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ABSTRACT 

Governments nurture their multi-disciplinary innovation systems by funding several public 

organizations to help universities and research institutes support research projects and associated 

infrastructure. To study the impact of research funding, a generic stylized model is developed using 

Agent-Based Modelling (ABM) to simulate the outcomes. To provide context, the analysis anchors the 

problem in the context of Genome Canada’s research funding efforts. The process of academic 

research and the impact of grants on its speed and output (papers published) is simulated. To compare 

the outcomes for policy choices, two measures or indices are developed for the outcomes: efficiency 

is measured by number of papers per granted money and equity is measured by a Gini coefficient (for 

papers and money granted); the Matthew effect is also tested to check for effects on equity. Defining 

academic investigators as the main agent and having investigations and grants as subagents, along with 

assumptions for the procedures and parameters, an ABM is designed in which investigators conduct 

individual research using grant and non-grant funds. The simulation model is then tested and verified 

to be used for evaluation and comparison of policy scenarios. The results revealed that the instruments 

of allocated budget per competition, the gap between competitions, the sum granted for any proposal, 

and the size of the target group may be utilized to improve the efficiency and equity of the system. 

However, there is usually a trade-off between these two objectives and a loss in one of them is 

necessary to achieve a gain in the other. The tools can be combined in order to secure better results, 

but there are other factors that should be taken into account in making decisions. Although some 

lessons can be learned from such a simple model, making it applicable to policy making and to real-

world issues, other factors such as investigator heterogeneity, collaborations, and grant administration 

complexities should be taken into account.  
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Chapter 1: 

INTRODUCTION 

As a key element in seeking economic prosperity and superiority, science and technology (S&T) policy 

addresses the public-sector measures designed to create, fund, support, and mobilize scientific and 

technological resources (Arvanitis, 2003). A typical S&T policy includes public activities such as 

investing directly in R&D, being involved directly and indirectly in business R&D and other innovation 

promoting measures. As with other industrialized countries, the Canadian government seeks to 

improve its science, technology and innovation system. Its current strategy seeks to improve Canada’s 

competitiveness through investments and activities in three key areas: the role of the private sector in 

innovation, research excellence and strategic R&D, and knowledge-based workers. The current priority 

areas in technology are environmental science; natural resources and energy; health and life sciences; 

and Information and Communications Technology (ICT) (OECD, 2012). Canada, relative to other 

Organization for Economic Cooperation and Development (OECD) member countries, relies much 

more on research undertaken in the higher education sector. Given the relative importance of scholarly 

research for economic development, there is value in investigating the design and dynamics of research 

funding and research outcomes in that space. 

Research funding is one the tools governments use in their S&T policy. There are multiple methods 

to fund research—the most important is government grants. Public grants are given to researchers to 

spend on investigations which are hoped to result in outcomes that will improve the welfare of society. 

Deciding on who gets the grant money and on the size and other attributes of the grant are among the 

policy tools in research funding. These decisions certainly affect the outcomes of the policy and 

knowledge about the impacts are necessary for better policy making. 

A generic stylized simulation model is developed here which studies the basic elements of academic 

investigation and the impact of some policy parameters on the outcomes. To provide context for the 

model, Genome Canada is explored to illustrate the applicability and working of the model. Below, the 

Canadian innovation policy is reviewed with an emphasis on Genome Canada followed by an 

articulation of the problem statement. 
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1.1 Canadian Innovation Policy and Genome Canada 

The Canadian government nurtures its multi-disciplinary innovation system, by substantially funding 

several public organizations to help universities and research centres to support research projects and 

associated infrastructure, to develop talent, and to create collaborative research and development 

networks (STIC, 2015). The most important of these organizations that receive federal investments in 

S&T policy are the National Research Council Canada (NRC), the Canada Foundation for Innovation 

(CFI), the Natural Sciences and Engineering Research Council (NSERC), the Canadian Institutes of 

Health Research (CIHR), the Social Sciences and Humanities Research Council (SSHRC), the 

Networks of Centres of Excellence of Canada (NCE), the Canada Research Chairs Program (CRCP), 

the Canada Excellence Research Chairs (CERC) and the Canada First Research Excellence Fund 

(CFREF). Along with an array of public institutes and universities whose research they support, and 

along with provincial research organizations, the above-named organizations form the public part of 

the Canadian innovation system. 

A relatively new addition to the above list was Genome Canada (GC), with a national office and six 

regional centres. The growing importance of research involving genomics1 led the federal government 

to create the five-year Canadian Genome Analysis and Technology (CGAT) program in the 1990s, 

which was later replaced by Genome Canada in 2000 (Genome Canada, 2010). As a non-profit 

organization, GC serves as a catalyst for developing and applying genomics and genomic-based 

technologies to create economic and social benefits (Genome Canada, 2016). To this end, GC connects 

ideas and people across public and private sectors to find new uses for genomics, invests in large-scale 

science and technology to fuel innovation and translates discoveries into solutions (Genome Canada, 

2016). 

The founding of GC was part of a broader governmental objective often referred to as “Canada’s 

national innovation strategy,” which also led to the creation of the CIHR and the CFI among other 

research foundations (Hinterberger, 2010). Created and incorporated under the Canada Corporations 

Act, GC’s mandate is to develop and implement a national strategy in genomics research for the benefit 

of all Canadians, by investing in large-scale genomics research initiatives in sectors of strategic and 

economic importance to Canada (i.e., health, agriculture, environment, forestry, fisheries, energy and 

                                                           
1 Genomics is an area within genetics that concerns the sequencing and analysis of an organism’s genome. The genome 

includes the entire DNA content that is present within one cell of an organism. (ISED, 2015). 
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mining), by aiming to strengthen genomics research and technical capacity in Canada, and by fostering 

multi-sectorial partnerships nationally and globally (ISED1, 2015). 

GC also works to ensure that genomics research considers underlying ethical, environmental, 

economic, legal or social aspects (GE3LS) and that the research provides Canadian scientists with 

advanced technologies and expertise for funded projects by supporting the operations of five Science 

and Technology Innovation Centres2—–STICs (ISED, 2015). Genome Canada delivers its mandate 

through six Genome Centres in British Columbia, in Alberta, on the Prairies, in Ontario, in Quebec 

and in the Atlantic region. These centres administer the funds to research projects and are responsible 

for identifying regional strengths and opportunities, monitoring compliance and performance, and 

helping secure co-funding from partners.3 

According to ISED, the main sponsor of the program, Genome Canada has received almost $1.5 

billion from it and has raised over $2.1 billion through co-funding commitments (Genome Canada, 

2017). The co-funding partners include provincial governments and agencies, international non-

governmental organizations and research institutes, industry, universities, and research hospitals. 

Structurally, ISED contributes funding directly to Genome Canada, which then launches national 

competitions and a merit review process to select the research projects it will support. Once the 

selection is completed, Genome Canada in turn funds the Genome Centres and STICs, who then 

transfer the appropriate funding to selected research projects. 

While ISED monitors Genome Canada’s program, a Board of Directors with representatives from the 

academy and industry along with a Chief Executive Officer (CEO) manage it. Previously, GC’s co-

funding commitment was based on a 1:1 ratio (between funds of ISED and those from other sources). 

Now, for every dollar provided by ISED, GC must raise two dollars from other sources, in a 1:2 ratio 

(GC, 2016). The target population served by the program is the genomics research community located 

                                                           
1 Industry Canada has changed its name to Innovation, Science and Economic Development Canada (ISED) since July, 

2017. Therefore, Industry Canada has been replaced by ISED in the thesis. 
2 These centres have been changed into ten technology platforms (see, https://www.genomecanada.ca/en/about-

us/genomics-technology-platforms) 
3 It should be noted that there exists another organization with a similar mission, called the Genomics R&D Initiative 

(GRDI). The GRDI was established in 1999 to build and maintain capacity inside government departments (initially six 
but now eight federal government organizations) and to carry out and support genomics research according to their 
respective legislative, regulatory and policy mandates (Genomics R&D Initiative, 2007 and 2014). 
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in Canadian universities, research hospitals, and non-profit research institutions. The funds are granted 

to the target population through a competitive process in a manner to achieve the most. 

The principal focus of GC’s research program is large-scale research carried out by teams of 

researchers bidding on multi-year, interdisciplinary research contracts (Doern et al., 2016)., GC has, 

then, conducted periodic competitions to fund genomics-related R&D projects. Since the start of the 

program in 2000, GC has administered seven major competitive research competitions and almost 20 

smaller-scale, more-focused research initiatives. While the first three competitive calls were open to 

any applicant, the last four were targeted on specific domains. Table 1.1 presents information on the 

competitions held. 

Table 1.1: General information on the funding competitions held by Genome Canada 

Competition # Year Area of Focus 
GC Funding 

(millions of dollars) 
Number of Projects 

Funded 

I 2000-1 All 81 17 

II 2001-2 All 146 34 

III 2004-5 All 205 33 

ABC 2008-9 Bioproducts & Crops 53 12 

LSARP I 2010 All 29.9 7 

LSARP II 2010 Forestry & Environment 30 9 

LSARP III 2012 Personalized Health 45.1 17 

LSARP IV 2014 Feeding the Future 30.8 11 

LSARP V 2015 
Natural Resources & the 

Environment 
26 NA 

Other 2003-15 19 Narrow calls >300 90* 

* Estimate 

Adapted from: Doern et al. (2016), Sharma (2013) and GC (2016) 

Since the funds could not be disbursed completely in the first round in 2001, a second round of 

competitions was held in the same year. A total of 51 projects were funded in 2001 with a budget of 
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over $290M. (Within the year 2001, GC received $160M first as a grant from the federal government 

and, shortly afterwards, received another $140M, of federal government funds. For this reason, 

Competitions I and II were held in the same year.) A few years later in 2005, 33 projects were funded 

with a budget of $346M, before funds dropped to $112M (awarding only 12 projects) in 2008-9, which 

confined the funding to specific agricultural areas (the competition was called Applied Genomics in 

Bioproducts and Crops, ABC). Since 2010, Genome Canada has turned to large-scale applied research 

projects (LSARP), focusing on specific domains at every round of funding. GC’s share of the funds is 

presented in Table 1.1 and, according to GC (2016), the Federal government, through Innovation, 

Science and Economic Development Canada, has committed $1.2 billion in funding to Genome 

Canada since 2000-01, of which approximately $1.1B has been allocated to projects and initiatives and 

$94M has been spent on operations. The total funding by GC and co-funding agencies has therefore 

been about $2.7B. 

GC competitions usually start with an announcement (call for proposals), to which scholars apply, in 

letters of intent (LOI). When the initial approval is granted by GC, the leading or principal investigators 

start forming teams and writing proposals to secure GC grants. The proposals undergo an evaluation 

process and upon approval, GC determines the size and method of funding. The funds are allocated 

and the investigations are carried out at respective universities or other research centres. When research 

projects are completed, scholars report their outcomes such as whether or not papers were presented 

and/or published, whether inventions or innovations were patented, and whether the training of 

human capital occurred, in the form of students or researchers. Figure 1 gives the basic map of the 

process. 



6 

Figure 1.1: Schematics of project funding decision process by Genome Canada 

 

To improve the research and application of genomics in Canada, GC must make choices about some 

parameters in the granting of funds. For instance, the size of the fund for each round, the size and 

diversity of the project’s team members, the target population, and the maximum grant for any single 

project are among GC’s policy variables. In order to make an informed decision about these variables, 

some knowledge about their impacts on the outcome is necessary. 

1.2 Research Objective 

As mentioned above, the main objective of this thesis is to develop a stylized simulation model for 

academic research funding. The method used is Agent-Based Modelling (ABM), which simulates the 

process of academic research and the impact of grants on the speed and output of that research. Watts 

and Gilbert (2014) argue that “simulation models of science are an excellent basis for studying 

innovation processes” (p. 135), and that innovation is best approached as a ‘social and collaborative’ 

process and that data trails are left that can be used in tracing the process, mechanisms and patterns. 

Simulation can be used for finding the mechanisms that give rise to such patterns and thereby help 

policy-makers to improve the design and function of the system. 

Here, the modelling and simulation are performed step-wise from the simplest case to a case close to 

reality. Some complex stages like networking and team-formation are left for further research. 

Although outcomes of research are beyond papers and patents, and training is also important, only the 

papers will be considered as the output. To compare the outcomes for policy choices, indices or 

measures of the outcomes are needed. In this thesis, two measures are developed to assess outcomes: 

the number of papers per granted unit of money invested, which measures efficiency; and equity as 

measured by a Gini coefficient (for papers and money granted). The policy options will be compared 
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by the outcome measures making it possible to draw policy implications generally and, by implication, 

for organizations like Genome Canada. 

The model can be used in any research funding context with some adjustments for the specific 

situation. Although investigations are assumed to be carried out individually without collaborations, 

the basic results should be valid. While this is a stylized model neglecting many features of the real 

policies. It can be adapted to real-world policies by use of more precise institutional factors and policy 

information. 
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Chapter 2: 

LITERATURE REVIEW 

2.1 ABM in Social Sciences 

Agent-Based Modelling (ABM) which is also called Individual-Based Modelling (IBM) in fields such 

as ecology (see e.g. Grimm and Railsback, 2005; and Railsback and Grimm, 2012) and Multi-Agent 

Modelling by some authors (see e.g. Gilbert and Troitzsch, 2005), was originally developed in the 1950s 

(Urban et al., 2011). Since an extensive use of computer software is made to show the dynamics of the 

agent behaviour, ABM is called a computational method and, as Nigel Gilbert describes, “agent-based 

modelling is a computational method that enables a researcher to create, analyze and experiment with 

models composed of agents that interact within an environment” (Gilbert, 2008, p. 2). ABM is a 

modelling and simulation method in which the interaction of the agents (human or non-human) is 

taken into account and this feature, along with its bottom-up construction, distinguishes it from other 

simulation methods like System Dynamics (SD) and Discrete Event Modelling (DEM). When applied 

to the social sciences, ABM is also referred to as a form of computational social science (for the realm 

and methods of computational social science, see Bankes et al, 2002; Conte et al, 2012). 

The first application of ABM to the social sciences is considered to be Thomas Schelling’s segregation 

model. Schelling (1971) used the simulation approach to illuminate racial segregation in U.S. cities. 

Schelling’s main concern was the emergence of results from individual behaviour, where the attitude 

of agents (households) towards their neighbours’ race would result in racial separation of the 

neighbourhoods. A decade later, Robert Axelrod (Axelrod, 1981) applied the technique to understand 

the cooperation of players in a prisoner’s dilemma game in the context of Darwin’s evolution theory. 

The availability of simulation computer software such as NetLogo, paved the way for extensive 

application of ABM in the 1990s in various disciplines like sociology, political science, economics, and 

business; some cases have been reviewed in Gilbert (2008). According to a review of the literature on 

applying ABM to the social sciences, out of the 279 journal articles published during 1998-2008, 

applications to economics ranked first with 29 percent of the papers followed by those to social science 

(24%), biology (14%), military studies (13%), and public policy (8%) (Heath et al., 2009). The 

establishment of the multidisciplinary Journal of Artificial Societies and Social Simulation (JASSS) in 1998 

was another major step forward. 
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Toward the end of 20th century, some scholars became interested in applying ABM to innovation and 

technological change. The first application of ABM in this context (without mentioning the term, but 

just calling it a “simulation model”) was Gilbert (1997), which simulated the structure of academic 

science and concluded that “it is possible to generate many of the quantitative features of the present 

structure of science ….” Other earlier studies were carried out in the realm of evolutionary economics and 

used some kind of simulation of the innovation process (see e.g., Ballot and Taymaz, 1997, 1999; 

Cantner and Pyka, 1998). Starting in early 2000s, the EU project of Simulating Self-Organizing 

Innovation Networks (SEIN) and its SKIN (Simulating Knowledge Dynamics in Innovation 

Networks) model used ABM simulation extensively. The results of those studies have been being 

published since then: some of the papers will be reported in the next section. Having carried out an 

almost complete review of the application of ABM (called Agent-based Computational Economics or 

ACE, in that context) Dawid states that “despite the apparent merit of the agent-based simulation 

approach for the analysis of a wide range of issues in the economics of innovation and technological 

change, the amount of relevant ACE-based work in this area is not huge” (Dawid, 2006, p. 1242). 

2.2 ABM in Innovation Context 

Modern innovation is a collective process taking place in universities and research centres (public or 

private). The network of researchers is of a great importance to this process. Accordingly, the study of 

innovation processes can be carried out from different perspectives, including process simulation, 

network analysis and other socio-economic or motivational viewpoints. Since the current study 

emphasizes simulation and networking aspects, a review of the relevant literature is presented below. 

The first attempt to simulate formal scientific activity is Gilbert (1997). After defining and classifying 

simulation models, he simulates Lotka’s Law, which states that for scientists publishing in journals, the 

number of authors is inversely proportional to the square of the number of papers published by them; 

a distribution called Zipf applies for this phenomenon. Considering science as an evolutionary process, 

Gilbert uses papers and authors to characterize the institution of science in which each paper brings a 

new quantum of knowledge. In order to represent a quantum of knowledge, he uses a sequence of bits 

and calls those sequences kenes –in analogy with genes. A kene is the knowledge contained in a paper 

and that kene can represent the relevant paper. Gilbert writes: “Papers are generated from other papers, 

sharing a kene with their generator, but modified according to the kenes of the papers which it cites” 

(paragraph 8.2). Assuming two coordinates for the kenes and placing time as the third dimension, the 
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model is run for 1000 time steps and is noticed that papers cluster in some spots. Lotka’s Law regarding 

the distribution of citations among authors is reproduced and many of the features of the academic 

science structure are generated, by using their simulation. 

Interest in the simulation of innovation processes dates to the late 1990s when Cantner and Pyka 

(1998) develop a model of technological progress at the firm level within the context of a knowledge-

based (contrary to a Neoclassical, resource-based) approach. Using this approach, they simulate the 

firms’ technological trajectory. A few years later (Pyka, 2002), motivated by a lack of detailed study on 

the theory of emergence and diffusion of innovation and its networks, Pyka uses the knowledge-based 

approach of evolutionary economics in an attempt to develop an evolutionary theory of innovation 

networks. He argues that the important features of inter-firm learning and synergies in innovation 

networks cannot be captured by a traditional, incentive-based approach. 

Teitelbaum and Dowlatabadi (2000) use the ABM simulation approach to study the innovative 

behaviour of heterogeneous firms and their interactions. In their model, firms allocate resources to 

R&D activities leading to radical or incremental innovations and new products. Their model consists 

of products (represented as binary vectors with 12-bit length like a genetic code, for product attributes 

and the skills needed to produce them), firms (profit-seeking and competing-over-market-share), 

consumers, and an environment (a lattice for locating agents). Three types of simulations are 

performed: ideal strategy distribution where firms have complete information about each other’s 

activities; effect of spillovers in which they do not have access to information of others’ innovative 

attempts; and adaptive firms in which learning and mimicking successful firms is allowed. The study 

shows that in every case, heterogeneity in firms results in better performance of the industry, implying 

that a synergy exists among firms of different innovation strategy. 

Building upon previous studies and emphasizing the importance of networks in innovation, Gilbert et 

al. (2001) develop a simulation in which the networks “evolve from the dynamic and contingent linkage 

of heterogeneous units each possessing different bundles of knowledge and skill” (paragraph 1.2). The 

European Self-Organizing Innovation Networks (SEIN) project1 is used as the case study. Ahrweiler 

                                                           
1 The SEIN (Self-Organizing Innovation Networks) project is a combination of agent-based simulation of five case studies 

in technological innovation in different European countries, started in late 1990s. Its model is called SKIN (Simulating 
Knowledge dynamics in Innovation Networks) and it is an ABM model used by the European Commission for scenario 
modelling of current and future innovation policy strategies (CRESS). The model is “a multi-agent simulation of firms 
that try to optimize their innovation performance in order to respond to the requirements of a constantly changing 
environment” (Gilbert et al, 2007, p. 100). 
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et al. (2004) use an extended version of the SKIN model to study inter- and intra-firm knowledge 

dynamics. It uses Gilbert’s kene idea but here to represent the knowledge base of a firm composed of 

units of knowledge. A triple of capability (C), ability (A), and expertise (E) represents a unit of knowledge 

and a series of these triples form a kene. These firms’ initial capital is used to produce outputs and to 

increase the knowledge base. A subset of a firm’s kene triples, which becomes the focus of its 

innovation, is called an innovation hypothesis. The hypothesis can be developed into a product using C 

and A and whose quality depends on a combination of A and E. In the same manner, inputs are 

produced and supplied by other firms and traded on the market. The production in any round increases 

the firm’s expertise (by one unit) in its innovation hypothesis (learning by doing) and the E level in 

other triples decreases by one. These firms can better their performance in an individual or cooperative 

manner and incrementally or radically; they may live in a closed, only-firms world or in an open 

environment with external suppliers and buyers. The formation of partnerships or collaborations starts 

when the firms search for potential partners by studying the capabilities of others that are disclosed in 

their advertisements. This way, the partners copy their different triples and, when the partnerships are 

profitable, a network can be formed. Start-ups are encouraged by the profitability of their businesses 

and are represented by adding new agents. The model is run in NetLogo using 100 agents. 

Gilbert et al. (2007) use the SKIN model (the same version used in Ahrweiler et al, 2004) to study 

organizational learning and its different strategies. Emphasizing that the capacity of firms to learn 

determines their competitiveness, different forms of learning by firms (by doing, by feedback, 

adaptation/incremental, and innovative/radical approaches) are modelled and their impact on the 

industry is considered. They start the simulation simply “by doing” and by receiving feedback, then 

add adaptive learning (through incremental research), then add innovative learning, and finally attain 

external knowledge through partnering and networking. The simulation reveals that a combination of 

internal research and partnership produces the best result (more innovation and fastest growth in the 

populations of the firms). Gilbert et al. (2007) conclude that in highly dynamic modern knowledge-

based businesses, learning by doing and learning by feedback, are not enough for firms to survive and 

should be combined with other forms of learning. 

After writing a critical overview of the theory of industrial organization in dealing with R&D 

collaborations, Pyka et al. (2007) study innovation networks and their development using ABM 

simulations. The same previous SKIN model is used, but the simulation results are compared with 

empirical findings from the UK and German bio-pharmaceutical industries, in order to calibrate the 
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model to real world observations. In the standard scenario, the situation in knowledge-intensive 

industries is simulated, where innovation networks are prevalent. The model starts with 500 firms of 

which 50 of them are large. The number of firms (mostly small ones) and the number of networks 

fluctuates during the simulation time with an increasing trend. Looking more closely at the networks 

reveals that most of them are small with a few actors, but a couple of large networks exist which are 

very important for knowledge flow. The next step is to change some parameters (the initial size 

distribution of firms, cooperation strategy that is conservative among similar-knowledge firms or 

progressive among diverse firms; and an attractiveness threshold which measures how quickly actors 

decide to cooperate) to build scenarios that are comparable to empirical findings. The conservative 

strategy scenarios give rise to scale-free networks (or power log distribution of networks) which are a 

feature of real-world innovation networks in knowledge-intensive industries. 

Four years later, the SKIN model is used to study the academia-industry links. According to Ahrweiler 

et al. (2011a), although there is a lot of theoretical evidence supporting the positive impact of 

universities’ presence on industry innovation, there are opposing empirical findings about links 

between universities and industry. The study applies the ABM to investigate these links and their 

impact on innovation generation and spread in industry networks. The SKIN model is extended by 

adding non-profit, homogeneous university agents, which enjoy more knowledge than firms do and 

are modelled with longer kenes; these agents were assumed to link only with other firms without 

knowledge flowing to the linked ones. To see the impact of the presence of the universities in the 

model, two scenarios, one with and one without university links, are simulated and compared using a 

statistical t-test. Based on the previous studies and arguments, four hypotheses are developed and 

tested regarding the impact of universities on the performance of the firms and of the whole system. 

Results show that university cooperation increases the knowledge and competence levels of the 

industry, enhances the variety of knowledge among the firms, and improves the quantity and velocity 

of innovation diffusion. Also, firms interacting with universities are found to be more attractive to 

other firms, when new partnerships are sought. 

There is a long-standing debate on the relative importance of strategies of individual actors (agency-

oriented patterns) and institutional frameworks of innovation systems (structure-oriented patterns) for 

the performance of those innovation systems. Ahrweiler et al. (2011b) use the same SKIN model to 

investigate the relative significance of these internal and external factors for innovative success 

(number of innovations) and for the size (number of firms) of the industry. For the agency-oriented 
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scenario, Ahrweiler et al. test whether the strategic collaborative decisions of actors are responsible for 

shaping the sector; the researchers also use the permanently changing distribution and (re)combination 

of types of capital to represent structural conditions. Using regression analysis of the data generated 

from simulations, Ahrweiler et al. show that not only the capital distribution but also the partner choice 

mechanisms matter for the innovation performance. Hence, neither the agency- nor structure-oriented 

scenarios are supreme and both are needed if an efficient system of innovation is sought. 

To see how ABM methodology can contribute, through a learning-by-modelling process, to increase 

our knowledge of complex phenomena, Triulzi and Pyka (2011) use a model of university-industry 

relationships (UIRs) in the biotech and pharmaceutical sectors. They argue that there is no consistent 

and complete evidence regarding the long-term impacts of UIRs on the innovativeness of the research 

system. Multi-agent modelling is used to reproduce the dynamics and productivity of such relations. 

Both university and firm (either diversified or specialized biotech) actors are involved to perform 

research, along with two types of funding agents (national research agency and venture capitals). The 

knowledge kene concept is used, but here with a fourth element of research direction to differentiate 

universities from firms (basic vs. applied research). Research projects are simulated to be carried out 

individually or jointly and upon success, lead to patents which directly or by licensing, create new drugs 

and increased revenues. These results show that UIRs increase incentives for universities to engage in 

applied research and cause a significant increase in the innovative potential of biotech firms. In the 

biotech and pharmaceuticals sector, public and industry research funding complements but does not 

substitute for each other. The simulation is considered through a double-loop, learning-by-modelling 

process, which generally starts from theory and is refined through a verification and validation cycle, 

in which the theory itself is confirmed and improved. Finally, Triulzi and Pyka argue that “the ABM 

methodology can substantially contribute to a better understanding of complex socioeconomic 

interactions and thus support the development of theories that are suited to dealing with this 

complexity without ignoring it” (Triulzi and Pyka, 2011, p. 498). 

2.3 Conclusion 

Reviewing ABM application to the field of innovation policy and practice shows that the literature, 

which began to be published in the late 1990s, has mainly concentrated on European SEIN projects 

which are focused on specific industries. In the Canadian innovation space, although there are studies 

on innovation networks (see e.g. Sharma, 2012; Boland et al, 2012; and Ryan et al, 2014), ABM 
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simulation is still absent. The current study represents an initial attempt to apply the popular, agent-

based simulation to a Canadian innovation policy, i.e. Genome Canada program. Once this simulation 

has been built, its basic model can later be improved and adapted to simulate different scenarios and 

policy contexts. 
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Chapter 3: 

METHODOLOGY 

To build a model that applies to the real world, a researcher must first describe the situation that the 

model will account for. The following section describes the process of academic research and the role 

that grants play in that process. Following this description, we will examine a graphical model that lays 

the groundwork for agent-based modelling, which takes place through computer visual modelling. The 

definition of the terms and agents necessary for the modelling and simulation are presented in the 

same sections. The simulation software is AnyLogic 7. 

We will follow a protocol for ABM here. Proposed in 2006 by Grimm and 27 modelers from various 

countries and universities, this protocol sets some rules for describing simulation models, since they 

are structurally more complex than analytical ones. In other words, the protocol suggests a standard 

for publishing ABM simulation to make it understandable and replicable. The protocol is called ODD 

(Overview, Design, and Details) and consists of elements relevant to these three items. The basic 

protocol and its update (Grimm et al., 2010) are followed in this study. 

3.1 Academic Investigation and Grants 

Most current academic research is performed in university departments, where professors do the 

research either individually or in collaboration with colleagues and students. Although to some extent 

faculty members may fund their own line of investigation, the financing of academic research is mainly 

carried out by external agents. Formal research funding takes place either through research grants, 

research contracts, or a combination of the two (Hakim, 2000). The main difference between grants 

and contracts lies in who has the authority over, responsibility for, and the control of, the project 

funds. Research contracts, as the name implies, take the form of contracts between two parties where 

the investigator (contractor) receives the funding in order to find answers for the questions posed by 

the contractee. The conduct of the research is a joint responsibility and the contractee has some 

authority over the research process and outcomes. By contrast, in research grants, the researcher has 

sole responsibility for the design of the study, any modifications made to it, and the implementation 

of the project (Hakim, 2000). This difference between contracts and grants, in the authority and 

responsibility of their agents, causes industry usually to outsource R&D work to university faculties 
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through contracts, while government agencies outsource R&D projects mostly through grants 

(Bozeman and Gaughan, 2007). This difference of government involvement explains why grants 

(especially public ones) are more popular in academia. 

There are a number of other classifications for grants (see Auranen and Nieminen, 2010; Huffman and 

Just, 1994). In the case of matching grants, the investigator would be responsible for finding another 

(local) agency to match the contribution of the main grantor. Formula granting is used in cases where 

a limited amount of money is to be divided among investigators (such as faculty members), using some 

pre-established rules or a specific formula. By contrast, competitive grants involve a competition 

process where only some of the participants win. The focus of this study will be on competitive grants 

rather than other forms of grants and contracts. However, the modelling of the processes and 

outcomes would be similar across these classifications. 

Academic research is partly conducted as a learning process for graduate students, which does not 

always depend on external funding. In such a case, laboratory resources of the departments along with 

the intellectual capital of professors and students may result in publications (usually journal papers) or 

in innovations or inventions (whether patented or not). The learning and expertise acquired by the 

investigators is a side product. In such a process, external funding acts as a catalyst to speed up the 

process and also to implement some large research projects which in the absence of funding would 

not have been accomplished. In short, academic research is a production process that begins with 

human and financial input and ends with the output of papers and patents. The practice of learning-

by-doing promotes the quality of the human resources involved. 

Figure 3.1 provides a chart that explains the research process. Researchers and their associates 

compose the human capital which employs physical capital (equipment, machinery, tools, field/office) 

and materials (anything consumed in the process such as chemicals, paper, energy, etc.). The only 

resources used up in the process are materials and only the services of human or physical capital are 

used. For this reason, some experts instead prefer to use the term “human and capital services” as the 

inputs. The research process itself involves various stages (literature review, method 

development/prototype design, experiment and data collection, analysis, and report 

writing/documentation) that, depending on the nature of the R&D, may need a time span of weeks to 

years, in order to be accomplished. The findings of the research are reflected in publications (paper, 

book, or report) or realized in inventions; as mentioned before, the learning achieved during the 
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process also adds to human capital. Grants, and funding in general, are used to provide inputs by 

compensating for human resources, for buying or renting tools, equipment, and offices, and finally, 

for providing necessary materials. 

Figure 3.1: Schematic presentation of academic research 

 

3.2 ODD Presentation of the Model 

Although the ABM model can be presented in the order of its development or in any other logical 

order, some simulation experts prefer it to be presented specifically, according to ODD protocol. 

Therefore, that is followed in this study. 

3.2.1 Overview 

a) Purpose 

The simulation will be used to study the effect of different structures of research design on the 

outcome of its research grants. 

b) Agents and state variables 

The principal agent in the model is the investigator (researcher). These agents are busy with academic 

investigation related to genomics and proteomics and related social science fields. The investigations 

happen individually and no collaboration is taken into account. There are two dependent sub-agents 

for the investigator: Investigation and Grant. The investigator is always busy with at least one line of 
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investigation which results in the output of a paper. The investigations and the resulting papers are 

saved for any investigator. The investigators take part in every granting competition, with some of 

them winning and some receiving rejections. The grants won make feasible more and new 

investigations that result in more output for the winners. The paper output of the investigators is taken 

into consideration by the granting agency, when it assesses grant proposals, in the next rounds. Beside 

the score the granting agency gives to a paper, a random score is considered to account for output 

quality and pertinence. The granting agency has its own timeline of application and life which will be 

explained in the processes. Table 3.1 lists the agents along with their state variables. 

Table 3.1: Characteristics of the model agents and their attributes 

Agent Sub-agent State variable values 

Investigator 

 Region 6 regions (BC, AB, PR, QC, 
ON, AT) 

 Paper score 1-4 per paper 

 Random score ≤ paper score 

 Total score Sum of paper and random 
scores 

 Annual fund without grant $2000/ month 

Investigation 

Duration 24 months 

Paper 1-5 

Cost of an investigation $2000/ month 

Publication duration 3-12 months 

Paper quality distribution 1-4 

Grant 

Grant writing time 6 months 

Grant assessment time 1 month 

Grant size $120-500 thousand 

Budget for every competition $50 million 

Competition gap 36 months 

Environment parameters 
Number of investigators 600 

Simulation horizon 26 years 

Source: Research findings 
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c) Processes 

Investigators use their resources to perform R&D and to produce outputs (papers). Every faculty 

member follows a few lines of research during their academic lives. They work with students who help 

them in the process and who, at the same time, receive some training. Investigators use some form of 

physical capital in the form of offices, labs, tools, equipment, etc., and there are some materials 

consumed in the process. All of these capital services and materials require money in order to be 

purchased and that is where grants are needed and used. 

Various sources and kinds of grants are available for researchers but they are obtained through a 

process. Finding an idea and gathering some information about it is the first step. Then comes the 

writing of an application, which is normally submitted in the form of a proposal. The proposal is 

reviewed by the funding agency and, if accepted, the grant money is given to the applicant. Each of 

these steps requires some time and in the end, some research takes place that results in a particular 

output. Grants make it possible to start new investigations. The grant process is depicted in Figure 3.2. 

Figure 3.2: Schematic presentation of grant process 

 

3.2.2 Design Concepts 

Agents are randomly spread across six non-identical regions all across Canada. The agents compete 

for grants provided by the granting agency. At the first round, the winning is quite random, giving an 

opportunity to the winners to publish more papers. The paper output (and score) is used in subsequent 

rounds as a criterion to assess grants, which provides a better chance for the winners in future. As a 

result, in spite of the homogeneity of agents in the beginning, some inequality and distinction emerge 

in the process. The agents are assumed to be researching by themselves and there is no interaction 

among them. Papers are assumed to be of different qualities, giving rise to some heterogeneity among 

Application 

(Letters, Documents, Proposal) 
Rejection 

Spending the Grant 

Assessment Decision 

Approval 



20 

those having the same number of papers. Also a random score is considered to account for the 

pertinence of papers for competition. 

3.2.3 Details 

a) Initialization 

The simulation run starts with a population size of 600 (the approximate number of participants in the 

GC Applied Bio-products and Crops competition). The agents are spread across six regions, according 

to the distribution of university teaching staff in Canada. The parameter values are the same as those 

presented in Table 3.1, with some distributions being assumed for the range value. The number of 

papers per investigation follows a uniform distribution (from 1-5); the grant size is distributed 

triangularly with a min, mode, max of 120, 240, and 500 thousand dollars, respectively; the paper 

publication duration also follows a triangular distribution of 3, 6, and 12. The granting starts at the end 

of year 2 and continues every 3 years. 

b) Input Data 

The model uses some input data but is largely based on assumptions. For the distribution of the 

investigators across regions, the real data on the spread of full-time teaching staff in universities was 

used to get a custom distribution for the agent location. Also, the agent population is based on data 

from the last competition held by GC. Finally, for the scoring of papers, the spread of journals 

proposed by an Australian institute (Australian Research Council’s ERA initiative) is used. 

c) Submodels 

As mentioned above, the principal agent in the model is the investigator agent who lives in an 

environment called Main. Inside any investigator exist two sub-agents: investigation and grant. The 

investigation is created by a process by the investigator when they can afford a complete one. Upon 

creation, the investigation passes through a statechart which starts with the ongoing state lasting for 

investigation duration after which it becomes done. After this done state, it takes some time picked from 

publication duration to reach an end which is some papers (defined by a uniform distribution of 1-5). 

The papers are scored for quality according to a custom distribution called paper quality distribution. The 

sum of the scores of the papers is saved in paper scores for every investigator. This is one component of 



21 

the score used to assess grant applications. There is also a second component called random score. This 

component is computed by multiplying a random number (0-1) by the highest paper score among 

investigators, leading to a number that is less than or equal to the paper score component. The sum of 

two components is called the total score, which is saved for every investigator and called upon grant 

application assessment. 

Another statechart models the states and transitions for the grant sub-agent. Grant agents are created 

when each competition begin (with calls for proposal) which after grant writing time leads to the application 

state. It takes grant assessment time to transfer from application to a decision (choice), where the application 

is approved or rejected. The approval branch is decided by specific rules (random choice in the first 

round but score-based selection in subsequent rounds) put into a dynamic event called grant assessor. 

On approval, the grant enters awarded and ongoing state which lasts for investigation duration. The approved 

grants add the grant money they receive to the investigator’s funds, which is then used to start new 

investigations. 

The variable values are stored and updated in corresponding variables, dynamic parameters, or charts. 

Some events are used to perform calculations needed to get to outcome measures (described below). 

These measures along with the related graphs and charts are updated automatically until the simulation 

ends. Most of the results are directly stored and presented in AnyLogic itself (the presentation 

window). But a few of the results are entered into Excel to be further analyzed. 

3.3 Outcome Measures 

As a policy, every granting agency may consider two impacts of their efforts. The first aspect is 

efficiency associated with the cost-effectiveness of the system, which is here defined as how many 

papers are produced from the grants awarded. The second aspect is the equity dealing with a 

distribution of grant money and papers among the investigators. The distribution is important because 

the public does not want resources dispersed to only a few people, which may also have implications 

for efficiency. The outcome of the simulation is summarized by some measures that address these two 

aspects and that are used in model verification and scenario comparisons. 

The efficiency of the system (or the productivity of the grants) is measured by papers per grant money; 

i.e. 
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where PMD stands for papers per million dollars. This measure shows how efficient some policy or 

instrument combination is or how much better the system produces papers in a certain setting. 

Equity aspects are caught by two kinds of indices borrowed from social sciences. The Gini index was 

developed originally in economics, where it was used to measure the distribution of income and wealth. 

The “Matthew effect” was theorized in sociology to explain a situation where some academic figures 

achieved unfair advantage as a result of some initial fame or chance resulting in a growing gap among 

faculty members (or scientists) in the same discipline or field. 

Gini index. In economics (and later in other fields, as well) a Gini coefficient (or index) is used to 

measure the magnitude of a program’s equality (or inequality). This index is based on the Lorenz curve, 

which shows the percentage of income (or any resource) gained by any percentage of the population. 

Figure 3.3 helps to describe this curve and the associated Gini index (for more details, see e.g. Sen, 

1973). The population (in our case, the investigators) are ordered by income (here grant money or 

number of papers) ascendingly on the horizontal axis in percent, while the income percentage is shown 

on the vertical axis. If everyone gains the same income (or grant money), the percentage of income 

gained by any percentage of population would be the same resulting in a diagonal line of absolute 

(perfect) equality. However, in reality, there is always some inequality in the distribution of resources 

and low-income people gain less income than their percentage in population. The locus of such real 

distribution points is called a Lorenz curve. Because of the existence of some inequality in resource 

distribution, the Lorenz curve always lies below the absolute equality line; and the lower the curve, the 

more unequal the distribution. 

The Gini index is used to measure the magnitude of the inequality. Graphically, it is the ratio of the 

area between the equality line and Lorenz curve (shaded area in Figure 3.3) and the whole area of the 

triangle below the equality line. In practice, the population is divided into equal groups (like 10 groups 

or deciles) and their cumulative income percentage is calculated. When placed in a graph, these points 

give an approximation of the Lorenz curve. To estimate the Gini index, the following formula has 

been developed, based on the original version proposed by Dixon et al. (1987): 

ܩ =
2 ∑ ௜ݔ݅
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where n is the number of population groups indexed by i and xi is the income share of the ith group. 

In this study, the population will be divided into 10 equal groups (deciles), with their grant money 

share represented by xi. 

Figure 3.3: Lorenz curve illustrated 

 

Matthew Effect. Based on the interviews of some sociologist with Nobel laureates in the US and on 

his other experiences, Robert Merton (1968) developed the idea that famous scientists often get more 

credit than their comparatively unknown colleagues, for performing similar work. He called this 

phenomenon the Matthew effect,1 which in his opinion goes beyond mere reputation and reaches the 

communication system that finally affects the allocation of scientific resources. Later (Merton, 1988), 

he expanded the concept and stated that advantages as well as disadvantages accumulated as a result 

of the working of this concept. In the context of this study, it would imply that those investigators 

who get some resources in the beginning and gain some advantage over others, gradually and 

continually will get more and more of the resources, which leads to an ever-widening gap among the 

investigators. 

                                                           
1 The name was derived from Matthew’s Gospel in New Testament, where there is a passage implying the same concept. 
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Although the presence of the Matthew effect can be described verbally, there are no precise tools to 

measure its magnitude. However, some measures can be applied to get a rough approximation of this 

factor. Since the investigator agents start simultaneously and they are assumed to be homogeneous, 

any differences emerging during the simulation horizon may be attributed to such Matthew effect. 

Apart from the Gini index described above, there is the concept of the power law or scaling correlation, 

which states that in some cases, there is a scaling correlation between two variables. Generally, a power 

law relationship exists between y and x when ݕ ∝ ఈݔ ; α is called the scaling factor. To see if there is 

such a relationship, logarithms of y on x can be graphed against each other to see if the data lie on a 

line or not. In practice, a regression is run for lny and lnx and the statistical significance of the 

relationship is checked. In the case of this study, it is hypothesized that such a relationship exists for 

the number of papers and the number of people having those numbers of papers; the same may hold 

for grant amounts and number of people. (Since Alfred J. Lotka was the first to study such a 

phenomenon, it is called Lotka’s law defined as “the frequency distribution of the number of papers 

per author follows an inverse power law” (Watts and Gilbert, 2014, p. 138)).Put differently, it is 

speculated that only a small number of investigators publish many papers (or win large sums of grant 

money), while there are lots of others) with a small number of papers or grants. 

3.4 Conclusion 

The structure of the model is described in this chapter and must be translated into computer coding 

in Java language (in AnyLogic) for execution. There has been a lot of “back and forth” communication 

in the programming phase, which finally results in a working program for simulation. The computer 

model then is ready for finding bugs, for calibration adjustments and finally, for policy scenario 

simulations. 
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Chapter 4: 

MODEL JUSTIFICATION AND VERIFICATION 

In order to make sure that the model works in an acceptable manner, some tests are used to see if the 

main results are stable. The results of the simulation are summarized in a few measures discussed in 

the previous chapter: Papers per Million Dollars (PMD) for efficiency and Paper and Grant Gini 

Indices (PGI and GGI, respectively) for equity. The factors expected to affect the results are the values 

chosen for some parameters of the model and simulation. Sensitivity analysis is performed to check 

the impact of these factors and the results are reported below for each in turn; the baseline appears in 

bold in the tables. 

4.1 A Brief Review of the Model1 

Although the model and its technical features were described in the previous chapter, a brief review 

of the model follows, with the assumptions presented in Table 4.1. There are 600 homogeneous 

university investigators distributed across six regions in Canada. They simultaneously start their 

academic investigations at time 0, which take 2 years to be accomplished. Any investigation then results 

in 1 to 5 papers to be published in a period of 3 to 12 months. 

The granting agency (GC) starts the grant competitions at the end of year 2 and then holds them every 

three years. Since there is no output for the investigators at the end of year 2, the grant approval for 

the first competition depends merely on chance and some investigators are randomly selected to 

receive grants. The grants are used to carry out investigations which yield some papers (with differing 

qualities and scores in later competitions), as mentioned above. Now those who win the grants by 

chance at the first competition, publish more papers which thereafter will be considered for grant 

proposal assessment. If the approval of the grants from the second competition and onward is only 

based on past paper performance, then the investigators who did not receive grants through the first 

competition would not stand a chance to win any grants in future; this reality justifies adding a random 

score besides the paper score. From that point onward, the competitions occur in the same way until 

                                                           
1 The model can be found at: https://runthemodel.com/models/3353/ 
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year 26, with those winning grants producing more papers. In cases where investigators have no grants, 

they fund one investigation by other sources. 

Table 4.1: Assumptions of the model and parameter values 

Parameter Value Considerations 

Number of investigator agents 600 people Scenario analysis 

Budget per competition $50 million Scenario analysis 

Grant size $120-500 thousand Scenario analysis; triangular 
distribution (120, 500, 240) 

Competition gap 3 years Scenario analysis 

Simulation horizon 26 years Sensitivity analysis 

Investigation duration 24 months Sensitivity analysis 

Without grant annual fund $24000/ year Sensitivity analysis 

Papers per investigation 1-5 Sensitivity analysis; uniform 
distribution (1, 2, 3, 4, 5) 

Publication duration 3-12 months Triangular distribution (3, 12, 6) 

Paper quality score 1-4  

Investigation cost $2000/ month  

Grant writing time 6 months  

Grant assessment time 1 month  

Source: Research findings 

4.2 Model Justification 

In order to have the model work in a reasonable way, some assumptions and adjustments are made. 

These assumptions are later analyzed to ensure that their variation does not significantly change the 

results. The first kind of assumption concerns regional distribution of the main agent (investigator) 

population; the second one pertains to the granting procedure; and the last one concerns the necessary 

number of simulation runs to make sure that model randomness does not bias the results. 

4.2.1 Agent Population and Distribution 

About 600 people participated in the ABC competition in 2009, whose robust number of participants 

became the basis for its choice as an investigator agents’ population. To allocate this population to 

regions (consistent with six Genome Centres in British Columbia, Alberta, the Prairies, Ontario, 
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Quebec, and the Atlantic region), the latest available statistics regarding full-time teaching staff in 

Canadian universities was utilized. The provincial distribution of university faculty members across 

Canada in the academic year of 2010-2011 (the latest available statistics) is presented in Table 4.2. 

Regrouping Manitoba and Saskatchewan as the Prairies (PR) and the four Eastern provinces as the 

Atlantic region (AT) gives the regional distribution in Figure 4.1. The third column of Table 4.2 is the 

real percentage distribution, which is used as a custom distribution in the model to assign a random 

region to investigators. As shown in the last column of Table 4.2 and in Figure 4.1, there is a small 

discrepancy between the real distribution and that of the random assignment by the model in some 

regions, but that is negligible here. 

Table 4.2: Number of full-time teaching staff at Canadian universities in 2010-11 and agents’ regional distribution 

Province Number of Teaching Staff Real Regional 
Distribution (%) 

Simulation Regional 
Distribution (%) 

Newfoundland and 
Labrador 946 

10.2 7.7 
Prince Edward 
Island 247 

Nova Scotia 2,170 

New Brunswick 1,228 

Quebec 9,629 21.4 21.3 

Ontario 16,307 36.3 37.5 

Manitoba 1,776 
7.6 7.8 

Saskatchewan 1,660 

Alberta 4,846 10.8 11.8 

British Columbia 6,125 13.6 13.8 

Canada 44,934 100 100 

Source: Statistics Canada (2016) 
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Figure 4.1: Distribution of university teaching staff in six regions in 2010-11 

 

4.2.2 Granting Procedure 

A couple of different ways were tried for grant approval. It seems logical that the approval should be 

based on past performance of the applicants, as reflected in their resumes. Therefore, the initial try 

was to use a probability distribution which translates the paper score into a probability value that is 

randomly chosen for granting; the higher the paper score, the higher the chance of approval. However, 

when the results were checked, it was surprising that some people would not receive any grants, 

regardless of their paper score. The reason for this is that the model starts deciding from the first 

person onward and, at some point, the budget is allocated completely without almost half the 

population having any chance to win a grant. Since this method is dependent on the budget and the 

budget itself is one of the policy variables, some other method is required. The next step is to make 

the model evaluate everybody before making the decision. 

The alternative method is to have the model score all the investigators based on their paper output 

and rank them for fund allocation. This proves much better and is more realistic, but some extra 

diversity is needed. Since in reality papers do not have the same quality and relevance, paper scoring is 

added to the model. Based on the Australian Research Council’s ERA initiative, which classifies 

journals into four groups or four tiers of quality (Wikipedia, 2016), the following quality distribution 

for the papers is considered: A*, A, B, and C (1-4) with percentages as 5, 15, 30, and 50, respectively. 

In other words, the papers in the model are assumed to follow the above distribution for their quality 

and they are scored 1-4 accordingly. The scores for the papers are given randomly with the mentioned 

distribution upon being published and the paper score would be saved and accumulated for each 

investigator. Again, since there is no output for the first round of competitions, granting follows a 
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random process until the next round, where the paper score ranking determines how funds are 

allocated. However, there is another problem which triggers the last remedy in the procedure. 

Using the above procedure would result in a situation where most of the first-round grant winners 

would win the next competitions, leaving non-winners with no chance. Since in reality this is rare and 

the emphasis or target fields of the competitions vary, a random component is added to the model 

scoring, whereby every investigator gets a random score, ranging from zero to the highest paper score 

(a random number between zero and one is multiplied by the highest paper score). This random 

scoring restarts with every round. The total score, which is the sum of the paper and the random score, 

is used as the criteria for allocating funds; the investigators are organized in descending order, 

according to the total score; and the respective investigators are allocated the grants until the budget 

is spent. 

Table 4.3 shows the results of procedures without and with random scores. When there is no random 

score and the grants are allocated merely using a paper score, almost all of the 171 investigators who 

win the first round (with a budget of $50 million) also win the next rounds, with 162 of them (95%) 

winning grants in all of the next competitions. On the other hand, the random score correction 

excludes most of the first-round winners in subsequent rounds, giving a chance to those who failed in 

the first and other rounds. 

Table 4.3: Distribution of successive grant winners with and without including random score 

Number of grants won Without random score With random score 

Total 171 percent 171 percent 

1 4 2.3 80 46.8 
2 1 0.6 30 17.5 
3 4 2.3 19 11.1 
4 0 0.0 8 4.7 
5 0 0.0 11 6.4 
6 0 0.0 6 3.5 
7 0 0.0 2 1.2 
8 162 94.7 15 8.8 

Source: Research findings 
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4.2.3 Randomness 

One of the factors affecting the results in simulation models is the random number choice made by 

the model. In our model, some of the random processes include the assignment of region to 

investigators, choosing random investigators in the first round of granting, the random number of 

papers per investigation, and the random score. These random factors make the results differ for each 

run of the model. In order to see the magnitude of this factor, the model was run 20 times with 

different random seeds (i.e. the random number generator of the software); the resulting values for the 

three measures (PMD, PGI and GGI) appear in Figure 4.2. It is evident from the graph that the results 

do not change significantly and therefore there would be no need to run the model a couple of times 

and report the average as the final result. 

Figure 4.2: Variation of efficiency and equity measures to randomness of the model 

 

Some statistics regarding these 20 simulation runs are calculated and reported in Table 4.4. The 

maximum, minimum, and mean values for PMD, PGI, and GGI are shown in the table along with the 

standard deviation (a measure of variation or dispersion which is the average of the deviations from 

the mean) and coefficient of variation (CV which is standard deviation divided by mean). As expected, 

the standard deviation values and more importantly, the CV values are very small, implying the 

insignificance of the random factor. Therefore, the results below and the next chapter will be based 

on one single run of the model. 
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Table 4.4: Some statistics regarding the impact of model randomness on the results 

Statistics PMD PGI GGI 

Minimum 91.8 0.34 0.60 
Maximum 93.6 0.36 0.65 

Mean 92.4 0.35 0.63 
Standard Deviation 0.401 0.005 0.012 

Coefficient of Variation 0.434 1.31 1.96 

Source: Research findings 

4.3 Model Verification 

There are some parameters in the model for which some values have been assumed. However, their 

values can be different in reality. Therefore, some other values can be attributed to test if the results 

have acceptable stability. Additionally, the way the model responds to the parameter changes is 

important for ensuring that the model works properly. Below, some sensitivity analyses are performed 

to test the model’s behaviour. In running the simulations, every time only one parameter is changed 

to check its impact, while the others remain fixed at the baseline level. 

4.3.1 Papers per Investigation 

It is assumed that every investigation results in at least 1 and at most 5 papers. A uniform probability 

distribution is used to pick a number from 1 to 5 (with the same chance) as the number of papers 

when the investigation is completed. As was predicted, when the maximum number of papers per 

investigation is reduced to 4 or 3, the efficiency measure of the simulation decreases accordingly, since 

the whole output of the system goes down (see Table 4.5). However, the changes in the equity 

measures are not significant and the choice of the current value for this parameter does not have a 

considerable impact on model output; as with PMD, since the focus of the study is on the comparison 

of the results from policy variable changes, it does not make a difference in the comparisons. 

Table 4.5: Sensitivity analysis results for the maximum number of papers per investigation 

Maximum Number of Publications PMD PGI GGI 

3 61.2 0.35 0.62 
4 76.4 0.35 0.61 
5 92.2 0.35 0.61 

Source: Simulation runs 
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4.3.2 Investigator Agent Population 

As mentioned above, the target population size is assumed to be 600, based on the number of 

applicants for the 2009 competition for GC grants. Although the number of potential applicants (or 

real target group) should have been greater (some people did not apply for the grants), this number 

seems right because in the model all of the investigators enter all of the competitions. However, a 

sensitivity analysis is conducted to see the impact of population size on the results. Although the grant 

money is fixed at $50 million, the PMD value changes as a result of investigations and papers which 

are published without grants. There is no clear trend in PGI but GGI increases with population size, 

since a smaller subgroup of the population can receive grant money when the whole group gets larger 

and this worsens the money distribution among the investigators. Since the population size can be 

looked at as a policy variable from a different perspective, these changes will be discussed in more 

detail in the next chapter. 

Table 4.6: Sensitivity analysis results for the population size 

Population Size PMD PGI GGI 

300 66.2 0.31 0.41 
600 92.2 0.35 0.61 

1200 146.2 0.33 0.82 

Source: Simulation runs 

4.3.3 Simulation Horizon 

The simulation horizon was initially considered to be 25 years, but another year was added later in 

order for the model to include the results of the last competitions. The first competition takes place at 

the end of year 2 and then goes on by 3 years giving the last round (number 8) at year 23. The 

investigations funded by these last grants are concluded at year 25 and the papers resulting from it are 

published the following year. The papers coming from non-GC funds accumulate over time, leading 

to a constant increase in PMD over time, as is clear from Table 4.7. With a longer horizon and more 

competitions, the chance for every investigator to receive a grant and publish more papers increases, 

resulting in a better distribution of papers and grant money. Again the choice of time horizon for a 

public program and the number of granting rounds might be a policy issue; the policy implication is 

that longer-term granting is better on the grounds of both efficiency and equity. 
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Table 4.7: Sensitivity analysis results for the simulation horizon 

Number of Competitions (Time Length) PMD PGI GGI 

4 (168 months) 79.6 0.41 0.68 
6 (240 months) 85.5 0.38 0.63 
8 (312 months) 92.2 0.35 0.61 

Source: Simulation runs 

4.3.4 Investigation Duration 

The investigations are assumed to last for two years, prior to giving birth to papers. This is the average 

period required to complete for a Master’s thesis and sounds reasonable. Changing this period to one 

year results in a large increase in PMD, since the monthly cost of the research stays the same. 

Therefore, not only does the number of papers produced from the grant money double, but the 

number of papers produced from non-GC grant investigations also doubles, leading to a more than 

100 percent rise in PMD (see Table 4.8). On the other hand, the equity measures worsen slightly, which 

is interesting and may reflect in the result of a change in paper distribution which in turn influences 

the money distribution (chance of winning grants). Nonetheless, the model’s behaviour is normal. 

Table 4.8: Sensitivity analysis results for the investigation duration 

Investigation Duration (months) PMD PGI GGI 

12 208.0 0.36 0.63 
24 92.2 0.35 0.61 

Source: Simulation runs 

4.3.5 Annual Funds with No Grant 

One of the assumptions is that when investigators do not succeed in getting grants, they can collect 

funds from other sources that are large enough to run one investigation. With any one investigation 

taking two years and costing $2000 per month, the annual no-grant fund will be $24000. Reducing this 

sum by half should result in a decrease in PMD (no-grant investigations and papers are cut by half) 

and a rise in PGI, since the investigators failing in grant competitions then produce fewer papers. 

However, the increase in GGI is almost unexpected (compared with Table 4.8), since nothing directly 

happens to the granting procedure. It seems that the reduced paper output of non-winners decreases 

their chance of winning grants in subsequent rounds, thus making the grant distribution more 

inequitable (see Table 4.9). 
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Table 4.9. Sensitivity analysis results for the annual no-grant fund 

Annual Fund ($1000) PMD PGI GGI 

12 71.8 0.48 0.66 
24 92.2 0.35 0.61 

Source: Simulation runs 

4.4 Conclusion 

The model was tested according to parameter changes and real-world logic and was shown to be 

working well. The next step will be to interpret the simulation results and to infer some implications 

for policy makers— these are addressed in the following chapter. 
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Chapter 5: 

RESULTS AND DISCUSSION 

Having tested the validity of the model and its behaviour, the results from simulations will here be 

presented and discussed, using the values of the parameters discussed in the previous chapter. First, 

the results of the baseline scenario are presented and discussed, followed by the results of some 

alternative policy scenarios. 

5.1 Baseline Scenario Results 

The baseline parameter values are presented in Chapter 4, along with the basic values for policy 

variables. Using those benchmark values for all of the parameters and policy variables, the simulation 

gives the baseline results to be discussed here. As before, the three measures of PMD, PGI, and GGI 

will be used to analyze outcomes. However, another measure will be used to analyze equity, so as to 

capture a phenomenon called the “Matthew Effect,” which will be explained below. 

5.1.1 Baseline Scenario Results and Regional Differences 

The total paper output of the system is about 37,000, which is produced in 26 years of the model 

simulation. The trend of this output is shown in Figure 5.1, along with the number of investigations. 

Since papers come out of investigations, their behaviours are similar (paper graph follows the 

investigation one) and because of the simultaneity between initiation and conclusion of investigations, 

which are triggered mostly by grant rounds, the graphs have some kinks. At the end of the simulation 

horizon, a total of 12,309 investigations have been accomplished, resulting in an average of almost 

three papers per investigation, as expected. 

As defined in the previous chapter, dividing the number of papers by the grant money spent results in 

the efficiency measure of PMD. This measure can be calculated at any time and the graph is seen in 

Figure 5.2. With 50 million dollars spent at every competition and having eight competitions, the total 

amount of money spent would be $400 million; in order not to produce any negative balance, the 

model continues to extend grants, as long as the balance is equal to or greater than $500,000 and that 

is why $229,000 is left and the grant sum is $399.8 million. Because no papers were produced in the 

initial years and investigation outcomes were the sudden publication of the investigation outcomes, 
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the graph rises steeply and then flattens gradually, since the numerator (papers) and denominator (grant 

dollars) behave as before and the initial delay wears out. However, although the money is spent quickly 

at any round, the publication process is more gradual (3 to 12 months for a paper) and that is the cause 

of non-smoothness of the trend. At the end of the simulation horizon (month 312) the PMD measure 

reaches 92.2, meaning that every million dollar of grant money results in an average of more than 90 

papers. It should be remembered that some of the papers originate in investigations carried out from 

non-GC money. 

Figure 5.1: Trend of investigations and papers during the simulation horizon 

 

Figure 5.2: Trend of PMD 

 

The equity deals with the distribution of resources and the outcomes among the investigators. Table 

5.1 shows the distribution of the papers and grant money among 10 ascending equal groups; 

investigators are ordered according to their number of paper publications or the grant money they 
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have won. And the sum of the values for every 10 percent of them (60 people) are considered as 

deciles. According to the table, the first decile publishes just 5 percent of the total papers but the tenth 

decile authors 20%. In other, words, the top decile of investigators publish 4 times as much as the 

bottom 10 percent. A glance at Table 5.1 and Figure 5.3 reveals that the distribution of grant money 

is much worse: the bottom 20 percent receive nothing, while the top decile receives more than 30 

percent of the total grant dollars. The difference originates from the assumption that people can 

investigate and publish even without grants. 

Table 5.1: Paper output of the system and its distribution among investigators 

Decile 
Papers Grant Money 

Number % Cumulative % $ million % Cumulative % 

1 1,839 5.0 5.0 0.0 0.0 0.0 
2 2,105 5.7 10.7 0.0 0.0 0.0 
3 2,329 6.3 17.0 9.7 2.4 2.4 
4 2,627 7.1 24.1 17.0 4.3 6.7 
5 2,965 8.0 32.2 25.2 6.3 13.0 
6 3,420 9.3 41.5 35.8 9.0 21.9 
7 3,955 10.7 52.2 47.5 11.9 33.8 
8 4,612 12.5 64.7 62.4 15.6 49.5 
9 5,569 15.1 79.8 80.7 20.2 69.6 
10 7,451 20.2 100.0 121.3 30.4 100.0 
Sum 36,872 100.0 - 399.8 100.0 - 

Source: Research findings 

Figure 5.3: Distribution of papers and grant money among investigator deciles 
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The equity is better measured by the Gini index which is based on the Lorenz curve (cumulative 

distribution). From the cumulative distributions in Table 5.1, the Lorenz curves for paper and grant 

money are drawn in Figure 5.4. It can be noticed that there is some inequality in the distribution of 

papers and grant money (both curves are lower than the 45-degree line of perfect equality) but the 

grant money curve is much lower than the distribution of paper curve. The Gini indices computed for 

papers (PGI) and grant money (GGI) are 0.346 and 0.606, respectively; the closer the value to zero, 

the more equal the distribution. 

Figure 5.4: Cumulative distribution of papers and grant money (Lorenz curves) 

 

The regional attribution of investigators (Figure 5.5) is quite random and there seems to be no reason 

for regional disparity in terms of outcome measures. However, since the size of the regions are 

different, there may exist a size effect which was checked in the model. There is quite high probability 

of finding a significant difference among regions in a single run (e.g. in one of the runs PMD varies 

from 86.8 to 96.6 with the national value being 92.7). Therefore, five different runs were carried out 

the average of the values represented in the graph of Figure 5.5; PMD values were 92.7, 94.3, 91.7, 

92.8, 93.3, 92.7, and 95.9, respectively. The differences are not significant and it can be inferred that 

they are random. 
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Figure 5.5: Equity measures in terms of regions 

 

5.1.2 The Matthew Effect and Power Law Relationships 

As another measure of equity, power relationships between both number of papers and grant money 

on the one hand, and the number of investigators publishing the papers or winning the grants on the 

other, were used to examine the concentration of the publications among the investigators. The 

number of papers varied from 24 to 166 and the money granted varied from 0 to $2.7 million and that 

is why they were categorized into 30 equal bins. The bins were numbered from 1 to 30 which is 

considered x, and their contents (the number of investigators in every bin) were counted to represent 

y. Taking logarithms of these variables and presenting them in a graph would result in Figure 5.6 for 

papers (a) and grant money (b). The dots represent real values and the dotted line is the line fitted on 

the data; since some of the bins were empty, the number of dots (observations) is less than 30. 
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Figure 5.6: Power law relationship for papers (a) and grant money (b) 

    

Obviously, there is a near-linear relationship in both cases in Figure 5.6. However, to check the 

statistical significance of the relations and determine the scaling factor (α), a regression had to be run 

over the data. This was carried out in Excel using its Data Analysis feature and the results are shown 

in Table 5.2. The equations are shown in the second column along with the t statistics. All the 

parameters (constants and slope (α) parameters) are significantly different from zero, meaning that 

there is a significant relationship between the variables. The number of observations used (n), the 

coefficient of explanation (R2), and the overall significance of the regression (F statistic) are reported 

in the last column. Again the regressions are quite significant and most of the changes in dependent 

variables are explained by the x variables (or there is a high correlation between the variables). In 

summary, it means that the power law holds in both paper and grant money cases. 

Table 5.2: Results of the log-linear regression estimations for power law relationships 

 Estimated Relationship Statistics 

Paper analysis ln(ݕ) = 9.5 − 2.47 ln(ݔ) 
 t values      16.1      11.9 n=25,  R2=0.86,  F=141.8 

Grant analysis ln(ݕ) = 5.7 − 1.32 ln(ݔ) 
 t values      14.3       8.7 n=29,  R2=0.74,  F=76.5 

Source: Research findings 
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5.2 Alternative Policy Scenarios 

There are some tools that granting agencies can use to influence the outcomes of the model in the 

long run. However, the outcomes are measured from two perspectives (efficiency and equity) which 

sometimes do not behave similarly and between which there is a trade-off. The variables that can be 

manipulated by a granting agency such as GC are the total sum of money allocated in any competition, 

the size of the individual grants, the size of the target group, and the gap between the two consequent 

competitions (or number of competitions). The impact of changes in these variables is explored below, 

followed by an analysis of their combinations. Table 5.3 gives a summary of the scenarios to be 

discussed; the instruments will be changed one by one and the combination of tools is left for the next 

section. 

Table 5.3: Summary of the single-instrument policy scenarios 

Scenario Variable (Policy Instrument) Unit Values 

Competition budget $ million 50, 100, 150 

Grant size (min, mode, max) $ thousand 
(120-240-500), (120-360-500) 

(120-240-1000), (120-480-1000) 
Target group size persons 600, 400, 200 
Competition gap years 3, 4, 5 

Source: Research findings 

5.2.1 Competition Budget 

It was assumed in the benchmark model that the granting body allocates $50 million for every 

competition. This would result in a PMD of 92.2 and PGI and GGI values of 0.35 and 0.61, 

respectively. With an increase in the amount of the budget, the efficiency drops and equity improves. 

However, the magnitude of changes is not the same: as seen in Table 5.4, a 100 percent increase in the 

budget results in a 28% drop in PMD, a 33 percent decline in GGI and an only 10 percent drop in 

PGI. Therefore, increasing the budget does not seem to be a good policy, due not only to the decrease 

in paper productivity, but also to the small improvement in equity indices. It should be noted that with 

a $50 million budget and the grant sizes assumed, about 175 people (29%) receive grants in each 

competition. It is interesting that another $50 million raise in the budget (from 100 to 150), which is 

equal to 50 percent, leads to a 13% decrease in PMD (almost half the previous amount) and a 27 and 

41 percent decrease in PGI and GGI, respectively. These figures show that the measures do not change 

linearly with the budget. 
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To see the behaviour of the measures in response to budget change, different values were tried for the 

budget (10 to 150 million dollars by increments of 10). The outcome measures are drawn as graphs in 

Figure 5.7 with equity measures on the left axis and PMD on the right. It is evident that PMD decreases 

with a declining slope (like a power function), meaning that its response to budget increases declines. 

The same kind of response is shown by GGI but with a smaller change in its slope. The most 

interesting behaviour is that of PGI which rises to $60 million and then starts to decline. Smaller 

budgets are not favorable due to the great inequity in grant money and, since large budgets are 

impossible to raise, leaving the mid-range of the budgets for choice. However, other factors remain to 

be considered before one makes such a choice. 

In analyzing the variable of the budget, some consideration should be given towards the administrative 

costs of any grant program or agency and also the opportunity costs of the participants. Part of the 

costs of handling the competition and granting process is fixed and does not change with the amount 

of budget allocated, implying that their average per dollar granted declines with an increase in the 

budget. Similar reasoning governs participant opportunity costs, where it does not make sense to hold 

a competition with 600 participants, in which only a small percentage of applicants are approved. It 

can be argued that to better manage participant opportunity costs, narrowing the competition and 

decreasing the size of the target group might be better. 

Table 5.4: Effect of increasing the grant budget on outcome measures 

Budget Allocated for Each Competition PMD PGI GGI 

50 92.2 0.35 0.61 

100 66.7 0.31 0.41 
150 57.9 0.23 0.24 

Source: Simulation runs 
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Figure 5.7: Behaviour of outcome measures to changes in grant budget 

 

5.2.2 Grant Size 

The grant size is assumed to vary following a triangular distribution, with a minimum of $120,000 and 

a maximum of $500,000 and a mode of $240,000. The results for four different combinations of these 

values are shown in Table 5.5. Increasing the mode has resulted in a very small improvement in PMD 

but a small worsening of equity measures. Doubling the maximum mode results in a worse distribution 

of papers and money. Doubling both the maximum and the mode of the triangular distribution above, 

gives the worst outcome with a 36 percent rise in the money Gini index. Again there are administration 

and opportunity costs issues, so that it is not easy to decide what range of grant size is the best. 

Table 5.5: Effect of increasing the grant size on outcome measures 

Grant Size PMD PGI GGI 

120-240-500 92.2 0.35 0.61 

120-360-500 93.5 0.38 0.69 
120-240-1000 97.8 0.42 0.74 
120-480-1000 99.7 0.46 0.83 

Source: Simulation runs 
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disciplines or where the focus of the competition itself is on some specialized fields. Such a situation 

means that not everybody is eligible to apply for the grants, leading to a decline in target group size. 

Table 5.6 reports the outcomes for two different target group sizes of 400 and 200. Although these 

calculations can be done for a specific subgroup of the population, like those in specific fields, due to 

the homogeneity of the investigator agents, it amounts to a smaller population size here. Therefore, 

the outcome is expected to be similar to that of changing the budget amount —a budget decrease 

works in the same way as a population increase— and the results are comparable to Table 5.4. 

Table 5.6: Effect of limiting the target group on outcome measures 

Number of Investigators per Competition PMD PGI GGI 

600 92.2 0.35 0.61 

400 74.6 0.35 0.51 
200 57.4 0.22 0.24 

Source: Simulation runs 

5.2.4 Competition Gap 

There is another variable the granting agency can alter to influence the outcomes and that is the time 

period between two competitions. In the baseline model, competitions are held every 3 years with a 

total of 8 competitions and a total budget of $400 million allocated. Raising the gap in time to 4 years 

would mean that there would be a total of 6 competitions (starting from year 2 and ending in year 22) 

with a budget of $300 million. If the gap is raised to 5 years, there would be 4 rounds with a budget of 

$200 million. According to Table 5.7, this kind of policy improves the efficiency but has a small 

negative impact on money distribution. Provided that the same grant budget ($400 million) should be 

allocated, there would be $100 million for every round resulting in values of 89.3, 0.30, and 0.43 for 

PMD, PGI, and GGI, respectively. When compared with results of the base scenario reported in the 

first row of the following table, it is evident that with a small loss in efficiency, there would be a large 

win in equity. 

Table 5.7: Effect of increasing the competition gap on outcome measures 

Competition Gap (years) PMD PGI GGI 

3 92.2 0.35 0.61 

4 116.9 0.34 0.65 
5 131.7 0.33 0.67 

Source: Simulation runs 
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5.2.5 Optimal Scenario 

Because of the presence of two competing criteria for evaluation of programs (efficiency vs. equity) it 

is hard to find the optimal level of policy instruments. A change in a policy variable such as budget 

allocated for each round of competitions, which is discussed below, would change both PMD and 

GGI in different directions, making it impossible to tell what direction of change is better. However, 

provided that there is some knowledge of the weight given by policy makers (hence to society) to each 

of the criteria (efficiency and equity), further guidelines can be given regarding the optimal scenario. 

The weights can be used to combine the two measures to get a single criterion with which the optimal 

level of a policy tool can be approximated. Table 5.8 gives the simulation results for different values 

of grant budget starting from $10 million and increasing by 10 to a maximum of $150 million. 

As predictable from Figure 5.7, none of the outcome measures change in a linear manner: PMD 

changes substantially first but slows down gradually; GGI starts with moderate changes followed by 

smaller changes and larger ones at last. It can be noticed that with lower budgets, a great amount of 

efficiency should be sacrificed to get a moderate gain in equity (e.g. 44 percent reduction in PMD 

versus 10 percent gain in equity). However, at a budget of 50, the changes are almost the same (12.0 

versus 12.2). Moving from a budget of 50 to 60 makes sense, since a loss of 4.8% in PMD leads to a 

gain of 5.6% in equity. The next move from a budget of 60 to 70 is not good, but there are much better 

moves down the way. Dividing the two percentage changes gives a measure called elasticity (of changes 

in PMD with respect to changes in GGI) which are reported in the last column. A unit elasticity means 

that 10 percent change in PMD coincides with the same percentage change in GGI. Higher budgets 

result in smaller improvements in PMD but great gains in equity, making the elasticity very low. 

Nevertheless, large budgets are not feasible and small budgets are unjustifiable in terms of the 

administrative costs involved; a budget range in the middle is plausible. The optimal levels should be 

sought in such a range and if the two criteria are of the same weight, the neighbourhood of an elasticity 

value of one (unit elasticity) would be optimal. 

As noted above, finding the optimal levels of policy tools requires further information that lies beyond 

the scope of this study. On the one hand, knowledge of the administrative costs of granting is necessary 

and on the other hand, the comparative values of outcome criteria are needed. There are methods to 

approximate the weights attached to each criterion (here, efficiency and equity) by policy makers and 
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to use those weights to combine the measures and compute a single index. The optimal level of any 

policy instrument would depend on the comparative emphasis a society puts on either criterion. 

Table 5.8: Impact of budget increase on efficiency and equity measures 

Competition Budget 
(million dollars) PMD GGI 

% Change in 
PMD 

% Change in 
GGI 

Elasticity 
(%PMD/%GGI) 

10 307.7 0.95 - - - 
20 171.6 0.85 -44.2 -10.2 4.33 
30 127.3 0.77 -25.8 -10.0 2.59 
40 104.8 0.69 -17.7 -10.0 1.76 
50 92.2 0.61 -12.0 -12.2 0.99 
60 87.8 0.57 -4.8 -5.6 0.85 
70 77.3 0.53 -12.0 -7.3 1.63 
80 72.4 0.49 -6.3 -8.5 0.75 
90 69.1 0.44 -4.6 -9.5 0.48 
100 66.7 0.41 -3.5 -7.3 0.48 
110 63.7 0.37 -4.5 -8.6 0.52 
120 62.1 0.34 -2.5 -7.5 0.33 
130 60.6 0.30 -2.5 -12.2 0.20 
140 59.0 0.28 -2.5 -6.3 0.39 
150 57.9 0.24 -1.9 -15.5 0.13 

Source: Research findings 

5.3 Combination of Policy Tools 

The policy alternatives discussed above dealt with manipulating single instruments. In practice, policy-

makers are able to choose policy combinations consisting of multiple tools. Although a lot of 

combinations might be available for them with various values chosen for every instrument, only a few 

combinations are analyzed here, as an example. Suppose that the long-term budget of the granting 

body is $400 million, which must be allocated in grants over a period of 20 years. According to our 

model, it can start at year 2 and continue until year 22, in a couple of ways, as shown in Table 5.9. The 

first method is the baseline model in which the grand budget is allocated in 8 rounds of $50 million 

each, with grant size ranging from 120 to 500 (following a triangular distribution). The outcome 

measures have been discussed before. Now an alternative method with the same grant budget may be 

used, in which competitions are held every five years (4 rounds), with the same options for grant size. 

As seen before, such a policy change results in a small loss (3%) in efficiency but in a large gain in 

equity (i.e. 30 percent decrease in inequity index). Such an outcome could be achieved with holding 
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the gap and round budget constant while cutting the grant size. According to Table 5.9, a grant mix of 

(min=100, mode=150, max=300) would lead to a GGI of 0.45 which is close to the previous case, but 

a smaller PMD (a 10 percent loss in efficiency, but a 26 percent gain in equity, in comparison to the 

baseline model). 

A second improvement in the results can be achieved by combining the two changes: raising the gap 

(along with budget size) and reducing the grant size. As seen in the following table, now only a 12 

percent sacrifice in papers a 64 percent gain in equity would be possible. Of course, there are other 

issues, like administrative limitations for the granting agency and other problems that have not been 

taken into account in our model. Nonetheless, the model gives some basic guidelines which can be 

utilized to set policy actions on a better course. 

Table 5.9: Outcomes of some policy instrument combinations 

Budget Round Gap Grant Size PMD PGI GGI 

50 3 120-240-500 92.2 0.35 0.61 

100 5 120-240-500 89.3 0.30 0.43 
50 3 100-150-300 83.3 0.27 0.45 
100 5 100-150-300 81.0 0.19 0.22 

Source: Simulation runs 

5.4 Concluding Remarks 

Having checked the validity and functionality of the simulation model in Chapter 4, the results were 

presented and discussed in this chapter. Depending on the relative importance of efficiency or equity 

for the policy makers, different tools and combinations of tools can be utilized to achieve specific 

goals. However, as usual with most systems, there are trade-offs between efficiency and equity: any 

improvement in one of them usually comes by compromising the other. While the model allows basic 

guidelines to be drawn from it, detailed and more precise policy recommendations are not possible, 

due to the limitations of the model. In the following chapter, some of these limitations will be 

discussed. 
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Chapter 6: 

SUMMARY AND CONCLUSION 

6.1 Summary 

As a player in the Canadian innovation system, Genome Canada has been funding genomic research 

for almost two decades. It has held some competitions in the past to collect research proposals and 

approve some of them for co-funding. The continuation of such a program shows that policy-makers 

have been satisfied by its outcomes. However, any program can be improved to better serve society, 

and this study is an attempt toward that end. Its objective is to investigate the process by which the 

grant money can be turned into publishable knowledge and the impact of the tools available to 

influence that process. 

To achieve the above objective, agent-based modelling (ABM) simulation technique was employed 

using AnyLogic. A model of the academic investigation process was built, in which investigators as 

agents turned their input (their own time and effort and funds) into an output (here, papers). The 

investigation itself was another type of agent in the model, along with the grant agent, with some 

assumptions in each case. A total of 600 investigators were active in the system, carrying out research 

and competing for the grants. In order to be able to compare the results of different policy courses or 

parameter changes, some measures for the outcome of the model were needed. Two types of such 

measures were defined, one of them capturing efficiency (number of papers per money granted) and 

the other one capturing the equity effects. For this last type, an index of the distribution of resources 

(grant money) and of output (papers which are resources to gain more grants) was used, which was 

originally developed in development economics. The Gini index showed how equally (or unequally) 

an endowment was distributed among the associated population. 

Assuming values for the parameters of the model and its simulation, the model was used to obtain the 

index values. To check the functioning and validity of the model, some tests were carried out to make 

sure that it worked properly and to check if the results were stable enough in response to some 

parameter changes. After the procedures and the values of parameters were adjusted, the model was 

ready for policy simulation runs. The results revealed that the instruments of allocated budget per 

competition, the gap between competitions, the sum granted for any proposal, and the size of the 
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target group may be utilized by a granting body to improve the efficiency and equity of the system. 

However, there is usually a trade-off between these two objectives and a loss in one of them is 

necessary to achieve a gain in the other. The tools can be combined in order to secure better results, 

but there are other factors that should be taken into account in making decisions. 

6.2 Originality and Contributions 

This study is original and innovative in three respects. First, this is the first attempt to apply agent-

based modelling to the Canadian innovation system and simulate the impact of policy tools. To do 

this, a stylized generic model was developed and tested, using Canadian Genome Canada research 

funding as the illustrative context. Second, Gini coefficients were borrowed from economics and 

introduced here to check the equity aspect of public research funding. As far as I know, it is original 

to this study. Third, the Matthew effect and power law were studied and tested in a new context. Again, 

this is a unique contribution of this thesis. 

6.3 Policy Implications 

There is no agreed-upon solution for the efficiency-equity debate. From one viewpoint efficiency is 

favourable because it means a bigger cake for the whole society, which in the long-run can benefit 

everybody. But every country has some notable scholars and scientific stars who are supported to be 

able to obtain international credit and resources, in order to enhance reputation and leverage research 

impact. In the international arena, no single country operates to improve equity among countries but 

instead most seek their own benefits. From this respect, some equity is sacrificed in favour of efficiency 

to promote science stars; there can be no prominent stars if the equity goal is sought by allocating 

resources and outputs equally among the academia. Complicating this is that inherent differences in 

capabilities and effort can amplify unequal allocations of resources. 

On the other hand, sometimes equity is used to promote the entrance of new people into the academy 

and, optimally, as emerging stars. Although efficient people may be able to turn scarce resources into 

a bigger output, those who begin as less efficient producers may be able to become more productive 

in future if given some support in the short run. The path of building new stars in effect is based on 

more equitable distributions. At another level, one might argue that public funds should always be 

used to promote equity—in that sense that supports the position for equal allocation of resources 

irrespective of the capabilities and differences of the people involved. 
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In our model, all the investigators enter the research business at the same time and one might suppose 

that the main objective should be efficiency. However, the first competition round starts with mere 

chance and the following rounds are to some extent dependent upon the performances in the previous 

rounds. But both chance and individual performance also matter. It is almost impossible to know who 

will get the best results with some inputs; better performance in the past does not guarantee efficiency 

in the future. People are different and respond differently to incentives and opportunities. Therefore, 

while a key criterion in research funding should be efficiency it is important that policy makers keep 

an eye on equity, as well. Path dependence that disenfranchise people completely undoubtedly 

undercuts efficiency. 

In theory, it is possible to establish the relative importance of efficiency and equity using expert 

opinions, effectively combining them. A range of methods can be used to determine the weights for 

each objective which can be used to combine the two criteria into one. Such a method may settle the 

debate but it should be kept in mind that opinions change with the information provided for people 

and the way the problems are framed. 

Based on the above arguments and the tools discussed in the previous chapter, a number of 

implications follow for policy makers. Collecting and allocating large sums of money for every 

competition means that more researchers will get the chance to obtain a grant. Provided that studies 

support the idea that the efficiency of a dollar spent in academic investigation is higher than the other 

sectors of the economy, such a policy seems justifiable, but if budgets are limited and not all research 

is equally efficient, small competition budgets with small grants for the participants may be preferable. 

Unless there is supporting evidence in favour of allocating funds to some specific fields, it is not 

recommended to hold specialized competitions which limit the applicants to some areas and 

disciplines. Decreasing the size of research target groups leads to a cut in efficiency in spite of 

promoting the equity among the members of the targeted fields. One strategy might be to increase the 

gaps between research programs, which could improve efficiency with a small loss of equity; there is 

also some evidence that larger gaps may be associated with lower administration costs. Consideration 

of other factors may change the above arguments but it will not be significant; some of such factors 

are discussed below. 
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6.4 Concluding Remarks 

The agent-based model developed for this study is a simple one, assuming homogeneous investigators, 

applying for grants individually, and spending the grant money to carry out investigations and produce 

papers. Although some lessons can be learned from such a simple model, making it applicable to policy 

making and to real-world issues, other factors need to be included in the model. Below are listed some 

important aspects that are neglected in the model for the sake of feasibility. Since research 

collaboration is very important and its neglect may have profound effects on the results and some 

attempt had been made to include it in the model, it is treated separately below. 

1) The investigators are assumed to be identical. In reality, there are different disciplines and fields 

working on genomics-related research, in which the research methods and tools will vary. Some 

disciplines need a lot of laboratory equipment and materials; yet others are labour-intensive; 

the social sciences are fundamentally different from natural sciences and there are differences 

between natural science disciplines, themselves. There may be differences in the skillsets of 

faculty members within the same department —for e.g., some people are research-oriented, 

while others prefer teaching. Such differences may and should be considered to develop a more 

realistic model. 

2) The process of investigation may be changed to include various factors used in research (like 

equipment, materials, human services), as well as multiple outputs. The final output of 

investigations is not just papers but also patents (inventions) and training, as well. People learn 

by doing and such knowledge accumulates over time, leading to enhanced productivity for the 

future. Such features can also be added to the basic model used here. 

3) The granting procedure and the mechanisms and expenses within the granting agency can be 

modelled and added to the model. Here the administrative costs of the granting body were 

neglected, along with the co-funding mechanism and its procedure. 

6.5 Expanding the Model to Include Collaborations 

Investigations are usually carried out via collaborations. There are cases where some investigator works 

alone or a graduate student is involved both helping and getting training. However, funded research is 

increasingly done through collaborations. In such cases, there is a principal investigator (PI) who 
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initiates the process of application and leads a team of investigators. The idea for the research and 

application is born somehow and the PI starts gathering a team based on his network. 

Every academic has a professional network where he/she knows some people through a range of 

communities (Sharma 2012 examined these networks in the context of the Genome Canada ABC 

competition). Therefore, there is ‘knowing network’ in which investigators just know each other or in 

the case of PIs, some colleagues are known to them. They may work in the same school or department, 

may have met in a conference, may have been working in the same field in different universities or 

even countries. Such a network should normally be expanding during an investigator’s professional life 

as they have the time and opportunity to meet new people. At the same time, some parts of the network 

may get disconnected because of the changes in the subjects they are involved. Therefore, this kind of 

network is dynamic in both the members and the strength of the connections. 

There exists a ‘collaboration network’ where people work or have worked with each other in some 

project. A PI chooses people from his/her knowing network and talks to them. Some people have the 

interest and time to become involved in the project team and they start a collaboration. New members 

may join through collaborators as members of their network; i.e., there may be members in the team 

that do not know the PI but get involved through collaborators. In the course of the investigation, 

new contacts are made and the team members get to know each other better, making some connections 

stronger for the future collaborations. One of the outcomes of collaborations is what is called social 

capital; investigators get a chance to know each other and new ideas are born in meetings, where 

potential collaborations and solutions are found. Therefore, collaborations both expand networks and 

social capital. Adding them to the model would allow for greater heterogeneity of performance. 

The inclusion of collaboration would add lots of complexities to our model. In the first instance, it 

would be necessary to develop a decision rule to govern who would be picked as PIs who then would 

start gathering a team. The team size is another factor which should be decided and depends both on 

PI’s characteristics and experience and the grant size. Decision making would be complicated as panels 

would now have information both on the PI and other members of the team; the weights for the PI 

and the members could be assigned but are likely to vary in practice. Different fields will assign creator 

rights differently. In science fields, PIs of labs often get credit on each paper resulting from their lab. 

Other disciplines are less clear about claims of co-production. Different rules could be used to decide 

how research results wold be assigned to team members (either equally or differently). Some 
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collaborators also will likely be students who get training and experience and may become new 

collaboration candidates in future. So the community will change as time advances. 

Some of the differences the inclusion of collaboration could bring about are as follows. There would 

be a dynamic network of investigators which could be studied to see how it changes during the 

simulation horizon. The changes will be an outcome of the model and can be studied along with the 

efficiency and equity aspects. The training of students is also another feature which can be studied 

along with the increment in the experience and knowledge of the investigation team. These can be 

studied under social capital which is a different output of the system than just papers and patents. 

However, the comparison between the paper/patent output and social capital (network expansion and 

training) would become a new problem. 

In conclusion, it should be noted that any model is supposed to serve a purpose and that a compromise 

must be made between the complexity of a model and its applicability. Thus, there are occasions when 

a simple model provides enough insights into reality and, because of the greater costs involved, a more 

complex model is not used. It means that despite the fact that the above features can be included to 

make the model more realistic and complex, that may not be justifiable on economic grounds. 
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