
 
 
 
 

METHYLGLYOXAL-INDUCED INCREASE IN 
PEROXYNITRITE AND INFLAMMATION  

RELATED TO DIABETES 
 
 
 
 

 

A Thesis Submitted to the College of 

Graduate Studies and Research 

In Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy 

In the Department of Pharmacology 

University of Saskatchewan 

Saskatoon 

 
By 

 

 
  HUI   WANG 

 
 
 
 

 
 
 
 

© Copyright Hui Wang, June, 2009. All rights reserved. 



 
 

PERMISSION TO USE 
 

 

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate 

degree from the University of Saskatchewan, I agree that the Libraries of this University 

may make it freely available for inspection.  I further agree that permission for copying of 

this thesis in any manner, in whole or in part, for scholarly purposes may be granted by 

the professor or professors who supervised my thesis work or, in their absence, by the 

Head of the Department or the Dean of the College in which my thesis work was done.  It 

is understood that any copying or publication or use of this thesis or parts thereof for 

financial gain shall not be allowed without my written permission.  It is also understood 

that due recognition shall be given to me and to the University of Saskatchewan in any 

scholarly use which may be made of any material in my thesis. 

 

 Requests for permission to copy or to make other use of material in this thesis in 

whole or part should be addressed to: 

 

 Head of the Department of Pharmacology 

 University of Saskatchewan 

 Saskatoon, Saskatchewan  S7N 5E5 

 i



ABSTRACT 
 

Methylglyoxal (MG) is a reactive α-oxoaldehyde and a glucose metabolite.  

Previous studies in our laboratory have shown that MG induces the production of reactive 

oxygen species (ROS), such as superoxide (O2
.-), nitric oxide (NO) and peroxynitrite 

(ONOO-), in vascular smooth muscle cells (VSMCs, A-10 cells).  However, the effect of 

endogenous MG and mechanisms of MG-induced oxidative stress have not been 

thoroughly explored.  The present study investigated fructose (a precursor of MG)- 

induced ONOO- formation in A-10 cells and whether this process was mediated via 

endogenous MG formation; roles of MG in regulating mitochondrial ROS (mtROS) 

production and mitochondrial functions in A-10 cells; and effect of MG on neutrophils in 

patients with type 2 diabetes mellitus (T2DM).  Fructose induced intracellular production 

of MG in a concentration- and time- dependent manner.  A significant increase in the 

production of NO, O2
.−, and ONOO− was observed in the cells exposed to fructose or 

MG.  Fructose- or MG-induced ONOO− generation was significantly inhibited by MG 

scavengers and by O2
.− or NO inhibitors.  The data showed that fructose treatment 

increased the formation of ONOO− via increased NO and O2
.− production in A-10 cells, 

and this effect was directly mediated by an elevated intracellular concentration of MG.  

By inhibiting complex III and manganese superoxide dismutase activities, MG induced 

mitochondrial overproduction of O2
.-, and mitochondrial ONOO- further. MG also 

reduced mitochondrial ATP synthesis, indicating the dysfunction of mitochondria.  In 

addition, MG increased plasma NO levels in patients with T2DM, which reflected the 

oxidative status in those patients.  MG-induced oxidative stress in patients with T2DM 

significantly enhanced levels of cytokines released from neutrophils.  Moreover, the 
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neutrophils from T2DM patients showed a greater proclivity for apoptosis, which was 

further increased by in vitro MG treatment.  Our data demonstrate that MG-induced 

oxidative damage, particularly ONOO- production, contributes to the pathogenesis of 

T2DM and its vascular complications.   
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CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 
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Methylglyoxal (MG), a metabolite of sugar, is a highly reactive dicarbonyl 

molecule.  It is formed mainly from the spontaneous transformation of triose phosphates.  

Therefore, MG is an intrinsic component of the glycolytic pathway in mammalian cells, 

including vascular smooth muscle cells (VSMCs) (Ekblom, 1998).  An increased MG 

formation may occur because of an increased availability of precursors such as increased 

plasma glucose or administration of ethanol or threonine (Thornalley, 1988).  On the 

other hand, MG is detoxified by the glyoxalase system that highly relies on the cellular 

level of reduced glutathione (GSH).  Reduced availability of GSH also contributes to the 

increased levels of MG.  Our previous study showed that MG induced a time- and 

concentration- dependent increase of oxidized 2,7-dichlorofluoresein (DCF) fluorescence 

intensity, which indicates the formation of peroxynitrite (ONOO-) and hydrogen peroxide 

(H2O2), in VSMCs (Chang, et al., 2005).  Administration of MG for 3 hours also 

increased the production of ONOO- in cultured mesenteric artery smooth muscle cells 

from Sprague-Dawley (SD) rats (Wu, 2005).  Numerous studies showed that levels of 

MG were elevated in patients with type 2 diabetes mellitus (T2DM) (Beisswenger, et al., 

1999).  MG levels were correlated with the glycated hemoglobin (HbA1c) (Thornalley, et 

al., 1989) and reflected glycemic fluctuation (Nemet, et al., 2005) in diabetic patients.  In 

addition, increased ONOO- formation was observed in patients with T2DM (El-Remessy, 

et al., 2003b).  ONOO- damages DNA, lipids and proteins, contributing to the 

development of T2DM and its complications (Rosen, et al., 2001).  To date, the effect of 

endogenous MG on ONOO- production, the underlying mechanism and the role of MG-

induced oxidative stress in T2DM have been unclear.  

 
 



1. Methylglyoxal (MG) 

 

Methylglyoxal (MG) is a reactive α-oxoaldehyde and a metabolite of glucose.  It 

is a small molecule with molecular weight of 72.  As shown in figure 1-1, MG has a 

ketone group and an aldehyde moiety.  The aldehyde group is more reactive than the 

ketone.  MG is a yellow liquid with characteristic pungent odor.  It has 3 forms in 

aqueous solution: unhydrated (1%), monohydrate (71%) and dehydrate (28%), which are 

in rapid equilibrium (Rae, et al., 1990).   

 
       CH3COCHO (M.W.  72) 

O 

O 

CH3

H

Figure 1-1.  Structure of MG  

 

 

 

 

1.1 Formation of MG  

 

1.1.1 Endogenous MG formation 
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MG is produced during the metabolism of carbohydrates, lipids and proteins.  

Several enzymatic or non-enzymatic pathways are involved in the endogenous formation 

of MG (Figure 1-2).



 

Glucose 

 MG 

Pyruvate G-3-P DHAP 

Glycerol 

Acetone 

G-6-P

F -1,6- P

Polyol pathway 

Triacylglycerols 

Fatty acid 

Protein 

Glycine,  
threonine 

Aminoacetone AMO 

SSAO 

Protein

D-Lactic acid glyoxylase  
system 

Fructose 

GSH 

F-1-P

Aldolase A  Aldolase B 

ROS
DNA or 

RNA 

Triosephosphate 
isomerase

Diabetes 

 

4 

Figure 1-2. Formation, metabolism and toxicity of MG 

AMO: Acetol monooxygenase 
DHAP: Dihydroxyacetone phosphate 
F-1-P: Fructose-1-phosphate 
F-1, 6-P: Fructose 1, 6-biphosphate 
G-6-P: Glucose-6-phosphate 
G-3-P: Glyceraldehyde-3-phosphate 
GSH: Reduced glutathione 
MG: Methylglyoxal  
ROS: Reactive oxygen species 
SSAO: Semicarbadize-sensitive amine oxidase
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1.1.1.1 Major pathways  

 

Endogenous MG is formed from metabolic intermediates of carbohydrates, 

proteins and fatty acids (Figure 1-2).  The majority of MG is derived from the metabolites 

of carbohydrate, such as glucose and fructose.   

MG is formed during glycolysis.  Glucose is phosphorylated by glucokinase to 

form glucose-6-phosphate (G-6-P).  This reaction decreases the intracellular glucose 

levels and promotes continuous transportation of glucose into the cell through the glucose 

transporter on the cell membrane.  G-6-P is then converted to fructose-6-phosphate (F-6-

P) via glucose phosphate isomerase.  This step is reversible but easily driven to F-6-P due 

to the lower levels of F-6-P.  Subsequently, fructose-1, 6- biphosphate (F-1, 6-P) is 

irreversibly formed from F-6-P / G-6-P due to catalysis by phosphofructokinase-1 (PFK-

1).  This reaction is the key point in the glycolytic process.  F-1, 6-P, then, is split by 

aldolase into two triose sugars, dihydroxyacetone phosphate (DHAP), a ketone, and 

glyceraldehyde-3-phosphate (G-3-P), an aldehyde.  DHAP and G-3-P can spontaneously 

convert to MG (Phillips and Thornalley, 1993).   

MG is mainly formed nonenzymatically from DHAP and G-3-P, and the non-

enzymatic formation of MG occurs in all cells and organisms.  For example, MG 

formation in human red blood cells in vitro under normal glycemic conditions is due to 

nonenzymatic fragmentation of triosephosphates (Phillips and Thornalley, 1993).  Indeed, 

the instability of G-3-P at physiological pH was observed in 1969 (Mel'nichenko, et al., 

1969).  Two products, inorganic phosphate and MG, were found from non-enzymatic G-

3-P reaction in the presence of lysine (Bonsignore, et al., 1973).  Moreover, it was 
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observed that deprotonation of G-3-P or DHAP to an enediolate phosphate followed by 

cleavage of phosphate group from the carbon skeleton yielded to the formation of MG 

(Richard, 1993).  The formation of MG in human red blood cells was increased by the 

addition of metabolites stimulating the flux of triosephosphates, like glucose, fructose, 

dihydroxyacetone and D-glyceraldehyde.   

The formation of MG in early glycation was investigated by Thornalley et al. 

(Thornalley, et al., 1999).  Glucose (50 mM) degraded slowly at 37 ºC to form MG 

throughout a period of 3 weeks.  Therefore, a short period of hyperglycemia may be 

sufficient to induce MG formation in vivo (Thornalley, et al., 1999).  Bovine retinal 

endothelial cells exposed to D-glucose (30 mM) for 7 days produced significantly higher 

levels of MG than cells cultured with L-glucose or control cells (Padayatti, et al., 2001).  

In addition, high glucose caused increased MG formation and MG modification of the 

corepressor mSin3A in mouse kidney endothelial cells.  Consequently, MG-modified 

mSin3A mediated high glucose-induced expression of intercellular adhesion molecule-1 

(ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in cells and high sensitivity 

of endothelial cells to tumour necrosis factor α (TNF-α).  It was shown that glucose 

induced vascular inflammation and disease via the formation of MG (Yao, et al., 2006).    

Fructose is also a monosaccharide and a component of sucrose.  It is 

phosphorylated by fructokinase to form fructose-1-phosphate (F-1-P) and enters the 

process of glycolysis.   Fructose and glucose share the same pathway to produce MG.  

Beverages and processed food are rich in fructose, and the consumption of fructose has 

dramatically increased in the past decades.  Dietary fructose is closely linked to the 

pathophysiology of the metabolic syndrome, which includes insulin resistance, 
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hyperlipidemia, hypertension and obesity, although the mechanism is unclear (Miller and 

Adeli, 2008; Hallfrisch, et al., 1983).  It was reported that fructose was more reactive than 

glucose to cause hemoglobin glycation and protein cross-links (McPherson, et al., 1988; 

Bunn and Higgins, 1981).  Cytotoxicity of fructose on hepatocytes has been observed.  

Fructose (7.5 mM) caused a rapid 50% ATP depletion (5 min) in isolated hepatocytes. 

ATP depletion did not occur with glucose because fructokinase that catalyzes fructose to 

F-1-P is more reactive than glucokinase that catalyzes glucose to G-6-P.  It is suggested 

that metabolites of fructose caused ATP depletion (Latta, et al., 2000).  Fructose caused 

cell death at a high concentration of 1.5 M, but even 12 mM fructose caused death in 

50% of hepatocytes in the presence of a non-cytotoxic dose of H2O2.  Fructose / H2O2 

cytotoxity was prevented by ROS scavengers and by the MG scavenger aminoguanidine.  

MG was proposed to be the most likely endogenous toxin generated from fructose (Lee, 

et al., 2009; Lee, et al., 1993).  

Fructose as a precursor for MG has been investigated in vivo (Wang, et al., 2008).  

Increased serum and aortic levels of MG have been observed in fructose-fed rats (Wang, 

et al., 2008).  MG induced structural remodeling in mesenteric artery and ROS 

production in aorta of fructose-fed rats.  MG is also responsible for the high blood 

pressure and hypertriglyceridemia seen in those rats.  In addition, MG impairs insulin 

signaling in adipose tissue of fructose-fed rats through decreasing insulin-induced 

insulin-receptor substrate-1 (IRS) tyrosine phosphorylation and reducing the activity of 

phosphatidylinositol (PI) 3-kinase (Jia and Wu, 2007).  The endogenous MG formation 

from fructose in VSMCs is not yet reported.  
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MG can also be formed enzymatically from G-3-P and DHAP.  Triosephosphate 

isomerase (EC.5.3.1.1) hydrolyses G-3-P and DHAP and removes phosphate to yield MG 

(Pompliano, et al., 1990).  Triosephosphate isomerase is a very effective enzyme in the 

glycolytic pathway, and its cellular levels are very high (Albery and Knowles, 1976).   

 

1.1.1.2 Minor pathways 

 

 MG is a byproduct of acetone metabolism. Acetone monooxygenase catalyzes 

acetone to acetol, and acetol monooxygenase (AMO) converts acetol to MG (Casazza, et 

al., 1984).  The two enzymes belong to cytochrome 450, and the consequent steps need 

NADPH and O2.  This pathway is inducible.  Its capacity can be induced by several 

agents (acetone, ethanol, pyrazole, imidazole, etc.) or under different physiological / 

pathological circumstances (e.g. in fasting or in diabetes) (Gonzalez, 1988).  

In addition, formation of MG is also found during the metabolism of 

aminoacetone, which is a metabolite of proteins.  Semicarbazide-sensitive amine oxidase 

(SSAO) is able to convert aminoacetone into MG (Lyles, 1996).  SSAO is localized on 

the surface of endothelial cells, VSMCs and adipocytes.  It exists in two forms, in a 

soluble form in plasma and in a tissue-bound form in the plasma membrane.  Increased 

serum SSAO activities have been found in patients with diabetes and vascular disorders, 

and treatment with selective SSAO inhibitors reduced atherogenesis in diabetic mice fed 

a high-cholesterol diet (Yu, et al., 2003).  Also, increased activity of AMO and SSAO in 

plasma may be responsible for the increased circulating MG levels in diabetic mice (Yu, 

et al., 2003).  Furthermore, levels of MG and activities of SSAO were significantly 
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elevated in lenses from streptozotocin-induced diabetic rats (Hamada, et al., 2005).  

SSAO induced AGEs synthesis in aortic smooth muscle from diabetic rats by the 

mediation of MG (Mathys, et al., 2002).   

 

1.1.2 MG in food and beverages 

 

MG is formed in food and beverages during the processing, cooking and 

prolonged storage (Nemet, et al., 2006).  MG can be formed from carbohydrates by 

fragmentation of the sugar moiety during retro-aldol condensation and auto-oxidation.  In 

addition, the formation of MG was observed during the heating process of glucose, 

fructose, and maltose, where the amount of MG obtained from monosaccharides was 

markedly higher than that from disaccharides (Nemet, et al., 2006).  Moreover, 

decomposition of different lipids, caused by storage and processing, can also affect the 

accumulation of MG in food.  A broad range of MG levels was obtained during 

accelerated storage (60ºC for 3 and 7 days)  or cooking (200ºC for 1 h) of oil, depending 

on oil origin (salmon, cod liver, soybean, olive, and corn oils) (Fujioka and Shibamoto, 

2004).  For instance, the formation of MG ranged from 2.03 ppm in cod liver oil to 2.89 

ppm in tuna oil heated at 60 ºC for 7 days.  However, olive oil is the only vegetable oil 

that yields MG under the accelerated storage conditions.   

Coffee is a wildely consumed beverage.  It is interesting to know whether MG is 

present in green and roasted coffee beans.  The amount of MG is small in green coffee 

beans, but increases in the early phases of the roasting process and then declines. Thus, 

mild or medium toasted coffee beans have the highest amount of MG content (Daglia, et 
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al., 2007).  It has been determined that 1 gram of coffee powder contains about 100 µg of 

MG, and MG owns the strongest mutagenicity in dicarboyls in coffee (Nagao, et al., 

1986).  

Besides food and beverages, drinking water can also be an exogenous source of 

MG.  Ozonation and chlorination of natural water, the applied process in the treatment of 

drinking water, can lead to the formation of MG (Matsuda, et al., 1992a; Matsuda, et al., 

1992b).  

 

1.2 Detoxification of MG  

 

 Several pathways are involved in the metabolism of MG: glyoxalase enzyme 

system, aldose reductase, aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase (2-

ODH).    

 

1.2.1 Glyoxalase enzyme system 

 

The glyoxalase enzyme system is the major pathway catalyzing the detoxification 

of MG (Figure 1-2).  This metabolic system is present in the cytosol of all mammalian 

cells and most micro-organisms (Rhee, et al., 1987; Thornalley, 1990).  Glyoxalase I and 

glyoxalase II are two major enzymes in this system.  GSH is a cofactor.  The 

nonenzymatic reaction between GSH and MG forms hemithioacetal.  Glyoxalase I 

catalyzes hemithioacetal to S-D-lactoylglutathione.  Glyoxalase II then hydrolyzes S-D-

lactoylglutathione to D-lactate.  MG detoxification is, therefore, strongly dependent on 
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the availability of GSH.  Deficiency of GSH limits the production of hemithioacetal, 

leading to the accumulation of MG (Abordo, et al., 1999).  The reactions catalyzed by the 

glyoxalase system are irreversible.  Both glyoxalase I and glyoxalase II are 

metalloproteins and dependent on zinc in their active sites (Cameron, et al., 1999).  

Glyoxalase I inhibitor S-p-bromobenzylglutathione prevented the metabolism of 

exogenous MG in cell extracts (Phillips and Thornalley, 1993a). 

 

1.2.2 Aldose reductase 

 

Aldose reductase catalyzes the NADPH-dependent reduction of MG into 

lactaldehyde and then to propanediol in the presence of GSH (Nemet, et al., 2006; 

Vander Jagt, et al., 2001).  However, at low concentrations of GSH, MG is converted to 

acetol, and acetol accumulates finally.  Acetol has been reported to accumulate to 

millimolar levels in some diabetic patients (Reichard, et al., 1986).  Acetol can also be 

converted back to MG either by oxidation mediated by CYP2E1 or by undergoing 

disproportionation in the presence of copper ions without the catalysis of any enzymes 

(Vander Jagt, et al., 2001).  

In liver, where GSH levels are the highest and aldose reductase is almost absent, 

the glyoxalase system is the key metabolic system to detoxify MG (Vander Jagt, et al., 

2001).  In tissues with high levels of aldose reductase, such as eyes, nerves, kidneys and 

the vasculature, aldose reductase contributes to MG degradation (Kador and Kinoshita, 

1985).   
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1.2.3 Aldehyde dehydrogenase  

 

Aldehyde dehydrogenase catalyzes NAD-dependent oxidation of MG into 

pyruvate (Nemet, et al., 2006).  The family of aldehyde dehydrogenase consists of 3 

isoforms, names of which are dependent on the intracellular locations (Izaguirre, et al., 

1998).  Aldehyde dehydrogenase 1 (cytosolic) and aldehyde dehydrogenase 2 

(mitochondrial) are the predominant isozymes (Hsu, et al., 1985), while aldehyde 

dehydrogenase 3 (cytosolic) is the least abundant (Kurys, et al., 1989).  MG is reported to 

be a substrate of, and can be completely hydrated by these 3 isoforms of aldehyde 

dehydrogenase (Izaguirre, et al., 1998).  

 

1.2.4   2-oxoaldehyde dehydrogenase (2-ODH)    

 

2-ODH also catalyzes the oxidation of MG to pyruvate (Nemet, et al., 2006).  

This enzyme was purified from sheep liver (Monder, 1967).  It is specific for the 

metabolism of α-oxoaldehydes.  It needs NAD or NADPH as a cofactor.   

 

1.3 Toxicity of MG 

 

1.3.1 Modification of protein 

 

Under physiological conditions, more than 90% of MG is bound reversibly with 

cellular proteins (Lo, et al., 1994).  Addition of 1 μM [14C] MG to human plasma and 
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incubation at 37ºC lead to complete and irreversible binding of MG to plasma protein 

within 24 hours (Thornalley, 2005).  MG reacts with arginine, lysine and cysteine 

residues of proteins to form advanced glycation endproducts (AGEs).  Arginine-derived 

hydroimidazolone and lysine-derived N-ε-carboxyethyl-lysine (CEL) and N-ε-

carboxymethyl-lysine (CML) are products of irreversible reactions of protein residues 

with MG (Lo, et al., 1994).  The concentration of AGEs in mammalian tissues, plasma 

and extracellular matrix in vivo depends on the protein substrate, tissue location and type 

of AGEs.  For instance, the highest concentration of hydroimidazolone was found in the 

lens of older individuals, and CML accumulates on lens, skin and cartilage (Ahmed, et 

al., 1997; Verzijl, et al., 2000). 

MG-induced AGEs are involved in the pathogenesis of many diseases, such as 

diabetes, hypertension and neurodegenerative diseases (Desai and Wu, 2007; Münch, et 

al., 2003).  AGEs induce cross-linkage of proteins to decrease arterial and myocardial 

compliance and promote vascular stiffness, leading to the alteration of vascular structure 

and function, which contributes to the development of hypertension and diabetic vascular 

complications (Goh and Cooper, 2008).  AGEs also have been seen accumulated in 

diabetic kidney, retina and atherosclerotic plaques (Hammes, et al., 1999; Bucala and 

Vlassara, 1995; Makita, et al., 1994),   and are closely linked to the development of 

diabetic complications.  In addition, AGEs interact with some receptors, like the receptor 

for AGEs (RAGE), where they interfere with cell signaling and nuclear factor-κB (NF-

κB) mediated pathway, leading to enhanced oxidative stress and generation of 

proinflammatory cytokines (Goh et al., 2008).   
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Previous work in our lab has shown that MG-induced AGEs formation is a 

causative factor for the pathogeneis of hypertention.  Levels of MG-induced CEL and 

CML were higher in kidneys and aortas from spontaneously hypertensive rats (SHR) 

compared to Wistar Kyoto (WKY) rats from 8 weeks onward.  Immumohistochemistry 

staining revealed that most of the staining was localized to renal tubules and aortic 

endothelium (Wang, et al., 2004; Wang, et al., 2005).  In addition, MG-induced CEL and 

CML formation was observed in mesenteric artery of fructose-fed rats (Wang, et al., 

2008).  The accumulation of AGEs in endothelium, artery and kidney may lead to 

endothelial dysdunction, vascular and tubular damage, which contribute to the 

development of hypertension and its complications.  

MG-induced AGEs formation impairs anti-oxidant enzymes, leading to the 

excessive accumulation of reactive oxygen species (ROS).  Arginine, lysine and cysteine 

are residues involved in the active sites of enzymes, and the irreversible reaction of MG 

with residues may alter the activity of those enzymes.  For example, activities of 

glutathione reductase and glutathione peroxidase were reduced significantly, 

accompanied by the increased MG-induced AGEs formation in aorta from adult SHR 

(Wang, et al., 2005).   MG also modifies Cu / Zn SOD by covalent cross-linking of the 

proteins, leading to the release of copper ions from the enzyme and the inactivity of the 

enzyme (Kang, 2003).  Furthermore, decreased extracellular SOD activity was due to 

excessive glycation, not to the impaired synthesis of this enzyme in patients with diabetes 

(Ciechanowski, et al., 2005).  Aminoguanidine, a scavenger of MG and AGEs, increased 

the activities of catalase, glutathione reductase and glutathione peroxidase in insulin-
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dependent diabetic rats and prevented the impairment of blood antioxidant systems 

(Stoppa, et al., 2006).  

 

1.3.2 Modification of nucleic acid  

  

MG can be a mutagen since it modifies nucleotides poly A, poly G and poly C, 

but not poly-U (Krymkiewicz, 1973).  MG inhibited skin cell proliferation and caused 

extensive DNA strand cleavage by the extensive formation of DNA-protein cross-links 

(Roberts, et al., 2003).  MG-induced cytotoxicity and mutation were concentration 

dependent.  Multi-base deletions were predominant (50%) in MG-induced mutations, 

followed by base-pair substitutions (35%), in which G:C-->C:G and G:C-->T:A 

transversions were predominant (Murata-Kamiya, et al., 2000).  Furthermore, MG 

increased point mutations in Salmonella typhimurium (Migliore, et al., 1990), and the 

occurrence of point mutations correlated with the glycation rate of DNA (Pischetsrieder, 

et al., 1999).   

The cross-link formation of protein with DNA by glycation with MG has been 

investigated.  A protein-DNA cross-link was observed after 90 min exposure to MG (1.5 

mM) in Chinese hamster ovary cells (Brambilla, et al., 1985).  In addition, MG (1 mM) 

cross-linked a guanine residue of the substrate DNA and lysine and cysteine residues near 

the binding site of the DNA polymerase during DNA synthesis, and that DNA replication 

was severely inhibited by the MG-induced DNA-DNA polymerase cross-link in E-coli 

(Murata-Kamiya and Kamiya, 2001).  
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1.4 Scavengers of MG 

 

To date, specific MG scavengers are not available in the market, but some agents 

like aminoguanidine, metformin and alagebrium are capable of reducing MG levels and 

are currently used in different studies, although the mechanism is unclear.   

 

1.4.1 Aminoguanidine  

 

Aminoguanidine (Pimagedine) is an agent that prevents the formation of AGEs 

from α, β-dicarbonyl precursors.  It is a derivative of guanidine and has two reaction 

centers: the nucleophilic hydrazine group and the dicarbonyl-directing guanidine group 

(Ahmed, et al., 2002).  The guanidine part of aminoguanidine is the key site of glycation 

by α, β-dicarbonyl compounds (Ahmed and Thornalley, 2002).  The two groups together 

make a reactive scavenger of α, β-dicarbonyl glycating agents, particularly α-

oxoaldehydes, such as MG (Thornalley, et al., 2000).  MG, otherwise, would react with 

lysine, arginine and cysteine residues of proteins to form AGEs.  Therefore, 

aminoguanidine prevents the formation of AGEs from MG.  Aminoguanidine is also a 

potent and irreversible inhibitor of human and rat SSAO (Yu and Zuo, 1997).  Activity of 

SSAO in rat kidney and aorta was significantly inhibited by aminoguanidine at 3 hours 

after injection.  Aminoguanidine rapidly inhibits the activity of SSAO.  For instance, 
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aminoguanidine inhibited 90% of SSAO activity without preincubation, and 15 minutes 

preincubation of aminoguanidine with SSAO caused the complete inhibition of SSAO 

acitivity (Yu and Zuo, 1997).  SSAO is an enzyme catalyzing aminoacetone to MG, 

although this pathway is considered as a minor source of MG formation.   

Aminoguanidine is not a specific MG scavenger since it also reacts with other 

carbonyl metabolites, such as 3-deoxyglucosone, malondialdehyde and 4-hydroxy-2-

nonenal and formaldehyde (Brownlee, et al., 1986; Kazachkov, et al., 2007).  In addition, 

aminoguanidine is a well known nitric oxide synthase (NOS) inhibitor.  NOS catalyzes 

the production of nitric oxide (NO) from L-arginine (Corbett, et al., 1992).  Thus, 

aminoguanidine would inhibit NO formation when used to scavenge MG.   

 

1.4.2 Metformin  

 

Metformin has a similar structure to aminoguanidine.  It is a biguanide compound 

generally used to control blood glucose levels in T2DM.  Administration of metformin in 

patients with T2DM significantly reduced MG production and increased MG degradation 

(Beisswenger, et al., 1999).  The effect of metformin to reduce MG formation was 

concentration dependent.  Metformin also reduced MG levels in serum and aorta of 

fructose-fed rats (Wang, et al., 2008).  Metformin was observed to trap reactive carbonyls 

like MG and glyoxal (Ruggiero-Lopez, et al., 1999).  Therefore, metformin is not a 

specific scavenger of MG.  A high dose of metformin, 2.5 g/day, was used to reduce MG 

levels in patients with T2DM (Beisswenger, et al., 1999).  Stable triazepinone derivatives 

were found following the reaction of MG and metformin in vitro (Ruggiero-Lopez, et al., 
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1999).  Furthermore, triazepinone was identified in plasma and urine of type 2 diabetic 

patients treated with metformin (Beisswenger and Ruggiero-Lopez, 2003).  Those studies 

clearly indicate that metformin directly reacts with MG.  

 

1.4.3 Alagebrium 

 

Alagebrium is an AGEs cross-link breaker.  It reduces collagen cross-linking in 

diabetic animals by cleaving the bonds between adjacent carbonyl groups of cross-linked 

proteins (Vasan, et al., 1996).  Alagebrium is the only AGE cross-link breaker which is 

being tested in human clinical trials (Zieman, et al., 2007).  Clinical studies demonstrated 

that alagebrium improved arterial compliance and cardiac function and attenuated 

diabetic nephropathy and atherosclerosis.  In addition, alagebrium was reported as safe 

and well-tolerated by patients in clinical trials (Kass, et al., 2001; Zieman, et al., 2007).  

Another clinical trial in 23 patients with diastolic heart failure showed that alagebrium 

significantly decreased left ventricular mass and improved left ventricular diastolic filling 

(Little, et al., 2005).  Therefore, alagebrium is a promising drug to treat MG and AGEs 

associated diseases, such as diabetes, hypertension and aging.   

Moreover, evidence suggests that alagebrium directly scavenges MG.  In a study 

conducted by Nobecourt et al. (Nobécourt, et al., 2008), alagebrium did not reverse MG-

mediated cross-linking of apolipoprotein (Apo) A-I, the main apolipoprotein of HDL.  

However, alagebrium prevented MG-mediated modification of ApoA-I.  This result 

indicates that alagebrium is a MG scavenger, although the mechanism is still unknown 

(Nobécourt, et al., 2008).    
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1.5 Physiological and pathological levels of MG  

 

The levels of MG in plasma of normal human subjects vary from 123 nM to 650 

nM depending on different studies (Beisswenger, et al., 1999; Nemet, et al., 2005; Odani, 

et al., 1999; Lapolla, et al., 2005).  The inconsistency of those values seems dependent on 

different methods used to test the compound.   

Elevated levels of MG have been observed in different kinds of diseases, such as 

hypertension, diabetes and renal failure.  Previous work in our laboratory showed that the 

plasma MG level was progressively increased with age in SHR.  Compared to age-

matched WKY rats, the plasma levels of MG were significantly increased in SHR at 8 

weeks (13.8 ± 0.72 vs. 9.1 ± 0.8 μM), 13 weeks (30.3 ± 2.05 vs. 18.5 ± 2.71 μM), and 20 

weeks (33.6 ± 2.16 vs. 14.2 ± 3.48 μM) (Wang, et al., 2004).  MG was significantly 

elevated in patients with T2DM versus normal subjects (189.3 ± 38.7 vs. 123.0 ± 37 nM, 

P = 0.0001) (Beisswenger, et al., 1999).  The data from another laboratory indicated that 

plasma MG levels were significantly higher in patients with T2DM (158 ± 46 ng/ml) and 

patients with chronic renal failure (110 ± 18 ng/ml) than those from normal subjects (47 

± 12 ng/ml) (Odani et al., 1999).  In addition, MG levels were significantly elevated in 

patients with end-stage renal disease versus normal controls (17.5 ± 6.9 vs. 8.5 ± 0.5 

μg/ml) (Lapolla, et al., 2005).  However, MG levels were reduced with aging in the liver 

(24.7 ± 3.6 vs. 88.8 ± 10.6 pmol/mg protein) and skeletal muscle (12.7 ± 2.4 vs. 27.5 ± 

4.6 pmol/mg protein) between 30-month old aging rats and 5-month old rats.  Decreased 
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MG levels in liver and skeletal muscles might contribute to the low levels of D-lactate in 

those aging rats (Kawase, et al., 1995).  

 

2. Peroxynitrite (ONOO-) 

 
Peroxynitrite (ONOO-) is a highly reactive free radical and an extremely toxic 

oxidant.  Free radicals are atoms or molecules with an unpaired electron and are more 

reactive than other atoms or molecules.  Two free radicals can share their unpaired 

electrons by forming a covalent bond to form a stable compound.  On the other hand, a 

free radical can give the unpaired electron to a molecule or get an electron from a 

molecule and the latter one then becomes a free radical (Desai and Wu, 2008).  The 

reaction chain continues further.  Reactive oxygen species (ROS) includes oxygen-

derived free radicals, such as superoxide anion (O2
.-), and highly reactive non-radicals 

which do not have an unpaired electron, such as hydrogen peroxide (H2O2) (Desai and 

Wu, 2008).  Oxidative stress generally describes a condition in which cellular antioxidant 

defenses are insufficient to completely detoxify free radicals that have been generated.  

Oxidative stress results from either excessive production of ROS, or loss of antioxidant 

defenses, or both (Giugliano, et al., 1996).   

 

2.1 Formation of ONOO- 

 

The major sources of intracellualr ONOO- are mitochondria and cytosol (Figure 

1-3).  ONOO- is formed by the reaction of two free radicals O2
.- and nitric oxide (NO).  
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The rate of this reaction is so fast that almost every collision between NO and O2
.-  results 

in the formation of ONOO- (Padmaja and Huie, 1993).   

O2
.- is an oxygen molecule with an extra electron.  It is mainly produced 

nonenzymatically in mitochondria during the electron transportation.  Under 

physiological conditions, electrons carried by the electron transportation chain leak out of 

the pathway and are passed to oxygen directly, leading to the formation of O2
.-.  The 

production of O2
.- in the cytosol is mediated by enzymes NADPH oxidase, xanthine 

oxidase, and cytochrome P450, which are present in the plasma membrane, cytosol and 

endoplasmic reticulum, respectively (Curtin, et al., 2002).  O2
.- is one of the main causes 

of oxidative stress (Figure 1-3).   

NO is produced endogenously from the oxidation of L-arginine to L-citrulline by 

catalysis by a member of nitric oxide synthase (NOS) family, such as neuronal nitric 

oxide synthase (nNOS; type 1), inducible nitric oxide synthase (iNOS; type 2), and 

endothelial nitric oxide synthase (eNOS; type 3).  nNOS and eNOS are constitutively 

expressed, but their activities are calcium concentration dependent.  iNOS is inductively 

expressed and its activity is calcium concentration independent (Alderton, et al., 2001).  

iNOS and nNOS are localized in the cytoplasma, whereas eNOS is membrane-bound.  

Upregulation of iNOS expression leads to the production of large amount of NO.  NO is 

also produced in mitochondria via the mediation of mitochondrial NOS (mtNOS).  Co-

stimulation of mitochondrial O2
.- formation and mtNOS causes the overproduction of 

ONOO-  in mitochondria (Figure 1-3).  



 

Figure 1-3.  Intracellular sources of ONOO-  (Adapted from J Immunol Methods. 

2002; 265(1-2):49-72). 

 ER: Endoplasmic reticulum 
GSH: Reduced glutathione 
GSSG: Oxidized glutathione 
GPX: Glutathione peroxidase 
GR: Glutathione reductase 
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2.2 Toxicity of ONOO- 

 

Excessive production of ONOO- has been reported in many conditions, such as 

cardiovascular disease (Pacher, et al., 2007).  ONOO- diffuses intra- and intercellularly 

and modifies DNA, proteins and lipids, contributing to the pathogenesis of diabetes and 

hypertension.  Modification of DNA includes oxidation of nucleotide bases and 

formation of cross-links (Piconi, et al., 2003).  Guanine is the most reactive nucleotide 

base with ONOO- due to its low reduction potential.  Ultimately, reaction of guanine with 

ONOO- results in guanine fragmentation, which contributes to mutagenesis and 

carcinogenesis (Niles, et al., 2006).  DNA alteration caused by ONOO- will result in 

mutations, cellular aging and death.  Mutagenic potential is closely linked with the 

number of non-repaired DNA lesions (Valko, et al., 2007). 

ONOO- modifies protein structure and function by reacting with various amino 

acids.  The most common reactions are with cysteine and tyrosine residues of proteins.  

The thiol oxidation of cysteine residues by ONOO- results in the inactivation of many 

enzymes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Buchczyk, et 

al., 2003).  Inactivation of GAPDH interrupts glycolytic pathways and leads to ATP 

depletion.  On the other hand, GAPDH is an abundant protein, and its inactivation may 

cause the formation of insoluble protein aggregates, which promotes cell death 

(Buchczyk, et al., 2003).  ONOO-  can also nitrate tyrosine residues of proteins to form 

nitrotyrosine.  Nitrotyrosine has been used as a marker of nitrosative damage to protein.  

Tyrosine nitration interferes with phosphorylation / dephosphorylation cell signaling 

pathways and alters cellular function (Minetti, et al., 2002).  Lipid peroxidation induced 
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by ONOO- mostly occurs at cell membranes which contain large amount of lipids.  Many 

membrane phospholipids are unsaturated, containing a methylene group between two 

double bonds that makes the fatty acid more sensitive to oxidation.  The initial products 

of unsaturated fatty acid oxidation are short-lived lipid hydroperoxides.  Hydroperoxides 

readily react with metals to produce a series of products, such as aldehydes and epoxides.  

Malondialdehyde, one of the major aldehyde products of lipid peroxidation (Zollner, et 

al., 1975), is mutagenic and carcinogenic (Basu and Marnett, 1983). 

 

2.3 Antioxidant enzymes 

 

Cells require antioxidant enzymes to neutralize ROS (Figure 1-3).  O2
.- is 

enzymatically degraded to H2O2 by superoxide dismutase (SOD) (Desai and Wu, 2008).  

SODs are metal-containing enzymes that depend on a bound manganese, copper or zinc 

for their antioxidant activity.  In mammals, the manganese-containing enzyme (MnSOD) 

is most abundant in mitochondria, while the zinc or copper forms (Cu / Zn SOD) are 

predominant in cytosol (Fridovich, 1995).   

H2O2 is also highly reactive although it is less toxic than O2
.-.  Catalase is the 

major enzyme to remove H2O2 (Muzykantov, 2001).  It is found in peroxisomes in 

eukaryotic cells.  Catalase degrades H2O2 to water and oxygen, and hence finishes the 

detoxification reaction started by SOD.   

Glutathione peroxidase (GPX) converts H2O2 to water with the addition of 

reduced glutathione (GSH), which is catalyzed to oxidized glutathione (GSSG).  Besides 

protein-bound thiol, ONOO- directly reacts with low-molecular-weight thiol, like GSH 
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(Pacher, et al., 2007).  Thus, GSH acts as an endogenous scavenger of ONOO- and 

defends cells against oxidative stress (Arteel, et al., 1999).  The depletion of GSH 

enhances toxicity of ONOO-, leading to cellular damage.   

In addition to these enzymes, some compounds like Vitamin E, Vitamin C and 

uric acid may participate in the elimination of oxygen radicals. 

 

2.4 MG and ONOO- 

 

2.4.1 MG and ONOO- production  

 

Numerous studies demonstrated that MG induced O2
.-, NO, and further ONOO- 

formation, in vitro and in vivo.  Increased generation of ONOO- is closely linked with 

MG treatment.  Treatment of MG induced a time- and concentration- dependent increase 

of oxidized DCF fluorescence intensity, which indicates the formation of ONOO- and 

H2O2, in aortic VSMCs (A-10 cells).  MG-induced oxidized DCF was inhibited by both 

GSH and anti-oxidant N-acetyl-L-cysteine (NAC).  MG also increased the production of 

O2
.- which was prevented by SOD and NADPH oxidase inhibitor diphenylene iodonium, 

and NO which was inhibited by N(G)-nitro-L-arginine methyl ester (L-NAME), an NOS 

inhibitor (Chang, et al., 2005).   

Also in cultured mesenteric artery smooth muscle cells (SMCs) from SD rats, 

incubation of MG for 3 hours increased oxidized DCF fluorescence (Wu, 2005).  

Moreover, significantly increased levels of O2
.- and H2O2 in the aorta of 13 week old SHR  

were associated with elevated plasma and aortic MG levels, compared with those in age-
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matched WKY rats (Wang, et al., 2005).  MG increased the production of O2
.- in human 

platelets, and the oxidation effect of MG was significantly potentiated by thrombin 

(Leoncini, et al., 1989).   

 

2.4.2 Mechanisms of MG induced ONOO- production 

   

To date, the mechanism of MG-induced ONOO- is unclear.  Effect of MG on 

mitochondrial proteins, cell signaling pathways and anti-oxidant enzymes is associated 

with MG-induced oxidative damage.    

 

2.4.2.1 MG and mitochondrial proteins 

 

 Rosca et al. investigated the relationship between MG-modified mitochondrial 

proteins and mitochondrial oxidative stress.  In mitochondrial suspension from 

streptozotocin-induced diabetic rat kidney cortex, MG attached to mitochondrial proteins 

to form MG-derived imidazole AGEs.  MG-modified mitochondrial proteins significantly 

increased mitochondrial O2
.- production.  Administration of aminoguanidine improved 

mitochondrial respiration and decreased oxidative damage to mitochondrial proteins 

(Rosca, et al., 2005).  This study indicates that glycation of mitochondrial proteins by 

MG is accounted for MG-induced mitochondrial oxidative stress.  This study echoes the 

discovery made by Rabbani (Rabbani and Thornalley, 2008).  Furthermore, 

overexpression of glyoxalase I, an enzyme degrading MG, in the Caenorhabditis elegans 

significantly decreased MG modification of mitochondrial proteins, reduced 
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mitochondrial oxidative stress and prolonged life span of those elegans (Morcos, et al., 

2008).  

 

2.4.2.2 MG and p38-mitogen-activated protein kinase (p38 MAPK)  

 

MG (1 μM to 1 mM) increased production of O2
.- and H2O2 in neutrophils in a 

concentration-dependent manner (Ward and McLeish, 2004).  MG-induced production of 

O2
.- and H2O2 was independent of the presence of plasma proteins and blocked by a MG 

scavenger aminoguanidine. MG activated p38 MAPK-dependent exocytosis of granules 

to provide cytochrome b588 for NADPH oxidase, which mediates O2
.- generation (Ward 

and McLeish, 2004).  MG may directly enter the cells and stimulate p38 MAPK signaling 

pathway.  MG also modifies plasma protein, such as albumin, which then activates p38 

MAPK (Fan, et al., 2003).  Furthermore, reduced availability of GSH can activate p38 

MAPK (Haddad, 2002).  MG (200 μM, 0.5 h or 1 h)-induced phosphorylation and 

activation of p38 MAPK was also observed in Schwann cells, accompanied by the 

depletion of intracellular GSH and cell apoptosis (Fukunaga, et al., 2005).   

 

2.4.2.3 MG and nuclear factor-κB (NF- κB) 

 

Previous work in our laboratory tested the effect of MG on NF-κB (Wu and 

Juurlink, 2002).  MG (50 to 500 μM, 24 h) significantly induced oxidized DCF intensity, 

indicating the generation of ONOO-, and lowered GSH levels in VSMCs from SHR, 

compared to the VSMCs from WKY rats.  In addition, MG (300 μM, 3 h) induced 
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activity of NF-κB and decreased cytoplasmic levels of IκBα unit (inhibitory protein for 

NF-κB) in VSMCs from SHR.  These results suggest that MG may induce ROS 

generation via the activation of NF-κB.  NF-κB is present in many cell types and controls 

numerous gene products.  NF-κB, in turn, enhances the expression of iNOS (Spitaler and 

Graier, 2002) and further increases NO production.  However, high levels of O2
.- lead the 

reaction with NO to form ONOO- (Beckman and Koppenol, 1996).  ONOO- causes the 

cellular damage by lipid peroxidation, nitration of amino acids and oxidation of tyrosine 

residues of protein to form nitrotyrosine.   

 

2.4.2.4 MG and anti-oxidant enzymes 

 

Because MG is degraded mainly by the glyoxalase system which depends on the 

availability of GSH, GSH depletion by MG has been shown (Kikuchi, et al., 1999).  As 

mentioned earlier, GSH is a low-molecular-weight thiol which scavenges intracellular 

ONOO-.  Reduced GSH, therefore, increases cell susceptibility to ONOO--induced 

damage.   Decreased GSH content was detected in VSMCs from SHR and WKY rats 

exposed to MG (0.5 mM).  MG (0.3 mM) also increased the level of GSSG, which was 

inhibited by NAC (Wu and Juurlink, 2002).  In addition, MG reduced GSH content in 

platelets (Leoncini, et al., 1989) and hepatocytes (Kalapos, et al., 1991).   MG also affects 

the activity of other anti-oxidant enzymes.  For instance, SOD activity was inhibited by 

MG (5 mM for 5 days) in a concentration- and time- dependent manner.  The inactivation 

of SOD was more pronounced with 30 mM MG treatment for 24 hours (Jabeen, et al., 



2006).  Moreover, incubation of human Cu / Zn SOD with MG (30 mM, 24 hours) led to 

the loss of enzymatic activity and release of copper ions from the protein (Kang, 2003).  

 

3. Mitochondria  

 

3.1 Structure of mitochondria  

 

                 

Figure 1-4. Structure of mitochondria (Adapted from 

http://giantshoulders.wordpress.com/2007/10/21/the-mitochondrion-pt-1-structure-and-

layout/). 

 

Mitochondria generate ATP and are powerhouses of cells.  They are composed of 

an outer membrane and an inner membrane, which have different functions (Figure 1-4).  

The outer membrane contains integral proteins named porins, which form channels to 

allow proteins weighing 5,000 Daltons or less to diffuse through.  The inner membrane is 
29 
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folded inward many times to form cristae and is highly impermeable.  Almost all 

molecules and ions need special membrane transporters to cross the inner membrane.  

Enzymes on the inner membrane have different functions: (1) conduct oxidative 

phosphorylation on the electron transport chain (ETC), which is also named respiratory 

chain; (2) produce ATP in the matrix (space enclosed by the inner membrane); (3) 

transport proteins into and out of the matrix.  The two membranes together create the 

intermembrane space.  Small molecules such as ions and sugars in the intermembrane 

space are the same as those in the cytosol.  In addition, the intermembrane space contains 

other large proteins, which are transported across the outer membrane, like cytochrome 

C.  The matrix, on the other hand, contains a highly selected set of proteins and is the 

location of ATP production.  Many important biochemical reactions take place in the 

mitochondria, including electron transport, oxidative phosphorylation, and ATP 

generation (Alberts, et al., 1994; Gao, et al., 2008).   

 

3.2 Electron transport chain (ETC) and oxidative phosphorylation 

 

ETC is a series of protein complexes embedded in the inner mitochondrial 

membrane (Figure 1-5).  There are five complexes involved: (1) NADH dehydrogenase 

(complex I); (2) Succinate dehydrogenase (complex II); (3) Cytochrome c reductase 

(complex III); (4) Cytochrome c oxidase (complex IV); (5) ATP synthase (ATPase, 

complex V) (Mandelker, 2008).  Electrons flow from NAD+ / NADH to O2 / 2H2O, 

through complex I, which passes electrons on to ubiquinone; complex III, which transfers 

electrons from ubiquinone to cytochrome C; and finally complex IV, which carries 
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electrons to O2, resulting in the reduction to H2O.  In addition, ubiquinone takes electrons 

through the conversion of succinate to fumarate at the site of complex II.  The 

transportation of electrons through complex I, II and III results in the pumping of protons 

from the matrix to the intermembrane space across the inner membrane to create a 

hydrogen gradient.  The potential energy in the hydrogen gradient drives the membrane-

located ATP synthase, which catalyzes ATP production in the presence of ADP and Pi.  

The process of electron transportation through ETC to generate ATP is called oxidative 

phosphorylation (Leverve, 2007).  
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Figure 1-5. Electron transport chain, oxidative phosphorylation and 
mitochondrial oxidative stress 

Complex I: NADH dehydrogenase 
Complex II: Succinate dehydrogenase  
Complex III: Cytochrome c reductase 
Complex IV: Cytochrome c oxidase  
Complex V: ATP synthase 
Cyt C: Cytochrome C 

32 
 



33 
 

3.3 Mitochondria and ONOO- 

 

Mitochondrial respiration, which is performed on the ETC, generates about 85% 

of total intracellular O2
.- during the process of energy production (Chance, et al., 1973).  

Under physiological condition, 2-5% of electrons leak out from the ETC and interact with 

oxygen to form O2
.- (Droge, 2002). Complex I and complex III are main sites where 

electrons leak out to oxygen (Turrens and Boveris, 1980) (Figure 1-5).  Evidence suggest 

that O2
.-  is formed in the inner side of the inner membrane (Turrens, 1997).   

mtNOS is a constitutive and Ca2+ dependent enzyme, which is located in the inner 

mitochondrial membrane and catalyzes the generation of mitochondrial NO (Dedkova, et 

al., 2004).  The absence of mtNOS activity in mouse heart was observed in nNOS-/- mice 

but not in eNOS-/- or iNOS-/- mice, which identifies that mtNOS is nNOS (Kanai, et al., 

2001).  It is further proved that mtNOS is the alpha isoform of nNOS (Carreras, et al., 

2002; Elfering, et al., 2002).  In mitochondria, NO reacts with O2
.- to form ONOO-, 

which leaks out of mitochondria and accumulates in cytosol.  MnSOD is the primary 

enzyme in mitochondria to convert O2
.- to H2O2.  It protects mitochondria against 

oxidative stress.  The down regulation of MnSOD was found in the pathogenesis of 

diabetic complications and cancer (Shen, et al., 2006; Hu, et al., 2005). 

Rotenone, thenoyltrifluoroacetone (TTFA), antimycin A and cyanide are 

inhibitors of complex I, II, III and IV, respectively (Zhang, et al., 2001).  Application of 

mitochondrial inhibitors significantly increased mitochondrial ROS production (Turrens, 

1997).  The presence of mitochondrial inhibitors stimulated the production of O2
.- (Li, et 

al., 2006; Chen, et al., 2007) (Figure 1-6).  
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Figure 1-6. Sites of ETC inhibited by blockers.  

Q: Ubiquinone 
Fe-S: Iron-sulfur proteins 
FMN or FAD: Flavin nucleotide;  
Cyt: Cytochrome 
TTFA: Thenoyltrifluoroacetone  
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4. Type 2 diabetes mellitus (T2DM) 

 

4.1 Introduction of T2DM 

 

Diabetes mellitus (DM) is characterized as recurrent or persistent hyperglycemia 

(high blood glucose levels).  It is diagnosed as fasting glucose higher than 125 mg/dl (7.0 

mM), and / or oral glucose tolerance test higher than 200 mg/dl (11.1 mM), and / or 

random glucose higher than 200 mg/dl (11.1 mM) with syndromes of diabetes, such as 

polyuria, polydispia and unexplained weight loss (2008 Clinial Practice Guidelines, 

Canadian Diabetes Association, http://www.diabetes.ca/files/cpg2008/cpg-2008.pdf).  

DM is classified into type 1 diabetes mellitus (T1DM) / insulin dependent diabetes 

mellitus and type 2 diabetes mellitus (T2DM) / non-insulin-dependent diabetes mellitus.  

T1DM results from the loss of the insulin-producing β cells in the pancreas, leading to a 

deficiency of insulin.  T2DM is attributed to reduced insulin secretion and insulin 

resistance (Diabetes care, 2007).  

Global expenditure in prevention and treatment of diabetes and related 

complications totalled 232 billion (USD) in 2007 (Diabetes atlas, 2007).  Data from 

World Health Organization (WHO) indicate that T2DM accounts for about 90% of 

diabetic patients and T2DM prevalence is estimated to grow from approximately 162 

million to 329 million by 2030 (WHO website: 

http://www.who.int/mediacentre/factsheets/fs312/en/index.html).  Therefore, T2DM is a 

huge financial and social burden that affects both families and nations.  It is of crucial 

importance to find the cause and to develop strategic therapies for T2DM.      



36 
 

Pathogenesis of T2DM is not completely known.  Overeating and lifestyle are 

considered as trigger factors.  Heredity is also involved.  People with a positive family 

history have a 2.4-fold increased risk for T2DM compared to the general population 

(Pierce, et al., 1995).  The prevalence of T2DM in the offspring is about 38% if one 

parent has T2DM, and the risk rises to 60% if both parents have T2DM (Pierce, et al., 

1995; Tattersal and Fajans, 1975).  In the diabetes research field, the inability of a known 

quantity of exogenous or endogenous insulin to increase glucose uptake and utilization in 

an individual as much as it does in a normal population is definied as insulin resistance, 

which is commonly used to explain the mechanism of T2DM (Lebovitz, 2001).  The 

cause for insulin resistance is, however, largely unsettled.   

Prolonged hyperglycemia causes a series of pathological and metabolic changes 

which contribute to the development of diabetic complications.  The devastating 

complications reduce the quality of life and life expectancy and increase the morbidity 

and motility.   

Some patients with T2DM are undiagnosed at early stage and only see their 

doctors at check up.  T2DM affects many major organs, such as heart and kidney.  

Generally, diabetic complications can be divided into three categories: neuropathy; 

microvascular complications, which include retinopathy and nephropathy; and 

macrovascular complications, such as cardiovascular disease (CVD), stroke and 

peripheral vascular disease.  CVD, especially heart failure and myocardial infarction, is 

the major cause of hospital admission and death in diabetic patients (Stuckey, et al., 

2005).  Statistical data from the American Diabetes Association demonstrate that more 

than 65% of deaths in diabetic patients are attributed to heart and vascular diseases 
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(American Diabetes Association, http://www.diabetes.org/diabetes-heart-disease-

stroke.jsp).  Hyperglycemia is a definite factor causing the occurrence of diabetic 

complications (Laakso, 1999).  Intensive glucose control, i.e. keeping blood glycated 

hemoglobin (HbA1c) to less than 7%, reduces the incidence of diabetic complications.  

The United Kingdom Prospective Diabetes Study (UKPDS) demonstrates a reduction in 

microvascular complications: retinopathy by 25%, erectile dysfunction by 20% and 

macrovascular disease by 40% by controlling hyperglycemia in patients with T2DM 

(UKPDS, 1998).  

 

4.2 MG and T2DM 

 

4.2.1 MG levels in T2DM 

 

Numerous studies demonstrated that MG played an important role in the 

pathogenesis of diabetes and diabetic complications.  Nemet et al. observed that the 

plasma levels of MG in diabetic patients were significantly increased compared with 

those in normal controls (742 ± 141 vs. 520 ± 42 nM, P = 0.000016).  MG was also a 

parameter reflecting glycemic fluctuation (Nemet, et al., 2005).  For instance, the M value 

is a quantitative index of the deviations of diurnal blood glucose from an arbitrarily 

selected standard (5 mM), and provides a single numerical expression of glycemic 

control with a normal range of 0–20.  Increased MG levels were observed in both whole 

blood and plasma samples in patients with M values > 20 compared to the same 

parameters obtained in patients with M values <20 (range 0.4–19.1).  MG levels also 
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significantly correlated with the individual M values (Nemet, et al., 2005).  Data from 

another lab showed that MG was significantly elevated in patients with T2DM versus 

normal controls (189.3 ± 38.7 vs. 123.0 ± 37 nM) (Beisswenger, et al., 1999).  In 

addition, the levels of MG correlated with rising HbA1c (R = 0.4) (Thornalley, et al., 

1989).   

 

4.2.2 Roles of MG in T2DM 

 

4.2.2.1 MG-induced AGEs in T2DM 

 

MG is the most important precursor of AGEs.  Numerous studies show that 

accumulation of intracellular MG and formation of AGEs alter cell function and 

contribute to the development of T2DM and diabetic complications, such as 

atherosclerosis, nephropathy, and retinopathy. 

In cultured endothelial cells, MG accumulated rapidly under hyperglycemic 

conditions (Shinohara, et al., 1998).  In addition, serum levels of AGEs increased in 

patients with T2DM and coronary artery disease (Kilhovd, et al., 1999).  AGEs induce 

diabetic atherosclerosis by multiple ways.  Argpyrimidine, the fluorescence product of 

the reaction of MG with arginine residues in protein, has been demonstrated to localize in 

atherosclerotic lesions, fatty streaks, lipid containing SMCs and macrophages in diabetic 

patients (Friedman, 1999; Oya, et al., 1999).  A correlation of AGEs and severity of 

atherosclerotic lesions was also shown.  AGEs decrease NO availability by quenching 

NO, impair LDL removal by trapping LDL in the subendothelium and decrease LDL 
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receptor recognizing AGEs-modified LDL (Bucala, et al., 1994).  Furthermore, AGEs 

enhanced VCAM-1 expression by activating NF-κB.  VCAM-1 stimulates the migration 

of monocytes through endothelium, which is the first step of atherogenesis (Kunt, et al., 

1999).   

The kidney is a key target of MG and AGEs mediated damage.  Mouse renal 

damage was found after oral administration of MG.  A 5-month treatment with MG 

resulted in elevated levels of collagen in kidney and increased glomerular basement 

membrane thickness (Golej, et al., 1998).  Diabetic mice have significantly elevated renal 

AGEs, and these abnormalities have been linked to various structural aspects of diabetic 

nephropathy, including glomerular basement membrane thickening, glomerulosclerosis, 

and tubulointerstitial fibrosis (Soulis-Liparota, et al., 1995).   

MG-induced hydroimidazolone increased selectively in retinas of streptozotocin-

induced diabetic rats (Karachalias, et al., 2003).  In addition, MG-modified CML was 

localized in retinal blood vessels of patients with T2DM and was found to correlate with 

the degree of retinopathy (Stitt, 2001).  Furthermore, decreased eNOS expression was 

observed in retinal vascular endothelial cells exposed to AGEs, which may account for 

retinal microvascular abnormalities (Chakravarthy, et al., 1998).  

 

4.2.2.2 MG and insulin 

 

Evidence shows that MG destroys pancreatic β-cells, decreases insulin secretion 

in response to glucose and alters insulin structure and function.  MG caused a 

concentration-dependent increase of apoptotic pancreatic β-cells (Sheader, et al., 2001).  
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Addition of MG (0.5 or 1 mM) to single isolated rat pancreatic β-cells caused a rapid and 

marked depolarization, and this effect was reversible upon the removal of MG.  MG also 

led to elevated cytosolic calcium concentration and intracellular acidification in intact rat 

islets (Cook, et al., 1998).  Moreover, acute exposure of isolated mouse islets or β-cells to 

MG resulted in reduced insulin secretion in response to glucose (Pi, et al., 2007).   

The direct effect of MG on human insulin was investigated by Jia et al. (Jia, et al., 

2006).  Human insulin was subjected to electrophoresis in Tricine SDS-PAGE gels after 

incubation with MG for 3 days.  Incubation of insulin (1 µg/µl) with MG (100 µM) 

resulted in additional bands with lower electrophoretic mobility than native insulin on 

SDS-PAGE.  Mass spectrometry was used in order to achieve more accurate and sensitive 

determination of MG-induced mass changes.  Incubation of 1 µg/µl human insulin with 

10 µM MG for 3 days resulted in additional peaks that provided evidence for the 

formation of MG-insulin.  It was further confirmed that MG modified insulin by 

attaching to the internal arginine residue in the β-chain of insulin.  In addition, the 

formation of this MG-insulin adduct decreased insulin-mediated glucose uptake in 

different insulin-sensitive cells, such as 3T3-L1 cells (cell line from mouse adipose 

tissue) and L8 cells (rat skeletal muscle cell line), although MG alone had no effect on 

glucose uptake.  Unlike native insulin, MG-insulin did not inhibit insulin release from 

pancreatic β-cells.  The metabolism of MG-insulin through hepatic cells was also 

decreased (Jia, et al., 2006).  Thus, MG modifies internal arginine residues in the β-chain 

of insulin, and the formation of an insulin-MG adducts decreases insulin-mediated 

glucose uptake, impairs autocrine control of insulin secretion, and decreases insulin 
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clearance.  The effect of MG on insulin may contribute to the pathogenesis of T2DM and 

the development of diabetic complications.   

 

4.2.2.3 MG-induced oxidative stress in T2DM 

 

 Growing evidence suggests that MG-induced oxidative damage is responsible for 

the development of diabetic complications.  Stirban and co-workers (Stirban, et al., 2006) 

tested effects of MG / AGEs rich, heat-processed meal on diabetic patients.  T2DM 

patients without a history of acute cardiovascular events, such as myocardial infarction 

and unstable angina, during the previous 6 months were recruited.  Compared to baseline, 

MG / AGEs rich, heat-processed food reduced macrovascular flow-mediated dilatation 

and decreased microvascular reactive hyperemia, indicating macro- and microvascular 

endothelial dysfunction.  The impairment of postprandial flow-mediated dilatation may 

be the result of a combined effect of reduced NO production and increased NO 

scavenging, both decreasing NO bioavailability (Stirban, et al., 2006).   

Another study of three diabetic populations, the Overt Nephropathy Progressor / 

Nonprogressor (ONPN) cohort (n = 14), the Natural History of Diabetic Nephropathy 

study (NHS) cohort (n = 110), and the Pima Indian cohort (n = 45), demonstrated that 

progression of diabetic nephropathy was significantly correlated with MG levels and 

oxidative stress (Beisswenger, et al., 2005).  The oxidative stress in this study was 

verified by the reduced GSH levels in red blood cells of diabetic patients.  In addition, 

MG modified renal mitochondrial protein in streptozotocin-treated rats, leading to 

significantly increased production of mitochondrial O2
.-, and oxidative damage (Rosca, et 
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al., 2005).   Furthermore, exposure of human neuroblastoma SH-SY5Y cells to MG was 

associated with increased ROS production, leading to MG-induced cellular damage (de 

Arriba, et al., 2006).  MG also induced diabetic neuropathy through oxidative stress-

mediated activation of p38 MAPK (Fukunaga, et al., 2005).   

 
4.3 ONOO-and T2DM 
 

4.3.1 Elevated ONOO- production in T2DM 

 

Increased ONOO- production and reduced antioxidant defense systems are well 

established in T2DM.  High glucose and MG stimulated a dose-dependent increase in the 

formation of ONOO- in retinal endothelial cells by increasing formation of O2
.- and NO  

(El-Remessy, et al., 2003a; El-Remessy, et al., 2003b).  These increases were blocked by 

the addition of the NOS inhibitor, L-NAME, or ONOO- scavenger, uric acid.  

Accelerated renal cortical generation of ONOO-, as well as the reduced NO 

bioavailability were observed in the early stage of diabetes (Ishii, et al., 2001).  In 

addition, nitrotyrosine levels were significantly higher in diabetic patients in the fasting 

state and were further elevated in the postprandial state (Ceriello, et al., 2002).  Lipid 

peroxidation, i.e. increased levels of isoprostane, were observed in plasma and urine of 

type 2 diabetic patients.  Isoprostane is produced from arachidonic acid through a 

nonenzymatic process of lipid peroxidation, which is catalyzed by ROS (Gopaul, et al., 

1995; Davi, et al., 1999).  In contrast, levels of antioxidant enzymes GPX, SOD and 

catalase in erythrocytes were significantly decreased in patients with T2DM compared 

with those from normal subjects (Ramakrishna and Jailkhani, 2008; Flekac, et al., 2008). 
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4.3.2 ONOO- and diabetic complications 

 

ONOO- directly interacts with DNA, proteins and lipids, leading to cellular 

damage.  Overproduction of ONOO- is considered as a major factor to cause diabetic 

complications (Rosen, et al., 2001).  The role of ONOO- to induce diabetic complications 

is highlighted by many studies.  Nitrotyrosine, which is a specific marker of ONOO- 

formation, directly caused vascular endothelial dysfunction and DNA damage (Mihm, et 

al., 2000).  Furthermore, nitrotyrosine increased apoptosis of endothelial cells, myocytes 

and fibroblasts in heart biopsies from diabetic patients (Frustaci, et al., 2000).  

Ultimately, the dysfunction or the degree of cell apoptosis correlated with the levels of 

nitrotyrosine expressed in those cells.  Endothelial dysfunction precedes and predicts 

more severe microvascular complications in diabetes.  In addition, elevated levels of 

ONOO- resulted in the enhanced peroxidation of low density lipoprotein (LDL), which 

promotes atherogenesis in diabetes (Hamilton, et al., 2008).  Oxidized LDL is able to 

transform macrophages and SMCs into foam cells, leading to the formation of 

atherosclerotic plaques and increased incidence of cardiovascular disease (Bowie, et al., 

1993).  

In addition to its ability of directly oxidizing DNA, proteins and lipids, ONOO- 

impairs cell signal transduction, leading to cellular dysfunction.  ONOO- induced a 9-fold 

increase in retinal neuron death in retinas of diabetic patients and streptozotocin-induced 

diabetic rats through nitrating tyrosine residues of nerve growth factor (NGF) TrkA 

receptor and diminishing phosphorylation of TrkA receptor (Ali, et al., 2008).  In 
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addition, Zou et al. have observed that ONOO- strongly inhibited the phosphorylation and 

activity of Akt and increased 5'-AMP-activated kinase (AMPK)-dependent Ser1179 

phosphorylation of eNOS (Zou, et al., 2002).  

 

4.3.3 ONOO-, inflammation and T2DM  

 

Many factors contribute to the development of diabetes and its complications, 

such as inflammation.  A prospective study found that C-reactive protein and interleukin-

6 (IL-6), two circulating markers of systemic inflammation, were risk factors for the 

development of T2DM in apparently healthy middle-aged women (Pradhan, et al., 2001).  

Low-degree inflammation was observed in the early stage of T2DM.  The inflammation 

increased during the progression of the disease and continued to be enhanced during the 

development of additional complications (Hwang, et al., 2008).   

The relationship between levels of circulating cytokines and blood glucose was 

investigated.  Esposito et al. (Esposito, et al., 2002) found that acute hyperglycemia 

increased circulating concentrations of IL-6, tumor necrosis factor alpha (TNF-α), and 

interleukin-18 (IL-18) in healthy controls and subjects with impaired glucose tolerance 

(IGT).  However, the elevation of cytokines was greater and lasted longer in patients with 

IGT compared to non-diabetic subjects.  Moreover, antioxidant GSH completely 

prevented the rise in cytokines induced by hyperglycemia.  Since GSH scavenges ONOO-

, the result indicates that ROS, particularly ONOO-, mediates hyperglycemia-induced 

inflammatory cytokine production in humans.  In addition, the production of IL-6 

induced by high glucose in vitro, may be mediated by oxidative stress (Guha, et al., 
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2000), and O2
.- might be implicated in promoting inflammation in patients with T2DM 

(Arnalich, et al., 2000).   

NF-κB plays a central role in immune and inflammatory responses.  It regulates 

the expression of genes encoding cytokines and mediators, such as TNF-α, IL-1β, IL-6 

and IL-8 (Lee and Burckart, 1998).  NF-κB is usually located in the cytosol in an 

inactivated condition bound to the inhibitory unit IκBα.  Degradation of IκBα provokes 

the activation of NF-κB.  ROS signal the degradation of the inhibitory unit IκBα and 

separate it from the complex.  Thus, ROS promote the rapid translocation of active NF-

κB into the nucleus, leading to the formation of proflammatory cytokines (Ho and Bray, 

1999) (Figure 1-7).   

 

 



 

NF-κB

   

Figure 1-7.  Mechanism of ROS-mediated NFκB activation.  Activated by ROS, IκB 

kinase phosphorylates the IκBα subunit (inhibitory protein for NFκB).  The 

phosphorylated IκBα then degrades the IκBα subunit by proteosomes.  Degradation of 

IκBα releases the NFκB p50/p65 complex, allowing the complex to translocate into the 

nucleus.  In the nucleus, the p50/p65 complex binds to the κB-binding sites in promoters 

of genes encoding immune and inflammatory factors and induces their transcription.  

(Adapted from Proceedings of the Society for Experimental Biology and Medicine. 1999; 

222(3):205-213) 
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Neutrophils are the most abundant type of white blood cells and play a crucial 

role in innate immunity.  Once an inflammatory response is initiated, the neutrophil is the 

first cell to be recruited to the site of infection or injury, where it phagocytoses bacteria 

and damaged host tissue.  Diabetic patients are at high risk of infection, and the infection 

is more serious and prolonged once it is occured.  It has been suggested that the impaired 

function of neutrophils accounts for the increased susceptibility to infection observed in 

those patients (Pickup, et al., 2000).  Furthermore, neutrophil dysfunction favors the 

onset of diabetic angiopathy (Delamaire, et al., 1997), and the development and 

progression of diabetic nephropathy (Galkina and Ley, 2006).   

The mechanism mediating this altered neutrophil function is unclear, although it 

has been suggested to relate to hyperglycemia (Lawson, et al., 2002). Hyperglycemia 

leads to persistent activation of neutrophils, as evidenced by the increased activity of 

neutrophil alkaline phosphatase (Geerlings and Hoepelman, 1999).  Alternatively, 

neutrophils contribute significantly to the initiation and amplification of immune 

responses through their release of immunoregulatory cytokines (Lloyd and Oppenheim, 

1992), including IL-6, TNF-α and interleukin 8 (IL-8).   
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5. Rational and hypothesis 

 

Studies from our laboratory have demonstrated that exogenous MG induces 

ONOO- generation in VSMCs (Chang, et al., 2005; Wu, 2005; Wu and Juurlink, 2002).  

MG-induced oxidative damage is linked to the pathogenesis of T2DM and its vascular 

complications.  Glucose, a precursor of MG, significantly induces ONOO- generation 

mediated by the formation of MG (Hsieh, et al., 2004).  Like glucose, fructose is a 

monosaccharide and also a precursor of MG.  It has been shown that a diet rich in 

fructose can increase blood pressure and induce insulin resistance although the 

mechanism is unclear (Hallfrisch, et al., 1983).   

Mitochondria are major sources of O2
.- generation.  MG-modified mitochondria 

protein in streptozotocin-induced diabetic rat kidney cortex caused a significant increase 

in O2
.- production (Rosca, et al., 2005).  Administration of a MG scavenger improved 

mitochondrial respiration and decreased oxidative damage to mitochondrial proteins.   

MG induced activation of NF-κB p65 as well as ONOO- production in mesenteric 

artery SMCs.  MG-induced ONOO- production might be implicated in the activation of 

NF-κB p65 since the effect of MG was significantly inhibited by NAC, and H2O2 induced 

a similar activation of NF-κB in these cells (Wu, 2005).  The activation of NF-κB by 

other oxidants, such as O2
.-, has also been observed in human endothelial cells and rat 

VSMCs (Ogata, et al., 2000; Canty, et al., 1999).  In turn, activated NF-κB induces 

expression of genes encoding proinflammatory cytokines and mediators.  Enhanced 

levels of proinflammatory cytokines and neutrophil dysfunction have been observed in 

type 2 diabetic patients. 
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These observations lead us to hypothesize that MG increases the production 

of ONOO- and enhances the levels of proinflammatory cytokines, which may 

contribute to the development of T2DM and its vascular complications.   

 

 

6.  Objectives and experimental approaches 

 

I. To investigate the relationships of fructose, MG and ONOO- production in rat 

aortic smooth muscle cells (A-10 cells).  We investigated whether fructose, a 

precursor of MG, induced ONOO- generation and whether this process was 

mediated via endogenously increased MG formation.  MG levels were 

measured in A-10 cells cultured in the presence and absence of fructose (2.5-

30 μM) for 3-24 h.  The generation of ONOO- was evaluated in the cells 

treated with fructose or MG in the presence and absence of N-acetyl-L- 

cysteine (NAC, anti-oxidant) or GSH (scavenger of MG).  Since ONOO- is 

formed by the reaction of O2
.− with NO at a near equimolar ratio, the fructose- 

or MG-induced ONOO- formation was measured in the presence and absence 

of N(G)-nitro-Larginine methyl ester (L-NAME, an NOS inhibitor), 

superoxide dismutase (SOD, a O2
.− scavenger), or diphenylene iodonium 

(DPI, an NAD(P)H oxidase inhibitor).  Additionally, the MG-induced 

expression of iNOS in A-10 cells was also explored. 
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II. To test the effect of MG on mitochondria with specific focus on ONOO- 

production and mitochondrial enzyme functions in A-10 cells.  Changes in 

mitochondrial ROS, particularly ONOO- production, expression of MG-

induced CEL, activity of mitochondrial complexes I-IV, MnSOD activity and 

mitochondrial ATP production in A-10 cells in the presence of exogenous MG 

(5-100 μM) were investigated.  AGEs cross-link breaker alagebrium and non-

specific antioxidant NAC were also used in this study.  

III. To determine the effect of MG on cytokine production by, and apoptosis of, 

neutrophils from type 2 diabetic patients.  Plasma MG levels were measured 

in type 2 diabetic patients with varying glycated hemoglobin (HbA1c), fasting 

plasma glucose, and urine albumin / creatinine ratios (UACRs).  

Proinflammatory cytokines, such as IL-6, IL-8 and TNFα as well as the 

apoptotic status of neutrophils were determined following different in vitro 

MG treatments. 
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CHAPTER 2 

 

GENERAL METHODOLOGY 
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VASCULAR SMOOTH MUSCLE CELL CULTURE 

Rat thoracic aortic smooth muscle line (A-10 cells) was obtained from the 

American Type Culture Collection and cultured in Dulbecco's Modified Eagle's Medium 

(DMEM) containing 10% bovine serum (BS) at 37 °C in a humidified atmosphere of 

95% air and 5% CO2.  A-10 cells were seeded either in 100 mm dishes for MG 

measurement and mitochondria isolation or in 96-well plates for other assays, with an 

equal amount of cells (106/ml) in each well, and cultured to confluence.  For cell staining, 

cells were seeded on cover glass slides or 35 mm glass-bottomed dishes (106/ml).  Cells 

were starved in BS-free DMEM for 24 h before exposure to different treatments. 

 

MG MEASUREMENT 

There are some reasons leading to the difficulties of MG determination: (1) 

amount of MG is very little in biological samples, particularly in tissues; (2) multiple and 

complicated steps are required to purify biological samples in order to quantify MG 

levels; (3) commercially available MG contains impurities which interfere the accuracy 

of the result; (4) MG is highly active and readily reacts with other components in 

samples, leading to the instability of MG levels.  Several methods are developed to 

measure MG levels in biological samples.  Most of those methods use High Performance 

Liquid Chromatography (HPLC).  The methods to detect MG amount can be divided into 

several steps: (1) sample deproteinization; (2) incubation with derivatization agent; (3) 

chromotographic analysis.   

In the presence of proteins, most MG is reversibly bound with proteins and only 

about 1% of it is free (Lo, et al., 1994).  Therefore, it is necessary to use deproteinization 
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agent, such as perchloric acid (PCA) to liberate bound MG (Lo, et al., 1994).  Low pH 

prevents degradation of DHAP and G-3-P to MG through phosphate elimination, thus, 

only an acidic agent is suitable to deproteinize MG.  PCA is widely used also because 

many precursors of MG, such as glucose, pyruvate and D-lactate do not increase MG 

levels in the presence of PCA (McLellan, et al., 1992).  However, oxidization of nucleic 

acid by PCA significantly increases MG amount.  Therefore, PCA-precipitated pellet has 

to be removed by centrifugation before derivatization in order to reduce the interference 

of nuleic acid.  5-methylquinoxaline (5-MQ) is used as an internal standard because it 

cannot be formed by nuleic acid degradation and it is available commercially (Chaplen 

1996).  After deproteinization, MG has to be derivatized because it is impossible to 

measure MG directly.  In most HPLC methods, MG is derivatized to quinoxalines, which 

can be monitored by a UV detector or fluorescence detector (Chaplen, et al., 1996; Akira, 

et al., 2004).  o-phenylenediamine (o-PD) is widely used as a derivatization agent 

(Chaplen 1996, Cameron, D. C).  Incubation has to be conducted in the dark to prevent 

the degradation of other compounds which interferes with the derivatization.  In the last 

step, MG analysis is performed on the HPLC column which is eluted by water with 

phosphate buffer and acid.  Levels of MG vary widely depending on different samples.   

In our lab, MG content was determined using an o-PD method with modification.  

In brief, samples were incubated on ice for 10 min with 1/4 volume of PCA and 

centrifuged (12,000 rpm, 15 min) to remove the PCA-precipitated pellet.  The 

supernatant was supplemented with 100 mM o-PD and incubated for 3 h at room 

temperature.  The quinoxaline derivative of MG (2-methylquinoxaline, 2-MQ) and the 

quinoxaline internal standard (5-methylquinoxaline, 5-MQ) were measured using a Nova-
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Pak ® C18 column (3.9 × 150 mm, and 4 μm particle diameter, MA, USA) equipped 

with a Hitachi high-performance liquid chromatography (HPLC) system (Hitachi Ltd., 

Mississauga, ON, Canada).  The mobile phase was composed of 80% of 10 mM 

NaH2PO4 (pH 4.5) and 20% of HPLC grade acetonitrile in volume.  The analysis 

conditions were as follows: detector wavelength, 315 nm; the flow rate of mobile phase, 

1.0 ml/min; typical sample size, 130 μl.  Duplicate injections of each sample were made.  

Samples were calibrated by comparison with 5-MQ standards.   

 

MITOCHONDRIA ISOLATION 

Following the instructions of mitochondrion isolation kit from Sigma (Oakville, 

ON, Canada), cells were lysed using cell lysis solution (1:150, 5 min) and suspended in 

extraction buffer A.  Unbroken cells and nuclei were pelleted by centrifugation at 600 g 

for 10 min.  The supernatant was centrifuged at 15,000 g for 15 min, and the 

mitochondrial pellet was resuspended in celLytic M cell lysis reagent for MG 

measurement.  The mitochondrial pellet was resuspended in extraction buffer A and 

freeze-thawed twice for mitochondrial complexes activity determination.  Cytochrome C 

Oxidase Assay Kit from Sigma-Aldrich (Oakville, ON, Canada) was used to determine 

the integrity of isolated mitochondria.  Cytochrome C oxidase is located on the inner 

mitochondrial membrane and has traditionally been used as a marker for this membrane 

(Duan, et al., 2003).  The activity of cytochrome C oxidase in isolated mitochondria was 

high, indicating the high integrity and purity of the preparation.   
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ROS DETERMINATION 

ONOO−  

The formation of ONOO− was determined by a DCFH assay.  Briefly, cells were 

loaded with a membrane-permeable, nonfluorescent probe CM-H2DCFDA (5 μM) for 2 h 

at 37 °C in BS-free DMEM in the dark.  After washing with PBS 3 times, cells were 

treated with different agents for 6 h, and finally subjected to detection.  Once inside the 

cells, CM-H2DCFDA becomes membrane-impermeable DCFH2 in the presence of 

cytosolic esterases, and is further oxidized by ONOO− to form oxidized DCF which has 

detectable fluorescence.  Oxidized DCF was quantified by monitoring the DCF 

fluorescence intensity with excitation at 485 nm and emission at 527 nm utilizing a 

Fluoroskan Ascent plate reader (Thermo Labsystem) and Ascent software, and expressed 

in arbitrary units. 

Cellular NO  

DAF-FM is a newly developed reagent for quantification of low concentrations of 

NO.  Cells were preloaded with cell permeable, nonfluorescent DAF-FM (5 μM) in 

Kreb's buffer for 2 h at 37 °C.  After removal of the excess probe and treatment of the 

cells with different agents, NO production was determined by DAF-fluorescence 

intensity with excitation at 495 nm and emission at 515 nm in a Spectra MAX Gemini XS 

plate reader (Molecular Devices) and expressed in arbitrary units.  Like CM-H2DCFDA, 

DAF-FM is deacetylated by intracellular esterases and then reacts with NO to form a 

fluorescent benzotriazole (DAF fluorescence). 
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Plasma NO 

Plasma NO was determined as the total concentration of nitrate and nitrite in the 

plasma using a nitrate/nitrite fluorometric assay kit (Cayman Chemical, Ann Arbor, MI, 

USA). The fluorescence was detected at excitation and emission wavelengths of 375 nm 

and 415 nm, respectively, using a Fluoroskan Ascent plate reader (Thermo Labsystem, 

Amsterdam, Netherlands). 

Cellular O2
.−  

Cellular O2
.− production was measured by lucigenine enhanced 

chemiluminescence.  A-10 cells (106/ml) in counting vials were first treated with 

different agents at 37 °C and then mixed with 25 μM lucigenin for 15 min before being 

subjected to detection.  O2
.− was measured by chemiluminescence intensity detected with 

a luminomiter (TD-20/20, Tunner Designs, CA, USA) and expressed in arbitrary units. 

 

Mitochondrial ROS (mtROS) and mitochondrial O2
.- 

The levels of mtROS were determined using molecular probe MitoTracker Red 

(Busik, et al., 2008).  The specific probe MitoSOX was used to detect mitochondrial O2
.- 

(Schroeder, et al., 2007).  A-10 cells were seeded on 35 mm glass-bottom dishes and 

treated with different agents for 18 h.  Then, cells were labeled with MitoTracker Red 

(300 μM, 15 min) or MitoSOX (2 μM, 20 min).  After washing, cells were bathed in 

DMEM again and subjected to examination under a Confocal Laser Scanning Biological 

Microscope (Olympus Fluoview 300, Olympus America Inc., Melville, NY, USA) 

coupled with 40× objective lens.  The exposure time of the camera, the gain of the 
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amplifier and the aperture were fixed at 4.57s/scan, 4.0× and 3 respectively, to allow 

quantitative comparisons of the relative fluorescence intensity of the cells between 

groups.  10-14 cells were randomly collected from 4 different pictures of each group.  

The average fluorescence intensity of each cell was measured using an Image J program 

(NIH, USA).  Data were expressed as mean ± SEM of the fluorescence intensity of those 

cells.  

 

MEASUREMENT OF MnSOD ACTIVITY 

SOD activity of A-10 cells was detected following the instruction of the SOD 

assay kit from Cayman Chemical (Ann Arbor, MI, USA).  KCN at 3 mM was used to 

inhibit the activity of Cu / Zn SOD, leaving only MnSOD activity to be measured. 

 

IMMUNOCYTOCHEMISTRY  

Cells were fixed in 4% formalin for 1 h at room temperature.  After permeation 

with 0.1% Triton X-100 for 5 min, fixed cells were incubated with 3% goat serum for 

1 h, and then incubated with primary antibody (anti-iNOS, 1:500; anti-CEL, 1:100; anti-

nitrotyrosine, 1:200) at 4°C overnight.  Cells then were washed in PBS (0.01 M) for 

15 min.  For iNOS staining, cells were incubated with diluted biotinylated secondary 

antibody for 1 h.  After washing with PBS, cells were subjected to detection by a 

Vectastain ABC kit (Vector Laboratories) according to the provided protocol and read 

using a normal light microscope.  For CEL and nitrotyrosine staining, cells were 
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incubated with diluted fluorescent secondary antibody (FITC-IgG, 1: 200) for 3 h at room 

temperature.  After washing with PBS, cells were mounted on glass slides and observed 

under a confocal microscope.  Fluorescence intensity was measured using Image J 

program.  

 

DETECTION OF MITOCHONDRIAL COMPLEX ACTIVITY  

Mitochondrial complex I activity was determined by monitoring the reduction of 

2,6-dichlorophenolindophenol (DCPIP) at 600 nm with the addition of assay buffer (10 × 

buffer containing 0.5 M Tris-HCl at pH 8.1, 1% BSA, 10 µM antimycin A,  3 mM KCN, 

0.5 mM coenzyme Q1) (Long, et al., 2006).  Mitochondrial proteins (25 µg/ml) and 

DCPIP (64 µM) were added to the assay buffer before using.  The reaction was started by 

adding 200 µM NADH and scanned at 600 nm with the reference wavelength of 620 nm 

for 2 min.  Mitochondrial complex III activity was detected by monitoring the reduction 

of cytochrome C at 550 nm upon the addition of assay buffer (10× buffer contains 0.5 M 

Tris-HCl at pH 7.8, 2 mM NaN3, 0.8% Tween-20, 1% BSA, 2 mM decylubiquinol) with 

40 μM cytochrome C (Long, et al., 2006).  The reaction was started by adding 20 μg/ml 

mitochondria proteins to the assay buffer and scanned at 550 nm with the reference 

wavelength of 540 nm for 2 min.  Mitochondrial complex IV activity was measured by 

monitoring the reduction of reduced cytochrome C at 550 nm with the addition of assay 

buffer (0.5 M phosphate buffer at pH 8.0, 1% BSA and 2% tween) (Long, et al., 2006).  

Freshly prepared reduced cytochrome C (80 µM) was added to the assay buffer before 

using.  The reaction was started by adding mitochondria protein (20 µg/ml) and scanned 
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at 550 nm with the reference wavelength of 540 nm for 2 min.  All assays were 

performed at 37 ºC. 

 

ATP DETERMINATION 

ATP synthesis was assayed based on a modified method of Atorino et al. 

(Atorino, et al., 2003).  Briefly, cells were incubated at 37°C for 30 min in a respiratory 

buffer (0.02% digitonin, 0.25 M sucrose, 20 mM MOPS, 1 mM EDTA,  5 mM NaPO3, 

0.1 % fatty acid-free BSA, 1 mM ATP-free ADP, 5 mM glutamate, and 5 mM malate, pH 

7.4).  Thereafter, 3% PCA was used to precipitate proteins, and samples were centrifuged 

at 13,000 rpm for 2 min.  Supernatants were taken out to measure ATP after pH was 

adjusted to 7.8 using 10 M KOH.  Data were expressed as nanomoles of ATP per 

milligram of protein.  

 

HUMAN SUBJECTS 

All participants provided informed consent. Twenty non-diabetic subjects and 

fifty-five T2DM patients were included in this study.  Non-diabetic subjects were normal 

healthy humans.  All participants were free of infection and not under any anti-infective 

or anti-inflammatory medication.  The study protocol was approved by the Research 

Ethics Boards of the University of Saskatchewan and the Saskatoon Health Region. 

 

NEUTROPHIL ISOLATION 

Human blood neutrophils were isolated from whole blood using a modification of 

the method of Gordon et al. (Gordon, et al., 2005).  In brief, equal volumes of whole 
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blood and 6% dextran (Abbort Laboratories, QC, Canada) were mixed, then the red blood 

cells (RBCs) were allowed to sediment for at least 1 h.  The leukocyte-rich supernatant 

was removed and underlaid with 3 mL of density gradient medium (Lymphoprep, Axis-

Shield, Oslo, Norway) then centrifuged at 1300 rpm for 30 min.  The cell pellet was 

suspended in 0.2% NaCl for 20 s to quickly lyse the RBCs, then 1.6% NaCl was added to 

correct the osmolarity of the medium.  The cells were sedimented (1300 rpm, 10 min) 

and the neutrophilic pellet was resuspended in PBS.  The neutrophils were washed once 

and counted.  

 

QUANTIFICATION OF FASTING PLASMA GLUCOSE, BLOOD HbA1c, 

URINE ALBUMIN AND CREATININE  

The measurements of levels of fasting plasma glucose, blood HbA1c, urinary 

albumin, and creatinine were performed by Chemistry Laboratory at the Royal University 

Hospital, University of Saskatchewan.  Fasting plasma glucose was measured using 

glucose oxidase method on a Beckman Synchron LX20 (Beckman, Palo Alto, CA, USA).  

Blood HbA1c was quantitated by ion-exchange high performance liquid chromatography 

(HPLC) (Bio-Rad Variant II).  Urinary albumin (mg/l) and creatinine (mmol/l) were 

determined by nephelometry (Beckman Array™ Protein System) and the Jaffe rate 

reaction method (Beckman, Palo Alto, CA, USA), respectively.  The unit mg/mmol was 

used to express UACRs. 
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CYTOKINE DETERMINATION 

Neutrophils (2 × 106/ml) were incubated at 37 °C for 12 h in the presence or 

absence of MG or other reagents in PBS. After incubation, the supernatant was collected 

and the levels of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-6 

(IL-6) were determined using a capture ELISA as described previously (Gordon, et al., 

2000). Human cytokine-specific ELISA capture detection antibody pairs (R&D, 

Minneapolis, MN, USA) and 96-well immulon-4 ELISA plates (Dynatech laboratories 

Inc., Chantilly, VA, USA) were used as recommended by the suppliers. The final steps 

comprised of incubation with a 1:1000 dilution of streptavidin-conjugated horseradish 

peroxidase (Gibco, Burlington, Ontario, Canada) followed by the reactions with ABTS–

peroxidase substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD, USA). The 

absorbance was read at 405 nm. Each sample and the standards were run in duplicate. 

APOPTOSIS DETECTION 

Apoptosis of neutrophils was detected using an active Caspase 3 antibody 

apoptosis kit (BD, Pharmingen, NJ, USA). Neutrophils (2 × 106/mL) were analyzed by 

flow cytometry (Beckman Coulter Epics XL, Mississauga, ON, Canada). 
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ABSTRACT 

Methylglyoxal (MG), a highly reactive molecule, has been implicated in the 

development of insulin resistance.  We investigated whether fructose, a precursor of MG, 

induced ONOO− generation and whether this process was mediated via endogenously 

increased MG formation.  Fructose significantly increased MG generation in vascular 

smooth muscle cells (VSMCs) in a concentration and time dependent manner.  The 

intracellular production of MG was increased by 153 ± 23% or 259 ± 28% after cells 

were treated 6 h with fructose (15 mM or 30 mM), compared with production from 

untreated cells (p < 0.01, n = 4 for each group).  A significant increase in the production 

of ONOO−, NO, and O2
.−, was found in the cells treated with fructose (15 mM) or MG 

(10 μM).  Fructose- or MG-induced ONOO− generation was significantly inhibited by 

MG scavengers, including reduced glutathione or N-acetyl-l-cysteine, and by O2
.− or NO 

inhibitors, such as diphenylene iodonium, superoxide dismutase or N-nitro-l-arginine 

methyl ester.  Moreover, an enhanced iNOS expression was also observed in the cells 

treated directly with MG which was significantly inhibited when co-application with N-

acetyl-l-cysteine.  Our results demonstrated that fructose is capable of inducing a 

significant increase in ONOO− production, which is mediated by an enhanced formation 

of endogenous MG in VSMCs. 

Key Words: Methylglyoxal; Fructose; Smooth muscle cell; Peroxynitrite 
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INTRODUCTION 
 

Increased levels of methylglyoxal (MG) in circulation and tissue have been 

documented in the insulin resistance syndrome which includes diabetes and hypertension. 

MG formation is increased in diabetic patients and in cultured human red blood cells 

under hyperglycemic conditions (Kalapos, 1999).  Biochemical and clinical evidence 

suggests that increased formation of MG in diabetes mellitus is linked to the development 

of diabetic complications such as micro-vascular damage in the eyes or kidneys 

(retinopathy or nephropathy), but the exact pathogenic role of this dicarbonyl remains 

largely unknown.  An age-dependent increase in blood pressure coinciding with an 

elevated MG level in genetic hypertensive rats has also been observed (Wang, et al., 

2005; Wang, et al., 2004), even when blood glucose levels were within physiological 

ranges (Wang, et al., 2004; Chen, et al., 1994; Schmidt, et al., 2004).  Like glucose, 

fructose is a monosaccharide and a precursor of MG.  The consumption of fructose or 

sucrose (1 glucose + 1 fructose) sweeteners used in beverages and processed foods has 

increased significantly in the last two decades.  It has been shown that a diet high in 

fructose or sucrose can increase blood pressure and induce insulin resistance although the 

mechanism is unclear (Hallfrisch, et al., 1983; Israel, et al., 1983; Reiser, et al., 1989; 

Reaven, 1991).  Significant increase of serum fructose to 12 μM in diabetic patients 

compared with a level of 8.1 μM in healthy subjects has been reported (Kawasaki, et al., 

2002).  An increased activity of aldose reductase, the enzyme which reduces glucose into 

fructose, has also been linked to the enhanced ONOO− production in diabetic rats 

(Obrosova, et al., 2005).  As is well known, ONOO− is an active oxidant and an increase 

in ONOO− generation might cause cellular dysfunction through inactivation of enzymes 
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or ion channels, and/or disturbance of mitochondrial respiration (Virag, et al., 2003).  

ONOO− can also mediate the addition of nitrate onto tyrosine residues of proteins to form 

nitrotyrosine, which has been noted to be elevated in the early phase of type 1 diabetes 

(Hoeldtke, et al., 2003). 

The effect of fructose on ONOO− production and MG involvement on fructose-

mediated ONOO− formation were postulated, but the actual effects were unknown.  To 

investigate these important regulatory mechanisms of cellular functions, MG levels were 

measured in VSMCs treated with or without fructose (2.5–30 mM) for 3–24 h.  The 

generation of ONOO− was evaluated in the cells treated with fructose or MG in the 

presence or absence of N-acetyl cysteine or glutathine (scavenger of MG).  Since ONOO− 

is formed by the reaction of O2
.− with NO at a near equimolar ratio, the fructose- or MG-

induced ONOO− formation was measured with and without the presence of N-nitro-l-

arginine methyl ester (an NOS inhibitor), superoxide dismutase (a O2
.− scavenger), or 

diphenylene iodonium (a NAD(P)H oxidase inhibitor).  Additionally, the MG-induced 

expression of iNOS in A-10 cells was also explored. 

 

MATERIALS AND METHODS 
 

VSMC culture 

Rat thoracic aortic SMC line (A-10 cells) was obtained from American Type 

Culture Collection and cultured in Dulbecco's Modified Eagle's Medium (DMEM) 

containing 10% bovine serum (BS) at 37 °C in a humidified atmosphere of 95% air and 



5% CO2, as described in our previous studies  (Chang, et al., 2005; Wu, 2005).  A-10 

cells were seeded either in 100 mm dishes for MG measurement or in 96-well plates for 

other assays, with an equal amount of cells (106/ml) in each well, and cultured to 

confluence.  For immunocytochemistry staining, cells were seeded on cover glass slides 

(2 × 106/ml).  Cells were starved in BS-free DMEM for 24 h before exposure to different 

treatments. 

MG assay 

MG was measured by an o-PD method as described previously (Wang, et al., 

2004; Chaplen, et al., 1998).  In brief, cell pellets were resuspended into ice-cold 

phosphate buffered saline (PBS), and lysed over ice by sonication (5 s, three times).  The 

sample was then incubated on ice for 10 min with 1/4 volume of perchloric acid (PCA) 

and centrifuged (12,000 rpm, 15 min) to remove the PCA-precipitated material.  The 

supernatant was supplemented with 100 mM o-PD and incubated for 3 h at room 

temperature.  The quinoxaline derivative of MG (2-methylquinoxaline) and the 

quinoxaline internal standard (5-methylquinoxaline) were measured via Nova-Pak® C18 

column (3.9 × 150 mm, and 4 μm particle diameter, MA, USA), with Hitachi high-

performance liquid chromatography (HPLC) system (Hitachi, Ltd., Mississauga, ON, 

Canada). 

Measurement of ONOO− 

The formation of ONOO− was determined by a DCFH assay as described 

previously (Chang, et al., 2005).  Briefly, cells were loaded with a membrane-permeable, 
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nonfluorescent probe CM-H2DCFDA (5 μM) for 2 h at 37 °C in BS-free DMEM in the 

dark.  After washing with PBS 3 times, cells were treated with or without fructose plus 

other agents for 6 h, and finally subjected to detection.  Once inside the cells, CM-

H2DCFDA becomes membrane-impermeable DCFH2 in the presence of cytosolic 

esterases, and is further oxidized by ONOO− to form oxidized DCF which has detectable 

fluorescence.  Oxidized DCF was quantified by monitoring the DCF fluorescence 

intensity with excitation at 485 nm and emission at 527 nm utilizing a Fluoroskan Ascent 

plate reader (Thermo Labsystem) and Ascent software, and expressed in arbitrary units. 

Determination of NO 

DAF-FM is a newly developed reagent for quantification of low concentration of 

NO.  As described in our earlier study (Chang, et al., 2005), cells were preloaded with 

cell permeable, nonfluorescent DAF-FM (5 μM) in Kreb's buffer for 2 h at 37 °C.  After 

removal of the excess probe and treatment of the cells with different agents, NO 

production was determined by DAF-fluorescence intensity with excitation at 495 nm and 

emission at 515 nm in a Spectra MAX Gemini XS plate reader (Molecular Devices) and 

expressed in arbitrary units.  Like CM-H2DCFDA, DAF-FM is deacetylated by 

intracellular esterases and then reacts with NO to form a fluorescent benzotriazole (DAF 

fluorescence). 

Detection of O2
.− 

O2
.− production was measured by lucigenine enhanced chemiluminescence (Wu, 

et al., 2001).  A-10 cells (106/ml) in counting vials were first treated with different agents 
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at 37 °C and then mixed with 25 μM lucigenin for 15 min before being subjected to 

detection.  O2
.− was measured by chemiluminescence intensity detected with a 

luminometer (TD-20/20, Tunner Designs, CA, USA) and expressed in arbitrary units. 

Immunocytochemistry staining 

A-10 cells were seeded on glass cover slips followed by treatment with MG or 

MG plus NAC for 18 h, and subjected to iNOS staining.  As described previously (Wu, 

2005), treated cells were fixed in 4% formalin for 30 min at room temperature.  After 

permeation with 0.1% Triton X-100 for 30 min, fixed cells were incubated with blocking 

solution for 1 h, and then incubated with iNOS antibody (1:500; BD transduction 

laboratories) at room temperature for 2 h. Cells were washed in PBS (0.01 M) for 5 min 

and incubated with diluted biotinylated secondary antibody for 1 h After washing with 

PBS, cells were subjected to detection by a Vectastain ABC kit (Vector Laboratories) 

according to the provided protocol. 

Chemicals 

Methylglyoxal (MG), o-phenylenediamine (o-PD), 5-methylquinoxaline, 

lucigenin, diphenylene iodonium (DPI), superoxide dismutase (SOD), N-acetyl-L-

cysteine (NAC), reduced glutathione (GSH), N-nitro-l-arginine methyl ester (L-NAME), 

4, 5-dihydroxy-1,3-benzene-disulfonic acid (Tiron) and mannitol were purchased from 

Sigma (Oakville, ON, Canada). 2′,7′-dichlorodihydrofluorescein diacetate (DCFH) and 4-

amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM) were obtained from 

Invitrogen (Burlington, ON, Canada). 
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Statistical analysis 

Data were obtained after the subtraction of the blank (PBS containing different 

probes in the absence of cells) and expressed as the mean ± SEM from at least three 

independent experiments.  Statistical analysis was performed by the one way analysis of 

variance (ANOVA).  Differences between groups was examined by the Student's 

unpaired t-Test. Values are considered to be statistically significant when p < 0.05. 

 

RESULTS 

Fructose induced MG generation 

Fructose-induced MG production occurred in a concentration and time dependent 

manner in A-10 cells.  When the cells were treated with fructose at the concentration of 

15 mM or 30 mM for 6 h, a significant increase in MG formation by 153 ± 23% 

(4.63 ± 0.42 vs. 1.83 ± 0.26 nmol/mg protein, p < 0.01) or 259 ± 28% (6.57 ± 0.37 vs. 

1.83 ± 0.26 nmol/mg protein, p < 0.01) was observed, in comparison to levels produced 

by untreated cells.  Fructose treatment at 2.5 mM or 5 mM had no significant effect on 

intracellular MG generation (p > 0.05, n = 4 for each group, Fig. 3-1A). Fig. 3-1B 

demonstrates the effect of fructose treatment (15 mM or 30 mM) for 3, 6, 9, and 24 h, on 

levels of intracellular MG as compared with that of control group (n = 4 for each group). 

MG levels reached a peak at 6 h after fructose treatment and then gradually declined.  At 

24 h, the level of MG with 15 mM fructose treatment was still 108 ± 19% higher than 

that of the controls (3.82 ± 0.37 vs. 1.83 ± 0.26 nmol/mg protein, p < 0.05, n = 4 for each 



group); and 30 mM fructose treatment was 197 ± 33% higher than that of the control 

(5.44 ± 0.46 vs. 1.83 ± 0.26 nmol/mg protein, p < 0.05, n = 4 for each group).  As shown 

in Fig 1C, the cells were also treated with mannitol (15 or 30 mM) for 6 or 24 h.  This 

mannitol treatment did not cause any change in intracellular MG level, indicating that the 

fructose-induced MG generation is not due to osmotic changes in the medium. 

 

Fructose induced ONOO- formation 

The DCFH assay was used to measure the intracellular production of oxidized 

DCF which indicates the formation of ONOO−.  As shown in Fig. 3-2A, when the cells 

were treated with fructose (15 mM) for 6 h, there was a significant increase in the 

intensity of oxidized DCF by 49.5 ± 14.7% over that of the control group (p < 0.05, 

n = 8).  This increase was effectively inhibited by 82.3 ± 11.2% when co-treated with 

GSH (1 mM) (p < 0.05, n = 8) or by 69.8 ± 17.4% when co-treated with NAC (600 μM) 

(p < 0.05, n = 8), in comparison with fructose (15 mM) treatment alone.  There was no 

significant change in oxidized DCF production when the cells were treated with GSH 

(1 mM) or NAC (600 μM) alone (data not shown). 

Since oxidized DCF could also come from the oxidation of DCFH2 by H2O2 

(Curtin, et al., 2002; Kooy, et al., 1997) and since the generation of ONOO− requires both 

NO and O2
.−, we treated A-10 cells with fructose (15 mM) in the presence or the absence 

of O2
.− scavenger SOD, NAD(P)H oxidase inhibitor DPI, or NOS inhibitor L-NAME.  In 

comparison with that from fructose-treated group (Fig. 3-2A), fructose-induced oxidized-
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DCF formation was significantly decreased by 86.7 ± 15.6% (p < 0.05, n = 8) when co-

treated with SOD (400 U/ml) or completely abolished when co-treated with DPI 

(100 μM) (p < 0.05, n = 8).  L-NAME (100 μM) as shown in Fig. 3-2B also significantly 

reduced the production of fructose-induced oxidized DCF by 79 ± 8.7% (p < 0.05, 

n = 16), compared with that from fructose-treated group (p < 0.05, n = 16 in each group). 

There was no significant change in oxidized DCF production when cells were treated 

with SOD (400 U/ml), DPI (100 μM), and L-NAME (100 μM), respectively (data not 

shown). 

Fructose induced generation of O2
.− 

As shown in Fig. 3-3, the generation of O2
.− increased by 67.8% (p < 0.05) in A-

10 cells after incubation with fructose (15 mM) for 6 h, compared with that from 

untreated group.  However, O2
.− production in fructose treated cells was completely 

inhibited when the cells were co-treated with SOD (400 U/ml) (p < 0.05, n = 6) or DPI 

(100 μM) (p < 0.01, n = 6).  When the cells were directly treated with MG (10 μM) for 

6 h, a significant increase in O2
.− formation was observed (p < 0.01, n = 6), which was 

decreased significantly in the presence of SOD (400 U/ml) or DPI (100 μM) (p < 0.01, 

n = 6).  Neither SOD nor DPI alone had significant effects on the production of O2
.− in A-

10 cells (data not shown). 

Fructose induced generation of NO 

As shown in Fig. 3-4A, NO generation was significantly increased by 63 ± 10.2% 

after the cells were treated with fructose (15 mM) for 6 h (0.207 ± 0.03 vs. 0.127 ± 0.02, 
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p < 0.01, n = 16), in comparison with that from untreated group. Co-application of L-

NAME (100 μM) completely prevented fructose-induced NO production (p < 0.01, 

n = 16 in each group, Fig. 3-4A).  Similarly, increased NO formation was also observed 

in the presence of MG (10 μM, 6 h) and this MG-induced increase was significantly 

inhibited by co-application with L-NAME (100 μM) in A-10 cells (p < 0.01, n = 8, Fig. 

3-4A).  L-NAME alone had no significant effect on the production of NO in A-10 cells 

(data not shown). 

In addition, application of MG tremendously increased the staining intensity of 

iNOS in A-10 cells compared with untreated control cells, in which only background 

levels of staining were observed (Fig. 3-4B).  Co-application of NAC (600 μM) 

effectively prevented the increased iNOS staining induced by MG treatment, while 

application of NAC alone had no evident effect on iNOS staining in A-10 cells.  Similar 

results were also observed from three other independent experiments. 

 

DISCUSSION 

Multiple studies have indicated an increased MG level in different insulin states 

including diabetes and hypertension (Wang, et al., 2005; Beisswenger, et al., 2005), 

supporting the importance of MG in the development of insulin resistance.  The main 

source of MG in mammals is anaerobic glycolysis, i.e. non-enzymatic and enzymatic 

elimination of phosphate from glyceraldehyde-3-phosphate (G-3-P) and 

dihydroxyacetone phosphate (DHAP) (Koop and Casazza, 1985; Lyles and Chalmers, 
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1992).  MG is also formed during various physiological processes including metabolism 

of acetone from lipolysis and the break down of threonine from protein catabolism (Lyles 

and Chalmers, 1992; Yu, et al., 2003).  Fructose, a precursor of MG, is metabolized by 

hexokinase or ketohexokinase to G-3-P and DHAP, which directly form MG. 

Physiological concentration of fructose in serum is about 8.1 ± 1.0 μM (Kawasaki, et al., 

2002).  Under specific pathological conditions such as diabetes, its serum concentration 

can be as high as 12.0 ± 3.8 μM (Kawasaki, et al., 2002).  The concentration of fructose 

used in our present study appears to be much higher than those reported in vivo 

concentrations.  However, it is generally acknowledged that to replicate a biological 

reaction of certain endogenous substances in an in vitro system, significantly higher 

concentrations of these substances have to be used for two reasons.  One is that the 

microenvironment in which the isolated cells are cultured is not optimized as the 

corresponding in vivo environment.  Another consideration is that experiments on 

cultured cells usually take a much shorter time than in vivo observation so that a higher 

concentration is needed to compensate for this short reaction time.  In this line, knowing 

that plasma concentration of methylglyoxal is about 5 μM, 100–500 μM of methylglyoxal 

was used to study its effect on Jurkat cells (Du, et al., 2001; Du, et al., 2000).  MG has 

also been used at 1 mM on isolated rat pancreatic ß-cells to investigate its effect on Ca2+ 

concentration (Cook, et al., 1998), and at 0.1–10 mM to study its effect on insulin-

secreting cells (Sheader, et al., 2001).  Increased MG formation may occur when the 

availability of MG's precursors are increased or scavenging pathways are impaired.  In 

this study, we showed that intracellular MG levels were significantly increased when 

VSMCs were incubated with fructose (Fig. 3-1). Generation of MG induced by fructose 
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occurred in a concentration and time dependent manner.  Noticeably, type 2 diabetic 

patients are common with obesity and, 150–225 million people worldwide are affected 

with type 2 diabetes, according to a recent epidemiologic report (Zimmet, 2003).  A diet 

with high sucrose or fructose has been observed to induce insulin resistance, although 

without clear mechanisms (Hallfrisch, et al., 1983; Israel, et al., 1983; Reiser, et al., 1989; 

Reaven, 1991).  For instance, an increased blood pressure associated with 

hyperinsulinemia and hypertriglyceridemia in normal Sprague Dawley rats was observed 

after only 2 weeks on a high fructose (66%) diet (Hwang, et al., 1987). 

MG is very electrophilic and tends to interact readily with certain arginine or 

lysine residues in proteins, leading to increased glycation of proteins, and therefore the 

yield of irreversible AGEs is accelerated.  It has been shown that MG induces glycation 

of arginine residues of glutathione reductase, thus inactivating this enzyme and 

decreasing its scavenging ability for free radicals (Vander Jagt, et al., 1997).  Our 

conclusion that fructose caused a significant increase in ONOO− (Fig. 2) in A-10 cells is 

supported by several lines of evidence: 1) The enhanced formation of oxidized DCF was 

significantly or completely inhibited by O2
.− scavenger SOD or the NAD(P)H oxidase 

inhibitor DPI (Fig. 3-2A). 2) Fructose-induced oxidization of DCF was markedly 

inhibited by L-NAME (Fig. 3-2B). 3) Fructose directly increased the generation of NO 

and O2
.− in A-10 cells, which was inhibited by either L-NAME, SOD or DPI (Fig. 3-3 

and Fig. 3-4A).  As is well known, ONOO− is formed by a reaction of NO and O2
.−. 

ONOO− can cross cell membranes-freely (Curtin, et al., 2002) and is an extremely strong 

and reactive oxidant (Beckman and Koppenol, 1996; Cai and Harrison, 2000).  It has 

been reported that ONOO− impairs the sarcoplasmic reticulum Ca++ pump in pig 
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coronary artery smooth muscle (Sechi, et al., 1996) and triggers apoptosis in cultured rat 

aortic VSMCs (Li, et al., 2003).  An increased production of O2
.− with reduced NO 

function leads to an altered blood vessel tone and hypertension (Cuzzocrea, et al., 2004).  

Increased O2
.− production in the heart, aorta, and polymorphonuclear cells in rats treated 

with high fructose (60% or 66%) diet was reported (Al-Awwadi, et al., 2005; Delbosc, et 

al., 2005) and this fructose-induced overproduction of O2
.− was theorized to be linked to 

an overexpression of cardiac p22 phox (Delbosc, et al., 2005).  Inhibition of NAD(P)H 

oxidase by apocynin restores the impaired endothelial-dependent and -independent 

responses in type 2 diabetes complicated by NO dysfunction (Hayashi, et al., 2005).  The 

expression of NAD(P)H oxidase in VSMCs has been previously documented (Irani, 

2000).  The inhibition of fructose-induced O2
.− production in A-10 cells by DPI, revealed 

in our present study, provided further evidence for the potential importance of NAD(P)H 

oxidase in redox balance in VSMCs.  However, the role of NAD(P)H oxidase in this 

context cannot be concluded yet as DPI may also have molecular targets other than 

NAD(P)H oxidase. 

In addition, the defects of the antioxidant system have been observed in the high 

fructose fed model.  Activities of red cell Cu / Zn-SOD, Se-glutathione peroxidase and 

blood GSH are significantly lower in rats fed with high fructose (Faure, et al., 1999).  In 

our study, oxidized DCF was significantly decreased after the co-application of fructose 

with MG scavenger GSH or NAC (Fig. 3-2).  An increase in formation of NO or O2
.− was 

observed when the cells were directly treated with 10 μM of MG (Fig. 3-3 and Fig. 3-

4A).  An enhanced iNOS positive staining was also observed when the cells were treated 

with MG, in comparison with the untreated group (Fig. 3-4B).  Therefore, our data 
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clearly indicate that fructose-induced ONOO− is mediated by an increased formation of 

MG in VSMCs.  It is tempting to portray MG as a linker between fructose metabolism 

and cellular signal transductions, or a regulator in redox tone and redox cell signaling. 

In summary, our results indicate that fructose treatment increased the formation of 

ONOO− via increased NO and O2
.− production in A-10 cells, and this effect was directly 

mediated by an elevated intracellular concentration of MG.  An endogenous 

overproduction of MG and MG-induced ROS will eventually impair vascular function 

and contribute to the development of insulin resistance. 
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Figure 3-1. Concentration- and time-dependent MG generation in A-10 cells treated with 

fructose. A. MG levels in A-10 cells were assessed after 6 h incubation with fructose at 

the concentration of 0, 2.5, 5, 15 or 30 mM. B. MG levels in A-10 cells were measured 

after treatment with fructose (15 or 30 mM) for 0, 3, 6, 9, and 24 h, respectively. C. MG 

levels were determined after the cells were treated with mannitol (15 or 30 mM) for 6 or 

24 h. n = 4 for each group in A and B. * p < 0.05 or ** p < 0.01 vs. control group. 



                                  

    

Figure 3-2. Effects of fructose and other agents on production of ONOO−. A. The 

production of ONOO− was determined after A-10 cells were incubated for 6 h with 

fructose (15 mM) in the presence or absence of GSH (1 mM), NAC (600 μM), SOD 

(400 U/ml) or DPI (100 μM). B. Fructose (15 mM)-induced generation of ONOO− was 

quantified with or without L-NAME (100 μM). n = 8 for each group in A and n = 16 for 

each group in B. p < 0.05 or p < 0.01 vs. control group; +p < 0.05 vs. fructose group. 
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Figure 3-3. Effects of fructose, MG and other agents on O2
.− production. O2

.− was 

determined after A-10 cells were incubated for 6 h with fructose (15 mM) or MG 

(10 μM) in the presence or absence of SOD (400 U/ml) or DPI (100 μM). n = 6 for each 

group. p < 0.05 or p < 0.01 vs. control group; +p < 0.05 and ++p < 0.01 vs. fructose 

group; ##p < 0.01 vs. MG group. 
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Figure 3-4. Effects of fructose, MG and other agents on NO production. A. The 

concentration of NO was assayed after A-10 cells were incubated for 6 h with fructose 

(15 mM) or MG (10 μM) in the presence or absence of L-NAME (100 μM). n = 16 for 

fructose and fructose + L-NAME groups, n = 8 for MG and MG + L-NAME groups. 

p < 0.01 vs. control group, ++p < 0.01 vs. fructose group, and ##p < 0.01 vs. MG group. 

B. MG induced iNOS expression in A10 cells. A10 cells seeded on cover glass slips were 

treated with MG (100 μM) for 18 h, then stained with mouse anti-iNOS monoclonal 

antibody. More positive staining appeared in MG-treated cells and MG-induced iNOS 

expression was inhibited by co-applying NAC (600 μM). 
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ABSTRACT 

The mitochondrial effect of methylglyoxal (MG) with specific foci on 

peroxynitrite (ONOO-) production, manganese superoxide dismutase (MnSOD) activity, 

and mitochondrial functions in vascular smooth muscle A-10 cells were investigated.  

Mitochondrial MG content was significantly increased after A-10 cells were treated with 

exogenous MG, and so did advanced glycated endproducts (AGEs) formation, indicated 

by the appearance of N -(carboxyethyl) lysine, in A-10 cells.  The levels of mitochondrial 

reactive oxygen species (mtROS) and ONOO- were significantly increased by MG 

treatment.  Application of ONOO- specific scavenger uric acid lowered the level of 

mtROS.  MG significantly enhanced the production of mitochondrial superoxide (O2
.-) 

and nitric oxide (NO), which were inhibited by SOD mimic 4-hydroxy-tempo and 

mitochondrial nitric oxide synthase (mtNOS) specific inhibitor 7-nitroindazole, 

respectively.  The activity of MnSOD was decreased by MG treatment.  Furthermore, 

MG decreased respiratory complex III activity and ATP synthesis in mitochondria, 

indicating an impaired mitochondrial respiratory chain.  AGEs cross-link breaker 

alagebrium reversed all aforementioned mitochondrial effects of MG.  Our data 

demonstrated that mitochondrial function is under the control of MG.  By inhibiting 

complex III activity, MG induces mitochondrial oxidative stress and reduces ATP 

production.  These discoveries will help unmask molecular mechanisms for various MG-

induced mitochondrial dysfunction-related cellular disorders.  

 

Key Words: methylglyoxal; mitochondria; peroxynitrite; complex III; alagebrium  
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INTRODUCTION 

 

Mitochondria are the powerhouse of mammalian cells.  When electrons pass 

through complexes I – IV of the electron transport chain (ETC), 2-5% of electrons leak 

out of the ETC and interact with oxygen to form superoxide (O2
.-) in mitochondria, which 

accounts for about 85% of total intracellular O2
.- (Chance, et al., 1973; Droge, 2002).  

Electron leakage most often occurs at complex I and complex III of the ETC, and the 

amount of O2
.- increases dramatically if these complexes are inhibited (Turrens, 2003). 

Under physiological condition, O2
.- is converted to hydrogen peroxide (H2O2) by 

manganese superoxide dismutase (MnSOD), which is the primary antioxidant defensive 

enzyme in mitochondria (Li, et al., 2006).  This anti-oxidant system ensures the clearance 

of free radicals and protects cells against oxidative damage.  Mitochondria also contain 

specific nitric oxide synthase (mtNOS), which catalyzes the production of nitric oxide 

(NO) (Epperly, et al., 2007).  A considerable amount of NO generated from mtNOS 

reacts with O2
.-  to form peroxynitrite (ONOO-) (Dedkova, et al., 2004).  ONOO- is a 

highly reactive oxidant, damaging proteins, DNA, and lipids (Valko, et al., 2007).  

Mitochondrial oxidative stress is tightly related to the pathophysiology of type 2 diabetes 

and associated complications (Kim, et al., 2008). 

Methylglyoxal (MG) is a dicarbonyl compound which readily reacts with certain 

proteins to form advanced glycated endproducts (AGEs), like N-carboxyethyl-lysine 

(CEL).  This rapid interaction contributes to the pathogenesis of insulin resistance 

syndrome, such as diabetes and hypertension (Wang, et al., 2008; Goh and Cooper, 2008; 
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Jia, et al., 2006).  We have previously shown that MG induced the generation of reactive 

oxygen species (ROS) in hypertensive rat vascular smooth muscle cells (VSMCs) and 

animal tissues (Wu and Juurlink, 2002; Desai and Wu, 2008).  We also found that MG 

(Chang, et al., 2005) or fructose (a precursor of MG) (Wang, et al., 2006) induced the 

production of ONOO- in cultured rat thoracic aortic smooth muscle cells (A-10 cells). 

To date, the role of MG in the regulation of mitochondrial function is unclear.  

We hypothesized that MG affects mitochondrial function by interfering with respiratory 

complexes and altering mitochondrial ONOO- production.  In the present study, changes 

in mitochondrial ROS production, activity of mitochondrial complex, and MnSOD 

activity in A-10 cells in the presence of exogenous MG were investigated.  AGEs 

crosslink breaker alagebrium and non-specific antioxidant N-acetyl-L-cysteine (NAC) 

were also used in this study.  

 

MATERIALS AND METHODS 

 

Chemicals and antibodies 

 

Anti-nitrotyrosine antibody and bovine serum were purchased from Invitrogen 

Corporation (Burlington, ON, Canada).  Anti-CEL antibody was obtained from Novo 

Nordisk (A/S, Denmark).  Alagebrium was from Alteon Inc. (Parsippany, NJ, USA).  

Cell culture medium, FITC IgG fluorescent antibody, MG, NAC, o-phenylenediamine (o-

PD), 2-methylquinoxaline, 5-methylquinoxaline, KCN, 2,6-dichlorophenolindophenol 
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(DCPIP), rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, coenzyme Q1, 

cytochrome C, NaN3, tween, NADH, decylubiquinol, digitonin, sucrose, MOPS, EDTA, 

NaPO3, fatty acid-free BSA, ATP-free ADP, glutamate and malate were purchased from 

Sigma-Aldrich (Oakville, ON, Canada).   

 

Cell culture 

 

A-10 cells, which is a aortic smooth muscle cell line from rats, was obtained from 

American Type Culture Collection and cultured in Dulbecco's Modified Eagle's Medium 

(DMEM) containing 10% bovine serum at 37°C in a humidified atmosphere of 95% air 

and 5% CO2, as described in our previous study (Wang, et al., 2006).  Cells of passages 3 

to 8 were used in this study.   

 

Isolation of mitochondria 

 

Following the instruction of Mitochondrion Isolation Kit from Sigma-Aldrich 

(Oakville, ON, Canada), cells were lysed using cell lysis solution (1:150, 5 min) and 

suspended in extraction buffer A.  Unbroken cells and nuclei were pelleted by 

centrifugation at 600 g for 10 min.  The supernatant was centrifuged at 15,000 g for 15 

min, and the mitochondrial pellet was resuspended in celLytic M cell lysis reagent for 

MG measurement.  The mitochondrial pellet was resuspended in extraction buffer A and 

freeze-thawed twice for mitochondrial complexes activity determination.  Cytochrome C 

Oxidase Assay Kit from Sigma-Aldrich (Oakville, ON, Canada) was used to determine 
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the integrity of isolated mitochondria.  Cytochrome C oxidase is located on the inner 

mitochondrial membrane and has traditionally been used as a marker for this membrane 

(Duan, et al., 2003).  The activity of cytochrome C oxidase in isolated mitochondria was 

high, indicating the high integrity and purity of the preparation.   

 

MG content determination 

 

MG content was determined using an o-PD method as described previously 

(Wang, et al., 2006).  In brief, mitochondria isolated from A-10 cells were incubated on 

ice for 10 min with 1/4 volume of perchloric acid (PCA) and centrifuged (12,000 rpm, 

15 min) to remove the PCA-precipitated mitochondrial debris.  The supernatant was 

supplemented with 100 mM o-PD and incubated for 3 h at room temperature.  The 

quinoxaline derivative of MG (2-methylquinoxaline) and the quinoxaline internal 

standard (5-methylquinoxaline) were measured using a Nova-Pak ® C18 column 

(3.9 × 150 mm, and 4 μm particle diameter, MA, USA) equipped with a Hitachi high-

performance liquid chromatography (HPLC) system (Hitachi Ltd., Mississauga, ON, 

Canada). 

 

Detection of mitochondrial ROS (mtROS) and mitochondrial O2
.- 

 

Mitochondria produce a variety of ROS, such as ONOO-, NO and O2
.-.  

MitoTracker Red CM-H2XRos and MitoSOX from Invitrogen Corporation (Burlington, 



ON, Canada) were used to detect the levels of mtROS and mitochondrial O2
.- (Busik, et 

al., 2008; Schroeder, et al., 2007).  A-10 cells were seeded on 35 mm glass-bottom dishes 

and treated with different agents for 18 h.  Then, cells were labeled with MitoTracker 

Red (300 μM, 15 min) or MitoSOX (2 μM, 20 min).  After washing, cells were bathed in 

DMEM again and subjected to examination under a Confocal Laser Scanning Biological 

Microscope (Olympus Fluoview 300, Olympus America Inc., Melville, NY, USA) 

coupled with 40× objective lens.  The exposure time of the camera, the gain of the 

amplifier and the aperture were fixed at 4.57s/scan, 4.0× and 3 respectively, to allow 

quantitative comparisons of the relative fluorescence intensity of the cells between 

groups.  10-14 cells were randomly collected from 4 different pictures of each groups.  

The average fluorescence intensity of each cell was measured using Image J program 

(NIH, USA).  Data were expressed as mean ± SEM of the fluorescence intensity of those 

cells.  

 

Measurement of MnSOD activity and NO level 

 

SOD activity of A-10 cells was detected following the instructions of the SOD 

Assay Kit from Cayman Chemical (Ann Arbor, MI, USA).  KCN at 3 mM was used to 

inhibit the activity of Cu/Zn SOD, leaving only MnSOD activity to be measured.  For NO 

detection (Wang, et al., 2006), cells were preloaded with 5 μM membrane permeable 

DAF-FM (Invitrogen Corporation, Burlington, ON, Canada) in Kreb's buffer for 2 h at 

37°C.  After removal of the excess probe and with different treatments, DAF-
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fluorescence intensity, reflecting intracellular NO level, was measured with excitation at 

495 nm and emission at 515 nm in a Fluoroskan Ascent plate reader (Thermo Labsystem, 

Helsinki, Finland). 

 

Immunocytochemistry staining 

 

A-10 cells were seeded on glass cover slips with different treatments for 18 h, and 

subjected to immuno-staining.  As described previously (Wang, et al., 2006), cells were 

fixed in 4% formalin for 1 h at room temperature.  After permeation with 0.1% Triton X-

100 for 5 min, fixed cells were incubated with 3% goat serum for 1 h, and then incubated 

with primary antibody (anti-CEL, 1:100; anti-nitrotyrosine, 1:200) at 4°C overnight.  

Cells were washed in PBS (0.01 M) for 15 min and incubated with diluted fluorescent 

secondary antibody (FITC-IgG, 1: 200) for 3 h at room temperature.  After washing with 

PBS, cells were mounted on glass slides and observed under a confocal microscope.  

Fluorescence intensity was measured using Image J program.   

 

Detection of the activities of complex I , complex III, and complex IV 

 

Mitochondrial complex I activity was determined by monitoring the reduction of 

DCPIP at 600 nm with the addition of assay buffer (10 × buffer containing 0.5 M Tris-

HCl at pH 8.1, 1% BSA, 10 µM antimycin A,  3 mM KCN, 0.5 mM coenzyme Q1) 

(Long, et al., 2006).  Mitochondrial proteins (25 µg/ml) and DCPIP (64 µM) were added 
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to the assay buffer before using.  The reaction was started by adding 200 µM NADH and 

scanned at 600 nm with the reference wavelength of 620 nm for 2 min.  Mitochondrial 

complex III activity was detected by monitoring the reduction of cytochrome C at 550 nm 

upon the addition of assay buffer (10× buffer contains 0.5 M Tris-HCl at pH 7.8, 2 mM 

NaN3, 0.8% Tween-20, 1% BSA, 2 mM decylubiquinol) with 40 μM cytochrome C 

(Long, et al., 2006).  The reaction was started by adding 20 μg/ml mitochondria proteins 

to the assay buffer and scanned at 550 nm with the reference wavelength of 540 nm for 

2 min.  Mitochondrial complex IV activity was measured by monitoring the reduction of 

reduced cytochrome C at 550 nm with the addition of assay buffer (0.5 M phosphate 

buffer at pH 8.0, 1% BSA and 2% tween) (Long, et al., 2006).  Freshly prepared reduced 

cytochrome C (80 µM) was added to the assay buffer before using.  The reaction was 

started by adding mitochondria protein (20 µg/ml) and scanned at 550 nm with the 

reference wavelength of 540 nm for 2 min.  All assays were performed at 37 ºC. 

 

Determination of ATP synthesis 

 

ATP synthesis was assayed based on a modified method of Atorino et al (Atorino, 

et al., 2003).  Briefly, cells were incubated at 37°C for 30 min in a respiratory buffer 

(0.02% digitonin, 0.25 M sucrose, 20 mM MOPS, 1 mM EDTA,  5 mM NaPO3, 0.1 % 

fatty acid-free BSA, 1 mM ATP-free ADP, 5 mM glutamate, and 5 mM malate, pH 7.4).  

Thereafter, 3% PCA was used to precipitate proteins, and samples were centrifuged at 

13,000 rpm for 2 min.  Supernatants were taken out to measure ATP after pH adjusted to 
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7.8 using 10 M KOH.  ATP was detected using ATP Bioluminescent Assay Kit from 

Sigma-Aldrich (Oakville, ON, Canada).  Data were expressed as nanomoles of ATP per 

milligram of protein.  

 

Statistical analysis 

 

Data were expressed as mean ± SEM from at least three independent experiments.  

Statistical analysis was performed by one-way analysis of variance (ANOVA).  

Differences between groups were examined by Student's unpaired t-Test.  Values are 

considered to be statistically significant when p < 0.05. 

 

RESULTS 

 

Effect of MG on mtROS generation 

 

After A-10 cells were treated with exogenous MG (30 µM) for 18 h, 

mitochondrial MG content increased by 50.7% (0.205 ± 0.012 vs. 0.136 ± 0.014 nmol/mg 

mitochondrial protein, p < 0.01, n = 4 for each group).  Alagebrium (50 µM) had no 

effect on basal content of mitochondrial MG but its presence decreased the effect of 

exogenous MG on mitochondrial MG content (0.14 ± 0.009 vs. 0.205 ± 0.01 nmol/mg 

mitochondrial protein, p < 0.01, n = 4 for each group).  NAC (600 µM) had no effect on 

mitochondrial MG content (data not shown).  
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MG increased the fluorescence intensity of CEL in a concentration-dependent 

manner.  At 30 µM, MG increased the fluorescence intensity of CEL by 321% (Fig. 4-1, 

A and B).  Co-treatment with alagebrium (50 and 100 µM) decreased the effect of 30 µM 

MG (Fig. 4-1, A and C).  NAC (600 µM) did not show any effect on the staining of CEL 

(data not shown).    

Exposure of cells to MG (5 to 100 µM) caused a significant concentration-

dependent increase in mtROS generation.  The production of mtROS increased 

dramatically with 30 µM MG and reached a plateau with 100 µM MG (Fig. 4-2, A and 

B).  Co-incubation of NAC (600 µM) significantly decreased mtROS generation induced 

by MG (Fig. 4-2, A and B).   Alagebrium (50 and 100 µM) and ONOO- specific 

scavenger uric acid (50 µM) inhibited mtROS generation induced by 30 µM MG (Fig. 4-

2, A, C and D).    

 

Effects of MG on NO and nitrotyrosine generation 

 

The effect of MG on NO generation was evaluated by DAF-FM, a specific probe 

used for quantitating a low concentration of NO.  As shown in Fig. 4-3, MG (30 µM) 

increased the production of NO by 48% (p < 0.01).  Alagebrium (50 µM), NAC (600 

µM), and mtNOS inhibitor 7-nitroindazole (50 µM) significantly reduced MG-increased 

NO generation.  
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Nitrotyrosine is formed by ONOO--mediated nitration of tyrosine residues of 

proteins.  As shown in Fig. 4A and 4C, MG (20 and 30 µM) significantly increased the 

fluorescence intensity of nitrotyrosine in A-10 cells by 176-191%.  The addition of NAC 

(600 µM) significantly inhibited the formation of nitrotyrosine induced by MG.  Co-

incubation of alagebrium (50 µM) also significantly reduced the fluorescence intensity of 

nitrotyrosine induced by MG (30 µM) (Fig. 4-4, A and D).  Nitrotyrosine and mitotracker 

were co-localized in the tested cells as indicated by the overlap of yellow and red-green 

images (Fig. 4-4B).  

 

Effect of MG on mitochondrial O2
.- generation 

 

MitoSOX, a specific probe to detect mitochondrial O2
.- level, was used in this 

assay.  MG (30 µM) increased mitochondrial O2
.- production by 69.9% (p < 0.01), 

compared with untreated cells.  Co-incubation of alagebrium (50 µM) and SOD mimic 4-

hydroxy-tempo (Tempol, 500 µM) decreased mitochondrial O2
.- production induced by 

MG treatment by 57% (p < 0.01) and 85.8% (p < 0.01), respectively (Fig. 4-5, A and B).   

 

Effect of MG on MnSOD activity 

 

MG (5-30 µM) decreased the activity of MnSOD, the first line enzyme to 

scavenge O2
.- in mitochondria.  MG at 30 µM decreased MnSOD activity by 24.5% (p < 
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0.05) (Fig. 4-6A).   Alagebrium (10-100 µM) normalized MG-decreased MnSOD activity 

(Fig. 4-6B).  NAC (600 µM) had no effect on MnSOD activity (data not shown).   

 

Effect of MG on mitochondrial functions 

 

MG (30 µM) treatment for 18 h had no obvious effect on the activity of complex I or 

complex IV, but significantly decreased complex III activity by 11.7% (p < 0.05), as 

shown in Fig. 4-7A.  Alagebrium (50 µM) inhibited the effect of MG on complex III by 

64.61% (p < 0.05).  NAC (600 µM) did not have an effect on complex III activity (data 

not shown).    

In order to confirm the effect of MG on mitochondrial ETC complexes, complex 

inhibitors were used to treat cells for 2 h in the absence or presence of MG.  

Mitochondrial O2
.- generation was thereafter determined using the specific probe 

MitoSOX.  Rotenone (0.5 µM and 1 µM), TTFA  (5 µM and 10 µM), antimycin A (3 µM 

and 5 µM) and KCN (0.5 mM and 1 mM), which are respective blockers of complex I, 

complex II, complex III and complex IV, significantly increased production of 

mitochondrial O2
.- in A-10 cells (Fig. 4-7B).  No difference was observed between effects 

of two concentrations of each blocker.  Therefore, these inhibitors appear to maximally 

inhibit the respective complexes.  Interestingly, MG (30 µM) further increased rotenone 

(1 µM), TTFA (10 µM) and KCN (1 mM)-induced mitochondrial O2
.- generation by 

48.11%, 52.6% and 40.2%, respectively, in comparison with the cells treated with the 

inhibitor alone.  However, the addition of MG (30 µM) did not change complex III 
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inhibitor (antimycin A)-induced mitochondrial O2
.- generation.  These results suggested 

that MG targeted on complex III to induce mitochondrial O2
.-  generation (Fig. 4-7B).  

MG (30 µM) significantly lowered ATP production by 44.8% (4.76 ± 0.74 vs. 8.62 ± 

0.24 nmol/mg protein, p < 0.01).  Alagebrium (50 µM) restored ATP synthesis inhibited 

by MG by 78.0% (Fig. 4-8). 

 

DISCUSSION 

 

MG causes crosslink among lysine, cysteine, and arginine residues of selective 

proteins to form AGEs, like CEL, altering the structure of proteins and their functions 

(Wang, et al., 2008).  Higher levels of MG have been found in diabetic patients than in 

healthy controls (Wang, et al., 2007).  In the present study, we observed that 

mitochondrial MG content was significantly increased after the cells were treated with 

exogenous MG.  It appears that MG can move across plasmalemma and mitochondrial 

membrane to attack different molecular targets.  Once inside the cells, MG induces 

glycation of many proteins in the cytosol, mitochondria and other vesicles.  The 

formation of CEL in mitochondria may result in the dysfunction of mitochondrial 

proteins, and furthermore, increase mtROS generation.  Alagebrium, an AGEs crosslink 

breaker (Desai and Wu, 2007), not only decreased CEL formation, but also diminished 

MG levels in mitochondria.  The result indicates that alagebrium scavenges MG and 

inhibits glycation directly, although the mechanism is unknown.  This discovery also 

echoes the observation obtained by Nobecourt et al. (Nobecourt, et al., 2008).  



103 
 

The physiological concentration of plasma MG in rats is approximately 5 μM 

(Nagaraj, et al., 2002).  Our previous study detected the plasma MG levels of 33.6 μM in 

20-week-old SHR and 14.2 μM in age-matched WKY rats (Wang, et al., 2004).  Plasma 

levels of MG increased from 3.3 μM in healthy humans to 5.9 μM in type 2 diabetic 

patients (Wang, et al., 2007).  In addition, cultured cells may produce more MG since 

MG concentration up to 310 μM was detected in cultured Chinese hamster ovary cells 

(Chaplen, et al., 1998).  Furthermore, up to10 mM MG had been used to investigate its 

effect on insulin secreting cells and insulin signaling pathways in rat L6 myoblasts 

(Sheader, et al., 2001; Riboulet-Chavey, et al., 2006).  Thus, MG (30 μM) used in the 

present study is not only the physiological relevant concentration, but also suitable to 

mimic the insulin resistance environment in rat aortic smooth muscle cells.  

Our previous work has shown that MG induced overproduction of O2
.-, NO, and 

ONOO- in rat VSMCs (Chang, et al., 2005).  The present study demonstrated that 

mitochondria are targets of MG for this pro-oxidative action.  More specifically, we 

demonstrated that MG increased mitochondrial ONOO- production in VSMCs.  Several 

lines of evidence support this conclusion.  (1) Uric acid, a specific scavenger of ONOO-, 

significantly decreased MG-induced mtROS generation.  (2) Increased staining of 

nitrotyrosine was observed in MG treated A-10 cells, and the expression of nitrotyrosine 

was mostly co-localized with mitochondrial marker staining.  (3) MnSOD is the major 

enzyme which catalyzes O2
.-  degradation in mitochondria and protects mitochondria 

against oxidative stress.  Our results show that MG reduced the activity of MnSOD in 

mitochondria of VSMCs.  (4) MG-induced mitochondrial O2
.-  production was inhibited 

by Tempol.  As a SOD mimic, Tempol is more stable and membrane-permeable than 
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MnSOD itself (Chatterjee, et al., 2000).  (5) Located on the inner mitochondrial 

membrane, mtNOS is considered as the alpha-isoform of neuronal nitric oxide synthase 

(nNOS) and is responsible for NO production in mitochondria (Kanai, et al., 2001; 

Elfering, et al., 2002).  MG-induced intracellular NO was decreased by 7-nitroindazole.  

The latter is the specific inhibitor of mtNOS (Carreras, et al., 2002) and can prevent 

mitochondrial structural damage mediated by increased mitochondria NO generation in 

the developing brain (Giusti, et al., 2008).  Together with MG-induced mitochondrial O2
.-

, the stimulation of mtNOS by MG also contributes to ONOO- formation. 

Of particular importance is our observation that MG selectively damaged complex 

III activity, not complex I or complex IV.  This effect may underlie MG-inhibited ATP 

synthesis and MG-enhanced ROS production.  Further evidence for the inhibition of 

complex III by MG was derived from the failure of MG to increase mitochondria O2
.-  

generation in the presence of antimycin A, a specific blocker of complex III.  That 

alagebrium restored MG-inhibited complex III activity suggests that the complex III is 

glycated by MG.  Complex III, which is also called cytochrome C reductase, transfers 

electrons from ubiquinone to cytochrome C.  The inhibition of complex III by MG may 

disrupt the ETC, rendering more electrons leaking out to form O2
.-.  Consequently, 

hydrogen electrochemical gradient across the inner mitochondrial membrane is 

weakened, and the driving force for ATPase to synthesize ATP provided by hydrogen 

influx across the inner mitochondrial membrane is reduced.  Cellular integrity and 

function are therefore compromised.  Although we did not directly measure the activity 

of complex II in the presence of MG, our experiments with complex II inhibitor, TTFA, 

indicate that complex II is not a major site of mitochondrial O2
.- generation in A-10 cells.  
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Furthermore, after complex II is maximally inhibited by TTFA, MG still induced 

mitochondrial O2
.- production.  This shows that the effect of MG on superoxide 

production does not depend on complex II.  Evidence shows that mitochondrial 

dysfunction, especially elevated production of mtROS resulted from complex III 

inhibition, is closely linked with the pathogenesis of insulin resistance (Kim, et al., 2008).  

Moreover, normalization of mitochondrial superoxide production blocked the diabetic 

hyperglycemia damage in bovine aortic endothelial cells (Nishikawa, et al., 2000).  

Therefore, complex III dysfunction-induced mitochondrial oxidative stress plays an 

important role in the pathophysiology of insulin resistance syndrome.  

In addition, our study demonstrated that alagebrium reversed all harmful effects 

of MG on mitochondria of cultured cells.  Compared with alagebrium, the beneficial 

effect of NAC is limited.  It reduced MG-induced ROS, NO, and nitrotyrosine 

production, but did not affect mitochondrial functions.   

In summary, our study demonstrates that MG plays a critical role in regulating 

mitochondrial functions of VSMC.  Respiratory complex III is the major and selective 

target of MG in mitochondria.  Together with reduced MnSOD activity and disruption of 

the ETC in the presence of MG largely explain the increased oxidative stress and 

decreased ATP production in many MG-related cellular disorders.  These novel 

observations provide new inside in the physiological importance and pathophysiological 

implications of the interaction of MG with mitochondria functions.  It also sheds light on 

pathogenesis of and treatment for many mitochondrial-originated cellular disorders 

encountered in insulin resistance syndrome.  
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Figure 4-1.  Effect of MG on the fluorescence intensity of CEL in A-10 cells.  (A) MG 

increased the staining of CEL in A-10 cells, which was decreased by alagebrium.  (B) 

Cells were treated with MG (5-30 µM).  (C) Cells were co-treated with alagebrium (10-

100 µM) and MG (30 µM).   After treated with different agents for 18 h, cells were 

stained using anti-CEL (1:100 at 4ºC overnight) and secondary fluorescent antibody 

(FITC-IgG, 1:200 at room temperature for 3 h) and read under Confocal microscope.  

Fluorescence intensity was analyzed using Image J program.  ** p < 0.01 vs. cells 

without any treatment; ##  p < 0.01 vs. cells treated with MG (30 µM) alone.  n = 12.  
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Figure 4-2.  Effect of MG on mitochondrial ROS generation in A-10 cells.  (A) MG 

enhanced mitochondrial ROS generation, which was decreased by N-acetyl-L-cysteine 

(NAC), alagebrium, and uric acid.  (B) Cells were treated with MG (5-100 µM) in the 

presence or absence of NAC (600 µM).  (C) Cells were co-treated with alagebrium (10-

100 µM) and MG (30 µM).  (D) Cells were co-treated with uric acid (50 µM) and MG 

(30 µM).  After 18 h treatment with different agents, cells were loaded with molecular 

probe MitoTracker Red (300 μM, 15 min) and read under Confocal microscope.  

Fluorescence intensity was analyzed using Image J program.  * p < 0.05 and ** p < 0.01 

vs. cells without any treatment; + p < 0.01 vs. MG treatment alone at the same 

concentration; ## p < 0.01 vs. cells treated with MG (30 µM) alone.  n = 10-14. 



 

 

 
 

 

 

Figure 4-3.  Effect of MG on NO production in A-10 cells.  Cells were treated with 

different agents for 18 h.  Molecular probe DAF-FM (5 μM, 2h) was used to detect 

cellular levels of NO.  ** p < 0.01 vs. control; # p < 0.05 and ## p < 0.01 vs. cells treated 

with MG (30 µM) alone.  n = 8.  NAC, N-acetyl-L-cysteine. 
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Figure 4-4.  Effect of MG on the fluorescence intensity of nitrotyrosine in A-10 cells.  

(A) MG increased nitrotyrosine staining, which was inhibited by alagebrium and N-

acetyl-L-cysteine (NAC).  (B) Cells were co-stained with anti-nitrotyrosine and 

MitoTracker Red to determine whether increased nitrotyrosine was located in 

mitochondria.  (C) Cells were treated with MG (5-30 µM) in the presence or absence of 

NAC (600 µM).  (D) Cells were co-treated with alagebrium (10-100 µM) and MG (30 

µM).  Cells were treated with different agents for 18 h.  Double cell staining of 

MitoTracker Red (300 μM, 15 min) and nitrotyrosine (anti-nitrotyrosine 1: 200 at 4ºC 

overnight; FITC-IgG 1:200 at room temperature for 3 h) were conducted.  Cells were 

read under Confocal microscope.  Fluorescence intensity was measured using Image J 

program.  ** p < 0.01 vs. cells without any treatment; + p < 0.05 and ++ p < 0.01 vs. MG 

treatment alone at the same concentration; # p < 0.05 vs. cells treated with MG (30 µM) 

alone. n = 10-14. 
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Figure 4-5.  Effect of MG on mitochondrial O2

.- generation in A-10 cells.  (A) MG 

increased MitoSOX signal in mitochondria, which was decreased by alagebrium and 4-

hydroxy-tempo (Tempol).  (B) Mitochondrial O2
.- generation in A-10 cells.  After treated 

with different agents for 18 h, cells were loaded with molecular probe MitoSOX (2 μM, 

20 min) and read under Confocal microscope.  Fluorescence intensity was measured 

using Image J program.  ** p < 0.01 vs. control; ## p < 0.01 vs. cells treated with MG 

(30 µM) alone.  n = 12.  
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Figure 4-6.  Effect of MG on MnSOD activity in A-10 cells.  (A) MG (5-30 µM) 

decreased MnSOD activity in A-10 cells.  (B) MnSOD activity in A-10 cells co-treated 

with alagebrium (10-100 µM) and MG (30 µM).  Cells were treated with different agents 

for 18 h.  SOD Assay Kit was used to detect SOD activity.  KCN at 3 mM was used to 

inhibit the activity of Cu/Zn SOD, leaving only MnSOD activity to be measured.  * p < 

0.05 vs. cells without any treatment; # p < 0.05 vs. cells treated with MG (30 µM) alone. 

n = 4. 
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Figure 4-7.  Effect of MG on mitochondrial complexes in A-10 cells.  (A) Effect of MG 

on activities of complex I, complex III and complex IV in A-10 cells.  Cells were treated 

with different agents for 18 h.  * p < 0.05 vs. control; # p < 0.05 vs. cells treated with 

MG (30 µM) alone.  n = 4. (B) Effect of MG on mitochondrial O2
.- generation in the 

presence of different inhibitors of respiratory complexes.  A-10 cells were treated with 

different agents for 2 h.  Rotenone, thenoyltrifluoroacetone (TTFA), antimycin A and 

KCN are inhibitors of complexes I, II, III and IV, respectively.  * p < 0.05 and ** p < 

0.01 vs. control; # p < 0.05 and ## p < 0.01 vs. inhibitor alone treated cells. n = 12.  



                                          

 

      
 

 

Figure 4-8. Effect of MG on ATP synthesis (30 min) in mitochondria of A-10 cells.  

Cells were treated with different agents for 18 h, and ATP levels were determined using 

ATP Bioluminescent Assay Kit.  ** p < 0.01 vs. control; # p < 0.05 vs. cells treated with 

MG (30 µM) alone. n = 4.  
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ABSTRACT 

To determine the effect of methylglyoxal (MG) on cytokine production by, and 

apoptosis of, neutrophils from type 2 diabetes mellitus (T2DM) patients.  The levels of 

plasma MG, cytokines released by isolated neutrophils and the apoptotic status of 

neutrophils were determined.  The higher level of plasma MG in T2DM patients was 

correlated positively with glycated hemoglobin levels, fasting plasma glucose levels and 

urine albumin/creatinine ratios.  The basal levels of cytokines released from neutrophils 

were markedly higher in patients.  MG treatment of the neutrophils isolated from diabetic 

patients either did not alter, or decreased, the production of cytokines.  In contrast, MG 

induced the release of cytokines from neutrophils of non-diabetics.  Moreover, the 

neutrophils from T2DM patients showed a greater proclivity for apoptosis, which was 

further increased by in vitro MG treatment.  MG stimulated neutrophils to release more 

cytokines, which might play a role in the development of infection in T2DM. 

 

Key Words: Methylglyoxal; Type 2 diabetes mellitus; Neutrophil; Cytokine 
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INTRODUCTION 
 

 

Methylglyoxal (MG) is a metabolite of glucose.  It is a highly reactive compound 

that can modify cellular proteins and nucleic acids, leading to changes in cellular 

function.  MG and MG-induced formation of advanced glycated endproducts (AGEs) 

have been implicated in the development of insulin resistance, such as diabetes and 

hypertension (Desai and Wu, 2007; Vlassara, et al., 2002).  

Neutrophils are the most abundant type of white blood cells and play a crucial 

role in innate immunity.  Once an inflammatory response is initiated, the neutrophil is the 

first cell to be recruited to the site of infection or injury, where it phagocytoses bacteria 

and damaged host tissue.  The neutrophils of diabetic patients display increased necrosis 

and enhanced production of reactive oxygen species (T2DM) (Shurtz-Swirski, et al., 

2001), increased apoptosis (Type 1 Diabetes Mellitus, T1DM) (Tennenberg, et al., 1999), 

and significantly lower neutrophil chemotactic responses (both T1DM and T2DM) 

(Delamaire, et al., 1997).  In general, patients with diabetes are at high risk of infections, 

which are more serious and prolonged.  It is notable that the circulating levels of 

proinflammatory cytokines are elevated in diabetic patients (Pickup, et al., 2000), and it 

has been suggested that the impaired functions of neutrophils contribute to the increased 

susceptibility to infections observed in these patients. 

The mechanism mediating this altered neutrophil function is not clear, although it 

has been suggested that it is related to hyperglycemia (Lawson, et al., 2002).  

Hyperglycemia, or the presence of AGEs, leads to persistent activation of neutrophils, as 
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evidenced by the increased activity of neutrophil alkaline phosphatase (Geerlings and 

Hoepelman, 1999).  Numerous investigations have documented an increase in the 

formation of MG and AGEs in diabetes, and these could be causally related to the 

development of diabetic complications such as nephropathy, retinopathy, and vascular 

disease (Wu, 2006).  However, whether MG has a direct effect on neutrophils remains 

unknown. 

The aim of the present study was to explore the effect of MG on cytokine release 

from, and apoptosis of, neutrophils from T2DM patients.  Plasma MG levels were 

measured in T2DM patients with varying glycated hemoglobin (HbA1c), fasting plasma 

glucose, and urine albumin / creatinine ratios (UACRs).  Levels of nitric oxide (NO) and 

cytokines were determined, as was the apoptotic status of neutrophils following different 

in vitro MG treatments. 

 

MATERIALS AND METHODS 

Chemicals 

MG, o-phenylenediamine, 2-methylquinoxaline, 5-methylquinoxaline, metformin, 

and reduced glutathione (GSH) were purchased from Sigma Chemical Co. (Oakville, ON, 

Canada). 
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Subjects 

All participants provided informed consent.  Twenty non-diabetic subjects and 

fifty-five T2DM patients were included in this study.   Non-diabetic subjects were normal 

healthy human.  All participants were free of infection and not under any anti-infective or 

anti-inflammatory medication.  The study protocol was approved by the Research Ethics 

Boards of the University of Saskatchewan and the Saskatoon Health Region. 

Quantification of fasting plasma glucose, blood HbA1c, urine albumin, and 

creatinine 

The measurements of levels of fasting plasma glucose, blood HbA1c, urinary 

albumin, and creatinine were performed by the Chemistry Laboratory at the Royal 

University Hospital, University of Saskatchewan.  Fasting plasma glucose was measured 

using glucose oxidase method on a Beckman Synchron LX20 (Beckman, Palo Alto, CA, 

USA). Blood HbA1c was quantitated by ion-exchange high performance liquid 

chromatography (HPLC) (Bio-Rad Variant II).  Urinary albumin (mg/l) and creatinine 

(mmol/l) were determined by nephelometry (Beckman Array™ Protein System) and the 

Jaffe rate reaction method (Beckman, Palo Alto, CA, USA), respectively.  The unit 

mg/mmol was used to express UACRs. 

Measurement of MG 

MG was measured using an o-phenylenediamine method as described previously 

(Wang, et al., 2006).  The quinoxaline derivative of MG (2-methylquinoxaline) and a 

quinoxaline internal standard (5-methylquinoxaline) were measured with a Hitachi HPLC 
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system (Hitachi Ltd., Mississauga, ON, Canada) using a Nova-Pak® C18 column 

(3.9 × 150 mm and 4 μm particle diameter, MA, USA). 

Quantitation of NO 

NO was determined as the total concentration of nitrate and nitrite in the plasma 

using a nitrate/nitrite fluorometric assay kit (Cayman Chemical, Ann Arbor, MI, USA).  

The fluorescence was detected at excitation and emission wavelengths of 375 nm and 

415 nm, respectively, using a Fluoroskan Ascent plate reader (Thermo Labsystem, 

Amsterdam, Netherlands). 

Neutrophil isolation 

Neutrophils were isolated from whole blood using a modification of the method 

of Gordon et al.(Gordon, et al., 2005).  In brief, equal volumes of whole blood and 6% 

dextran (Abbort Laboratories, QC, Canada) were mixed, then the red blood cells (RBCs) 

were allowed to sediment for at least 1 h.  The leukocyte-rich supernatant was removed 

and underlaid with 3 ml of density gradient medium (Lymphoprep, Axis-Shield, Oslo, 

Norway) then centrifuged at 1300 rpm for 30 min.  The cell pellet was suspended in 0.2% 

NaCl for 20 s to quickly lyse the RBCs, then 1.6% NaCl was added to correct the 

osmolarity of the medium.  The cells were sedimented (1300 rpm, 10 min) and the 

neutrophilic pellet was resuspended in PBS. The neutrophils were washed once and 

counted. 
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Determination of cytokines 

Neutrophils (2 × 106/ml) were incubated at 37 °C for 12 h in the presence or 

absence of MG or other reagents in PBS.  After the incubation, the supernatant was 

collected and the levels of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and 

interleukin-6 (IL-6) were determined using a capture ELISA as described 

previously(Gordon, et al., 2000). Human cytokine-specific ELISA capture detection 

antibody pairs (R&D, Minneapolis, MN, USA) and 96-well immulon-4 ELISA plates 

(Dynatech laboratories Inc., Chantilly, VA, USA) were used as recommended by the 

suppliers.  The final steps comprised of incubation with a 1:1000 dilution of streptavidin-

conjugated horseradish peroxidase (Gibco, Burlington, Ontario, Canada) followed by the 

reactions with ABTS–peroxidase substrate (Kirkegaard and Perry Laboratories, 

Gaithersburg, MD, USA).  The absorbance was read at 405 nm.  Each sample and the 

standards were run in duplicate. 

Determination of apoptosis 

Apoptosis of neutrophils was detected using an active Caspase 3 antibody 

apoptosis kit (BD, Pharmingen, NJ, USA).  Neutrophils (2 × 106/ml) were analyzed by 

flow cytometry (Beckman Coulter Epics XL, Mississauga, ON, Canada). 

Statistical analysis 

The cytokines and apoptosis data were analyzed using a one-way ANOVA. 

Differences between groups were examined by the Student's unpaired t-test.  The 

remainder of the data were analyzed using nonparametric methods (Spearman rank 
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correlation coefficient and Mann–Whitney U test) as the data were not normally 

distributed.  Analyses were performed using SPSS version 15 (SPSS, Chicago, IL, USA). 

Data were expressed as mean ± SE.  Values were considered to be statistically significant 

when p ≤ 0.05. 

 

RESULTS  

Characteristics of study subjects 

The mean duration of diagnosed diabetes in our T2DM patients was 

10.1 ± 1.0 years.  The mean blood levels of HbA1c (7.21 ± 0.19%) and fasting plasma 

glucose (9.68 ± 0.67 mM) in T2DM patients (n = 55) were significantly higher than those 

in non-diabetic subjects (5.02 ± 0.11% and 4.78 ± 0.25 mM, respectively; p < 0.01; 

n = 20).  Elevated levels of NO were observed in the plasma of the T2DM patients 

compared with the non-diabetic subjects (36.7 ± 3.7 vs. 28.2 ± 0.4 μM, respectively; 

p < 0.01) (Table 5-1A). 

Elevated plasma MG levels in type 2 diabetes 

The plasma levels of MG in the T2DM patients were 77% higher than those in the 

non-diabetic subjects (5.9 ± 0.7 vs. 3.3 ± 0.4 μM, respectively; p < 0.01) (Fig. 5-1A). 

Furthermore, the levels of plasma MG were increased significantly in T2DM patients 

with more significant hyperglycemia (HbA1c > 7%) compared to the patients with 

HbA1c < 7% (Table 5-1B).  The plasma levels of MG correlated positively with the 
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blood levels of HbA1c (n = 55, Fig. 5-1B) and the fasting plasma glucose levels in the 

T2DM patients (n = 22, Fig. 5-1C).  A correlation was also observed between plasma 

levels of MG and the UACRs (n = 22, Fig. 5-1D) in the T2DM patients with 

nephropathy.  There was no correlation between plasma levels of MG and total 

cholesterol, triglyceride, glomerular filtration rate or serum creatinine in the T2DM 

patients examined (data not shown). 

Production of cytokines 

Ten non-diabetic normal healthy subjects (M/F: 5/5; age: 61.1 ± 3.43 years; age 

range: 46–73) and 10 T2DM patients (M/F: 5/5; age: 58.3 ± 2.99 years; age range: 46–

70) free of metformin or any anti-infective or anti-inflammatory treatment were selected 

to donate the blood for neutrophil isolation.  The basal level of TNF-α release from 

neutrophils was markedly higher in T2DM patients in comparison with non-diabetic 

subjects (68.6 ± 2.6 vs. 57.8 ± 3.6 pg/ml, respectively; p < 0.05, n = 10) (Fig. 5-2A), as 

was release of IL-8 (92.9 ± 2.4 vs. 85.9 ± 2.7 pg/ml, respectively; p < 0.05, n = 10) and 

IL-6 (129.3 ± 6.0 vs. 103.5 ± 3.1 pg/ml, respectively; p < 0.01, n = 10).  The in vitro 

release of TNF-α, IL-8, and IL-6 by neutrophils of non-diabetic subjects was significantly 

upregulated, in a dose-dependent fashion, by incubation with MG (p < 0.05, n = 10), 

although MG reduced the release of these mediators by cells from diabetic subjects (Fig. 

5-2).  Maximal release of TNF-α and IL-8 by MG-stimulated non-diabetic neutrophils 

(20 μM MG) achieved the equivalent of basal levels of cytokine released by cells from 

the T2DM patients (Figs. 5-2A and B). 



The impact on neutrophil cytokine release of stimulating the cell with GSH 

(400 U/ml) and/or metformin (100 μM) was assessed, either alone or together with MG 

(5 or 20 μM).  GSH (400 U/ml) or metformin (100 μM) alone had no effect on cytokine 

generation by cells from non-diabetic subjects, but decreased basal production of IL-8 

and IL-6 by neutrophils from T2DM patients (Fig. 5-3).  Addition of GSH (400 U/ml) or 

metformin (100 μM) did not alter the deleterious effect of MG on the production of TNF-

α, IL-8, and IL-6 by neutrophils from T2DM patients.  However, GSH (400 U/ml) or 

metformin (100 μM) significantly inhibited the impact of 20 μM MG on TNF-α, IL-8, 

and IL-6 expression by neutrophils from non-diabetic subjects (Fig. 5-3). 

Apoptosis detection 

Flow cytometry showed that neutrophils from T2DM patients were more 

susceptible to apoptosis than cells from non-diabetic subjects.  At 12 h after purification, 

the levels of Caspase 3 cleavage were significantly greater among neutrophils isolated 

from T2DM patients than from non-diabetic subjects (6.7 ± 0.5% vs. 3.5 ± 0.3%, 

respectively; p < 0.01, n = 7, Fig. 5-4).  In vitro MG treatments similarly increased 

apoptosis among neutrophils from both T2DM patients and non-diabetic subjects (Fig. 5-

4B). 

 

DISCUSSION 
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Patients with diabetes often experience more serious and prolonged infections 

(Delamaire, et al., 1997). It has been suggested that a neutrophil dysfunction in these 
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patients favors such infections, as well as the onset of diabetic angiopathy (Delamaire, et 

al., 1997), and the development and progression of diabetic nephropathy (Galkina and 

Ley, 2006). 

Among other ways, neutrophils contribute significantly to the initiation and 

amplification of immune responses through their release of immunoregulatory cytokines 

(Lloyd and Oppenheim, 1992).  TNF-α and IL-6 belong to a group of cytokines that are 

involved in the upregulation of inflammatory reactions.  IL-8 functions to 

chemotactically attract and stimulate neutrophils, while TNF-α is well known to induce 

cell apoptosis (Cowburn, et al., 2005).  Increased release of cytokines by neutrophils 

would provide evidence that these cells are activated in diabetic patients, and we did 

observe an increased basal release of TNF-α, IL-8, and IL-6 by cells from T2DM 

patients.  This increased production of cytokines was not further enhanced by treatment 

with 5 and 10 μM MG (Fig. 5-2), although the generation of cytokines by neutrophils 

from non-diabetic subjects was significantly enhanced by MG treatments (5–20 μM).  

The generation of TNF-α and IL-8 by optimally MG-stimulated normal neutrophils 

achieved the basal levels of cytokine release by neutrophils of T2DM patients (Fig. 5-2).  

Conversely, MG (20–30 μM) inhibited the production of cytokines by neutrophils from 

T2DM patients.  More important than the absolute values at each individual assay point 

shown in Fig. 5-2 are the trends of these responses and clearly the response trends of the 

neutrophils to MG are totally opposite between non-diabetic and diabetic subjects.  The 

mean duration of diabetes of those patients is about 10 years and their mean level of 

plasma MG is about 6 μM (Table 5-1A).  The persistent and chronic elevation of MG in 

chronic diabetic patients changes the reaction of neutrophils to MG from hyperactivity at 
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the beginning to tolerance eventually.  With the progress of diabetes, especially in the 

chronic diabetic patients, neutrophils are tolerant or burn out with the impaired functions 

(Delamaire, et al., 1997).  It is reasonable to postulate that the persistent in vivo MG 

stimulation of the circulating neutrophils of T2DM patients induces their expression of 

these cytokines as we observed, but that further in vitro MG stimulation was actually 

supermaximal and thereby lead to impairment within these cells of the inflammatory 

cytokine response.  On the other hand, in vitro addition of MG to neutrophils from 

normal subjects, which would not have been constitutively exposed to MG in vivo, could 

thereby augment this cytokine response. 

We have shown that the mean plasma MG levels were 6.07 μM in T2DM patients 

(HbA1c > 7%), a 26.7% increase over those in T2DM patients with HbA1c < 7% 

(4.79 μM).  Results from the United Kingdom Prospective Diabetes Study show that 

when HbA1c levels increase by 1%, there is a 30% increase in the risk of new 

microvascular complications or the progression of existing complications in T2DM 

patients (UKPDS, 1998).  Thus, our data suggest that the elevated levels of plasma MG 

might be associated with the development of T2DM complications.  The plasma levels of 

MG were higher than 10 μM in some patients with high blood HbA1c levels, high fasting 

plasma glucose levels or high UACRs (Fig. 5-1).  With chronic exposure to such elevated 

levels of MG, the circulating neutrophils of type 2 diabetes patients could be stimulated 

to generate increased levels of proinflammatory cytokines and thereby potentially 

facilitate pathogenic inflammatory processes. 
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Perhaps not unexpectedly, metformin and GSH, considered as scavengers of MG 

(Wang, et al., 2006; Beisswenger, et al., 1999), significantly inhibited the release of 

cytokines by neutrophils following MG treatment (5–20 μM) in non-diabetic subjects.  

Interestingly, when the neutrophils from T2DM patients, which might be thought of as 

chronically stimulated with MG in vivo, were treated with metformin or GSH alone, IL-8 

and IL-6 levels were lowered (Fig. 5-3).  However, metformin and GSH did not have any 

discernible effect on neutrophils from T2DM patients that were treated with additional 

MG in vitro.  It is possible that the persistent MG stimulation of neutrophils in T2DM 

patients, potentially lead to saturated release of cytokines.  In this scheme, MG-induced 

neutrophil dysfunction may become irreversible and the newly added metformin and 

GSH failed to prevent the cellular damage made by the pre-existing MG. 

We observed that neutrophils from T2DM patients showed a higher percentage of 

apoptosis.  This could be related to the chronically elevated MG levels in these patients, 

which we have shown induce constitutive TNF release by their neutrophils, and 

conceptually this could augment neutrophil apoptotic responses (Cowburn, et al., 2005).  

Indeed, TNF-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor expression 

have been reported in human neutrophils (Kamohara, et al., 2004), although the low 

levels of neutrophil apoptosis observed in diabetics may well not be a causative factor in 

diabetic inflammation. 

The association between diabetes and inflammation could be related in part to the 

effects of MG on neutrophil proinflammatory cytokine production, as could the 

susceptibility of diabetic patients to infections.  Neutrophil-driven endothelial injury 
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involves both activation of these leukocytes and their adhesion to the endothelium and 

both of these are accompanied by upregulation of the integrins CD11a and CD11b on the 

neutrophils (van Oostrom, et al., 2004).  It is well recognized that diabetic nephropathy is 

integrally related to pathologic changes in the microvasculature of the glomeruli, which 

are of course critical in the filtration of blood.  It is also known that CD11b expression on 

the neutrophils of diabetic patients precedes early diabetic nephropathy 

(microangiopathy) and the development of vascular complications, suggesting that the 

neutrophils are poised in a proinflammatory mode in these individuals (Mastej and 

Adamiec, 2006).  It is possible that MG-induced TNF-α and other inflammatory cytokine 

production induces the production of an array of chemokines (e.g., monocyte 

chemoattractant protein-1 (Segerer, et al., 2000)), which chemoattract inflammatory cells, 

including neutrophils, monocytes, and other leukocytes, into renal tissues and thereby 

further foster renal inflammatory processes.  Thus, MG-induced cytokine generation and 

release might contribute to inflammatory processes and diabetic complications. 

MG induced generation of TNF-α, IL-8, and IL-6 might be realized through 

activation of the nuclear factor kappa B (NF-κB) signalling pathway. NF-κB generation 

is associated with increased expression of numerous inflammatory cytokine genes, 

including TNF-α, IL-8, and IL-6 (Barnes and Karin, 1997), as well as augmented 

secretion of IL-8, at least, from macrophages (Bhattacharyya, et al., 2002).  It has been 

reported that MG activates NF-κB p65 induction and increases intercellular adhesion 

molecule-1 expression in vascular smooth muscle cells from normal and spontaneously 

hypertensive rats (Wu, 2005; Wu and Juurlink, 2002) and that MG upregulates 

expression of other inflammatory markers, including nervous growth factor and of IL-1β 
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in hippocampal neuronal cells (Di Loreto, et al., 2004).  The molecular mechanisms by 

which MG induces the generation of proinflammatory cytokines by neutrophils remains 

an interesting area, although one that has yet to be thoroughly explored. 

In summary, MG formation was increased in T2DM patients, especially those 

with blood HbA1c levels greater than 7%.  This increased MG level was closely linked to 

the severity of hyperglycemia and the UACRs.  MG-stimulated neutrophils upregulated 

their release of TNF-α, IL-6, and IL-8, which could lead to a proinflammatory state and 

play a role in the development of complications seen in T2DM.  The mechanisms for 

MG-induced increase in production of proinflammatory cytokines in neutrophils are 

complex.  The role of MG in the development of infection in type 2 diabetic patients, 

therefore, should be further investigated. 
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Table 5-1A.  Basic characteristics of non-diabetes and patients with T2DM  

 

Subject Non-diabetes T2DM 
n 20 55 
Gender (M/F) 15/5 32/23 
Age (years) 61.9 ± 3.2 61.4 ± 1.6 
Range (29–82) (34–80) 
Duration (years)  10.1 ± 1.0 
Range  (0.5-38) 
HbA1c (%) 5.02 ± 0.11 7.21 ± 0.19* 
Fasting plasma glucose (mM) 4.78 ± 0.25 9.68 ± 0.67* 
NOx (μM) 28.2 ± 0.4 36.7 ± 3.7* 
 

* p < 0.01 vs. non-diabetic subjects.  

 

 

Table 5-1B.  Plasma levels of MG in non-diabetes and T2DM with different blood 

levels of HbA1c 

 

Subjects n MG (μM) 

Non-diabetes 20 3.34 ± 0.38 

T2DM with HbA1c < 7% 17 4.79 ± 0.36# 

T2DM with HbA1c > 7% 38 6.07 ± 0.44*,## 

# p < 0.05 and ## p < 0.01 vs. non-diabetic subjects.  p < 0.05 vs. T2DM patients with 

HbA1c < 7%. 
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Figure 5-1. Elevated plasma MG levels in type 2 diabetes.  (A) Plasma levels of MG in 

non-diabetic subjects (n = 20) and T2DM patients (n = 55).  ## p < 0.01 vs. non-diabetic 

subjects.  (B) Correlation of plasma levels of MG and blood HbA1c in T2DM patients. 

n = 55.  (C) Correlation of plasma levels of MG and fasting plasma glucose in T2DM 

patients. n = 22.  (D) Correlation of plasma levels of MG and UACRs in T2DM patients. 

n = 22.  22 patients sampled for the results shown in panels c and d were not identical. 

Each value shown in panels b–d represents the result from one patient. 
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Figure 5-2.  The effect of MG on the release of TNF-α, IL-8, and IL-6 from neutrophils 

in non-diabetic subjects and T2DM patients.  The levels of cytokine released from 

neutrophils were determined after exposure to MG (0–30 μM) treatment for 12 h. n = 5–

10 for each group in A, B, and C.  * p < 0.05 vs. neutrophils without any treatment from 

non-diabetic subjects or T2DM patients; # p < 0.05 and ## p < 0.01 vs. neutrophils from 

non-diabetic subjects with the same treatment. 
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Figure 5-3. Levels of TNF-α, IL-8, and IL-6 in neutrophils from non-diabetic subjects 

and T2DM patients with MG (5 or 20 μM) treatment for 12 h in the absence or presence 

of GSH (400 U/mL) or metformin (100 μM).  n = 5–10 for each group in A, B, and C. * 

p < 0.05 and ** p < 0.01 vs. neutrophils without any treatment in non-diabetic subjects 

and T2DM patients groups; # p < 0.05 vs. neutrophils treated by MG (20 μM). 
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Figure 5-4.  MG-induced changes in Caspase 3 cleavage levels in neutrophils. (A) 

Histograms of Caspase 3 cleavage levels of neutrophils after MG (0–20 μM) treatment in 

vitro for 12 h. (B) The changes in Caspase 3 cleavage levels of neutrophils after MG (0–

20 μM) treatment in vitro for 12 h. Caspase 3 cleavage was detected with the active 

Caspase 3 antibody and determined by flow cytometry.  n = 7 in each group.  * p < 0.05 

and ** p < 0.01 vs. neutrophils without any treatment from non-diabetic subjects and 

T2DM patients; ## p < 0.01 vs. neutrophils from non-diabetic subjects with the same 

treatment. 
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General discussion 

 Since the discussion related to specific results have been given in chapter 3-5, the 

general discussion of the results, therefore, is present in this chapter.    

  

The role of MG in pathophysiology of T2DM and development of diabetic 

complications is widely investigated.  MG-induced oxidative stress is postulated to 

contribute to the pathogenesis of insulin resistance.  However, the effect of endogenous 

MG on ONOO- generation, mechanism of MG-induced oxidative damage, and the role of 

MG in neutrophil dysfunction and inflammatory status in patients with T2DM have not 

been thoroughly studied.   

Our present studies showed that MG levels were significantly increased when 

VSMCs were incubated with fructose.  Generation of MG by fructose occurred in a 

concentration- and time- dependent manner.  Fructose, via the formation of MG, 

significantly induced the production of O2
.−, NO, and ONOO−.  Fructose- or MG-induced 

ONOO− generation was significantly inhibited by MG scavenger GSH, and by O2
.− or 

NO inhibitors, such as diphenylene iodonium, SOD or L-NAME.  Moreover, an 

enhanced iNOS expression was also observed in the cells treated directly with MG.  Our 

data demonstrate that enhanced MG formation causes overproduction of ONOO−, which 

eventually impairs vascular function and contributes to diabetic complications.   

The mechanisms of MG-induced ONOO− generation in VSMCs were further 

explored.  Since mitochondria are major sources of O2
.− formation, effect of MG on 
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mitochondrial enzymes and functions was tested.  We found that MG (30 μM) 

significantly enhanced mitochondrial O2
.−, NO, and ONOO− production.  MG also 

significantly inhibited respiratory complex III activity and decreased MnSOD activity.  

Our data demonstrate that by inhibiting complex III activity, MG induces mitochondrial 

oxidative stress and reduces mitochondrial ATP generation, which indicates the 

dysfunction of ETC and mitochondria.  The findings further confirm that MG-induced 

mitochondrial dysfunction and oxidative stress play a critical role in the pathogenesis of 

T2DM and associated complications.      

We also tested the role of MG in patients with chronic T2DM.  The higher levels 

of plasma MG in T2DM was correlated positively with HbA1c, fasting plasma glucose 

and urine albumin / creatinine ratios.  In addition, we found that MG induced the release 

of cytokines from neutrophils of non-diabetics.  In contrast, MG treatment of the 

neutrophils isolated from type 2 diabetic patients either did not alter, or decreased the 

production of cytokines.  Moreover, the neutrophils from patients with T2DM showed a 

greater proclivity for apoptosis, which was further increased by in vitro MG treatment.  

These data suggest that MG not only directly causes oxidative damages in diabetic 

patients, but also initiates or promotes the inflammatory process in T2DM.   

 Our present studies show that MG increased ONOO− production, reduced 

antioxidant ability and enhanced the levels of circulating proinfammatory cytokines. The 

effects of MG contribute to the development of T2DM.   
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1. Fructose, endogenous MG and T2DM 

The main source of MG in mammals is anaerobic glycolysis, i. e. non-enzymatic 

and enzymatic elimination of phosphate from G-3-P and DHAP (Koop and Casazza, 

1985; Lyles and Chalmers, 1992).  Glucose and fructose are major precursors of DHAP 

and G-3-P.  However, most in vitro studies focused on the relationship of glucose with 

MG.  For example, Padayatti et al. reported that retinal endothelial cells incubated with 

30 mM D-glucose produced significantly higher levels of intracellular MG than control 

cells or cells incubated with 30 mM L-glucose (Padayatti, et al., 2001).  L-glucose is 

unable to induce intracelluar MG generation because it is not permeable to endothelial 

cells.  Our study, for the first time, demonstrated that fructose (15-30 mM) significantly 

induced endogenous MG formation in VSMCs.  Fructose is metabolized by hexokinase 

or ketohexokinase to G-3-P and DHAP, which directly form MG.  The consumption of 

fructose and sucrose (1 fructose and 1 glucose) in beverages and processed food is 

increased dramatically.  Serum fructose in diabetic patients significantly increased to 12 

μM compared with a level of 8.1 μM in healthy subjects (Kawasaki, et al., 2002).  Diet 

with high fructose can induce insulin resistance.  Increased blood pressure, 

hyperinsulinemia and hypertriglyceridemia have been observed in normal SD rats fed 

with high fructose (66%) diet for 2 weeks (Hwang, et al., 1987).  Nagai and coworkers 

successfully established a rat model which is on the diet of fructose to mimic the 

metabolic condition of T2DM (Nagai, et al., 2009).  Furthermore, 15% fructose diet for 5 

weeks resulted in a significantly higher insulin and glucose response in human subjects 

(Hallfrisch, et al., 1983).  The mechanism of fructose-induced insulin resistance is still 

unclear.   
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The current study showed that fructose, via the production of MG, induced 

ONOO− formation in VSMCs.  This effect of fructose was inhibited by MG scavenger 

GSH.  ONOO− is formed via the reaction of NO and O2
.−.  ONOO− crosses cell 

membranes freely and causes protein, lipid and DNA damage.  It also has been reported 

that ONOO− impaired the sarcoplasmic reticulum Ca2+ pump in pig coronary artery 

SMCs and triggered apoptosis in cultured rat aortic SMCs (Sechi, et al., 1996).  The 

observation of fructose-induced ONOO− generation via MG formation in VSMCs 

strongly suggests that overproduction of endogenous MG contributes to the oxidative 

stress occurred in diabetic patients. Moreover, the consumption of high fructose diet 

should be limited in order to prevent the development or slow down the progression of 

T2DM and its complications.    

 

2. MG, mitochondria ONOO− and T2DM 

  

As mentioned earlier, endogenous MG induced cellular ONOO− generation in 

VSMCs.  Interestingly, we further found that MG significantly induced mitochondrial 

O2
.−, NO, and ONOO− production in VSMCs.  Increased mitochondrial NO production 

reacts with O2
.− to form ONOO−.  Mitochondrial ONOO− formation was reported to be 

related to the pathophysiology of T2DM and its complications (Kim, et al., 2008).  

ONOO− can directly break DNA stands and activate nuclear enzyme poly (ADP-ribose) 

polymerase (PARP).  PARP induces the activation of multiple pathways including 

activation of NF-κB, PKC, AGEs generation, which are believed to be the main 
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molecular mechanisms of diabetic complications (Szabo, 2009).  mtROS also induced the 

activation of PKC, formation of AGEs and accumulation of sorbitol in endothelial cells  

(Nishikawa and Araki, 2007).  In addition, mtROS caused glomerular hyperfiltration and 

diabetic nephropathy through activation of COX-2 gene transcription and PGE2 

overproduction (Kiritoshi, et al., 2003).  mtROS suppressed the first phase of glucose-

induced insulin secretion in pancreatic β cells (Sakai, et al., 2003).  Furthermore, 

normalization of mitochondrial O2
.− production blocked hyperglycemia-induced damage 

(Nishikawa, et al., 2000).   

The activity of mitochondrial complex III was decreased after MG treatment.   As 

shown in figure 1-5, complex III transfers electrons from ubiquinone to cytochrome C 

and pumps protons from the inside to the outside of the mitochondrial inner membrane to 

make the electrochemical gradient.  This gradient drives ATPase to catalyze ATP 

production.  Complex III is responsible for the generation of O2
.−.  Inhibition of complex 

III blocks the electron transportation and increases the leaking out of electrons to form 

O2
.− in the mitochondria.  Consequently, the hydrogen electrochemical gradient across 

the inner mitochondrial membrane is weakened, and ATP synthesis is reduced.  Cellular 

integrity and function are therefore compromised.  Hyperglycemia is closely linked with 

the impaired complex III activity.  Hu et al. reported that high glucose impaired 

mitochondrial proteins, including complex III in cardiac myocytes (Hu, et al., 2009).  

Significantly decreased complex III activity was also observed in the kidney of early 

diabetes (Munusamy, et al., 2009).  In addition, complex-III was inhibited in mouse 

retina during the chronic development of diabetes (Kanwar, et al., 2007).  Therefore, 

complex III dysfunction plays an important role in the pathophysiology of insulin 
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resistance syndrome.  Our study, for the first time, shows that MG inhibits mitochondrial 

complex III activity in VSMCs, which explains the increased mitochondrial ROS 

production and reduced ATP generation in diabetes and its complications.   

In addition, we found that MG decreased MnSOD activity in VSMCs.  MnSOD is 

the key enzyme eliminating O2
.− in mitochondria.  Normal activity of MnSOD ensures 

normal mitochondrial function.  Increased mitochondrial damage during aging has been 

observed in partial MnSOD deficiency (MnSOD+/-) mice (Wallace, 2002).  Mutational 

inactivation of genes encoding MnSOD caused neonatal lethal dilated cardiomyopathy, 

which was ameliorated by treatment with MnSOD mimics (Wallace, 2002).  Genotypic 

studies showed that deficiency of MnSOD Ala16Val polymorphism was associated with 

the development of T2DM and increased the risk of diabetic nephropathy in Japanese-

Americans and in Chinese (Nakanishi, et al., 2008; Liu, et al., 2009).  On the other hand, 

overexpression of MnSOD in endothelium inhibited expression of retinal vascular 

endothelial growth factor in diabetic mice and prevented hyperglycemia-induced 

increases in mitochondrial O2
.− levels and membrane permeability and the decrease in 

complex III activity (Goto, et al., 2008).  Those results strongly implicated the role for 

MnSOD in the pathogenesis of retinopathy in diabetes (Kanwar, et al., 2007).  

Furthermore, elevation of MnSOD improved respiration and normalized mass in diabetic 

mitochondria.  MnSOD also protected the morphology of diabetic hearts and completely 

normalized contractility in diabetic cardiomyocytes (Shen, et al., 2006).  MG-induced 

decrease of MnSOD activity in our study contributes to the enhanced mitochondrial ROS 

production.   
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MG-inhibited complex III activity and antioxidant defense enzyme MnSOD 

provide the new view of physiological importance and pathophysiological implications of 

the interaction of MG with mitochondria functions.  It also sheds light on pathogenesis 

of, and treatment for many mitochondrial-originated cellular disorders encountered in 

insulin resistance syndrome.  

 

3. MG, inflammation and T2DM 

 

 Immunologic abnormalities, such as inflammation, are associated with T2DM and 

diabetic complications.  It is notable that the circulating levels of proinflammatory 

cytokines, such as IL-6 and TNF-α, are significantly elevated in patients with T2DM 

(Pickup, et al., 2000).  Neutrophils are the first line of cell defense against various 

infections.  They contribute significantly to the initiation and amplification of immune 

response through their release of proinflammatory cytokines (Lloyd and Oppenheim, 

1992).  Neutrophils in patients with T2DM display increased necrosis, enhanced 

production of ROS (Shurtz-Swirski, et al., 2001) and significantly lower chemotactic 

responses (Delamaire, et al., 1997).  In the current study, MG significantly induced the 

release of TNF-α, IL-8 and IL-6 by neutrophils from healthy control.  MG might induce 

cytokine generation via the activation of NF-κB.  Previous study in our lab showed that 

MG activated NF-κB p65 induction and increased intercellular adhesion molecule-1 

expression in VSMCs from normal rats and SHR (Wu, 2005; Wu and Juurlink, 2002).  

NF-κB generation is associated with the increased expression of numerous inflammatory 
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cytokine genes, including TNF-α, IL-8 and IL-6 (Barnes and Karin, 1997).  On the other 

hand, our study showed that MG increased plasma NO levels and reduced red blood cell 

GSH in patients with T2DM, indicating the existence of MG-induced oxidative stress in 

diabetic patients.  As mentioned earlier, ROS degrade the inhibitory IκBα unit, and 

provoke the rapid translocation of active NF-κB into nucleus, leading to the formation of 

proflammatory cytokines (Ho and Bray, 1999).  In the current study, an increased basal 

level of cytokines released by neutrophils from patients with T2DM was observed.  High 

levels of plasma MG in diabetic patients might stimulate neutrophils to produce more 

cytokines.  On the contrary, MG treatment inhibited the production of cytokines by 

neutrophils from T2DM patients.  As the average duration of patients in the present study 

is about 10 years, the persistent and prolonged elevation of MG in diabetic patients 

hyperactivates neutrophils.  It is reasonable to postulate that further in vitro MG 

stimulation was actually supermaximal, converting neurophils from proinflammatory 

state to dysfunctional state, and thereby lead to reduced inflammatory cytokine response.   

 MG stimulates neutrophils and upregulates their release of TNF-α, IL-8 and IL-6.  

TNF-α and IL-6 are cytokines upregulating inflammatory reactions.  IL-8 chemotactically 

attracts and stimulates neutrophils, while TNF-α is well known to induce cell apoptosis 

(Cowburn, et al., 2005).  Activated NF-κB has been observed in patients with T2DM 

(Aljada, et al., 2001).  Thus, MG-induced oxidative stress in patients with T2DM may 

implicate in MG-mediated NF-κB-cytokine pathway.  The proinflammatory effect of MG 

initiates an inflammatory state in T2DM and plays an important role in the development 

of diabetic complications.  Mechanisms of MG-induced production of proinflammatory 

cytokines in neutrophils need to be further explored.  
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4.  Scavengers of MG andT2DM 

 

Scavengers of MG show positive effects to attenuate or postpone diabetic 

complication.  Aminoguanidine, metformin and alagebrium all decreased MG-mediated 

glycation of ApoA-I in discoidal rHDL and preserved normal HDL function in diabetes 

(Nobécourt, et al., 2008).  Several MG scavengers, GSH, metformin and alagebrium have 

been used in the current studies.  First, fructose- or MG-induced cellular ONOO− 

generation was significantly inhibited by GSH.  Second, alagebrium significantly 

reversed all effects of MG on mitochondrial ROS generation, CEL expression, MnSOD 

activity and complex III activity.  Third, metformin and GSH successfully inhibited the 

release of cytokines by neutrophils following MG treatment.   

GSH is the cofactor of MG degradation in the glyoxalase enzyme pathway.  High 

availability of GSH results in the rapid detoxification of MG and prevents MG 

accumulation in cells.  Metformin was observed to significantly reduce circulating MG 

levels in patients with T2DM (Beisswenger, et al., 1999).  Metformin also directly traped 

MG and reduced its levels in vitro (Ruggiero-Lopez, et al., 1999).   

Aminoguanidine (1 g/L in drinking water) prevented the development of 

albuminuria, mesangial expansion and glomerular basement membrane thickening in 

kidneys of diabetic rats (Yamauchi 1997).  A five-year study of diabetic dogs showed 

that aminoguanidine therapy (20–25 mg/kg) prevented the development of retinopathy in 

these animals.  There were decreased retinal microaneurysms, acellular capillaries, and 

pericyte loss in aminoguanidine treated animals compared with those in diabetic controls 
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(Kern and Engerman, 2001).  Aminoguanidine (25 and 50 mg/kg/day i.p.) prevented 

decreased nerve blood flow and improved nerve conduction velocity in streptozotocin-

induced diabetic rats.  Effect of aminoguanidine on nerve conduction was in a dose-

dependent fashion (Kihara, et al., 1991). 

Alagebrium has been studied in various diabetic animal models and has been 

shown to attenuate diabetic nephropathy, cardiac dysfunction and atherosclerosis 

(Coughlan, et al., 2007).  In streptozotocin diabetic apo E knockout mouse, which is a 

diabetic nephropathy model with not only albuminuria and glomerular injury but also 

significant tubulointerstitial injury with prominent fibrosis and macrophage infiltration, 

alagebrium reduced albuminuria and renal structural injury (Lassila, et al., 2004).  

Alagebrium treatment also attenuated damage of ROS to diabetic kidneys.  Application 

of alagebrium reduced mitochondrial superoxide generation and enhanced MnSOD 

activity in diabetic kidneys (Coughlan, et al., 2007).  The effect of alagebrium on cardiac 

function has been demonstrated in different models.  Alagebrium treatment increased 

ventricular collagen solubility in diabetic aged dogs, reduced left ventricular collagen 

content and improved diastolic function in aged SHR (Susic, et al., 2004), and finally, 

improved large artery stiffness and reduced arterial pulse pressure in clinical trials (Liu, 

et al., 2003).  Furthermore, alagebrium reduced atherosclerotic plaque formation in 

streptozotocin diabetic apo E knockout mice (Lassila, et al., 2004). 

Taken all together, our results further confirmed the pro-oxidant and pro-

inflammatory roles of MG.  MG scavengers, such as GSH, metformin and alagebrium 

have beneficial effect and prevent or inhibit MG-induced vascular oxidative damage and 
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the inflammatory state.  Application of MG scavengers may prevent the development or 

slow down the progression of T2DM and its vascular complications. 

 

5.  Limitations of study 

Glucose can be transported through cell membranes via the facilitation of glucose 

transporter (GLUT).  The genetic investigation of GLUT is still undergoing, and the 

GLUT family is expanding.  Currently, this big family contains 3 subgroups: GLUT 1-4, 

GLUT 5, 7, 9, 11 and GLUT 6, 8, 10, 12.  GLUT 5, 7, 9 and 11 are identified as fructose 

transporters.  Studies show that GLUT 5 is located in the epithelial brush border of upper 

small intestine, brain, kidney, skeletal muscle and adipose cells. GLUT 7 is on liver and 

kidney and GLUT 11 is located on heart and skeletal muscle (Joost, et al., 2001).  In 

addition, MG is a small molecule and the mechanism of MG crossing through cell 

membrane is still unclear.  To date, no study is available to clarify if MG crosses plasma 

membrane freely or via transporters.  The mechanisms of MG crossing through smooth 

muscle cells and neutrophils need further exploration.   

Several laboratories are investigating MG besides our group.  Different results 

were obtained due to the diversity of MG concentrations and experimental procedures.  

For instance, Speer and coworkers in Eriksson’s lab incubated isolated mitochondria with 

MG (2 mM) for 5 min and found MG transiently suppressed mitochondrial permeability 

transition (Speer, et al., 2003). Authors also tested mitochondrial oxygen consumption 

which indicates mitochondrial respiratory rate and found that MG did not affect 

mitochondria respiration rate.  Basically, our story is different from Speer’s.  We focused 
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on the effect of MG on mitochondrial oxidative stress.  Levels of free radicals and 

activities of mitochondrial enzymes were measured.  Our results show that MG induced 

mtROS generation and reduced activities of complex III and MnSOD.  In addition, up to 

10 mM MG had been used to investigate its effect on insulin secreting cells and insulin 

signaling pathways in rat L6 myoblasts (Sheader, et al., 2001; Riboulet-Chavey, et al., 

2006).  It is not reasonable to compare our results with theirs because we used MG (30 

μM) to treat cells for 18 h.  The physiological concentration of plasma MG in rats is 

approximately 5 μM (Nagaraj, et al., 2002).  Our previous study detected the plasma MG 

levels of 33.6 μM in 20-week-old SHR and 14.2 μM in age-matched WKY rats (Wang, et 

al., 2004).  Plasma levels of MG increased from 3.3 μM in healthy humans to 5.9 μM in 

type 2 diabetic patients (Wang, et al., 2007).  Moreover, cultured cells may produce more 

MG since MG concentration up to 310 μM was detected in cultured Chinese hamster 

ovary cells (Chaplen, et al., 1998).  Thus, MG (30 μM) used in the present study is not 

only the physiological relevant concentration, but also suitable to mimic the insulin 

resistance environment in rat aortic smooth muscle cells.  High concentrations of MG, 

such as 2 mM or 10 mM, are not physiological levels and not proper for mimicking 

physiological conditions.   

   

CONCLUSIONS 

Our studies demonstrate the important role of MG-induced oxidative stress in 

T2DM.  MG mediated fructose-induced production of NO, O2
.−, and ONOO−  in VSMCs.  

Fructose- or MG-induced ONOO− generation was significantly inhibited by the MG 
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scavenger GSH, and by O2
.− or NO inhibitors.  Moreover, an enhanced iNOS expression 

was also observed in the cells treated directly with MG.  We also observed that MG 

significantly enhanced mitochondrial O2
.−, NO, and ONOO− production, increased the 

expression of MG-induced AGE (CEL) and ONOO− modified protein (nitrotyrosine) 

expression, and decreased MnSOD activity.  Furthermore, MG significantly inhibited 

respiratory complex III activity and reduced mitochondrial ATP generation, indicating 

the dysfunction of ETC and mitochondria.   

In addition, the higher levels of plasma MG in T2DM was correlated positively 

with HbA1c, fasting plasma glucose and urine albumin / creatinine ratios.  MG induced 

the release of cytokines from neutrophils of non-diabetics.  In contrast, MG treatment of 

the neutrophils isolated from type 2 diabetic patients either did not alter, or decreased the 

production of cytokines.  Moreover, the neutrophils from patients with T2DM showed a 

greater proclivity for apoptosis, which was further increased by in vitro MG treatment.  

These data suggested that MG initiates or promotes the inflammatory process in T2DM.   

In conclusion, our data demonstrate that MG-induced oxidative stress plays a 

critical role in the pathogenesis of T2DM.  Increased ONOO− production, decreased 

antioxidant defense ability, impaired mitochondrial function and enhanced circulating 

proinflammatory cytokines contribute to MG-induced oxidative stress, the development 

of T2DM and its vascular complications.    
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SIGNIFICANCE OF THE STUDY 

 

 More than 2 million Canadians have diabetes and this number is expected to reach 

3 million by 2010.  Approximatly 90% of diabetic patients have T2DM.  The personal 

costs of diabetes are mainly due to the increased incidence of complications such as 

neuropathy, nephropathy, cardiovascular disease, retinopathy, and stroke.  Approximately 

80% of people with diabetes will die as a result of heart disease or stroke.  Overall, 

diabetes contributes to the deaths of over 40, 000 Canadians each year.  Moreover, the 

financial burden of diabetes and its complications is huge.  The direct cost for each 

diabetic patient for medication and supplies ranges from $1,000 to $15,000 a year.  It is 

estimated that diabetes will cost the Canadian healthcare system $15.6 billion a year by 

2010 and rise to $19.2 billion by 2020 (Canadian Diabetes Association, 

http://www.diabetes.ca/about-diabetes/what/prevalence/).  

 Clarifying the role of MG in the development of T2DM is significant and may 

lead to discoveries of new mechanisms and methods for the prevention and treatment of 

T2DM and associated complications.  The derived novel discoveries can be directly 

transformed to pharmaceutical anti-diabetic drugs and to new diagnostic methods for 

early diagnosis and follow-up the progression of T2DM.   
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FUTURE DIRECTIONS 

To extend and expand our findings reported in this thesis, we are planning to 

carry out the following experiments in the future:   

1. To further investigate MG-modified mitochondrial proteins.  The activities and 

expression levels (mRNA and protein) of different mitochondrial enzymes 

involved in ROS generation will be determined and quantified using Real-Time 

PCR and Western blot analysis.   

2. To investigate other mechanisms of MG-induced oxidative stress besides 

mitochondrial protein modification.  Those mechanisms include p38 MARK and 

NF-κB mediated signaling pathways.  

3. To investigate the mechanisms of MG-induced proinflammatory cytokines 

generation.  Different parameters regulating cytokine production in neutrophils 

will be explored, including mRNA expression of NFκB and the IκBα unit.   
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