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ABSTRACT

Surface reconstruction of anatomical structures is argiateart of medical modeling.
Contour information is extracted from serial cross-seatiohtissue data and is stored as
“slice” files. Although there are several reasonably effitigiangulation algorithms that
reconstruct surfaces from slice data, the models genefaiedthem have a jagged or
faceted appearance due to the large inter-slice distaeegect by the sectioning process.
Moreover, inconsistencies in user input aggravate thelpnobSo, we created a method
that reduces inter-slice distance, as well as ignores ttengistencies in the user input.
Our method called thpiecewise weighted implicit functions based on the approach of
weighting smaller implicit functions. It takes only a fewc#s at a time to construct the
implicit function. This method is based on a technique chligriational interpolation
Other approaches based on variational interpolation Heveisadvantage of becom-
ing unstable when the model is quite large with more than aliewsand constraint points.
Furthermore, tracing the intermediate contours becomasresive for large models. Even
though some fast fitting methods handle such instabilitpl@ms, there is no apparent
improvement in contour tracing time, because, the valueaohealata point on the con-
tour boundary is evaluated using a single large implicitction that essentially uses all
constraint points. Our method handles both these problesing & sliding window ap-
proach. As our method uses only a local domain to construdt emaplicit function, it
achieves a considerable run-time saving over the otheradsthThe resulting software
produces interpolated models from large data sets in a fewtes on an ordinary desktop

computer.
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CHAPTER1

INTRODUCTION

Use of computer systems in the study and analysis of the muedbstructures has
significantly increased over the last few decades. Sevérata applications use ad-
vanced computer graphics techniques to model the physoallogfructures used in med-
ical fields like surgery planning, volumetric analysis, edlion and research. Image data
of these anatomical structures is obtained using techsigueh as cryosectioning, com-
puted tomography (CT, CAT scan), magnetic resonance imadiit))( and ultrasonic
imaging. Cryosectioning is a traditional technique stilllely used. The tissues are cross-
sectionally dissected to obtain the “slices” and are theitally photographed and stored
as digital data.

A significant community of users builds models from seriakgtioned data by tracing
contours of objects of interest on images, which are sulesdtyusurfaced. These users
are often interested in performing volumetric and surfaea &alculations of the traced
objects, as well as in the model as a teaching or visualizatigect.

The following illustrates this process. Users at DREM (Cathjt Reproduced Embry-
onic Morphology) are building models of the human embryoatous stages of devel-
opment. Figure 1.1 shows two consecutive slices from thtt get. The user marks
boundary vertices with a mouse. Figure 1.2 shows a closeap of a traced contour.
The actual boundaries on slices are not well-defined anthganust be done by a user
with expert knowledge of embryo anatomy.

Once the contours are marked on all the slices, the anatbsuidace structure is re-
constructed by triangulating parallel tissue slices asvehim Figure 1.3. Given a set
of points, triangulation involves connecting them into asimef triangles. Several tri-

angulation algorithms that perform surface reconstradiiom serial contours have been
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Slice 1

Figure 1.1: Example of slices from DREM data set [1].

explored. Although Figure 1.1 and Figure 1.3 suggest thahdulation of slices is
straightforward, many problems arise if the triangulatgorithm does not handle com-
plex data sets. Some of the problems and solutions are desd¢us Chapter 2.

These reconstructions were done using Winsurf, a commgnmduct designed for
this purpose. Winsurf surfaces contours by applying adudation algorithm to pairwise
contours. Figure 1.4 shows a reconstructed embryo heargy M8inSurf. Other three-
dimensional model building software tools include Maya, Bp Doctor [8], trueSpace
[9] and 3D Canvas [10]. Winsurf gives the user a choice of gidation algorithms,
which we discuss below.

Our present work uses several data sets. Many of the modwisish this dissertation
used parts of objects from a prostate reconstruction by Banmyns of the University of
South Dakota. This model has been under construction fasyaad shows great detail
(Figure 1.5). To obtain their models, Barry Timms’s grougésthe images onto tissue
paper, and then uses Winsurf’'s magic wand tool to generategrs using a segmentation
algorithm. The group uses this technique because thewbdlmt tracing with a pencil
gives more accurate contours than tracing with a mouse.

We also used data provided by DREM for the embryonic periodunhdn prenatal
development. The embryonic period encompasses the fitgtwegeks of conception and
is divided into 23 stages [1]. The DREM data is obtained byrigkiross-sections of the

human embryo at 15 umintervals. Hence, each stage consist of hundreds or soegtim
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Figure 1.2: Boundary vertices.

Figure 1.3: Triangulation between the slices.

thousands of cross-sectional slices. The DREM data set gitizdd collection of these
sections for all 23 stages. Figure 1.6(a) and Figure 1.@{@y3wo stages of embryonic
development.

Another important data set used worldwide is the Nationbtdiy of Medicine’s Vis-
ible Human dataset [11]. In the mid 198@he National Library of Medicine (NLM) of
the National Institutes of Health [12] developed thsible Human ProjectThis provided
the medical and the graphics communities with a detailedadigata set of the entire hu-
man body. The Visible Male data set was sectioned at 1-mmvadte This thickness was
found to be ill-suited for voxel based approaches, so thioMis-emale data set was sec-

tioned at 0.33-mm intervals. The Visible Female has shgbwler 5000 images compared
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Figure 1.4: Reconstructed embryo heart using WINSURF. Courtesy
DREM [1]

to the Visible Male with 1871 images. Despite the avail&pilif this valuable data, the
model construction remains a slow process.

Although Winsurf was developed to assist with volumetrid @milar calculations,
aesthetics has always been important. The kidney model bfeDal. (Figure 1.7) [13]
used very high resolution images. As with Timm’s prostatelaeiokey areas were drawn
by hand with tracing paper to reduce the raggedness of ntoaised models. This level
of detail requires considerable work by the model build&fais, one goal of this work is

the generation of better quality models without requiringrenuser input.

1.1 Overview

Models constructed from serially sectioned data tend tabéximnnatural artifacts. These
artifacts arise from several reasons, including misalignihof sections, user errors, and

interslice distance. At the outset, the goal of this redeargeneral terms was to produce
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Figure 1.5: Prostate reconstruction using Winsurf.

models from this kind of data, but with significantly highawadjty and in reasonable
time, so that a model builder working on an ordinary persopnaiputer could quickly get
visual feedback while working on a fairly large data set. pedfic terms, our goal was
to build smooth, organic looking anatomical models from oely generated slice based

anatomical data in reasonable time on an ordinary personabuter.

The exploratory phase of the research investigated a yarigiossibilities, including
more sophisticated triangulation algorithms, and intefian approaches.

While we found that triangulation algorithms for pairwisest are virtually instan-
taneous on a modern desktop computer, even for fairly lasge sets, we saw no gen-
eral way to improve model quality significantly. On the otlamd, the interpolation
approaches yield high quality (smooth) models, but evenasibchodel sizes can crash a
typical desktop machine, or take a very long time to run.

In the end, we came very close to meeting our above statedlgoaking a combina-
tion of triangulation and interpolation algorithms. Thiasvaccomplished by first using an
optimal triangulation algorithm to produce a kind of “firgttt description of the surface,
which was then fed into the interpolation algorithm. Thenavoid the high costs of the
interpolation algorithm, we devised a method calledgieeewise weighted implicit func-

tionsin which the surface was computed piecewise by passing @irigliwindow” over
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(a) Stage 1 of embryo. (b) Stage 13 of embryo.

Figure 1.6: Stages of embryo. Courtesy The Human Developmental
Anatomy Center, Carnegie Collection [1]

the slices and blending the results. The speedup was daamatithe resulting models do
not obviously differ from models not computed piecewise.

The rest of this section gives a high level overview of ourkwas described in the rest
of the thesis.

The first phase of our study investigated the possibilityngbrioving the final models
by improving the triangulation algorithms. The early versof Winsurf that we wanted
to improve used a greedy algorithm for triangulating theapar slices. A “greedy” algo-
rithm by definition attempts to satisfy goals by taking theick with the largest immediate
progress. This resulted in the algorithm sometimes makiregng/choices when choosing
a vertex for subsequent triangulation, and hence, the fioaleinwvas not visually agree-
able. Hence, to improve the early version of Winsurf so aseteetbp better models, we
studied and implemented an optimal triangulation algariind a heuristic triangulation
algorithm in the course of this work.

A classic and frequently cited example of an optimal aldyonits that of Fuchet al.
[3]. An example of optimality criterion for the Fucles al. algorithm is the minimization

of surface area of triangles. Optimal algorithms are tylpicglower than heuristic algo-
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Figure 1.7: Kidney and Ureter.

rithms because they often must explore an entire solutianesplhe heuristic algorithms
on the other hand are not optimal, but are typically fastantthe optimal algorithms
precisely because they skip over large parts of the solpaice. To some extent, the
complexity of the data determines which algorithm is suiie@ given problem. If the
data is simple, that is, if adjacent slices are almost idahtthen a simple heuristic can
give a quick surface reconstruction. Moreover, the sofufaund is likely to be close to
optimal. On the other hand, a naive choice of optimalityeci& can result in models that
are expensive to compute and are not pleasing visually: tretwf both worlds. If the

data is complex, then optimality criteria or heuristicsdddoe carefully chosen.

Even if the optimality criteria are carefully chosen, inte@rn situations the surface
reconstructed by an optimal algorithm may not be visualgaplng, because users manu-
ally trace the contour boundaries which introduce somensistencies. Such errors arise
because users of software like Winsurf often don't undacdsthe assumptions behind the
triangulation algorithms and enter data inconsistenity.éxample, some slices may have
very few points and other slices may have many points. Tladdeo the reconstructed

surface having a faceted appearance where there are egldw points and a jagged
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appearance where there are relatively many points (Figusg The faceted appearance
in case of few points is because the triangles between tbessdire bigger and broader,
whereas the reason for the jagged look is the uneven distibaf points and elongated

triangles.

Figure 1.8: Faceted appearance of models with a few distant points and
jagged appearance of models with points very close together

A significant factor that affects the appearance of a recocigtd surface is the thick-
ness of the sectioned slices. Sometimes, if sectioningns @ath large intervals, that is,
if the tissue slices are thick, the consecutive contours beaguite different, which may
result in an uneven triangulation and loss of smoothness.

Two important issues must be addressed to create visualhsiplg models. First, the
algorithm has to cope with these inconsistencies in the dééxt, consecutive contours
should not be very different. These two issues can be acdsimepl by extending and mod-
ifying the shape transformatiotechnique of Turk and O’Brien [14], who use a technique
called variational interpolation for reconstructing swwes from point cloud data.

Our work applies the variational interpolation technigaeérial contours. This tech-
nique takes originally dissimilar input slices and autaoaly generates numerous slices
in between them that are similar to each other, thus aclgesimooth transition between
slices. Figure 1.10 shows afi shape transforming into a® shape using variational
interpolation (left) and an optimal triangulation algbrit of Fuchset al. (right). The
figure on the left generated using variational interpotai® preferred because it looks
more natural and organic compared to the one on the rightgeteusing Winsurf. The

contour data given as input for this shape transformati@masvn in Figure 1.9. It sug-
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gests that improvements based strictly on variationsamgulations have limitations. The
interpolation algorithm adds considerable smoothnessasample object. As well, this
algorithm may relieve some of the burden on model buildefsh®models shown earlier,
the kidney was the smoothest (Figure 1.7). However, aalggiis required considerable
work on the part of the model builders. Therefore we also éabit ways to incorporate

the interpolation methodology into model building.

Figure 1.9: Contour data given as input to the system.

Figure 1.10: Smooth transformation oX to O using variational interpo-
lation of Turk and O’Brien(left) vsX to O transformation using WinSurf

(right).

The size of some of our models introduced a potential prolm&mumerical insta-
bility when applying the method of Turk and O’Brien. In otherses, a fully automated
approach was not ideal because the interpolated object etansistent with the user’s

expectations. To deal with both these problems, we invasttha piecewise approach to
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variational interpolation, as well as stable methods falidg with large data sets. In
particular, we investigated a fast fitting method of Beatsbal. [15], a stable algorithm
for solving large systems of linear equations.

Our final solution resulted in an interesting symbiosis leswtriangulation techniques
and variational techniques enhancing the overall usglfibim the perspective of the naive
user, who is usually not knowledgeable about geometriessilihe contribution of this
thesis is a combinative method that uses an optimal triatignl and a modified varia-
tional interpolation technique callgrdecewise weighted implicit functiotizat solves the
instability problem as well as the slower runtime problenthaf previous methods.

The rest of the thesis is organized as follows. Chapter 2 gesvihe necessary back-
ground to the general problem of surfacing models, inclgdirmngulation algorithms and
different interpolation methods including variationadrpolation. Chapter 3 explains two
approaches, our weighted implicit function approach aedtieconditioned GMRES ap-
proach of Beatsoat al,, to solve the problems of the other surfacing approachespt€ha
5 discusses our results. Finally, Chapter 6 contains thelwding statements and some

probable extensions to our current work.
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CHAPTER 2

PREVIOUS WORK

2.1 Introduction to Surfacing

The first problem we studied in depth was triangulation. inge terms and in our con-
text, triangulation is the problem of how to take contouradftom adjacent slices and
stitch them together in the most visually pleasing manndraaoid the problems that the
greedy algorithm made in the earlier version of Winsurf. ®\rf's predecessor, Surf-
driver, triangulated slices piecewise using a Delaunagdhapproach [16]. In 2D, De-
launay triangulation can be thought of as optimizing a gidation by maximizing the
minimum angle. As we wanted to consider other expressiomptiinality, we explored
some more optimal algorithms as well as a heuristic algorithhe optimal algorithm we
studied by Fuchgt al. [3] performs triangulation by separately determining atiropl
surface between each consecutive pair of the slices.

We then turned our attention to interpolation. That is, giyairs of slices, find a
sequence of intermediate slices that give a smooth trandmetween each pair. At the
time of writing, the method of variational interpolation svarominent in the literature.

Below we review the relevant ideas in both of these sub areas.

2.2 Triangulation algorithms

We studied the triangulation algorithms of Ekoeleal. [2] and Fuchset al. [3] with the
dual goals of fast real time performance and visually pleasesults. The heuristic algo-
rithm of Ekouleet al. claims to do both in addition to handling all shapes. It alsones

to deal with branching issues; that is, the problem of a simgintour joining multiple
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contours on neighboring slices. As WinSurf implements mpldtbranching by merging
contours, we only implemented single branching. We fourdalgorithm of Ekouleet al.

was fast, but didn't work for all shapes, including a shage@iently encountered in our
data sets. The optimal algorithm proposed by Fusthal. was also implemented, with

better resulting surfaces, and, although slower, in aatdptime.

2.2.1 The heuristic algorithm of Ekouleet al.

Ekoule’s algorithm is based on the assumption that conseatdntours have similar con-
vex hulls. Theconvex hullof a set of vertices is the smallest convex region that eeslos
all the vertices [17]. This assumption is often true with DfREM data set [18].
Contours can beonvexor non-convex A contour is convex if it is identical to its
convex hull and is non-convex otherwise. TriangulationMa&n non-convex contours
is done by hierarchically decomposing the contours unéldiven non-convex contour

transforms into a convex contour.

Triangulation of convex contours

A contour is represented as an ordered set of pointS; #ndC, are two contours to be
triangulated then the edges joining them should have theWolg properties. Each edge
should have one vertex {@; and another iy, and every two consecutive edges should
have only one common vertex and should form a triangulahpatc

Let B be a point inC; andQj be a point inC, (Figure 2.1). Without loss of generality
C, has fewer points tha@,. Then the triangulation is done by connecting each poi@tin
to the closest point i@,. In the explanation that follow$, andR_ ; represent consecutive
points onCy, Q) andQ (i+1) are points oI1C,, but are not consecutive. Pon@gJ
closer toR and pointQy;yi1) is closer toR1. The second term of the subscrlp@nj i)
andQ (i+1) Which arei andi + 1, denote that these points are closer to the points in the

h andi 4 11" position ofC;.

R is connected @) WhereQ denotes a point o@; closest toR, andR
is a connected tQj) whereQ (i+1) 1s the point onC; closest toR 1. Note that

Q(j)(i+1) appears Iater in the sequence of points tgy);). The pointQx onC; is the

12



latest point in the sequence such that the distance RdmQy (d(R,Qx)) is less than the
distance fromB 1 to Q« (d(R+1,Qx)). Also, Qx lies betweerQj) i) andQyjyi+1). Figure
2.1 depicts the selection of the points. All the points bem@ anko are connected
to B and the points betwee®y andQj) ;1) are connected ta+1

If C; andC; are non-convex, they must be preprocessed before apphartgangula-

tion.

~._ 0 gy G

N>

Pii+1)

Figure 2.1: Single branching.

Triangulation of non-convex contours

Preprocessing of non-convex contours is done in two sepsitages: First, the non-convex
contourC is decomposed into itslementary concavitiesvhich can be represented in a
hierarchical tree structure. Next, the terminal nodes enttiee are projected onto the
convex hull of the parent node to get a transformed convetoeof . The preprocessing
is done so that the distribution of the vertices in the tramsfd contou€’ is the same as
in the original contouC. This method relies on the assumption that any two contaours i

the consecutive tissue slices have similar convex hulls.

Decomposition of ContourC Let C° be the original non-convex contoGrand letR,
for 1 <i <M, be the points itt® with anti-clockwise orientation. Le&&® = {P | k € K},
whereK is a subset of1 ... M}, be the convex hull of®. If C° £ EO, then at least one

vertex inC% is not inE®. That is, there are at least two poifg andP,, consecutive in

13



EC but are not irC°. This indicates the presence of a first order concavityessmted as
Cill’jl, where(j1,i1) are the start and end points of the first order concavityEElgt1 be the

convex hull ofC? . . If E}

i = Cl ., itis an elementary concavity and denotes the end of

i1,]1°

decomposition. IE! . #£Cl . | then there is a second order conca@&/ i)(in.J)’ where

i1,]1 i1,j1° i2,j2)

(i2, j2) represents the start and end points of the second ordendgnaad is represented
in the second level of the tree. In the hierarchical treecstine, C° is represented as the
root and eacht"-order concavity is represented as tifelevel node in the tree.

To summarize the above, the corresponding conveﬂ?}fI]l) (inin) is found for each

-(In;Jn

H n n _ n
concavityCe_ iy injn): WNENCG, i) (inin) = Efiv.in).(inin)

L N N
go further as the elementary concavity is reached:(illfjl)_._(imjn) #* E(il,jl)...(imjn)’ then

, the decomposition cannot

the decomposition continues until the elementary congavifound.

The decomposed original contour now has to be transformgeittihe convex contour.

Transformation of Contour C  The decomposed contour is transformed by projecting
the elementary concavity represented by the terminal nadbeconvex hull of the con-

tour of its parent node. ltgl 1) (i) is the elementary concavity, then each p&nbn

CliLi1)..(injn IS Projected onto the line joining, andPj, as in Figure 2.2. The projection
is calculated as follows:

X; = Xi_Ri(Xjn_Xin> (21)

/

yi = yi _Ri(yjn_yin)7 (22)
whereR; is the normalized weighting factor and is given as

 Sicy, d(RP)

= ok : (2.3)
St d(R, Pe)

In Figure 2.2,A/B = a/b. These calculations maintain the relative distance betwee
vertices after the projection. The fully processed contmas the same number of ver-
tices as the original contour, and the original contGuras been processed into a convex
contourC'.

Becaus€' is convex, the triangulation algorithm for convex contocas be used (first

sub-section of Section 2.2.1).
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Figure 2.2: Projection of elementary concavities [2].

Implementation

The convex hull of the contour is found using Graham’s Scathote [17]. First, the
pivot of the convex hull is found by choosing the vertex with the Basay-coordinate
and the largest-coordinate. The pivot always lies on the convex hull. SetandSr_1
be the top two vertices on the stack at any point in the algoritWe visit each vertey;
on the contour in anti-clockwise order. B(_1, Sr, Vi) represents a “left turn”, pust
on the stack. If&r_1, Sr, V,) represents a right turn, pdg and push;. When the scan
completes, this stack contains only vertices of the conwgix h

By recursively calling this method for every concavity, theetis fully populated with
the terminal node representing th&-order concavity. The transformation function is
applied to every vertex and the projections of the pointairthdevel of the tree are calcu-
lated. These projections replace the original verticeb@parent node. At the end of this
call, the root node contains the transformed orglaected verticesf the original input
vertices.

When the projection is done, the triangulation of the norvearcontours is done by

establishing relations between the vertices of the twasftamed contours.

Deployment of Ekoule’s algorithm on real models

This heuristic algorithm works on some models and fails drerst. Figure 2.3 and Figure

2.4 show models on which Ekoule’s algorithm works. The twoesl in Figure 2.3 have
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similar convex hulls with many non-convex regions. The tWwoes in Figure 2.4 have
identicaly andz coordinates, but one is translated 100 units inditgmension. This sort
of “horseshoe” shape often appears in the embryo models. WieBurf aligns contours

by centering bounding boxes, the corresponding concavitegin and end at the same

relative locations. Hence the triangulation for both thesses is correct.

Figure 2.3: An example of a correct triangulation obtained using Eksule
algorithm.

Figure 2.4: An example of a correct triangulation obtained using Eksule
algorithm.

Example 1 The two slices in Figure 2.5 have almost identicaloordinates. The only
difference is that the concavity begins and ends at difterelative locations for each

slice, and the-coordinates have been translated 100 units for one slitter projecting

16



the vertices in the non-convex region on the convex hullhtshices look similar, that
is, both will have a circular shape. However, the correspantbcal neighborhoods are
totally incorrect for the original non-convex regions.

The triangulations of the slices in Figure 2.5 are not plegdbecause the inner ver-
tices of Slice 1 are projected onto the line joining the tweeoworner points of the open-
ing. Hence, when the outer vertices of Slice 2 look for ndareghbors of Slice 1, they
choose the projected inner vertices of Slice 1, which isnrezt. Ekoule proposes that,
after the transformation of the non-convex contours intovea contours, all the points
in the non-convex regions of the contour are projected orhtileand when the near-
est points on adjacent contours are chosen, the correcstganint is determined as the
relative distances of the vertices are maintained duriegotiojection. The “horse shoe”

example shows that this assumption is not valid even wheodheex hulls are similar.

Figure 2.5: An example of an incorrect triangulation obtained using Ek-
oule’s algorithm.

Example 2 Figure 2.6 shows two similarly shaped adjacent contourse Gmtour
has been rotated by a small angle so that the openings doigot &ven though the

two contours are almost identical, the local neighborhoaithe projected vertices in
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both slices are quite different, which leads to an incorneapping between the vertices
and hence an incorrect triangulation. When applying Eksudgorithm to this type of

contour we found that the algorithm did not tolerate rotagiovell.

Figure 2.6: An example of an incorrect triangulation obtained using Ek-
oule’s algorithm.

Example 3 In Figure 2.7, the projections of vertices in the inner @rahd the pro-
jections of vertices in the bulbs (the circular twist on eitlside) lie on the convex hull.
Ekoule also proposes that relative distances are maintairtbe transformed contour, but
in Figure 2.7 we can see that maintaining the relative destarbetween corresponding
vertices is difficult. Also for these bulb shapes, even tlotige non-convex regions are
projected onto the hull, the intended shapes are not maedan the final output, because
the twists inside the outer curve make the local neighbattaddhe transformed contour
incorrect. So, when finding the nearest vertex of a pointSlice 1, the algorithm chooses
a vertex that was not in its local neighborhood in the origg®, but that is in its local
neighborhood after the transformation. The bulb shapesitbereside of the slice are
rendered incorrectly.

These horseshoe shapes are not obscure. They occur frigguetite DREM data
set [18] where they are used to represent wall-like stresturEkouleet al. demon-
strated their algorithm on human vertebra, which are not gemplex and do not contain
horseshoe-like shapes. One possible way of handling swuagteshmight be to partition

the non-convex regions separately and apply the algorithtinet subregions, but this cre-
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Figure 2.7: An incorrect triangulation generated by Ekoule’s algarith

ates the new problem of subdividing the non-convex regiblmsvever, the application of
such patches to the basic algorithm could soon overwhelralgjmeithm’s most attractive

features - its speed and simplicity.

2.2.2 The algorithm of Fuchset al.

The algorithm by Fuchet al. [3] triangulates adjacent contours using an optimizing
criterion without applying any heuristics. Any monotoniganon-decreasing optimizing
criterion can be chosen by the user. The problem of findingpimal triangulation can
be represented as a problem in graph theory.

Let P andQ be two adjacent contour$,...Pn_1 are points of the closed contoBy
wherem is the number of points i and P, follows Py_1. Qp,...Qn_1 are points of the
closed contouf, wheren is the number of points iQ andQg follows Q,,_1. A contour
segments defined as the section between any two consecutive poiatsontour, that is
the linear segment betwe&handP_ 1 or Q; andQ;. 1. A spanis the edge connecting a
vertex from one contour to a vertex in the adjacent contodiigwritten ashQ;, whereR
is a vertex in contouP andQ); is a vertex in contou®. An elementary tileonsists of two
spans and one contour segment. The two spans connect eachtBacdtontour segment
to a common vertex in the adjacent contoBr.Qj, P11 form an elementary tile, where
P andPR 1 form the contour segment aQ} is the common vertex in an adjacent contour.

A huge number of sets of elementary tiles can be built betweercontours, but the

right set is chosen with the following conditions. For themskntary tiles to form an
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acceptable surfageeach contour segment should be present in not more thanlemd t
the set, and if a span is a left (right) span for any elemeritlaryit has to be a right (left)
span for at least one other tile in the set. Even so, therdidnmany acceptable surfaces.
The problem of choosing the best set of tiles among the aabkpsets can be simplified
by representing spans and elementary tileseaices Vandarcs Aof a toroidal graph,

and by defining an acceptable subgr&as follows.

In a directed toroidal grapt = (V,A), V is set of all possible spans between points
in P andQ andA is set of all possible elementary tiles. Figure 2.8 showsrectkd
toroidal graph. The verteX; in G at rowi and columnj represents the span between
R andQ; (RQj). An arc inG, written (Viq,Vs;), represents an elementary tile with left
spanRQ, and right spar;Q;, where eithes = k andt=(I 4+ 1) modnor s= (k+ 1) modm
andt = 1. (Mj,Vii+1modmj) represents a vertical arc from rawto row (i +1)modm
and AMj,Vi (j+1modn represents a horizontal arc from between columrand (j +
1)modn The following conditions define aacceptable subgraph.Shere should be
exactly one vertical arc between any two rows, and exact§y loorizontal arc between
any two columns. For a vertex either indegreef= outdegree\) = O or indegree() >
0 and outdegreg) > 0, where indegree is the number of arcs incident on a vertdx an
outdegree is the number of arcs incident from a vertex. EigliB shows how a set of tiles

are mapped into a subgraph.

An acceptable subgraphcorresponds to aacceptable surfacd and only if (1) S
contains exactly one horizontal arc between any two adfasglamns and exactly one
vertical arc between any two adjacent rows, andS®) weakly connected and for every
vertexv, indegree{) = outdegreel), that isSis Eulerian. An Eulerian trail in a directed
graph is a closed path in which all the arcs occur exactly once

Scan take one of two forms. For every vertgxof S if indegree V;j) = outdegree
(vij)=1, the surface is homeomorphic to a cylinder. If indegrgefoutdegreevs;)=2 for
a vertexvg, then for every other vertex; in S, indegree\jj) = outdegree\(j)=1. Such a
surface is homeomorphic to two cones glued together at tnreR@; where indegreert)
= outdegreefsy) = 2.

An acceptable surface can also be callecheceptable trail An acceptable trail has
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Figure 2.8: Directed toroidal graph representation [3].

m+ n arcs, wheran andn are the number of points in the contol®sand Q. A tralil
starting atvip and ending avm.in, hasm vertical arcs and horizontal arcs. Fuchet

al. proved that there can ben-+n)!/min! number of possible paths for the above trail
[3] considering all possible permutations. Hence, the nemab acceptable surfaces for

a graphG is exponential. Therefore, to obtain an optimal surfacenfial acceptable
surfaces, an additional criterion has to be satisfied. Tddo ¢ach arc A/, Vst) in Sis
assigned a co€2((Vk, Vst))- For example, for any arc, the cost can be the surface area or
perimeter of the associated triangle. The cost of a tralhéssum of the cost of the arcs
contained in it. The surface of best “quality” is the trailtviminimum cost. If the cost
chosen is surface area, then the optimal surface among tkeetable surfaces is the one

with minimum total surface area.

The problem of finding an optimaidail in a toroidal graplG corresponds to finding an
optimal pathin the corresponding planar graﬂ‘n. A path is a trail in which no vertices
are repeated. Hence unlii& G has no cycles. It can be obtained by gluing together two

copies ofG. A path fromvig ends avm4n in G.

The optimal path is found by findingfi] for all i € (0,m— 1), wherert|i] represents
an optimal path starting from g to vmi n, and then choosing the one with minimum cost

from among thesen paths. That isyr0], m[1],...,,mim— 1] is found, and the one with the
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Figure 2.9: Correspondence between a subgraph and a set of tiles [3].

minimum cost is the optimal patiu.

The optimal pathst(0], ri{1],...,nm— 1], iim| are found using the following theorem:
If mifi] is the minimum cost path from g to Vim4i n, then there exists a minimum cost path
mj] fromvj o to v j n Which does not crossi], but can share vertices or arcs witfi]
from Theorem 2 of [3]. By this theorenik], which is the minimum cost path from
Vio 10 Vmikn, Where 0< i < k < j < m, can be found by searching the graphii, j),
whereG'(i, j) is a subgraph o6 and is spanned only by the vertices betwegin and
mfj] (V'(i, })). This means that any single minimum cost patk| betweenri] andj],
does not cross either the pathi] or 1 j].

mm| is found by findingr{0] and shifting the path down tmin G. Thus, 0] to
nm— 1] can be found by first searchir@ (0,m— 1) to getm(m—1)/2], and thereby
subdividingG'(O,m— 1) into smaller subgraphs till all the paths are found. Figur202
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shows a vas segment from prostate data generated usindgibigham.

(a) Vas from prostate data. (b) Close up wireframe view.

Figure 2.10: Model of vas segment from prostate data obtained using Fuchs
optimal algorithm.

2.2.3 Assessment of the triangulation algorithms

Improvements based only on the variations in triangulatioave limitations. That is, for
our data-set, the final models obtained using just a triaigul algorithm exhibit a seg-
mented appearance, despite having detailed contoursjdeoéthe large inter-slice dis-
tance. Even though optimal triangulation algorithms cardpce an optimal surface with
respect to some metric, a large inter-slice distance ghvesrtodels a segmented surface
rather than a smooth and organic-looking surface. Thisdshin reason for exploring
various interpolation methods, which produces a sequehicdeomediate slices between
any pair of given slices so that they are very close to eachrah well as geometric

similar to each other. The next section explores variowesatiation methods.
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2.3 Interpolation methods

Data sets like DREM are obtained by sectioning an object &réifit intervals. Straight-
forward triangulations of such data using an optimal or ails&a algorithm do not look
smooth for a variety of reasons, one reason being the ihterdistance. Reducing the
distance between individual slices reduces the facetedamppce of models. Shrinking
the inter-slice distance causes triangles to be “more agud!”. That is, it eliminates the
elongated triangles that can appear in some models due tartfeeinter-slice distance.
Hence, one way of generating smoother models is to autoatigtgenerate multiple slices
in-between two original slices, and triangulating thenmgsan optimal algorithm. This
would replace one row of triangles between any two origitiaes withn+ 1 rows of
triangles, whera is the number of automatically generated intermediateslmetween
those original slices.

To achieve this automatic generation of multiple slices,glven contour data set has
to be interpolatedinterpolationis the process of computing new intermediate data values
between existing data values [19]. We wish to find intermlalices between every pair
of given slices.

Scattered data interpolation methods are reviewed in [2@].mentioned in [20],
the type of interpolation method to be applied on a particdéda set depends on various
factors such as density of the data, level of smoothnessreefjicomputational costs
involved, and the application for which it will be used. Irgelation methods include
triangulation based methods, inverse distance methodgaaial basis function methods.
The next few sections summarize these methods and explginaviational interpolation
was chosen for our work.

Interpolation methods can also be classified as global arad.I&lobal methods use
all control points in the original data set to find an integimn functionf (x), whereas
local methods use only a neighborhood of points for genegatn interpolation function.
Hence, global methods are sensitive to changes in datatibrser deletion of just a single
point will change the interpolation function, thereby cbeng the values of every surface

point. Additionally, using global methods on very largealaéts can be computationally
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expensive.

Interpolation using local methods can be computationdilyaper than global meth-
ods, as they use only a small subset of points in their locajhberhood to find the
function. As well, any changes to data outside a local domalimot affect interpola-
tion inside the domain. Choosing the right method should dé@a the nature of given
problem, for example, whether the problem is interpolabériemperatures in a given
space, or if it involves interpolating points for modelingdical data. It also depends on
the level of smoothness required®( C! or C? continuity). The continuity between any
two curve segments is determined by the tangent vector® gidimt where the segments
join [21]. CP continuity ensures that the two curve segments join, thét énsures that
there are no breaks in the defined curve. If tangent vectoss-(iider derivatives) of two
curve segments are equal at the join point, the curveChantinuity. For aC" contin-
uous curve, thet" order derivatives of any two curve segments should be eduhkea
join point. C! continuity is a minimum requirement for any two curve segtaea join
smoothly, wherea8? continuity ensures a higher level of smoothness. A polyabwith
a degree of at least two (quadratic polynomial) is requicetpresent the piecewise seg-
ments, to achiev€?! continuity, whereas a polynomial with degree of at leagteh(cubic
polynomial) is required to represent the piecewise segsnémt achievingC? continuity.

Figure 2.11 shows how two curve segments join based on teedécontinuity.

2.3.1 Triangulation based methods

Triangulation based interpolation methods are subdivideglinear triangular interpola-

tion, barycentric interpolation, and cubic triangulaeirolation.

This method essentially requires a pre-processing stephioh the scattered data
is triangulated. Any optimal triangulation that avoidstlind elongated triangles can be
used. The piecewise triangular surface generated by @ssdtiata set on tHe,y} plane

is called atriangulated irregular networlor TIN.
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Figure 2.11:CP°, C! andC? continuity [4].

Barycentric interpolation

Let P = (X1,¥1), P> = (X2,¥2), Ps = (X3,y3). Then, an interior poinP of triangle P,PP;

can be expressed as a weighted averad®,d®, andP; as:
P=aP+aP +azPs. (2.4)

The coefficientsa;, ap andag are called thébarycentric coordinates The interpo-
lated valuez at P is the weighted average of values z, andzz of pointsP;, P, andP;

respectively and is given by:
Z=ai1zZ1 +axz + azZs. (2.5)

The barycentric coordinatesg, ap, andag are obtained by solving the following sys-
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tems of equations:

X=agX1 + a1 Xo + a1x3
Yy = a2y1+azy2+azys

l=a;+ax+as.

The interpolated values obtained from linear triangulad barycentric interpolation
methods are identical as the equation of plane passingghrthree distinct points in

space is the same.

Limitations of linear interpolation  Even though barycentric interpolation is easy to
implement, when this method is used for surfacing models,stirfaces formed using
this method have a faceted appearance because of deridainantinuities at boundaries
of adjacent triangles. This method does not round out thaseibut only creates more
smaller triangles within every triangle of tA@N. It givesCP continuity, but noC?! conti-
nuity. As these methods find interpolated values within trevex hull of a given scattered

data set, it is impossible to extrapolate values.

Cubic triangular interpolation

Surfacing using linear triangular interpolation is not sittobecause the planar surfaces
of this interpolation are of degree one, which provides deflycontinuity. To achieve
smoother models, the planar surfaces over every triangleegrlaced with a curved tri-
angular surface. This is done by applying a triangular Bezeface [5], [22] on each
triangle of the triangular irregular network, using cubmymomials ( [23], [24], [25],
[21]) . A recent implementation of this approach is called @urved PN trianglesor
Normal patcheg5].

Like linear triangular interpolation, this method reqgithe scattered data set to be
triangulated as a pre-processing step. Once the data sahgulated, each triangle of the
TIN is further subdivided based on a speciflesl/el of DetaillLOD). LOD is defined as
the number of evaluation points on each edge of a triangleigrivwo. That is, if LOD is

zero, it means there is no further subdivision and the aaigimangle is returned, if LOD
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=1, then one extra point is added between the two verticeaaf edge, subdividing the
original triangle into four triangles, and if LOD = 2, thereeawo points per edge be-
tween the corner vertices and the original triangle is sufdd into nine smaller triangles
(Figure 2.12).
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Figure 2.12: Subdivision of original triangle based on LOD [5].

Finding the curvedN triangles begins with defining a normal for each corner point
of the original triangle as in Figure 2.13. Therabic Bezier patchis defined over each
triangle of the TIN. A cubic Bzier patch is a 3D generalization of aZssr curve. A cubic
Bézier curve is defined using four control points. The curterpolates the starting and
end control points, and the two remaining points influeneestiiape of the curve but are

not interpolated. The common parametric form of@zr curve is:
n
mm=%aaam, (2.6)
k=

whereBy (u) = C(n,k)uk(1— u)("X is the basis or the blending function for &Ber
curve and is called a Bernstein polynomial, and whéfe k) = n! /k!(n—Kk)! is the bi-
nomial coefficient, and th& are the control points. Varying from O to 1 generates a
smooth curve that blends tlfg.

The curvedPN triangles are formed using&ier triangles. A poinp in a triangle<P;

P> P>, is expressed in barycentric coordinates as
p(u,v) =Py +U(P, — P1) + V(P — P1)
= WP +UuR; + VR,
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Figure 2.13: Vertices and normals of original triangle [5].

wherew=1—u—v.

Bézier triangles have the form

p(U,V) = Z Bir?k(uvv)Pljk7 (27)
i+j+k=m
where
m m
Bijk<U»V) - ilj—lkluv \Nk, (28)
i+j+k=m

A Bézier patch is defined using 10 control points and has thrperitant properties. A
Bézier patch interpolates the three corner points of thedi&g each edge of the triangle is
a Bézier curve defined using four control points in the givenegdond the surface always
lies in the convex hull of the control points.

The formula for a cubic Baer patch is [5]

p(U, V) = bzoot® + 3b210U%V + 3b 20UV + bozov® +
+3b021V2W+ 3b012VW2 + b()o3W3 +

—|—3b102UWZ + 3b201U2W+ 6b111uvW

In the above equatiorzoo, bo3o, boos are the corner vertices and are also called the
vertex coefficientsby1g, b12o, bo21, bo12, b102, b2o1 are thetangent coefficientandbi11
is thecenter coefficientThey are also called the control points or the control nejuife
2.14).
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Figure 2.14: Control net [5].

As the curvedPN triangle interpolates the corner points of the originarigle, the
vertex coefficients are left in place to match the corner fgoithe rest of the geometry
coefficients, namely the tangent coefficients and the cewielfficient can be determined
from the vertex coefficients and the normals at the respeusvtex coefficients. The two
tangent coefficients near each corner, are projected iettathgent plane defined by the
normal at the corner point. The projection of a pof{ronto a plane with normall at point
P is given as

X =X —wN, (2.9)

whereW = (X — P) -N. Hence, with respect to the above equation, the tangerfideats

are computed using the vertex coefficients and the normajar@-2.15) and are given as

(2P + P> —w1oN1)

b210= 3 ;
bro (2P + P —W21Np)
120 = 3 :
N (2P + P3 — wa3N\p)
021 — 3 )
by — (2P; 4 P> — w3oNg)
012 = 3 :
b — (2P5+Pp —w31N3)
102 = 3 :
byr — (2P 4 P3 —wy3Ng)
201 — 3 )
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wherePy = bsgg, P> = bo3o, Ps = boos, andwij = (P; — R).N;. The center coefficienh;11 is
given as:

E-V
blll: E+ T, (2.10)

whereE = 210tPi2otboortborzthioztho01 gy = Pacotbusotboos  Figure 2.16 shows a vas

segment generated using this method.

Figure 2.15: Calculating a tangent coefficient[5].

Assessment As this method is local, it can easily accommodate large skt As this
method isC! continuous the surface looks smoother. But it requires poegssing (trian-
gulation) of the original data set. Like the linear methdus imethod cannot find extrapo-
lated values. Using it on large models with triangles of tiyeariable area requires some
care. When used on a whole model, this method also subdividegles that are quite
small and results iZ-fightingproblems on some models. Z-fighting is a phenomenon in
3D rendering which occurs when two or more coplanar priregitiave similar values in

Z buffer, causing random parts of the primitives to be read¢26]. Figure 2.16 shows a

model generated using this method.

2.3.2 Inverse distance weighted interpolation

Inverse distance weighted interpolation, also known ag&tiks method [27] is used
because of its simplicity. It is a global method and hencelal& points are considered

for evaluating the interpolated value of a poiit The interpolated value d? at (x,y) is
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(@) LOD model of vas structure (b) Close up wireframe view.
from prostate data.

Figure 2.16: Model of vas segment from prostate data obtained using cubic
triangular interpolation.

the weighted average of the values of all scattered datagoirhe weights depend on
the distance between the scattered data p&rdaad the poinP to be interpolated, where
i €[1,...,n] andnis the number of points in scattered data set. The weightasas if the
distance betweef andP decreases, and decreases if distance bet&§esmP increases.
Hence, in the inverse distance weighted interpolation ottthe value oP at (x,y) is

influenced more by nearby points and less by points farthaydmmP and is given by

F(x,y) = ZW'Z’_Z{Z,hth}Z’ (2.11)

wherez is the value oP, andw; is the weight aB and is given by
hi
ZJ 1hJ i

where §, yi) is a scattered data point arndy( is an interpolated point. Different values

W = ZWI =1, where h= dlk,and d= \/ X— xI (y—yi)z, (2.12)

of k result in different interpolated values. An extension @ ¢higinal Shepard’s method

is given in [20].
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A way of localizing this method is given in [28]. The at (x,y) in equation 2.12 is

replaced with

R—d], 2 R—d if d<R
hi = R—dl, ,where[R—di], = ! ' (2.13)
Rd 0 if d>R

whered; is the Euclidean distance betweety] and i,y;), andRis the radius of influence
about & ,yi). This makes the value of the interpolated p&tmfluenced only by the scatter
points within this radius. The surface obtained from thigipolation isC! continuous
[20].

Assessment As this method is based on distance, it tends to give too muaghwto
data clusters. Unlike triangulation based methods, it &sjixde to extrapolate outside the

convex hull of the given data points.

2.3.3 Radial basis functions (RBF)

The method ofadial basis functiortypically uses all control points and is an important
method used to perform scattered data interpolation irouarmedical and graphics ap-
plications ( [29], [30]). This method is global and can®& continuous and hence is
preferred for generating smoother interpolants. This oekthias first suggested by Hardy
[31].

It starts by defining a RBF for every data point, such that

fixy) = Zidifn(x, y)- (2.14)

The response ofiadial functiondecreases or increases monotonically with distance from
a central point. A radial function is of the for@(x,y) = @(d;), whered; is the distance
between the input poirix,y) and a data poitix;,y;). Choices for radial basis functions
include thin-plate splinegflogr), Gaussiang(r) = exp(—cr?)), and multiquadric ¢(r)

= \/m), wherer is the radius or distance from the origin.

Givenn data points, each poink;(y;) in the scattered data set has an associated value
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z that the radial basis functions must interpolate as follows

n
z1="Y diqa(xs,y1)
2,°

Zn:_ildi(ﬂ()(mYn)

In matrix form, the preceding can be representedzasMd, d= M1z where

7 — (Z]_Zn)1
M = (@a(X,y1)---@(Xn,Yn));
d = (d...dn).

Hence,n control points given equations that can then be solved for the weight§ hen
the value of any pointqy) can be found by inserting the weighdsinto Equation 2.14.
This interpolation method gives a smooth surface. The poegssing step involves find-

ing the coefficients of the interpolation function.

Assessment This interpolation method gives much smoother interpaslahan all the
other methods discussed here. As this method is globalepsotmy a large data set can
be expensive. This computational difficulty can be resolwedplitting the data sets into
separate domains, each including only a small subset ofdteembints. The final inter-
polation function will be the weighted sum of the interp@atfunctions of all domains.
The variational interpolation technique of Turk and O’Briiecussed in the next chapter

uses thin-plate splines as the radial basis function.

There are three ways of exploiting RBF’s using scattered aaéspolation methods.
They are the naive methods, such as those of Turk and O’Bherfast-fitting methods
such as that of Beatsat al., and the compactly supported RBF’s [32], [33], [34], [35].
In compactly supported RBF’s, the basis functions have a piseepolynomial profile
function and different radius of supports, which dependshendesired continuity of the

polynomials and the dimension of the space from where theeidatrawn [36].
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2.4 Variational interpolation

This section explores the approach of variational intexppoh. The basic approach, an
application of scattered data interpolation, creates atigihfunction that uses a weighted
sum of radial basis functions, one per input point. This apph has some problems
related to the input data size. One is that solving the caoeffis requires solving a system
of linear equations. As models become large, simple solweceme unstable. Moreover,

the resulting implicit function is expensive to evaluate.

2.4.1 Implicit functions

Consider the equation:
f (X7 Y, Z) = 07 (215)

The function f implicitly represents all X,y,z) points that satisfy the above equation.
Therefore, the surface formed from all they, z points satisfying Equation 2.15 is called
an implicit surface [37].

For a given centercf, c,) and radiug, implicit representation of a circle is
F(xy) = (X—C)?+ (y—¢y)° —1? =0, (2.16)
and parametric representation is
f(X,y) = (cx+rcosf,cy+rsind), 0 € [0, 2], (2.17)

where §,y) are the points on the circumference of a circle. Even thdughng a point
on the circumference of a circle is relatively easier in aapa@tric form than in an implicit
form, it is much simpler to determine if a point lies on or tsfoutside a surface using
the implicit form. Because of this advantage over the paramegpresentation, implicit
surface representation is increasingly used in applicatsoich as collision detection [38],
shape transformation, and surface reconstruction.

Turk and O'Brien [14] usevariational interpolationwith the implicit function repre-
sentation to solve the scattered data interpolation pneblériational interpolation is the

generalization of P thin-plate splineinterpolation to higher dimensions.
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2.4.2 Variational technique

Figure 2.17 shows a thin plate spline that passes througloritsot points. It derives its
name from the behavior of a thin metal plate, because, a mplet&l, when forced through
a set of control points takes the form in which it is least bastin Figure 2.17. The basis
function for a thin plate spline i€log(r), wherer is the distance from a center. This basis
function increases in value with distance from the centesing a thin plate spline as a
radial basis function is a conventional method for perfoigrscattered data interpolation
[39]. It ensure<C? continuity and hence produces smooth interpolants. Thiteggpline
interpolation is used in fields such as medical surface oaction where smoothness
of a model is a primary concern. It is a global method, sineeRBF considers all the

control points.

control points: 15, reqularization: 0.0, bending energy: 11.734

Figure 2.17: Thin plate spline [6].

The problem of scattered data interpolation is stated d@wel Givenn data points
{c1,Cy,...,Cn} Scattered on &y-plane along with corresponding scalar height valubs,
hy, ..., hy }, find the smooth surface that interpolates each height agitles locations.
That is, find a smooth functiof(x) that passes through a given set of data points.

The smoothness of an interpolating functiix), is determined by the bending energy

E, which is a measure of the quality of the interpolating fimttand is given as

o"zf 0% , 3%,
= / /]RZ o) T2 gxay) T (g X (2.18)

whereE is a measure of the aggregate squared curvatufégfover a regloriR{2 0 ; is

2f

X3y is a mixed

the secondc-partial denvatlve 5y [ is the secong-partial derivative, an
derivative. Duchon [40] showed that thin plate interpaatminimizesE. Regions with

high curvature have higher value Bfand regions with less curvature have lesser value of
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E. Hence, the problem of scattered data interpolation camlved using the variational
technique, which finds a functiof(x) that minimizesg, as well as interpolates each
height{hy,hy,...,hy} at the given location$cy, Co, ..., Cn}.

Duchon [40] has shown that the function
f(x) = jidjgo(x—cj)JrP(x), (2.19)
minimizesE, in addition to satisfying the constraint
f(c) =h. (2.20)

In Equation 2.19¢(r) = |r|?log(|r|), wherer is the distance from a centey, d; are
weights, and®(X) is a degree one polynomial. Equation 2.19 is solved for thighte

and polynomial coefficients using Equation 2.20 as follows
k
h = Z deD(Ci — Cj) +P(ci). (2.21)
j=1

The side conditions to this system are

k k k k
i;d, =0 i;djx| =0 i;d,y. =0 i;d,z| =0. (2.22)
The side condition or the orthogonality condition is inteted in three ways by Beat-
sonet al: It makes the measure of the smoothness of an RBF finite, certtrel rate
of growth at infinity of the non-polynomial part, and takesagwthe degrees of freedom
added by the polynomial part [15], [41], [42].
Equation 2.21 can be represented in a matrix form as showguation 2.23 and can

be solved using any standard technique.

| P11 P12 ... o 1 X ¢ & dy hy
®1 P2 ... Px 1 & ¢ dy h,
Pa P ... Gk 1 S o cf e | _ | M (2.23)
1 1 1 00 0 O pO 0
g G cek 00 0 O pl 0
o ¢ ¢ 00 0 O p2 0
I ¢ o Cﬁ 0O 0 0 Q 1L p3 | i 0 |




wherec = (¢, ¢/,c?) and@j = @(ci —¢;). A standard linear solver LU decomposition
method [43], [44] is used to solve the matrix of Equation 2PBe solution of Equation
2.23 gives an implicit function called the variational ingg function, that minimize€

and satisfies the interpolation constraints of Equatiorl.2.2

2.4.3 Shape transformation using variational technique

In a shape transformation problem, the initial shape issfiamed into the final shape
by constructing a sequence of intermediate shapes suchdfaatent slices in the shape
transformation sequence are geometrically similar. Tundk @'Brien developed a shape
transformation technique that uses a single implicit fiomcto describe the transformation
of one shape to another, instead of two implicit functions(or the initial shape and one
for the final shape) as required by the older methods [45],], [467], [48]. This is
done by first definindboundary constrainteand normal constraint§Equation 2.21) on
the initial and the final shapes. Boundary constraints, enitisf(b;j) = 0, consist of
surface pointd; and are assigned a height value of zero. Normal constraimtigen
f(nj) = 1, consist of interior normal points; and are assigned a height value of one.
The vertices marked on the contour boundaries represestitfece points. The interior
normal points are calculated as follows. The parallel slaee triangulated using Fuchs
algorithm (section 2.2.2), and the surface normals areddayntaking the cross product
of the two edges of a triangle. The vertex noriglis found by averaging the surface
normals surroundinlyy (Figure 2.18), and the interior normal constraint paintor a
surface constraint point is the point jX,y,z¢, in the di@tof unit vertex normaly from
the corresponding surface point.

In Equation 2.23, columhy, ..., hyis filled with ones and zeros depending on whether
the constraint pointf ¢ ¢?) in rowi is a boundary or a normal point. The surface obtained
using the variational routine exactly passes through albibundary points.

Figure 2.19 shows the gradual transformation of shafeeshapeO. Turk and O’Brien
achieve this P shape transformation by castingNadimensional problem as d + 1
dimensional problem. That is, th®Zproblem ofX to O transformation is cast as &3

shape transformation problem, by embedding tBébdundary and normal constraints of
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Figure 2.18: Normal constraints

X andO shapes as[3 constraints in Equation 2.23 by adding a third coordindteeach
constraint. This coordinate represents the height of eliad sSThe coordinate, takes a
value of zero for the initial shape, and some non-zero vialgefor the final shape. In the

X to O shape transformation, the boundary and the normal conraiiX havet =0, and

the boundary and normal constraints®havet = tnax Thus, the B constraint points of
both shapes have been changed@oc®nstraint points. For ease of understanding, this
3D representation can be thought of as plotting constrainttpaif X on thet = 0 plane

and plotting constraint points @ on thet = tax plane.

If the implicit function of Equation 2.19 returns a valueaéor a point §, y), it means
the point lies on the surface. If it returns a value greatantrero, the point lies inside the

surface, whereas if the returned value is less than zerpdiné lies outside the surface.

A slice of this implicit function taken at = O represents the first shape and a slice
taken att = tyax represents the final shape. The intermediate shapes ineFigut9,
are obtained by taking a slice of this function at differealues oft. The first shape is
obtained by taking a slice of the implicit functiontat 10 and the final shape &t 200.
The intermediate shapes are obtained by taking a slice ditiation att = 59,t = 79,

t =109, and = 159.
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(a) Step 1 (b) Step 2 (c) Step 3
(d) Step 4 (e) Step 5 (f) Step 6

Figure 2.19: Two-dimensional shape transformation sequence

2.4.4 Surface reconstruction using variational technique

Figure 2.20 shows two views of a surface reconstruction dsingg the variational tech-
nique and Figure 2.21, shows similar views of a surface rgtcoction done using Win-

Surf for the same data points.

In medical modeling, a surface has to be reconstructed feuaral D slices of con-
tour data. That is, the shape transformation techniquedas applied to all given slices
to generate the final surface. An easy way to do it is to perfsihape transformation
between every pair of slices and stack up the results to gdtrthl surface. Figure 2.22
shows a surface reconstructed using this method. It shaatsta surface produced by
this method has discontinuities along the plane joiningathginal slices, hence is not a

preferred way to perform surface reconstruction.

Turk and O’Brien’s method uses a generalization of the shepesformation tech-
nique to perform surface reconstruction from seveiakfces . This is done by using the

constraint points of all thel2 slices to compute the variational implicit function. Figur
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Figure 2.20: 3D view of surface reconstruction produced by Variational
Interpolation (showing th® andX shapes)

2.23 was constructed from the same data as Figure 2.22 issgéthod.

The implicit function returned by the variational routinesgribes the entire surface,
and it passes through all the boundary constraint points.vaitue of the implicit function
can be found for any positive value gfeven ift extends beyond the planes of the first
and the final slices. That is, the reconstructed surfacendstbeyond the location of the
constraint points to give smoother caps at the ends of tHacgas. Figure 2.24 shows a

vas segment obtained using this method.

Limitations of this approach

Turk and O’Brien report that their method works well up to a fdwusand constraint
points, but becomes unstable with large data sets. Becauseaulels often have more
than 5000 data points, this method cannot be used direatiyuse the matrix for finding

the weights and the polynomial coefficients becomes illdittoned.

2.5 Motivation

The triangulation techniques discussed in this chaptextedean optimal surface, but as

seen in Figure 2.21, an optimal surface does not necessaghn a visually pleasing
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Figure 2.21: 3D view of surface reconstruction produced by WinSurf
(showing theO and X shapes)

smooth surface depending on the optimization criteria. Juréace in Figure 2.21 does
not look smooth. Hence, triangulating the anatomical slgging just an optimal trian-
gulation algorithm would not accomplish our goal of builgismooth anatomical models.
Also, even though the interpolation and the RBF techniquesidsged in this chapter have
disadvantages like slower runtimes, intermediate sliegsl®e generated from the orig-
inal data using these techniques. This gave us the motivédigpursue a combinative
method that makes use of both the triangulation techniguné$BF techniques to solve
the problems of instability and the slower runtimes of thevpus methods. Our method

of piecewise weighted implicit functiorsexplained in the next chapter.
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Figure 2.22: Surface reconstruction by performing variational intdéagion
pairwise on slices

Figure 2.23: Surface reconstruction using variational interpolationati
slices

43



(@) Vas using original Turk and (b) Close up wireframe view.
O’Brien method

Figure 2.24: Model of vas segment from prostate data obtained using orig-
inal Turk and O’Brien approach.
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CHAPTER3

STABLE AND EFFICIENT IMPLICIT FUNCTIONS

3.1 Piecewise weighted implicit functions

The variational implicit method of Turk and O’Brien consttsian implicit function con-
sisting ofn RBF’s, one for each constraint point. The results are veryspigabut we en-
counter two problems as models get large, instability asti@idracing the contours. Turk
and O’Brien suggest that for slice-based models all datatpdie added to the implicit
function. To address these problems, we considered twamappes. The first approach
usespreconditioned GMRES iterativ@ethod of Beatsoet al. [49], which conditions
the linear system, but still leaves us with the problem ofweéng the implicit function
for large number of constraint points. The second approsdui idea ofweighted im-
plicit functions Our solution of weighted implicit functions is both stalitesolve and
efficient to evaluate. The reason for the instability of tbleison matrix (Equation 2.23),
is the round-off errors created by the large number of camgtpoints. Weighted implicit
functions avoid this problem by limiting the number of sBagven as inputs to the system
at a given time. Moreover, using simple triangulations frGhmpter 2 generates a fully
automatic system that can take contour data, estimate t®and generate interpolated
contours.

Our weighted approach finds one implicit function for evempaow of n slices re-
sulting ink implicit functions. The final surface is represented viiihiecewise weighted
implicit functions rather than just one as in the Turk and @Brapproach. The weighting
varies with they-value of the input point, so that the value at each ppiigtthe weighted
sum of the implicit functions that influenge along that region. Figure 3.1 shows five

implicit functions obtained from eight slices using a sligiwindow of four slices, and are
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computed as follows

fi(x.t) = yoliet s dig(x—ci)+Pu(x),
fa(x.t) = IR dip(x—Gi) +Pa(x),
fs(xt) = SHSRadio(x—ci)+Ps(X),

wherefi(x,t),...,f5(x,t) are the five implicit functions obtained from the eight stic&he
weights and polynomial coefficients for each of these iniipfinctions is obtained by
solving them using any standard technique. The size of thmglwindow can be set by
the user. Such a grouping of the original input slices intaltn subsets avoids the ill-
conditioning problem of large matrices. After finding aletimplicit functions, the value
of a pointpis calculated as the weighted sum of the implicit functiorfkiencingp along

that region. That is, the final value of a point in a region itagied as follows:

V(X,t) =Wy (t) s fm(X,t) +Wo(t) * frra(OGt) + ...+ Wi () * fpi (X, 1), (3.1)

wherev(x,t) is the value of a point at heigltwy (t), wa(t),...,w (t) are weights of the
corresponding implicit function§n(x,t),. .., fm+i (X, t) at height, andmandm-+-i are any

valuese [1,...,5].

3.1.1 Determining region of influence

Each implicit function is built using points in a certain r@g. Likewise, every point
contributes to a certain set of functions. Figure 3.2 shdwesmapping of all functions
f1(x,t),..., f5(x,t) to slicesslice; to slices. In this example, each window consists of four
slices. That isn =4, andk = 5. Each functionfi(x,t) is constructed from the points in

the slices in the triangle directly und&gxt).

When we render contours, we use a weighted average of all thkcinfunctions
whose triangle contairts Finally, the weight of the implicit functions at heighis deter-

mined by the heights of the associated trianglds at
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Function 1

Function 2

Function 3

Function 4

Function 5

Figure 3.1: Partitioning of slices for n=4

3.1.2 Determination of weights

Figure 3.3, Figure 3.4, and Figure 3.5 shows the influende(@ft), f3(x,t), andfs(x,t)
on a pointp. As seen in the figureg is not influenced byf;1 (x,t) and fs(x,t), as the spans
of these functions do not includgicey or slice;. Note that atp, the influence offz(x,t)
andfa(x,t) is smaller than the influence 4(x,t).

Once the functions influencingare determined, the influence of each functigfx,t),

f3(x,t), andfs(x,t) at height, is determined as follows:
(t—tstar;) -
ﬁ if tstary <t <tmay

M |f tmax < t < tend ,

influence ) = (3.2)

trangq
whereinfluencs, ) is the influence ofii(x,t) on a pointp at height, tstar, is the height
at whichfi(x,t) beginstenq is the height at whicHi(x,t) endstmax is the height at which

fi(x,t) is maximum and is given as

tstar +1
tmax = (—Startl ;_ end) 5 (3.3)
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Figure 3.2: Region of influence of all functions based on a point P

Slice 1 Slice 2 Slice 3 Slice 4 P Slice 5 Slice 6 Slice 7 Slice 8

Figure 3.3: Region of influence of function 2

andtrange is a constant for the size of the region in which the influermosvg or declines,

that is
trangq - tmax—tstarti-

Usually, we drop the subscript and writéstart, tend, trange aNdtmax When the context is
clear.

The total influence of all functions influencinmatt is given as'nfluenceota|p(t). The
weight of a function is the normalized influence and is given a

influence, )

wo(t) = influenceorar, )’
influenceg
_Influencqyug
w(t) = influenceota|p(t)’and
influence
__influence, )
wy(t) = influenceotaip (t)’

that is, for a functionfj(x,t) at a pointp, wi(t) is given as

influence, xy)
wi(t) = influenceya(t)” (3.4)

The weights add up to one. A graph showing the function infteens given in Figure

3.6. The curved lines show the relative influences of a semiehimplicit functions.
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Figure 3.4: Region of influence of function 3
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Figure 3.5: Region of influence of function 4

X-axis represent the slices, and Y-axis the relative infb@snof each implicit function.
This graph shows the relative influences of functions foskdtles between 2 and 5. The
pink plot is the first function, which would be partial, yeMlas the second, blue the third
implicit function and so on. The region between 2 and 3 iscadfé by functions 1,2,3.
The next region is affected by functions 2,3, and 4, and thx¢ Imgfunctions 3,4, and 5.
The straight line at the top shows the total weight of the fioms, which is 1. We can
see that the weights increase and decrease in a linear riasitio some discontinuities
at locations of original slices. Despite these discontiesj the final model appears quite

smooth for the size of region of influence we used.

3.1.3 Contour tracing

For a given contour, the intermediate interpolated comst@an be found at any desired
height level, by tracing the pixels whose value of the inipfienction v(x,t) in Equation
3.1 is equal to zero using a contour tracing algorithm calleMoore-neighborhood
algorithm [50]. For practical purposes, value of an implfanction is considered equal
to zero ifv(x,t) is very close to zero.

The Moore neighborhood of a pix®! consists of the eight pixels that share a vertex
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Figure 3.6: Graph showing the influence of functions

or edge withP. Let these pixels b@y, P, P3, P4, Ps5, Ps, P7, Ps. Given a digital pattern on
a grid, locate astart pixel, one with a value greater than or equal to zero for theliit
function. Locating a start pixel can be done in a number ofsvd@ybrute force method is
to start at the bottom left corner of the grid, scan each colofpixels from the bottom
going upwards and proceeding to the right until a pixel witralue greater than or equal
to zero for the implicit function is obtained. The disadag# of this search is that, if the
grid is very large and the start pixel is located on the exéreight, then the search would

take a very long time to locate the start pixel.

This search method slows down the tracing process conbigerdence, a different
method of finding the start pixel is implemented. As the baugdoints of the input
slices are known, the leftmost bottom point of the first inglide slice; is marked as the
start pixel §py) for slice;. The start pixel oflice, is found by usingsp; as follows. Let
the coordinates ofp, be (x,y). sp. can be represented ast(y), wheret is the height.
The height of sliceslice; will be t +incr, whereincr is the inter-slice distance set by the
user. Inslicey, t of spy is replaced by + incr to get a temporary pixep from which the
search has to be started. The search then proceeds in @rolesdtp. If tp is inside the
surface then the search continues until a pixel outsideuHtace is found, i.ey(x) < 0
in Equation 3.1, or itp is outside the surface the search continues until a pixelertbe

surface is found, i.ey(x) > 0 in Equation 3.1. This is the start pixefy of slice,. This
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is repeated for all slices.

The next step is to determine the boundary pixels of a giviee starting from the
start pixel. Figure 3.7 shows how the Moore tracing algaomithiorks. Given any pixeP,
the Moore neighborhood consists of the pixels labeRetb Ps. These pixels are always

visited in clockwise order, although the start position naagy.

|
3 1P
P; P;
P> P Ps

Figure 3.7: Tracing an intermediate contour

The search begins withset to the start pixel. The Moore neighborhood is visited unt
a pixelR, with a value greater than zero is found. Bgfe denote the pixel that precedBd
in the search of the Moore neighborhodtlis added to the contour artlis set toR. The
algorithm continues except that the search of the Moorenteidhood begins @yre. The
algorithm terminates when the start pixel is visited for ecsel time. This is repeated for
all the required heights. To ensure the smoothness of thelsiapixel withv(x) close to
zero is found. This is done by searching betw®emd Py for a pixel Prinar) With v(X)
close to zero. That is, from two points of differing sign weneerge to a zero crossing to
getPrinal- The search stops when the start pixel is revisited again.

Concerning the smoothness of models, Winsurf accepts otdgen values for pixels.
Thus,Psina was approximated by Winsurf. This resulted in the modelsritpa stippled
appearance. Henc®%j,q was multiplied by a large number to minimize the round-off

problem. Figure 3.8 shows a model generated with an appedgiomerror and a corrected
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model.

Figure 3.8: Jagged vs smooth appearance of models

Once the intermediate contours are traced, the contoutsangulated to get the final
surface. Figure 3.9 shows a vas segment from prostate dagsaged using this method.
Furthermore, as adjacent contours are very similar, it ssiiabe to use simple heuristic

algorithms to construct the surface.

3.2 Preconditioned GMRES method of Beatsost al.

A fast fitting method implemented by Beatsenal. [49] uses an iterative method on a
preconditioned interpolation matrix for solving the ifstdy problem of large matrices.

A preconditioned matrihas clustered eigenvalues that improves the condition etsnb
of the matrix and also speeds the convergence of the iteratethod. Hence, only a few
iterations are required to solve a preconditioned intexfah matrix. We investigated the
work of Beatsoret al. [15], which solves such large matrices using the GMRES nierat

method (Generalized Minimal Residual Method).
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(a) Vas using weighted implicit (b) Close up wireframe view.
method

Figure 3.9: Model of vas segment from prostate data obtained using
weighted implicit method.

3.2.1 Preconditioning using approximate cardinal functions

Preconditioning the interpolation matrix is done by chagghe unsuitable or “bad” basis
(Equation 2.19) of the original approach, to a “good” or ahié basis, that clusters the
eigenvalues of the interpolation matrix. For the presestulision, the method of Turk
and O’Brien is considered a bad basis, as the basis functitreofapproach leads to an
unstable linear system of equations.

Beatsoret al. useapproximate cardinal function® cluster eigenvalues by defining

y; for each constraint point such that

B
(%) = pj(x) +_;Vjifp(\><—0i!)~ (3.5)

That is, for each input constraint poirf, an approximate cardinal functiapy) is

found by choosing3 points nearest t&;. If B < N, Equation 3.5 can be solved using
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any direct method like LU decomposition. The constraintdlie above equation are

Pj(%) = aj, (3.6)

whereg; is Kronecker's delta functiof [51]).

| {1 ifi=i
&j = o (3.7)
0 ifi #j

In a pure cardinal function, each basis element has a valoeeo&t one node and zero
at the othelN — 1 nodes. This makes eigenvalues perfectly clustered ancethgting
identity matrix is well conditioned and the coefficients d@nfound in a single iteration.
But for largeN, this is very difficult to achieve as it would be more expeadivan the
problem of the original Turk and O’Brien approach because welévhave to solve a
large system wittN nodesN number of times. Therefore, instead of pure cardinal func-
tions, approximate cardinal functions are used for preitimmihg the interpolation matrix

which uses a small fixed number of neighbours.

For N constraint points, we obtain the following approximatedaaal functions

Pi(x) = pu¥)+ 32 vigx—cy)
W) = pa(x)+ 30 vag(x—ca)
Ys(x) = Ps(X)+37,vap(x—cs)

W) = Pa(X) + 32 vnip(x— oni),

wherec;ji are the constraint pointg, is the number of nearest points, and,vi, .. ., Vig;
V21, V22, ..., Vo UP tO VN1, UN2, -- -, VNp are the coefficients obtained by solvigg(x),
Yo (X) andyn(x) respectively.

Then, the values of thgj(x) are used to fingl in the equation:

Wy = f, (3.8)
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using the matrix

G(x) do(x) ... UNCa) U1 0

(x2) Yax2) ... Un(x2) U2 1

U(xs) Wa(xs) ... Un(xs) us | =10 (3.9)
| i) () o Un() | [ Hn | [ 1]

The matrixW has clustered eigenvalues and is solved using the GMRESivtera
method in relatively fewer iterationsf contains height values of 0 and 1 analogously
to the method of Turk and O’Brien.

The solution (11, ..., Un), is converted back to the original representation of the

weightsd; in Equation 2.19 as follows:
N
di= % Hjvji, (3.10)
j=1

and the polynomial coefficients of Equation 2.19 are obthumgng the set of equations.

P1 = z’j\l:]_ujplj>
P2 = zlj\lzluijja
Pz = z'j\lzlujp3j7
Po = Z’j\lzluijj-

Using the method of Beatsat al, the weights and the polynomial coefficients of the
original implicit function (Equation 2.19) can be found atut any conditioning difficul-
ties whenN becomes large. Unlike the original approach that requix@t?) storage and
O(N3) flops, this method require®(N) storage an@®(NlogN) flops. Figure 3.10 shows a

vas segment generated using this approach.
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(a) Vas using GMRES (b) Close up wireframe view.

Figure 3.10: Model of vas segment from prostate data obtained using GM-
RES method.
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CHAPTERA4

RESULTS

In the introduction we stated our goal was to produce sigamtiy higher quality mod-
els in reasonable time from data that might contain misaligsections, user errors, or
large interslice distances. The two methods studied go@uay towards meeting these

goals. This chapter presents our findings.

4.1 Weighted method vs other approaches

(a) Single implicit. (b) GMRES. (c) Weighted Implicit.

Figure 4.1: A comparison of the three approaches.

Figure 4.1 compares the final model obtained from the thrgeoaghes (Turk and
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O’Brien, Beatsoret al. and weighted implicit) for the same data set. The originatcor
has 60 slices, 2320 constraint points, and an inter-slisianice of 14 units, whereas the
surface formed using weighted implicit approach (Figuré(e)) has 841 slices, 143609

points, and an inter-slice distance of 1 unit.

Method Number of slices in Number of vertices Inter-slice distance
final model in final model

Fuchs 60 2320 14

Single implicit 841 143691 1

Weighted implicit| 841 143609 1

GMRES 841 143690 1

Table 4.1: Comparison of the final model generated by four different ap-
proaches.

By visual inspection, we can say that there is no appreciafierehce in the appear-
ance of the models generated using these various appro&ttwesver, the single implicit
approach of Turk and O’Brien can be used to generate surfated the original contour
data consists of less than a few thousand data points, whtreaveighted and the GM-
RES approaches can be used when the original contour datgés lgigure 4.2 shows
a structure from prostate data and Figure 4.3 shows a steuitm stage 13 of embryo
data reconstructed using weighted implicit functions.

Table 4.2 compares the runtimes of the three approachesléoga segment of the
vas. The experiments were run on a workstation with 512 MB RAM] 1.2GHz AMD
Athlon processor. The size of the interpolation matrix i2@3 There is a significant
difference in the run-times of these three approaches. dlhle tlivides the cost into two
parts. The first is the creation of the implicit function wiiequires solving a system of
linear equations. The second is the cost of evaluating thetifbn at each point on the
resulting model.

For N input constraint points, the complexity of Turk and O’Brieetimod is ON?)to

compute the coefficients of the implicit function using LUcdenposition and Q{N) to
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Figure 4.2: Reconstruction of a structure from Prostate data.

evaluate the implicit function @ data points in the final model. For large objects this

method is not feasible for real-time model generation.

GMRES can significantly reduce the cost of computing the aneffts, although the
potential savings are not reflected here, because the rvatttor product computation
involved in the GMRES implementation was not done using adgarithm. GivenN
constraint points, GMRES first computBisimplicit functions of 8 points using LU de-
composition. Relative tdN, the cost of this is A{). The conditional matrix resulting
from this is sparse and a clever data structure would resaltvery fast iterative solution,
though we did not implement this. Note that the cost of trg¢ive contours to get the fi-
nal surface is almost equal to the tracing cost of Turk and @iBmethod because it uses
exactly the same implicit function. Realtime speedups assipte but these methods in-

volve approximation of the implicit function, and requiraplementation of complicated
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Figure 4.3: Reconstruction of a structure from Stage 13 of Embryo data

data structure. The GMRES method also has other pre-progessijuirements such as
ensuring that points in a local set do not lie in a single plaret is, not all3 points we
choose in Equation 3.5 should lie on the same plane.

The weighted implicit function method achieves a fastetime than the other two
methods avoiding the instability problem encountered ke dther two methods, plus
is much simpler conceptually and simpler to implement. @iwj the data into small
windows makes the cost of finding the overall implicit fuoctilinear in the number of
constraint points. That is, assuming the number of pointsiee is small relative to the
size of the whole problem, the cost of solving each individmlicit function is constant.
There is one such function per window, and the number of wirsdgrows linearly with
the size of the problem. Thus the cost of building the weidleplicit function is about
O(N). The cost of evaluating the function lét data points is Q¥1) since the cost of each
evaluation is a large constant under these assumptions.

Table 4.2 shows the savings in time obtained using our approfpiecewise weighted
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Method Time taken to com+ Time taken to trace Total time (S)

pute coefficients (s)| contours (S)

Single implicit 213 1496 1709
Weighted implicit| 18.456 311 329456
GMRES 316 1502 1818

Table 4.2: Comparison of three approaches.

implicit functions as compared to the original Turk and O&riapproach and the GMRES
approach. Thus, the weighted approach produces modelsiveaitgr to the original Turk
and O’Brien approach but has a significant run-time advaraagethe original approach,
making it more efficient than the original approach when theber of constraint points

are quite large.

4.2 Other challenges

Figure 4.4(b) shows two independent sections (Figure ).4{anding into a single
shape. Even though this kind of blending might be visuallyext, it is sometimes inap-
propriate for our use as blending of different sectiong<slyi to be anatomically incorrect
in our setting. This is called the “unwanted blending” perhland is discussed in [52],
[53], [54].

Figure 4.5 shows another example of this problem. Figurgaj$hows a Winsurf
model generated with two slices, first slice containing éhsections and the next slice
containing two sections. Figure 4.5(b) shows the autontfatmching done using the
weighted implicit approach. Such an automatic branchingappropriate since the user
has joined the second and third sections of the first slicdnéosecond section in the
next slice. Presumably this has been done for a reason awé bé&anding of sections is

sometimes not appropriate even though it might look correct
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(a) Independent sections. (b) Two sections merged.

Figure 4.4: Merging of independent sections.

(a) Branching in WinSurf. (b) Branching using implicit functions.

Figure 4.5: Branching by implicit functions vs branching in WinSurf.
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CHAPTERS

CONCLUSIONS ANDFUTURE WORK

5.1 Summary

This thesis was concerned with the construction of ana@miodels from contour data
in reasonable time. We studied several triangulation #lyos, but felt that only limited
gains could be made by varying the triangulation algorittethee contour data is rela-
tively sparse. We then turned our attention to interpotaipproaches, in particular, the
variational implicit function approach of Turk and O’Briefhis approach, based on ra-
dial basis functions, seemed promising, but given the sizbeomodels we might deal
with, suffered from two problems. The first was that simple-tiecomposition becomes
unstable when solving for an implicit function with on theler of 10000 coefficients (i.e.,
constraints). The second is that the time required to saleh a system, and to evaluate
an implicit function consisting of large number of congtitgboints were high. We first
considered GMRES, a numerically stable approach to findiagdiution to the implicit
function. However, the resulting function is still large targe models, and slow to eval-
uate when searching for model surfaces. Because the valbe oadial basis functions
increases with the distance from the center, there was nowbway of speeding up the
evaluation of the final implicit function at a specific point gelectively evaluating RBF's

with nearby centers.

5.2 Contributions

Our approach called th@ecewise weighted implicit functiotekes only a few slices at a

time to construct the implicit function, hence the integi@n matrix required to compute
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the coefficients of the implicit function is kept at a smalhstant size thereby avoiding the
instability problem. Also, as only a few constraint pointe avolved in the evaluation of
an implicit function at any given height, the intermedidtees can be traced more quickly
thereby resulting in faster execution time than the otherapproaches.

Moreover, the study of triangulation algorithms providedeasy way to find normal
constraint points for the implicit function specificatioifhe systems have not yet been
completely integrated to fully automate the generatiomodath surfaces from the initial
specifications. However, this appears to be a straighti@twétedious, problem. The
following pipeline can be established using this systera:cttntours specified by the user,
that is the input slices, can be triangulated to yield bowndad normal constraint points.
They are then fed into the variational interpolation sqlwvehich in turn generates more
detailed intermediate contours that are triangulatedHerfinal visualization. Because

adjacent contours are so similar, trivial triangulatiogasithms can be used at this point.

5.3 Future work

A possible avenue for future work would be to handle the gobbf complete extraction
of new contours from the implicit function. A variety of sitepheuristics can be used
to pull out most of the contours in most cases, but in the weoaise, a large area must
be thoroughly searched for possible new contours. Anotkefullavenue would be the
integration of fast evaluation methods and smoothing noth{B0] into this system to
achieve more speed ups in runtime as well as to remove notbe imput data. Another

constructive area for future work can be the handling of thwanted blending problem.
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