
SURFACE RECONSTRUCTIONUSING

VARIATIONAL INTERPOLATION

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Maryruth Pradeepa Joseph Lawrence

c©Maryruth Pradeepa Joseph Lawrence, November/2005. All

rights reserved.

PERMISSION TOUSE

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate

degree from the University of Saskatchewan, I agree that theLibraries of this University

may make it freely available for inspection. I further agreethat permission for copying

of this thesis in any manner, in whole or in part, for scholarly purposes may be granted

by the professor or professors who supervised my thesis workor, in their absence, by the

Head of the Department or the Dean of the College in which my thesis work was done.

It is understood that any copying or publication or use of this thesis or parts thereof for

financial gain shall not be allowed without my written permission. It is also understood

that due recognition shall be given to me and to the University of Saskatchewan in any

scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

ABSTRACT

Surface reconstruction of anatomical structures is an integral part of medical modeling.

Contour information is extracted from serial cross-sections of tissue data and is stored as

“slice” files. Although there are several reasonably efficient triangulation algorithms that

reconstruct surfaces from slice data, the models generatedfrom them have a jagged or

faceted appearance due to the large inter-slice distance created by the sectioning process.

Moreover, inconsistencies in user input aggravate the problem. So, we created a method

that reduces inter-slice distance, as well as ignores the inconsistencies in the user input.

Our method called thepiecewise weighted implicit functions, is based on the approach of

weighting smaller implicit functions. It takes only a few slices at a time to construct the

implicit function. This method is based on a technique called variational interpolation.

Other approaches based on variational interpolation have the disadvantage of becom-

ing unstable when the model is quite large with more than a fewthousand constraint points.

Furthermore, tracing the intermediate contours becomes expensive for large models. Even

though some fast fitting methods handle such instability problems, there is no apparent

improvement in contour tracing time, because, the value of each data point on the con-

tour boundary is evaluated using a single large implicit function that essentially uses all

constraint points. Our method handles both these problems using a sliding window ap-

proach. As our method uses only a local domain to construct each implicit function, it

achieves a considerable run-time saving over the other methods. The resulting software

produces interpolated models from large data sets in a few minutes on an ordinary desktop

computer.

ii

ACKNOWLEDGEMENTS

First, I would like to express my sincere and heartfelt gratitude to my supervisor Dr.

Eric Neufeld for the great patience he showed while guiding me and for his unwavering

support and encouragement in all aspects throughout my graduate studies. I also like to

thank him for his wonderful considerate nature and cheerfulness which made my gradu-

ate studies an enjoyable experience. I like to express my sincere thanks to my committee

members Dr. David Mould and Dr. Michael Horsch for their suggestions and support. I am

very thankful to College of Graduate Studies and Research and the Department of Com-

puter Science for providing financial support for my degree.My sincere thanks to the staff

of Computer Science department, especially to Jan Thompson,Gina Koehn, and Shane

Doucette for their excellent support and for providing a friendly and pleasant environment

for my studies. My special thanks to Brennan Rusnell for providing me the additional

software needed for my work. I also like to thank Sonje Kristtorn for her suggestions and

motivation. I take this opportunity to thank my friends for their encouragement through-

out my studies. Finally, I am very grateful to my family for their love, encouragement and

support throughout this work.

iii

CONTENTS

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Overview . 4

2 Previous Work 11
2.1 Introduction to Surfacing .. 11
2.2 Triangulation algorithms .. 11

2.2.1 The heuristic algorithm of Ekouleet al. 12
2.2.2 The algorithm of Fuchset al. 19
2.2.3 Assessment of the triangulation algorithms 23

2.3 Interpolation methods .24
2.3.1 Triangulation based methods . 25
2.3.2 Inverse distance weighted interpolation 31
2.3.3 Radial basis functions (RBF) . 33

2.4 Variational interpolation 35
2.4.1 Implicit functions . 35
2.4.2 Variational technique . 36
2.4.3 Shape transformation using variational technique 38
2.4.4 Surface reconstruction using variational technique. 40

2.5 Motivation . 41

3 Stable and Efficient Implicit Functions 45
3.1 Piecewise weighted implicit functions 45

3.1.1 Determining region of influence 46
3.1.2 Determination of weights . 47

iv

3.1.3 Contour tracing . 49
3.2 Preconditioned GMRES method of Beatsonet al. 52

3.2.1 Preconditioning using approximate cardinal functions 53

4 Results 57
4.1 Weighted method vs other approaches 57
4.2 Other challenges . 61

5 Conclusions and Future Work 63
5.1 Summary . 63
5.2 Contributions . 63
5.3 Future work . 64

v

L IST OF TABLES

4.1 Comparison of the final model. 58
4.2 Comparison of three approaches. .. 61

vi

L IST OF FIGURES

1.1 Example of slices from DREM data set [1]. 2
1.2 Boundary vertices. 3
1.3 Triangulation between the slices. 3
1.4 Reconstructed embryo heart using WINSURF. Courtesy DREM [1] 4
1.5 Prostate reconstruction using Winsurf. 5
1.6 Stages of embryo. Courtesy The Human Developmental Anatomy Center,

Carnegie Collection [1] . 6
1.7 Kidney and Ureter. 7
1.8 Appearance of models with respect to the arrangement of points. 8
1.9 Contour data given as input to the system. 9
1.10 X to O transformation. 9

2.1 Single branching. 13
2.2 Projection of elementary concavities [2]. 15
2.3 Ekoule’s algorithm: Example 1 .. 16
2.4 Ekoule’s algorithm: Example 2 .. 16
2.5 Ekoule’s algorithm: Example 3 .. 17
2.6 Ekoule’s algorithm: Example 4 .. 18
2.7 Ekoule’s algorithm: Example 5 .. 19
2.8 Directed toroidal graph representation [3]. 21
2.9 Correspondence between a subgraph and a set of tiles [3]. 22
2.10 Faceted model from prostate data. 23
2.11 C0, C1 andC2 continuity [4]. 26
2.12 Subdivision of original triangle based on LOD [5]. 28
2.13 Vertices and normals of original triangle [5]. 29
2.14 Control net [5]. 30
2.15 Calculating a tangent coefficient[5]. 31
2.16 Vas generated using cubic triangular interpolation. 32
2.17 Thin plate spline [6]. .36
2.18 Normal constraints . 39
2.19 Two-dimensional shape transformation sequence 40
2.20 Surface reconstruction using Variational Interpolation. 41
2.21 Surface reconstruction using WinSurf. 42
2.22 Surface reconstruction using pairs of slices. 43
2.23 Surface reconstruction using variational interpolation on all slices 43
2.24 Vas using original Turk and O’Brien approach. 44

vii

3.1 Partitioning of slices for n=4 .. . 47
3.2 Region of influence of all functions based on a point P 48
3.3 Region of influence of function 2 .48
3.4 Region of influence of function 3 .49
3.5 Region of influence of function 4 .49
3.6 Graph showing the influence of functions 50
3.7 Tracing an intermediate contour .. . 51
3.8 Jagged vs smooth appearance of models 52
3.9 Vas using weighted implicit method. 53
3.10 Vas using GMRES method. 56

4.1 A comparison of the three approaches. 57
4.2 Reconstruction of a structure from Prostate data. 59
4.3 Reconstruction of a structure from Stage 13 of Embryo data. 60
4.4 Merging of independent sections. 62
4.5 Comparison of branching . 62

viii

CHAPTER 1

INTRODUCTION

Use of computer systems in the study and analysis of the anatomical structures has

significantly increased over the last few decades. Several clinical applications use ad-

vanced computer graphics techniques to model the physiological structures used in med-

ical fields like surgery planning, volumetric analysis, education and research. Image data

of these anatomical structures is obtained using techniques such as cryosectioning, com-

puted tomography (CT, CAT scan), magnetic resonance imaging (MRI), and ultrasonic

imaging. Cryosectioning is a traditional technique still widely used. The tissues are cross-

sectionally dissected to obtain the “slices” and are then digitally photographed and stored

as digital data.

A significant community of users builds models from seriallysectioned data by tracing

contours of objects of interest on images, which are subsequently surfaced. These users

are often interested in performing volumetric and surface area calculations of the traced

objects, as well as in the model as a teaching or visualization object.

The following illustrates this process. Users at DREM (Digitally Reproduced Embry-

onic Morphology) are building models of the human embryo at various stages of devel-

opment. Figure 1.1 shows two consecutive slices from that data set. The user marks

boundary vertices with a mouse. Figure 1.2 shows a closeup view of a traced contour.

The actual boundaries on slices are not well-defined and tracing must be done by a user

with expert knowledge of embryo anatomy.

Once the contours are marked on all the slices, the anatomical surface structure is re-

constructed by triangulating parallel tissue slices as shown in Figure 1.3. Given a set

of points, triangulation involves connecting them into a mesh of triangles. Several tri-

angulation algorithms that perform surface reconstruction from serial contours have been

1

Figure 1.1: Example of slices from DREM data set [1].

explored. Although Figure 1.1 and Figure 1.3 suggest that triangulation of slices is

straightforward, many problems arise if the triangulationalgorithm does not handle com-

plex data sets. Some of the problems and solutions are discussed in Chapter 2.

These reconstructions were done using Winsurf, a commercial product designed for

this purpose. Winsurf surfaces contours by applying a triangulation algorithm to pairwise

contours. Figure 1.4 shows a reconstructed embryo heart using WinSurf. Other three-

dimensional model building software tools include Maya [7], 3D Doctor [8], trueSpace

[9] and 3D Canvas [10]. Winsurf gives the user a choice of triangulation algorithms,

which we discuss below.

Our present work uses several data sets. Many of the models shown in this dissertation

used parts of objects from a prostate reconstruction by BarryTimms of the University of

South Dakota. This model has been under construction for years and shows great detail

(Figure 1.5). To obtain their models, Barry Timms’s group traces the images onto tissue

paper, and then uses Winsurf’s magic wand tool to generate contours using a segmentation

algorithm. The group uses this technique because they believe that tracing with a pencil

gives more accurate contours than tracing with a mouse.

We also used data provided by DREM for the embryonic period of human prenatal

development. The embryonic period encompasses the first eight weeks of conception and

is divided into 23 stages [1]. The DREM data is obtained by taking cross-sections of the

human embryo at 15−µm intervals. Hence, each stage consist of hundreds or sometimes

2

Figure 1.2: Boundary vertices.

Figure 1.3: Triangulation between the slices.

thousands of cross-sectional slices. The DREM data set is a digitized collection of these

sections for all 23 stages. Figure 1.6(a) and Figure 1.6(b) show two stages of embryonic

development.

Another important data set used worldwide is the National Library of Medicine’s Vis-

ible Human dataset [11]. In the mid 1980s, the National Library of Medicine (NLM) of

the National Institutes of Health [12] developed theVisible Human Project. This provided

the medical and the graphics communities with a detailed digital data set of the entire hu-

man body. The Visible Male data set was sectioned at 1-mm intervals. This thickness was

found to be ill-suited for voxel based approaches, so the Visible Female data set was sec-

tioned at 0.33-mm intervals. The Visible Female has slightly over 5000 images compared

3

Figure 1.4: Reconstructed embryo heart using WINSURF. Courtesy
DREM [1]

to the Visible Male with 1871 images. Despite the availability of this valuable data, the

model construction remains a slow process.

Although Winsurf was developed to assist with volumetric and similar calculations,

aesthetics has always been important. The kidney model of Doll et al. (Figure 1.7) [13]

used very high resolution images. As with Timm’s prostate model, key areas were drawn

by hand with tracing paper to reduce the raggedness of mouse-traced models. This level

of detail requires considerable work by the model builders.Thus, one goal of this work is

the generation of better quality models without requiring more user input.

1.1 Overview

Models constructed from serially sectioned data tend to exhibit unnatural artifacts. These

artifacts arise from several reasons, including misalignment of sections, user errors, and

interslice distance. At the outset, the goal of this research in general terms was to produce

4

Figure 1.5: Prostate reconstruction using Winsurf.

models from this kind of data, but with significantly higher quality and in reasonable

time, so that a model builder working on an ordinary personalcomputer could quickly get

visual feedback while working on a fairly large data set. In specific terms, our goal was

to build smooth, organic looking anatomical models from manually generated slice based

anatomical data in reasonable time on an ordinary personal computer.

The exploratory phase of the research investigated a variety of possibilities, including

more sophisticated triangulation algorithms, and interpolation approaches.

While we found that triangulation algorithms for pairwise slices are virtually instan-

taneous on a modern desktop computer, even for fairly large data sets, we saw no gen-

eral way to improve model quality significantly. On the otherhand, the interpolation

approaches yield high quality (smooth) models, but even modest model sizes can crash a

typical desktop machine, or take a very long time to run.

In the end, we came very close to meeting our above stated goal, by using a combina-

tion of triangulation and interpolation algorithms. This was accomplished by first using an

optimal triangulation algorithm to produce a kind of “first cut” description of the surface,

which was then fed into the interpolation algorithm. Then, to avoid the high costs of the

interpolation algorithm, we devised a method called thepiecewise weighted implicit func-

tions in which the surface was computed piecewise by passing a “sliding window” over

5

(a) Stage 1 of embryo. (b) Stage 13 of embryo.

Figure 1.6: Stages of embryo. Courtesy The Human Developmental
Anatomy Center, Carnegie Collection [1]

the slices and blending the results. The speedup was dramatic and the resulting models do

not obviously differ from models not computed piecewise.

The rest of this section gives a high level overview of our work as described in the rest

of the thesis.

The first phase of our study investigated the possibility of improving the final models

by improving the triangulation algorithms. The early version of Winsurf that we wanted

to improve used a greedy algorithm for triangulating the parallel slices. A “greedy” algo-

rithm by definition attempts to satisfy goals by taking the choice with the largest immediate

progress. This resulted in the algorithm sometimes making wrong choices when choosing

a vertex for subsequent triangulation, and hence, the final model was not visually agree-

able. Hence, to improve the early version of Winsurf so as to develop better models, we

studied and implemented an optimal triangulation algorithm and a heuristic triangulation

algorithm in the course of this work.

A classic and frequently cited example of an optimal algorithm is that of Fuchset al.

[3]. An example of optimality criterion for the Fuchset al. algorithm is the minimization

of surface area of triangles. Optimal algorithms are typically slower than heuristic algo-

6

Figure 1.7: Kidney and Ureter.

rithms because they often must explore an entire solution space. The heuristic algorithms

on the other hand are not optimal, but are typically faster than the optimal algorithms

precisely because they skip over large parts of the solutionspace. To some extent, the

complexity of the data determines which algorithm is suitedto a given problem. If the

data is simple, that is, if adjacent slices are almost identical, then a simple heuristic can

give a quick surface reconstruction. Moreover, the solution found is likely to be close to

optimal. On the other hand, a naive choice of optimality criteria can result in models that

are expensive to compute and are not pleasing visually: the worst of both worlds. If the

data is complex, then optimality criteria or heuristics should be carefully chosen.

Even if the optimality criteria are carefully chosen, in certain situations the surface

reconstructed by an optimal algorithm may not be visually pleasing, because users manu-

ally trace the contour boundaries which introduce some inconsistencies. Such errors arise

because users of software like Winsurf often don’t understand the assumptions behind the

triangulation algorithms and enter data inconsistently. For example, some slices may have

very few points and other slices may have many points. This leads to the reconstructed

surface having a faceted appearance where there are relatively few points and a jagged

7

appearance where there are relatively many points (Figure 1.8). The faceted appearance

in case of few points is because the triangles between the slices are bigger and broader,

whereas the reason for the jagged look is the uneven distribution of points and elongated

triangles.

Figure 1.8: Faceted appearance of models with a few distant points and
jagged appearance of models with points very close together.

A significant factor that affects the appearance of a reconstructed surface is the thick-

ness of the sectioned slices. Sometimes, if sectioning is done with large intervals, that is,

if the tissue slices are thick, the consecutive contours maybe quite different, which may

result in an uneven triangulation and loss of smoothness.

Two important issues must be addressed to create visually pleasing models. First, the

algorithm has to cope with these inconsistencies in the data. Next, consecutive contours

should not be very different. These two issues can be accomplished by extending and mod-

ifying theshape transformationtechnique of Turk and O’Brien [14], who use a technique

called variational interpolation for reconstructing surfaces from point cloud data.

Our work applies the variational interpolation technique to serial contours. This tech-

nique takes originally dissimilar input slices and automatically generates numerous slices

in between them that are similar to each other, thus achieving smooth transition between

slices. Figure 1.10 shows anX shape transforming into anO shape using variational

interpolation (left) and an optimal triangulation algorithm of Fuchset al. (right). The

figure on the left generated using variational interpolation is preferred because it looks

more natural and organic compared to the one on the right generated using Winsurf. The

contour data given as input for this shape transformation isshown in Figure 1.9. It sug-

8

gests that improvements based strictly on variations in triangulations have limitations. The

interpolation algorithm adds considerable smoothness to the sample object. As well, this

algorithm may relieve some of the burden on model builders. Of the models shown earlier,

the kidney was the smoothest (Figure 1.7). However, achieving this required considerable

work on the part of the model builders. Therefore we also looked at ways to incorporate

the interpolation methodology into model building.

Figure 1.9: Contour data given as input to the system.

Figure 1.10: Smooth transformation ofX to O using variational interpo-
lation of Turk and O’Brien(left) vsX to O transformation using WinSurf
(right).

The size of some of our models introduced a potential problemof numerical insta-

bility when applying the method of Turk and O’Brien. In other cases, a fully automated

approach was not ideal because the interpolated object was not consistent with the user’s

expectations. To deal with both these problems, we investigated a piecewise approach to

9

variational interpolation, as well as stable methods for dealing with large data sets. In

particular, we investigated a fast fitting method of Beatsonet al. [15], a stable algorithm

for solving large systems of linear equations.

Our final solution resulted in an interesting symbiosis between triangulation techniques

and variational techniques enhancing the overall usability from the perspective of the naive

user, who is usually not knowledgeable about geometric issues. The contribution of this

thesis is a combinative method that uses an optimal triangulation and a modified varia-

tional interpolation technique calledpiecewise weighted implicit functionsthat solves the

instability problem as well as the slower runtime problem ofthe previous methods.

The rest of the thesis is organized as follows. Chapter 2 provides the necessary back-

ground to the general problem of surfacing models, including triangulation algorithms and

different interpolation methods including variational interpolation. Chapter 3 explains two

approaches, our weighted implicit function approach and the preconditioned GMRES ap-

proach of Beatsonet al., to solve the problems of the other surfacing approaches. Chapter

5 discusses our results. Finally, Chapter 6 contains the concluding statements and some

probable extensions to our current work.

10

CHAPTER 2

PREVIOUS WORK

2.1 Introduction to Surfacing

The first problem we studied in depth was triangulation. In simple terms and in our con-

text, triangulation is the problem of how to take contour data from adjacent slices and

stitch them together in the most visually pleasing manner and avoid the problems that the

greedy algorithm made in the earlier version of Winsurf. Winsurf’s predecessor, Surf-

driver, triangulated slices piecewise using a Delaunay based approach [16]. In 2D, De-

launay triangulation can be thought of as optimizing a triangulation by maximizing the

minimum angle. As we wanted to consider other expressions ofoptimality, we explored

some more optimal algorithms as well as a heuristic algorithm. The optimal algorithm we

studied by Fuchset al. [3] performs triangulation by separately determining an optimal

surface between each consecutive pair of the slices.

We then turned our attention to interpolation. That is, given pairs of slices, find a

sequence of intermediate slices that give a smooth transition between each pair. At the

time of writing, the method of variational interpolation was prominent in the literature.

Below we review the relevant ideas in both of these sub areas.

2.2 Triangulation algorithms

We studied the triangulation algorithms of Ekouleet al. [2] and Fuchset al. [3] with the

dual goals of fast real time performance and visually pleasing results. The heuristic algo-

rithm of Ekouleet al. claims to do both in addition to handling all shapes. It also claims

to deal with branching issues; that is, the problem of a single contour joining multiple

11

contours on neighboring slices. As WinSurf implements multiple branching by merging

contours, we only implemented single branching. We found the algorithm of Ekouleet al.

was fast, but didn’t work for all shapes, including a shape frequently encountered in our

data sets. The optimal algorithm proposed by Fuchset al. was also implemented, with

better resulting surfaces, and, although slower, in acceptable time.

2.2.1 The heuristic algorithm of Ekouleet al.

Ekoule’s algorithm is based on the assumption that consecutive contours have similar con-

vex hulls. Theconvex hullof a set of vertices is the smallest convex region that encloses

all the vertices [17]. This assumption is often true with theDREM data set [18].

Contours can beconvexor non-convex. A contour is convex if it is identical to its

convex hull and is non-convex otherwise. Triangulation between non-convex contours

is done by hierarchically decomposing the contours until the given non-convex contour

transforms into a convex contour.

Triangulation of convex contours

A contour is represented as an ordered set of points. IfC1 andC2 are two contours to be

triangulated then the edges joining them should have the following properties. Each edge

should have one vertex inC1 and another inC2, and every two consecutive edges should

have only one common vertex and should form a triangular patch.

Let Pi be a point inC1 andQ j be a point inC2 (Figure 2.1). Without loss of generality

C1 has fewer points thanC2. Then the triangulation is done by connecting each point inC1

to the closest point inC2. In the explanation that follows,Pi andPi+1 represent consecutive

points onC1, Q(j)(i) andQ(j)(i+1) are points onC2, but are not consecutive. PointQ(j)(i) is

closer toPi and pointQ(j)(i+1) is closer toPi+1. The second term of the subscript inQ(j)(i)

andQ(j)(i+1) which arei andi +1, denote that these points are closer to the points in the

ith andi +1th position ofC1.

Pi is connected toQ(j)(i), whereQ(j)(i) denotes a point onC2 closest toPi, andPi+1

is a connected toQ(j)(i+1), whereQ(j)(i+1) is the point onC2 closest toPi+1. Note that

Q(j)(i+1) appears later in the sequence of points thanQ(j)(i). The pointQk on C2 is the

12

latest point in the sequence such that the distance fromPi to Qk (d(Pi ,Qk)) is less than the

distance fromPi+1 to Qk (d(Pi+1,Qk)). Also, Qk lies betweenQ(j)(i) andQ(j)(i+1). Figure

2.1 depicts the selection of the points. All the points betweenQ(j)(i) andQk are connected

to Pi and the points betweenQk andQ(j)(i+1) are connected toPi+1.

If C1 andC2 are non-convex, they must be preprocessed before applying the triangula-

tion.

Figure 2.1: Single branching.

Triangulation of non-convex contours

Preprocessing of non-convex contours is done in two separate stages: First, the non-convex

contourC is decomposed into itselementary concavities, which can be represented in a

hierarchical tree structure. Next, the terminal nodes in the tree are projected onto the

convex hull of the parent node to get a transformed convex contourC
′
. The preprocessing

is done so that the distribution of the vertices in the transformed contourC
′
is the same as

in the original contourC. This method relies on the assumption that any two contours in

the consecutive tissue slices have similar convex hulls.

Decomposition of ContourC Let C0 be the original non-convex contourC and letPi,

for 1≤ i ≤ M, be the points inC0 with anti-clockwise orientation. LetE0 = {Pk | k ∈ K},

whereK is a subset of{1 . . . M}, be the convex hull ofC0. If C0 6= E0, then at least one

vertex inC0 is not inE0. That is, there are at least two pointsPj1 andPi1 consecutive in

13

E0 but are not inC0. This indicates the presence of a first order concavity, represented as

C1
i1, j1

, where(j1, i1) are the start and end points of the first order concavity. LetE1
i1, j1

be the

convex hull ofC1
i1, j1

. If E1
i1, j1

= C1
i1, j1

, it is an elementary concavity and denotes the end of

decomposition. IfE1
i1, j1

6=C1
i1, j1

, then there is a second order concavityC2
(i1, j1)(i2, j2)

, where

(i2, j2) represents the start and end points of the second order concavity and is represented

in the second level of the tree. In the hierarchical tree structure,C0 is represented as the

root and eachnth-order concavity is represented as thenth-level node in the tree.

To summarize the above, the corresponding convex hullEn
(i1, j1)...(in, jn)

is found for each

concavityCn
(i1, j1)...(in, jn)

. WhenCn
(i1, j1)...(in, jn)

= En
(i1, j1)...(in, jn)

, the decomposition cannot

go further as the elementary concavity is reached. IfCn
(i1, j1)...(in, jn)

6= En
(i1, j1)...(in, jn)

, then

the decomposition continues until the elementary concavity is found.

The decomposed original contour now has to be transformed toget the convex contour.

Transformation of Contour C The decomposed contour is transformed by projecting

the elementary concavity represented by the terminal node on the convex hull of the con-

tour of its parent node. IfCn
(i1, j1)...(in, jn)

is the elementary concavity, then each pointPi on

Cn
(i1, j1)...(in, jn)

is projected onto the line joiningPin andPjn as in Figure 2.2. The projection

is calculated as follows:

x
′

i = xi −Ri(x jn −xin) (2.1)

y
′

i = yi −Ri(y jn −yin), (2.2)

whereRi is the normalized weighting factor and is given as

Ri =
∑i−1

k=in
d(Pk,Pk+1)

∑ jn−1
k=in

d(Pk,Pk+1)
. (2.3)

In Figure 2.2,A/B = a/b. These calculations maintain the relative distance between

vertices after the projection. The fully processed contourhas the same number of ver-

tices as the original contour, and the original contourC has been processed into a convex

contourC
′
.

BecauseC
′
is convex, the triangulation algorithm for convex contourscan be used (first

sub-section of Section 2.2.1).

14

Figure 2.2: Projection of elementary concavities [2].

Implementation

The convex hull of the contour is found using Graham’s Scan method [17]. First, the

pivot of the convex hull is found by choosing the vertex with the smallest y-coordinate

and the largestx-coordinate. The pivot always lies on the convex hull. LetST andST−1

be the top two vertices on the stack at any point in the algorithm. We visit each vertexVi

on the contour in anti-clockwise order. If (ST−1, ST , Vi) represents a “left turn”, pushVi

on the stack. If (ST−1, ST , Vi) represents a right turn, popST and pushVi. When the scan

completes, this stack contains only vertices of the convex hull.

By recursively calling this method for every concavity, the tree is fully populated with

the terminal node representing thenth-order concavity. The transformation function is

applied to every vertex and the projections of the points in each level of the tree are calcu-

lated. These projections replace the original vertices in the parent node. At the end of this

call, the root node contains the transformed or theprojected verticesof the original input

vertices.

When the projection is done, the triangulation of the non-convex contours is done by

establishing relations between the vertices of the two transformed contours.

Deployment of Ekoule’s algorithm on real models

This heuristic algorithm works on some models and fails on others. Figure 2.3 and Figure

2.4 show models on which Ekoule’s algorithm works. The two slices in Figure 2.3 have

15

similar convex hulls with many non-convex regions. The two slices in Figure 2.4 have

identicaly andz coordinates, but one is translated 100 units in thex-dimension. This sort

of “horseshoe” shape often appears in the embryo models. WhenWinSurf aligns contours

by centering bounding boxes, the corresponding concavities begin and end at the same

relative locations. Hence the triangulation for both thesecases is correct.

Figure 2.3: An example of a correct triangulation obtained using Ekoule’s
algorithm.

Figure 2.4: An example of a correct triangulation obtained using Ekoule’s
algorithm.

Example 1 The two slices in Figure 2.5 have almost identicalx-coordinates. The only

difference is that the concavity begins and ends at different relative locations for each

slice, and thez-coordinates have been translated 100 units for one slice. After projecting

16

the vertices in the non-convex region on the convex hull, both slices look similar, that

is, both will have a circular shape. However, the corresponding local neighborhoods are

totally incorrect for the original non-convex regions.

The triangulations of the slices in Figure 2.5 are not pleasing, because the inner ver-

tices of Slice 1 are projected onto the line joining the two outer corner points of the open-

ing. Hence, when the outer vertices of Slice 2 look for nearest neighbors of Slice 1, they

choose the projected inner vertices of Slice 1, which is incorrect. Ekoule proposes that,

after the transformation of the non-convex contours into convex contours, all the points

in the non-convex regions of the contour are projected on thehull and when the near-

est points on adjacent contours are chosen, the correct nearest point is determined as the

relative distances of the vertices are maintained during the projection. The “horse shoe”

example shows that this assumption is not valid even when theconvex hulls are similar.

Figure 2.5: An example of an incorrect triangulation obtained using Ek-
oule’s algorithm.

Example 2 Figure 2.6 shows two similarly shaped adjacent contours. One contour

has been rotated by a small angle so that the openings do not align. Even though the

two contours are almost identical, the local neighborhoodsof the projected vertices in

17

both slices are quite different, which leads to an incorrectmapping between the vertices

and hence an incorrect triangulation. When applying Ekoule’s algorithm to this type of

contour we found that the algorithm did not tolerate rotations well.

Figure 2.6: An example of an incorrect triangulation obtained using Ek-
oule’s algorithm.

Example 3 In Figure 2.7, the projections of vertices in the inner circle and the pro-

jections of vertices in the bulbs (the circular twist on either side) lie on the convex hull.

Ekoule also proposes that relative distances are maintained in the transformed contour, but

in Figure 2.7 we can see that maintaining the relative distances between corresponding

vertices is difficult. Also for these bulb shapes, even though the non-convex regions are

projected onto the hull, the intended shapes are not maintained in the final output, because

the twists inside the outer curve make the local neighborhood of the transformed contour

incorrect. So, when finding the nearest vertex of a pointx in Slice 1, the algorithm chooses

a vertex that was not in its local neighborhood in the original set, but that is in its local

neighborhood after the transformation. The bulb shapes on either side of the slice are

rendered incorrectly.

These horseshoe shapes are not obscure. They occur frequently in the DREM data

set [18] where they are used to represent wall-like structures. Ekouleet al. demon-

strated their algorithm on human vertebra, which are not very complex and do not contain

horseshoe-like shapes. One possible way of handling such shapes might be to partition

the non-convex regions separately and apply the algorithm to the subregions, but this cre-

18

Figure 2.7: An incorrect triangulation generated by Ekoule’s algorithm.

ates the new problem of subdividing the non-convex regions.However, the application of

such patches to the basic algorithm could soon overwhelm thealgorithm’s most attractive

features - its speed and simplicity.

2.2.2 The algorithm of Fuchset al.

The algorithm by Fuchset al. [3] triangulates adjacent contours using an optimizing

criterion without applying any heuristics. Any monotonically non-decreasing optimizing

criterion can be chosen by the user. The problem of finding an optimal triangulation can

be represented as a problem in graph theory.

Let P andQ be two adjacent contours.P0,...,Pm−1 are points of the closed contourP,

wherem is the number of points inP andP0 follows Pm−1. Q0,...Qn−1 are points of the

closed contourQ, wheren is the number of points inQ andQ0 follows Qn−1. A contour

segmentis defined as the section between any two consecutive points in a contour, that is

the linear segment betweenPi andPi+1 or Qi andQi+1. A spanis the edge connecting a

vertex from one contour to a vertex in the adjacent contour and is written asPiQ j , wherePi

is a vertex in contourP andQ j is a vertex in contourQ. An elementary tileconsists of two

spans and one contour segment. The two spans connect each endof the contour segment

to a common vertex in the adjacent contour.Pi, Q j , Pi+1 form an elementary tile, where

Pi andPi+1 form the contour segment andQ j is the common vertex in an adjacent contour.

A huge number of sets of elementary tiles can be built betweenthe contours, but the

right set is chosen with the following conditions. For the elementary tiles to form an

19

acceptable surface, each contour segment should be present in not more than one tile of

the set, and if a span is a left (right) span for any elementarytile, it has to be a right (left)

span for at least one other tile in the set. Even so, there are still many acceptable surfaces.

The problem of choosing the best set of tiles among the acceptable sets can be simplified

by representing spans and elementary tiles asvertices Vandarcs Aof a toroidal graph,

and by defining an acceptable subgraphSas follows.

In a directed toroidal graphG = 〈V,A〉, V is set of all possible spans between points

in P and Q and A is set of all possible elementary tiles. Figure 2.8 shows a directed

toroidal graph. The vertexVi j in G at row i and columnj represents the span between

Pi andQ j (PiQ j). An arc inG, written 〈Vkl,Vst〉, represents an elementary tile with left

spanPkQl and right spanPsQt , where eithers= k andt=(l +1) modnor s= (k+1) modm

and t = l . 〈Vi j ,V(i+1)modm, j〉 represents a vertical arc from rowi to row (i + 1)modm,

and A〈Vi j ,Vi,(j+1)modn〉 represents a horizontal arc from between columnsj and (j +

1)modn. The following conditions define anacceptable subgraph S. There should be

exactly one vertical arc between any two rows, and exactly one horizontal arc between

any two columns. For a vertexv, either indegree(v)= outdegree (v) = 0 or indegree(v) >

0 and outdegree(v) > 0, where indegree is the number of arcs incident on a vertex and

outdegree is the number of arcs incident from a vertex. Figure 2.9 shows how a set of tiles

are mapped into a subgraph.

An acceptable subgraphS corresponds to anacceptable surfaceif and only if (1) S

contains exactly one horizontal arc between any two adjacent columns and exactly one

vertical arc between any two adjacent rows, and (2)S is weakly connected and for every

vertexv, indegree(v) = outdegree(v), that isS is Eulerian. An Eulerian trail in a directed

graph is a closed path in which all the arcs occur exactly once.

S can take one of two forms. For every vertexvi j of S, if indegree (vi j) = outdegree

(vi j)=1, the surface is homeomorphic to a cylinder. If indegree(vst)=outdegree (vst)=2 for

a vertexvst, then for every other vertexvi j in S, indegree (vi j) = outdegree (vi j)=1. Such a

surface is homeomorphic to two cones glued together at the spanPsQt where indegree(vst)

= outdegree(vst) = 2.

An acceptable surface can also be called anacceptable trail. An acceptable trail has

20

Figure 2.8: Directed toroidal graph representation [3].

m+ n arcs, wherem and n are the number of points in the contoursP and Q. A trail

starting atvi0 and ending atvm+i,n, hasm vertical arcs andn horizontal arcs. Fuchset

al. proved that there can be(m+ n)!/m!n! number of possible paths for the above trail

[3] considering all possible permutations. Hence, the number of acceptable surfaces for

a graphG is exponential. Therefore, to obtain an optimal surface from all acceptable

surfaces, an additional criterion has to be satisfied. To do this, each arc A〈Vkl,Vst〉 in S is

assigned a costC(〈Vkl,Vst〉). For example, for any arc, the cost can be the surface area or

perimeter of the associated triangle. The cost of a trail is the sum of the cost of the arcs

contained in it. The surface of best “quality” is the trail with minimum cost. If the cost

chosen is surface area, then the optimal surface among the acceptable surfaces is the one

with minimum total surface area.

The problem of finding an optimaltrail in a toroidal graphG corresponds to finding an

optimalpath in the corresponding planar graphG
′
. A path is a trail in which no vertices

are repeated. Hence unlikeG, G
′
has no cycles. It can be obtained by gluing together two

copies ofG. A path fromvi0 ends atvm+i,n in G
′
.

The optimal path is found by findingπ[i] for all i ∈ (0,m−1), whereπ[i] represents

an optimal path starting fromvi,0 to vm+i,n, and then choosing the one with minimum cost

from among thesem paths. That is,π[0], π[1],...,π[m−1] is found, and the one with the

21

Figure 2.9: Correspondence between a subgraph and a set of tiles [3].

minimum cost is the optimal pathπ.

The optimal pathsπ[0], π[1],...,π[m−1], π[m] are found using the following theorem:

If π[i] is the minimum cost path fromvi,0 to vm+i,n, then there exists a minimum cost path

π[j] from v j,0 to vm+ j,n which does not crossπ[i], but can share vertices or arcs withπ[i]

from Theorem 2 of [3]. By this theorem,π[k], which is the minimum cost path from

vk,0 to vm+k,n, where 0< i < k < j < m, can be found by searching the graphG
′
(i, j),

whereG
′
(i, j) is a subgraph ofG

′
and is spanned only by the vertices betweenπ[i] and

π[j] (V
′
(i, j)). This means that any single minimum cost pathπ[k] betweenπ[i] andπ[j],

does not cross either the pathπ[i] or π[j].

π[m] is found by findingπ[0] and shifting the path down tom in G
′
. Thus,π[0] to

π[m− 1] can be found by first searchingG
′
(0,m− 1) to getπ[(m− 1)/2], and thereby

subdividingG
′
(0,m−1) into smaller subgraphs till all the paths are found. Figure 2.10

22

shows a vas segment from prostate data generated using this algorithm.

(a) Vas from prostate data. (b) Close up wireframe view.

Figure 2.10: Model of vas segment from prostate data obtained using Fuchs
optimal algorithm.

2.2.3 Assessment of the triangulation algorithms

Improvements based only on the variations in triangulations have limitations. That is, for

our data-set, the final models obtained using just a triangulation algorithm exhibit a seg-

mented appearance, despite having detailed contours, because of the large inter-slice dis-

tance. Even though optimal triangulation algorithms can produce an optimal surface with

respect to some metric, a large inter-slice distance gives the models a segmented surface

rather than a smooth and organic-looking surface. This is the main reason for exploring

various interpolation methods, which produces a sequence of intermediate slices between

any pair of given slices so that they are very close to each other as well as geometric

similar to each other. The next section explores various interpolation methods.

23

2.3 Interpolation methods

Data sets like DREM are obtained by sectioning an object at different intervals. Straight-

forward triangulations of such data using an optimal or a heuristic algorithm do not look

smooth for a variety of reasons, one reason being the inter-slice distance. Reducing the

distance between individual slices reduces the faceted appearance of models. Shrinking

the inter-slice distance causes triangles to be “more equilateral”. That is, it eliminates the

elongated triangles that can appear in some models due to thelarge inter-slice distance.

Hence, one way of generating smoother models is to automatically generate multiple slices

in-between two original slices, and triangulating them using an optimal algorithm. This

would replace one row of triangles between any two original slices with n+ 1 rows of

triangles, wheren is the number of automatically generated intermediate slices between

those original slices.

To achieve this automatic generation of multiple slices, the given contour data set has

to be interpolated.Interpolationis the process of computing new intermediate data values

between existing data values [19]. We wish to find interpolated slices between every pair

of given slices.

Scattered data interpolation methods are reviewed in [20].As mentioned in [20],

the type of interpolation method to be applied on a particular data set depends on various

factors such as density of the data, level of smoothness required, computational costs

involved, and the application for which it will be used. Interpolation methods include

triangulation based methods, inverse distance methods, and radial basis function methods.

The next few sections summarize these methods and explain why variational interpolation

was chosen for our work.

Interpolation methods can also be classified as global and local. Global methods use

all control points in the original data set to find an interpolation function f (x), whereas

local methods use only a neighborhood of points for generating an interpolation function.

Hence, global methods are sensitive to changes in data. Insertion or deletion of just a single

point will change the interpolation function, thereby changing the values of every surface

point. Additionally, using global methods on very large data sets can be computationally

24

expensive.

Interpolation using local methods can be computationally cheaper than global meth-

ods, as they use only a small subset of points in their local neighborhood to find the

function. As well, any changes to data outside a local domainwill not affect interpola-

tion inside the domain. Choosing the right method should depend on the nature of given

problem, for example, whether the problem is interpolationof temperatures in a given

space, or if it involves interpolating points for modeling medical data. It also depends on

the level of smoothness required (C0, C1 or C2 continuity). The continuity between any

two curve segments is determined by the tangent vectors at the point where the segments

join [21]. C0 continuity ensures that the two curve segments join, that is, it ensures that

there are no breaks in the defined curve. If tangent vectors (first-order derivatives) of two

curve segments are equal at the join point, the curve hasC1 continuity. For aCn contin-

uous curve, thenth order derivatives of any two curve segments should be equal at the

join point. C1 continuity is a minimum requirement for any two curve segments to join

smoothly, whereasC2 continuity ensures a higher level of smoothness. A polynomial with

a degree of at least two (quadratic polynomial) is required to represent the piecewise seg-

ments, to achieveC1 continuity, whereas a polynomial with degree of at least three (cubic

polynomial) is required to represent the piecewise segments, for achievingC2 continuity.

Figure 2.11 shows how two curve segments join based on the level of continuity.

2.3.1 Triangulation based methods

Triangulation based interpolation methods are subdividedinto linear triangular interpola-

tion, barycentric interpolation, and cubic triangular interpolation.

This method essentially requires a pre-processing step, inwhich the scattered data

is triangulated. Any optimal triangulation that avoids thin and elongated triangles can be

used. The piecewise triangular surface generated by a scattered data set on the{x,y} plane

is called atriangulated irregular networkor TIN.

25

Figure 2.11:C0, C1 andC2 continuity [4].

Barycentric interpolation

Let P1 = (x1,y1), P2 = (x2,y2), P3 = (x3,y3). Then, an interior pointP of triangleP1P2P3

can be expressed as a weighted average ofP1, P2, andP3 as:

P = a1P1 +a2P2 +a3P3. (2.4)

The coefficientsa1, a2 anda3 are called thebarycentric coordinates. The interpo-

lated valuez at P is the weighted average of valuesz1, z2, andz3 of pointsP1, P2 andP3

respectively and is given by:

z= a1z1 +a2z2 +a3z3. (2.5)

The barycentric coordinatesa1, a2, anda3 are obtained by solving the following sys-

26

tems of equations:

x = a1x1 +a1x2 +a1x3

y = a2y1 +a2y2 +a2y3

1 = a1 +a2 +a3.

The interpolated values obtained from linear triangular and barycentric interpolation

methods are identical as the equation of plane passing through three distinct points in

space is the same.

Limitations of linear interpolation Even though barycentric interpolation is easy to

implement, when this method is used for surfacing models, the surfaces formed using

this method have a faceted appearance because of derivativediscontinuities at boundaries

of adjacent triangles. This method does not round out the surface but only creates more

smaller triangles within every triangle of theTIN. It givesC0 continuity, but notC1 conti-

nuity. As these methods find interpolated values within the convex hull of a given scattered

data set, it is impossible to extrapolate values.

Cubic triangular interpolation

Surfacing using linear triangular interpolation is not smooth because the planar surfaces

of this interpolation are of degree one, which provides onlyC0 continuity. To achieve

smoother models, the planar surfaces over every triangle are replaced with a curved tri-

angular surface. This is done by applying a triangular Beziersurface [5], [22] on each

triangle of the triangular irregular network, using cubic polynomials ([23], [24], [25],

[21]) . A recent implementation of this approach is called the Curved PN trianglesor

Normal patches[5].

Like linear triangular interpolation, this method requires the scattered data set to be

triangulated as a pre-processing step. Once the data set is triangulated, each triangle of the

TIN is further subdivided based on a specifiedLevel of Detail(LOD). LOD is defined as

the number of evaluation points on each edge of a triangle minus two. That is, if LOD is

zero, it means there is no further subdivision and the original triangle is returned, if LOD

27

= 1, then one extra point is added between the two vertices of each edge, subdividing the

original triangle into four triangles, and if LOD = 2, there are two points per edge be-

tween the corner vertices and the original triangle is subdivided into nine smaller triangles

(Figure 2.12).

Figure 2.12: Subdivision of original triangle based on LOD [5].

Finding the curvedPN triangles begins with defining a normal for each corner point

of the original triangle as in Figure 2.13. Then acubic B́ezier patchis defined over each

triangle of the TIN. A cubic B́ezier patch is a 3D generalization of a Beźier curve. A cubic

Bézier curve is defined using four control points. The curve interpolates the starting and

end control points, and the two remaining points influence the shape of the curve but are

not interpolated. The common parametric form of a Bézier curve is:

p(u) =
n

∑
k=0

PkBk,n(u), (2.6)

whereBk,n(u) = C(n,k)uk(1− u)(n−k) is the basis or the blending function for a Bézier

curve and is called a Bernstein polynomial, and whereC(n,k) = n!/k!(n− k)! is the bi-

nomial coefficient, and thePk are the control points. Varyingu from 0 to 1 generates a

smooth curve that blends thePk.

The curvedPN triangles are formed using Bézier triangles. A pointp in a triangle<P1

P2 P3>, is expressed in barycentric coordinates as

p(u,v) = P1 +u(P2−P1)+v(P3−P1)

= wP1 +uP2 +vP3,

28

Figure 2.13: Vertices and normals of original triangle [5].

wherew = 1−u−v.

Bézier triangles have the form

p(u,v) = ∑
i+ j+k=m

Bm
i jk(u,v)Pi jk , (2.7)

where

Bm
i jk(u,v) =

m!
i! j!k!

uiv jwk, (2.8)

i + j +k = m.

A Bézier patch is defined using 10 control points and has three important properties. A

Bézier patch interpolates the three corner points of the triangle, each edge of the triangle is

a Bézier curve defined using four control points in the given edge, and the surface always

lies in the convex hull of the control points.

The formula for a cubic Bézier patch is [5]

p(u,v) = b300u
3 +3b210u

2v+3b120uv2 +b030v
3 +

+3b021v
2w+3b012vw2 +b003w

3 +

+3b102uw2 +3b201u
2w+6b111uvw.

In the above equation,b300, b030, b003 are the corner vertices and are also called the

vertex coefficients. b210, b120, b021, b012, b102, b201 are thetangent coefficientsandb111

is thecenter coefficient. They are also called the control points or the control net (Figure

2.14).

29

Figure 2.14: Control net [5].

As the curvedPN triangle interpolates the corner points of the original triangle, the

vertex coefficients are left in place to match the corner points. The rest of the geometry

coefficients, namely the tangent coefficients and the centercoefficient can be determined

from the vertex coefficients and the normals at the respective vertex coefficients. The two

tangent coefficients near each corner, are projected into the tangent plane defined by the

normal at the corner point. The projection of a pointX onto a plane with normalN at point

P is given as

X
′
= X−wN, (2.9)

whereW = (X−P) ·N. Hence, with respect to the above equation, the tangent coefficients

are computed using the vertex coefficients and the normals (Figure 2.15) and are given as

b210 =
(2P1 +P2−w12N1)

3
,

b120 =
(2P2 +P1−w21N2)

3
,

b021 =
(2P2 +P3−w23N2)

3
,

b012 =
(2P3 +P2−w32N3)

3
,

b102 =
(2P3 +P1−w31N3)

3
,

b201 =
(2P1 +P3−w13N1)

3
,

30

whereP1 = b300, P2 = b030, P3 = b003, andwi j = (Pj −Pi).Ni. The center coefficient,b111 is

given as:

b111 = E +
E−V

2
, (2.10)

whereE = b210+b120+b021+b012+b102+b201
6 , andV = b300+b030+b003

3 . Figure 2.16 shows a vas

segment generated using this method.

Figure 2.15: Calculating a tangent coefficient[5].

Assessment As this method is local, it can easily accommodate large datasets. As this

method isC1 continuous the surface looks smoother. But it requires pre-processing (trian-

gulation) of the original data set. Like the linear method, this method cannot find extrapo-

lated values. Using it on large models with triangles of greatly variable area requires some

care. When used on a whole model, this method also subdivides triangles that are quite

small and results inZ-fightingproblems on some models. Z-fighting is a phenomenon in

3D rendering which occurs when two or more coplanar primitives have similar values in

Z buffer, causing random parts of the primitives to be rendered [26]. Figure 2.16 shows a

model generated using this method.

2.3.2 Inverse distance weighted interpolation

Inverse distance weighted interpolation, also known as Shepard’s method [27] is used

because of its simplicity. It is a global method and hence alldata points are considered

for evaluating the interpolated value of a pointP. The interpolated value ofP at (x,y) is

31

(a) LOD model of vas structure
from prostate data.

(b) Close up wireframe view.

Figure 2.16: Model of vas segment from prostate data obtained using cubic
triangular interpolation.

the weighted average of the values of all scattered data points. The weights depend on

the distance between the scattered data pointsSi and the pointP to be interpolated, where

i ∈ [1, . . . ,n] andn is the number of points in scattered data set. The weight increases if the

distance betweenSi andP decreases, and decreases if distance betweenSi andP increases.

Hence, in the inverse distance weighted interpolation method, the value ofP at (x,y) is

influenced more by nearby points and less by points farther away fromP and is given by

F(x,y) =
n

∑
i=1

wizi, =
n

∑
i=1

{

hi

∑n
j=1h j

}

zi, (2.11)

wherezi is the value ofPi andwi is the weight atPi and is given by

wi =
hi

∑n
j=1h j

,
n

∑
i=1

wi = 1,where hi =
1

di
k ,and di =

√

(x−xi)
2 +(y−yi)

2, (2.12)

where (xi , yi) is a scattered data point and (x,y) is an interpolated point. Different values

of k result in different interpolated values. An extension to the original Shepard’s method

is given in [20].

32

A way of localizing this method is given in [28]. Thehi at (x,y) in equation 2.12 is

replaced with

hi =

{

[R−di]+
Rdi

2
}

,where[R−di]+ =







R−di if di < R

0 if di ≥ R,
(2.13)

wheredi is the Euclidean distance between (x,y) and (xi ,yi), andR is the radius of influence

about (xi,yi). This makes the value of the interpolated pointP influenced only by the scatter

points within this radius. The surface obtained from this interpolation isC1 continuous

[20].

Assessment As this method is based on distance, it tends to give too much weight to

data clusters. Unlike triangulation based methods, it is possible to extrapolate outside the

convex hull of the given data points.

2.3.3 Radial basis functions (RBF)

The method ofradial basis functiontypically uses all control points and is an important

method used to perform scattered data interpolation in various medical and graphics ap-

plications ([29], [30]). This method is global and can beC2 continuous and hence is

preferred for generating smoother interpolants. This method was first suggested by Hardy

[31].

It starts by defining a RBF for every data point, such that

f (x,y) =
n

∑
i=1

diφi(x,y). (2.14)

The response of aradial functiondecreases or increases monotonically with distance from

a central point. A radial function is of the formφi(x,y) = φ(di), wheredi is the distance

between the input point(x,y) and a data point(xi ,yi). Choices for radial basis functions

include thin-plate splines (r2logr), Gaussian (φ(r) = exp(−cr2)), and multiquadric (φ(r)

=
√

(r2 +c2)), wherer is the radius or distance from the origin.

Givenn data points, each point (xi ,yi) in the scattered data set has an associated value

33

zi that the radial basis functions must interpolate as follows

z1 =
n

∑
i=1

diφi(x1,y1)

...

zn =
n

∑
i=1

diφi(xn,yn)

In matrix form, the preceding can be represented as:z = Md, d= M−1z, where

z = (z1 . . .zn) ;

M = (φi(x1,y1) . . .φi(xn,yn)) ;

d = (di . . .dn) .

Hence,n control points given equations that can then be solved for the weightsdi. Then

the value of any point (x,y) can be found by inserting the weightsdi into Equation 2.14.

This interpolation method gives a smooth surface. The pre-processing step involves find-

ing the coefficients of the interpolation function.

Assessment This interpolation method gives much smoother interpolants than all the

other methods discussed here. As this method is global, processing a large data set can

be expensive. This computational difficulty can be resolvedby splitting the data sets into

separate domains, each including only a small subset of the data points. The final inter-

polation function will be the weighted sum of the interpolation functions of all domains.

The variational interpolation technique of Turk and O’Briendiscussed in the next chapter

uses thin-plate splines as the radial basis function.

There are three ways of exploiting RBF’s using scattered data interpolation methods.

They are the naive methods, such as those of Turk and O’Brien, the fast-fitting methods

such as that of Beatsonet al., and the compactly supported RBF’s [32], [33], [34], [35].

In compactly supported RBF’s, the basis functions have a piecewise polynomial profile

function and different radius of supports, which depends onthe desired continuity of the

polynomials and the dimension of the space from where the data is drawn [36].

34

2.4 Variational interpolation

This section explores the approach of variational interpolation. The basic approach, an

application of scattered data interpolation, creates an implicit function that uses a weighted

sum of radial basis functions, one per input point. This approach has some problems

related to the input data size. One is that solving the coefficients requires solving a system

of linear equations. As models become large, simple solversbecome unstable. Moreover,

the resulting implicit function is expensive to evaluate.

2.4.1 Implicit functions

Consider the equation:

f (x,y,z) = 0, (2.15)

The function f implicitly represents all (x,y,z) points that satisfy the above equation.

Therefore, the surface formed from all thex,y,z points satisfying Equation 2.15 is called

an implicit surface [37].

For a given center (cx,cy) and radiusr, implicit representation of a circle is

f (x,y) = (x−cx)
2 +(y−cy)

2− r2 = 0, (2.16)

and parametric representation is

f (x,y) = (cx + r cosθ ,cy + r sinθ),θ ∈ [0,2π], (2.17)

where (x,y) are the points on the circumference of a circle. Even thoughfinding a point

on the circumference of a circle is relatively easier in a parametric form than in an implicit

form, it is much simpler to determine if a point lies on or inside/outside a surface using

the implicit form. Because of this advantage over the parametric representation, implicit

surface representation is increasingly used in applications such as collision detection [38],

shape transformation, and surface reconstruction.

Turk and O’Brien [14] usevariational interpolationwith the implicit function repre-

sentation to solve the scattered data interpolation problem. Variational interpolation is the

generalization of 2D thin-plate splineinterpolation to higher dimensions.

35

2.4.2 Variational technique

Figure 2.17 shows a thin plate spline that passes through 15 control points. It derives its

name from the behavior of a thin metal plate, because, a metalplate, when forced through

a set of control points takes the form in which it is least bent, as in Figure 2.17. The basis

function for a thin plate spline isr2 log(r), wherer is the distance from a center. This basis

function increases in value with distance from the center. Using a thin plate spline as a

radial basis function is a conventional method for performing scattered data interpolation

[39]. It ensuresC2 continuity and hence produces smooth interpolants. Thin plate spline

interpolation is used in fields such as medical surface reconstruction where smoothness

of a model is a primary concern. It is a global method, since the RBF considers all the

control points.

Figure 2.17: Thin plate spline [6].

The problem of scattered data interpolation is stated as follows. Givenn data points

{c1,c2, . . . ,cn} scattered on axy-plane along with corresponding scalar height values{ h1,

h2, . . ., hn }, find the smooth surface that interpolates each height at thegiven locations.

That is, find a smooth functionf (x) that passes through a given set of data points.

The smoothness of an interpolating functionf (x), is determined by the bending energy

E, which is a measure of the quality of the interpolating function, and is given as

E =
∫ ∫

R2
(
∂ 2 f
∂x2)2 +2(

∂ 2 f
∂x∂y

)2 +(
∂ 2 f
∂y2)2dxdy, (2.18)

whereE is a measure of the aggregate squared curvature off (x) over a regionR2, ∂ 2 f
∂x2 is

the secondx-partial derivative,∂
2 f

∂y2 is the secondy-partial derivative, and∂ 2 f
∂x∂y is a mixed

derivative. Duchon [40] showed that thin plate interpolation minimizesE. Regions with

high curvature have higher value ofE and regions with less curvature have lesser value of

36

E. Hence, the problem of scattered data interpolation can be solved using the variational

technique, which finds a functionf (x) that minimizesE, as well as interpolates each

height{h1,h2, . . . ,hn} at the given locations{c1,c2, . . . ,cn}.

Duchon [40] has shown that the function

f (x) =
n

∑
j=1

d jφ(x−c j)+P(x), (2.19)

minimizesE, in addition to satisfying the constraint

f (ci) = hi. (2.20)

In Equation 2.19,φ(r) = |r|2log(|r|), wherer is the distance from a centerc j , d j are

weights, andP(x) is a degree one polynomial. Equation 2.19 is solved for the weights

and polynomial coefficients using Equation 2.20 as follows

hi =
k

∑
j=1

d jφ(ci −c j)+P(ci). (2.21)

The side conditions to this system are

k

∑
i=1

d j = 0
k

∑
i=1

d jxi = 0
k

∑
i=1

d jyi = 0
k

∑
i=1

d jzi = 0. (2.22)

The side condition or the orthogonality condition is interpreted in three ways by Beat-

son et al.: It makes the measure of the smoothness of an RBF finite, controls the rate

of growth at infinity of the non-polynomial part, and takes away the degrees of freedom

added by the polynomial part [15], [41], [42].

Equation 2.21 can be represented in a matrix form as shown in Equation 2.23 and can

be solved using any standard technique.








































φ11 φ12 . . . φ1k 1 cx
1 cy

1 cz
1

φ21 φ22 . . . φ2k 1 cx
2 cy

2 cz
2

...
...

...
...

...
...

...

φk1 φk2 . . . φkk 1 cx
k cy

k cz
k

1 1 . . . 1 0 0 0 0

cx
1 cx

2 . . . cx
k 0 0 0 0

cy
1 cy

2 . . . cy
k 0 0 0 0

cz
1 cz

2 . . . cz
k 0 0 0 0,

















































































d1

d2
...

dk

p0

p1

p2

p3









































=









































h1

h2
...

hk

0

0

0

0









































(2.23)

37

whereci = (cx
i ,c

y
i ,c

z
i) andφi j = φ(ci −c j). A standard linear solver LU decomposition

method [43], [44] is used to solve the matrix of Equation 2.23. The solution of Equation

2.23 gives an implicit function called the variational implicit function, that minimizesE

and satisfies the interpolation constraints of Equation 2.21.

2.4.3 Shape transformation using variational technique

In a shape transformation problem, the initial shape is transformed into the final shape

by constructing a sequence of intermediate shapes such thatadjacent slices in the shape

transformation sequence are geometrically similar. Turk and O’Brien developed a shape

transformation technique that uses a single implicit function to describe the transformation

of one shape to another, instead of two implicit functions (one for the initial shape and one

for the final shape) as required by the older methods [45], [46], [47], [48]. This is

done by first definingboundary constraintsandnormal constraints(Equation 2.21) on

the initial and the final shapes. Boundary constraints, written as f (bi) = 0, consist of

surface pointsbi and are assigned a height value of zero. Normal constraints,written

f (ni) = 1, consist of interior normal pointsni and are assigned a height value of one.

The vertices marked on the contour boundaries represent thesurface points. The interior

normal points are calculated as follows. The parallel slices are triangulated using Fuchs

algorithm (section 2.2.2), and the surface normals are found by taking the cross product

of the two edges of a triangle. The vertex normalVN is found by averaging the surface

normals surroundingVN (Figure 2.18), and the interior normal constraint pointni for a

surface constraint point is the point ¡x,y,z¿ in the direction of unit vertex normalVN from

the corresponding surface point.

In Equation 2.23, columnh1, . . . ,hk is filled with ones and zeros depending on whether

the constraint point (cx
i cy

i cz
i) in row i is a boundary or a normal point. The surface obtained

using the variational routine exactly passes through all the boundary points.

Figure 2.19 shows the gradual transformation of shapeX to shapeO. Turk and O’Brien

achieve this 2D shape transformation by casting aN dimensional problem as aN + 1

dimensional problem. That is, the 2D problem ofX to O transformation is cast as a 3D

shape transformation problem, by embedding the 2D boundary and normal constraints of

38

Figure 2.18: Normal constraints

X andO shapes as 3D constraints in Equation 2.23 by adding a third coordinatet to each

constraint. This coordinate represents the height of each slice. The coordinatet, takes a

value of zero for the initial shape, and some non-zero valuetmax for the final shape. In the

X to O shape transformation, the boundary and the normal constraints ofX havet = 0, and

the boundary and normal constraints ofO havet = tmax. Thus, the 2D constraint points of

both shapes have been changed to 3D constraint points. For ease of understanding, this

3D representation can be thought of as plotting constraint points ofX on thet = 0 plane

and plotting constraint points ofO on thet = tmax plane.

If the implicit function of Equation 2.19 returns a value zero for a point (x, y), it means

the point lies on the surface. If it returns a value greater than zero, the point lies inside the

surface, whereas if the returned value is less than zero, thepoint lies outside the surface.

A slice of this implicit function taken att = 0 represents the first shape and a slice

taken att = tmax represents the final shape. The intermediate shapes in Figure 2.19,

are obtained by taking a slice of this function at different values oft. The first shape is

obtained by taking a slice of the implicit function att = 10 and the final shape att = 200.

The intermediate shapes are obtained by taking a slice of thefunction att = 59, t = 79,

t = 109, andt = 159.

39

(a) Step 1 (b) Step 2 (c) Step 3

(d) Step 4 (e) Step 5 (f) Step 6

Figure 2.19: Two-dimensional shape transformation sequence

2.4.4 Surface reconstruction using variational technique

Figure 2.20 shows two views of a surface reconstruction doneusing the variational tech-

nique and Figure 2.21, shows similar views of a surface reconstruction done using Win-

Surf for the same data points.

In medical modeling, a surface has to be reconstructed from several 2D slices of con-

tour data. That is, the shape transformation technique has to be applied to all given slices

to generate the final surface. An easy way to do it is to performshape transformation

between every pair of slices and stack up the results to get the final surface. Figure 2.22

shows a surface reconstructed using this method. It shows that the surface produced by

this method has discontinuities along the plane joining theoriginal slices, hence is not a

preferred way to perform surface reconstruction.

Turk and O’Brien’s method uses a generalization of the shape transformation tech-

nique to perform surface reconstruction from several 2D slices . This is done by using the

constraint points of all the 2D slices to compute the variational implicit function. Figure

40

Figure 2.20: 3D view of surface reconstruction produced by Variational
Interpolation (showing theO andX shapes)

2.23 was constructed from the same data as Figure 2.22 using this method.

The implicit function returned by the variational routine describes the entire surface,

and it passes through all the boundary constraint points. The value of the implicit function

can be found for any positive value oft, even if t extends beyond the planes of the first

and the final slices. That is, the reconstructed surface extends beyond the location of the

constraint points to give smoother caps at the ends of the surfaces. Figure 2.24 shows a

vas segment obtained using this method.

Limitations of this approach

Turk and O’Brien report that their method works well up to a fewthousand constraint

points, but becomes unstable with large data sets. Because our models often have more

than 5000 data points, this method cannot be used directly because the matrix for finding

the weights and the polynomial coefficients becomes ill-conditioned.

2.5 Motivation

The triangulation techniques discussed in this chapter created an optimal surface, but as

seen in Figure 2.21, an optimal surface does not necessarilymean a visually pleasing

41

Figure 2.21: 3D view of surface reconstruction produced by WinSurf
(showing theO andX shapes)

smooth surface depending on the optimization criteria. Thesurface in Figure 2.21 does

not look smooth. Hence, triangulating the anatomical slices using just an optimal trian-

gulation algorithm would not accomplish our goal of building smooth anatomical models.

Also, even though the interpolation and the RBF techniques discussed in this chapter have

disadvantages like slower runtimes, intermediate slices can be generated from the orig-

inal data using these techniques. This gave us the motivation to pursue a combinative

method that makes use of both the triangulation techniques and RBF techniques to solve

the problems of instability and the slower runtimes of the previous methods. Our method

of piecewise weighted implicit functionsis explained in the next chapter.

42

Figure 2.22: Surface reconstruction by performing variational interpolation
pairwise on slices

Figure 2.23: Surface reconstruction using variational interpolation on all
slices

43

(a) Vas using original Turk and
O’Brien method

(b) Close up wireframe view.

Figure 2.24: Model of vas segment from prostate data obtained using orig-
inal Turk and O’Brien approach.

44

CHAPTER 3

STABLE AND EFFICIENT IMPLICIT FUNCTIONS

3.1 Piecewise weighted implicit functions

The variational implicit method of Turk and O’Brien constructs an implicit function con-

sisting ofn RBF’s, one for each constraint point. The results are very pleasing, but we en-

counter two problems as models get large, instability and cost of tracing the contours. Turk

and O’Brien suggest that for slice-based models all data points be added to the implicit

function. To address these problems, we considered two approaches. The first approach

usespreconditioned GMRES iterativemethod of Beatsonet al. [49], which conditions

the linear system, but still leaves us with the problem of evaluating the implicit function

for large number of constraint points. The second approach is our idea ofweighted im-

plicit functions. Our solution of weighted implicit functions is both stableto solve and

efficient to evaluate. The reason for the instability of the solution matrix (Equation 2.23),

is the round-off errors created by the large number of constraint points. Weighted implicit

functions avoid this problem by limiting the number of slices given as inputs to the system

at a given time. Moreover, using simple triangulations fromChapter 2 generates a fully

automatic system that can take contour data, estimate normals and generate interpolated

contours.

Our weighted approach finds one implicit function for every window of n slices re-

sulting ink implicit functions. The final surface is represented withk piecewise weighted

implicit functions rather than just one as in the Turk and O’Brien approach. The weighting

varies with they-value of the input point, so that the value at each pointp is the weighted

sum of the implicit functions that influencep along that region. Figure 3.1 shows five

implicit functions obtained from eight slices using a sliding window of four slices, and are

45

computed as follows

f1(x, t) = ∑slice4
i=slice1diφ(x−ci)+P1(x),

f2(x, t) = ∑slice5
i=slice2diφ(x−ci)+P2(x),

...

f5(x, t) = ∑slice8
i=slice5diφ(x−ci)+P5(x),

where f1(x, t),. . ., f5(x, t) are the five implicit functions obtained from the eight slices. The

weights and polynomial coefficients for each of these implicit functions is obtained by

solving them using any standard technique. The size of the sliding window can be set by

the user. Such a grouping of the original input slices into smaller subsets avoids the ill-

conditioning problem of large matrices. After finding all the implicit functions, the value

of a pointp is calculated as the weighted sum of the implicit functions influencingp along

that region. That is, the final value of a point in a region is obtained as follows:

v(x, t) = w1(t)∗ fm(x, t)+w2(t)∗ fm+1(x, t)+ . . .+wl (t)∗ fm+i(x, t), (3.1)

wherev(x, t) is the value of a point at heightt, w1(t),w2(t), . . . ,wl (t) are weights of the

corresponding implicit functionsfm(x, t),. . ., fm+i(x, t) at heightt, andmandm+ i are any

values∈ [1, . . . ,5].

3.1.1 Determining region of influence

Each implicit function is built using points in a certain region. Likewise, every point

contributes to a certain set of functions. Figure 3.2 shows the mapping of all functions

f1(x, t), . . . , f5(x, t) to slicesslice1 to slice8. In this example, each window consists of four

slices. That is,n = 4, andk = 5. Each functionfi(x, t) is constructed from the points in

the slices in the triangle directly underfi(x, t).

When we render contours, we use a weighted average of all the implicit functions

whose triangle containst. Finally, the weight of the implicit functions at heightt is deter-

mined by the heights of the associated triangles att.

46

Figure 3.1: Partitioning of slices for n=4

3.1.2 Determination of weights

Figure 3.3, Figure 3.4, and Figure 3.5 shows the influence off2(x, t), f3(x, t), and f4(x, t)

on a pointp. As seen in the figures,p is not influenced byf1(x, t) and f5(x, t), as the spans

of these functions do not includeslice4 or slice5. Note that atp, the influence off2(x, t)

and f4(x, t) is smaller than the influence off3(x, t).

Once the functions influencingpare determined, the influence of each functionf2(x, t),

f3(x, t), and f4(x, t) at heightt, is determined as follows:

influencefi(x,t) =







(t−tstarti)

trangei
if tstarti < t ≤ tmaxi

(tendi
−t)

trangei
if tmaxi < t < tendi







, (3.2)

wherein f luencefi(x,t) is the influence offi(x, t) on a pointp at heightt, tstarti is the height

at which fi(x, t) begins,tendi is the height at whichfi(x, t) ends,tmaxi is the height at which

fi(x, t) is maximum and is given as

tmaxi =

(

tstarti + tendi

2

)

, (3.3)

47

Figure 3.2: Region of influence of all functions based on a point P

Figure 3.3: Region of influence of function 2

andtrangei is a constant for the size of the region in which the influence grows or declines,

that is

trangei = tmaxi − tstarti .

Usually, we drop thei subscript and writetstart, tend, trange andtmax when the context is

clear.

The total influence of all functions influencingp at t is given asinfluencetotalp(t). The

weight of a function is the normalized influence and is given as

w2(t) =
in f luencef2(x,t)

in f luencetotalp(t) ,

w3(t) =
in f luencef3(x,t)

in f luencetotalp(t) ,and

w4(t) =
in f luencef4(x,t)

in f luencetotalp(t) ,

that is, for a functionfi(x, t) at a pointp, wi(t) is given as

wi(t) =
in f luencefi(x,t)

in f luencetotal(t)
. (3.4)

The weights add up to one. A graph showing the function influences is given in Figure

3.6. The curved lines show the relative influences of a sequence of implicit functions.

48

Figure 3.4: Region of influence of function 3

Figure 3.5: Region of influence of function 4

X-axis represent the slices, and Y-axis the relative influences of each implicit function.

This graph shows the relative influences of functions for allslices between 2 and 5. The

pink plot is the first function, which would be partial, yellow is the second, blue the third

implicit function and so on. The region between 2 and 3 is affected by functions 1,2,3.

The next region is affected by functions 2,3, and 4, and the next by functions 3,4, and 5.

The straight line at the top shows the total weight of the functions, which is 1. We can

see that the weights increase and decrease in a linear fashion with some discontinuities

at locations of original slices. Despite these discontinuities, the final model appears quite

smooth for the size of region of influence we used.

3.1.3 Contour tracing

For a given contour, the intermediate interpolated contours can be found at any desired

height level, by tracing the pixels whose value of the implicit function v(x, t) in Equation

3.1 is equal to zero using a contour tracing algorithm calledthe Moore-neighborhood

algorithm [50]. For practical purposes, value of an implicit function is considered equal

to zero ifv(x, t) is very close to zero.

The Moore neighborhood of a pixelP consists of the eight pixels that share a vertex

49

Figure 3.6: Graph showing the influence of functions

or edge withP. Let these pixels beP1,P2,P3,P4,P5,P6,P7,P8. Given a digital pattern on

a grid, locate astart pixel, one with a value greater than or equal to zero for the implicit

function. Locating a start pixel can be done in a number of ways. A brute force method is

to start at the bottom left corner of the grid, scan each column of pixels from the bottom

going upwards and proceeding to the right until a pixel with avalue greater than or equal

to zero for the implicit function is obtained. The disadvantage of this search is that, if the

grid is very large and the start pixel is located on the extreme right, then the search would

take a very long time to locate the start pixel.

This search method slows down the tracing process considerably. Hence, a different

method of finding the start pixel is implemented. As the boundary points of the input

slices are known, the leftmost bottom point of the first inputsliceslice1 is marked as the

start pixel (sp1) for slice1. The start pixel ofslice2 is found by usingsp1 as follows. Let

the coordinates ofsp1 be (x,y). sp1 can be represented as (x, t,y), wheret is the height.

The height of sliceslice2 will be t + incr, whereincr is the inter-slice distance set by the

user. Inslice2, t of sp1 is replaced byt + incr to get a temporary pixeltp from which the

search has to be started. The search then proceeds in circlesaroundtp. If tp is inside the

surface then the search continues until a pixel outside the surface is found, i.e.,v(x) < 0

in Equation 3.1, or iftp is outside the surface the search continues until a pixel inside the

surface is found, i.e.,v(x) ≥ 0 in Equation 3.1. This is the start pixelsp2 of slice2. This

50

is repeated for all slices.

The next step is to determine the boundary pixels of a given slice starting from the

start pixel. Figure 3.7 shows how the Moore tracing algorithm works. Given any pixelP,

the Moore neighborhood consists of the pixels labelledP1 to P8. These pixels are always

visited in clockwise order, although the start position mayvary.

Figure 3.7: Tracing an intermediate contour

The search begins withP set to the start pixel. The Moore neighborhood is visited until

a pixelPi with a value greater than zero is found. LetPpre denote the pixel that precededPi

in the search of the Moore neighborhood.Pi is added to the contour andP is set toPi. The

algorithm continues except that the search of the Moore neighborhood begins atPpre. The

algorithm terminates when the start pixel is visited for a second time. This is repeated for

all the required heights. To ensure the smoothness of the models, a pixel withv(x) close to

zero is found. This is done by searching betweenP andPpre for a pixel (Pf inal) with v(x)

close to zero. That is, from two points of differing sign we converge to a zero crossing to

getPf inal. The search stops when the start pixel is revisited again.

Concerning the smoothness of models, Winsurf accepts only integer values for pixels.

Thus,Pf inal was approximated by Winsurf. This resulted in the models having a stippled

appearance. Hence,Pf inal was multiplied by a large number to minimize the round-off

problem. Figure 3.8 shows a model generated with an approximation error and a corrected

51

model.

Figure 3.8: Jagged vs smooth appearance of models

Once the intermediate contours are traced, the contours aretriangulated to get the final

surface. Figure 3.9 shows a vas segment from prostate data generated using this method.

Furthermore, as adjacent contours are very similar, it is possible to use simple heuristic

algorithms to construct the surface.

3.2 Preconditioned GMRES method of Beatsonet al.

A fast fitting method implemented by Beatsonet al. [49] uses an iterative method on a

preconditioned interpolation matrix for solving the instability problem of large matrices.

A preconditioned matrixhas clustered eigenvalues that improves the condition numbers

of the matrix and also speeds the convergence of the iterative method. Hence, only a few

iterations are required to solve a preconditioned interpolation matrix. We investigated the

work of Beatsonet al. [15], which solves such large matrices using the GMRES iterative

method (Generalized Minimal Residual Method).

52

(a) Vas using weighted implicit
method

(b) Close up wireframe view.

Figure 3.9: Model of vas segment from prostate data obtained using
weighted implicit method.

3.2.1 Preconditioning using approximate cardinal functions

Preconditioning the interpolation matrix is done by changing the unsuitable or “bad” basis

(Equation 2.19) of the original approach, to a “good” or suitable basis, that clusters the

eigenvalues of the interpolation matrix. For the present discussion, the method of Turk

and O’Brien is considered a bad basis, as the basis function oftheir approach leads to an

unstable linear system of equations.

Beatsonet al. useapproximate cardinal functionsto cluster eigenvalues by defining

ψ j for each constraint point such that

ψ j(x) = p j(x)+
β

∑
i=1

ν ji φ(|x−ci|). (3.5)

That is, for each input constraint pointx j , an approximate cardinal function(ψ j) is

found by choosingβ points nearest tox j . If β ≪ N, Equation 3.5 can be solved using

53

any direct method like LU decomposition. The constraints for the above equation are

ψ j(xi) = δi j , (3.6)

whereδi j is Kronecker’s delta function([51]).

δi j =







1 if i = j

0 if i 6= j
(3.7)

In a pure cardinal function, each basis element has a value ofone at one node and zero

at the otherN− 1 nodes. This makes eigenvalues perfectly clustered and theresulting

identity matrix is well conditioned and the coefficients canbe found in a single iteration.

But for largeN, this is very difficult to achieve as it would be more expensive than the

problem of the original Turk and O’Brien approach because we would have to solve a

large system withN nodes,N number of times. Therefore, instead of pure cardinal func-

tions, approximate cardinal functions are used for preconditioning the interpolation matrix

which uses a small fixed number of neighbours.

For N constraint points, we obtain the following approximate cardinal functions

ψ1(x) = p1(x)+∑β
i=1ν1iφ(x−c1i)

ψ2(x) = p2(x)+∑β
i=1ν2iφ(x−c2i)

ψ3(x) = p3(x)+∑β
i=1ν3iφ(x−c3i)

...

ψN(x) = pN(x)+∑β
i=1νNiφ(x−cNi),

wherec ji are the constraint points,β is the number of nearest points, andν11,ν12, . . ., ν1β ;

ν21, ν22, . . ., ν2β up toνN1, νN2, . . ., νNβ are the coefficients obtained by solvingψ1(x),

ψ2(x) andψN(x) respectively.

Then, the values of theψ j(x) are used to findµ in the equation:

Ψµ = f , (3.8)

54

using the matrix






















ψ1(x1) ψ2(x1) . . . ψN(x1)

ψ1(x2) ψ2(x2) . . . ψN(x2)

ψ1(x3) ψ2(x3) . . . ψN(x3)
...

ψ1(xN) ψ2(xN) . . . ψN(xN)













































µ1

µ2

µ3
...

µN























=























0

1

0
...

1























(3.9)

The matrix Ψ has clustered eigenvalues and is solved using the GMRES iterative

method in relatively fewer iterations.f contains height values of 0 and 1 analogously

to the method of Turk and O’Brien.

The solution (µ1, . . ., µN), is converted back to the original representation of the

weightsdi in Equation 2.19 as follows:

di =
N

∑
j=1

µ jν ji , (3.10)

and the polynomial coefficients of Equation 2.19 are obtained using the set of equations.

p1 = ∑N
j=1 µ j p1 j ,

p2 = ∑N
j=1 µ j p2 j ,

p3 = ∑N
j=1 µ j p3 j ,

p0 = ∑N
j=1 µ j p0 j .

Using the method of Beatsonet al, the weights and the polynomial coefficients of the

original implicit function (Equation 2.19) can be found without any conditioning difficul-

ties whenN becomes large. Unlike the original approach that requiredo(N2) storage and

o(N3) flops, this method requireso(N) storage ando(NlogN) flops. Figure 3.10 shows a

vas segment generated using this approach.

55

(a) Vas using GMRES (b) Close up wireframe view.

Figure 3.10: Model of vas segment from prostate data obtained using GM-
RES method.

56

CHAPTER 4

RESULTS

In the introduction we stated our goal was to produce significantly higher quality mod-

els in reasonable time from data that might contain misaligned sections, user errors, or

large interslice distances. The two methods studied go a long way towards meeting these

goals. This chapter presents our findings.

4.1 Weighted method vs other approaches

(a) Single implicit. (b) GMRES. (c) Weighted Implicit.

Figure 4.1: A comparison of the three approaches.

Figure 4.1 compares the final model obtained from the three approaches (Turk and

57

O’Brien, Beatsonet al. and weighted implicit) for the same data set. The original contour

has 60 slices, 2320 constraint points, and an inter-slice distance of 14 units, whereas the

surface formed using weighted implicit approach (Figure 4.1(c)) has 841 slices, 143609

points, and an inter-slice distance of 1 unit.

Method Number of slices in

final model

Number of vertices

in final model

Inter-slice distance

Fuchs 60 2320 14

Single implicit 841 143691 1

Weighted implicit 841 143609 1

GMRES 841 143690 1

Table 4.1: Comparison of the final model generated by four different ap-
proaches.

By visual inspection, we can say that there is no appreciable difference in the appear-

ance of the models generated using these various approaches. However, the single implicit

approach of Turk and O’Brien can be used to generate surfaces only if the original contour

data consists of less than a few thousand data points, whereas the weighted and the GM-

RES approaches can be used when the original contour data is large. Figure 4.2 shows

a structure from prostate data and Figure 4.3 shows a structure from stage 13 of embryo

data reconstructed using weighted implicit functions.

Table 4.2 compares the runtimes of the three approaches for alarge segment of the

vas. The experiments were run on a workstation with 512 MB RAM,and 1.2GHz AMD

Athlon processor. The size of the interpolation matrix is 2320. There is a significant

difference in the run-times of these three approaches. The table divides the cost into two

parts. The first is the creation of the implicit function which requires solving a system of

linear equations. The second is the cost of evaluating the function at each point on the

resulting model.

For N input constraint points, the complexity of Turk and O’Brien method is O(N2)to

compute the coefficients of the implicit function using LU decomposition and O(MN) to

58

Figure 4.2: Reconstruction of a structure from Prostate data.

evaluate the implicit function atM data points in the final model. For large objects this

method is not feasible for real-time model generation.

GMRES can significantly reduce the cost of computing the coefficients, although the

potential savings are not reflected here, because the matrix-vector product computation

involved in the GMRES implementation was not done using a fastalgorithm. GivenN

constraint points, GMRES first computesN implicit functions ofβ points using LU de-

composition. Relative toN, the cost of this is O(N). The conditional matrix resulting

from this is sparse and a clever data structure would result in a very fast iterative solution,

though we did not implement this. Note that the cost of tracing the contours to get the fi-

nal surface is almost equal to the tracing cost of Turk and O’Brien method because it uses

exactly the same implicit function. Realtime speedups are possible but these methods in-

volve approximation of the implicit function, and require implementation of complicated

59

Figure 4.3: Reconstruction of a structure from Stage 13 of Embryo data

data structure. The GMRES method also has other pre-processing requirements such as

ensuring that points in a local set do not lie in a single plane. That is, not allβ points we

choose in Equation 3.5 should lie on the same plane.

The weighted implicit function method achieves a faster runtime than the other two

methods avoiding the instability problem encountered by the other two methods, plus

is much simpler conceptually and simpler to implement. Dividing the data into small

windows makes the cost of finding the overall implicit function linear in the number of

constraint points. That is, assuming the number of points per slice is small relative to the

size of the whole problem, the cost of solving each individual implicit function is constant.

There is one such function per window, and the number of windows grows linearly with

the size of the problem. Thus the cost of building the weighted implicit function is about

O(N). The cost of evaluating the function atM data points is O(M) since the cost of each

evaluation is a large constant under these assumptions.

Table 4.2 shows the savings in time obtained using our approach of piecewise weighted

60

Method Time taken to com-

pute coefficients (s)

Time taken to trace

contours (s)

Total time (s)

Single implicit 213 1496 1709

Weighted implicit 18.456 311 329.456

GMRES 316 1502 1818

Table 4.2: Comparison of three approaches.

implicit functions as compared to the original Turk and O’Brien approach and the GMRES

approach. Thus, the weighted approach produces models verysimilar to the original Turk

and O’Brien approach but has a significant run-time advantageover the original approach,

making it more efficient than the original approach when the number of constraint points

are quite large.

4.2 Other challenges

Figure 4.4(b) shows two independent sections (Figure 4.4(a)) blending into a single

shape. Even though this kind of blending might be visually correct, it is sometimes inap-

propriate for our use as blending of different sections is likely to be anatomically incorrect

in our setting. This is called the “unwanted blending” problem and is discussed in [52],

[53], [54].

Figure 4.5 shows another example of this problem. Figure 4.5(a) shows a Winsurf

model generated with two slices, first slice containing three sections and the next slice

containing two sections. Figure 4.5(b) shows the automaticbranching done using the

weighted implicit approach. Such an automatic branching isinappropriate since the user

has joined the second and third sections of the first slice to the second section in the

next slice. Presumably this has been done for a reason and hence blending of sections is

sometimes not appropriate even though it might look correct.

61

(a) Independent sections. (b) Two sections merged.

Figure 4.4: Merging of independent sections.

(a) Branching in WinSurf. (b) Branching using implicit functions.

Figure 4.5: Branching by implicit functions vs branching in WinSurf.

62

CHAPTER 5

CONCLUSIONS ANDFUTURE WORK

5.1 Summary

This thesis was concerned with the construction of anatomical models from contour data

in reasonable time. We studied several triangulation algorithms, but felt that only limited

gains could be made by varying the triangulation algorithm as the contour data is rela-

tively sparse. We then turned our attention to interpolation approaches, in particular, the

variational implicit function approach of Turk and O’Brien.This approach, based on ra-

dial basis functions, seemed promising, but given the size of the models we might deal

with, suffered from two problems. The first was that simple LU-decomposition becomes

unstable when solving for an implicit function with on the order of 10000 coefficients (i.e.,

constraints). The second is that the time required to solve such a system, and to evaluate

an implicit function consisting of large number of constraint points were high. We first

considered GMRES, a numerically stable approach to finding the solution to the implicit

function. However, the resulting function is still large for large models, and slow to eval-

uate when searching for model surfaces. Because the value of the radial basis functions

increases with the distance from the center, there was no obvious way of speeding up the

evaluation of the final implicit function at a specific point by selectively evaluating RBF’s

with nearby centers.

5.2 Contributions

Our approach called thepiecewise weighted implicit functionstakes only a few slices at a

time to construct the implicit function, hence the interpolation matrix required to compute

63

the coefficients of the implicit function is kept at a small constant size thereby avoiding the

instability problem. Also, as only a few constraint points are involved in the evaluation of

an implicit function at any given height, the intermediate slices can be traced more quickly

thereby resulting in faster execution time than the other two approaches.

Moreover, the study of triangulation algorithms provided an easy way to find normal

constraint points for the implicit function specification.The systems have not yet been

completely integrated to fully automate the generation of smooth surfaces from the initial

specifications. However, this appears to be a straightforward, if tedious, problem. The

following pipeline can be established using this system: the contours specified by the user,

that is the input slices, can be triangulated to yield boundary and normal constraint points.

They are then fed into the variational interpolation solver, which in turn generates more

detailed intermediate contours that are triangulated for the final visualization. Because

adjacent contours are so similar, trivial triangulation algorithms can be used at this point.

5.3 Future work

A possible avenue for future work would be to handle the problem of complete extraction

of new contours from the implicit function. A variety of simple heuristics can be used

to pull out most of the contours in most cases, but in the worstcase, a large area must

be thoroughly searched for possible new contours. Another useful avenue would be the

integration of fast evaluation methods and smoothing methods [30] into this system to

achieve more speed ups in runtime as well as to remove noise inthe input data. Another

constructive area for future work can be the handling of the unwanted blending problem.

64

REFERENCES

[1] Stages of embryo. url: http://virtualhumanembryo.lsuhsc.edu/HEIRLOOM
/Stages/HEP.htm;accessed Jan 2005.

[2] A.B. Ekoule, F.C. Peyrin, and C.L. Oder. A triangulation algorithm from arbitrary
shaped multiple planar contours.ACM Transaction on Graphics, 10(2):182–199,
1991.

[3] H. Fuchs, Z.M. Kedem, and S. Uselton. Optimal surface reconstruction from planar
contours.Communications of the ACM, 20(10):693–702, October 1977.

[4] M. Gleicher. url: http://www.cs.wisc.edu/graphics/Courses/f2003-cs559/splines.pdf;
accessed Dec 2004.

[5] A. Vlachos, J. Peters, C. Boyd, and J. L. Mitchell. Curved PN triangles. InSI3D
’01: Proceedings of the 2001 symposium on Interactive 3D graphics, pages 159–166,
New York, NY, USA, 2001. ACM Press.

[6] Jarno Elonen, 2003. url: http://elonen.iki.fi/code/tpsdemo/; accessed Dec 2003.

[7] 3D reconstruction software - Maya. url: http://www.highend3d.com/maya/;accessed
Nov,2005.

[8] 3D reconstruction software - 3D doctor. url: http://www.ablesw.com/3d-
doctor/;accessed Nov,2005.

[9] 3D reconstruction software - Truespace. url: http://www.caligari.com/;accessed
Nov,2005.

[10] url: http://www.amabilis.com/;accessed Nov,2005.

[11] Visible human data set. url: http://www.nlm.nih.gov/research/ visi-
ble/visiblehuman.html;accessed Mar 2005.

[12] Spitzer V.M. and Whitlock D.G. The visible human dataset: the anatomical platfrom
for human simulation.The Anatomical Record, 253:49–57, 1998.

[13] Doll F, Doll S, Kuroyama M, Sora M.C, Neufeld E, and Lozanoff S. Computerized
reconstruction of plastinated human kidney using serial tissue sections.This article
is to appear.

[14] Greg Turk and James F. O’Brien. Shape Transformation Using Variational Impilict
Functions.Computer Graphics Proceedings, Annual Conference Series, SIGGRAPH
1999, pages 335–342, 1999.

65

[15] R.K. Beatson, J.B. Cherrie, and C.T. Mouat. Fast fitting of radial basis functions:
Methods based on preconditioned GMRES iteration.Advances in Computational
Mathematics 11, pages 253–270, 1999.

[16] B. Delaunay. Sur la sphere vide.Izvestia Akademii Nauk SSSR, Otdelenie Matem-
aticheskikh i Estestvennykh Nauk, 7:793–800, 1934.

[17] J. O’Rourke.Computational Geometry in C. Cambridge University Press, 1994.

[18] D. Moody and S. Lozanoff. SURFdriver: A practical computer program for generat-
ing three-dimensional models of anatomical structures using a PowerMac.Clinical
Anatomy, 11(133), 1998.

[19] A. E. Kaufman. Volume Visualization. The Computer Science and Engineering
Handbook, 1997.

[20] I. Amidror. Scattered data interpolation methods for electronic imaging systems: a
survey.Journal of Electronic Imaging, 11(2):157–176, April 2002.

[21] James D. Foley, Richard L. Phillips, John F. Hughes, Andries van Dam, and
Steven K. Feiner.Introduction to Computer Graphics. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1994.

[22] G. Farin. Triangular Bernstein-Bezier patches.Computer Aided Design, 3:83–127,
1986.

[23] E. W. Weisstein. Cubic spline, from mathworld–a Wolframweb resource. url:
http://mathworld.wolfram.com/CubicSpline.html; accessed Feb 2004.

[24] S. McKinley and M. Levine. Cubic spline interpolation. url:
http://online.redwoods.cc.ca.us/instruct/darnold/laproj/Fall98/SkyMeg/Proj.PDF;
accessed Nov 2003.

[25] url: http://www.tinaja.com/glib/hack63.pdf; accessed June 2005.

[26] Z-fighting. url: http://en.wikipedia.org/wiki/Z-fighting;accessed Nov,2005.

[27] Shepard D. A two-dimensional interpolation function for irregularly-spaced data.
Proceedings of the 23rd ACM National Conference, ACM, pages 517–524, 1968.

[28] R. Franke. Scattered data interpolation: tests of some methods. Mathematics of
Computation, 38(157):181–200, January 1982.

[29] W. Richard Fright Jonathan C. Carr and Richard K. Beatson. Surface interpolation
with radial basis functions for medical imaging.IEEE Transactions Med. Imag,
16(1):96–107, February 1997.

[30] J. C. Carr, T. J. Mitchell, R. K. Beatson, J. B. Cherrie, W. R. Fright, B. C. McCal-
lumm, and T. R. Evans. Reconstruction and representation of 3Dobjects with Radial
Basis Functions.Computer Graphics Proceedings, Annual Conference Series, SIG-
GRAPH 2001, pages 67–76, 2001.

66

[31] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces.
Journal of Geophysical Research, 76(8):1905–1915, 1971.

[32] Yutaka Ohtake, Alexander G. Belyaev, and Hans-Peter Seidel. 3d scattered data
approximation with adaptive compactly supported radial basis functions. InSMI,
pages 31–39, 2004.

[33] Bryan S. Morse, Terry S. Yoo, David T. Chen, Penny Rheingans, and K. R. Subra-
manian. Interpolating implicit surfaces from scattered surface data using compactly
supported radial basis functions. InSMI ’01: Proceedings of the International Con-
ference on Shape Modeling & Applications, page 89, Washington, DC, USA, 2001.
IEEE Computer Society.

[34] Nikita Kojekine, Vladimir Savchenko, and Ichiro Hagiwara. Surface reconstruction
based on compactly supported radial basis functions. pages218–231, 2004.

[35] H. Wendland. Piecewise polynomials, positive definiteand compactly supported
radial basis functions of minimal degree.Advances in Computational Mathematics,
4:389–396, 1995.

[36] Compactly supported RBF. url: http://www.mathworks.com/access/helpdesk/
help/toolbox/mbc/model/rbf3.html;accessed Nov,2005.

[37] Jules Bloomenthal.Introduction to Implicit surfaces. Morgan Kaufmann, 1997.

[38] Sunhwa Jung, Min Hong, and Min-Hyung Choi. An adaptive collision detection and
resolution for deformable objects using spherical implicit surface. InInternational
Conference on Computational Science (1), pages 735–742, 2005.

[39] T. Gutzmer. Error estimates for reconstruction using thin plate spline interpolants,.
(Research report 97-08), May 1997. url: http://e-collection.ethbib.ethz.ch/ecol-
pool/incoll/incoll 247.pdf; accessed Feb 2005.

[40] J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev spaces.
Constructive theory of functions of several variables. Lecture Notes in Mathematics.
Springer-Verlag, 1977.

[41] C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally
positive definite functions.Constructive Approximation, 2:11–22, 1986.

[42] M. Powell. The theory of radial basis function approximations.Advances in Numer-
ical Analysis. Vol. II: Wavelets, Subdivision Algorithms and Radial Basis Functions,
2:105–210, 1990.

[43] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C:The art of scientific computing. Cambridge University Press;
2nd edition (October 30, 1992), 1992.

[44] J. P Moreau. Programs concerning matrices in C/C++. url:
http://perso.wanadoo.fr/jean-pierre.moreau/cmatrices.html; accessed Dec 2003.

67

[45] Taosong He, Sidney Wang, and Arie Kaufman. Wavelet-based volume morphing.
In VIS ’94: Proceedings of the conference on Visualization ’94, pages 85–92, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[46] Gabor T. Herman, Jingsheng Zheng, and Carolyn A. Bucholtz. ShapeBased Interpo-
lation. IEEE Comput. Graph. Appl., 12(3):69–79, 1992.

[47] John F. Hughes. Scheduled Fourier volume morphing. InSIGGRAPH ’92: Proceed-
ings of the 19th annual conference on Computer graphics and interactive techniques,
pages 43–46, New York, NY, USA, 1992. ACM Press.

[48] Rossignac, Jarek, and Anil Kaul. AGRELs and BIPs: Metamorphosis as a Bezier
Curve in the Space of Polyhedra. InProceedings of Eurographics ’94, pages 179–
184, Oslo,Norway, 1994.

[49] R. K. Beatson and W. A. Light. Fast evaluation of radial basis functions: meth-
ods for two-dimensional polyharmonic splines.IMA Journal of Numerical Analysis,
17(3):343–372, 1997.

[50] T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science
Press, 1982.

[51] Kronecker delta function. url: http://en.wikipedia.org/wiki/Kroneckerdelta;accessed
June 2005.

[52] Jean-Dominique Gascuel. Implicit patches: An optimized and powerful ray intersec-
tion algorithm for implicit surfaces. InImplicit Surface, May 1995.

[53] Brian Wyvill, Callum Galbraith, Mark Fox, and John Hart. Towards better blend-
ing control of implicit surfaces.Proceedings of 11th Western Computer Graphics
Symposium, pages 39–45, 2000.

[54] Alexis Angelidis, Pauline Jepp, and Marie-Paule Cani. Implicit modeling with skele-
ton curves: Controlled blending in contact situations. InShape Modeling Interna-
tional. ACM, IEEE Computer Society Press, 2002. Banff, Alberta, Canada.

68

