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ABSTRACT 

 

Salmonella infections remain one of the most common food borne diseases worldwide. 

Gastroenteritis, which can be caused by many non-typhoidal Salmonella (NTS) serovars, is 

relatively common in North America. One of the main risk factors of NTS gastroenteritis is 

travel to endemic areas in the developing world. The current treatment of NTS infections with 

antibiotics is reserved for severe cases. A growing concern with antibiotic use is that clinical 

isolates are becoming drug resistant. Although most NTS infections are self-limiting in nature, 

the burden on the body and recovery can take several months. Thus, it is vital to prevent NTS 

infections rather than solely rely on treatment. 

We have previously discovered two novel surface associated polysaccharides in 

Salmonella: O-Antigen capsule and X-factor. Not only O-Antigen Capsule is considered a 

common surface antigen, but its’ genes were found to be expressed during in vivo infections in 

mice. Such an antigen would be a suitable candidate in developing a vaccine against Salmonella 

induced gastroenteritis. The goal of this research was to evaluate the use of O-Antigen capsule to 

develop a traveler’s vaccine for NTS associated gastroenteritis.  

Results and Conclusions: We have developed a purification protocol and purified the 

capsule and X-factor from Salmonella Typhimurium, Enteritidis, and Heidelberg. 

Lipopolysaccharide (LPS) was co-isolated with O-Antigen capsule, but removed using Triton 

extraction. Salmonella LPS is strain-specific and an adaptive immune response against LPS will 

not provide cross-protection. We generated specific immune sera in rabbits to recognize O-

Antigen capsule and X-factor produced by Salmonella Typhimurium and Enteritidis. We used a 

mouse model to determine the immunization dose of O-Antigen capsule and showed that 

conjugation is necessary to enhance the immune response in mice. 

To boost capsule production, we analyzed PyihUTSRQPO activity using a luciferase-based 

reporter system. Deletion of a putative transcriptional repressor (YihW) resulted in over 100-fold 

increase in PyihUTSRQPO confirming YihW as a repressor. We have also looked at the effect of 

growth media, temperature, and sugar precursors on PyihUTSRQPO activity, and were able to 

show that PyihUTSRQPO has highest activity in Tryptone broth at 30oC in the absence of any 

additional sugars.  
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1 

1.0 LITERATURE REVIEW 

 

1.1 Introduction to Salmonella  

1.1.1 Nomenclature and Classification  

 

Salmonella are a diverse group of bacteria that belong to the same family as Escherichia 

and Shigella. Salmonella consist of two species known as bongori and enterica (Figure 1.1.1). S. 

bongori mainly infect cold blooded animals, but can cause rare infections in humans (Fookes et 

al., 2011). S. enterica are Gram-negative, facultative anaerobic bacteria that can invade a wide 

range of warm blooded animals causing acute and chronic infections. According to the White-

Kauffmann-Le Minor scheme S. enteria is further divided in to six subspecies: enterica, 

salamae, arizonae, diarizonae, houtenae, and indica. S. enterica subspecies enterica is the group 

responsible for the majority of the human infections. Subspecies enterica isolates can be 

categorized into two main groups referred to as Typhoidal and Non-Typhoidal Salmonella (NTS) 

(Hurley et al., 2014). Typhoidal Salmonella, Salmonella ser. Typhi and Salmonella ser. 

Paratyphi, tend to be human restricted, while Non-Typhoidal Salmonella (NTS) infect a broad 

range of hosts including; humans, chickens, reptiles, birds, amphibians, pigs, cows, and horses 

(Hurley et al., 2014).  

Classification of Salmonella is based on serology to three main surface antigens: O, H, and 

K antigens. The O antigen refers to oligosaccharides that are part of lipopolysaccharide (LPS) on 

the outer membrane, the H antigen refers to flagella proteins, and the K antigen refers to capsular 

polysaccharides. For example, the Vi antigen, being a subtype of capsule’s K antigen, is only 

expressed by S. Typhi (McQuiston et al., 2011; Grimont and Weill, 2007). Each unique 

combination of O, H and K antigens lead to the designation of a new serovar (Grimont and 

Weill, 2007). 

Classification of serovars has evolved over time, where serovar names can indicate the 

syndrome (Salmonella ser. Typhi), relationship (Salmonella ser. Paratyphi A, B, and C), 

syndrome and host specificity (Salmonella ser. Abortusequi), or geographical origin (Salmonella 

ser. London). With time, names were maintained only for serovars from subspecies enterica, 

while serovars of other S. enterica subspecies and S. bongori are designated only by their 

antigenic formula. Salmonella enterica, subspecies enterica serovar Typhimurium in abbreviated 
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form is referred to as Salmonella ser. Typhimurium, or S. enterica serovar Typhimurium 

(Grimont and Weill, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1.1: Phylogenetic tree and White-Kauffmann-Le Minor classification of Salmonella. Salmonella are 

divided in to two species, S. enterica and S. bongori. S. enterica is further divided in to six sub-species: enterica, 

salamae, arizonae, diarizonae, houtenae, and indica. Serovars of S. enterica subspecies enterica falls in to two main 

categories called Typhoidal and Non-Typhoidal Salmonella (NTS). Below each name is a numerical value 

corresponding to the current number of serovars in the given category. Figure adopted with modifications from 

Grimont and Weill, 2007. 

 

S. enterica subspecies enterica serovars can also be grouped as host generalist, host 

adapted, or host restricted. Host generalist serovars like Salmonella ser. Typhimurium and 

Salmonella ser. Enteritidis have the ability to infect multiple species. Host adapted serovars like 
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Salmonella ser.  Choleraesuis (in swine), and Salmonella ser. Dublin (in cattle), usually cause 

disease in one species, but is capable of causing disease in other species as well. Host restricted 

serovars like Salmonella ser. Typhi, Salmonella ser. Paratyphi (human), and Salmonella ser. 

Gallinarum (poultry) cause disease in only one species and are usually characterize by the loss of 

function of certain virulence genes (Uzzau et al., 2000; Waldner et al., 2012). 

 

1.1.2 Disease and Importance  

 

Salmonellosis is the intestinal illness that arises after ingestion of Salmonella contaminated 

food or water  and  is one of the most common, yet preventable, food borne diseases present 

throughout the world (Hurley et al., 2014). The two most common Salmonella serovars in North 

America are Salmonella ser. Typhimurium and Salmonella ser. Enteritidis (Public Health 

Agency of Canada 2007). Each year the reported number of Salmonella infections range from 

6,000-12,000 cases in Canada. However, this number does not reflect the milder, undiagnosed 

cases that are mostly mistaken for Stomach flu (Canadian Meat Council 2015). Among Canadian 

travellers, travel to Asia and Caribbean were the most common destinations associated with 

travel acquired NTS infections (Public Health Agency of Canada 2014). In the four largest 

provinces of Canada (Ontario, Quebec, British Columbia, and Alberta) Salmonella ser. 

Typhimurium and Salmonella ser. Enteritidis isolates are mainly recovered from individuals over 

50 years of age. Although Salmonella ser. Heidelberg isolates are recovered from all age groups, 

in one population study more than 200 isolates of Salmonella ser. Heidelberg were recovered 

from blood of individuals over 50 years of age (Figure 1.1.2) (Public Health Agency of Canada 

2007).  

After eight years, 2012 marked the change in ranking of the three most common 

Salmonella serovars in Canada from Salmonella ser. Typhimurium, Enteritidis, and Heidelberg, 

to Salmonella ser. Typhimurium, Heidelberg, and Enteritidis respectively (Public Health Agency 

of Canada 2014). This is not surprising considering the large number of ceftiofur (a third 

generation cephalosporin used in animals) resistant Salmonella ser. Heidelberg isolates found in 

Canadian poultry. Of more significance is that ceftiofur resistance is correlated with ceftriaxone, 

cefoxitin, amoxicillin-clavulanic acid, and ampicillin (antibiotics used in humans) resistance. As 

extra-intestinal Salmonellosis in young children and pregnant women are treated with 
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Ceftriaxone, it is recognized as a drug of very high importance to human medicine. Thus, 

patients infected with even moderately Ceftriaxone resistant Salmonella ser. Heidelberg are at 

elevated risk of ceftriaxone therapy failure (Public Health Agency of Canada 2007). 

 

Figure 1.1.2: Salmonella isolates recovered from patients’ blood samples in Canada; according to the age 

category.  Samples were collected during the first half of each month from 2003-2005 in the largest four provinces: 

British Columbia, Alberta, Ontario, and Quebec. Figure extracted from Public Health Agency of Canada 2007, 

reproduced with kind permission from the Public Health Agency of Canada. 

 

In the United States Salmonella causes 1.4 million infections and 600 deaths annually 

(Public Health Agency of Canada 2011). According to the foodborne Diseases Active 

Surveillance Network, Salmonella infections are the leading cause of hospitalizations and death 

among foodborne pathogens (Centers for Diseases Control and Prevention 2011). In the United 

States, the economic cost of Salmonella infections in terms of lost productivity and medical 

expenses have been estimated to be in the billions of dollars (Voetsch et al., 2004).  Annually 

NTS cause over 94 million infections and 155 000 deaths worldwide (Majowicz et al., 2010). In 

developing countries the mortality rate can reach up to 24%, with certain serotypes having higher 

mortality rates than others. Salmonella are also responsible for 20% of childhood diarrhoea and 

mortality in developing countries (Public Health Agency of Canada 2011). However, 60-80% of 
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Salmonellosis cases are thought to be either not diagnosed at all or are classified as sporadic 

cases (World Health Organization 2014).  

The number of NTS infections has risen throughout the world in correlation with increased 

incidences of HIV and malaria, which predispose patients for Salmonella infection. In Sub-

Saharan Africa, a place notorious for enteric fever, NTS infections are becoming the cause of as 

many as 50% of diagnosed bacteremia cases (Andrews-Polymenis, et al., 2010). Genomic 

sequencing has identified that NTS is the primary cause of bacteremia in Malawi children, with 

up to 75% of these infections being caused by Salmonella ser. Typhimurium (Andrews-

Polymenis, et al., 2010).  

Although most serotypes of Salmonella can cause disease in humans, as discussed above, 

some are host-adopted. When animal host adopted species cause disease in humans, it can be 

quite severe and even deadly. The host range of individual isolates is affected by genome 

degradation, differential transcriptional regulation, and prophage repertoire (Kingsley et al., 

2009). Salmonella ser. Enteritidis and Salmonella ser. Typhimurium are the most commonly 

transmitted serovars from animals to humans (Wold Health Organization 2013). There are a wide 

range of species acting as reservoirs of Salmonella, including livestock and poultry (Alberta 

Health and Wellness 2011).  

NTS can survive for many weeks, even up to years in non-host environments. For example, 

Salmonella can survive up to 63 days in frozen yogurt (el-Gazzar and Marth 1992). Salmonella 

ser. Choleraesuis can survive in dry swine feces for up to 13 months (Gray and Fedorka-Cray 

2001), Salmonella ser. Dublin can survive in feces spread on rubber, polyester, and concrete for 

up to 6 years, Salmonella ser. Typhimurium can survive in water for up to 152 days, and soil for 

231 days (Public Health Agency of Canada 2011). Surprisingly, Salmonella can also survive on 

low moisture products, such as spray dried milk, nuts, cereal, and dry seasonings, for extended 

periods of time (Podolak et al., 2010; Waldner et al., 2012). 

NTS are capable of causing gastroenteritis and bacteremia. Symptoms of gastroenteritis, 

such as abdominal cramps, diarrhea, nausea, vomiting, chills, fever, and headache, typically 

develop 6-72 hours after ingestion of Salmonella species. These symptoms can last up to 2-7 

days depending on the initial concentration of bacteria ingested, serotype, age and the immune 

status of the host among many other factors (World Health Organization 2014; Public Health 

Agency of Canada 2011). Although most infected individuals recover without treatment within 
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few days, clinical manifestation depends on the susceptibility (i.e., immune status) of the host 

(De Jong et al., 2012). NTS infections are most commonly associated with gastroenteritis. Even 

though most infections are self-limiting, in rare cases (3-10%) they can lead to bacteremia. The 

risk of bacteremia is higher in immunosuppressed individuals, infants, and the elderly. 

Bacteremia can lead to further complications, such as  endocarditis, septic shock, infection of 

liver, spleen, biliary tract, aorta, and urinary tract, mesenteric lymphadenitis, pneumonia, 

osteomyelitis, pulmonary and brain abscess, empyema, meningitis, CNS infections and death 

(Public Health Agency of Canada 2011). In addition, perforation of the gut and necrosis of 

Peyer’s patches can result in toxic encephalopathy (De Jong et al., 2012). 

Human transmission occurs through ingestion of Salmonella contaminated food or water 

and contact with infected animals, especially food animals and pets, and animal feed. In addition, 

Salmonella can be acquired through ingestion of raw or undercooked poultry and meat among 

many other food sources. Person to person transmission through fecal oral route is also possible 

and is further facilitated by inadequate hand washing. Water and food sources soiled with urinary 

or fecal matter from humans and animals shedding Salmonella act as reservoirs and allow easy 

transmission (Public Health Agency of Canada 2011).  

Preliminary diagnosis is mainly based on symptoms and travel history, and can be 

confirmed by serotyping specimen from stool, rectal swabs, vomit, urine, deep tissue wound, or 

sterile site at the public health lab (Public Health Agency of Canada 2011; Alberta Health and 

Wellness 2011). As this process can take over two weeks, treatment options are made available 

to the patient prior to disease confirmation (Centers for Diseases Control and Prevention 2010). 

Treatment is usually based on the symptoms and will include electrolyte replacement (lost 

through diarrhea and vomiting) and rehydration (World Health Organization 2014). 

Antimicrobial therapy is usually reserved for immunocompromised patients, infants, children, 

the elderly and for severe cases of gastroenteritis; as unnecessary administration of antibiotics 

can select for resistant strains (World Health Organization 2014). Commonly used antibiotics 

include ciproflaxin, cephalosporins, ampicillin, and Trimethoprim/Sulfamethoxazole (Public 

Health Agency of Canada 2011). 

Multidrug resistant Salmonella strains have emerged as far back as 1989 (Public Health 

Agency of Canada 2011). As of 1997, more than 70% of clinical isolates showed resistance to 

ampicillin, tetracycline, sulphonamides, streptomycin, and chloramphenicol. A few strains were 
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even resistant to nalidixic acid, trimethoprim, sulfamethoxazole, and kanamycin (Brisabois et al., 

1997). Although vaccines are available for typhoid fever, currently there are no vaccines 

available for NTS infections.  

Preventive measures should be exercised throughout the food chain from production, 

processing and manufacturing to food preparation at home and in commercial settings. Animal 

contact should happen with care and infants should be monitored around pet animals. Consuming 

properly cooked food, especially meat, poultry, and egg; drinking boiled water and pasteurized 

milk and juices; washing fruits and vegetables eaten raw; and proper hand washing can decrease 

the incidents of Salmonellosis (World Health Organization 2014). Proper sanitation, access to 

clean water supplies and treatment of infected individuals are among the best prophylactic 

measures to prevent the spread of Salmonellosis in endemic regions (Public Health Agency of 

Canada 2011).  

Global surveillance of Salmonellosis is mainly conducted by the Centers for Disease 

Control and Prevention (CDC) and World Health Organization (WHO). In Canada, there’s a 

hierarchical surveillance system starting from local hospitals to provincial and national health 

authorities. More specifically, the National Notifiable Disease Summary Program (NDRS), 

National Enteric Surveillance Program (NESP) and the federal government of Canada. These 

organizations maintain demographic and epidemiological data related to Salmonella outbreaks in 

Canada (Public Health Agency of Canada 2009). Salmonellosis was the most common pathogen 

reported to the Canadian National Enteric Surveillance Program (NESP) in 2012 with 220 

different serovars and 6979 isolates. From these, Salmonella ser. Enteritidis consisted of 30% of 

recovered isolates (Public Health Agency of Canada 2009).  

 

1.1.3 Clinical Manifestation  

 

Within the host’s stomach, Salmonella are exposed to a range of stress conditions 

including low pH, heat shock, and oxidative stress. Salmonella that survive these conditions 

travel to the small intestine and compete with host normal flora for space and nutrients 

(Chaudhuri et al., 2013; Jones 1997). In addition, Salmonella also have to evade killing by bile 

salts, digestive enzymes, antimicrobial peptides, and secretory IgA prior to attaching intestinal 

epithelial cells through fimbriae (Haraga et al., 2008).  
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Salmonella pathogenesis begins when cells cross the intestinal epithelial barrier and enters 

mesenteric lymph nodes either through active invasion, especially of microfold (M) cells, 

bacterial mediated endocytosis by non-phagocytic enterocytes, or passive transport through 

dendritic cells that extend pseudopods through tight junctions into the basolateral side of the 

intestinal barrier (Jones et al., 1994; Haraga et al., 2008). Bacteria mediated endocytosis lead to 

intestinal inflammation and diarrhoea (Haraga et al., 2008). A hallmark of Salmonellosis is the 

massive inflammatory response elicited by the host innate immune system in response to the 

pathogen associated and secreted effector molecules (Hurley et al., 2014). Salmonella use 

multiple effectors to downregulate the host immune response, thereby facilitating intestinal 

colonization over long periods of time (Haraga et al., 2008).  

Two main categories of proinflammatory stimuli are observed during Salmonella 

infections. These are (a) virulence-associated factors that abuse host processes and cell 

machinery, ultimately resulting in disease pathology, and (b) pathogen-associated factors 

stimulating the host innate immune system (Hurley et al., 2014). In Salmonella colonization and 

survival within host cells are mainly regulated by Salmonella pathogenicity islands (SPI): 

clusters of genes acquired through horizontal gene transfer (Ibarra and Steele-Mortimer, 2009). 

SPI-1 and SPI-2 are very important in in vivo infections as Type III secretion systems (T3SSs) 

encoded by these SPIs are used to secrete effector proteins into the host cell cytoplasm (Galan, 

1999).   

Mechanisms employed by Salmonella: NTS can invade both phagocytic (dendritic cells 

and macrophages) and non-phagocytic cells (intestinal epithelial cells) (Portillo and Finlay 

1994). During entry Salmonella induce the formation of membrane ruffles (protrusions) at the 

site of attachment (Jones 1997). Actin filament rearrangements enclose and internalize 

Salmonella containing membrane ruffles (Coombes et al., 2005). Internalization of Salmonella is 

mediated by SPI-1 T3SS effector proteins SopE, SopE2, and SopB. These effector proteins can 

activate host Rho GTPases Cdc42, Rac1 and RhoG leading to cytoskeletal reorganization, 

formation of membrane ruffles, and internalization of Salmonella through micropinocytosis 

(Haraga et al., 2008). In addition, these effector molecules stimulate transcriptional re-

programming in host cells through STAT3 activation. Salmonella-induced gene expression 

changes include signal transduction, membrane trafficking, cytoskeletal architecture, and 

production of pro-inflammatory cytokines to facilitate survival of Salmonella within host cells 
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(Galan, 1999; Haraga et al., 2008; Hannemann et al., 2013). For example it has been 

demonstrated that mature dendritic cells produce CCL19, an important chemoatract regulating 

dendritic cell migration, which binds to CC chemokine receptor 7 on naïve T cells and mature 

dendritic cells. Mature murine dendritic cells containing Salmonella were chemoattracted toward 

CCL19 produced and secreted in secondary lymphoid organs. Therefore it was proposed that 

CCL19 secretion by dendritic cells may have a role in dissemination of Salmonella throughout 

the body (Pietila et al., 2005, and Cheminay et al., 2002). Recent evidence suggest that the 

metabolic pathway utilized by Salmonella are specifically adapted to take advantage of the 

inflamed intestinal environment and outcompete the normal flora that are present (Nuccio and 

Baumler 2014). 

In addition, Salmonella remodel surface molecules to evade immune recognition. These 

include repression of flagella and SPI1 T3SS expression, decrease length of O-Antigen of LPS, 

alterations to the acyl chain in the lipid-A component, protein content changes in the outer and 

inner membranes and peptidoglycan layer (Haraga et al., 2008). Effector proteins secreted by 

SPI-1 T3SS, especially SipA, facilitate bacterial uptake and induce inflammation and recruit 

polymorphonuclear (PMN) cells across the intestinal epithelium (Haraga et al., 2008). SipA, IL-8 

and pathogen-elicited epithelial chemoattractants (PEEC) in turn recruit neutrophils to the site of 

infection (McCormick et al., 1993). As discussed above, migration of neutrophils to the intestine 

leads to a massive inflammation, clinically described as acute infection (Bellet et al., 2013). 

Signaling by SPI-1 released effector proteins also lead to NF-κB signaling and activation of 

caspase-1, which activate IL-1β, IL-18 and SipB. SipB is a powerful mediator of inflammation 

and pyroptotic cell death (Hurley et al., 2014). Salmonella ser. Typhimurium is also able to 

induce cell death through caspase-1 and NLRC4 activation, where NLRC4 can recognize 

accidental injection of flagella by T3SS in to the host cell cytosol (De Jong et al., 2012). 

Within macrophages Salmonella reside in membrane-bound compartments known as 

Salmonella containing vacuoles (SCV). Within SCV, SPI-2 T3SS-secreted effector proteins 

delay the endosomal fusion with lysosome and thereby evade the immune recognition (Coombes 

et al., 2005). In addition, SPI-2 effector proteins are involved in enterocolitis and have a role in 

pro-inflammatory activity and intracellular persistence.  

Mechanisms employed by the host: Host cells recognize Salmonella through pathogen 

associated molecular patterns (PAMP); such as LPS, flagella, peptidoglycan, doublestranded 
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RNA, and unmethylated CpG motifs, and host derived damage associated molecular patterns 

(DAMP) such as extracellular matrix (ECM) compounds, secreted immunomodulatory proteins, 

and stress induced molecules (Tolle and Standiford, 2013; Kawai and Akira, 2010). When 

PAMPs and DAMPs interact with pattern recognition receptors (PRR) such as Toll-like receptors 

(TLRs), and NOD-like receptors (NLRs) on host cell surfaces, a signaling cascade is activated to 

recruit phagocytic cells such as neutrophils and dendritic cells to the site of infection (Hurley et 

al., 2014). In turn these phagocytic cells secrete pro-inflammatory cytokines IL-6, IL-1β, TNF-α 

and INF-γ and establish a network between innate and adaptive immune systems. INF-γ is 

involved in extending macrophage activation and increasing phagosome-lysosome fusion while 

IL-18 is important for early innate resistant to Salmonella (De Jong et al., 2012; Jones 1997). 

This was shown where mice deficient in caspase-1, IL-1β, or IL-18 had higher titers of bacteria 

and were readily susceptible for Salmonella ser. Typhimurium infection (Raupach et al., 2006). 

Although both neutrophils and macrophages phagocytose and destroy Salmonella, macrophages 

are capable of killing both self-targeted Salmonella and other infected host cells (Delves et al., 

2011).  

Macrophages target Salmonella both through oxygen-dependent and independent 

mechanisms. Primary oxygen-dependent killing involve secretion of hydrogen peroxide, 

superoxide, and hydroxyl radicals in to SCV following phagosome-lysosome fusion. Oxygen-

independent killing mechanisms include secretion of small bactericidal peptides and acidification 

of the phagolyssome (Jones 1997). In turn, macrophages present peptides derived from 

Salmonella on major histocompatibility complex class II (MHC II) for CD4 T cell activation 

(Bellet et al., 2013).  

Multiple studies demonstrate that infection of mice with Salmonella induces a Th1 

response, characterized by the production of large amounts of IFNγ. However, there are also 

reports indicating that under certain conditions infection with attenuated Salmonella can induce 

Th2 responses, characterized by the production of IL-4 and increased serum levels of IgE 

(Ramarathinam 1991). The importance of IFNγ in controlling Salmonella was demonstrated in 

mouse mutants deficient in IFNγ receptors, where Salmonella had uncontrolled access to host 

cell colonization (Mittrucker and Kaufmann 2000). 
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1.2 Capsular Polysaccharides 

1.2.1. Importance and Function 

 

The extracellular matrix of bacteria is composed of many components including proteins, 

lipids, and carbohydrates. Carbohydrates, namely extracellular polysaccharides: 

lipooligosaccharides (LOS), lipopolysaccharides (LPS), capsular polysaccharides (CPS), teichoic 

acids, lipoteichoic acids, glycoproteins, and peptidoglycans are found in various Gram-negative 

and Gram-positive bacteria (Upreti et al., 2003). CPS are unique and distinct from LPS in several 

ways. First, CPS does not contain Lipid A associated with the LPS core region. In some bacteria 

CPS have a lower net charge than LPS allowing separation on ion exchange chromatography. 

CPS usually has several hundred more repeat units, thus higher molecular weight, than LPS 

molecules. In Salmonella, CPS are partially substituted with a glucose side chain, for an example 

on tyvelose in S. Enteritidis and on abequose in S. Typhimurium, while this modification is only 

found on galactose on LPS molecules (Snyder et al., 2006). 

CPS are highly hydrated molecules containing 95%-99% water. They are made up of homo 

or heteropolymers of both organic and inorganic molecules linked together by glycosidic bonds 

(De Rezende et al., 2005; Costerton et al., 1981; Roberts 1996). The structural diversity and the 

presence or absence of immunological epitopes on CPS arises from the type of monosaccharides 

involved, variations in the glycosidic linkages between sugar monomers, number of carbon 

atoms forming the ring structure (furanose or pyranose form) of sugars, configuration of the 

anomeric center of the sugar molecule, presence of organic and inorganic molecules, 

introduction of side chains, and enantiomeric form (D or L form) of sugars (Mazmanian and 

Kasper 2006; Roberts 1996). 

CPS are often associated with virulence, provide barrier protection, desiccation resistance, 

innate and adaptive immune evasion, and act as lubricating agents and reduce friction over solid 

surfaces. For example, CPS facilitate swarming by Proteus mirabilis on solid surfaces (De 

Rezende et al., 2005). In addition, CPS can allow bacterial adherence to host cells, surfaces, and 

to each other; thereby facilitating biofilm formation and colonization (Costerton et al., 1987). 

Biofilm formation is highly ubiquitous and provides bacteria with nutritional advantages, 

protection from bacteriophage infection, and phagocytic protozoa (Ledeboer and Jones 2005; 

Roberts1996). It had been shown that capsulated E. coli, Acinetobacter calcoaceticus, and 
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Erwinia stewartii strains are more resistant to desiccation than non-capsulated strains. (Ophir and 

Gutnick 1994) 

Polysaccharide capsules, being associated with the cell surface, are able to regulate 

interactions between the bacterium and the environment. During capsule biosynthesis, activated 

precursor molecules (nucleotide monophosphate and diphosphate sugars) are assembled together 

by inner membrane enzymes to form the growing polysaccharide. Following this, capsule 

specific translocation proteins move the newly synthesized polysaccharide through the periplasm 

and across the outer membrane to the surface of the cell. Recent studies have indicated the 

presence of trans-envelope assembly complexes that coordinate simultaneous biosynthesis, 

export and translocation of the polysaccharide (Whitfield 2006). In some instances identical 

translocation pathways are used for certain capsular polysaccharides and LPS O-antigens 

(Whitfield et al., 1997).  

CPS are mainly attached to the cell through covalent linkages to lipid A molecules or 

phospholipids, while EPS are released to the cell surface and are often involved in slime (Roberts 

1996). However, though rarely, CPS can be released from the cell due to poor stability of the 

phosphodiester interactions between the CPS and the cell surface phospholipid molecules. 

Similarly, at times, EPS can remain tightly associated with the cell surface (Troy et al., 1971).  

Several studies have shown that carbohydrate antigens (i.e. CPS) are T cell-independent 

activators of B cells. Consequently, CPS antigens often induce IgM responses without a 

detectable level of IgG production (Figure 1.2.1A). The absence of antibody class switching 

from IgM to IgG and the inability to produce higher titers of antibody upon subsequent exposure 

to the antigen are hallmarks of T cell-independent antigens (Mazmanian and Kasper 2006). 

However, conjugation of polysaccharides to proteins can lead to T cell activation, memory B cell 

production, and development of polysaccharide specific immune responses (Figure 1.2.1B) 

(Sood and Fattom 1998). 

Capsules can serve different purposes and have differing immunogenicity in different 

bacteria. CPS producing bacteria are highly diverse and include both animal and plant pathogens. 

Some examples of CPS producing bacteria include: Escherichia coli, Salmonella Typhi, non-

typhoidal Salmonella serovars such as Typhimurium and Enteritidis, Shigella spp., Neisseria 

spp., Vibrio spp., Streptococcus spp., Cryptococcus neoformans, Staphylococcus aureus, 

Campylobacter jejuni, Bacteroides fragilis, Haemophilus influenza, Aeromonas Salmonicida, 
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Acetobacter methanolicus, Burkholderia mallei, and Francisella tularensis (Sukupolvi-Petty et 

al., 2006; Weiss et al., 2007; Gibson et al., 2006; DeShazer et al., 2001; Laxalt and Kozel 1979; 

Karlyshev and Wren 2000; Nelson et al., 2007; Fournier et al., 1984; Mazmanian and Kasper 

2006) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.1: Antibody production in response to polysaccharide antigens. (A) Polysaccharide antigens alone 

lead to IgM production, while (B) polysaccharide-protein conjugated antigens lead to IgG production and immune 

memory. Figure extracted from Mazmanian and Kasper 2006, reproduced with kind permission from Nature 

Publishing Group. 

 

The following is a look at the capsules and their characteristics in few selected bacteria. 

Historically, classification of capsules had started with E. coli, which has over 80 different CPS, 

known as K antigens (Orskov and Orskov 1992). Certain K antigens have identical 

polysaccharide chains, and only differ in the modifications of the polysaccharides (Vann et al., 

1983). In general, expression of a given type of CPS is associated with a unique infection. For a 

example, K1 antigen expressing E. coli are the primary cause of neonatal meningitis (Roberts 

1996). Interestingly, chemically identical capsular polysaccharides can be produced by different 

genera of bacteria. For an example, E. coli K1 CPS is identical to Neisseria meningitides group 

B CPS, and E. coli K18, 22, and 100 CPS are identical to Haemophilus influenza serotype b CPS 

(Grados and Ewing 1970; Roberts 1996). 
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Classification systems of E. coli were first developed by Kauffman in 1940 and were based 

on O, K and H antigens (discussed 1.1 “Introduction to Salmonella”). Since then, the 

classification scheme had seen many changes. Whitfield and Roberts have introduced an updated 

version of this system based on genetic and biosynthetic criteria (1999). The primary advantage 

of this new system is that it is not based on serological assignment and polysaccharide structure. 

According to this classification system capsules are categorized into four groups (Table 1.2.1). 

As observed by Whitfield and Roberts even though all polysaccharide K antigens form a capsule 

structure, all capsules are not composed of K antigens.  

Group 1 capsules are acidic polysaccharides containing uronic acid and tend to be similar 

in structure, and are often inaccurately classified as colanic acid (Whitfield 2006). The most 

prominent feature distinguishing group 1 capsules and colanic acid is that wild-type bacterial 

isolates are unable to produce colanic acid when grown at 37oC on common lab media (Whitfield 

2006). Group 4 capsules, despite many similarities, are far more diverse than group 1 capsules. 

Interestingly, group 4 capsules were previously classified as group 1 capsules and as a result 

became known as the ‘O-Antigen capsules’ (Goldman et al., 1982). One example is the group 4 

representative K40 antigen that was assigned to group 1 due to the presence of acetamido sugars 

in its repeat unit. K40 antigen was then shown to be surface expressed as smooth LPS and as 

unlinked O-antigen capsule and was reclassified in to group 4 (Roberts 1996; Amor and 

Whitfield 1997). This confusion in classification has arisen since K40 antigen is co-expressed 

with a neutral LPS linked polymer such as O8 or O9 antigen (Whitfield and Roberts 1999). 

Group 1 and 4 antigens are subgrouped into KLPS and capsular K antigens, where KLPS is made 

up of low molecular weight K antigenic oligosaccharides containing few repeat units and are 

linked to the cell surface through lipid A. KLPS, however, are different from LPS with the 

serological O-antigen found on the same cell (Whitfield 2006). Capsular K antigens are made up 

of high molecular weight antigens that form the capsule structure responsible for masking O 

antigen in serotyping. These capsular K antigens are not linked to lipid A core as in LPS 

molecules (Whitfield and Roberts 1999). When bacteria produce a group 4 capsule as the only 

serotype specific polysaccharide, it is classified as the O-antigen of that isolate (Whitfield 2006). 

Group 2 capsules are linked to the cell surface through α-glycerophosphatidic acid. In 

some bacteria Kdo (CMP-Kdo synthetase is involved in the biosynthesis of LPS) provides a link 

between the phospholipid and the polysaccharide. Expression of group 2 capsules is significantly 
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influenced by the temperature (Whitfield and Roberts 1999). Group 3 capsules are largely similar 

to group 2 capsules (Whitfield and Roberts 1999). During translocation, group 1 and 4 capsule 

assembly occur at the periplasmic face of the plasma membrane, while group 2 and 3 capsule 

assembly occur at the cytoplasmic face of the plasma membrane. In the assembly of capsules 

from all four groups, the sequential action of glycosyltransferases joins individual repeat units 

together elongating the polysaccharide (Whitfield and Roberts, 1999). 

 

 

Characteristic 

 

Group 
 

 

1 

 

 

2 
 

3 
 

4 

Former K antigen 

group 

 

1A II I/II or III IB (O-Antigen 

capsules) 

Co-expressed with 

O serogroups 

 

Limited range Many Many Often O8, O9, but 

sometimes none 

Co-expressed with 

colanic acid 

 

No Yes Yes Yes 

Thermostability 

 

Yes No No Yes 

Thermoregulated 

(not expressed 

below 20oC) 

 

No Yes No no 

Terminal lipid 

moiety 

 

Lipid A core in 

KLPS; unknown for 

capsular K antigen 

 

α-

Glycerophosphate 

α-

Glycerophosphate 

(hypothetical) 

Lipid A core in 

KLPS; unknown for 

capsular K antigen 

 

Genetic locus 

 

cps near his and 

rfb 

 

kps near serA kps near serA rfb near his 

Polymerization 

system 

 

Wzy-dependent Processive Processive Wzy-dependent 

Direction of 

polymer chain 

growth 

 

Reducing terminus Non-reducing 

terminus 

Non-reducing 

terminus 

(hypothetical) 

Reducing terminus 

Trans-plasma 

membrane export 

system 

 

Wzx (PST) ABC-2 exporter ABC-2 exporter 

(hypothetical) 

WZx (PST) 
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Translocation 

proteins 

 

Wza, Wzc KpsD, KpsE 

(KpsF may be 

involved) 

 

KpsD (KpsE may 

be involved) 

Unknown 

Elevated levels of 

CMP-Kdo 

synthetase 

 

No Yes No No 

Positively 

regulated by the 

Rcs system 

 

Yes No No No 

Model system(s) 

 

Serotype K30 Serotypes K1, K5 Serotypes K10, 

K54 

Serotypes K40, 

O111 

Similar to capsules 

in  

 

Klebsiella, 

Erwinia 

Neisseria, 

Haemophilus 

Neisseria, 

Haemophilus 

Many genera 

 

Table 1.2.1: Classification of E. coli capsules. Classification is based on biosynthesis and assembly systems. Rcs 

system plays an important role in late stages of biofilm development. CMP-Kdo synthetase is involved in the 

biosynthesis of LPS. Table adopted from Whitfield and Roberts 1999, and Whitfield 2006. 

 

In E. coli, expression of genes for the biosynthesis of EPS colanic acid, known as cell 

surface slime, is increased in the face of harsh environments and desiccation (Ophir and Gutnick 

1994). Despite the lack of concrete evidence in the mechanisms behind regulation of capsule 

expression, it is hypothesized that reduced external osmolarity act as a signal to increase capsule 

production (Roberts 1996). In support of this argument, it had been shown that reduced external 

osmolarity leads to increased expression of Vi antigen in S. Typhi and anionic polysaccharide 

alginate expression in Pseudomonas aeruginosa (Pickard et al., 1994; Berry et al., 1989). 

There are two types of CPS found in Salmonella; the Vi capsule (also known as Vi 

antigen) associated with S. Typhi, and the O-Antigen capsule associated with NTS. The Vi 

capsule increases virulence and disease severity of S. Typhi infection by interfering with 

neutrophil chemotaxis and bacterial clearance (Wangdi et al.2014; De Jong et al., 2012). 

Deletion of genes for Vi capsule biosynthesis can remarkably enhance the neutrophil chemotaxis 

in vitro. In addition, it had been shown that Vi capsule prevent complement activation through 

alternative pathway, as C3b is unable to deposit on the capsule surface and promote 

opsonophagocytosis (Wangdi et al., 2014; Wilson et al., 2011). It had also been demonstrated 

that Vi capsule promotes immune evasion by masking LPS molecules and preventing their 

recognition through pathogen recognition receptors (PRR). As a consequence S. Typhi does not 
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induce neutrophil influx and is able to disseminate systemically and cause a persistent infection 

(De Jong et al., 2012). Furthermore, the capsule-mediated suppression of TNF-α production by 

human monocytes lead to low serum concentrations of pyrogenic cytokines, and thereby prevent 

the development of septic shock (Raffatellu et al., 2006; Hirose et al., 1997). 

The O-Antigen capsule produced by NTS is co-regulated with cellulose and fimbriae to be 

part of the ECM. The group 4 O-Antigen capsules were shown to be important for attachment to 

surfaces, colonization, and desiccation resistance (Gibson et al., 2006). S. Typhimurium O-

Antigen capsule was shown to be expressed both at lower and higher temperatures indicating that 

the capsule may play a role in bacterial survival inside and outside the host, as had been 

described for other bacterial species, such as Hyphomonas strain MHS-3 (Quintero and Weiner 

1995). Mutations in O-Antigen capsule assembly and translocation gene, yihO, or cellulose 

synthesis gene, bcsA, significantly reduced the colonization of alfalfa sprouts by NTS (Barak et 

al., 2007). In addition, the promoter for O-Antigen capsule biosynthesis was expressed during in 

vivo infection of mice (White et al., 2008). 

Campylobacter jejuni (C. jejuni) produces LOS and CPS that are genetically and 

biochemically similar to polysaccharide capsules in other Gram-negative bacteria (Karlyshev and 

Wren 2001). Due to the presence of hypervariable polysaccharide biosynthesis genes, the 

structure of these polysaccharide monomers can vary between C. jejuni strains. These heat stable 

groups 2 or 3 CPS are part of the Penner antigen used for C. jejuni serotyping. It had been shown 

that C. jejuni CPS can be released to the surrounding environment in either naïve or lipid free 

form depending on the presence or absence of deoxycholate; a component of bile salt. Even 

though the specific purpose of released EPS is unknown, it is regarded as important for survival 

and pathogenesis of C. jejuni in foreign environments (Karlyshev and Wren 2001). Treatment of 

C. jejuni CPS with phospholipase release a lipid free product to the medium indicating that these 

CPS are substituted with a phospholipid inplace of a lipid A molecule (Karlyshev and Wren 

2001). 

Another frequently researched CPS is of Staphylococcus aureus (S. aureus). Clinical 

isolates of S. aureas are classified in to eight groups based on their CPS. The type 8 CPS is the 

most prevalent among bacteremic isolates and confers resistance to complement mediated 

opsonisation and phagocytosis (Fournier et al., 1984).  
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Bacteroides fragilis (B. fragilis) produced zwitterionic CPS was able to activate CD4+ T 

cells and correct immune defects such as dysregulated systemic cytokine production found in the 

absence of bacterial colonization and CD4+ T cell reduction in splenic lymphocyte populations 

(Mazmanian and Kasper 2006). It had also been shown in immunogenicity studies that 

administration of B. fragilis CPS alone protects Wistar rats against subsequent infection with B. 

fragilis (Kasper et al., 1979) 

Although CPS are often associated with Gram negative bacteria, many Gram-positive 

bacteria synthesize lipoteichoic acids or teichoic acids containing sugar alcohols with 

phosphodiester linkages. These sugar alcohols play a key role in attachment of bacteria to 

surfaces and in their interactions with host innate and adaptive immune systems (Kenzel and 

Henneke 2006). 
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1.3 Vaccines 

1.3.1 Polysaccharide Vaccines 

 

Polysaccharide vaccines are composed of capsular polysaccharides from Gram-negative 

bacteria and are classified as inactivated subunit vaccines. To date pure polysaccharide vaccines 

have been produced for four encapsulated bacteria: Streptococcus pneumonia (pneumococcus), 

Neisseria meningitides (meningococcus), Haemophilus influenzae type b (Hib) and Salmonella 

Typhi (Pollard et al., 2009). The adaptive immune response to polysaccharide antigens is usually 

T-cell independent, implying that polysaccharides are capable of activating B cells in the absence 

of T helper cells (MacLennan et al., 2014). However, the lack of T cell induction and in turn 

failure of B cell stimulation by T cells result in the absence of immunoglobulin class switching, 

induction of memory B cells, affinity maturation, prolonged antibody response, and lead to 

hyporesponsiveness to subsequent vaccination and/or to natural infection. In addition T cell 

independent antigens, such as polysaccharides, are poorly immunogenic in infants and young 

children under the age of two (MacLennan et al., 2014). 

Polysaccharide capsules are composed of numerous identical epitopes in close proximity 

within each other and can crosslink immunoglobulin receptors on the surface of B cells for B cell 

activation. However, these polysaccharides are not processed and presented on MHC class II 

molecules for T helper cell activation (Lesinski and Westerink 2001). Although polysaccharide 

antigens are unable to induce the production of memory B cells they can activate previously 

formed memory cells, leading to terminal differentiation of memory cells into plasma cells. 

However, this depletes the reservoir of memory B cells specific for a given polysaccharide 

antigen and could result in a condition called hyporesponsivness, which is the inability to 

respond to subsequent exposure to the same antigen due to lack of memory B cells (Blanchard-

Rohner and Pollard 2011). Repeated administration of the same polysaccharide antigen(s) can 

exacerbate this situation. In contrast, repeated administration of most protein vaccines leads to a 

booster effect resulting in progressively higher antibody titers. In addition, antibody produced in 

response to polysaccharide antigens are predominantly IgM and have less functional activity than 

IgG antibody (Blanchard-Rohner and Pollard 2011). 

Marginal zone (MZ) B cells and B1 cells (and naïve B cells to a lesser extent) are the most 

important at recognizing polysaccharide antigens. These cells are able to produce low affinity 
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IgM (natural) antibodies in response to polysaccharides. B1 and MZ B cells have higher 

expression of CD21 receptor and are able to bind to complement coated polysaccharides 

(Blanchard-Rohner and Pollard 2011). The spleen, being a vital organ of the immune system, is 

crucial for MZ B cell production and their survival (Kruetzmann et al., 2003). For example, 

individulas with congenital asplenia, splenic hypofunction or who have undergone splenectomy 

are highly susceptible to encapsulated bacterial diseases, as they have depleted number of 

functional MZ B cells and are defective at removing opsonized bacteria (Blanchard-Rohner and 

Pollard 2011). Furthermore, the immune response to polysaccharide antigens is age-dependent as 

children under the age of two are also susceptible to encapsulated bacteria, since prior to this age 

the MZ is not fully developed and is unable to facilitate the development of B cells (Kruschinski 

et al., 2004). In addition, the presence of maternal antibody and the effect of suppresser T cells 

also contribute to the lack of response to polysaccharide antigens in infants (Sood and Fattom 

1998). However, some zwitterionic polysaccharides (have both positive and negative charge) 

such as capsules from Bacteroides fragilis, S. pneumonia serotype 1 and 3, and N. meningitides 

serogroup A possesses characteristics of T cell dependent antigens and are presented in an MHC 

class-II dependent manner. These antigens are immunogenic in even infants and young children 

(Jokhdar et al., 2004; Kalka-Moll et al., 2002). 

Since the late 20th century, polysaccharide vaccines have helped save lives of millions of 

people worldwide. However, there are several limitations associated with pure polysaccharide 

vaccines. These include: hyporesponsiveness, short term impact on bacterial carriage where 

individuals have been shown to carry bacteria for several months and even years without 

symptoms and remained communicable, and poor immunogenicity in children under the age of 

two (Wilder-Smith 2009). In addition, the response for polysaccharide antigens among two to 

five year old children, the elderly, and the immunocompromised individuals are not optimal, 

while these populations remain at an elevated risk of contracting bacterial diseases (Sood and 

Fattom 1998). Furthermore, pure polysaccharide vaccines are unable to provide herd immunity, 

which is a key element in prevention of invasive diseases. Herd immunity is achieved when the 

majority of a community is immunized against a given infectious disease, such that even those 

who have not received immunization are protected as the spread of the disease is contained 

(Vaccines.gov 2015). 
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Antibody titers induced in infants after immunization with N. meningitides serogroup C 

(MenC) vaccine fell below the threshold of protection in 50% of vaccinees by one year of age 

and only 12% of vaccinees maintained protection at four years of age (Snape and Pollard 2005). 

There is very little evidence that immunization of infants with the MenC vaccine confers 

protection beyond one year, as antibody titers decrease rapidly following infant immunization 

(Trotter et al., 2004). When administered after one year of age, polysaccharide vaccines induce a 

more persistent antibody response. However, sustained levels of protection were not observed 

until much later in childhood in many children (Snape et al., 2008). In addition, the decline in 

protective immunity following infant immunization was also noted for H. influenzae type b 

vaccine (Pollard et al., 2009). Therefore, the duration of protective immunity following 

immunization with polysaccharide antigens depends on the persistence of functional antibodies, 

maintenance of immunological memory, and establishment of herd immunity (Pollard et al., 

2009). 

To address the concerns of T-cell independent pure polysaccharide vaccines, in late 1980s 

it was discovered that chemical conjugation of the polysaccharide antigen to a carrier protein 

resulted in a polysaccharide-protein conjugate that was T cell dependent and highly 

immunogenic (Makela and Kayhty 2002). The first polysaccharide-protein conjugate vaccine 

was produced for H. influenzae type b. A conjugate vaccine for S. pneumonia was produced in 

2000 and for N. meningitides in 2005. Conjugate vaccines have resulted in a significant reduction 

in the disease burden associated with encapsulated bacteria when these vaccines have been 

introduced in the immunization schedules of multiple countries (Ramsay et al., 2003(a); Heath 

and McVernon 2002). These vaccines are effective due to their ability to induce memory B cell 

production, induction of immunity in children under the age of 2, ability to provide herd 

immunity, and the capacity to overcome hyporesponsiveness (Heath and McVernon 2002; 

Ramsay et al., 2003(b)). 

Although immunogenic, the magnitude of the antibody response to conjugate vaccines and 

their persistence is age-dependent. It had been observed that in infants and toddlers, the serum 

antibody concentration following immunization with conjugate vaccines declined rapidly even 

though the immunological memory lasted much longer (Borrow et al., 2010; Snape et al., 2006). 

Despite multiple doses being administered to infants, the effectiveness of MenC and Hib 

vaccines have declined after one year from initial immunization in the absence of a booster dose 



 

22 

after the age of one (Ramsay et al., 2003(a); Trotter et al., 2004). The importance of persistent 

serum antibodies was demonstrated in vaccine failures where despite being immunized and 

having memory B cells, some children succumbed to meningococcal and Hib infections 

(Auckland et al., 2006; McVernon et al., 2003). This is explained by the fact that encapsulated 

bacteria are able to invade and cause disease within a few hours, while memory B cells require 

several days to mount a protective antibody response (Snape et al., 2006; Blanchard-Rohner et 

al., 2008). Thus, induction of immune memory alone is not sufficient to protect against 

encapsulated bacterial infections and require high titers of persistent serum antibodies. 

Nonetheless, upon the introduction of the Hib conjugate vaccine in 1988, the disease burden 

among children in the United States declined by 50% per year from 1988 to 1991 (Schoendorf et 

al., 1994). In clinical trials, a reduction in the nasal carriage with vaccine-specific S. pneumonia 

serotypes in children was also observed following immunization with two multivalent 

pneumococcal conjugate vaccines (Dagan et al., 1996; Sood and Fattom 1998). Furthermore, in 

older children and adults, even a single dose of a conjugate vaccine lead to highly persistent anti-

capsular antibodies (Snape et al., 2006; Snape et al., 2008). In Vaccine development bi-, tri-, 

tetra-, and/or multi- ‘valent’ means that the given number of separate protein or polysaccharide 

antigens is combined together in a single vaccine. 

Although pure polysaccharide vaccines have been effective at saving lives for years, 

conjugation of polysaccharide antigens from H. influenzae type b, S. pneumonia, N. 

meningitides, and S. Typhi have generated T cell-dependent antigens that are effective in even 

the very young children (Plotkin 2003). The first polysaccharide vaccine against N. meningitides 

was used in the United States in 1984, and was given to all the new military personnel upon 

entering basic training. Upon the administration of this tetravalent polysaccharide vaccine, no 

cases of meningococcal infections related to serogroup Y or W135 had been reported in the 

United States military (Sood and Fattom 1998). However, this vaccine was poorly immunogenic 

among infants and young children (Sood and Fattom 1998). A quadrivalent vaccine containing 

polysaccharide antigens from N. meningitides serogroup A, C, Y, and W135 was initially 

licensed in the United States in 1981. A bivalent vaccine containing polysaccharide antigens 

from serogroup A and C is also available in some countries (Pollard et al., 2009).  

Serogroup C (MenC) conjugate vaccine containing either tetanus toxoid or cross reacting 

material 197 (CRM197; which contains a glycerine to glutamic acid point mutation at position 52 
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in the A subunit of diphtheria toxoid) was first licensed in the United Kingdom in 1999, while a 

quadrivalent A, C, Y, and W135 diphtheria toxoid conjugate vaccine became first available in 

North America in 2005 (Nair 2012). In addition, several other conjugate vaccines are currently 

being produced and in clinical trials including A, C, Y, and W135 conjugated to tetanus toxoid 

and A, C, Y, and W135 conjugated to CRM197 (Pollard et al., 2009). As serogroup B capsular 

polysaccharide is highly similar to the cell surface glycoprotein on fetal brain tissue and result in 

tolerance and reduced immunogenicity, development of a polysaccharide based vaccine, either 

pure or conjugate, remains a significant hurdle in vaccine development against N. meningitides 

serogroup B (Nair 2012). One study compared the effectiveness between the meningococcal 

serogroups A and C pure polysaccharide vaccine (MACP) vs the conjugate vaccine against 

serogroup C (MCC), since the use of MACP vaccine had raised concerns that this vaccine is 

leading to hyporesponsiveness to serogroup C polysaccharide antigen (Richmon et al., 2000). In 

this study individuals who received a primary immunization of MACP were given a second 

immunization of either MACP or MCC. Those who received MCC produced significantly higher 

titers of IgG antibody than the individuals who received MACP as the second dose. In addition, 

the response to the second MACP vaccine was considerably lower than that following the first 

immunization. This supported the observation that repeated vaccination with MACP vaccine is 

ineffective and leads to hyporesponsiveness towards the meningococcal serogroup C 

polysaccharide antigens in adults. However, it was possible to overcome the MACP induced 

hyporesponsiveness with subsequent vaccination with MCC (Richmon et al., 2000). 

A pure polysaccharide hexavalent vaccine against S. pneumonia was first licensed in 1947, 

but was eventually withdrawn due to low sales and lack of acceptance (Sood and Fattom 1998). 

A polyvalent vaccine containing 14 polysaccharide antigens became available in the United 

States in 1977, and was recommended for at risk populations including the elderly, 

immunocompromised patients, and individuals with chronic cardiac, pulmonary, or renal 

diseases (Shapiro et al, 1991). The vaccine had 93% efficacy following three years from initial 

immunization among immunocompetent individuals under 55 years of age. However in 

vaccinees over 85 years of age, the efficacy was only 46% after three years (Shapiro et al., 

1991). Furthermore, the vaccine’s efficacy was shown to decline over time. However, this can be 

explained by the waning immunity and the exposure to additional pneumococcal serotypes over 

the years (Halloran et al., 1991; Shapiro et al., 1991).  
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The widely used current polyvalent pneumococcal vaccine, licensed in 1983, is made of 23 

immunologically distinct polysaccharide antigens and is effective in preventing disease in 

immunocompetent individuals (Shapiro et al., 1991). In addition, there are several other 

pneumococcal vaccines that are also in use. These include the seven-valent conjugate vaccine 

(PCV7) that contain the serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F, and the ten-valent conjugate 

vaccine additionally containing serotypes 1, 5, and 7F. The eleven-valent and thirteen-valent 

conjugate vaccines are currently undergoing clinical trials (Pollard et al., 2009; Nair 2012). As 

there are multiple pathogenic S. pneumonia serotypes, development and conjugation of each 

polysaccharide to carrier proteins remains a complex process and is quite challenging (Nair 

2012). 

A pure polysaccharide vaccine for H. influenzae type b (Hib) was first used in the United 

States in 1985, but due to poor efficacy in children younger than 18 months of age and 

immunological variability in older children, 88% to -69%, where a negative efficacy means 

higher disease risk for the immunized population compared to the non-vaccinated group, the 

vaccine was withdrawn from use in 1988 (Robbins et al., 1992). Pure polysaccharide Hib 

vaccine elicited an age-dependent antibody response, where older children and adults developed 

protective levels of antibodies with long lasting efficacy (Rodrigues et al., 1971; Smith et al., 

1973), while young children generate protective, but lower levels of antibody titers that decrease 

after one year from initial immunization. In addition, infants, being the most susceptible to Hib 

infection, were non-responsive to the pure polysaccharide Hib vaccine (Smith et al., 1973; 

Robbins et al., 1992). 

In 1989 the pure polysaccharide vaccine was replaced by a polysaccharide-protein 

conjugate vaccine linking the Hib polysaccharide polyribosylribitol phosphate to diphtheria 

toxoid, tetanus toxoid, or meningococcal outer membrane protein (Pollard et al., 2009). The 

United Kingdom had introduced the Hib conjugate vaccine to the infant immunization schedule 

in 1992 (Pollard et al., 2009). These vaccines are administered to date either alone or in 

combination with other vaccines for the protection of preschool children (Pollard et al., 2009). 

Meningitis and other infections caused by Hib have been completely eliminated in both 

vaccinated and unvaccinated children due to herd immunity in countries that have incorporated 

Hib conjugate vaccine in the infant immunization schedule (Adams et al., 1993; Robbins et al., 

1992). The antibody subclass highly induced and mainly sustained by pure polysaccharide Hib or 



 

25 

Hib conjugate vaccines in adults is IgG2. Subsequent immunizations with pure polysaccharide 

Hib or Hib conjugate vaccines do not generate booster responses in adults (Schneerson et al., 

1986; Robbins et al., 1992). However, multiple immunizations with Hib conjugate vaccine elicit 

booster responses in infants with elevated IgG1 titers (Parke et al., 1991; Claesson et al., 1988; 

Robbins et al., 1992).  

The pure polysaccharide vaccine against S. Typhi is made up of the Vi capsular 

polysaccharide antigens. The serum antibody towards Vi antigen is mostly IgM driven. In one 

study only 2 out of 32 subjects generated sufficient amount of IgG towards the Vi antigen 

(Tacket et al., 2004). However, in typhoid fever endemic regions, immunization with the Vi 

vaccine resulted in 55% and 75% efficacy rates among adults and children over the age of 5 

years (Sood and Fattom 1998). Vaccines for Typhoid fever are discussed in more detail in 

Section 1.3.2 “Salmonella Vaccines: Past, Present, and Future”. 

Another polysaccharide-protein conjugate vaccine candidate is Shigella O-specific 

polysaccharide (O-SP) domain of LPS. It had been shown that serum IgG to O-SP induced 

protective immunity to Shigellosis (Passwell et al., 2001). In order to increase immunogenicity in 

young children, O-SP was covalently linked to carrier proteins. In one clinical study it was 

shown that conjugation of Shigella sonnei and Shigella flexneri 2a O-SP to succinylated 

Pseudomona aeruginosa exotoxin A mutants or Corynebacterium diphtheria toxin mutants was 

highly immunogenic, and resulted in high titers of serum IgG against O-SP within one week of 

immunization (Passwell et al., 2001). Out of the different vaccine candidates P. aeruginosa 

conjugate vaccine resulted in the highest IgG titers and the highest efficacy was observed for S. 

sonnei conjugate vaccine at 74% (Passwell et al., 2001; Ferreccio et al., 1991). Following 

immunization with S. sonnei conjugate vaccine, IgG and secretary IgA antibody had been 

detected in urine, implying that this vaccine was able to induce mucosal immunity (Cohen et al., 

1996). In addition, a single immunization with S. sonnei rEPA conjugate vaccine conferred 

specific protection against shigellosis in young adults (Cohen et al., 1997). 

Staphylococcus aureus type 5 and type 8 capsular polysaccharides are of high clinical 

importance. Immunization with S. aureus capsular polysaccharide conjugate vaccines generated 

high titers of specific antibodies. These antibodies were able to recognize variations in capsular 

polysaccharide that occur among clinically significant S. aureus isolates (Fattom et al., 1998). In 

addition, the Vibrio cholera O1 serotype Inaba polysaccharide and cholera toxin conjugate 
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vaccine was shown to induce serum anti-LPS IgG with bactericidal activity. V. cholera specific 

antibodies, whether acquired through natural immunity, following colonization by the bacteria, 

or after immunization, are all directed against the LPS molecules (Gupta et al., 1998). 

Furthermore, antibody generated against the O-specific polysaccharides of V. cholera serotype 

Inaba were able to cross recognize polysaccharides from V. cholera serotype Ogawa (Gupta et 

al., 1998). In another study, S. Typhimurium O-antigens 4 and 12 covalently linked to bovine 

serum albumin (BSA) when administered with Freund adjuvant led to the production of 

significantly high O4 specific antibody titers in rabbits; comparable to those elicited by the 

immunization with heat killed bacteria (Svenson and Lindberg 1981). 

 

1.3.2 Salmonella Vaccines: Past, Present and Future 

 

Development of an effective Salmonella vaccine for humans remains a pressing issue 

today. Salmonella are able to survive both extracellularly and intracellularly within monocytes 

and macrophages. This is a significant challenge for vaccine development, as both humoral and 

cell mediated immunity are needed to efficiently target and clear both extracellular and 

intracellular bacteria (Mastroeni et al., 1993; Salerno-Goncalves et al., 2002). Antibodies 

mediate pathogen killing through opsonisation, thereby facilitating phagocytosis and preventing 

the spread of disease through blood (Mastroeni et al., 2009). T cells, on the other hand, are 

involved in destroying Salmonella residing within phagocytic cells (Blanden et al., 1966; 

Mackaness et al., 1966) (discussed in detail in 1.1.3 “Clinical Manifestation’). The requirement 

of both arms of the immune system had been demonstrated through animal studies, where mice 

lacking T cells were unable to control Salmonella infections (Sinha et al., 1997). In other studies, 

passive transfer of specific antibodies provided significant clearance of Salmonella in vivo 

(Mastroeni et al., 1993; McSorley and Jenkins 2000).  

The first vaccine against Salmonella was developed in 1896 against S. Typhi, and was used 

by British and United States military personnel. Over the next 100 years the vaccine had been in 

use, this inactivated whole cell vaccine had dramatically reduced the number of deaths associated 

with typhoid fever (MacLennan et al., 2014; Hawley and Simmons 1934). Although this vaccine 

had an efficacy of 73% over three years post immunization, it also had high reactogenicity and 

therefore its use was discontinued (Engels et al., 1998; Ivanoff et al., 1994; Wahdan et al., 1975). 
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Currently, there are two vaccines against S. Typhi: Ty21, a live attenuated vaccine, and Vi 

capsule-based vaccine made up of purified Vi capsular polysaccharides (Table 1.3.2(a)). Even 

though Ty21 strain was derived from non-specific chemical mutagenesis of the S. Typhi Ty2 

strain, Ty21 does not express Vi capsule, and as a result, the immune response to live attenuated 

Ty21 strain is not directed against the Vi capsule (Germanier and Furer 1975). The Ty21vaccine 

requires three doses to induce best protective immunity and in combination the three doses have 

an efficacy of 51% (Engels et al., 1998; Fraser et al., 2007). This vaccine is not thermostable 

over long periods of time and requires a cold chain. This is a setback as the vaccine is most 

needed in developing countries where access to refrigeration is difficult (MacLennan et al., 

2014). It had been shown that freeze drying can increase the thermal stability of the vaccine, but 

this measure is currently not in place (Ohtake et al., 2011). Despite the Ty21vaccine being 

licenced to use in adults and children over five years, seroconversion is greatly reduced in young 

children compared to adults (Cryz et al., 1993). Nonetheless, the Ty21 vaccine can induce T cell 

immunity and had shown cross protection against S. Paratyphi B in clinical studies. In addition, 

in vitro cross protection had been shown for S. Paratyphi A and B (Pakkanen et al., 2012; Wahid 

et al., 2012). As the antibody response is mostly directed against the O:9 O-antigen epitope of S. 

Typhi, it had been shown that the Ty21 vaccine is able to elicit cross protective immunity against 

iNTS and NTS serovars also expressing the O:9 or O:9,12 epitopes (Pakkanen et al., 2014; 

MacLennan et al., 2014; Kantele et al., 2012). 

Although the immune response to the Vi capsule based vaccine is primarily directed 

towards the Vi capsule, recent evidence had indicated that the immune response could also be 

due to other Salmonella components in the vaccine (Kantele et al., 2012). However, the vaccine 

is considered to be non-immunogenic in infants, due to Vi capsule being a T-independent 

antigen. Therefore it is only licenced for children over 2 years of age (MacLennan et al., 2014). 

In contrast to Ty21 vaccine, the Vi capsule-based vaccine requires a single dose and has a 

efficacy of 55% over three years. This vaccine also requires a cold chain to prolong the life and 

effectiveness of the vaccine (MacLennan et al., 2014). It had been shown that following 

vaccination with Vi capsule based vaccine, circulating plasmablasts (immature plasma cells) 

express systemic homing receptors (L selectin), while vaccination with Ty21 vaccine lead to the 

expression of mucosal homing receptors (α4β7), as with natural infection (Kantele et al., 2012). 

No clinical trial had been performed to date to examine the efficacy and protection of these two 
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vaccines combined (MacLennan et al., 2014). However, several clinical trials have tested the 

efficacy and type of immune response mounted following immunization with inactivated whole 

cell Salmonella vaccine candidates (Nath et al., 1977; Rajagopalan et al., 1982). 

 

Name Description Developer Stage of Development 

Vaccines currently available and in development against S. Typhi 

Ty21a Live attenuated Vivotif (Crucell) Licensed for adults and 

children over 5 years 

Vi CPS Vi polysaccharide Typherix (GSK), Typhim Vi 

(Sanofi), Tybar Vi (Bharat 

Biotech), Typho Vi (BioMed) and 

Vax-tyVi (Finlay Institute), also 

manufactured by 6 other endemic 

countries 

Licensed for adults and 

children over 2 years 

Vi-TT Vi conjugate Peda-Typh (BioMed) Licensed in India 

Tybar-TCV (Bharat Biotech) Licensed in India 

Vi-rEPA Vi conjugate National Institutes for Health 

(NIH) 

Phase 3 

Lanzhou Institue (China) Licensed in China 

Vi-CRM Vi conjugate Novartis Vaccine Institute for 

Global Health (NVGH) 

(technology transfer to Biological 

E. Limited underway) 

Phase 2 

Vi-DT Vi conjugate International Vaccine Institute 

(IVI)/Shanta Biotech 

Phase 1 

Vi conjugated to 

fusion protein 

PsaA-PdT 

Vi conjugate Harvard Medical School Preclinical 

O:9-DT O:9 conjugate International Vaccine Institute 

(IVI) 

Preclinical 

M01ZH09 Live attenuated Emergent Biosolutions Phase 2 in adults and 

children; evaluation in S. 

Typhi human challenge 

CVD 909 Live attenuated University of Maryland Phase 2 

Ty800 Live attenuated Avant immunotherapeutics Phase 2 
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OmpC and OmpF Outer membrane 

protein 

Institute Mexicano del Seguro 

Social 

Phase 1 in Mexico 

  

Vaccines in development against S. Paratyphi A 

O:2-TT O:2 conjugate National Institutes for Health 

NIH) 

Phase 2 

Technology transfer from NIH to 

Lanzhou Institute (China) 

Phase 2 

Technology transfer from NIH to 

Chengdu Institute (China) 

Preclinical 

Changchun Institute of Biological 

Products 

Preclinical 

O:2-DT 
(development in 

combination with Vi-

DT conjugate against S. 

Typhi) 

O:2 conjugate International Vaccine Institute  

(IVI) (Seoul, Korea) 

Preclinical 

O:2-CRM 
(development in 

combination with Vi-

CRM conjugate against 

S. Typhi) 

O:2 conjugate Novartis Vaccine Institute for 

Global Health (NVGH) 

(technology transfer to Biological 

E. Limited underway) 

Preclinical 

VCD 1902 
(development in 

combination with CVD 

909) 

Live attenuated University of Maryland Phase 1 

 

Vaccines in development against invasive non-Typhoidal Salmonella (iNTS) 

O:4,5/O:9-flagellin O:4,5/O:9 

conjugate 

University of Maryland Preclinical 

O:4, 12-TT O:4-TT conjugate National Institutes for Health 

NIH) 

Preclinical 

Os-po O:4-porin 

conjugate 

National Bacteriology Laboratory, 

Stockholm 

Preclinical 

O:4,5/O:9-CRM O:4,5/O;9 

conjugate 

Novartis Vaccine Institute for 

Global Health (NVGH) 

Preclinical  

WT05 Live attenuated Microscience, Wokingham 

Berkshire 

Phase 1 

CVD 1921 and Live attenuated University of Maryland Preclinical  
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CVD 1941 

S. Typhimurium 

ruvB mutant 

Live attenuated Seoul National University Preclinical  

Salmonella hfq 

deletion mutant 

Live attenuated Indian Institute of Science 

Bangalore 

Preclinical  

SA186 Live attenuated Istituto Superiore di Sanita Roma Preclinical  

MT13 Live attenuated KIIT University Odisha Preclinical  

Various Live attenuated, 

DNA adenine 

methylase 

mutants 

University of California, Santa 

Barbara 

Preclinical  

Various Live attenuated, 

regulated delayed 

attenuation 

Arizona State University Preclinical 

Porins S. Typhimurium 

porins 

National Bacteriology Laboratory, 

Stockholm 

Preclinical 

OmpD Outer membrane 

protein 

University of Birmingham, UK Preclinical 

S. Typhimurium 

and S. Enteritidis 

GMMA 

Generalized 

Modules for 

Membrane 

Antigens 

Novartis Vaccine Institute for 

Global Health (NVGH) 

Preclinical 

 

Table 1.3.2(a): Vaccines currently in use and vaccine candidates being developed for humans against S. 

Typhi, S. Paratyphi A, and iNTS. Note that most vaccine candidates for S. Typhi are currently in clinical trials, 

while those for S. Paratyphi A and iNTS are still in preclinical trials. This is not a comprehensive list of all the 

vaccine candidates that are being tested. Table extracted from MacLennan et al., 2014, reproduced with kind 

permission from Human Vaccine & Immunotherapeutics. 

The Vi capsule-based vaccine primarily induces humoral immunity, since almost always 

polysaccharides are T-independent antigens and require conjugation to carrier proteins to induce 

T cell-dependent immune responses (Suz et al., 2014; Pollard et al., 2009). The importance of 

antibody in clearing S. Typhi infections was demonstrated by efficacy data for Vi capsule based 

vaccine and Vi conjugate vaccine candidate phase 3 studies (Engels et al., 1998; Fraser et al., 

2007; Lin et al., 2001; Thiem et al., 2011). A phase 3 study of a glycoconjugate vaccine 

combining S. Typhi Vi capsule with P. aeruginosa exoprotein A (Vi-rEPA), conducted over a 

decade ago in Vietnamese children between two and five years of age, found a 91% efficacy 

after 27 months and 89% efficacy after 46 months from primary immunization (MacLennan et 
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al., 2014). However, the delay in seeing new vaccines in the market is mainly due to a lack of 

commercial interest in developing vaccines against typhoid fever and iNTS disease, since these 

are largely diseases of low-income countries, which have little or no money to invest in vaccines 

(MacLennan 2013). New vaccines are expected to provide improved protection and efficacy, 

especially in young children, and to reduce the cost of delivery these vaccines are to be 

administered as part of the national Expanded Programmes on Immunization (MacLennan et al., 

2014). Vaccines for S. Typhi and/or S. Paratyphi are to be given at nine months, as disease peaks 

at two years of age, and vaccines for iNTS are to be given between 2 and 4 months of age, prior 

to the disease peak at one year of age (Podda et al., 2010; MacLennan et al., 2008; Feasey et al., 

2010). 

Although a humoral response is sufficient to clear S. Typhi infections, both antibody and 

cell-mediated immunity are required for proper clearance of iNTS. This had been shown in field 

studies in sub-Saharan Africa, where age-related prevalence of iNTS disease in children declined 

with acquisition of specific antibody (MacLennan et al., 2008). In addition, serum antibodies had 

shown in vitro bactericidal activity and oxidative killing of iNTS (MacLennan et al., 2008; 

Gondwe et al., 2010). It had also been demonstrated that O-antigen-based conjugate vaccine 

candidates can induce sufficient protection against otherwise lethal doses of Salmonella in mice 

(Simon et al., 2011; Watson et al., 1992). Passive transfer of monoclonal antibodies specific for 

O-antigen was also able to confer protection against lethal doses of Salmonella challenge (Carlin 

et al., 1987; Singh et al., 1996). Immunization of animals with heat-killed invasive African S. 

Typhimurium 313 strain leads to majority of antibody to be mounted against O-antigen (Rondini 

et al., 2013). On the other hand, the importance of cell-mediated immunity in clearing iNTS is 

apparent through the association between HIV infection and predisposition to iNTS, especially 

when the CD4+ count is below 200 cell/uL (Gordon et al., 2002). HIV is also known to increase 

susceptibility to NTS through dysregulation of cytokine response, humoral immunity, and 

disruption of the integrity of the gastrointestinal mucosa (Mackaness et al., 1966; Lazarus and 

Neu 1975). Therefore, vaccine candidates that induce protective mucosal immunity, preventing 

gastroenteritis and NTS invasion from the gastrointestinal tract, would be highly beneficial for 

HIV-infected individuals (MacLennan et al., 2014). 

Currently there are several different types of novel Salmonella vaccine candidates being 

tested (Table 1.3.2(a)) which fall in to three main categories: glycoconjugate, live attenuated, and 
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subunit vaccines. Glycoconjugate vaccines covalently link a poorly immunogenic antigen, such 

as a bacterial surface polysaccharide, to a protein carrier molecule to activate CD4+ T cells. 

Thus, glycoconjugation is able to convert the Vi capsule or O-antigen of Salmonella from T 

independent to T-dependent antigens and facilitate the production of specific antibodies and 

memory B cells (MacLennan et al., 2014). For glycoconjugation most Salmonella vaccine 

candidates use the common carrier proteins tetanus toxoid, diphtheria toxoid, a nontoxic 

recombinant of diphtheria toxoid, or P. aeruginosa exoprotein A (rEPA) (MacLennan et al., 

2014). It had been proposed that glycoconjugate vaccines using Salmonella carbohydrates linked 

to Salmonella proteins could be more effective at inducing Salmonella-specific antibody than 

using exogenious carrier proteins, since antibody can be produced against both Salmonella 

protein and carbohydrate (Simon and Levine 2012; Svenson et al., 1979). In addition, 

conjugation to Salmonella proteins can also lead to the generation of Salmonella-specific T cells. 

It had been shown that conjugation of S. Typhimurium O:4 to its porins lead to better protection 

of mice upon challenge, instead of using porins alone or O:4 conjugated diphtheria toxoid 

(Svenson et al., 1979). As flagellin is the only Salmonella surface typing protein antigen it had 

been investigated for the ability to generate protective immunity. It had been shown in mice that 

immunisation with flagellin alone, or in conjugation with O-antigen lead to the induction of 

protection (Simon et al., 2011; Eom et al., 2013; Simon et al., 2013). For a example, 

immunization with O:4,5 and O:9 conjugated to Salmonella flagellin in iNTS vaccine candidates 

lead to enhanced protective immunity (Simon et al., 2011; Bobat et al., 2011). Flagellin, being 

the primary ligand for TLR5 activation, can signal to the innate immune system and lead to 

immunomodulatory effects in mice (Simon et al., 2013 Cunningham et al., 2004). One concern is 

that in some Salmonella serovars, such as in S. Typhimurium, flagellin can have phase variable 

expression and is not constitutively expressed during infection (MacLennan et al., 2014).  

Live, attenuated vaccines are able to induce both humoral and cellular immunity, and 

thereby facilitate Salmonella specific T cell responses. These vaccines are easy to deliver (orally) 

and can induce strong mucosal immune responses (Kantele et al., 2012). In addition, the 

availability of numerous Salmonella antigens on live bacteria (Table 1.3.2(b)) can allow the 

development of broad protective immune responses and even allow cross recognition between 

Salmonella serovars. The primary challenge with developing live attenuated vaccines is in 

balancing the level of immunogenicity with proper and sufficient level of attenuation 
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(MacLennan et al., 2014). Currently several live attenuated S. Typhimurium strains are being 

tested for their efficacy in preclinical and clinical studies (Table 1.3.2(a)). Also several 

recombinant Salmonella strains expressing heterologous antigens are being assessed for their 

ability to protect against various pathogens (Mittrucker and Kaufmann 2000). Furthermore, it 

will be useful to develop vaccines that require one or two doses to mount an optimal immune 

response, compared to the required three doses of the current Ty21 vaccine (MacLennan et al., 

2014). 

 

Mutated gene Gene function(s) 

galE Conversion of UDP-galactose to UDP-glucose 

aro Biosynthesis of PABA, DHB and aromatic aminoacids 

pur Biosynthesis of adenine 

htrA Protection against heat stress and oxidative stress 

cya/crp Biosynthesis of cAMP and expression of the AMP receptor 

ompR Regulation of the expression of outer membrane protein and Vi antigen 

ompC, ompF Biosynthesis of outher membrane proteins C or F 

phoP/phoQ Two-component system that is a key regulator of many virulence genes 

waaN Secondary acylation of lipid A 

recA, recBC DNA recombination and repair 

guaBA Biosynthesis of guanine nucleotides 

nuoG Expression of NADH dehydrogenase-I 

surA Biosynthesis of a peptidylprolyl-cis, trans-isomerase 

dam Expression of DNA adenine methylase 

 

Table 1.3.2(b): Salmonella genes mutated in live-attenuated vaccines. Immunization with live Salmonella 

mutated in these genes decrease the virulence and allow the induction of strong protective cell mediated and 

humoral immune responses. Table 1 of Mastroeni et al., 2001 with modifications, reproduced with kind permission 

from Elsevier. 

 

Protein-based subunit vaccines are composed of multiple antigenic epitopes, and can have 

broad coverage. A subunit approach is currently in use for multivalent pneumococcal and 

meningococcal conjugate vaccines. However, subunit vaccines, especially those using 

glycoconjugate technologies, are costly to produce and since most vaccines are to be used in the 

poorest countries, affordability remains a key factor in vaccine development. In order to balance 

the cost effectiveness, it had been proposed that multivalent vaccines composed of 5 to 6 
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antigens could provide cross protection against the majority of the iNTS serovars (Simon and 

Levine 2012). Another strategy to develop broad coverage, cross protective vaccines are to use 

highly conserved protein antigens produced through recombinant technology (Gil-Cruz et al., 

2009; Secundino et al., 2005; Salazar-Gonzalez et al., 2004). Proper antigens can be selected 

using bioinformatics analysis of whole genome sequences and reverse vaccinology (Sette and 

Rappuoli 2010). Examples of highly conserved protein antigens include flagellin and porins (i.e. 

OmpC, F, and D). Currently, recombinant and purified protein vaccine candidates are being 

tested against conserved protein epitopes (World Health Organization 2014).  Subunit vaccines 

can induce both T cell responses and antibody production; a balanced Th1-Th2 approach that is 

key to proper clearance of Salmonella. One of the downsides of subunit vaccines developed 

through recombinant technology is that it is difficult to maintain and preserve the proper 

conformation of proteins, especially when there are several membrane spanning domains. This 

can result in induction of a poor antibody response. One approach is to purify proteins from 

whole Salmonella rather than relying on recombinant proteins (Salazar-Gonzalez et al., 2004). 

As glycoconjugate vaccines primarily rely on the production of antibodies specific for the 

surface carbohydrate moieties, it may not be sufficient to efficiently deal with growing iNTS 

disease. The development of new live-attenuated, protein based, or GMMA (Generalized 

Modules for Membrane Antigens) based vaccines will surve to provide broader protection by 

activating Salmonella specific T cell responses (MacLennan et al., 2014). GMMA technology is 

used to deliver outer membrane proteins and surface polysaccharides in the correct orientation 

and confirmation to induce protective immunity. The use of GMMA has adjuvant activity by co-

delivering multiple PAMPs along with the target antigens (World Health Organization 2014). 

However, to date, vaccine development has been hindered due to a lack of understanding 

regarding specific antigenic epitopes of Salmonella, complications in protein purification, and 

manufacturing issues with respect to preservation of proper protein confirmation (MacLennan et 

al., 2014).  

This is a very brief discussion of Salmonella vaccines for animals. Out of all food animals, 

Salmonella vaccine industry is most developed for poultry (Table 1.3.2(c)), with the use of live 

attenuated, inactivated, and subunit vaccines (Desin et al., 2013). In poultry S. Gallinarum and S. 

Pullorum are the main causative agents of fowl typhoid fever and pullorum disease respectively. 

In addition, S. Enteritidis, S. Typhimurium, S. Heidelberg, and S. Kentucky cause asymptomatic 
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disease, and in rare cases systemic infection in mature chickens (Desin et al., 2013). Unlike in 

humans, vaccination of chickens does not lead to clearance of Salmonella, but a reduction of the 

level of Salmonella associated with the chicken upon infection (Desin et al., 2013). In addition to 

the previously discussed issues associated with live attenuated vaccines, one additional concern 

is that the live strain could survive for extended periods in chickens posing a health risk for 

humans (Tan et al., 1997). However, live attenuated strains are capable of horizontal transfer 

among birds, and therefore promising to be highly efficient vaccine antigens (Tan et al., 1997). 

Inactivated vaccines are made of killed whole Salmonella, and birds are immunized 

intramuscularly or subcutaneously and require a minimum of two doses (Barrow 2007; Gast 

2007). Although inactivated vaccines are capable of inducing strong antibody responses, they 

can be eliminated within a short time span by the host. In addition, these vaccines require 

adjuvants to confer optimal immune responses (Barrow 2007; Gast 2007). Salmonella subunit 

vaccines are mainly administered intramuscularly or subcutaneiously; oral administration 

requires the use of proper formulations to minimize antigen degradation in the intestine. 

Although, these vaccines do not pose many of the health risks associated with live attenuated 

vaccines, they are usually poorly immunogenic and require adjuvants. However, subunit 

vaccines for Salmonella are still at an early stage of development (Mutwiri et al., 2011). 

Currently there are many vaccine candidates being tested for use in poultry including nucleic 

acid, bacterial and viral vector based vaccines (Kaiser 2010). In addition, there are vaccines and 

vaccine candidates being tested for swine, cattle, and equines (Farzan and Friendship 2010; 

Singh 2009; Smith et al., 2015). 
 

Name Description Frequency of 

immunization 

Effect 

Nobilis® SG 9R Live-attenuated Twice (6 and14-16 

weeks) 

Protection (2.5% flocks were 

positive relative to 11.5% of control 
 

TAD Salmonella 

vac® E 

Live-attenuated Three doses (1 day, 6 

weeks, 16 weeks) 

Protection (12/28 liver, 6/28 

oviduct, 9/35 egg samples positive 

relative to control 22/30, 15/29, 

15/35 respectively) 
 

Megan® Vac 2 Live-attenuated Three doses (1 day, 2 

weeks, 5 weeks) 

Protection (38% cecal and 14% 

reproductive tract samples positive 

relative to control 68% and 52% 

respectively) 
 

Salenvac®  Inactivated Twice (1 day and 4 

weeks) 
 

Protection from shedding and 

reduction of colonization 
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AviPro®  

Salmonella vacT 

Live-attenuated Broiler: 1 dose, 

Layers/Breeders: 1 day, 

7 weeks, 16 weeks 
 

Limited persistence in internal 

organs and long lasting protecton 

from S. Typhimurium 

AviPro®  

Salmonella vacE 

Live-attenuated Three doses Short duration of shedding and 

protection from S. Enteritidis for 

laying hens 

Layermune SE® Inactivated Twice (5 and 9 weeks) Reduction of colonization in layers 

only 
 

Poulvac SE® Inactivated Twice (12 and 20 

weeks) 

Protection in day old chicks (7/25 

positive chicks relative to control 

25/25) 
 

Corymune® 4K 

and 7K 
 

Inactivated Twice (5 and 9 weeks) 
 

Minor effect on colonization 

 

Table 1.3.2(c): Commercial Salmonella vaccines for poultry. A brief summary of some widely used commercial 

live attenuated and inactivated vaccines in poultry against Salmonella colonization. Table adopted from Opinion of 

the scientific panel 2004 and Desin et al., 2013. 

 

Our group has previously discovered a novel surface associated polysaccharides termed O-

Antigen capsule in Non-Typhoidal Salmonella (NTS). The O-Antigen capsule is considered to 

be a common surface antigen, since the biosynthesis genes and cross-reactive material have been 

detected in all subgroups of Salmonella. In addition, the O-Antigen capsule genes were found to 

be expressed during in vivo infections in mice. Such an antigen would be a suitable candidate in 

developing a vaccine against Salmonella induced gastroenteritis. The goal of this research was to 

evaluate the potential of using O-Antigen capsule as a vaccine antigen to develop a traveler’s 

vaccine for gastroenteritis caused by NTS serovars.  
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2.0 HYPOTHESIS AND OBJECTIVES  

 

HYPOTHESES: 

 Deletion of the putative repressor of the O-Antigen capsule operon will boost the activity of the 

promoter and lead to more capsule production.  

 Immunization with purified S. Typhimurium O-Antigen capsule will generate an antibody 

response in rabbits and mice against the O-Antigen capsule. 

 

OBJECTIVES: 

1. To purify the O-Antigen capsule and to determine the best possible method to increase 

the yield of the capsule, while decreasing LPS contamination. 

2. To determine the appropriate dosage of O-Antigen capsule required to obtain the best 

possible immune response in mice immunized with purified S. Typhimurium O-Antigen 

capsule. 

3. To characterize the gene expression of the O-Antigen capsule operon. 
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3.0 MATERIALS AND METHODS  

 

3.1 Bacterial Strains and Growth Conditions 

 

Unless otherwise stated, the following were the standard conditions used in bacterial 

culture preparations. O/N cultures were grown in LB +/- antibiotic and incubated at 37oC. 

Antibiotic concentrations were as follows: Amp 100ug/mL (Amp100), Cm 10ug/mL (Cm10) or 

30ug/mL (Cm30), Tet 7ug/mL (Tet7), and Kan 50ug/mL (Kan50). For O-Antigen capsule 

purification, cells were grown on EPS agar and/or 1% Tryptone agar at 28oC-30oC for 5 days 

(detailed description in 3.4.1 “O-Antigen Capsule and X-factor Purification”). 

Luciferase assays were carried out in 1% Tryptone media with 50ug/mL Kan at 30oC. 

Bacterial strains used in this study are presented in Table 3.1. Some strains will be discussed in 

more detail in the 4.0 “Results” section.  

 
Strain Source 

 

E. coli DH10B Quandt J., and Hynes M.F. (1993). 

Gene. 127(1):15-21. 

H. Somni (HS25) Dr. Andrew Potter’s Lab, VIDO-

InterVac, University of 

Saskatchewan: Alberta field lot 

isolate from 1983 (lung isolate from 

a female cow with pneumonia) 

S. Enteritidis 27655-3b ΔbcsA White et al., (2003). Journal of 

Bacteriology. 185(18):5398-5407. 

S. Heidelberg S4825-1.1 phagetype19 Agri-Food Laboratories Branch, 

Food Safety and Animal Health 

Division, Alberta Agriculture and 

Rural Development (liver/spleen 

isolate from a chicken) 

S. Typhimurium ATCC 14028S WT American Type Culture Collection 

(ATCC), Manassas, VA, USA. 
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S. Typhimurium ATCC 14028S ΔyihQ Gibson et al., (2006). Journal of 

Bacteriology. 188(22):7722-7730. 

S. Typhimurium ATCC 14028S ΔbcsA This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihVW  This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihW  This Study 

S. Typhimurium ATCC 14028S WT pBR322-yihVW This Study 

S. Typhimurium ATCC 14028S WT pCS26-Pac-PyihU::lux This Study 

S. Typhimurium ATCC 14028S WT pCS26-Pac-PyihV::lux This Study 

S. Typhimurium ATCC 14028S WT pBR322-yihVW  

pCS26-Pac-PyihU::lux 

This Study 

S. Typhimurium ATCC 14028S WT pBR322-yihVW  

pCS26-Pac-PyihV::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA pBR322-yihVW This Study 

S. Typhimurium ATCC 14028S ΔbcsA pCS26-Pac-

PyihU::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA pCS26-Pac-

PyihV::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA pBR322-yihVW  

pCS26-Pac-PyihU::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA pBR322-yihVW  

pCS26-Pac-PyihV::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihVW pBR322-

yihVW 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihVW pCS26-Pac-

PyihU::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihVW pCS26-Pac-

PyihV::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihVW pBR322-

yihVW pCS26-Pac-PyihU::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihVW pBR322-

yihVW pCS26-Pac-PyihV::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihW pCS26-Pac-

PyihU::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihW pCS26-Pac-

PyihV::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihW pBR322-

yihVW pCS26-Pac-PyihU::lux 

This Study 

S. Typhimurium ATCC 14028S ΔbcsA ΔyihW pBR322-

yihVW pCS26-Pac-PyihV::lux 

This Study 

 

Table 3.1: Bacterial Strains used in this study. 
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3.2 Generating S. Typhimurium Mutants 

3.2.1 Cellulose Mutant ∆bcsA 

 

An in-frame deletion removing 1,998 bp in bcsA (encoding amino acids 165 to 828 in 

BcsA) was generated as previously described (Zogaj et al., 2001) with some modifications. 

Primer YHJ05 was modified to contain an EcoRI site instead of a BamHI site, and a new YHJ07 

primer (CCACTGCAGATTCGCGCCGCCTTCAGTAA [a PstI site is underlined]) was 

generated since S. Typhimurium bcsA contains a unique EcoRI site corresponding to amino acids 

828 to 829; primers YHJ06 and YHJ08 were used as described previously. Regions of DNA 

surrounding the bcsA gene were PCR-amplified from the S. Typhimmurium 14028S WT. The 

YHJ05+YHJ06 PCR product was digested with EcoRI and PstI to generate fragment #1 and the 

YHJ07+YHJ08 product was digested with PstI and HindIII to generate fragment #2. These 

fragments were sequentially cloned into pTZ18R, and then removed together by digesting with 

EcoRI and HindIII. The resulting product was ligated into pHSG415 and electroporated into S. 

Typhimurium 14028S (Figure 3.1.1). The allelic exchange procedure used is described in White 

et al., 2007. In potential bcsA mutant strains, the bcsA deletion was confirmed by a reduced 

product size upon PCR-amplification with Taq polymerase (New England Biolabs - NEB) and 

primers bcsAko1 (CGGCCCGTTACCTCATTCAG) and bcsAko2 

(TTCAGCACCGCTTTCGACGC); reaction conditions were as recommended by the 

manufacturer.  

 

3.2.2 Mutants S. Typhimurium ∆yihVW and S. Typhimurium ∆yihW  

 

PCR products containing the cat gene, which codes for  chloramphenicol resistance, and 50 

bp flanking regions corresponding to the beginning of yihV and the end of yihW were generated 

from pKD3 (Datsenko and Wanner, 2000) using Phusion polymerase (Fisher Scientific) and 

primers yihVWkoFOR (TTCGTGAAATTAAAATGAGCACATCGAAAATGCTTGAGGAA 

TGACCATGGGTGTAGGCTGGAGCTGCTTC) and yihVWkoREV (TTGGCCGGATAAAG 

CGCTGACGCGACCCTCCGGCGCAAGGGCGCTTGTCACCTCCTTAGTTCCTATTCCG): 

reaction conditions as recommended by the manufacturer. This PCR product was electroporated 
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into S. Typhimurium cells containing pKD46, which encodes the lambda-red recombinase gene 

products (γ,β,exo encoding Gam, Bet and Exo) required for chromosomal recombination. Gam 

inhibits RecBCD exonuclease V activity allowing Bet and Exo to gain access to DNA to 

promote recombination with cat (Datsenko and Wanner 2000). Recipient cells were plated on LB 

+ Cm10 agar and incubated O/N at 37oC. Positive clones were re-streaked on to LB + Cm30 agar 

and incubated O/N at 37oC. Positive clones were checked by PCR for the replacement of yihVW 

with the CmR marker using Taq polymerase (NEB) and primers yihVWdetect1 (GCACATCGAA 

AATGCTTGAGGA) and yihVWdetect 2 (ATATCGCCTGCATCACAGCG); reaction 

conditions were as recommended by the manufacturer.  

Deletion of yihW was performed in the same manner as deletion of yihVW described above. 

The only difference was that pKD3 amplification was performed using Phusion polymerase and 

primers yihWkoF (TAATATGAGCAGTAGGAAGC TTTTAGAGGAATGCTCATGAGTGTA 

GGCTGGAGCTGCTTC) and yihVWkoREV; reaction conditions were as recommended by the 

manufacturer. Positive clones were confirmed as described above. 

P22 phage was used to move the mutation into a clean S. Typhimurium background. This 

avoids the possibility of any secondary mutations generated as part of the lambda-red 

recombination process. In this experiment P22 was used to move the yihVW::cat and yihW::cat 

mutations into S. Typhimurium ΔbcsA strain, following standard procedures (Maloy et al., 

1990). To generate final, unmarked mutant strains, the cat gene was removed from the 

chromosome using a helper plasmid (pCP20). The pCP20 encodes FLP recombinase which acts 

on FRT (FLP recognition target) sites flanking the cat gene. For this pCP20 was electroporated 

into S. Typhimurium ΔbcsA ΔyihVW::cat strain and grown O/N at 30oC on LB+ amp100 agar. 

One isolated colony was removed from the agar using a sterile loop and re-suspended in 

Phosphate Buffered Saline (PBS). Serial dilutions were performed, and 100 L of the 10-5 and 

10-6 dilutions were inoculated onto LB agar and incubated at 42oC O/N. This step cures the cells 

of pCP20. Loss of the cat gene from the chromosome and the pCP20 plasmid was confirmed by 

patch plating of ~30 colonies onto LB agar or LB agar supplemented with Cm30 or Amp100. 

Colonies that grew on LB agar only were selected for further screening: 1) drop in PCR product 

size using Taq polymerase (NEB) and primers yihVWdetect1 and yihVWdetect2 and 2) DNA 

sequencing of the amplified PCR products.  
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Figure 3.1.1: Creation of cellulose mutant (ΔbcsA) S. Typhimurium strain. (A) Map of pHSG415 containing the 

antibiotic resistance markers. (B) Schematic representation of allelic replacement procedure. (C) Different PCR 

reactions used to generate and detect the mutation; the deleted region (blue), the gene of interest (red), PCR primers 

for detecting the deletion (black arrow), and PCR primers used for making the deletion (grey arrows). Figure 

adopted with modifications from White et al., 2007, reproduced with kind permission from Canadian journal of 

Microbiology. 
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3.3 Cloning 

3.3.1 yihVW Cloning 

 

The DNA region containing yihVW (1918bp) was PCR amplified from S. Typhimurium 

14028S genome using Phusion polymerase (Fisher Scientific) and primers yihVWFOR 

(CGCGCTGCAGCTGTTTGTGATCGTATTTGTAATTTAT) and yihVWREV (GATCGACGT 

CGCATCACAGCGCCGTTTTATTG); reaction conditions as recommended by the 

manufacturer. The resulting PCR product was digested with AatII and PstI and ligated into 

AatII/PstI cut pBR322 prior to electroporation into S. Typhimurium WT, S. Typhimurium ΔbcsA 

and S. Typhimurium ΔbcsA ΔyihVW strains. Positive clones were selected by growing on LB + 

Tet7 agar. The pBR322-yihVW ligation was confirmed by sequencing using primers yihVWseqF 

(GATCTTGCCGGGAAGCTAGAGTAAG) and yihVWseqR (GATCTTCTTGAAGACGAAAG 

GGCCT). 

 

3.3.2 O-Antigen Capsule Operon Cloning  

 

The 9650bp yihUTSRQPO-yshA operon was PCR-amplified from the S. Typhimurium 

14028S genome using Phusion polymerase (Fisher Scientific) and primers CloneFOR (GACTA 

GTACTTCCTCAAGCATTTTCGATGTGC) and CloneREV (GACTAGTACTACCCGCTGTG 

ATGCTGATTC); reaction conditions as recommended by the manufacturer. Since the region of 

DNA was so large, there were no unique restriction sites available for cloning purposes, thus 

blunt-ended ligations were performed.  In one cloning strategy, yihUTSRQPO-yshA PCR product 

and pACYC184 were both digested with ScaI and ligated together. In another strategy, 

yihUTSRQPO-yshA PCR product was digested with ScaI while pBR322 was digested with ScaI 

and ZraI. The yihUTSRQPO-yshA cloning was also tried by only digesting pACYC184 with 

ScaI.  

Once it was determined that yshA was not part of the O-Antigen capsule operon (RNA-seq; KD 

MacKenzie, Y Wang and AP White, unpublished data), a second blunt end cloning was 

performed. PCR amplified yihUTSRQPO (8890bp) from S. Typhimurium 14028S genome using 

Phusion polymerase and primers CloneFOR and CloneREV2 (GACTAGTACTTTCAAATATA 
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GGGAAGCCGC); reaction conditions were as recommended by the manufacturer. This PCR 

product was naturally blunt ended. Then the yihUTSRQPO PCR product and pACYC184, which 

was digested with EcoRV, were ligated together.  

 

3.4 Purification 

3.4.1 O-Antigen Capsule and X-factor Purification 

 

An O-Antigen capsule purification method was adopted from Gibson et al., 2006 with 

modifications. 300uL of S. Typhimurium O/N cultures were spread on agar plates (d=140mm) 

containing either 1% Tryptone media or EPS (extracellular polysaccharide) media (pH 8.23) that 

contain 0.05% yeast extract, 1% D-glucose, 1.5% agar, 10mM sodium phosphate dibasic 

anhydrous, 0.1% ammonium chloride, and 0.3% potassium phosphate monobasic. Cells were 

incubated at 28oC-30oC for five days, following which cells were scraped off agar surfaces, re-

suspended in 1%, 5% or 10% phenol, and gently mixed at room temperature for 1h to lyse the 

cells. This was followed by centrifugation (16,000xg, 4h, 4oC) to separate polysaccharides from 

other cell material. Polysaccharides were precipitated by mixing the supernatant with four 

volumes of ice cold acetone while continuously stirring. The pellet containing cellular debris was 

discarded. Precipitated material was stored overnight at -20oC to allow for any further 

precipitation. The precipitate in the acetone/supernatant solution was collected by centrifugation 

(6000xg, 20min, 4oC), air dried, dissolved in ddH2O and dialysed (10K MWCO – SnakeSkin 

Dialysis Tubing, Thermo Scientific) against dH2O for 48h at 4oC. This solution was lyophilized 

(Freeze-dried) and the dry weight of the polysaccharide material was measured prior to further 

purification using anion and size exclusion chromatography.  

The fractions eluted at the end of anion exchange chromatography of O-Antigen capsule 

contained the X-factor. Therefore, at this stage, both the X-factor and the O-Antigen capsule 

were extracted together from the cells. 

Anion Exchange Chromatography 

The lyophilized polysaccharides were dissolved in 95mL of buffer A (15mM NaOAc, 

0.05% Triton X-100 pH 5.5) and 0.01% sodium azide, and heated at 37oC for 10-15min. The 

sample (100mL of diluted curde sample, pH 5.53, electrical conductivity 540uS/cm) was filtered 

through a 0.22µm filter prior to loading onto the Q Sepharose FF xk50/11.5 column. The flow 
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rate was 8.5mL/min, and the fraction size was 20mL. Then the column was washed with 2 

column volumes of 100% buffer A followed by 1.6 column volumes of 7% buffer B (1.5M 

NaOAc, 0.05% Triton X-100, pH 5.5). Next, buffer B concentration was increased sequentially 

to 17% (1.25 column volumes), 50% (1.25 column volumes) and 100% (1.5 column volumes) 

prior to flushing the resin with 2 column volumes of buffer D (2M NaCl). The cleanest fraction 

of the O-Antigen capsule eluted with 17% buffer B, whereas less pure fractions eluted with 7% 

and 17% buffer B. Western blotting confirmed which peaks or fractions corresponded to the O-

Antigen capsule after anion exchange chromatography. The capsule fractions that eluted with 7% 

buffer B were run separately on size exclusion resin. Final fractions, eluted in 2M NaCl, 

contained the X-factor, which was collected and run separately on size exclusion 

chromatography. 

Size Exclusion Chromatography 

Fractions from anion exchange were pooled together according to purity and concentrated 

(50K MWCO - centrifugal filters, Millipore). These fractions (2.0-7.5mL) were filtered through 

a 0.22µm syringe tip filter prior to loading on to the Superdex S300 prep grade xk26/95 column. 

The flow rate was 0.45mL/min and the fraction size was 7.5mL. Although the O-Antigen capsule 

was expected to elute in 1 column volume (185-190mL of retention volume), the sample was 

eluted with 3 column volumes. 

Fractions containing the O-Antigen capsule were concentrated either with a Millipore-

Amicon Ultra-15 Centrifugal Filter Device or using a vacuum concentrator. Then these fractions 

were mixed with SDS sample buffer, boiled for 5min at 95oC, centrifuged at 3800xg for 5min 

and run on either a 7.5% resolving SDS-PAGE gel alone or on a 12% resolving and 5% stacking 

SDS-PAGE gel (Molecular weight standard - Precision Plus protein dual colour standard, Bio-

Rad.) Following this, samples were transferred to nitrocellulose membrane using a Trans-Blot 

SD semi-dry transfer cell (Bio-Rad Laboratories) in buffer recommended by the manufacturer. 

After transfer, the membrane was blocked in 5% skim milk either for 1h at 37oC or overnight at 

4oC. Following this the membrane was incubated for 1h in primary antibody: rabbit polyclonal 

immune serum specific for S. Typhimurium (or S. Enteritidis) O-antigen capsule (1:1000), or 

rabbit polyclonal immune serum specific for S. Typhimurium (or S. Enteritidis) X-factor 

(1:1000). Initial screening was carried out using rabbit serum specific for S. Enteritidis O-antigen 

capsule (obtained from Deanna Gibson, UBC-Okanagan). Each step was followed by washing 
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with1% TBST (Tris-Buffered Saline with 1% Tween 20). The secondary antibody (alkaline 

phosphatase conjugated goat anti-rabbit serum) was used at 1:2000 dilution. Immunoreactive 

material was visualized by incubating in BCIP (5-bromo-4-chloro-3-indolylphosphate) and NBT 

(4-nitroblue tetrazolium chloride) solution. Dot blots were performed similar to Western-blots. 

However, instead of running the sample on a SDS-PAGE gel, it was directly pipetted on to the 

Nitrocellulose membrane and allowed to air dry. Then the membrane was developed in the same 

manner as a Western blot. 

 

3.4.2 Endotoxin Removal 

 

Twenty grams of Triton X-114 (Sigma-Aldrich) and 16mg of 2,6-Di-tert-butyl-4-

methylphenol (Aldrich) were mixed and dissolved at 4oC, and this mixture was buffer exchanged 

with 10mM Tris (pH7.4) and 150mM NaCl (Bordier 1981). This solution was poured into a 

separator funnel and incubated at 30oC until the mixture separated into a large aqueous phase and 

a small Triton-enriched phase. The smaller phase was buffer-exchanged two more times with an 

equal volume of Tris-NaCl solution and incubated at 30oC. The resulting 11% Triton X-114 

solution was stored at room temperature. Following size exclusion chromatography, O-Antigen 

capsule-containing fractions were combined together and dialyzed in dH2O for 48h at 4oC (10K 

MWCO – SnakeSkin Dialysis Tubing, Thermo Scientific). The dialyzed material was 

lyophilized and the resulting powder was dissolved in dH2O at a concentration of 0.5mg/mL. An 

aliquot of this solution was saved as a “pre-LPS removal” control for use in subsequent 

experiments. Using the 11% Triton X-114 stock solution (described above), a 1% Triton X-114 

solution was prepared and this was mixed with 0.5mg/mL O-Antigen capsule solution. This 

mixture was initially cloudy, but turned clear (after stirring for 30min on ice or O/N at 4oC). 

After this step, the solution was dispensed in to 25mL centrifuge tubes and incubated for 30min 

at 37oC (after which the solution turned cloudy). The tubes were centrifuged for 30min at 1200xg 

at 25oC, and the solution separated in to two phases. The upper phase containing the O-Antigen 

capsule was mixed with 2% Triton X-114 and extracted as per 1% Triton. The lower LPS 

containing phase was stored separately at 4oC. The 2% Triton step was repeated for a total of 

three times. Centrifugation speed and time for each step was adjusted to obtain the best 
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separation of the two phases. This procedure was adopted with modifications from Adam et al., 

1995.  

To remove Triton X-114 from the O-Antigen capsule-containing solution, Triton-capsule 

solution was mixed with three volumes of a 2-methanol:1-chloroform solution and poured in to a 

separator funnel. Once the solution separated into two phases (at room temperature), the Triton 

X-containing lower phase was eluted. The O-Antigen capsule-containing upper phase was mixed 

again with the methanol-chloroform solution; this procedure was repeated two additional times. 

Any remaining methanol-chloroform was removed from the sample using a water aspirator. 

Following this, the sample was dialysed for 48h in dH2O at 4oC, lyophilized, and the resulting 

powder (shiny, brown powder) was weighed and recorded as the yield of the final-purified 

capsule. Purified capsule was resolved by SDS-PAGE and tested on Western blots for the 

presence of O-Antigen capsule and LPS. Capsule was detected using rabbit polyclonal immune 

serum specific for S. Typhimurium (or S. Enteritidis) O-Antigen capsule (1:1000) and LPS was 

detected using mouse monoclonal antibody specific for S. Typhimurium LPS [1E6] (Abcam: 

ab65922). Alternatively, the presence/absence of LPS was verified using silver staining as 

described by Kropinski et al., 1986.  

 The amount of LPS associated with the O-Antigen capsule was quantified using the 

Limulus Amebocyte Lysate (LAL) assay (QCL-1000, Lonza, Walkersville, MD, USA), 

according to the manufacturer’s guidelines. In this assay, the LPS quantity of crude capsule 

(prior to LPS extraction) was compared to that of the purified capsule (after LPS extraction). 

 

3.5 Immune Serum Generation  

 

Four New Zealand white rabbits were immunized subcutaneously (s.c.) with a specific 

concentration of purified (LPS removed) O-Antigen capsule or X-factor.  Group A received S. 

Typhimurium X-factor, Group B received S. Enteritidis X-factor, Group C received S. 

Typhimurium O-Antigen capsule, and Group D received S. Enteritidis O-Antigen capsule. Each 

antigen was dissolved in PBS (phosphate buffered saline) and mixed with 30% Emulsigen, 

which was used as an adjuvant. 

 Prior to primary immunization, 1-2mL of blood was collected from each rabbit as a pre-

immunization control. The immunization doses and schedule were as follows: Day0, primary 
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immunization with 100ug O-Antigen capsule or X-factor; Day21, immunization with 50ug O-

Antigen capsule or 100ug X-factor; Day42, immunization with 50ug O-Antigen capsule or X-

factor.  After each immunization 1-2mL of blood was collected from each rabbit and used to 

determine the antibody titer (ELISA). Animals were euthanized on Day 52 and blood samples 

were collected into Serum Separator Tubes. 

The blood samples were centrifuged at 3700xg for 10min at 4oC, which separated the 

blood in to three phases: the lowest phase containing cell material, the middle phase containing 

protein and the upper phase containing serum. Serum was collected and stored at -20oC. For 

ELISAs, Immulon II Immunoassay 96 well plates (Thermo Scientific) were coated with 

0.5ug/mL O-Antigen capsule in coating buffer (1.32g Na2CO3 and 3.16g NaHCO3 in 1L dH2O, 

pH 9.6) and incubated O/N at 37oC. The plates were washed with 0.5% TBST (Tris-Buffered 

Saline with 0.5% Tween 20) prior to pipetting 5% skim milk into each well and incubating for 3h 

at 37oC. Serially diluted primary antibody (rabbit serum) was added to each well and incubated 

for 1h at room temperature. Each step was followed by washing with1% TBST (Tris-Buffered 

Saline with 1% Tween 20). The secondary antibody (alkaline phosphatase conjugated goat anti-

rabbit serum) was used at 1:2000 dilution. The reaction was developed with PNPP (p-nitrophenyl 

phosphate di(tris) salt crystalline – Sigma N3254) substrate (10uL PNPP stock [1g PNPP in 

10mL substrate buffer] and 1mL substrate buffer [10mL Diethanolamin – Sigma D8885 and 

1mL 500mM MgCl2 in 1L dH2O, pH 9,8]). The reaction was stopped with 0.3M EDTA (pH 8.0) 

and absorbance measured at 490nm reference wavelength using Spectramax Plus 384 Microplate 

Reader (Molecular Devices, Sunnyvale CA). 

 

3.6 O-Antigen Capsule Dosage Trial 

 

Seven groups of ~8 week old female BALB/c mice (n=6) were immunized twice 

intramuscularly as follows: Group A: 5ug O-Antigen capsule + adjuvant, Group B: 5ug O-

Antigen capsule, Group C: 25ug O-Antigen capsule + adjuvant, Group D: 25ug O-Antigen 

capsule, Group E: 50ug O-Antigen capsule + adjuvant, Group F: 50ug O-Antigen capsule, and 

Group G: 50ug O-Antigen capsule + 30% Emulsigen (positive control group) The “triple-

combo” adjuvant was developed at VIDO-InterVac and contained CPG ODN, Poly I:C (a host 
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defense peptide), and polyphosphazeen at a 1:1:2 ratio. Mice from different groups were co-

housed in a formally randomized manner and we were blinded as to the group designations until 

the final data had been collected. All the mice in the positive control group were placed in one 

cage since Animal Care can only put six mice in a cage and there were seven groups. 

Mice were immunized on days 0, and 28 with the antigens as described above, while blood 

samples (50uL) were collected on days 0, 21, and 42. Mice were euthanized on Day 52 and all 

the blood was collected. Blood samples were separated by centrifugation, as described in 3.5 

“Immune Serum Generation” and the serum was stored at -20oC until ELISA was performed. 

ELISAs were performed as described in 3.5 “Immune Serum Generation”. For ELISAs, 

Immulon II Immunoassay 96 well plates (Thermo Scientific) were coated with 1.25uL/well O-

Antigen capsule in coating buffer. The yield of O-Antigen capsule was quite low after 

purification, and it was not possible to determine the weight. Thus with an antigen titration 

ELISA it was determined that the optimal amount of O-Antigen capsule for screening was at 

1.25uL/well. The mouse serum (pre-bleed, post 1st immunization serum, and post 2nd 

immunization serum) was used at 1:50 and 1:200 dilutions. The secondary antibody (alkaline 

phosphatase conjugated goat anti-mouse serum) was used at a 1:2000 dilution. 

 

3.7 Luciferase Assays 

 

Expression of the divergent operons (yihUTSRQPO and yihVW) coding for O-Antigen 

capsule biosynthesis was measured using promoter-luciferase fusions. DNA regions containing 

Promoter yihUTSRQPO (PyihUTSRQPO) and Promoter yihVW (PyihVW) were cloned into 

pCS26-Pac plasmid containing luxCDABE of Photorhabdus luminescens (Bjarnason et al., 2003 

and Gibson et al., 2006). The resulting plasmids were transformed into each Salmonella strain; 

promoter activation resulted in expression of luxCDABE which was measured through light 

production. Different intensities of promoter activity were reflected in the light output. To 

perform luciferase assays, O/N cultures of each reporter strain were diluted 1:600 into a final 

volume of 150uL/well containing the desired growth medium (EPS media, EPS media with 2,2’-

dipyridyl, 1% Tryptone, or LB +/- sugars) in 96-well clear-bottom, black plates (9520 Costar; 

Corning Inc.). The optical density (at 590nm) and light production (counts per second) was 

measured every 30min for 48h using a Wallac-Victor X3 multi-label plate reader  (Perkin-Elmer 
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Life Sciences, Boston MA). The strain containing pCS26-Pac with either PyihUTSRQPO or 

PyihVW was also used in assessing the light production by individual colonies. For this, each 

strain was streaked for single colonies on LB agar + Kan50 and incubated O/N at 37oC. Light 

production by individual colonies was measured using an IVIS Lumina II (Perkin-Elmer Life 

Sciences).  

 

3.8 Capsule Staining and Microscopic Imaging 

 

Capsule staining was performed using Maneval’s stain, where 10uL of Congo red dye was 

placed on a clean slide and mixed with a small amount of a colony from the desired strain (A 

single colony was touched with a pipette tip and the tip was swirled in the Congo red dye on the 

slide). The slide was allowed to air dry for ~1h. Following this, the slide was placed on a staining 

tray and flooded with Maneval’s solution (Merlan Scientific Ltd. Mississauga, ON, Canada) and 

incubated for 2min. Then the excess stain was washed off with dH2O and the slide was allowed 

to air dry for ~1h prior to visualization with a light microscope (63X objective lens). 
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4.0 RESULTS 

 

4.1 Purifications 

4.1.1 Crude Capsule Purification 

 

The purification of O-Antigen capsule was difficult in the presence of cellulose (Gibson et 

al., 2006), resulting in lower yields than what had been previously reported by others (Snyder et 

al., 2006). This was because cellulose non-specifically traps all polysaccharides, including O-

Antigen Capsule, in the extracellular matrix. In Salmonellae, bcsA codes for the catalytic subunit 

of cellulose synthase (Solano et al., 2002; Barak et al., 2007). To allow for more efficient capsule 

purification in the absence of cellulose, a deficient strain (S. Typhimurium ∆bcsA) was generated 

with allelic replacement. The final confirmation of the bcsA deletion was done by analyzing the 

colony morphology of potential mutant strains. While WT colonies were characterized by a dry, 

rough texture, undefined edges, and a pattern on top, the bcsA mutant strain colonies were 

smooth, shiny, and had round edges (Figure 4.1.1(a)).  

 

A B

 

Figure 4.1.1(a): Phenotypes of WT and bcsA mutant S. Typhimurium strains. (A) S. Typhimurium WT. (B) S. 

Typhimurium ∆bcsA. Both strains were grown on 100ug/mL Congo red + 1% Trypton agar at 28oC for 5 days. 

 

Initially, the O-Antigen capsule was purified from both S. Typhimurium ∆bcsA and S. 

Enteritidis ∆bcsA strains, but for subsequent experiments only the S. Typhimurium ∆bcsA strain 

was used. The crude polysaccharides were white, powdery material that had the texture of cotton 

(Figure 4.1.1(b)). Following crude purification of the polysaccharides, samples were further 

purified using anion exchange followed by size exclusion chromatography. Fractions from size 

exclusion chromatography were tested by Western blotting to identify O-Antigen capsule-
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containing fractions (Figure 4.1.1(c)). The size exclusion chromatograph contained two peaks, 

where the first peak was always associated with O-Antigen capsule and the composition of the 

second peak was unknown. In the absence of a stacking gel, crude polysaccharides were smeared 

on Western blots from top to bottom of the lane. Laddering seen on the bottom of lanes were 

associated with low-molecular weight LPS. Upon confirmation on Western blots, O-Antigen 

capsule-positive fractions were pooled together and used in subsequent purifications.  

 

 

Figure 4.1.1(b): Physical appearance of crudely purified polysaccharides. Crude polysaccharides were white, 

cotton like material soluble in water upon vigorous stirring or with gentle heating.  

 

 

A B

 
 

Figure 4.1.1(c): Crude O-Antigen capsule detection following chromatography. (A) Size exclusion 

chromatogram.  (B) Western blot showing crudely purified O-Antigen capsule fractions from S. Typhimurium 

ΔbcsA following size exclusion chromatography detected using rabbit polyclonal immune serum specific for S. 

Typhimurium O-Antigen capsule (1:1000).  
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For developing an effective vaccine against NTS it is important to ensure that there will be 

immune memory and cross-protection between different serovars. Therefore, it was important to 

determine early on if cross recognition of O-Antigen capsule from different serovars was 

possible for serum generated against the capsule of a given serovar. Prior to specific serum 

generation (discussed in 4.2 “Animal Trials”), S. Typhimurium O-Antigen capsule was 

visualized on Western blots using the serum specific for S. Enteritidis O-Antigen capsule 

(obtained from Deanna Gibson, UBC-Okanagan) (Figure 4.1.1(d)). In addition, crude 

polysaccharides were extracted from Salmonella serovar Heidelberg; a previously 

uncharacterized serovar with respect to O-Antigen capsule production. S. Heidelberg O-Antigen 

capsule was further purified using anion exchange (Figure 4.1.1(e)-A) and size exclusion 

chromatograms and the resulting fractions were tested on dot blots. Rabbit polyclonal serum 

specific for S. Enteritidis O-Antigen capsule was used to detect the presence of capsule in S. 

Heidelberg samples (Figure 4.1.1(e)-B). O-Antigen capsule from S. Typhimurium and S. 

Enteritidis were used as positive controls.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1.1(d): Cross recognition of S. Typhimurium O-Antigen capsule by serum specific for S. Enteritidis 

capsule: Western blot showing the crudely purified O-Antigen capsule following size exclusion chromatography 

detected using rabbit polyclonal immune serum specific for S. Enteritidis O-Antigen capsule (1:1000) – serum 

obtained from Deanna Gibson, UBC-Okanagan 
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Figure 4.1.1(e): Cross recognition of S. Heidelberg O-Antigen capsule by serum specific for S. Enteritidis capsule: 
(A) Anion exchange chromatogram and peaks corresponding to the O-Antigen capsule. (B) Dot blot showing the crudely 

purified S. Heidelberg O-Antigen capsule following size exclusion chromatography detected using rabbit polyclonal 

immune serum specific for S. Enteritidis O-Antigen capsule (1:1000) – serum obtained from Deanna Gibson, UBC-

Okanagan. S. Enteritidis (SE) and S. Typhimurium (ST) O-Antigen capsules are used as controls. 

 

4.1.2 O-Antigen Capsule Purification from Additional Mutant Strains of S. Typhimurium  

 

Through gene expression studies (discussed in 4.3 “Gene Expression Studies”) it was 

observed that the promoter for the O-Antigen capsule operon (PyihUTSRQPO) mediated elevated 

expression in the absence of the repressor YihW. Thus, the standard purification protocol using 

S. Typhimurium ΔbcsA strain grown on EPS agar was changed to include the S. Typhimurium 

ΔbcsA ΔyihVW strain grown on 1% Tryptone agar. However, during the first attempt, it was 

difficult to obtain any crude capsule from this strain. As it was not explicitly clear whether this 

was due to an inability to produce capsule by the S. Typhimurium ΔbcsA ΔyihVW strain or that 

the cell lysis method was inadequate, given that the absence of YihVW may have altered the cell 

surface dynamics, it was considered best to increase the phenol concentration during cell lysis. 

Thus, a range of phenol concentrations were tested from 2%, 5% and 10%, and 10% phenol was 

considered best in replacing the existing 1% phenol in lysing cells. 
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As the deletion of yihVW resulted in S. Typhimurium ΔbcsA ΔyihVW not producing any 

crude polysaccharides, it was considered that maybe YihVW were necessary in activating or 

positively regulating the O-antigen capsule operon. Thus, yihVW were cloned in to pBR322 and 

introduced in to S. Typhimurium ΔbcsA and S. Typhimurium ΔbcsA ΔyihVW strains. However, 

during purifications, the yield of crude polysaccharides from pBR322-yihVW containing strain 

was half as much as that from the S. Typhimurium ΔbcsA strain. As a result it was unclear 

whether YihVW were acting as activators or repressors of the O-Antigen capsule operon. One 

explanation was that maybe YihV (a kinase) was involved in capsule production, and deletion of 

yihV interfered with this process. Therefore, a yihW deletion strain was constructed to determine 

whether the absence of YihW and the presence of YihV may lead to an increase in capsule 

production. During purification S. Typhimurium ΔbcsA ΔyihVW produced 0.6x and S. 

Typhimurium ΔbcsA ΔyihW produced 2.5x crude polysaccharides compared to S. Typhimurium 

ΔbcsA strain. Therefore YihV may have a regulatory role in promoting capsule production.  

Crude polysaccharides from all three strains: S. Typhimurium ΔbcsA, S. Typhimurium 

ΔbcsA ΔyihVW and S. Typhimurium ΔbcsA ΔyihW, were further purified through anion 

exchange and size exclusion chromatography and resulting O-Antigen capsule fractions were 

visualized on a Western blot (Figure 4.1.2). Capsules from all three strains were detected using 

rabbit polyclonal serum specific for S. Typhimurium O-Antigen capsule. Although S. 

Typhimurium ΔbcsA ΔyihW produced more crude polysaccharides, capsule material from all 

three strains visually appeared the same and had bands of same thickness on the Western blot. 

The O-Antigen capsule was associated with the top of the resolving gel while the lower 

molecular weight LPS bands appeared below the capsule. 
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Figure 4.1.2: Comparison of Crude O-Antigen capsule between three different strains. Crudely purified O-

Antigen capsule samples from S. Typhimurium ΔbcsA, S. Typhimurium ΔbcsA ΔyihVW, and S. Typhimurium 

ΔbcsA ΔyihW following size exclusion chromatography were detected using rabbit polyclonal immune serum 

specific for S. Typhimurium O-Antigen capsule (1:1000).  

 

4.1.3 Endotoxin Removal 

 

Size exclusion chromatography separates molecules based on their size. Following size 

exclusion chromatography, LPS, being a lower molecular weight molecule, was expected to be 

separated from higher molecular weight O-Antigen capsule. However, in Western blots 

conducted following chromatography, there was a distinct LPS banding pattern at the bottom of 

each lane containing the O-Antigen capsule samples (Figure 4.1.3(a) left lane). To specifically 

test for the presence of LPS, crude O-Antigen capsule samples were separated on a SDS-PAGE 

gel and either transferred to a membrane and detected using mouse monoclonal serum specific 

for S. Typhimurium LPS [1E6] (Abcam: ab65922) (Figure 4.1.3(a) right lane) or silver stained; a 

procedure highly sensitive to bacterial LPS in polyacrylamide gels. Both of these methods were 

able to confirm that LPS was associated with crudely purified O-Antigen capsule even after 

chromatography. 
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The presence of LPS in a vaccine is not desired as LPS is pyrogenic, can lead to 

inflammation, endotoxic shock and even death. For purposes of this vaccine, the concern is that 

if LPS is present in the vaccine, the immune response mounted will be against LPS and not the 

O-Antigen capsule. Immune response to LPS is known to be strain specific and will not provide 

cross-protection. In this case, the vaccine will not be effective. As such, there was a pressing 

need to remove LPS from O-Antigen capsule.  

 

Figure 4.1.3(a): Detection of LPS associated with crude O-Antigen capsule. O-Antigen capsule and LPS were 

visualized using: left lane - rabbit polyclonal serum specific for S. Typhimurium O-Antigen capsule, right lane - 

mouse monoclonal serum specific for S. Typhimurium LPS [1E6] (Abcam: ab65922). 

 

LPS and O-Antigen capsule are both polysaccharides associated with the ECM. However, 

there are unique distinguishing features between the two polysaccharides. For example, in S. 

Typhimurium O-Antigen capsule, both abequose and galactose residues are partially substituted 

with a polymeric glucose side chain. However in LPS only galactose residue is substituted with a 

glucose side chain (Figure 4.1.3(b)). In addition, O-Antigen capsule has over 2300 repeat units 

while LPS has only 20-30 repeat units. Also, LPS is attached to the cell surface through the lipid-

A core region, while the O-Antigen capsule is covalently attached to an uncharacterized 

glycolipid anchor (Snyder et al., 2006 and Gibson et al., 2006). Furthermore, LPS has an overall 
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lower net charge than O-Antigen capsule and can be separated by anion exchange 

chromatography. 

 

 

 

Figure 4.1.3(b): Schematic representing the linear configuration of the S. Typhimurium O-Antigen capsule 

and LPS. Both abequose and galactose residuces on the O-Antigen capsule are partially substituted with a glucose 

side chain, while only galactose in LPS has this modification. 

 

Following chromatography O-Antigen capsule-containing fractions (confirmed using 

Western blots) were pooled together and mixed with Triton X-114, which acts as a detergent and 

dissociated LPS molecules from O-Antigen capsule. This procedure was adapted from Adam et 

al., 1995. At room temperature Triton X-114 solution separated into two phases where the 

dissociated LPS molecules were associated with the micellar rich lower phase, while the O-

Antigen capsule was associated with the micellar poor upper phase (Figure 4.1.3(c)) (Wang and 

Coppel 2002). The original protocol was to remove LPS by performing a series of seven Triton 

X-114 extractions (Adam et al., 1995). However, it was found that four Triton X-114 extractions 

of the O-Antigen capsule sample removed a significant amount of LPS and left a detectable 

amount of O-Antigen capsule. In capsule purification, the additional incubation steps with Triton 

X-114 reduced the amount of LPS, but also decreased the final concentration of O-Antigen 

capsule. Upon removal of Triton X-114 from the sample with a methanol-chloroform mixture, 

the presence of the O-Antigen capsule and reduction of LPS was confirmed with Western blots 

(Figure 4.1.3(d)). O-Antigen capsule was faintly visible when using serum specific for S. 

Typhimurium O-Antigen capsule, as most of the capsule had been lost during the purification. 

However, LPS was not present at a detectable level in the purified capsule sample. 
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Figure 4.1.3(c): Schematic representation of Triton X-114 phase separation. Triton X-114 separated at room 

temperature in to a micellar poor upper phase containing O-Antigen capsule and a micellar rich lower phase 

containing LPS. Figure extracted from Magalhaes et al., 2007, reproduced with kind permission from Journal of 

Pharmacy and Pharmaceutical sciences. 

 

The amount of remaining LPS associated with O-Antigen capsule was quantified with 

Limulus Ameobocyte Lysate (LAL) assays (www.lonza.com). LAL is a extremely sensitive 

assay and thus the results were considered highly accurate. In one purification round, crudely 

purified S. Typhimurium O-Antigen capsule, prior to LPS removal, had an LAL value of 

1.84*108 EU/mg. Upon LPS removal with Triton X-114, the LAL value was reduced to 2.5*103 

EU/mg. Although the LAL value was not zero, this was a significant reduction in the 

concentration of LPS compared to that of the crude material, and was within the biologically safe 

limit to administer to mice. According to Beutler et al., 1985, LD50 was achieved when 4.55*106 

EU/ml of edotoxin was administered to a 20g mouse. Copeland et al., 2005 demonstrated that 

administration of 1.0*103EU/mL of endotoxin to a 20g mouse was non-lethal. The final purified 

O-Antigen capsule had 2.5*103 EU/ml of edotoxin, and the highest dose of antigen administered 

to mice was 50μg. Therefore in 50μg there was 1.25*102EU of LPS, which was within the 

biologically acceptable limit to administer to mice. 

In previous purifications it was determined that it was not possible to remove all the LPS 

without greatly reducing the O-Antigen capsule concentration as well. Thus, at this level, there 

was sufficient LPS removed for the vaccine to be biologically safe and sufficient O-Antigen 

capsule remaining to mount a protective immune response.  Throughout the purification process, 
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the concentration of O-Antigen capsule had been greatly reduced that at the end only a small 

fraction of the starting material was still present (Figure 4.1.3(e) and Table 4.1.1).  

 

 

Figure 4.1.3(d): Purified O-Antigen capsule detected on western blots. Triton X-114 treated O-Antigen capsule 

tested on Western blots for the presence of capsule and reduction of LPS. Purified capsule treated four times with 

Triton X-114. Crude capsule prior to LPS removal was used as a control. Detected using: (A) rabbit polyclonal 

serum specific for S. Typhimurium O-Antigen capsule, (B) mouse monoclonal serum specific for S. Typhimurium 

LPS [1E6] (Abcam: ab65922). 
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Figure 4.1.3(e): The yield of O-Antigen capsule throughout the purification process. 

 

4.1.4 Influence of Growth Media on Capsule Yield 

 

In order to optimize O-Antigen capsule production, many different growth conditions 

were assessed both for PyihUTSRQPO activity and the yield of crude polysaccharides. It was 

observed that growth of S. Typhimurium ΔbcsA ΔyihVW on Tryptone agar produces ~2.3 

times more crude polysaccharide compared to growth on EPS agar. However, this increase in 

yield did not reflect the100-fold increase in PyihUTSRQPO activity observed in luciferase 

assays (discussed in 4.3 “Gene Expression Studies”). Thus, initially the low yield was 

considered to be a result of improper cell lysis. However, further reasoning indicated that even 

if the cells were not being lysed properly, O-Antigen capsule had to be produced, as 

PyihUTSRQPO was highly expressed under the same growth conditions. Using Western blots, 

the presence of the capsule was tested in the following samples: cells scraped off agar surfaces 

(cells), the cell debris pellet following phenol lysis and centrifugation (pellet), the 

polysaccharide precipitate following acetone treatment (precipitate), and the supernatant of 

this precipitate (supernatant). Both the cells and the pellet were normalized to 1.0 OD600, 
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(OD600 is optical density or absorbance of a samples when the wavelength is at 600nm) and the 

precipitate and supernatant were lyophilized and used at 0.5mg/mL.  

The majority of O-Antigen capsule was present in the precipitate sample with high 

molecular weight material corresponding to the O-Antigen capsule (Figure 4.1.4(a)). Cells and 

the pellet had low levels of capsule, while the supernatant did not appear to contain capsule. 

This assay was repeated with identical results for S. Typhimurium ΔbcsA ΔyihVW pBR322-

ΔyihVW grown on EPS agar, and S. Typhimurium ΔbcsA ΔyihVW grown on EPS argar and 

1% Tryptone agar. This indicated that although not a direct correlation of the PyihUTSRQPO 

activity observed, the cell lysis method was adequate and most of the capsule was collected 

with the polysaccharide precipitate.  

 
 

Figure 4.1.4(a): Locating the capsule. Crude O-Antigen capsule of S. Typhimurium ΔbcsA grown on EPS agar 

detected on a Western blot. Cells: cells scraped off agar surfaces. Pellet: cell debris pellet following phenol lysis. 

Precipitate: polysaccharides precipitate following acetone treatment. Supernatant: supernatant of the polysaccharides 

precipitate containing acetone. Capsule was detected using rabbit polyclonal serum specific for S.Typhimurium O-

Antigen capsule.  
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Strain # of plates

Growth 

media

% of 

phenol PYBC mg/plate WLDC PYAC PYAC (mg/plate) FWPC (ALR)

SE bcsA 40 EPS 1% 49.1mg 1.23 - - -

ST bcsA 40 EPS 1% 24.8mg 0.62 - - -

SE bcsA 46 EPS 1% 50.0mg 1.09 - - -

ST bcsA 46 EPS 1% 30.0mg 0.65 - - -

SH WT 100 EPS 1% 34.0mg 0.34 - - -

SE bcsA 168 EPS 1% 35.1mg 0.21 - - -

SE bcsA 224 EPS 1% 108.3mg 0.48 - - -

SE bcsA 331 EPS 1% 183.5mg 0.55 73.7% (135.3mg) 48.2mg 0.15 mg/plate 1.2mg/mL DNR, S-20
o
C

SE bcsA 306 EPS 1% 143.0mg 0.47 82.2% (117.5mg) 25.5mg 0.08 mg/plate 8.9mg

SE bcsA 164 EPS 1% 115.0mg 0.64 - - NDY, S4
o
C

ST bcsA 165 EPS 1% 124.9mg 0.76 - - 2.8mg

ST bcsA 130 EPS 1%

ST bcsA 95 EPS 1%

ST bcsA yihVW 95 EPS 1% Few specks - - -

ST bcsA 83 EPS 1% 62.8mg 0.76 - - -

ST bcsA pBR-yihVW 83 EPS 1% 31.6mg 0.38 - - -

ST bcsA 150 EPS 1% - - -

ST bcsA 150 EPS 5% - - -

ST bcsA 150 EPS 5%

ST bcsA 150 EPS 5%

ST bcsA yihVW 25 EPS 5% 48.3mg 1.93 - - -

ST bcsA yihVW 25 1% Tryptone 5% 110.7mg 4.43 - - -

ST bcsA 25 EPS 5% 61.4mg 2.46 - - -

ST bcsA yihVW pBR-yihVW 25 EPS 5% 54.4mg 2.18 - - -

1% Tryptone

ST bcsA yihVW 100 1% Glucose 10% 270.2mg 2.7 24.9% (67.2mg) 203.0mg 2.03 mg/plate FSD in 1mL dH2O

1% Galactose

ST bcsA yihVW 60 1% Tryptone 10% 55.6mg 0.93 - S4
o
C -

ST bcsA 60 1% Tryptone 10% 86.6mg 1.44 - S4
o
C -

ST bcsA yihW 60 1% Tryptone 10% 215.2mg 3.59 77% (165.7mg) 49.5mg 0.83 mg/plate FSD in 1mL dH2O

PYBC = Polysaccharide yield before chromatography DNR = does not react

WLDC = Weight loss during chromatography NDY = not done yet

PYAC = Polysaccharide yield after Chromatography S4
o
C = stored at 4

o
C

FWPC (ALR) = Final weight of purified capsule(After LPS removal) FSD = few specks dissolved

-

267.2mg 1.19 55.4mg 0.25 mg/plate 1.1mg/mL DNR, S-20
o
C

196.0mg 0.65

ST bcsA yihVW 100 1% Tryptone 10% 455.7mg

128.4mg

4.56 66.5% (303.2mg) 152.5mg FSD in 1mL dH2O1.53 mg/plate

79.2% (211.8mg)

0.43 - 88.5mg 0.30 mg/plate

 
 
Table 4.1.1: Amount of O-Antigen capsule isolated after each step in the purification process. Each column 

represents the yield of O-Antigen capsule following a purification step. Each row represents a single purification 

carried out for a given strain. Unavailable data is represented by a dash line “-”. 

 

The O-Antigen capsule of Salmonella is made up of four repeating sugars: galactose, 

rhamnose, mannose and abequose (in S. Typhimurium and S. Heidelberg) or tyvelose (in S. 

Enteritidis). In addition, the galactose residue is partially substituted with a glucose side chain 

(Figure 4.1.4(b)) (Gibson et al., 2006). One possible explanation for the discrepancy between 

100-fold increased PyihUTSRQPO expression and only 2.3 times more crude capsule production 

was that there may have been inadequate sugar precursors for the cells to synthesize capsule. To 
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determine if the addition of sugar would result in an obvious increase in capsule production, 

which would be signified by a change in colony morphology, S. Typhimurium ∆bcsA ∆yihVW 

was inoculated on to the following agar containing media: EPS, LB, 1% Tryptone, Terrific broth, 

Tryptic Soy, SOC, MacConkey, Brain-Heart Infusion, 2X YT, Selenite, and Brilliant Green, 

supplemented with 1%: glucose, galactose, rhamnose, mannose, fructose, lactose, maltose, 

cellobiose, sorbose, sucrose, arabinose, or ribose. However, there was no difference in colony 

morphology between cells grown on these different conditions. 

 

 

Figure 4.1.4(b): Sugar precursors of O-Antigen capsule. Repeat units of the sugar precursors of S. Typhimurium, 

S. Heidelberg and S. Enteritidis in making the O-Antigen capsule. In addition to Glucose, Galactose, Mannose and 

Rhamnose, S. Typhimurium and S. Heidelberg have abequose, while S. Enteritidis has Tyvelose as part of the O-

Antigen capsule. 

 

In order to have a closer look at the precursor sugars’ influence on colony morphology, 

single colonies of S. Typhimurium ∆bcsA were grown on 1% tryptone agar supplemented with 

100 ug/mL of the dye congo red and 1%: glucose, galactose, rhamnose, or mannose. In the base 

media without sugar or media supplemented with 1% rhamnose, or 1% mannose, colonies were 

shiny, raised, and red/orange in colour (Figure 4.1.4(c)). However, when grown in media 

supplemented with 1% glucose or 1% galactose, colonies were dry, flat, and maroon/brown in 

colour. Since the addition of rhamnose or mannose had no noticeable influence on the colony 

morphology, we did not work with them further. A crude capsule purification was performed on 

cells grown on 1% Tryptone agar without sugar or supplemented with 1% glucose and 1% 

galactose: referred to as “no sugar” and “sugar” conditions respectively. Western blotting of 

crude O-Antigen capsule purified from S. Typhimurium ∆bcsA ∆yihVW grown in no sugar and 
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sugar conditions revealed no noticeable difference between the capsules (Figure 4.1.4(d)). 

However, based on weight, the no sugar condition produced twice as much crude polysaccharide 

precipitate as the sugar condition. Therefore, it is concluded that the lack of O-Antigen capsule 

production by the ∆yihVW mutant cannot be attributed to a deficiency in precursor sugars. 

 

 
 
Figure 4.1.4(c): Effect of Sugar Precursors on S. Typhimurium ∆bcsA ∆yihVW colony morphology. Cells were 

grown at 28oC for 2 days on 100ug/mL Congo Red + 1% Tryptone agar with no sugar, 1% glucose, 1% galactose, 

1% rhamnose or 1% mannose. Addition of Rhamnose, mannose or no sugars produced red/orange colonies, while 

glucose and galactose produced maroon/brown colonies. Identical results were obtained for S. Typhimurium ∆bcsA 

strain. 
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Figure 4.1.4(d): Comparison of crude O-Antigen capsule grown on “sugar” and “no sugar” conditions. 

Western blots showing the presence of crude O-Antigen capsule following size exclusion chromatography, detected 

using S. Typhimurium O-Antigen capsule specific serum. Cells grown on: (A) ‘no sugar condition’ - 1% Tryptone 

agar (B) ‘sugar condition’ 1% Tryptone agar, 1% glucose, and 1% galactose. 

 

4.1.5 Capsule Staining and Microscopic Imaging 

 

To determine differences in capsule production, individual cells were stained for capsule 

and visualized under a light microscope. Three S. Typhimurium strains were analyzed: WT, 

ΔbcsA, and ΔbcsA ΔyihW, that were grown on 1% Tryptone agar for 2, 7, or 29 days. Histophilus 

somni was included as a negative control, since it is known to not produce a capsule (Sandal et 

al., 2011). Cells from each strain were stained with Maneval’s Capsule Stain, which is a negative 

stain, where the cells and the background are stained, but the capsules remained unstained. Upon 

visualization with a light microscope, the cells stained pink, background stained blue and capsule 

remained unstained appearing as a white halo (Figure 4.1.5). The cells from each strain changed 

remarkably over the course of the experiment. On day 2 small, individual pink cells could be 

seen surrounded by white halos in a blue background. H. somni, being a capsule negative strain, 



 

67 

had no white halos, but pink cells in a blue background. On day 7, many cells appeared as long 

filaments. The cells in these filaments were no longer individually surrounded by a capsule halo, 

but only had a capsule halo between two cells within the filament. There were also individual 

cells such as those seen on day 2. S. Typhimurium WT and S. Typhimurium ΔbcsA ΔyihW had 

another set of cells that were in short filaments, but with large white halos surrounding the 

filaments. By day 29, the colonies of each Salmonella strain were dry and rough, while 

microscopically cells were in very short filaments made up of few cells. Once again small 

individual cells were seen as in day 2. It was interesting to note that the majority of long 

filaments from day 7 were no longer present.  

Day 2 Day 7

Day 29 H. Sommni
 

 

Figure 4.1.5: Visualization of S. Typhimurium mutants under a light microscope. S. Typhimurium WT, S. 

Typhimurium ΔbcsA, S. Typhimurium ΔbcsA ΔyihW, and H. Somni cells stained with Maneval’s Capsule Stain and 

visualized on days 2, 7, and 29. Images represent S. Typhimurium ΔbcsA ΔyihW; identical results were observed for 

all three strains.  

 

4.1.6 X-Factor Purification 

 

Gibson et al. described a second uncharacterized acidic polysaccharide, known as X-factor 

that was purified as part of the extracellular matrix (2006). This polysaccharide was negatively 

charged and was comprised of 4 main sugars: glucose, galactose, xylose, and glucuronic acid, as 

well as 4 monosaccharides that did not match any known standards (DL Gibson; Salmonella 

Enteritidis This Aggregative Fimbriae and the Extracellular Matrix, PhD Thesis, University of 



 

68 

Victoria, 2000, 208 pages). The X-factor was presumed to elute differently than the O-Antigen 

capsule during anion exchange chromatography due to the O-Antigen capsule being nearly 

neutral in overall charge (Gibson et al., 2006). After analyzing all the peaks from the anion 

exchange column on Western blots using serum specific for S. Enteritidis X-Factor (obtained 

from Deanna Gibson, UBC-Okanagan) it was determined that the X-factor was retained on the 

column following elution of all other extracellular matrix components (including the O-Antigen 

capsule). The X-factor was found to elute at the end of the run, when the anion exchange column 

was ‘cleaned’ with 2M NaCl (Figure 4.1.6(a)). Furthermore, this X-factor material was found to 

be cross-reactive with O-Antigen capsule-specific serum (obtained from Deanna Gibson, UBC-

Okanagan).  

 
 

Figure 4.1.6(a): Detection of X-factor during anion exchange chromatography. Following anion exchange 

chromatography of the O-Antigen capsule, the column was washed with 2M NaCl, which eluted out the X-factor that 

reacted with X-factor specific serum. 

 

To isolate X-factor, end fractions from the anion exchange chromatography of S. 

Typhimurium O-Antigen capsule were further separated on size exclusion chromatography 

(Figure 4.1.6(b)-A). The resulting fractions were tested on Western blots using S. Typhimurium 

X-factor-specific serum (obtained from Deanna Gibson, UBC-Okanagan) (Figure 4.1.6(b)-B). 

As with the O-Antigen capsule, X-factor was also found on the stacking and upper resolving part 

of SDS gels. The laddering on the bottom of the blot corresponds to low-molecular weight LPS 
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bands. Serum specific for S. Typhimurium O-Antigen capsule recognized crude X-factor from S. 

Typhimurium, and serum specific for S. Typhimurium LPS recognized LPS associated with X-

factor (Figure 4.1.6(c)). However, since X-factor and O-Antigen capsule elute at different points 

during the anion exchange chromatography, it is unlikely that the capsule specific serum is 

recognizing O-Antigen capsule associated with X-factor. The most probable explanation is that 

capsule-specific serum is either recognizing LPS or being polyclonal, also has specificity to X-

factor. During endotoxin removal and subsequent purifications, X-factor fractions were treated in 

the same manner as O-Antigen capsule (discussed in 4.1 “Purifications”). 

 

Figure 4.1.6(b): The X-factor. (A) Size exclusion chromatogram for X-factor.  Fractions reacted with the X-factor 

specific serum is indicated by the dashed line. (B) Western blot of crudely purified X-factor samples following size 

exclusion chromatography detected using rabbit polyclonal immune serum specific for S. Typhimurium X-factor 

(1:1000).  
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Figure 4.1.6(c): Detection of X-factor by O-Antigen capsule and LPS specific serum. S. Typhimurium X-factor 

recognized by: (A) rabbit polyclonal serum specific for S. Typhimurium O-Antigen capsule, (B) mouse monoclonal 

serum specific for S. Typhimurium LPS [1E6] (Abcam: ab65922). The high molecular weight material corresponds 

to X-factor, while the low molecular weight material corresponds to LPS. 
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4.2 Animal Trials 

4.2.1 Immune Serum Generation 

 

O-Antigen capsule samples were analyzed on Western blots using polyclonal rabbit serum 

specific for S. Typhimurium O-Antigen capsule (Figure 4.2.1(a)). Initially, S. Enteritidis O-

Antigen capsule-specific serum was used (obtained from Deanna Gibson, UBC-Okanagan), but 

there was an insufficient amount for screening of O-Antigen capsule production. Thus, rabbits 

were immunized with purified (endotoxin removed) S. Typhimurium and S. Enteritids O-Antigen 

capsule and X-factor to generate immune serum against these antigens.  

 
 
Figure 4.2.1(a): Detection of O-Antigen capsule using specific serum. S. Typhimurium and S. Enteritidis O-

Antigen capsules detected on a Western blot using polyclonal immune serum specific for S. Typhimurium O-

Antigen capsule. 

 

After three sub-cutaneous (s.c.) immunizations, given at days 0, 21 and 42, the serum 

antibody titer for each antigen was compared against the corresponding pre-bleed titers (Figure 

4.2.1(b)). For S. Typhimurium and S. Enteritidis O-Antigen capsule and X-factor-specific serum, 

1:1000 dilutions of serum were used to achieve a good signal to noise ratio, and optimal use of 

serum. Each of the pre-bleed sera had poor reactivity against the antigens, as expected. The 

specificity of these different serums was further tested against the native antigen used for 
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immunization, along with testing for cross-reactivity between S. Typhimurium and S. Enteritidis. 

Both anti S. Typhimurium and S. Enteritidis O-Antigen capsule serum can cross recognize the 

capsule from the other serovar (Figure 4.2.1(c)). However, serum against S. Typhimurium and S. 

Enteritidis X-factor was not able to cross recognize X-factor between serovars. 

 

 

 

Figure 4.2.1(b): Antibody titers of rabbits that received O-Antigen capsule and X-factor immunizations. 
ELISA following 3rd immunization with the respective antigen. 30% Emulsigen was used as the adjuvant. Serum 

dilution 0 is direct serum without any dilutions. Graphs represent the antibody titers for the following antigens: (A) 

S. Typhimurium O-Antigen capsule at a titer of 46340, (B) S. Enteritidis O-Antigen capsule at a titer of 2046, (C) S. 

Typhimurium X-factor at a titer of 3140, and (D) S. Enteritidis X-factor at a titer of 61121. 
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Figure 4.2.1(c): O-Antigen capsule and X-factor recognition ability of its respective antiserum: (A) Rabbit 

polyclonal anti-S. Typhimurium O-Antigen capsule serum, (B) Rabbit polyclonal anti-S. Enteritidis O-Antigen 

capsule serum, (C) Rabbit polyclonal anti-S. Typhimurium X-factor serum, and (D) Rabbit polyclonal anti-S. 

Enteritidis X-factor serum. The high molecular weight material corresponds to the O-Antigen capsule, while the low 

molecular weight material corresponds to LPS. 

 

4.2.2 Dosage Trial 

 

Immunization experiments were carried out to determine the dosage of O- Antigen capsule 

required to obtain the best possible immune response in mice. Seven groups of mice (n=6) were 

immunized intramuscularly (i.m.) with different concentrations of purified S. Typhimurium O-

Antigen capsule, with and without adjuvant (Figure 4.2.2(a)). The adjuvant used was the “triple-

combo” formulation developed at VIDO-InterVac, that include polyphosphazenes as a delivery 

vehicle, CPG ODN (oligo-deoxynucleotides) to stimulate the innate and adaptive immune 

systems, and Poly I:C, a cationic host defence peptide, to activate antigen presenting cells and 

other immune cells (Kovacs-Nolan et al., 2009). The positive control group of mice received 

50ug of S. Typhimurium O-Antigen capsule with 30% Emulsigen as the adjuvant. There was no 

difference in immune response between treatment groups that received O-Antigen capsule alone 
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or in combination with the adjuvant (Figure 4.2.2(b)). In addition, the average post-immunization 

titer was the same as the pre-immunization (pre-bleed) immune response, indicating that 

immunization with O-Antigen capsule did not generate a detectable level of capsule specific 

antibody. 

 

 

 

 

Figure 4.2.2(a): Dosage Trial - Antigen used and the immunization schedule. Top figure: concentration of O-

Antigen capsule and adjuvant used to immunize mice in each treatment group (n=6). Bottom figure: the 

immunization and blood sample collection timeline. 
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Figure 4.2.2(b): Immune response in mice immunized with purified O-Antigen capsule. Each group (n=6) 

received a different concentration of O-Antigen capsule with or without adjuvant. A positive control group received 

50ug antigen with 30% Emulsigen. Murine serum dilution was at 1:50, and rabbit serum dilution was at 1:1000. This 

was a controlled, randomized, double-blinded trial. 
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4.3 Gene Expression Studies 

4.3.1 Luciferase Assays and Repressor YihW 

 

Since purification of the O-antigen capsule was a difficult, inefficient and time-consuming 

process, we wanted to determine if genetic manipulation could be used to increase the amount of 

O-Antigen capsule produced by Salmonella. The genes responsible for O-Antigen capsule 

production in Salmonella are distributed into two divergently transcribed operons: yihUTSRQPO 

and yihVW (Figure 4.3.1(a)). YihU is a putative oxidoreductase, similar to E. coli 

hydroxybutyrate dehydrogenase for alternative succinic semialdehyde metabolism (Saito et al., 

2009; NCBI-blastn 2015). YihT is a putative aldolase and is involved in glycolysis among many 

other activities (Gorman et al., 2004; BioCyc 2015; NCBI-blastn 2015). YihS is a putative 

isomerase and is involved in the interconversion of monosaccharides such as mannose, fructose, 

glucose, lyxose, and xylulose (Itoh et al., 2008; BioCyc 2015; NCBI-blastn 2015). YihR is a 

putative aldolase-1-epimerase involved in sucrose, galactose, and trehalose degradation 

(Herzberg et al., 2006; BioCyc 2015; NCBI-blastn 2015). YihQ has homology to an α-

glucosidase that hydrolyses α-glucosyl fluoride, in addition to breakdown of glycogen (Okuyama 

et al., 2004; BioCyc 2015; NCBI-blastn 2015). In Salmonella, YihQ is involved in O-Antigen 

capsule assembly (Gibson et al., 2006). YihP is a GPH family transport protein similar to E. coli 

putative permease and is involved in transport of galactosides, pentoses, hexuronides (Herzberg 

et al., 2006; NCBI-blastn 2015). YihO is also a GPH family membrane transport protein and in 

Salmonella, is involved in O-Antigen capsule translocation from inside to the outside of the cell 

(Herzberg et al., 2006; NCBI-blastn 2015; Giboson et al., 2006). In the divergent operon, YihV 

is a putative sugar kinase with an unknown regulatory role (NCBI-blastn 2015; BioCyc 2015). 

YihW is a putative glycerol-3-phosphate regulon repressor similar to E. coli putative DeoR-type 

transcriptional regulator. YihW is predicted to encode a DNA binding protein – a transcriptional 

repressor (NCBI-blastn 2015; BioCyc 2015; Gibson et al., 2006).  

To examine the influence of YihV and YihW on O-Antigen capsule biosynthesis, a 

ΔyihVW strain was constructed using the λ–red recombination system (Datsenko and Wanner 

2000). The ΔyihVW strain yielded lower amounts of crude O-Antigen capsule compared to S. 

Typhimurium ΔbcsA strain (discussed in 4.1 “Purifications”). One possibility is that YihV and 

YihW were acting as positive regulators of yihUTSRQPO operon. To analyze this further, a 
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pBR322 plasmid construct containing yihVW was generated and transformed to both S. 

Typhimurium ΔbcsA and S. Typhimurium ΔbcsA ΔyihVW strains. Chromosomal deletion and 

plasmid-based over expression of yihVW was designed to indicate the influence of YihVW on 

the expression of yihUTSRQPO operon. 

 

 

Figure 4.3.1(a): The genes responsible for O-Antigen capsule production in Salmonella. The divergent 

yihUTSRQPO operon and the yihVW operon are present in all subspecies of S. enterica. 

 

To gain information about the real time expression of yihUTSRQPO and yihVW capsule 

operons at a cellular level, the promoter (PyihUTSRQPO or PyihVW) sequences were cloned into 

a luciferase reporter vector (pCS26-Pac), designed to measure gene expression via light 

production (Bjarnason et al., 2003), PyihUTSRQPO or PyihVW was cloned in front of the 

bacterial luciferase operon (luxCDABE) from Photorhabdus luminescens. Activation of 

transcription from the inserted promoter would lead to the production of light (Figure 4.3.1(b)). 

Thus the intensity of luciferase produced was a clear indication of the promoter activity. 

Reporter strains were generated with a pCS26-Pac plasmid containing either PyihUTSRQPO or 

PyihVW.  

In all four strains tested: S. Typhimurium ΔbcsA, S. Typhimurium ΔbcsA pBR322-yihVW, 

S. Typhimurium ΔbcsA ΔyihVW, and S. Typhimurium ΔbcsA ΔyihVW pBR322-yihVW promoter 

activity of yihUTSRQPO was higher than that of yihVW under biofilm inducing conditions (i.e., 

30oC in 1% Tryptone). The highest PyihUTSRQPO activity was measured in the S. Typhimurium 

ΔbcsA ΔyihVW strain, which was 100 times higher than that of the S. Typhimurium WT or S. 

Typhimurium ΔbcsA strains (Figure 4.3.1(c)). The S. Typhimurium WT and S. Typhimurium 

ΔbcsA strains had comparable levels of PyihUTSRQPO activity. The fact that the S. 

Typhimurium ΔbcsA ΔyihVW strain had the highest PyihUTSRQPO activity indicated that 

YihVW were potential negative regulators of PyihUTSRQPO transcription. In addition, S. 

Typhimurium strains containing the pBR322-yihVW  had only basal levels of PyihUTSRQPO 

activity, indicating that over-production of YihVW decreased the promoter activity of 

yihUTSRQPO. This further supported the observation that YihV and YihW alone or together act 
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as repressors of the yihUTSRQPO operon. Thus, based on gene expression levels observed in this 

assay, S. Typhimurium ΔbcsA ΔyihVW strain was expected to produce more O-Antigen capsule.  

 

 

 

Figure 4.3.1(b): The reporter plasmid pCS26-Pac. This is a low copy number plasmid containing luxCDABE of 

Photorhabdus luminescens (Bjarnason et al., 2003). 

 

As the purification protocol involved growing cells on agar surfaces, next it was 

determined whether the gene expression observed in liquid culture in luciferase assay was also 

reflected during growth on agar. Light production by individual colonies was observed for  S. 

Typhimurium ΔbcsA, S. Typhimurium ΔbcsA pBR322-yihVW, S. Typhimurium ΔbcsA ΔyihVW, 

and S. Typhimurium ΔbcsA ΔyihVW pBR322-yihVW strains. As observed in liquid culture, the 

highest PyihUTSRQPO expression occured in the S. Typhimurium ΔbcsA ΔyihVW strain – 

approximately 100 times more PyihUTSRQPO expression as compared to S. Typhimurium 

ΔbcsA (Figure 4.3.1(d)). In contrast, the S. Typhimurium ΔbcsA pBR322-yihVW and S. 

Typhimurium ΔbcsA ΔyihVW pBR322-yihVW strains had lowered light production. Therefore, 
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when comparing among the strains, growing cells on agar or liquid had no clear difference in 

PyihUTSRQPO activity.  

 

Figure 4.3.1(c): PyihUTSRQPO activity of different S. Typhimurium strains. Promoter activity of yihUTSRQPO 

in S. Typhimurium WT, S. Typhimurium ΔbcsA, and S. Typhimirum ΔbcsA ΔyihVW strains with and without 

pBR322-yihVW construct grown at 30oC in 1% Tryptone. Statistics on Graph Pad Prism 6.0 Ordinary one-way 

ANOVA: P<0.0001. Each strain has a significant difference (****) compared to S. Typhimirum ΔbcsA ΔyihVW 

strain. 

 

During crude capsule purifications neither the yihVW deleted strain (S. Typhimirum ΔbcsA 

ΔyihVW) nor the yihVW over-expressed strain (S. Typhimurium ΔbcsA pBR322-yihVW) 

produced more capsule than the parent strain (S. Typhimurium ΔbcsA) (discussed in 4.1 

“Purifications”). Thus, it was considered that maybe YihV, being a putative sugar kinase, had a 

regulatory role in capsule production, and that deletion of yihV would adversely affect the 

amount of capsule produced. Therefore, a yihW deletion strain was generated using the λ–red 
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recombination system to determine whether YihW alone can provide repression and whether 

YihV was necessary for capsule production. Expression of PyihUTSRQPO was measured by 

luciferase assays.  

 

Figure 4.3.1(d): Bioluminescence images of PyihUTSRQPO activity of S. Typhimurium cells grown on LB 

agar. PyihUTSRQPO activity is measured by the level of luciferase production: (A) S. Typhimurium ΔbcsA, (B) 

S. Typhimurium ΔbcsA ΔyihVW, (C) S. Typhimurium ΔbcsA pBR322-yihVW, and (D) S. Typhimurium ΔbcsA 

ΔyihVW pBR322-yihVW 

 

The S. Typhimurium ∆bcsA ∆yihW strain had a slightly higher PyihUTSRQPO activity 

than S. Typhimurium ∆bcsA ∆yihVW strain, but the difference was not statistically significant 
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(Figure 4.3.1(e)). This indicated that YihW alone was acting as the repressor of yihUTSRQPO 

transcription. Deletion of yihW significantly increased PyihUTSRQPO activity, and over-

expression of yihVW from plasmids reduced PyihUTSRQPO activity to background levels. 

However, once again, this increase in promoter activity in the ∆yihW strain was not reflected in 

the capsule yield (discussed in 4.1 “Purifications”). These results suggested that YihV may not 

have an important positive regulatory role in O-Antigen capsule production. Thus further testing 

is required to determine the nature of YihV regulation on O-Antigen capsule production.  

 
Figure 4.3.1(e): Comparison of PyihUTSRQPO activity in S. Typhimurium ∆bcsA, ∆bcsA ∆yihVW and ∆bcsA 

∆yihW strains. Promoter activity of yihUTSRQPO in S. Typhimurium ∆bcsA, S. Typhimurium ∆bcsA ∆yihVW, and 

S. Typhimurium ∆bcsA ∆yihW strains in 1% Tryptone grown at 30oC. Statistics on Graph Pad Prism 6.0 Kruskal-

Wallis test: P<0.0001. S. Typhimurium ∆bcsA and S. Typhimurium ∆bcsA ∆yihVW strains significant (****); S. 

Typhimurium ∆bcsA and S. Typhimurium ∆bcsA ∆yihW strains significant (****); S. Typhimurium ∆bcsA ∆yihVW 

and S. Typhimurium ∆bcsA ∆yihW strains not significant. 

 

In order to externally control capsule production, native promoters (PyihUTSRQPO and 

PyihVW) were replaced with inducible promoters Pbad or Ptac (Pbad-yihUTSRQPO and Ptac-

yihVW or Ptac-yihUTSRQPO and Pbad-yihVW) using lambda red recombinase system (Strozen 
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et al., 2012). Thus, the addition of arabinose (Pbad) or IPTG (Ptac) to the growth medium would 

lead to the activation of one operon and repression of the other, thereby controlling the capsule 

production. However, cloning of this promoter construct was not successful. 

 

4.3.2 Effect of growth Conditions on PyihUTSRQPO Activity 

 

Different growth parameters were assessed to determine the optimal condition(s) for 

maximum expression of the yihUTSRQPO capsule operon. It was hypothesized that this 

condition would also lead to increased yield of O-Antigen capsule. First, cells were grown in 

three different media: EPS media, EPS media supplemented with 40uM of 2, 2’-dipyridyl (an 

iron chelator), and 1% Tryptone. The PyihUTSRQPO activity was measured as light production 

during growth. S. Typhimurium ΔbcsA, and S. Typhimurium ΔbcsA ΔyihVW strains both had the 

highest PyihUTSRQPO activity in 1% Tryptone, and the lowest activity in EPS media containing 

2,2’-dipyridyl (Figure 4.3.2(a)). S. Typhimurium ΔbcsA ΔyihVW strain had five times greater 

PyihUTSRQPO expression in 1% Tryptone than in EPS. Thus, growth in 1% Tryptone was 

considered a better alternative to EPS media. Most of the luciferase assays were performed with 

S. Typhimurium ΔbcsA ΔyihVW strain prior to construction of S. Typhimurium ΔbcsA ΔyihW 

strain. As the difference in PyihUTSRQPO activity between the two strains was not statistically 

significant, results from S. Typhimurium ΔbcsA ΔyihVW strain was not replaced with S. 

Typhimurium ΔbcsA ΔyihW strain 

Furthermore, yihUTSRQPO promoter activity of S. Typhimurium ∆bcsA and ∆bcsA ∆yihW 

strains grown in 1% Tryptone media supplemented with glucose, galactose, rhamnose, and/or 

mannose was tested (Figure 4.3.2(b)). For S. Typhimurium ΔbcsA ΔyihW, addition of each sugar 

alone or all four sugars combined did not cause a significant increase in PyihUTSRQPO activity, 

as compared to the base media without sugar added. However for S. Typhimurium ΔbcsA, 

addition of galactose, rhamnose and mannose significantly increased PyihUTSRQPO activity. 

Yet, this increase in PyihUTSRQPO activity was notably lower than the base level expression by 

S. Typhimurium ΔbcsA ΔyihW.  

For standard O-Antigen capsule purifications, the cells were grown at 30oC under biofilm 

inducing conditions. To determine if a change in temperature to physiological level would affect 

PyihUTSRQPO expression, luciferase assays were conducted at 30oC and 37oC and 
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PyihUTSRQPO activity was measured. Both S. Typhimurium ΔbcsA and S. Typhimurium ΔbcsA 

ΔyihW strains had higher PyihUTSRQPO expression at 30oC (Figure 4.3.2(c)). The S. 

Typhimurium ΔbcsA ΔyihW strain had 1.2 times more activity at 30oC, while S. Typhimurium 

ΔbcsA strain had 9.7 times more activity at 30oC than at 37oC. Therefore, growth at 30oC was 

optimal for PyihUTSRQPO expression. 

 

 

Figure 4.3.2(a): Effect of growth media on PyihUTSRQPO activity. Promoter activity of yihUTSRQPO when 

cells were cultured at 30oC on: EPS, EPS+2,2'-dipyridyl, or 1% Tryptone media. Statistics on Graph Pad Prism 6.0 

Kruskal-Wallis test: P=0.0107. For both S. Typhimurium ∆bcsA and ∆bcsA ∆yihVW strains, the difference between 

EPS and 1% Tryptone media is significant, but the differences between the EPS or 1% Tryptone media and 

EPS+2,2’-dipyridyl media are not significant. 

It was decided to determine whether O/N growth conditions would have an impact on 

PyihUTSRQPO expression during the standard O-Antigen capsule purification protocol, because 

cells were grown O/N in liquid media before inoculating onto agar. During this analysis, 

luciferase assays were performed under standard conditions: cells diluted in 1% Tryptone and 

incubated at 30oC (Figure 4.3.2(d)). The S. Typhimurium ΔbcsA O/N culture grown in LB and at 

37oC resulted in slightly higher PyihUTSRQPO expression than cells grown in 1% Tyrptone and 

at 30oC. For S. Typhimurium ΔbcsA ΔyihW there was no significant difference in 
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PyihUTSRQPO expression if the overnight cultures were grown in 1% Tryptone or LB. 

However, O/N cultures grown at 30oC had increased PyihUTSRQPO activity than cultures grown 

at 37oC. Based on these results, the optimal PyihUTSRQPO expression was expected by 

culturing S. Typhimurium ΔbcsA ΔyihW strain O/N in LB at 30oC. 

 

 

Figure 4.3.2(b): Effect of different sugar precursors on PyihUTSRQPO activity. The S. Typhimurium ∆bcsA 

and S. Typhimurium ΔbcsA ΔyihW strains were grown at 30oC on 1% Tryptone media with or without the addition 

of 1% sugar(s): glucose, galactose, rhamnose, mannose, or all four sugars. Statistics on Graph Pad Prism 6.0 

Kruskal-Wallis test: For S. Typhimurium ΔbcsA strain P=0.0015; the difference between No sugar and 1% mannose 

(*) and between 1% Mannose and all four sugars (**) are significant. For S. Typhimurium ΔbcsA ΔyihW strain 

P=0.0040; the difference between 1% Galactose and 1% Mannose (**) and between 1% Mannose and all four 

sugars (**) are significant.  
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Figure 4.3.2(c): Expression of PyihUTSRQPO under different growth temperatures. Comparison of 

PyihUTSRQPO expression during growth at 30oC and at 37oC in 1% Tryptone for S. Typhimurium ∆bcsA and S. 

Typhimurium ΔbcsA ΔyihW. Statistics on Graph Pad Prism 6.0 Mann-Whitney test: For S. Typhimurium ΔbcsA 

strain P<0.0001 (****); the difference between 30oC and 37oC growth conditions is significant. For S. Typhimurium 

ΔbcsA ΔyihW strain P=0.0366 (*) and the difference is not significant.  
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Figure 4.3.2(d): Effect of O/N culture conditions on PyihUTSRQPO activity. Effect of O/N culture growth 

medium and temperature on PyihUTSRQPO expression during subsequent luciferase assays carried out under 

standard conditions: 1% Tryptone at 30oC. Statistics on Graph Pad Prism 6.0 Kruskal-Wallis test. For S. 

Typhimurium ΔbcsA strain P=0.1435 (ns). For S. Typhimurium ΔbcsA ΔyihW strain P=0.0559 (ns).  
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5.0 DISCUSSION 

 

5.1 Concluding Remarks 

 

The O-Antigen capsule of Non-Typhoidal Salmonella is a ubiquitous surface 

polysaccharide that may become a promising vaccine candidate for immunization against NTS 

associated gastroenteritis. O-Antigen capsule biosynthesis is controlled by the divergently 

transcribed operons yihUTSRQPO and yihVW. For the purpose of this study, O-Antigen capsule 

was purified from S. Typhimurium ΔbcsA, S. Typhimurium ΔbcsA ΔyihVW and S. Typhimurium 

ΔbcsA ΔyihW strains. Comparison of crude polysaccharide yield between the three strains 

revealed that deletion of yihVW resulted in inability to extract any polysaccharides, but over 

expression of yihVW from plasmids in S. Typhimurium ΔbcsA only produced half as much crude 

polysaccharides compared to the S. Typhimurium ΔbcsA parent strain. However, deletion of 

ΔyihW alone resulted in 2.5x more crude polysaccharide production compared to the S. 

Typhimurium ΔbcsA strain. This indicates that in the absence of repression by YihW, more 

crude polysaccharides are produced, and the over expression of the YihVW negatively affect the 

crude polysaccharide yield. As the yihVW mutant strain was unable to produce any capsule, 

YihV, being a sugar kinase, may have a positive regulatory role in O-Antigen capsule 

production. However, more experiments are needed to determine the specific regulatory nature 

of YihV. 

A luciferase based reporter system was used to observe the PyihUTSRQPO and PyihVW 

activity of S. Typhimurium ΔbcsA, S. Typhimurium ΔbcsA pBR322-yihVW, S. Typhimurium 

ΔbcsA ΔyihVW, and S. Typhimurium ΔbcsA ΔyihVW pBR322-yihVW strains. In all conditions 

tested, PyihUTSRQPO had higher expression than PyihVW. The S. Typhimurium ΔbcsA ΔyihVW 

strain had 100 times higher PyihUTSRQPO activity compared to S. Typhimurium WT and S. 

Typhimurium ΔbcsA strains. In addition, strains containing the pBR322-yihVW plasmid had only 

basal levels of PyihUTSRQPO activity, indicating that over production of YihVW decreased the 

promoter activity of PyihUTSRQPO. Comparison of PyihUTSRQPO activity between S. 

Typhimurium ∆bcsA ∆yihVW and S. Typhimurium ∆bcsA ∆yihW strains showed that there was 

no significant difference in expression between the two strains. Thus the deletion of yihW 

significantly increased PyihUTSRQPO activity, and over expression of yihVW from plasmids 
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reduced PyihUTSRQPO expression to background levels, indicating that YihW alone acts as a 

repressor of the yihUTSRQPO operon.  

However, the lack of crude capsule production, even when the PyihUTSRQPO expression 

increased by 100 times compared to the parent strain indicates that there may be other regulatory 

mechanisms governing O-Antigen capsule production, such as (a) secondary RNA structures 

preventing translation of the yihUTSRQPO operon, (b) mRNA stability, (C) post-translational 

modifications, (d) or the cell simply cannot support large amounts of capsule production, 

especially if the O-Antigen capsule machinery takes precursor subunits from the LPS assembly 

pathway. Therefore further research, such as phosphoproteome studies, are needed to understand 

the discrepancy between promoter activity and capsule production. 

Upon assessment of the influence of growth conditions on the PyihUTSRQPO activity and 

capsule production, it was observed that S. Typhimurium ΔbcsA ΔyihVW strain grown on 1% 

Tryptone media resulted in the highest PyihUTSRQPO activity, at 5X more activity than when 

grown in EPS. Thus to increase capsule production, growth in 1% Tryptone was considered a 

better alternative to EPS media. In support of this, S. Typhimurium ΔbcsA ΔyihVW grown on 1% 

Tryptone agar produced ~2.3X more crude polysaccharide compared to growth on EPS agar.  

In addition, single colonies of S. Typhimurium ΔbcsA ΔyihVW grown on 100 ug/mL 

Congo red + 1% Tryptone agar in the presence of 1% glucose or 1% galactose produced dry, flat, 

maroon/brown colonies, while in the presence of 1% rhamnose, 1% mannose, or no additional 

sugars colonies were shiny, raised, and red/orange in colour. During capsule purification, the 

presence of 1% glucose and 1% galactose in the media reduced the amount of crude capsule 

obtained by half. However, luciferase assays showed that for S. Typhimurium ΔbcsA ΔyihW 

strain, addition of either sugar alone or combined all four sugars have no significant difference in 

PyihUTSRQPO activity compared to the No Sugar condition (1% Tryptone). Among the sugars 

tested, the highest activity was observed in 1% Mannose and lowest activity was observed in the 

presence of all four sugars. Nonetheless, there were no differences observed on the 

chromatograms or Western blots between crude polysaccharides extracted from cells grown in 

the presence or absence of sugar.  

Previously it had been shown that yihUTSRQPO operon is carbon catabolite repressed in 

Salmonella, and cAMP receptor protein (CRP) binding on two sites in the regulatory region of 

the yihUTSRQPO operon is required for its transcriptional activation (Villarreal et al., 2011). The 
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implication of this is that genes that allow the use of secondary carbon sources are repressed in 

the presence of glucose or other preferred carbon sources (Bruckner and Titgemeyer 2002; 

Gorke and Stulke 2008). In Salmonella, cAMP acts as a sensory signal responding to the 

availability of glucose, and in turn affects the expression of many catabolic pathways (Botsford 

and Harman 1992; Ullmann and Monod 1968). Villarreal et al., demonstrated that growth in the 

presence of glucose had a suppressive effect on the expression of PyihUTSRQPO compared to 

growth in glycerol (2011). This observation is supported by the notion that cAMP positively 

regulates yihUTSRQPO operon leading to CRP binding and transcriptional activation, while 

glucose in the medium supresses the expression of yihUTSRQPO operon (Villarreal et al., 2011). 

As growing cells on agar or liquid culture resulted in no clear difference in PyihUTSRQPO 

activity, capsule purification was carried out by growing cells on agar surfaces. Both S. 

Typhimurium ΔbcsA and S. Typhimurium ΔbcsA ΔyihW strains had the strongest 

PyihUTSRQPO expression when they were grown at 30oC. The S. Typhimurium ΔbcsA strain 

had 9.7X greater activity at 30oC as compared at 37oC, whereas the S. Typhimurium ΔbcsA 

ΔyihW strain had 1.2X more activity at 30oC, mainly because PyihUTSRQPO expression was 

already maximal in this strain. The culture conditions that the strains were grown in O/N, prior to 

inoculating the agar plates, did not pappear to influence subsequent growth or capsule 

production.  

The effects of the growth conditions on the colony morphology and capsule production 

were also assessed. Colony morphology, capsule staining, and microscopic imaging provided 

valuable information about the characteristics of different strains, but did not reveal any unique 

distinguishing features between the strains tested. Light microscopy at a higher magnification or 

visualization with an electron microscope would be able to provide more concrete information as 

to how deletion of specific genes affects the appearance and texture of the O-Antigen capsule. 

Silver staining and Western blots, using S. Typhimurium LPS specific serum, confirmed 

that crudely purified O-Antigen capsule was associated with endotoxin (LPS) even after anion 

exchange and size exclusion chromatography. Since a LPS-dominated immune response could 

prove problematic for furture vaccine development, Triton X-114 was used to remove LPS 

associated with the crude O-Antigen capsule. Although Triton extraction removed a significant 

proportion of LPS, it also reduce the concentration of O-Antigen capsule. Even though the final 

purified O-Antigen capsule had LPS associated with it (2.5*103 EU/ml as measured by the LAL 
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assay, Section 4.1.3 “Endotoxin Removal”), this was within the biologically safe limit to 

administer to mice (LD50 was 4.55*106 EU/ml - Beutler et al., 1985).  

In addition to the O-Antigen capsule, a second extracellular polysaccharide called X-factor 

was also purified and tested on Western blots. X-factor was retained in the anion exchange 

column during the elution of other extra cellular matrix components (including the O-Antigen 

capsule) and only eluted at the end when the column was ‘cleaned’ with NaCl. Furthermore, 

serum specific for S. Typhimurium O-Antigen capsule was able to recognize S. Typhimurium X-

factor, and also importantly, serum specific for S. Typhimurium X-factor was able to recognize 

S. Typhimurium O-Antigen capsule. However, in contrast to the O-Antigen capsule serum, X-

factor serum did not cross recognize between serovars, such that S. Typhimurium X-factor serum 

did not recognize S. Enteritidis X-factor and vice versa. The lack of cross reactivity in the X-

factor serum between serovars could mean the immune response is strain-specific as would be 

expected if it is generated against LPS. Therefore either the X-factor serum is primarily 

recognizing LPS specific for the given serovar or the X-factor is also strain-specific. However, 

this also indicates that O-Antigen capsule specific serum, being cross reactive, is not specific for 

LPS, or has a very low reactivity with LPS. Serum was generated by immunizing rabbits with 

purified O-Antigen capsule or X-factor from S. Enteritidis and S. Typhimurium. 

Purified O-Antigen capsule was administerd at different doses with and without adjuvant 

to mice in an effort to determine the proper dosage required to generate a robust antibody 

response. However, none of the treatment groups yielded a statistically significant immune 

response to the capsule (i.e immunization with O-Antigen capsule did not generate a detectable 

level of capsule-specific antibody). This could be due to O-Antigen capsule not being a strong 

immunogen. In addition, the antibody response could be mainly IgM driven, as would be 

expected for a pure polysaccharide antigen as the O-Antigen capsule. However, the alkaline 

phonsphatase conjugated goat anti-mouse secondary antibody was specific for both heavy and 

light chains of immunoglobulins, and thus the secondary antibody was able to recognize IgG as 

well as IgM antibodies (Thermo Scientific 2015). Therefore if O-Antigen capsule specific IgM 

was present in the murine serum this would have been detected during ELISA. 

Waite and March (2002) showed that when BALB/c mice were immunized with 

Mycoplasma mycoides subsp. mycoides small colony biotype vaccine candidates (i.e. capsular 

polysaccharide conjugated to ovalbumin and whole inactivated ultrasonically disrupted M. 
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mycoides [WID]), only mice immunized with the conjugate vaccine generated a capsule-specific 

antibody response. However, upon challenge with M. mycoides, mice immunized with the 

conjugate vaccine did not develop a protective response, while mice immunized with WID 

vaccine were completely protected and exhibited a significant reduction in the bacterial load 

despite the lack of detectable antibody production (Waite and March 2002). This indicates that 

the apparent antibody response is not necessarily a direct indication of immunity and protection.  

In another study (Svenson and Lindberg 1981) it was shown that rabbits immunized with S. 

Typhimurium O-antigen (O4 and O12) conjugated to a hapten carrier suspended in Freund’s 

complete adjuvant promptly responded with antibody titers as high as those observed after 

immunization with heat-killed bacteria. However, in mice, the same antigens generated a 50-fold 

lower response as was seen with immunizations with heat-killed bacteria. Nevertheless, 

passively transferred rabbit antibodies against the polysaccharide-hapten conjugate was able to 

protect mice against challenges of 100 times the 50% lethal dose of S. Typhimurium (Svenson 

and Lindberg 1981). It had also been shown that even in the absence of a detectable primary 

antibody response, some children were able to produce a detectable memory B cell response 

towards H. influenzae type b (McVernon et al., 2003). 

Furthermore, Waite and March showed that in contrast to mouse antisera which had high 

antibody titers but no protective antibodies, rabbit serum was able to inhibit in vitro growth of M. 

mycoides. Thus it was proposed that either the mouse antibodies to M. mycoides were not active 

in vitro or immunity to M. mycoides in mice was through cell-mediated immunity rather than 

through humoral immunity. Alternatively, it was also suggested that the mechanism of antibody-

mediated protection may differ between the antibodies of rabbits and mice (Waite and March 

2002). These observations can be applied to explain the lack of antibody production by mice, but 

not rabbits, towards the O-Antigen capsule. In addition to the possibility of O-Antigen capsule 

being a poor immunogen, rabbits and mice may respond differently towards polysaccharide 

antigens, specifically the O-Antigen capsule. 

 

5.2 Future Directions 

 

It would be valuable to consider different LPS extraction methods, such that it will be 

easier to purify more O-Antigen capsule with less LPS contamination. In addition, deletion of 
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specific LPS biosynthesis genes or mutation of genes coding for proteins involved in LPS export 

pathway could potentially positively influence the yield of the O-Antigen capsule. The impact of 

the absence of LPS on Salmonella growth has to be investigated along with whether the LPS 

export pathway is also involved in O-Antigen capsule export to the cell surface. 

To better understand the discrepancy between the increased yihUTSRQPO promoter 

activity and the lack of a corresponding increase in capsule production, a closer look at the 

stability of the mRNA molecules and quantification of the amount of each protein 

(YihUTSRQPO) produced would be valuable. This could help identifying the rate-limiting step 

in the capsule biosynthesis pathway. Another possible experiment would be to perform 

transposon-mutagenesis in the S. Typhimurium ΔbcsA ΔyihW strain to determine if disruption of 

secondary genetic factors could lead to an increase in capsule production. 

A better understanding of the antigenic epitopes of the O-Antigen capsule would serve 

valuable, such that the O-Antigen capsule can be better formulated to fully expose the antigenic 

epitopes, making it easier for the immune cells to recognize the capsule. One approach would be 

to infect mice with Salmonella and use the serum from these mice to screen NTS produced 

extracellular proteins and polysaccharides (including the O-Antigen capsule) to identify whether 

O-Antigen capsule is recognized by immune serum and also what other antigens are being 

recognized by this serum that is likely to contain antibody against these extracellular antigens of 

Salmonella. 

Going forward, it is my belief that a conjugate vaccine approach chemically coupling the 

O-Antigen capsule to flagella or outer membrane proteins from Salmonella would be the most 

promising approach for development of a NTS vaccine. If the O-Antigen capsule is found to be 

non-cross protective in vivo, then a multivalent vaccine approach, as with the pneumococcus 

PPSV23 vaccine (Shapiro et al., 1991), can be used containing capsule antigens from the most 

prevalent Salmonella serovars. 
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