the biological tissue reached a temperature of 60 ℃; at temperatures higher than 60 ℃, the blood 

perfusion rate was set to 0, because the coagulation eliminated microvascular perfusion [22]. 

 

Although the computer model was used to achieve the data for various PRFA protocols, to make the findings of the 

present study more reliable, experiments with liver tumour or tumour tissue phantom are necessary in the future 

study. Furthermore, we also acknowledge that large adjacent blood vessels ≥3 mm in diameter around the target 

tissue can be another reason for the small size of TTN, namely the ‘heat-sink effect’. We did not consider this heat-

sink effect in our model, because we want to avoid the impacts of other factors in the present study. Certainly, a 

more sophisticated model considering the heat-sink effect is needed in the future study. 

5.4 Conclusions 

Two types of pulsed RF power supply methods and three target tissues of different sizes were studied using finite 

element modelling to find the relationship between the size of target tissue and the area of TTN in the PRFA. Four 

conclusions can be drawn from this study: 

 

(1) The largest TTN area can be achieved using the MVA without the roll-off occurrence. For 25 mm, 30 mm 

and 35 mm target tissues, the largest TTN areas are 753.38 mm2, 786.28 mm2, and 817.88 mm2, 
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respectively, using half-square PRFA, and 611.56 mm2, 653.48 mm2, and 677.94 mm2, respectively, while 

using half-sine PRFA. 

 

(2) Target tissues (liver tumours) with 30 mm and 35 mm in diameter cannot be ablated completely if using 

the first roll-off occurrence as the ablation termination criteria. 

 

(3) The half-square PRFA achieves a greater TTN area than the half-sine PRFA. 

 

(4) The MVA decreases with an increase in the target tissue diameter in both the half-square PRFA and the 

half-sine PRFA methods. 
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6 JUDICIOUS SELECTION OF TARGET CONTROL AREAS 

AND TARGET TEMPERATURES TO INCREASE THE SIZE OF 

TARGET TISSUE NECROSIS BY RADIOFREQUENCY ABLATION 

This chapter is submitted as Bing Zhang et al. “Judicious selection of target control areas and target temperatures 

to increase the size of target tissue necrosis by radiofrequency ablation” to Medical Physics in 2015 (under review). 

Abstract 

Purpose: The purpose of this study was to investigate the feasibility to achieve a large target tissue necrosis (TTN) 

size with temperature-controlled radiofrequency ablation (RFA) by examining different control areas and set-point 

temperatures. 

Methods: A novel approach to achieving a large (≥3 cm in diameter) TTN with RFA procedure was developed in 

this study. The approach was based on a feedback temperature-control strategy with the judicious selection of the 

best target area for feedback control and of the best set-point (target temperature) on the target tissue. A commercial 

internally cooled RFA electrode and the target tissue (liver tumour) were used for the study. An accurate finite 

element model of the RFA system (with liver tumour) was first introduced from our previous work, and the model 

was served as a test-bed for the study. Three control areas with 14 control points were chosen as the control 

positions for temperature control to increase the TTN size. Particularly, four points in Area I, six points in Area II 

and four points in Area III were chosen, and these areas are close to the proximal, middle, and distal part of the 

electrode, respectively. Temperatures (80 and 90 ℃) were taken as the set-point temperatures for every control point. 

Results: Based on this test-bed, the best area was then found to be in the middle part of the electrode and the set-

point to be 90 ℃. The details were given as: for Area I, the TTN areas were 775.13±39.54 mm2 and 841.61±85.48 

mm2 at 80 and 90 ℃, respectively. For Area II, the TTN areas were 878.65±39.49 mm2 and 954.26±26.03 mm2 at 

80 and 90 ℃, respectively. For Area III, the TTN areas were 749.16±70.18 mm2 and 819.71±76.69 mm2 at 80 and 

90 ℃, respectively. This finding was also verified by in vitro experiments using porcine liver tissues. The study 

further demonstrated that the target tissue with the elliptic shape (3×4 cm) can be completely ablated by the 

proposed approach. 
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Conclusions: It can be concluded that the RFA procedure requires sophisticated tissue temperature control and it is 

possible to ablate large target tissues by the feedback temperature control strategy (selection of target control area 

and set-point temperature). 

6.1 Introduction 

Radiofrequency ablation (RFA) technique uses alternating electric current with high frequency (about 500 kHz) to 

generate heat on the target tissue and ablate the target tissue under the image guidance [1,2]. This method has been 

improved considerably since its first introduction. Its application has been expanded from the treatment of liver 

tumour to target tissues on other organs such as bone, lung, and kidney [3-5]. However, this technique is restricted in 

the treatment of small size of target tissues (i.e. <3 cm in diameter) from the clinical experience. Indeed, many 

clinical results have shown that the local recurrence rate for the large size of target tissues is higher than that for the 

small size of target tissues owing to incomplete ablation for large target tissues [6-9]. 

 

An agreed view about incomplete ablation for large target tissue is that tissue charring is one of the main cause. 

Unlike other thermal therapies, the configuration of RFA is such that there is a circuit like that: RF electrode  

normal and target tissues  ground pad  RF power generator. By a proper setting of the RF power, heat is 

generated on the tissue, and subsequently the tissue is ablated due to the thermal-vaporized effect. This technique 

thus much depends on the electrical conductivity between the RF electrode and the ground pads. Tissue usually 

becomes charred when being heated up to 100 ℃. The charred tissue induces high impedance, which thus stops the 

further power delivery in the circuit. In clinic, tissue charring is called ‘roll-off’. Details of tissue charring and roll-

off may refer to our previous study [10]. Note that in our previous work, we demonstrated the similar result (only 

target tissue size less than 3 cm can be ablated completely) with constant RFA and pulsed RFA (respectively) as the 

clinic by modelling and simulation [10,11]. 

 

There are many methods developed in literature to address the foregoing problem with RFA. These methods include 

the designs that change the electrical and thermal conductivities of target tissues so that the tissue is less charred or 

the charring is under control and designs that delay the occurrence of tissue charring with the means such as the 



 

 

111 

 

pulsed RFA [12,13], the internally cooled electrode [14,15], and the perfusion electrode [16,17]. Note that the two 

improved designs may be combined. For the pulsed RFA, the accumulated heat in the areas surrounding the RF 

electrode can be dissipated away during the period of time that no power is delivered. For the internally cooled 

electrode, there is a cooling solution that circulates inside the RF electrode, which can absorb the accumulated heat 

surrounding the RF electrode. However, neither pulsed RFA nor internally cooled electrode is able to avoid tissue 

charring but just to defer tissue charring. For the perfusion electrode, the saline solution is injected into the target 

tissue, and this solution can then cool the tissue. The saline solution also changes the electrical and thermal 

conductivities of target tissue in such a way that more RF power can be delivered. 

 

In the present study, we developed a new protocol of RFA, based on a feedback temperature-controlled strategy. A 

commercially available internally cooled RF electrode was employed to demonstrate the new method. The salient 

points with this new method include: (1) the tissue temperature rather than the electrode temperature used for the 

control target, (2) the judicious selection of the area in tissue, at which temperature is measured, and (3) the optimal 

set-up point of temperature for control. 

 

The remainder of this paper is organized as follows. In Section 6.2.1, a finite element model (FEM) of RFA is 

discussed, which was used as a simulation test-bed to find the optimal area and the optimal set-up point of 

temperature. In Section 6.2.2, the feedback temperature-controlled RFA and selection of control areas are discussed. 

In Section 6.2.3, a test-bed is described to verify the findings about the control areas. The results with discussion are 

given in Section 6.3, followed by the conclusions with future study draw from the findings of this paper in the last 

section. 

6.2 Materials and methods 

6.2.1 Finite element model of RFA 

6.2.1.1 The tissue geometrical model and governing equation 

In the present study, a liver tissue was modelled as a cylinder with 50 mm in radius and 130 mm in height. An 
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elliptical liver tumour taken as the target tissue with 40 mm in the major axis and 30 mm in the minor axis was 

modelled in the centre of the liver tissue. Note that the diameter of target tissue in this study refers to the length of 

minor axis of the elliptical tumour. The internally cooled RF electrode (Cool-tipTM RF Ablation System E Series, 

Covidien AG, Zurich, Switzerland) used for the present study has the electrode of 1.5 mm in diameter and 30 mm in 

length. The RF applicator was inserted into the target tissue in a specific position in which the centre of RF electrode 

coincided with the centre of the target tissue (Figure 6.1). Due to the symmetrical characteristic of the tissue and the 

placement of the RFA applicator, we consider half of the tissue in the sectional plane passing through the axis of the 

cylinder (Figure 6.1). 

 

 

Figure 6.1. The geometric model of RFA with an elliptical liver tumor (out of scale). 
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The governing equation for the process of target tissue ablation with RFA follows the so-called Penne’s bioheat 

transfer equation [18]: 

𝜌𝑐
𝜕𝑇(𝐱,𝑡)

𝜕𝑡
= ∇ ∙ (𝑘∇𝑇(𝐱, 𝑡)) + 𝜌𝑏𝑐𝑏𝜔𝑏(𝑇𝑏 − 𝑇(𝐱, 𝑡)) + 𝑄𝑚(𝐱, 𝑡) + 𝑄ℎ𝑠(𝐱, 𝑡)              𝐱 ∈ 𝚪      (6.1) 

where 𝜌 (kg m−3) is the density, 𝑐 (J kg −1 K−1) is the specific heat, 𝑇 (℃) is the temperature, 𝐱 = {r, z} in the 2D 

axis symmetric coordinate system, 𝚪  is the analyzed domain, 𝑘 (W m−1 K−1)  is the thermal conductivity, 

𝜌𝑏 (kg m
−3) is the blood density, 𝑐𝑏 (J kg 

−1 K−1) is the specific heat of the blood, 𝜔𝑏  (s
−1) is the blood perfusion, 

𝑇𝑏  is the temperature of the blood entering the tissue, 𝑄𝑚 (W m
−3) is the heat power generated due to biological 

tissue metabolic processes, which is ignored due to its small magnitude compared with the other terms in Eq. (6.1) 

and 𝑄ℎ𝑠 is the heat power generated by the RF energy and it can be calculated as follows: 

𝑄ℎ𝑠 = 𝑱 ∙ 𝑬 = 𝜎|∇𝑉|
2                                                                 (6.2) 

where 𝑱 (A m−2)  is the current density, 𝑬 (V m−1)  is the electrical field intensity, 𝜎 (S m−1)  is the electrical 

conductivity and 𝑉 (V) is the applied voltage. The properties of the elements in the model in the present study were 

drawn from the literature [19-25] and listed in Table 6.1. 

 

Table 6.1. Properties of the elements in the model in the present study. 

Modelling element 

𝜌 

(kg m−3) 

𝑐 

(J kg −1 K−1) 

𝑘 

(W m−1 K−1) 

𝜎 

(S m−1) 

𝜔𝑏 

(s−1) 

Liver tissue 1080 3455 0.515a 0.203a 0.016a 

Liver tumour 1045 3760 0.600a 0.500a 0.002a 

RF electrode 6450 840 18 1.0×108 - 

Insulated shaft 70 1045 0.026 1.0×10-5 - 

Blood 1000 4180 0.49 0.667 - 

aevaluated at 21 ℃ 

 

The present study considered them temperature dependent the thermal, electrical conductivities and blood perfusions 

of liver tissue and target tissue. The thermal and electrical conductivities of both liver tissue and target tissue from 

21 to 100 ℃ can be described by [26] 

𝑘(𝑇) = 𝑘𝑟𝑒𝑓 + 0.0013(𝑇(𝐱, 𝑡) − 𝑇𝑟𝑒𝑓)                                                        (6.3) 



 

 

114 

 

𝜎(𝑇) = 𝜎𝑟𝑒𝑓[1 + 0.02(𝑇(𝐱, 𝑡) − 𝑇𝑟𝑒𝑓)]                                                        (6.4) 

where 𝑘𝑟𝑒𝑓  and 𝜎𝑟𝑒𝑓  are the reference thermal and electrical conductivity, respectively, measured at the reference 

temperature (𝑇𝑟𝑒𝑓 = 21 ℃). At above 100 ℃, the thermal conductivity was taken as a constant. The electrical 

conductivity from 100 to 105 ℃ decreased on two orders of magnitude due to the water vaporization and desiccation 

[27]. At the above 105 ℃, thermal conductivity was set to be a constant. The blood perfusions of liver tissue and 

target tissue were given by [10,28] 

𝜔𝑏(𝑇) = {
𝜔𝑏         𝑇 < 60 ℃
0            𝑇 ≥ 60 ℃

                                                                       (6.5) 

 

In the present study, the Arrhenius model was taken in the RFA model to measure the damaged tissue and thus for 

the estimation of TTN area, and the model is given by [29] 

Ω(𝑡) = 𝐴∫ 𝑒
−∆𝐸

𝑅𝑇(𝜏)
𝑡

0
𝑑𝜏                                                                                   (6.6) 

where Ω(𝑡) is the degree of tissue death, 𝐴 (s−1) is the frequency factor, ∆𝐸 (J mol−1) is the activation energy for 

the irreversible damage reaction, 𝑅 (J mol−1 K−1)  is the universal gas constant and 𝑇(𝜏) (K)  is the absolute 

temperature. For the liver tissue and the target tissue, 𝐴 = 7.390 × 1039  (s−1)  and 3.247 × 1043 (s−1) , 

respectively and ∆𝐸 = 2.577 × 105 (J mol−1)  and 2.814 × 105 (J mol−1) , respectively [30]. The tissue was 

considered as dead, if the value of Ω(𝑡) equals 1, which corresponds to a 63% probability that the tissue is dead [29]. 

6.2.1.2 The initial and boundary conditions 

The initial temperature of the finite element RFA model was assumed to be uniform and the same as the internal 

temperature of human body, namely 

𝑇(𝑡 = 0) =  37 ℃                                                                                                (6.7) 

 

The electrical boundaries of RF electrode and ground pad were given by 

𝑉 =  {
𝑢(𝑡)                   for RF electrode
0                       for ground pad

                                                                (6.8) 

 

The electrical boundary conditions of exterior healthy liver tissue boundary and RF electrode lumen boundary were 
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taken as insulating: 

𝐧 ∙ 𝑱 = 0                                                                                                             (6.9) 

 

All other electrical boundary conditions were considered as continuity, and thus: 

𝐧 ∙ (𝑱𝑖 − 𝑱𝑗) = 0                                                                                              (6.10) 

 

The thermal boundary conditions of the ground pads and exterior of liver tissue were set to be 37 ℃. The thermal 

boundary condition of RF electrode lumen boundary was assumed as Newton's cooling law to simulate the cooling 

effect of the cooling fluid circulating inside the RF electrode. 

−𝐧 ∙ (−𝑘∇𝑇) = ℎ𝑐(𝑇𝑐 − 𝑇)                                                                           (6.11) 

where ℎ𝑐  (W m
−2 K−1) is thermal convection coefficient, 𝑇𝑐  (℃) is the temperature of cooling water. In this study, 

we used the same values with previous studies, which ℎ𝑐  and 𝑇𝑐  were set to be 3366 (W m−2K−1) and 10 ℃, 

respectively [15]. 

 

All the other thermal boundary conditions were considered as continuity, and thus 

𝐧 ∙ (𝑘𝑖∇𝑇𝑖 − 𝑘𝑗∇𝑇𝑗) = 0                                                                                    (6.12) 

6.2.1.3 Validation of the FEM of RFA 

First, we wanted to make sure the mesh is a stable one. This was done by the following procedure. Let the mesh 

change incrementally until the maximum temperature calculated by the FEM (voltage is 30 V and length of ablation 

time is 200 seconds) with the particular mesh does not change (no change is defined as the temperature variation is 

within 0.1 ℃). As a result, the stable mesh has 3085 elements. Second, the dimensions (radius and length) of the 

liver tissue were also tested for a stable size. Three groups of the dimensions of liver tissue were tested, which are 

(50 mm, 130 mm), (60 mm, 180 mm), and (80 mm, 200 mm). Again, the variation in the maximum temperature 

among these three groups was defined as the change more than 0.1 ℃. As a result, the smallest size of liver tissue 

was found to be (50 mm, 130 mm) for the sake of reduction of computational cost. It is noted that this FEM for the 

RFA system was validated using in vitro experiments (porcine liver tissues) with an acceptable accuracy in our 
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previous study [11]. Thus, this FEM was used in the present study as a test-bed to simulate the feedback 

temperature-control RFA procedure. 

6.2.2 Temperature-controlled RFA and judicious selection of the control target in the 

target tissue area 

6.2.2.1 The feedback temperature-controlled RFA 

In the present study, a proportional-integral-derivative (PID) controller was further implemented into the FEM of the 

RFA system, as shown in Figure 6.2. A note is given to Figure 6.2 on the FEM that plays a role as a simulated plant 

and will not be there in the clinical operation. The dynamic system (FEM) consisted of the RF applicator (RF 

electrode and insulated shaft), target tissue, liver tissue, and ground pads. 

 

 

Figure 6.2. A PID closed loop control system used in the present study. 

 

For the PID controller, the input was the difference (𝑒) between the target temperature (𝑇𝑡) and the temperature (𝑇𝑟) 

measured at a specific position. The input of the dynamic system was the voltage 𝑢(𝑡), which was applied on the RF 

electrode and can be given as: 

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝜏)𝑑𝜏
𝑡

0
+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
                                                                 (6.13) 

 

To implement a PID controller into the FEM, the PID controller (Eq. (13) was discretized as: 

𝑢(𝑘) = 𝐾𝑝𝑒(𝑘) + 𝐾𝑖 ∑
𝑒(𝑚)+𝑒(𝑚+1)

2

𝑘−1
𝑚=0 𝑇𝑠 + 𝐾𝑑

𝑒(𝑘)−𝑒(𝑘−1)

𝑇𝑠
       𝑘 ∈ {1, 2,⋯ }        (6.14) 



 

 

117 

 

where the integral and derivative part of the PID controller were realized by using the trapezoidal and forward Euler 

method, respectively. 𝑇𝑠  (i.e. 1 s) is the sample time, which was set to be the same with the step size in the 

simulation of FEM. The thermo-electrically temperature-controlled RFA model was solved using the joint technique 

between COMSOL (Burlington, MA, USA) and MATLAB (Natick, MA, USA). Details of the FEM and PID can be 

found from the literature [31,32]. 

6.2.2.2 Target control points or areas for the feedback control 

The target tissue is an area or volume. A feedback temperature control needs to decide the location at which the 

temperature is measured and used for feedback control. Another piece of information for the feedback control is the 

set-point (i.e. the target temperature). The previous studies in literature concluded that the small size of the TTN area 

of RFA was caused by the tissue charring [33,34]. The tissue charring occurs at the temperature of 100 ℃. Therefore, 

the set-up point must be less than 100 ℃. On the other hand, to deliver RF energy as much as possible to increase 

the TTN area requires that the set-point be as high as possible. In this study, we tried two set-points of 80 ℃ and 90 

℃, respectively. 

 

It is also known from the literature that the charring occurs over the target tissue area in a non-uniform manner, and 

particularly the charring starts to occur from the areas surrounding the proximal and distal parts of RF electrode and 

then spreads to the areas surrounding the middle part of RF electrode, as shown in Figure 6.3A. As discussed before, 

when the RF electrode is encircled by the charred tissue (𝑡 = 𝑡3, in Figure 6.3A) the impedance between the RF 

electrode and the ground pads reaches to the maximal value. After that point of time, the growth of the TTN area 

usually stops. The charred tissue in this context can be viewed as an ‘energy gate’ that can shut down the path of the 

RF energy delivery. One of the methods to obtain a large TTN area is to deliver the RF energy to the target tissue as 

much as possible in a short period of time (for the interests of patients). To achieve this goal, the proposed idea in 

the present study was to keep the energy gate open with a just small gap, as shown in Figure 6.3A (𝑡 = 𝑡2). 
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Figure 6.3. Growth of the charred tissue (A) and three control areas with 14 control points selected in the present 

study (B). 

 

To verify the above idea, three areas in the target tissue with 14 points were selected as the control positions in the 

present study, as shown in Figure 6.3B. Four points (1-4), six points (5-10), and four points (11-14) were selected in 

the target tissue around the proximal, middle, and distal parts of RF electrode, respectively. For the RF electrode 

with the internal cooling effect, the charred tissue usually occurs at 1-2 mm away from the surface of RF electrode 

[35]. Thus, these control points were deliberately selected in these areas, as shown in Figure 6.3B. In the 

commercially temperature-controlled RFA systems, the temperature of the tip of RF electrode rather than 

temperature of the target tissue are measured and controlled. To compare the results of the commercially 

temperature-controlled RFA with that of the method in this study, point 11 was defined at the tip of RF electrode to 

mimic the commercially temperature-controlled RFA. 
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6.2.3 Validation of target control areas using in vitro experiments 

To validate the findings in the selection of control areas, in vitro experiments using porcine liver tissues were 

designed and performed in this study. The in vitro experiments followed the regulation of Biosafety Permit Protocol 

of University of Saskatchewan. A custom-made RFA system designed and manufactured by our group and the 

porcine liver tissues were used to validate the results about the selection of control areas and set-point temperatures. 

The RF power generator can supply the maximum power of 50 W with 430±30 kHz. The RF electrode was made 

using a 316L stainless steel tubing with 1.98 mm outer diameter, 1.60 mm inner diameter and 30 mm in length, as 

shown in Figure 6.4. A bead wire Type K thermocouple (Omega, Stamford, CT, USA) was used to measure the 

temperature at required positions and send the signals of temperatures back to RF power generator for temperature 

control. A piece of aluminium foil (190×210 mm) was taken as the ground pad. The porcine liver tissues were 

bought in the local grocery store. Before the experiments, the porcine liver tissues were stored in a 5% NaCl solution 

and maintained at an ambient temperature of 20 ℃ (room temperature). Three control points (point a, b, and c) 

selected in the three areas (around the proximal, middle, and distal parts of RF electrode, respectively), as shown in 

Figure 6.4A-C, were used in this validation. As shown in Figure 6.4C, the thermocouple was inserted into the RF 

electrode and used to measure the temperature of the tip of RF electrode to act as the commercially available RFA 

system. We used a total of 30 specimen porcine liver tissues and the size of each tissue was kept at least 85×60×35 

mm. For each control point, 5 pieces of porcine liver tissues were performed with the temperature-controlled RFA at 

each target temperature (i.e. 80 or 90 ℃) for 720 seconds, which is the commonly used ablation time in the current 

clinical settings [12,34]. Before the experiments, all liver tissues were examined for avoiding the influence of large 

blood vessel. In this initial experiment, we did not consider the cooling effect of RF electrode. In this situation, the 

tissue charring usually occurs in the area just around the RF electrode. So the distances between the surface of RF 

electrode and the point a and b were chosen as about 0.5 mm in the experiments, as shown in Figure 6.4A-B. 
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Figure 6.4. In vitro experimental set up for the validation. 

6.3 Results and discussion 

6.3.1 TTN sizes of control areas from the FEM 

As said before in Section 6.2.2.2, there were 14 control target points selected for studying which points or areas 

would be taken as the best control target area so that the TTN can be enlarged. The difference in dynamics among 

these points was ignored in the present study, as the difference is intuitively very small, and this assumption is in 

agreement with the finding in literature [31,36]. Further, their coupling was also ignored. The 14 controls were then 

simplified to 14 uncoupled controls with the same control law. The control law has the following parameters: 𝐾𝑝 =

2,𝐾𝑖 = 0.5, and 𝐾𝑑 = 0.001. The RFA procedure took the duration of 720 s according to the clinical experience. 

 

Figures 6.5-6.7 show the simulation results of temperature (𝑇𝑟) measured at points 1-4, points 5-10, and points 11-14 

selected in Area I, Area II and Area III, respectively. For the points that are 0 or 1 mm away from the surface of RF 

electrode (i.e. points 1, 3, 5, 7, 9, and 11), the response times were about 5-20 seconds at both 80 and 90 ℃. For the 

points that are 2 mm away from the surface of RF electrode (i.e. points 2, 4, 6, 8, 10, 12, and 13), the response times 
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were about 50-100 seconds. For the point 14, which is the farthest one away from the surface of RF electrode, more 

power and long period of time of RF procedure were required to make it reach the target temperatures. That point is 

in agreement with the fact that there were a sharp peak and a valley before stabilization (as shown in Figure 6.7), 

and the response time was about 200 seconds. 

 

 

Figure 6.5. Temperatures (𝑇𝑟) measured at points 1-4 selected in Area I. 
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Figure 6.6. Temperatures (𝑇𝑟) measured at points 5-10 selected in Area II. 
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Figure 6.7. Temperatures (𝑇𝑟) measured at points 10-14 selected in Area III. 

 

Figures 6.8-6.10 show the simulation results of target tissue death for points 1-4, points 5-10, and points 11-14, 

respectively. The TTN area was evaluated using D63 criterion (Ω(t) = 1) [29]. We added up the areas of the 

triangular elements in the both liver tissue domain and target tissue domain that had Ω(𝑡) = 1 on all nodes. The 

TTN areas obtained at 90 ℃ were larger than that obtained at 80 ℃ for all other control points with the exception on 

control point 2. The reason behind this phenomenon is unclear so far and it is worth studying further.  

 

The results also show that the TTN areas from point 11 (the situation of commercially temperature-controlled RFA) 

were much smaller than that from the point 5 (the best result regarding TTN area) at both 80 and 90 ℃. With 

reference to the results of point 11, the TTN areas of point 5 increased about 31.6% (from 697.52 to 917.96 mm2) 

and 24.4% (from 787.66 to 979.46 mm2) at 80 and 90 ℃, resepectively. This result can also be noted in Figure 6.11. 
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For both 80 and 90 ℃, point 5 achieved the large area with the high temperature gradient. It is worth mentioning that 

for point 11 at 90 ℃, RF electrode was encircled by the so-called energy gate (charred tissue) at about 50 s, and no 

more RF energy could be delivered further after that. 

 

 

Figure 6.8. Target tissue death rate and TTN areas generated using points 1-4 selected in Area I. 
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Figure 6.9. Target tissue death rate and TTN areas generated using points 5-10 selected in Area II. 
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Figure 6.10. Target tissue death rate and TTN areas generated using points 11-14 selected in Area III. 
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Figure 6.11. Temperature distributions (in ℃) of point 5 and point 11 at 720 s for the objective control temperatures 

of (A) 80 and (B) 90 ℃. 

 

 

Figure 6.12. TTN areas generated using the three control areas at 80 and 90 ℃. 
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Figure 6.12 shows the results of TTN area generated using the three different areas at 80 and 90 ℃. For Area I, the 

TTN areas were 775.13±39.54 mm2 (mean± standard deviation) and 841.61±85.48 mm2 at 80 and 90 ℃ , 

respectively. For Area II, the TTN areas were 878.65±39.49 mm2 and 954.26±26.03 mm2 at 80 and 90 ℃, 

respectively. For Area III, the TTN areas were 749.16±70.18 mm2 and 819.71±76.69 mm2 at 80 and 90 ℃, 

respectively. At both 80 and 90 ℃, the TTN areas generated using Area II were significantly larger than the TTN 

areas generated using Area I (𝑃 = 0.0036 and 0.0146, respectively) and Area III (𝑃 = 0.0050 and 0.0036, 

respectively). However, there is no significant difference between the TTN areas generated using Area I and Area III 

at both 80 and 90 ℃ (𝑃 =0.5431 and 0.7161, respectively). It is worth mentioning that in the present study, for both 

computer simulation and in vitro experiments, F-test (95% confidence level) was used to analyse the statistical 

significance of mean values of TTN areas between two groups of results. Further, the given elliptical target tissue 

(4×3 cm) can be ablated completely using the control point 5, 7 or 9 at 90 ℃, as shown in Figure 6.9. 

6.3.2 In vitro experimental results 

Figure 6.13 shows one of the results of TTN area out of the five groups from the in vitro experiments using porcine 

liver tissues. The TTN areas were measured immediately after the ablation. The tissue death board was determined 

by a visual examination done by the first author and second author (who is a medical doctor with more than 10 years 

of experience working with RFA). We considered the TTN area (pale zone as shown in Figure 6.13) as an elliptical 

one. The area of TTN of in vitro experiments was calculated as follows: 

Area = 𝜋 ×
𝑊

2
×
𝐻

2
                                                                                      (6.15) 

where W and H are the minor and the major axis of the TTN area, respectively, as shown in Figure 6.13. The 

imprints (major axis) on the liver tissues mean the direction of RF electrode placement. 
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Figure 6.13. TTN areas generated using the three selected points at the control temperatures of (A) 80 ℃ and (B) 90 

℃ from the in vitro experiments. 

 

Table 6.2. Results of the TTN areas from the in vitro experiments. 

Control point Temperature (℃) W (mm) H (mm) Area (mm2) 

a 

80 8.9±0.1 30.5±0.3 211.9±2.3 

90 11.1±0.2 34.0±0.5 295.9±7.3 

b 

80 12.1±0.3 32.8±0.8 311.6±9.6 

90 13.0±0.2 32.9±0.3 335.6±7.7 

c 

80 8.5±0.4 30.9±0.4 207.1±10.7 

90 10.7±0.5 32.9±1.4 276.7±19.6 

 

As shown in Table 6.2, the same conclusions on the TTN areas of in vitro experiments can be achieved from the 

results calculated with the computer model (see the discussion in Section 6.3.1 above). At both 80 and 90 ℃, the 

TTN areas generated using the control point b were significantly larger than those generated using the control point 

a (𝑃 <0.0001 for both set-points: 80 and 90 ℃) and the control point c (𝑃 <0.0001 and =0.0002, respectively). 

Similar with the results calculated with the computer model, there was no significant difference on the TTN areas at 
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both 80 and 90 ℃ (𝑃 =0.3477 and 0.7176, respectively) between the control points a and c, It is noted that the in 

vitro experiments were used to validate the findings regarding these control areas (Table 6.2, Figure 6.13). 

6.4 Conclusions 

In the present study, we found that the large size of TTN areas can be achieved when the temperatures of the target 

tissue areas surrounding the middle part of RF electrode are controlled using the feedback control strategy (for 

example, a PID control law). This finding was validated by the in vitro experiments on porcine liver tissues. Further, 

using a commercial RF electrode (1.5 mm diameter and 30 mm in length) with the internal cooling effect, an 

elliptical target tissue with 4 cm in the major axis and 3 cm in the minor axis can be ablated completely by 

controlling the temperature of the tissue areas surrounding the middle part of RF electrode with the set-point 

temperature of 90 ℃ and with a standard ablation time (720 s) in clinic. 

 

The present study can draw the following conclusions: (1) the control target should not be on the electrode, as the 

commercial RFA systems do, but should be on the target tissue; (2) the control target area should be carefully 

determined (in clinic, this can be done through a simulation model, as the one developed in the present study); (3) 

the control set-point (i.e. the target temperature of the control area in the case of RFA) should be carefully 

determined (in clinic, this can be done through a simulation model, as the one developed in the present study). 

 

The contributions of the present work are of two folds: (1) proof of a promising perspective to the ablation of large 

target tissues (≥3 cm) with RFA and (2) development of an effective control strategy along with its control method 

for the ablation of target tissues with an indirect physical approach (e.g. thermal-based, etc.). In (2), the ultimate 

control target is the target tissue size, but the goal of this control is accomplished through the control of an 

intermediate variable, temperature in the case of RFA.  

 

A further validation using liver tumour or tumour phantom and RF electrode with internal cooling effect for the 

findings of the present study is of importance for more realistically clinical settings. The future study will be focused 

on improving this method and optimization of the ablation protocol. On the other hand, how to measure the 
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temperature of the tissue in the control target area accurately with a minimally invasive way in the clinical setting is 

also worth studying. 

 

Finally, in the present study, we mainly focused on the method to avoid or delay the tissue charring so as to achieve 

a relatively large TTN size. The ‘heat-sink’ effect of large blood vessels ≥3 mm in diameter, which is considered as 

another reason for the small size of TTN, was not taken into account. Future work should be directed to address this 

issue. 

Acknowledgement 

This article was supported by the Saskatchewan Health Research Foundation (SHRF) through the 'BioNEMS Phase 

I' grant (grant no. 2539) and the National Natural Science of China (grant no. 51175179). The first author (Bing 

Zhang) also received financial support from the China Scholarship Council (CSC). 

Conflict of interest 

The authors declare that there is no conflict of interest. 

  



 

 

132 

 

REFERENCES 

1. Zhang B, Moser M, Zhang E, Zhang W. Radiofrequency ablation technique in the treatment of liver 

tumours: Review and future issues. J Med Eng Technol 2013;37:150-9. 

2. Nishikawa H, Kimura T, Kita R, Osaki Y. Radiofrequency ablation for hepatocellular carcinoma. Int J 

Hyperthermia 2013;29:558-68. 

3. Gillams A, Khan Z, Osborn P, Lees W. Survival after radiofrequency ablation in 122 patients with 

inoperable colorectal lung metastases. Cardiovasc Intervent Radiol 2013;36:24-730. 

4. Kinoshita T, Iwamoto E, Tsuda H, and Seki K. Radiofrequency ablation as local therapy for early breast 

carcinomas. Breast Cancer 2011;18:10-17. 

5. Zagoria RJ, Pettus JA, Rogers M, Werle DM, Childs D, Leyendecker JR.. Long-term outcomes after 

percutaneous radiofrequency ablation for renal cell carcinoma. Urology 2011;77:1393-7. 

6. Xu HX, Lu MD, Xie XY, Yin XY, Kuang M, Chen JW, et al. Prognostic factors for long-term outcome 

after percutaneous thermal ablation for hepatocellular carcinoma: A survival analysis of 137 consecutive 

patients. Clin Radiol 2005;60:1018-25. 

7. Shiina S, Tateishi R, Arano T, Uchino K, Enooku K, Nakagawa H, et al. Radiofrequency ablation for 

hepatocellular carcinoma: 10-year outcome and prognostic factors. Am J Gastroenterol 2012;107:569-77. 

8. Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J 

Hepatol 2008;48:S20-37. 

9. Zhou Y, Zhao Y, Li B, Xu D, Yin Z, Xie F, et al. Meta-analysis of radiofrequency ablation versus hepatic 

resection for small hepatocellular carcinoma. BMC Gastroenterol 2010;10:78. 

10. Zhang B, Moser MA, Zhang EM, Luo Y, Zhang H, Zhang W.. Study of the relationship between the target 

tissue necrosis volume and the target tissue size in liver tumours using two-compartment finite element 

RFA modelling. Int. J. Hyperthermia 2014;30:593-602. 

11. Zhang B, Moser MA, Zhang EM, Luo Y, Zhang W. Numerical analysis of the relationship between the 

area of target tissue necrosis and the size of target tissue in liver tumours with pulsed radiofrequency 

ablation. Int J Hyperthermia 2015; in press. 



 

 

133 

 

12. Goldberg SN, Stein MC, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME. Percutaneous radiofrequency 

tissue ablation: Optimization of pulsed-radiofrequency technique to increase coagulation necrosis. J Vasc 

Interv Radiol 1999;10:907-16. 

13. Lim D, Namgung B, Woo DG, Choi JS, Kim HS, Tack GR. Effect of input waveform pattern and large 

blood vessel existence on destruction of liver tumor using radiofrequency ablation: Finite element analysis. 

J Biomech Eng 2010;132:061003. 

14. Goldberg S, Solbiati L, Hahn P, Cosman E, Conrad J, Fogle R, Gazelle G. Large-volume tissue ablation 

with radio frequency by using a clustered, internally cooled electrode technique: Laboratory and clinical 

experience in liver metastases. Radiology 1998;209:371-9. 

15. Trujillo M, Alba J, Berjano E. Relationship between roll-off occurrence and spatial distribution of 

dehydrated tissue during RF ablation with cooled electrodes. Int J Hyperthermia 2012;28:62-8. 

16. Lee J, Han J, Kim S, Lee J, Choi S, Choi B. Hepatic bipolar radiofrequency ablation using perfused-cooled 

electrodes: a comparative study in the ex vivo bovine liver. Br J Radio 2004;77:944-9. 

17. Lee JM, Han JK, Kim SH, Sohn KL, Choi SH, Choi BI. Bipolar radiofrequency ablation in ex vivo bovine 

liver with the open-perfused system versus the cooled-wet system. Eur Radiol 2005;15:759-64. 

18. Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 

1948;1:93-122. 

19. Haemmerich D, Schutt DJ. RF ablation at low frequencies for targeted tumor heating: In vitro and 

computational modeling results. IEEE Trans Biomed Eng 2011;58:404-10. 

20. Haemmerich D, Schutt DJ, Wright AS, Webster JG, Mahvi DM. Electrical conductivity measurement of 

excised human metastatic liver tumours before and after thermal ablation. Physiol Meas 2009;30:459-66. 

21. Tungjitkusolmun S, Staelin ST, Haemmerich D, Tsai JZ, Cao H, Webster JG, et al. Three-dimensional 

finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans Biomed Eng 2002; 49:3-9. 

22. González-Suárez A, Trujillo M, Burdío F, Andaluz A, Berjano E. Feasibility study of an internally cooled 

bipolar applicator for RF coagulation of hepatic tissue: Experimental and computational study. Int J 

Hyperthermia 2012;28:663-73. 



 

 

134 

 

23. van Beers BE, Leconte I. Materne R, Smith AM, Jamart J, Horsmans Y. Hepatic perfusion parameters in 

chronic liver disease: dynamic CT measurements correlated with disease severity. AJR Am J Roentgenol 

2001;176:667-73. 

24. Zorbas G, Samaras T. Parametric study of radiofrequency ablation in the clinical practice with the use of 

two-compartment numerical models. Electromagn Biol Med 2013;32:236-43. 

25. Sahani DV, Holalkere NS, Mueller PR, Zhu AX. Advanced hepatocellular carcinoma: CT perfusion of 

liver and tumor tissue—Initial Experience. Radiology 2007;243:736-743. 

26. Dodde RE, Miller SF, Geiger JD, Shih AJ. Thermal-electric finite element analysis and experimental 

validation of bipolar electrosurgical cautery. ASME J. Manuf. Sci. Eng. 2008;130:021015. 

27. Jo B, Aksan A. Prediction of the extent of thermal damage in the cornea during conductive keratoplasty J 

Therm Biol 2010;35:167-74. 

28. Liu Z, Ahmed M, Sabir A, Humphries S, Goldberg SN. Computer modeling of the effect of perfusion on 

heating patterns in radiofrequency tumor ablation. Int J Hyperthermia 2007;23:49-58. 

29. Chang IA, Nguyen UD. Thermal modeling of lesion growth with radiofrequency ablation devices. Biomed 

Eng Online 2004;3:27. 

30. Reddy G, Dreher MR, Rossmann C, Wood BJ, Haemmerich D. Cytotoxicity of hepatocellular carcinoma 

cells to hyperthermic and ablative temperature exposures: In vitro studies and mathematical modelling. Int 

J Hyperthermia 2013;29:318-23. 

31. Haemmerich D, Webster JG. Automatic control of finite element models for temperature-controlled 

radiofrequency ablation. Biomed Eng Online 2005;4:42. 

32. Alba-Martínez J, Trujillo M, Blasco-Giménez R, Berjano E. Could it be advantageous to tune the 

temperature controller during radiofrequency ablation? A feasibility study using theoretical models. Int J 

Hyperthermia 2011;27(6):539-48. 

33. Brace C. L. Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the 

differences? Curr Probl Diagn Radiol 2009;38:135-43. 

34. Ahmed M, Brace CL, Lee FT, Goldberg SN. Principles of and advances in percutaneous ablation. 

Radiology 2011;258:351-69. 



 

 

135 

 

35. Trujillo M, Berjano E. Review of the mathematical functions used to model the temperature dependence of 

electrical and thermal conductivities of biological tissue in radiofrequency ablation. Int J Hyperthermia 

2013;29:590-7. 

36. Jamil M, Ng EYK. Quantification of the effect of electrical and thermal parameters on radiofrequency 

ablation for concentric tumour model of different size. J Therm Biol 2015;51:23-32. 

 

  



 

 

136 

 

7 CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 

In this thesis, a critical issue related to the current RFA systems has been investigated, which is the inefficacy of 

RFA in the treatment of target tissues ≥3 cm in diameter. To understand comprehensively and further solve this 

problem, four research objectives have been proposed in Chapter 1. The work presented in this thesis has 

demonstrated that all the research objectives have been achieved and the conclusions related to all research 

objectives can be summarised as follows: 

 

(1) Regarding Objective 1, the current commercially available RFA systems have been evaluated using an 

engineering design method (i.e. ADT) in Chapter 3. The inefficacy of RFA in the treatment of large target 

tissues ≥3 cm in diameter is mainly contributed to the incomplete TTN. By using ADT, the current RFA 

systems have been evaluated in terms of their design concepts in generating complete TTN. The cause of 

why the current RFA systems cannot generate complete TTN has been analysed, which is attributed to the 

presence of the decoupled design in their conceptual design level. Further, an uncoupled design to increase 

the possibility of complete TTN was proposed. 

 

(2) Regarding Objective 2, the size limit of target tissues in the treatment of current RFA systems is 

mathematically proved to be 3 cm in diameter. This conclusion was drawn by checking the three most 

commonly used RFA systems (i.e. the constant, pulsed, and temperature-controlled RFA systems) in 

Chapters 4, 5, and 6, respectively. Using the constant RFA as well as the pulsed RFA, the largest TTN can 

be achieved at the maximum voltage applied (MVA) without the roll-off occurrence. The largest TTN 

sizes that the constant RFA and the pulsed RFA can achieve are all 2.5 cm in diameter. For the 

temperature-controlled RFA with the current commercially available protocol, the largest TTN is around 

2.4 cm in diameter. 

 



 

 

137 

 

(3) Regarding Objective 3, the so-called 3-cm problem of RFA can be overcome by using temperature-

controlled RFA under a new protocol. This conclusion was drawn from the results in Chapter 6 based on a 

feedback temperature-control strategy with the judicious selection of the best target area for feedback 

control and of the best set-point (target temperature). The control area should not be on the electrode, as 

the commercial RFA systems do, but should be on the target tissues and should be also determined 

carefully. 

 

(4) Regarding Objective 4, a radiofrequency ablation device was designed and fabricated, which is discussed 

in the Appendix A. An RF power generator that can supply the maximum power of 50 W with 430±30 

kHz and two sizes of RF electrode (1 and 1.98 mm in diameter and 5 and 30 mm in length, respectively) 

were designed and fabricated. This RFA system can be taken as a test-bed for the validation of computer 

simulations in this thesis study and the immunotherapy of RFA in the future. 

7.2 Future work 

Along with the work presented in this thesis, some further studies that may be needed to improve the thesis are given 

as follows: 

 

(1) Considering the ‘heat-sink’ effect of large blood vessels (≥3 mm in diameter) 

In this thesis, we only study the 3-cm problem of RFA based on the reason of tissue charring. But, besides 

the tissue charring, the ‘heat-sink’ effect of large blood vessels is also a reason of incomplete ablation of 

RFA. This effect will make the temperature of target tissues in the areas close to the large blood vessels 

cannot reach to a fatal level. Thus, tumour cells in these areas will survive from the treatment of RFA, 

which usually leads to local recurrence and poor clinical results. In recent clinical settings, the most used 

method in avoiding the heat-sink effect is blood inflow occlusion. However, this method is fulfilled by 

surgery or injection of chemo drugs, which both have serious side effects. Thus, further research on the 

heat-sink effect of large blood vessels is needed to improve the technique of RFA, especially using 

methods, which are not against the minimal invasiveness of RFA. 
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(2) Validation using in vivo experiments with tumour tissues 

In Chapters 5 and 6, in vitro experiments with porcine liver tissues were used in the verification of the 

mathematical model of RFA used in this thesis and the findings on the selection of control areas. It is 

acceptable to use in vitro experiments with tissues having similar properties in the relevant experiments 

for validating the effectiveness of the new method. However, it is worth noting that more convinced 

conclusions maybe drawn if the in vivo experiments with tumour tissues can be used for the validation. A 

couple of reasons support this statement. First, the blood perfusion has been ignored in the in vitro 

experiments, which may create errors in the mathematical model of RFA. Second, the conclusion drawn 

from Chapter 6 that the target tissue (liver tumour, 3×4 cm) can be ablated completely should be validated 

using an in vivo experiment with tumour tissues and the commercial RFA system. 

 

(3) Immunotherapy of RFA 

In recent years, the immune therapy of the RFA has also attracted the interest of researchers. An 

interesting conjecture raised about RFA is that it may not just cause TTN locally but also generates 

systemic immunity response to tumour metastases. Unlike surgery, the treated target tissues are not ablated 

from the body. Instead, in cases of RFA, the necrotic target tissues are left in the body and a robust 

immune response is triggered to remove the debris. Many researchers expect that the induced immune 

responses can be used to create an immune memory that might expand the treatment beyond the local 

ablation site and create more of a systemic therapy. These induced immune responses, however, are 

mostly weak and not sufficient for the complete eradication of established target tissues or durable 

prevention of disease progression. There are still many unclear issues in the immune response of RFA 

needing to be addressed elaborately. One of them can be what the RFA temperature for inducing the 

largest extent systemic immune response. 
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APPENDIX A A RADIOFREQUENCY ABLATION DEVICE FOR 

SMALL ANIMALS 

Due to some restrictions in the current commercially available systems, a simple but effective radiofrequency 

ablation system especially for small animal models has been designed and fabricated. This device was also used as a 

test bed to validate the accuracy of FEM in Chapters 4 and 5 and the findings about the control areas in Chapter 6. 

This design and fabrication mainly include two parts, namely RF power generator and RF applicator. 

A.1 RF power generator 

To satisfy the design objectives mentioned above, the RF power generator was designed as an alternating current 

source, which is not influenced by the impedance of external load. As shown in Figure A.1, two square wave signals 

with high frequency are generated by the UC1825 (Texas Instruments, Dallas, Texas, USA), a pulse-width 

modulation (PWM) circuit, which is usually for high-frequency switched mode power supply applications. These 

two signals are transferred to the gate ports of two MOSFETs (IRF630) (ST, Geneva, Switzerland), in the part of 

power amplifier, respectively. A positive DC voltage source is used to supply power to the drain ports of the two 

MOSFETs through a DC voltage regulator. So an alternating current with high frequency and magnitude in a square 

wave is generated. Then, the square wave current is converted into sinusoidal wave with required frequency by a LC 

low-pass filter circuit, as shown in Figure A.1. The alternating sinusoidal current is delivered out through RF 

electrode and ground pad. A sampling circuit was used to convert the real-time alternating output current into DC 

voltage signal that would be fed back to DC voltage regulator to control the alternating output current. The current 

sampling circuit was composed of a small ratio of transformer and a bridge rectified filter. The magnitude of the 

output alternating current could be controlled by changing the magnitude of the DC voltage source through DC 

voltage regulator in two different ways: manually and automatically. 

 



 

 

140 

 

 

Figure A.1. Diagram of the design for the RF power generator. 

 

A.2 RF applicator 

In the design of RF applicator, a small size of 316L stainless steel tubing with 1 mm outer diameter and 0.81 mm 

inner diameter (McMaster-Carr, Clevelan, OH, USA) was taken as the RF electrode for small animals. A large size 

of RF electrode with 1.98 mm outer diameter and 1.60 mm inner diameter was also made using the same material 

with the small size of electrode for the validation of results of computer simulations in this thesis. The tubing was 

covered with modified polyamide nylon (PA66) tubing (Finlumen, Beijing, China) for insulation from the 

surrounding tissue, representing the insulated shaft. So the small and the large size of electrodes have about 5 mm 

and 30 mm in length, respectively. In addition to the RF electrode and insulated shaft, in order to measure and 

control the temperature of the RFA, a K type micro-thermocouple (Huanbang, Shanghai, China) with 0.5 mm 
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diameter was inserted into the steel tubing for each electrode. The themrmocouple can be used to feedback the real 

temperatures at the tip of RF electrode to RF power generator. 

A.3 Testing of the RFA system 

In order to test the device to see whether or not it can satisfy our design objectives, 8 small freshly excised porcine 

muscle tissues (around 15 g each tissue) were performed the RFA ablation. All the tissues were purchased from the 

local butcher and the tissue experiments followed the regulation of biosafety and ethics of University of 

Saskatchewan. In this experiment, five different RFA temperatures, like 50, 60, 70, and 80 ℃ were tested for 6 and 

12 mins of the ablation durations. Figure A.2 shows the experimental set-up and the RFA device, which includes the 

RF power generator, RF applicator and ground pad (aluminum foil). 

 

 

Figure A.2. Experimental set up of the RFA device. 

 

Figure A.3 shows the results of 4 tested temperatures (50, 60, 70, and 80 ℃) at the tip of RF electrode (T_a) for 6 

and 12 mins of ablation durations. The temperature of the tissue at the location of 2.5 mm away from the surface of 

RF electrode (T_b) was also measured. As expected, T_b was changing with the same tendency with that of T_a. 

The temperature gap between T_a and T_b was about 20 ℃. From the testing results, it can be concluded that the 
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instrument deisgned satisfies our requirements for immune research on the small animals. After the testing of this 

system, the specification of RF power generator can be given as follows: 

Frequency:   430±30 kHz. 

Maximum output voltage:  70 V 

Maximum output current:  0.7 A 

Maximum output power:  50 W 

 

 

Figure A.3. Results of testing experiments using in vitro porcine muscle tissues. 
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