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Abstract 

Splicing of pre-mRNA is an essential process for all eukaryotic dividing cells. Pre-

mRNA splicing defects are implicated in numerous human diseases, including Alzheimer’s 

disease and cancer, however its cause is poorly understood. Using the nematode Caenorhabditis 

elegans as a model, the Wu lab has recently shown that exposure to the environmental heavy 

metal cadmium can cause RNA splicing disruption, implicating loss of RNA metabolism 

regulation as a potential mechanism of cadmium toxicity. To understand the genetic mechanism 

of RNA splicing regulation under environmental stress, I sought to identify and characterize 

genes that, when knocked down, can protect against RNA splicing errors. Using a C. elegans in 

vivo splicing reporter, I found that an overwhelming majority of the gene knock-downs that 

improved RNA splicing under stress encode various components of the translation machinery, 

including ifg-1, which encodes the human eIF4G gene previously shown to regulate aging. 

Knockdown of various protein translation related genes has been shown to not only increase C. 

elegans lifespan but now also to enhance resistance to cadmium survival. Using RNA-

sequencing, I found that ifg-1 partial loss of function mutants show increases in expression of 

>80 genes that regulate RNA splicing; importantly, ifg-1 mutants exposed to cadmium show a 

50% decrease in cadmium-induced alternative splicing events observed in wild-type worms. 

Downstream of ifg-1, I have identified the SMA family of transcription factors as key regulators 

that are required for RNA splicing protection under stress in the ifg-1 mutants. Suppression of 

translation has previously been shown to be beneficial in promoting longevity and stress 

resistance in various organisms including C. elegans, and my study may have implicated a novel 

mechanism through which these physiological benefits are achieved in part by improvements to 

RNA splicing fidelity.  
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1. Introduction 

1.1: RNA splicing 

 From DNA to RNA to protein – the central dogma of biology defines the molecular 

pathway in which a cell produces a protein from a strand of DNA. This basic process is 

evolutionarily conserved across the taxonomic domain of Eukarya, with minor kingdom-specific 

variations. All eukaryotes, from the smallest bacteria to the largest plant, undergo this highly 

regulated three-step process in order to sustain life. A signal is first sent to the nucleus of a cell to 

separate a double strand of DNA into single strands, which are used as template code for 

producing messenger RNA (mRNA); this is known as DNA transcription. As the product is an 

exact copy of the DNA strand, this results in replication of a DNA strand in the form of single 

stranded RNA desired by the cell in its current state. After transcription is complete, post-

transcriptional modifications at the 5’ or 3’ end must take place to transform the immature 

precursor messenger RNA (pre-mRNA) into a proper code for the desired protein. In 5’ 

processing, the strand of pre-mRNA is capped by a 7-methylguanosine to protect from 

ribonuclease degradation. In 3’ modification, the pre-mRNA can be cleaved and polyadenylated 

to protect against ribonuclease degradation, processed by histones to protect against damage, or 

spliced via RNA splicing to create a final mRNA for protein translation. Once modified, the final 

step takes place – protein translation. The mature mRNA is used as a code for transfer RNA 

(tRNA) to be bound together to form a protein. This entire process is tightly regulated – even a 

single missing base pair will cause the strand of mRNA to produce a completely nonsensical 

protein to be transcribed. However, even under the tightest regulation, errors can occur; 

especially in post-transcriptional modification.  

 The pre-mRNA splicing process is highly prevalent in eukaryotes and less common 

amongst prokaryotes. In general, a strand of pre-mRNA is composed of two different types of 

sections of nucleotides: exons and introns. In RNA splicing, pre-mRNA is excised and joined 

together in order to remove the long non-coding introns from the strand and join together the 

coding exons. To do this, a series of up to 300 small nuclear riboproteins (snRNPs) form a 

complex known as the spliceosome [1]. While each of these proteins has a distinct role in RNA 

splicing, there are five major proteins regarded as the main splicing proteins: the U1, U2, U4, 

U5, and U6 snRNPs. To begin, the mRNA is cleaved by the U1 snRNP at a pre-determined 
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splice site at the 3’ end of an intron; while minor variations can occur, it is highly conserved that 

the splice sites contain a GU at the 5’ end and an AG at the 3’ end, both of which regions are 

flanked by long strands of nucleotides with low sequence homology to the splice site. The 

spliced end is then brought towards a branch point region typically 18 to 40 nucleotides 

downstream where it is attached in a lariat configuration to prevent re-attachment to the splice 

site as well as RNA degradation. After this, the lariat and the cut end of the pre-mRNA are 

guided to the 5’ end by the U2 snRNP and the snRNP complex U4/U6; U5 then assists in 

excising the splice site at the 5’ end of the intron, as well as binding the two ends of the pre-

mRNA strand together. Once the pre-mRNA is covalently bound, the removed intron lariat is 

released with U2, U5, and U6 still bound, which will be degraded and the snRNPs reused for 

further RNA splicing. This process is repeated multiple times along the strand of pre-mRNA at 

sites directed by the cell to create the desired mRNA molecule that will be translated into a final 

protein – all while transcription, other post-translational modifications, and even nuclear export 

are occurring.  

 The existence of RNA splicing alone makes little sense – why do long sections of non-

coding RNA exist if their only purpose is to be spliced out? Besides acting as an intermediate 

product for other post-translational modifications to take place, what purpose does pre-mRNA 

have? These questions were brought up alongside the identification of exons and introns [2], and 

their answer first theorized one year later – different sections in a pre-mRNA strand may be 

spliced out to create different final proteins [3]. Today, this process is known as alternative 

splicing (AS) – the ability to create different mRNA molecules from a single strand of pre-

mRNA. The amount of pre-mRNA needed in a cell can be vastly reduced by AS; while there 

may only be ~20,000 protein-coding genes in the human genome, it is estimated that the human 

proteome contains 620,000 to 6.13 million protein species, a diversity that is created by AS [4], 

[5]. Through bioinformatics analysis of human mRNA-seq data, Pan et al. estimates that all 

multi-exon genes in the human genome undergo at least one AS event, with up to 100,000 high-

abundance events [6].  

 To understand the needs of a cell, the nucleus utilizes a series of transcription factors that 

retrieve information from the interior and exterior environment of the cell. These signals convey 

information about the general state around the cell, as well as any changes within the cell itself, 
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into the nucleus. Transcription factors are generally dormant, only activated once external stimuli 

arrives. Once stimulated, they can either signal through the nuclear wall or translocate into the 

nucleus to convey their signal [7]. While there are a large variety of transcription factors in 

humans, one of note is the SMAD family of transcription factors, whose acronym is derived 

from the Caenorhabditis elegans “small worm phenotype” (SMA) family of proteins and the 

Drosophila “mothers against decapentaplegic” (MAD) family of proteins. The SMAD proteins 

respond to signals produced from the cell wall dwelling transforming growth factor-β (TGF-β) 

cytokines, conveying the information produced by these growth factors to the nucleus of the cell. 

The SMAD proteins specifically transport signals to the nucleus that relate to the transcription of 

genes involved in growth and development, making them critical for regulating homeostasis of 

the organism [8]. Once activated, transcription factors act in the nucleus by binding to specific 

motif elements in DNA to initiate the transcription of genes to exert downstream effects. 

 Functionally coupled to transcription, the spliceosome acts on the pre-mRNA to create 

different final products. The final protein produced can be influenced by alternative splicing, 

which is determined by the current state of the cell – environmental conditions, developmental 

stages, even depending on the type of cell. A series of complex proteins signal to the nucleus to 

begin the process of creating the desired protein, at which point transcription and post-

transcriptional modifications like AS can occur. There are five major types of AS characterized 

to date: exon skipping, alternative 3’ or 5’ splice sites, mutually exclusive exons, or intron 

retention (Figure 1.1). In exon skipping, the 5’ splice site at the end of the intron being spliced is 

not used; instead, a 5’ splice site further downstream is selected for resulting in the skipping of 

an exon. The intron lariat is carried downstream to the desired splice site, then the lariat and all 

exons and introns included in it are released, achieving in skipping over an exon all together. In 

alternative 3’ or 5’ splice sites, a different splice site within an exon is used at the beginning or 

the end of an mRNA splicing event, allowing for a different start or end of that exon. Mutually 

exclusive exons sees the inclusion of one exon for one protein and a second exon for a second 

protein, but the two exons are never present in both proteins. And finally, as the name suggests, 

intron retention results in an intron that does not get spliced out and is instead retained in the 

mature mRNA strand. Each of these different events allows for a high degree of protein diversity 

to be produced from a cell without the inclusion of a different gene for each final protein.  
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Figure 1.1. Schematic of the five types of AS. From top to bottom, they are: exon skipping, 

alternative 5’ splice site, alternative 3’ splice site, mutually exclusive exons, and intron retention. 

White boxes represent introns, all other boxes represent exons, and diagonal grey lines represent 

the path a transcript may take. The two possible transcripts produced are displayed to the right of 

each event.  
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1.2: RNA mis-splicing 

 As discussed in the previous section, AS is an essential function of the cell necessary to 

produce mRNA that will be translated into distinct proteins while reducing the amount of 

different genes a cell has to encode. However, this process can be disrupted in cells during times 

of stress; this is known as RNA mis-splicing. By inducing AS without proper signalling, mRNA 

can be produced that encodes either the wrong protein or a non-functional protein aggregate. As 

well, RNA mis-splicing can occur via defects or mutations in the spliceosome complex itself [9]. 

Discussed as early as 1993, RNA mis-splicing is known to lead to dangerous protein aggregates 

of stable circular RNA (circRNA) products with no apparent function [10]. The cause of RNA 

mis-splicing can be as simple as a small mistake made by the spliceosome, or as complex as 

environmental shifts and genetic predisposition. On the molecular level, RNA mis-splicing has 

four theorized reasons for why it takes place, as described by Scotti and Swanson. First, this 

machinery relies on searching a strand of pre-mRNA and identifying the correct 5’ and 3’ splice 

sites for each RNA splicing event – a difficult task made harder by the long non-coding introns 

and made impossible by single base pair mutations in transcription. Second, knowing which 

protein the complex is splicing for is a poorly signalled task that is made harder by the 

preference to splice the alternative protein during embryonic and fetal development. Third, as 

mentioned in the first theory, introns are long coding sequences; when partnered with exon 

sequences that are short in comparison, it creates an easy opportunity for the spliceosome 

complex to miss the 5’ splice all together and continue on to the 5’ splice site of the next exon. 

And finally, AS is coupled to translation itself and therefore regulated by the RNA polymerase 

that controls transcription; if the desired 5’ splice site is not yet transcribed, the spliceosome may 

pick a weaker, incorrect 5’ splice site in a “first come first serve” model [11] of site recognition 

[9].  

 As well as the cellular causes of RNA mis-splicing discussed above, there are 

environmental changes that can induce the deleterious process. Under normal environmental 

conditions RNA splicing and AS thrive, however environmental changes can result in RNA mis-

splicing. Disruption of RNA splicing has been observed under environmental stress conditions 

such as heat shock [12], ethanol exposure [13], and most recently induced by the heavy metal 

cadmium [14]. While other environmental conditions that disrupt splicing exist beyond these 

three, there is a gap in literature on the other environmental stressors can affect RNA splicing, 
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especially compared to the wide variety of studied environmental conditions that disrupt 

translation [15]. A recent study has shown that cadmium can directly disrupt RNA splicing in a 

dose dependent manner [14]; as such, cadmium presents an interesting chemical tool for studying 

mechanisms of environment induced RNA mis-splicing. Cadmium exists in the environment, 

disrupted by human mining activity for battery use. As well, cadmium is present in cigarette and 

cigarette smoke. As such, cadmium presents most toxicity in industrial workers and those who 

smoke. Cadmium enacts its toxicity through mimicking calcium in the human body, a disguise 

easily achieved due to the +2 charge on both ions. This results in a series of toxic effects on the 

human body, including neurotoxicity and cancerous effects [14].  

 

1.2.1: RNA splicing in disease 

 When RNA mis-splicing occurs, the product is marked for degradation via a cellular 

surveillance mechanism called nonsense mediated decay, and removed by cells with the only 

consequence being a minor loss of energy in forms of ATP. However, when RNA mis-splicing 

becomes systemic via environmental stress or internal dysregulation (i.e. mutated spliceosome), 

the cell cannot adequately remove the incorrect product at a fast enough rate to ensure the health 

of the cell. When this occurs, the cell is overwhelmed by RNA splicing errors, forming large 

protein aggregates in the cytoplasm and preventing the desired protein from being produced. As 

such, the proteins necessary to reduce RNA mis-splicing may not get translated, and the cell 

enters a continuous feedback loop of RNA mis-splicing and lack of repair. The destruction 

caused by systemic RNA mis-splicing is consequential and implicated in many well-known 

diseases in humans, namely Alzheimer’s disease, Parkinson’s disease, certain forms of cancer 

[9]. The dysregulation caused by errors in RNA splicing can lead to many different states of 

disrepair, depending on the cell type or the gene that is mis-spliced. As such, errors in RNA mis-

splicing is hard to target therapeutically. Until recently, the role of environmental influences on 

the development of neurodegenerative diseases have not being well established. However, a 

movement gaining increasing traction in literature hypothesizes that exposure to environmental 

stressors that upset RNA splicing, such as the aforementioned heat shock or cadmium, may act 

as an external inducer on these disease states. As such, it is of interest to understand the poorly 
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researched mechanism of RNA mis-splicing in an effort to one day develop potential therapeutic 

strategies.  

 Protein aggregates are a hallmark of every neurodegenerative disease – accumulation of 

insoluble non-degradable proteins gathering in the cytoplasm preventing the cell from 

performing normal functions. In the case of Alzheimer’s disease, the two main protein 

aggregates are β-amyloid and Tau. What is unknown, however, is how these protein masses form 

or how to treat them. Bai et al. took a large step in uncovering these unknowns, with an analysis 

of the 4,200+ proteins in cultured Alzheimer’s disease afflicted brain cells. Surprisingly, they 

identified a large amount of U1 snRNP constituents aggregated in the cytoplasm of neuronal cell 

bodies [16]. This spliceosome component and key splicing gene usually resides in the nucleus, 

with no reason to migrate to the cytoplasm. However, Bai et al. noticed the large aggregate and 

hypothesized that this loss of U1 snRNP function is a key factor in causing Alzheimer’s disease 

and its symptoms; losing the function of U1 snRNP in the nucleus results in the loss of proper 

RNA processing before translation can take place. This hypothesis has since been further 

confirmed by follow up studies [17], [18], indicating that RNA mis-splicing does indeed play a 

major part in genetic Alzheimer’s disease.  

 Just as in Alzheimer’s disease, Parkinson’s disease has its own indicative protein 

aggregate - α-synuclein. As early as 1991, RNA mis-splicing was implicated in the cause of 

different forms of Parkinson’s disease. Maroteaux and Scheller identified three differently 

spliced isoforms of rat α-synuclein in Lewy body protein aggregates, determining the diversity is 

due to AS [19]. Eight years later, D’Souza et al. identify three different genes that are 

alternatively spliced in Parkinson’s disease, all of which are regulatory elements for RNA 

splicing [20]. Each gene has its alternate form upregulated in Parkinson’s disease, causing failure 

of RNA splicing. In 2010, Shehadeh et al. identified an upregulation of the short isoform of 

serine/arginine repetitive matrix 2 (SRRM2) by 1.7 fold, with the long, normal isoform 

downregulated 0.4 fold [21]. While SRRM2 may not be one of the core splicing genes, it does 

influence the expression of protein isoforms in a cell. In 2013, Korvatska et al. describe RNA 

mis-splicing as the underlying cause of X-linked parkinsonism with spasticity. They found an 

increase in a single exon skipped isoform of ATP6AP2, which decreased the relative abundance 

of the desired isoform and produced an excessive amount of the insoluble isoform [22]. 
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ATP6AP2 is typically an ATPase used in degradation and autophagy, however the exon skipped 

isoform cannot perform the task required. Unsurprisingly, the cellular pathway that requires 

ATP6AP2 is one that is well known to be disrupted in patients with Parkinson’s disease. There 

are many different forms of Parkinson’s disease each with their own cause, however with more 

and more research performed it is becoming increasingly clear that RNA mis-splicing plays a 

central part in many of them, if not all of these disease states.  

 The ever-growing field of cancer research has only known about the implications of RNA 

mis-splicing in causing cancer for the last decade. Yoshida et al. were the first to find that 

myelodysplastic cells predisposed to leukemia expressed alternatively spliced isoforms of at least 

five major splicing genes, causing a large disruption to the entire RNA splicing pathway [23]. 

Since then, research has only grown on the topic. To assist in understanding the massive scale of 

RNA mis-splicing in cancer, Jung et al. performed whole-genome analysis of 1,134 pan-cancer 

genomes, identifying 678 somatic intronic mutations affecting RNA splicing [24]. RNA mis-

splicing in cancer can be as simple as overexpression of an anti-apoptotic isoform of a protein to 

the deregulation of the RNA splicing pathway entirely via upstream changes to the mechanism 

[25]. Perhaps most obnoxiously, cancer cells have been observed to “hijack” RNA splicing for 

its own advantages, including undergoing isoform switching to either evade cancer treatments 

[26] or to promote cellular proliferation. The gene PRPF6, a member of the normally tightly 

regulated U4/U5/U6 snRNP complex that performs the 5’ splice and rejoin of the two excised 

ends, can assist in colorectal cancer proliferation by splicing genes associated with cancer growth 

[27]. Despite all these consequences, there is ongoing research that targets the spliceosome in a 

manner that assists in “fixing” RNA splicing in an effort to treat the afflicting cancer [28], [29].  

 There are many more diseases in humans and other mammals that are either caused by or 

made worse by RNA mis-splicing, such as Hutchinson–Gilford progeria syndrome, many forms 

of muscular dystrophy and atrophy, cardiovascular issues, amyotrophic lateral sclerosis (ALS), 

and dilated cardiomyopathy [9]. All of these disease states are influenced either by differential 

isoform expression caused by altered RNA splicing or changes to the RNA splicing pathway all 

together, reducing its fidelity overall. As such, RNA splicing reveals itself as a unique target; if 

one is able to repair the altered RNA splicing pathway, one could then treat or cure the disease 

state at hand. However, methods to treat RNA splicing errors are currently limited to 
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experimental tests in certain types of cancers due to the large field of unknowns within this 

research.  

 

1.2.2: RNA splicing in aging 

 Many theories for how aging occurs in an organism and why it exists in the first place 

have come to light in the past century and a half. The first commonly accepted modern theory of 

aging was the “wear and tear” theory of aging, presented in 1882 by Dr. August Wiesmann. This 

theory states that the damage done to an organism over time accumulates to a point of no return, 

at which death takes place. Since then, other theories of aging have been discussed either as 

replacements for the previously researched theory or ones that work in tandem with it. Currently, 

there are five major theories of aging in modern science: the wear and tear theory, the rate of 

living theory [30], the cross-linking theory [31], the free-radicals theory [32], [33], and the 

somatic DNA damage theory [34]. While each theory has plenty of supporting research, 

currently the somatic DNA damage theory is most commonly accepted. In this theory, DNA 

constantly accumulates damage that is identified and repaired by a cell. However, as one ages, 

the amount of DNA damage occurring increases and the mechanisms of DNA damage repair 

begin to fail, accumulating a high quantity of damage that a causes irreversible damage and cell 

death.  

 Over the past decade, research on the effect of altered protein synthesis on the aging of an 

organism has started to arise [35]. As one of the basic functions of a cell, any changes to protein 

synthesis will affect the state of the cell overall. However, post-transcriptional modifications 

must come before translation can occur, meaning that changes in RNA splicing are just as 

dangerous, if not more dangerous, than errors in translation. The connection between RNA mis-

splicing and aging has been known for since 1977, when Yannarell et al. saw a three fold 

decrease in mRNA released into the cytoplasm in the livers of older rats, theorizing that aging 

first begins with faults in the nucleus [36]. However only recently has RNA mis-splicing been 

implied in early aging [37]. Gruner et al. first determined that there is an accumulation of 

circRNA in aging mice, hypothesizing that the circRNA play a role in the nervous system [38]. 

As we now know, circRNA encompass a large part of the human genome with a variety of 

functions; however, they can also be the product of RNA mis-splicing, and can form insoluble 
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protein aggregates due to their stable end-free design. In the same year, Rodríguez et al. 

performed analysis on five different types of mouse tissue, finding an accumulation of 

alternatively spliced products in all five samples [39]. Not only this, they found that 158 of the 

differently spliced genes were involved in RNA processing, leading to their emphasis on the 

importance of an unknown AS mechanism in aging. There is an ample amount of research 

supporting RNA mis-splicing in aging-related diseases such as Alzheimer’s disease and 

Parkinson’s disease as mentioned earlier. However, amidst all the research available, there is 

little to no consensus on the mechanism of how RNA mis-splicing and aging are linked. A 

prominent question in this field of literature is a “chicken or the egg” type question; does 

abnormal RNA splicing lead to the onset of aging, or is RNA mis-splicing a product of age-

related decline? If the former is correct, then RNA mis-splicing can be used as a target to delay 

the onset of aging or prevent aging-related diseases. And if the latter is correct, then reducing the 

accumulation of aging-related defects would allow for protection from RNA mis-splicing. 

 

1.3: Caenorhabditis elegans as a model organism 

 While a single one millimeter long transparent nematode might not seem very special, 

Caenorhabditis elegans is by far one of the most important model organisms in many fields of 

research. They were the first species to ever have their complete genome sequenced [40] and 

they remain the only organism to have their entire cell lineage mapped, from the beginning of 

development within the egg to the last cell division. C. elegans populations can be maintained 

either in liquid or on agar medium with a lawn of Escherichia coli (E. coli) as its source of 

nutrient. Each worm undergoes the same developmental cycle, with 12 hour periods of growth 

between each of the four larval stages before reaching adulthood. At 48 hours post-hatch, a 

worm will have reached its reproductive stage in life to begin offspring production for 4-5 days 

[41]. Given that C. elegans are hermaphrodites, each worm will lay approximately 250-300 

offspring that are genetic clones of the mother, barring any genetic mutations that might arise. At 

five days old, the reproduction window is closed, and the worm will live an additional 16-20 

days on average when cultured at 20°C. The C. elegans lifespan is temperature dependent, where 

lifespan is extended when cultivated at 16°C and reduced at 25°C.  In the wildtype N2 strain, 

only 0.1% of the population are male that arise from spontaneous X chromosome nondisjunction 
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events during hermaphrodite reproduction. However, mating between a male and hermaphrodite 

worm will result in a 50:50 ratio of male and female offspring, which presents a useful tool for 

introducing mutations between different genetic backgrounds.  

 All of these features were undiscovered until Sydney Brenner raised awareness of the 

usefulness of the species in 1974. His influential research displayed many different benefits of 

the species, including generating hundreds of different strains of C. elegans mutants that are 

utilized in different areas of research ranging from neuroscience to developmental biology [42]. 

Brenner introduced C. elegans as a model organism not only because of its simplicity, but also 

because of its intricate genetics. While a 1,000 cell worm may seem vastly different from 

humans, 83% of the C. elegans proteome shares homology with the human proteome [43], 

allowing for rapid and inexpensive research on human-homologous genes. C. elegans have a 

powerful genetic system that can be easily modified by a variety of methods: RNA interference 

(RNAi) for gene knockdown, chemical mutagenesis for nucleotide mutations, CRISPR/Cas9 for 

precision gene insertion/editing, and gene overexpression via transgenesis. Each of these genetic 

modifications can be stably integrated into the genome and are passed down to the offspring, 

allowing for genetically identical populations to be produced from a single worm. Perhaps most 

useful for genetic research is the transparency of this species. Tagging a fluorescent reporter to a 

gene results in the in vivo tracking of the tissue and cellular localization of the gene that can be 

easily visualize by stereomicroscopy. Stable strains of C. elegans can also be produced with 

reduced or overexpression of a gene that can result in impaired or improved cellular or metabolic 

processes, unique phenotypic differences for assay use, or a combination of multiple genetic 

mutations.  

 Aging and lifespan go hand in hand in C. elegans, where changes in genetics or 

environment can lead to an altered lifespan. Klass was the first to suggest effects of aging 

alteration in C. elegans, identifying five mutants that had an altered lifespan when compared to 

wild type worms [44]; Friedman and Johnson later mapped all five mutants to the same genetic 

locus – age-1, a phosphatidyl inositol 3-kinase (PI3K) homolog [45]. The research performed on 

age-1 was the first to propose that individual genes could alter lifespan in C. elegans. Since then, 

a wide variety of genetic loci and pathways have been identified that regulate lifespan. One 

pathway of interest is the pathway used by dauer formation 16 (daf-16), a homolog to human 



12 
 

forkhead box transcription factors class O (FOXO). This transcription factor acts to elicit signals 

in dauer formation in C. elegans, as well as aging and development. Outside of the nematode, 

mutations in the human FOXO ortholog FoxO3A have been associated with longevity, as well as 

in other species such as Drosophila [46]. Overall, the wide variety of techniques and research 

available on C. elegans make this simple nematode a perfect model organism for aging research 

on a small and rapid scale.  

1.4: Translation suppression and lifespan extension 

 It has been known for decades that lifespan extension in various organisms can be 

achieved by switching cellular mechanisms from a state that promotes growth to one that 

promotes stress resistance and repair. However, until 2005, it was thought that only caloric 

restriction could induce a repair-promoting state. Kaeberlein et al. were the first to challenge this 

idea, identifying six genes related to the target of rapamycin (TOR) pathway that increased 

lifespan when knocked down in yeast [47]; TOR is a kinase that regulates lifespan in many 

organisms through the modulation of translation, autophagy, and other cellular processes when 

presented with a change in nutrient levels or environment. Kaeberlein et al.’s data opened up a 

field of research focused on studying the effects of protein synthesis suppression on aging.   

 In C. elegans, lifespan extension has been seen through multiple methods, including 

dietary restriction [48], strict upregulation of stress resistance pathways [49], and through protein 

synthesis suppression. Hansen et al. were some of the first to recognize that a cell undergoing 

normal protein synthesis is a cell undergoing healthy growth, hypothesizing that the suppression 

of this energy-dense process may allow for reduced growth and increased cellular repair [50]. 

Through a series of genome-wide screens and lifespan assays with ribosomal genes knocked 

down, they determined that suppression of protein synthesis does indeed extend lifespan in C. 

elegans through one of two pathways, dependent on the genes knocked down [50]. In the same 

year, Pan et al. also found an increase in lifespan when protein synthesis is suppressed in C. 

elegans by RNAi silencing of different translation related genes (Pan et al., 2007). Since then, 

the topic has seen an increase in research due to the ease of protein synthesis suppression in C. 

elegans through simple means such as RNAi. While plenty of literature exists on this topic, they 

all share the same two common results: suppression of translation leads to an increase in lifespan 
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due to the reduced overall translation while also increasing translation of certain stress related 

genes [35].  

 One gene in particular presents a unique case for lifespan extension – ifg-1 in C. elegans 

that is homologous to the human eIF4G3. This translation factor directs mature mRNA to the 

ribosome, and as such is the first protein to enact in the process of protein translation. When ifg-1 

is suppressed via RNAi, lifespan is greatly increased in C. elegans from 20 to 30 days while also 

delaying processes such as reproduction [51]. Knocking down ifg-1 allows for differential 

expression of various genes, specifically an increase in expression of those related to stress 

response with long mRNA sequence lengths [52]. Past literature exists supporting the place of 

ifg-1 in lifespan regulation, however it is unknown as to how this happens; the mechanism of 

how it regulates lifespan, if it uses the daf-16/FOXO pathway, or other factors that come into 

play. Recent research on this topic indicates that ifg-1 suppression results in enhanced lifespan 

through a mechanism that heavily requires the heat shock factor hsf-1 [53], although nothing 

further is known.  

 In this thesis, I present new research data that provides novel insights into how 

translational suppression acts to enhance C. elegans resistance to stress-induced RNA mis-

splicing and describe the genetic way regulating this process.  
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2. Hypothesis and Objectives 

 

2.1: Hypotheses 

 RNA mis-splicing and disease state is strongly hypothesized to be linked, however the 

mechanism behind this link is almost entirely unknown. My research aims to explore this 

mechanism through the environmental stress cadmium, which is known to cause RNA mis-

splicing in C. elegans, among other effects [14]. By disrupting the RNA splicing pathway 

through genome-wide RNAi knockdown, I was able to investigate the effects on RNA splicing 

caused by knocking down individual genes, first by focusing on the entire genome and second by 

focusing on key genes of interest. Through this precise disruption and knockdown, I was able to 

identify the ifg-1 (initiation factor 4G (eIF4G) family-1) gene, one previously known to have a 

prominent in lifespan regulation and extension. I was then able to further detail the mechanism 

through which ifg-1 enacts its RNA splicing protection under stress through a series of assays 

and data analysis on RNA sequenced from ifg-1 mutant worms.  

Hypothesis 1: Genetic regulators of stress-induced RNA mis-splicing can be identified by a 

genome-wide RNAi screen, as well as further characterized by various assays.  

Hypothesis 2: The ifg-1 gene in C. elegans has a role in RNA splicing protection under stress, 

which can be further elucidated.  

 

2.2: Objective 1 

 Identify and characterize all genes in the C. elegans genome that, when knocked down, 

improve the organism’s RNA splicing fidelity under cadmium-induced stress. As well, choose a 

subset of the identified genes, determined by previous literature available, to characterize their 

effect on lifespan under normal and stressed (cadmium) conditions when knocked down.  
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2.3: Objective 2 

 Characterize the mechanism of lifespan regulation and extension provided by ifg-1 in C. 

elegans, understand how ifg-1 affects RNA splicing under stress, and define the role of ifg-1 in 

RNA splicing protection.  
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3. Materials and Methods 

3.1: Worm growth conditions 

 All strains of C. elegans were grown on nematode growth media (NGM), adapted from 

[56]. Strains were obtained from the Caenorhabditis Genetics Centre (CGC) or self-made (Table 

3.1). Worms were fed interchangeably with a slow-growing lab strain of E. coli (OP50) or a 

faster growing strain of E. coli (NA22) (Table 3.2) unless otherwise stated. Worms were 

transferred to fresh E. coli plate when their plate was spent (either by depletion of food or by 

damage to the agar) via different methods depending on the downstream application. For 

transferring between experimental plates, worms were transferred via washing in M9 buffer 

(Table 3.3) or water. For lifespan assays, worms were picked individually with a platinum wire 

pick or a hair pick [56]. For general maintenance, a piece of agar with starved worms was 

excised with a sterile tool and placed on a fresh plate. Worms were kept at 20˚C unless otherwise 

stated. Worms were observed using the Olympus SZX2-ILLT (Olympus) microscope unless 

otherwise stated.  

 

3.2: Bleach Synchronization 

 To obtain a population of identical worms all at the L1 stage of life, bleach 

synchronization [56] is performed. This process dissolves the adult worms to release fertilized 

eggs which are protected from the lysis solution by its egg shell. A large population of adult 

worms each retaining ~10 eggs each was washed off the plate into sterile 15 mL polyproline 

conical tubes (Falcon) using sterile water. Tubes were then spun at 3500 x g for 15 seconds to 

pellet worms at the bottom of the tube. Supernatant was removed and the worm pellet was 

resuspended with fresh sterile water to repeat the wash step. This washing step was repeated until 

the supernatant was clear, indicating the removal of bacteria. On the final wash, water was 

removed until there was 5 mL total volume left in the tube. At this point, a worm lysis solution 

of 0.3 mL of 1M NaOH and 1.3 mL of 100% bleach were added to the tube before being shaken 

vigorously for approximately five minutes. After adults had dissolved (maximum eight minutes), 

filter sterilized water was added to fill the tube, then spun down for two minutes at 3500 x g to 

neutralize the lysis solution. Supernatant was then immediately poured off, and sterile water was  
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Table 3.1: Strains used in this study. Strain names, genotypes, purpose, and where they were 

obtained for all worm strains used in this research.  

Strain 

Name 

Genotype Purpose Source 

N2 Bristol Wild-type Control strain Caenorhabditis 

Genetics Centre (CGC) 

KH2235 lin-15 (n765) ybIs2167 [eft-

3::RET-1E4E5(+1)E6-GGS6-

mCherry eft-3::RET-

1E4E5(+1)E6-(+2)GGS6-

EGFP lin-15 (+) 

pRG5271Neo] X 

Fluorescent strain 

used as a biomarker 

for RNA splicing 

errors 

Kuroyanagi lab 

KX54 ifg-1(cxTi9279) II; bcIs39 

bcIs39 [lim-7p::ced-1::GFP 

and lin-15(+)] V V.  

Used to create the 

ifg-1 strain 

Keiper lab 

ifg-1 ifg-1(cxTi9279) Investigating the 

effects of ifg-1 

knock-down 

Wu lab 
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Table 3.2: Reagents used in this study. Reagent names and where they were obtained for all 

reagents used in this study.  

Reagent Source Catalog Number 

6X DNA loading dye Thermo Fisher Scientific FERR0611 

96-well plates Falcon 08-772-2C 

Agar Thermo Fisher Scientific DF0479-17-3 

Agarose Thermo Fisher Scientific BP160-500 

Bactone peptone Thermo Fisher Scientific DF0118-17-0 

β-mercaptoethanol Thermo Fisher Scientific PI35602 

Cadmium chloride Thermo Fisher Scientific AC315270050 

Calcium chloride Thermo Fisher Scientific C79-3 

Carbenicillin Thermo Fisher Scientific BP26485 

Cholesterol Thermo Fisher Scientific MP21013803 

Conical centrifuge tubes Falcon Varies 

Deepwell 96-well plates Thermo Fisher Scientific 12-566-120 

DNAse enzyme, Thermo Fisher Scientific FEREN0521 

DreamTaq Thermo Fisher Scientific FEREP0702 

EDTA Thermo Fisher Scientific AC327345000 

Ethanol Greenfield Global N/A 

Glycerol Thermo Fisher Scientific PI17904 

Hydrochloric acid Thermo Fisher Scientific SA48-500 

Individually sealed pipettors Thermo Fisher Scientific Varies 

IPTG Thermo Fisher Scientific 15529019 

Lysogeny broth Thermo Fisher Scientific DF0446-17-3 

Magnesium chloride Thermo Fisher Scientific M33-500 

Magnesium sulphate Thermo Fisher Scientific M65-3 

Microcentrifuge tube Corning Varies 

Microscope cover slips Thermo Fisher Scientific 12-545-87  

Microscope slides Thermo Fisher Scientific 12-550-A3 

MultiScribe reverse transcriptase  Thermo Fisher Scientific 4311235 

NA22 bacteria CGC N/A 

NP-40 Alfa Aesar AAJ60766AK 
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OP50 bacteria CGC N/A 

PCR grade water Thermo Fisher Scientific 10977015 

Petri dishes Corning Varies 

Pipette tips Thermo Fisher Scientific Varies 

Platinum wire, 0.25mm Alfa Aesar AA45093BY 

Potassium chloride Thermo Fisher Scientific P217-3 

Potassium phosphate Thermo Fisher Scientific P285-3 

PowerUp SYBR green master mix Thermo Fisher Scientific A25778 

Proteinase K Thermo Fisher Scientific 25530031 

qPCR primers Eurofin Genomics Varies 

RNA purelink micro kit Thermo Fisher Scientific K310250 

RNAi bacteria library [54], [55] N/A 

Sodium azide Thermo Fisher Scientific BP922I-500 

Sodium chloride Thermo Fisher Scientific 18606413 

Sodium phospate Thermo Fisher Scientific S374-1 

SYBR I nucleic acid gel stain Thermo Fisher Scientific S7563 

TAE Thermo Fisher Scientific FERB49 

Tris Thermo Fisher Scientific BP152-500 

Tween-20 Thermo Fisher Scientific AAJ20605AP 
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Table 3.3: Medias and their recipes used in this study. Reagents were added from top to bottom, 

stirred between each addition, and autoclaved before adding reagents listed after “autoclave”.  

Media Recipe source Recipe 

M9 Buffer  [56] 1 L H2O 

5.0 g NaCl 

3.0 g KH2PO4 

6.0 g Na2HPO4 

Autoclave 

1 mL MgSO4 (1M) 

NGM Buffer  [56] 1 L H20 

3.0 g NaCl 

Autoclave 

1 mL Cholesterol (1M) 

1 mL CaCl2 (1M) 

1 mL MgSO4 (1M) 

25 mL KH2PO4 (1M, pH 6) 

NGM Plates  [56] 1 L H20 

3 g NaCl 

2.5 g Peptone 

25 g Agar 

Autoclave 

1 mL Cholesterol (1M) 

1 mL CaCl2 (1M) 

1 mL MgSO4 (1M) 

25 mL KH2PO4 (1M, pH 6) 

NA22 Plates  [56] 1 L H2O 

1.2 g NaCl 

20 g Peptone 

25 g Agar 

Autoclave 
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1 mL Cholesterol (1M) 

1 mL CaCl2 (1M) 

1 mL MgSO4 (1M) 

25 mL KH2PO4 (1M, pH 6) 

Lysis Buffer [57] 3.73 g KCl 

0.508 g MgCl2 

10 mL 1M Tris-HCl, pH 8.8 

4.5 mL NP-40 

4.5 mL Tween-20 

100x SYBR Green Thermo Fisher 2 uL 10,000x SYBR Green Dye 

198 uL 1x TAE buffer 

SYBR Green + 

Loading Dye 

Thermo Fisher 100 uL 100x SYBR Green 

200 uL 6x Loading Dye 

DNA Ladder Thermo Fisher 30 uL SYBR Green + Loading Dye 

90 uL H2O 

10 uL DNA Ladder 

Primer Mix Eurofin Genomics 10 uL forward primer (100 µM) 

10 uL reverse primer (100 µM) 

180 uL RNAse free water 
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added up to 10 mL. The tube was flicked to resuspend the pellet of eggs to ensure thorough 

washing of each egg, then centrifuged again for two minutes at 3500 x g. This wash step was 

then repeated once more to ensure no bleach remained in the tube. Supernatant was then 

removed until 500 μL remained, then the last 500 μL was mixed with the egg pellet and 

deposited onto a 6 cm unseeded NGM plate to allow eggs to hatch overnight. After 18 hours, all 

viable eggs would have hatched and are synchronized at the L1 stage, which can be washed off 

the plate with sterile M9 for experimental use. 

 

3.3: RNAi screen 

 To perform a large-scale liquid RNAi screen [60], the KH2235 C. elegans strain were 

grown under normal conditions and bleach synchronized to obtain a large L1 population. RNAi 

E. coli was grown in 600 μL Lysogeny Broth (LB) containing 50 mg/mL carbenicillin for 18 

hours at 37˚C in 96-well deep well plates. After this, E. coli were mixed with 25 μL 100 mM 

Isopropyl β- d-1-thiogalactopyranoside (IPTG) was added to each 96 well containing the RNAi 

bacteria and incubated for one hour at 37˚C to induce the dsRNA plasmids within the bacteria. 

Bacterial plates were then spun down at 1572 x g for 20 minutes to pellet bacteria, supernatant 

was removed, and bacteria was resuspended in 100 μL NGM buffer containing 4 mM IPTG and 

0.05 mg/mL carbenicillin. Thirty μL of this bacterial solution was then transferred into a new 96 

well microplate, and 70 μL of the same NGM solution containing IPTG and carbenicillin with 

approximately 30 L1 KH2235 worms suspended in it was added to each well. Plates were then 

placed on an orbital shaker in 20˚C for 48 hours to allow for worm growth and exposure to 

RNAi. After 48 hours, each well was screened under an Olympus SZX2-ILLB fluorescent 

microscope for changes in GFP and RFP. Wells without visible GFP fluorescence were noted at 

this stage to determine RNAi that suppress basal RNA splicing. Three hundred μM cadmium 

chloride solution was then added to each well to act as a chemical stress to inhibit RNA splicing, 

and returned to the previously described conditions for an additional 24 hours to allow for 

cadmium exposure. After 24 hours, each well was screened again under the same fluorescent 

microscope, however this time populations were screened for their ability to retain GFP 

fluorescence. Those that retained fluorescence were marked down, as well as the intensity of 

their fluorescence on a three-point scale (strong, medium, and weak) and the size of the worms 
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on a three-point scale (large, medium, small). Wells were then screened for a loss of RFP, and 

wells without RFP were marked down.  

 To eliminate no false-positive results from the primary RNAi screen, a secondary RNAi 

screen containing only the RNAi hits identified in the primary screen was performed, however 

this time occurring on NGM agar plates instead of in liquid NGM. Approximately 50 L1 

synchronized KH2235 worms were placed on a 6 cm NGM plate containing 1 mM IPTG and 

0.05 mg/mL carbenicillin, seeded with the corresponding RNAi E. coli. After 48 hours of growth 

at standard conditions, worms were moved to a corresponding RNAi E. coli seeded 6 cm NGM 

plate containing 300 μM cadmium chloride. After 24 hours of cadmium exposure, worms were 

screened for their GFP and RFP fluorescence and scored on the same three-point scale as the 

initial RNAi screen. Gene knockdowns that enabled a population of worms to retain fluorescence 

were considered knockdowns of interest, and a glycerol stock of the original RNAi E. coli was 

taken for further use by mixing 10 μL of grown bacteria with 1 mL of LB containing 1 mM 

IPTG and 0.05 mg/mL carbenicillin and 50% glycerol and preserved at -80˚C. 

 

3.4: Genetic Crosses 

 While C. elegans are typically hermaphrodites, a male can spontaneously hatch in a 

population due to a rare spontaneous loss of the X-chromosome (~0.1%). One way of sharing 

genetic information between strains is to mate a male worm with a hermaphrodite, and select for 

offspring that have retained the desired combination of genetic information. However, one male 

per every thousand hermaphrodites results in an extremely inefficient method of genetic crosses; 

instead, males in a population can be enriched through heat shocking L4 hermaphrodites to 

induce spontaneous loss of the X chromosome in its offspring. To enrich for males, 

approximately 40 worms were placed onto a 10 cm NGM plate seeded with OP50 bacteria and 

heat shocked at 30˚C for 6 hours, then move to a 20˚C incubator for maintenance. This heat 

shock allows for the hermaphrodites to produce and lay eggs containing males. After two days, 

plates are checked daily for male offspring. If found, the male offspring is moved to a 6 cm plate 

with 100 μL bacteria seeded directly in the centre of the plate (a “mating plate”), then one L4 

hermaphrodite from the same strain for every two males is added. Three more plates were 
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prepared, each containing a total of three hermaphrodites and six males. This “self-cross” was 

repeated every three to four days to maintain a continuous healthy population of males.  

The KX54 worms contain homozygous ifg-1 partial loss of function mutation, but also 

carry an unwanted GFP marker used by another lab. To isolate the ifg-1(cxTi9279) genotype, six 

adult N2 males and three L4 KX54 hermaphrodites were then placed on a 6 cm mating plate, and 

repeated three times for four replicates total. After allowing worms to mate for 48 hours, nine F1 

offspring were removed from one of the four plates and placed onto individual plates. If mating 

took place, the F1 generation will be heterozygous for the ifg-1 mutation and the GFP marker, 

which will segregate in a Mendelian fashion that will permit the isolation of F2 carrying only the 

ifg-1 mutation. A PCR method was then used to genotype the ifg-1 mutation. To do this, several 

single F2 worms were individually placed onto an agar plate and allowed to lay F3 offspring, 

after which the F2 worms were lysed to perform single worm genotype PCR. The F2 worm was 

frozen in 10 μL of lysis buffer (Table 3.3) with 1% Proteinase K added before use for ten 

minutes at -80˚C, then incubated for one hour at 65˚C to initiate worm lysis and for an additional 

15 minutes at 95˚C for proteinase K denaturation. After this, gel-based PCR was performed 

using primers designed for the genetic mutation of interest (Table 3.4) to determine if the correct 

mutation was retained in the F2 hermaphrodite. The F3 offspring that are genetically identical to 

the single F2 worm that exhibited homozygous mutation to ifg-1 was isolated for downstream 

experiments.  

 

3.5: Lifespan Assays 

 Lifespan assays were adapted from procedures detailed in [61]. A population of 

synchronized N2 worms was grown on 10 cm NGM plates containing 1 mM IPTG and 0.05 

mg/mL carbenicillin, and seeded with 1 to 2 mL empty vector (EV) bacteria. EV bacteria 

expresses a plasmid that is not homologous to any C. elegans genes and serves as the control E. 

coli for RNAi experiments. After 48 hours of growth, approximately 40 worms were moved to 6 

cm plates seeded with 500 μL of the E. coli RNAi of choice (Day 1). The populations were then 

checked each day for the following parameters: offspring presence, E. coli remaining, or dead 

worms. If offspring were present on the plate or if the plate was showing signs of bacteria 

depletion (visible first on the edges of the plate), the original ~40 adult worms were moved to a  
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Table 3.4: Primers used in this study. Primers were all sourced from previous research – the 

validity and efficacy of each primer can be found in the source papers referenced.  

Gene of interest Source Primer sequence 

ret-1 [58] F: 5’-CATCCGCTGAAGGATCCATAG-3’ 

R: 5’-GAGCTTCCTCAGCAATCGGAG-3’ 

ifg-1 genotype [59] F: 5’-ACCAAACTGGGCAAACAAAG-3’ 

R: 5’-CTTCCTGAAATTTGGTTTAACAGT-3’ 

oJL 115 mos [59] R: 5’-GCTCAATTCGCGCCAAACTTATG-3’ 

rpl-2 (qPCR) [14] F: 5’-CTTTCCGCGACCCATACAA-3’ 

R: 5’-CACGATGTTTCCGATTTGGAT-3’ 

cdr-1 (qPCR) [14] F: 5’-ATTACTGCTGCGCTGTTTGG-3’ 

R: 5’-GGGGACAAGTTCGGACAGTT-3’ 

numr-1 (qPCR) 

 

[14] F: 5’-AGACGTCACTGTTTTGGTGGA-3’ 

R: 5’-CCGAATCCTCCAGTTGGACC-3’ 

hsp-16.49 (qPCR) 

 

[14] F: 5’-TGAGTTGTGATCAGCATTTCTC-3’ 

R: 5’-GGATGAAATCACTGGATCTGTT-3’ 
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fresh identical plate via picking with a flame-sterilized platinum pick. After approximately six 

days (for N2 worms, this age varies for each gene knockdown), the worms should not lay any 

more offspring and can instead be monitored for deaths. If a worm is suspected to be dead, they 

can be checked for life by one of two ways: either by gently tapping the plate on the microscope 

stage to induce vibration or by gently poking the tail region with a sterilized platinum pick. If no 

response is seen after both actions, the worm is considered dead and the age of death in days is 

marked down.  

 In some cases, worms may die due to unnatural causes such as human errors, crawling up 

on the side of the plate where there is no agar and drying out, or developmental abnormalities 

that result in vulva defects leading to protrusions or bagging phenotypes. When a worm dies due 

to any unexpected cause, it was removed from the plate and was marked as censor instead of 

death. Counting the number of censor worms helps to accurately trace the lives of all worms in a 

population, and plates with an extreme number of censors were discarded due to the statistical 

error introduced by too high a number of censored worms. Lifespan data were analyzed by 

GraphPad Prism version 8.2.1 for Windows, GraphPad Software, San Diego, California USA, 

www.graphpad.com to generate lifespan curves and by the Online Application for Survival 

Analysis 2 (OASIS 2) [62] for Kaplan-Meier estimator statistics.   

 

3.6: Cadmium Sensitivity Assays 

 A second endpoint used in my studies was the cadmium survival of a population of 

worms, where survival is determined by the age of a population under cadmium conditions. 

Cadmium sensitivity assays were performed nearly identically to lifespan assays [61], with one 

key difference where worms are moved to cadmium containing agar plates after reaching 

adulthood. N2 worms were bleach synchronized, allowed to grow for 48 hours on 10 cm NGM 

plates containing 1 mM IPTG and 0.05 mg/mL carbenicillin seeded with EV bacteria, then 

moved to similar 6 cm plates seeded with the appropriate RNAi bacteria, just as in lifespan 

assays. However, after 48 hours on RNAi knockdown conditions, worms were moved once again 

to 6 cm plates containing 300 μM cadmium chloride and seeded with 500 μL of the appropriate 

RNAi E. coli. After this transfer, cadmium sensitivity assays are carried out identically to 
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lifespan assays, however they are much shorter in duration and require no transfer to new plates 

due to toxicity caused by cadmium exposure.  

 Further on in this research, cadmium sensitivity assays were performed that included the 

slow-growing ifg-1 mutant strain (Table 3.1). To account for the slower rate of development, ifg-

1 worms were allowed to grow for 72 hours on EV bacteria seeded plates before moving to 6 cm  

RNAi seeded plates; if left to grow for only 48 hours as N2 worms were, they would be moved 

to cadmium conditions while they are too young. Exposure to cadmium at a young age can result 

in the halting of growth and death at a younger age in C. elegans, so an extra 24 hours growth on 

EV food was necessary to avoid these issues. Cadmium sensitivity data was analyzed in the same 

manner as described above using GraphPad and OASIS2.  

 

3.7: RNA Extraction 

N2 and ifg-1 mutant worms were bleach synchronized and allowed to grow for 48 hours 

on EV bacteria. After 48 hours, the populations were moved to plates that either did or did not 

contain 300 μM cadmium, seeded with the same bacteria (total of four replicates per condition). 

After 24 hours of cadmium exposure, worms were then washed off their plates using M9 

containing 1% LB, which prevented the worms from sticking to the plastic tubes or pipette tips. 

Worms were rinsed three times in M9 with 1% LB, then transferred to 1.5 mL microcentrifuge 

tubes (approximately 2,000 worms per tube) and all supernatant was removed. After this, 300 μL 

of ice-chilled lysis buffer from the Invitrogen™ PureLink™ RNA Mini Kit containing 1% β-

mercaptoethanol was added to each sample and immediately sonicated for 15 seconds twice, 

with a brief incubation period on ice between homogenizations to prevent heat denaturation of 

RNA. Samples were checked under the microscope after the second homogenization to ensure 

full degradation of worms. The sonicator and area was cleaned with RNAse away solution and 

70% ethanol between conditions to ensure no cross-contamination of samples. 

RNA was then extracted from the homogenized samples via the Invitrogen™ PureLink™ 

RNA Mini Kit. To determine the quality of the extracted RNA, samples were separated and 

visualized on a 2% agarose gel (120 volts, 30 minutes) using SYBR green I nucleic acid gel stain 

(Thermo Fisher). Wells that contained two distinct bands at 5,000 bp and 2,000 bp 
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(corresponding to 28S and 18S, the two constituents of the ribosome) were considered successes, 

and wells that did not were considered failures and RNA extraction was performed again.  

DNAse treatment was then performed using DNAse I, RNAse Free (Thermo Fischer 

Scientific). A maximum of 1 μg normalized RNA was added to a 200 μL PCR tube (up to 8 μL), 

as well as: 1 μL buffer; 1 μL DNAse enzyme; and RNAse free water up to 10 μL. Tubes were 

mixed thoroughly and centrifuged briefly, then incubated for 30 minutes at 37˚C in the ProFlex 

PCR System (Applied Biosystems). At this point, 1 μL of 50mM ethylenediaminetetraacetic acid 

(EDTA) was added, and samples were then incubated for an additional 10 minutes at 65˚C. At 

this point, DNAse treatment had been completed, and cDNA conversion was immediately 

performed. 

cDNA conversion was performed using MultiScribeTM reverse transcriptase (Applied 

Biosystems). To each reaction tube, 5 μL of DNAse treated RNA was added, as well as the 

following: 1 μL buffer; 0.4 μL dNTP mix; 1 μL random primers; 0.5 μL MultiScribe reverse 

transcriptase; and 2.1 μL RNAse free water. Samples were centrifuged briefly and spun down, 

loaded into a ProFlex PCR System (Applied Biosystems), and incubated at the following 

settings: 10 minutes at 25˚C; 120 minutes at 37˚C; and 5 minutes at 85˚C. After incubation was 

complete, 90 μL of RNAse free water was added to each tube. After cDNA was synthesized, gel-

based PCR was performed to determine the splicing pattern of ret-1.  

 

3.8: Gel-Based PCR 

Gel-based PCR was used as a method of validating endogenous RNA splicing or to 

genotype worm mutations.  In each 200 μL PCR tube, the following was added: 1 μL sample 

DNA; 0.2 μL dNTP; 1 μL primer mix (10 μL forward primer, 10 μL reverse primer, 180 μL 

RNAse free water); 0.05 μL Dream Taq polymerase; and 6.75 μL RNAse free water. Tubes were 

thoroughly vortexed then centrifuged briefly before being loaded into a ProFlex PCR System and 

incubated with the following PCR method: 1 minute at 95˚C; 30 seconds at 95˚C; 30 seconds at 

60˚C; 1 minute at 72˚C; 10 minutes at 72˚C. Generally, 30-35 cycle settings were used to 

amplify the PCR product. Once complete, 3 μL of 6X DNA loading dye (Thermo Fisher 

Scientific) spiked with SYBR nucleic acid I gel stain (Thermo Fisher Scientific) was added and 

all 13 μL of sample was separated on a 2% agarose gel for 45 minutes at 100V using a PowerPac 
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Basic electrophoresis chamber (Bio-Rad). Gels were imaged using a ChemiDoc MP Imaging 

System (Bio-Rad).  

3.9: qPCR 

qPCR was performed using PowerUpTM SYBRTM Green (Thermo Fisher Scientific) to 

confirm that cadmium exposure experiments induced toxicity by measuring the expression of 

known cadmium-inducible genes: cdr-1, numr-1, hsp16.49, and rpl-2 was used as a 

housekeeping gene. In each well in use in a MicroAmp Fast Optical 96-Well Reaction Plate with 

Barcode (0.1mL) (Applied Biosystems), the following was added: 2 μL sample cDNA; 5 μL 

PowerUpTM SYBRTM Green; 1 μL Primer mix (10 μL forward primer, 10 μL reverse primer, 180 

μL RNAse free water); and 2 μL RNAse free water. Plates were then sealed with an optical 

adhesive cover (Applied Biosystems) ensuring a complete tight seal around each well, before 

tapping gently against the countertop and centrifuging briefly. The microplate was then placed 

into a QuantStudio 3 qPCR machine (Applied Biosystems), where a Comparative CT experiment 

was set up with the chemistry type of SYBR green reagents. The following method was then ran 

with the correct plate layout and ROX as the passive reference: hold stage: 50˚C for 2 minutes, 

95˚C for 10 minutes; PCR stage: 95˚C for 15 seconds, 60˚C for 1 minute repeated 40 times; melt 

curve stage: 95˚C for 15 seconds, 60˚C for 1 minute, and 95˚C for 15 seconds. 

 

3.10: RNA-sequencing 

RNA was extracted from the following conditions and sent of RNA-sequencing analysis 

to characterize their transcriptomes: 1) N2 + control, 2) N2 + cadmium, 3) ifg-1 + control, and 4) 

ifg-1 + cadmium. Three replicate RNA samples for each experimental condition were shipped on 

dry ice to Novogene where the sequencing was experiments were performed. When RNA was 

received at Novogene, a poly-A enriched cDNA library was constructed from the total RNA 

followed by next generation sequencing. Once sequencing was complete, bioinformatics analysis 

took place. Between each step, a unique quality control check took place to ensure high quality 

samples and results. Genes that were differentially expressed and alternatively spliced were 

analyzed and compared between the four conditions listed. More detail about the steps of RNA-

seq can be seen in Appendix A.  
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3.11: C. elegans imaging 

 To image C. elegans, two methods can take place. First, animals were imaged while on 

their source plate by placing the plate under an Olympus SZX2-ILLB fluorescent microscope 

and imaged using the QImaging Retiga R3 (Cairn Research Ltd) camera. To obtain higher 

quality images of multiple aligned worms, worm mounting was required. To do this, a drop of 

liquid 2% agarose was placed on a microscope slide and another microscope slide was 

immediately placed on top to press the drop and create a flat surface. After a brief cooling period 

(~2 minutes), the top microscope slide was removed and 10 μL of 2% sodium azide dissolved 

water was placed on the agarose platform to anesthetize the worms. Generally, 8-10 animals 

were mounted on a single slide for imaging with a QImaging Retiga R3 (Cairn Research Ltd) 

attached to a ZEISS Axio Vert.A1 Microscope (Zeiss). 

  

3.12: Statistical analysis 

 Strength of fluorescence and size of worm was determined qualitatively for RNAi 

screens. Functions of genes were clustered by The Database for Annotation, Visualization and 

Integrated Discovery (DAVID) Bioinformatics Database (Version 6.7) [65], [66]. For lifespan 

and cadmium sensitivity assays, survival curves were generated via GraphPad Prism version 

8.2.1 for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com and 

quantitative data was determined by log-rank tests via the OASIS online tool [62]. Changes in 

lifespan or survival were compared to each other qualitatively via the average lifespan or 

survival to determine differences in lifespan. Student’s t-test was used to compare one 

independent variable; however, one-way ANOVA was used to compare qPCR data. Two-way 

ANOVA was used to compare two independent variables. The Student’s t-test and ANOVAs 

were all performed via GraphPad Prism version 8.2.1 for Windows. Pearson’s correlations were 

determined via GraphPad Prism version 8.2.1 for Windows. All experiments were performed in 

triplicate unless otherwise stated. Across all experiments, * indicates P < 0.01, ** indicates P < 

0.001, *** indicates P < 0.0001, and **** indicates P < 0.00001. 
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4. Results 

4.1: RNA splicing is protected via translation suppression 

In order to determine the effect of single-gene knock-down on the RNA splicing 

mechanism in C. elegans, a genome-wide RNA interference (RNAi) screen was performed 

(adapted from [60]). This is accomplished by using an in vivo RNA splicing strain (KH2235, 

Materials and Methods Table 3.1) which expresses a dual fluorescent reporter tagged to two 

spliced variants of a C. elegans gene called ret-1. In brief, this splicing reporter can be used to 

detect exon skipping that results in the decrease in GFP fluorescence but increase in mCherry 

fluorescence (Figure 4.1A). This is accomplished by +1 or +2 nucleotide insertions to exon 5 and 

6 of the ret-1 gene that dictates the downstream fluorescent protein reading frame. It was 

previously shown that exposure of this splicing reporter to the heavy metal cadmium completely 

suppress GFP fluorescence and inhibits RNA splicing [14], indicating the usefulness of cadmium 

as a compound to study mechanisms of stress-induced RNA splicing inhibition. 

The workflow of the RNAi screen is shown in Figure 4.1B, where a simplified overview 

is depicted. The goal of the screen is to identify genes that when knocked down by RNAi can 

provide resistance against cadmium-induced RNA splicing disruption. A total of 137 hits were 

recovered by the primary RNAi screen, this number was narrowed down to a total of 64 unique 

genes after a secondary screen of the 137 initial hits in triplicates. The discrepancy in this 

number can be attributed to a few factors: repeated identical genes that were present in multiple 

wells in the RNAi screen as a form of quality control (4 wells); wells of bacterial stock that did 

not have an annotated gene associated with them or the gene was unknown (13 wells); wells of 

bacterial stock that would not re-grow a population of bacteria in the secondary screen (1 well); 

or genes that did not reproduce fluorescence when knocked down in the secondary screen, thus 

being deemed as false positives (55 wells). Only the 64 genes confirmed by the secondary RNAi 

screen were used for further research due to the unknown or unstable outcomes produced by the 

other 73 wells. Out of the 64 genes identified, a stunning 42 of them are genes with known 

functions related to protein synthesis, and 30 of the genes encode for constituents of the 

ribosome. The remaining 22 genes related to protein synthesis include those functioning as tRNA 

synthetases, elongation factors, and initiation factors. These data are summarized in Figure 4.1C 
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and Figure 4.1E, where the functions of the genes of interest are categorized, or in Appendix B 

where the functions and ontology of these genes are described in greater detail.  

Data was also collected on the relative strength of fluorescence and on the developmental 

stage of C. elegans after knockdown and cadmium exposure for the 64 genes identified; these 

data are summarized in Appendix B. The 64 genes of interest were further categorized for their 

relative effect on protection against cadmium-induced decrease in GFP signal. In populations 

where the gene knock-down caused a slight protection of RNA splicing, a faint GFP response 

was present; whereas in populations were the gene knock-down caused near full protection of 

RNA splicing fidelity, a strong GFP signal similar to pre-cadmium exposure was present. Out of 

the 42 genes related to protein synthesis identified here, 25 produced a strong GFP fluorescence, 

12 produced a medium strength fluorescence, and 5 produced a faint fluorescence. For the 22 

genes unrelated to protein synthesis, 11 produced a strong GFP fluorescence, four produced a 

medium strength fluorescence, and six produced a faint fluorescence.  

The 64 genes identified were also queried for their effect on the growth and reproduction 

effect after the 48 hour cadmium exposure in the RNAi screen. In C. elegans, worm size is in 

direct relation to the stage of life of the worm. As such, assessing the size of the worm at a 

certain point in life can indicate how well the worm is able to grow and develop under the 

conditions specified; as a baseline, N2 wild-type worms take approximately 48 hours to reach 

egg-laying adulthood after hatching. Although the worms had 48 hours to grow before cadmium 

exposure, none of the 64 gene knockdowns of interest allowed the populations to reach egg- 

laying within the 48 hours given, and only six of the recorded 56 sizes were near adulthood. The 

rest of the recorded populations remained arrested in the L1 to L3 stage of life. This is not 

surprising given that majority of the 64 genes are considered to be involved in essential cellular 

processes (i.e. protein translation), and knockdown of these genes prohibited the proper 

development to adulthood. Overall, this RNAi screen revealed a large number of genes with 

functions related to protein synthesis, when knocked down via RNAi, lead to the protection of 

RNA splicing fidelity as evident by using an in vivo GFP reporter.  
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Figure 4.1: Genome-wide RNAi screen results 

Results of the 64 gene hits identified in the genome-wide RNAi screen. A) Simplified layout of 

the ret-1 reporter in the KH2235 strain of C. elegans depicting the construction of the two splicing 

transgenes. Single base pair additions to exon 5 and 6 are notated in blue. B) Workflow for the RNAi 

screen experiment, where L1 worms are allowed to grow to L4 for 48 hours before exposure to cadmium 

for 48 hours, when they are then scored for GFP fluorescence. C) Pie chart of the functions of the 64 

genes identified as genes of interest in the genome-wide RNAi screen. Ribosomal proteins includes 

proteins making up the structure of the large and small subunits of the C. elegans ribosome; other protein 

synthesis proteins includes splicing factors, tRNA synthetases, and other essential proteins for protein 

synthesis; motility, structure proteins include those that make up the structure or aid in motility of the 

worm; and other/unknown proteins encompasses all other proteins. Functions clustered by The Database 

for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Database (Version 6.7) 

[65], [66]. D) Representative images of seven worms from the RNAi screen from populations identified 

as “able to retain fluorescence under cadmium” compared to control worms with cadmium exposure. ifg-

1: Initiation Factor 4G (eIF4G); eif-2Bγ: Eukaryotic Initiation Factor 2Bγ; inf-1: Initiation Factor 1; eif-

1.A: Eukaryotic Initiation Factor 1.A; egl-45: Egg Laying Defective 45; eif-2β: Eukaryotic Initiation 

Factor 2β; eif-1: Eukaryotic Initiation Factor 1. E) Major functional annotations of the 64 gene hits 

identified as determined by The Database for Annotation, Visualization and Integrated Discovery 

(DAVID) Bioinformatics Database (Version 6.7) [65], [66]. 
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4.2: Lifespan and stress resistance is enhanced via translation suppression 

 An advantage of the C. elegans model is ease of assaying effect of a gene on aging, given 

their relatively short lifespan of ~ 3 weeks. Here, I used lifespan assays as a method to study the 

effect specific single gene knockdowns had on aging. Since C. elegans are hermaphrodites, it is 

essential to separate the aging worms from their offspring. In lifespan assays, aging worms are 

checked and moved to a new agar plate every day for the first 8-10 days to ensure offspring do 

not grow and become mixed in with the population of interest. After 10 days where self-

reproduction is ceased, populations are checked every one to two days to monitor natural worm 

death. The final age of each worm in a population is then used to calculate the mean lifespan of 

the population, as well as lifespan curves that help visualize the effect on lifespan. Similarly, by 

adding cadmium to the agar plate, the stress resistance of a population of worms after gene 

knockdown can also be studied. In cadmium resistance assays, worms are first allowed to 

develop to adulthood under normal conditions and fed with RNAi before moving to identical 

RNAi plates containing a sub-lethal dose of cadmium for the rest of their lifespan.  

 A subset of twelve genes was chosen from the list of 64 based on their relation to 

translation, previous literature available, and potential for novelty; these genes and their 

functions are listed in the Figure 4.2 legend and described below. The gene list is split into two 

subsections: the first set of six genes having a role in translation and are well researched in 

previous literature; and the second set of six genes is less researched and the presently known 

functions are not directly related to translation, although more may come to light about the 

function of these genes in the future.  

 Out of the six well-researched genes that are all related to translation, ifg-1 is one of the 

most studied gene on this list and is highly regarded for its role in lifespan extension and 

regulation. The C. elegans ifg-1 gene is an ortholog of the human eukaryotic translation initiation 

factor 4 gamma 3 (EIF4G3). While predicted to have mRNA binding activity, it is known to act 

as a translation initiation factor and is necessary for the proper function of translation. Next, rpl-

7A is a constituent of the ribosome, specifically the large subunit. It is an ortholog of the human 

ribosomal protein 7A, and in C. elegans it displays calmodulin binding activity, a protein with a 

variety of roles from muscle contraction to memory. Third is rps-6, a constituent of the small 

subunit of the ribosome, and has been researched to have a role in determining adult lifespan of 
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C. elegans. Next is BMS1, an ortholog of the human ribosome biogenesis factor BMS1, and is 

predicted to have a role in ribosome production. rps-23 is another constituent of the small 

subunit of the C. elegans ribosome, indicating its role in translation. And lastly, F57B9.3 (gene 

IDs are used where gene names are not yet assigned) is an ortholog of the human eukaryotic 

translation initiation factor 4A2 (EIF4A2).  

 The second set of six genes chosen for this research have a variety of functions, most 

unrelated to translation. As well, they have very little literature done on them beyond genomic 

position mapping and basic predicted functions. Y39E4B.1 displays ATP binding activity, as 

well as H12I13.2, which also may have a hand in protein kinase activity. F47B3.6 shows activity 

with protein tyrosine phosphatase, and nhr-61 may have a role in translation with DNA binding 

transcription factor activity. F46F11.1 acts as a kinase, and lastly csp-2 has caspase binding 

activity. By choosing a variety of gene functions besides translation, I hoped to continue the 

“unbiased” efforts of this research in uncovering the link between aging and translation.  

 The lifespan assays performed here, as seen graphically via lifespan curves in Figure 4.2 

and summarized numerically via Kaplan-Meier estimation in Table 4.1, indicate that translation 

suppression has a significant influence on increasing lifespan. On average, the knockdown of 

genes associated with translation increased the lifespan of the worm relative to the EV (empty 

vector RNAi) control population, with ifg-1 or BMS1 knockdowns showing the most pronounced 

increase in lifespan. Alternatively, knockdown of the six genes with functions unrelated to 

translation resulted in either a minor change to a decrease in lifespan. While there were some 

cases when knockdown of a gene from this second category resulted in a small increase to 

lifespan, overall the suppression of translation had a much stronger positive effect on lifespan 

than the knockdown of genes unrelated to translation.  

 To determine the effects of candidate gene knock down have on stress resistance, similar 

lifespan assays were performed with worm populations on agar plates containing cadmium. The 

results of the cadmium sensitivity assays can be seen in Figures 4.3 and Table 4.2, where 

lifespan graphs and Kaplan-Meier statistics are shown respectively. While knockdown of most 

genes resulted in a minor increase in survival of the population, the genes with the largest 

increase in lifespan are all related to translation. Just as in the lifespan assay, it is seen that  
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Figure 4.2: Lifespan curves for the RNAi characterization lifespan assay 

Lifespan curves for the first trial of the 12 genes of interest, sorted by effect on lifespan compared to the 

control (EV) curve. A) The twelve genes chosen for this assay. The first half (bold) are well-characterized 

and researched prior, the second half (not bold) are novel genes with little to no prior research. Results of 

the lifespan can be seen schematically beside each gene name, where green arrows represent an increase 

in lifespan, red arrows represent a decrease in lifespan, and no arrow represents statistically insignificant 

change. B) Decreased lifespan with respect to the control population; C) Minimal change with respect to 

the control population; D) Slightly extended lifespan with respect to the control population; E) Highly 

extended lifespan with respect to the control population. Approximately 40 animals were used per 

condition per trial. Changes with respect to lifespan were categorized qualitatively. EV: wild-type; rps-6: 

ribosomal protein, small subunit 6; csp-2: caSPase-2; nhr-61: nuclear hormone receptor 61; rpl-7A: 

ribosomal protein, large subunit 7A; rps-23: ribosomal protein, small subunit 23; ifg-1: initiation factor 

4G (eIF4G); BMS1: ribosome biogenesis protein 1.  
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Table 4.1: Gene function lifespan assay statistical data 

Statistical analysis of the four trials completed for the Lifespan Assay. Data was analyzed by the Online 

Application for Survival Analysis 2 (OASIS 2) [62] using Kaplan-Meier estimator and log-rank tests. EV: 

wild-type; rps-6: ribosomal protein, small subunit 6; csp-2: caSPase-2; nhr-61: nuclear hormone receptor 

61; rpl-7A: ribosomal protein, large subunit 7A; rps-23: ribosomal protein, small subunit 23; ifg-1: 

initiation factor 4G (eIF4G); BMS1: ribosome biogenesis protein 1. 

 

Gene Name Animals tested Animals dead Animals censored Mean lifespan (Days) 

% Mean 

Lifespan p value 

Lifespan Trial 1 
      

 EV 52 32 20 18.01 ± 0.50 ~ ~ 

 ifg-1 20 20 0 24.30 ± 1.47 134.93 0.0001 

 rpl-7A 55 55 0 20.24 ± 0.36 112.38 0.0006 

 rps-6 47 45 2 15.27 ± 0.57 84.79 0.0039 

 BMS1 46 43 3 21.27 ± 0.70 118.10 0.0007 

 rps-23 70 58 12 20.60 ± 0.82 114.38 0.0169 

 F57B9.3 22 21 1 20.73 ± 1.10 115.10 0.015 

 Y39E4B.1 63 61 2 15.30 ± 0.24 84.95 5.2E-07 

 H121I3.2 75 69 6 18.49 ± 0.46 102.67 0.4239 

 F47B3.6 9 7 2 12.78 ± 0.38 70.96 0 

 nhr-61 33 32 1 19.50 ± 0.83 108.27 0.0426 

 F46F11.1 53 53 0 10.91 ± 0.18 60.58 0 

 csp-2 22 21 1 18.74 ± 0.53 104.05 0.3654 

Lifespan Trial 2 
      

   EV 21 20 1 18.79 ± 0.67 
 

~ 

 ifg-1 47 47 0 21.38 ± 0.68 113.78 0.0069 

 rpl-7A 87 84 3 19.31 ± 0.31 102.77 0.3884 

 rps-6 65 56 9 17.91 ± 0.37 95.32 0.3034 

 BMS1 30 30 0 20.87 ± 1.25 111.07 0.2852 

 rps-23 66 61 5 19.61 ± 0.60 104.36 0.2449 

 F57B9.3 26 26 0 20.77 ± 1.10 110.54 0.0858 

 Y39E4B.1 75 69 6 15.44 ± 0.25 82.17 2.7E-06 

 H121I3.2 87 81 6 17.54 ± 0.26 93.35 0.0135 

 F47B3.6 41 36 5 12.46 ± 0.17 66.31 0 

 nhr-61 23 22 1 18.80 ± 0.38 100.05 0.4144 

 F46F11.1 50 50 0 11.32 ± 0.09 60.24 0 

 csp-2 37 37 0 16.27 ± 0.45 86.59 0.0038 

Lifespan Trial 3 
      

 EV 19 13 6 15.06 ± 1.15 
 

~ 

 ifg-1 65 63 2 21.76 ± 0.83 144.49 0.000012 

 rpl-7A 47 46 1 18.03 ± 0.50 119.72 0.0162 

 rps-6 31 28 3 16.80 ± 0.54 111.55 0.5849 

 BMS1 15 14 1 17.36 ± 1.66 115.27 0.2768 
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 rps-23 65 62 3 19.90 ± 0.61 132.14 0.0002 

 F57B9.3 43 38 5 16.82 ± 0.67 111.69 0.2188 

 Y39E4B.1 50 40 10 14.29 ± 0.48 94.89 0.4704 

 H121I3.2 54 48 6 16.41 ± 0.36 108.96 0.5881 

 F47B3.6 58 47 11 12.60 ± 0.21 83.67 0.1372 

 nhr-61 44 42 2 19.43 ± 0.64 129.02 0.0012 

 F46F11.1 36 35 1 9.83 ± 0.16 65.27 1E-07 

 csp-2 22 21 1 14.04 ± 0.50 93.23 0.259 

Lifespan Trial 4 
      

 EV 32 26 6 19.87 ± 0.56 
 

~ 

 ifg-1 40 35 5 19.68 ± 0.53 99.04 0.8793 

 rps-6 67 54 13 19.23 ± 0.40 96.78 0.5266 

 BMS1 36 33 3 19.92 ± 0.57 100.25 0.429 

 F57B9.3 44 41 3 19.70 ± 0.74 99.14 0.1125 

 Y39E4B.1 22 20 2 17.25 ± 0.79 86.81 0.0091 

 F47B3.6 70 63 7 12.45 ± 0.16 62.66 0 

 nhr-61 30 27 3 19.26 ± 0.53 96.93 0.4192 

 F46F11.1 39 38 1 10.21 ± 0.21 51.38 0 
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Figure 4.3: Cadmium Sensitivity Assay  

Cadmium survival curves for the third trial of the 12 genes of interest, sorted by effect on lifespan 

compared to the control (EV) curve. A: The twelve genes chosen for this assay. The first half (bold) are 

well-characterized and researched prior, the second half (not bold) are novel genes with little to no prior 

research. Results of the lifespan can be seen schematically beside each gene name, where green arrows 

represent an increase in lifespan, red arrows represent a decrease in lifespan, and no arrow represents 

statistically insignificant change. B: Decreased lifespan with respect to the control population; C: 

Minimal change with respect to the control population; D: Extended lifespan with respect to the control 

population. Approximately 40 animals were used per condition per trial. Changes with respect to lifespan 

were categorized qualitatively. EV: wild-type; rps-6: ribosomal protein, small subunit 6; csp-2: caSPase-

2; nhr-61: nuclear hormone receptor 61; rpl-7A: ribosomal protein, large subunit 7A; rps-23: ribosomal 

protein, small subunit 23; ifg-1: initiation factor 4G (eIF4G); BMS1: ribosome biogenesis protein 1. 
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Table 4.2: Gene function cadmium sensitivity assay statistical data 

Statistical analysis of the four trials completed for the cadmium sensitivity assay. Data was analyzed by 

the Online Application for Survival Analysis 2 (OASIS 2) [62] using the Kaplan-Meier estimator and 

long-rank tests. EV: wild-type; rps-6: ribosomal protein, small subunit 6; csp-2: caSPase-2; nhr-61: 

nuclear hormone receptor 61; rpl-7A: ribosomal protein, large subunit 7A; rps-23: ribosomal protein, 

small subunit 23; ifg-1: initiation factor 4G (eIF4G); BMS1: ribosome biogenesis protein 1. 

 

Gene Name Animals tested Animals dead Animals censored Mean survival (Days) 

% Mean 

survival p value 

Survival Trial 1 
      

 EV 87 41 46 10.20 ± 0.48 ~ ~ 

 ifg-1 57 55 2 12.20 ± 0.30 119.61 0.0394 

 rpl-7A 40 36 4 13.87 ± 0.44 135.98 0.000033 

 rps-6 45 42 3 14.23± 0.37 139.51 0.000001 

 BMS1 48 44 4 10.25 ± 0.37 100.49 0.0883 

 rps-23 43 42 1 16.26 ± 0.49 159.41 0 

 F57B9.3 63 53 10 12.22 ± 0.30 119.80 0.0754 

 Y39E4B.1 68 59 9 12.53 ± 0.28 122.84 0.0044 

 H121I3.2 53 52 1 9.12 ± 0.34 89.41 0.0216 

 F47B3.6 59 53 6 10.94 ± 0.24 107.25 0.8535 

 nhr-61 54 46 8 11.28 ± 0.47 110.59 0.1997 

 F46F11.1 61 54 7 10.89 ± 0.20 106.76 0.4364 

 csp-2 59 56 3 10.85 ± 0.31 106.37 0.9719 

Survival Trial 2 
      

 EV 68 39 29 9.82 ± 0.44 ~ ~ 

 ifg-1 39 36 3 11.30 ± 0.47 115.07 0.0562 

 rpl-7A 41 41 0 11.98 ± 0.47 122.00 0.0006 

 rps-6 42 37 5 11.25 ± 0.42 114.56 0.1831 

 BMS1 46 37 9 10.16 ± 0.47 103.46 0.8452 

 rps-23 41 36 5 13.00 ± 0.51 132.38 0.0005 

 F57B9.3 41 35 6 10.98 ± 0.42 111.81 0.2728 

 Y39E4B.1 47 42 5 11.99 ± 0.37 122.10 0.0137 

 H121I3.2 55 49 6 10.10 ± 0.32 102.85 0.6382 

 F47B3.6 59 53 6 10.25 ± 0.15 104.38 0.4775 

 nhr-61 19 16 3 8.44 ± 0.59 85.95 0.0623 

 F46F11.1 40 31 9 10.67 ± 0.31 108.66 0.9914 

 csp-2 31 27 4 10.79 ± 0.50 109.88 0.7092 

Survival Trial 3 
      

 EV 73 45 28 10.86 ± 0.47 ~ ~ 

 ifg-1 65 50 15 11.75 ± 0.36 108.20 0.6947 

 rpl-7A 51 45 6 12.29 ± 0.32 113.17 0.9334 

 rps-6 36 32 4 10.50 ± 0.55 96.69 0.0978 

 BMS1 66 42 24 10.75 ± 0.41 98.99 0.4776 
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 rps-23 59 34 25 12.58 ± 0.42 115.84 0.0913 

 F57B9.3 51 44 7 10.64 ± 0.28 97.97 0.0011 

 Y39E4B.1 29 24 5 9.56 ± 0.62 88.03 0.0316 

 H121I3.2 54 48 6 9.89 ± 0.54 91.07 0.004 

 F47B3.6 55 53 2 9.47 ± 0.32 87.20 0.000024 

 nhr-61 30 14 16 12.13 ± 0.54 111.69 0.1886 

 F46F11.1 59 51 8 9.34 ± 0.26 86.00 2.5E-06 

 csp-2 49 37 12 9.65 ± 0.43 88.86 0.0087 

Survival Trial 4 
      

 EV 60 25 35 10.31 ± 0.59 ~ ~ 

 Y39E4B.1 26 17 9 11.18 ± 0.54 108.44 0.6625 

 nhr-61 56 28 28 10.06 ± 0.66 97.58 0.9617 
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suppression of translation via knockdown of a single gene related to protein synthesis causes an 

increase in survival of a population of C. elegans under cadmium stress, while knockdown of 

genes unrelated to translation had little effect on the cadmium sensitivity assay. Overall, results 

here show that suppression of translation is sufficient for lifespan extension as well as for 

protection against environmental stresses that affect RNA splicing, such as cadmium.  

 

4.3: Obtaining a C. elegans strain with mutation to ifg-1  

I then sought to obtain a stable strain of C. elegans carrying an ifg-1 mutation, thus eliminating 

the need for RNAi knockdown E. coli feeding before each experiment, which is known to 

produce variabilities across animals and between experiments. Working with a stable mutant 

strain is also advantageous as RNAi can be used in conjunction, which permits studying potential 

epistatic relationship between two genes. The ifg-1 mutant was chosen as it was the only gene 

with a viable mutant with defect in translation from list of 64 genes obtained from the genome-

wide RNAi screen. To start, I obtained the KX54 strain from the CGC that was initially created 

by Dr. Brett Keiper’s lab at East Carolina University (Table 3.1, Materials and Methods). The 

ifg-1 transcript reading frame in the KX54 strain is disrupted by a Mos transposon insertion that 

results in premature termination of the mRNA transcript, as depicted in Figure 4.4A. This strain 

came with the desired ifg-1 mutation, however it also came with a secondary transgenes 

expressing CED-1 protein tagged to GFP that is unrelated to my study. Before research could be 

done with this strain, this unrelated GFP tag must be removed. To achieve this, I performed 

genetic crosses between KX54 hermaphrodites and wild-type N2 males to remove the CED-

1::GFP transgenes while still retaining the ifg-1 mutation. In this cross, a single F1 

hermaphrodite offspring are selected that are heterozygous for the ifg-1 mutation (ifg-1/wildtype) 

and the CED-1::GFP transgene (GFP/no-GFP). Given that the ifg-1 mutation and CED-1::GFP 

are not linked they will segregate independently, and the odds of recovering a (ifg-1/ifg-1 ; no-

GFP/no-GFP) is 1 in 16 (1 in 4 chance of each mutation). 30 F2 offspring were singled onto 

individual plates and allowed to lay F3 progenies, after which the F2 hermaphrodite is removed 

from the plate and used to perform single worm genotype PCR. A triple primer strategy is used 

to genotype for the homozygous ifg-1 mutation (Figure 4.4A) with an expected band size of 453 

bp for ifg-1 mutation and 353 bp for wildtype. Out of these 30 F2 offspring, only three were 
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found to have the desired homozygous ifg-1 mutation as indicated by the larger band product of 

454 bp shown in Figure 4.4B. Plate 21 was chosen out of these three based on the health of the 

population, and this population was then deemed the ifg-1 mutant strain and used for all further 

experiments that include the ifg-1 mutant strain in this research. 

 

4.4: ifg-1 lifespan regulation closely linked to RNA splicing 

 In order to determine the effect of ifg-1 knockdown and cadmium exposure on a 

transcriptome level, RNA extraction and next generation RNA sequencing was performed on N2 

and ifg-1 mutants with and without cadmium exposure. This allowed for an understanding of the 

global effect of ifg-1 knockdown on gene expression and RNA splicing/mis-splicing with and 

without cadmium exposure. To start, L4 stage N2 or ifg-1 mutants were moved to plates with or 

without 300 μM cadmium chloride, as illustrated in Figure 4.5A. After a 24 hour exposure 

period, RNA was extracted via sonication and by following the Invitrogen™ PureLink™ RNA 

Mini Kit manual. This resulted in a small amount of concentrated RNA extracted from a large 

population of worms. After normalizing all samples to 120 ng/µl, samples were ran on a 2% 

agarose gel as a method of checking RNA integrity; the results of this gel can be seen in Figure 

4.5B, where it is seen that all 16 samples (four replicates per condition) produced the intact 18S 

and 28S ribosomal RNA. If samples had been degraded, the gel would have produced a “smear” 

of RNA in each well instead of distinct bands. Before an aliquot of the 16 RNA samples were  

sent to Novogene for RNA-sequencing, two PCR assays were performed first to ensure the 

samples were accurately prepared. Prior to PCR, samples were treated with DNAse to remove 

any DNA in each sample, then converted to cDNA for further use. First, gel-based PCR was 

performed to measure RNA splicing of the endogenous ret-1 gene to confirm the changes in GFP 

pattern from the KH2235 worms used in the genome-wide RNAi screen. The ret-1 primer binds 

to exon 4 and 6 and produces two PCR products with the small product indicating the exon 

skipped isoform. PCR was performed using primers for the ret-1 gene to confirm the proper 

amount of skipped vs unskipped ret-1 was present in each sample; these data can be seen in 

Figure 4.5C and quantified in Figure 4.5D. Exposure to cadmium significantly increased the  
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Figure 4.4: KX54 x N2 genetic cross  

A) Diagram of the ifg-1 mutant strain used in this study, where the upper sequence represents the wild-

type ifg-1 gene and the lower sequence represents the loss-of-function ifg-1 strain. The insertion of a Mos 

transposon disrupt the reading frame of ifg-1. Expected PCR amplicon sizes are represented in red, and 

primers and direction are represented with black arrows. Figure adapted from [59]. B) Gel electrophoresis 

of the 30 F2 offspring after single worm lysis and PCR, where the first 28 lane correspond to the 28 plates 

used in this experiment, followed by one lane of KX54 worms and one lane of N2 worms as controls. A 

2% gel was separated for 45 minutes at 100V on a PowerPac Basic electrophoresis chamber (Bio-Rad). 

Gels were imaged using a ChemiDoc MP Imaging System (Bio-Rad). 
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Figure 4.5: RNA Extraction of ifg-1 mutants on cadmium 

Results from the RNA extraction of ifg-1 and N2 worms exposed to cadmium, including extraction and 

quality control. A) Simplified workflow of the RNA extraction; N2 (black) and ifg-1 mutant (blue) worms 

are grown to the L4 stage, then half of each population is exposed to cadmium. After an additional 24 

hours, RNA was extracted from the animals. B) Agarose gel results of the quality control check post-

RNA extraction. Lane 1: 1 kb ladder; lanes 2-5: N2 control; lane 6-8: N2 cadmium, lane 9-12: ifg-1 

control; lane 13-16: ifg-1 cadmium.  The expected banding pattern included two distinct bands at 5,000 

and 2,000, and an unsuccessful RNA extraction would be indicated by a “smear” of RNA in the lane 

instead. A 2% gel was ran for 30 minutes at 120V on a PowerPac Basic electrophoresis chamber (Bio-

Rad). Gels were imaged using a ChemiDoc MP Imaging System (Bio-Rad). C) Figure depicting the 

sequence of each band in an agarose gel of KH2235 worms, with a corresponding agarose gel beside. 

Each four lanes is a repeating sequence of: N2 control, N2 cadmium, ifg-1 control, and ifg-1 cadmium. 

Four replicates of each condition is shown. A 2% gel was ran for 30 minutes at 120V on a PowerPac 

Basic electrophoresis chamber (Bio-Rad). Gels were imaged using a ChemiDoc MP Imaging System 

(Bio-Rad). D) Graph of relative band intensity of each of the samples analyzed in the gel in Figure 4.5C, 

where the X axis represents each sample and the Y axis represents the percent of skipped/full ratio of the 

ret-1 reporter gene. One-way ANOVA was used for significance testing. *** indicates P < 0.001.  E) 

qPCR results of the N2 and ifg-1 populations with and without cadmium exposure against three cadmium 

response genes: cdr-1, numr-1, and hsp-16.49. **** indicates P < 0.0001, ** indicates P < 0.01. Four 

replicates were used, with each replicate having a sample size of 200 to 300 worms. Statistical analysis is 

available in Appendix C. 
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proportion of the skipped ret-1 isoform, and this increase in exon skipping is not observed in the 

ifg-1 mutant, consistent with the retention of GFP signals observed in the RNAi screen.  

Next, qPCR was performed on the converted cDNA to confirm the response to cadmium 

under each condition through the use of three known cadmium response genes: cadmium 

responsive 1 (cdr-1); nuclear localized metal responsive 1 (numr-1); and heat shock protein 

16.49 (hsp-16.49). Alongside these response genes we tested the “housekeeping gene” ribosomal 

protein large subunit 2 (rpl-2), whose expression does not change due to cadmium exposure; this 

gene acts as a control for the qPCR and allows us to see background variance between samples 

that is not due to cadmium exposure. As seen graphically in Figure 4.5E and statistically via two-

way ANOVA in Appendix C, a significant change between the expression of cdr-1 in N2 worms 

exposed to cadmium was seen, but the expression of this gene was drastically reduced in ifg-1 

knockdown worms exposed to cadmium due to ifg-1 protecting against cadmium based stresses. 

For numr-1 expression, there was a significant difference between control worms and worms 

exposed to cadmium, however no difference between N2 and ifg-1 knockdown worms was 

observed. And for hsp-16.49, no significant differences were observed between any conditions.  

 Samples were sent to Novogene where a poly-A tail enriched library were prepared and 

sequenced followed by bioinformatics analysis (Appendix A). Once data was obtained, I was 

able to fully appreciate the genome-wide effects that ifg-1 knockdown had on cadmium exposed 

worms. Firstly, it was seen that ifg-1 loss of function worms upregulates over 80 genes known to 

regulate RNA splicing, and is able to moderately retain upregulation after cadmium exposure 

The heatmap featured in Figure 4.6A, which compares the expression of genes against wild-type 

N2 worms without cadmium, shows that an assortment of RNA splicing genes are moderately 

upregulated in ifg-1 mutants as well as in ifg-1 mutants exposed to cadmium, albeit less so than 

in the non-cadmium ifg-1 population. Next, the data also elucidated that ifg-1 loss of function 

reduces the amount of cadmium-induced alternative splicing events by ~50%. These data are 

presented in Figure 4.6B, which breaks down the total significant AS events per strain (N2 in 

black, ifg-1 mutants in blue) into the five main categories: exon skipping, mutually exclusive 

exons, alternative 5’ or 3’ splice site, or intron retention. While specific variances between N2 

and ifg-1 are seen in each category (AS type, upregulation or downregulation), the total amount 

of significant events decreases by half when comparing N2 to ifg-1 mutants. The relationship 
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between alternative splicing and the conditions studied can also be seen in Figure 4.6C, which 

plots the alternative splicing of each isoform of a gene for N2 worms exposed to cadmium 

against ifg-1 worms exposed to cadmium. It can be seen that there is a negative and significant 

correlative relationship (-0.37) between the alternative splicing of an isoform between the 

wildtype N2 strain and the ifg-1 mutant after cadmium exposure. When assessing individual 

alternative splicing events, it revealed that a negative correlation existed for exon skipping, 

intron retention, and mutually exclusive exon events, but not 5’ or 3’ alternative splice site 

events. (Figure 4.6D). A graphical illustration of IncLevel is shown in Figure 4.6E, where 

IncLevel is equal to the amount of the isoform of interest divided by the total amount of both 

isoforms; this allows for a normalized comparison between isoforms (Figure 4.6E).  

I also sought out to understand the differences in global gene expression changes between 

ifg-1 and N2 worms exposed to cadmium through this RNA-seq. I first confirmed that the ifg-1 

loss of function strain had decrease in ifg-1 mRNA levels (57%), suggesting that this is a partial 

loss of function mutant (Figure 4.7A). I then sought out to characterize the functional categories 

of genes that had a significant change in expression in the ifg-1 mutant. Interestingly, genes that 

were upregulated in the ifg-1 mutant were highly involved in xenobiotic detoxification (Figure 

4.7B), which are also upregulated in wildtype worms exposed to cadmium. Using clustering 

analysis, I found that N2 worms exposed to cadmium had a striking similarity to ifg-1 mutants 

not exposed to cadmium in terms of gene expressional changes. These data can be seen in Figure 

4.7C, where blue represents upregulation of a gene with respect to the N2 control population and 

yellow represents downregulation. In summary, I found that exposure to cadmium with  

suppression of ifg-1 results in enhanced RNA splicing via the reduction of AS events in C. 

elegans. As well, I noticed that gene expression changes of wild type worms exposed to 

cadmium closely mirrored ifg-1 knockdown worms, indicating that loss of translational capacity 

may mimic a state of stress in these ifg-1 mutant worms.  

 

4.5: RNA splicing is required for ifg-1’s long-lived phenotype  

Given that my results indicate that ifg-1 mutants exhibit a different alternative splicing 

profile, I next tested whether genes that regulate core RNA splicing functions are required for 

ifg-1’s known long-lived phenotype. This lifespan assay was done with the intent to uncover  
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Figure 4.6: Effect of ifg-1 knockdown on alternative splicing in cadmium exposed C. elegans 

Analysis of data collected from the RNA-seq performed by Novogene. A) Differential expression of 

genes related to RNA splicing in ifg-1, N2 cadmium, and ifg-1 cadmium populations normalized to the 

N2 control population. Yellow indicates a decrease in expression, while blue indicates an increase in 

expression. B) Alternative splicing events in N2 (black) and ifg-1 mutant (blue) worms after cadmium 

exposure. Events are categorized by AS event type and by either increase (IncLevel Difference > 0) or 

decrease (IncLevel Difference < 0) in expression. FDR < 0.05 indicates events are significantly different. 

FDR: false discovery rate. C) Isoform expression of significantly differentially expressed genes plotted on 

an XY graph, where X is the IncLevel of N2 control worms subtracted from the IncLevel of N2 cadmium 

worms, and Y is the IncLevel of N2 cadmium worms subtracted from the IncLevel of ifg-1 cadmium 

worms. Each point on the graph represents a significant alternatively spliced gene, and its position on the 

graph is related to the IncLevel different of that isoform in N2 cadmium or ifg-1 cadmium exposed 

populations. D) Visual representation of how IncLevel is calculated using the expression of each isoform, 

with exon skipping as an example AS event.  
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Figure 4.7: Effect of ifg-1 knockdown on gene expression in cadmium exposed C. elegans 

Analysis of data collected from the RNA-seq performed by Novogene. A) Bar graph representing 

the change in expression of ifg-1 between N2 (white) and ifg-1 (blue) worms, where Y is the FPKM of 

ifg-1 mRNA. A decrease of 57% is seen in ifg-1 worms when compared to N2 worms. *** indicates a 

highly significant difference between two samples as determined by Student’s t-test P<0.0001. FPKM = 

Fragments Per Kilobase of transcript per Million mapped reads. B) Enrichment analysis of genes 

significantly upregulated (blue) or downregulated (yellow) in ifg-1 worms compared to N2 worms 

exposed to cadmium. FDR: false discovery rate. C) Expression level changes when compared to N2 

worms not exposed to cadmium for all significant genes between N2 worms exposed to cadmium and ifg-

1 worms not exposed to cadmium. Fold change is compared to the N2 control population. Yellow 

indicates a decrease in expression, while blue indicates an increase. 
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which genes are required by ifg-1 for lifespan regulation by researching ifg-1’s interaction with a 

series of known RNA splicing regulating genes. To do this, ifg-1 mutants were fed RNAi 

knockdown E. coli targeting a RNA splicing regulator gene of interest, resulting in an ifg-1 

mutant population with a compromised spliceosome. If a gene is required by ifg-1 for lifespan 

regulation, I would expect a decrease in ifg-1 lifespan after the RNAi knockdown.  

The seven genes chosen are all well known genes in literature that play a role in RNA 

splicing. snr-1 and snr-2, small nuclear riboproteins, are both essential for RNA splicing. uaf-2 

enables binding of pre-mRNA at the 3’ splice site, while sfa-1 is involved in AS and branch 

point splicing. Lastly, rsp-2, hrpf-1, and hrp-2 are all predicted to enable RNA binding activity. 

While all seven genes are tested against EV control worms for the lifespan assay, only five (snr-

1, snr-2, sfa-1, uaf-2, rsp-2) are used in the cadmium sensitivity assay. This decision was due to 

learning that the population of RNAi E. coli targeting for hrp-2 and hrpf-1 was determined to 

actually be targeting a different gene entirely. This was suspected during the lifespan assay and 

confirmed before the cadmium sensitivity assays began via sequencing the dsRNA plasmids for 

hrp-2 and hrpf-1 bacteria which revealed that they both encoded for a different gene. For this 

reason, data collected on hrp-2 and hrpf-1 during the lifespan assay was not further considered, 

and is instead presented in Appendix D. The results of this lifespan, as seen graphically in Figure 

4.8 and statistically via Kaplan-Meier estimations in Table 4.3, show that four of the five gene 

knockdowns resulted in a decreased lifespan in ifg-1 mutants, with only rsp-2 showing no effect 

on ifg-1 lifespan. These lifespan changes are then categorized further by their change in lifespan 

relative to the N2 and the ifg-1 mutant fed with EV control RNAi. Knockdown of snr-1 and snr-

2 shorten the lifespan of both N2 and ifg-1 mutant, suggesting that the snr genes are universally 

required for longevity. Interestingly, knockdown of uaf-2 and sfa-1 reduced only ifg-1 mutant 

lifespan, suggesting that these two splicing factors may be directly involved in maintaining the 

unique alternative splicing pattern of the ifg-1 mutant. Knockdown of rsp-2 had no effect on 

lifespan, suggesting that this splicing factor is dispensable for longevity. 

The cadmium sensitivity assay that was performed with the same conditions but saw very little 

consistent change in survival of the ifg-1 mutant worms with any of the additional gene knocked 

down, as seen in Figure 4.9 and Table 4.4. In the N2 background, there were knockdowns that 

produced an increase in survival of up to 25% to 40% (sfa-1, uaf-2, rsp-2 in Trial 2), while the 
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knockdown  

 

Figure 4.8: ifg-1 mutant background lifespan assay 

Lifespan curves of the third trial of ifg-1 mutants with an additional splicing factor knocked down, 

categorized by lifespan extension with respect to control. A) Genes that, when knocked down, result in a 

shorter lifespan in both backgrounds (N2 and ifg-1 mutant); B) Genes that, when knocked down, result in 

a decrease in lifespan in ifg-1 mutants only; C) Genes that, when knocked down, result in either an 

increase or no change in lifespan in both backgrounds; D) Mean lifespans for each condition. 

Approximately 30 worms were used in each trial. Changes with respect to lifespan were categorized 

qualitatively. EV: wild-type worms; snr: small nuclear ribonucleoprotein; uaf-2: U2AF splicing factor; 

sfa-1: splicing factor 1; rsp-2: SR protein. 
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Table 4.3: ifg-1 mutant background lifespan assay statistical data 

Statistical analysis of the five trials completed for the lifespan assay involving ifg-1 mutants with an 

additional splicing factor knockdown. Data was analyzed by the Online Application for Survival Analysis 

2 (OASIS 2) [62] using the Kaplan-Meier estimator and log-rank tests. EV: wild-type worms; snr: small 

nuclear ribonucleoprotein; uaf-2: U2AF splicing factor; sfa-1: splicing factor 1; rsp-2: SR protein. 

Gene Name Animals tested Animals dead Animals censored Mean lifespan (Days) % Mean Lifespan p value 

Lifespan Trial 1 
      

 N2/EV 48 34 14 21.34 ± 0.65 ~ ~ 

 N2/snr-1 34 31 3 15.81 ± 0.68 74.09 0.0000016 

 N2/snr-2 50 41 9 18.36 ± 0.74 86.04 0.0093 

 N2/sfa-1 30 26 4 21.81 ± 0.86 102.20 0.2647 

N2/uaf-2 56 49 7 19.61 ± 0.64 91.89 0.0786 

N2/rsp-2 23 19 4 21.57 ± 0.82 101.08 0.5776 

ifg-1/EV 27 23 4 22.21 ± 1.83 104.08 ~ 

ifg-1/snr-1 39 36 3 17.96 ± 0.49 80.86 0.0486 

ifg-1/snr-2 32 30 2 18.97 ± 0.72 85.41 0.1168 

ifg-1/sfa-1 43 33 10 20.37 ± 1.38 91.72 0.6155 

ifg-1/uaf-2 79 68 11 20.23 ± 0.45 91.09 0.1574 

ifg-1/rsp-2 34 28 6 24.03 ± 1.37 108.19 0.6098 

Lifespan Trial 2 
      

 N2/EV 36 33 3 19.88 ± 1.02 ~ ~ 

 N2/snr-1 28 25 3 15.9 ± 1.12 79.98 0.0498 

 N2/snr-2 33 32 1 15.63 ± 1.09 78.62 0.0193 

 N2/sfa-1 43 42 1 22.39 ± 0.76 112.63 0.2519 

N2/uaf-2 59 47 12 20.06 ± 0.68 100.91 0.7227 

N2/rsp-2 28 26 2 21.29 ± 0.92 107.09 0.7549 

ifg-1/EV 44 38 6 21.92 ± 1.18 110.26 ~ 

ifg-1/snr-1 40 37 3 17.41 ± 0.8 79.43 0.1434 

ifg-1/snr-2 33 32 1 17.21 ± 0.55 78.51 0.0186 

ifg-1/sfa-1 31 31 0 18.42 ± 1.19 84.03 0.5701 

ifg-1/uaf-2 35 30 5 18.21 ± 0.88 83.07 0.2264 

ifg-1/rsp-2 40 40 0 21.4 ± 1.16 97.63 0.1514 

Lifespan Trial 3 
      

 N2/EV 118 104 14 18.77 ± 0.39 ~ ~ 

 N2/snr-1 88 78 10 14.97 ± 0.34 79.75 0 

 N2/snr-2 56 51 5 16.34 ± 0.56 87.05 0.0013 

 N2/sfa-1 116 110 6 19.82 ± 0.40 105.59 0.051 

N2/uaf-2 26 24 2 17.71 ± 0.79 94.35 0.1746 

N2/rsp-2 59 52 7 18.95 ± 0.63 100.96 0.6116 

ifg-1/EV 125 114 11 19.62 ± 0.61 104.53 ~ 

ifg-1/snr-1 83 78 5 15.67 ± 0.29 79.87 0 

ifg-1/snr-2 51 47 4 16.74 ± 0.53 85.32 0.0011 

ifg-1/sfa-1 73 66 7 20.75 ± 1.06 105.76 0.1646 
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ifg-1/uaf-2 95 86 9 19.07 ± 0.66 97.20 0.6788 

ifg-1/rsp-2 74 68 6 21.50 ± 0.89 109.58 0.0016 

Lifespan Trial 4 
      

 N2/EV 55 47 8 20.24 ± 0.54 ~ ~ 

 N2/sfa-1 74 73 1 20.25 ± 0.80 100.05 0.3703 

N2/uaf-2 77 72 5 24.65 ± 0.73 121.79 0.0000002 

N2/rsp-2 53 43 10 23.40 ± 0.74 115.61 0.0004 

ifg-1/EV 31 26 5 19.35 ± 1.92 95.60 ~ 

ifg-1/sfa-1 19 19 0 20.95 ± 2.00 108.27 0.3155 

ifg-1/uaf-2 25 24 1 20.59 ± 2.05 106.41 0.8345 

ifg-1/rsp-2 27 26 1 21.56 ± 1.44 111.42 0.0414 
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of snr-2 in Trial 3 saw a decrease in survival of 25%. However, in the ifg-1 mutant background, 

the range of survivals was much tighter – a decrease of 16% in Trial 2 when snr-2 was knocked 

down, up to an increase of 15% when rsp-2 was knocked down in Trial 3. The knockdown of 

each gene resulted in a loss or gain of survival of approximately 10%, compared to the larger 

range of 20% to 40% for wild-type worms.  

Overall, the lifespan data confirms the hypothesis that mutation to ifg-1 protects RNA 

splicing fidelity and requires specific components of the RNA splicing machinery to exert its 

long-lived phenotype. However, RNA splicing does not seem to be required by ifg-1 for its stress 

resistance phenotype.  

 

4.6: ifg-1 signals through the SMA family of proteins  

 To understand genetic regulators that act downstream of ifg-1’s ability to enhance RNA 

splicing under stress when knocked down, I performed a second RNAi screen with a small set of 

approximately 1,000 genes of the C. elegans genome with a focus on transcription factors and 

protein kinases and phosphatases. For this RNAi screen, L1 KH2235 worms were initially fed 

ifg-1 knockdown RNAi E. coli for 48 hours to induce RNA splicing protection, before being 

exposed to a second RNAi from a sub-library of dsRNA as discussed above. After an additional 

48 hours, worms were then exposed to 300 μM cadmium and assessed for their GFP 

fluorescence. Unlike the prior RNAi screen, 99% of gene knockdowns were able to retain their 

GFP fluorescence; this was expected and is due to the first knockdown of ifg-1 resulting in 

protection of RNA splicing fidelity. While there were no genes that caused complete loss of 

fluorescence after the second RNAi knockdown, three genes (sma-2, sma-3, sma-4) were 

identified as genes that, when knocked down in an ifg-1 depleted background, caused a partial 

loss of GFP fluorescence after cadmium exposure (Figure 4.10). All three genes identified 

belong to the same sma family of genes, an ortholog of human SMAD proteins. The three genes 

displayed a varying effect on the fluorescence of the population; sma-4 had little effect while 

sma-3 had the greatest effect. 
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Figure 4.9: ifg-1 mutant background cadmium sensitivity assay 

Survival curves for the second trial of ifg-1 mutants with an additional splicing factor knocked down. A) 

Survival curves of each of the seven genes tested against the N2 and ifg-1 mutant control conditions. 

Minimal to no change in survival was seen in all knockdown conditions. B) Mean lifespans for each 

condition. Approximately 30 worms were used in each trial. Changes with respect to lifespan were 

categorized qualitatively. EV: wild-type worms; snr: small nuclear ribonucleoprotein; uaf-2: U2AF 

splicing factor; sfa-1: splicing factor 1; rsp-2: SR Protein. 
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Table 4.4: ifg-1 mutant background cadmium sensitivity assay statistical data 

Statistical analysis of the three trials completed for the cadmium sensitivity assay involving ifg-1 mutants 

with an additional splicing factor knockdown. Data was analyzed by the Online Application for Survival 

Analysis 2 (OASIS 2) [62] using the Kaplan-Meier estimator and log-rank tests. EV: wild-type worms; 

snr: small nuclear ribonucleoprotein; uaf-2: U2AF splicing factor; sfa-1: splicing factor 1; rsp-2: SR 

protein. 

Gene Name Animals tested Animals dead Animals censored Mean survival (Days) % Mean Survival p value 

Survival Trial 1 

      

 N2/EV 58 46 12 10.32 ± 0.38 ~ ~ 

 N2/snr-1 89 73 16 11.18 ± 0.22 108.33 0.3409 

 N2/snr-2 96 79 17 10.04 ± 0.22 97.29 0.2394 

 N2/sfa-1 56 46 10 10.50 ± 0.41 101.74 0.7856 

N2/uaf-2 70 57 13 11.23 ± 0.29 108.82 0.1777 

N2/rsp-2 70 59 11 12.49 ± 0.34 121.03 0.0001 

ifg-1/EV 38 26 12 9.80 ± 0.52 94.96 0.4895 

ifg-1/snr-1 48 37 11 10.76 ± 0.45 109.80 0.2434 

ifg-1/snr-2 44 31 13 9.78 ± 0.72 99.80 0.7222 

ifg-1/sfa-1 65 46 19 10.72 ± 0.42 109.39 0.1844 

ifg-1/uaf-2 35 28 7 10.69 ± 0.51 109.08 0.2585 

ifg-1/rsp-2 40 34 6 10.65 ± 0.46 108.67 0.5367 

Survival Trial 2 

      

 N2/EV 28 18 10 9.31 ± 0.66 ~ ~ 

 N2/snr-1 69 51 18 11.19 ± 0.30 120.19 0.0342 

 N2/snr-2 62 45 17 9.65 ± 0.29 103.65 0.6648 

 N2/sfa-1 42 30 12 11.97 ± 0.40 128.57 0.0007 

N2/uaf-2 49 36 13 11.88 ± 0.53 127.60 0.0042 

N2/rsp-2 41 32 9 13.02 ± 0.56 139.85 0.0001 

ifg-1/EV 76 60 16 11.42 ± 0.45 122.66 0.0271 

ifg-1/snr-1 83 67 16 11.92 ± 0.35 104.38 0.4303 

ifg-1/snr-2 98 85 13 9.61 ± 0.24 84.15 0.0001 

ifg-1/sfa-1 76 63 13 11.12 ± 0.38 97.37 0.5742 

ifg-1/uaf-2 34 26 8 12.47 ± 0.64 109.19 0.2312 

ifg-1/rsp-2 85 69 16 13.02 ± 0.49 114.01 0.0133 

Survival Trial 3 

      

 N2/EV 57 32 25 13.17 ± 0.51 ~ ~ 

 N2/snr-1 57 42 15 11.8 ± 0.28 89.60 0.0045 

 N2/snr-2 79 55 24 9.94 ± 0.23 75.47 2.20E-09 

 N2/sfa-1 65 37 28 13.73 ± 0.51 104.25 0.3828 

N2/uaf-2 57 52 5 12.74 ± 0.38 96.74 0.3798 
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N2/rsp-2 53 38 15 12.25 ± 0.52 93.01 0.3903 

ifg-1/EV 58 42 16 12.47 ± 0.57 94.68 0.4163 

ifg-1/snr-1 77 52 25 12.94 ± 0.34 103.77 0.6558 

ifg-1/snr-2 72 60 12 11.15 ± 0.28 89.41 0.0149 

ifg-1/sfa-1 58 42 16 10.72 ± 0.34 85.97 0.0084 

ifg-1/uaf-2 67 62 5 10.72 ± 0.42 85.97 0.0188 

ifg-1/rsp-2 57 41 16 11.27 ± 0.41 90.38 0.0746 



63 
 

 

Figure 4.10: Small-scale sub-library RNAi screen 

Populations of KH2235 worms with a single or double RNAi knockdown. A) Images of KH2235 worms 

with various genes knocked down via RNAi on control or cadmium conditions. Gene knockdowns are 

listed to the left of each set of images. Images were taken using a QImaging Retiga R3 (Cairn Research 

Ltd) attached to a ZEISS Axio Vert.A1 Microscope (Zeiss). B) Bar graph of GFP fluorescence of ifg-1 

knockdown worms with or without an additional gene knocked down compared to control worms, where 

the Y axis is Relative GFP fluorescence and the X axis dictates the knockdown. Grey indicates control 

conditions and red indicates cadmium conditions. ** indicates P < 0.001, *** indicates P < 0.0001. Five 

worms were used per condition.  
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4.7: SMA-2 regulates majority of ifg-1 induced genes. 

 To understand the relationship between sma genes and ifg-1, I performed meta-analysis 

of a previously published RNA-seq dataset in a sma-2 loss of function mutant sma-2(rax5) [64]. 

Surprisingly, there was a large overlap in genes that were upregulated in the ifg-1 mutant from 

our experiment but are downregulated in the sma-2(rax5) background (Figure 4.11A). The 2,899 

genes that overlapped were further analyzed cluster enrichment, which showed a significant 

enrichment of these 2,899 genes functioning in RNA metabolism including RNA transport and 

spliceosome (Figure 4.11B). As mentioned earlier, ifg-1 mutants display upregulation of many 

genes involved in RNA splicing, and the expression of the majority of the same genes are 

decreased in the sma-2(rax5) background (Figure 4.11C). Generally, genes that are differentially 

expressed in the ifg-1 mutant are regulated in the opposite direction in the sma-2(rax5) mutant as 

indicated by the negative correlation value of -0.41 (Figure 4.11D). Overall, the data here 

suggest that sma-2 acts as the transcription factor downstream of ifg-1 to exert its transcriptome 

changes. This is supported by my results in Figure 4.10 that showed knockdown of sma-2 

abolishes ifg-1’s protective effect in resisting cadmium-induced RNA splicing disruptions.  
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Figure 4.11: SMA-2 regulates ifg-1 differentially expressed genes 

A) Venn diagram showing the overlap between genes upregulated by ifg-1 mutant and downregulated by 

sma-2 mutant. B) Enrichment analysis of overlapping 2899 genes in A. NER: Nucleotide excision repair. 

C) Heatmap of RNA splicing regulatory genes upregulated in ifg-1 and their corresponding expression in 

sma-2(rax5). D) Expression of significantly differentially expressed genes plotted on an XY graph, where 

X is the gene expression level in ifg-1 and Y is the gene expression level of the same gene in sma-2(rax5). 

Each point on the graph represents a gene that is significantly altered in ifg-1, and its position on the 

graph is related to its expression in the ifg-1 and sma-2(rax5) strain.  
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5. Discussion 

5.1: Translation suppression protects RNA splicing fidelity 

 RNA splicing is catalyzed by the spliceosome via a highly conserved mechanism in 

which pre-mRNA is excised and joined together to create mature mRNA that functions as the 

final template to synthesize proteins. The spliceosome includes over a hundred proteins, but five 

are highly described in literature for their roles in the act of splicing itself. It begins when the 

snRNP U1 binds to a highly regulated splice site at the 5’ end of an intron and cleaves the strand, 

and binds this excised end to a downstream branch point to create an RNA lariat. Next, the 

snRNPs U2 and U4/U6 position the excised 5’ end with the 3’ end, followed by the snRNP U5 

excising the 3’ end at a splice site. The two excised ends are joined together by the snRNPs 

present, and the intron lariat is released for degradation. This process is repeated multiple times 

on a strand of pre-mRNA at predetermined splice sites, resulting in mature mRNA that is 

transported out of the nucleus for translation. It is essential for RNA splicing to occur rapidly and 

properly in eukaryotes for efficient translation and cell function; improper RNA splicing, known 

as RNA mis-spicing, results in inefficient translation that can lead to improper cell function. 

When RNA mis-splicing occurs, pre-mRNA can be cut at incorrect splice sites, creating an 

undesired final protein that either has an altered function or no function at all. Under normal 

conditions, this incorrect product is marked for degradation and removed by the cell via a 

process called nonsense mediated decay. However, when RNA mis-splicing becomes systemic, 

these incorrect proteins are not disposed of properly, causing protein aggregates or dangerous 

circular RNA with no end for degradation to form while the desired protein is not synthesized 

[10]. This systemic dysregulation is known to lead to disease states such as Alzheimer’s disease, 

certain cancers, early onset aging, as well as other disease states [9]. However, what is not 

known is the mechanisms behind which RNA mis-splicing occurs, and in extension, how to 

prevent it. The research performed here aims to take one step towards understanding this 

unknown.  

 To begin filling in the blanks in this grey area, a genome-wide RNAi screen was 

performed using a strain of C. elegans containing a GFP reporter to monitor in vivo RNA 

splicing. The basis for this screen is to use RNAi E. coli targeting and knocking down one gene 

at a time to determine genetic factors that protect against cadmium-induced RNA mis-splicing. 
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After screening the ~20,000 genes in the C. elegans genome, a total of 64 validated genes were 

identified as genes that protected RNA splicing when knocked down (Appendix B). Of note, a 

total of 42 genes of interest are related to protein synthesis, while the others have various 

functions (Figure 4.1). This result is quite intriguing as research on the effect of translation 

suppression on RNA splicing fidelity has not been reported, however, there’s a vast amount of 

data that supports the hypothesis of translation suppression being beneficial for the lifespan of 

various organisms [50]. While an effect on lifespan cannot be directly applied to an effect on 

RNA splicing, there is a large amount of literature supporting the hypothesis of RNA mis-

splicing leading to premature aging [37], indicating that the previous literature on protein 

synthesis and aging may be applied to protein synthesis and RNA splicing fidelity. As uncovered 

here, the suppression of protein synthesis via the knockdown of select translation-related genes is 

beneficial to the host animal’s RNA splicing fidelity under stress. Two possible explanations for 

this result arise: the first of which is that the suppression of protein synthesis results in an 

indirect protection of RNA splicing under stress; the second is translation suppression results in a 

direct protection of RNA splicing under stress. In the first case, the increase in RNA splicing 

fidelity could be explained by a reallocation of ATP from the energy-consuming process of 

translation to RNA splicing, where there is more energy available for surveillance against RNA 

mis-splicing and degrading any erroneous product. The second case implies a direct mechanism 

between translation suppression and RNA splicing protection under stress, where RNA splicing 

is protected and enhanced as a method of preventing the damage done to a cell by the loss of 

proper translation. While the first scenario is plausible due to the high amount of ATP required 

for translation, the second seems far more likely based on previous literature. The suppression of 

protein synthesis has positive effects on a whole organism, mainly seen as an increase in 

lifespan. RNA mis-splicing and AS has increasingly been suggested to be related to aging [37]; 

my research here may suggest that the increased lifespan linked through the suppression of 

protein synthesis directly involves RNA splicing regulation.  

 

5.2: Translation suppression extends lifespan and stress resistance 

 As mentioned previously, the suppression of protein synthesis leads to a highly extended 

lifespan in various organisms such as C. elegans and Drosophila. It was first proposed that 
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translation suppression may allow for an increased lifespan due to a physiological shift of a cell 

from a normal one to a stressed cell that promotes an increase in maintenance and repair [50], 

and in 2011 more data surfaced that supported this theory: suppression of genes required for 

translation resulted in an increase in translation of several stress response genes [52]. Since this 

discovery, more research has arisen on the topic that supports this theory, although the exact 

mechanism of how protein synthesis suppression signals to protect lifespan is not well known; all 

that is known is the cause and effect. In C. elegans, genetic regulators of lifespan are well-

characterized due to the extreme ease and malleability of the nematode’s genetic background 

[67]. This simple worm is highly regarded as an ideal model for studying aging and effects 

related to aging not only due to its relatively short lifespan, but also due to the high integration 

between overall health and lifespan of a worm. Understanding the effect a condition such as 

chemical exposure or gene knockdown has on the lifespan of a population of C. elegans leads to 

the inherent understanding of that condition’s effects on the whole organism.  

 One gene identified in the RNAi screen discussed in Section 5.1, ifg-1, is of particular 

interest to aging research in C. elegans. The only known ortholog of human eIF4G3 present in C. 

elegans, ifg-1 is a eukaryotic translation initiation factor playing an important role in initiation of 

translation. The two isoforms of ifg-1, a longer p170 form and a shorter p130 form, control cap-

dependant or cap-independent mRNA translation respectively, and are expressed differentially in 

the germline where each type of translation is required [68]. To control translation, an eIF4G and 

an eIF4E bind together and direct the mRNA strand to a ribosome; as such, they are the first to 

interact with an mRNA and therefore are the rate-determining factors for the efficiency of 

translation. The suppression of ifg-1 is known to cause a direct suppression of translation [51], 

making it an ideal target for researching the effect of translation suppression on lifespan and 

RNA splicing. In this research, I employed two different forms of ifg-1 suppression: RNAi 

knockdown and a mutated partial loss-of-function strain. When RNAi technology is used in this 

research, both isoforms of ifg-1 are targeted unconditionally, resulting in a higher rate of gene 

knockdown. In the ifg-1 (cxTi9279) strain, ifg-1 is mutated via the insertion of a Mos transposon 

that shifts the reading frame of ifg-1 at exon 5, resulting in the inability to translate the mRNA 

into the expected protein. The Mos transposon insertion results in the decrease of the p170 ifg-1 

isoform and impairs cap-dependent protein translation [59]. Interestingly, the ifg-1 (cxTi9279) 

has been shown to be long-lived compared to the wildtype even though the p130 isoform is 
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relatively unaffected, this suggest that partial loss-of-function to ifg-1 is sufficient to extend 

lifespan.  

In this thesis, I performed lifespan assays on twelve of the 64 genes identified in the RNAi 

screen discussed in Section 5.1 in an effort to help understand the relationship between improved 

RNA splicing fidelity under stress and lifespan. I focused on two categories of genes: first, six 

genes with previously research literature available that are related to translation; and six more 

that have little research available that are unrelated to translation. With these data, I aimed to 

pinpoint specific genes that do or do not confer the long-lived phenotype caused by translation 

suppression, as well as potentially uncover another class of uncharacterized genes that extends 

lifespan. The results of this experiment, as seen in Figure 4.2 and Table 4.1, confirm that 

translation suppression via RNAi (the first six genes listed in each figure) allows for, in general, 

an increased lifespan. The suppression of rps-6, a constituent of the small subunit of the 

ribosome, did not see the increased lifespan that the other five did; this is in direct conflict with 

previous literature, where an increase in lifespan was seen after rps-6 knockdown [50]. This 

inconsistency may be due to human error, contamination within the RNAi E. coli bacterial stock 

used, or general differences between the methodologies of the two labs. The knockdown of each 

of the other five genes related to translation all increased lifespan, with lifespans ranging from 

4% to 44% longer than worms fed with empty vector RNAi. While this data did not help to 

pinpoint specific genes that do not convey the expected long-lived phenotype, it assists in 

confirming the hypothesis of translation suppression increasing lifespan. As for the six novel 

genes unrelated to translation (the last six genes listed in each figure), lifespan extension was not 

reliably seen. Each gene had different effects, although the overall effect was null or detrimental 

to lifespan. Effect on lifespan with respect to worms fed with empty vector RNAi ranged from a 

39% decrease to an 8% increase, with one notable outlier resulting in a 29% increase in lifespan 

(nhr-61, Trial 3 in Table 4.2). While research exists to confirm the suppression of other 

mechanisms in C. elegans can help to extend lifespan, it is not surprising that the six genes 

selected here do not have an effect.  

 A cadmium sensitivity assay, which is identical to the previously discussed lifespan assay 

except for the sub-lethal dose cadmium in the agar plates, was also performed with the same 

twelve genes used in the prior lifespan assay. This was done with the intent to uncover if an 
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organism uses the selected genes identified in the RNAi screen to protect against RNA splicing 

stress on the full lifespan of a worm and not just within the 24 hour period used for the RNAi 

screen. The survival of each population under cadmium stress varied between trials more than 

seen in the lifespan assay, however an overall trend was seen towards knockdown of the first six 

genes increased survival under cadmium stress, whereas the knockdown of the other six genes 

either increased the survival under stress a small amount or had no effect/decreased survival 

under stress (Figure 4.3). Looking at individual genes, rps-23 saw the highest increase in 

survival across all trials, while H12I13.2 (predicted ATP binding activity) saw the most 

decreased survival (Table 4.2). The knockdown of ifg-1 resulted in a slight increase in survival 

during all trials, ranging from 8% to 20%. These data help confirm the theory that translation 

suppression not only helps to extend lifespan under normal conditions, but also to extend 

survival under stress. These results together show that the suppression of translation proves 

beneficial to the lifespan of a worm under both normal and environmental stress based 

conditions. 

 

5.3: ifg-1 knockdown protects RNA splicing fidelity 

 Research on the connection between RNA splicing fidelity and lifespan of an organism 

has recently seen traction, however this hypothesis is not new; abnormal splicing profiles were 

first linked to aging in 1977 in the liver of rats [36]. More recently, global genome sequencing of 

mice showed a definite increase in AS events across the whole organism with aging [39]. Since 

the mid 2010s, research on the topic has seen a sharp increase and expansion to other organisms 

such as humans, Drosophila, and C. elegans. A large amount of literature exists to assist in the 

hypothesis that RNA mis-splicing and AS events increase as an animal ages, however the 

mechanism behind this is not well understood. An understanding of this mechanism can assist in 

curing age-related diseases that currently only have treatments available for their symptoms, 

such as Alzheimer’s disease and cancer. If we can understand the cause of the AS events that 

lead to early aging and disease onset, as well as how these AS events can be avoided in healthy 

individuals, then the knowledge can be applied to treating those affected or even preventing the 

disease state entirely.  
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 In this research, I performed RNA extraction on populations of wild type and ifg-1 

mutant worms with and without cadmium exposure in an effort to understand the whole-

transcriptome effects that ifg-1 produces on worms exposed to cadmium. After RNA extraction, 

samples were sequenced by Novogene via Illumina platforms, which utilizes “sequencing by 

synthesis” where a strand is sequenced as it is synthesized. The sequences were returned 

alongside large amount of data on a wide variety of categories, including data on differential 

gene analysis and AS events for each sample. Through this, I was able to see a striking similarity 

in gene expressional changes between two unexpected populations: N2 worms exposed to 

cadmium and ifg-1 worms not exposed to cadmium (Figure 4.7C). This response was unexpected 

– wild type worms under a state of stress appearing to have a similar transcriptome profile to ifg-

1 mutants not under any external stress. While earlier studies have shown that ifg-1 mutants have 

increased in expression of select stress response genes, the data here suggest that the effect is far 

more global with systemic activation of a stress-like transcriptome state. While it is unclear why 

these similarities exist, I hypothesized that it is due to both populations being in a state of stress. 

Perhaps the stress induced by cadmium exposure and the stress caused by translation suppression 

result in similar changes to the transcriptome? Othumpangat et al. researched the effect of 

cadmium exposure on eIF4E in the human HCT15 and PLC/PR/5 cell lines, finding the same 

result proposed here: exposure to cadmium chloride resulted in ubiquitination and subsequent 

degradation of the EIF4E protein, causing suppressed translation [69]. As well, Wang et al. 

researched a similar effect in C. elegans, coming to a similar conclusion [70]. These data help to 

assist in my theory that exposure to cadmium results in a similar transcriptome change to ifg-1 

mutant worms due to the suppressed translation caused by IFE-3 (the C. elegans homolog of 

eIF4E) degradation. In this same analysis, I also found an upregulation of genes that function in 

RNA splicing in the ifg-1 mutants (Figure 4.6A). This figure shows the highest levels of 

upregulation are present in ifg-1 worms not exposed to cadmium, but there is still a significant 

upregulation in ifg-1 worms exposed to cadmium, whereas the N2 worms exposed to cadmium 

have little to no upregulation at all. This discovery helps support the hypothesis that translation 

suppression and RNA splicing protection are linked, and even uncovers which specific genes are 

upregulated to compensate for the RNA splicing disruption caused by cadmium stress.  

 Next, I analyzed the effects of each of these conditions on the AS profiles produced. Data 

was available on isoform expression for the five categories of AS events; exon skipping, 
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mutually exclusive exons, alternative 3’ or 5’ splice site, or intron retention. In the N2 worms 

exposed to cadmium, there was a highly significant amount of AS events in all five categories, 

this is consistent with previously published data [14]. What I found in regards to ifg-1 mutants 

exposed to cadmium was a statistically significant decrease in AS when compared to wild type 

worms under identical conditions – by 50%, on average (Figure 4.6B). While these numbers 

varied per category of AS, there is a clear pattern present: the suppression of translation through 

an ifg-1 mutation results in the protection of RNA splicing and therefore the reduction of AS 

events upon stress exposure. Overall, there was a negative correlation between N2 and ifg-1 

worms both exposed to cadmium, meaning an increase of an isoform in one population was 

matched by a decrease of that isoform in the other population (Figure 4.6C). There was a 

significant negative correlative effect seen in the exon skipping category only (Figure 4.6D), 

likely due to it being the largest category of AS events, allowing for the highest statistical 

significance. The enormous amount of exon skipping events in relation to the other four types of 

events combined likely influenced the overall trend to be negative, even though some other 

categories displayed positive trends (alternative 5’ and 3’ splice site). However, its unknown if 

one single category of AS events is more influential than another for the health of a cell, I 

focused on the overall trends seen. With these data, I can suggest that ifg-1 suppression allows 

for increased protection of RNA splicing under stress either through the direct reduction of AS 

events or enabling protection against AS events; likely the latter, as a protection of RNA splicing 

allows for a healthier mechanism in place to detect and degrade RNA mis-splicing and unwanted 

AS events.  

 

5.4: Translation suppression induced lifespan extension requires RNA splicing  

 The data presented so far has shown that a reduction of ifg-1 results in protected RNA 

splicing and increased lifespan under normal and stressed conditions. Moving forward, I aimed 

to understand the necessity of proper RNA splicing fidelity for the lifespan extension provided 

by ifg-1 reduction. To do this, lifespans were performed with both wild type worms and the ifg-1 

(cxTi9279) mutant strain on RNAi knockdown E. coli targeting a splicing factor of interest. This 

resulted in a population of ifg-1 mutants with an additional splicing factor knocked down via 

RNAi, which allowed me to determine if healthy RNA splicing is required for lifespan extension 
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under ifg-1 reduction. The genes that I used for these experiments were all essential for RNA 

splicing – snr-1, snr-2, sfa-1, uaf-2, and rsp-2. Two more genes were also selected and studied in 

this lifespan assay, hrp-2 and hrpf-1, but after sequencing the E. coli stocks it was determined 

that the RNAi plasmid present was targeting an entirely different gene; as such, the data 

collected will not be assessed here and is instead presented in Appendix D. Each of the five 

genes studied has confirmed roles in RNA splicing, from the small nuclear riboproteins snr-1 

and snr-2 to splice site binding or splicing (uaf-2 or sfa-1, respectively), or general RNA binding 

activity (rsp-2). Overall, the knockdown of splicing factors in an ifg-1 mutant background 

resulted in a decrease in lifespan. These data can be seen in Figure 4.8, as well as in Table 4.3. 

One exception is the knockdown of rsp-2, which resulted in no change in lifespan in either the 

wild type or the ifg-1 mutant background. The knockdown of either snr-1 or snr-2 resulted in a 

dramatic decrease in lifespan in both backgrounds, with an equal shift seen in each background, 

meaning the knockdown of the gene in one background did not have a more pronounced effect 

than the knockdown of the same gene in the other background. And finally, the knockdown of 

uaf-2 or sfa-1 decreased lifespan in the ifg-1 mutant background but not in the wild-type 

background. When genes are analyzed individually, the knockdowns that produced the most 

interesting result were uaf-2 and sfa-1 – while wild-type worms were unaffected, ifg-1 mutants 

saw a dramatic decrease in lifespan, well below the wild-type lifespan with and without the 

knockdown present. I hypothesize this to mean that these two genes specifically are required by 

ifg-1 for its mechanism of lifespan extension and regulation, but are dispensable in normal aging 

as they did not affect the wildtype lifespan. Overall, these data indicate for the first time that a 

functional spliceosome is necessary for the lifespan extension seen under ifg-1 suppression, and 

implicates the importance of RNA splicing regulation as a mediator of longevity in long-lived 

mutants.  

 Just as before, I performed a cadmium sensitivity assay using the same conditions as the 

lifespan assay. Wildtype and ifg-1 mutant strains were used with the same five genes of interest, 

although this experiment took place on cadmium to induce RNA splicing stress. As seen in the 

first cadmium sensitivity assay performed, ifg-1 suppression results in an increased lifespan 

under stress. I next wanted to test if ifg-1 requires proper RNA splicing for its stress resistance 

that allows the animal to live longer under stressful conditions. However, as seen in Figure 4.9 or 

Table 4.4, there was minimal to no change in cadmium survival of ifg-1 mutants after RNAi 
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knockdown of RNA splicing regulating genes compared to EV RNAi. While some minor 

variations exist in each category, overall the results show that proper RNA splicing is not 

necessary for the increased cadmium survival induced by ifg-1 knockdown. A potential 

explanation is that the RNA splicing pathway is disrupted due cadmium toxicity, as such, further 

disruption of the spliceosome via RNAi would not necessarily create an additive effect. This is 

consistent with a previous study that showed disruption of snRNA processing by knocking down 

the Integrator complex in C. elegans shortens lifespan under normal conditions, but exhibit no 

additive effect under cadmium exposure [14].  

 An interesting observation in these lifespan and cadmium sensitivity assays compared to 

the assays discussed in Section 5.2 is a significant difference in lifespan between ifg-1 

knockdown via RNAi or via the partial loss-of-function mutant. The typical lifespan increase 

seen in ifg-1 RNAi knockdown populations is about 35% when compared to the wildtype worms 

literature [51], [52], which agrees with what I saw in the first lifespan (Section 5.2). However, 

the increase in lifespan discussed in this section was only 10% at best using the ifg-1 mutant. The 

explanation for this difference in lifespan extension may be explained by the inherent difference 

in amount of functional ifg-1 present in the mutant vs RNAi knockdown. As mentioned before, 

ifg-1 has two main isoforms expressed independently in various regions of the worm; p130 and 

p170. While RNAi knockdown targets both isoforms equally, the cxTi9279 mutant strain used to 

create the ifg-1 knockdown strain only targets the p170 isoform. The difference in lifespan 

between RNAi knockdown and cxTi9279 mutant worms has previously been documented in 

literature [53], although not to the extent seen in this lifespan assay. The other factor assisting in 

this dramatic change in lifespan may be due to simple human error; counting worms that die off 

early in the lifespan as dead worms when they should be censor due to genetic defects can 

decrease the average lifespan of a population greatly. Additional lifespan assays were performed 

by other members of the lab where censoring these early malformed deaths helped to increase 

the average lifespan of the cxTi9279 mutant strain to that of the previously published value (data 

not shown). The same principles can be applied to the cadmium sensitivity assays performed in 

this work to explain the relative difference in lifespan seen between RNAi knockdown 

populations and cxTi9279 mutant populations.  
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5.5: ifg-1 signals through the SMA family of proteins 

 Up until now, I have researched the whole-organism effects of ifg-1 knockdown and 

cadmium-induced stress, with an emphasis on how these two conditions affects RNA splicing. 

Next, I wanted to further explore the genetic mechanism driving ifg-1 mutant’s resistance to 

RNA splicing disruption. To achieve this, a second RNAi screen was performed, however on a 

much smaller subset of genes. KH2235 worms were first fed ifg-1 knockdown RNAi before an 

additional feeding of E. coli RNAi from a small sub-library focused on transcription factors, 

protein kinases, and protein phosphatases in an effort to identify regulatory genes that work 

downstream of ifg-1 to assist it in its RNA splicing protection under stress. Out of the ~900 

genes assayed, only three were identified as genes that, when knocked down, inhibited the 

retention of GFP signal of the in vivo RNA splicing reporter under cadmium stress that is 

typically observed when ifg-1 is knocked-down. The three genes identified were sma-2, sma-3, 

and sma-4, with sma-3 having the strongest effect (Figure 4.10). First identified in Drosophila 

[71] and homologous to human SMAD proteins, this family of transcription factors respond to 

signals from the cell wall protein family transforming growth factor-β (TGF-β) to the nucleus, 

where they signal for the transcription of different genes of interest involvement in cell growth 

and development [8]. As such, these proteins are necessary for proper health of the cell, and an 

ideal signalling protein for ifg-1 to incorporate into the lifespan regulation pathway it controls. 

Using a previously published RNA-sequencing experiment, I also performed an analysis on a list 

of upregulated genes identified in my ifg-1 mutants that overlaps with a list of downregulated 

genes in sma-2 loss of function mutants [64] and saw that there was an overwhelmingly large 

overlap of genes between the two populations. Clustering analysis of the overlapped genes 

revealed that most of which have functions in RNA metabolism including RNA transport and 

spliceosome. Based on these results, I propose that the SMA family of transcription factors 

function downstream of translation suppression induced by ifg-1 mutant, to potentially enact on 

the RNA splicing pathway by directly influencing the transcription of genes involved in RNA 

transport and spliceosome to increase protection of RNA splicing under stress.  
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5.6: Potential mechanism of lifespan regulation by ifg-1 

 While AS is necessary for genetic diversity in an organism, dysregulation in splicing 

leads to systemic RNA mis-splicing, causing well known disease states such as cancer and 

premature aging. One theorized method of treating such disease states is to prevent RNA mis-

splicing itself by inducing the existing mechanisms within the cell that protect against RNA mis-

splicing. Past literature agrees that ifg-1, a translation initiation factor in C. elegans, is deeply 

involved with lifespan regulation in a worm and can extend lifespan when suppressed. Prior to 

this research, the mechanism of which ifg-1 regulates lifespan under normal condition and 

extends lifespan when suppressed was presumably due to the increase in stress response genes. 

Here I present a potential mechanism of action in which this takes place in C. elegans, as seen in 

Figure 5.1. To start, it has been previously documented in literature that a suppression of ifg-1 

results in a direct decrease in translation [51]. Next, based on the data presented here I present 

that ifg-1 signals through the SMA family of transcription factors when suppressed. I next 

propose that this signal is sent to the nucleus to increase the expression of genes involved in 

RNA splicing and this functions to protect and maintain RNA splicing fidelity. Since I have seen 

here that ifg-1 suppression results in protection of RNA splicing; this was determined by the 

initial RNAi screen that saw ifg-1 knockdown worms retain their GFP fluorescence which 

indicates a healthy RNA splicing mechanism, as well as determined by the RNA-sequencing 

performed which saw a reduction of AS events by 50% when exposed to cadmium. Overall, my 

results here propose a mechanism by which ifg-1 suppression leads to an extended lifespan in C. 

elegans by directly protecting RNA splicing fidelity to ensure the homeostasis of RNA 

metabolism under stress. 

 

5.7: Final Conclusions  

 Neurodegenerative diseases are characterized by the buildup of protein aggregates in a 

cell, however the cause of the mass amount of improper protein translation and degradation is 

poorly understood. Here, I detail one potential mechanism of how this happens, specifically 

through the ifg-1 gene and splicing dysregulation in C. elegans. Understanding the cause of 

neurodegenerative diseases through research like this can allow for a greater understanding of 

how to treat or even cure neurodegenerative diseases before they start.  
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Figure 5.1: Proposed mechanism of action of ifg-1’s lifespan extension under stress 

In this mechanism, suppression of ifg-1 leads to a suppression of translation, while also 

signalling through the SMA family of transcription factors to increase RNA splicing fidelity and 

improve lifespan. Red arrow: decrease; green arrow: increase; solid black arrow: pathway of the 

mechanism; dashed black arrow: signalling pathway.  
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5.8: Strengths and Weaknesses  

 The use of the model organism C. elegans allowed for a wide variety of testing, but 

limitations are present in this research. C. elegans has a rapid lifespan, reaching reproductive 

maturity in only two days; this allowed me to perform whole-lifespan experiments very quickly. 

As well, the small size and asexual reproduction allowed for large populations of genetically 

identical worms for large sample sizes, reaching the hundreds of samples per replicate. However, 

as with the use of any model organism, extrapolation beyond the organism is complicated. C. 

elegans has a high homology with humans, but further testing is needed before any conclusions 

can be made on human health based on the data presented here. 

 

5.9: Future work 

 With this research, I have only scratched the surface on how ifg-1 regulates lifespan in C. 

elegans. More research needs to be done before a clear understanding of each step of the 

mechanism can be understood. One experiment that could be done is another RNA-seq of ifg-1 

mutants with RNAi knockdown of the sma genes identified in Section 5.5 to understand the 

whole-organism effects this knockdown has on AS under stress. Looking more broadly at what 

needs to be done, the specific genes used between each step of this simplified mechanism need to 

be better understood in C. elegans, then in higher organisms with the goal of applying this 

information to humans. One method of doing this is via knockdown of different protein synthesis 

related genes, and not just ifg-1. This can help confirm that the effects on RNA splicing and 

lifespan seen here are indeed related to protein synthesis overall and not just specific to ifg-1 

knockdown. Similarly, by performing the experiments done here with stressors other than 

cadmium such as heat shock, the data seen here can be confirmed to be a result of general RNA 

splicing disruption and not specifically to an effect of cadmium toxicity. Once this area of 

research is better understood, we can apply this knowledge to areas of medicine such as devising 

treatments for disease states brought about by systemic RNA splicing dysregulation.  
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7. Appendices  

 

Appendix A: RNA-seq as performed by Novogene Co., Ltd. 

Novogene performed sequencing on twelve samples I provided them: three N2 control 

samples (NC); three N2 cadmium samples (NCd); three ifg-1 (cxTi9279) knockdown control 

samples (IC); and three ifg-1 (cxTi9279) knockdown cadmium samples (ICd).  

Sequencing took place via Illumina platforms, a highly adopted next-generation sequencing 

method based off of the sequencing by synthesis (SBS) mechanism [72], which adds a 

fluorescent terminator tag unique for that dNTP each time a dNTP is added to the growing 

strand. Once added, the strand is imaged, and the tag is immediately removed to allow for 

continued transcription of the strand. This results in the reading of a complete sequence of a 

strand as it is being made, allowing for less error-prone long-read sequences.  

Novogene sequenced our samples with the following tags: Batch ID: X202SC20113916-Z01-

F001; Species and Version: ensembl_caenorhabditis_elegans_wbcel235_gca_000002985_3; 

Report Time: 2021-01-02. A simplified workflow of the method of sequencing can be seen in 

Figure A.1, and a simplified workflow of the bioinformatics analysis that took place after can be 

seen in Figure A.2. As well, a summary of data quality produced is available in Table A.1.  
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Figure A.1: Workflow of RNA-seq as performed by Novogene 

Samples are processed from left to right, and each green box indicates a quality control check 

that takes place before moving onto the next step. 
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Figure A.2: Workflow of bioinformatics analysis for mRNA sequencing as performed by 

Novogene. Analysis takes place following the flowchart from top to bottom.  
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Table A.1: Data quality summary of samples sequenced by Novogene. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

name 

Raw 

reads 

Clean 

reads 

Raw 

bases 

Clean 

bases 

Error rate 

(%) 

Q20 

(%) 

Q30 

(%) 

GC content 

(%) 

NC1 42142432 40614704 12.6G 12.2G 0.02 98.13 94.40 45.36 

NC2 47736213 46149283 14.3G 13.8G 0.02 98.03 94.19 45.72 

NC3 49310472 47561060 14.8G 14.3G 0.02 98.03 94.19 45.71 

NCd1 42734676 41339009 12.8G 12.4G 0.03 97.94 93.96 45.70 

NCd2 41288519 39706383 12.4G 11.9G 0.02 98.10 94.34 45.72 

NCd3 39867049 38763389 12.0G 11.6G 0.02 98.11 94.37 45.64 

IC1 57811365 56171462 17.3G 16.9G 0.02 98.41 95.11 46.62 

IC2 42235273 40854204 12.7G 12.3G 0.02 98.24 94.66 46.60 

IC3 48022559 46600293 14.4G 14.0G 0.02 98.18 94.54 46.60 

ICd1 44325210 43076855 13.3G 12.9G 0.02 98.13 94.41 46.18 

ICd2 43937385 42484922 13.2G 12.7G 0.02 98.16 94.46 46.18 

ICd3 46136020 44397026 13.8G 13.3G 0.02 98.12 94.38 46.02 
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Appendix B: RNAi Screen Raw Data 

 

Table B.1: Recorded data from the RNAi screen described in Section 3.1. 

Gene Name Protein Function Size Fluorescence Level 

acbe-1 ABC transporter, class E Medium Strong 

aars-23 Alanyl tRNA Synthetase Small Strong 

H12I13.2 ATP Binding Activity Medium Strong 

csp-2 CaSPase Small Strong 

szy-4 Centrosome Duplication Small Strong 

F46F11.1 Diphosphoinositol-pentakisphosphate kinase Small Weak 

eef-1A.2 Elongation Factor Small Strong 

spt-16 FACT complex subunit spt-16 N/A Weak 

fbxa-203 F-box A protein Small Weak 

B0250.7 Function Unknown Small Strong 

H12I13.3 Function Unknown Large Weak 

ekl-7 Germline, Intestine Activity N/A Strong 

tbcd-1 GTPase activator for Microtubule Organization Small Strong 

hsf-2 Head Neuron Expression N/A Weak 

hsp-2 Heat Shock Protein Small Weak 

T01C3.11 Hypodermis/Intestine Small Medium 

ifg-1 Initiation Factor 4G (eIF4G) family Small Medium 

iars-1 Isoleucyl tRNA Synthetase Large Strong 

nhr-61 Nuclear Hormone Receptor family Small Strong 

wago-11 Nucleic Acid Binding Small Weak 

alg-4 Nucleic Acid Binding Small Medium 

F36A2.3 Oxidoreductace Activity N/A Strong 

fars-3 phenylalanyl (F) tRNA Synthetase N/A Strong 

Y48B6A.13 Predicted Diphosphomevalonate Decarboxylase Small Medium 

BMS1 Predicted GTP Binding Activity Large Strong 

K08F8.5 Predicted Motility  Small Strong 

K10B4.1 Predicted Peroxidase Activity Small Medium 

lect-2 Predicted Structural Large Strong 

eif-2 γ Predicted tRNA Binding Activity Small Strong 

M03F8.3 Pre-mRNA Splicing Factor Small Strong 

pbs-1 Proteasome Beta Subunit Small Medium 
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rla-0 Replication Protein A homolog Small Medium 

rpl-24.2 Ribosomal Protein, Large subunit N/A Strong 

rpl-19 Ribosomal Protein, Large subunit Small Medium 

rpl-36.A Ribosomal Protein, Large subunit Small Strong 

rpl-21 Ribosomal Protein, Large subunit Small Strong 

rpl-22 Ribosomal Protein, Large subunit Small Medium 

rpl-27 Ribosomal Protein, Large subunit Small Medium 

rpl-3 Ribosomal Protein, Large subunit Small Strong 

rpl-26 Ribosomal Protein, Large subunit Medium Medium 

rpl-25.2 Ribosomal Protein, Large subunit Large Medium 

rpl-9 Ribosomal Protein, Large subunit Small Weak 

rps-11.1 Ribosomal Protein, Large subunit Small Weak 

rpl-30 Ribosomal Protein, Large subunit Small Strong 

rpl-7A Ribosomal Protein, Large subunit Small Strong 

rpl-17 Ribosomal Protein, Large subunit Small Medium 

rps-0 Ribosomal Protein, Small subunit Small Strong 

rps-13 Ribosomal Protein, Small subunit Small Strong 

rps-3 Ribosomal Protein, Small subunit Small Strong 

rps-30 Ribosomal Protein, Small subunit Small Strong 

rps-23 Ribosomal Protein, Small subunit Small Medium 

rps-22 Ribosomal Protein, Small subunit Small Weak 

rps-12 Ribosomal Protein, Small subunit Small Strong 

rps-27 Ribosomal Protein, Small subunit Small Medium 

rps-16 Ribosomal Protein, Small subunit Small Strong 

rps-5 Ribosomal Protein, Small subunit Small Medium 

rps-19 Ribosomal Protein, Small subunit N/A Strong 

rps-20 Ribosomal Protein, Small subunit Small Strong 

rps-28 Ribosomal Protein, Small subunit Small Strong 

rps-6 Ribosomal Protein, Small subunit Small Strong 

eif-1 Ribosomal, Small Subunit Binding Medium Weak 

T19A6.4 Transmembrane Transport N/A Strong 

F47B3.6 Tyrosine Phosphatase Activity Large Strong 
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Appendix C: Statistical analysis of qPCR results 

Table C.1: Statistical analysis of qPCR results. Two-way ANOVA performed by GraphPad 

Prism version 8.2.1 for Windows, GraphPad Software, San Diego, California USA, 

www.graphpad.com on the qPCR discussed in Results Section 4.4.  

Tukey's multiple comparisons 

test 

Mean Diff. 95.00% CI of diff. Significance Adjusted P 

Value 

cdr-1 
    

EV (RNAi):Control vs. EV 

(RNAi):Cadmium 

-327.6 -437.1 to -218.1 **** <0.0001 

EV (RNAi):Control vs. ifg-1 

(RNAi):Control 

-1.553 -111.0 to 107.9 ns >0.9999 

EV (RNAi):Control vs. ifg-1 

(RNAi):Cadmium 

-1.928 -111.4 to 107.6 ns >0.9999 

EV (RNAi):Cadmium vs. ifg-1 

(RNAi):Control 

326.1 216.6 to 435.6 **** <0.0001 

EV (RNAi):Cadmium vs. ifg-1 

(RNAi):Cadmium 

325.7 216.2 to 435.2 **** <0.0001 

ifg-1 (RNAi):Control vs. ifg-1 

(RNAi):Cadmium 

-0.375 -109.9 to 109.1 ns >0.9999 

numr-1 
    

EV (RNAi):Control vs. EV 

(RNAi):Cadmium 

-180.3 -308.9 to -51.74 ** 0.0062 

EV (RNAi):Control vs. ifg-1 

(RNAi):Control 

-0.1375 -128.7 to 128.5 ns >0.9999 

EV (RNAi):Control vs. ifg-1 

(RNAi):Cadmium 

-122.9 -251.5 to 5.732 ns 0.0628 

EV (RNAi):Cadmium vs. ifg-1 

(RNAi):Control 

180.2 51.60 to 308.8 ** 0.0063 

EV (RNAi):Cadmium vs. ifg-1 

(RNAi):Cadmium 

57.47 -71.13 to 186.1 ns 0.5645 

ifg-1 (RNAi):Control vs. ifg-1 

(RNAi):Cadmium 

-122.7 -251.3 to 5.869 ns 0.0631 

hsp-16.49 
    

EV (RNAi):Control vs. EV 

(RNAi):Cadmium 

0.4725 -0.3167 to 1.262 ns 0.3297 
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EV (RNAi):Control vs. ifg-1 

(RNAi):Control 

0.835 0.04578 to 1.624 * 0.0371 

EV (RNAi):Control vs. ifg-1 

(RNAi):Cadmium 

0.6725 -0.1167 to 1.462 ns 0.1052 

EV (RNAi):Cadmium vs. ifg-1 

(RNAi):Control 

0.3625 -0.4267 to 1.152 ns 0.5433 

EV (RNAi):Cadmium vs. ifg-1 

(RNAi):Cadmium 

0.2 -0.5892 to 0.9892 ns 0.8739 

ifg-1 (RNAi):Control vs. ifg-1 

(RNAi):Cadmium 

-0.1625 -0.9517 to 0.6267 ns 0.9265 
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Appendix D: Lifespan data for RNAi originally thought to be targeting hrp-2 and hrpf-1 

 

 

Figure D.1: ifg-1 mutant background lifespan assay data for RNAi originally thought to be targeting 

hrp-2 and hrpf-1. Lifespan curves of ifg-1 mutants with an additional splicing factor knocked 

down. Approximately 30 worms were used in each trial. EV: empty vector RNAi bacteria; ifg-1: 

initiation factor 4G (eIF4G) family; hrp-2: heterogeneous nuclear ribonucleoprotein (HnRNP) R 

homolog; hrpf-1: HnRNP F homolog.  
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Table D.1: Gene function lifespan assay statistical data for RNAi originally thought to be targeting 

hrp-2 and hrpf-1 

 

Gene Name 

Animals 

tested 

Animals 

dead 

Animals 

censored 

Mean lifespan 

(Days) 

% Mean 

lifespan 

 

p value 

Lifespan Trial 1 
      

 N2/EV 48 34 14 21.34 ± 0.65 ~ ~ 

 N2/hrpf-1 29 19 10 20.54 ± 0.68 96.25 0.3249 

Lifespan Trial 2 
      

 N2/EV 36 33 3 19.88 ± 1.02 ~ 
 

 N2/hrp-2 31 28 3 19.89 ± 0.89 100.05 0.5678 

 N2/hrpf-1 30 24 6 22.10 ± 0.75 111.17 0.4467 

ifg-1/EV 44 38 6 21.92 ± 1.18 110.26 
 

ifg-1/hrp-2 23 21 2 17.05 ± 1.05 77.78 0.0488 

ifg-1/hrpf-1 37 33 4 20.62 ± 1.24 94.07 0.4375 

Lifespan Trial 3 
      

 N2/EV 118 104 14 18.77 ± 0.39 ~ ~ 

 N2/hrp-2 78 70 8 18.95 ± 0.49 100.96 0.6825 

 N2/hrpf-1 22 17 5 18.71 ± 1.38 99.68 0.4111 

ifg-1/EV 125 114 11 19.62 ± 0.61 104.53 ~ 

ifg-1/hrp-2 153 141 12 20.34 ± 0.62 103.67 0.0418 

ifg-1/hrpf-1 65 58 7 19.84 ± 0.96 101.12 0.2968 

Lifespan Trial 4 
      

 N2/EV 55 47 8 20.24 ± 0.54 ~ ~ 

 N2/hrp-2 52 45 7 21.77 ± 0.65 107.56 0.0403 

 N2/hrpf-1 49 44 5 21.81 ± 0.67 107.76 0.0299 

ifg-1/EV 31 26 5 19.35 ± 1.92 95.60 ~ 

ifg-1/hrp-2 11 8 3 22.23 ± 2.63 114.88 0.0179 

ifg-1/hrpf-1 19 19 0 21.11 ± 2.03 109.10 0.0454 

 

 

 


