
 

 

 

 

 

 

 

THE FORKHEAD BOX TRANSCRIPTION FACTORS, FKH1 AND FKH2, ALONG 

WITH THE ANAPHASE-PROMOTING COMPLEX REGULATE SACCHAROMYCES 

CEREVISIAE LIFESPAN 

 

 

 

 

 

 

 

 

 

 

A Thesis Submitted to the College of Graduate Studies and Research 

In Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy 

In the Department of Anatomy and Cell Biology 

University of Saskatchewan 

Saskatoon, Saskatchewan, Canada 

 

By 

 

SPIKE DONOVAN LINDSAY POSTNIKOFF 

 

 

Copyright Spike Donovan Lindsay Postnikoff, July, 2014. All rights reserved. 



 

i 

 

PERMISSION TO USE 

In presenting this thesis in partial fulfillment of the requirements for a Doctor of Philosophy 

degree from the University of Saskatchewan, I agree that the Libraries of this university may 

make it freely available for inspection. I further agree that permission for copying of this thesis 

in any manner, in whole or in part, for scholarly purposes may be granted by the professor or 

professors who supervised my thesis work or, in their absence, by the Head of the Department or 

the Dean of the College in which my thesis work was done. Copying, publication, or use of this 

thesis or parts thereof for financial gain shall not be allowed without my written permission. It is 

also understood that due recognition shall be given to me and to the University of Saskatchewan 

in any scholarly use that may be made of any materials in my thesis.  

 

DISCLAIMER 

 

Reference in this thesis/dissertation to any specific commercial products, process, or service by 

trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, 

recommendation, or favoring by the University of Saskatchewan. The views and opinions of the 

author expressed herein do not state or reflect those of the University of Saskatchewan, and shall 

not be used for advertising or product endorsement purposes.  

 

 

Requests for permission to copy or to make other use of material in this thesis in whole or in part 

should be addressed to:  

 

Head of the Department of Anatomy and Cell Biology  

University of Saskatchewan  

107 Wiggins Road  

Saskatoon, Saskatchewan, S7N 5E5  

CANADA 

 

OR  

 

Dean  

College of Graduate Studies and Research  

University of Saskatchewan  

107 Administration Place  

Saskatoon, Saskatchewan S7N 5A2  

Canada  

 



 

ii 

 

ABSTRACT 

Forkhead box (Fox) transcription factors have a conserved function in regulating lifespan and 

onset of age related disease in organisms from worms to mammals. Key functions in this process 

are the regulation of the cell cycle, oxidative stress response, and apoptosis. A complex post-

translational code from nutrient, growth factor, and stress induced signals regulates Fox activity, 

target specificity, stability, and subcellular localization; however, many of the Fox mechanisms 

and targets responsible for regulating lifespan remain elusive. The budding yeast, 

Saccharomyces cerevisiae, is a powerful model for unravelling the genetic mechanism and 

pathways. Yeast encodes four Fox transcription factors, Fkh1, Fkh2, Fhl1 and Hcm1, and their 

roles in aging are only recently being examined. In this study, we utilized the chronological 

lifespan and oxidative stress assays, to explore evolutionary conservation of lifespan regulation 

in two of the yeast Fox orthologs, FKH1 and FKH2. We observed that deletion of both FKH 

genes in S. cerevisiae, impedes normal lifespan and stress resistance. Furthermore, fkh1Δ fkh2Δ 

cells were found to be non-responsive to caloric restriction, an intervention that extends lifespan 

from yeast to mammals. Conversely, increased expression of the FKHs leads to extended 

lifespan and improved stress resistance. Additionally, we show the Anaphase-Promoting 

Complex (APC) genetically interacts with the FKHs, likely functioning in a linear pathway under 

normal conditions, as fkh1Δ fkh2Δ post-mitotic survival defect is epistatic to that observed in 

apc5CA mutants. However, under stress conditions, post-mitotic survival is dramatically impaired 

in apc5CA fkh1Δ fkh2Δ beyond either apc5CA or fkh1Δ fkh2Δ. Finally, we observed that both the 

FKHs and APC genetically interact with nutrient-responsive lifespan-regulating kinase encoding 

genes SCH9 and TOR1. This study establishes that the yeast FKHs play a role as regulators of 

lifespan in yeast and identifies the APC as a novel component of this mechanism. We speculate 

this involves combined regulation of stress response, genomic stability, and cell cycle.   
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1 Introduction1 

1.1 Aging 

Throughout history humans have sought to understand the causes and conditions for aging and 

organismal senescence. Studies as early as the 1930s demonstrated that lifespan and health span 

of laboratory animals can be lengthened by environment interventions, such as caloric restriction 

[CR; (McCay and Crowell, 1934)], suggesting aging includes a modifiable genetic/molecular 

component, rather than existing purely as an inevitable and passive accumulation of damage. 

Relatively recently, genetic and biochemical studies have provided insight into the complex 

mechanisms regulating these processes. Cell health is regulated by nutrient, stress, and growth 

factor signaling pathways controlling growth, repair, survival, division, arrest, and replacement. 

Our current understanding also suggests the health of an organism is directly related to the 

fitness of its organs, tissues, cells, and ultimately its sub-cellular constituents. Genomic stability 

(the ability of the cell to resist mutation, chromatin irregularities, etc.) and protein 

maintenance/turnover are dominant forces in preventing cellular/tissue senescence or 

uncontrolled growth and tumour formation. Our understanding of processes that increase or 

decrease cellular health span is enhanced through the identification of gene products influencing 

the incidence of tissue degeneration and age-related diseases, such as Alzheimer’s, diabetes, and 

cancer (Jia et al., 2012; Kloet and Burgering, 2011; Postnikoff and Harkness, 2012; Salminen 

and Kaarniranta, 2012; Stünkel and Campbell, 2011; Ziv and Hu, 2011).  

 

Recent studies have shed more light on the complexity of CR as a lifespan altering mechanism. 

In rhesus monkeys, CR induces conflicting results on survival (the ultimate lifespan of the 

organism) and health span (the development of age related decrease in fitness). When compared 

to an ad libitum laboratory diet, a 30% reduction of caloric intake both extends lifespan and 

reduces the rates of age related diseases, such as cancer and diabetes (Bodkin et al., 2003; 

Colman et al., 2009). However, in a study featuring a more nutritionally complete diet, CR 

increased health indicators, but not survival (Mattison et al., 2012), suggesting that source and 

                                                 

1 Portions of this chapter have been published Postnikoff and Harkness (2012).  
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type of calories may have a significant impact on CR as a lifespan altering intervention for 

humans. Additionally, emerging evidence in model organisms further reinforces this idea. Using 

alternate carbon sources, rather than glucose, can extend yeast lifespan (Ashrafi et al., 1999; 

MacLean et al., 2001; Wu et al., 2013). Dietary composition, including the ratio of 

macronutrients, affect life and health spans in metazoan (multicellular animal) models as well 

(Fanson et al., 2009; Le Couteur et al., 2014; Lee et al., 2008; Murtagh-Mark et al., 1995; 

Simpson and Raubenheimer, 2007; Solon-Biet et al., 2014). Emerging evidence suggests diets 

high in protein may elevate systemic growth factor signaling molecules resulting in accelerated 

aging and disease development in mice and humans (Levine et al., 2014; Solon-Biet et al., 2014). 

Furthermore, pharmacological inhibition of the amino acid responsive kinase TOR (Target of 

rapamycin) by treatment with rapamycin increases lifespan in models from yeast to mice 

(Bjedov et al., 2010; Harrison et al., 2009; Miller et al., 2011; Powers et al., 2006). These results 

highlight the importance of elucidating mechanisms behind both growth factor and amino 

acid/nitrogen regulated cellular processes in the understanding of human disease. 

 

1.2 Saccharomyces cerevisiae 

The budding yeast Saccharomyces cerevisiae is utilized as an efficient and effective model 

organism for the elucidation of molecular and genetic mechanisms within eukaryotic cells due to 

evolutionary conservation of many genes and protein sequences/structures, as well as cellular 

mechanisms present throughout eukaryotic heterotrophs. Particularly attractive characteristics 

are yeast’s ability to be maintained in a haploid state and an efficient DNA homologous 

recombination mechanism, facilitating ease of mutation. Furthermore, the approximately 6400 

genes in the yeast genome contain one or no introns, further simplifying the molecular 

environment by the absence of alternative splice variants. These features make yeast an attractive 

model for unravelling and linking many conserved eukaryotic genetic, molecular, and cellular 

processes involved in a complex multivariable process, including aging.  

 

1.2.1 Lifespan Analysis 

Two assays are conventionally used for studying the lifespan of yeast cells: the replicative 

lifespan assay (RLS) and the chronological lifespan assay (CLS). RLS, a measure of the 

replicative capacity of individual cells, also referred to as mitotic lifespan, exploits the 
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asymmetrical cell division of S. cerevisiae; typically, the smaller budding daughter cells are 

removed from the mother utilizing a dissecting microscope fitted with a micro-manipulating 

needle (Kennedy et al., 1994; Longo et al., 2012; Mortimer and Johnston, 1959; Postnikoff and 

Harkness, 2014). Scoring the total number of daughters an individual cell produces is considered 

a model for stem cell survival and regenerative capacity. Alternatively, CLS measures post-

mitotic longevity by determining the length of time a culture of quiescent cells remains 

metabolically (and mitotically) viable, often achieved through the analysis of colony forming 

units (CFUs) present in a fixed volume of stock culture plated over a span of weeks to months 

(Longo and Fabrizio, 2012; Longo et al., 2012; Postnikoff and Harkness, 2014). The cellular 

processes in this assay are considered analogous to survival of post-mitotic cell populations in 

higher organisms (Longo et al., 2012). Also, using mitotic re-entry as a biomarker for survival, it 

could be argued that CLS is analogous to the functional lifespan of quiescent stem cell 

populations.  

 

Proof of principal of the value of S. cerevisiae assays as models for metazoan lifespan analysis is 

multifold. First, manipulation of environmental conditions and genes discovered in metazoans to 

regulate aging and the development of age related diseases directly affect yeast lifespan assays. 

For example, the RAS (Rat sarcoma) family of GTPases are involved in growth factor signal 

transduction and oncogenic transformation of many tumours (Bos, 1989; Rajalingam et al., 

2007). Mice that are deficient in RasGrf1 (Ras activating guanine nucleotide exchange factor) 

have increased lifespans (Borras et al., 2011). Ras2val19, a dominant active form of yeast Ras2, 

decreases both CLS and RLS, while disruption of Ras2 signaling increases CLS (Fabrizio et al., 

2003; Hlavata et al., 2003; Pichova et al., 1997). Additionally, ras1Δ extends RLS, while RAS2 

overexpression can increase stress recovery and RLS through a mechanism independent of the 

down-stream effector Protein kinase A [PKA; (Shama et al., 1998; Sun et al., 1994)].   

 

Secondly, the Anaphase-Promoting Complex (APC) was discovered to affect mouse aging and 

the regulation of both RLS and CLS in yeast (Baker et al., 2005; Baker et al., 2004; D'Arcy et al., 

2010; Harkness et al., 2004; Lara-Gonzalez et al., 2011; Postnikoff et al., 2012). The APC is a 

cell cycle regulating ubiquitin-protein ligase (E3), characterized by its role in commencing sister-

chromatid separation at metaphase-anaphase transition in mitosis (M) and its continued role in 
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mitotic exit through to the end of Gap 1 (G1) and entry into DNA replication [S; (McLean et al., 

2011; Thornton and Toczyski, 2006)]. Mechanisms of APC-dependent lifespan likely involves 

maintenance of genomic stability during sister chromatid separation at the metaphase/anaphase 

transition, as well as through G1 entry/maintenance and the concurrent regulation of stress 

responses (D'Arcy et al., 2010; Harkness et al., 2004; Harkness, 2006; Lara-Gonzalez et al., 

2011; Postnikoff et al., 2012; Searle et al., 2004; Simpson-Lavy et al., 2009). 

 

A third line of evidence supporting the value of yeast as a model organism for studying aging is 

the direct discovery of highly conserved novel lifespan regulating mechanisms in yeast, with 

subsequent identification in metazoans. Two examples are the Sir2 (Silent information regulator) 

and TOR pathways. Sir2, and its orthologs the Sirtuins, are a family of nicotinamide adenine 

dinucleotide (NAD+)-dependent histone (protein) deacetylases (HDAC) that respond to stress 

and the energy state within the cell, resulting in lifespan extension in multiple model organisms 

(Boily et al., 2008; Chen et al., 2005; Donmez and Guarente, 2010; Fabrizio et al., 2005; 

Guarente, 2013a; Kaeberlein et al., 1999; Li et al., 2008c; Rogina and Helfand, 2004; 

Tissenbaum and Guarente, 2001; Wood et al., 2004). TOR is a PI3K (Phosphatidylinositol 3-

kinase)-related serine/threonine protein kinase that regulates cell growth, proliferation, motility, 

survival, protein synthesis, and transcription (Loewith and Hall, 2011). The TOR complexes 

were first characterized in yeast, followed closely by mammalian cells (Brown et al., 1994; 

Cafferkey et al., 1993; Chiu et al., 1994; Heitman et al., 1991; Kunz et al., 1993; Sabatini et al., 

1994; Sabers et al., 1995), and subsequently linked to metabolic regulation/calorie sensing and 

aging in yeast, worms, flies and mice (Barbet et al., 1996; Bjedov et al., 2010; Hara et al., 1998; 

Harrison et al., 2009; Jia et al., 2004; Kapahi and Zid, 2004; Kapahi et al., 2004; Rohde et al., 

2001; Schmelzle and Hall, 2000; Thomas and Hall, 1997; Vellai et al., 2003; Wanke et al., 

2008). 

 

1.3 Growth Signaling Pathways 

1.3.1 Insulin/Insulin-like Growth Factor Signaling  

Coincidental to CR being an environmental intervention to senescence, genetic screens in 

Caenorhabditis elegans identified the insulin signaling pathway as the first, and now best 

characterized, genetically encoded regulator of aging (Kenyon, 2011; Kenyon et al., 1993; Lin et 
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al., 1997). The evolutionarily conserved metazoan insulin-signaling pathway is critical to 

numerous cellular processes (Bartke, 2011; Haigis and Yankner, 2010; Maki, 2010; Shaw, 

2011). Perhaps most important is the decisive role it plays in cellular, and whole organism, 

survival. Overactive insulin-signaling leads to increased survival and growth of cells that would 

otherwise be conditionally cell-cycle arrested, with concurrent increased initiation of 

intracellular damage repair or programmed cell death mechanisms (Zhang et al., 2011). Insulin-

signaling activates cell cycle progression mechanisms, while suppressing stress responses, such 

as pro-apoptotic and DNA repair pathways, increasing the proliferative capacity and oncogenic 

potential of cells in a sugar rich environment. Due to a possible increase in survival of individual 

damaged cells under these conditions, this scenario increases the probability of premature 

organism death due to cancer. On the other hand, reduced insulin-signaling relieves repression of 

stress response mechanisms, including cell cycle arrest and DNA repair pathways, increasing cell 

maintenance capacity and whole organism survival. A clear link between diabetes, cancer, other 

age related diseases, and the insulin-signaling pathway has been established (Ben Sahra et al., 

2010; Slawson et al., 2010; Wysocki and Wierusz-Wysocka, 2010), highlighting the importance 

of further investigation of the precise activity of these processes. 

 

Genetic screens in the nematode C. elegans initially identified AGE-1 (further characterized as 

the gene encoding the catalytic subunit of PI3K), and subsequently other members of the insulin-

signaling pathway, as regulators of the aging process (Kenyon, 2011; Kenyon et al., 1993). 

Specifically, decreased activity of the evolutionarily conserved InsR (Insulin 

receptor)/PI3K/PDK1 (Phosphoinositol-dependent kinase)/AKT (Protein kinase B) pathway has 

been observed to increase longevity in a variety of model organisms, including worms, flies and 

mice, while over-activity has been observed in many cancer cells [Figure 1.1; (Kloet and 

Burgering, 2011; Speakman and Mitchell, 2011; Tatar et al., 2003)]. In this study we will focus 

on two major opposing downstream effectors of the insulin signaling/AKT pathway: 1) the 

phosphorylation of the stress response forkhead box transcription factor (Fox) O family, 

including Daf-16 (Dauer formation) in C. elegans, which leads to dissociation from DNA, 

nuclear export/cytoplasmic sequestration and degradation, inhibiting FoxO-dependent cellular 

protection (Kenyon et al., 1993; Lin et al., 1997; Ogg et al., 1997; Tatar et al., 2003); 2) the 

activation of TOR signaling, which increases anabolic processes and build-up of toxic by-  
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Figure 1.1 Metazoan insulin signaling pathway 
Insulin/insulin receptor binding (as well as other growth factors binding to their respective receptors) leads to the 

conversion of phosphatidylinositol bisphosphate to triphosphate and the activation of the TORC2. AKT and 

PDK1 associate with the altered lipids, leading to AKT’s phosphorylation and activation. Activated AKT 

represses the stress responsive FoxOs, removes inhibition of TORC1, represses apoptotic mechanisms and 

activates cell cycle regulators leading to cell growth, proliferation, and survival. (Bhaskar and Hay, 2007; Brunet 

et al., 1999; Greer and Brunet, 2008; Hay, 2005; Mora et al., 2004; Zhang et al., 2011) 
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products associated with a high metabolic state, while inhibiting catabolic processes, such as 

autophagy, preventing degradation of damaged cellular components (Hay, 2011; Loewith and 

Hall, 2011). 

 

1.3.2 TOR Signaling  

The TOR kinase integrates nutrient, amino acid, and growth factor cues to serve as a central 

regulator of eukaryotic growth and proliferation (Takahara and Maeda, 2013). Highly conserved 

from yeast to humans, TOR proteins were identified (and named) from studies of the growth 

inhibiting properties of the bacterial anti-fungal compound rapamycin (Cafferkey et al., 1993; 

Heitman et al., 1991). TOR proteins associate with two complexes, the rapamycin sensitive 

TORC1 (in mammals consisting of mTOR, Raptor, mLST8, PRAS40 and DEPTOR; Table 1.1) 

and rapamycin insensitive TORC2 (mTOR, Rictor, mSIN, mLST8, PRR/Protor and DEPTOR), 

both of which are essential for cell survival (Cybulski and Hall, 2009; Loewith and Hall, 2011; 

Loewith et al., 2002). The TORCs function with PDK1 in the activation of serine/threonine 

Protein kinase A, G and C family (AGC) members, such as AKT, the S6K (ribosomal protein S6 

kinase) family, Protein kinase C and the SGK [Serum glucocorticoid kinases; (Jacinto and 

Lorberg, 2008; Mora et al., 2004; Su and Jacinto, 2011)]. TORC1 activity influences ribosome 

biogenesis and global rate of transcription and translation, increasing other anabolic processes, 

such as glycogen and lipid biosynthesis, while inhibiting catabolic processes, including 

autophagy (De Virgilio and Loewith, 2006b; Loewith and Hall, 2011; Loewith et al., 2002; 

Wullschleger et al., 2006; Xiao and Grove, 2009). TORC1 is activated by amino acid responsive 

GTPases, while it is repressed by the FoxOs and AMPK (AMP responsive kinase), the latter 

monitors AMP:ATP ratios and is activated in response to starvation [Figure 1.2; (Bai et al., 2007; 

Bolster et al., 2002; Chen et al., 2010; Greer et al., 2007b; Hardie et al., 1998; Hay, 2011; Kemp 

et al., 1999; Khatri et al., 2010; Kimura et al., 2003; Wessells et al., 2009)]. The TORC1 system 

primarily functions through S6K, eukaryotic translation initiation factors (eIF,), and specific 

PP2A (Protein phosphatase 2 A) complexes associated with Tap42 [Two A phosphatase 

Associated Protein; (Berset et al., 1998; Bodenmiller et al., 2010; Cherkasova and Hinnebusch, 

2003; Cosentino et al., 2000; Di Como and Arndt, 1996; Hara et al., 1998; Huber et al., 2009; 

Jordens et al., 2006; Soulard et al., 2010; Urban et al., 2007; Zheng and Jiang, 2005)]. TORC2 

primarily integrates growth factor signals to promote stress responses necessary for cell survival  
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 Table 1.1 Evolutionary conservation of the TORC1 and TORC2 complexes 

Data obtained from (Cybulski and Hall, 2009; Loewith and Hall, 2011) 

 

 

 

 

 

 

Mammals  S. cerevisiae 
Essential in 

S. cerevisiae? 
Potential function 

TORC1     

mTOR Tor1 or Tor2 No/Yes Protein kinase, Scaffold 

Raptor Kog1 Yes Substrate recognition 

mLST8 Lst8 Yes Stabilize kinase domain 

Not  

identified 
Tco89 No Regulatory complex 

PRAS40 
Not  

identified 
-  

DEPTOR 
Not  

identified 
-  

    

TORC2    

mTOR Tor2 Yes Protein kinase, Scaffold 

mSIN1 Avo1 Yes Localize complex to plasma membrane 

Not 

identified 
Avo2 No Unknown function 

Rictor Tsc11 No Scaffold 

mLST8 Lst8 Yes Stabilize kinase domain 

PRR5/Protor Bit61/Bit2 No Unknown function 

DEPTOR 
Not 

identified 
-  
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Figure 1.2 TORC1 signaling pathway 
TORC1 is directly activated by amino acid levels and indirectly through insulin/glucose signaling. TORC1 up 

regulates anabolic processes such as ribosome, protein and lipid biosynthesis, while repressing catabolic 

processes such as autophagy, ultimately stimulating cell growth and proliferation. TORC1 does this through the 

phosphorylation of S6K and eukaryotic initiation factors, as well as the assembly of the PP2ATAP42 complex. 

Information obtained from (Hands et al., 2009; Jacinto and Lorberg, 2008; Loewith et al., 2002; Takahara and 

Maeda, 2013; Wullschleger et al., 2006). 
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and actin cytoskeleton organization (Cybulski and Hall, 2009). Importantly, TORC2 mediates 

cross-talk between the insulin/IGF signaling pathway and TOR signaling by phosphorylating 

AKT and SGK, both of which repress FoxO function [Figure 1.3; (Brunet et al., 1999; Brunet et 

al., 2001; Sarbassov et al., 2005)]. 

 

1.3.3 Yeast nutrient signaling 

Many nutrient signaling mechanisms are highly conserved between yeast and higher eukaryotes, 

including the Ras/cAMP/PKA pathway, the Snf1 (Sucrose non-fermenting; AMPK ortholog) 

pathway, and both TORC pathways, with modifications (Zaman et al., 2008). For example S. 

cerevisiae has two paralogous TOR genes, TOR1 and TOR2; comparatively a single Tor kinase 

domain is found in other organisms, such as the mammalian mTOR; however, the TORC1 and 

TORC2 complexes are highly conserved in structure and function (Table 1.1), with the exception 

that both Tor1 and Tor2 associate with the rapamycin sensitive TORC1, while only Tor2 

associates with TORC2 (Loewith et al., 2002; Reinke et al., 2004; Wedaman et al., 2003; 

Wullschleger et al., 2006). Another variation is that glucose depletion regulates the yeast Snf1 

kinase complex, rather than AMP:ATP ratios, as is the case for the mammalian AMPK complex 

(Hong et al., 2003; Mitchelhill et al., 1994; Nath et al., 2003; Wilson et al., 1996; Woods et al., 

1994). A major difference from mammals is that yeast lacks direct conservation of insulin and 

other higher eukaryotic growth factor receptors, instead responding directly to environmental 

conditions; for example, yeast directly respond to environmental glucose levels by increasing 

glycolysis, growth and proliferation rates, while concurrently repressing stress responses [Figure 

1.4; (Barbieri et al., 2003; Fabrizio et al., 2001; Thevelein and de Winde, 1999)]. This occurs 

primarily through glucose responsive G-protein receptors activating the Ras/PKA pathway, as 

well as activation of Sch9, a fungal kinase identified as a high-copy suppressor of Ras/PKA 

pathway defects (Liu et al., 2005; Thevelein and de Winde, 1999; Toda et al., 1988).  

 

Sch9, a fungal member of the AGC kinases, is a potential ortholog of both AKT and S6K kinases 

(Fabrizio et al., 2001; Toda et al., 1988; Urban et al., 2007). Activation of Sch9 is initiated at 

phytosphingosine residues on the plasma membrane by phosphorylation by the yeast PDK1 

orthologs, Pkh1/2, in a glucose and serine dependent manner (Liu et al., 2005; Mirisola et al., 

2014; Voordeckers et al., 2011). Decreases in Sch9 signaling lead to increased lifespan, linked in  
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Figure 1.3 TORC2 signaling pathway 
TORC2 along with PDK1 phosphorylate AGC kinases resulting in the up regulation of metabolic processes (such as 

lipid biosynthesis) and cytoskeletal rearrangements through growth factor and nutrient signaling. TORC2 signaling 

ultimately results in cell growth, proliferation and survival. Information from (Bhaskar and Hay, 2007; Cybulski and 

Hall, 2009; Loewith et al., 2002; Su and Jacinto, 2011; Takahara and Maeda, 2013). 
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Figure 1.4 Yeast nutrient signaling pathway 
Phytosphingosine bound Sch9 is activated by Pkh1 in the presence of glucose and the amino acid serine, followed 

by further activation by TORC1 phosphorylation in the presence of valine and threonine. Sch9 along with the 

parallel glucose activated PKA pathway control cell size, growth, proliferation and stress resistance. (Kaeberlein et 

al., 2005; Liu et al., 2005; Mirisola et al., 2014; Smets et al., 2008; Thevelein and de Winde, 1999; Toda et al., 1988; 

Urban et al., 2007; Voordeckers et al., 2011; Wei et al., 2008; Wei et al., 2009) 

 

 



 

13 

 

part to its regulation of non-Fox stress responsive transcription factors Msn2, Msn4 and 

Gis1through a mechanism analogous to the AKT repression of the FoxOs (Wei et al., 2008). 

However, under certain conditions Sch9 functions as the yeast S6K ortholog: secondary 

activation of Sch9 occurs in a TORC1 (and not TORC2) dependent manner, leading to the 

involvement of Sch9 in ribosome biogenesis and transcription/translation regulation (Mirisola et 

al., 2014; Urban et al., 2007). Moreover, CLS studies show epistatic responses in cells with 

TOR1 and/or SCH9 disruptions (Wei et al., 2009). Finally, characterization of gene expression 

patterns in cells with combinations of Sch9 and TORC1 disruptions delineated multiple genetic 

interactions between these two kinases including epistatic (linear mechanisms; S6K-like), 

additive (parallel), and opposite (antagonistic) mechanisms (Smets et al., 2008). This suggests 

Sch9 may retain evolutionarily conserved functions that are distributed between S6K and other 

nutrient responsive AGC kinases in metazoans. 

 

1.4 Forkhead box transcription factors 

Fox transcription factors have been identified in a wide range of species from yeast to humans. 

They are characterized by a common 110-amino acid winged-helix DNA-binding domain, 

known as the forkhead box (Kaufmann and Knöchel, 1996; Kaufmann et al., 1995; Lai et al., 

1991; Weigel and Jackle, 1990; Weigel et al., 1989). All Fox proteins bind to the consensus core 

nucleotide sequence A/C AA C/T A due to the highly conserved nature of the Fox DNA-binding 

domain (Lalmansingh et al., 2012). Fox proteins are documented throughout fungal and animal 

species, while plant Fox proteins have yet to be identified, suggesting they originated in the 

animal/fungal ancestor after the evolutionary split of autotrophs and heterotrophs (Baldauf, 

1999). Furthermore, analyses of fungal Fox genes found they are equally related to all animal 

Fox genes, suggesting only one proto-Fox gene was present at the divergence of animals and 

fungus (Baldauf, 1999; Mazet et al., 2003). Phylogenetic and comparative analyses have 

identified 50 Fox genes in humans that are grouped into 19 subclasses (A to S) based on the 

relationships between paralogous genes, as well as between vertebrate and invertebrate genes 

(Hannenhalli and Kaestner, 2009; Jackson et al., 2010; Kaufmann and Knöchel, 1996; Mazet et 

al., 2003; Murakami et al., 2010).  

 



 

14 

 

The Foxs are involved in the regulation of growth, development, metabolism, immunity, and 

tissue remodelling, many having temporal and spatial tissue/cell type specificity. They 

accomplish this primarily through transcriptional regulation of genes involved in cell cycle, 

metabolism, and a myriad of stress responses, including detoxification, DNA repair, apoptosis, 

autophagy, and cell cycle arrest (Calnan and Brunet, 2008; Fu and Tindall, 2008; Greer and 

Brunet, 2008; Ho et al., 2008; Katoh and Katoh, 2004; Lalmansingh et al., 2012; Laoukili et al., 

2007; Tran et al., 2003; Wijchers et al., 2006; Zhang et al., 2011). Dysregulation of Fox genes 

has been linked to cancers, metabolic syndromes, autoimmune disorders, and a wide spectrum of 

developmental defects (Fu and Tindall, 2008; Greer and Brunet, 2008; Hannenhalli and 

Kaestner, 2009; Kloet and Burgering, 2011; Laoukili et al., 2007; Lehmann et al., 2003; Myatt 

and Lam, 2007). The identification of the FoxOs as major lifespan determining regulators of the 

insulin-signaling pathway has resulted in them becoming the best studied Fox family; 

subsequently, other Fox families have also been identified as potential regulators of aging, such 

as FoxM and FoxA (Anders et al., 2011; Laoukili et al., 2005; Laoukili et al., 2007; Panowski et 

al., 2007; Zeng et al., 2009), suggesting that increasing our understanding of general Fox biology 

may elucidate novel mechanisms of cellular longevity. This study focuses primarily on the 

functional similarities/relationships between the vertebrate FoxO and FoxM families with S. 

cerevisiae FKH1 (Forkhead homolog) and FKH2 genes. 

 

1.4.1 FoxOs 

The FoxO family is highly evolutionarily conserved, with members found in diverse metazoan 

lineages including mammals, flies, and nematodes (Lin et al., 2001; Mazet et al., 2003; Moskalev 

et al., 2011; Willcox et al., 2008; Yamamoto and Tatar, 2011). These transcription factors serve 

in longevity determination and tumor suppression through regulation of cell cycle and stress 

responses (Katayama et al., 2008; Kloet and Burgering, 2011; Kops et al., 2002a; Nogueira et al., 

2008; Stahl et al., 2002; Tran et al., 2002). The FoxOs integrate signals from energy, growth 

factors, and stress signaling cascades to activate and repress transcription of genes involved in 

cell differentiation, metabolism, cell-cycle arrest and progression, apoptosis, autophagy, DNA-

damage repair, and scavenging reactive oxygen species (ROS)/cell detoxification through the 

expression of genes such as the SODs (Superoxide dismutases), all of which may contribute to 

FoxO-dependent lifespan extension (Brunet et al., 2004; Cai and Xia, 2008; Demontis and 
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Perrimon, 2010; Katayama et al., 2008; Khatri et al., 2010; Kops et al., 2002a; Kops et al., 

2002b; Lehtinen et al., 2006; Luo et al., 2007; Martínez-Gac et al., 2004; Miyamoto et al., 2007; 

Nogueira et al., 2008; Pinkston-Gosse and Kenyon, 2007; Puig et al., 2003; Schmidt et al., 2002; 

Seoane et al., 2004; Sunters et al., 2006; Tran et al., 2002; Zhang et al., 2011). FoxO proteins 

have been shown to interact with multiple cofactors that mediate their activity through 

posttranslational modifications, including phosphorylation, ubiquitination, methylation, 

glycosylation, and acetylation. These molecular variances regulate FoxO transcription factor 

efficiency, localization, stability and association with cofactors (Calnan and Brunet, 2008; Hay, 

2011; Kops et al., 2002a; Tzivion et al., 2011; Zhang et al., 2011). Thus, a dynamic and complex 

molecular network controls FoxO protein function, yet specific lifespan regulating downstream 

targets remain speculative. 

 

The best characterized FoxO posttranslational modification is phosphorylation. As mentioned 

previously, insulin signaling, via AKT, phosphorylates multiple sites on the FoxOs, leading to 

conformational changes to the FoxO protein structure, exposing a nuclear export signal, 

increasing binding to 14-3-3 protein chaperones, and increasing the binding efficiency of the 

SCFSKP2 complex (Skp/ Cullin/SKP2 F-box containing) E3. Consequently, the FoxOs undergoes 

nuclear export, cytoplasmic sequestration, and proteasomal degradation (Calnan and Brunet, 

2008; Honda and Honda, 1999; Huang et al., 2005; Kloet and Burgering, 2011; Lin et al., 2001; 

Tzivion et al., 2011). Phosphorylation of the FoxOs through ROS, DNA damage, and 

hypoxic/starvation signaling pathways, such as the stress response mitogen activated protein 

kinases (MAPK) c-Jun N-terminal kinase (JNK) and p38, as well as the MAPK related kinase 

Mammalian ortholog of Sterile 20 (MST) 1, results in their nuclear shuttling and transcription 

factor activation, trumping AKT derived inhibition (Cai and Xia, 2008; Lehtinen et al., 2006; 

Sunters et al., 2006; Valis et al., 2011). Similarly, phosphorylation by AMPK, a kinase involved 

in sensing cellular energy states, results in FoxO transcription factor activation and gene target 

specificity (Greer et al., 2007a; Greer et al., 2007b; Peserico et al., 2013). Understanding how the 

combinations of posttranslational modifications lead to specific cellular outcomes could be 

invaluable for the development of therapies targeting aging and age related diseases, such as 

cancer, neurodegenerative disorders and diabetes.  
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1.4.2 FoxM 

FoxM family members are expressed in proliferating cells, where they regulate growth, cell 

cycle, DNA repair, and stress resistance genes (Dai et al., 2013; Laoukili et al., 2005; Monteiro 

et al., 2013; Park et al., 2009; Wang et al., 2005). The regulation of mitotic entry, spindle 

checkpoint and mitotic exit genes, such as Cyclin B, Aurora kinase, Polo-like kinase, CENP, etc. 

allows for appropriate progression through mitosis, controlling chromosome separation, while 

preventing potential catastrophic damage to the chromatin/genome (Laoukili et al., 2005; Wang 

et al., 2005; Wonsey and Follettie, 2005). Furthermore, FoxMs, like the FoxOs, regulate free 

radical scavengers, such as MnSOD (Manganese SOD), increasing cellular protection in 

proliferating cells (Park et al., 2009). FoxM down regulation has been observed in both progeric 

cells and aged cells, while growth hormone activation and induction of FoxM nuclear-

translocation increases regenerative capacity in aged mice (Krupczak-Hollis et al., 2003; 

Laoukili et al., 2007; Ly et al., 2000; Wang et al., 2001), indicating a role in preventing 

organismal senescence. However, human FoxM over expression is involved in cancer 

progression and malignancy, where it is involved in increasing proliferation rates and inducing 

angiogenesis, while protecting the oncogenic cells from ROS-induced apoptosis (Alvarez-

Fernandez and Medema, 2013; Dai et al., 2013; Kwok et al., 2010; Laoukili et al., 2007; 

Madureira et al., 2006; Monteiro et al., 2013; Petrovic et al., 2010; Wang et al., 2008; Wang et 

al., 2010; Wilson et al., 2011; Zeng et al., 2009). This indicates that understanding the regulation 

of FoxM functions may increase our understanding of both dividing cell longevity and tissue 

regeneration, as well as cancer development/treatment. 

 

1.4.3 Yeast forkhead box transcription factors 

The S. cerevisiae genome encodes four Fox genes, FHL1 (Forkhead-like), HCM1 (High-copy 

suppressor of calmodulin), FKH1 and FKH2, which are involved in cell cycle regulation and 

protein synthesis (Hermann-Le Denmat et al., 1994; Hollenhorst et al., 2000; Hollenhorst et al., 

2001; Knott et al., 2012; Kumar et al., 2000; Martin et al., 2004; Ostrow et al., 2014; Pic et al., 

2000; Pramila et al., 2006; Zhu et al., 2000). Based on sequence analysis, each of the fungal Fox 

proteins is thought to be equally distant to all metazoan Fox proteins, suggesting a single Fox 

gene was present at the evolutionary divergence of the fungal/animal lineages (Mazet et al., 

2003). This suggests that conserved Fox functions may be differentially distributed amongst 
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fungal and metazoan Fox families. Specific yeast Fox gene functions have been documented. 

Fhl1 is involved in ribosome biogenesis in a TORC1/Sch9-dependent manner, positively and 

negatively regulating RNA polymerase II activity at ribosomal subunit encoding genes linking 

nutrient signaling to rRNA processing and ribosome biogenesis (Hermann-Le Denmat et al., 

1994; Martin et al., 2004; Rudra et al., 2005; Schawalder et al., 2004; Xiao and Grove, 2009). 

HCM1 is expressed in a cell cycle dependent manner where it controls genes involved in late S 

phase to early mitotic progression, including FKH1 and FKH2 (Pramila et al., 2006). Hcm1 

localization and activity has been linked to nutrient signaling through both high nutrient (through 

Tor1/Sch9) and starvation (through Sir2 and Snf1) responses, where it regulates cell cycle 

progression and stress response (Rodriguez-Colman et al., 2010; Rodriguez-Colman et al., 2013). 

Finally, Fkh1 and Fkh2 regulate genes involved in mitotic entry/progression/exit, DNA 

replication initiation, and stress responses (Knott et al., 2012; Ostrow et al., 2014; Postnikoff and 

Harkness, 2012; Postnikoff et al., 2012; Shapira et al., 2004; Zhu et al., 2000). Initial 

investigations found that the deletion of any individual yeast Fox gene has little to no effect on 

CLS (Wei et al., 2008); however, recent findings suggest Fkh1 and Fkh2 regulate RLS, and 

along with Hcm1, CLS (Garay et al., 2014; Postnikoff et al., 2012). Here we will focus on the 

role of Fkh1/2 in the regulation of lifespan and stress responses. 

 

1.4.3.1 Fkh1 and Fkh2 

Fkh1 and Fkh2 are thought to be paralogs arising from a relatively recent gene duplication event. 

Expressed in late S phase/early gap 2 (G2), they regulate cell cycle progression, specifically 

mitotic entry, progression and exit, G1 maintenance and S phase initiation. As mentioned earlier, 

they also regulate stress responses, including cell cycle arrest in response to oxidative stress 

(Hollenhorst et al., 2000; Hollenhorst et al., 2001; Knott et al., 2012; Koranda et al., 2000; 

Ostrow et al., 2014; Pic et al., 2000; Postnikoff and Harkness, 2012; Postnikoff et al., 2012; 

Pramila et al., 2006; Shapira et al., 2004; Sherriff et al., 2007; Zhu et al., 2000). The deletion of 

individual FKH genes gives rise to subtle opposing phenotypes (Hollenhorst et al., 2000; Kumar 

et al., 2000; Pic et al., 2000; Zhu et al., 2000). For example, deletion of FKH1 is associated with 

slight increases in Clb2 (Cyclin B) levels and CLB2 gene cluster expression and a decrease in 

genomic silencing at established Fkh binding sites, such as within the mating type locus, while 

the deletion of FKH2 has the opposite effects (Hollenhorst et al., 2000). However, the Fkhs also 
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share redundant functions as deletion of both genes significantly alters growth, cell morphology, 

and gene transcription phenotypes (Hollenhorst et al., 2000; Shapira et al., 2004; Zhu et al., 

2000). For example, deletion of both FKHs deregulates CLB2 expression, increasing background 

expression throughout the cell cycle, while removing both the general repression throughout G1-

S-G2 and peak expression at mitotic entry. These responses are not observed when a single FKH 

is deleted (Hollenhorst et al., 2000; Hollenhorst et al., 2001; Zhu et al., 2000).  

 

 Fkh1/2 in stress response 

The majority of FoxO-like stress responses (example SOD gene expression) in yeast have been 

attributed to other non-Fox transcription factors, such as Msn2 (Multicopy suppressor of SNF1 

mutation) and Msn4 (Fabrizio et al., 2003; Fabrizio et al., 2004b; Fabrizio et al., 2001; Wei et al., 

2008); however, the Fkhs have also been observed to regulate stress responses. Microarray 

analysis of FKH deletion strains show altered stress resistance gene expression, while the 

deletion of the FKHs disrupts oxidative stress-induced cell cycle arrest (Shapira et al., 2004; Zhu 

et al., 2000). Additionally, the Fkhs, and known co-activators such as Mcm1 (Minichromosome 

maintenance) and Ndd1 (Nuclear division defective), translocate from the nucleus to the 

cytoplasm under acute hypoxic stress, while strains lacking FKH2 show decreased colony size 

when grown under anaerobic conditions (Dastidar et al., 2012; Samanfar et al., 2013), indicating 

a role for the Fkhs in responding and adapting to environmental stresses, such as growth in low 

oxygen.  

 

Yeast cellular processes may be regulated via multi-subunit complexes, the net composition of 

which determines the overall expression. The Fkhs potentially co-regulate many gene loci. A 

large scale chromatin immuno-precipitation (ChIP) study supports this idea as they found Fkh1 

is associated with the promoter sequences of 3302 genes and Fkh2 precipitates with the 

promoters of 775 genes of the approximately 6400 genes identified in the yeast genome (Venters 

et al., 2011). While an in depth review of these potential transcriptional targets is beyond the 

scope of this thesis, a few genes are noteworthy. For example, both lists include the free radical 

scavenging metallo-SOD genes SOD1 and SOD2, as well as other genes involved in ROS 

scavenging. Also at least one of the Fkhs binds to genes involved in cell cycle regulation 

including CDKs [CDC28 and PHO85 (Phosphate metabolism)], cyclins [CLB1, CLB2, CLB3, 
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CLB4, CLB5, CLB6, CLN1, CLG1 (Cyclin-like gene), PCL1 (Pho85 cyclin), PCL2, PCL5, 

PCL7, and PCL9], the CDKI SIC1, the CDKI-like protein SPL1 (Suppressor of Plc1 deletion), 

and APC subunits/co-activators [APC1, APC9, APC11, CDC20, CDC26, CDH1 (CDC20 

homolog), and MND2 (Meiotic nuclear divisions)] to name a few. Additionally, genes involved 

in the nutrient/stress response mechanisms are also potential targets; these include but aren’t 

limited to nutrient response G protein couple receptors involved in nutrient signaling [GPR1 (G-

Protein coupled Receptor) and GPA2 (G protein alpha subunit)], members of Ras/PKA signaling 

[RAS1, RAS2, TPK1 (Takashi's protein kinase; catalytic subunit of yeast PKA), TPK2, and BCY1 

(Bypass of cyclic-AMP requirement; PKA regulatory subunit)], TOR signaling [LST8 (Lethal 

with sec thirteen), TCO89 (Tor complex one), and TAP42], and stress response kinases such as 

the Msn2/4 regulator RIM15 (Regulator of IME2), SNF1, and the stress responsive MAPK 

HOG1 (High osmolarity glycerol response). Also regulated are genes involved in telomere 

length and integrity; of note is TEL2 (Telomere maintenance), a gene involved not only in 

telomere length and maintenance, but is also in the stability/biogenesis of TORC1 (Runge and 

Zakian, 1996; Stirling et al., 2011). Last, some genes involved in yeast programmed cell 

death/apoptosis regulation are potential targets. This includes several mammalian orthologs 

including BXI1 (Bax inhibitor), a BCL-2 ortholog with both pro- and anti-apoptotic functions 

(Buttner et al., 2011; Cebulski et al., 2011). This is of particular interest as the FoxOs control the 

expression of BCL-2 family members, both the pro-apoptotic Bim and BNIP3, as well as the 

anti-apoptotic Bcl-XL (Dijkers et al., 2002; Dijkers et al., 2000; Gilley et al., 2003; Stahl et al., 

2002; Tang et al., 2002). The Fkhs interact with various transcriptional activators, repressors, 

kinases and chromatin modifiers, including, but not limited to, the stress, starvation, and lifespan 

regulating HDAC, Sir2 and the SAGA (Spt-Ada-Gcn5 Acetyltransferase) complex, a key histone 

(protein) acetyl-transferase (HAT) complex in yeast (Guarente, 2013b; Linke et al., 2013; 

Venters et al., 2011), indicating that they may play a role in both the activation and repression of 

diverse cellular processes. We are only beginning to understand the capacity of the Fkhs to 

influence a multitude of cellular processes through altering the composition and activity of many 

transcriptional regulation complexes.  
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 Fkh1/2 in cell cycle regulation 

The FKHs are expressed in a cell cycle dependent manner in late S/early G2, in part through 

regulation by the Fox protein Hcm1 (Pramila et al., 2006). During the Gap phases, the Fkhs 

recruit chromatin remodeling proteins such as Sir2, Isw1 (Imitation switch subfamily) and Isw2 

to repress mitotic specific gene expression (Linke et al., 2013; Sherriff et al., 2007). The yeast 

Fkh1 and Fkh2 regulate the transcription of gene clusters required for cell-cycle progression, 

such as the SIC1, CLN2 (Cyclin), and CLB2 gene clusters (Zhu et al., 2000). Under standard in 

vivo conditions, Mcm1 and Fkh2 occupy most mitotic regulating promoters; increases in 

Cdc28/Cdk1 (Cell-division cycle/Cyclin-dependent kinase)-cyclin and Cdc5 activity during 

mitotic entry facilitates the binding of the co-activator Ndd1 to Mcm1-Fkh2 complexes 

(Hollenhorst et al., 2001; Koranda et al., 2000; Loy et al., 1999). Thus, Fkhs act to inhibit the 

expression of G2/M progression genes until the appropriate growth signals regulating the binding 

of Ndd1 to Fkh2 are present. At this point there is a switch to mitotic progression via the up-

regulation of Clb2 and Cdc5 (a polo-like kinase), which further activates the Fkh2/Ndd1 

complex, increasing the expression of the CLB2 gene cluster in a feed forward amplification 

(Reynolds et al., 2003). The expression of other genes, such as the rest of the Clb2 gene cluster is 

similarly regulated: this includes the APC sub-units/activators and the G1 transcription factors 

Swi5 (Switching deficient) and Ace2 (Activator of CUP1 expression), as well as the Histone 

gene cluster (Zhu et al., 2000). In cells were FKH2 is deleted, Fkh1 regulates this periodic 

increase of gene expression in a yet to be determined Mcm1/Ndd1-independent manner 

(Reynolds et al., 2003).  

 

The Fkh1 and Fkh2 regulated CLN2 and CLB2 gene clusters include targets and regulators of the 

APC (Ko et al., 2007; Qiao et al., 2010; Sari et al., 2007; Zhu et al., 2000). The APC is a highly 

conserved E3 that primarily controls progression through mitosis and G1. The observation that 

the Fkh proteins control transcription of many genes required for APC function suggests that the 

APC may be a critical downstream target of the Fkhs (discussed in more detail below). The Fkh 

proteins also control the transcription of the histone gene cluster (Zhu et al., 2000). Interestingly, 

the yeast APC is required for histone protein expression and post-translational modification, 

which may be a shared function with the Fkh proteins, as deletion of FKH1 and FKH2 in a 
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mutant strain with a chromatin assembly deficient allele of the APC5 gene (apc5CA) further 

impairs histone protein levels (Postnikoff et al., 2012; Turner et al., 2010). 

 

In late mitosis, Fkh-regulated transcription factors, Swi5 and Ace2, activate the expression of the 

SIC1 gene cluster, which regulates M/G1 progression genes, including the yeast CDK inhibitor 

(CDKI) Sic1 (Substrate inhibitor of cyclin-dependent protein kinase). Phosphatase activity and 

proteasomal degradation of the mitotic program inactivate the Mcm1-Fkh2-Ndd1 complex, 

degrading Ndd1 in the process (Wittenberg and Reed, 2005). Additionally, besides repressing 

expression of the CLB2 gene cluster, the Fkhs also bind to and repress many Swi5 targeted 

promoters, further slowing early G1 progression (Voth et al., 2007). Simultaneously, the Fkhs 

are involved in the expression of tRNAs, potentially speeding growth in the Gap phases (Venters 

et al., 2011). Recently, the Fkhs were discovered to play a role in the initiation of DNA 

synthesis; Fkh1, and to a lesser extent Fkh2, bind to and regulate early replication origin firing in 

the initiation of S phase (Knott et al., 2012; Ostrow et al., 2014). 

 

1.4.4 Evolutionary conservation of Fkh1/2: FoxO or FoxM? 

FKH1 and FKH2 are considered FoxM orthologs due to their regulation of the CLB2 gene 

cluster, the timing of their expression during the cell cycle, and their phosphorylation activation 

by CDK-cyclin B complexes and polo-like kinases (Carlsson and Mahlapuu, 2002; Katoh and 

Katoh, 2004; Laoukili et al., 2007; Pramila et al., 2006). Additionally, the non-forkhead box 

transcription factors Msn2/4 and Gis1 (Gig1-2 suppressor) are considered the functional analogs 

of the FoxOs due to their role in the expression of stress response and Gap 0 (G0; 

quiescence/senescence) genes (Fabrizio et al., 2003; Fabrizio et al., 2004b; Fabrizio et al., 2001; 

Wei et al., 2008). However, building evidence challenges that paradigm. Specifically, Fkh1 and 

Fkh2 have demonstrated functional orthology to both FoxM and FoxOs based on three lines of 

evidence: phylogenetic analysis of the Foxs; the shared regulation of the cell cycle; their role in 

the response and regulation of environmental changes/stresses.  

 

Sequence analysis suggests that all fungal and animal Fox proteins evolved from a single gene, 

which subsequently gave rise to the diversity of Foxs identified (Hannenhalli and Kaestner, 

2009; Mazet et al., 2003; Wang et al., 2009b). The highly conserved nature of the forkhead box 
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DNA binding domain suggests that paralogous Fox proteins may have shared overlapping 

functions within an organism, while conservation of genetic code would determine conserved 

functions between organisms. This would indicate that retained locus regulation by Fox proteins 

between yeast and humans may be regulated by multiple Fox paralogs within each respective 

species. Furthermore, the FoxM family has only been identified in deuterostome lineages 

suggesting that they are the result of a gene duplication event well after the animal/fungus split, 

likely from the FoxO lineage, due to sequence analysis (Jackson et al., 2010; Mazet et al., 2003). 

Therefore, retained mechanistic and genetic functions between the yeast Fkh1/2 and FoxM are 

likely also shared in part with other mammalian Fox proteins, especially the FoxO family. 

 

Next, the regulation of cell cycle is shared by Fkh1/2, FoxM and FoxO families (Alvarez et al., 

2001; Hollenhorst et al., 2000; Wijchers et al., 2006; Zhu et al., 2000). Specifically, the FoxO 

proteins repress mitotic progression gene expression in both G2 and G1, a feature shared with the 

Fkhs, when coupled with chromatin remodelling cofactors such as Sir2 and Isw1/2 (Kops et al., 

2002b; Linke et al., 2013; Schmidt et al., 2002; Sherriff et al., 2007). On the other hand, FoxMs, 

the yeast Fkhs, and to a lesser extent FoxOs activate the expression of mitotic progression genes 

as well as play a role in the transition from G1 to S phase [Figure 1.5; (Alvarez et al., 2001; 

Hollenhorst et al., 2000; Hollenhorst et al., 2001; Knott et al., 2012; Kumar et al., 2000; Laoukili 

et al., 2005; Laoukili et al., 2007; Marlow et al., 2012; Murakami et al., 2010; Ostrow et al., 

2014; Venters et al., 2011; Wang et al., 2005; Wang et al., 2008; Zhu et al., 2000)]. The Fkhs 

repress inappropriate CLB2 gene cluster expression throughout the cell cycle until mitotic 

specific activating signals and co-factor binding switches Fkh function and activates gene 

cluster’s expression (Hollenhorst et al., 2000; Koranda et al., 2000; Pic et al., 2000; Reynolds et 

al., 2003; Sherriff et al., 2007; Zhu et al., 2000). This is counteracted by the degradation of 

activating kinases and co-factors, as well as potential Fkh-dephosphorylation as a part of mitotic 

exit, at which time they resume their cell cycle repressive role, which is similar to the FoxOs 

(Loy et al., 1999; Sherriff et al., 2007). Additionally, the Fkhs indirectly regulate the expression 

of the SIC1 gene cluster controlling Cdc28-cyclin interactions in G1 entrance (Zhu et al., 2000). 

Furthermore, the Fkhs indirectly and directly regulate the progression through G1 into S phase: 

indirectly through the expression of SWI5 and ACE2, transcription factors that regulate the 

expression of genes involved in cell cycle progression (Pic et al., 2000; Zhu et al., 2000); and  
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Figure 1.5 Fkh1 and Fkh2 co-regulate the cell cycle in S. cerevisiae 
The Fkhs (predominantly Fkh2) recruit HATs, HDACs and other transcriptional machinery, resulting in changes to 

activation and repression of the CLB2 (mitotic progression) and SIC1 (G1 entry) gene clusters. Additionally, the 

Fkhs (especially Fkh1) regulate origin of replication licensing initiating transition into S phase. Dashed line 

represents indirect regulation. Model based on data from (Hollenhorst et al., 2000; Knott et al., 2012; Linke et al., 

2013; Ostrow et al., 2014; Sherriff et al., 2007; Voth et al., 2007; Zhu et al., 2000). 
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directly through the regulation of cell growth and origin of replication firing (Knott et al., 2012; 

Ostrow et al., 2014; Venters et al., 2011). In mammals, the FoxOs are characterized by their 

repressive role of cell proliferation in G1 and G2 through the expression of CDKIs and the 

repression of cyclins [Figure 1.6; (Gomis et al., 2006; Ho et al., 2008; Katayama et al., 2008; 

Martínez-Gac et al., 2004; Medema et al., 2000; Schmidt et al., 2002; Seoane et al., 2004; 

Takano et al., 2007)]. They have also been found to conditionally increase the expression of 

genes, such as cyclin B and polo-like kinase, important for G2 and M phase progression, as well 

as increase the expression of G1 progression cyclin A in some tumour cell lines (Alvarez et al., 

2001; Marlow et al., 2012). The Fkhs have analogous function through the recruitment of both 

activators and repressors of transcription to genes involved in G2-M progression, as well as 

through the indirect regulation of SIC1 (Hollenhorst et al., 2000; Kumar et al., 2000; Linke et al., 

2013; Sherriff et al., 2007; Zhu et al., 2000). FoxMs function in cell cycle progression, both from 

G2-M and G1-S (Laoukili et al., 2005; Wang et al., 2005; Wang et al., 2002a; Wang et al., 

2002b; Yoshida et al., 2007). The former is a function thought to be predominately regulated by 

Fkh2 under standard conditions, while the latter is likely regulated by Fkh1 and other yeast 

transcription factors [Figure 1.5; (Ho et al., 2008; Ostrow et al., 2014)].  

 

Finally, FoxM, FoxO and Fkh1/2 are all involved in cellular responses to toxic stress. The FoxOs 

activate the expression of genes required for apoptosis and stress resistance, while repressing 

genes involved in cell cycle progression (Delpuech et al., 2007; Fu and Tindall, 2008; Zhang et 

al., 2011). The FoxMs similarly increase stress resistance gene expression, but also maintain 

expression of cell cycle progression genes rather than those that induce apoptosis (Li et al., 

2008b; Monteiro et al., 2013; Park et al., 2009; Tan et al., 2007; Wang et al., 2002b; Wang et al., 

2001). A similar pattern was observed in microarray analysis of asynchronous fkh1Δ fkh2Δ cells 

where many stress response genes were down regulated (Zhu et al., 2000). Additionally, FKH1 

or FKH2 are required for the induction of ROS-induced cell cycle arrest (Shapira et al., 2004), a 

function more commonly associated with FoxOs than the FoxMs. 
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Figure 1.6 FoxOs and FoxMs co-regulate the cell cycle in mammals 
The FoxOs inhibit transition from G2 to M by increasing G2 cyclin expression while inhibiting mitotic cyclins 

and related genes; however, the FoxOs can increase the expression of mitotic cyclins and related genes in certain 

conditions. In G1 the FoxOs inhibit the cyclins involved in G1-S transition while increasing the expression of 

CDKIs. FoxM is involved in progression through both G2-M and G1-S by increasing expression of the 

appropriate cyclins. Model modified from (Ho et al., 2008) with additional information from (Gao et al., 2009; 

Lin et al., 2009; van Leuken et al., 2008; Wang et al., 2005; Wang et al., 2008). 
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1.5 Anaphase-Promoting Complex 

The APC is an E3 that regulates passage through mitosis and the cell cycle by selectively 

targeting cyclins, mitotic kinases, F-box proteins, and proteins involved in chromatin 

adhesion/separation for proteasomal degradation, resulting in appropriately timed sister-

chromatid separation at metaphase-anaphase transition, as well as mitotic exit and early G1 

(Barford, 2011; McLean et al., 2011). The addition of the small peptide ubiquitin is a 

posttranslational modification often involved in protein localization; most often, the formation of 

poly-ubiquitin chains target the modified substrate to the proteasome where it is degraded. A 

ubiquitin-activating enzyme (E1) attaches ubiquitin onto ubiquitin-conjugating enzymes (E2). 

E3s bring E2s and target substrates together, catalysing ubiquitin transfer either directly from the 

E2 to the substrate in the case of really interesting new gene (RING) domain containing E3s or 

transferring the ubiquitin from the E2 to the E3 before attaching it to the substrate in the case of 

homology to E6AP C terminus (HECT) domain E3s (Berndsen and Wolberger, 2014; Nandi et 

al., 2006). The highly evolutionary conserved APC is a RING E3 comprised of subunits that can 

be classified in three general regions: a cullin RING zinc-finger domain catalytic cluster, similar 

in structure to the SCF, comprised of Apc11, Apc2, and Apc10; a regulatory cluster including 

Apc3/Cdc27, Apc6/Cdc16, Apc7, Apc8/Cdc23, and Cdc26; and structural and scaffolding 

subunits that connect the regulatory and catalytic groups, as well as increase the complex’s 

stability, which includes Apc1, Apc4, Apc5, and Apc13 [Table 1.2; Figure 1.7; (Barford, 2011; 

da Fonseca et al., 2011; McLean et al., 2011; Schreiber et al., 2011; Thornton et al., 2006; 

Thornton and Toczyski, 2006)]. APC activity and substrate specificity throughout the mitotic cell 

cycle is regulated by association of specific co-activators to the regulatory subunits: Cdc20 for 

progression from metaphase through anaphase, and Cdh1 during mitotic exit and G1 

maintenance. Besides its role in cell cycle regulation, the APC is associated with genomic 

stability through roles in chromatin assembly, histone modifications, and spindle checkpoint 

regulation (Charles et al., 1998; Garcia-Higuera et al., 2008; Harkness et al., 2002; Harkness et 

al., 2004; Islam et al., 2011; Kotani et al., 1998; McLean et al., 2011; Menzel et al., 2013; Qiao 

et al., 2010; Thornton and Toczyski, 2006; Turner et al., 2010). 

 

 

http://en.wikipedia.org/wiki/Ubiquitin-activating_enzyme
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Table 1.2 Conservation of APC subunits in S. cerevisiae and mammals  

Mammals  S. cerevisiae 
Essential in 

S. cerevisiae? 
Function 

Core subunits    

Apc1 Apc1 Yes Scaffold 

Apc2 Apc2 Yes E2 binding 

Apc3 Cdc27 Yes Protein binding 

Apc4 Apc4 Yes Scaffold 

Apc5 Apc5 Yes Scaffold 

Apc6 Cdc16 Yes Subunit binding 

Apc7 
Not 

identified 
-  

Apc8 Cdc23 Yes Subunit binding 

Not 

identified 
Apc9 No Complex stabilization 

Apc10 Apc10 No Substrate recognition 

Apc11 Apc11 Yes E2 binding/Catalytic subunit 

Cdc26 Cdc26 No Role in heat shock 

Apc13 Swm1 No Complex stabilization/Role in meiosis 

Not 

identified 
Mnd2 No Role in meiosis 

Apc16 
Not 

identified 
-  

Co-activators    

Cdc20/Fzy/ 

p55CDC 
Cdc20 Yes Activation and substrate specificity in mitosis and meiosis 

Cdh1/Fzr1 Cdh1 No 
Activation and substrate specificity in G1, mitosis and 

meiosis 

 
Information obtained and modified from (McLean et al., 2011; Thornton and Toczyski, 2006). 
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Figure 1.7 Schematic of the S. cerevisiae Anaphase Promoting Complex 
Red subunits indicate catalytic proteins, green indicates structural subunits, blue indicates subunits in regulatory 

region/unknown function, and yellow indicates the location of one of the co-activators Cdc20 or Cdh1, which 

associate with Cdc27 and Apc10. Target substrate is recognized by Apc10, while Apc11 catalyzes ubiquitin transfer 

from the E2 to the target. Information obtained and modified from (Schreiber et al., 2011; Thornton et al., 2006; 

Thornton and Toczyski, 2006). For more detailed EM structures of S. cerevisiae and human APCs see (Buschhorn et 

al., 2011; da Fonseca et al., 2011; Schreiber et al., 2011). 
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1.5.1 APCCdc20: the regulation of mitosis 

The APC is kept dormant during S and G2 through the sequestration of the activating subunits 

(Cdc20 and Cdh1), potentially by inhibitory phosphorylation by CDK/cyclin complexes and 

PKA (Bolte et al., 2003; Kotani et al., 1998; Searle et al., 2004). Upon the cell reaching critical 

size and protein content in G2, polo-like kinases (Cdc5 in S. cerevisiae) are activated by removal 

of inhibitory phosphorylation by way of TORC1 activated PP2ATap42 (Nakashima et al., 2008). 

Polo-like kinase activation leads to the release Cdc20, freeing it to bind to the rest of the APC 

(Kotani et al., 1998). Further activation by the polo-like kinases, and CDK/mitotic-cyclin 

complexes and proper spindle formation, removes inhibition by the Bub/Mad spindle checkpoint 

proteins leading to the full activation of the APCCdc20 (Fang et al., 1998; Hardwick et al., 2000; 

Shah et al., 2004; Tang et al., 2001). This leads to the release of cyclin specific phosphatases 

(such as Cdc14 in S. cerevisiae), the activation of APCCdh1 complexes, and the targeting of the 

mitotic cyclins, polo-like kinases, Cdc20, and securins for proteasome-dependent degradation, 

resulting in the initiation of chromosome segregation and cytokinesis (Barford, 2011; Harper et 

al., 2002; Passmore, 2004; Visintin et al., 1998). However, the specific role of each of the co-

activators at metaphase/anaphase transition in vivo remain unclear, as both APCCdc20 and 

APCCdh1 are capable of the ubiquitination of the major APC substrates (Castro et al., 2005; 

Thornton and Toczyski, 2003). 

 

1.5.2 APCCdh1: mitotic exit, G1 maintenance and beyond  

APCCdh1 continues to target mitotic specific activators for proteasomal degradation, including 

those mentioned earlier, such as mitotic cyclins, polo-like kinases, and Cdc20, altering the 

protein landscape through ubiquitin mediated degradation, resetting the recently divided 

daughter cells to a G1 state. In G1, in mammalian cells, stability of the FoxO and FoxM proteins 

is controlled antagonistically by the SCF and APC ubiquitin-protein ligase/E3 complexes, 

respectively (Figure 1.8). The APC targets FoxM1 for degradation, while indirectly stabilizing 

the FoxOs during G1 (Laoukili et al., 2008; Park et al., 2008). The SCFSKP2 complex targets 

phosphorylated FoxO proteins and CDKIs for degradation (Huang et al., 2005; Huang and 

Tindall, 2011; Wang et al., 2005).The APC potentially controls this process through targeting 

nuclear SKP2 for proteasomal degradation (van Leuken et al., 2008). Degradation of SKP2 by 

the APCCDH1 blocks SCFSKP2 function, thereby protecting nuclear FoxO from degradation and  
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Figure 1.8 Insulin signaling and the APC control Fox protein abundance in G1 
The FoxOs, through CDKIs, lead to cell cycle arrest in early G1, a process mediated by the APCCDH1 degradation of 

nuclear FoxM and SKP2. Insulin signaling, through AKT, mediates FoxO and CDKI localization and degradation, 

in part through the activation and protection of the SCFSKP2 complex. See text for details. 
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allowing the FoxOs to function in quiescence and tumor suppressor activity. On the other hand, 

AKT phosphorylates FoxO proteins, both leading to their nuclear export and increasing the 

efficiency of SCFSKP2-dependent ubiquitination and degradation, while AKT also phosphorylates 

and activates SKP2 (Gao et al., 2009; Lin et al., 2009). AKT phosphorylation of SKP2 is 

believed to signal cytosolic localization, thereby protecting SKP2 from nuclear APC-dependent 

ubiquitination and degradation. However, these mechanisms may be cell type dependent, as a 

subsequent study was unable to reproduce these findings (Bashir et al., 2010). In yeast, besides 

degrading mitotic progression proteins, the APCCdh1 potentially degrades Ndd1 (Loy et al., 

1999). As mentioned earlier this switches Fkh2 function from activation to repression at the 

CLB2 cluster, analogous to the degradation of FoxM and stabilization of FoxOs in mammals. 

Furthermore, preliminary data indicate APC and SCF defects may stabilize Fkh1 and Fkh2 under 

some conditions (Malo and Harkness, unpublished), while SCFCdc4 targets Sic1 for degradation 

(Feldman et al., 1997; Verma et al., 1997), suggesting that ubiquitination of the Fox 

protein/CDKI network of G1 control may be conserved from yeast to humans. In summary, a 

highly conserved signaling pathway exists, where the APC and growth factor signaling compete 

in the regulation of the SCF, with the winner perhaps deciding the cell fate between Fox-

mediated quiescence, repair or death versus growth, division and survival.  

 

1.5.3 APC: a potential Fox-dependent regulator of longevity 

Transcription of mammalian mitotic genes, including APC components, is regulated by FoxM1, 

as well as conditionally by the FoxOs (Alvarez et al., 2001; Laoukili et al., 2005; Takano et al., 

2007; Wang et al., 2005). Murine APC regulation is also implicated in aging, as mutations to 

BubR1, a component of the mitotic spindle checkpoint, lead to premature aging defects and 

progeric phenotypes (Baker et al., 2004). BubR1 phosphorylates and inhibits premature APCCdc20 

activity (Baker et al., 2004; D'Arcy et al., 2010; Lara-Gonzalez et al., 2011). Inappropriate 

activation of APCCdc20 results in the loss of nuclear lamina structure and transcriptional 

derepression leading to progeria, while premature activation of anaphase may result in chromatin 

number aberrations potentially leading to cancer. Cultured murine cells lacking Cdh1 have 

inefficient proliferation due to defects in both mitotic exit and S phase entry, as well as the 

accumulation of aberrancies in the numbers and structures of chromatin. Furthermore, 

heterozygous Cdh1 knock-out mice show increased rates of spontaneous tumour formation 
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(Garcia-Higuera et al., 2008). Additionally, the APCCdh1 appears to play a role in the stabilization 

of at least FoxO1 through the degradation of Skp2, an F box protein of the SCF ubiquitin-protein 

ligase complex responsible for FoxO1 degradation. The APC’s protection of the FoxOs is 

inhibited by insulin signaling (Gao et al., 2009; Huang et al., 2005). Furthermore, the APCCdh1 

targets FoxM1 for degradation and the absence APCCdh1-dependent degradation of FoxM1 can 

lead to tumour formation and cell cycle abnormalities (Laoukili et al., 2008; Park et al., 2008; 

Tang et al., 2008; Wang et al., 2008).  

 

Similar to what has been observed in mammals, the APC has been demonstrated as critical to 

genomic stability and longevity in yeast (Baker et al., 2004; Harkness et al., 2002; Harkness et 

al., 2004; Hartwell and Smith, 1985; Li et al., 2008a; Palmer et al., 1990; Postnikoff and 

Harkness, 2012). Additionally, Fkh1 and Fkh2 regulate the CLB2 gene cluster for progression 

through mitosis, which includes genes required for APC activity (APC1, CDC5, CLB2, and 

CDC20), as well as APC targets [CLB2, CDC5, CDC20 and IQG1; (Barford, 2011; Harper et al., 

2002; Ko et al., 2007; Zhu et al., 2000)]. Yeast APC may play a role in switching the activity of 

at least Fkh2, by potentially degrading the transcription co-activator, Ndd1, allowing for the 

binding of repressors Isw2 or Sir2 (Linke et al., 2013; Sherriff et al., 2007). This would switch 

Fkh2 function from FoxM to FoxO-like activity at those sites upon G1 entry. Mutations to 

individual APC subunits have been found to decrease RLS and CLS, while over-expression of 

APC10 increases at least RLS (Harkness et al., 2004; Menzel et al., 2013; Postnikoff et al., 

2012). Additionally, cdh1Δ results in decreased stress resistance, in part due to the 

stability/activity of Clb2 and Hsl1 (Histone synthetic lethal), which in turn inhibit stress response 

MAPK pathways such as Hog1 (Simpson-Lavy et al., 2009). Finally, the APC regulates genomic 

stability through the regulation of histone modifications, levels and deposition, as well as 

chromatin dynamics, processes that have been linked to aging phenotypes in yeast (Feser et al., 

2010; Harkness et al., 2002; Harkness et al., 2004; Menzel et al., 2013; Postnikoff et al., 2012; 

Turner et al., 2010). These data strongly implicate an interactive role between the APC and Fox 

proteins in the co-regulation of an evolutionarily conserved pathway controlling genomic 

stability, tumour suppression, and aging from yeast to mammals. 
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2 Hypothesis, Aims and Rationale  

2.1 Hypothesis 

The central hypothesis of this study is that the yeast forkhead box transcription factors, Fkh1 and 

Fkh2, and the Anaphase-Promoting Complex/Cyclosome (APC) co-regulate chronological 

lifespan, likely through the regulation of cell cycle and stress resistance mechanisms. 

Furthermore, that this lifespan regulation is controlled by the nutrient responsive kinases Sch9 

and Tor1. 

 

2.2 Specific aims 

1) To examine evolutionary conservation of known metazoan Fox gene functions by the S. 

cerevisiae forkhead box containing transcription factors Fkh1 and Fkh2. 

 

2) To observe the involvement of nutrient and stress response kinases in the regulation of FKH-

dependent lifespan.  

 

3) To characterize the role of the Anaphase-Promoting Complex/Cyclosme in Fkh and 

Sch9/Tor1 dependent lifespan and stress resistance regulation. 

 

2.3 Rationale 

Many eukaryotic signaling mechanisms are conserved between fungal and animal systems, 

especially regarding responses to extracellular nutrient availability and stressing agents, as well 

as intracellular energy levels and damage. These signals regulate cell growth, division, repair, 

nutrient scavenging, and cell death through mechanisms that are at least partially conserved 

between lineages (De Virgilio and Loewith, 2006a; Hardie et al., 1998; Hay, 2011; Mitchelhill et 

al., 1994; Takahara and Maeda, 2013; Zaman et al., 2008). The nutrient/stress responses 

regulating FoxO and FoxM forkhead box transcription factor families play fundamental roles in 

decreasing metazoan age-related health decline and cancer progression (Berdichevsky and 

Guarente, 2006; Burgering, 2008; Calnan and Brunet, 2008; Greer and Brunet, 2008; Laoukili et 

al., 2005; Monsalve and Olmos, 2011; Wilson et al., 2011; Wonsey and Follettie, 2005; Zhao et 

al., 2011). The budding yeast S. cerevisiae is a powerful model organism for elucidating genetic 



 

34 

 

and biochemical mechanisms involved in these processes. The yeast forkhead box containing 

proteins, Fkh1 and Fkh2, are potentially orthologous to those of metazoans as they regulate gene 

expression involved in the progression from G2 to M and M to G1 phase of the cell cycle, as 

well as stress response genes, similar to the FoxM/FoxO families of higher eukaryotes (Alvarez 

et al., 2001; Hollenhorst et al., 2000; Laoukili et al., 2005; Postnikoff and Harkness, 2012; 

Takano et al., 2007; Wang et al., 2005; Wijchers et al., 2006; Zhu et al., 2000). However, it has 

yet to be determined if these pathways are regulated by nutrient/stress response signals and 

whether the Fkhs regulate longevity and stress response mechanisms in a manner similar to 

metazoan Fox proteins. Additionally, downstream targets and interacting partners specifically 

involved in lifespan regulation are ill defined. The ability to genetically and biochemically 

manipulate yeast should enable the discovery of novel forkhead lifespan determining factors. 

Supporting the idea that FKH1 and FKH2 function at least partially orthologous to metazoan 

FoxOs are microarray data suggesting the Fkhs redundantly regulate expression of cell cycle 

progression genes as well as stress resistance genes and that the FKHs are required for hydrogen 

peroxide cell cycle arrest, the regulation of which is implicated in the aging process (Honda and 

Honda, 1999; Kops et al., 2002a; Shapira et al., 2004; Zhu et al., 2000). 

 

Should the yeast Fox genes be responsible for lifespan extension, the identification of both co-

regulators and gene targets is paramount for establishing evolutionary conservation and the 

relevance of yeast as a model for eukaryotic aging. Many Fox activity modifying enzymes 

characterized in higher eukaryotes have structurally/functionally conserved orthologs in the 

budding yeast. After establishing Fkh1 and Fkh2 as regulators of lifespan, in subsequent sections 

we will focus on the relationship of the Fkhs with nutrient signaling mechanisms through Sch9 

and Tor1 kinases, the yeast orthologs of AKT/S6K and mTOR respectively, as these signaling 

mechanisms control FoxO-dependent lifespan extension in higher eukaryotes (Brunet et al., 

1999; Hay, 2011; Kenyon, 2011). Establishment of a relationship between the Fkhs and 

nutrient/growth factor/stress signaling orthologs strengthens our understanding of conservation 

between the FoxO-dependent lifespan of higher eukaryotes and Fkh-dependent lifespan in yeast.  

 

Conservation of Fox-dependent lifespan regulation in yeast realizes the potential of utilizing the 

molecular/genetic power of yeast as a model organism to identify novel regulatory targets for 
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study in higher eukaryotes. The best characterized Fkh role is transcriptional regulation of genes 

encoding proteins involved in mitotic progression and exit, many of which are activators, targets 

or sub-units of the APC (Charles et al., 1998; Ko et al., 2007; Zhu et al., 2000). Furthermore, in 

higher eukaryotes, the APC is indirectly involved in the stabilization of the FoxOs and directly 

involved in the degradation of the FoxMs in G1 (Bashir et al., 2010; Gao et al., 2009; Huang et 

al., 2005; Huang and Tindall, 2011; Laoukili et al., 2008; Park et al., 2008), both of which may 

be required for both lifespan extension and tumour suppression. The highly conserved APC is 

implicated in longevity regulation in both yeast and mammals (Baker et al., 2005; Baker et al., 

2004; Harkness et al., 2004; Harkness, 2006; Kim and Kao, 2005; Li et al., 2008a; Menzel et al., 

2013; Postnikoff et al., 2012), making it an ideal novel target for investigation of shared 

Fkh/Fox-dependent lifespan extension. In the final section, we explore genetic interactions 

between the APC, the Fkhs, and Sch9/Tor1 signaling.  

 

As well as providing insight into basic yeast biology, orthologous regulation and function of the 

Fkhs with higher eukaryotic mechanisms would establish budding yeast as a model for 

understanding the function, evolutionary history, interactions, and regulation of the forkhead box 

transcription factors. Moreover, it would support the utilisation of yeast genetics to determine 

novel targets and co-regulators involved in Fox-dependent mammalian lifespan regulation. 

Depending on the degree of conservation of molecular interactions and post-translation 

modification regulation between the Fkhs and the mammalian Foxs, yeast could be utilized as a 

platform for rapid drug screening of responses in specific forkhead functions such as cell death 

regulation, glucose tolerance induction, cell cycle arrest or entry, DNA repair mechanisms, 

regulation of autophagy, etc. reducing costs and development time of targeted pro-longevity, 

pro-health, anti-tumour and anti-diabetes pharmaceuticals.  
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3 Materials and Methods 

3.1 Yeast genetics  

3.1.1 Yeast strains and cell culture  

All yeast strains used in this study were haploid and are listed in Table 3.1. Nomenclature used 

in this thesis identifies the specific gene affected within the strain. For example, apc5CA refers to 

a specific mutation within the APC5 gene coding sequence that results in a chromatin assembly 

defective (CA) phenotype (Harkness et al., 2002). Deletion of an entire gene is indicated by “Δ” 

following the gene name, example apc10Δ refers to the deletion of the entire APC10 gene. Yeast 

cells were cultured at 30˚C in rich medium [YPD - 1% yeast extract (VWR, CA9000-726), 2% 

peptone (VWR, CA07224-1000), 2% glucose (Glc; dextrose)] or in synthetically defined (SD) 

medium [0.67% yeast nitrogen base without amino acids (VWR, CA99501-686), 2% Glc or 

galactose (Gal), plus supplementation of necessary amino acids at recommended concentrations]. 

Omission of specific amino acids provided selection pressure for the maintenance of transformed 

plasmids. Selection of the KanMX marker utilized 0.2 mg/ml G418 (Geneticin, Gibco, #11811) 

added to the YPD. To make solid media, 2% agar was added to the liquid medium prior to 

autoclaving. Molten agar was cooled to approximately 55-60˚C before pouring into petri dishes 

(VWR, 25384-302). For long term storage, cells were grown to log phase in YPD, suspended in 

1.5% glycerol and stored at -80˚C. 

 

3.1.2 Yeast transformation 

Cultures were inoculated into 5 ml of YPD and grown at 30˚C overnight. Overnight cultures 

were diluted to an optical density at 600 nm (OD600) 0.5 in 5 ml of fresh YPD and allowed to 

double in density (approximately 2 h). Cells were washed in sterile water, resuspended in 0.5 ml 

of 100 mM LiAc solution [0.1 M lithium acetate, 10 mM Tris-HCl pH 8.0, 1 mM 

ethylenediaminetetraacetic acid (EDTA)] and incubated at 30˚C for 15 min. The LiAc solution 

was removed and 5 μl of denatured salmon sperm DNA and 3-5 μl of transforming DNA [either 

a plasmid (Table 3.2) or amplified product from the polymerase chain reaction (PCR; 3.2.2)] 

were added. For a list of plasmids used in this study see Table 3.2. The solution was thoroughly 

mixed with 300 μl polyethylene glycol (PEG) solution [40% PEG (3500), 100 mM LiAc, 10 mM 

Tris-HCl pH 8.0, 1 mM EDTA]. Transformations were incubated at 30˚C for 20 min followed by 
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Table 3.1 List of strains used in this study 

Strain Genotype Source 

YTH5 MATα ade2 his3Δ200 lys2Δ201 ura3-52 
Harkness et al 

2002 

YTH457 MATα ade2 his3Δ200 lys2Δ201 ura3-52 apc5CA 
Harkness et al 

2002 

YTH1235 MATa ade2 his3Δ200 leu2 lys2Δ201 ura3-52 
Harkness et al 

2002 

YTH1637 MATα ade2 his3Δ200 lys2Δ201 ura3-52 apc5CA-PA::His5 
Harkness et al 

2004 

YTH1693 MAT(?) his3 leu2 lys2(?) Δmet15 ura3 apc10Δ::kanMX6 
Harkness et al 

2005 

YTH2427 MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 fkh1Δ::kanMX6 
Postnikoff et al. 

2012 

YTH2431 MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 fkh1Δ::kanMX6 apc5CA-PA::His5 
Postnikoff et al. 

2012 

YTH2444 MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 fkh2Δ::kanMX6 
Postnikoff et al. 

2012 

YTH2449 MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 fkh2Δ::kanMX6 apc5CA-PA::His5 
Postnikoff et al. 

2012 

YTH2579 MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 fkh1Δ::kanMX6 fkh2Δ::kanMX6 
Postnikoff et al. 

2012 

YTH2581 
MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 fkh1Δ::kanMX6 fkh2Δ::kanMX6 

apc5CA-PA::His5 

Postnikoff et al. 

2012 

YTH3124 MAT(?) his3 leu2 lys2(?) Δmet15 ura3 apc10Δ::kanMX6 fkh1Δ::kanMX6 
Postnikoff et al. 

2012 

YTH3346 MAT(?) his3 leu2 lys2(?) Δmet15 ura3 apc10Δ::kanMX6 fkh2Δ::kanMX6 
Postnikoff et al. 

2012 

YTH3409 
MAT(?) his3 leu2 lys2(?) Δmet15 ura3 apc10Δ::kanMX6 fkh1Δ::kanMX6 

fkh2Δ::kanMX6 

Postnikoff et al. 

2012 

YTH3501 MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 sch9Δ::URA This study 

YTH3503 MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 tor1Δ::kanMX6 apc5CA-PA::His5 This study 

YTH3504 MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 sch9Δ::URA tor1Δ::kanMX6 This study 

YTH3505 MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 sch9Δ::URA3 apc5CA-PA::His5 This study 

YTH3506 
MAT(?) ade2 his3 leu2 lys2(?) met15(?) ura3 sch9Δ::URA3 tor1Δ::kanMX6 

apc5CA-PA::His5 
This study 

YTH3743 MAT(?) his3 leu2(?) lys2(?) Δmet15 ura3  This study 

YTH3744 MAT(?) his3 leu2(?) lys2(?) Δmet15 ura3 sch9Δ::URA3 tor1Δ::kanMX6 This study 

YTH3745 MAT(?) his3 leu2(?) lys2(?) Δmet15 ura3 sch9Δ::URA3 tor1Δ::kanMX6 This study 

YTH3747 MAT(?) his3 leu2(?) lys2(?) Δmet15 ura3 sch9Δ::URA3 tor1Δ::kanMX6 This study 
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YTH3760 MAT(?) his3 leu2(?) lys2(?) Δmet15 ura3 fkh1Δ::kanMX6 fkh2Δ::kanMX6 This study 

YTH3762 
MAT(?) his3 leu2(?) lys2(?) Δmet15 ura3 sch9Δ::URA3 fkh1Δ::kanMX6 

fkh2Δ::kanMX6 
This study 

YTH3764 
MAT(?) his3 leu2(?) lys2(?) Δmet15 ura3 tor1Δ::kanMX6 fkh1Δ::kanMX6 

fkh2Δ::kanMX6 
This study 

YTH3766 
MAT(?) his3 leu2(?) lys2(?) Δmet15 ura3 sch9Δ::URA3 tor1Δ::kanMX6 

fkh1Δ::kanMX6 fkh2Δ::kanMX6 
This study 

YTH3926 as YTH1235, but FKH1-TAP::HIS3 
Postnikoff et al. 

2012 

YTH3929 as YTH1235, but FKH2-TAP::HIS3 
Postnikoff et al. 

2012 

YTH3935 as YTH3501, but FKH1-TAP::HIS3 This study 

YTH3937 as YTH3501, but FKH2-TAP::HIS3 This study 

YTH3943 as YTH3504, but FKH1-TAP::HIS3 This study 

YTH3944 as YTH3504, but FKH2-TAP::HIS3 This study 

YTH4265 as YTH3929, but LEU2::GAL1/10prom-FKH2-TAP::HIS3 
Postnikoff et al. 

2012 

YTH4269 MATa ade2 his3Δ200 leu2 lys2Δ201 ura3-52 
Postnikoff et al. 

2012 

YTH4315 MATa his3Δ1 Δleu2 Δmet15 Δura3 FKH1-GFP::HIS3 Open Biosystems 

YTH4316 MATa his3Δ1 Δleu2 Δmet15 Δura3 FKH2-GFP::HIS3 Open Biosystems 

YTH4501 
MAT(?) ade2 his3Δ200 leu2 lys2Δ201 ura3-52 LEU2::GAL1/10prom-FKH1-

TAP::HIS3 
This study 

YTH4502 
MAT(?) ade2 his3Δ200 leu2 lys2Δ201 ura3-52 LEU2::GAL1/10prom-FKH2-

TAP::HIS3 
This study 

YTH4503 
MAT(?) ade2 his3Δ200 leu2 lys2Δ201 ura3-52 LEU2::GAL1/10prom-FKH1-

TAP::HIS3 LEU2::GAL1/10prom-FKH2-TAP::HIS3 
This study 

YTH4516 as YTH3926, but LEU2::GAL1/10prom-FKH1-TAP::HIS3 
Postnikoff et al. 

2012 

YTH4726 MATa ade2 his3Δ200 leu2 lys2Δ201 ura3-52 hog1Δ::kanMX6 This study 

YTH4772 as YTH4501, but hog1Δ::kanMX6 This study 

YTH4773 as YTH4502, but hog1Δ::kanMX6 This study 

YTH4774 as YTH4503, but hog1Δ::kanMX6 This study 

#70 MAT(?) ade2 his3Δ200 lys2Δ201 ura3-52 snf1Δ::kanMX6 Terra Arnason 

#220 
MAT(?) his3 leu2(?) lys2(?) Δmet15(?) ura3 snf1Δ::kanMX6 fkh1Δ::kanMX6 

fkh2Δ::kanMX6 
Terra Arnason 
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Table 3.2 List of plasmids used in this study 

Plasmid Vector Insert Source 

YCp50 CEN-URA3  M. Ellison  

YEplac181-Gal CEN-LEU2  GAL1/10Prom W. Neupert  

BG1805-FKH1  2μ-URA3 GAL1prom-FKH1-HA  W. Xiao 

BG1805-FKH2 2μ-URA3 GAL1prom-FKH2-HA  W. Xiao 
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heat shock at 42˚C for 15 min. Following the incubations, cells were washed in 100 μl of 1 M 

sorbitol and resuspended in 100 μl of 1 M sorbitol. The cell/sorbitol solution was spread on 

selective agar media, allowed to dry and incubated at 30˚C until colonies were observed: 

typically two to five days. In the case of KanMX marker selection, following the 42˚C 

incubation cells were washed in 100 μl of 1 M sorbitol, resuspended in 1 ml YPD and incubated 

8-12 h to allow for cell recovery and expression of the KanMX construct before plating on G418 

containing media. 

 

3.1.3 New strain formation 

3.1.3.1 Genetic crossing 

Mutants were repeatedly backcrossed with a wild type S288c background strain until multiple 

isolates displayed identical phenotypes (typically 5 or 6 crosses were needed). Haploid strains of 

opposite mating type were combined on solid YPD medium and allowed to conjugate for two 

days to form diploid cells. Diploids were then transferred to a sporulation plate (1% potassium 

acetate, 0.1% yeast extract, 0.05% Glc, 2% agarose, 5 ml adenine) and incubated at  

room temperature. The formation of tetrads (usually taking one to two weeks) was determined by 

light microscopy. Tetrads appeared as four small spore cells encapsulated by a spore coat, often 

forming a regular tetrahedron. Sporulated tetrads were suspended in 100 μl of lyticase solution 

(distilled water with 0.5 mg/ml lyticase). Twenty-five μl of the tetrad/lyticase solution was 

applied to a YPD plate and allowed to dry for 20 to 30 min. Once dry, individual tetrads were 

separated into single cells using a micromanipulator (Singer MSM) and incubated at 30˚C to 

form colonies. The colonies were struck onto selective media to determine desired genotypes. 

Two mutations with the same selection marker were identified by 2:2 segregation of spore 

genotypes from a single tetrad. Alternate phenotypes were used to determine triple and quadruple 

mutants with the same selective marker, such as flocculence for fkh1Δ::KanMX fkh2Δ::KanMX 

double mutants or temperature sensitivity for strains containing tor1Δ::KanMX. 

 

3.1.3.2 Transformation and homologous recombination 

Mutant DNA sequences were amplified by PCR from genomic DNA extracts (3.2.1) or plasmids. 

To accomplish this, primers were designed with the 3’ sequence of 18-20 nucleotides to prime 

from the selectable marker with a 5’ sequence of 50-60 nucletides homologous with the site of 
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integration/recombination. PCR products were transformed into yeast cells (3.1.2), allowing for 

genomic integration by homologous recombination (Figure 3.1). 

 

3.1.4 Spot dilutions  

For spot dilution assays, 3 μl of cells from a 10-fold dilution series were pipetted onto various 

solid media and grown at the temperatures indicated. The starting spot generally contained 3x104 

cells. 

 

3.1.5 Chronological lifespan assay 

Chronological lifespan assays were performed as previously described, with modifications 

(Fabrizio and Longo, 2003, 2007; Harkness et al., 2004; Postnikoff and Harkness, 2014; 

Postnikoff et al., 2012). Overnight SD complete media (SDC; SD media supplemented with all 

amino acids) cultures were diluted to OD600 0.5 in fresh SDC with a flask to culture volume ratio 

of 5:1, and were incubated at 200 RPM at 30ºC. Each day the same volume of culture was 

diluted 1:1000 in water, with 10 μl of the diluted sample plated to evaluate CFUs as a measure of 

viability. When the CFU counts peaked, this was deemed “stationary phase” and denoted as Day 

1. Every two days, CFU counts were determined and compared to Day 1. Cultures were 

maintained in the nutrient depleted medium (DM) in which they grew. For severe caloric 

restriction (SCR) experiments, once stationary phase was reached in SDC (Day1), cultures were 

washed and re-suspended in sterile distilled water, with washes of equal volume of water every 

two to four days to remove metabolites produced by the cells. For overexpression experiments, 

Gal was added to appropriate cultures upon reaching Day 1, to final concentration of 0.05%. 

Mild CR was examined by growing cultures in 0.5% Glc with subsequent maintenance in the 

resulting DM. 

 

3.1.6 Oxidative stress resistance assay 

Cultures were grown in 2% YPD or SDC at 30ºC for five days and then diluted to OD600 1 in 

culture specific DM. Each of these cultures were divided in half and 100 mM H2O2 (EMD 

Chemicals) was added to one of the samples. Both samples were incubated at 30ºC for 1 h. 

Viability was determined by plating 10 μl of culture diluted 1:1000 in water onto 2% YPD and 

comparing the CFU growth of the H2O2-treated culture to that of the non-treated control. 
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Figure 3.1 Schematic of genomic mutation through homologous recombination  
Mutant DNA sequences/selectable markers are amplified by PCR, using primers with the 3’ sequence of 18-20 

nucleotides to prime from the selectable marker with a 5’ sequence of 50-60 nucleotides homologous with the site of 

integration/recombination. These products were transformed into yeast cells, allowing for genomic integration by 

homologous recombination. This is followed by selection for stable integration. 

 



 

43 

 

3.1.7 Fluorescence microscopy 

Samples from CLS cultures were washed and mounted in PBS or Ultracruz mounting medium 

(Santa Cruz Biotechnology sc-24941) and imaged using 100x oil immersion with an Olympus 

BX51 fluorescent microscope. Images were captured using an INFINITY 3-1UM camera and 

analyzed with Infinity Analyse software version 5.0.3 (Lumenera). 

 

3.1.7.1 Annexin 5 staining 

Exposed phosphatidylserine, a marker of apoptosis, was detected in samples from day 1 CLS 

cultures though conjugation with highly fluorescent FITC-coupled annexin V. Yeast cells were 

washed in 1 X PBS buffer (pH 6.8), followed by incubation in 1 X PBS buffer with 5.5% 

glusulase (Boehringer Mannheim) and 15 U/ml lyticase (Sigma Chemical Co.) for 2 h at room 

temperature to digest the cell wall without compromising the integrity of the plasma membrane. 

The cells were then washed in PBS, and resuspended in binding buffer/sorbitol. Two μl annexin-

FITC (CLONETECH Laboratories, Inc.) and 2 μl propidium iodide (500 μg/ml; PI) were added 

to the 36 μl cell suspension and incubated for 20 min at room temperature. The cells were 

washed and suspended in PBS and applied to a microscope slide. Cells were scored for no 

staining (healthy), annexin V only (cells undergoing apoptosis as detected by phosphatidylserine 

translocation to external surface of cell membrane), and cells stained with nuclear PI (dead/dying 

cells with disrupted membrane integrity with an undetermined cause of death).  

 

3.2 Molecular biology techniques  

3.2.1 Yeast genomic DNA extraction (Smash and Grab) 

Cells were pelleted in a 2 ml bead beating tube, suspended with 100 μl glass beads in 150 μl 

breaking buffer [2% triton X-100, 1% Sodium dodecyl sulfate (SDS), 100 mM NaCl, 10 mM 

Tris-HCL pH 8.0, 1 mM EDTA] and 150 μl phenol:chloroform:isoamyl alcohol (25:24:1), and 

beat with a bead beater (Mini-Beadbeater, BIOSPEC Products, INC.) for three min. The lysate 

was centrifuged for 10 min at 14000 rpm with the upper aqueous layer transferred to a fresh tube. 

One-tenth the volume transferred of 3M NaAc pH 4.8 and 2.5 times the volume 95% ethanol was 

added. The tube was put on ice for 5 min to precipitate genomic DNA, which was pelleted at 4˚C 

at 14000 rpm for 10 min, washed with 70% ethanol, and resuspended in 40 μl sterile distilled 

water. 
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3.2.2 PCR 

DNA fragments for transformation were amplified using PCR from plasmids, or genomic yeast 

DNA obtained by Smash and Grab (3.2.1), as the template. Primers were designed to include 

250-500 base pairs of homology upstream and downstream, if the final product was used for 

homologous recombination. For example, we used this approach to move hog1Δ::KanMX6 into 

the FKH over-expression strains. See Table 3.3 for primer sequences. A typical PCR reaction 

mixture contained 0.2 mM of each deoxyribonucleotide triphosphate (dNTP; Bio Basic Inc., 

#D0056), 1 ng of forward and reverse primers, 0.5 ng of genomic DNA, 1X PCR Buffer (Sigma, 

#P2317), 0.5 μl Taq Polymerase (New England Biolabs, #M0267), and distilled water, to a final 

volume of 50 μl. Amplification was carried out in a thermocycler (Eppendorf Mastercycler) with 

a standard PCR protocol: 98˚C for four min, followed by 30 repeats of 1 min denaturing at 98˚C, 

1 min annealing at 52˚C, and 2 min of elongation at 72˚C. A final 5 min incubation at 72˚C was 

followed by indefinite 4˚C storage. Volumes of reagents, temperatures and times were adjusted 

to optimize reactions as necessary. 

 

3.2.3 Agarose gel electrophoresis 

Analysis of plasmid and genomic DNA was performed using a 1% agarose gel containing 0.5 

μg/ml ethidium bromide for visualization under ultra-violet light. The gel was immersed in 1 X 

TAE (24% Tris-base, 5.7% glacial acetic acid, 10% EDTA pH 8.0). Samples were run parallel to 

5 μl of a DNA ladder (Fermentas, #SM0313).  

 

3.2.4 TCA protein extraction 

One ml of OD600 1 culture was centrifuged for 3 min at 4000 rpm and the supernatant removed 

for protein analysis. The cells were suspended in 250 μl of freshly made, ice cold solution C 

(1.85 M NaOH, 7.4% 2-Mercaptoethanol) plus 250 μl of 100% trichloroacetic acid (TCA; VWR, 

CATX1045), incubated on ice for 10 min and centrifugated for 10 min at 4˚C. Pellets were 

washed in 1 ml of sterile distilled water and resuspended in 25 μl solution A (13% SDS and 1 M 

Tris) and 25 μl solution B (30% glycerol plus a small amount of Bromophenol Blue). Samples 

were stored at -80˚C and prepared for Western analysis as needed. 
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Table 3.3 List of primer sequences used in this study 

Name* Sequence Function 

Fkh1 GAL up 

5’GATCCTGGGCTGTATACGAACTATA

CTTACCACTAAATTTTTGTTCCCTACT

GGTAACAGACATTGGATGGACGCAA

AGAAG 

Amplify the LEU2 marker coding 

region of YEplac181-Gal vector for 

insertion 5’ of genomic FKH1 coding 

region 

Fkh1 GAL down 

5’AATAATAGTGTGTAAATTGTGCGTT

CAATTAGCAAAGAAAGCTTGGAGAG

ACACAGTAATAATAATAACGAGAAC

ACACAGGG 

Amplify the GALPROM marker coding 

region of YEplac181-Gal vector for 

insertion 5’ of genomic FKH1 coding 

region 

Fkh2 GAL up 

5’GTGCTGCCATAATTTGTTTGAGTCA

TATTTAGTCGTTCGTTCATCTCGTTAA

AATTGCTGCTGGACATTGGATGGACG

CAAAGAAG 

Amplify the LEU2 marker coding 

region of YEplac181-Gal vector for 

insertion 5’ of genomic FKH2 coding 

region 

Fkh2 GAL down 

5’GATACACATAAATATTGGTGTGCTC

CCTCCGTTTCCTTTATTGAAACTTTAT

CAATGCGCAAGAATAACGAGAACAC

ACAGGG 

Amplify the GALPROM marker coding 

region of YEplac181-Gal vector for 

insertion 5’ of genomic FKH2 coding 

region 

Universal GAL up 

5’AAAAAATTGTTAATATACCTCTATA

CTTTAACGTCTTAAGCAAGGATTTTCT

TAAC 

Amplify the GALPROM marker coding 

region of YEplac181-Gal vector for 

insertion before any gene 

Universal GAL down 

5’CTGTCGCCGAAGAAGTTAAGAAAA

TCCTTGCTTAAGACGTTAAAGTATAG

AGG 

Amplify the LEU2 marker coding 

region of YEplac181-Gal vector for 

insertion before any gene 

HOG1 500 bp 

upstream FWD 
5’ TTGGTAGCCCTTCATTACGG 

Amplify the genomic HOG1 coding 

region for transfer of the 

hog1Δ::KanMX6 construct 

HOG1 500 bp 

downstream REV 
5’ AGTTTCTGCCACAGTCCGTG 

Amplify the genomic HOG1 coding 

region for transfer of the 

hog1Δ::KanMX6 construct 

FKH1+500TAP 5’ ACCCGAAGGTAGTATTTC 

Amplify the +/- 500 bp of genomic 

FKH1 stop codon for transfer of 3’ (c-

terminal) epitope tags 

FKH1-500TAP 5’ GCACTGAGTTCTTCGAGATC 

Amplify the +/- 500 bp of genomic 

FKH1 stop codon for transfer of 3’ (c-

terminal) epitope tags 

FKH2+500TAP 5’ ACACCAGAAAGAGGAAGC 

Amplify the +/- 500 bp of genomic 

FKH2 stop codon for transfer of 3’ (c-

terminal) epitope tags 

FKH2-500TAP 5’ GGAAAATCACCCACTTGG 

Amplify the +/- 500 bp of genomic 

FKH2 stop codon for transfer of 3’ (c-

terminal) epitope tags 

 
 

*Primer names as in Harkness lab stocks; up(stream), FWD, and + represent forward primers, while down(stream), 

REV, and - represent reverse primers. 
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3.2.5 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

Western blot analysis 

Yeast whole cell protein extraction was performed as previously described (3.2.4). Samples were 

resolved on a 10% acrylamide SDS-PAGE gel and transferred to nitrocellulose membrane 

(PALL) at 400 mAmps for 1 h. The membranes were blocked in 5% non-fat milk (Biorad) and 

phosphate buffered saline with Tween-20 (PBST) overnight at 4°C and incubated with primary 

antibody [rabbit anti-TAP antibody (Open Biosystems) at a dilution of 1:1000 and mouse 

monoclonal anti-GAPDH (Sigma) at a dilution of 1:20,000] in 5% non-fat milk and PBST for 

1.5 h at room temperature or overnight at 4ºC. Membranes were washed three times in PBST for 

15 min and incubated in 1:10,000 dilution of secondary antibody in 5% non-fat milk and PBST 

for 1 h at room temperature. Membranes were washed three times in PBST for 15 min, processed 

with Enhanced Chemiluminescence reagent (PerkinElmer), and exposed to Kodak film. 
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4 FKH1 and FKH2 regulate lifespan in yeast2 

4.1 Introduction 

The Fox family of transcription factors has been demonstrated to regulate metazoan cellular 

growth, development, and lifespan, as well as affecting cancer development (Katoh and Katoh, 

2004; Lehmann et al., 2003; Wijchers et al., 2006). One well characterized sub-family, the 

FoxOs, have been shown to regulate processes involved in the homeostasis of metazoan cells and 

tissues with the net outcome of lifespan extension and tumor suppression (Calnan and Brunet, 

2008; Fu and Tindall, 2008; Hay, 2011; Monsalve and Olmos, 2011; Tran et al., 2003; Zhang et 

al., 2011); however, other Foxs have been implicated in exacerbating aging and the onset of age 

related diseases such as cancer and diabetes (Laoukili et al., 2007; Lehmann et al., 2003; 

Wijchers et al., 2006). The development of these conditions involve numerous cellular processes, 

especially activation and repression of the cell growth and proliferation, as well as regulating 

stress response pathways, such as free radical scavenging, DNA damage repair, increased 

genomic stability, autophagy, and apoptotic mechanisms (Greer and Brunet, 2008; Tran et al., 

2003; Zhang et al., 2011). The regulation of these processes involves a complex system of post 

translational modifications and cofactor binding (Boccitto and Kalb, 2011; Calnan and Brunet, 

2008; Daitoku et al., 2011; Huang and Tindall, 2011; Martínez-Gac et al., 2004; Tzivion et al., 

2011). A challenge to the study of fundamental Fox function is the presence of 50 identified 

human Fox genes in 19 sub-families, each with potential alternative splice variants that share the 

highly conserved forkhead box DNA binding domain (Katoh and Katoh, 2004; Myatt and Lam, 

2007; Wijchers et al., 2006). This suggests potential competition for DNA binding sites and 

allows for differential regulation of similar gene clusters under specific conditions.  

 

The budding yeast S. cerevisiae is a powerful tool for elucidating genetic and molecular 

mechanisms of cellular processes; however, the four yeast Fox genes have been found to not 

individually regulate chronological lifespan (Wei et al., 2008). Two of these, Fkh1 and Fkh2, are 

phenotypically redundant in function in M/G1 progression/arrest, similar to the lifespan 

regulating FoxOs, as both are involved in cell cycle arrest in response to hydrogen peroxide 

                                                 

2 The majority of this chapter has been published in Postnikoff et al. (2012)  
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(Linke et al., 2013; Shapira et al., 2004). These characteristics led us to initiate an examination of 

the conserved role of Fkh1 and Fkh2 as redundant functional orthologs of the pro-life/health span 

Fox proteins of higher eukaryotes, i.e. the FoxOs. Should yeast Fox proteins demonstrate 

homologous functions with those of higher eukaryotes, then yeast may be utilized to characterize 

the fundamentals of Fox regulatory mechanisms. This chapter provides evidence that the Fkhs 

are redundant positive determinants in yeast lifespan. It also provides evidence supporting 

evolutionary conservation of function between the Fkhs and the FoxOs with regards to caloric 

restriction response, oxidative stress resistance, cell cycle arrest, and apoptosis. 

 

4.2 Methods 

To investigate the genetics of FKH1 and FKH2, both deletion and Gal inducible expression 

mutants were examined in actively dividing cells by spot dilutions (3.1.4), in stationary phase 

using CLS (3.1.5) and oxidative stress resistance (3.1.6) assays maintained in standard (depleted 

2% Glc media), as well as lifespan and stress resistance increasing conditions, including CR 

(depleted 0.5% Glc media) and severe CR (SCR; maintained in water upon entry to stationary 

phase). Fkh-TAP (c-terminal epitope tag fusion protein) expressing cell lysates were used to 

determine Fkh abundance by western analysis using anti-TAP antibodies (Open Biosystems). 

Cellular localization of the Fkhs was determined by fluorescent microscopy of Fkh-c terminal 

GFP (green fluorescent protein) fusion protein localization (3.1.7). Finally, apoptosis was 

observed in Fkh1 over-expressing cells, through the observation of phosphatidylserine 

translocation as determined by fluorescent microscopy of cells co-stained with Annexin V and PI 

(3.1.7.1). 

 

4.3 Results  

4.3.1 FKH1 and FKH2 redundantly regulate chronological lifespan 

Past studies found deletion of individual yeast Fox genes (FKH1, FKH2, HCM1 and FHL1) did 

alter CLS (Wei et al., 2008). However, FKH1 and FKH2 have been shown to be phenotypically 

redundant, as at least one of them is required for proper M/G1 progression and cell cycle arrest in 

response to hydrogen peroxide (Hollenhorst et al., 2000; Koranda et al., 2000; Shapira et al., 

2004; Zhu et al., 2000). The Harkness lab has shown that fkh1Δ or fkh2Δ individual mutants 

have no effect on replicative lifespan, while the fkh1Δ fkh2Δ double mutant was unable to be 
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assayed due to cell wall abnormalities (Postnikoff et al., 2012). To further examine the 

relationship of the FKHs with lifespan, we investigated the CLS of strains containing 

combinations of fkh1Δ and/or fkh2Δ gene disruptions. Congruent with the literature, little to no 

difference in the CLSs of fkh1Δ, fkh2Δ, and wild type were observed. However, the fkh1Δ fkh2Δ 

double mutant had a reduced CLS compared to wild type when the post-mitotic cultures were 

maintained in either DM or SCR conditions (Figures 4.1 and 4.2 A). In DM the average lifespan 

(50 % survival) of fkh2Δ was 1.29 times greater than wild type and fkh1Δ (Figure 4.1 A); 

however, this is not significant, due to overlapping standard error of the mean. The lifespan of 

fkh1Δ fkh2Δ was approximately half that of the wild type, suggesting genetic redundancy of the 

FKHs in the regulation of yeast lifespan. This redundancy became more apparent when the 

cultures were maintained in SCR, as wild type and either single mutant had the same lifespans, 

while fkh1Δ fkh2Δ had an average lifespan 0.25 times that of wild type and the single mutants 

(Figure 4.1 B). When we directly compared the CLS of wild type and fkh1Δ fkh2Δ strains 

maintained in DM to SCR conditions we observed fkh1Δ fkh2Δ strains did not respond to SCR, 

while the wild type benefited from a two to three time increase in lifespan (Figure 4.2 A). A 

similar trend was observed in mild CR conditions. A single exploratory CLS was performed on 

cultures grown in 0.5% SDC and maintained in the resulting DM. The 50% survival of the 0.5% 

DM fkh1Δ fkh2Δ was extended compared to 2% DM, while by 10% the survival was mildly 

decreased (Figure 4.2 B). These data suggest that FKHs may be involved in CR and other stress-

induced lifespan regulatory mechanisms. 

 

4.3.2 Increased FKH expression extends chronological lifespan  

Short-lived mutant strains are often met with skepticism as to whether the genes are bona fide 

lifespan regulators or merely ones that cause a premature death due to a disease state similar to 

developmental defects. In contrast, studies showing elongated survival are respected as directly 

relevant, such as the increased expression of the FoxO/Daf-16 transcription factors increasing 

lifespan in multiple model organisms (Giannakou et al., 2004; Henderson and Johnson, 2001; 

Hwangbo et al., 2004). To address this concern and further investigate the role of the FKHs in 

the regulation of lifespan, we controlled gene expression by integrating the GAL1/GAL10 Gal 

inducible promoter upstream of the genomic FKH1-TAP or FKH2-TAP coding region 
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Figure 4.1 The redundant FKHs are required for chronological lifespan extension 
Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM (A) 

or water (B). Error bars represent +/- standard error of the mean of n=3. 
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Figure 4.2 The FKHs are required for caloric restriction dependent lifespan 
A) Chronological lifespan comparing wild type (black) to strains containing fkh1Δ fkh2Δ alleles (red) grown in 2% 

Glc SDC and maintained in DM (filled markers) or water (empty markers). Error bars represent +/- standard error of 

the mean of at least n=3. B) Chronological lifespan comparing wild type (black) to strains containing fkh1Δ fkh2Δ 

alleles (green) grown in 2% (filled markers) or 0.5% (empty markers) Glc SDC followed by maintenance in DM 

throughout stationary phase. 

 



 

52 

 

 (GALPROM-FKH1, GALPROM-FKH2; Figure 4.3 A). To accomplish this two sequences of the 

YEplac181-Gal plasmid were amplified for each of the FKHs: 1) the LEU2 selective marker 

gene using primers Fkh# GAL up and Universal GAL; and 2) the GAL1/GAL10 promoter using 

primers Universal GAL up and Fkh# GAL down primers. The 5’ sequence of the LEU2 product 

and the 3’ sequence of the GAL1/GAL10 promoter product contained homology to genomic 

sequence immediately upstream of the respective FKH coding sequence, displacing the native 

promoter. The 3’ sequence of the LEU2 product and the 5’ sequence of the GAL1/GAL10 

promoter product were homologous to one another, due to conserved sequence designed into the 

‘Universal GAL’ promoters. For integration and the presence of the selective marker three 

recombinations were required, one combining the two products and the other two between the 

genome and the ends of the newly formed larger fragment. Strains were tested for protein levels 

after Gal induction of the integrated promoters (Figure 4.3 B and C). Once expression control 

was verified, strains with altered FKH1 and FKH2 expression were crossed to produce a strain 

with both FKH genes under the Gal inducible promoter (GALPROM-FKH1/2). Again, Gal 

inducible protein levels were confirmed by western analysis (Figure 4.3 D). Although neither 

Fkh1 nor Fkh2 was observable by western blot analysis in samples derived from cultures 

maintained in Glc, the strains showed wild type morphology rather than fkh1Δ fkh2Δ abnormal 

phenotypes, such as flocculence (Figure 4.3; data not shown). This suggests low level FKH 

expression from the GAL promoter, even in the absence of Gal stimulus as previously observed 

in our lab using a similar system (Turner et al., 2010).  

 

We tested the beneficial effects of the Fkhs on post-mitotic cells by performing the CLS assay 

with the GALPROM-FKHs in DM with and without the addition of 0.05% Gal at stationary phase 

Day 1. A low concentration of Gal was used to prevent re-entry into the cell cycle. The cultures 

containing the Gal inducible promoter showed a trend toward extended CLS under non-inducing 

conditions (no Gal added), especially with regards to maximal lifespan; for example, GALPROM-

FKH1 had about 1.2 times the lifespan of wild type at 50% survival and this increased to 2 times 

wild type lifespan at 10% survival (Figure 4.4 A). The addition of 0.05% Gal extended the mean 

CLS of all of the strains, with wild type CLS increasing 1.33 times, GALPROM-FKH1 1.5 times, 

GALPROM-FKH2 three times, and GALPROM-FKH1/2 2.33 times relative to non-induced 
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Figure 4.3 Development of constructs to endogenously control the expression of FKH1 and FKH2 
A) The model demonstrating the strategy of integrating the GAL1/10 promoter to control FKH expression. B-D) 

Western analysis to confirm protein abundance control in (B) GALpromFKH1-TAP, (C) GALpromFKH2TAP, and 

(D) the double over expression mutant (OE; GALpromFKH1-TAP GALpromFKH2-TAP), which was generated 

through crossing.   
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Figure 4.4 Over-expression of the FKHs extends chronological lifespan 
Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM (A) or 

0.05% Gal (w/v) to induce FKH expression (B). Error bars represent +/- standard error of the mean of n=3.  
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conditions (Figure 4.4 A and B). However, maximal lifespan extension was not altered between 

inducing and non-inducing conditions. This could be due to the de-repression of alternate carbon 

source promoters under prolonged stationary phase conditions, resulting in late lifespan increases 

in Fkh levels. If this was the case, it would still suggest that increased Fkh levels in aged 

populations confers beneficial lifespan regulatory effects. Overall, these data indicate the 

activation of the promoter led to striking increases in lifespan, suggesting increased Fkh levels 

may extend CLS. 

 

4.3.3 The presence of FKHs in post-mitotic cells 

The Fkhs are expressed in actively dividing cells corresponding to cell cycle progression, 

specifically expressed in S phase and regulate progression through mitosis (Hollenhorst et al., 

2000; Kumar et al., 2000; Pramila et al., 2006; Tu et al., 2005; Zhu et al., 2000). Our data 

presented in this chapter so far provide indirect evidence of a role for the FKHs in post-mitotic 

lifespan regulation, but not of the presence or activity of the Fkh proteins under standard 

conditions. For example, the observations presented in Section 4.3.1 suggest the deletion of both 

genes affects post-mitotic lifespan; however, this could be an artefact of mitotic growth phase  

dysfunction that decreases cellular fitness later in life, such as genomic instability from improper 

chromatin metabolism or segregation, or cell wall malformations in actively dividing cells that 

decrease the population’s fitness, rather than a specific post-mitotic role in lifespan extension. 

Section 4.3.2 provides evidence that induced expression of the FKHs in post-mitotic cells results 

in increased lifespan. However, these findings do not inform us of the presence of the Fkhs in 

post-mitotic cells under the control of their native promoters.  

 

To address the above concerns, we examined the presence of the Fkhs in post-mitotic cells 

throughout the CLS assay. Protein lysates were prepared following Day 1 and 5 stationary phase 

from cultures expressing FKH1-TAP or FKH2-TAP. The cultures were grown to stationary phase 

in 2% Glc SDC and maintained in the DM or in sterile distilled water. Fkh1-TAP, detected by 

western analysis, was present in both Day 1 and 5 post-mitotic cultures (Figure 4.5). Expression 

of Fkh2-TAP was inconsistent and often undetectable (data not shown). Likely this was due to 

Fkh2 being expressed at low levels in cycling cells (Rodriguez-Colman et al., 2010), and protein 

synthesis and specific protein abundance decreasing during transition to stationary phase  
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Figure 4.5 Stationary phase Fkh1 protein concentration is not altered by maintenance in water 
Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM or water. 

Western analysis of Fkh1 abundance at stationary phase day 1 and 5 in both DM and water relative to GAPDH. 
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(Bataille et al., 1991; Boucherie, 1985). Similar Fkh1-TAP protein levels were observed in 

cultures maintained in DM and water suggesting the role of the Fkhs in SCR lifespan extension 

seen in 4.3.2 is likely not linked to increased protein abundance, but to a change in their activity. 

The FoxO family of transcription factors is highly regulated by post-translational modifications, 

many of which affect nuclear import/export in response to environmental conditions. 

Specifically, phosphorylation induced by nutrient signaling results in FoxO nuclear export, while 

oxidative radical stress and DNA damage can induce nuclear import [reviewed in (Tran et al., 

2003; Van Der Heide et al., 2004; Vogt et al., 2005)].  

 

To investigate whether sub-cellular localization of the Fkhs is responsible for increased CLS due 

to SCR, as inferred in Section 4.3.1, we utilized strains expressing genomic FKH1-GFP or 

FKH2-GFP chimeric constructs (Open Biosystems). For CLS analysis, the cultures were grown 

in 2% Glc SDC and maintained in either DM or water (Figure 4.6 A). Subcellular localization of 

the Fkhs was observed under 100x fluorescent microscopy. In Day 5 stationary phase cultures 

maintained in DM, nuclear GFP fluorescence was observed in many cells (Figure 4.6 B). When 

Fkh1-GFP and Fkh2-GFP were monitored throughout CLS, we observed a larger proportion of 

the Fkh protein remained nuclear in water compared to DM. For example, Day 13 stationary 

phase cells appeared healthier, with a larger proportion of nuclear Fkh2-GFP when maintained in 

water (Figure 4.6 C). The percentage of cells harbouring nuclear Fkh1-GFP or nuclear Fkh2-

GPF was consistently greater when the cells were maintained in H2O relative to DM (Figure 4.6 

D). These data suggest that the Fkh-dependent SCR lifespan extending effect may be due to their 

increased nuclear localization under these conditions. 

 

The data presented to this point indicate: 1) Fkh proteins are present in post-mitotic 

chronologically aging cells under SCR and show increased nuclear localization (Sections 4.3.1 

and 4.3.3); 2) induced overexpression of the FKHs in post-mitotic cells increases lifespan (4.3.2). 

Based on this evidence, we predicted induced FKH expression maintained in SCR conditions 

would yield a further increase to lifespan extension. To test this, CLS was performed on wild 

type and GALPROM-FKH1/2 cultures grown in 2% Glc SDC, and in DM or water with 0.05% Gal 

added upon entry to stationary phase. Although a general reduction of lifespan was observed  
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Figure 4.6 Nuclear localization of Fkh-GFP corresponds with severe caloric restriction lifespan 

extension 
Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM or water. 

A) Chronological lifespan comparing DM and water. B) Fkh1-GFP and Fkh2-GFP localization compared to DAPI 

from stationary phase day 5 cultures. C) comparison of a standard field of view of Fkh2-GFP localization in cultures 

maintained in DM or water at stationary phase day 13. D) Percentage of cells with nuclear localized Fkh-GFP. Average 

of data collected from 5-10 random fields of view (~55-500 cells) per day counted every other day for first 13 days of 

chronological lifespan.  
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compared to the previous CLS data (likely due to changes in water distillation and media 

autoclaving procedures after the transition to the new laboratory), the relational data within this 

experiment conforms to this theory: an approximate 1.5 fold increase in lifespan was observed in 

both GALPROM-FKH1/2 maintained in DM (induced FKH1/2 expression) and wild type 

maintained in water (SCR) when compared to the wild type control maintained in DM (Figure 

4.7); furthermore, the CLS of GALPROM-FKH1/2 maintained in water (combination of induced 

FKH1/2 expression and SCR) was about 3 times that of wild type control, indicating an additive 

effect. These data support the model that both the increased presence and environmental 

activation of the Fkhs act synergistically to increase CLS.  

 

4.3.4 The FKHs regulate post-mitotic oxidative stress resistance 

Although Fkh1 and Fkh2 have not previously been shown to control yeast longevity, they have 

been linked to oxidative stress responses (Shapira et al., 2004), an evolutionarily conserved 

mechanism proposed for lifespan extension (Fabrizio et al., 2005; Pijl, 2012; Tang, 2011). To 

further examine the role of the FKHs in oxidative stress resistance, we treated cultures with 100 

mM H2O2 for 1 h and compared the CFU from treated and untreated samples as a measure of 

survival. Logarithmically growing cultures in 2% YPD had less than 1% survival in both wild 

type and fkh1Δ fkh2Δ (data not shown). In Day 5 stationary phase cultures, maintained in 

depleted YPD, the survival rates were: wild type 53.7 +/- 1.7 %; fkh1Δ 42.2 +/- 0.3 %; fkh2Δ 

48.5 +/- 1.4 %; fkh1Δ fkh2Δ 32.9 +/- 1.5 % (Figure 4.8 A). This suggests additive mechanisms 

for each FKH in protecting cells from H2O2-induced cell death. A post H2O2 treatment spot 

dilution assay comparing relative growth potential (rather than survival of individual CFUs) 

demonstrated that stationary phase cells exhibit increased stress resistance compared to 

mitotically active cells and confirmed that the combined fkh1Δ fkh2Δ alleles diminishes this 

effect (Figure 4.8 B). To address whether the Fkhs’ role in longevity is a manifestation of their 

involvement in stress resistance in post-mitotic cells, wild type and fkh1Δ fkh2Δ cultures were 

grown in SDC, maintained to Day 5 stationary phase in either water or DM, and treated with 100 

mM H2O2. Wild type cultures exhibited increased resistance to H2O2 when maintained in water 

compared to DM. However, this effect was nullified in fkh1Δ fkh2Δ cultures (Figure 4.8 C). 

Finally, to examine if FKH induction increased oxidative stress resistance, GALPROM-FKH 

cultures were grown in SDC, maintained to Day 5 stationary phase in DM with or without 0.05%  
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Figure 4.7 Caloric restriction further extends lifespan of cells over-expressing the FKHs 
Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM or 

water, all of which included 0.05% Gal (w/v) to induce FKH expression. Error bars represent +/- standard error 

of the mean of n=3. 
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Figure 4.8 The FKHs regulate hydrogen peroxide stress resistance in stationary phase cells 
Cultures were grown in 2% YPD until day 5 stationary phase, treated with 100 mM H2O2 for 1 h, and plated to 

determine survival of colony forming units (A) or serial diluted for comparative growth potential (in both 

logarithmically growing and stationary phase cultures; B). C) Cultures were grown in 2% Glc SDC. Upon entry 

into stationary phase the cultures were maintained in DM or water. 5 days after entry to stationary phase cultures 

were treated with 100 mM H2O2 for 1 h and assayed for colony forming unit survival. D) Cultures were grown in 

2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM with or without the addition 

of 0.05% Gal to induce FKH over-expression. 5 days after entry to stationary phase cultures were treated with 

100 mM H2O2 for 1 h and assayed for colony forming unit survival. Error bars represent +/- standard error of the 

mean of at least n=3. 
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Gal, and assayed for CFU survival after treatment with 100 mM H2O2. Gal induction led to an 

increase in survival in all strains: wild type 1.33 fold; GALPROM-FKH1 1.71 fold; GALPROM-

FKH2 1.63 fold; GALPROM-FKH1/2 1.85 fold (Figure 4.8 D). Furthermore, under Gal induction 

conditions all three GALPROM-FKH strains survived about two times that of wild type. These data 

suggest that the Fkh proteins are involved in post-mitotic oxidative stress resistance with 

comparative phenotypes trends to those seen in CLS. 

 

4.3.5 The FKHs may regulate apoptosis when highly over-expressed 

When investigating the FKH over-expression constructs (Figure 4.3) and in previous 

experiments using plasmids containing a Gal inducible FKH1 construct, we observed cells over-

expressing FKHs (grown using 2% Gal containing media) grew slowly, if at all (Fig 4.9 A). 

Specifically, cells over-expressing FKH1 had a 100 fold decrease in growth, with colonies taking 

much longer to form than wild type. Cells over-expressing FKH2 alone or both FKH1 and FKH2 

together had greater than 10,000 fold growth defect, potentially being unable to grow at all. 

These data suggest either an inhibition of growth through cell cycle arrest and/or cell death.  

 

If this growth defect were due solely to cell cycle arrest, we hypothesized that FKH induction 

upon entry into stationary phase would increase CLS, both through preventing inappropriate cell 

cycle re-entry and increasing stress resistance mechanisms. To test this, wild type cells 

containing either an empty vector or a Gal inducible FKH1 vector were grown in 2% Glc SD 

lacking uracil (SDUra-) to maintain the plasmid. Upon entry into stationary phase, cultures were 

split in half with one group receiving 2% Gal, while the other was maintained in DM. The 

plating was performed on SDUra- plates to select for surviving cells containing plasmids, thus 

only cells able to express the FKH1 construct would be observed. The addition of 2% Gal 

increased the lifespan of cultures containing the empty vector, increasing the 50% survival from 

Day 11 to Day 19 (Figure 4.9 B). This increase could have been due to a hormetic affect caused 

by metabolic changes induced through Gal (a less efficient carbon source) and/or re-initiation of 

cells into the cell cycle in the stock culture. However, the addition of Gal to cultures with the 

GALPROM-FKH1 decreased the 50% survival to approximately Day 2 (Figure 4.9 B). Possible 

explanations for the decrease lifespan include: cell death, cell cycle arrest, or plasmid loss. To 

address cell cycle arrest, plates were incubated for extended lengths (from 3 days to 7 days) to  
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Figure 4.9 High levels of FKH expression causes cell cycle arrest and/or apoptosis 
A) serial diluted FKH OE strains plated on Glc or Gal containing media. B) Cultures of wild type cell containing either 

YCp50 empty vector (WT) or a Gal inducible FKH1-HA expression vector (FKH1 OE) were grown in 2% Glc SDUra-. 

Upon entry into stationary phase, the cultures were maintained in DM with or without 2% Gal to induce FKH1 

expression. n=2. C) Cells from 24 h after Gal induction in the lifespan represented in B, co-stained with Annexin V 

and propidium iodide (PI) with green arrows pointing to sample Annexin only (apoptotic) cells and red arrows to PI 

stained (dead) cells. D) Relative proportion of cells stained with Annexin only (apoptotic cells) and co-stained with 

Annexin and PI or PI only (dead cells). 
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assess if colonies grew slower or needed more recovery time before re-initiation into the cell 

cycle, with no change to survival. To control for the potential plasmid loss, genomically 

integrated GALPROM-FKH constructs were used (Section 4.3.2). Examination of CLS of these 

mutants, in the presence of 2% Gal, also showed a decrease in lifespan (data not shown) 

suggesting plasmid loss was not responsible for the previous results.  

 

In higher eukaryotes, under certain conditions, the FoxOs regulate initiation of apoptosis, which 

is critical to their role as tumour suppressors (Fu and Tindall, 2008; Zhang et al., 2011). Yeast 

has been shown to undergo an apoptosis-like programmed cell death, with many cellular changes 

conserved with those documented in higher eukaryote apoptosis (Carmona-Gutierrez et al., 

2010). To determine whether cells over-expressing FKH1 were initiating programmed cell death, 

we examined cells co-stained with annexin V and PI from Day 2 stationary phase cultures, 

treated the same as the CLS presented in Figure 4.9 B, using a fluorescent microscope (Figure 

4.9 C). Annexin V bound to a fluorescent marker is a membrane impermeable probe that binds to 

phosphatidylserine, which translocates from the intracellular to extracellular leaflet of the plasma 

membrane during apoptosis. Co-staining with PI, a membrane impermeable fluorescent DNA 

intercalating agent, distinguishes between cells with translocated phosphatidylserine (undergoing 

apoptosis; only annexin detected) and those with a disrupted plasma membrane (already dead; 

not necessarily from apoptosis; both annexin and PI detected). We found a 70 fold increase in 

cells presenting annexin in both empty vector 2% Gal and GALPROM-FKH1 DM cultures, while 

cells from the GALPROM-FKH1 2% Gal culture had a 200 fold increase, when compared to empty 

vector DM control culture (Figure 4.9 D, green columns). A greater proportion of cells also 

showed plasma membrane disruptions, indicated by annexin/PI co-fluorescence, in cultures with 

empty vector 2% Gal (30 fold), GALPROM-FKH1 DM (80 fold) and GALPROM-FKH1 2% Gal (110 

fold) compared to empty vector DM control culture (Figure 4.9 D, red columns). These data 

suggest that, under certain conditions, increasing expression of FKH1, and potentially FKH2, can 

initiate programmed cell death. 

 

4.4 Discussion  

Data presented in this chapter suggest an evolutionarily conserved role for the S. cerevisiae 

forkhead transcription factors Fkh1 and Fkh2 in lifespan determination and stress response, 
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characteristics associated with the metazoan FoxO family, conserved from worms to mice 

(Bjedov et al., 2010; Kenyon, 2011; Kloet and Burgering, 2011) and implicated in human 

lifespan through the identification of specific FoxO3A alleles enriched in many centenarian 

populations (Willcox et al., 2008). Specifically, we found the two yeast FKH genes redundantly 

regulate CLS, post-mitotic oxidative stress resistance, and potentially apoptosis. This aligns with 

the literature, as the FKHs have been shown to have genetic redundancy, with the deletion of 

both genes necessary to alter growth, cell morphology, and gene transcription phenotypes 

(Hollenhorst et al., 2000; Shapira et al., 2004; Sherriff et al., 2007; Voth et al., 2007; Zhu et al., 

2000). We also found induction of FKH1 or FKH2 expression increased stress resistance and 

CLS. Therefore, the Fkhs appear to have a dual function in cell cycle progression and in stress 

response. Microarray analysis reported in the literature supports FKH function in these roles, as 

comparison between wild type and fkh1Δ fkh2Δ cells arrested in G1 primarily identified changes 

a series of genes involved in cell cycle progression, whereas the comparisons of transcript 

profiles in asynchronous cells identified many stress response genes (Zhu et al., 2000). These 

observations demonstrate evolutionary conservation of function between the yeast Fkhs and 

higher eukaryote FoxO transcription factors, where they respond to stress and extend cellular 

lifespan. 

 

The initial focus of our work was to determine whether the conserved yeast Fkh proteins were 

involved in longevity, as displayed by metazoan FoxOs. Our work demonstrates that the Fkh 

proteins are involved in both RLS (performed by T. Harkness) and CLS extension (Postnikoff et 

al., 2012). Moreover, our work also demonstrates that the Fkh proteins are necessary for 

extended lifespan in response to SCR. Recently, the Rim15 stress responsive transcription factor 

was identified as a major mediator of SCR lifespan extension (Wei et al., 2008). They found that 

the deletion of RIM15 blocked extended lifespan in ras2Δ, sch9Δ and tor1Δ strains, indicating 

that the phenomenon of SCR funnels through Rim15. Interestingly, although deletion of RIM15 

in the extremely long-lived ras2Δ sch9Δ mutant reduced lifespan under normal conditions, this 

strain could still respond to SCR, suggesting other factors compensate for the absence of Rim15 

(Wei et al., 2008). Our data suggest Fkh1/Fkh2 may regulate this compensatory pathway.  
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Much of the literature on FKH1 and FKH2 focuses on progression of cell cycle through mitosis 

and into G1, classifying them as FoxM1 orthologs (Carlsson and Mahlapuu, 2002; Katoh and 

Katoh, 2004; Laoukili et al., 2005; Laoukili et al., 2007; Zhu et al., 2000). It has been proposed 

that the yeast Fox Hcm1 functions as a FoxO ortholog (Rodriguez-Colman et al., 2010; 

Rodriguez-Colman et al., 2013). Hcm1 is involved in the regulation of cell cycle progression 

from S to G2 phase, with FKH1 and FKH2 among its transcriptional targets (Pramila et al., 

2006). Hcm1 has recently been found to regulate stress response, metabolic changes, and G2 cell 

cycle arrest via stress response proteins, such as Sir2 and Snf1, as well as growth signals from 

Sch9/Tor1 kinases (Rodriguez-Colman et al., 2010; Rodriguez-Colman et al., 2013), features 

common to the FoxOs. If the Fkhs function exclusively as FoxM orthologs, our data raise a case 

for the further investigation of FoxM1 as a direct therapeutic target in preventing cancer and 

aging. However, the classification of Fkh1 and Fkh2 in the FoxM subfamily may be hasty, as 

phylogenetic analyses of Fox genes have found that the yeast forkhead box transcription factors 

are equally divergent from those in higher eukaryotes, suggesting a single Fox gene at the 

divergence of animals and fungi (Mazet et al., 2003; Postnikoff and Harkness, 2012; Wang et al., 

2009b). Furthermore, due to sequence similarities, the FoxM subfamily likely diverged from the 

FoxOs during deuterostome evolution, as FoxM family members have yet to be characterized in 

invertebrate protostome model systems (Mazet et al., 2003; Wang et al., 2009b). In this light, it 

could be hypothesized that the original ancestral Fox functioned in integrating metabolic and 

stress signals to regulate growth and cell cycle progression, versus cell cycle arrest, stress 

resistance and programmed cell death, the tight regulation of which is critical for individual and 

colonial growth and survival. Duplications and evolutionary divergence in yeast appears to have 

separated the regulation of these functions temporally throughout the cell cycle, with Hcm1 

acting primarily through late S phase, and Fkh1 and Fkh2 primarily during M phase. In 

metazoans, Fox divergence is more complex, with expression and function being regulated 

developmentally and in a cell-type and tissue-specific manner (Lehmann et al., 2003; Wijchers et 

al., 2006). The ubiquitously expressed FoxO and FoxM subfamilies are delineated by function 

rather than cell cycle stage, with the FoxOs primarily regulating cell cycle arrest, stress 

resistance and programmed cell death, while FoxMs regulate growth and cell cycle progression. 

The evolutionarily conserved functions highlight the logic in investigating the yeast Fox proteins 

to identify novel targets in the regulation of age and developmental disease in higher eukaryotes.   
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5 Extra and intra cellular signaling regulate FKH dependent lifespan 

5.1 Introduction 

Growth factors such as insulin initiate kinase phosphorylation cascades, activating energetically 

taxing cellular processes such as ribosome production, cell growth and cell division (Figure 5.1). 

Insulin and insulin like growth factors, as well as other growth factors, lead to the 

phosphorylation of AKT kinases through PI3K/PDK1 and TORC2. AKT represses AMPK and 

TSC (Tuberous sclerosis proteins), which in turn are responsible for the repression of both the 

TORC1 activator Rheb and TORC1 formation itself (Bhaskar and Hay, 2007; Hay, 2005, 2011). 

Amino acid activated TORC1 increases ribosome production and mRNA translation through the 

direct activation of S6K and indirectly through activation of eIFs (Hay, 2011; Loewith and Hall, 

2011), as well as other processes, such as cell cycle regulation/progression, through the 

regulation of certain PP2A complexes (Di Como and Arndt, 1996; Jordens et al., 2006; Loewith 

and Hall, 2011; Nakashima et al., 2008; Zheng and Jiang, 2005). Some PP2A activity interferes 

with CDK/cyclin phosphorylation, slowing cell division and resulting in anabolic cell growth 

(Alvarez-Fernandez et al., 2011); however, in yeast, TORC1-dependent PP2A complex 

formation initiates mitosis through the removal of inhibitory phosphate groups from the polo-like 

kinase, Cdc5 (Nakashima et al., 2008). CDK/cyclins and polo-like kinases regulate FoxM1 and 

Fkh1/2 positive feedback functions in mitotic initiation (Alvarez-Fernandez et al., 2011; Barford, 

2011; Harper et al., 2002; Murakami et al., 2010). Finally, active S6K inhibits insulin signaling 

through the internalization and degradation of plasma-membrane bound components of the 

insulin signaling pathway (Haruta et al., 2000; Shah et al., 2004; Tremblay et al., 2005; Zhang et 

al., 2008); furthermore, PP2A dephosphorylates AKT at PDK1 specific sites (Padmanabhan et 

al., 2009), potentially forming a negative feedback circuit whereby TORC1 inactivates insulin 

signaling. This mechanism likely evolved to regulate nutrient sharing and homeostasis between 

cells in multicellular organisms; starving cells express receptors to increase nutrient uptake while 

decreasing anabolic growth, whereas, fed cells limit nutrient uptake and increase growth.  

 

FoxO regulation and function are central to the core of the insulin/TOR feedback loop (Figure 

5.1). FoxOs regulate both AKT and TORC1 processes. Firstly, the FoxOs can be phosphorylated 

on three residues by the AKT kinases. Phosphorylation results in FoxO inactivation through 
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Figure 5.1 Feedback regulation of insulin/TOR signaling pathways in higher eukaryotes 
Insulin signaling activates a series of negative feedback mechanisms that regulate cell growth and division. For 

details refer to the text of Section 5.1.  
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dissociation from the DNA, nuclear export/cytosolic sequestering by 14-3-3 chaperones, and 

SCFSKP2-specific degradation (Calnan and Brunet, 2008; Fu and Tindall, 2008; Huang et al., 

2005; Huang and Tindall, 2011; Tran et al., 2003; Tzivion et al., 2011). Additionally, FoxO 

activity potentiates the insulin signaling pathway through the increased expression of the insulin 

receptor and its direct substrates (Chandarlapaty et al., 2011; Guo et al., 2006; Marr et al., 2007; 

Matsumoto et al., 2006; Puig et al., 2003). Secondly, when active, FoxO subfamily members 

have been shown to repress TORC1 function across metazoan evolutionary lines. This is 

achieved through transcriptional control, in part through the up-regulation of repressors of 

activators and targets of TORC1, such as TSC, AMPK activating Sestrins, the Rheb inhibitor 

Bnip3, and eIF inhibitors (Chen et al., 2010; Demontis and Perrimon, 2010; Hay, 2011; Khatri et 

al., 2010; Nogueira et al., 2008; Tettweiler et al., 2005; Wessells et al., 2009), with simultaneous 

down-regulation of the TORC1 regulatory sub-unit Raptor (Jia et al., 2004). Opposed to 

phosphorylation by AKT, the FoxOs are phosphorylated by stress response kinases, such as 

oxidative stress and DNA damage activated MAPKs and related kinases (i.e. JNK, p38 and 

Mst1) and the starvation sensing AMPK, resulting in FoxO stabilization, nuclear localization and 

activation (Cai and Xia, 2008; Choi et al., 2009; Greer and Brunet, 2008; Greer et al., 2007a; 

Greer et al., 2007b; Ho et al., 2012; Lehtinen et al., 2006; Sunters et al., 2006; Valis et al., 2011). 

Free radical production and resulting cell damage, as well as intracellular nutrient depletion, are 

FoxO activating stresses, and by-products of the energy intensive TORC1 regulated anabolic 

growth, suggesting another loop in the regulatory feedback mechanisms of growth factor 

signaling. 

 

In S. cerevisiae, orthologous genes/proteins have been identified for many components of the 

growth factor and stress signaling pathways; however, the specifics of these mechanisms require 

further investigation. The deletion of genes encoding growth factor response kinases greatly 

increase both RLS and CLS in yeast (Fabrizio et al., 2004b; Kaeberlein et al., 2005; Wei et al., 

2008; Wei et al., 2009). Of note is the serine/threonine specific protein kinase Sch9, which 

shows homology in sequence, regulation, and function to metazoan AKT and S6K kinase 

families, as it is activated by both TORC1 and PDK1 orthologs (Liu et al., 2005; Mora et al., 

2004; Urban et al., 2007; Voordeckers et al., 2011). Yeast encodes two TOR orthologs, Tor1 and 

Tor2, of which Tor2 is essential and has been found associated with TORC2 and to a lesser 
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extent TORC1; while Tor1 is non-essential, it has only been found associated with TORC1 and 

to be directly involved in activation of Sch9 (De Virgilio and Loewith, 2006b; Loewith et al., 

2002; Urban et al., 2007; Wullschleger et al., 2006). Tor1/Sch9 signaling represses the stress 

resistance activating transcription factors Msn2, Msn4, and Gis1, which are considered to be 

primary CLS regulating targets of this mechanism (De Virgilio and Loewith, 2006a; Fabrizio et 

al., 2004b; Fabrizio et al., 2001; Wei et al., 2008). However, strains lacking Msn2/Msn4 or Gis1 

still resulted in a CR-induced increase in CLS, indicating other factors are involved in this 

mechanism (Wei et al., 2008), potentially Fkh1/2. In Chapter 4 we introduced the FKHs as 

regulators of caloric restriction/stress mediated lifespan, here we investigate genetic interactions 

between nutrient response kinases Sch9 and Tor1, as well as Snf1, the yeast AMPK kinase 

catalytic alpha subunit ortholog, and Hog1, a stress activated MAPK and potential 

p38/JNK/Mst1 ortholog, with Fkh1 and Fkh2.  

 

5.2 Methods 

To investigate genetic interactions between SCH9, TOR1, FKH1, and FKH2 in actively dividing 

cells, spot dilutions (3.1.4) and western analyses (3.2.5; using Fkh-TAP constructs and anti-TAP 

antibodies) were used, in the presence and absence of stress conditions. Chronological lifespan 

(3.1.5) and oxidative stress resistance (3.1.6) assays were performed to examine genetic 

interactions in stationary phase cells under standard and stressed conditions.  

 

5.3 Results  

5.3.1 SCH9, TOR1, and FKH1/2 genetically interact to regulate growth and lifespan 

Metazoan FoxO-dependent lifespan is in part due to feedback regulation with TOR2C/AKT and 

TOR1C/S6K signaling pathways, controlling cell growth, cell cycle, stress resistance, and DNA 

repair homeostasis in response to nutrient availability (Greer and Brunet, 2008; Hay, 2011; 

Zhang et al., 2011). We have identified the yeast forkhead box transcription factors Fkh1 and 

Fkh2 as regulators of some forms of stress resistance and lifespan regulation (See Chapter 4). 

Tor1 and Sch9 (orthologs of mTOR and AKT/S6K respectively) have also been shown to 

regulate yeast lifespan growth and stress resistance (Fabrizio et al., 2004b; Fabrizio et al., 2001; 

Kaeberlein et al., 2005; Wei et al., 2008; Wei et al., 2009). Another link between the Fkhs and 

nutrient signaling is that fkh1Δ fkh2Δ strains exhibit pseudo-hyphal growth (Hollenhorst et al., 
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2000; Zhu et al., 2000). Hyphal and pseudo-hyphal growth involve elongation of cells to locate 

favourable growth conditions and are associated with glucose, amino-acid, and oxygen starvation 

controlled in part by TORC and Sch9 signaling (Cullen and Sprague, 2000; Cutler et al., 2001; 

Kuchin et al., 2003; Stichternoth et al., 2011). However, potential Tor1/Sch9 signaling and 

Fkh1/Fkh2 interactions have yet to be determined.  

 

To examine genetic interactions between these two mechanisms, logarithmically growing cells 

with combinations of fkh1Δ, fkh2Δ, sch9Δ and tor1Δ were spotted, followed by growth at 

permissive and restrictive temperatures (Figure 5.2). Strains with the following gene disruptions 

had associated phenotypes: fkh1Δ fkh2Δ strains (fkh1Δ fkh2Δ, sch9Δ fkh1Δ fkh2Δ, tor1Δ fkh1Δ 

fkh2Δ and sch9Δ tor1Δ fkh1Δ fkh2Δ) were flocculent and pseudo-hyphal (visualized by 

microscopy; data not shown); sch9Δ strains (sch9Δ, sch9Δ fkh1Δ fkh2Δ, sch9Δ tor1Δ, and sch9Δ 

tor1Δ fkh1Δ fkh2Δ) were slow growing, with smaller cell and colony size and showed slower 

accumulation of adenine biosynthetic metabolite intermediates, indirectly observed through the 

colonies remaining white; tor1Δ strains (tor1Δ, tor1Δ fkh1Δ fkh2Δ, sch9Δ tor1Δ, and sch9Δ 

tor1Δ fkh1Δ fkh2Δ) were temperature sensitive. The temperature sensitivity of sch9Δ tor1Δ was 

greater than either single mutant, indicating these factors likely regulate parallel pathways. The 

quadruple mutant appeared to be less temperature sensitive than sch9Δ tor1Δ. The Fkhs may be 

partially responsible for sch9Δ tor1Δ slow growth and temperature sensitivity. Perhaps 

nutrient/growth factor signaling through separate Sch9 and Tor1 signaling mechanisms repress 

Fkh-dependant cell cycle arrest/apoptotic functions, as described earlier in Section 4.3.5, while 

activating Fkh-dependent cell cycle progression.  

 

Next we examined genetic interactions in post-mitotic cultures utilizing CLS analysis. In cultures 

maintained in DM, fkh1Δ fkh2Δ strains had a lifespan half that of wild type at 50% survival (Day 

4 and 7 respectively; Figure 5.3) congruent with the data presented in Chapter 4. The sch9Δ 

mutant strain (Day 26) had a 3.7 fold lifespan extension (Figure 5.3 A). The sch9Δ fkh1Δ fkh2Δ 

strain had two 50% survivals (Day 20 and 26) due to an apparent re-growth between Days 23 

and 25. The trend observed prior to re-growth suggests that SCH9 functions at least partially 

separate from the FKHs, with the triple having 0.77 times the lifespan of sch9Δ. However, post 

re-growth both sch9Δ and the triple mutants showed very similar curves suggesting sch9Δ may 
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Figure 5.2 The redundant FKHs do not interact with SCH9 or TOR1 to regulate logarithmic 

growth 
Tenfold serial dilutions with the starting spot having approximately 30,000 cells plated and grown on 2% YPD at 

30°C and 37°C of strains with fkh1∆ and fkh2∆ alleles with sch9∆ or tor1∆. 
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Figure 5.3 The sch9Δ and tor1Δ alleles are epistatic to fkhΔ alleles under standard conditions of 

chronological lifespan 
Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM. Error 

bars represent +/- standard error of the mean of n=3. 
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be epistatic to fkh1Δ fkh2Δ lifespan (refer to Section 5.4 for further discussion of regrowth 

phenotypes in CLS). These data suggest a genetic interaction between the two mechanisms that 

may be more complex than direct epistasis. The simplest explanation for the partial epistasis of 

sch9Δ lifespan extension over the short-lived fkh1Δ fkh2Δ phenotype is that in these conditions 

the Fkhs primary lifespan altering function is to repress Sch9 signaling. In conjunction with the 

observation that fkh1Δ fkh2Δ CLS did not respond to SCR (Figure 4.2) it would suggest that Fkh 

repression of Sch9 function may be nutrient/stress dependent.  

 

Strains with the tor1Δ allele had a 50% survival at 14 days, twice that of wild type (Figure 5.2B); 

however, after 50% survival, the tor1Δ cultures died more rapidly reaching 10% survival by day 

17 compared to day 21 in wild type. Furthermore, in some CLS experiments, tor1Δ strains 

showed drastically reduced lifespan, with several of our tor1Δ glycerol stocks consistently 

assaying with decreased lifespan (data not shown). Reasons for this anomalous decrease in 

survival remain unclear; however, tor1Δ has been found to both increase and decrease sensitivity  

 

to various stresses [Figure 5.2/Section 5.3.3 this study; (Corcoles-Saez et al., 2012; Delaney et 

al., 2013; Ding et al., 2013; Dziedzic and Caplan, 2011; Kapitzky et al., 2010; North et al., 2012; 

Sinha et al., 2008; Wang et al., 2009a; Wei et al., 2009)], suggesting Tor1 may decrease survival 

under some environmental conditions, while increase it in others. Consistent with the idea that 

TOR may be involved in both pro and anti-aging mechanisms, chronic rapamycin induced 

TORC1 inactivation in mice can extend median and maximal lifespan (Harrison et al., 2009; 

Miller et al., 2011), but also can lead to immunosuppression, diabetes-like metabolic changes 

and tissue specific pathologies in mice and humans (Blagosklonny, 2012; Lamming et al., 2013). 

Alternatively, tor1Δ strains may generate spontaneous suppressors at a high rate that has yet to 

be documented in the literature. Because of these concerns, we were careful to test the tor1Δ 

strains by CLS for increased lifespan prior to further use of that strain. The tor1Δ fkh1Δ fkh2Δ 

strain had two occurrences of re-growth (between Days 10-11 and 15-17) making three 

distinctive curves: the first conforms to the rate of the fkh1Δ fkh2Δ curve, with a 50% survival of 

6.5 days similar to wild type; the second follows that of tor1Δ strain with a 50% survival at Day 

14; the third is similar to the sch9Δ curve (Figure 5.3 A) reaching the final 50% survival at day 
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24. These data suggest a strong genetic interaction; however, the mechanisms involved in this 

co-regulation are unclear. 

 

We found that sch9Δ tor1Δ lifespan (50% at day 30; <1% by Day 45; Figure 5.3 C) was 

extended beyond either sch9Δ (50% at Day 26; <1% by Day 41) or tor1Δ (50% at Day 14; <1% 

by Day 26) alone, indicating a partial redundancy in SCH9 and TOR1 lifespan regulatory 

mechanisms. Past studies indicate Sch9 is a direct target of Tor1 phosphorylation (Urban et al., 

2007) and the genes regulate lifespan in a linear function, with sch9Δ phenotype being epistatic 

to tor1Δ (Wei et al., 2008; Wei et al., 2009). The inconsistency of our results with the published 

literature may be due the use of a different genetic background and amino acid composition in 

the SDC media used. These changes could favour alternative pathways uncoupling Sch9 and 

Tor1 signaling, such as a case of Sch9 activation by phosphorylation by the mammalian PI3K 

yeast orthologs Pkh1, -2, and -3 or through Ras/PKA signaling (Liu et al., 2005; Voordeckers et 

al., 2011). The sch9Δ tor1Δ fkh1Δ fkh2Δ mutant had decreased fluctuating survival for the first 

23 days indicating partial dependence on the Fkhs in sch9Δ tor1Δ lifespan extension; this was 

followed by a death curve consistent with the sch9Δ tor1Δ mutant, proceeding from day 25. A 

possible interpretation of these data is that a primary function of the Fkhs in lifespan regulation 

in these conditions may be the repression of Sch9 and Tor1 signaling pathways. This may be 

similar to metazoan FoxO repression of TORC1 and S6K signaling.  

 

5.3.2 Stress conditions alter the nature of the energy signaling/forkhead interaction 

Initial experiments, performed in SCR conditions, prior to the establishment of a standard CLS 

protocol, resulted in different genetic interactions from those presented in the previous section. 

In these earlier experiments, the relationship between single and double mutants had similar 

trends to those observed in Figure 5.3. Compared to wild type, fkh1Δ fkh2Δ had a reduced 

lifespan, while sch9Δ or tor1Δ had extended CLS, which was further extended in the sch9Δ 

tor1Δ double mutant (Figure 5.4 A-C). Under these conditions, the triple and quadruple mutants 

had initial lifespan curves similar to fkh1Δ fkh2Δ; with the exception that the triple mutants 

experienced regrowth between 9 and 11 days, while the quadruple mutant did not. This epistatis 

of the fkh1Δ fkh2Δ phenotype in the quadruple mutant suggests that parallel Sch9 and Tor1 

regulated pathways inhibit the CLS; this relationship between Tor1/Sch9 is similar to metazoan 
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Figure 5.4 The fkhΔs are epistatic to sch9Δ and tor1Δ under stressed chronological lifespan 

conditions (maintained in falcon tubes) 
A-C) Cultures were grown in 2% YPD. Upon entry into stationary phase the cultures were maintained in water. 

Error bars represent +/- standard error of the mean of n=3. D) Cultures were grown in 2% Glc SDC. Upon entry into 

stationary phase the cultures were maintained in DM. Error bars represent +/- standard error of the mean of n=3. 
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AKT/FoxO genetic interactions, with the Fkhs predominantly responsible for the lifespan 

extension seen in nutrient signaling disruptions.  

 

Between running the experiments that resulted in Figure 5.3 and 5.4 A-C, four variables were 

changed in the CLS protocol: 1) data from Figure 5.3 were generated in DM, while those from 

Figure 5.4 A-C were generated in SCR conditions; 2) nutritionally rich YPD was switched to 

SDC; 3) in Figure 5.4 A-C, Day 1 was arbitrarily set to 3 days after initial culture inoculation, 

compared to cultures being set back to an equal OD600 from seeding overnight cultures and peak 

survival (100%; Day1) determined for each strain (most strains took 2 days, while strains with 

sch9Δ and/or fkh1Δ fkh2Δ took 3-4 days); and 4) plastic 50 ml falcon tubes were switched to 

glass Erlenmeyer flasks. First, preliminary replication of the sch9Δ, tor1Δ, fkh1Δ, and fkh2Δ 

experiments with maintenance in SCR conditions showed similar trends to those presented in 

Figure 5.3 (data not shown). Next, we tested media and growth vessel composition differences 

(YPD versus SDC; glass versus plastic Erlenmeyer flasks) utilizing the more accurate up to date 

protocol. In all combinations the genetic relationships were similar to those presented in Figure 

5.3 with sch9Δ tor1Δ lifespan extension phenotype mostly epistatic to the fkh1Δ fkh2Δ (data not 

shown). This suggests SDC versus YPD nutrient composition, SCR, and potential exogenous 

chemicals from the plastic of the flasks were not the stresses responsible for the change in 

epistasis.  

 

Finally, the experiment was replicated using the standard protocol (grown in SDC, set back at 

1:5 culture to flask volume in SDC, maintained in DM, assayed for peak survival, etc.) with the 

exception of using falcon tubes (the final altered parameter). Under these conditions the 

quadruple mutant had a lifespan similar to the fkh1Δ fkh2Δ mutant, replicating the relationship 

observed in Figure 5.4 C (Figure 5.4 D). The use of Erlenmeyer flasks, rather than falcon tubes, 

may allow for more turbidity in the CLS culture and a greater culture/air surface area, facilitating 

a homogeneous suspension of cells, nutrients, and metabolites, as well as greater oxygenation of 

the culture; on the other hand, in Falcon tubes, the cells came out of suspension and the surface 

of the media was less disturbed. We hypothesize this may have resulted in localized changes to 

nutrient availability, excreted metabolite accumulation, or decreased oxygen, especially deeper 

in the pellet. The Fkhs have been found to change localization in response to hypoxic conditions 
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(Dastidar et al., 2012), while at least Fkh2 regulates growth/survival in low oxygen conditions 

(Samanfar et al., 2013). These data suggest that under potential low oxygen, stressed conditions, 

the Fkhs become necessary for the major lifespan extension conferred by the disruption of 

nutrient signaling through Sch9 and Tor1. 

 

Next, we assessed the effects of oxidative free radical stress by growing yeast cultures with 

combinations of sch9Δ, tor1Δ, and fkh1Δ fkh2Δ disruptions to Day 5 stationary phase and 

treating them with 100 mM H2O2 for 1 h at 30°C. Cultures of sch9Δ (89.4 +/- 0.9%), tor1Δ (82.0 

+/- 3.9%), or sch9Δ tor1Δ (91.0 +/- 1.2%) were twice as stress resistant as wild type (43.9 +/- 

1.6%; Figure 5.5). Survival of sch9Δ fkh1Δ fkh2Δ (40.4 +/- 2.3%) and tor1Δ fkh1Δ fkh2Δ (36.2 

+/- 2.3%) cells was similar to that of wild type, while both fkh1Δ fkh2Δ (5.2 +/- 0.5%) and sch9Δ 

tor1Δ fkh1Δ fkh2Δ (10.2 +/- 1.7%) had greatly reduced survival. This relationship is congruent 

with the trends in the lifespan data presented in Figure 5.4, strengthening the argument of the 

necessity of the Fkhs to respond to major post-mitotic stresses, a mechanism that is inhibited by 

Sch9 and Tor1 signaling.  

 

5.3.3 Stress and nutrient response regulation of the forkheads  

Metazoan FoxO activity, localization and stability is regulated through AKT dependent 

phosphorylation (Kenyon, 2011; Tzivion et al., 2011; Zhang et al., 2011). To elucidate potential 

conservation of a similar molecular mechanism through Sch9 and Tor1 interaction with Fkhs, we 

examined Fkh protein levels in asynchronous logarithmically growing sch9Δ, and sch9Δ tor1Δ 

cultures. As mentioned previously, some strains containing tor1Δ developed a short lived 

phenotype; included in these were the tor1Δ FKH1-TAP and tor1Δ FKH2-TAP strains (data not 

shown), potentially due to secondary mutations. Therefore, these strains were not assessed for 

Fkh-TAP levels. If the AKT/FoxO interaction holds true, we expect under increasing Glc 

concentrations Fkh protein levels may decrease and a larger phosphorylated Fkh band may be 

observed, while in sch9Δ or sch9Δ tor1Δ mutants any Glc responsive changes would be 

diminished. A non-specific 60 kDa band was detected in all samples, including wild type, which 

does not encode the TAP epitope tag; this band was used for load comparison (Figure 5.6). Fkh1-

TAP (~75 kDa band) levels decreased in 6% Glc in otherwise wild type cells, while in sch9Δ 

cells the reverse was true, as Fkh1-TAP levels increased in 6% Glc. In sch9Δ tor1Δ cells Fkh1- 
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Figure 5.5 The FKHs increase oxidative stress resistance in cells lacking Sch9 or Tor1 
Cultures were grown in 2% YPD to day 5 stationary phase, treated with 100 mM H2O2 for 1 h, and plated to 

determine survival of colony forming units. Error bars represent +/- standard error of the mean of at least n=3. 
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Figure 5.6 Sch9 and Tor1 regulate Fkh1-TAP levels 
Pre-diauxic shift overnight cultures were set back to OD600 1 in their own partially depleted media, 0%, 2% or 6% 

Glc were added, followed by incubation at 30°C for 1 h. Proteins were extracted by the TCA method and analyzed 

by western blotting.  

 

 



 

81 

 

TAP protein levels were high compared to the other two backgrounds and did not fluctuate with 

variance in Glc levels. A follow up experiment confirmed these results and examined the 

relationship of Fkh1-TAP levels with tor1Δ and using tubulin as a loading control. Fkh1-TAP 

were the same in wild type and tor1Δ cells, elevated in sch9Δ and more so in sch9Δ tor1Δ cells 

(M. Malo and T. Harkness; unpublished). In preliminary experiments, Fkh2-TAP levels did not 

appear to greatly fluctuate with Glc concentration or in sch9Δ and sch9Δ tor1Δ cells (data not 

shown). These data suggest that nutrient activated Sch9 and Tor1 signaling may be responsible 

for regulating at least Fkh1 protein abundance in these conditions, either through gene expression 

or, more likely, protein stability, due to the rapidity of change. 

 

Low nutrient and stress conditions appear to be integral for FKH-regulated cellular survival. 

Although Fkh stress resistance could passively arise from not being repressed by nutrient 

signaling kinases, it may also include active mediation through stress responsive kinases. In 

metazoans, AMPK/p38/MST1/JNK stress activated kinase signaling mechanisms phosphorylate 

FoxO proteins facilitating their nuclear import, DNA binding and stress response gene 

expression specificity in conditions including nutrient and energy depletion, DNA damage, toxic 

stress, and membrane damage (Cai and Xia, 2008; Choi et al., 2009; Greer et al., 2007a; Greer et 

al., 2007b; Ho et al., 2012; Lehtinen et al., 2006; Sunters et al., 2006; Vogt et al., 2005; Zhang et 

al., 2011). To examine the potential conservation of these regulatory mechanisms we performed 

CLS assay on strains with deletions of SNF1, the gene encoding the yeast AMPK catalytic 

subunit ortholog, and the FKHs. Strains with snf1Δ, fkh1Δ fkh2Δ, and snf1Δ fkh1Δ fkh2Δ 

deletions had similar lifespans, reaching 50% survival after approximately 4 days and maximal 

lifespan at 11-13 days, compared to the 7 and 27 days of wild type (Figure 5.7 A). This suggests 

that the FKHs and SNF1 may act through the same pathway to regulate lifespan, and suggests 

further experimentation is warranted to determine the mechanism of this interaction.  

 

Next we tested the necessity of the yeast stress responsive activated MAPK (i.e. JNK/Mst1) 

ortholog encoding gene, HOG1, in FKH over-expression dependent stress resistance by 

knocking out the HOG1 gene in the FKH over-expressing strains developed in Section 4.3.2. 

hog1Δ cultures with FKH1- and/or FKH2-over-expression to stationary phase in 2% YPD, at 
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Figure 5.7 Stress response kinases Snf1 and Hog1 may promote Fkh function 
A) CLS cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in 

DM. Error bars represent +/- standard error of the mean of n=3. B) Cultures were grown in 2% YPD. Upon entry 

into stationary phase the cultures were maintained in DM with or without the addition of 0.05% Gal to induce 

FKH expression. 5 days after entry to stationary phase cultures were treated with 100 mM H2O2 for 1 h and 

assayed for colony forming unit survival. Error bars represent +/- standard error of the mean of at least n=3. 
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which point cultures were split and 0.05% Gal was added to one half. At day 5 stationary phase, 

the cultures were split again and half were treated with 100 mM H2O2 for 1 h at 30°C and 

assayed for survival. The survival of hog1Δ (33.9 +/- 6.0% glc/34.1 +/- 4.6% gal) was reduced 

compared to wild type (56.4 +/- 6.5% glc/66.4 +/- 2.0% gal; Figure 5.7 B). The deregulation of 

normal FKH gene expression partially recovered hog1Δ in Glc conditions. Unlike the increased 

stress resistance observed in Gal induced cultures presented in Figure 4 D; the addition of Gal 

had no effect or decreased survival in all strains with hog1Δ (Figure 5.7 B). These data, taken 

with the decrease in expression of the FKHs under the regulation of the GAL1/10 promoter 

versus the endogenous promoter in Glc observed in Figures 4.3 B and C, suggest that in hog1Δ 

strains increased Fkh levels may be deleterious to cellular survival in these stress conditions. 

Alternatively, Hog1 may facilitate stress resistance conferred by the Fkhs. 

 

5.4 Discussion  

In this chapter we present data suggesting genetic interactions between SCH9 and TOR1 

regulated signaling with FKH dependent lifespan and stress resistance regulation. In standard 

CLS conditions, the lifespan extending effects of sch9Δ or tor1Δ are epistatic to the fkh1Δ fkh2Δ, 

extending lifespan beyond that of wild type; this relationship switches with the FKHs becoming 

necessary for sch9Δ tor1Δ survival in non-standard (potentially hypoxic) culture conditions such 

as in the presence of hydrogen peroxide. Furthermore, the FKHs genetically interact with the 

stress activated kinase encoding genes HOG1 and SNF1, suggesting the Fkhs function in 

mechanisms switching cellular processes between growth and stress resistance.  

 

Our data indicate redundancy in lifespan regulation and separate growth phenotypes (i.e. colony 

colour and size, cell size, temperature sensitivity) between sch9Δ and tor1Δ, while genetic 

interactions between fkhs with tor1Δ differ from sch9Δ, suggesting they may function in separate 

pathways. Contrary to our findings, previous experiments indicate Sch9 is a direct target of 

TORC1Tor1 (Urban et al., 2007), and form a linear pathway in the regulation of CLS (Wei et al., 

2009). Urban et al. present data that Sch9 is phosphorylated by TORC1, resulting in Sch9 

regulating ribosome biogenesis and translation initiation, thus identifying Sch9 as an S6K 

ortholog (Urban et al., 2007). Wei et al found tor1Δ and sch9Δ are epistatic in Msn2/4-

dependent lifespan regulation (Wei et al., 2009). However, gene expression profile analysis of 
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wild type and sch9Δ, in the presence or absence of rapamycin treatment, identified gene clusters 

regulated by Sch9 through TORC1-dependent and -independent mechanisms (Smets et al., 

2008). Under favourable pro-growth conditions, TORC1 and Sch9 activate the expression of 

genes involved in translation, through linear and parallel mechanisms, congruent with the 

findings of Urban et al. (Urban et al., 2007). On the other hand, when TORC1 is inactive, Sch9 

increases the expression of genes involved in stress resistance and respiration. Additionally, Sch9 

and TORC1 show independent and additive control of nitrogen starvation induced genes (Smets 

et al., 2008) and have parallel functions in the repression of autophagy (Kamada et al., 2010; 

Yorimitsu et al., 2007). In this light, the differences in tor1Δ/sch9Δ CLS results observed 

between this study and the literature could be attributed to media/growth conditions (i.e. 

supplemented amino acid concentrations) and/or the genetic background of the yeast strains, 

resulting in a switch between linear and parallel Sch9 and TORC1 pathways regulating survival 

(Wei et al., 2009).  

 

A complication with CLS data is the presence of regrowth or gasping observed in strains 

featuring combinations of both fkhΔs with at least one of sch9Δ or tor1Δ. Gasping is thought to 

arise from a better adapted subpopulation utilizing nutrients released from dead and dying cells 

or the efficient utilization of ethanol, and perhaps acetic acid, for oxidative phosphorylation, 

initiating growth and repopulation of the stock culture (Fabrizio et al., 2004a; Fabrizio et al., 

2005; Fabrizio and Longo, 2003, 2007). Maintenance in water with frequent replacement is often 

used to avoid this artefact; however, we observed regrowth phenotypes even under this regiment 

in preliminary testing (data not shown). The greatest regrowth phenotypes were associated with 

tor1Δ, which under certain conditions increases autophagy and glycogen accumulation (Kamada 

et al., 2010; Wilson et al., 2002). This suggests intracellular stored energy or autophagy may be 

responsible for providing the nutrients for regrowth. The specific combinations of mutant alleles 

giving rise to regrowth could result from the inclusion of fkhΔ-induced increases in mutation rate 

from genomic instability associated with decreased histone and chromatin maintenance, as well 

as derepression of Clb2 and potentially other cell cycle responsive genes (Postnikoff et al., 

2012). These circumstances would be in combination with increased stress response activated by 

Msn2/4 in response to sch9Δ and/or tor1Δ (Fabrizio et al., 2004b; Wei et al., 2008). In this case, 

the adaptive regrowth might be analogous to tumour formation rather than healthy lifespan, in 
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which case the initial trajectories of the survival curves and not the maximal lifespan should be 

considered relevant to this study. Reinterpreting Figure 5.3 in this light, ignoring the regrowth 

and any curve beyond, fkh1Δ fkh2Δ may be epistatic to tor1Δ in standard CLS conditions, while 

sch9Δ is partially epistatic to fkh1Δ fkh2Δ lifespan. When interpreted this way, these data 

suggest a linear mechanism between Tor1 and the Fkhs to regulate longevity, while in these 

conditions Sch9 may be functioning through a separate mechanism (Figure 5.8 A). However, if 

the regrowth and maximal lifespans are considered, the Fkhs appear to be repressors of separate 

redundant Tor1 and Sch9 pathways (Figure 5.8 B). Additionally, tor1Δ fkh1Δ fkh2Δ has a 

lifespan greater than tor1Δ and similar to sch9Δ. Inactivation of TORC1 was found to cause a 

Sch9-dependent increase of stress response (Smets et al., 2008), suggesting a potential 

mechanism for the extended tor1Δ fkh1Δ fkh2Δ CLS.  

 

Furthermore, in the stress conditions documented in Figure 5.4, both Sch9 and Tor1 may be 

redundantly functioning through the repression of the Fkhs (Figure 5.8 C). In the oxidative stress 

analysis (Figure 5.5), the triple mutants showed intermediate survival between fkh1Δ 

fkh2Δ/tor1Δ sch9Δ fkh1Δ fkh2Δ and sch9Δ/tor1Δ/sch9Δ tor1Δ strains. This further suggests a 

role for Sch9 or Tor1 in stress adaptation/recovery and cell growth/survival, similar to the one 

described in CLS gasping phenotypes. Alternatively, Sch9 increases the expression of stress 

resistance and respiration genes in TORC1-unfavourable conditions (Smets et al., 2008); 

interpreting this in light of our data, either Sch9 or TORC1 in the absence of the other and the 

Fkhs may increase a stress response pathway. In this scenario, nitrogen or carbohydrate 

starvation may lead to increased stress resistance and respiration, actively facilitating a cell’s 

ability to adapt to changing environments. This activation of a potentially adaptive stress 

response in the absence of the FKHs could be at least partially responsible for regrowth 

phenotypes observed in the CLS assays. 

 

The mechanisms of the genetic interactions between the FKHs and SCH9/TOR1 are likely two-

fold. First, the Fkhs may function to alter the expression of Sch9 and Tor1, their regulators, or 

their lifespan related targets. For example, the Fkhs may repress SCH9, TOR1, or the loci of 

genes encoding proteins downstream of TORC1/Sch9 or increase the expression of upstream 

repressors during G0 for cell cycle arrest/cellular maintenance, perhaps in a mechanism 
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Figure 5.8 Models of Fkh/Sch9/Tor1 signaling genetic interactions 
A) In non-stressed conditions the Fkhs are involved in the control of redundant Sch9 and Tor1 lifespan shortening 

pathways, although this interaction varies if regrowth is not considered. B) This relationship changes if complete 

lifespan curves (including regrowth) are taken into considered (from Figure 5.3 in Section 5.3.1). C) In stressed 

conditions, redundant SCH9 and TOR1 pathways repress FKH- dependent lifespan and stress resistance; however, 

deletion of SCH9 or TOR1 partially recover fkhΔ lifespan and stress resistance defects. Dashed lines indicate 

speculation from the triple mutant data and information for (Smets et al., 2008). 

 



 

87 

 

analogous to metazoan FoxO control of mTORC1 through Raptor, E4-BP, Sestrin, and TSC 

expression (Chen et al., 2010; Demontis and Perrimon, 2010; Hay, 2011; Jia et al., 2004; Khatri 

et al., 2010; Nogueira et al., 2008; Tettweiler et al., 2005; Wessells et al., 2009). The deletion of 

the FKHs may increase the expression of components of the TORC1 pathway, accelerating aging 

in otherwise wild type cells, while sch9Δ or tor1Δ strains have increased lifespan regardless of 

FKHs in standard conditions. Although possible, direct Fkh regulation of SCH9 or TORC1 

subunit genes is unlikely, as neither Fkh was found associated with these genes promoters in a 

genome wide ChIP assay (Venters et al., 2011), nor were Fkh binding consensus sequences 

found associated with the upstream promoter regions of these genes in a manual search utilizing 

the Saccharomyces Genomic Database.  

 

Conversely, Sch9 and Tor1 signaling may alter Fkh function, likely through: 1) Fkh dissociation 

from DNA, nuclear export, and/or degradation; 2) changing Fkh binding location or altering co-

factor association. In favour of option one, Fkh-TAP data suggest that at least Fkh1 protein 

levels can be altered in a Glc dependant manner through Sch9 and Tor1. After one hour in high 

Glc concentrations, Fkh1 levels drop in wild type cells, but not in sch9Δ or sch9Δ tor1Δ strains. 

Although we have not ruled out changes in FKH1 expression, we interpret these levels as 

indicative of altered protein stability, perhaps in a manner similar to AKT/SCFSKP2 degradation 

of the FoxOs (Gao et al., 2009; Huang et al., 2005; Huang and Tindall, 2011; Lin et al., 2009). 

Supporting the second option, TORC1 indirectly activates Cdc5 in an Sch9-independent manner 

(Nakashima et al., 2008), while Cdc5 phosphorylation facilitates Fkh2-Ndd1 association 

(Darieva et al., 2006), switching Fkh2 function from repressing to activating the expression of 

the CLB2 gene cluster (Darieva et al., 2006; Wittenberg and Reed, 2005), which consequently 

can result in decreased stress resistance (Simpson-Lavy et al., 2009).   
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6 The APC is involved in FKH/SCH9 dependent lifespan regulation3 

6.1 Introduction 

Fkh1/2 regulate the CLB2 gene cluster (Zhu et al., 2000), which includes genes required for APC 

activity, as well as APC targets for degradation (Barford, 2011; Harper et al., 2002; Ko et al., 

2007). The APC is a highly conserved multi-subunit E3 that promotes mitotic progression and 

G1 maintenance by targeting cell cycle regulators, such as the securin Pds1 and the B type cyclin 

Clb2 in yeast, for proteasome-dependent degradation (Barford, 2011; Harper et al., 2002; 

Passmore, 2004). The APC has been demonstrated to be critical for regulating genomic stability 

and longevity in yeast and higher eukaryotic organisms (Baker et al., 2004; Harkness et al., 

2002; Harkness et al., 2004; Hartwell and Smith, 1985; Li et al., 2008a; Palmer et al., 1990). In 

yeast, mutation to individual APC subunits decreases RLS and CLS, while over-expression of 

APC10 increases RLS (Harkness et al., 2004). Consistent with this, the yeast APC plays a role in 

stress response, possibly by targeting proteins that promote growth, rather than defense 

mechanisms, for degradation (Harkness et al., 2002; Simpson-Lavy et al., 2009; Turner et al., 

2010). In mice, mutations to the APC regulator BubR1, a component of the spindle checkpoint, 

lead to premature aging (Baker et al., 2005; Baker et al., 2004). One protein targeted for 

degradation by the mammalian APC is FoxM1 with inappropriate FoxM1 stability and activity 

involved in oncogenesis (Laoukili et al., 2008; Park et al., 2008). Furthermore, mammalian 

APCCDH1 indirectly stabilizes FoxO during G1 by targeting components of the SCFSKP2 for 

degradation. SCFSKP2 is the E3 responsible for identifying FoxO for proteasomal degradation 

(Gao et al., 2009; Huang et al., 2005; Huang and Tindall, 2011). This chapter examines the 

genetic interactions between pathways regulating nutrient signaling or FKH1/2 with the APC, 

with regards to lifespan and stress resistance in yeast. 

 

6.2 Methods 

Spot dilutions were used to investigate genetic interaction between the APC with SCH9 and 

TOR1, or FKH1 and FKH2 in actively dividing cells (3.1.4) Elevated temperature was used as a 

stress condition to analyse temperature sensitive growth phenotype interactions. Oxidative stress 

                                                 

3 Parts of this chapter have been published Postnikoff et al. (2012) 
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resistance assays (3.1.6) were performed to assess the combined effects of these genes on post-

mitotic free radical stress resistance. Finally, CLS assays (3.1.5) were performed to examine 

genetic interactions in stationary phase cells under standard and SCR conditions as well as in the 

presence of H2O2 as an alternative stress.  

 

6.3 Results 

6.3.1 FKH1 and FKH2 interact with APC subunit encoding genes 

Integral to the power of yeast as a model organism is the capacity to elucidate genetic 

mechanisms for cellular processes. One of the goals of this study was to identify potential 

evolutionarily conserved lifespan regulating targets of the forkhead box transcription factors. 

Fkh1/2 regulate the CLB2 gene cluster (Zhu et al., 2000), which encode proteins required for 

APC function including several APC subunits (Barford, 2011; Harper et al., 2002; Ko et al., 

2007), implicating the APC as a candidate for co-regulation of Fkh-dependent processes. To 

elucidate potential interactions between the FKHs and the APC, we examined colony growth of 

cells over-expressing the FKHs or fkhΔ in combination with mutations to APC subunits. The 

deletion of one or both FKHs had no effect on growth at elevated temperatures in an otherwise 

wild type background, while mutations to APC5 or APC10 decreased growth phenotypes at 

higher temperatures (Figure 6.1 A and B). In backgrounds containing either apc10Δ or apc5CA, 

the deletion of FKH1 partially restored the temperature sensitive defect, while the deletion of 

FKH2 had no effect on apc5CA growth and enhanced apc10Δ growth defects at elevated 

temperatures. This is not surprising, as opposing phenotypes for fkh1Δ and fkh2Δ have 

previously been described (Hollenhorst et al., 2000; Hollenhorst et al., 2001; Pic et al., 2000; 

Zhu et al., 2000). Furthermore, the deletion of both FKH genes in apc5CA or apc10Δ mutant cells 

exacerbated the temperature sensitive phenotype (Figures 6.1 A and B). The permissive 

temperature of 30°C was often found to be restrictive for the apc10Δ fkh1Δ fkh2Δ mutant, 

requiring incubation at room temperature (data not shown).  

 

To further investigate the role of the FKHs in APC deficient backgrounds, we transformed wild 

type and apc5CA cells with the YCp50 empty vector or one containing either GALPROM-FKH1 or -

FKH2. When spotted on 2% Glc SDUra- followed by incubation at 30°C, the presence of the 

GALPROM-FKHs altered growth rate/colony size, however, total growth was unaltered. On 2%  
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Figure 6.1 The FKHs interact with the APC to regulate logarithmic growth 
Tenfold serial dilutions with the starting spot having approximately 30,000 cells plated and grown on 2% YPD at 

30°C and 37°C of strains with fkh1∆ or fkh2∆ in combination with (A) apc5CA or (B) apc10∆. C) Serial dilutions 

of wild type and apc5CA with either an empty vector, Gal inducible FKH1 expression vector, or Gal inducible 

FKH2 expression vector plated on 2% Glc or Gal SDUra- at 30°C and 37°C. 

 



 

91 

 

Gal SDUra- plates, the presence of either GALPROM-FKH reduced growth in both wild type and 

acp5CA backgrounds (Figure 6.1 C), similar to what was previously described in Section 4.3.5. 

On 2% Glc SDUra-, both YCp50 empty vector controls were temperature sensitive at 37°C 

compared to 30°C: with  apc5CA-YCp50 having a more severe phenotype than wild type-YCp50. 

The presence of either GALPROM-FKH plasmid completely recovered these growth defects on 2% 

Glc SDUra- plates at 37°C in both backgrounds. We suspect increased Fkh activity, due to high 

copy number of the gene with a transcriptionally leaky promoter, can overcome the combined 

stresses induced from plasmid dependency, SD nutrient conditions and elevated temperature, as 

well as completely recovering the apc5CA growth defect at elevated temperatures. 

 

6.3.2 Deletion of the FKHs reverses defective APC CLS 

Forkhead box transcription factors and the APC have been shown to regulate lifespan in many 

organisms (Baker et al., 2005; Baker et al., 2004; Giannakou et al., 2004; Harkness et al., 2002; 

Harkness et al., 2004; Lin et al., 1997; Postnikoff et al., 2012). In yeast, the Fkhs regulate gene 

expression of APC activators/subunits/targets (Zhu et al., 2000) and genetically interact under 

permissive growth conditions (Section 6.3.1). In mammalian cells, the pro-cell cycle oncogene, 

FoxM1, regulates APC activators/targets for mitotic progression (Korver et al., 1997; Laoukili et 

al., 2005; Laoukili et al., 2007; Wang et al., 2005) and then becomes a target of the APC in G1, 

during unfavourable growth conditions (Laoukili et al., 2008). Conversely, the tumour-

suppressing FoxOs may be involved in both the expression and repression of APC activators 

(Alvarez et al., 2001; Takano et al., 2007). The APC indirectly stabilizes at least FoxO1, through 

the ubiquitin-dependent degradation of the SCF F-box protein Skp2, an E3 complex responsible 

for FoxO1 ubiquitination and subsequent proteasomal degradation (Gao et al., 2009; Huang et 

al., 2005). 

 

To investigate the potential interaction between FKH and APC-dependent lifespan regulation, we 

performed CLS assays on strains combining fkh1Δ, fkh2Δ and apc5CA alleles. When grown in 

SDC maintained in DM, apc5CA mean lifespan (50% survival) was 0.33 times that of wild type 

(Figure 6.2 A). The deletion of FKH1 or FKH2 in the apc5CA background recovered survival 

defects to wild type levels (Figure 6.2 A and B). Finally, lifespan of the fkh1Δ fkh2Δ apc5CA 

strain was comparable to the fkh1Δ fkh2Δ strain (Figure 6.2 C). These data suggest that in  
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Figure 6.2 The redundant FKHs interact with APC5 to regulate chronological lifespan 
Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM. Error 

bars represent +/- standard error of the mean of n=3. 
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unstressed DM conditions, the fkh phenotype is epistatic to that of apc5CA, indicating that these 

genes regulate longevity through the same mechanism. 

 

6.3.3 Deletion of both FKHs exacerbate APC mutations under stress conditions 

Next we examined CLS of strains grown in SDC and maintained in water. SRC conditions 

extended the lifespan and 50% survival of apc5CA, fkh1Δ apc5CA, and fkh2Δ apc5CA strains 

compared to DM (Figures 6.2 and 6.3). The CLS of the fkh1Δ fkh2Δ strain remained 

approximately the same, with the lifespan curve conforming to that of DM conditions. The fkh1Δ 

fkh2Δ apc5CA strain’s 50% lifespan remained approximately the same; however, the maximal 

lifespan (less than 5% survival) decreased by half when maintained in SCR conditions (Figures 

6.2 C and 6.3 C). In the literature, SCR is considered a mild protective stress, with the 

combination of CR and osmotic stress hormetically activating major stress resistance 

mechanisms, while simultaneously removing the buildup of metabolic toxins such as acetic acid 

(Burtner et al., 2009; Fabrizio and Longo, 2003, 2007; Longo and Fabrizio, 2012; Wei et al., 

2008). The decrease in the triple mutant’s survival may be due to a stronger inhibition of stress 

resistance mechanisms resulting in mild hormetic stress becoming lethal. To test the theory of 

FKH and APC co-regulation of stress resistance throughout lifespan, CLS assays were 

performed with the addition of 25 mM H2O2 upon entry into stationary phase. The 50% survival 

of all strains tested was less than three days in the presence of H2O2. However, if the lifespan is 

compared at 1% survival and beyond, the trends appeared the same as those under SCR 

conditions with: wild type having the greatest lifespan; fkh1Δ fkh2Δ or apc5CA strains having a 

similar, slightly reduced lifespan; fkh1Δ fkh2Δ apc5CA having the most impaired lifespan (Figure 

6.4 A). 

 

A similar trend was observed in the survival of stationary Day 5 cultures (grown in YPD and 

maintained in DM) treated with 100 mM H2O2. Mutation to FKH1 (42.2+/-0.3 %), FKH2 

(48.5+/-1.4 %), both (39.2+/-1.5 %), or APC5 (27.6+/-1.1 %) reduced survival relative to wild 

type (53.7+/-1.7 %; Figure 4.4 B). The deletion of a single FKH partially recovered apc5CA H2O2 

resistance defects as seen in data for fkh1Δ apc5CA (35.4+/-2.0 %) and fkh2Δ apc5CA (36.5+/-1.7 

%) strains. However, fkh1Δ fkh2Δ apc5CA had a severe reduction in survival (3.5+/-0.9 %). We 

also tested combinations of fkh1Δ, fkh2Δ and apc10Δ mutant strains resistance to 100 mM H2O2 
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Figure 6.3 The FKHs and APC5 synergistically regulate chronological lifespan under severe caloric 

restriction 
Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in water with 

washing and replacement every 2 days. Error bars represent +/- standard error of the mean of n=3. 
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Figure 6.4 The FKHs function in a redundant manner with the APC to respond to H2O2 stress 
A) Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM 

with or without the addition of 25 mM H2O2. B) Cultures were grown in 2% YPD and maintained in DM. At 

stationary phase day 5 cultures were treated with 100 mM H2O2. Error bars represent +/- standard error of the 

mean of n=3. 
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to examine if the results were APC5 specific or general to the APC (Figure 6.4 B). The apc10Δ 

strain had a survival of 28.3+/-0.7%, which was partially recovered in combination with the 

fkh1Δ allele (37.6+/-1.6 %). Interestingly, in fkh2Δ apc10Δ and fkh1Δ fkh2Δ apc10Δ strains no 

colonies were observed when treated in three separate replicates (a complete kill), suggesting a 

severe decrease in oxidative stress resistance with these mutant combinations.  

 

6.3.4 The APC interacts directly with SCH9 and partially with TOR1 

The FKHs co-regulate lifespan with SCH9/TOR1 (Chapter 5) and the APC (this chapter), with 

the interactions changing in stressed conditions. To further characterize this lifespan regulatory 

network, we assessed genetic relationships between SCH9, TOR1 and the APC subunits. First, 

we examined the genetic interactions of combinations of apc5CA, sch9Δ, and tor1Δ in 

logarithmically growing cells, when spotted and grown at permissive (30°C) and restrictive 

(37°C) temperatures. The phenotype of sch9Δ was epistatic to that of apc5CA, recovering the 

apc5CA temperature sensitive growth defect (Figure 6.5), suggesting that Sch9 and APC are in a 

linear genetic pathway. The severity of the tor1Δ temperature sensitivity prevented assessment of 

genetic interactions between tor1Δ with apc5CA or sch9Δ; alternatively, neither tor1Δ nor apc5CA 

temperature sensitive phenotypes were recovered in combination, suggesting that they function 

in separate pathways. Similar phenotypic interactions were observed in the combinations of 

sch9Δ, tor1Δ, and apc10Δ alleles, suggesting this is a general interaction between the APC and 

SCH9 (data not shown).  

 

Next, we examined the interactions of Sch9 and Tor1 signaling and the APC with regards to 

CLS. In cultures grown in SDC and maintained in DM, the sch9Δ phenotype was epistatic to the 

severely decreased apc5CA CLS (Figure 6.6 A), similar to the interaction observed in Figure 6.5. 

Deletion of TOR1 partially recovered the apc5CA phenotype, proportional to the CLS extension 

of tor1Δ to wild type (Figure 6.6 B). This indicates that APC5 and TOR1 function in parallel 

lifespan regulating mechanisms. The 50% survival of the sch9Δ tor1Δ apc5CA strain was the 

same as sch9Δ and sch9Δ apc5CA strains, which were decreased relative to the CLS of sch9Δ 

tor1Δ. Maximal lifespan of the triple mutant was similar to sch9Δ tor1Δ (Figure 6.6 C). These 

data strengthen the argument that SCH9 and the APC function in a linear mechanism that is 

parallel to TOR1. Since the genetic relationship of the FKHs with both the APC and SCH9/TOR1  
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Figure 6.5 The sch9∆ allele interacts with apc5CA to regulate logarithmic growth 
Tenfold serial dilutions with the starting spot having approximately 30,000 cells plated and grown on 2% YPD at 

30°C and 37°C. 
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Figure 6.6 SCH9 and TOR1 genetically interact with APC5 under standard conditions of 

chronological lifespan 
Cultures were grown in 2% Glc SDC. Upon entry into stationary phase the cultures were maintained in DM. Error 

bars represent +/- standard error of the mean of n=3. 
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signaling changes under stress conditions, we replicated the CLS under the combined potential 

hypoxic stress/SCR conditions described Section 5.3.3 (cultured in falcon tubes in 2% Glc YPD 

and maintained in SCR). The relationships between combinations of sch9Δ, tor1Δ and apc5CA 

were the same as previously described (Figure 6.7 A-C), suggesting these interaction are less 

conditional than those with the FKHs. 

 

To further characterize genetic interactions under stressed conditions, we examined the effects of 

oxidative free radical stress on yeast cultures with combinations of sch9Δ, tor1Δ, or apc5CA 

mutations at Day 5 stationary phase, treating them with 100 mM H2O2 for 1 h at 30°C. Similar to 

what we previously reported (Figures 5.5 and 6.4 B), the apc5CA allele reduced survival (22.4 +/- 

1.2%) compared to wild type (53.3 +/- 1.3%), whereas sch9Δ (81.0 +/- 2.5%), tor1Δ (91.2 +/- 

1.3%), and sch9Δ tor1Δ (95.3 +/- 1.4%) showed increased survival (Figure 6.8). Consistent with 

the relational trends observed in the lifespans, sch9Δ apc5CA (85.5 +/-1.9%) and sch9Δ tor1Δ 

apc5CA (94.6 +/- 1.1%) showed similar survival to the respective backgrounds without the 

apc5CA allele, while the tor1Δ apc5CA strain had a survival (57.2 +/- 2.4%) intermediate to either 

allele alone. These data support a linear interaction between SCH9 and the APC, while 

strengthening the argument of Chapter 5 for a parallel role in SCH9 and TOR1 regulation of 

lifespan and stress resistance. 

 

6.4 Discussion 

Our work demonstrates that the APC may serve as a downstream Fkh1/Fkh2 target that co-

regulates Fox-dependent longevity. The APC and Fkhs interact genetically and functionally to 

ensure normal yeast lifespan, as well as responding to SCR and stress in non-dividing cells. As 

mentioned previously, increased expression of FKH1 or FKH2 increases both RLS and CLS in 

yeast [Section 4.3.2; (Postnikoff et al., 2012)]. As expected from factors with redundant function, 

deletion of both FKH1 and FKH2 was required to reduce yeast CLS. Disruption of both FKH1 

and FKH2 in cells harbouring a temperature sensitive allele of the gene encoding the APC 

subunit APC5, exhibited a similar CLS as fkh1Δ fkh2Δ cells, indicating that fkh1Δ fkh2Δ CLS is 

epistatic to apc5CA CLS in DM control conditions; however, the CLS of apc5CA was shorter than 

those containing the fkh1Δ fkh2Δ disruptions, suggesting that in the absence of stress the 

presence of both Fkhs is deleterious to lifespan in APC defective mutants. This could occur  
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Figure 6.7 SCH9 and TOR1 genetically interact with APC5 under stress conditions (SCR and 

falcon tube induced) of chronological lifespan 
Cultures were grown in 2% YPD. Upon entry into stationary phase the cultures were switched to and maintained 

in water. Error bars represent +/- standard error of the mean of n=3. 
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Figure 6.8 Apc5 interacts differently with Sch9 and Tor1 to regulate H2O2 stress resistance 
Cultures were grown in 2% YPD to day 5 stationary phase, treated with 100 mM H2O2 for 1 h, and plated to 

determine survival of colony forming units. Error bars represent +/- standard error of the mean of at least n=3. 
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through APC-dependent degradation of known growth-promoting co-activators of the Fkhs, such 

as Clb2, Cdc5, Ndd1, etc. (Charles et al., 1998; Loy et al., 1999; Simpson-Lavy et al., 2009), 

switching Fkh function from FoxM like cell-cycle progression to FoxO like maintenance of 

quiescence in the post-diauxic state (Figure 6.9 A). 

 

Under stressed conditions, such as maintenance in SCR or exposure to either oxidative or heat 

stress, apc5CA fkh1Δ fkh2Δ cells showed a decreased growth capacity, an increased stress 

sensitivity, and a reduced CLS. The CLS of fkh1Δ fkh2Δ cells did not increase in SCR, while the 

triple mutant exhibited a dramatically shortened lifespan. This indicates the Fkhs and the APC 

may work together in redundant/parallel mechanisms to ensure prolonged stress resistance and 

longevity (Figure 6.9 B). This may be coordinated through Fkh transcriptional up-regulation of 

stress response genes, in tandem with chromatin assembly and histone modification known to be 

functions of the APC (Arnason et al., 2005; Harkness et al., 2005; Harkness et al., 2002; Islam et 

al., 2011; Turner et al., 2010). Additionally, the APC and Fkh1/2 may redundantly affect the 

same stress resistance altering targets through different mechanisms. For example, the presence 

of Clb2, a B-type cyclin involved in mitotic cell cycle progression, has been found to decrease 

stress resistance (Simpson-Lavy et al., 2009). Clb2 protein levels are co-regulated by the APC 

and Fkh1/2 through different mechanisms: 1) Fkhs repress transcription of CLB2 throughout 

most of the cell cycle, from mitotic exit to late G2, while up-regulating its transcription during 

mitotic entry in the presence of Cdc5 (a polo-like kinase), Clb2 (and possibly other B type 

cyclins), and Fkh2 co-activator Ndd1 (Hollenhorst et al., 2000; Hollenhorst et al., 2001; Koranda 

et al., 2000; Loy et al., 1999; Pic et al., 2000; Zhu et al., 2000); 2) the APCCDH1 poly-

ubiquitinates B-type cyclins, the polo-like kinase, and possibly Ndd1, targeting them for 

proteasomal degradation during mitotic exit/G1 entry (Loy et al., 1999; McLean et al., 2011; 

Qiao et al., 2010). In higher eukaryotes, co-regulation of the CLB2 gene cluster orthologs by the 

Fox proteins is conserved. Specifically, the Fox family has been shown to activate and repress 

genes promoting mitotic progression and G1 arrest under certain conditions, with FoxOs 

primarily acting in an anti-cell cycle manner, while FoxMs appear to be pro-cell cycle (Alvarez 

et al., 2001; Kops et al., 2002a; Kops et al., 2002b; Laoukili et al., 2005; Laoukili et al., 2007; 

Schmidt et al., 2002; Takano et al., 2007; Wang et al., 2005; Wijchers et al., 2006; Wonsey and 

Follettie, 2005). Furthermore, we found that Clb2, and H2B, H3 and H4 histone levels were  
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Figure 6.9 Models of APC/FKH and APC/SCH9/TOR1 interactions 
A) Under standard non stressed conditions FKH1/2 genetically interact with the APC (Section 6.3.2). The 

epistatic nature of this interaction suggest the FKHs may be responsible for the decreased lifespan observed in 

APC defective mutants. The APC may be responsible for switching Fkh function to decreasing the transcription 

of pro-aging/cell cycle genes that increase cellular stress, such as CLB2 (Linke et al., 2013; Loy et al., 1999; 

Simpson-Lavy et al., 2009; Zhu et al., 2000). B) Under stress conditions, including SCR, fkh and apc phenotypes 

are cumulative, indicating their involvement in parallel lifespan altering mechanisms (Sections 6.3.1 and 6.3.3). 

C) The data in Section 6.3.4 suggest that TOR1 and the APC function in parallel antagonistic pathways; while the 

APC and SCH9 show epistasis, indicating a linear antagonistic mechanism. Tor1 and Sch9 function in both linear 

and parallel mechanisms to one another (Smets et al., 2008). Taken in this context, our data may indicate for the 

APC in the direct regulation of a TORC1-independent lifespan regulating function of Sch9 signaling.  
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abnormal in strains with apc5CA and/or fkh1Δ fkh2Δ disruptions (Postnikoff et al., 2012), 

suggesting these factors may co-regulate many processes, not just cell cycle. The recovery of 

APC defective phenotypes by the deletion of the individual FKHs genes suggests the Fkh 

proteins themselves may be targets of APC regulation. At least one Fox, FoxM1, is a target of 

the APC for proteasomal degradation (Laoukili et al., 2008), and the stability of FoxO proteins is 

indirectly regulated by the APC in higher eukaryotes (Gao et al., 2009; Huang et al., 2005). 

Interestingly, an evolutionarily conserved potential APC binding/targeting motif is present in the 

forkhead box domain. Preliminary investigations suggest that Fkh stability may indeed be 

regulated by both the APC and SCF, similar to the Foxs of higher eukaryotes, as Fkh stability 

and cycling appear to be modified in APC and SCF mutant backgrounds (Malo and Harkness, 

unpublished). The data presented in this chapter, in the context of the literature, suggest that Fox 

proteins and the APC co-regulate lifespan by regulating genomic stability, executing precise 

progression through the cell cycle, and affecting levels of stress modifying genes such as the B 

type cyclins, in organisms from yeast to mice (Laoukili et al., 2005; Linke et al., 2013; Sherriff et 

al., 2007; Simpson-Lavy et al., 2009; Thornton and Toczyski, 2003; Wonsey and Follettie, 2005; 

Zhu et al., 2000).  

  

Next, we show strong genetic interactions between the APC and SCH9, in the regulation of 

growth, oxidative stress and lifespan. Interactions between the APC and Sch9/Tor1 signaling are 

different than their interaction with the Fkhs. SCH9 and TOR1 appear to interact with the FKHs 

in a separate, redundant manner that changes with environmental conditions, as discussed in 

Chapter 5. On the other hand, sch9Δ and APC subunit mutants show strong epistatic interactions, 

while the APC has an antagonistic interaction with tor1Δ suggesting they function in separate 

pathways. This delineates parallel Tor1 and APC/Sch9 signaling pathways (Figure 6.9 C). A 

possible explanation for the mechanisms of the APC/Sch9 interaction is that Sch9, or other 

members of a linear Sch9-dependent signaling pathway involved in growth and stress resistance, 

are targeted for proteasomal degradation by the APC. In this scenario, mutation to the APC may 

increase Sch9 signal stability, decreasing survival and growth in stress conditions.  

 

In the presence of TORC1 activating conditions, Sch9 and TORC1 co-repress Msn2/4-dependent 

stress response gene expression, while when treated with rapamycin (TORC1 repressive 
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conditions), the presence Sch9 may enhance stress response gene expression (Smets et al., 2008). 

Taken with this finding, a potential role for the APC may be in specifically targeting TORC1 

activated Sch9 for degradation, thereby slowing growth and increasing stress resistance. With the 

disruption of SCH9 bypassing the need for the APC to remove the stress and lifespan repressive 

subpopulation of Sch9, relieving this stress regardless of the condition of the APC. Another 

possibility is that Sch9 functions in conjunction with the growth factor/RAS/cyclic-AMP/PKA 

pathway, which inactivates APC function through phosphorylation (Bolte et al., 2003; Kotani et 

al., 1998; Searle et al., 2004). If Sch9 is involved in the phosphorylative inactivation of the APC, 

the removal of this inhibitory signal in sch9Δ strains could relieve mutant subunit stress, 

increasing alternate beneficial APC functions, such as Clb2 degradation.  

 

The interaction between TOR1 and the APC could be two fold; TORC1 could be repressing APC 

function through Sch9 signaling, while simultaneously activating normal APC function through 

Cdc5 phosphorylation via Tap42/PP2A activation (Charles et al., 1998; Nakashima et al., 2008; 

Song and Lee, 2001). Furthermore, disruption of TORC1 function decreases protein synthesis 

while increasing autophagy, both of which could relieve toxic accumulation of APC targets 

(Loewith and Hall, 2011). TORC1/Sch9 could also function to increase the abundance of critical 

APC targets by increasing their expression or activities, speeding up cell cycle/repressing 

checkpoints, and reducing time for the APC to function. Cells with APC mutations may be 

unable to function rapidly enough, allowing for the accumulation of stress response repressing 

targets such as Clb2 (Simpson-Lavy et al., 2009). This could be analogous to AKT activation of 

SCFSKP2 and CDK/G1-cyclin complex formation leading to the inactivation of FoxO/APCCDH1 

quiescence and stress resistance, a mechanism found to be inappropriately regulated in many 

cancers in higher eukaryotes (Bashir et al., 2010; Huang et al., 2005; Huang and Tindall, 2011; 

Lin et al., 2009; Nakayama and Nakayama, 2006). The inactivation of TORC1/Sch9 signaling 

through sch9Δ may decrease cell growth to a point where defective APC can keep up with the 

rate of cell cycle progression. Finally, the APC may function in a linear pathway with TORC1. 

Since TORC1 can be comprised of Tor1 or Tor2 (Loewith et al., 2002), tor1Δ cells may only 

have reduced TORC1 (and Sch9) function, leading to a partial recovery of APC-deficiency 

phenotypes, while complete disruption of the downstream effector Sch9 leads to full recovery. 
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These interactions may be able to be teased out more accurately with further testing using 

rapamycin rather than tor1Δ. 

  



 

107 

 

7 General Discussion 

Data presented in this study expand our knowledge of the S. cerevisiae Fox encoding genes 

FKH1 and FKH2, establishing their role in regulating post-mitotic stress responses and lifespan. 

Additionally, this regulation acts in conjunction with nutrient signaling (SCH9/TOR1), stress 

signaling (HOG1/SNF1) and cell cycle (APC) genes. Specifically, we found: 

 The FKHs redundantly regulate post-mitotic lifespan 

o Deletion of both FKH1 and FKH2 results in shortened CLS (Figure 4.1) 

o Increased expression of the either or both FKHs extended CLS (Figure 4.4) 

o SCR fails to extend lifespan in fkh1Δ fkh2Δ strains (Figure 4.2) 

 The FKHs regulate stress responses 

o  Deletion of the FKHs decreases post-mitotic oxidative stress resistance, while 

increased FKH expression increases this resistance (Figure 4.8) 

o Greatly increased FKH expression leads to cell cycle arrest and/or apoptosis 

(Figure 4.9) 

 The FKHs genetically co-regulate post-mitotic lifespan and oxidative stress resistance 

with nutrient (SCH9/TOR1) and stress (SNF1 and HOG1) signaling (Figure 5.8) 

o The nature of the genetic interactions between the FKHs, SCH9 and TOR1 was 

condition dependent. Under normal conditions sch9Δ and tor1Δ phenotypes were 

dominant to fkh1Δ fkh2Δ (Figure 5.3), while in stressed conditions fkh1Δ fkh2Δ 

phenotype became dominant (Figures 5.4 and 5.5) 

o SNF1 and the FKHs co-regulate CLS (Figure 5.7 A) 

o HOG1 is required for increased FKH expression to increase oxidative stress 

resistance (Figure 5.7 B) 

 The FKHs and APC subunits co-regulate post-mitotic survival (Figure 6.9 A and B) 

o The nature of these interactions was condition dependent. Under standard 

conditions the FKHs and APC function together to maintain normal CLS (Figure 

6.2), while in stressed conditions they appear to function in primarily in a 

separate additive manner (Figures 6.1, 6.3 and 6.4) 

 The APC and SCH9 function in a linear genetic mechanism, while the APC and TOR1 

appear to function through parallel mechanisms in the regulation of growth, post-mitotic 
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lifespan and stress resistance in all growth conditions examined (Figures 6.5, 6.6, 6.7, 

6.8 and 6.9 C) 

Here I discuss possible mechanisms and evolutionary conservation for forkhead box proteins, as 

well as propose directions for future research.  

 

7.1 Evolutionary role of the Forkhead box transcription factors in lifespan regulation 

Metazoan Fox gene function is involved in many developmental defects, as well as the 

regulation of aging and cancer (Lehmann et al., 2003; Myatt and Lam, 2007). This is likely 

through Fox proteins serving as transcription regulators of cell cycle and stress responses, such 

as the FoxO control of G2-M and G1-S cell cycle checkpoints and progression, as well as 

regulation of stress resistance, DNA repair, and apoptotic processes (Brunet et al., 1999; Dijkers 

et al., 2002; Kops et al., 2002b; Medema et al., 2000; Nemoto and Finkel, 2002; Tran et al., 

2002). The FoxO subfamily contains the best characterized Fox proteins, spurred on by the early 

identification of their role in longevity regulation (Lin et al., 1997; Ogg et al., 1997). Emerging 

evidence suggests other Fox proteins regulate similar processes, such as the exclusive vertebrate 

FoxM subfamily, which is also involved in cell-cycle regulation, aging, and cancer (Korver et 

al., 1997; Laoukili et al., 2007; Mazet et al., 2003; Pandit et al., 2009; Petrovic et al., 2010; Tang 

et al., 2008; Wang et al., 2010). In this study and (Postnikoff and Harkness, 2012), we 

characterized the mitotic regulating yeast FoxM ortholog genes, FKH1 and FKH2, in their ability 

to regulate post-mitotic longevity, hydrogen peroxide stress resistance and potentially apoptosis, 

in a manner similar to the FoxOs.  

 

7.1.1 Common regulation 

Pro-growth signaling cascades likely lead to increased activation of cell cycle regulators, 

inducing rapid proliferation in favourable conditions. Selection pressure would favour cells able 

to outcompete other cells in utilizing resources, and these would propagate specific genetic 

codes. In the absence of pro-growth signals or the presence of quorum (colony size/culture 

density) and stress sensing signaling, populations of cells would be selected for the ability to fine 

tune growth/proliferation and adapt to their ever-changing environment. Key proteins integrate 

external environmental signals to the intracellular molecular environment. The Fox proteins and 
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the APC may serve within this cellular capacity for dynamic responses, through controlling gene 

expression (activation and repression) and specifying protein stability, respectively.  

 

Aging and age related diseases arise from the deregulation of major cellular processes, such as 

cell cycle control, metabolism, and programmed cell death, leading to tumor formation or tissue 

damage/destruction, without replacement. The mechanisms leading to the breakdown of cellular 

processes often involve stress-induced molecular damage, such as from reactive oxygen species. 

These result from improper repair, removal and replacement of damaged cellular components, 

and detoxification, as well as normal cell maintenance. The regulation of many of these 

processes have been found in part to be controlled by the Fox transcription factors. For example, 

Fox proteins conserved from yeast to mammals regulate cell growth and cell cycle. In stress 

conditions, the Fkhs and FoxOs induce cycle arrest (Katayama et al., 2008; Shapira et al., 2004; 

Tran et al., 2002). On the other hand, in pro-growth conditions cell cycle progression is 

controlled by the Fkhs, FoxM, and FoxOs, in part through the regulation of B type cyclins 

(Alvarez et al., 2001; Hollenhorst et al., 2000; Laoukili et al., 2005; Pic et al., 2000; Postnikoff 

and Harkness, 2012; Postnikoff et al., 2012; Tang et al., 2008; Wang et al., 2005; Wittenberg and 

Reed, 2005). We demonstrated that the yeast Fkhs also protect cells against hydrogen peroxide 

free radical damage (Postnikoff et al., 2012), a feature associated with FoxO-dependent 

increased lifespan (Kops et al., 2002a; Murphy et al., 2003; Tettweiler et al., 2005). We also 

provided preliminary evidence that under certain conditions the Fkhs regulate apoptosis (Section 

4.3.5); similarly, the FoxOs conditionally regulate apoptosis (Brunet et al., 1999; Cai and Xia, 

2008; Dijkers et al., 2000; Fu and Tindall, 2008; Lehtinen et al., 2006; Luo et al., 2007; Shinoda 

et al., 2004; Zhang et al., 2011). Furthermore, we identified novel genetic interactions between 

the FKHs and four signaling pathways: TORC1, Sch9, Snf1, and Hog1 (Figures 7.1 and 7.2), 

orthologous to regulators of metazoan FoxOs (Calnan and Brunet, 2008; Huang and Tindall, 

2011; Kloet and Burgering, 2011; Vogt et al., 2005). Finally, we speculate that the yeast Fkhs 

may function as transcriptional switches integrating extra- and intracellular signals to influence 

many cellular processes. Besides the roles previously identified and those discussed in this study, 

the Fkhs may regulate other cellular processes associated with metazoan Fox dependent 

longevity, such as genomic stability, protein homeostasis, organelle maintenance, and 

metabolism (Calnan and Brunet, 2008; Greer and Brunet, 2008; Wijchers et al., 2006). 
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Figure 7.1 Nutrient signaling regulates Fkh and APC function 
Under normal growth conditions nutrient signaling may regulate the Fkhs’ and APC’s function to promote proper 

cellular growth and cell cycling. This process would likely be in constant flux with stress pathways such as those 

presented in Figure 7.2; this switch may occur from nutrient depletion or damage and the accumulation of toxins, 

such as reactive oxygen species, as a by-product of energy consumption. Dashed lines represent genetic 

interactions suggested by data from this study. Additional data from (Bolte et al., 2003; Castro et al., 2005; 

Hollenhorst et al., 2000; Kotani et al., 1998; Kumar et al., 2000; Mirisola et al., 2014; Ostrow et al., 2014; Urban 

et al., 2007; Zhu et al., 2000). 
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Figure 7.2 Stress signaling regulates Fkh and APC function 
Under stressed conditions, Fkh and APC function may be switched to promote cell cycle and growth arrest, as 

well as stress responses, leading to a delay in aging phenotypes. These processes would likely be involved in 

detoxification of the cell, repair of damaged cellular components or programmed cell death should the cell be 

beyond salvation. Dashed lines represent genetic interactions suggested by data from this study. Additional data 

from (Fabrizio et al., 2004b; Fabrizio et al., 2001; Harkness et al., 2004; Westfall et al., 2004; Wilson et al., 1996; 

Zhu et al., 2000). 
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7.1.1.1 Cell cycle and growth regulation 

Proper control of the segregation of cellular contents between mother and daughter cells is a 

fundamental aspect of life. Disruptions to this process can lead to cell death without replacement 

or over proliferation, both of which decrease the evolutionary fitness of genetically similar 

cellular populations, which can be observed in the form of dystrophies and cancers in higher 

eukaryotes. In yeast to humans, Fox proteins function in the feedback control of cell cycle 

regulation (Figures 1.5 and 1.6). In fact, one of the best characterized functions of the Fkhs is the 

regulation of the CLB2 (mitotic progression) and SIC1 (G1 entry) gene clusters (Zhu et al., 

2000). However, here we observed a major role in post-mitotic longevity and stress resistance, 

which are partly co-regulated with the APC. The ability to maintain genomic integrity in cycling 

cells could play a role in lifespan extension. Defects in the APC, the Fkhs, and FoxM may lead 

to improper mitotic progression and chromatin instability (Baker et al., 2004; Castro et al., 2005; 

Fang et al., 1998; Hollenhorst et al., 2000; Kumar et al., 2000; Laoukili et al., 2005; Searle et al., 

2004; Wang et al., 2005; Wonsey and Follettie, 2005; Zhu et al., 2000), potentially accumulating 

deleterious mutations prior to entry into stationary phase. Another key function of the APC and 

the Fkhs is G1 entry, where they have a role in the inactivation of mitotic progression proteins. 

During entry into G1, the Fkh2 co-activator Ndd1 is degraded, likely in an APC-dependent 

manner, changing Fkh2 to serve in the repression of its bound loci (Loy et al., 1999; Sherriff et 

al., 2007). Fkh1 functions in a similar mechanism, though with unknown co-factors (Reynolds et 

al., 2003). Furthermore, the Fkhs bind to the promoters of genes involved in G1 progression and 

interfere with Swi5 dependent activation of these loci (Voth et al., 2007). APCCdh1 targets mitotic 

progression proteins such as cyclins, polo-like kinases, and potentially transcriptional activators, 

including FoxM1 and Ndd1, for proteasomal degradation (Charles et al., 1998; Laoukili et al., 

2008; Loy et al., 1999; Park et al., 2008; Simpson-Lavy et al., 2009), resetting the cell cycle. If 

conditions for growth are unfavourable, the combination of these factors likely is involved in the 

transition into and out of G0, both of which could affect results of CLS assays. 

 

Evidence suggests a complex co-regulation of stress resistance and lifespan processes by the 

APC and the Fkhs. This likely involves the regulation of the B-type cyclins; for example, the 

abnormal presence of Clb2 in S and G2 results in decreased stress resistance (Simpson-Lavy et 

al., 2009). The mutation of APC5 or the deletion of both FKHs result in partial Clb2 protein 
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stability in G1 arrested cells (Menzel et al., 2013; Postnikoff et al., 2012). The APC targets Clb2 

for proteasomal degradation (Charles et al., 1998; Simpson-Lavy et al., 2009; Thornton and 

Toczyski, 2003), while the Fkhs are likely involved through the regulation of APC subunits and 

activators, the direct regulation of the CLB2 locus, and the indirect regulation of the Clb2 

competitive inhibitor Sic1 (Zhu et al., 2000). Furthermore, in backgrounds lacking both FKH 

genes, low level Clb2 expression is observed throughout the cell cycle, as opposed to periodic 

expression in mitosis and throughout the rest of the cell cycle observed in the presence of either 

Fkh (Hollenhorst et al., 2000; Kumar et al., 2000; Postnikoff et al., 2012; Reynolds et al., 2003). 

This suggests the Fkhs are redundantly involved in the regulation of both Clb2 transcriptional 

repression and degradation.  

 

Another lifespan altering process likely co-regulated through the Fkhs and APC is histone 

metabolism/chromatin dynamics. Chromatin states and histone over expression increase lifespan 

(Dang et al., 2009; Feser et al., 2010; Greer et al., 2010; Han and Brunet, 2012). The Histone 

gene cluster was identified as a transcriptionally regulated target of the Fkhs (Zhu et al., 2000). 

In congruence, we found that the abundance of the core histones H2B, H3 and H4 is decreased in 

mutant strains combining fkhΔ and apc5CA (Postnikoff et al., 2012), potentially increasing 

chromatin instability and decreasing lifespan. The FKHs may be involved in this process through 

their effects on expression of the APC and histones, while recruiting chromatin modifying 

protein localization throughout the genome (Linke et al., 2013; Ostrow et al., 2014; Postnikoff et 

al., 2012; Sherriff et al., 2007; Venters et al., 2011; Zhu et al., 2000), while the APC may 

regulate chromatin assembly via interactions with histone modifying Gcn5/SAGA complex 

(Islam et al., 2011; Turner et al., 2010). 

 

In Chapters 4 and 6 we described a shift in relationships between the FKHs, the APC and SCR. 

In DM conditions, the state of the Fkhs may be in flux between cell cycle activating and 

repressing complexes, which could lead to inappropriate growth in nutrient poor conditions, cell 

damage and aging. Mild over expression of the FKHs may lead to a stoichiometric shift, with 

inactive transcription-inhibiting Fkhs outcompeting the modified active Fkh proteins (such as 

those bound to Ndd1) for DNA binding sites or increased DNA-unbound Fkhs diluting co-

activators, such as Ndd1 away from the DNA. Either way this could change the balance of the 
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DNA-bound Fkhs to a cell cycle repressive/quiescent maintenance role. Similarly, the APC may 

be involved in the inactivation of pro-cell cycle (and aging) Fkh complexes, targeting both 

deleterious Fkh co-activators (Ndd1, Clb2, Cdc5, etc.) and targets (such as Clb2, Cdc5) for 

degradation (Loy et al., 1999; Wittenberg and Reed, 2005).  

 

In SCR conditions we observed a Fkh dependent increase in lifespan regulation and shift in 

FKH/APC genetic interactions. Sir2, a HDAC that may be involved in CR mechanisms, binds to 

both Fkh1 and Fkh2 at the CLB2 locus, actively repressing the latter’s expression (Linke et al., 

2013). In SCR conditions, the Fkhs could preferentially form repressive complexes, potentially 

with Sir2, over complexes with co-activators, inhibiting partial cell cycle progression in post-

diauxic cells. In this case, the APC would have a diminished role in switching off pro-cell 

cycle/aging Fkh gene expression complexes, but may still regulate lifespan by the degradation 

(and further repression) of these pro-aging factors, hence the lack of epistasis between apc5CA 

and fkh1Δ fkh2Δ phenotypes. Furthermore, in fkh1Δ fkh2Δ cells, these active repressive 

complexes may not form, resulting in increased inappropriate background levels of potential 

anti-quiescent gene expression, such as Clb2; similar to the increased Clb2 levels in cycling 

fkh1Δ fkh2Δ cells (Postnikoff et al., 2012). This lack of repressive complex formation could 

nullify the Fkh-dependent beneficial effects of CR on lifespan extension. Additionally, 

disruption to the APC in fkh1Δ fkh2Δ cells would potentially allow for the further 

accumulation/activation of factors, like Clb2, resulting in a synergistic decrease in lifespan. 

Specific Fkh co-regulators in these processes remain speculative as Ndd1 is degraded in mitotic 

exit (Loy et al., 1999), and sir2Δ has been found to both increase and decrease CLS (Casatta et 

al., 2013; Fabrizio et al., 2005; Feser et al., 2010; Orozco et al., 2012, 2013), indicating these 

may not be the soul regulator involved in switching Fkh function in this manner.   

 

Nutrient signaling likely affects this process in numerous ways. TORC1 may regulate cell cycle 

in part by co-enhancing general transcription and translation through Sch9 and eIFs, increasing 

the abundance of cell cycle regulators, as well as increasing cellular components/size, both of 

which are prerequisites for cell cycling (Kunz et al., 1993; Schmelzle and Hall, 2000; Thomas 

and Hall, 1997; Toda et al., 1988). The yeast Fox protein, Fhl1, is involved in the coordination of 

TORC1/Sch9-dependent expression of rDNA and ribosomal protein genes (Martin et al., 2004); 
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however, some fhlΔ phenotypes suggest another mechanism in this regulation (Hall et al., 2006; 

Rudra et al., 2005). Fkh1 may fulfill this role as it contains also contains the Fox and forkhead 

associated domains and binds fairly ubiquitously throughout the genome (Venters et al., 2011). 

Additionally, at least Fkh1 has been found binding upstream of and regulating tRNA encoding 

genes (Venters et al., 2011), suggesting a further role in the regulation of general translation. 

TORC1 also regulates proliferation through PP2ATap42, which activates mitotic progression 

through the activation of the polo-like kinase Cdc5 (Cherkasova and Hinnebusch, 2003; Di 

Como and Arndt, 1996; Nakashima et al., 2008), while perhaps competitively inhibiting the 

formation of PP2A-complexes involved in destabilizing CDK-cyclin interactions. These events 

may lead to the activation of mitosis-regulating function of the Fkhs and APC. 

 

7.1.1.2 Stress responses 

Although genetic proliferation and survival is arguably the ultimate goal of the biological 

machine, this is kept in check by limited resources, as well as ever changing intra and 

extracellular environmental conditions. Environment signaling pathways interact to fine tune 

optimal homeostatic conditions for cell proliferation and survival. It is unclear which influences 

longevity more: increased stress response or decreased growth (Hands et al., 2009); however, 

both interventions are likely integral to longevity. Malignant and aggressive cancers often arise 

from a combination of unregulated growth and adaptive stress responses, such as the ability to 

survive in hypoxic-like environments (Davies et al., 2014). In contrast, extended inhibition of 

growth and division, combined with excessive stress responses, such as programmed cell death 

and senescence, can lead to degenerative and inflammatory diseases.  

 

The Fkhs and APC appear to be involved in integrating cellular responses to growth and stress 

conditions, altering the molecular landscape to accommodate a balance between 

growth/proliferation and stress responses (Charles et al., 1998; Harkness et al., 2002; Harkness et 

al., 2004; Hollenhorst et al., 2000; Hollenhorst et al., 2001; Kotani et al., 1998; Pic et al., 2000; 

Postnikoff and Harkness, 2012; Postnikoff et al., 2012; Qiao et al., 2010; Turnell et al., 2005; 

Zhu et al., 2000). Utilization of proliferative regulators in stress signaling likely allows for 

immediate responses to changing conditions, with minimal superfluous noise and wasted 

resources that separate factors would likely involve. The Fkhs serve as efficient regulators of 
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many processes due to their presence at the promoters of numerous coding sequences, as well as 

their association with both transcriptional activators and repressors, such as SAGA, Ndd1, Sir2 

and Isw1/2 (Koranda et al., 2000; Linke et al., 2013; Sherriff et al., 2007; Venters et al., 2011).  

 

The FKHs genetically interact with stress response kinases SNF1 and HOG1 (Figure7.2). 

Although the nature of these interactions is not clear, Snf1 and Hog1 are involved in regulating 

starvation, oxidative, and osmotic stresses (Alepuz et al., 1997; Bertram et al., 2002; Cullen and 

Sprague, 2000; Kuchin et al., 2003; Thompson-Jaeger et al., 1991). The Fkhs bind to the 

promoter region of both genes (Venters et al., 2011), and FoxM regulates JNK’s (Hog1; yeast 

orthologs in parentheses) expression in metazoans (Wang et al., 2008). Simultaneously, AMPK 

(Snf1) and p38/JNK (Hog1) phosphorylate the FoxOs, increasing their activity (Cai and Xia, 

2008; Greer et al., 2007a; Greer et al., 2007b; Ho et al., 2012; Peserico et al., 2013; Salminen and 

Kaarniranta, 2012; Sunters et al., 2006). Snf1 also interacts with the APC to regulate yeast 

longevity (Harkness et al., 2004), strengthening its role in Fkh/APC lifespan regulation. This 

may be conserved in metazoans, as AMPK phosphorylates the APC (Banko et al., 2011), 

possibly altering APC function to inhibit cell cycle in energy poor conditions.  

   

Forkhead box transcription factors have been proposed to regulate lifespan in part through their 

ability to counter cell stress and damage from ROS. In C. elegans, DAF-16 mediates this damage 

through the regulation of anti-oxidants such as SODs, metallothioneins, and heat-shock proteins 

(Barsyte et al., 2001; Honda and Honda, 1999; Walker et al., 2001). In yeast, orthologous anti-

oxidant proteins were found to affect CLS (Longo et al., 1996), while ChIP analysis found Fkh1, 

and in some cases Fkh2, binds to the manganese superoxide encoding genes, SOD1 and SOD2, 

as well as genes encoding glutathione-dependent oxidoreductases, the copper metallothionein 

regulating transcription factor gene CUP2, and numerous heat shock factors and proteins 

(Venters et al., 2011), indicating a potential role for the Fkhs as regulators of their expression. In 

conjunction with our observations that the Fkhs partially regulate free radical stress resistance, 

these binding assays support an evolutionarily conserved role of Fox proteins in the regulation of 

oxygen, metal and free radical toxicity, potentially contributing to cellular protection and 

lifespan extension. 
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7.2 Future directions 

The major body of this study investigates genetic interactions of yeast forkhead box transcription 

factors with highly evolutionarily conserved lifespan regulating kinases. Follow up 

investigations could include all four yeast Fox proteins (Fkh1, Fkh2, Fhl1 and Hcm1) as all have 

high levels of homology in the forkhead box DNA binding domain. Additionally, Fkh1, Fkh2, 

and Fhl1 share the conserved forkhead associated protein-protein binding domain, suggesting the 

potential for redundant regulation and DNA site/protein binding competition between these four 

Fox proteins. Furthermore, Fhl1 is directly involved in regulation of the expression of ribosomal 

components through TORC1/Sch9 (Martin et al., 2004; Rudra et al., 2005) and mRNA 

translation may be a key lifespan regulating process (Hands et al., 2009; Syntichaki et al., 2007a, 

b). Hcm1 also has a role in Sch9/TORC1/Snf1/Sir2 regulated oxidative stress resistance and cell 

cycle arrest (Rodriguez-Colman et al., 2010; Rodriguez-Colman et al., 2013). The global nature 

of Fkh1 binding (Venters et al., 2011) may warrant investigation into potential Fox control of 

diverse cellular processes such as genomic stability, DNA repair, telomere maintenance, 

chromatin remodeling, protein homeostasis, organelle maintenance, programmed cell death, cell 

cycle regulation, stress resistances, and metabolism.  

 

Besides Sch9, Snf1, Hog1, and TORC1, many other known FoxO and lifespan regulators have 

potential yeast orthologs, such as the sirtuins (Sir2; yeast orthologs in parentheses), the Ras/PKA 

pathway (Ras1, Ras2, Tpk1-3, and Bcy1), SCFSKP2 (SCFCdc4), PTEN (Tep1), MST1 (Ste20), 

JNK/MAPK p38 (Ssk2/22), 14-3-3 chaperones (Bmh1/2), and PRMT1 (Hmt1, Hsl7, or Rmt2) 

that could be investigated for conserved regulation. As well, the role of non-conserved yeast-

specific lifespan regulating factors, such as Msn2/4, Gis1, Rim15, and Fob1 could be explored. 

Since many seemingly complex genetic interactions are implicated, it would of great interest to 

define the molecular mechanisms of these genetic interactions, as well as linking specific 

mechanisms to the regulation of cellular outputs. For example, we have identified conditions that 

implicate the Fkhs in stress resistance, longevity, cell cycle arrest, and apoptosis. To understand 

the role of the Fkhs in these processes, numerous techniques could be employed. Fkh protein 

levels and localization could be explored in various conditions via western analysis and 

fluorescent protein hybrids. Protein complexes involved in these processes could be identified 

using the Fkhs as bait, followed by pull downs and mass spectrophotometry to identify bound 
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proteins. This technique could also potentially identify post translational modifications to the 

Fkhs themselves. If found associated with DNA, ChIP could be utilized to identify direct targets 

of Fkh regulation, either at a specific level, or genome wide, such as presented in Venters, et al 

(2011). Furthermore, conditional Fkh-dependent transcript level changes (such as in the lifespan 

extending conditions with the FKH over-expression strains) could be analysed through 

quantitative PCR, RNA sequencing, or microarrays to ascertain potential novel lifespan 

regulating targets of the Foxs. The data generated could identify and correlate specific Fox 

regulated cellular functions, to transcriptional targets, bound co-factors, and posttranslational 

modifications. This would greatly advance our understanding of the roles of Foxs as regulators 

of lifespan in response to specific biological conditions. Additionally, further investigations are 

warranted into lifespan regulating targets of the APC, as well as distinguishing the roles of 

mitotic APCCdc20 and G1 entry APCCdh1 in longevity regulation.  

 

7.3 Conclusions 

This study supports a model where S. cerevisiae FKH1 and FKH2 function is evolutionarily 

conserved with higher eukaryotic FoxO proteins with regards to lifespan, oxidative stress 

resistance, and perhaps apoptosis. Extrapolation suggests predictable cell regulation 

responsibilities for proteins containing the highly conserved Forkhead box and Forkhead 

associated protein domains. We show that the FKHs are required for increased stress resistance 

and survival in response to SCR. Importantly, we present data that implicates Fkh and APC 

dependent lifespan and stress resistance are in the same genetic pathway, and in opposition to 

parallel nutrient and growth signaling kinase pathways featuring Sch9 and Tor1. Furthermore, 

we provide evidence that the Fkhs are co-promoting these processes with stress response kinases 

Hog1 and Snf1. These data indicate that the interaction between nutrition, growth, and stress 

signaling with Fox proteins and the APC is evolutionarily conserved from yeast to mammals. 

Although further investigation is warranted to tease out the cellular and biochemical mechanisms 

in yeast, our findings support the utilization of yeast as a model to understand the fundamental 

mechanisms, regulators, binding partners, and targets of Fox proteins, with respect to longevity 

and age related diseases.  
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