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Abstract 
 
 

We all live on Earth’s land surface. The state of and changes to land surface conditions can strongly 
alter surface energy and water balance, eventually affecting the weather and climate. An essential 
component in regional climate models and Earth system models, the land surface provides lower 
boundary conditions, which are critical both for weather forecasting and projecting the future 
climate. This research advances knowledge in representing land surface heterogeneity, including 
the energy-water-carbon cycle and land surface feedback to the regional climate in Central North 
America, where land use and hydrological conditions are complex. An extensive area of fine-scale 
surface heterogeneity, this region includes the U.S. corn belt agricultural land and wetlands that 
dominate the landscape in the Prairie Pothole Region (PPR) across the Northern Great Plains and 
Canadian Prairies. This study highlights two distinct landscapes—wetlands and croplands—for 
their dominance in the region, important roles in land-atmosphere interaction, and unique 
characteristics impacted by human activities. In addition, advances in high-resolution convection-
permitting models provide a unique opportunity to investigate these interactions, especially to 
explicitly resolve land surface heterogeneity.  
 
This thesis first investigates the soil moisture conditions of the land and their feedback to extreme 
temperatures during heatwave events in a long-term high-resolution convection-permitting 
simulation.  Second, a joint crop-irrigation simulation is conducted, which shows the capability of 
land surface models (LSMs) to estimate crop phenology and biomass and irrigation, the key 
impacts of human decisions. Third, the thesis explores the shallow groundwater dynamics and the 
hydrological cycle in the PPR under current and future climate change scenarios; fourth, the soil 
moisture conditions from the current and future climate are used to statistically estimate the future 
distribution of the prairie wetlands. Finally, a surface wetland scheme is developed to represent 
spatial wetland extents and dynamic wetland storage in the PPR. This scheme is incorporated into 
an LSM (Noah-MP) and regional climate model (Weather Research & Forecasting model) to study 
its impacts on energy-water balance and feedback to the regional climate. This research allows 
potential future research on the wetland-climate feedback at a local/regional scale and on the 
potential on-farm benefits of wetland retention and restoration. This research has critical 
implications for understanding the land and climate interactions in this unique and complex terrain 
and has potential to help human beings to develop a sustainable lifestyle.   
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Chapter 1 – Introduction  
 
1.1 Motivation and Relevance  
Covering about 30% of Earth’s surface, land has important interactions with Earth’s climate system 
(Yang 2004). Several hydrological, biogeophysical, and biogeochemical processes occurring on or 
within the land’s surface can interact with the atmosphere, hydrosphere, and biosphere, through an 
exchange of energy, water, and carbon fluxes. These processes are referred to as land surface 
processes. For example, various forms of available water (snow, soil moisture, open water surfaces) 
on the land surface play key roles in altering surface energy balance. Through changing the albedo, 
they influence the absorbed solar radiation and control the partition to sensible or latent heat, further 
inducing feedback to air temperature and humidity. This feedback may affect cloud formation, 
boundary layer height, or even trigger convective precipitation. These land-atmosphere interactions 
are most active in dry-to-wet transitional climate regions (Koster et al., 2004, 2006). Plant growth, 
through the development of leaves and stems, alters surface albedo, the leaf area index (LAI), 
surface roughness length, and aerodynamic and stomatal resistance, all of which are significant in 
affecting the energy and water exchange between plants and the atmosphere. Moreover, the 
photosynthesis occurring in plant canopies can assimilate inorganic carbon (𝐶𝑂F ) from the 
atmosphere and store it as organic matter (𝐶𝐻F𝑂). Through its control of leaf stomata and intake 
of 𝐶𝑂F  and 𝑂F , soil moisture is also a limiting factor for photosynthesis and transpiration. 
Therefore, land surface processes have a profound influence on shaping Earth’s climate system.  
 
Land surface models (LSMs) are numerical descriptions of these processes, particularly focusing 
on the exchange of momentum, energy, moisture, and carbon between land and Earth’s other 
components (Niu and Zeng, 2012). LSMs are also a key link that bridges the atmospheric models 
above and hydrological models below the Earth’s surface. Originally designed to provide the 
atmospheric models with lower boundary conditions, such as upwards shortwave, longwave 
radiation and sensible and latent heat fluxes, LSMs can also supply upper boundary conditions to 
sub-surface and surface hydrological models, which focus on simulating water movements. 
Therefore, correctly representing these land surface processes in LSMs is of great importance to 
the comprehensive understanding of the Earth’s systems. 
 
In this thesis research, I provide a broad understanding of modeling the land surface processes in 
the North American Great Plains and explore their feedback to the regional climate. An extensive 
and strongly heterogeneous region across the Canadian Prairies and the U.S. Great Plains, the North 
American Great Plains consist of important ecosystems, such as forests, grasslands, mountains, 
wetlands, croplands, and urban areas. Two important ecosystems are of particular interest: the 
prairie pothole wetlands and croplands. These two ecosystems provide important services, such as 
flood control, wildlife habitat, and food security. At the same time, through strong exchanges of 
energy and water between land and the atmosphere, they also play key roles in regulating the 
regional climate, especially in influencing extreme heat and precipitation events.  
 
To investigate land surface modeling and feedback to the regional climate, it is essential to improve 
the representation of hydrological processes in these two ecosystems in current land surface models. 
An advanced land surface model, the Noah land surface model with multiple-parameterization 
(Noah-MP, Niu et al., 2011; Yang et al., 2011), is applied as the major tool in this study. The Noah-
MP LSM provides multiple options in simulating surface energy balance, snow physics, dynamic 
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vegetation phenology, groundwater, frozen soil parameterization, etc. Noah-MP is also has been 
used as the land component of the Weather Research & Forecasting model (WRF, Skamarock et 
al., 2008) for coupled regional climate simulations (Barlage et al., 2015; Liu et al., 2017; Li et al., 
2020). Several advances in Noah-MP parameterizations, such as shallow groundwater dynamics, 
crop growth, irrigation, and wetland hydrology are applied and further developed in the course of 
this thesis. These advances add value to improving land surface heterogeneity and precipitation 
forecasting, especially in applications of the high-resolution convection-permitting WRF regional 
climate model.  
 
The outcome of this research will have great importance for scientists’ understanding of land-
atmosphere interactions, especially heterogeneous land characteristics. It will also have strong 
implications for wetland habitat conservation organizations, agricultural industries, government 
agencies, and sustainable development for the people living in the North American Great Plains.   
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1.2 Theoretical background 
1.2.1 Land-atmosphere interaction  
The land surface is the key control of Earth’s surface energy and water balance. On the land surface, 
the weather and climate are more variable and changeable than they are above the ocean. The 
storage and transformation of water on the land surface induce significant feedbacks to the climate 
system. Earth’s surface energy and water balance is coupled through, most commonly, 
evapotranspiration, i.e., water from its liquid phase to gas phase (Seneviratne et al., 2010). The 
energy and water balance equations directly show the coupling between energy and water through 
evapotranspiration:  

𝑑𝑆
𝑑𝑡 = 𝑃 − 𝐸 − 𝑅" − 𝑅/				(1.1) 
𝑑𝐻
𝑑𝑡 = 𝑅P − 𝐺 − 𝑆𝐻 − 𝜆𝐸			(1.2) 

On the water balance, the change of surface water storage with time (ST
S$

) is the net result of 
precipitation (P, mm) minus total evapotranspiration (E, mm), surface runoff (𝑅",𝑚𝑚 ) and 
underground runoff (𝑅/,𝑚𝑚). On the energy balance, the change of surface energy with time 
(SV
S$
,𝑊/𝑚F) is the result of net radiation (𝑅P, 𝑊/𝑚F), ground heat flux (G,	𝑊/𝑚F), sensible heat 

fluxes (SH, 𝑊/𝑚F) and latent heat fluxes (𝜆𝐸,	𝑊/𝑚F).  
 
Soil moisture is the most common form of surface water storage occurring in the unsaturated soil  
at the land surface. Evapotranspiration’s dependence on soil moisture can be categorized into two 
main regimes: the soil moisture-limited regime and the energy-limited regime, as in Budyko’s 
conceptual framework (Budyko, 1974). Figure 1.1 introduces Budyko’s framework, showing the 
evapotranspiration regime represented as the evaporative fraction (𝐸𝐹 = 𝜆𝐸/𝑅P) dependent on the 
volumetric soil moisture (𝜃 , 𝑚X/𝑚X ). In the energy-limited evapotranspiration regime, soil 
moisture is above a critical value, 𝜃C)Y$, beyond which evapotranspiration has a constant value and 
is no longer impacted by soil moisture but by insufficient energy input. In the soil moisture-limited 
evapotranspiration regime, soil moisture is below the critical value and provides a first-order 
constraint to evapotranspiration. Another important threshold is the wilting point, under which 
transpiration from plants ceases to take place. Between these two thresholds, soil moisture provides 
a linear positive control on evapotranspiration. Consequently, three soil moisture regimes can be 
identified (Koster et al., 2004; Seneviratne et al., 2006): 1) dry (𝜃 < 𝜃0($), 2)	wet (𝜃 > 𝜃C)Y$), 
where soil moisture does not impact evapotranspiration and 3) transitional (𝜃0($ < 𝜃 < 𝜃C)Y$), 
where soil moisture strongly constrains evapotranspiration and thus resulting feedback to the 
atmosphere. In Figure 1.1, this strong dependence is depicted as a linear relationship between soil 
moisture and evapotranspiration. In the first-generation bucket style LSMs (Section 1.2.2), this 
dependence is used as a linear limiting factor, 𝛽.  
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Figure 1.1. Evapotranspiration regime and soil moisture regime according to Budyko’s framework. EF is the 
evaporative fraction, defined as evaporation energy divided by net radiation. Adapted from Fig. 5 in Seneviratne et al. 
(2010).   
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1.2.2 Soil moisture-temperature and soil moisture-precipitation feedback  
An important impact of soil moisture on the near surface climate is its influence on air temperature. 
Whenever latent heat fluxes are limited by soil moisture, energy partition produces more sensible 
heat fluxes, increasing the air temperature. This impact in turn affects soil moisture availability due 
to an increase in the water vapor deficit, forming the soil moisture-temperature feedback. Related 
to the occurrence of extreme heatwaves, this feedback can significantly modulate temperatures 
near the surface climate (Perkins et al., 2015).  
 
Figure 1.2 depicts a conceptual framework of the soil moisture-temperature feedback processes—
soil moisture anomalies impact temperature mediated by evapotranspiration changes. The positive 
red arrow indicates positive feedback processes leading to warming/drying, while the blue arrow 
represents potential negative feedback. Thus, the whole process can be described as: (A) a low soil 
moisture anomaly induces a positive impact on a low evapotranspiration anomaly; (B) the 
decreased evapotranspiration produces a shift in surface energy balance components, increasing 
sensible heat and temperature; (C) the warmer temperature leads to a higher water vapor deficit, 
further decreasing soil moisture. Thus, the entire process forms a positive feedback loop—low soil 
moisture suppresses evapotranspiration but increases sensible heat flux, increasing temperature, 
which, in turn, increases evaporative demand and dries out soil moisture even more. This feedback 
loop can go on until the soil moisture is completely dry, for example, in the case of deserts or 
extreme droughts.  

 
Figure 1.2. Processes contributing to the soil moisture-temperature feedback Adapted from Fig. 9 in Seneviratne et al. 
(2010).  
 
This soil moisture-temperature feedback is well documented in and highlighted for its significant 
role in extreme heatwaves (Perkins, 2015; Whan et al., 2015). This direct and strong link between 
soil moisture and temperature is of interest in this thesis because the mechanism is better 
understood. In particular, this feedback is prominently linked to global climate change: As 
temperatures rise and the soil becomes drier, extreme heatwave events occur more frequently.  
 
However, the soil moisture-precipitation feedback involves highly complex processes, and the 
feedback’s potential impacts can be uncertain, with either positive or negative influences. This 
uncertainty occurs because the formation of precipitation is less directly impacted by surface 
evaporation than by larger scale atmospheric conditions. On the other hand, precipitation is 
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indirectly influenced by the boundary layer stability and the available precipitable water in the 
troposphere.  
 
Figure 1.3 shows a conceptual framework of the soil moisture-precipitation feedback processes. 
The blue positive arrow represents an increasing impact while the red negative arrow represents a 
decreasing impact. The feedback loop starts with (A) increased wet soil on the surface leads to 
enhanced evapotranspiration (the blue arrow) when energy is not limited, while a potential red and 
negative arrow may exist if increasing evapotranspiration reduces the available soil moisture; (B) 
the increased surface evapotranspiration input to the atmosphere may trigger either positive or 
negative impacts on precipitation, noted by the mixed red/blue arrow. This process occurs because 
an increase in local evapotranspiration input in the atmosphere may directly increase the 
atmosphere’s precipitable water, hence, increasing the humidity in the atmosphere and leading to 
a higher likelihood of precipitation. However, higher humidity is not a sufficient condition for 
precipitation formation because the moisture source might not be a local region via moisture 
transport. Precipitation formation also requires an unstable atmosphere condition, possibly 
aerodynamic lifting, i.e., air flow across mountains or thermodynamic lifting, characterized by the 
convective available potential energy (CAPE). A dry and warm surface produces strong sensible 
heat fluxes, and turbulent conditions push up the unstable boundary layer height. In the latter case, 
additional evapotranspiration input may actually suppress precipitation because a higher unstable 
boundary layer may favor cloud formation and reduce the available radiation received on the land 
surface. Therefore, the link between soil moisture and precipitation is complicated and uncertain. 
(C) The additional rainfall on the land surface naturally increases soil moisture availability through 
infiltration.  

 
Figure 1.3. Processes contributing to the soil moisture-precipitation feedback. Adapted from Fig. 10 in Seneviratne et 
al. (2010).  
 
Given the importance of soil moisture-precipitation feedback, atmospheric scientists and the 
hydrology community have been particularly attentive to this mechanism. However, as the 
mechanism is poorly understood and the processes embedded in it can be complex, this section 
briefly introduces soil moisture-precipitation feedback, although it is not the focus of this thesis.  
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1.2.3 Land surface model development 
Land surface models (LSMs) also known as “soil-vegetation-atmosphere transfer schemes” 
(SVATs) are tools representing land surface processes and biophysical responses on Earth’s land 
surface (Yang, 2004; Seneviratne et al., 2010; Zeng and Niu, 2011). Land surface models were 
originally used as a module in climate models, such as general circulation models (GCMs), to 
provide lower boundary conditions, i.e., sensible and latent heat fluxes and momentum and carbon 
flux exchanges with Earth’s other components. In addition, LSMs provide hydrological models 
with surface storage conditions, such as soil moisture and the snowpack, both of which are 
important to simulating surface runoff and baseflow. In all, LSMs play a key role in bridging the 
overlaying atmospheric model and underlying hydrological model in the Earth System model 
(ESM).  
 
LSMs have evolved for three generations and more than five decades (Clark et al., 2015; Fisher 
and Koven, 2020). The first generation LSM was the “bucket model” in Manabe (1969), which has 
a fixed water holding capacity of 15 cm. The water balance of the bucket is described as being 
filled by precipitation and emptied by evaporation. The surface runoff is represented as the excess 
bucket capacity. The sensible and latent heat flux is calculated using the aerodynamic bulk transfer 
equation with prescribed uniform surface properties, such as bucket holding capacity, surface 
albedo, and roughness length. Moreover, the evaporation (E) is a product of the potential 
evaporation ( 𝐸D]$ ) and a 𝛽  coefficient, commonly known as “soil wetness” or “moisture 
availability,” and is a linear function of soil moisture content. Thus, the bucket model simulates no 
evaporation when the soil is dry (𝛽 = 0) and has a potential evaporation when the soil is wet (𝛽 =
1).  

𝐸 = 𝛽𝐸D]$		(1.3) 

𝛽 =
𝜃 − 𝜃0($
𝜃C)Y$ − 𝜃0($

			(1.4) 

There was no explicit representation of ecological processes, such as transpiration, photosynthesis, 
stomatal control, or detailed hydrological process infiltration, frozen soil, and groundwater. Despite 
their simplicity, the bucket models represent a key step in describing land surface processes in 
climate models, and their simulated soil moisture and evapotranspiration (ET) are comparable to 
more complex models at longer timescales.  
 
Deardorff (1978) proposed an advanced LSM with one-layer vegetation and two-layer soil, which 
was suitable for use in GCMs. More complex hydrological processes are considered within the 
vegetation canopy, including evaporation from the soil as well as the wet canopy, canopy 
interception, and transpiration. This model later came to be known as the “big-leaf” model, as the 
structure of the one-layer vegetation canopy is analogous to a big leaf covering the model grid cell. 
This advanced structure opened paths for the future development of more complex structures for 
the second-generation LSMs. 
 
From the 1980s to early 1990s, a second generation of LSMs emerged with explicit representation 
of vegetation effects and more complex soil hydrology, improving the realization of surface energy 
and water balance. Two representatives of the second generation LSMs are the Biosphere-
Atmosphere Transfer Scheme (BATS, Dickinson, 1983, 1993) and the Simple Biosphere Model 
(SiB, Sellers et al., 1986, 1996a, b). These models usually have more than two soil layers, a single 
canopy layer, and a bulk snow layer. One noteworthy advance in the second generation LSMs is 
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the inclusion of explicit representation of stomatal resistance and its impacts on transpiration. 
Transpiration through plants’ stomata was first represented with the Jarvis-type stomatal 
conductance scheme, a simple empirical equation as a function of radiation (photosynthetically 
active radiation, PAR), water (leaf water potential), and other environmental conditions 
(temperature and humidity).  
 
In the early 1990s, third generation LSMs were developed with distinct features of dynamic 
vegetation and the incorporation of the carbon cycle using the Ball-Berry type of stomatal 
conductance scheme (Ball et al., 1987): 

𝑔" = 𝑚b
𝐴P
𝐶"
d 𝛽𝑃 + 𝑏			(1.5) 

where 𝑔"  is the stomatal conductance, 𝐴P  is the net carbon assimilation, 𝐶"  is the 𝐶𝑂F   partial 
pressure adjacent to the leaf, P is atmosphere pressure, and 𝛽  is the soil moisture availability 
representing a humidity stress factor, and b is the minimum stomatal conductance. This change 
reflected in the above equation appeared in a later version of BATS (Dickinson et al., 1993) and a 
revised version of SiB2 (Sellers et al., 1996a) and even distinguished the photosynthesis pathway 
between C3 and C4 plants. This change opened a path for explicit modeling of plant photosynthesis 
and transpiration, as well as for linking CO2 assimilation in the coupling of water and the carbon 
cycle.  Dickinson et al. (2002) included the effect of nitrogen cycling in the stomatal resistance 
equation. Furthermore, the BATS model has become the foundation of the Community Land Model 
(CLM, Dai et al., 2003), with other processes in development.  
 
In the early 2000s, more complex representations of the hydrological cycle were developed into 
third generation LSMs, for example the frozen soil scheme in Niu and Yang (2006), surface runoff 
scheme (Niu et al., 2005) and simple groundwater scheme (Niu et al., 2007). These processes were 
included as multiple physics options in the community Noah-MP (multi-parameterization) LSM in 
2011 (Niu et al., 2011; Yang et al., 2011).  
 
1.2.4 Major issues with land-surface models at this stage  
So far, this literature review has discussed the development of three generations of LSMs. Although 
these models have been successful, their application has also encountered outstanding issues, some 
of which are presented in here. First, these models are all designed to be one-dimensional soil 
column models. In other words, the models focus on representing the vertical soil and vegetation 
structures while neglecting the spatial heterogeneity of the surrounding environment. For example, 
many of these models only include a simple description of the runoff process by water balance 
excessing the soil capacity, which do not consider the surface heterogeneity of precipitation and 
soil moisture. This issue has been addressed with a TOPMODEL-based runoff and evaporation 
scheme (Famiglietti and Wood, 1994), which is reviewed in the next section. Second, vegetation 
is treated as a “big leaf” as in Deardorff (1978), scaling linearly from a leaf’s typical size to 10 km 
x 10 km or 100 km x 100 km, referring to the size of the model’s grid cell, which is unrealistic as 
one single leaf and stomata. Third, these abovementioned models explicitly account for only three 
land types (bare ground, snow, and vegetation) while they neglect lakes and open water. Fourth, 
although carbon cycles and dynamic plant growth are included, the spatial extent of vegetation 
types within a grid are prescribed. 
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1.2.5 The application of TOPMODEL in LSMs 
The previously introduced LSMs focused on the vertical structure of the soil column as the basic 
hydrological unit, while effectively ignoring the spatial heterogeneity of soil moisture over a small 
watershed or large regions. The complex vertical structure, i.e., multiple layers of soil, snowpack, 
and vegetation canopy, is effective in simulating the evolution of ground temperature and 
snowpack accumulation/ablation. However, the one-dimensional soil column structure is not 
adequate for addressing the runoff generation mechanism, which is naturally controlled by the 
spatial heterogeneity of precipitation and surface conditions, especially topography and soil 
moisture. Given the complexity of the modeling hydrological cycle, the traditional one-
dimensional soil column LSM cannot capture the main physical mechanism that controls runoff 
production.  
 
The motivation for improving surface runoff simulation in LSM comes from the work of Koster 
and Milly (1997). These authors found that one common shortcoming of the Project for 
Intercomparison of Land-Surface Parameterization Schemes (PILPS) LSMs is that the 
representation of LSM’s runoff processes also strongly controls the annual evaporation rates, as 
much as the evaporation process itself. Therefore, the logical improvement to this problem is to 
apply a sub-grid horizonal structure of the land surface hydrological process. This is where the 
application of the TOPMODEL statistical treatment enables the representation of soil moisture 
heterogeneity, which is important for runoff and also improves the representation of evaporation.  
 
Developed more than 40 years ago, TOPMODEL (TOPography-based hydrological MODEL) is a 
rainfall-runoff model that uses topography data to reflect its dynamic processes responses in 
downslope hydrology, especially in runoff generation in a variable contributing area (Beven and 
Kirkby, 1979; Beven et al., 2020). The TOPMODEL makes three necessary assumptions, which 
are summarized in Stieglitz et al. (1997): (1) The water table gradient is close to the terrain gradient 
so that the local hydraulic gradient can be represented by the terrain slope angle, (𝑡𝑎𝑛𝑏); (2) the 
saturated hydraulic conductivity, 𝐾", declines exponentially with depth with a decaying factor f: 

𝐾"(𝑧) = 𝐾"(𝑧 = 0)𝑒lmn			(1.6) 
and z is the depth; (3) at the water table depth, recharge occurs at a steady and spatially 
homogeneous rate so that the recharge and water table are at the equilibrium state. Thus, the runoff 
generation responses to a steady state rainfall are proportional to the spatial variation of moisture 
contents in a drainage basin and can be characterized by its topography variation by digital 
topography analysis. Therefore, the local water table depth (𝑧Y) can be defined as:  

𝑧Y = 𝑧̅ −
1

𝑓 rln t 𝑎
𝑡𝑎𝑛𝑏u − Λ

wx
			(1.7) 

where 𝑧̅ is the mean water table depth of the grid cell, ln t #
$#Pz

u is defined to be a topographic index, 
and 𝑎 is the unit contour of the drainage contributing area at the location and 𝑡𝑎𝑛𝑏 is the local slope 
at that point, 𝑓 is a decaying function for saturated conductivity in depth, and Λw is the average of 
topographic index of the grid cell. High index values are likely to saturate first, thus indicating 
potential subsurface or surface contributing areas (Beven, 1997).  
 
From the knowledge of grid-cell mean water table depth (𝑧)̅ and the cumulative distribution of the 
topographic index (analyzed from DEM data), the saturated fraction of the watershed and its 
control on baseflow can be calculated. In a steady state, a critical threshold value for the local 
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topographic index (ΛC)Y ) can be obtained when the local water table depth is at the surface, 
compared to the grid-cell mean water table depth. Setting the local water table depth to 0 in the 
equation 1.7 ensures that all locations associated with values of the topographic index greater the 
critical threshold (ΛC)Y) are within the saturated region. So, a sub-grid fraction 𝐹"#$ can be defined 
by integrating the topographic index interval from this critical value to the maximum, following its 
probability distribution function: 

𝐹"#$ = { 𝑝𝑑𝑓(Λ)
}

~���
𝑑Λ		(1.8) 

This probability distribution function can be obtained from DEM data and was assumed to be a 
three-parameter gamma distribution by Sivapalan et al. (1987).  
 
This saturated fraction of a watershed is a key control of the surface water as well as energy balance 
(Famiglietti and Wood, 1994 a, b). In the hydrological community, 𝐹"#$  refers to the partial 
contributing area, and the direct overland flow from precipitation over this saturated region is a 
major component of surface runoff (Dunne runoff or saturation excess runoff). Moreover, energy 
and water balance are strongly coupled in the distribution of heterogeneous soil moisture in the 
watershed: Evapotranspiration will therefore be near the potential rate in the lowland saturated 
portion, and it will fall rapidly off into vegetation and soil moisture-controlled drier uplands.  
 
The application of TOPMODEL in aggregated watershed and macroscale hydrological modeling 
allows simplified calculation of surface energy and water balance, combining the vertically 
complex single soil column LSMs with a spatial heterogenous model that considers topographic 
effect. One essential assumption is that all the points of the same value of the index respond 
similarly in the catchment. It is therefore not necessary to calculate all the points in a catchment, 
but it is necessary to integrate each interval of index values through the distribution function 
(Famiglietti and Wood, 1994a&b). In Famiglietti (1994a&b), this TOPMODEL concept is used in 
a local site, aggregated watershed, and macroscale model in a FIFE experiment.  
 
Hereafter, the discretized soil column grid cell can be separated into a saturated fraction (𝐹"#$) and 
unsaturated fraction (1-𝐹"#$ ). Surface energy and water balance, such as latent heat fluxes, 
evapotranspiration, and runoff can be obtained separately for these two fractions of the watershed. 
The subsequent fluxes are then combined by the weighted average function, given their fractions, 
to update the mean state of the single column model. This efficient approach is further incorporated 
into LSMs in the NASA GISS LSM (Stieglitz et al., 1997) and the NASA Catchment Land Surface 
Model (CLSM, Koster et al., 2000) among others.  
 
In 2000, Koster et al. described a catchment strategy to improve the horizontal heterogeneous sub-
grid soil moisture variability and its impact on runoff generation in LSMs. This approach is 
different from traditional SVAT strategy in two ways: First, the boundaries of the basic land surface 
unit is a hydrological catchment, based on topography data, rather than a quasi-rectangle grid 
derived from an atmospheric model grid. Atmospheric forcings are disaggregated to several 
catchments in each grid for independent calculation of surface fluxes, ET, runoff, etc., and the 
resultant fluxes are aggregated and returned to the larger grid. Second, the sub-catchment 
distribution of root zone soil moisture is diagnosed from bulk moisture variables and topographic 
characteristics, using the TOPMODEL concept. The distributions are used to separate the 
catchment area into three sections, each representing a distinct moisture regime. Evaporation and 
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runoff processes are modeled separately in each regime, thereby producing more reliable catchment 
mean rates.  
 
In 2005, the three-parameter gamma distribution used for 𝐹"#$ parameterization in Sivapalan et al. 
(1987) was simplified by an exponential function in Niu and Yang et al. (2005): 𝐹"#$ =
𝐹"#$@A𝑒l�mn∇ . 𝐹"#$@A  is the maximum saturated fraction given in a grid cell, defined as the 
cumulative density function of the topographic index when the grid cell mean water table is at the 
surface and C is a coefficient that can be derived by fitting the exponential function to the discrete 
cumulative distribution function to the topographic index. These two parameters can be estimated 
by terrain analysis using the digital elevation model (DEM) data from the studied watershed. The 
newly simplified equation shows an improved representation of the 𝐹"#$ parameter, especially in 
mountainous regions. This modification was incorporated into the National Center for Atmospheric 
Research (NCAR) Community Land Model version 2.0 (CLM 2.0) and afterwards in Noah-MP 
LSM in 2011 (Niu and Yang et al., 2011). 
 
1.2.6 Noah-MP LSM and some advanced physics options  
This study will focus on the application and development of the community Noah LSM with 
Multiple-Parameterizations scheme (hereafter Noah-MP). A candidate for the third-generation 
LSM, the Noah-MP LSM is an enhancement of the Noah LSM (Chen & Dudhia, 2001; Niu et al., 
2011, Yang et al., 2011). The multiple parameterizations imply that different physical options are 
available to select many key land surface processes, such as vegetation canopy energy, stomatal 
conductance, plant transpiration factor, layered snowpack, surface runoff, and groundwater 
hydrology.  
 
Noah-MP has been comprehensively evaluated in various climate regimes, especially in the 
contiguous U.S. (Cai et al., 2014a & 2014b; Chen et al., 2018). This model is widely applied in 
several modeling centers as a land component for climate models and data assimilation. Noah- MP 
is a primary model employed in the NASA Land Information System (Kumar et al., 2006), the next 
phase North American Land Data Assimilation System (Xia et al., 2012), the Weather Research 
and Forecasting model (Skamarock et al., 2019), and the National Water Model (Cosgrove et al., 
2016).  
 
Since the initial development of Noah-MP in 2011, several new physical schemes have progressed 
to address newly emerged needs for representing land surface processes that were neglected or 
oversimplified in previous models. Four specific processes are included in this thesis for detailed 
study: dynamic crop growth (Liu et al., 2016), dynamic irrigation scheme (Xu et al., 2019), shallow 
groundwater scheme (Miguez-Macho et al., 2007), and dynamic surface wetland scheme (Zhang 
et al., 2021 under review). The description of these new schemes is provided in Chapters 3, 4, and 
6, respectively.  
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1.2.7 Convection-permitting model (CPM) and Pseudo Global Warming (PGW) method 
Global climate models (GCMs; 60-300 km spatial resolution) are the primary tools for 
understanding climate change under increasing greenhouse gases (Taylor et al., 2012). Higher 
resolution regional climate models (RCMs; 12-50 km spatial resolution) are often used to provide 
regional details. At these typical model resolutions (10-100 km), many important processes, such 
as convection that occur on a smaller scale, cannot be resolved explicitly and, instead, are 
parameterized. However, convection parameterization may lead to deficiencies in the precipitation 
diurnal cycle, frequency, and extremes (Dai, 2006; Ban et al., 2014; Prein et al., 2015; Kendon et 
al., 2017; Liu et al., 2017). Several studies have recognized that convection parameterization is a 
major source of uncertainties and errors in the simulation of the precipitation diurnal cycle. 
 
There is an emerging trend to using convection-permitting models (CPMs, spatial resolution < 5-
km) in regional climate studies. Previous research (Weisman 1997) has suggested that 4-km spatial 
resolution is sufficient for atmospheric models to explicitly represent convections. Thus, 
convection parameterizations can be switched off. A review provided by Prein et al. (2015) on this 
topic concludes that the largest added values of CPM are found in regions dominated by convective 
precipitation, a heterogeneous land surface, and complex topography. A recent study by Zhang et 
al. (2018) of extreme heatwaves in the U.S. (Chapter 2) also found added values of CPM. The 
feedback from antecedent soil moisture to summer heatwaves reveals a much higher agreement 
with the observational dataset than do other coarser resolution studies. 
 
The land surface state and land-atmosphere exchange of energy and moisture fluxes exert a strong 
control on the climate system over land. A previous CPM study of the snowpack in the western 
U.S. has shown that model results are sensitive to the choice of LSM (Chen et al., 2014). 
Nonetheless, even with the same LSM, perturbations in the initial soil moisture state and multiple 
LSM parameterizations may also induce uncertainties in simulating both precipitation and 
temperature in regional climates (Trier et al., 2008; Zheng et al., 2015). These results suggest that, 
even though a CPM model can constrain the major source of precipitation uncertainties from 
convection parameterizations, the deficiencies from other model physics parameterizations, such 
as the LSMs, may emerge. 
 
Most recently, two long-term RCM studies have been conducted in the continental U.S. and 
Western Canada (Liu et al., 2017; Li et al., 2019). These studies are powerful tools to investigate 
the impacts of climate change on the water cycle and important data source for this thesis. The two 
sets of CPM simulations have two distinctive advantages for the current study: (1) High-resolution 
forcing and grid spacing allow a detailed representation of the land surface heterogeneity (Prein et 
al., 2015); (2) Switching off the convection parameterization allows improved forecasting for 
precipitation diurnal cycle, intensity, and frequency (Kendon et al., 2017). Figure 1.4 shows the 
domain coverage and terrain height of the CONUS WRF study.  
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Figure 1.4. Model domain and terrain height (m) for the CONUS WRF simulations. 
 
The CONUS WRF simulations adapt a method called “pseudo global warming” (PGW), a 
hypothetical warming scenario by the end of 2100 downscaled by an ensemble of GCMs. These 
GCMs provide a surrogate climate change scenario for investigating climate change impacts on 
hydrological and land surface characteristics. The PGW method consists of two paralleled climate 
simulations: the control simulation (CTRL), which is a realization of the contemporary climate, 
and the future simulation (PGW), which adds a delta climate change signal from GCM projections 
upon the CTRL. For the CTRL simulation, the initial and boundary conditions are from the 6-hr 
ERA-Interim re-analysis dataset. For the PGW simulation, the initial and boundary conditions are 
created by adding a climate change perturbation by the end of the 21st century, derived from an 
ensemble of GCMs in an RCP8.5 emission scenario upon the ERA-Interim reanalysis. 
 
The climate change perturbation includes wind, geopotential height, temperature, specific humidity, 
sea surface temperature, soil temperature, sea level pressure, and sea ice (Liu et al., 2017). The 
perturbation in these fields impact large-scale planetary waves and associated thermal dynamics, 
while the synoptic scale weather events remain structurally constrained by the boundary conditions 
in terms of frequency and intensity (Schär et al., 1996; Rasmussen et al., 2011). The PGW method 
has gained popularity in the climate science and hydrology communities, as it concomitantly allows 
certain processes to be examined in isolation, such as snowfall and snowpack (Rasmussen et al., 
2011; Musselmen et al., 2018), meso-scale convection systems (Prein et al., 2017), land-
atmosphere interactions (Zhang et al., 2018), and groundwater responses to climate change (Zhang 
et al., 2020).  

CTRL:		WRF����� = ERA-Interim	(1.9) 
PGW: 	WRF����� = ERA-Interim + ∆CMIP5����.�	(1.10) 
∆CMIP5����.� = CMIP5F� ¡lF¡�� − CMIP5¡¢ £lF���	(1.11) 

Both CTRL and PGW simulations were dynamically downscaled using the WRF model at 
convection-permitting resolution (4-km) from 2000-10-01 to 2013-10-01 (Liu et al., 2017). A flow 
chart of the PGW method used in the CONUS WRF simulations is included in Appendix A.   



 14 

1.3 Research design  
1.3.1 Research purpose 
The purpose of this research is to provide a better understanding and improve the representation of 
two major land ecosystems in the North American Great Plains—the prairie pothole wetlands and 
croplands—and study their interactions with the regional climate. These two ecosystems provide 
important services to the surrounding environment, such as flood regulation, wildlife habitats and 
food security. At the same time, they play a key role in interacting with the regional climate through 
strong exchanges of energy, moisture and carbon. Their impacts on the regional climate, such as 
influencing temperature and precipitation, are critical to understanding and mitigating climate 
change impacts and are essential to sustainable development. 
 
1.3.2 Study region  
Figure 1.5 shows the land use map for the North American Great Plains, with the black contour 
depicting the Prairie Pothole region (PPR). The yellow color covers the U.S. corn belt, soybean 
fields in the Lower Mississippi River Basin, and the massive wheat field across the U.S. and 
Canada, which are also referred to as one of the world’s food baskets. The Prairie Pothole wetlands 
are small features co-located between the grasslands and croplands in the PPR region. Key 
hydrological processes and land-atmosphere interactions occur in these two land types. For 
example, the crop growth may alter the surface albedo, LAI, hence, surface energy partitioning. 
Human management, such as irrigation, adds an additional water supply to the fields, effectively 
changing the water balance as well. Shallow groundwater acts as a buffer for the land surface and 
soil moisture, absorbing excessive water during wet times and supplying uplands during dry times. 
Wetlands are also open water features that can significantly cool the surrounding environment 
through partitioning available surface energy to latent heat fluxes. Therefore, it is essential to study 
these processes and their impacts on the regional climate through improving their representation in 
LSMs.  
 

 
Figure 1.5. Land use map for the North American Great Plains region. The yellow color covers a massive area of 
cropland. The black contour depicts the Prairie Pothole Region across Canada and the U.S.  
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1.3.3 Objectives  
Objective 1  
Understand the land-atmosphere interactions during extreme heatwaves. To achieve this objective, 
the following steps were taken: 

• Define heatwaves and soil moisture anomalies using historical statistics. 
• Understand the statistical relationship between heatwaves and soil moisture.  
• Study the responses of heatwaves to soil moisture, given different quantiles of heatwave 

frequency and magnitude. 
 
Objective 2 
Assess the interactions between crop growth and irrigation in cropland ecosystems. To achieve 
this objective, the following steps were taken: 

• Assess Noah-MP’s performance in the joint modeling of crop yields and irrigation 
amounts. 

• Investigate the impacts of irrigation on crop yields, from field to regional scale. 
• Study the impacts of climate change on crop yields and irrigation amounts. 

 
Objective 3  
Study the shallow groundwater dynamics in the Prairie Pothole Region (PPR) under the current 
and future climate. The following steps were taken: 

• Simulate and evaluate the modeled water table depth using well observations in the PPR. 
• Understand the contribution of climate change to the surface, subsurface, and groundwater 

hydrological cycle. 
• Assess the uncertainties of soil texture in modeling water table depth 

 
Objective 4 
Explore the wetland distribution in the Canadian Prairies under future climate change. The 
following steps were taken: 

• Develop a generalized additive model from soil moisture and ecoregion factors in the 
Canadian Prairies. 

• Understand the wetland extent changes associated different hydrological components. 
• Combine the future wetland extent with historical drainage conditions and design 

diversified conservation strategies over this region. 
 
Objective 5 
Represent the dynamics of the prairie pothole wetlands and study their hydrological cycle, spatial 
distribution and their feedback to the regional climate. The following steps were taken: 

• Develop a sub-grid wetland parameterization. 
• Test this sub-grid wetland scheme at a single-point site and offline regional simulations. 
• Investigate the impacts of wetland hydrology on the regional climate in a coupled WRF 

model.  
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1.4 Outline 
Chapter 2 of this thesis presents a study that quantifies the relationship between summertime 
extreme heatwaves and antecedent springtime soil moisture anomalies in the U.S. from station 
observations and a long-term high-resolution convection-permitting model. Both heatwaves and 
soil moisture anomalies from the CONUS WRF simulations are evaluated against station 
observations. A quantile regression method is used to analyze the asymmetric responses of various 
quantiles of heatwave frequency and magnitude against springtime soil moisture. Strong negative 
correlation coefficients are found over two regions in the U.S. Midwest and South Great Plains. 
This study adds predictability to seasonal-to-sub-seasonal (S2S) forecasting of summertime 
extreme heatwave events. The manuscript, entitled “Evaluation of convection-permitting WRF 
CONUS simulation on the relationship between soil moisture and heatwaves”, was published in 
the journal Climate Dynamics in 2018: https://link.springer.com/article/10.1007/s00382-018-
4508-5. 
 
Chapter 3 presents joint crop-irrigation simulations in the central U.S. for corn and soybean in the 
Noah-MP LSM. The purpose of these simulations is to investigate the impacts of soil water stress 
and the improvement modeled irrigation has on simulating crop photosynthesis and carbon 
allocation in a semi-arid region. This study also assesses the uncertainties associated with crop 
physiology, planting/harvesting and irrigation management. The results show that irrigation has a 
stronger impact on corn in the semi-arid region of Nebraska than for soybeans in the Lower 
Mississippi River Basin. Updating the state-level planting/harvesting dates generally reduces crop 
yields, mostly due to shortening the growing seasons. Finally, modeling uncertainties are assessed 
and associated with crop physiology parameters, crop yield records, yield gaps, human 
management such as planting/harvesting, irrigation, and fertilization. This manuscript, entitled 
“Joint modeling of crop and irrigation in the Central United States using the Noah-MP land surface 
model”, was published in the Journal of Advances in Modeling Earth Systems in 2020: 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020MS002159. 
 
Chapter 4 presents a modeling study of the shallow groundwater dynamics in the PPR across 
Southern Canada and the U.S. Midwest. The purpose of this study is to explore the exchange of 
water between soil moisture and shallow groundwater in this region with seasonal frozen soil, 
under the current and future climate. A shallow groundwater dynamic scheme is coupled in the 
Noah-MP LSM. The land surface model and groundwater scheme are driven by two sets of parallel 
climate forcings from CONUS WRF, one for the current and the other for the future climate. The 
model-simulated water table depths are evaluated against well observations. The water balance for 
groundwater aquifers, soil moisture, and snowpack are investigated under the current and future 
climate. This study manifests the potential for modeling shallow groundwater and its interaction 
with soil moisture in the PPR and has great implications for studying the region’s hydrological 
cycle. The manuscript, entitled “Modeling groundwater responses to climate change in the Prairie 
Pothole Region”, was published in the journal Hydrological and Earth System Sciences in 2020: 
https://hess.copernicus.org/articles/24/655/2020/. 
 
Chapter 5 presents a ecological application of the Noah-MP LSM to investigate the future 
distribution of surface wetlands in the Canadian Prairies. The purpose of this study is to explore 
the future distribution of wetland extents in the Canadian Prairies and to understand the water 
balance contribution to these changes. This study uses the hydrological outputs from the shallow 
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groundwater study in Chapter 4 and ecoregions distribution to construct a statistical model—a 
general additive model (GAM)—to simulate wetland extents in the current and future climate. 
Under the future climate, two regions exhibit a consistent increase and decrease of wetland 
extents—the mixed grasslands in the west and mid-boreal uplands in the east, mainly due to the 
heterogeneity of future precipitation projections in the summer. The future wetland distributions 
are overlayed with a historical drainage map of the Canadian Prairies. These two 
increased/decreased wetlands suggest diversified conservation strategies of wetland retention and 
conservation in the western and eastern Canadian Prairies. This manuscript, entitled 
“Heterogeneous changes to wetlands in the Canadian Prairies under future climate”, was published 
in Water Resources Research in 2021: 
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020WR028727.  
 
Chapter 6 presents a dynamic wetland modeling study using the Noah-MP LSM and coupled WRF 
regional climate model. The purpose of this study is to improve simulated wetland spatial extents 
and hydrological processes and investigate their impacts on the surface energy and water balance, 
as well as on feedback to the regional climate in the PPR. In this study, the default TOPMODEL-
based saturated fraction 𝐹"#$ parameterization is modified, based on the first layer of soil saturation. 
In addition, a bucket-style surface water storage scheme is implemented to simulate dynamic 
wetland hydrological processes, including inflow, evapotranspiration to atmosphere, and outflow. 
13-year offline simulations are conducted over the PPR region using the CONUS WRF forcing. 
Finally, coupled WRF simulations are conducted for the summer months from April to August 
over three summers. The results show a significant cooling effect of 1~3℃ over high wetland 
fraction regions. This study has important implications for representing wetland hydrological 
processes and their impacts on the surface energy balance and feedback to the atmosphere in 
coupled regional climate models. This study is also important for wetland conservation agencies 
as the wetland cooling effects are evident for relieving heat stress during extreme heatwave events. 
The manuscript, entitled “Evident cooling effects of surface wetlands to mitigate climate change – 
a study of the Prairie Pothole Region” is under review in the Water Resources Research in 2021. 
 
Chapter 7 summarizes the above studies in this thesis and provides a synthesis on three major 
challenges in land surface model development, including model process complexity, surface 
heterogeneity, and uncertainties in model parameters. A future outlook for a potential follow-up 
study of joint cropland-wetland simulation in the North American Great Plains is also provided.  
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Chapter 2 – Asymmetric responses of summertime heatwaves to antecedent soil 
moisture  
 

This manuscript has been modified for inclusion in this thesis. It was originally published as:  

Zhang, Z., Li, Y., Chen, F., Barlage, M. & Li, Z. Evaluation of convection-permitting WRF 
CONUS simulation on the relationship between soil moisture and heatwaves. Clim. Dyn. (2018) 
doi:10.1007/s00382-018-4508-5. 

Author contributions: Z. Zhang, F. Chen and M. Barlage designed the study and wrote the 
paper. Y. Li and Z. Li contributed to the interpretation of the results and reviewed the manuscript.  

Keywords  

Soil moisture, heatwaves, land-atmosphere interaction, convection-permitting, regional climate 
model, WRF model 
 
 
Abstract   
Soil moisture plays an important role in modulating regional climate from sub-seasonal to seasonal 
timescales. Particularly important, soil moisture deficits can amplify summer heatwaves (HWs) 
through soil moisture-temperature feedback which has critical impacts on society, economy and 
human health. In this study, we evaluate decade-long convection-permitting Weather Research and 
Forecast (WRF) model simulations over the contiguous US on simulating heatwaves and their 
relationship with antecedent soil moisture using a dense observational network. We showed that 
the WRF model is capable of capturing the spatial patten of temperature threshold to define HWs, 
though the simulation shows a warm bias in the Midwest and cold bias in western mountainous 
regions. Two HW indices, based on frequency (HWF) and magnitude (HWM), are evaluated. 
Significant anti-correlations between antecedent soil moisture and both HW indices have been 
found in most parts of the domain except the South Pacific Coast. A detailed study has been 
conducted for the Midwest and South Great Plains regions, where two heatwaves had occurred in 
the last decade. In both regions, the high quantile of the HWF distribution shows a strong 
dependence on antecedent soil moisture: drier soil leads to much larger increase on the upper 
quantile of HWF than it does on the lower quantile. Soil moisture effects on the higher end of 
HWM are not as strong as on the lower end: wetter antecedent soil corresponds to a larger decrease 
on the lower quantile of HWM. WRF captures the heterogeneous responses to dry soil on HWF 
distribution in both regions but overestimates these HWM responses in the Midwest and 
underestimates them in the South Great Plains. Our results show confidence in WRF’s ability to 
simulate HW characteristics and the impacts of antecedent soil moisture on HWs. These are also 
important implications for using high-resolution convection-permitting mode to study the coupling 
between land and atmosphere.  
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Motivation  
Since the goal of this Ph.D. study is to understand the land-atmosphere interaction in convection-
permitting model simulations, the first step is to explore how this relationship is simulated in 
current state-of-the-art CPM research. I first study one aspect of the land-atmosphere interaction— 
soil moisture-temperature feedback during extreme heatwave events. The CONtinuous US WRF 
project provides an important opportunity for long-term high-resolution results. An evaluation of 
the model performance in springtime soil moisture and its relationship with summertime heatwaves 
provides an overall understanding of this topic. 
 
 
2.1 Introduction 
Summer heatwaves (HWs) have significant impacts on the environment, society, and human health 
(Brooke Anderson and Bell 2011). Under climate change, these extreme hot events are projected 
to become more frequent, intense and longer (Meehl and Tebaldi 2004; Diffenbaugh and Ashfaq 
2010; IPCC 2012). Thus, understanding the physical mechanisms of HWs and improving HW 
forecast skills is of great importance and allows a proactive approach to mitigating potential HW 
damages. 
 
Although persistent synoptic high pressure induced by large scale atmospheric blocking is a 
necessary factor in causing persistent heatwaves (Perkins 2015), land–atmosphere interactions also 
play an important role in amplifying the hot extremes through a soil moisture-temperature feedback 
mechanism (Jaeger and Seneviratne 2011; Miralles et al. 2014). Soil moisture availability 
determines the evapotranspiration, a key process in exchange of water and energy between the land 
surface and atmosphere. During dry periods, low soil moisture limits the available surface energy 
converted to latent heat. More energy is partitioned as sensible heat flux, inducing an increase of 
near-surface temperature. Increased temperature then leads to a higher vapor pressure deficit and 
evaporative demand, and thus to a potential increase in evapotranspiration despite the already 
existing dry conditions, leading to a further soil desiccation (Seneviratne et al. 2010). 
 
The soil moisture-temperature feedback mechanism and its impacts on heatwaves have been 
studied using climate models both in long-term climate simulations (Koster et al. 2004, 2006, 2009; 
Guo et al. 2006; Seneviratne et al. 2006; Jaeger and Seneviratne 2011) and regional events studies 
(Fischer et al. 2007; Whan et al. 2015; Hauser et al. 2015). Both studies contribute to our 
understanding of the feedback mechanism and the key role that soil moisture plays to influence 
near-surface temperature. However, these results, by perturbing initial soil moisture or decoupling 
the land from the atmosphere, could be artificial and model dependent. Substantial observational 
evidence is needed to further understand the soil moisture-temperature feedback. 
 
Several observations have confirmed previous modeling studies at regional (Durre et al. 2000; 
Hirschi et al. 2011; Quesade et al. 2012; Meng and Shen 2014; Sun et al. 2017) and global scale 
(Mueller and Seneviratne 2012). These works focus on the relationship between antecedent 
precipitation/soil moisture and summer hot extremes, and its impacts on different distributions of 
hot extreme indices. Owing to the lack of extensive long-term soil moisture observations, they 
inferred soil moisture conditions using a precipitation-based index called the standardized 
precipitation index (SPI) (McKee et al. 1993). Their results showed that antecedent negative soil 
moisture anomalies were associated with a high frequency of summer hot day as well as longer 
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duration of HW. Although precipitation is a major driver for soil moisture, SPI does not consider 
the effect of evapotranspiration. A similar multi-scalar statistical index called the standardized 
precipitation evapotranspiration index (SPEI) has been proposed to account for both precipitation 
and evapotranspiration on soil moisture (Vicente-Serrano et al. 2009). 
 
Although the above observational studies have shown evidence of soil moisture-temperature 
feedback on HWs, they mainly focused on the frequency and duration of HWs, while the HW 
intensity and its relationship with soil moisture has not yet been assessed. A statistical significant 
correlation suggests a strong connection between soil dryness and extreme heat, but does not 
necessarily imply causality (Mueller and Seneviratne 2012). Moreover, previous regional climate 
model simulations could capture the link between the soil moisture deficits and hot extremes but 
only for the moisture-limited regime. For wetter climates, the models tended to overestimate the 
strength of soil moisture-temperature feedback (Hirschi et al. 2011). Furthermore, previous studies 
used data from both global/regional models and gridded observational/re-analysis products at a 
spatial resolution of 50–100 km, which is not sufficient to capture the land–atmosphere feedback 
and perform HW impact studies on a local scale. 
 
Long-term climate downscaling using convection-permitting models (CPM) provides an 
opportunity to fill the gaps in spatial scales (Prein et al. 2015). A 13-year (2000 October–2013 
September) 4-km CPM simulation was conducted for the contiguous US (CONUS), using the 
Weather Research and Forecast (WRF) model (Liu et al. 2017). The CPM simulation, by explicitly 
resolving convection, improves summer precipitation simulations (Liu et al. 2017), which is 
important for assessing soil-moisture evolution and land–atmosphere feedbacks. This simulation 
represented realistically fine-scale land surface properties, such as topography and land-cover types 
which are critical in land–atmosphere coupling studies. In addition, the fine resolution dynamical 
downscaling allows the studies of HW impacts on local scale, which is more relevant to public 
health issues. 
 
The purposes of the study in this chapter are to: (1) evaluate different temperature thresholds in 
defining the simulated HW for two HW indices; (2) assess the correlation between antecedent soil 
moisture and summer HWs in the WRF CONUS simulation; and (3) evaluate how differently the 
distribution of HW indices responds to observed soil moisture and how well this feature is 
represented in the WRF 4-km CONUS simulations. The Midwest (MW) and South Great Plains 
(SGP), where soil moisture-temperature feedbacks are strong and two extreme heatwaves 
happened in 2006 and 2011, are investigated in detail. This paper is organized as the following: 
Sect. 2 describes observation and WRF simulation datasets, as well as the indices used to define 
heatwaves and soil moisture anomaly; Sect. 3 evaluates the CPM WRF in simulating HWs and 
discusses their correlations with antecedent soil moisture against observation datasets; Sect. 4 
provides a broad discussion of antecedent soil moisture as a physical driver of HWs, its predictive 
skills and WRF CONUS performance compared to observation and other studies; conclusions are 
provided in Sect. 5. 
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2.2 Data and Method  
2.2.1 WRF model 
Previous studies have stated the advantages of high-resolution convection-permitting modeling in 
studying the land surface processes, by improving the representation of fine-scale terrains, such as 
mountainous and urban areas, and the heterogeneity of surface fields, such as soil moisture (Prein 
et al 2013a, b, 2015). In this study, we use high-resolution convection-permitting regional climate 
simulations, conducted on the Weather Research and Forecasting (WRF) model V3.4.1 
(Skamarock et al. 2008), to explore the soil moisture-temperature feedback on summer HWs. The 
simulations start from the October of 2000 and run to the September of 2013 on 4-km horizontal 
grid spacing (1360 × 1016 grid points), covering the contiguous US (CONUS) (Fig. 1a). The 
physical parameterization schemes used in these simulations are the Thompson aerosol-aware 
microphysics (Thompson and Eidhammer 2014), the Yonsei University (YSU) planetary boundary 
layer (Hong et al. 2006), the rapid radiative transfer model (RRTMG; Iacono et al. 2008) and the 
Noah-MP Land Surface Model (LSM). (For more detailed descriptions about the selection of 
physical schemes, model modifications, and simulation configuration, please see Liu et al. 2017). 
 
In the CONUS WRF simulations, soil moisture and surface fluxes exchange to the atmosphere are 
simulated by the Noah-MP Land Surface Model (LSM) (Niu et al. 2011; Yang et al. 2011), a 
community model with multi-parameterization options to the original Noah LSM (Chen and 
Dudhia 2001). The Noah-MP LSM has been applied broadly, both in offline mode (Cai et al. 2014a, 
b) and coupled with atmospheric models (Chen et al. 2014; Barlage et al. 2015). Particularly, 
previous studies have shown improvement in simulating snowpack (Musselman et al. 2017) and 
severe storm forecast (Duda et al. 2017) by a more realistic representation of surface physics in the 
Noah-MP LSM coupled with high resolution CPM. In addition, Liu et al. (2017) provided several 
key modifications to the Noah-MP LSM, including microphysics-based snow-rain partitioning, 
realistic surface snow coverage representation, patchy snow in surface energy balance calculation, 
and heat transport by precipitation into the ground (see Liu et al. 2017). In this study, we are 
interested in soil moisture anomaly and how it contributes to summer HWs through soil moisture-
temperature feedback. For this purpose, the WRF model simulated soil moisture anomalies are 
compared with an observational network (see Sect. 2.2) and the evaluation results are shown in 
Sect. 3.1. 
 
2.2.2 Observations 
To evaluate the WRF model temperature and soil moisture output, we used meteorological station 
data from the Global Historical Climatology Network-Daily dataset (GHCN-Daily) (Menne et al. 
2012; Newman et al. 2015). Daily maximum temperature (Tmax) and precipitation data from a 
total number of 9877 stations within the WRF model domain are used to calculate heatwave indices 
and soil moisture proxy in this study. The locations of the GHCN-Daily station are also shown in 
Fig. 1a, with stations in the Midwest (MW, 41–46N, 90–105W) and the South Great Plains (SGP, 
29–40N, 95–105W) are highlighted. 
 
Soil moisture observations from the US Department of Agriculture (USDA) Soil Climate Analysis 
Network (SCAN) (Schaefer et al. 2007) are used to evaluate the simulations. The SCAN soil 
moisture data are collected by dielectric constant measuring devices at five different depths: 5 cm, 
10 cm, 20 cm, 50 cm and 100 cm. The monthly top 1-m SCAN soil water content are integrated 
for each observation site and compared with the 1-m soil water integrated from the top three model 
soil layers (i.e., 5 cm, 25 cm, 70 cm) in Noah-MP. Due to measurement maintenance and data 
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quality control issue, data from many stations are missing in various time, thus we calculated the 
ratio between available data (in monthly interval) and total period of simulation (from 2000 Oct to 
2013 Sep) as the data availability. Figure 1b shows the locations of SCAN soil moisture 
measurement and their data availability within our simulation period. 
 

 
Figure 2.1. a WRF model domain (5440 km × 4064 km) at 4 km grid spacing showing topographic elevation in meters. 
Black dots are the locations of observational stations of GHCN meteorological network (9877 within model domain). 
Stations within the white boxes are located in Midwest and South Great Plains and are selected for the regional study. 
b Locations of soil moisture measurement from SCAN (185 within model domain) and their data availability within 
our simulated period. 
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To compare with observations from both SCAN and meteorological stations, the closest model grid 
points to the station locations are extracted. The fine grid spacing of the convection-permitting 
WRF model and the dense observational network together allow the grid-to-station comparison 
between WRF model grid points and observational stations. In the following text, the analysis and 
variables derived from observation (including SCAN soil moisture and calculated temperature and 
soil moisture index) and WRF model are denoted as OBS and WRF, respectively. 
 
2.2.3 HW indices 
In this study, we apply the HW definition by Perkins and Alexander (2013), in which heatwave is 
defined as a consecutive period of extreme high temperature upon a statistically based threshold. 
In their definition, the threshold is the 90th percentile of daily Tmax for each calendar day in a year, 
TX90. This threshold is calculated based on a 15-day moving window, which is centered on the 
day in question, in order to account for seasonal cycle and obtain sufficient sample size for a 
realistic percentile value. The HW event is defined as three or more consecutive days when daily 
Tmax exceeds the TX90 threshold. Based on this definition, two HW indices, frequency and 
magnitude, are defined: HWF (heatwave frequency) is the number of days qualified as HWs and 
HWM (heatwave magnitude) is the mean daily Tmax during the HWs. For assessing soil moisture 
impacts on summer HWs, we calculated the TX90 threshold for each day in June–July–August 
(JJA) for the whole 13-year simulation period (during 2000 and 2013). Therefore, the two HW 
indices are obtained for these three months separately, in total 39 samples in 13 years.  
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2.2.4 Soil moisture indices 
Because of the uncertainties inherent to long-term gridded soil moisture data, many studies have 
used different indices to estimate soil moisture deficit (Dai 2011; Hirschi et al. 2011; Muller and; 
Seneviratne 2012; Quesade et al. 2012). In this study, two hydro-meteorological indices were 
evaluated for model simulation and observational networks, including the soil moisture anomaly 
(SMA) and the standardized precipitation evapotranspiration index (SPEI). 
 
The SMA describes the deviation of soil moisture in a period of a year to the soil moisture 
climatology and normalized by the standard deviation of soil moisture over the same period. In this 
study, the monthly top 1-m SMA is calculated from both the SCAN measurements and the closest 
grid points in WRF model, following the method of Orlowsky and Seneviratne (2013): 

𝑆𝑀𝐴 =
(𝜃̅ − 𝜇)
𝜎 						(2.1) 

where 𝜃 is monthly-averaged top 1-m soil water content, 𝜇 and σ are the mean and standard 
deviation of top 1-m soil moisture of the same months over the 13-year study period. 
 
As shown in Fig. 1b, there are limited number of soil moisture measurements from SCAN network 
within the contiguous US domain. Only 185 stations have long term soil moisture measurement, 
while 9877 stations have temperature and precipitation observations. In order to get better coverage 
of soil moisture estimate, we used the SPEI index by Vicente-Serrano et al. (2009) to estimate the 
soil moisture anomaly in spring. The SPEI is based on precipitation and temperature data to 
calculate the accumulation of water deficit/surplus, precipitation minus potential 
evapotranspiration (P-PET), for a selected time period. Mathematically, the SPEI is similar to the 
SPI, but it also includes the effect of temperature variability on soil moisture deficit. The procedure 
proposed by (Vicente-Serrano et al. 2009) was used to estimate potential evapotranspiration by 
Thornthwaite’s method (Thornthwaite 1948). And the P-PET series is fitted to a 3-parameter 
Pearson III distribution at each station to obtain the SPEI for both station observation and the WRF 
model. Here, the analysis focuses on the SPEI calculated on 3-month timescale (SPEI-3) to 
represent the seasonal soil moisture anomalies in spring. The values of SPEI represents the standard 
deviation from the mean state (0), where SPEI values larger/smaller than 0.5/− 0.5 represent 
abnormal wet/dry conditions. 
 
2.2.5 Methodology 
The analysis was conducted locally for each individual station and model grid point. For the 
evaluation of WRF simulation against observation, the model grid points that are closest to station 
locations were extracted. In this study, the relationship between two HW indices from the three 
summer months (June–July–August, JJA) and the spring soil moisture from preceding months 
(based on the 3-month SPEI described in Sect. 2.4), for the year 2000–2013. We applied three types 
of analysis on the monthly HW indices and soil moisture estimate. 
 
First, the WRF model performance on simulating summer HW indices and soil moisture proxies 
were evaluated against meteorological station data and SCAN soil moisture measurements. For 
temperature evaluation, the model simulated TX90 threshold and HWF, HWM indices are 
compared to those derived from observation for the summer months (JJA). For the evaluation of 
model simulated soil moisture indices, the monthly SMA and the SPEI-3 timeseries are calculated 
from model output and compared with observation data from the SCAN. 
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Second, the HW indices for each summer month are related to their antecedent 3 months SPEI by 
calculating the Pearson correlation coefficient. The purpose of calculating correlation coefficient 
is to identify strong and significant correlated regions, as well as to evaluate model performance 
across the domain. Based on the correlation coefficient results, regions with strong coupling 
between land and atmosphere can be identified. 
 
Third, a quantile regression analysis was conducted to understand how soil moisture deficits impact 
the two HW indices. The ordinary linear regression shows the relation between the mean of the 
dependent variable y to the independent variable x. Quantile regression examines how different 
parts of the distribution of a dependent variable y respond to an independent variable x, based on 
the quantiles of choice. Special interests were focused on two regions, Midwest and South Great 
Plains, where two exceptional HWs had occurred in the last decade. The quantile regression of HW 
indices against antecedent SPEI are calculated for these two regions, and their regression slopes 
for each quantile are evaluated between the simulations and observations. 
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2.3 Results 
2.3.1 Evaluation of WRF-simulated heatwave and soil moisture indices 
The JJA seasonal averaged daily TX90 threshold from observation, WRF and their difference 
(model minus observation) are shown in Fig. 2. TX90 varies greatly across the contiguous US, with 
the hottest region in the Southwest desert area in Arizona exceeding 44 °C. Another extraordinarily 
hot region is located east of the Rocky Mountains in the South Great Plains, including Texas, 
Oklahoma, Kansas, Louisiana and Mississippi, with the threshold temperature higher than 40 °C. 
 

 
Figure 2.2. JJA-averaged daily TX90 threshold temperature calculated for a station, b WRF model, and c model bias 
(WRF-OBS) for the summers of 2000–2013. 
 
The WRF simulation accurately captures the spatial pattern of the TX90 threshold, with two hot 
regions aforementioned and one cold region in the North and mountainous area. Figure 2.2c shows 
the difference of TX90 between WRF and observation, revealing a warm bias pattern straddled 
along the western edge of the Great Plains. For many global and regional climate model (Ma et al. 
2014; Whan and Zwiers 2016), the summer warm bias is a common issue in near-surface 
temperature simulation over central North America for both mean and maximum temperature. The 
highest warm bias is about 3–4 °C in the Midwest and North Great Plains, mostly in Iowa, Nebraska, 
Minnesota and South Dakota. A noticeable cold bias of about 2–3 °C appears in the mountainous 
and valley regions west of the Rocky Mountains. 
 
HWF characterizes the average number of HW days in a month, which is well simulated in WRF 
(Figure 2.3b). However, WRF underestimates the spatial extent of the number of days contributing 
to HWF in the Midwest, Ohio Valley, Mississippi Basin, East Coast, and around the Great Basin. 
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Figure 2.3. Same as Figure 2.2 but for HWF (a–c) and (HWM-TX90) (d–f). 
 
The HWM is an index depicting the average magnitude of daily Tmax among HW days, which is 
identified based on the threshold temperature TX90. We show the HWM minus the TX90 threshold 
(HWM − TX90) in Figure 2.3d–f. (HWM − TX90) can also be considered as an indicator of the 
variability of daily Tmax beyond its 90th percentile threshold. Both observations and WRF (Figure 
2.3d, e) show a larger magnitude (≥ 2 °C) in the northern part of domain (north of 40 N), and near 
both east and west coast in daily Tmax. But in the southern part of the domain, the departure of 
HWM to TX90 are generally small. This may imply a heavier tail in the distribution of daily Tmax 
for the northern part than the southern part of the domain. The WRF model captured correctly this 
feature with small difference (less than ± 1 °C). Overall, the HW threshold and HW simulated by 
the WRF CONUS simulation are reasonable in representing the observations and can be trusted in 
further analysis. 
 
Table 2.1 Pearson correlation coefficient between monthly timeseries of soil moisture anomaly and SPEI-3, from both 
observation and WRF model in two regions (MW and SGP) 

Region SMA_obs vs SMA_wrf SMA_obs vs SPEI_obs SPEI_obs vs SPEI_wrf SMA_wrf vs SPEI_wrf 
MW 0.706 0.546 0.905 0.762 
SGP 0.692 0.716 0.965 0.826 

 
For soil moisture evaluation, the simulated top 1-m soil moisture anomaly from WRF model is 
compared with the SCAN measurement. The timeseries of monthly soil moisture anomaly for two 
selected regions (MW and SGP) are shown in Figure 2.4. Since determining if the SPEI can 
represent soil moisture anomaly is of interest in these two regions, the SPEI-3 calculated for each 
month using meteorological data and WRF simulation are shown in dashed lines. The Pearson 
correlation coefficients between two soil moisture proxies, SMA and SPEI-3, from observation 
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(OBS) and WRF model are shown in Table 2.1, with bold numbers indicating statistical 
significance (p < 0.01). In general, WRF model well captured the temporal variability of soil 
moisture anomaly accurately in both regions, with high correlation and statistical significance. 
SPEI is a good indicator for soil moisture anomaly, with higher correlation in SGP than in MW. 
The SPEI-3 derived from WRF model in both regions are in good agreement with that from 
observation, thus it is reasonable to use SPEI-3 as a soil moisture indicator and WRF model has 
accurately simulated this index. 
 

 
Figure 2.4. Monthly soil moisture anomaly and SPEI-3 in selected two regions a in MW, and b in SGP. Solid dotted 
lines are from observational results, and dashed lines are from WRF model; black lines are for soil moisture anomaly 
and blue lines are for SPEI-3 index  
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2.3.2 Correlation between heatwaves and antecedent soil moisture  
To determine the statistical relationship between antecedent soil moisture represented by SPEI-3 
and the HW indices used in this study, we calculated their Pearson correlation coefficients over the 
13-year period (Figure 2.5). Significant anti-correlations with SPEI-3 exist for both HWF and 
HWM (p < 0.01) and appear in most regions in the continent, except for the Southwest region of 
the Pacific coast. The significant regions in HWM are generally further east compared to those in 
HWF, both in the observation and WRF. These anti-correlations suggest dry (wet) springs are 
associated with more (less) HW days and higher (lower) HW temperature in summer months. 
 

 
Figure 2.5. Pearson’s correlation coefficient between SPEI-3 and HWF (a, c) and HWM (b, d), from observation (a, 
b) and WRF model (c, d). Highlighted stations/grid points indicate significant correlations at the 99% confidence 
level 
 
The WRF model accurately captures these significant anti-correlations between antecedent soil 
moisture and summer heatwaves in most regions, including the South Great Plains (North Texas, 
Oklahoma, Kansas, Nebraska), Midwest (Wisconsin, Illinois, Iowa, Minnesota) and Gulf Coast 
(Louisiana, Arkansas, Mississippi). The WRF simulation shows less areas with statistical 
significance in the Canadian Prairies and Central US and more significant in Michigan (p < 0.01). 
These regions with significant anti-correlations resemble the land–atmosphere coupling “hot spots” 
in previous studies (Koster et al. 2004, 2006; Guo et al. 2006). In these regions the antecedent soil 
moisture has strong influence on both frequency and magnitude of HWs and, thus, may possess 
some predictability for HWs, especially in the Midwest, South Great Plains, and Gulf Coast. 
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2.3.3 Quantile regression analysis 
The purpose of introducing quantile regression is to show how antecedent soil moisture impacts on 
the two HW indices varies across different quantiles. The regression slope of antecedent soil 
moisture (expressed as SPEI-3) and HW indices represents the differences in the effects of soil 
moisture at various quantiles. Figure 2.6 and 2.7 show the spatial distribution of regression slopes 
for three quantiles (0.1, 0.5 and 0.9 for low, median and high quantile) of HWF and HWM against 
antecedent soil moisture (SPEI-3) for both observation (a–c) and WRF (d–f). The impacts of soil 
moisture deficits on HWF become stronger from the lower to the upper end of HWF distribution 
(Figure 2.6a–c) and are prominently negative for 0.9 quantile (Figure 2.6c, f). For the lower 
quantile (Figure 2.6a, d) the regression slopes are close to zero across the domain. For the higher 
quantile (Figure 2.6c, f), the strongest impacts of antecedent soil moisture on HWF are in the 
Midwest, South Great Plains and along the Gulf Coast, where significant anti-correlations are 
shown in Figure 2.5a, c too. These results show that antecedent soil moisture has strong impacts 
on HWF, especially on the higher quantile, and can be used as a predictive index in these regions. 

 
Figure 2.6. Quantile regression slope between SPEI-3 and HWF at three quantiles, 0.1, 0.5 and 0.9, for low, median 
and high quantiles in OBS (a–c) and WRF (d–f) 
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Figure 2.7. Same as Figure 2.6, but for quantile regression slope between SPEI-3 and HWM in OBS (a–c) and WRF 
(d–f). 
 
Unlike HWF, HWM exhibits strong relationships with antecedent soil moisture in the low quantile, 
which is most obvious in the South Great Plains and Pacific Northwest. It implies that antecedent 
soil moisture has a stronger impact on the low quantile HWM than the high quantile in these regions. 
The strong impacts of antecedent soil moisture on low HWM are accurately simulated in SGP 
region in WRF compared to that of the observations. However, antecedent soil moisture impacts 
on the higher quantiles (0.5 and 0.9 quantile) are underestimated. Quantile regression slopes in this 
region become smaller in WRF simulation than in the observations. There are also some regions, 
where strong relationship between SPEI-3 and HWM in all quantiles is seen, for example in the 
MW region. The correlation becomes even stronger towards the high quantiles. Conversely, the 
WRF model simulate stronger impacts of antecedent soil moisture for the high quantiles than the 
observations in the MW region. 
 
The heatwave indices in two regions, Midwest (MW) and South Great Plains (SGP), are analyzed 
further. For these two regions, the scatter plots of both HWF and HWM against SPEI-3 derived 
from observation and WRF simulation are shown in Figure 2.8. The regression lines for five 
different quantiles (0.1, 0.3, 0.5, 0.7, 0.9) are overlaid with different colors. For HWF (Figure 2.8a, 
c), for both regions, observations show a decreasing trend of regression slopes towards higher 
quantile with the slope values becoming more negative, which suggests a stronger impact of 
antecedent soil moisture on high HWF occurrence. 
 
But for HWM, the scatter plots and quantile regression for these two regions show different features. 
In MW (Figure 2.8c, d), although the trends of five regression lines are not as clear as that of HWF, 
it does show stronger impacts (with steeper slope) of antecedent soil moisture on high quantile 
(Figure 2.8c) in both the WRF simulation and observation. On the contrary, in SGP, the regression 
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slopes are flat for the 0.9 quantile and steep for the 0.1 quantile, indicating stronger impacts of soil 
moisture on lower quantiles (less negative) as shown in Figure 2.8d. 
 
The difference in HWM responses at various quantiles in two regions can be attributed to their 
different evaporation or soil moisture regimes (Schwingshackl et al. 2017). MW belongs to 
transitional-to-wet or transitional-to-energy limited evaporation regime. Summer precipitation 
amount is close to its potential evapotranspiration, so the region relies on moisture storage from 
last spring and winter as well as moisture input from current summer (Quiring and Kluver 2009). 
Thus, the occurrence and intensity of summer heatwaves rely on its antecedent soil moisture and 
summer weather condition. The dependence becomes even stronger for the high quantile of HWF 
and HWM. But SGP belongs to dry-to-transitional or soil moisture limited-to-transitional 
evaporation regime. Summer potential evapotranspiration is much stronger than precipitation. 
Summer convective weather in this region is more related to the moisture input, which is usually 
associated with the low-level jet as part of North Atlantic Subtropical High (NASH) that brings 
moisture from Gulf of Mexico but is less related to antecedent moisture storage in the soil. Thus, 
the high intensity heatwave events are more a response to summer weather condition than to 
antecedent soil moisture condition. Nonetheless, all three drivers including the summer weather 
conditions, antecedent low soil moisture and anomalous SSTs induced by climate variability will 
contribute to the occurrence of intensive HW events in SGP (Hoerling et al. 2013). 
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Figure 2.8. Scatter plots of monthly HWF (a, b) and HWM (c, d) against SPEI-3 from high-density observation (top) 
and from WRF simulation (bottom), based on stations/grid points averaged values for Midwest (MW) (a, c) and South 
Great Plains (SGP) (b, d). Regression lines for five different quantiles (0.1, 0.3, 0.5, 0.7 and 0.9) are shown with 
different colors. SPEI value larger (less) than 0.5 (− 0.5) are shaded in green (brown) to distinguish abnormal wet (dry) 
condition. 
To evaluate WRF model performance, the quantile regression slope between antecedent soil 
moisture and HWF/HWM were calculated from both observations and WRF simulation. Figure 
2.9 shows the regression slopes of 9 quantiles for both HWF and HWM in MW and SGP, with the 
shaded area representing the 95% confidence interval. The decreasing trends (slopes getting more 
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negative for higher quantile) of HWF and SPEI-3 in both regions are accurately simulated by WRF, 
except for high (low) quantiles in MW (SGP), where the WRF model overestimated 
(underestimated) the effect of antecedent soil moisture. For HWM, the decreasing trend in MW is 
not as obvious as that in SGP, given a large spread in the confidence interval; and an overestimation 
(underestimation) of the effects of antecedent soil moisture in MW (SGP) is shown for almost all 
quantiles. These two features are consistent with the spatial distribution of slopes shown in Figure 
2.7c–f. 
 

 
Figure 2.9. Quantile regression slopes of the 0.1–0.9 quantiles for HWF (a, b) and HWM (c, d) in relation to SPEI-3 
for the two regions (a, c: MW, b, d: SGW), for both OBS (black dot) and WRF (red cross). The shaded areas are the 
95% confidence interval for quantile regression slopes for each given quantile.  
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2.4 Discussion 
Multiple physical drivers exist behind heatwaves and the contribution of each driver may vary 
across events and regions. In a recent review paper on heatwaves by Perkins (2015), the physical 
drivers of HWs are summarized in three main categories: synoptic condition, soil moisture and 
land surface interaction, and climate variability. Our study focuses on the impacts of antecedent 
soil moisture on HWs through soil moisture-temperature feedback. The results show that the 
feedback is stronger in a transitional regime, while its manifestation requires interacting with other 
drivers. 
 
For example, soil moisture variation shows little impacts on low quantile HWF in two focus regions, 
suggesting synoptic conditions may be more important for regions with insufficient surface energy, 
which would prohibit evapotranspiration regardless soil moisture condition (Li et al. 2018) (Figure. 
2.6a, d, 2.8a, b). But for high quantile HWF, which are likely associated with anticyclonic static 
synoptic condition, antecedent soil moisture becomes a critical driver, amplifying the soil moisture 
feedback after dry spring but suppressing it when spring wet. This result about HWF is consistent 
with other studies using observational data from Europe and the globe (Hirschi et al. 2011; Herold 
et al. 2016; Mueller and Seneviratne 2012). 
 
On the other hand, the quantile regression between SPEI-3 and HWM show different results. In 
SGP, where antecedent soil moisture has stronger impacts on low quantile HWM (Figure 2.8d), 
the result is similar to a quantile regression study conducted for North and East part of Australia 
(Herold et al. 2016), which is also in dry regime in summer. However, in MW the antecedent soil 
moisture shows strong impacts on HWM in all quantiles (Figure 2.8c), suggesting antecedent soil 
moisture is very important for HWM in this region. 
 
Furthermore, the asymmetric response of HWF/HWM to antecedent soil moisture for different 
quantiles suggests potential predictive skill based on antecedent soil moisture condition, especially 
for high quantile of HWF in both focus regions and low quantile of HWM in SGP. This is described 
as “asymmetric predictability” by Quesada et al. (2012), who found that the occurrence of summer 
extreme heat events is more sensitive to certain weather regime after dry winter/spring compared 
to a wet season. Our results extend the conclusion to the magnitude of summer heatwaves, which 
depends more on synoptic weather systems in SGP under wet soil condition, while the predictive 
skill of high HWM with dry soil is always high. 
 
The different responses of HWM on different quantiles to antecedent soil moisture in these two 
regions (MW and SGP) could be explained by their different evaporation regimes and weather 
regimes in summer (Figure 2.8c, d). In the summer in SGP, evaporation is moisture-limited and 
the synoptic conditions are largely dependent on the activities of the static anticyclonic high 
pressure systems North Atlantic Subtropical High, which brings moisture from Gulf of Mexico. 
Thus, antecedent soil moisture has stronger influence on low quantile of HWM, while synoptic 
conditions are a more dominant factor for the high quantile of HWM. On the contrary, summer 
precipitation in the MW depends largely on antecedent rainfall/snowfall in previous spring/winter. 
In this region, the moisture recycling through soil moisture-precipitation feedback (Li et al. 2017) 
confirms that it is in energy-limited-to-transitional regime. That explains why antecedent soil 
moisture is important for all quantiles of HWM (Figure 2.8c), and a strengthening trend is observed 
towards higher quantiles (Figure 2.9c). 
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In the relationship between antecedent soil moisture and summer HW indices, the biggest 
differences between WRF simulation and observation found in Figures 2.6, 2.7, 2.8 and 2.9 could 
be explained by warm temperature bias and dry precipitation bias in both regions (Liu et al. 2017). 
In the MW, where summer precipitation relies on local moisture recycling, less precipitation and 
higher summer temperature introduce dry bias in soil moisture, higher evaporation demand further 
desiccating soil under the dry condition. This over-coupling between land and atmosphere 
contributes to a systematic overestimation of the impact of antecedent soil moisture on HWM in 
the MW (Figures 2.7e, f, 2.9c). On the other hand, the warm bias and dry bias in SGP is more 
related to the activities of NASH, which is the dominant factors for the summer weather in SGP. 
Thus, the contribution of antecedent soil moisture to HWM is underestimated with less negative 
slope value in Figures 2.7e, f and 2.9d. 
 
Despite the warm and dry bias in the central US in summer have limited the model performance 
on HW magnitude, the WRF model accurately simulated the relationship between HW frequency 
and SPEI-3 in both regions. Other studies, comparing regional climate simulations with 
observations, found overestimation of the impacts of antecedent soil moisture deficits in wet regime 
(Hirschi et al. 2011). Our results showed reasonable estimation of soil moisture impacts on HW 
occurrence. This could be due to the improved representation of land surface properties in high-
resolution model as well as the explicit simulation of convection in the model. 
 
Although warm bias (3–4 °C) in daily maximum temperature exhibited in central US is a 
challenging issue in CPM simulation, our results showed considerable improvement in simulated 
precipitation compared to coarser-resolution non-convection-permitting regional climate model in 
North America (Whan and Zwiers 2016). In addition, efforts in the Hydrometeorology 
Applications Program group in NCAR/RAL are being undertaken to reduce the warm and dry 
biases in this region. This study showed a statistical approach of evaluating the relationship 
between antecedent soil moisture and temperature, which contributes to the knowledge of 
antecedent soil moisture’s impacts on HW aspects, the asymmetric predictive skill towards 
HWF/HWM and the diagnosis of land–atmosphere coupling in regional climate models. 
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2.5 Conclusion 
Antecedent soil moisture has significant impacts on summer heatwaves, as it can amplify the 
frequency and intensity of heatwaves. Thus, it is essential to understand the physical mechanism 
behind soil moisture and heatwaves and evaluate how this relationship is represented in current 
regional climate models. This study investigates the impacts of spring soil moisture on summer 
heatwaves from station observations and the WRF regional climate model in convection-permitting 
configuration (WRF CONUS). We started with evaluating the 90th percentile of the daily 
maximum temperature in June–July–August (JJA) and used it as the threshold for defining 
heatwave events (TX90). The SPEI-3 is used as a proxy for 3-month antecedent soil moisture as 
the supplement to meteorological station soil moisture measurement. The WRF model simulated 
the spatial patterns of a statistical threshold temperature (TX90) of heatwaves reasonably well, 
except for a 3–4 °C of warm bias in Midwest and 2–3 °C of cold bias in western mountainous 
regions. Despite the high temperature bias in central US in WRF CONUS, the frequency and 
magnitude of HWs are reasonably simulated by WRF CONUS compared to the observation, when 
using a statistical threshold to define HW events (TX90). A soil moisture proxy, SPEI-3, is then 
evaluated against in-situ soil moisture measurement and the results showed that SPEI-3 is a good 
indicator for monthly soil moisture anomaly. 
 
The soil moisture-temperature feedback is represented by anti-correlations between antecedent soil 
moisture, the SPEI-3, and two HW indices, HWF and HWM across the domain. These strong anti-
correlations are significant over many areas in the North America, including the Midwest, North 
and South Great Plains, South Coast as well as the Canadian Prairie. The spatial distribution of 
these strong coupling regions has been captured reasonably by the WRF model. 
 
Quantile regression analysis shows that the impacts of antecedent soil moisture are asymmetric for 
the occurrence and magnitude of HWs. The quantile regression slopes represent the strength of the 
impact of soil moisture on HWF and HWM for different quantiles. For HWF, soil moisture has 
stronger impacts on the higher quantiles of the HWF, suggesting other have a larger effect in certain 
regions with sufficient surface energy, such as where anticyclonic synoptic conditions may play a 
dominant role. On the other hand, the asymmetric effect of soil moisture on HWM varies spatially. 
For two regions in interest, the Midwest (MW) and South Great Plains (SGP), the impacts of 
antecedent soil moisture are stronger for the lower quantile of HWM in SGP, while strong for all 
the quantiles in MW. This difference could be related to their different summer weather regimes - 
summer weather in SGP is highly impacted by large synoptic scale processes, while in MW it is 
largely depended on local feedback through moisture recycling of the antecedent rain/snowfall. 
 
The asymmetric response of heatwave occurrence and magnitude to antecedent soil moisture 
(stronger for higher quantiles of HWF in both regions but for lower quantiles of HWM in SGP) 
provide important information for the improvement of their predictive skill, as it is confident that 
less heatwave events and lower heatwave temperatures will appear after a wet spring than a dry 
spring in two regions. In SGP, antecedent low soil moisture embedded higher predictability for 
high HWM while less predictability for high HWF. 
 
The WRF model also represents well the regression slopes for HWF in most of the quantiles in 
both regions but overestimates the slopes for HWM in MW and underestimates the slopes in SGP. 
The warmer temperature and less precipitation bias in these two regions in summer led to increased 
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evaporative demands and further desiccated soil moisture, hence, strengthened local feedback in 
the MW. On the other hand, other processes might be responsible for underestimated land–
atmosphere coupling in SGP, such as the activities of NASH. Overall, the WRF CONUS simulation 
is capable of capturing the soil moisture-temperature feedbacks in these two regions, which has 
strong connection in summer heatwaves. 
 
The role of soil moisture in land–atmosphere interaction, particularly in heatwaves are complicated 
and need further analysis. Our study has important implications for land–atmosphere coupling 
research as well as heatwave monitoring and forecasting. Here we list a few non-exhaustive 
implications as well as our future research plan: 
 
1. Predictive skill for agriculture activities: agriculture is very important but highly diverse in both 
regions, with the eastern part of MW and SGP mainly rain-fed crop but western part irrigated. 
Rain-fed crop production, in particular, is critically dependent on weather conditions in the warm 
season. Extreme temperature-induced heat stress can seriously affect crop production. These two 
regions are also major places for livestock production, including dairy and beef cattle, hogs and 
others, which are also sensitive to heatwaves. 
 
2. Diagnosis on land–atmosphere coupling: the overestimation of soil moisture impacts on summer 
heatwaves in the MW regions, both seen in the high quantile of HWF and HWM, could be 
attributed to too strong land–atmosphere coupling. There have been many theories regarding the 
over-coupling issue, including too strong surface coupling due to out-of-date assumption on short 
vegetation in this region, which are mainly crop and grassland, which transport higher heat flux 
from the surface to the atmosphere, hence, intensifying the soil moisture-temperature feedback. 
(Chen et al. 1997; Chen and Zhang 2009). Another theory is related to lack of irrigation over this 
region in the land surface model, where irrigation water could be a significant input that increases 
soil moisture and evapotranspiration and cools the air (Huber et al. 2014). These are strong 
motivations and potentials for future land–atmosphere coupling studies. 
 
3. High resolution convection permitting model: the initial motivation of performing high 
resolution regional climate modeling is its advantages in simulating convective precipitation. 
However, a recent study on the summer convection storms using the same model data showed less 
convection population simulated in the current climate than observation (Rasmussen et al. 2017). 
This result is connected to our findings here that a warm and dry bias in the Great Plain region 
amplify soil moisture-temperature feedback while suppress soil moisture-precipitation feedback. 
The diagnosis and improvement of land–atmosphere coupling in regional climate model can 
potentially benefit the performance of convection-permitting regional climate model. 
 
4. Climate change impacts on land–atmosphere coupling: In the second part of the WRF CONUS 
simulation, a Pseudo Global Warming (PGW) method is applied to add a climate perturbation from 
RCP8.5 scenario to current climate, implying global warming. How global warming impacts on 
land–atmosphere coupling, particularly how soil moisture could impact heatwaves in future climate, 
could be an interesting research topic. 
 
Heatwaves are extreme temperature events that has disastrous effects on human health and societies. 
Thus, it is important to understand the physical mechanism of soil moisture, and its interaction with 
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synoptic condition and climate variability and how they relate to HWs. This can provide useful 
information for heatwave forecast and mitigation approaches. 
 
 
Key points for the next chapter 
 

• Antecedent soil moisture plays an important role in influencing the regional climate through 
soil moisture-temperature feedback. 

• Strong and significant anti-correlations between soil moisture anomalies and heatwave 
characteristics indicate that the North American Central Great Plains is a coupling of “hot 
spots” in land-atmosphere interactions. 

• A consistent warm temperature bias and low soil moisture exist during summer in the 
central U.S., as exhibited in the CONUS WRF simulations. 

• CONUS WRF simulations show a reliable capability for representing the relationship 
between the soil moisture anomaly and summer heatwave events. 
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Chapter 3 – Irrigation improves crop yield through relieving soil water stress 
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Abstract 
The representation of climate‐crop interactions is critical to Earth system modeling. Despite recent 
progress in modeling dynamic crop growth and irrigation in land surface models (LSMs), 
transitioning these models from field to regional scales is still challenging. This study applies the 
Noah‐MP LSM with dynamic crop‐growth and irrigation schemes to jointly simulate the crop yield 
and irrigation amounts for corn and soybeans in the central United States. The model performance 
of crop yield and irrigation amounts are evaluated at the county‐level against the USDA reports 
and USGS water withdrawal data, respectively. The bulk simulation (with uniform 
planting/harvesting management and no irrigation) produces significant biases in crop yield 
estimates for all planting regions, with root‐mean‐square‐errors (RMSEs) being 28.1% and 28.4% 
for corn and soybean, respectively. Without an irrigation scheme, the crop yields in the irrigated 
regions are reduced due to water stress with RMSEs of 48.7% and 20.5%. Applying a dynamic 
irrigation scheme effectively improves crop yields in irrigated regions and reduces RMSEs to 22.3% 
and 16.8%. In rainfed regions, the model overestimates crop yields. Applying spatially varied 
planting and harvesting dates at state‐level reduces crop yields and irrigation amount for both crops, 
especially in northern states. A “nitrogen‐stressed” simulation is conducted and found that the 
improvement of irrigation on crop yields is limited when the crops are under nitrogen stress. 
Several uncertainties in modeling crop growth are identified, including yield‐gap, planting date, 
rubisco capacity, and discrepancies between available data sets, pointing to future efforts to 
incorporating spatially varying crop parameters to better constrain crop growing seasons. 
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Motivation 
In the previous chapter, I analyzed the impacts of antecedent soil moisture on extreme heatwave 
events in summer—an aspect of soil moisture-temperature feedback. In this chapter, I explore the 
importance of soil moisture in both biogeophysical and biogeochemical processes in large, 
extensive croplands in the central U.S. In addition, this chapter will describe the challenges and 
uncertainties involved in modeling dynamic crop growth and cropland land-atmosphere 
interactions.  
 
This study also extends the investigation of two previous studies: Research by Liu et al. (2016), 
who developed the dynamic crop growth scheme in Noah-MP LSM for corn and soybeans, and a 
study by Xu et al. (2019), who focused on the transition of dynamic irrigation modeling from 
field to regional scales. These two studies built the foundation of this chapter and facilitated this 
research by establishing essential modeling parameters and datasets. In bringing these two 
contributions together as a joint simulation of crop growth and irrigation, this study investigates 
interactions with the land and atmosphere in croplands.  
 
3.1 Introduction 
The purpose of this chapter is to assess the benefits and uncertainties in joint crop-growth and 
irrigation modeling in the context of capturing climate-crop-irrigation interactions in Earth System 
Models (ESMs). It has been recognized that climate change and variability play a major role in 
crop production (Drewniak et al., 2013; Ray et al., 2015; Leng et al., 2016) from regional to global 
scales (Leng et al., 2016). Climate change has already impacted global agricultural production (Ray 
et al., 2019), and negative trends on crop yield per degree warming have been projected for major 
cultivars across the globe (National Research Council, 2011). In addition to mean climatic 
conditions, extreme climate events, such as drought and flooding, have also been emphasized as 
an important contributor to crop yield reduction (Hlavinka et al., 2009; Lobell et al., 2014). 
 
Agriculture management activities such as irrigation and fertilization also play an essential role in 
increasing crop yields, especially in semi-arid climates and regions with strong seasonal variability 
of precipitation during crop reproductive stages (Grassini et al., 2009). Globally, ~20% of 
croplands are equipped for irrigation systems and contribute to ~40% of the world’s food 
production (Siebert and Doll, 2010). Over the 55.8 million acres of irrigated U.S. farmland in 2012, 
115 billion gallons of water was withdrawn for irrigation per day, accounting for more than one 
third of water-use nationwide in 2015 (Maupin et al., 2014; Dieter et al., 2018). Furthermore, 
climate change impacts on freshwater availability and groundwater over-exploitation are 
challenging for efficient water use in agriculture (Vorosmarty et al., 2000). Therefore, 
understanding the capability for freshwater to supply the world’s major food production, such as 
in the U.S. Great Plain and Canadian Prairies, under climate change background, has become an 
overarching science goal in the Global Energy and Water Exchanges project (GEWEX, Grand 
Challenge on Water for the Food Baskets of the World: 
https://www.gewex.org/about/science/wcrps-grand-challenges/water-for-the-food-baskets-of-the-
world/). 
 
In addition, agricultural management modifies surface water and energy balances, alters 
characteristics of land-atmosphere interactions, and hence impacts local and regional climate 
(Pielke et al., 2007). Furthermore, irrigation practices add additional water to eliminate water stress, 
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which in turn increases humidity and decreases air temperature (Chen et al., 2018; Xu et al., 2019). 
This irrigation-cooling effect has shown to not only modify the local environment and regional 
precipitation but also to reduce the chance of extreme heatwaves in the U.S. (Lu et al., 2015) and 
globally (Thiery et al., 2017). 
 
To better understand the climate change, crop yield, and freshwater nexus, as well as critical 
cropland-atmosphere interactions, it is important and necessary to improve the representation of 
dynamic crop growth and irrigation in ESMs. Recent efforts have been dedicated to integrating 
crop growth dynamics and agricultural management into land surface models (LSM) within ESMs 
(Levis et al., 2012; Drewniak et al., 2013; Liu et al., 2016; Leng et al. 2016; McDermid et al., 2016). 
For instance, crop growth models were introduced into the Community Land Model version 4 with 
carbon-nitrogen cycle (CLM4CN) by Levis et al. (2012), which focused on the crop coverage in 
mid-latitude regions. The results showed improvement on simulating leaf area index (LAI), an 
index for crop growth, and summer precipitation, compared to the default setting of CLM4.5. This 
work also highlights the importance of accurate representation of the cropping calendar, as a “late-
planting” sensitivity test improved the simulated annual cycle of net ecosystem exchange (NEE) 
in midwestern North America. More recently, a dynamic crop growth model was incorporated into 
the Noah with multiple-physics (Noah-MP, Niu et al. 2011) model and tested for two field sites in 
Illinois and Nebraska for corn and soybean (Liu et al., 2016). In Noah-MP-Crop, crop growth 
stages are solely dependent on growing degree days (GDD). The Noah-MP-Crop model improved 
the simulation of surface energy balance and LAI and provided reasonable estimates of biomass. 
While these works demonstrated widespread potential for agriculture-climate interactions in some 
key agroecology regions, it is still challenging to accurately represent crop-climate-hydrology 
interactions in general and specifically the spatial variations of crop-model parameters across 
various scales.  
 
Similarly, irrigation parameterizations have been incorporated into various LSMs using the “soil 
moisture deficit” approach. For example, Ozdonga et al. (2010) used the soil field capacity as a 
threshold, below which irrigation is triggered, and calculated the irrigation demand from 
subtracting current root-zone soil moisture from field capacity. Lawston et al. (2015) applied this 
soil moisture deficit approach in the coupled Weather Research and Forecast (WRF) model and 
found the regional climate is highly sensitive to the irrigation method chosen (drip, flood, and 
sprinkler). Xu et al. (2019) used a similar approach to mimic sprinkler irrigation at the county level 
in the central U.S. Instead of using a uniform value of field capacity, a spatially varying soil 
moisture threshold parameter is determined through regional calibration against the USGS water 
withdrawal data, which enables transforming model parameters from field to regional scale.  
 
The above-mentioned crop-only and irrigation-only modeling approaches are inadequate to 
comprehensively address climate-crop-water interactions. In crop-only models, a significant 
amount of irrigation water as important input to the surface-water-budget equation is neglected in 
semi-arid croplands and will result in a warm/dry surface environment through land-atmosphere 
interactions, as well as loss in crop yield due to water stress. On the other hand, irrigation-only 
models fail to capture the feedback between irrigation water demand and crop growth stages. 
Therefore, regional irrigation modeling will benefit from the dynamic representation of crop 
heterogeneity, such as constraining simulated irrigation amount by crop planting/harvest date. Thus, 
it is necessary to perform joint crop-irrigation modeling in LSMs.  
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Leng et al. (2016) provided the first joint modeling effort with crop and irrigation on large-scale in 
the U.S., and optimized irrigation and fertilization practice in CLM4.5CN. The results showed that 
without optimization, the corn yield is much underestimated, due to the quick denitrification in 
CLM4.5CN previously reported by Oleson et al. (2013). The irrigation optimization increases yield 
only in the irrigated region and the fertilization optimization showed significant improvement in 
all regions. However, the improvement of irrigation scheme on crop yield under sufficient nutrition 
condition is not discussed. Moreover, uncertainties associated with crop model parameters, sparse 
agricultural datasets at both spatial and temporal scales, and even discrepancies between available 
datasets still remain unsolved.  
 
Given the wide use of Noah-MP LSM in the community WRF model and in the operational 
National Water Model (NWM), it is important to understand and improve its capability in 
simulating concurrently crop growth and irrigation, because both processes affect surface heat and 
water-vapor fluxes (as lower boundary conditions in WRF) and streamflow. Therefore, the primary 
objectives of this study are to: (1) assess the Noah-MP model’s performance in joint crop and 
irrigation modeling; (2) investigate methods of transforming irrigation and crop modeling from 
field to regional scales; and (3) identify uncertainties and challenges in crop modeling in LSMs.  
We focus on two crops (corn and soybean) in this study, since they are the two crops currently 
represented in Noah-MP-Crop and are two major field crops in the central U.S. Section 2 introduces 
the data required for model input and evaluation, and the Noah-MP crop and irrigation schemes. 
The model results for crop yield and irrigation amount are presented in Section 3. The uncertainties 
in simulating crop yield are discussed in Section 4. We conclude our findings in Section 5.   
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3.2 Description of input data, evaluation data, and models 
3.2.1 Data Preparation	
In this work, several agriculture management data sets are used to help constrain crop and irrigation 
models and to define the crop growing season, cultivated land fraction, and irrigated fractions. The 
planted areas for corn and soybean are obtained from the 30-m CropScape data from the U.S. 
Department of Agriculture's (USDA) National Agricultural Statistics Service (NASS)/George 
Mason University (GMU) (https://nassgeodata.gmu.edu/CropScape/). This is a geo-referenced, 
crop-specific land cover data layer created for the contiguous United States using satellite imagery 
and has been supported by extensive agricultural ground truthing. The CropScape data set is 
originally derived from the planting frequency in 11 years (from 2008 to 2018) and used to 
calculate the fractional coverage of total cropland (relative to the grid cell's vegetated area; 
hereafter Fcrop) and of each crop type (relative to the grid cell's total cropland area; Fcorn and Fsoybean). 
In this study, the planting areas are determined on two criteria: (1) the Fcrop > 0.5; and 
(2) Fcorn or Fsoybean > 0.3, for corn and soybean, respectively. The planting area for these two crops 
and their planting fraction are shown in Figure 3.1. 

 
Figure 3.1. Planted-area fractions for (a) corn and (b) soybean in the Central U.S. domain derived from the USDA-
NASS CropScape dataset. 
 
The 2010 USDA report on usual planting and harvesting dates is used to define the length of 
growing season for corn and soybean. This survey reports the most active period of usual planting 
and harvesting dates for each state. In our study, the middle dates of planting and harvest windows 
are selected for the states within our study domain (see Figure 3.2). Although the middle dates for 
each crop in each state may not reflect the complex decision of actual planting and harvesting, it 
represents to some degree the spatial variation of planting and harvesting at state-level. The impacts 
of uncertainties in planting/harvesting dates on simulated crop yield and irrigation amount are 
discussed in section 3.3.2. For details of the planting and harvesting dates in each state, please see 
Appendix B. 
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Figure 3.2. USDA-NASS state-level planting and harvest dates in Julian day for corn and soybean.  
 
For each year, the USDA NASS reports the average yields for various crops at the county-level 
over the U.S (https://quickstats.nass.usda.gov/). These data are based on harvested yields, reported 
by a sample of farmers within each county, and verified with independent yield samples taken by 
USDA staff when the crop reaches maturity (FAO and DWFI, 2015). Therefore, the model 
simulated biomass (𝑔/𝑚F) will need to be converted to standard yield (bushel/acre, bu/ac) to 
compare with the USDA county-level data, following the instruction: 
(see http://www.ag.ndsu.edu/pubs/plantsci/crops/ae905w.htm)  
 
corn	yield	[𝑏𝑢/𝑎𝑐] = biomass r

𝑔
𝑚Fx ∗ (1 − 0.155) ∗ 4.046[𝑘𝑚

F/𝑎𝑐]	/25.4[𝑘𝑔/𝑏𝑢]			(3.1) 

soybean	yield	[𝑏𝑢/𝑎𝑐] = biomass r
𝑔
𝑚Fx ∗ (1 − 0.13) ∗ 4.046[𝑘𝑚

F/𝑎𝑐]	/27.4[𝑘𝑔/𝑏𝑢]				(3.2) 
 
In the Eq. (3.1) and (3.2), 0.155 and 0.13 are the standard moisture content (15.5% and 13%) for 
corn and soybean, respectively. Harvested corn usually contain an initial moisture content greater 
than 15.5% (15.5~32%). For transportation and storage purpose, mechanical drying method is 
typically applied to reduce the initial moisture to the standard moisture. Two sources of weight loss 
are associated with this process: 1) the weight of the moisture loss (also known as “water shrink”) 
and 2) the weight loss due to handling processes (Hicks and Cloud, 1992). The handling loss could 
range from 0.04% to 5.22%, depending on the initial moisture content and water shrink loss. But 
the water shrink loss varies among different growers. Therefore, the calculated dry mass losses 
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tend to be variable. This uncertainty is worth noting when comparing the model simulated dry mass 
with standard yield in the USDA survey. 
 
The irrigation locations are defined by the 500-m MODIS-based irrigation fraction map (Ozdogan 
and Gutman, 2008) and the critical irrigation threshold parameter, IRR_CRI, from Xu et al. (2019) 
is applied in this study (see Figure 3). IRR_CRI is a threshold parameter for the soil water content, 
below which the irrigation scheme will be activated and was calibrated at county-level in Xu et al. 
(2019). To evaluate the model irrigation amount, the five-year report from the U.S. Geological 
Survey (USGS) on freshwater withdrawals for irrigation (http://water.usgs.gov/watuse/) is used to 
constrain and calibrate the irrigation parameters in the irrigation module (for details of irrigation 
modeling, see next section 2.3 and Xu et al., 2019). 
 
Two Ameriflux sites with irrigated agriculture (Ne1 and Ne2 in Mead, NE; 
https://ameriflux.lbl.gov/sites/) are analyzed. Ne1 is an irrigated continuous maize site and Ne2 is 
an irrigated maize-soybean rotation site.  Data collected at the Ameriflux sites, including LAI, leaf 
mass per area (LMA), and harvested biomass, are used to evaluate the model output at these two 
locations with and without the irrigation scheme. Also, the measured leaf biomass per area (LMA; 
g/m2) is equivalent to the Noah-MP-Crop parameter that converts biomass to LAI (BIO2LAI), 
which is assumed to be a constant. 
 

 
Figure 3.3. (a) The irrigation fraction used in this study. (b) The critical irrigation threshold parameter used in this 
study, calibrated in Xu et al. (2019).  
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3.2.2 Noah-MP-Crop model 
Noah-MP is a land component of the Weather Research and Forecast (WRF) model (Skamarock 
et al., 2008; Niu et al., 2011; Yang et al., 2011), which has been widely applied in numerical 
weather prediction (NWP), regional climate and hydrology studies (Liu et al., 2017; Barlage et al., 
2015; Zhang et al., 2020). It has been also used to simulate the land surface processes for 
streamflow forecasts in the National Water Model (www.water.noaa.gov/about/nwm).   
 
The Noah-MP-Crop crop module consists of three components: a photosynthesis (PSN)-stomata 
scheme, a carbon allocation scheme, and a dynamic crop growth scheme. The leaf-level PSN rate 
and stomatal conductance are calculated based on the model of Farquhar et al. (1980) and Collatz 
et al. (1992) for C3 and C4 plants, respectively. However, there is only one set of PSN parameters 
for a generic C3 crop in the default Noah-MP. This simplified treatment doesn’t represent corn 
(C4), a major productive species in Central U.S. Therefore, it is critical to adapt a set of C4 PSN 
parameters from a synthesis of literature and model sensitivity tests (see Appendix B).  
 
Following a similar approach used in traditional crop models (Hybrid-Maize for corn, Yang et al., 
2004; DSSAT for soybean, the Decision Support System for Agrotechnology Transfer, Jones et al., 
2003), the dynamic crop growth model in Noah-MP-Crop uses the accumulated growing degree 
days (GDD) to determine eight plant growth stages (PGS, Liu et al., 2016): before seeding, 
emergence, initial vegetative, normal vegetative, initial reproductive, to maturity, after maturity, 
and after harvesting. The dynamic crop growth parameters, such as planting/harvest dates and 
GDD-based thresholds to determine plant growth stages are calibrated at two Ameriflux sites in 
Bondville (Bo1), IL, for corn and Mead (Ne3), NE, for soybean.  
 
Finally, the Noah-MP-Crop model allocates the assimilated carbohydrate to different parts of plant, 
depending on the growth stages. For each stage, the total carbohydrate from the PSN scheme is 
partitioned to the leaf, stem, root and grain according to stage-function fraction parameters (from 
0 to 1). For example, during the vegetative stage, more carbon is allocated to leaf relative to stem 
and root; while in the reproductive stage, most of the assimilated carbon is allocated to grain. Then, 
the simulated leaf biomass is converted to LAI based on a model parameter, BIO2LAI (or specific 
leaf area, SLA), in the following equation:  

𝐿𝐴𝐼 = 𝐿𝑒𝑎𝑓@#"" ∗ 𝐵𝐼𝑂2𝐿𝐴𝐼																						(3.3) 
The values of BIO2LAI are constants and are different for corn (0.015) and soybean (0.030), 
respectively (Liu et al., 2016).   
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3.2.3 Irrigation scheme 
A dynamic irrigation scheme was integrated into Noah-MP and tested at field and regional scales 
without using the Noah-MP-Crop model (Xu et al. 2019). In this study, we adopt the same approach 
and couple it with dynamic crop growth, enabling two-way crop-irrigation interactions.  
 
Plant photosynthesis and respiration processes are limited by water stress during droughts. 
Therefore, irrigation plays a critical role in both the water and carbon cycle through relieving water 
stress, especially for crops planted in arid and semi-arid regions. In Noah-MP, the water stress 
function is plant- and soil-dependent and is determined by the integrated soil moisture availability 
(SMA) in root zones. As in Xu et al. (2019), the root-zone SMA is also employed as a basic 
irrigation trigger. For the irrigated cropland, the root-zone SMA is defined as the ratio of the current 
root-zone available soil moisture (current SM–𝑆𝑀0($, wilting point) and non-stress soil moisture 
(𝑆𝑀)1m − 𝑆𝑀0($): 

𝑆𝑀𝐴 = (𝑆𝑀 − 𝑆𝑀0($) ´𝑆𝑀)1m − 𝑆𝑀0($µ⁄ 								(3.4) 
 
The irrigated cropland is defined as the fraction within a cultivated grid cell 𝐹Y))lC)]D and takes the 
smaller value of 𝐹Y)) and 𝐹C)]D ∙ 𝐹 1/ (cropland fraction relative to the model grid cell’s total area) 
in Figure 3(a):  

𝐹Y))lC)]D = min´𝐹Y)), 𝐹C)]D ∙ 𝐹 1/µ							(3.5) 
 

The irrigation triggering mechanism includes: (1) 𝐹Y))lC)]D > 𝐼𝑅𝑅_𝐹𝑅𝐶  (an irrigation fraction 
threshold); (2) within the growing season, defined by the planting/harvesting date map above; (3) 
𝑆𝑀𝐴 < 𝐼𝑅𝑅_𝐶𝑅𝐼 (soil moisture trigger, see Figure 3.3(b)); and (4) stop irrigation on rainy days. 
These criteria are checked daily, and if irrigation is triggered, the potential irrigation amount for 
the day (IWA) is computed to maintain SMA to a non-stress level (𝑆𝑀)1m): 𝐼𝑊𝐴 = min	(𝑆𝑀)1m −
𝑆𝑀, 𝐼𝑅𝑅_𝐿𝐼𝑀), where IRR_LIM is the daily maximum irrigation amount, which is associated with 
irrigation systems and water availability.  
 
The above irrigation scheme would be executed for the crop type in each irrigated grid cell to obtain 
the irrigation water amount for corn (𝐼𝑊𝐴C])P) and soybean (𝐼𝑊𝐴"]ºz1#P), respectively.  
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3.2.4 Model setup 
The model domain is identical to the central U.S. domain in Xu et al. (2019). The model domain is 
600 grids (north-south) ´ 700 grids (west-east) at 4-km resolution, covering major part of the corn-
belt in the Central U.S. The simulation period ranges from 1999-10-01 to 2004-12-31, covering 
five growing seasons. The atmospheric forcing data are from the North American Land Data 
Assimilation System (NLDAS, Cosgrove et al., 2003) forcing dataset at 0.125-degree and hourly 
resolutions. The precipitation forcing are generated by combining observations from field stations, 
Stage IV radar retrievals from Next Generation Weather Radar System and satellite. A 10-year 
spin-up period was used to ensure the soil moisture and temperature reach an equilibrium state. An 
elevation adjustment was applied to the surface pressure, longwave radiation, near-surface 
temperature and humidity fields to account for topography differences between the model and 
NLDAS grids.  
 
Six experiments were performed to assess Noah-MP’s performance in joint crop-irrigation 
modeling (see Table 1). The first experiment (BULK) is a simulation with dynamic crop but 
without irrigation, in which a uniform planting and harvest date is applied in the whole domain. It 
adopts the default planting/harvest date (day of year) initially calibrated for corn in Bondville, IL, 
and soybean in Mead, NE (for corn: Julian day 111/300; for soybean: Julian day 130/280). The 
second experiment (BULK_IRR) is the same as BULK but with the calibrated dynamic irrigation 
scheme activated (Xu et al., 2019). The third (STATE) and the fourth simulation (STATE_IRR) 
are the same as the BULK and BULK_IRR but used the state-level planting and harvest date as 
shown in Figure 3.2. The BULK/BULK_IRR simulations were referred as the baseline simulations 
and the difference between BULK/BULK_IRR and STATE/STATE_IRR represents the impacts 
of spatially varying planting/harvest date on crop yield and irrigation amount. The fifth (0.5N) and 
the sixth (0.5N_IRR) simulation are the same as STATE and STATE_IRR but reduce the nitrogen 
concentration by half. The difference between STATE/STATE_IRR and 0.5N/0.5N_IRR can be 
attributed to the impacts of nitrogen concentration. Furthermore, comparing the results between 
STATE_IRR and STATE with 0.5N_IRR and 0.5N will see the impacts of irrigation under nitrogen 
sufficient and stressed condition.  
 
Table 3.1. Description of the Numerical Experiments.  
# Experiment Dynamic 

Crop 
Dynamic 
Irrigation 

PLT/HS Nitrogen 
Concentration 

Note 

1 BULK Yes No Uniform 
date 

Sufficient Baseline simulation 

2 BULK_IRR Yes Yes 
(calibrated) 

Uniform 
date 

Sufficient 

3 STATE Yes No State-
level 

Sufficient To test the impacts 
planting/harvest date at 
state-level 4 STATE_IRR Yes Yes 

(calibrated) 
State-
level 

Sufficient 

5 0.5N Yes No State-
level 

Reduced by half To assess the impacts of 
nitrogen-stress 

6 0.5N_IRR Yes Yes 
(calibrated) 

State-
level 

Reduced by half 
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3.3 Results 
3.3.1 Model Performance 
Figure 3.4 shows the county-level corn yields reported by USDA and results from the six 
experiments. Yield results from the BULK and STATE compare well with the USDA report in the 
magnitude and spatial pattern in the rainfed region but are underestimated in heavily irrigated 
regions such as Southeast Nebraska. Using the dynamic irrigation scheme in BULK_IRR and 
STATE_IRR reduces the yield bias in irrigated regions. The differences between the BULK and 
STATE will be further discussed in section 3.2. The 0.5N experiment significantly reduces yield 
for more than 60% of the domain due to nitrogen stress, which is similar to the CROP_DFLT 
scenario in Leng et al. (2016) for the fast denitrification in the default version of CLM4.5. In this 
case, using irrigation scheme (0.5N_IRR) has little improvement under nitrogen stress. 
 

 
Figure 3.4. For Corn: Yield (bushel/acre) from USDA NASS county survey and six model simulations.  
Figure 3.5. For Soybean: Yield (bushel/acre) from USDA NASS county survey and six model simulations. 
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As for soybean yields shown in Figure 3.5, BULK and STATE show good estimate of yield in the major 
soybean production areas in the U.S (MI, IL, IN, IO, WI, MN, SD), but underestimate significantly the 
yield in the irrigated regions such as NE, AR and MS. In the 0.5N nitrogen-stressed condition, soybean 
yields are much under predicted for the entire domain. The dynamic irrigation scheme can help improve 
yield in the BULK_IRR and STATE_IRR simulation, but it doesn’t show much impact under nitrogen 
stress condition in 0.5N_IRR. These results from corn and soybean suggest that the impacts of irrigation 
on yields in the irrigated regions are significant but only occur with sufficient fertilization supply. 
 
3.3.2 Transition from field to regional scale crop modeling 
The second objective of this study is to transition crop modeling from field to regional scale by 
first exploring the use of spatially varying planting/harvesting dates for regional simulation. The 
impacts of spatially varying planting/harvest date on modeling crop yield and irrigation amount 
can be assessed by comparing the results from the BULK_IRR and STATE_IRR simulation as 
shown in Figure 3.6.  The bars are ranked by the yield from low to high in each of these states and 
the black lines represent the delayed days in planting date compared to the uniform planting date 
in BULK_IRR (111 for corn and 130 for soybean in Julian day). The delayed planting for each 
state implies a shorter growing season, which results in lower yields in STATE_IRR than in 
BULK_IRR for both corn and soybean. These reduced yields help improve the high bias of 
BULK_IRR in all states, except for South Dakota and Minnesota, where STATE_IRR 
underestimates in both corn and soybean yield. 
 

 
Figure 3.6. Bar plot of the USDA and modeled yield for each state from the BULK_IRR and STATE_IRR simulation 
for (a) corn and (b) soybean. The delayed days in planting date in STATE_IRR (compared to the uniform date in 
BULK_IRR) are shown in black lines. 
 
Figure 3.7 shows the impacts of delayed planting date on reduced yield (bu/ac/day) for corn and 
soybean. This impact of planting date on yield may be more complex than a linear relationship, but 
strong spatial variation exists across states on the sensitivity of modeled yield to delay in planting 
date. For both corn and soybean, a clear north-to-south gradient can be witnessed, as the impacts 
of planting date are strong in Northern states, such as Minnesota, Iowa, Wisconsin and Michigan. 
While for soybean, the planting region in lower Mississippi river valley shows a clear dependence 
on planting day as well. Moreover, this north-to-south gradient of yield dependence on planting 
date also exhibits in each particular state as well. This is most obvious in Minnesota, Iowa, Illinois, 
and Indiana, for both corn and soybean, that the modeled yields in northern part of the states are 
more sensitive to delay in planting date than in the south. 
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Figure 3.7. The impacts of delayed planting date on modeled yield (bu/ac/day) for (a) corn and (b) soybean.  
 
On the other hand, in South Dakota the model shows very little sensitivity to the planting date, suggesting 
the modeled yield may be impacted by water stress (Figure S1 confirms this speculation that the 
underestimated yields in Eastern South Dakota and Western Minnesota are water-limited). However, the 
low irrigation fractions in these two regions (Figure 3.3a) suggested irrigation is not a significant water 
source for crop production. Therefore, we suspect that the perched shallow water table in the northern 
corn belt plays a role in supplying water for corn production. Note that the model applies a free drainage 
scheme for deep soil drainage and the complex two-way groundwater exchange processes are not 
considered in this study.  
 
Transforming the planting date from uniform value at point scale to spatially varying at state-level 
could also influence the modeled irrigation amount, as the irrigation period is constrained by the 
crop growing season. Figure 3.8 shows the spatial distribution of USGS water withdrawal report 
at county-level in 2000 and the modeled irrigation amount from the BULK_IRR and STATE_IRR. 
The BULK_IRR, with uniform planting/harvesting date, overestimates irrigation amount compared 
to the USGS reported data, especially in the Lower Mississippi River Basin (LMRB). The largest 
overestimation in irrigation amount is over 100 mm and occurs in Poinsett, Arkansas, with USGS 
reported 459.2 mm and the BULK_IRR simulated 561.3 mm. The overestimated irrigation amount 
in the BULK_IRR has an intuitive explanation; the longer the growing season, the more water is 
needed to maintain soil moisture at the critical level. The scatter plot in Figure 9 for the irrigation 
amount from two simulations also confirms the overestimate of irrigation amount in the 
BULK_IRR, especially in the LMRB. After applying the spatially varying planting/harvesting date, 
the performance in STATE_IRR is improved compared to the BULK_IRR (RMSEs improve from 
29.67 to 26.24 mm, and coefficient of determination, 𝑅F, increases from 0.89 to 0.92) in LMRB. 
The STATE_IRR also reduces irrigation amount in Nebraska as well, but not as much as in LMRB. 
In fact, the USGS county-level report represents an upper bound of the total water withdrawal, but 
the water is not necessarily used all for irrigation. Therefore, the model simulated irrigation amount 
shouldn’t exceed the USGS report. Hence, the STATE_IRR simulates less irrigation amount and 
provides better performance than the BULK_IRR. 
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Figure 3.8. Irrigation amount from (a) USGS county-level water withdrawal report; (b) modeled irrigation amount 
from the BULK_IRR simulation; and (c) the STATE_IRR simulation.  
 

 
Figure 3.9. Scatter plot of the model irrigation amount against the USGS water withdrawal data in two heavily irrigated 
region, Nebraska and Lower Mississippi River Basin (LMRB). 
 
3.3.3 Impacts of irrigation on crop yield  
Figure 3.10 shows the LAI and grain mass at the two Ameriflux sites (Ne1 and Ne2). STATE and 
STATE_IRR simulated LAI have good agreement in Ne1 for corn throughout the growing season, 
but underestimate LAI in Ne2 in 2002 for soybean. When it comes to the crop reproductive stage 
(grain production), the differences in yield between these two simulations are evident. The STATE 
simulation significantly underestimates corn yield at both sites, ranging from 31% to 80%, but 
using the irrigation scheme greatly improves corn yield at both sites.  
 
As for the soybean yield, irrigation doesn’t improve soybean yield as much as it did for corn yield, 
even with similar total irrigation amount. This is also noticed in Chen et al. (2018), as the increase 
in crop yield due to irrigation has a strong dependence on crop species. This may be attributed to 
the different biogeochemical characteristics between these two plants (corn is C4 and soybean is 
C3) in their water-use efficiency, including photosynthesis and respiration.  
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Figure 3.10. Timeseries of LAI and harvested grain in Ne1 and Ne2 sites from 2000 to 2005. Ne1 is irrigated 
continuous corn site and Ne2 is irrigated maize-soybean rotation; black boxes in Ne2 indicate soybean years.  
 
Figure 3.11 shows the USDA yield data and the six simulations in this study, aggregated at state 
level. The comparison between BULK and BULK_IRR, and STATE and STATE_IRR in irrigated 
regions shows the improvement of yield with the irrigation scheme activated. The yield in 
BULK_IRR (156.5 bu/ac) is even double the amount than in BULK (74.61 bu/ac) for corn. The 
difference between BULK_IRR and STATE_IRR shows the impacts of prolonged growing season 
on overestimating modeled yield in BULK_IRR, due to the increase in modeled irrigation amount. 
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Figure 3.11. Bar plots of yield from (a) corn and (b) soybean from USDA survey and six simulations in this study. 
The red and blue bars represent the crop yields in the whole domain and in the irrigated region, respectively. 
 
Moreover, the STATE_IRR and 0.5N_IRR represents the impacts of irrigation on crop yield under 
the conditions of sufficient and stressed nitrogen, respectively. The doubled irrigated yield in 
STATE_IRR (from 74.28 to 143.5 bu/ac) decreases under nitrogen stress condition (from 51.52 to 
68.41 bu/ac) in 0.5N_IRR. This is similar to Leng et al. (2016) results, in which the irrigation 
scheme was applied to the default CLM4.5 run with fast denitrification rate. Thus, the irrigation 
impacts in such nitrogen-stressed conditions is limited. However, when the nitrogen concentration 
is unstressed, the impacts of irrigation manifest and improve crop yield. 
 
Table 3.2 presents the statistics from all simulations, including RMSE (in both bu/ac and relative 
to USDA report) and the coefficient of determination (𝑅F). These statistics confirm that under 
sufficient nitrogen concentration and state-level planting/harvest management, the application of a 
dynamic irrigation scheme (STATE_IRR) improves the modeled yield performance for both corn 
and soybean, reducing RMSE from 47.8 to 22.3% for corn and from 18.9% to 16.8% for soybean.   
 
Table 3.2. Summary of the model performance in simulating county-level corn and soybean yield from 2000-2004 (5 
growing seasons) as compared to USDA report data for the whole domain and only irrigated regions (in parentheses). 

Experiment Cultivar RMSE  
[bu/ac] 

RMSE  
[% relative to USDA] 

R2 

BULK Corn 
Soybean 

38.3 (72.0) 
11.4 (8.9) 

28.1% (48.7%) 
28.4% (20.5%) 

0.70 (0.23) 
0.84 (0.83) 

BULK_IRR Corn 
Soybean 

32.2 (34.1) 
11.3 (8.5) 

23.6% (23.1%) 
28.1% (19.61) 

0.79 (0.72) 
0.86 (0.91) 

STATE Corn 
Soybean 

35.9 (70.6) 
10.9 (8.2) 

26.3% (47.8%) 
27.1% (18.9%) 

0.71 (0.24) 
0.80 (0.83) 

STATE_IRR Corn 
Soybean 

29.4 (33.0) 
10.6 (7.3) 

21.5% (22.3%) 
26.4% (16.8%) 

0.80 (0.71) 
0.82 (0.90) 

0.5N Corn 
Soybean 

65.4 (78.6) 
23 (17) 

47.9% (53.2%) 
57.4% (46.2%) 

0.71 (0.51) 
0.50 (0.38) 

0.5N_IRR Corn 
Soybean 

64.1 (68.8) 
22 (17) 

47.0% (46.7%) 
57.0% (44.8%) 

0.74 (0.72) 
0.50 (0.37) 
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3.4 Discussion  
Several uncertainties can contribute to the differences between simulated crop yields and the 
USDA report, including those associated with discrepancies between available datasets, crop yield 
gaps, and crop/irrigation model parameters, which is the subject of discussion in this section. 
 
3.4.1 Yield gaps between actual yield and modeled potential or water-limited yield  
The yield potential (𝑌D) is defined as the yield an adapted crop cultivar could achieve by alleviating 
all abiotic and biotic stresses through optimal crop and soil management (Lobwell et al., 2009). 
Thus, 𝑌D  is achieved when management eliminates all limitations to crop growth and yield from 
nutrient deficiencies, water deficit or surplus, toxicities, salinity, weeds, insect pests, and pathogens. 
In our study, for irrigated corn and soybean, the model provides sufficient water and nitrogen, 
hence, the modeled yield should be close to 𝑌D. For rainfed crops, the modeled yield is not potential 
due to water limitation (𝑌0, water-limited yield). The relative yield gap (𝑌/) can be calculated in:  

𝑌/ = ´1 − 𝑌# 𝑌D⁄ µ ∗ 100%; for	irrigated	crop				(3.6) 
𝑌/ = (1 − 𝑌# 𝑌0⁄ ) ∗ 100%; for	rainfed	crop							(3.7) 

Quantifying the yield gaps for each crop cultivar in different growing regions is still a research 
topic in the food production community. The Global Yield Gap Atlas (GYGA, www.yieldgap.org) 
provides estimates of untapped crop production potential on existing farmland based on current 
climate and available soil and water resources. GYGA’s estimated 𝑌/	 in US are 10~20% for 
irrigated corn and 20~30% for rainfed corn, respectively. In our study, 𝑌/ are calculated between 
USDA county-level data and our model simulations and listed in Table 3, which are 13~25% for 
irrigated corn and 17~28% for rainfed corn. These numbers are comparable to the numbers given 
by GYGA. However, the yield gaps for soybean are 15~32% for irrigated and 14~39% for rainfed 
soybean, which are higher than other studies (e.g., 9~24% in Egli and Hatfield, 2014; 10~30% in 
Grassini et al., 2015), especially for the rainfed soybean, which agrees with the overestimation in 
IL, IN and OH.  
 
3.4.2 Uncertainties in crop model parameters 
The development of LSMs has expanded from its initial purpose to provide reliable lower boundary 
conditions for the coupled climate and weather models by including terrestrial biogeochemical 
processes, land use change, and dynamic vegetation growth (Bonan et al., 2011).  Many LSMs 
adopt the Faquhar-Ball-Berry scheme to simulate the coupled leaf-level photosynthesis and 
stomatal conductance (Farquhar and von Caemmerer, 1982; Ball et al., 1987; Collatz et al., 1991; 
Collatz et al., 1992; Niu et al., 2011; Oleson et al., 2013). Those biophysiological models require 
a variety of plant-specific parameters, such as the minimum stomatal conductance, respiration rate, 
and rubisco capacity (𝑉C@AF�), and they are usually measured under field experimental conditions. 
Bonan et al. (2011) reviewed the past literatures on PSN-stomata parameterization in LSMs and 
found that  𝑉C@AF� is the most critical parameter in modeling plant photosynthesis. This parameter 
characterizes the maximum carbon assimilation rate and is measured in laboratory conditions, 
given sufficient radiation upon leaf level and 𝐶𝑂F  concentration at 25 °C. Bonan et al. (2011) 
concluded that the leaf-level measured 𝑉C@AF�, when scaled up to LSM model grid cell, could lead 
to higher photosynthetic rates when nitrogen was non-limiting (such as for cropland systems). 
Furthermore, the 𝑉C@AF� is little constrained and remains model dependent over LSMs. 
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Table B1 in Appendix B provides a synthesis of the parameters used in several studies. The wide 
range of 𝑉C@AF�  values (from 30 to 101 𝜇𝑚𝑜𝑙	𝑚lF	𝑠l¡)  and different treatments of product-
limiting pathway in PSN calculation (𝐾D) demonstrate a significant uncertainty in specifying the 
model-dependent PSN parameters. Hence, calibration of the PSN parameters becomes critical, but 
has been usually conducted at field scales using measurements of moisture and carbon fluxes. The 
Noah-MP-Crop model (Liu et al. 2016) uses the generic crop PSN parameters, which don’t 
distinguish C3 and C4 crops. To incorporate corn-specific PSN parameters into Noah-MP-Crop 
parameter table, we performed a calibration for C4 corn using the LAI and biomass data in the 
Ameriflux Bo1 site in Bondville, IL. The calibrated values are listed at the bottom row of Table 
S1, noted as “Adjust”, meaning they are calibrated and subject to adjustment. The main result of 
the calibration is to reduce overestimated rain-fed corn yield by reducing 𝑉C@AF� from the default 
value (80 𝜇𝑚𝑜𝑙	𝑚lF	𝑠l¡ ) to a lower value (60 𝜇𝑚𝑜𝑙	𝑚lF	𝑠l¡ ). The calibration results are 
presented in Figure S2. As for soybean, the default crop parameters for C3 were used in this study.  
 
He et al. (2019) provides a global rubisco capacity map from satellite-observed solar-induced 
chlorophyll fluorescence (SIF) record. Through data assimilation methods, the 11-year record of 
SIF shows both spatial and temporal variation of 𝑉C@AF� in world’s major crop production regions. 
Future efforts of incorporating the spatial map of 𝑉C@AF� into ESMs and LSMs would be highly 
useful to address the wide range of this model parameter. 
 
3.4.3 Crop Model parameter uncertainties – planting/harvesting management  
Representing dynamic crop phenology in LSMs is critical for predicting the energy, water, and 
carbon budgets in croplands and may even influence the atmospheric boundary layer, especially in 
areas with large cropland coverage (Betts, 2005; Ma et al., 2012). In some LSMs, the determination 
of planting and harvesting, as well as plant growth stages are calibrated against field data. Therefore, 
these calibration efforts are local and there are few studies quantifying the impacts of planting on 
simulating crop phenology over a large region. For example, in the CLM4-Crop, the planting is 
activated by three temperature thresholds, a 20-year averaged GDD threshold, a threshold of 10-
day running mean of air temperature, and a threshold of daily minimum temperature (Levis et al., 
2012). Chen et al. (2018) evaluated the CLM4-Crop over multiple Ameriflux sites over the U.S. 
corn belt and found there is an early season overestimate of LAI, due to a too-early start of planting. 
A modified simulation with delayed the planting showed improvement in simulating energy and 
water fluxes, as well as the NEE.  
 
In Noah-MP-Crop, the planting and harvesting date are prescribed parameters to reflect the spatial 
and year-to-year variation of planting/harvesting date for Bo1 and Ne3 sites in Liu et al. (2016). In 
this study, the BULK_IRR simulation with an early and spatially invariant planting date 
overestimated the crop yield and irrigation amount for corn and soybean, consistent with the results 
of Chen et al. (2018). By contrast, the STATE_IRR simulation with spatially varying and delayed 
planting dates effectively mitigated those overestimations (Figure 3.6). Figure 3.7 shows that the 
northern states in the corn belt are relatively more affected by delayed planting date than the 
southern states, and this north-to-south gradient is evident within each state as well.  
 
Although the state-level planting/harvesting date applied in STATE_IRR represented to some 
degree of their spatial variations, uncertainties still exist. The USDA usual planting/harvesting date 
report gives the most active window for planting and harvesting through the survey of last 20 years. 
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In the STATE and STATE_IRR simulation, the middle date of the window time is selected for 
each state. However, applying the single planting/harvesting date on state-level is still unrealistic. 
Figure 3.7 shows the spatial variations of the modeled crop yield sensitivities to delay in planting 
date and the range of these crop yield responses are calculated in Table 3.3.  
 
To better constrain the crop growing seasons, it is necessary to incorporate the spatially detailed 
crop calendars. For example, the planting and harvesting windows can be dynamically modeled 
based on field workability, considering snow cover and rainfall, and crop biological requirement 
for heat and moisture (Iizumi et al., 2018). Dynamically modeling the crop calendar will likely 
reduce the uncertainties of specifying crop growing seasons in future crop model development, 
especially in regions where agricultural management data are sparse.  
 
3.4.4 Crop Model Parameter Uncertainties – convert leaf mass to LAI 
Figure 3.12 shows the reciprocal of measured leaf mass per unit area (LMA, 𝑔/𝑚F) from Ne1 and 
Ne2 from 2001 to 2007, which demonstrates significant in-season variations for both corn and 
soybean. For corn, this reciprocal decreases from 0.03 at the early growing stage to 0.01 𝑚F/𝑔 at 
the end of the growing season. This characterizes a general corn leaf growth feature: grow bigger 
(larger LAI) at the beginning of the growing season with small amount of mass, and later growing 
thicker (more mass) with slight increase in LAI. The inverse of LMA for soybean has less 
variability and the values are generally higher than for corn during the growing season (ranging 
from 0.018 to 0.029 𝑚F/𝑔).  
 
The ranges of LMA are listed in Table 3 as compared to the default constant value of BIO2LAI in 
Noah-MP-Crop that has the same physical meaning as the 1/LMA and is used to convert the 
prognosed leaf mass to diagnosed LAI. BIO2LAI is set as constants for corn (0.015) and soybean 
(0.030). Such a constant conversion coefficient is used in other LSMs too, e.g., the specific leaf 
area parameter (SLA) in CLM (Oleson et al., 2013).  The substantial seasonal variations of 1/LMA 
in Figure 3.12 points to the challenges of using a constant BIO2LAI throughout the entire crop 
growing season, and a time-varying conversion coefficient is needed in future model development.  
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Figure 3.12. The reciprocal of the measured leaf mass per area (LMA) from two Ameriflux sites, US-Ne1 and US-
Ne2. The inverse of LMA is the same as BIO2LAI parameter in the Noah-MP-Crop model. The black boxes in US-
Ne2 indicates soybean years.  
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3.4.5 Summary of the uncertainties in validating crop modeling   
Table 3.3 summarizes the aforementioned uncertainties and provides the default values in Noah-
MP-Crop and the ranges of uncertainties of three parameters: yield gaps (between USDA-report 
actual yield and modeled yield), model parameters (𝑉C@AF�, planting date, and BIO2LAI). The 
uncertainty associated with mechanical drying after harvest mentioned in Section 2 are also include 
in Table 3.3.   
 
Table 3.3. Summary of the sources of uncertainties in conducting crop modeling and validating model outputs.  
Uncertainty 
source 

Default setting Range Unit 

Yield gap [-] 13~25% for irrigated corn 
17~28% for rainfed corn 
15~32% for irrigated soybean 
14~39% for rainfed soybean 

% relative to potential 
yield for irrigated corn 
and water-limited yield 

for rainfed corn. 
Model parameter, 
𝑉C@AF� 

80 for generic 
crop parameter 

30~101 for corn  
80~101 for soybean 

𝜇𝑚𝑜𝑙𝑚lF𝑠l¡ 

Model parameter, 
planting date* 

111 for corn 
130 for soybean 

-0.04~-1.22  
-0.06~-0.72 

bu/ac/day delayed after 
the default date 

Model parameter, 
BIO2LAI 

0.015 for corn 
0.030 for soybean 

0.010~0.030 
0.018~0.029 

𝑚F/𝑔 

Handling loss in 
mechanical drying 

[-] 0.04 ~ 5.22 % for corn % relative to final 
standard yield at 15.5% 
moisture content 
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3.5 Conclusion 
This study evaluated the performance of Noah-MP-Crop’s joint modeling of crop and irrigation at 
in the Central U.S. By incorporating spatial datasets of high-resolution crop and irrigation fraction, 
and state-level planting/harvesting date, the crop model can be applied to regional scale. The 
impacts of irrigation on crop yield are assessed from field to regional scale as well as under nitrogen 
sufficient and stressed conditions. Also, several uncertainties including model parameters, yield 
gaps, and discrepancies between available datasets are assessed.  
 
The results showed that in the U.S corn-belt the bulk simulation (with uniform planting/harvesting 
date and no irrigation) captured the magnitude and spatial variation of corn yield against the USDA 
county-level report (RMSE = 28.1% for the whole domain). But in the heavily irrigated region, for 
example in Nebraska, the yield was much underestimated (RMSE = 48.7% in the irrigated region). 
Adding irrigation modeling capability effectively improved yield simulation over irrigated region 
(RMSE=23.1%). The RMSEs for soybean over the whole domain and irrigated region are 28.4% 
and 20.5%, respectively. The irrigation improvements on soybean yield are relatively small 
compared to that for corn. Noticeable overestimation of yield for corn and soybean still exist in 
Northeast of the domain in Indiana and Ohio, which may be attributed to early planting biases and 
the yield gap between actual yield and modeled yield. 
 
To transition the crop modeling from field to regional scale, two simulations with state-level 
planting/harvesting date were conducted. These spatially varying planting/harvesting dates were in 
general later than the uniform planting dates. The delayed planting dates across states resulted in 
reduction in modeled yield and irrigation amount, which improved the overestimated yield bias 
associated with early planting bias. A spatial analysis also showed that the modeled yield in 
northern states was more sensitive to delayed planting than in southern states for rainfed corn and 
soybean. This north-to-south gradient was evident within each northern state as well (IL, IN, IO, 
MN, WI). This indicates that using one single value for planting/harvesting date for each state is 
still an over-simplified assumption, which is inadequate to address the complex decision of 
agricultural management. Comprehensive datasets of cropping calendar at high-resolution are 
needed for future crop model development.  
 
Dynamic modeling of crop growth and irrigation application is challenging and there are many 
uncertainties. Several sources of uncertainties were identified, including yield gaps, model 
parameters associated with photosynthetic rubisco capacity and planting date, and discrepancies 
between different observation data. The rubisco capacity (𝑉C@AF� ), is a significant source of 
uncertainty and we calibrated it according to single-point simulation in Bondville for corn (C4 
corn).  
 
Fertilization has been identified as a source of uncertainties in previous studies (Leng et al., 2016). 
In this study, it was assumed that the crops are not nitrogen-stressed. To investigate the impacts of 
irrigation on crop yield under nitrogen-stress, two sets of additional simulations are conducted 
which halved the nitrogen concentration. When nitrogen concentration is reduced to half, nitrogen 
stress could cut crop yield by 48.6% and 73.8% for corn and soybean, respectively (comparing 
0.5N with STATE). The irrigation improvements on crop yields under nitrogen stress are restricted 
(comparing 0.5N and 0.5N_IRR), with 32% and 1% increase for corn and soybean. These numbers 
are much less than under sufficient nitrogen condition (comparing STATE and STATE_IRR, 93% 
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for corn and 27% for soybean). This concludes that the manifestation of irrigation improvement on 
crop yield relies on sufficient nitrogen concentration. 
 
The present study contributed to the knowledge of simulating crop yield and irrigation water 
amount in one of the world’s most productive agriculture regions in the North America Great Plains 
and investigated the impacts of irrigation on crop yields. The irrigation effects on crop yield under 
no nutrition-stress condition is addressed in this study, which was often ignored in previous 
research. This is mediated through adding additional amount of water from irrigation to supply soil 
moisture fulfilling till a critical level. The wet soil moisture supports photosynthesis and 
transpiration through maintaining the openness of stomata, hence, sustaining normal physiological 
activities during dry periods. On the other hand, other sources of uncertainties arise from crop 
model photosynthesis and phenology parameters, yield gap and unit conversion. To mitigate these 
uncertainties, we demonstrated that calibrating the crop rubisco capacity parameters and constrain 
growing season with spatially varying planting/harvesting date can improve crop simulation results. 
Finally, future efforts should be dedicated to incorporating spatially detailed rubisco capacity 
parameters and crop calendar to better constrain the crop growth dynamics.  
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Key points for the next chapter 
• The soil moisture impacts on crop photosynthesis and carbon allocation is accessed through 

simulations w/wo irrigation schemes. These simulations are particularly important for 
croplands in the semi-arid regions.  

• Crop models and irrigation models in Noah-MP can provide reasonable estimates of crop 
yields and irrigation water amounts. 

• Large uncertainties remain in model parameters, related to planting and irrigation areas, 
planting/harvesting dates, crop photosynthesis parameters and unit conversion during 
model evaluation.  

• Reasonably representing the crop growth dynamics and irrigation process in LSMs could 
potentially improve the land surface heterogeneity in the study region. In particular, the 
application of irrigation may also influence the withdrawal and recharge from groundwater 
aquifers, which will be discussed in the next chapter.  
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Chapter 4 – Shallow groundwater dynamics in the Prairie Pothole region  
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Abstract 
Shallow groundwater in the Prairie Pothole Region (PPR) is predominantly recharged by snowmelt 
in the spring and supplies water for evapotranspiration through the summer and fall. This two-way 
exchange is underrepresented in current land surface models. Furthermore, the impacts of climate 
change on the groundwater recharge rates are uncertain. In this paper, we use a coupled land–
groundwater model to investigate the hydrological cycle of shallow groundwater in the PPR and 
study its response to climate change at the end of the 21st century. The results show that the model 
does a reasonably good job of simulating the timing of recharge. The mean water table depth (WTD) 
is well simulated, except for the fact that the model predicts a deep WTD in northwestern Alberta. 
The most significant change under future climate conditions occurs in the winter, when warmer 
temperatures change the rain/snow partitioning, delaying the time for snow accumulation/soil 
freezing while advancing early melting/thawing. Such changes lead to an earlier start to a longer 
recharge season but with lower recharge rates. Different signals are shown in the eastern and 
western PPR in the future summer, with reduced precipitation and drier soils in the east but little 
change in the west. The annual recharge increased by 25 % and 50 % in the eastern and western 
PPR, respectively. Additionally, we found that the mean and seasonal variation of the simulated 
WTD are sensitive to soil properties; thus, fine-scale soil information is needed to improve 
groundwater simulation on the regional scale.  
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Motivation 
In the last two chapters, I explored the soil moisture interactions with the atmosphere and biosphere 
through soil moisture-temperature feedback and biogeochemical processes. In the study’s region—
the Canadian Prairies and Great Plains—shallow groundwater is a typical feature, as is an exchange 
of water with soil moisture. In wet seasons groundwater receives recharge from the upper soil 
layers, and in dry seasons the shallow groundwater can also supply soil moisture through capillary 
rise. This two-way exchange has been a challenge to represent in models and, hence, has been 
neglected in previous LSMs. In this chapter, I will explore the exchanges between shallow 
groundwater and soil moisture, as well as the water table dynamics under future climate change 
scenarios in the North American Prairie Pothole region.  
 
4.1 Introduction  
The Prairie Pothole Region (PPR) in North America is located in a semi-arid and cold region, 
where evapotranspiration (ET) exceeds precipitation (PR) in summer and near-surface soil is frozen 
in winter (Gray, 1970; Granger and Gray, 1989; Hayashi et al., 2003; Pomeroy et al., 2007; Ireson 
et al., 2013; Dumanski et al., 2015). These climatic conditions have introduced unique hydrological 
characters to the groundwater flow in the PPR (Ireson et al., 2013). During winters, frozen soils 
reduce permeability and snow accumulates on the surface, prohibiting infiltration (Niu and Yang 
2006; Mohammed et al., 2018). At the same time, the water table slowly declines due to a 
combination of upward transport to the freezing front by the capillary effect and discharge to rivers 
(Ireson et al., 2013). In early spring, snowmelt becomes the dominant component of the 
hydrological cycle and the melt water runs over frozen soil, with little infiltration contributing to 
recharge. As the soil thaws, the increased infiltration capacity allows snowmelt recharge to the 
water table, the previously upward water movement by capillary effect to reverse and move 
downwards, and the water table to rise to its maximum level. In summer and fall, when high ET 
exceeds PR, capillary rise may draw water from the groundwater aquifers to supply ET demands, 
declining water table. These processes characterize the critical two-way water exchange between 
the unsaturated soils and saturated groundwater aquifers. 
 
Previous studies have suggested that substantial changes to groundwater interactions with 
unsaturated soils are likely to occur under climate change (Tremblay et al., 2011; Green et al., 2011; 
Ireson et al., 2013, 2015). Existing modeling studies on the impacts of climate change on 
groundwater are either at global or basin/location-specific scales (Meixner et al., 2016). Global-
level groundwater studies focus on potential future recharge trends (Doll and Fiedler, 2008; Doll, 
2009; Green et al., 2011), yet coarse resolution analysis from global climate models (GCMs) 
provided insufficient specificity to inform decision making. Basin-scale groundwater studies 
connect the climate with groundwater-flow models to understand the climate impacts on specific 
systems (Maxwell and Kollet, 2008; Kurylyk and MacQuarrie, 2013; Dumanski et al., 2015). 
Regional groundwater modeling studies, such as in the Colorado River Basin (Christensen et al., 
2004) and in the western U.S. (Niraula et al., 2017), have applied downscaled climate scenarios 
from GCMs to drive large scale hydrology models. These studies identified research gaps 
associated with poor representation of groundwater-soil interactions in models and uncertainties in 
future climate projections. 
 
It is challenging to represent groundwater flows in LSMs because the important two-way water 
exchange between unsaturated soils and groundwater aquifers was neglected in previous LSMs. 
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Recently, this two-way exchange has been implemented in coupled land surface – groundwater 
models (LSM-GW). For example, Maxwell and Miller (2005) used a groundwater model (ParFlow) 
coupled with the Common Land Model (CLM) as a single column model. They found that the 
coupled and uncoupled models were very similar in simulated sensible heat flux (SH), ET, and 
shallow soil moisture (SM), but differed greatly in simulated runoff and deep SM. Later on, Kollet 
and Maxwell (2008) incorporated the ET effect on redistributing moisture upward from shallow 
water table depth (WTD) and found the surface energy partitioning is highly sensitive to the WTD 
when the WTD is less than 5 m below ground surface. Niu et al. (2011) implemented a simple 
groundwater model (SIMGM, Niu et al., 2007), into the community Noah LSM with multi-
parameterization options (Noah-MP LSM), by adding an unconfined aquifer at the bottom of soil 
layers. More complex features such as three-dimensional subsurface flow and two-dimensional 
surface were included in ParFlow v3 and evaluated over much of continental North America for a 
very fine 1-km resolution (Maxwell et al., 2015). These recent development in coupled land and 
groundwater models have advanced our knowledge on the important interactions between soil and 
groundwater aquifer. 
 
In cold regions, soil freeze-thaw processes further complicate this two-way exchange. Field studies 
have found that frozen soil not only influences the timing and amount of downward recharge to 
aquifers by reducing the soil permeability (Koren et al., 1999; Niu et al., 2006; Kelln et al., 2007), 
but may also induce upward water transport from aquifers to soil freezing fronts (Spaans and Baker, 
1996; Remenda et al., 1996; Hansson et al., 2004). In the modeling community, a range of 
approaches have been applied to deal with frozen soil parameterizations. Earlier LSMs assumed 
no significant heat transfer and soil water redistribution for sub-freezing temperature, for example, 
in simplified SiB and BATS (Xue et al., 1991; Dickinson et al., 1993; Niu and Zeng, 2012). Koren 
et al. (1999) suggested that the frozen soil is permeable due to macropores that exist in soil 
structural aggregates, such as cracks, dead root passages, and worm holes. The NoahV3 model 
adopted this scheme as its default option. Niu and Yang (2006) suggested to separate a model grid 
into frozen and unfrozen patches, and these two patches have a linear effect on the soil hydraulic 
properties. This treatment was incorporated into CLM 3.0 and Noah-MP in 2007 and 2011, 
respectively. 
 
The spatial heterogeneity of soil moisture and WTD requires high-resolution meteorological input 
that direct outputs from GCMs are too coarse to provide. In GCMs, differences in simulated 
precipitation stem from the choice of convection parameterization scheme (Sherwood et al., 2014; 
Prein et al., 2015). An important approach to improve precipitation simulation is to conduct 
dynamical downscaling using the convection-permitting model (CPM) (Ban et al., 2014; Prein et 
al., 2015; Liu et al., 2017). The CPM uses a high spatial resolution (usually under 5-km) to 
explicitly resolve convection without activating convection parameterization schemes. CPMs can 
also improve the representation of fine-scale topography and spatial variations of surface fields  
(Prein et al., 2013). These CPM added-values provide an excellent opportunity to investigate water 
table dynamics in the PPR. 
 
The objectives of this paper are to 1) investigate the performance of a regional scale coupled land-
groundwater model in simulating groundwater water levels, recharge and storage in a seasonally 
frozen environment in PPR; and 2) explore the possible impacts of climate change on these 
processes. In this paper, we use a physical process-based LSM (Noah-MP) coupled with a 
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groundwater dynamics model (MMF model). The coupled Noah-MP-MMF model is driven by two 
sets of meteorological forcing for 13 years under current and future climate scenarios. These two 
sets of meteorological datasets are from a CPM dynamical downscaling project using the Weather 
Research & Forecast (WRF) model with 4-km grid spacing covering the Contiguous U.S. and 
Southern Canada (WRF CONUS, Liu et al., 2017). The paper is structured as follows: Section 4.2 
introduces the groundwater observations for WTD evaluation in the PPR, the coupled Noah-MP-
MMF model, and the meteorological forcing from the WRF CONUS project. Section 4.3 evaluates 
the model simulated WTD timeseries and shows the groundwater budget and hydrological changes 
due to climate change. Section 4.4 and 4.5 offer a broad discussion and conclusion. 
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4.2 Data and Methods 
4.2.1 Observation data  
Groundwater observation data were obtained through several agencies: (1) the United States 
Geological Survey (USGS) National Water Information System in the U.S. 
(https://waterdata.usgs.gov/nwis/gw), (2) the Alberta Environment 
(http://aep.alberta.ca/water/programs-and-services/groundwater/groundwater-observation-well-
network/default.aspx), (3) the Saskatchewan Water Security Agency 
(https://www.wsask.ca/Water-Info/Ground-Water/Observation-Wells/).  
 
Initially, groundwater data from 160 wells were acquired, 72 in the U.S., 43 from Alberta, and 45 
from Saskatchewan. We used the following criteria to select qualified stations for our study and 
evaluate our model performance against these observations: 

1) the locations of the wells are within the PPR region. 
2) a sufficiently long data record exists during the simulation period. We define the 

observation availability as the available observation period within the 13-year simulation 
period and select wells with observation availability greater than 80%. 

3) we only take data from unconfined aquifers with shallow groundwater levels (mean WTD > 
5 m). 

4) we only take data with minimal anthropogenic effects (such as from pumping or irrigation). 
 
These criteria reduced the observation data to 33 well records, with six in Alberta, 13 in 
Saskatchewan and 14 from the U.S. Table 4.1 summarizes the information for each selected well, 
and Figure 4.1(a) shows the location of the wells in our study area. It is noteworthy that most of 
the groundwater sites have more permeable deposits (sand and gravel) as provincial and state 
agencies don’t monitor low permeability formations. More information about the selecting criteria 
is provided in the Appendix C. 
 

 
Figure 4.1. (a) Topography of the Prairie Pothole Region (PPR) and station location of rain gauges (black dots) and 
groundwater wells (red diamonds); (b) Topography of the WRF CONUS domain, with the black box indicating the 
PPR domain. 
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Table 4.1. Summary of the locations and aquifer type and soil type of the 33 selected wells. 
Site Name/ 
Site No. 

Lat Lon Elev 
(m) 

Aquifer type Aquifer 
Lithology 

Model 
Elevation 
(m) 

Model Soil 
type 

Devon 0162 53.41 -113.76 700.0 Unconfined Sand 697.366 Sandy loam 
Hardisty 0143 52.67 -111.31 622.0 Unconfined Gravel 633.079 Loam 
Kirkpatrick Lake 0229 51.95 -111.44 744.5 Semi-confined Sandstone 778.311 Sandy loam 
Metiskow 0267 52.42 -110.60 677.5 Unconfined Sand 679.516 Loamy sand 
Wagner 0172 53.56 -113.82 670.0 Surficial Sand 670.845 Silt loam 
Narrow Lake 252 54.60 -113.63 640.0 Unconfined Sand 701.000 Clay loam 
Baildon 060 50.25 -105.50 590.184 Surficial - 580.890 Sandy loam 
Beauval 55.11 -107.74 434.300 Intertill Sand 446.500 Sandy loam 
Blucher 52.03 -106.20 521.061 Intertill Sand/Gravel 523.217 Loam 
Crater Lake 50.95 -102.46 524.158 Intertill Sand/Gravel/Clay 522.767 Loam 
Duck Lake 52.92 -106.23 502.920 Surficial Sand 501.729 Loamy sand 
Forget 49.70 -102.85 606.552 Surficial Sand 605.915 Sandy loam 
Garden Head 49.74 -108.52 899.160 Bedrock Sand/Till 894.357 Clay loam 
Nokomis 51.51 -105.06 516.267 Bedrock Sand 511.767 Clay loam 
Shaunavon 49.69 -108.50 896.040 Bedrock Sand/Till 900.433 Clay loam 
Simpson 13 51.45 -105.18 496.620 Surficial Sand 493.313 Sandy loam 
Simpson 14 51.457 -105.19 496.600 Surficial Sand 493.313 Sandy loam 
Yorkton 517 51.17 -102.50 513.643 Surficial Sand/Gravel 511.181 Loam 
Agrium 43 52.03 -107.01 500.229 Intertill Sand 510.771 Loam 
460120097591803 46.02 -97.98 401.177 Alluvial Sand/Gravel 400.381 Sandy loam 
461838097553402 46.31 -97.92 401.168 - Sand/Gravel 404.719 Clay loam 
462400097552502 46.39 -97.92 409.73 - Sand/Gravel 407.405 Sandy loam 
462633097163402 46.44 -97.27 325.52 Alluvial Sand/Gravel 323.728 Sandy loam 
463422097115602 46.57 -97.19 320.40 Alluvial Sand/Gravel 314.167 Sandy loam 
464540100222101 46.76 -100.37 524.91 - Sand/Gravel 522.600 Clay loam 
473841096153101 47.64 -96.25 351.77 Surficial Sand/Gravel 344.180 Loamy sand 
473945096202402 47.66 -96.34 327.78 Surficial Sand/Gravel 328.129 Sandy loam 
474135096203001 47.69 -96.34 325.97 Surficial Sand/Gravel 327.764 Sandy loam 
474436096140801 47.74 -96.23 341.90 Surficial Sand/Gravel 336.210 Sandy loam 
475224098443202 47.87 -98.74 451.33 - Sand/Gravel 450.463 Sandy loam 
481841097490301 48.31 -97.81 355.61 - Sand/Gravel 359.568 Clay loam 
482212099475801 48.37 -99.79 488.65 - Sand/Gravel 488.022 Sandy loam 
CRN Well WLN03 45.98 -95.20 410.70 Surficial Sand/Gravel 411.400 Sandy loam 
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4.2.2 Groundwater and Frozen soil scheme in Noah-MP LSM 
In the present study, we used the community Noah-MP LSM (Niu et al., 2011; Yang et al., 2011) 
coupled with a GW model – the MMF model (Fan et al., 2007; Miguez-Macho et al., 2007). This 
coupled model has been applied in many regional hydrology studies in offline mode (Miguez-
Macho and Fan, 2012; Martinez et al., 2016) and has also been coupled with regional climate 
models (Anyah et al., 2008; Barlage et al., 2015). Here, we present a brief introduction to the MMF 
groundwater scheme and the frozen soil scheme in Noah-MP; further details can be found in 
previous studies (Fan et al., 2007; Miguez-Macho et al., 2007; Niu and Yang, 2006). 
 
Figure 4.2 is a diagram of the structure of four soil layers (0.1, 0.3, 0.6, and 1.0 m) and the 
underlying unconfined aquifer in Noah-MP-MMF. The MMF scheme explicitly defines an 
unconfined aquifer below the 2 m soil level and an auxiliary soil layer stretching to the WTD, 
which varies in space and time (m). The thickness of this auxiliary layer, 𝑧#ÅA (m), is also variable, 
depending on the WTD: 

𝑧#ÅA = Æ1,																														𝑊𝑇𝐷 ≥ −3	
−2 −𝑊𝑇𝐷, 𝑊𝑇𝐷 < −3	 								(4.1) 

 
The vertical fluxes include gravity drainage and capillary flux, solved from the Richards’ equation,  
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where q is water flux between two adjacent layers [m/s], 𝐾Ë is the hydraulic conductivity [m/s] at 
certain soil moisture content 𝜃 [m3/m3], 𝜓 is the soil matric potential [m] and b is soil pore size 
index. The subscript sat denotes saturation. The recharge flux from/to the layer above WTD, R, can 
be obtained according to WTD:  
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In the first case, WTD is in the resolved soil layers and 𝑧"]Y( is the depth of soil layer with the 
subscript k indicating the layer containing WTD while i is the layer above. The calculated water 
table recharge is then passed to the MMF groundwater routine. 
 
The change of groundwater storage in the unconfined aquifer considers three components: recharge 
flux (R), river discharge (𝑄)),  and lateral flows (𝑄(#$):  

∆𝑆/ = (𝑅 − 𝑄) +×𝑄(#$)																																					(4.4) 
where 𝑆/ [mm] is groundwater storage, 𝑄) [mm] is the water flux of groundwater-river exchange, 
and ∑𝑄(#$ [mm] are groundwater lateral flows to/from all surrounding grid cells. The groundwater 
lateral flow (∑𝑄(#$) is the total horizontal flows between each grid cell and its neighbouring grid 
cells, calculated from Darcy’s law with the Dupuit–Forchheimer approximation (Fan and Miguez-
Macho 2010), as: 

𝑄(#$ = 𝑤𝑇 b
ℎ − ℎP
𝑙 d																																															(4.5) 
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where w is the width of cell interface [m], T is the transmissivity of groundwater flow [𝑚F/𝑠], h 
and ℎP are the water table head [m] of local and neighboring cell, and l is the length [m] between 
cells. T depends on hydraulic conductivity K and WTD: 

𝑇 = 	
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For 𝑊𝑇𝐷 < −2, K is assumed to decay exponentially with depth, 𝐾 = 𝐾Ö	exp	(−𝑧/𝑓), 𝐾Ö is the 
hydraulic conductivity in the 4-th soil layer and f is the e-folding length and depends on terrain 
slope. For WTD ≥	-2, i represents the number of layers between the water table and the 2-m bottom 
and 𝑧"Å)m is the surface elevation.  
 
The river flux (𝑄)) is also represented by a Darcy’s law–type equation, where the flux depends on 
the gradient between the groundwater and the river depth and the riverbed conductance: 

𝑄) = 𝑅𝐶 ∙ (ℎ − 𝑧)Y¸1))																																										(4.7) 
with 𝑧)Y¸1) is the depth of river [m] and RC is dimensionless river conductance, which depends on 
the slope of the terrain and equilibrium water table. Eq. (8) is a simplification which uses 𝑧)Y¸1) 
rather than the water level in the river and, for this study, we only consider one-way discharge from 
groundwater to rivers. Finally, the change of WTD is calculated as the total fluxes fill or drain the 
pore space between saturation and the equilibrium soil moisture state (𝜃1à [m3/m3]) in the layer 
containing WTD:  

∆WTD =
∆𝑆/

(𝜃"#$ − 𝜃1à)
																				(4.8) 

If ∆𝑆/ is greater than the pore space in the current layer, the soil moisture content of current layer 
is saturated and the WTD rises to the layer above, updating the soil moisture content in the layer 
above as well. Vice versa for negative ∆𝑆/ as water table declines and soil moisture decreases.  

 
Figure 4.2. Structure of the Noah-MP LSM coupled with MMF groundwater scheme, the top 2-m soil of 4 layers 
whose thicknesses are 0.1, 0.3, 0.6 and 1.0 m. An unconfined aquifer is added below the 2-m boundary, including an 
auxiliary layer and the saturated aquifer. Positive flux of R denotes downward transport. Two water table are shown, 
one within the 2-m soil and one below, indicating the model is capable to deal with both shallow and deep water tables.  
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There are two options in Noah-MP LSM for frozen soil permeability; option 1, the default option 
in Noah-MP, is from Niu and Yang (2006) and option 2 is inherited the Koren et al. (1999) scheme 
from NoahV3. Option 1 assumes that a model grid cell consists of permeable and impermeable 
patches and the area weighted sum of these patches gives the grid cell soil hydraulic properties. 
Thus, the total soil moisture (𝜃) in the grid cell is used to compute hydraulic properties as: 

𝜃 = 𝜃YC1 + 𝜃(Yà													(9) 
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d
FzÎX

(4.10) 

the subscript frz and u denote the frozen and unfrozen patches in the grid point. The impermeable 
frozen soil fraction is parameterized as:  

𝐹m)n = 𝑒lâ(¡lË��ã ËÜäå⁄ ) − 𝑒lâ									(4.11) 
𝛼 = 3.0 is an adjustable parameter. The amount of the liquid water in soil layer is either 𝜃(Yà or 
𝜃(Yà,@#A, the maximum amount of liquid water, which is calculated by a more general form of the 
freezing-point depression equation:  

𝜃(Yà,@#A = 𝜃"#$ ç
10X𝐿m´𝑇"]Y( − 𝑇m)nµ

𝑔𝑇"]Y(𝜓"#$
è
l¡z
							(4.12) 

where 𝑇"]Y( and 𝑇m)n are soil temperature and freezing point [K]; 𝐿m is the latent heat of fusion [J 
kgl¡]; g is gravitational acceleration [m slF].  
 
On the other hand, the option 2 uses only the liquid water volume to calculate hydraulic properties 
and assumes a non-linear effect of frozen soil on permeability. Also, the option 2 uses a variant of 
freezing-point depression equation with an extra term, (1 + 8𝜃YC1)F, to account for the increased 
interface between soil particles and liquid water due to the increase of ice crystals. Generally, 
option 1 assumes that soil ice has a smaller effect on infiltration and simulates more permeable 
frozen soil than option 2 (Niu et al., 2011). For this reason, the option 1 allows the soil water to 
move and redistribute more easily within the frozen soil and we decide to use option 1 in our study. 
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4.2.3 Forcing Data 
The output from the WRF CONUS dataset (Liu et al. 2017) are used as meteorological forcing to 
drive the Noah-MP-MMF model. The WRF CONUS project consists of two simulations. The first 
simulation is referred as the current climate scenario, or control run (CTRL), from Oct 2000 to Sep 
2013, and forced with the 6-hourly 0.7° ERA-Interim reanalysis data. The second simulation is a 
perturbation to reflect the future climate scenario, closely following the pseudo global warming 
(PGW) approach in previous works (Rasmussen et al., 2014). The PGW simulation is forced with 
6-hourly ERA-Interim reanalysis data plus a delta climate change signal derived from an ensemble 
of CMIP5 models under the RCP8.5 emission scenario and reflects the climate change signal 
between the end of the 21st and 20th century. 
 
Figure 4.3 shows the annual precipitation in the PPR from 4-km WRF CONUS from the current 
climate and 32-km North America Regional Reanalysis (NARR, another reanalysis dataset 
commonly used for land surface model forcing). Both datasets show similar annual precipitation 
pattern and bias patterns compared to observations: underestimating of precipitation in the east and 
overestimating in the west. However, the WRF CONUS shows significant improvement of 
percentage bias in precipitation ((Model-Observation)/Observation) over the western PPR. For the 
consistency of the same source of data for current and future climate, the WRF-CONUS is the best 
available dataset for the coupled land-groundwater study in the PPR. 
 

 
Figure 4.3. Evaluation of the annual precipitation from WRF CONUS (top) and NARR (bottom) against rain gauge 
observation. 
 
For the future climate study, the precipitation and temperature of the PGW climate forcing are shown 
in Figure 4.4 and 4.5. WRF CONUS projects more precipitation in the PPR, except in the southeast of 
the domain in summer, where it shows a precipitation reduction of about 50–100 mm. In contrast, WRF 
CONUS projects that the strongest warming will occur in the northeastern PPR in winter (about 6–8 ∘C 
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as shown in Figure 4.5). Another significant warming signal occurs in summer in the southeast of the 
domain, corresponding to the reduction of future precipitation, as seen in Figure 4.4. 
 

 
Figure 4.4. Seasonal accumulated precipitation from current climate scenario (CTRL), future climate scenario (PGW) 
and projected change (PGW-CTRL) in the forcing data. 
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Figure 4.5. Seasonal averaged temperature from CTRL, PGW, and the projected change (PGW-CTRL). 
 
2.4 Model Setup 
The two Noah-MP-MMF simulations representing the current climate and future climate are 
denoted as CTRL and PGW, respectively. The initial groundwater levels are from a global 1-km 
equilibrium groundwater map (Fan et al., 2013) and the equilibrium soil moisture for each soil 
layer is calculated at the first model timestep with climatology recharge, spinning up for 500 years. 
Since the model domain is at a different resolution than the input data, the appropriate initial WTD 
at 4-km may be different than the average at 1-km. To properly initialize the simulation, we spin 
up the model using the forcing of current climate (CTRL) for the years from 2000 to 2001 
repeatedly (in total 10 loops).  
 
Due to different data sources, the default soil types along the boundary between the U.S. and 
Canada are discontinuous. Thus, we use the global 1-km fine soil data (Shangguan et al., 2014, 
http://globalchange.bnu.edu.cn/research/soilw) in our study region. The soil properties for the 
aquifer use the same properties as the lowest soil layer from the Noah-MP 2-m soil layers.   
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4.3 Results 
4.3.1 Comparison with groundwater observations 
According to the locations of 33 groundwater wells in Table 1, the simulated WTD from the closest 
model grid points are extracted. Figure 4.6 shows the modeled WTD bias from the CTRL run. We 
also select the monthly WTD timeseries from 8 sites, the observations are in black dots and CTRL 
in blue lines. See Appendix C for the timeseries of 33 sites. The model produces reasonable values 
of mean WTD, the mean biases are smaller than 1 m in most of sites, except in Alberta, where the 
model predicts deep bias about 5 m in the northwestern part of PPR. The model also successfully 
captures the annual cycle of WTD, which rises in spring and early summer, because of snowmelt 
and rainfall recharge, and declines in summer and fall, because of high ET, and in winter because 
of frozen near-surface soil. In all observations, the timing of the water table rising, and dropping is 
well simulated, as the timing and amount of infiltration and recharge in spring is controlled by the 
freeze-thaw processes in seasonally frozen soil.  

 
Figure 4.6. WTD (m) bias from CTRL simulation and timeseries from 8 groundwater wells in PPR (black for 
observation and blue for CTRL model simulation). See Table 4.2 CTRL column for the model statistics and Appendix 
C for complete timeseries from 33 wells. 
 
On the other hand, the model simulated WTD seasonal variation is smaller than observations. The 
small seasonal variation could be due to the misrepresentation between the lithology from the 
observational surveys and the soil types in the model grids. As mentioned in Section 4.2.2, the 
groundwater aquifer uses the same soil types as the bottom layer of the resolved 2-m soil layers. 
While sand and gravel are the dominant lithology in most of the sites, they are mostly clay and 
loam in the model (Table 4.1). For sandy soil reported in most of the sites, small capacity and fast 
responses to infiltration lead to large water table fluctuations, whereas, in the model, clay and loam 
soil allows low permeability and large capacity and smoothens responses to recharge and capillary 
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effects. Furthermore, the 4-layer soils are vertically homogeneous in soil type and the groundwater 
model uses the lowest level soil type as the aquifer lithology. For many parts of the PPR, where 
groundwater levels are perched at the top 5-m due to a layer called glacial till. These 
geohydrological characteristics cannot be reflected in this model and contribute to the deep WTD 
bias simulated in Alberta. This shortcoming of the model was also reported in a study taken place 
in the Amazon rainforest (Miguez-Macho et al., 2012). 
 
4.3.2 Climate change signal in Groundwater fluxes 
The MMF groundwater model simulates three components in the groundwater water budget, the 
recharge flux (R), lateral flow (𝑄(#$), and discharge flux to rivers (𝑄)). Because the topography is 
usually flat in the PPR, the magnitude of groundwater lateral transport is very small (𝑄(#$ less than 
5 mm per year). On the other hand, the shallow water table in the PPR region is higher than the 
local riverbed, thus, the 𝑄) term is always discharging from groundwater aquifers to rivers. As a 
result, the recharge term is the major contributor to the groundwater storage in the PPR, and its 
variation (usually between -100 to 100 mm) dominates the timing and amplitude of the water table 
dynamics. The seasonal accumulated total groundwater fluxes in the PPR (R+𝑄(#$ − 𝑄)) are shown 
in Figure 4.7. The positive (negative) flux in blue (red) means the groundwater aquifer is gaining 
(losing) water, causing the water table to rise (decline). 
 

 
Figure 4.7. Seasonal accumulated total groundwater fluxes (𝑅 + 𝑄(#$ + 𝑄)) for current climate (CTRL, top), future 
climate (PGW, middle) and projected change (PGW-CTRL, bottom) in forcing data. Black dashed lines in PGW-
CTRL separate the PPR into eastern and western halves. 
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Under current climate conditions, the total groundwater fluxes show strong seasonal fluctuations, 
consistent with the WTD timeseries shown in Figure 4.6. On average, in fall (SON) and winter 
(DJF), there is a 20-mm negative recharge, driven by the capillary effects and drawing water from 
aquifer to dry soil above. Spring (MAM) is usually the season with a strong positive recharge 
because snowmelt provides a significant amount of water, and soils thawing allow infiltration. The 
large amount of snowmelt water contributes to more than 100 mm of positive recharge in the 
eastern domain. It is until summer (JJA), when strong ET depletes soil moisture and results in about 
50 mm of negative recharge.  
 
Under future climate conditions, the increased PR in fall and winter leads to wetter upper soil layers, 
resulting in a net positive recharge flux (PGW – CTRL in SON and DJF). However, the PGW 
summer is impacted by increased ET under a warmer and drier climate, due to higher temperature 
and less PR. As a result, the groundwater uptake by the capillary effect is more critical in the future 
summer. Furthermore, there is a strong east-to-west difference in the total groundwater flux change 
from PGW to CTRL. In the eastern PPR, the change in total groundwater flux exhibits obvious 
seasonality while the model projects persistent positive groundwater fluxes in the western PPR.  
 
4.3.3 Water budget analysis 
Figure 4.8 and 4.9 show the water budget analysis for the eastern and western PPR (divided by the 
dotted line in 103° W in Figure 4.7), respectively. Four components are presented in the figures, 
i.e. (1) PR and ET; (2) surface and underground runoff (SFCRUN and UDGRUN); and surface 
snowpack; (3) the change of soil moisture storage and (4) groundwater fluxes and the change of 
storage. In the current and future climate, these budget terms are plotted in annual accumulation 
((a) and (b) for CTRL and PGW), whereas their difference are plotted in each month individually 
((c) for PGW-CTRL).  
 
Under current climate conditions, during snowmelt infiltration and rainfall events, water infiltrates 
into the top soil layer, travels through the soil column and exits the bottom of the 2-m boundary, 
hence, the water table rises. During the summer dry season, ET is higher than PR and the soil layers 
lose water through ET, therefore, the capillary effect takes water from the underlying aquifer and 
the water table declines. In winter, the near-surface soil in the PPR is seasonally frozen, thus, a 
redistribution of subsurface water to the freezing front results in negative recharge, and the water 
table declines.  
 
In the eastern PPR, the effective precipitation (PR-ET) is found to increase from fall to spring but 
decrease in summer in PGW (Figure 4.8(1c)). Warmer falls and winters in PGW, together with 
increased PR, not only delay snow accumulation and bring forward snowmelt, but also change the 
precipitation partition – more as rain and less as snow. This warming causes up to 20 mm of 
snowpack loss (Figure 4.8(2c)). The underground runoff starts much earlier in PGW (December) 
(Figure 4.8(2b)) than in CTRL (February) (Figure 4.8(2a)). On the other hand, the warming in 
PGW also changes the partitioning of soil ice and soil water in unsaturated soil layers (Figure 
4.8(3c)). For late spring in PGW, the springtime recharge in the future is significantly reduced due 
to early melting and less snowpack remaining (Figure 4.8(4c)). In the PGW summer, reduced PR 
(50 mm less) and higher temperatures (8 °C warmer) lead to reduction in total soil moisture, and a 
stronger negative recharge from the aquifer. Therefore, the increase of recharge from fall to early 
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spring compensates the recharge reduction due to stronger ET in summer in the eastern PPR, and 
changes little in the annual mean groundwater storage (1.763 mm per year).  
 

 
Figure 4.8. Water budget analysis in the eastern PPR in (a) CTRL, (b) PGW and (c) PGW – CTRL. Water budget 
terms include: (1) PR & ET, (2) surface snow, surface runoff and underground runoff (SNOW, SFCRUN, and 
UDGRUN), (3) change of soil moisture storage (soil water, soil ice and total soil moisture, ∆𝑆𝑀𝐶) and (4) groundwater 
fluxes and the change of groundwater storage (R, 𝑄(#$, 𝑄),	∆𝑆/). The annual mean soil moisture change (PGW-CTRL) 
is shown with black dashed line in (3). The Residual term is defined as Res = (R+𝑄(#$-𝑄))-∆𝑆/ in (4). Note that in (a) 
and (b) the accumulated fluxes and change in storage are shown in lines, whereas in (c) the difference in (PGW-CTRL) 
is shown for each individual month in bars.  
 
These changes in water budget components in the western PPR (Figure 4.9) are similar to those in 
the eastern PPR (Figure 4.8), except in summer. The reduction in summer PR in the western PPR 
(less than 5 mm reduction) is not as obvious as that in the eastern PPR (50 mm reduction) (Figure 
4.4). Thus, annual mean total soil moisture in future is about the same as in current climate (Figure 
4.9(3c)) and results in little negative recharge in PGW summer (Figure 4.9(4c)). Therefore, the 
increase in annual recharge is more significant (10 mm per year), an increase of about 50% of the 
annual recharge in the current climate (20 mm per year) (Figure 4.9(4c)).  
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Figure 4.9. Same as Figure 4.8. Water budget analysis in the western PPR: in (a) CTRL, (b) PGW and (c) PGW – 
CTRL. Water budget terms include: (1) PR & ET, (2) surface snow, surface runoff and underground runoff (SNOW, 
SFCRUN, and UDGRUN), (3) change of soil moisture storage (soil water, soil ice and total soil moisture, ∆𝑆𝑀𝐶) and 
(4) groundwater fluxes and the change of groundwater storage (R, 𝑄(#$ , 𝑄) ,	∆𝑆/). The annual mean soil moisture 
change (PGW-CTRL) is shown with black dashed line in (3). The Residual term is defined as Res = (R+𝑄(#$-𝑄))-∆𝑆/ 
in (4). Note that in (a) and (b) the accumulated fluxes and change in storage are shown in lines, whereas in (c) the 
difference in (PGW-CTRL) is shown for each individual month in bars.  
 
In both the eastern and western PPR, the water budget components for the groundwater aquifer are 
plotted in Figure 4.8(4) and Figure 4.9(4), with the changes of each flux (PGW-CTRL) printed at 
the bottom. The groundwater lateral flow is a small term in areal average and has little impact on 
the groundwater storage. Nearly half of the increased recharge in both the eastern and western PPR 
is discharged to river flux (𝑄) = 2.26 mm out of R = 4.15 mm in the eastern PPR and 𝑄) = 5.20 
mm out of R = 10.72 mm in western PPR). Therefore, the groundwater storage change in the eastern 
PPR (1.76 mm per year) is not as great as that in the western PPR (5.39 mm per year). 
 
These two regions of the PPR show differences in hydrological response to future climate because 
of the spatial variation of the summer PR. As shown in both Figure 4.4 (PGW-CTRL), Figure 4.8(1) 
and Figure 4.9(1), the reduction of future PR in summer in the eastern PPR is significant (50 mm). 
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The spatial difference of precipitation changes in the PPR further results in the recharge increase 
doubling in the western PPR compared to the eastern PPR.  
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4.4. Discussion 
4.4.1 Improving WTD Simulation 
In Section 4.3.1, we show that the model is capable of simulating the mean WTD in most sites yet 
predicts deep groundwater in Alberta and underestimates its seasonal variation. These results may 
be due to misrepresentations between model default soil type and the soil properties in the 
observational wells. To test this theory, an additional simulation, REP, is conducted by replacing 
the default soil types in the locations of these 33 groundwater wells with sand-type soil, which is 
the dominant soil types reported from observational surveys. The timeseries of the REP and default 
CTRL are shown in Figure 4.10 (also see Appendix C for the complete 33 sites) and a summary of 
the mean and standard deviation of the two simulations are provided in Table 4.2. 
 

 
Figure 4.10. Same as Figure 4.6, WTD (m) bias from CTRL simulation and timeseries from 8 groundwater wells in PPR 
(black for observation and blue for CTRL model simulation, and red for the replacing soil type simulation). REP is the 
additional simulation by replacing the default soil type in the model with sandy soil type. 
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Table 4.2. Summary of mean and standard deviation (std) of WTD from 33 groundwater wells, from observation 
records (OBS), default model (CTRL) and replacing with sand soil simulation (REP). Bold texts indicate improvement 
in the REP than the CTRL run.  
  

Site Name/Number OBS_mean CTRL_mean REP_mean OBS_std CTRL_std REP std 
Devon 0162 -2.46 -2.69 -2.38 0.43 0.45 0.09 
Hardisty 0143 -2.44 -8.91 -6.88 0.41 0.64 0.36 
Kirkpatrick Lake 0229 -4.22 -4.03 -3.45 0.43 0.98 0.22 
Metiskow 0267 -2.54 -5.39 -4.43 0.34 0.78 0.55 
Narrow Lake 252 -2.31 -4.81 -3.75 0.28 0.60 0.51 
Wagner 0172 -2.14 -8.06 -2.70 0.48 0.37 0.21 
Baildon 060 -2.80 -3.29 -3.20 0.47 0.58 0.30 
Beauval -3.78 -4.85 -4.20 0.44 0.56 0.32 
Blucher -2.20 -4.24 -2.16 0.30 0.92 0.26 
Crater Lake -4.33 -3.97 -3.64 1.10 0.4 0.28 
Duck Lake -3.65 -3.69 -3.17 0.54 0.41 0.62 
Forget -2.28 -2.37 -2.23 0.33 0.17 0.19 
Garden Head -3.67 -4.85 -3.77 0.88 0.70 0.30 
Nokomis -1.04 -2.70 -2.17 0.23 0.55 0.17 
Shaunavon -1.62 -4.41 -2.58 0.42 0.69 0.20 
Simpson 13 -4.82 -4.83 -3.02 0.31 0.91 0.17 
Simpson 14 -2.03 -2.61 -1.82 0.34 0.18 0.27 
Yorkton 517 -2.87 -3.97 -1.98 0.80 0.46 0.32 
Agrium 43 -2.66 -3.75 -3.38 0.32 1.05 0.36 
460120097591803 -1.44 -2.33 -1.63 0.56 0.24 0.50 
461838097553402 -1.17 -2.32 -1.68 0.27 0.24 0.43 
462400097552502 -4.9 -5.61 -5.37 0.29 0.09 0.17 
462633097163402 -1.18 -1.49 -1.02 0.46 0.29 0.54 
463422097115602 -1.36 -2.28 -1.66 0.34 0.23 0.49 
464540100222101 -2.02 -3.64 -2.78 0.52 0.43 0.32 
473841096153101 -0.77 -1.48 -1.37 0.24 0.18 0.51 
473945096202402 -1.59 -1.58 -1.56 0.32 0.24 0.51 
474135096203001 -0.72 -1.48 -1.30 0.33 0.25 0.54 
474436096140801 -2.44 -2.29 -1.96 0.39 0.21 0.40 
475224098443202 -4.52 -4.28 -5.31 0.75 0.52 0.34 
481841097490301 -4.39 -4.24 -4.58 0.79 0.28 0.17 
482212099475801 -2.13 -2.32 -2.26 0.24 0.20 0.17 
CRN WLN 03 -2.04 -2.18 -1.88 0.24 0.18 0.43 
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The REP simulation with sandy soil shows two sensitive signals: (1) REP WTD are shallower than 
the default simulation; (2) and exhibit stronger seasonal variation. These two signals can be 
explained by the WTD equation in the MMF scheme:  

∆𝑊𝑇𝐷 =	
∆(𝑅 +	𝑄(#$ −	𝑄)	)
(𝜃"#$ −	𝜃1à)

					(4.13) 

Eq. (4.13) represents that the change of WTD in a period of time is calculated by the total 
groundwater fluxes, ∆(𝑅 +	𝑄(#$ −	𝑄)	), divided by the available soil moisture capacity of current 
layer ( 𝜃"#$ −	𝜃1à ). In REP simulation, the parameters 𝜃"#$ for the dominant soil type in 
observational sites (sand/gravel) is smaller than those in default model grids (clay loam, sandy 
loam, loam, loamy sand, etc.). Therefore, changing the 𝜃"#$ is essentially reducing the storage in 
the aquifer and soil in this model grid. Given the same amount of groundwater flux, in the REP 
simulation, the mean WTD is higher and the seasonal variation is stronger than the default CTRL 
run.  
 
In the REP simulation, we replaced soil type only at a limited number of sites because the 
geological survey data in high resolution and large area extent is not yet available for the whole 
PPR. At point scale, the WTD responses to climate change over these limited number of sites show 
diverse results and uncertainties (see Appendix C). For the rest of the domain, the default soil type 
from global 1-km soil map is used. The REP modifications of soil types at point-scale have small 
contribution to the water balance analysis (Figure 4.8 & 4.9) at regional-scale. Our results and 
conclusions for groundwater response to PGW doesn’t change. We are currently undertaking a soil 
property survey project in the PPR region to obtain soil properties at high spatial resolution, both 
horizontal and vertical. This may provide better opportunity to improve WTD simulation as well 
as assess climate-groundwater interaction in future studies.  
 
4.4.2 Climate Change Impacts on Groundwater Hydrological Regime  
The warming and increased precipitation in cold seasons in future climate will lead to later snow 
accumulation, higher recharge in winter and earlier melting in spring compared to current climate.  
Such changes in snowpack loss have been hypothesized in mountainous as well as high-latitude 
regions (Taylor et al 2013; Ireson et al., 2015; Meixner et al., 2016; Musselman et al., 2017). In 
addition to the amount of recharge, the shift of recharge season is also noteworthy. Under current 
climate conditions in spring, soil thawing (in March) is generally later than snowmelt (in February) 
by a month in the PPR. Thus, the snowmelt water in pre-thaw spring would either re-freeze after 
infiltrating into partially frozen soil or become surface runoff. Under the PGW climate, the warmer 
winter and spring allows snowmelt and soil thaw to occur earlier in the middle of winter (in January 
and February, respectively). As a result, the recharge season starts earlier in December, and last 
longer until June, results in longer recharge season but with lower recharge rate.  
 
Future projected increasing evapotranspiration demand in summer desiccates soil moisture, 
resulting in more water uptake from aquifers to subsidize dry soil in the future summer. This 
groundwater transport to soil moisture is similar to the “buffer effect” documented in an offline 
study in the Amazon rainforest (Pokhrel et al., 2014). In the PPR, shallow water tables exist in the 
critical zone, where WTD ranges from 1 to 5 meters below surface and could exert strong influence 
on land energy and moisture fluxes feedback to the atmosphere (Kollet and Maxwell, 2008; Fan et 
al., 2015). Previous coupled atmosphere-land-groundwater studies at 30-km resolution showed that 
groundwater could support soil moisture during summer dry period but has little impacts on 
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precipitation in Central U.S. (Barlage et al., 2015). It would be an interesting topic to study the 
integrated impacts of shallow groundwater to regional climate in the convection permitting 
resolution (resolution < 5-km).  
 
4.3 Fine-scale interaction between groundwater and prairie wetlands 
Furthermore, groundwater exchange with prairie pothole wetlands are complicated and critical in 
the PPR. Numerous wetlands known as potholes or sloughs provide important ecosystem services, 
such as providing wildlife habitats and groundwater recharge (Johnson et al., 2010). Shallow 
groundwater aquifers may receive water from or lose water to prairie wetlands depending on the 
hydrological setting. Depression-focused recharge generated by runoff from upland to depression 
contributes to sufficient amount of water input to shallow groundwater (5-40 mm/year) (Hayashi 
et al., 2016).  
 
On the other hand, groundwater lateral flow exchange center of a wetland pond to its moist margin 
is also an important component in the wetland water balance (van der Kamp and Hayashi, 2009; 
Brannen, et al., 2015; Hayashi et al., 2016). However, this groundwater-wetland exchange typically 
occurs on local scale (from 10 to 100 m) and thus, is challenging to represent in current land surface 
models or climate models (resolution from 1 km to 100 km).  In this paper, we focus on the 
groundwater dynamics on regional scale, which is still unable to capture these small wetland 
features in this study. We admit this limitation and are currently developing a sub-grid scheme to 
represent small scale open water wetlands as a fraction within a grid cell and calculate its feedback 
to regional environments. Future studies on this topic will provide valuable insights on these key 
ecosystems and their interaction under climate change.  
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4.5 Conclusion 
In this study, a coupled land-groundwater model is applied to simulate the interaction between the 
groundwater aquifer and soil moisture in the PPR. The climate forcing is from a dynamical 
downscaling project (WRF CONUS), which uses the convection-permitting model (CPM) 
configuration in high resolution. The goal of this study is to investigate the groundwater responses 
to climate change, and to identify the major processes that contribute to these responses in the PPR. 
To our knowledge, this is the first study applying CPM forcing in a hydrology study in this region. 
We have three main findings:  
 
(1) the coupled land-groundwater model shows reliable simulation of mean WTD, however 
underestimates the seasonal variation of the water table against well observations. This could be 
attributed to several reasons, including misrepresentation of topography and soil types, as well as 
vertical homogenous soil layers used in the model. We further conducted an additional simulation 
(REP) by replacing the model default soil types with sand-type soil and the simulated WTDs were 
improved in both mean and seasonal variation. However, inadequacy of soil properties in deeper 
layer and higher spatial resolution is still a limitation.  
 
(2) Recharge markedly increases due to projected increased PR, particularly from fall to spring 
under future climate conditions. Strong east-west spatial variation exists in the annual recharge 
increases, 25% in the eastern and 50% in the western PPR. This is due to the significant projected 
PR reduction in PGW summer in the eastern PPR but little change in the western PPR. This PR 
reduction leads to stronger ET demand, which draws more groundwater uptake due to the capillary 
effect, results in negative recharge in the summer. Therefore, the increased recharge from fall to 
spring is consumed by ET in summer, and results in little change in groundwater in the eastern 
PPR, while gaining water in the western PPR.  
 
(3) The timing of infiltration and recharge are critically impacted by the changes in freeze-thaw 
processes. Increased precipitation, combined with higher winter temperatures, results in later snow 
accumulation/soil freezing, partitioned more as rain than snow, and earlier snowmelt/soil thaw. 
This leads to substantial loss of snowpack, shorter frozen soil season, and higher permeability in 
soil allowing infiltration. Late accumulation/freezing and early melting/thawing leads to an early 
start of a longer recharge season from December to June, but with a lower recharge rate. 
  
Our study has some limitations where future studies are encouraged: 
(1) Despite the large number of groundwater wells in PPR, only a few are suitable for long-term 
evaluation, due to data quality, anthropogenic pumping, and length of data record. As remote 
sensing techniques advance, observing terrestrial water storage anomalies derived from the 
GRACE satellite may provide substantial information on WTD, although the GRACE information 
needs to be downscaled to a finer scale before comparisons can be made with regional hydrology 
models at km-scale (Pokhrel et al., 2013).  
 
(2) This study is an offline study of climate change impacts on groundwater. It is important to 
investigate how shallow groundwater in the earth’s critical zone could interact with surface water 
and energy exchange to the atmosphere and affect regional climate. This investigation would be 
important to the central North America region (one of the land atmosphere coupling “hot spots”, 
Koster et al., 2004). 
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Key points for the next chapter 
• The shallow groundwater in the PPR is key to the region’s hydrological cycle, buffering 

the land surface and unsaturated soil moisture. The groundwater aquifer receives recharge 
during wet periods and supports soil moisture through capillary rise in dry periods.  

• The shallow groundwater in the PPR exhibits strong spatial heterogeneity, which is closely 
related to topography and climatic conditions. This strong heterogeneity requires a high- 
resolution model grid cell and meteorological forcing to resolve its small-scale features. 

• Future projections of groundwater dynamics strongly reflect the heterogeneity of 
meteorological forcing, which has shown a large east-west contrast. 

• Including the shallow groundwater processes in LSMs is required to make reasonable 
estimates of soil moisture, which are important to sustaining the prairie pothole wetlands. 
This topic will be addressed in the next chapter.  
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Chapter 5 – Heterogenous changes to wetlands in the Canadian Prairies 
suggests diversified conservation strategies 
 

This manuscript has been modified for inclusion in this thesis. It was originally accepted as:  

Zhang, Z., Bortolotti, E. L., Li, Z., Armstrong, L. M., Bell, T. W., Li, Y. Heterogeneous changes 
to North America Prairie Pothole wetlands under future climate. (2020). Water Resources 
Research.  

Author contributions: Z. Zhang and L. E. Bortolotti designed the study, construct the statistical 
model and wrote the paper. Y. Li, T. W. Bell and Z. Li contributed to the interpretation of the 
results and reviewed the manuscript. L. M. Armstrong provided valuable technical supports on GIS 
and static datasets.  

Keywords  

Wetland, Hydrology, Climate change, Prairie Pothole Region, Waterfowl, Conservation 
 
Abstract 
Numerous wetlands in the prairies of Canada provide important ecosystem services yet are 
threatened by climate and land-use changes. Understanding the impacts of climate change on 
prairie wetlands is critical to effective conservation planning. In this study, we construct a wetland 
model with surface water balance and ecoregions to project future distribution of wetlands. The 
climatic conditions downscaled from the Weather Research and Forecasting model were used to 
drive the Noah-MP land surface model to obtain surface water balance. The climate change 
perturbation is derived from an ensemble of general circulation models using the pseudo global 
warming method, under the RCP8.5 emission scenario by the end of 21st century. The results show 
that climate change impacts on wetland extent are spatiotemporally heterogenous. Future wetter 
climate in the western Prairies will favor increased wetland abundance in both spring and summer. 
In the eastern Prairies, particularly in the mixed grassland and mid-boreal upland, wetland areas 
will increase in spring but experience enhanced declines in summer due to strong 
evapotranspiration. When these effects of climate change are considered in light of historical 
drainage, they suggest a need for diverse conservation and restoration strategies. For the mixed 
grassland in the western Canadian Prairies, wetland restoration will be favorable, while the highly 
drained eastern Prairies will be challenged by the intensified hydrological cycle. The outcomes of 
this study will be useful to conservation agencies to ensure that current investments will continue 
to provide good conservation returns in the future. 
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Motivation  
In the previous chapter, I explored the shallow groundwater dynamics in the PPR and tested the 
capacity of the Noah-MP LSM model in reasonably simulating shallow groundwater and its 
exchange with soil moisture. In this chapter, I explore the hydrological changes associated with the 
future climate, as well as the future climate’s impacts on the spatial wetland extents in this region.  
 
5.1 Introduction  
The Prairie Pothole Region (PPR) contains millions of small wetlands within topographic 
depressions (also known as prairie potholes) across five states in the U.S. (Iowa, Minnesota, North 
Dakota, South Dakota, Montana) and three provinces in Canada (Alberta, Saskatchewan, 
Manitoba). These wetlands provide important ecosystem services, including improving water 
quality, water regulation, and supporting biodiversity (Gleason et al., 2008; Johnson et al., 2010; 
Niemuth et al., 2014; Hayashi et al., 2016). The PPR is known as one of the most important 
landscapes for breeding waterfowl in North America (Batt et al. 1989), but it also provides crucial 
habitat for nesting and migration for other wetland- and grassland-associated birds (Beyersbergen 
et al. 2004, Rich et al. 2004, Niemuth et al. 2008). As a result, the PPR is the focus of conservation 
programs in both Canada and the U.S. The major conservation partnerships of this region (i.e., 
the Prairie Habitat Joint Venture (PHJV) and Prairie Pothole Joint Venture (PPJV)) recognize 
that wetlands in the PPR face threats from land-use conversion to cropland and possible threats 
from climate change-related drying (PHJV, 2014; PPJV, 2017). Niemuth et al. (2014) 
hypothesized that land use change may be more influential on wetlands and wildlife than the 
direct effects of climate change, and work incorporating land use into projecting the effect of 
climate on wetlands suggests that regions most climatically suitable for wetlands in the future 
may not coincide with areas that show lower land use pressures (Sofaer et al. 2016).  
 
In the PPR, prairie wetlands exist because of key interactions among topographic, geological, and 
climatic conditions (van der Kamp and Hayashi, 2009; Hayashi et al., 2016). These local 
depressions were formed by clay-rich glacial till deposition from the continental ice sheet during 
Pleistocene glaciation. The local topographic variation (hollow and hummock) favors the 
convergence of surface and shallow groundwater runoff in local depressions. In addition, cold 
winters allow snow accumulation on the ground and spring snowmelt is an important source of 
surface runoff filling these closed depressional wetlands (Ireson et al., 2013). The PPR also has a 
semi-arid climate, with wetland water most abundant in May after snowmelt but continuously 
evaporating through the summer. The duration of inundation/permanence of prairie wetlands varies 
widely, depending on the water balance (Hayashi et al., 2016), which is influenced by factors such 
as seasonal precipitation, snowmelt runoff, and recharge from shallow groundwater. Moreover, 
water in neary depressions can be connected by ephemeral streams during wet condition, through 
a “fill-and-spill” mechanism, suggesting dynamic connectivity of surface runoff interacting with 
water availability and depressional topography (Ehsanzadeh et al., 2012; Shaw et al., 2012, 
Mekonnen et al., 2014). These surface wetland expansions under wet conditions and contractions 
under drought conditions response to climate inputs and are varied spatially (Vanderhoof et al., 
2016, 2018).  
 
Observational studies have documented recent changes in climatic conditions, e.g., temperature 
and precipitation, and hydrological regime shifts, with implications for waterfowl populations in 
various parts of the PPR (e.g., Niemuth et al., 2010; Dumanski et al., 2015). Since the early 1990s, 
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an extended period of high precipitation has caused a hydrological regime shift to a novel “wet 
continuum”, with corresponding increases in pond numbers, lake levels, streamflow amount, soil 
moisture, as well as waterfowl populations in the southern PPR (South and North Dakota) 
(Niemuth et al., 2010, 2014; McKenna et al., 2017). On the other hand, the western PPR (mostly 
in the western Canadian Prairies, Alberta) has shown a decreasing trend in precipitation, glaciers, 
streamflows (St. Jacques et al., 2013) and number of inundated ponds in July (Niemuth et al., 2014). 
These contrasting trends in the recent observation record have been demonstrated by Liu and 
Schwartz (2012), in a reconstruction of the surface water body numbers based on moisture residual 
in the last five years in 27 locations across the PPR.   
 
Modeling studies have attempted to project future wetlands and hydrological conditions across 
the PPR from a range of possible climate change scenarios (Johnson et al., 2005; Forbes et al., 
2011; MacDonald et al., 2012; Kienzle et al., 2012). These studies have simulated a baseline 
condition under current climate and added a delta climate change on temperature or precipitation 
for future climate. For example, in Johnson et al. (2005), the climate change scenarios were 
designed with a temperature warming of 3℃ and a precipitation increase or decrease of 20%, 
applied uniformly across the PPR. In Forbes et al. (2011), MacDonald et al. (2012) and Kienzle 
et al. (2012), delta climate changes in temperature and precipitation were derived from monthly 
means of general circulation models (GCMs) ensembles and were imposed upon current station 
observations in three watersheds in the western PPR. Despite the range of climate change 
projections considered, this type of delta climate change method, is may be unsuitable for wetland 
water balance studies asit lacks constraints on energy and moisture conservation in the coupled 
atmosphere and land system and is unable to capture possible combined extreme hydroclimatic 
conditions as in processes-based models.     
 
Other modelling studies have established statistical relationships between long-term climatic 
conditions and wetland surveys to generate predictions of wetland distributions in the PPR. For 
example, Niemuth et al. (2014) and Herfindal et al. (2012) developed linear regression models 
describing to predict wetland counts as function of climate (precipitation and temperature) and 
other (e.g., plant phenology, land use) variables. Garris et al. (2015) used 35 climate variables from 
GCM ouputs from CMIP4 in a linear model paired with an artificial neural network technique to 
predict a potential increase of wetland areas in Southwest Minnesota. Sofaer et al. (2016) used yet 
another approach, choosing climate outputs downscaled from 10 GCMs in CMIP5 and forcing 
them through a land surface hydrology model (VIC). They built a statistical relationship between 
15 hydrological variables from VIC gridded output and wetland density in the US portion of the 
PPR, with the overall surface water balance (i.e., precipitation minus potential evapotranspiration) 
as the most sensitive predictor of wetland density.  
 
The coarse resolution of GCM outputs (~50-100 km) is not suitable for modelling prairie wetlands, 
where a finer scale (~10-1000 m) is more appropriate, and discrepancies among GCM projections 
restrict the reliability of future wetland projections. Additionally, GCM-projected future 
precipitation forecasts are highly uncertain depending on the choice of convection 
parameterizations, a mathematical description of the convection processes within each model grid 
cell (Prein et al., 2015; Kendon et al., 2017). This is problematic as precipitation is the key water 
input for prairie wetlands.  
 



 91 

Using GCM outputs to study the impact of climate change on wetlands requires downscaling. 
Recent progress in dynamical downscaling using high-resolution regional climate models (RCMs) 
with the pseudo global warming (PGW) method provides us with a surrogate climate change 
scenario for studying hydrological responses to climate change (Schär et al., 1996). The PGW 
method usually consists of two dynamical downscaling simulations. The first simulation is from a 
retrospective dataset of current climate (control simulation, CTRL). The other applies a climate 
change perturbation derived from an ensemble of GCMs to the current climate to generate a future 
climate simulation using RCM (pseudo global warming, PGW). The PGW method has multiple 
advantages.  The CTRL simulation is reasonably reliable compared to direct downscaling from 
GCMs and allows detailed climate and hydrological process studies (Schär et al., 1996). 
Additionally, dynamical downscaling with a high-resolution convection-permitting regional 
climate model (CPRCM) improves precipitation forecast as well as provides detailed 
representation of surface properties. Multiple studies have shown great potential of the PGW 
method downscaled with a CPRCM in studying atmosphere processes, hydrological responses, and 
model inter-comparison in the climate science community (Prein et al., 2016; Liu et al., 2017; 
Musselman et al., 2017; Li et al., 2019; Zhang et al., 2020; Fang and Pomeroy, 2020). It offers a 
novel and powerful for studying climate change and its impacts on the hydrological conditions for 
prairie wetlands.   
 
The purpose of this study is to investigate the impacts of climate change on the future 
abundance and distribution of wetland ponds in the Canadian portion of the PPR (hereafter, 
the Canadian prairies), using the PGW method. More specifically, our objectives were to: (1) 
model the impacts of climate change on spatial distribution of wetland ponds as well as seasonal 
variation under the PGW climate scenario, focusing on the water availability (van der Kamp et al., 
2016); (2) explain these changes by water balance analysis; (3) explore potential joint effects of 
climate change and historical drainage patterns on future wetland ecosystem services and 
conservation policies. This is achieved by applying the hydroclimatic outputs from previous 
CPRCM simulations in the Noah-MP land-surface hydrology model and statistically fitting a 
fractional wetland index for each grid point in the Canadian prairies in high-resolution (4-km). 
Results of this study have important implication for wetland conservation, especially for decision-
making on prioritizing conservation investments across the Canadian prairies. For example, the 
PHJV uses spatial targeting to maximize the return on conservation investments (PHJV, 2014). 
Understanding how the patterns (including wetland density) that drive current conservation 
delivery prioritization may change in the future is key to ensuring that investments made now 
deliver benefits in perpetuity or give conservation organizations the information needed to adapt 
their programs to changing conditions. 
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5.2 Data and Models 
5.2.1 Wetland Datasets 
The Canadian Wetland Inventory (CWI) classifies wetlands according to the Canadian Wetland 
Classification System (National Wetlands Working Group, 1997) and, in the prairies, delineates 
wetland basins from stereo pairs, with a minimum mapping unit of 0.02 ha. In the protocol used, 
the wetland extent spans the wet meadow vegetation zone to the deepest point of the basin and 
represents the depressional area capable of holding water. Shapefiles from the CWI were compiled 
into a high-resolution single geodatabase for the Canadian prairies to represent wetland fractional 
area in 4-km grid cells (𝐹01$, Figure 1a). Given the challenges in mapping small wetland features, 
the CWI represents the best available map of prairie wetlands, though it has incomplete coverage 
of the Canadian prairies. 
 
For a product with prairie-wide coverage, we used a modelled spatial layer, the Adjusted CanVec 
layer (hereafter, “Adj_CanVec”; Figure 5.1b). CanVec is a vector dataset developed by Natural 
Resources Canada (Natural Resources Canada, 2008). It has good spatial coverage but does not 
capture all small wetlands and has variable scale (~1:10000-1:50000) and accuracy. Ducks 
Unlimited Canada (DUC) used CanVec hydrography and water saturated soils features, Soil 
Landscape of Canada data (Soil Landscapes of Canada Working Group, 2007), and CWI to 
generate predictive equations to scale CanVec 3.0 data to the high-resolution CWI data in the 
prairies. Because it is difficult to separate out wetlands and lakes in the CanVec data, the 
Adj_CanVec includes some non-wetland waterbodies such as shallow prairie lakes. A layer of 
MODIS-derived water mask was applied to remove large water bodies at 4-km grid scale (n = 174 
grid cells). 
Figure 5.1a&b shows the distribution of 𝐹01$ from CWI and Adj_CanVec in the Canadian prairies. 
The Adj_CanVec shows a high 𝐹01$  close to the northern boundary of the PPR in the aspen 
parkland ecoregion. Figure 5.1c is a scatter plot of 𝐹01$  from these two datasets with their 
histogram on the top. The majority of the data points are below 0.3, while Adj_CanVec has a longer 
tail of high 𝐹01$. Figure 1d takes a closer look at the two datasets of 𝐹01$ from 0 to 0.4. It is evident 
that most data points are smaller than 0.3 and Adj_CanVec has a tendency for higher 𝐹01$ than the 
CWI.  
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Figure 5.1. (a) 𝐹01$  (0-1) spatial distribution from the Canadian Wetland Inventory (CWI); (b) 𝐹01$  (0-1) spatial 
distribution from Adj_CanVec, a modelled wetland dataset; (c) scatter plot (bottom) and histogram (top) of 𝐹01$ of 
the CWI (blue) and Adj_CanVec (red) and (d) a 2D histogram of 𝐹01$ from 0 to 0.4. Red dot in Figure 1a represents 
the location of the Smith Creek watershed in Saskatchewan. 

Due to the strong wet-dry cycles in the prairies, wetland extent varies both through space and time 
(Liu and Schwartz, 2012). However, the CWI and Adj_CanVec are both static products meant to 
represent long-term conditions and are thus not suitable for evaluating the temporal performance 
of the statistical model. Therefore, we investigated temporal changes in ponding depth at the St. 
Denis National Wildlife Area (SDNWA, 52°12’N 106°5’W) in Saskatchewan, Canada (red dot in 
Figure 1a). Although the site is relatively small in area (4 𝑘𝑚F), it contains hundreds of wetland 
ponds of various sizes and permanences and long-term monitoring records since 1968 (Bam et al., 
2019). To study the temporal wetland dynamics in the SDNWA, the ponding depth records from 
140 ponds are used to calculate the change in depth (exact value – all-time mean) at this site. 
Ponding depth and 𝐹01$ both reflect moisture conditions at this site and, hence, can provide some 
reference for evaluating the model performance in this study (see section 5.3.1). 
 
Moreover, a supplemental analysis is conducted to show the interannual variation between model 
simulated 𝐹01$ and open water fraction in the Smith Creek Watershed (50°50’N 101°34’W) in 
Southeast Saskatchewan (Figure D5 in Appendix D). The Smith Creek Watershed is a long-term 
established research site for wetland hydrology in the Canadian prairies, though it has experienced 
high wetland loss due to anthropogenic drainage (Dumanski et al., 2015; Pattison-Williams et al., 
2018). The open water fraction in the Smith Creek Watershed is estimated by Multiple Endmember 
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Spectral Mixture Analysis (MESMA, Roberts et al., 1998), a remote sensing technique to detect 
open water features in an area (see Appendix D for detailed methods).  

 
Wetland drainage plays a significant role in the human modification of prairie landscapes. The 
Prairie Habitat Monitoring Program has collected data on the density of drainage ditches in the 
Canadian prairies. Figure 5.2 shows a qualitative wetland drainage score, based on the density of 
agricultural surface ditches as detected through aerial photography and high-resolution satellite 
imagery (for detailed methods and score descriptions see Appendix 11 in PHJV, 2014). Low drain 
score areas show minimal evidence of anthropogenic drainage whereas high drain scores exhibit 
extensive ditching and related drainage. Three examples of drain score photos are included in 
Figure 5.3: (b) a low drain score, most wetlands remain intact; (c) a medium drain score, many 
small wetlands have been drained; (d) a high drain score, most wetlands have been drained and 
converted to cropland.  
 

 
Figure 5.2. (a) A qualitative drain score map based on density of drainage ditches with (b-d) examples of the three 
drain scores (photos are from the Saskatchewan Geospatial Imagery Collaborative). 
 
To answer the third objective of this paper, a joint analysis of both historical drainage condition 
and future wetland projection will be conducted. The two data layers, change in wetland 
distribution in future climate and the three-category drain score, will be combined where areas will 
become drier or wetter in future climate (∆𝐹01$), as well as with low/medium/high drain score. A 
threshold condition of |∆𝐹01$| (|∆𝐹01$|>0.1) is applied. Therefore, the current drained areas within 
three drain score categories will gain or lose surface wetland, impacted by climatic conditions, will 
be the interests of our study and conservation policies.  



 95 

5.2.2 Study domain and ecoregions in the Canadian Prairies 
Wetland density varies across the PPR, influenced by both geographic and climatic factors. Figure 
5.3 shows eight major ecological regions in central Canada, as defined by the Ecological Land 
Classification (Statistics Canada, 2017). Ecoregions categorize broad landscapes based on 
distinctive regional ecological factors including climate, physiography, vegetation, and soil, and 
thus have the potential to explain spatial variation in wetland area not covered by hydrological or 
climatological variables. The ecoregions represented in Figure 3 only include those where there 
was overlapping coverage with the CWI. Ecoregions not represented in the CWI were either 
excluded from analysis (Lake Manitoba plain) or recoded to an adjacent ecoregion (cypress upland 
reclassified as mixed grassland, wabasca lowlands and interlake plain recoded as mid-boreal 
uplands). Reclassified grid cells represent less than 1% of all grid cells. These eight ecoregions are 
used in modeling of 𝐹01$ (section 5.2.4).  
 

 
Figure 5.3. Ecoregions in the Canadian Prairies. Black contour outlines the Prairie Pothole Region, and the filled 
colors represent the 8 ecoregions as used in the wetland model. The areas where Adj_CanVec data are unavailable are 
blank. 

5.2.3 Climate scenarios and surface water balance  
The climate scenarios in this study were obtained from high-resolution (4-km) regional climate 
simulations in the Contiguous U.S. and Southern Canada, using the Weather Research and 
Forecasting (WRF, Skamarock et al., 2008) model (referred to as CONUS WRF, Liu et al., 2017).   
The future climate change scenario was generated using the PGW (Schär et al. 1996). For the CTRL 
simulation, the initial and boundary conditions were from a 6-hr ERA-Interim re-analysis dataset 
(equation 5.1). For the PGW simulation, the initial and boundary conditions were created by adding 
a climate change perturbation, derived from an ensemble of GCMs by the end of the 21st century 
in RCP8.5 emission scenario, upon the ERA-Interim reanalysis (equation 5.2) (see Liu et al. (2017) 
for the full list of GCMs ensemble).  
 
The climate change perturbation includes wind, geopotential height, temperature, specific humidity, 
sea surface temperature, soil temperature, sea level pressure, and sea ice (equation 5.3) (Liu et al., 
2017). The perturbation in these fields impacts large-scale planetary waves and associated thermal 
dynamics, while synoptic scale weather events remain structurally constrained by the boundary 
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conditions in terms of frequency and intensity (Schär et al., 1996; Rasmussen et al., 2011). Both 
CTRL and PGW simulations were dynamically downscaled from above initial and boundary 
conditions, using the WRF model, and the simulations span from 2000-10-01 to 2013-10-01 (Liu 
et al., 2017) at convection-permitting resolution (4-km). The PGW method has gained popularity 
in the climate science and hydrology communities, as it concomitantly allows certain processes to 
be examined in isolation, such as snowfall and snowpack (Rasmussen et al., 2011; Musselmen et 
al., 2018), meso-scale convection systems (Prein et al., 2017), land-atmosphere interactions (Zhang 
et al., 2018) and groundwater responses to climate change (Zhang et al., 2020).  
 

CTRL:		WRF����� = ERA-Interim	(5.1) 
PGW: 	WRF����� = ERA-Interim + ∆CMIP5����.�	(5.2) 
∆CMIP5����.� = CMIP5F� ¡lF¡�� − CMIP5¡¢ £lF���	(5.3) 

The hourly output data from CONUS WRF, including temperature, precipitation, humidity, wind, 
pressure, short and long-wave radiation, were used to drive a land-surface model (LSM), Noah-
MP (Niu et al., 2011; Yang et al., 2011) with groundwater component (Fan et al., 2007; Miguez-
Macho et al., 2007), to simulate the hydrological cycle in the study domain. The Noah-MP LSM is 
a physical process-based model which explicitly simulates major storage, such as snow water 
equivalent (SWE) and soil moisture (SM), and hydrological processes, including snow 
accumulation, sublimation, evaporation, runoff, and groundwater recharge. Snow is a key water 
source for prairie wetlands at the beginning of snowmelt seasons. The Noah-MP snow model 
simulates the snowpack for up to three layers according to the snow depth and snow cover fraction 
as determined by snow density, depth, and ground roughness length. The snow surface energy 
balance is calculated separately over two semitiles of the grid cell, vegetated and bare ground. The 
snow albedo scheme is adopted from the CLASS model (Verseghy, 1991), which accounts for 
snow age, grain size, and accumulated debris on the snow surface. We also included an evaluation 
of model simulated snow processes in the Canadian Prairies in the Supporting Information. 
Furthermore, the Noah-MP LSM is coupled with a dynamic groundwater model, enabling two-way 
interactions between soil moisture and an underlying unconfined aquifer, as well as lateral flow 
from surrounding grid cells. The groundwater dynamics were reasonably simulated and evaluated 
in Zhang et al. (2020) against multiple well observations in the PPR. 
 
In this study, we used the Noah-MP LSM output SM to represent surface water balance and 
compute a fractional index (soil moisture content, SMC) as a key input to forecast spatial wetland 
distribution in the Canadian prairies. The surface water balance can be represented as: 

D𝑆𝑀 + ∆𝑆𝑁𝑂𝑊 = 𝑃𝑅 − 𝐸𝑇 − 𝑆𝑅 − 𝐺								(5.4) 

𝑆𝑀𝐶 =
𝜃
𝜃Tìí

																(5.5) 

The change in soil moisture storage (∆𝑆𝑀) is calculated by volumetric soil moisture times soil 
depth (∆𝑆𝑀 = ∆𝜃 ∙ 𝑧, where z is a 2-m soil layer). Collectively, ∆𝑆𝑀 and snow (∆𝑆𝑁𝑂𝑊) are a 
product of precipitation (PR), evapotranspiration (ET), surface runoff (SR) and groundwater 
recharge (G). The fractional SMC is calculated from the volumetric soil moisture (𝜃) divided by 
saturated soil moisture content (𝜃Tìí). 𝜃  varies from 0 to 𝜃Tìí, so that SMC varies from 0 to 1. 
𝜃Tìí is a parameter determined by soil types and can be found in a parameter look-up table in the 
Noah-MP LSM: (https://github.com/NCAR/hrldas/blob/master/hrldas/run/SOILPARM.TBL). 
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5.2.4 Model of wetland fraction 
In this study, we used a generalized additive model (GAM) to analyze the relationship between 
𝐹01$  and hydrological and ecological covariates. GAMs accommodate a variety of response 
distributions/link functions and allow for flexible, additive effects of predictor variables (Hastie 
and Tibshirani, 1986). We fit the following statistical model in R (R Core Team, 2020) using the 
mgcv package (Wood, 2011): 

𝑔´𝐸(𝐹01$)µ = 𝑠(𝑆𝑀𝐶) + 𝐸𝑅																(5.6) 

We used a binomial distribution and logistic link of wetland fraction (i.e., g(p) = ln(p/(1-p)), a 
smooth function of soil moisture content (𝑠(SMC)), and included ecoregion (ER) as a factor 
predictor variable in the model to allow for different baseline wetland fractions (or intercepts) 
among the eight ecoregions. More model details are provided in the Appendix D.  The fitted model 
was used to predict current wetland fraction ( 𝐹01$ _CTRL), which was evaluated against 
Adj_CanVec data in the Canadian prairies. The SMC input for equation (5.6) is averaged from 
March to August, representing a mean moisture condition of the warm season, hence, the modeled 
𝐹01$ is a seasonal averaged wetland distribution. Finally, to study the impacts of future climate 
change, we substituted SMC from the future climate model scenario (PGW) to predict future 
wetland fraction (𝐹01$ _PGW). The difference between 𝐹01$ _PGW and 𝐹01$ _CTRL can be 
attributed to the impacts of climate change. SMC is the only hydrological variable in this model, 
and it can be computed over different timescale, monthly or seasonal, etc. As for simulating 
𝐹01$_CTRL, we obtained the mean SMC from March to August over 13-year to represent the 
wetness condition over the warm season. It is assumed that, over the long term, SMC is the net 
result of hydrological processes from equation (5.4) including precipitation, snowmelt, 
evapotranspiration, runoff, and groundwater recharge. 
  



 98 

5.3 Results 
5.3.1 Validation and sensitivity of the GAM model 
Figure 4 shows the evaluation results from 𝐹01$ _CTRL, predicted by the GAM, and the 
Adj_CanVec, at the grid (Figure 4a) and ecoregion scale (Figure 4b). The average ecoregion 
𝐹01$_CTRL tends to be lower than average 𝐹01$ from Adj_CanVec, but they covary positively, 
with both indices similarly ranking the ecoregions with respect to wetland fraction. The root-mean-
square-error of the model prediction in current climate is 0.102 and for 98% of the grids, abs 
(𝐹01$_CTRL - Adj_CanVec) < 0.1.    

 
Figure 5.4. (a) Histogram of the model bias (𝐹01$_CTRL-𝐹01$_Adj_CanVec) showing the relative frequency density 
of grid cells in the Canadian prairies; (b) scatter plot of mean 𝐹01$_CTRL compared with mean 𝐹01$ from Adj_CanVec 
by ecoregion. Point sizes are proportional to the square root of sample sizes. 
 
As SMC and ecoregions are the two predictors in the GAM, wetlands in different ecoregions may 
respond differently to climate change impacts. In order to test the sensitivity of modeled 𝐹01$ by 
ecoregion, we artificially added a 1% change to the input SMC, with the changes in resulting 𝐹01$	
solely attributable to the ecoregions’ intercept-adjustments. Figure 5 shows the aggregated change 
in 𝐹01$  in eight ecoregions in the Canadian prairies with perturbed 1% SMC. Given that the 
statistical model fitted is additive in the effects of ecoregion and 𝑠(𝑆𝑀𝐶), the perturbed change 
may translate into non-linear responses in 𝐹01$. For the whole domain, the model-predicted 𝐹01$ 
increased at twice the rate of the perturbed change in SMC in the Canadian prairies. There is a clear 
gradient in the response of wetland fraction to SMC, with a weaker response in the moist southwest 
Manitoba uplands and aspen parkland compared with strong responses in drier regions including 
the western Alberta uplands, mid-boreal uplands, and fescue grassland.  
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Figure 5.5. Bar plot of change in 𝐹01$ relative to a 1% increase in soil moisture content (SMC) for the entire domain 
and eight ecoregions.  
 
In addition to the ecoregion-wise validation, we also compared the interannual 𝐹01$ change with 
the wetland ponding depth records at the St. Denis National Wildlife Area (SDNWA). Figure 6 
shows the long-term ponding depth record from 140 ponds in the SDNWA (∆ ponding depth on 
the left axis) with annual 𝐹01$ values from CTRL and PGW in the corresponding 4-km grid cell 
(on right axis). Most of the SDNWA records are from Apr to Sep, so those same monthly 𝐹01$ 
values from the GAM are selected. Both ponding depth and 𝐹01$reflect the moisture conditions in 
this area. From 2001 to 2013, an increasing trend of ponding depth and 𝐹01$  are evident. 
Additionally, although the SDNWA ponding depth is also affected by hydrological and ecological 
processes other than soil moisture content, the general trend of SDNWA ponding depth largely 
agrees with that of CTRL 𝐹01$. In 2001 and 2002, both datasets show values below the multi-year 
mean. An increasing trend of ponding depth and 𝐹01$ is obvious in the following years from 2003 
to 2006, though the model predicts a stronger increase in 𝐹01$ in CTRL than the SDNWA ponding 
depth. For the rest of the timeseries from 2007 to 2013, both 𝐹01$ and ponding depth remain high 
with some interannual fluctuation. For the corresponding period in the PGW climate at the end of 
the century, the red line indicates a stronger increase in moisture conditions and larger interannual 
variations. This analysis adds credibility to our statistical model, demonstrating reasonable 
representation of interannual wetland variability in the Canadian prairies. 
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Figure 5.6. Scatter plot of ∆ ponding depth (cm) (exact ponding depth – all-time mean depth) from 140 ponds in 
SDNWA with annual 𝐹01$ value from the GAM model (gray dots). Records from Apr to Sep are shown. The black 
line is the mean ∆ ponding depth averaged over 140 ponds for each year. The blue line is the mean 𝐹01$ value for each 
year from 2001 to 2013 and red line is for the corresponding period under the PGW climate at the end of the 21st 
century.   
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5.3.2 Future climate conditions between PGW and CTRL 
Figure 5.7 shows the impacts of climate change (PGW-CTRL) in temperature (∆T2,℃) and 
monthly precipitation (∆PR in mm and %) and their regional average by ecoregion in four seasons 
in the Canadian prairies. All ecoregions exhibit a warming signal from 4 to 7 ℃, with the strongest 
warming in winter (DJF). The changes in precipitation vary across seasons and ecoregions, though 
mostly increase except in summer (JJA). In all seasons, the climate change scenario shows a 
negative correspondence between temperature warming and precipitation change. Ecoregion-wide, 
southwest Manitoba uplands experience the most warming in all seasons and usually the least 
precipitation increases, implying possible drying conditions in the eastern Canadian prairies. On 
the other hand, western Alberta uplands and fescue grassland receive the most precipitation 
increase and least temperature warming, indicating potentially wetter conditions in the western 
Canadian Prairies. These spatially heterogeneous changes in climatic conditions in future climate, 
in both temperature and precipitation, will manifest in hydrological change, i.e. soil moisture, and 
reflect in the change of 𝐹01$ from the GAM model.   
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Figure 5.7. The first three rows show the PGW- CTRL ∆ change in 2-m temperature (∆T2,℃), monthly precipitation 
(∆PR,mm/mon), and precipitation in %, in four seasons. The fourth row shows the temperature change (∆T2,℃) and 
precipitation change ((∆PR,mm) in the Canadian prairies by season and ecoregion. The blue shading represents the 
probability density for all the grid points in the study domain.  
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5.3.3 Spatially and temporally heterogenous water balance and wetland changes 
Climate change impacts on wetlands showed strong spatial heterogeneity. In Figure 5.8, we present 
the differences in 𝐹01$ (from March to August) between current and future climate (PGW-CTRL) 
as the relative change, calculated as ((𝐹01$_PGW- 𝐹01$_CTRL)/	𝐹01$_CTRL). For the area in the 
southwest mixed grassland ecoregion in Alberta and Saskatchewan, projected 𝐹01$ increases by 
about 30% (Figure 5.8a). In contrast, for the moist mixed grassland and mid-boreal uplands regions 
in southwest Manitoba and eastern Saskatchewan, which is a region with high 𝐹01$ under current 
climate (Figure 5.2), a decline in 𝐹01$ of about 20% is evident.  
 
Changes in 𝐹01$ also demonstrate strong seasonal variation. Figure 5.8b & c show the changes in 
𝐹01$ in spring (MAM) and summer (JJA). In spring, there are extensive increases in 𝐹01$ in the 
southwest Canadian prairies. In contrast, many areas in summer may see declining 𝐹01$. This is 
due to both temperature warming and precipitation decline in the Canadian prairies in summer 
(Figure 5.6). As such, the southwest Canadian prairies are getting warmer and wetter with higher  
𝐹01$  in future springs, while the mid-boreal uplands and moist mixed grassland in the eastern 
Canadian prairies will experience warmer and drier summers and reduced wetland extents. On the 
other hand, two regions show consistent change in 𝐹01$ in spring and summer (highlighted by blue 
and red circles in Figure 5.8a), corresponding to the mixed grassland and mid-boreal uplands 
ecoregions.  

 
Figure 5.8.  (a) Mean relative change in (𝐹789 _PGW-𝐹789_CTRL)/𝐹789_CTRL from March to August; (b) in spring (March to 
May) and (c) in summer (June to August). The blue and red circles in (a) highlight the areas of wetland gain in mixed grassland and 
loss in mid-boreal uplands ecoregions, respectively.  
 
Figure 5.9 depicts the hydrological cycle of precipitation, SWE and SMC in the mixed grassland 
and mid-boreal uplands, the two ecoregions highlighted with increasing and decreasing 𝐹01$ in 
Figure 5.8a.  In the mixed grassland, precipitation increases in almost all seasons, especially in the 
spring. However, the increased precipitation during cold seasons does not result in a greater 
snowpack due to warming winter temperatures. The combined effect of increased winter 
precipitation and temperature result in early melting of snow and higher soil moisture content at 
the beginning of spring in PGW than CTRL. These wetter conditions in PGW can persist through 
spring and summer such that 𝐹01$ shows consistent increases in both spring and summer.  
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Figure 5.9. Hydrological cycle of precipitation (PR), snow water equivalent (SWE) and fractional soil moisture content 
(SMC) for two ecoregions highlighted in Figure 5.8, the mixed grassland and the mid-boreal upland. Blue and red 
lines represent the CTRL and PGW climate scenarios, respectively. The light blue shaded blocks correspond to the 
period from September to February, and the white blocks from March to August.  
 
In the mid-boreal uplands, precipitation shows a strong decline in summer while still increasing in 
other seasons in Figure 5.9. Both late and slow accumulation, as well as early and rapid snowmelt, 
is revealed by the significant snowpack loss in this region. These conditions lead to higher 
infiltration, shown by the steeper increase of SMC in PGW compared to CTRL in spring. On the 
other hand, hotter summers combined with reduced precipitation result in stronger ET demand, 
shown by the steeper SMC decline in the summer of PGW than in CTRL, characterizing a 
strengthened hydrological cycle in this region. Overall, the increase in precipitation in other 
seasons cannot compensate for the stronger ET demand in summer, thus, 𝐹01$ is smaller in PGW 
in both spring and summer.  
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Furthermore, for these two regions, it is recognized that SMC are shown to increase through winters. 
This could be due to intermittent warming during winter that causes snowmelt and infiltration into 
soil layers. So that soil moisture increase is even stronger in the PGW winters. A detailed water 
balance analysis is presented in the Appendix D (Figure D6). As SMC is the key input for the GAM 
model, it is important to recognize this increase over winter. However, large scale soil moisture 
observations are required to validate this feature in the future.  
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5.3.4 Joint impacts of climate and land use change 
The third objective of this study is to explore the joint effects of climate change and historical 
drainage on prairie wetlands and their ecosystem services. For this purpose, we merge the changes 
in 𝐹01$ induced by climate change and the drain score data in the Canadian prairies (Figure 5.2). 
This is done by: (1) calculating the ∆𝐹01$ (PGW-CTRL) under extreme dry or wet conditions; (2) 
overlaying the ∆𝐹01$  with the three categories in drain score map. Figure 10 shows the 
concordance of future climate change impacts and the drainage score under extreme dry and wet 
conditions. The change in extreme dry and wet conditions (PGW-CTRL) is characterized by the 
5th and 95th percentile of 𝐹01$  (i.e., 𝐹01$ _PGW_95th-𝐹01$ _CTRL_95th and 𝐹01$ _PGW_5th-
𝐹01$_CTRL_5th). Extreme dry conditions usually occur in summer months and the extreme wet 
conditions in spring months. We visualize only those grids where |∆𝐹01$| is at least 0.1 and overlap 
it with the three categories of qualitative drain score, creating six cateories as shown in Figure 10. 
Although some areas are anticipated to be wetter even under the driest (5th percentile) conditions, 
parts of Saskatchewan with high drainage intensity may experience both amplified dryness and 
wetness.   

 
Figure 5.10. Combined effect of climate change and drainage in extreme (a) dry and (b) wet conditions. The dry and 
wet conditions are selected from the 5th and 95th percentile of the monthly wetland fraction results from CTRL and 
PGW climate.  
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5.4 Discussion 
5.4.1 Climate change studies in the PPR  
Several studies have projected climate change impacts on wetland densities in the PPR, ranging 
from local-scale (Johnson et al., 2005; Liu and Schwartz, 2012) to regional-scale (Niemuth et al., 
2014; Garris et al., 2015; Sofaer et al., 2016) investigations. Variable study scales and data sources 
have made linking wetland spatial distribution and climatic conditions a challenge. The most 
common approach has been to statistically relate different climatic variables, landscape 
management types, and human footprints with wetland abundance (Herfindal et al., 2015, Niemuth 
et al. 2014, Sofaer et al., 2015, Garris et al., 2015). Typically, the key variable in these studies has 
been water balance (P-PET, Herfindal et al., 2015). Less often, physical process-based hydrology 
or LSMs have been applied in wetland studies (Johnson et al., 2005; Capehart et al., 2011; Fan et 
al., 2012). These studies attempted to simulate hydroperiod, soil wetness, and shallow water table, 
to represent the dynamics of wetlands in the PPR. Importantly, these variables are analogous to the 
surface water balance, as represented by the fractional SMC in this study.  
 
Wetland distribution under climate change reflects the change in climate forcing and thus is subject 
to differences in study periods and regions, data sources, the choice of GCMs, whether and how 
the GCMs are downscaled, and hydrological models used. Climate observation records show a 
wetting trend in precipitation, streamflow, soil moisture and wetland pond counts, etc., in the 
southern PPR (Niemuth et al., 2010; McKenna et al., 2017) and eastern Canadian prairies (St. 
Jacques et al., 2014). In the Smith Creek watershed, Dumanski et al. (2015) recorded an increasing 
trend and abnormally high values of streamflow volume, indicating that the watershed is already 
experiencing changes in the runoff mechanism, relying more on rainfall and less on snowmelt 
(Shook and Pomeroy, 2012). In our study, an increasing trend of 𝐹01$  index during the CTRL 
simulation period agrees with the above findings. However, in the PGW scenario, both warmer 
temperature and decreased summer precipitation contribute to reduced Fwet in the eastern Canadian 
prairies, especially in the mid-boreal uplands, boreal transition, and eastern aspen parklands 
ecoregions. This projection differs from recent observations mainly due to reduced summer 
precipitation from the PGW scenario (Figure 4). This finding highlights the importance of 
precipitation projections in assessing hydrological and ecological impacts from regional climate 
change.  
 
The choice of climate change scenario and downscaling method will make fundamental differences 
to the projection results for hydrological responses and ecosystem impacts. Johnson et al. (2005) 
applied three climate change scenarios uniformly across the entire PPR and concluded that the 
region with greatest productivity in the central PPR will shift east- and southwards. However, these 
climate change scenarios are not realistic as GCM model projections are much more heterogeneous 
than a uniform increase of temperature or perturbations in precipitation for the entire PPR. 
Furthermore, St. Jacques et al. (2013) modeled the central Rocky Mountain river discharge (the 
western Canadian prairies in our study) using large-scale climate indices such as the Pacific 
Decadal Oscillation, El Nino Southern Oscillation and Arctic Oscillation/North Atlantic 
Oscillation, forced with CMIP3 until 2096. They found a general declining trend in the surface 
water availability. Climate model downscaling studies using the delta method in the Canadian 
Rockies (Cline River watershed, Kienzle et al., 2012; Beaver Creek watershed, Forbes et al., 2011; 
North Saskatchewan River watershed, MacDonald et al., 2012) also project a change in seasonality 
of the hydrological regime in this region: earlier onset of snowmelt and higher peak streamflow in 
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spring but lower streamflow in summer. This strong seasonal contrast of wetter spring and drier 
summer is consistent with our predictions. However, we predict greater summer precipitation 
compared to the above studies, highlighting the differences in projection scenarios, especially with 
respect to precipitation. Finally, another recent modeling study, using the same PGW method in 
the Marmot Creek Basin in the western Canadian prairies, also demonstrated declining and earlier 
melting of snowpack, inducing huge increases in streamflow (236%) in spring and reductions in 
summer (12%), and an overall increase of 18% annually (Fang and Pomeroy, 2020).  
 
The main limitation of the PGW method is the trade-off between selection of climate scenarios, 
simulation time and high model resolution. With high-resolution convection-permitting 
configuration, these simulations require great computational resources, which limits the selection 
of climate change scenarios. For example, only one emission scenario (RCP8.5) from an ensemble 
of 19 GCM members and shorter simulation time is used in this study, compared to the delta 
method which can afford to explore climate change impacts on longer time scales or for more 
emissions scenarios. Nonetheless, the PGW method with high-resolution is currently considered 
the best option to assess future climate changes and their impacts on hydrology and ecology for 
large regions (Liu et al., 2017; Prein et al., 2017; Li et al., 2019) for a specific scenario. 
 
We also recognized the limitations regarding the equation (4.6) used in the GAM model. In 
equation (4.6), the variation in SMC is assumed to represent the hydrological responses to climate 
change and the ecoregion factors are treated as constants.  In this approach, critical hydrological 
processes at local and watershed scales, such as blowing snow redistribution and fill-and-spill, are 
underrepresented in our model. These processes, which occur at sub-grid resolution (Shaw et al., 
2012) much smaller than the 4-km resolution, are not sufficiently monitored in observation over 
large regional scale in the Canadian Prairies, nor are represented in the typical scale LSMs. 
Although Noah-MP doesn’t directly simulate the blowing snow process, its capability of 
reasonably simulating snow accumulation and snowmelt is demonstrated against gridded 
distributed snow observation (see Supporting Information). One recent study applied the Cold 
Region Hydrological Model (CRHM) in the Mauvais Coulee Basin (MCB) and demonstrated the 
spatiotemporal variation in snow redistribution and sublimation can be significant for surface water 
balance, though requires fined field observations to verify (Van Hoy et al., 2020). We are also 
actively developing a dynamic surface water storage scheme in Noah-MP LSM, incorporating 
inflow, outflow, and ET feedback from wetland ponds to the atmosphere.  
 
On the other hand, ecoregion factors are treated as constants for two reasons: first is because it 
allows us to attribute the changes of 𝐹01$ solely to soil moisture content, driven by two sets of 
climate forcings from the current and future climate; second is that the ecoregion map is utilized 
by conservation agencies as boundaries and design strategies for each ecoregion. The eight 
ecoregions used in this study represent clearly their geographical locations while incorporating 
their ecofunctions to the modeling framework is outside the scope of this study and would require 
and entirely separate study. 
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5.4.2 Implications for wetland conservation 
The spatial heterogeneity of climate change impacts on wetland fraction in the Canadian prairies 
is a challenge to conservation decision-makers, especially under extreme climate conditions and 
uncertainties associated with anthropogenic drainage. Considering extreme climate conditions 
(droughts and floods) can constrain the magnitude of possible wetland area change, complementing 
an assessment of effects of climate change on average wetland conditions (Figure 7). Including 
anthropogenic drainage can help spatially prioritize conservation efforts by revealing both areas 
that may remain robust to climate change and areas where wetland ecosystem services may be 
imperilled by climate change and drainage. 

Projected changes in 𝐹01$ suggest the need for a diversified approach to wetland conservation, one 
that considers both the future hydrological suitability of wetland retention and restoration efforts, 
as well as how historical drainage patterns will interact with changes in wetland extent to affect the 
availability of wetland ecosystem services. For example, the consistent wetland increases in the 
western PPR, under both wet and dry extremes, suggests wetland retention and restoration will be 
hydrologically favourable under climate change, with water available to fill wetlands and maintain 
wildlife habitats even in relatively dry summers. Relatively wet areas may act as refuges for mobile 
wetland-associated species like waterfowl, as long as upland conditions (i.e., sufficient perennial 
cover for nesting) are favourable. In contrast, highly drained areas in eastern Saskatchewan will be 
challenged under fluctuating hydrological conditions. The combination of high wetland loss and 
intensified drought conditions under climate change will mean a shortage of wildlife habitat in dry 
years. In contrast, extreme wet conditions may lead to flooding in spring snowmelt season, 
exacerbated by wetland loss. Therefore, conserving and restoring wetlands in the aspen parkland 
and boreal transition regions in eastern Saskatchewan may act as a buffer against flooding during 
intensified future wet periods. Other areas of the Canadian prairies, like western Manitoba, could 
become challenged by moisture deficits (even in the wettest years) that will not favour the 
inundation and persistence of wetlands. Conservation planning will benefit from the incorporation 
of future wetland distributions for multiple applications such as refining spatial targeting (e.g., by 
the PHJV for waterfowl habitat), targeting wetland restorations to maximize ecosystem services, 
and more.  
 
In addition to impacting wetlands via change in the surface water balance, climate change may 
have indirect effects on wetlands via land use change. Wetland conservation strategies should take 
into account these direct and indirect climate effects. For example, Beaman (2016) found that 
climate change may alter agricultural economics such that annual-seeded crops increase at the 
expense of natural and semi-natural landcovers. Given that drainage for agriculture has been the 
historical driver of wetland loss on the prairies (Watmough and Schmoll, 2007; Doherty et al., 
2018), with ongoing losses of ~ 3% of wetland area per decade, land use change could augment or 
offset direct climate effects on wetlands (PHJV 2014). Previous research combining modelling the 
direct effects of climate change with changes in land use in the US portion of the PPR suggested 
that projected changes in land use are not expected to greatly modify the direct effects of climate 
change (Sofaer et al. 2016). However, the Canadian PPR may exhibit different patterns, which 
should be investigated. 
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5.5 Conclusion 
Conservation of prairie wetlands is crucial to protect the vital services they provide including 
regulating floods, improving water quality, and supporting biodiversity. It is necessary to consider 
the impacts of climate change in conservation planning, for they pose a threat to wetland habitats 
through alteration of the hydrological cycle. The approach used in this study, a dynamical 
downscale from a high-resolution convection-permitting regional climate simulation as our climate 
projection, has better representation of land surface properties and less uncertainty in the 
precipitation forecast than many previous efforts to model the effects of climate change in the PPR. 
It is also more realistic and informative than using GCM-scale of uniform climate forcings to 
simulate hydrological responses in this region.  

Overall, the climatic change is projected to be wetter in all seasons, except in summer, with strong 
spatial heterogeneity and seasonal variation and corresponding effects on wetlands. For the western 
Canadian prairies, in particular in the mixed grassland ecoregion in Saskatchewan, wetland fraction 
is expected to to increase in future climate in both the spring and summer seasons. Increased 
precipitation with warmer temperatures over winter results in higher late accumulation and early 
melting of snow. This is manifested in a substantial increase in soil moisture in future springs when 
compared with the current climate. However, in the eastern Canadian prairies, wetlands are 
expected to increase in spring but decrease in summer, due to reduced summer precipitation and 
intensified ET demand in this region. Moreover, this precipitation reduction and stronger ET 
demand lead to declining wetland fraction in both spring and summer for the mid-boreal uplands 
along the northeast boundary of the Canadian prairies.  
 
The heterogeneous change in projected climatic and hydrological conditions may alter the current 
wetland distribution of the Canadian prairies, where wetlands are more abundant in the east. This 
has implications for wetland conservation and ecosystem services, especially when considered in 
light of historical wetland losses due to drainage. Areas expected to experience extended summer 
drying coinciding with areas with high density of drainage ditches (and thus already high wetland 
loss) may be challenged through loss of wetland ecosystem services. The western PPR, with 
moisture conditions conducive to wetland persistence through the spring and summer, will remain 
a safe choice for wetland conservation efforts. Assessments of the effects of climate change on 
wetland conservation must fully consider ecological, economic, and social realities along with the 
potential for climate-induced changes to determine the most effective spatial targeting of wetland 
conservation and restoration.  
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Key points for the next chapter 
• The GAM model used in this study with input from soil moisture and ecoregion factors 

could effectively estimate the surface wetland fraction in the PPR region.  
• Future projections of wetland extents are strongly controlled by the input of meteorological 

forcing, which are supplied from CONUS WRF convection-permitting simulations. High-
resolution precipitation input is critical to estimating small-scale soil moisture and wetland 
extents. 

• This study uses a statistical approach to estimate wetland extents under current and future 
climate states. To deepen the understanding and improve the representation of the wetland 
hydrological cycle and land-atmosphere interaction, a dynamic approach is needed to 
incorporate LSM and coupled RCM, which will be the topic of the next chapter.  
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Chapter 6 – Evident wetland cooling effects to temperature relieves heat stress 
and mitigates climate change 
 

This manuscript has been modified for inclusion in this thesis. It was originally submitted as:  

Zhang, Z., Chen, F., Barlage, M., Bortolotti, E. L., Famiglietti, J., Ma, X., Li, Z., Li, Y. Evident 
cooling effects of surface wetlands to mitigate climate change – a study of North America Prairie 
Pothole Region. (2021). Water Resources Research.  
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Abstract 
Wetlands are an important land type on Earth's surface, significantly alter surface energy and water 
balance, and provide vital ecosystem functions such as regulating floods, storing carbon, 
supporting wildlife habitats. The ability to reasonably simulate their spatial extent and hydrological 
processes are important to valuing wetlands’ function and mitigating climate change impacts. The 
purpose of this study is to dynamically simulate wetlands’ energy and water balance, as well as its 
feedback to regional climate in the North America Prairie Pothole Region (PPR), where a large 
number of surface wetlands exist. In this study, we incorporate a dynamic wetland scheme into the 
Noah-MP LSM, which includes two major modifications, (1) modifying the sub-grid fraction of 
𝐹"#$  to represent spatial wetland extent; (2) incorporating a dynamic surface water storage to 
simulate wetland hydrological processes. These two modifications are tested in the Fen site in 
central Saskatchewan, Canada and applied regionally in the PPR with high-resolution convection 
permitting climate forcing for 13 years. The difference between wetland and no-wetland 
simulations are significant in increasing latent heat and evapotranspiration while decreasing in 
sensible heat and runoff. Finally, the dynamic wetland scheme is tested using the WRF model over 
three summers. The wetland simulations show an evident cooling effect of 1~3℃ in summer where 
wetlands are abundant, which is linearly related to the wetland extent when water is not limited. In 
particular, the wetland simulation shows reduction in the frequency of extreme hot days over the 
summer of 2006, when a long-lasting and widespread heatwave occurred in the U.S. Midwest and 
Southern Canada. This research has great implications for land surface/regional climate modeling, 
as well as wetland conservation, for valuing wetlands in providing a moisture source and mitigating 
extreme heatwaves, especially under climate change.  
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Motivation  
In the previous chapter, a statistical method was developed to estimate spatial wetland extents 
under the future climate using hydrological outputs and factors involving ecoregions. The next step 
forward is to represent wetland hydrological processes in the Prairie Pothole region. For this 
purpose, two major modifications are applied to address the wetlands spatial extents and to 
dynamic hydrological processes in this chapter. The modifications in this chapter also show 
significant feedback to the atmosphere when the dynamic wetland scheme is coupled with a 
regional climate model (WRF) for summertime simulation. The finding of this paper will benefit 
both the climate science community and the waterfowl and wetland conservation community. 
 
6.1 Introduction 
Wetlands are important and unique ecosystems around the world that play vital roles in Earth’s 
ecosystem balance and biodiversity. Although wetlands occupy a small portion of the Earth’s 
global land surface (~6%), they store about one third of terrestrial carbon (Lehner and Doll, 2004; 
Mitra et al., 2005; Mitsch and Gosselink, 2007). Moreover, due to their unique abundance in 
nutrient and aquatic ecosystems, wetlands also support a wide variety of plants, birds, and 
amphibians; areas of high biodiversity, they are especially important for migratory waterfowl (The 
Ramsar Convention, 2007). They can effectively regulate regional surface energy balance and 
hydrological cycle, potentially influencing regional climate through complex land-atmosphere 
interactions. Wetlands are natural reservoirs to prevent flooding, especially in high latitudes and 
mountainous regions (Hayashi et al., 2016; Pattison-Williams et al., 2018). After springtime 
snowmelt or heavy rainfall, surface runoff can be stored in wetlands, effectively bending the curve 
and delaying the peak time of flooding. The presence of surface water and the moisture conditions 
of wetland soils can effectively store surface energy and favor energy partitioning to latent heat 
flux over sensible heat. Specifically, the more partitioning to latent heat flux over sensible heat flux 
that occurs in wetland water bodies, the more summer temperatures (Bonan, 1995) and daily air 
temperature variability will decrease (Hostetler et al. 1993). This land-atmosphere interaction is 
analogous to soil moisture-temperature feedback (Seneviratnes et al., 2010), inducing a cooling 
effect on surrounding environments.  
 

With unique geology, hydrology, and climate conditions, the North American Prairie Pothole 
regions (PPR) contains millions of small wetlands known as “potholes”. The retreat of continental 
ice sheets over 11, 000 years ago left glacial deposition upon the landscape, forming millions of 
depressional terrains. Poorly hydraulic connected, these depressions are isolated from large river 
networks. The cold winters allow snow to accumulate over cold seasons, and springtime runoff and 
seasonal rainfall provide major water input to these wetlands. Over the warm season, evaporation 
exceeds precipitation, drying the surface water and exposing the underlying soils. The persistence 
and storage of wetland ponds depend on receiving seasonal rainfall and connection with shallow 
groundwater. Under extremely wet conditions, strong rainfall or sudden snowmelt increases the 
water level of wetlands, exceeding the maximum capacity. In a “fill-and-spill” process, water from 
several filled wetlands will spill over to other surrounding wetlands, depicting a “fill-and-spill” 
process, and form a largely connected wetland complex (van der Kamp and Hayashi, 2009; 
Mekonnen et al., 2014; Vanderhoof et al., 2018). These complex interactions between climate, 
wetland, and groundwater are challenging to simulate in traditional hydrological models and land 
surface models (LSMs). 
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Given the importance of wetlands to the global and regional environment, representing wetland 
hydrological processes in earth system models and land surface models has emerged as an area of 
interest in recent decades. In the CLM (Oleson et al., 2008) and Noah-MP LSM (Niu et al., 2011; 
Yang et al., 2011), a relationship has been established between the grid-cell’s saturated fraction 
and the depth of groundwater, based on the TOPMODEL a hydrological model (Beven and Kirkby, 
1979) and its application in LSMs (Famiglietti and Wood, 1991, 1994a)– TOPMODEL (Beven 
and Kirkby, 1979). This method assumes that the sub-grid representation of grid-cell saturation is 
based on a redistribution of the water table depth, given the variation of slope and contributing 
areas to the grid cell. A sub-grid saturated fraction 𝐹"#$ is defined for the local water table at the 
surface and can be used for runoff generation as in saturated excess runoff. While this may be 
sufficient estimation over a large grid resolution in many GCM models (~50-100 km), it is not 
sufficiently detailed reasonable and too crude for high resolution regional simulation (~5-10 km). 
Despite its limitations and insufficiency, TOPMODEL- based 𝐹"#$ is widely used in many LSMs 
and ESMs, particularly in representing global wetland extents. The discrepancies in projecting 
wetland extents have major implications for modeled CH4 emissions, as summarized in a wetland 
CH4 inter-comparison modeling project (WETCHIMP, Wania et al., 2013, Melton et al., 2013). 

 
On the other hand, to represent the dynamics in lakes and wetlands and investigate their impacts 
on energy and water cycle, many models have incorporated surface water storage schemes. For 
example, Pitman (1991) incorporated a sub-grid scheme for the water surface and its contribution 
to latent and sensible heat is taken as the weighted average over the fraction of water, vegetated 
and bare ground surface in a coarse resolution (~2°) GCMs. The Variable Infiltration Capacity 
model (VIC, Liang et al., 1994) has developed a dynamic lake and wetland scheme to study the 
impacts of surface water heterogeneity on energy and water balance (Bowling and Lettenmaier, 
2010). Results show that incorporating wetlands increases the annual ET by 5% and decreases 
runoff by ~ 12% in the U.S. Midwest region. As latent heat fluxes increase, sensible heat fluxes 
decrease. Despite robust results in surface energy and water balance, this research is not coupled 
with regional climate models, therefore omitting the feedback from wetlands to temperature and 
precipitation. 
 

The purpose of this study is to study the impacts of dynamic wetlands on the surface energy 
and water balances, as well as their feedback to the regional climate in high-resolution 
convection-permitting regional climate model with spatial resolution < 5-km, (CPRCM, Prein et 
al., 2015). For this purpose, we have established three steps: (1) Develop a physical process-based 
parameterization of sub-grid wetland extent and dynamic wetland storage scheme; (2) Explore the 
impacts of including this wetland parameterization on the surface energy and water balance in 
offline regional land-surface hydrology simulations using Noah-MP; (3) Investigate the 
interactions between the wetland hydrological cycle and its feedback to the regional climate using 
the coupled Weather Research & Forecasting model (Skamarock, et al., 2008) system with Noah-
MP LSM. In particular, it is worth highlighting the potential cooling effect of surface wetlands in 
mitigating summertime heat stress, especially during the widespread high-intensity heatwave, 
which occurred in 2006 in Southern Canada and the U.S. 
  



 115 

6.2 Data and Model 
6.2.1 Global Inundation Extent from Multiple Satellites (GIEMS-2) 
The 1993-2007 Global Inundation Extent from Multiple Satellites (GIEMS-2) is a unique dataset 
that provides estimates on surface water extents and dynamics, based on a collection of satellite 
observations (https://lerma.obspm.fr/spip.php?article91&lang=en). The satellite data are used to 
calculate monthly-mean inundated fractions of equal-area grid cells (0.25°x0.25° at the equator), 
taking into account the contribution of vegetation (Prigent et al., 2001, 2007, 2012; Papa et al., 
2010). Such estimates use both passive and active microwave measurements, along with visible 
and near-infrared reflectance to capitalize on their complementary strengths, to extract maximum 
information about inundation characteristics, and to minimize problems related to one instrument 
only. The technique is globally applicable without any tuning for particular environments. The 
GIEMS data have been widely used to evaluate surface wetland extents in multiple GCMs 
intercomparison studies for simulating wetland extents (Wania et al., 2012; Melton et al., 2012).  
 
6.2.2 Convection-permitting regional climate simulation  
The convection-permitting model (CPM) refers to the atmospheric models whose grid spacing is 
fine enough (usually < 4-km) to permit convection and resolve mesoscale orography (Rasmussen 
et al., 2011; Prein et al., 2015; Liu et al., 2017). Long-term high-resolution climate downscaling 
using CPM provides important added-values to improve precipitation forecasting, which is critical 
in surface wetland hydrology, as well as in resolving fine scale land surface heterogeneity (Kenden 
et al., 2017).  
 
The WRF convection-permitting regional climate simulation over the CONtiguous U.S. (CONUS 
WRF, Liut et al., 2017) provides a good opportunity for long-term (13-year), high-resolution (4-
km) land surface modeling (Zhang et al., 2020). The CONUS WRF consists of simulations for the 
current climate and for the future climate using the Pseudo Global Warming method (PGW) (Schär 
et al., 1996, Rasmussen et al. 2011). The current climate simulation is a retrospective run from 
2000-10-01 to 2013-10-01, forced by ERA-Interim as boundary and initial condition. For the future 
simulation, a delta climate perturbation, derived from the 19-model ensemble in the CMIP5 project 
under RCP8.5 scenario at the end of 21st century, is added upon the ERA-Interim forcing (Simons 
et al., 2007). The future simulation represents an equivalent 13-year period at the end of the 21st 
century. The CONUS WRF forcing has been used in multiple climates, hydrology, and land surface 
studies (Zhang et al., 2020; Fang et al., 2021). In this study, we also use CONUS WRF forcing in 
the PPR region for offline land-surface model regional simulations to study the impacts of 
incorporating a surface wetland scheme on regional energy and water balance in the PPR.  
 
6.2.3 Application of TOPMODEL in LSMs  
TOPMODEL (TOPography based hydrological MODEL) is a rainfall-runoff model that uses 
topography data to reflect its dynamic processes responses in downslope hydrology, especially in 
the runoff generation in a variable contributing area, which was developed about 45 years ago 
(Kirkby 1975; Beven and Kirkby, 1979; Beven et al., 2020). TOPMODEL’s basic assumption is 
that the runoff generation responses to a steady state rainfall is proportional to the spatial variation 
of moisture contents in a drainage basin and can be characterized by its topography variation by 
digital topography analysis, which is the name of the model. In the model, a topographic index was 
defined, 𝛬 = 𝑙𝑛	( #

$#Pï
), where 𝑎 is the area draining through a point from upslope and 𝑡𝑎𝑛𝛽 is the 
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local slope angle. High index values are likely to saturate first, hence, indicate potential subsurface 
or surface contributing areas (Beven, 1997).  
 
The simplicity of the model comes from the assumption that all the points of the same value of the 
index respond similarly in the catchment. As a result, it is not necessary to calculate all the points 
in a catchment, but the integration of each interval of index values must be calculated through the 
distribution function. In a steady state, a critical threshold value for local topographic index (𝛬C)Y) 
can be obtained when the local water table depth is at the surface, compared to the grid cell mean 
water table depth. A sub-grid fraction 𝐹"#$ can be defined by integrating the topographic index 
interval from this critical value to the maximum, following its probability distribution function: 

𝐹"#$ = ∫ 𝑝𝑑𝑓(𝛬)𝑑𝛬		}
ñ���

(6.1)	
This probability distribution function was assumed to be a three-parameter gamma distribution by 
Sivapalan et al. (1987).  
 
This 𝐹"#$ fraction is an important parameter in partitioning surface water using the saturation runoff 
mechanism, i.e., the 𝐹"#$ portion of the surface water from rainfall and snowmelt becomes surface 
runoff and the remaining (1-𝐹"#$ ) becomes infiltration. The sub-grid 𝐹"#$  is also critical in 
controlling the surface energy balance and land-atmosphere interaction (Famiglietti and Wood, 
1994a&b). In Famiglietti and Wood (1994a&b), a Soil-Vegetation-Atmosphere Transfer Scheme 
(SVATS) is applied in local, catchment and macroscale to demonstrate the sub-grid soil moisture 
heterogeneity in controlling both evapotranspiration and runoff. The total evapotranspiration over 
the sub-grid topographic index in a grid cell is the integration of the potential evaporation from the 
saturated portion to drier land surface outside the transitional region, where evapotranspiration is 
restricted by active vegetation and soil moisture (Famiglietti and Wood 1994a). This framework 
for incorporating TOPMODEL into LSMs (TOPLATS) was utilized in the NASA GISS land 
surface model (Stieglitz et al., 1997) and the NASA Catchment Land Surface Model (CLSM, 
Koster 2000; Bechtold et al., 2018) among others. 
 
Due to its computational simplicity, the 𝐹"#$ fraction is also very popular in representing surface 
wetland extents in large scale global models (Gedney and Cox, 2003; Ringeval er al., 2011). The 
temporal and spatial variation of the 𝐹"#$ is based on the groundwater dynamics interacting with 
soil moisture, hence the expansion and shrinking of the surface wetland. Although the meaning of 
saturation is not necessarily the same as inundation or wetland soil, this fractional area to some 
degree reflects the wetness condition in a given grid cell, as well as its function partitioning surface 
water in the “saturation excess” runoff generation. Thus, the 𝐹"#$ fraction has been widely applied 
in various LSMs and multiple modeling studies simulating wetland extents (WETCHIMP, wetland 
CH4 multi-model intercomparison, Wania et al., 2013; Melton et al., 2013). 
 
In Noah-MP LSM, the energy balance is calculated separately for two sub-grid semitiles: a 
fractional vegetated area (𝐹 1/) and a fractional bare ground area (1-𝐹 1/). In this semitile scheme, 
shortwave radiation transfer is computed over the entire grid, while longwave radiation, sensible, 
latent heat flux, and ground heat flux are computed separately over these two tiles. As a result, 
these two tiles in the Noah MP grid neglects the large extending and seasonally variable open water 
wetlands. The total latent (LH) and sensible heat (SH) of these two semitiles are aggregated in a 
weighted function: 
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𝐿𝐻 = 𝐹 1/´𝐿𝐸/¸ + 𝐿𝐸¸µ + (1 − 𝐹 1/)𝐿𝐸/z		(6.2)	
𝑆𝐻 = 𝐹 1/´𝑆𝐻/¸ + 𝑆𝐻¸µ + (1 − 𝐹 1/)𝑆𝐻/z										(6.3)	

where subscript v representing vegetation canopy, gv is ground under canopy, and gb is bare 
ground fluxes. 
 
Additionally, the TOPMODEL based runoff generation model is utilized for surface water 
partitioning. In Niu and Yang (2005), the pdf of 𝐹"#$ is replaced by an exponential function of the 
water table depth and utilized in both CLM3.0 (Oleson et al., 2008) and Noah-MP LSM (2011). 
 

𝑅")m = 𝑄YP"Å)m ∗ 𝐹"#$					(6.4)	
𝑄YPmY( = 𝑄YP"Å)m ∗ (1 − 𝐹"#$)				(6.5)	

𝐹"#$ = 𝐹"#$@A ∗ 𝑒𝑥𝑝	(−0.5 ∗ 𝑓 ∗ (𝑍ô − 2))				(6.6)	
	

However, the above water balance setting does not reflect the dynamical water movement in prairie 
wetlands. These wetland depressions actively receive surface water from snowmelt and rainfall, 
but there is no surface water storage process in Noah-MP, so that the simulated surface runoff 
component will leave the model grid point. Additionally, this setting further neglects evaporation 
from the wetland surface to the atmosphere and discharge to surrounding wetlands in the fill-and-
spill process. Therefore, a dynamical surface wetland storage scheme, incorporating both sub-grid 
energy and water balance, is needed to represent the complex hydrological processes in the prairie 
wetland landscape and their potential feedback to the atmosphere.  
 
6.2.4 Modifying 𝑭𝒔𝒂𝒕 fraction to represent wetland extents 
The original TOPMODEL-based 𝐹"#$, based on an exponential function of the water table depth, 
does not reasonably reflect the magnitude and seasonal variation of wetland extents in the Prairies. 
Figures 6.1 and 6.2 shows the spatial distribution and temporal evolution of the inundation fraction 
from GIEMS and Noah-MP simulated 𝐹"#$ fraction in the PPR region from 2000 to 2014. It is clear 
that the modeled 𝐹"#$ has underestimated the maximum extent while overestimated the minimum 
extent. This occurs for two reasons: first, the parameter 𝐹"#$@A is a fixed value (0.38) for the global 
mean; second, the seasonally frozen soil and glacial till with low hydraulic conductivity prevent 
direct a groundwater connection with the surface water; hence, the water table dynamic is not a 
good indicator for the surface water extents in the PPR. Detailed speculations on this discrepancy 
are provided in the discussion section.   
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Figure 6.1. Spatial distribution of surface water extent from GIEMS (top) and Noah-MP modeled 𝐹"#$(bottom), on 
the maximum, minimum and mean extent.  
 

 
Figure 6.2. Temporal evolution of the inundation fraction from GIEMS and modelled 𝐹"#$  in the PPR region.  
 
Therefore, we propose a new formula for the saturated fraction 𝐹"#$, based on the first layer of 
soil moisture, instead of the water table depth: 
 

𝐹"#$ = 𝐹"#$@A ∗ (
TVùúlTûüýå
TûþäÿlTûüýå

)			(6.7)	
 
The first layer of soil moisture will respond more rapidly to surface hydrological processes, such 
as snowmelt infiltration and evapotranspiration. 𝐹"#$  is determined by the maximum saturated 
fraction (𝐹"#$@A) and a relative soil moisture saturation condition. This modification is basically 
assuming the mean soil moisture saturation at the first layer soil can empirically represent the 
spatial heterogeneity of soil saturation at the sub-grid scale.  
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6.2.5 Implementing surface wetland storage scheme  
In this study, we incorporate a sub-grid bucket-style surface water storage scheme to represent the 
surface water dynamics in Prairie Pothole wetlands in North America by capturing three important 
processes in its water balance: (1) wetland storage receives water from snowmelt runoff and rainfall; 
(2) water in wetland storage would evaporate at the potential rate; (3) when the water exceeds the 
wetland maximum storage capacity (𝑊C#D), it will spill out and become the outflow term. This 
wetland storage scheme operates at a sub-grid scale and uses 𝐹"#$ to determine the inflow of water 
input from precipitation and snowmelt and contributes to the latent heat flux as a weighted average 
over all three sub-grid types, similar to the treatment in Pitman (1991). The sensible heat flux is 
calculated as the residual term from the energy balance equation.  

𝑄YP"Å) = 𝑄"P]0@1($ + 𝑄)#YP			(6.8)	
𝑄YPm(]0 = 𝑄YP"Å) ∗ 𝐹"#$								(6.9)	
𝑄1¸#D =

@!"Î#C$(∆1)/ä
%&(@Î')

							(6.10)	

𝐿𝐻#(( = (1 − 𝐹"#$)(𝐹 1/´𝐿𝐸/,¸ + 𝐿𝐸¸µ + (1 − 𝐹 1/)𝐿𝐸/,z) + 𝐹"#$ ∗ 𝑄1¸#D𝜆¸(6.11)	
𝑄]Å$m(]0 = 𝑚𝑎𝑥(𝑄YPm(]0 −𝑊C#D, 0)			(6.12)	

∆𝑊"Å)m = 𝑄YPm(]0 − 𝑄1¸#D ∗ 𝐹"#$ − 𝑄]Å$m(]0				(6.13)	
In many traditional LSMs treatments, surface runoff is treated as a drainage term that leaves the 
grid cell and is a lost term in the water balance. In our new scheme, the surface runoff from 
snowmelt and rainfall becomes the inflow to surface water storage (𝑄YPm(]0). The water in surface 
wetlands evaporates to the atmosphere at the potential rate, which is calculated by the Penman 
equation. The outflow is a result of total water exceeding the maximum water storage (𝑊C#D), 
characterizing the “fill-and-spill” process. Notably, this surface wetland storage scheme is not 
connected to another wetland storage or river network, so that the outflow term will leave the grid 
point and is a lost term in the water balance, as was the surface runoff term in the default Noah-
MP. The change of surface water storage (∆𝑊"Å)m)  is calculated by the net result of inflow, 
evaporation, and outflow.  
 
Figure 6.3 below is a diagram illustrating the difference between the default Noah-MP and the 
modified surface runoff scheme in this study. The left-hand side shows the default Noah-MP 
surface runoff scheme based on the TOPMODEL saturation-excess concept. The inflow from rain 
and snowmelt (𝑄YP"Å) ) is be partitioned to infiltration by the 1-𝐹"#$  portion, which enters soil 
moisture, and to surface runoff by the 𝐹"#$ portion, which eventually leaves the grid cell. The right-
hand side shows the two modifications in our study: (1) modified 𝐹"#$ parameterization based on 
first layer soil saturation; (2) the creation of a surface water storage 𝑊C#D  representing surface 
wetland dynamics. The 𝐹"#$  portion of the inflow will now be collected within the 𝑊C#D  storage 
and evaporate into the atmosphere with a weighted function. The water amount exceeding the 
maximum capacity will become the outflow from the wetland (which also refers to the new runoff 
term, 𝑅")m). 
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Figure 6.3. Simple diagram demonstrating the modifications in this study, which includes the modification of 
surface saturated fraction and the incorporation of a surface wetland storage scheme in Noah-MP LSM.  
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6.2.6 Simulations design 
Three sets of numerical simulations are conducted to study the impacts of wetland representation 
on the simulated energy and water balance in the Noah-MP LSM, as well as feedback to the 
regional climate in the coupled WRF system. A summary of these three simulations is presented 
in Table 6.1.  
 
The first set of simulations is a single-point test, driven by the observation forcing, in a half-
water/half-vegetation Fen site in central Saskatchewan. These simulations aim to study the impacts 
of modifying 𝐹"#$  parameterization and the sensitivity of dynamic storage and its impacts on 
energy/water balance.  
 
The second set of simulations is on the regional scale in the PPR, driven by a 4-km WRF regional 
climate simulation (CONUS-I, Liu et al., 2017). In this simulation, we constrain the maximum 
𝐹"#$@A by satellite observation data (GIEMS) and combine the surface water storage with fine-
scale 90-m DEM (MERIT data: http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/). The 
purpose of this offline simulation is to investigate the implementation on a regional scale, with 
respect to spatial heterogeneity of 𝐹"#$@A  and 𝑊C#D. 
 
The third set is the coupled WRF regional climate simulation for three summers in 2005 (wet), 
2006 (dry), and 2007 (normal) with strong inter-annual variability. The purpose of this set of 
simulations is to study the impacts of surface wetland dynamics and their feedback to the regional 
climate, particularly under a high-resolution convection-permitting configuration. It is noteworthy 
that, in the summer of 2006, an intense and prolonged heatwave occurred in the Central U.S. and 
Southern Canada from mid-July to early August. One interesting highlight of this simulation is to 
examine the cooling effect induced by wetlands and its interactions with the atmosphere, which 
can help relieve the heat stress imposed by large-scale atmospheric circulation. 
 
Table 6.1. Summary of the three simulations conducted in this study. 

Simulation design Location Period Purpose 
Single-point Noah-MP Fen site, 

SK 
20030101-20101231 Exam the sensitivity of the 𝐹"#$  

formula and different levels of storage 
Offline regional Noah-MP PPR region 20001001-20131001 Incorporate spatially varied 𝐹"#$@A  

and 𝑊C#D parameters in the PPR 
Coupled regional WRF PPR region 2005-2007, three summers 

from Apr to Aug 
Conduct coupled WRF-NoahMP-
Wetland simulations and study the 
feedback to temperature 
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6.3 Results 
6.3.1 Implementation and sensitivity tests on single-point LSM 
We first perform a single-point LSM simulation in the Fen site in North Saskatchewan. Two 
modifications are tested: first, the modified 𝐹"#$ formula and, second, a sensitivity test for surface 
water dynamics with various storage capacities. Figure 4 shows the 𝐹"#$  parameter, energy and 
water balance in the Fen site simulated by Noah-MP. In Figure 6.4a, the default 𝐹"#$  formula by 
the exponential function of the water table depth fails to represent the large magnitude and strong 
seasonal variation, as shown by the GIEMS results. The modified formula using the first layer of 
soil moisture improves both the magnitude and seasonal cycle of the 𝐹"#$ parameter. This larger 
𝐹"#$  will effectively change the surface water partitioning, by increasing the surface runoff, which 
leaves the grid point water balance, and reducing the infiltration to soil moisture, which further 
reduces ET and underground runoff (Figure 6.4b). Furthermore, the increased 𝐹"#$  will reduce 
latent heat fluxes and enhanced sensible heat fluxes from March to September, with the strongest 
decrease in July (Figure 6.4c).  
 
The surface wetland scheme (Section 6.2.4) basically collects the increased surface runoff in 
wetland storage and allows evaporation to the atmosphere. The scheme’s contribution to surface 
water and energy balance depends on its storage capacity. Figure 6.4d shows the sensitivity of 
water storage in this wetland with four different capacities (0, 5, 50 and 500 mm). For the “WS=5”, 
the wetland water will be depleted during the dry seasons in summer, while with larger capacity 
(WS=50 or 500), the water storage from the previous year can be sustained through dry seasons. 
The greater capacity of holding water allows greater contribution to evaporation and reduces 
surface runoff (Figure 4e). The changing storage capacity has little impact on underground runoff. 
Moreover, greater storage capacity also allows greater latent heat fluxes and fewer sensible heat 
fluxes. This threshold mediated effect is clear between WS=5 and WS=50, as water may be dried 
in smaller capacities, while the contribution is similar between WS=50 and WS=500.  
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Figure 6.4. Single-point simulation of 𝐹"#$ modification (a-c) and incorporation of dynamic wetland storage (d-f) in 
Fen site in central Saskatchewan: (a) surface saturated fraction from default and modified formula and GIEMS 
inundation extent, (b) surface water balance in ET, surface and underground runoff, (c) surface energy balance in 
sensible and latent heat fluxes; (d) water level change in wetland storage, (e) surface water balance in ET, surface and 
underground runoff, (f) surface energy balance in sensible and latent heat fluxes.  

 
  



 124 

6.3.2 Regional scale land model simulation constrained by spatially varied parameters 
To simulate the wetland dynamics at regional scales, it is essential to constrain two spatially varied 
parameters, 𝐹"#$@A and the storage capacity, 𝑊C#D, as they are critical to wetland energy and water 
balance shown in the last section. Figure 5 shows the spatial map of 𝐹"#$@A and 𝑊C#D in the PPR 
region. Here, Fsatmx is derived from the GIEMS inundation fraction to represent the sub-grid 
maximum saturation, and 𝑊C#D  is derived from MERIT 90-m DEM and aggregated to a 4-km 
resolution grid (the same resolution as in CONUSI WRF 4-km meteorological forcing).  

𝑊C#D = ∑ 𝑚𝑖𝑛	((𝐻Y − 𝐻w), 0)P
Y)¡ 				(6.14)	

𝐻Y represents the 90-m elevation and 𝐻 is the mean elevation averaged at 4-km grid,  so that 𝑊C#D 
represents the collective topographical variation in the depressional area from 90-m DEM and 
aggregated into the 4-km grid.  
 

 
Figure 6.5. Spatial map of 𝐹"#$@A  and 𝑊C#D  in the PPR region, derived from GIEMS product and MERIT DEM, 
respectively. 

 
It is clear that the high 𝐹"#$@A  regions are located in the Northeast part of the domain, near Lake 
Winnipeg in Manitoba and the Red River Valley. These regions are also in correspondence with 
the low 𝑊C#D  regions in the 𝑊C#D  map.  
 
Two 13-year offline Noah-MP simulations are conducted: one with the default setting and one with 
the new surface wetland scheme. The 13-year average surface water balance (surface runoff and 
ET) and energy balance (sensible heat and latent heat) are shown in Figure 6.6. Figure 6.6a shows 
substantial wetland water storage availability – more than 200 mm average over the summer 
months, in the north domain and in the southeastern PPR in the Red River valley. In the central and 
western PPR, wetland storage is generally less than 100 mm, with some deeper storage in large 
water bodies surrounding lakes and rivers. 
 
The surface water and energy balance in the PPR are greatly altered by the presence of surface 
wetlands and the differences between WS and DEF simulation follow their spatial distribution. The 
presence of surface wetlands generally holds inflow water from rain and snowmelt, reducing 
surface runoff while increasing evaporation by about 100~200 mm in summer months. The water 
in the saturated fraction of the grid cell creates an open water surface, reducing (increasing) the 
sensible (latent) heat fluxes by about 0~50 W/m2 in summer months. These impacts on surface 
energy and water compensate for each other, and the presence of open water storage may induce 
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potential feedback to the atmosphere through land-atmosphere interactions, which we will discuss 
in next section.  
 

 
Figure 6.6. 13-year summertime (MJJA) mean wetland storage level (a); and the difference between WS and DEF 
simulations in surface runoff (b), evapotranspiration (ET, c), sensible heat flux (d), and latent heat flux (e).  
 
6.3.3 Regional climate simulation with coupled wetland dynamics 
To study the feedback from surface wetland dynamics to the regional climate, we perform two 
coupled WRF-wetland simulations for the summer of 2005, 2006, and 2007 years. The first 
simulation already includes the shallow groundwater scheme from Miguez-Macho et al. (2007), 
which is referred to as the DEF simulation. The second simulation incorporates the wetland scheme 
upon the shallow groundwater scheme, which is referred to as the WS simulation. These 
simulations start from April and run through August, with the first month as the spin-up period. 
Our analysis focuses on the temperature and precipitation from May to August for these three years, 
especially in 2006 when an intense summer heatwave occurred from mid-July to early August in 
the Central U.S. and Southern Canada.  
 
Figure 6.7 shows the monthly temperatures from station observation, model biases from two 
simulations, and the cooling effect induced by the WS scheme in 2006. It is evident that a warm 
bias exists in the southern part of the domain, ranging from 2℃ in the Central U.S. to 1℃ in the 
Western Canadian Prairies. This warm bias grows stronger in July and August. The WS simulation 
shows a significant cooling effect in the Northeast portion of the domain, where the saturated 
fraction is high. The cooling in temperature ranges from less than 1℃ in May to about 1~2℃ in 
July. This cooling signal is evident in high-𝐹"#$ regions in the domain in all three-year simulations. 
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Figure 6.7. Monthly temperatures from station observation, temperature biases from two simulations, and the cooling 
effect induced by WS in the summer for three-year simulations. 
 
In the summer of 2006, a record-breaking heatwave hit the major part of the U.S. and Southern 
Canada. The extreme heat conditions can be represented by the number of “hot days” during the 
summer, with the daily maximum temperature exceeding the 90th percentile of climatological 
records. We accumulated the number of hot days from May to August in 2006 from two simulations 
and the results are shown in Figure 8. Through these four months, the hottest region is in the 
southeast of the domain in Nebraska, Iowa, Kansas and Missouri – for more than 40 days of hot 
days – while in the Northern Great Plains and Canadian Prairies, the hot days are about 10~20 days. 
The WS simulation shows the dynamic wetland could effectively reduce the number of hot days 
by about 10 days in the entire domain. Two regions receive greater impacts from the wetlands, 
including southern Manitoba and the area between Nebraska and Iowa. This result manifests the 
important role of wetlands in mitigating climate change, especially in extreme heat events.   
 

 
Figure 6.8. Number of hot days in two simulations and the reduction in hot days from WS to DEF. 
 
Figure 6.9 shows the effect of wetland cooling on temperature against its maximum saturated 
fraction for the domain. The 𝐹"#$@A  parameter generally depicts the spatial pattern of a highly 
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saturated region with high water availability. The cooling effect from wetlands is evident for almost 
every month in the simulation period and is stronger in June and July than in May and August. The 
strongest effect is shown in 2005 July, which is almost 1.5 ℃  cooler. There exists a linear 
relationship between 𝐹"#$@A  and ∆TEMP – the larger of the 𝐹"#$@A, the stronger the cooling effect 
is, especially in 2005 and 2007, but not as clear in 2006. This relationship indicates that the wetland 
cooling effect relies on the available water input from precipitation: under normal and wet 
conditions, the greater the 𝐹"#$@A, the more water can be stored in wetland storage and the more 
surface energy partitioned into latent heat, hence the stronger the cooling effect. However, in the 
2006 dry conditions, there was not sufficient precipitation to fill these wetlands, limiting the 
wetlands’ cooling effects and evaporation, regardless of 𝐹"#$@A  values. This wetland cooling effect 
is analogous to the classic soil moisture-temperature feedback in land-atmosphere interactions. 
 

 
Figure 6.9. Scatter plot of ∆TEMP (DEF-WS, ℃) against the 𝐹"#$@A , maximum saturated fraction in grid cell, from 
three-year summer monthly data.  
 
Compared to the uniform cooling effect on temperature, the feedback of surface wetlands to 
regional precipitation is more ambiguous than the uniform cooling effect in temperature. Figure 
6.10 shows the monthly precipitation from observation, model biases from two simulations and 
their difference in three-year summers. The precipitation bias corresponds well with the 
temperature bias in Figure 6.7, with a significant dry bias in the southeast part of the domain while 
the precipitation is not as obvious in the Canadian Prairies. The WS simulations show little 
difference in precipitation from the DEF simulation and the signals of changes are almost random 
in the last row. This almost random and patchy precipitation signal is shown in all three-year 
simulations and for the accumulated period of four months. 
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Figure 6.10. Monthly precipitation from station observation, precipitation biases from two simulations, and the 
difference in precipitation induced by WS in three years’ summer.  
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6.4 Discussion 
In LSMs and coupled ESMs, reasonable representations of wetland spatial extents and dynamic 
water storage are challenging in light of data scarcity, coarse model resolution, and insufficient 
understanding of the physical processes (Prigent et al., 2007). However, because wetland extents 
play a key role in land-atmosphere interactions and carbon feedback to the climate system, 
researchers have long been of great interest to estimate wetland extents in hydrology-climate 
simulation from global to regional scales. For example, the WETCHIMP project gathered 10 
participating GCMs for simulating the global wetland extents as well as CH4 contributions (Wania 
et al., 2013; Melton et al., 2013). Many of these GCMs used prescribed wetland maps from global 
surveys or remote sensing products, such as the Global Lake and Wetland Database (Lehner and 
Doll, 2004) and GIEMS (Prigent et al., 2007), or used the TOPMODEL-based 𝐹"#$ to simulate a 
subgrid “saturated” fraction to represent wetlands extents.  
 
Although the TOPMODEL method provides some spatial heterogeneity and temporal dynamics to 
the wetland extent estimate, it generally underestimates both the maximum value and the seasonal 
variability. As we showed in Section 6.2.1 that the TOPMODEL based method in Noah-MP 
simulates a much lower 𝐹"#$  value than the highly dynamic GIEMS product. Here we provide two 
possible reasons for the discrepancy between TOPMODEL 𝐹"#$  and surface water dynamics from 
satellites. (1) The first underlying assumption of the TOPMODEL method requires a “steady state” 
precipitation and soil moisture heterogeneity, which is more likely in wet, relatively shallow soils 
on moderate slopes (Beven and Kirkby, 1979; Kirkby et al., 2021). However, this is not the case 
in the Prairie Pothole region, where the climate is usually semi-arid and the large-scale topography 
is flat with small scale variation. (2) Another possible reason for this discrepancy is that the 
TOPMODEL method calculates a critical topographic index value when the local water table is at 
the surface; this value is used to determine the 𝐹"#$  fraction through the integration of its 
probability distribution function. However, in the PPR region, the freezing soils in wintertime 
prevent interaction between the soil moisture and groundwater (Ireson et al., 2013). Therefore, in 
the TOPMODEL method, the exponential function will simulate less seasonal variation in the 
surface water dynamics. As well, a large portion of the global wetlands and peatlands are located 
in high latitude regions where winter soil freezing is very common.  
 
In our modification of the 𝐹"#$ formulation, we used the first layer of soil saturation to indicate the 
sub-grid spatial extent of the saturated portion – the extent of wetlands. This method empirically 
assumes the grid cell mean soil moisture saturation can be translated into a spatial fraction for 
surface saturation and shows a highly variable 𝐹"#$ value compared to the default TOPMODEL 
method, in terms of the maximum and minimum extent, and seasonality (in section 6.3.1). 
Moreover, we also incorporate a spatially varied maximum 𝐹"#$@A map from the GIEMS product 
to replace the default global mean value (0.38) in Noah-MP and WRF. Both these modifications 
improve the spatial heterogeneity and the temporal dynamics of wetland extents in the PPR region.  
 
Additionally, we incorporated a dynamic surface water storage scheme to simulate the hydrological 
processes in wetlands. Although this scheme is simple, we aim to capture three important processes 
– the filling of wetlands by snowmelt and rainfall, the evaporation of wetland water into the 
atmosphere, and the excess water spilling to surface runoff. These three processes are the key 
components in the wetlands water and energy cycle during the warm season open water period. 
Our results showed increase of ET with a decrease of surface runoff and an increase of latent heat 
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with decreases of sensible heat. This finding aligns with our expectations, as well as with previous 
VIC model wetland and lake simulations in the U.S. Midwest region (Mishra and Cherkauer et al., 
2010).  
 
Moreover, our scheme provides greater potential to explore wetlands’ feedback to the atmosphere 
in coupled WRF-NoahMP-Wetland simulation. In the default simulation, which already includes 
the MMF groundwater scheme (Barlage et al., 2015, 2021), warm biases still exist at about 1~3 
degrees in the U.S. Great Plains. Without the groundwater scheme, the summertime warm biases 
could be as high as 4~6 degrees. By adding the wetland scheme on top of the MMF groundwater 
scheme, the warm biases in the U.S. can be further reduced by 0.5~1.5 degrees, but it also 
introduces 1-degree cool biases in Southern Manitoba, where wetland extents are large. While the 
temperature cooling effect is evident, wetland feedback to precipitation is less obvious and is more 
ambiguous. A previous study using WRF with prescribed soil moisture threshold to indicate 
wetlands in the great plain in a coarser resolution (12-km) also showed a temperature cooling effect, 
but the precipitation effect was negligible (Capehart et al., 2012).  
 
One of the highlights of this study is the wetland cooling effect to the atmospheric temperature. 
Previous studies have documented this effect in detail, but they have been specific to different 
wetland characteristics and dominant vegetation types. In our study, we used general open water 
storage to characterize wetland interactions with the atmosphere, omitting these variations in 
specific wetland types but gaining more generic conclusions in a much larger region. The wetland 
cooling effect to temperature, especially during extreme heatwave events, echoes a previous study 
in the Central U.S. where we found land surface characteristics could effectively reduce the 
frequency, intensity, and duration of extreme heatwaves (Zhang et al., 2018) 
 
We also want to note that the land use and hydrological cycle in the PPR region is of great 
complexity. In recent years, the competition between agriculture and wetland conservation has 
been a serious topic of discussion among the public, universities, and government agencies. It has 
been shown that the agricultural land expansion at the cost of wetland drainage increases the risk 
of emerging flooding in springtime (Dumanski et al., 2015). The excessive amount of the organic 
carbon released from wetland deposition contributes greatly to the atmospheric carbon emission. 
The loss of wetlands for croplands also reduces the resilience to drought and high temperature, 
which may cause crop failures due to water and heat stress. As a tradeoff, the gains in agricultural 
yields are marginal and cannot compensate for the ecological value loss from wetland drainage.  
 
However, the loss of wetlands to agricultural, industrial and residential land are not specific to only 
in the PPR region but are common problems worldwide and require humans’ attention (Rasmar 
convention 2007; Nature Geoscience, 2021). These land use modifications not only threaten the 
local environment but also contribute to the global carbon balance and eventually cause problems 
for human beings. Understanding the effects of development is challenging. It is hoped that these 
threats to the future can inspire future studies on wetlands for their hydrological, climatic, 
ecological, environmental functions and that solutions can be found for humans to interact with 
nature peacefully and sustainably.  
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6.5 Conclusion 
Wetlands play an irreplaceable role in Earth systems for their climatic, hydrological, and ecosystem 
surface. However, reasonably representing the spatial extents and water dynamics of these small-
scale wetlands has been challenging to LSMs and coupled ESMs. This is particularly important 
and urgent in the Prairie Pothole Region (PPR) for the wetlands are critical to the region’s ecology 
and the hydrological conditions are complex. In this research, we mainly developed a surface 
wetland scheme with two modifications to represent wetland dynamics in the Noah-MP LSM. One 
is modifying the sub-grid saturation fraction to indicate the spatial wetland extent based on grid 
cell soil moisture. Another is incorporating a dynamic surface water storage scheme to represent 
the hydrological processes in wetlands. This new wetland scheme is incorporated in single-point, 
offline regional simulation, and coupled WRF simulation in the PPR region.  
 
The single-point simulation showed that the modified the sub-grid 𝐹"#$ using the first layer soil 
saturation reasonably mimics the magnitude and seasonality of surface saturation condition in the 
PPR, compared to the default TOPMODEL-based formula. On the other hand, the modified 
increased 𝐹"#$ formula partitions more water to surface runoff than infiltration to soil moisture. 
The enhanced surface inflow is then collected by the surface storage, mimicking the capacity of 
wetland depressions, with water exceeding the capacity will spill out to outflow. The single-point 
simulation also shows that the wetland modifying surface energy and water balance also depends 
on its maximum capacity. For shallow storage wetlands, both spring inflow and summer 
evaporation demand would exceed their maximum capacity, limiting their function in energy and 
water exchange with the atmosphere.  
 
In the offline regional simulation in the PPR, two spatially varied parameters are incorporated, the 
maximum 𝐹"#$@A fraction and maximum storage capacity 𝑊C#D. The results show that the model 
simulated wetlands are located in the Northeast portion of the PPR domain, where 𝐹"#$@A is high 
but maximum capacity is shallow. By incorporating the wetland scheme, the summertime 
evaporation and latent heat fluxes are evidently increased, with decreasing surface runoff and 
sensible heat fluxes. These changes occur in where 𝐹"#$@A  is high and are compensating each other 
in different directions, which is up to our expectation.  
 
Finally, we examine the wetlands’ feedback to regional temperature and precipitation in the 
coupled WRF-NoahMP-Wetland model. Evident cooling effect induced by the presence of surface 
wetlands are shown in all three years’ summer for about 0.5~1℃ in dry year (2006) and 0.7~1.5℃ 
in the wet year (2005), occurring in where the wetland fraction is high. This cooling is the result of 
wetland altering energy balance partitioning, increasing latent heat fluxes while reducing sensible 
heat fluxes. The cooling effect is strongest in July while weakest in May, representing the previous 
theory of evaporation regime in energy limited regions starting from early summer while transition 
to water limited regime in mid-summer. In the summer of 2006, when an extreme heatwave hit the 
Central U.S. and Southern Canada, the presence of wetland could profoundly reduce the number 
of extreme hot days by more than 10 days during the summer period, effectively relieving the heat 
stress to human comfort. On the other hand, wetland scheme impacts on regional precipitation 
doesn’t manifest an obvious pattern, which is showing both positive and negative precipitation and 
seems randomly located.  
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In the PPR region, wetlands have always amid the competition with agricultural, industrial, and 
residential land use. Loss of wetlands through land use conversion has occurred since the last a few 
decades and the trend is still going up. Our results show that the presence of wetlands could be 
beneficial to many sectors, such as regulating surface runoff during flooding and cooling 
atmospheric temperature during heatwaves. These highlights are inspiring future studies to 
understand wetlands’ value in regional environments and the Earth system, especially those that 
have been neglected at the cost of human expansion.  
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Chapter 7 – Conclusion 
• Concluding remarks—provide a summary of the thesis and discussion to address existing 

major challenges 
• Potential future works on wetland-crop joint simulation in LSMs and coupled RCMs 

 
7.1 Concluding Remarks 
7.1.1 Concluding remarks – a summary of previous chapters 
Key to this research was the representation of different land surface characteristics in offline LSMs 
and in convection-permitting models (CPM). The focus of this thesis is two land types: croplands 
and wetlands. First, the thesis evaluated the relationship between the soil moisture anomaly and 
the frequency and magnitude of heatwaves in a long-term CPM simulation, CONUS WRF, 
showing a significant negative correlation and the model reasonably simulate this feature. Second, 
it validated the jointly simulated dynamic crop growth and irrigation water for corn and soybeans, 
which exhibit strong uncertainties in model parameters. Third, it both characterized the shallow 
groundwater dynamics in the Prairie Pothole Region using a groundwater scheme coupled to the 
Noah-MP LSM and investigated the water table dynamics under the current and future climate, 
which is closely connected to wetland hydrology in this region. Fourth, it predicted the future 
wetland extents using a generalized additive model with soil moisture and ecoregions as inputs. 
The prediction for future wetlands overlapping with historical drainage information provides strong 
implications for wetland conservation. Fifth, a dynamic wetland storage scheme was incorporated 
into the Noah-MP LSM by modifying the TOPMODEL-based runoff scheme, showing the 
significant cooling effect of wetland physics during extreme heatwave events. All the objectives in 
this thesis have been addressed, as shown in the summary presented below.  
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7.1.2 Concluding discussion to address existing major challenges  
Land surface is an important component in the earth system and LSMs have evolved from 
simplified representation to various complexity to address biogeophysical and biogeochemical 
processes, surface heterogeneity, as well as uncertainties in model parameters. These three aspects 
are also emphasized as the three major challenges in LSM developments proposed by Fisher and 
Koven (2020). Clark et al. (2015) also recognized similar major challenges in representing 
hydrological processes in ESMs. In their synthesis paper, these three challenges are summarized 
as: 
(1) Managing and increasing model processes complexity 
(2) Representing land surface heterogeneity 
(3) Constraining and predicting model parameters  
 
From my perspective in conducting my Ph.D. research and writing this thesis, I will provide a brief 
discussion of these three challenges using my studies as examples.  
 
To reasonably represent the physical realism of processes on land surface, detailed descriptions of 
the processes themselves are required. For example, in this thesis, four detailed hydrological, 
biophysical, and biogeochemical processes are developed and applied, including dynamic crop and 
irrigation processes (Chapter 3), shallow groundwater dynamics (Chapter 4), and the surface 
wetland process (Chapter 6). Before these processes were applied, these features in croplands and 
wetlands were represented by simple parameters (cropland and wetland parameters) or even 
neglected (shallow groundwater). Adding specific descriptions of these dynamical processes will 
enrich researchers’ understanding and enlarge their vision for investigating these processes. On the 
other hand, correctly representing these processes will inevitably uncover two other challenges: 
spatial heterogeneity and parameter uncertainties. Additional information on both these dimensions 
are needed to constrain the model performance on these newly added processes. Figure 7.1 provides 
a diagram of these three challenges, showing them overlapping with each other and revealing how 
the studies in this thesis fit into the three-challenge framework.  
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Figure 7.1. A diagram of three major challenges overlapping with each other and the five studies in this thesis framing 
this overlapping structure.  

 
Figure 7.1 illustrates that some studies in this thesis touch on all three challenges. Although the 
initial intentions of these studies were not to explore all three challenges, to solve one challenge 
likely requires addressing some aspects of the others. I will use three examples to illustrate how 
my studies have tackled these challenges: the cropland study, the shallow groundwater study, and 
the dynamic wetland study.  
Crop-irrigation study. The purpose of this study is to investigate the joint effect of dynamic crops 
and irrigation on crop growth. This purpose requires the application of two biogeophysical and 
biogeochemical processes: photosynthesis and carbon allocation. The land surface heterogeneity 
of cropland and irrigated land are characterized by sub-grid fractions, 𝐹Y))Y , 𝐹C)]D , 𝐹C])P  and 
𝐹"]ºz1#P , respectively. To correctly represent the spatial extents of these land use types, high-
resolution land information data from GMU and MODIS satellite are applied. Moreover, the 
parameters related to crop growth and irrigation embed great uncertainties. The sources of 
parameter uncertainties are summarized as plant physiology, phenology, and human management 
(planting/harvesting dates and the irrigation threshold). Some of these parameters can be calibrated. 
For example, the irrigation threshold, 𝐼𝑅𝑅C)Y, is calibrated using USGS county-level water-use data 
in Xu et al. (2019). The planting/harvesting dates can be selected at the state-level, using the most 
frequent date within the planting and harvesting window of time in a long-term record. However, 
many other parameters, such as 𝑉C@AF� (maximum photosynthesis capacity at 25℃) and BIO2LAI 
(conversion ratio from leaf mass to LAI), are difficult to constrain in this study.  
 
Recent studies have attempted to reasonably model human management given climate conditions 
and previous decisions (Izumi et al., 2019). This process is facilitated by dynamically modeling 
based on field workability, considering snow cover and rainfall and crop biological requirements 
for heat and moisture. Crop model parameters can also be constrained using data assimilation 
techniques. For example, Xu et al. (2021, under review) used the ensemble Kalman filter method 
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to assimilate solar-induced chlorophyll fluorescence (SIF) to constrain the maximum 
photosynthesis capacity, which was demonstrated with large uncertainties from laboratory results 
and the modeling literature. Both these attempts tackle constraining and estimating model 
parameters, processes which will in turn improve modeling performance.  
 
Shallow groundwater study. The purpose of this study is to explore the two-way exchange 
between upper soil moisture and underlying unconfined shallow groundwater in the PPR in the 
current and future climate. Therefore, the shallow groundwater process is essential in this study. 
Adding an unconfined aquifer beneath the default 2-m soil column and allowing two-way water 
exchange between soil moisture and groundwater is the first step in this study. In addition to the 
process description in the model, land surface heterogeneity and model parameters are also critical 
to correctly represent this process. In this case, the spatial heterogeneity of the meteorological 
forcing from a convection-permitting simulation study is important, as it provides reliable 
precipitation forcing in current as well as future climate scenarios. Moreover, the vertical 
heterogeneity of soil texture should be accounted for, i.e., the hydraulic conductance and maximum 
soil water capacity decaying with depth, without too deep water table depths will be produced with 
small seasonal variations. On the other hand, spatial heterogeneity, as collected from well 
observations, leans towards sandy soil texture, because they are more often monitored by 
groundwater resource agencies than other soil textures. This feature is misrepresented as clay type 
soil in the model spatial soil type map. Replacing the soil texture at these sites in the model will 
result in improved simulation of groundwater depth and seasonal fluctuations. However, this study 
has limitations because little is known about spatial and vertical soil texture. Increasing this 
knowledge will require future development of observations and monitoring techniques.  
 
Moreover, a recent finding on the scale-dependency of shallow groundwater coupled with the land 
surface and regional climate demonstrates that the processes and heterogeneity are closely linked 
(Barlage et al., 2021). Despite activating the shallow groundwater scheme, coarse resolution (27-
km and 9-km) simulation results show that the soil moisture-groundwater exchange and feedback 
through land-atmosphere interaction are much weaker than in finer resolution (3-km and 1-km) 
simulation. These simulation results occur because the regions of shallow groundwater in the 
Central U.S. (Iowa) are shown on a high-resolution map (1-km), but they are blurred when 
represented on a coarser resolution map (27-km). This study strongly supports the argument that 
improving the representation of surface heterogeneity will contribute to understanding modeling 
processes and simulation.  
 
Dynamic wetland study. The purpose of this study is to dynamically simulate spatial wetland 
extents and wetland hydrological processes as well as their climate feedback in the PPR. This study 
faces all three of the above-mentioned challenges in how to represent wetlands in LSMs. Previously, 
the spatial wetland extents were constrained mainly by global maps of land use types from land 
surveys or remote sensing or by dynamical modeling using the sub-grid saturated fraction in the 
TOPMODEL surface runoff scheme. In this study, a sub-grid bucket-style surface wetland storage 
model is combined with modified wetland fraction parameterization to represent the wetland’s 
spatial extents and hydrological processes. The spatial heterogeneity is represented as a sub-grid 
fraction using the first layer of soil moisture saturation and constrained by remote sensing products 
for the seasonal cycle. This sub-grid fraction is critical because it determines the portion of 
available surface water flowing into the wetland storage, hence, the wetland water balance. The 
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newly added bucket-style surface wetland scheme, although simple, attempts to characterize basic 
hydrological processes occurring in wetland basins, inflow, evaporation, and outflow when water 
capacity is exceeded. In terms of model parameters, two key spatially varied parameters are used 
to constrain the spatial extent and water balance in wetland basins: the maximum saturated fraction 
𝐹"#$@A and maximum wetland capacity 𝑊C#D. The results show that the coupling surface wetlands 
processes strongly influence the surface energy and water balance, as well as the feedback to the 
regional climate. In particular, the cooling effect induced by the open water surface and increased 
latent heat fluxes can substantially reduce summertime temperature biases and relieve heat stress 
during extreme heatwaves.  
 
Overall, these three examples from this thesis illustrate that to tackle any of the three major 
challenges will likely require tackling the others as well. This would typically involve having more 
detailed information on spatial extents and refining model parameters to increase understanding of 
processes and improving performance. It is also noteworthy that the purpose of these three studies 
is to investigate coupling these new processes with land surface characteristics and the regional 
climate. Therefore, the two pillars supporting the purpose are improving spatial heterogeneity and 
constraining model parameters. Nonetheless, these examples shed some light on future LSM 
development, not only incorporating process complexity but also accounting for land surface 
heterogeneity and model parameter uncertainties.  
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7.2 Potential future studies 
The methods used and results shown in this thesis will potentially lead to multiple future land 
surface, hydrological, and agricultural studies in North America and globally. The advanced 
modeling processes in this thesis will be beneficial for researchers applying them in other regions 
of the world. Also, of interest to researchers will be interactions and feedback from the coupling of 
these advanced processes.  
 
7.2.1 Wetland water availability under a future climate  
In Chapter 6, the sub-grid surface wetland storage scheme is developed with the wetland water 
balance. This scheme allows future investigation of wetland water availability under different 
climate projections. The goal of this study is to understand future wetland distributions and water 
availability and to design conservation strategies for wildlife agencies, water management sectors, 
and government policymakers. This study can be conducted at both the global and regional levels 
i.e., the Prairie Pothole region. In detail, three specific goals can be setup:  

• Evaluating the wetland distribution, duration, and water level, using current climate forcing 
• Exploring future wetland characteristics under the future climate forcing using the Pseudo 

Global Warming method 
• Understanding the hydrological component changes associated with these changes in 

wetland characteristics. 
7.2.2 Wetland-cropland interaction as benefits to farms  
In Chapter 3, the dynamic crop growth model is applied to two crop types, corn and soybeans. 
However, these two crops are not typical in the Canadian Prairies, where wheat and canola are 
more common. Thus, the first step of this study is to develop a set of Canadian crop species 
parameters (starting from wheat): phenology, photosynthetic characteristics, and carbon allocation. 
Turning to the other part of this study, Prairie pothole wetlands are facing land use conversion 
through drainage as the cropland expands. Especially in Chapter 6, the dynamic wetland simulation 
shows a significant cooling and moistening effect on the surface environment. It is critical to 
understand the potential impacts of converting wetlands to croplands on land surface energy, water, 
and crop yield. This study can be conducted using both the offline LSM mode and the coupled 
RCM mode with the WRF model. Three specific goals can be established:  

• Conduct a wetland-conversion simulation to represent cropland expansion over the PPR.  
• Explore the potential impacts on surface energy, water, and carbon balance from cropland 

expansion in offline mode. 
• Investigate the benefits of wetlands for farms as a potential reason to maintain wetlands 

within cropland expansion. 
• Study the feedback of joint cropland-wetland impacts on the regional climate, focusing on 

both temperature and precipitation changes induced by land use changes in the convection-
permitting regional climate model. 

The rapid development of representations of land surface processes and the progress of high-
resolution convection-permitting simulations show promise in improving the integration of land 
surface processes into more advanced regional climate simulations. Along with an increased 
interest in more precise answers to the impact of uncertain climate changes, these strategies will 
lead to more robust understanding of the land surface processes and land-atmosphere interactions.  
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Appendix A 
 
This appendix is part of chapter 1 for introducing the convection-permitting regional climate 
model in CONtiguous U.S. (CONUS WRF I) simulations.  
 
Procedure of dynamical downscaling of regional climate simulations in the CONtiguous U.S. 
(CONUS) using the Pseudo global warming method. 

 
Figure A1. Methodology of the CONUS WRF simulations. Historical simulation is in the green 
column and the future climate simulation is presented in the red column.  
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Appendix B  
 
This appendix is part of the chapter 3, introducing the parameters used in the Noah-MP crop 
model regarding planting and harvesting date and photosynthesis processes.  
 
Table B1. Field Crops Usual Planting and Harvesting Dates (October 2010) 
USDA, National Agricultural Statistics Service 
https://usda.library.cornell.edu/concern/publications/vm40xr56k 
Corn for Grain Usual Planting and Harvesting Dates – States 

State code Usual planting dates Usual harvesting date 
Begin Most active End Middle 

day 
Begin Most active End Middle 

day  
Illinois IL Apr14 Apr21-May23 Jun 5 127 Sep 14 Sep 23-Nov 5 Nov 20 288 
Indiana IN Apr20 May1-Jun1 Jun 10 137 Sep 15 Oct 1-Nov 10 Nov 25 294 
Iowa IO Apr19 Apr25-May18 May26 127 Sep 21 Oct 5-Nov 9 Nov 21 296 
Michigan MI Apr21 May1- May27 Jun 6 134 Sep 5 Oct10-Nov25 Dec 10 306 
Minnesota MN Apr22 Apr26-May19 May29 128 Sep 27 Oct 8- Nov 8 Nov 23 297 
Missouri MO Apr 3 Apr11- May27 Jun 12 124 Aug 29 Sep 8-Nov 3 Dec 22 279 
Nebraska NE Apr19 Apr27-May15 May21 126 Sep 18 Oct 4 -Nov10 Nov 20 296 
Ohio OH Apr18 Apr 24-May24 May30 129 Spe27 Oct11-Nov20 Dec 1 304 
South 
Dakota 

SD Apr26 May2-May27 Jun 10 135 Sep24 Oct 6-Nov 16 Dec 3 300 

Wisconsin WI Apr26 May -May27 Jun 6 135 Oct 2 Oct14-Nov17 Nov 28 304 
 
 
Soybean Usual Planting and Harvesting Dates - States 

State code Usual planting dates Usual harvesting date 
Begin Most active End Middle 

day 
Begin Most active End Middle 

day  
Arkansas AR Apr19 May5-Jun22 Jun5 149 Sep 10 Sep29-Nov13 Nov 26 294 
Illinois IL May2 May8-Jun12 Jun24 145 Sep 19 Sep26-Oct26 Nov 7 284 
Indiana IN May1 May5-Jun10 Jun25 143 Sep 20 Oct1-Nov1 Nov 10 289 
Iowa IO May2 May8-Jun2 Jun16 140 Sep 21 Sep28-Oct20 Oct 31 282 
Michigan MI May2 May11-Jun9 Jun18 145 Sep 25 Oct3-Nov3 Nov 13 291 
Minnesota MN May2 May8-Jun2 Jun13 140 Sep 20 Sep27-Oct20 Oct 31 281 
Missouri MO May2 May13-Jun24 Jul4 154 Sep25 Oct3-Nov8 Nov 23 294 
Mississippi MS Apr19 Apr26-May31 Jun17 133 Sep10 Sep13-Oct31 Nov 9 280 
Nebraska NE May5 May11-May31 Jun8 141 Sep23 Sep29-Oct24 Nov 2 284 
Ohio OH Apr26 May3-May30 Jun10 136 Spe17 Sep24-Oct21 Nov 5 288 
South 
Dakota 

SD May8 May15-Jun11 Jun21 148 Sep22 Sep28-Oct24 Nov 3 284 

Tennessee TN May5 May15-Jun25 Jul5 155 Spe25 Oct5-Nov20 Nov 30 301 
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Table B2. A synthesis of photosynthesis parameters used for C4 corn. In this study, we used the 
Adjust parameters for C4 corn parameters are the same as in the Noah-MP (2011). 

Referen
ce 

𝐾D 𝑉C@AF�	(𝜇𝑚𝑜𝑙𝑚lF𝑠l¡) 𝑄𝐸25	(𝛼) 𝑚 𝑏	(𝜇𝑚𝑜𝑙𝑚lF𝑠l¡) 𝑅S 
(𝜇𝑚𝑜𝑙𝑚lF𝑠l¡

) 

Noah-
MP 

(2011) 

4000	 ∗ 𝑉C@A 80 0.06 9 2000 1.0 (carbon) 

Collatz 
(1992) 

0.7, 
18000*
𝑉C@A 

39 0.04 3 80000 0.8, 0.021 * 
𝑉C@A 

Bonan 
(1996) 

4000	 ∗ 𝑉C@A 33 (C4 grass) 0.04 5 2000 0.82 (C4 
grass, 

carbon) 

Sellers 
(1996) 

20000∗
𝑉C@A 

30 (C4 grass) 0.05 4 40000 0.025 * 𝑉C@A 
(PSN) 

CLM4 4000	 ∗ 𝑉C@A 52 (C4 grass) 0.04 4 40000 - 

Bonan 
(2011) 

20000∗
𝑉C@A 

52 (C4 grass; CLM4) 
57 (crop; CLM4) 

78 (C4 grass; 
Kattge2009) 

101 (C3 crop; 
Kattge2009) 

0.05 4 40000 0.025 * 𝑉C@A 
(PSN) 

CLM4.
5 

20000∗
𝑉C@A 

52 (C4 grass) 
101 (corn) 

0.05 4 40000 0.025 * 𝑉C@A 
(PSN) 

Adjust 20000∗
𝑉C@A 

60 (corn) 0.05 4 40000 0.8 (carbon) 
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Figure B1. Monthly-averaged water stress factor, 𝛽$, from STATE_IRR simulation from August 
to October. The blue regions show that the western Iowa, southwest Minnesota and eastern South 
Dakota are under water stress while the irrigation fraction (Figure 3a) in these regions are small. 
These suggest that while irrigation and rainfall are not significant water source, the water input 
from perched shallow water table might be the neglected component for the crop model.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure B2. Calibration results for corn rubisco capacity 𝑉C@AF� , ranging from 40 to 100 
𝜇𝑚𝑜𝑙𝑚lF𝑠l¡, using the Ameriflux site Bo1 biomass data in 2001, 2003, and 2005. The 𝑉C@AF� =
60	𝜇𝑚𝑜𝑙𝑚lF𝑠l¡ (black dashed line) is the parameter value used in our regional simulations.  
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Appendix C  
 
This appendix is a part of the chapter 4, including water table depth timeseries from 33 
groundwater wells in the Prairie Pothole Region. 
 
WTD dynamics from observational wells and CTRL model with default soil (DEF, blue lines) 
and replacing default soil with sandy soil (REP, red lines) for the 33 sites in the PPR.  
 
Alberta Environment and Parks 
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Saskatchewan Water Securtiy Agency 
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USGS 
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Appendix D  
 
This appendix is a part of the chapter 5, including supporting information for the description of 
the MESMA method, GAM model, Noah-MP evaluation on snow water equivalent, and water 
balance in the eight ecoregions.  

Text D1. An introduction to the MESMA method 
Three Landsat satellite sensors (Landsat 5 Thematic Mapper [1984 – 2011], Landsat 7 Enhanced Thematic 
Mapper + [1999 – 2019], and Landsat 8 Operation Land Imager [2013 – 2019]) imaged the Smith Creek 
watershed over the study period at a 30 m pixel resolution with a repeat interval of 16 days (8 days if two 
sensors were active). We used Multiple Endmember Spectral Mixture Analysis (MESMA) to estimate the 
proportion of open water cover in each pixel through time. The MESMA process allows endmembers to 
vary on a per pixel basis by selecting from multiple endmembers for one or more cover types enabling 
spectral variability of cover types to vary in space and time. In order to estimate the fractional water cover, 
MESMA iteratively models each pixel’s reflectance spectrum as linear combinations of three ‘open water’ 
and three ‘dry vegetation’ spectral endmembers, for a total of nine different combinations. The best model 
is selected based on minimizing the root mean squared error between the actual and modelled spectrum. 
‘Open water’ and ‘dry vegetation’ spectral endmembers were selected as pixels from Landsat images with 
low probabilities of habitat mixing. These represent spectrally ‘pure’ pixels containing different ‘open water’ 
(clear, turbid, and water with sun glint) and ‘dry vegetation’ (live and dry vegetation, forest) types 
commonly seen in the imagery. We used six spectral bands spanning the visible to short wave infrared 
regions of the reflectance spectrum in the MESMA analysis corresponding to bands 1 - 5 and 7 for Landsat 
5 and 7, and bands 2 – 7 for Landsat 8. The summed fractional cover estimates of ‘open water’ and ‘dry 
vegetation’ were constrained to equal one to remove the effect of shade. All cloud contaminated pixels were 
removed from each image using the quality assessment band supplied with each Landsat image. 
 
To focus our analysis on wetland areas within the Smith Creek watershed and exclude the effects of 
anthropogenic water features in agricultural fields, we employed a two-step classification process.  All 
atmospherically corrected Landsat Level 2 Surface Reflectance image products acquired between April and 
September from 1984 – 2019 were collected from the United States Geological Survey Earth Explorer 
website (earthexplorer.usgs.gov). We then calculated the normalized difference vegetation index (NDVI) 
for all pixels across all images and a produced histogram of NDVI for each pixel. One thousand pixels of 
each class (‘wetland’ and ‘dry vegetation/agriculture’) were randomly selected from the study area and class 
type was confirmed using high resolution imagery in Google Earth. A random forest classifier was then 
trained (Matlab function ‘treebagger’) and each NDVI pixel time histogram was then classified as either 
‘wetland’ or ‘dry vegetation/agriculture’. Pixel classifications were then compared to a DUC CWI-standard 
wetland layer and correctly classified ‘wetland area’ with 88% accuracy and ‘dry vegetation/agriculture’ 
with 77% accuracy. Because there was an order of magnitude greater ‘dry vegetation/agriculture’ pixels 
within the Smith Creek watershed versus ‘wetland’ pixels we employed a secondary classification step to 
further exclude agricultural pixels. Since we would expect ‘wetland’ areas to be completely inundated at 
various points in the time series, we excluded pixels where the MESMA ‘open water’ fraction never 
exceeded 0.7. The overall accuracy of the model was similar with ‘wetland area’ classified with 77% 
accuracy and ‘dry vegetation/agriculture’ with 87% accuracy, however many additional ‘dry 
vegetation/agriculture’ pixels were excluded from further analysis. The fractional cover of ‘open water’ 
within each pixel was assessed for all images using MESMA and the 90th percentile ‘open water’ fractional 
value was recorded for each pixel across each year. Total wetland area was then calculated by summing the 
‘open water’ area for all ‘wetland’ pixels within the Smith Creek watershed for each year from 1984 to 2019. 
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Text D2. Additional details about the Generalized Additive Model of wetland fraction as a 
function of soil water content and ecoregion. 
In this study, we fit the following statistical model: g(E(Fwet)) = s(SWC) + ER. We used a 
binomial distribution and logistic link of wetland fraction (i.e., g(p) = ln(p/(1-p)), a smooth 
function of soil water content (𝑠(𝑆𝑊𝐶)) and included ecoregion (ER) as a factor predictor variable 
in the model to allow for different baseline wetland fractions (or intercepts) among the eight 
ecoregions. The smooth function of soil water content (𝑠(𝑆𝑊𝐶)) had 4.89 effective degrees of 
freedom, which remained stable with increasing basis dimensions (k), and the effect was 
significant (chi-squared value = 16.36 and p = 0.014). Table S1 provides the parameter estimates 
and standard errors for the different ecoregions. Figure S2 plots predicted values of wetland 
fraction over the full range of SWC for each ecoregion, including 95% confidence intervals. 

 

Table D1. Parameter estimates (and standard errors) for the effect of different ecoregions in a 
General Additive Model of wetland fraction as a function of ecoregion and soil water content. The 
Aspen Parkland ecoregion is the reference category in the model and so has no associated 
parameter estimate. 

Ecoregion β (Standard error) 

Boreal Transition 0.20 (0.15) 

Fescue Grassland -1.14 (0.32) 

Mid-Boreal Uplands 0.24 (0.34) 

Mixed Grassland -0.17 (0.12) 

Moist Mixed Grassland 0.085 (0.090) 

Southwest Manitoba Uplands 0.64 (0.36) 

Western Alberta Uplands -2.88 (2.74) 
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Figure D1. Predicted values of wetland fraction, from a General Additive Model, over a range of 
soil water content for eight Canadian ecoregions. 

 

 
Figure D2. Water balance components (mm) for eight ecoregions in the Canadian Prairies for 
spring and summer (from MAM to JJA). Three columns in each term are for CTRL, PGW, and 
their change (PGW-CTRL). P is precipitation, ET is evapotranspiration, SR is surface runoff, G is 
groundwater recharge, and dSM is the net change of soil moisture. 
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Figure D3. Monthly snow water equivalent (mm/month) from CMC snow data (black 
dots) and Noah-MP simulation (blue lines) from 2000 winter to 2013 summer, averaged 
over eight ecoregions in the study domain (ecoregions as in Figure 2) in the manuscript.  

 
 

 
Figure D4. Flowchart of the method and models used in this study. Two rows represent two 
paralleled climate scenarios, CTRL and PGW. Four columns represent the boundary and initial 
conditions for WRF, dynamical downscaling on convection permitting scale using WRF, land-
surface hydrology model Noah-MP, and the statistical GAM model.  
 
 
 
 



 169 

 
Figure D5. 𝐹01$ timeseries in current (CTRL) and future (PGW) climate in the Smith Creek watershed, Saskatchewan. 
The MESMA method represents annual wetland fraction from April to September. The red and blue shading represent 
the seasonal range of 𝐹01$ within the spring (MAM) and summer (JJA) for CTRL and PGW climate. 
 
Text D3 Additional analysis for the Smith Creek watershed, comparing the GAM model 𝑭𝒘𝒆𝒕 
results with the MESMA method. 
Figure D5 shows the annual timeseries of 𝐹01$  in the Smith Creek watershed, in southeast 
Saskatchewan. The average values for 𝐹01$ from April to September are shown for MESMA and 
model-simulated 𝐹01$ under CTRL and PGW climate (mean plus seasonal range for spring and 
summer). The PGW simulation, which represents the pseudo global warming scenario by the end 
of 21st century, is plotted upon the simulation period from 2001-2013 for direct comparison with 
CTRL. The MESMA timeseries from 1984 to 2019 reflects the fluctuations in 𝐹01$ through wet-
dry cycles, showing that wetland fraction in the watershed has fluctuated by more than 5% over 
the past 36 years (equivalent to wetland area varying by 21.7 km2 between the wettest and driest 
years). The modeled 𝐹01$  from CTRL often underestimates the MESMA 𝐹01$  , but generally 
matches the increasing trend observed from the MESMA method for the 13-year period. The 
underestimate of CTRL is less than 0.01 (𝐹01$_CTRL- 𝐹01$_𝑀𝐸𝑆𝑀𝐴) of the 4-km grid cell and 
could be due to differences in resolutions and methods. MESMA detects the fractional open water 
portion within 30-m pixels, whereas the GAM-derived 𝐹01$ from CTRL climate is a function of 
soil moisture content at the 4-km grid scale, reflecting the original CWI depressions. The trend of 
increasing wetland extent observed in both datasets (MESMA and CTRL) from 2001 to 2013 is 
confirmed by field observations of increasing pond (wetland) counts by the Waterfowl Breeding 
Population and Habitat Survey (Ballard et al., 2014). 

The seasonal variation in 𝐹01$ is represented by the blue and red shading for CTRL and PGW 
climate, respectively. The range of 𝐹01$ is driven by the snowmelt infiltration to the soil moisture 
and filling of the surface water storage in spring and the drying in summer due to 
evapotranspiration, indicating strong intra-annual variation. Therefore, it is important to investigate 
𝐹01$ at the seasonal scale. This is especially evident in the spring of 2011, when a record-breaking 
intensive precipitation event occurred and induced flooding (Dumanski et al., 2015; Pattison-
Williams et al., 2018). This results in the highest 𝐹01$ value since 1996 and is well captured by 
CTRL. The 𝐹01$	peak in 2011 in PGW is even larger than in current climate, indicating the 
potential intensification of the hydrological cycle in these wetlands. 
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Figure D6. Water balance analysis for the mixed grassland and the mid-boreal upland region, including precipitation 
– evapotranspiration (first row), groundwater and surface runoff (second row), change of snow by month (third row), 
and change of soil moisture (bars, left axis) and SMC (lines, right axis) (fourth row). Blue and red correspond to the 
CTRL and PGW simulation. The increase of SMC over winter can be explained by the net results of precipitation – 
ET – G – SR - ∆SNOW. Possible snowmelt events through winter contribute to soil moisture increase. 
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Addendum for Chapter 6 – Evident wetland cooling effects to temperature 
relieves heat stress and mitigates climate change 

This addendum is the revision of the original manuscript submitted to Water Resources 
Research in 2021 and Chapter 6. Several modifications have been made, including: 

• Evaluation of single-point simulation at the fen site and regional simulation against 
MODIS satellite data; 

• Investigation of wetlands’ climate interactions with cloud formation as well as boundary 
layer dynamics; 

• Explore the uncertainties between GIEMS-2 25-km data with a high-resolution (30-m) 
Global Surface Water Explorer (GSWE) dataset. 

The original submission to Water Resources Research is as follow: 

Zhang, Z., Chen, F., Barlage, M., Bortolotti, E. L., Famiglietti, J., Ma, X., Li, Z., Li, Y. Evident 
cooling effects of surface wetlands to mitigate climate change – a study of North America Prairie 
Pothole Region. (2021). Water Resources Research.  

 

Abstract 

Wetlands are important ecosystems – they provide vital hydrological and ecological services such 
as regulating floods, storing carbon, and providing wildlife habitat. The ability to simulate their 
spatial extents and hydrological processes is important for valuing wetlands’ function. The purpose 
of this study is to dynamically represent the spatial extents and hydrological processes of wetlands 
and investigate their feedback to regional climate in the Prairie Pothole Region (PPR) of North 
America, where a large number of wetlands exist. In this study, we incorporated a wetland scheme 
into the Noah-MP Land Surface Model with two major modifications: (1) modifying the sub-grid 
saturation fraction for spatial wetland extent; (2) incorporating a dynamic wetland storage to 
simulate hydrological processes. This scheme was evaluated at a fen site in central Saskatchewan, 
Canada and applied regionally in the PPR with 13-year climate forcing produced by a high-
resolution convection-permitting model. The differences between wetland and no-wetland 
simulations are significant, with  increasing latent heat and evapotranspiration while suppressing 
sensible heat and runoff in the wetland scheme. Finally, the dynamic wetland scheme was applied 
in the Weather Research & Forecasting model (WRF). The wetlands scheme not only modifies the 
surface energy balance but also interacts with the lower atmosphere, shallowing the planetary 
boundary layer height and promoting cloud formation. A cooling effect of 1~3℃ in summer 
temperature is evident where wetlands are abundant. In particular, the wetland simulation shows 
reduction in the number of hot days for more than 10 days over the summer of 2006, when a long-
lasting heatwave occurred. This research has great implications for land surface/regional climate 
modeling and wetland conservation, especially in mitigating extreme heatwaves under climate 
change.  
 
Keywords  



 172 

Wetland, Hydrology, Land surface model, Land-atmosphere interaction, Convection-permitting 
model, Climate change mitigation 



 173 

1 Introduction 
Wetlands are important and unique ecosystems that play vital roles in Earth’s ecosystem balance 
and biodiversity. Although wetlands occupy a small portion of the global land surface (~6%), they 
store about one third of terrestrial carbon (Lehner and Döll, 2004; Mitra et al., 2005; Mitsch and 
Gosselink, 2007). Their unique productivity supports a wide variety of plants, birds, and 
amphibians (The Ramsar Convention, 2007). Wetlands are natural reservoirs to prevent flooding, 
especially in high latitude and mountainous regions (Hayashi et al., 2016; Pattison-Williams et al., 
2018). After springtime snowmelt or heavy rainfall, surface runoff can be stored in wetlands, 
effectively reducing the peak flow and delaying the peak time of flooding, hence, mitigating 
flooding impacts.  
In particular, wetlands may influence the regional climate through changing the partition of 
turbulent energy fluxes of sensible and latent heat. These land-atmosphere interactions are 
analogous to soil moisture-temperature and the soil moisture-precipitation feedbacks (Seneviratnes 
et al., 2010). Greater partitioning of latent heat flux over sensible heat flux in wetlands has been 
shown to induce a cooling effect on summer temperature (Bonan, 1995) and reduce daily air 
temperature variability (Hostetler et al. 1993; Houspanossian et al., 2018). Wetlands also provide 
a moisture source for the formation of clouds, reducing solar radiation and atmospheric upwards 
motion, and thus resulting in a shallower planetary boundary layer height (PBLH) (Pal, et al., 
2020). In African wetlands, wetland inundation may suppress local rainfall over wetlands, but 
increase the initiation of convective storms in the upwind direction (the “wetland breeze” effect; 
Taylor, 2010; Taylor et al., 2018). This suppression of precipitation has also been demonstrated in 
a model sensitivity study over the Canadian Prairies, where the accumulated and peak precipitation 
amount decreased with an increase in open water bodies (Joshi et al., 2017).  
Given their importance to global and regional environments, the need to represent wetland spatial 
extents and hydrological processes in earth system models (ESMs) and land surface models 
(LSMs) has emerged in recent decades. From a modeling perspective, wetlands are defined as grid 
cells, or fractions, where the land surface is inundated or saturated. These are usually associated 
with a shallow water table depth. Previous studies have used prescribed wetland maps from remote 
sensing products, for example the Global Inudation Extent from Multiple Satellite (GIEMS, Prigent 
et al., 2007), or land survey data, such as Mathews and Fung (1987) and the Global Lake and 
Wetland Database (GLWD, Lehner and Doll, 2004). Other modeling studies applied 
parameterization schemes to estimate wetland extents. For example, in the Community Land 
Model (Oleson et al., 2008) and Noah-MP LSM (Niu et al., 2011; Yang et al., 2011), grid cell 
saturated fraction was determined by the depth of groundwater, based on the TOPMODEL 
hydrological model (Beven and Kirkby, 1979) and its application in LSMs (Famiglietti and Wood, 
1991, 1994a). In Fan and Miguez-Macho (2012), the authors used a threshold 0.25 m of 
groundwater depth to determine the spatial extent of wetlands.  
On the other hand, large-scale hydrological models and ESMs have incorporated surface water 
inundation schemes to represent the dynamics of lakes, wetlands, and floodplains to investigate 
their impacts on the water cycle and climate system. For example, Yamazaki et al. (2011) 
developed a new global river routing model, CaMa-Flood, to explicitly represent floodplain 
inundation dynamics, based on subgrid topographic parameters. Dadson et al. (2010) employed an 
overbank flow parameterization to the Joint UK Land-Environment Simulator (JULES) LSM to 
simulate wetland inundation dynamics and evaporation loss from the Niger inland delta. The model 
reproduces spatial and seasonal wetland inundation dynamics and river flow and shows the 
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inundation scheme doubling the water vapor fluxes to the atmosphere. The Variable Infiltration 
Capacity model (VIC, Liang et al., 1994) has a dynamic lake and wetland scheme to study the 
impacts of surface water heterogeneity on energy and water balance (Bowling and Lettenmaier, 
2010). Results show that incorporating wetlands increases the annual ET and latent heat fluxes 
while decreasing runoff and sensible heat fluxes in the U.S. Pitman (1991) incorporated a sub-grid 
scheme for water surfaces and their contribution to latent and sensible heat as the weighted average 
over the fraction of water, vegetated and bare ground surface in a coarse resolution (~2°) GCM.  

Despite progress in developing wetland schemes in LSMs, the wetland physics in the Noah-MP 
LSM and its coupled regional climate model, Weather Research & Forecasting (WRF, Skamarock, 
et al., 2008), are still crude. As in many regional climate models (RCMs) and operational weather 
models, wetlands are treated as a land cover type with static parameters in WRF. Moreover, there 
is no wetland storage in Noah-MP, so that the simulated surface runoff will leave the model grid 
instantly. In reality, wetland depressions actively collect surface runoff from snowmelt/rainfall and 
allow interaction with the atmosphere. Therefore, a dynamic wetland scheme, incorporating both 
sub-grid energy and water balance, is needed to represent the complex hydrological processes in 
prairie wetlands and their potential feedback to the atmosphere. 

This study was conducted over the Prairie Pothole Region (PPR) in North America where 
numerous small wetlands exist over a large spatial extent and play important roles in regional 
hydrology, ecology and climate. There were two objectives: (1) improve the representation of 
wetland extents and hydrological processes in the Noah-MP LSM and (2) explore the impacts of 
wetlands on the regional climate, especially the wetland-temperature feedback, in a high-resolution 
convection-permitting regional climate model (CPRCM, Prein et al., 2015). For the above 
purposes, this paper is organized into the following sections: The study region, data materials, and 
newly proposed wetland scheme are introduced in section 2, Materials and Methods. Three sets of 
simulations are conducted with the new wetland schemes in Noah-MP, including single-point 
simulations at a fen site, regional offline simulations, and coupled WRF (Skamarock et al., 2008) 
simulations in the PPR, and their results are shown in section 3 Results. Then,  these results are 
discussed with other similar model studies in section 4 Discussion, focusing on the cooling effect 
of wetlands. The section 5 Conclusion provides a summary of the study and ending remarks.   
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2 Data and Methods 
2.1 Study region – Prairie Pothole Region 

The Prairie Pothole Region (PPR) is in the center of North America, covering about 770,000 𝑘𝑚F 
across Canada and the U.S. Figure 1 presents the topography of the PPR, whose boundary is 
outlined by a solid black line. Millions of small wetland depressions, also known as “potholes”,  
exist in the PPR, as a result of continental ice sheets retreating over 11,000 years ago, which left 
behind uneven glacial deposition upon the landscape (La Baugh et al., 1998; Pomeroy et al., 2005). 
These depressions are isolated from large river networks and are poorly hydraulically connected 
(Pomeroy et al., 2010). The cold winters allow snow to accumulate over cold seasons, accounting 
for about one third of annual precipitation, and snowmelt runoff is a major water input to these 
wetlands (Dumanski et al., 2015). Over the warm season, evaporation exceeds precipitation, drying 
surface water and exposing the underlying soils. The persistence and storage of wetland ponds 
depend on receiving seasonal rainfall and connection with shallow groundwater (Hayashi et al., 
2016). Under extremely wet conditions, surface runoff by strong rainfall or sudden snowmelt 
exceeds the maximum capacity, spilling water to other surrounding wetlands, and form a largely 
connected wetland complex through the “fill-and-spill” process (van der Kamp and Hayashi, 2009; 
Mekonnen et al., 2014; Vanderhoof et al., 2018).  

A fen site (53.802°N, 104.618°W; red triangle in Figure 1) from the Boreal Ecosystem Research 
and Monitoring Sites (BERMS) is selected to test the new wetland scheme in this study. 
Observation measurements of wind, temperature, humidity, pressure, precipitation, solar and 
longwave radiation were used as meteorological forcing to drive the Noah-MP model in a single-
point simulation. Latent (LH) and sensible (SH) heat fluxes measured by eddy covariance system 
are used to evaluate single-point model results. Moreover, to evaluate the wetlands’ impacts on 
regional climate, in-situ station measurements of daily tempature and precipitation data, in total 
3095 stations, from the Global Historical Climate Network (GHCN) have been obtained. Their 
locations are shown in black dots in Figure 1. 

 
Figure 1. Topography of the Prairie Pothole Region (PPR) in North America. The black line shows the boundary of 
the PPR. The red triangle in Central Saskatchewan represents the location of the  fen validation site. Black dots show 
the locations of 3095 stations from the Global Historical Climate Network (GHCN). 
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2.2 Data 
In this study, the Global Inundation Extent from Multiple Satellites-2 (GIEMS-2, Prigent et al., 
2019) dataset is used to prescibe the wetland spatial extents and seasonal dynamics in the PPR. The 
GIEMS-2 dataset is an extension of the unique GIEMS dataset which uses a collection of satellite 
sensors to provide estimates of surface water extent and dynamics at the global scale (Prigent et al., 
2007; 2012). Such estimates use both passive and active microwave measurements, along with 
visible and near-infrared reflectance to capitalize on their complementary strengths, to extract 
maximum information about inundation characteristics, and to minimize problems related to one 
instrument only. The GIEMS-2 data provide monthly-mean inundated fractions of equal-area grid 
cells (0.25°x0.25° at the equator) from 1992 to 2015, covering 24 years of global inundation 
dynamics. The GIEMS and GIEMS-2 remote sensing product have been evaluated extensively 
over the globe (Papa et al., 2010) and used to evaluate simulated wetland fraction in ESM 
intercomparison studies (Ringeval et al., 2011; Melton et al., 2012). Figure 2 presents the maximum 
inundation extent, seasonality (month of inundation), and month of maximum inundation from 
GIEMS-2 in PPR. 
 

 
Figure 2. Spatial distribution of (a) the maximum inundation extent, (b) seasonality (month of 
inundation) and (c) month of maximum inundation in	the	PPR	(black	outline)	from	the	GIEMS-
2	data.  
 
A CPRCM simulation over the Contiguous U.S. (CONUS WRF, Liu et al., 2017) is used to provide 
long-term (13-year) high-resolution (4-km) meteorological forcing for regional offline simulations. 
Convection-permitting models (CPMs) are atmospheric models whose grid spacing is fine enough 
(usually < 5-km) to permit convection and resolve mesoscale orography (Rasmussen et al., 2011; 
Prein et al., 2015; Liu et al., 2017). Long-term high-resolution climate downscaling using CPMs 
provides important added value to improve precipitation forecasts, which is critical to surface 
wetland hydrology, as well as for resolving fine-scale land surface heterogeneity (Kenden et al., 
2017).The CONUS WRF data has been extensively evaluated and applied in multiple climate, 
hydrology, and land surface studies (Zhang et al., 2018, 2020; Fang et al., 2021).  
 
To evaluate the offline Noah-MP simulation at the regional scale, two remote sensing datasets from 
MODIS Terra satellite are used, including land surface temperature (LST, MOD11) and 
evapotransporation (ET, MOD16). The Terra satellite passes above the PPR twice a day at about 4 
and 18 hour UTC, representing the LST for nightime and daytime respectively. The MODIS 
satellite datasets were obtained from NASA Earthdata Search Engine 
(https://search.earthdata.nasa.gov/search).The Gravity Recovery And Climate Experiment 
(GRACE) satellite provides Terrestrial Water Storage (TWS) for global coverage from 2002 to 
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2017, at monthly interval for 1° x 1° resolution. The GRACE TWS data were used to evaluate the 
Noah-MP-simulated water storage for the whole wetland-soil-groundwater column in the PPR.  
 
2.3 Surface water and energy partition scheme in Noah-MP LSM  
The Noah-MP LSM adopts a runoff scheme to estimate a subgrid saturated fraction and surface 
water partition based on the TOPMODEL (TOPography based hydrological MODEL, Beven and 
Kirkby, 1979; Beven et al., 2020). This method assumes the sub-grid representation of grid cell 
saturation, 𝐹"#$, is based on a redistribution of water table depth, given the topographic variations 
in the grid cell. The 𝐹"#$ fraction is an important parameter in partitioning surface water using the 
saturation runoff mechanism and was first integrated into a Soil-Vegetation-Atmosphere Transfer 
Scheme (SVATS) at local-, catchment-, and large-scale model by Famiglietti and Wood (1994a&b). 
In Noah-MP, the 𝐹"#$ portion of the available surface water from rainfall and snowmelt (𝑄YP"Å)m) 
becomes surface runoff (𝑅")m), which is a loss term leaving the grid cell, and the remaining (1-𝐹"#$) 
portion becomes infiltration (𝑄YPmY(). In Niu and Yang (2005), 𝐹"#$ is estimated by an exponential 
function of the water table depth (𝑍∇, equation (3)) and has been utilized in the Noah-MP LSM 
(Niu et al., 2011; Yang et al., 2011). 𝐹"#$@A is the maximum saturated fraction in a grid cell derived 
from digital elevation model (DEM). 
 

𝑅")m = 𝑄YP"Å)m ∗ 𝐹"#$					(1)	
𝑄YPmY( = 𝑄YP"Å)m ∗ (1 − 𝐹"#$)				(2)	

𝐹"#$ = 𝐹"#$@A ∗ 𝑒𝑥𝑝	(−0.5 ∗ 𝑓 ∗ (𝑍ô − 2))				(3)	
 
This TOPMODEL-based 𝐹"#$  framework is also widely used in the NASA GISS land surface 
model (Stieglitz et al., 1997) and the NASA Catchment Land Surface Model (CLSM, Koster et al., 
2000; Bechtold et al., 2018). 
 
The energy balance in Noah-MP is calculated separately for two sub-grid semitiles: a fractional 
vegetated area (𝐹 1/) and a fraction bare ground area (1-𝐹 1/). In this semitile scheme, shortwave 
radiation transfer is computed over the entire grid, while longwave radiation, sensible and latent 
heat flux, and ground heat flux are computed separately over these two tiles. As such, these two 
tiles in a Noah-MP grid neglect the large extent and seasonal variability of open-water wetlands. 
The total LH and SH of these two semitiles are aggregated in a weighted function: 
 

𝐿𝐻 = 𝐹 1/´𝐿𝐸/¸ + 𝐿𝐸¸µ + (1 − 𝐹 1/)𝐿𝐸/z		(4)	
𝑆𝐻 = 𝐹 1/´𝑆𝐻/¸ + 𝑆𝐻¸µ + (1 − 𝐹 1/)𝑆𝐻/z										(5)	

	
Where the subscript v represents the vegetation canopy, gv is ground under canopy and gb is the 
bare-ground flux. 
	
However, the above water and energy balance setting does not reflect dynamic water movement in 
prairie wetlands. These wetland depressions actively receive surface water from snowmelt and 
rainfall, but there is no surface water storage process in Noah-MP, so that the simulated surface 
runoff component will leave the model grid. Additionally, this setting further neglects the latent 
heat flux/evaporation contribution from the wetland surface to the atmosphere. Therefore, the 
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deficiency of current TOPMODEL-based 𝐹"#$  parameterization in estimating surface saturation 
extents will be demonstrated and an updated method will be proposed in the next section.  
 
2.4 Modifying 𝐹"#$ fraction to represent wetlands  
The original TOPMODEL-based 𝐹"#$, based on an exponential function of water table depth, does 
not reasonably reflect the magnitude and seasonal variation of wetland extent in the Prairies. Figure 
3 shows the temporal evolution of the inundation fraction from GIEMS and Noah-MP simulated 
𝐹"#$ fraction in the PPR from 2000 to 2014. It is clear that the modeled 𝐹"#$ has underestimated 
the maximum extent while overestimating the minimum extent. This is for two reasons: (1) the 
parameter 𝐹"#$@A is a fixed value (0.38) for the global mean; and, (2) the seasonally frozen soil and 
glacial till with low hydraulic conductivity prevent direct groundwater connection with surface 
water, hence the water table dynamic is not a good indicator of surface water extent in the PPR. 
Detailed reasons for this discrepancy are provided in the discussion section.   
 

 
Figure 3. Temporal evolution of the inundation fraction from GIEMS and Noah-MP modelled 
𝐹"#$  in the PPR (regional average for 𝐹"#$@A > 0.1).  
 
Therefore, we propose a new formula for the saturated fraction 𝐹"#$, based on the first layer soil 
saturation, instead of water table depth: 
 

𝐹"#$ = 𝐹"#$@A ∗ (
TVùúlTûüýå
Tû�ãÞlTûüýå

)			(6)	

 
The first layer soil moisture (𝑆𝐻F𝑂) responds more rapidly to surface hydrological processes, such 
as snowmelt infiltration and evapotranspiration, than groundwater level. 𝐹"#$ is determined by the 
maximum saturated fraction (𝐹"#$@A) and a relative soil moisture saturation condition, normalized 
by the soil moisture wilting point (𝑆𝑀0($) and field capacity (𝑆𝑀)1m). This method assumes the 
mean soil moisture saturation in the first layer soil can empirically represent spatial heterogeneity 
of soil saturation at the sub-grid scale.   
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2.5 Implementing the surface wetland storage scheme  
In this study, we incorporate a sub-grid bucket-style surface water storage scheme to represent 
three important hydrological processes in Prairie Pothole wetlands: (1) The surface runoff from 
snowmelt and rainfall becomes the inflow to surface water storage (𝑄YPm(]0). The water in surface 
wetlands evaporates to the atmosphere at the potential rate, calculated by the Priestley-Tayer 
equation (9). The outflow is a result of total water exceeding the maximum water storage (𝑊C#D), 
representing the “fill-and-spill” process. Note this wetland storage scheme is not connected to other 
wetland storage or a river network, so that the outflow term will leave the grid point and is lost to 
the water balance, similar to the runoff term in the default Noah-MP. The change of surface water 
storage (∆𝑊"Å)m) is calculated by the net balance of inflow, evaporation, and outflow in equation 
(11). The contribution to the latent heat flux is calculated as a weighted average over all three sub-
grid types in equation (12), similar to the treatment in Pitman (1991). The sensible heat flux is 
calculated as the residual term from the energy balance equation. 
 

𝑄YP"Å) = 𝑄"P]0@1($ + 𝑄)#YP			(7)	
𝑄YPm(]0 = 𝑄YP"Å) ∗ 𝐹"#$								(8)	
𝑄1¸#D = 𝛼 @(!"l0)

%&(@Î')
							(9)	

𝑄]Å$m(]0 = 𝑚𝑎𝑥(𝑄YPm(]0 −𝑊C#D, 0)			(10)	
∆𝑊"Å)m = 𝑄YPm(]0 − 𝑄1¸#D ∗ 𝐹"#$ − 𝑄]Å$m(]0				(11)	

𝐿𝐻#(( = (1 − 𝐹"#$)(𝐹 1/´𝐿𝐸/,¸ + 𝐿𝐸¸µ + (1 − 𝐹 1/)𝐿𝐸/,z) + 𝐹"#$ ∗ 𝑄1¸#D𝜆¸(12)	
 
Figure 4 illustrates the difference between the default Noah-MP and the new surface wetland 
scheme in this study. The left-hand side shows the default Noah-MP surface runoff scheme based 
on the TOPMODEL saturation-excess concept. The inflow from rain and snowmelt (𝑄YP"Å)) will 
be partitioned into infiltration (in the 1-𝐹"#$ portion), which enters soil moisture, and to surface 
runoff (in the 𝐹"#$ portion), which eventually leaves the grid cell. The right-hand side shows the 
two modifications in our study: (1) the modified 𝐹"#$ parameterization based on first layer soil 
saturation; (2) creating a surface water storage 𝑊C#D representing surface wetland dynamics. The 
𝐹"#$  portion of the inflow will now be collected within the 𝑊C#D  storage and evaporate to the 
atmosphere with a weighted function. The water amount exceeding the maximum capacity will 
become the outflow from the wetland (also referred to as the new runoff term, 𝑅")m). 
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Figure 4. Simple diagram demonstrating the modifications in this study, which includes the 
modification of surface saturated fraction and incorporating a surface wetland storage scheme in 
the Noah-MP Land Surface Model.  
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2.6 Simulation design 
Three sets of numerical simulations are conducted to study the impacts of representing wetlands 
on the simulated energy and water balance in the Noah-MP LSM, as well as feedback to the 
regional climate in the coupled WRF model. A summary of these three simulations is in Table 1.  
 
The first set of simulations was conducted at the fen site in central Saskatchewan. The 
meteorological forcings were wind, temperature, humidity, pressure, precipitation, solar and 
longwave radiation from a tower measurement. The purpose of this simulation was to evaluate the 
improved estimation on the 𝐹"#$ fraction and ET and explore the sensitivity of maximum storage 
(𝑊C#D) in the wetland scheme. A variety of 𝑊C#D levels were selected to demonstrate the impacts 
of different wetland capacity on simulated energy/water balance at the fen site.  
 
The second set of simulations was at the regional scale in the PPR, driven by the 4-km WRF 
regional climate simulation (CONUS WRF, Liu et al., 2017). The purpose of this offline simulation 
was to investigate the wetland scheme over the PPR, focusing on its impacts on energy and water 
balance at a regional scale. In this regional simulation, we constrain the maximum 𝐹"#$@A by the 
GIEMS-2 data and the maximum surface water storage capacity 𝑊C#D by the 90-m DEM (MERIT, 
Yamazaki et al., 2017, http://hydro.iis.utokyo.ac.jp/~yamadai/MERIT_DEM/). Figure 5 presents 
the spatial map of 𝐹"#$@A from GIEMS-2 data and 𝑊C#D derived from the MERIT 90-m DEM and 
aggregated to a 4-km resolution grid:  
 

𝑊C#D = ∑ 𝑚𝑖𝑛	((𝐻Y − 𝐻w), 0)P
Y)¡ 				(13)	

	
𝐻Y  represents the 90-m elevation and 𝐻w  is the mean elevation for a 4-km grid, such that 𝑊C#D 
represents the collective topographical variation in the depressional area from 90-m DEM and 
aggregated into the 4-km grid. The high 𝐹"#$@A  regions are located in the Northeast part of the 
domain, near Lake Winnipeg in Manitoba and the Red River Valley. These regions also correspond 
with the low 𝑊C#D  regions.  
 
 

 
Figure 5. Map of maximum saturation (𝐹"#$@A) and wetland storage capacity (𝑊C#D) in the Prairie 
Pothole Region, derived from the Global Inundation Extent from Multiple Satellites (GIEMS-2) 
product and MERIT 90-m DEM, respectively. 
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The third set of simulations was the coupled WRF regional climate simulation for the summer of 
2006. This was to investigate the impacts of wetland dynamics on regional climate, in particular 
under a high-resolution convection-permitting configuration. It is noteworthy that in the summer 
of 2006, an intense and prolonged heatwave occurred in the Central U.S. and Southern Canada 
from mid-July to early August. Two simulations were conducted: the default simulation (DEF) 
uses the TOPMODEL-based runoff scheme (Niu et al., 2005) and the wetland simulation (WS) 
uses the updated wetland scheme in this study. Moreover, the model sensitivity to two groundwater 
schemes was also investigated for the Simple Groundwater Scheme (SIMGW, Niu et al., 2007) 
and the shallow groundwater scheme from Miguze-Macho and Fan (MMF-GW, Miguze-Macho et 
al., 2007). Please see Supporting Information for detailed results for these two GW schemes.  
 
Table 1. Summary of the three sets of simulations conducted in this study. 
Simulation design Location Period Purpose 
Single-point Noah-MP Fen site, 

SK 
2003/01/01-
2010/12/31 

Examine the sensitivity of 𝐹"#$ 
formula and different levels of 
storage 

Offline regional 
Noah-MP 

PPR 
region 

2000/10/01-
2013/10/01 

Incorporate spatially varied 
𝐹"#$@A and 𝑊C#D parameters in 
the PPR 

Coupled regional 
WRF 

PPR 
region 

2006, summer from 
Apr to Aug 

Conduct coupled WRF-
NoahMP-Wetland simulation 
and study the feedback to 
temperature 
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3 Results 
3.1 Implementation and sensitivity tests on a single-point LSM 
We first performed a single-point LSM simulation at the fen site in Central Saskatchewan. A 
sensitivity test was performed with the updated wetland scheme with various storage capacities 
(𝑊C#D=0, 5, 50, 500 mm). Figure 5 shows the sub-grid 𝐹"#$ fraction, energy and water balance at 
the fen site simulated by Noah-MP, evaluated against the GIEMS-2 timeseries and in-situ 
measurement. Due to the scale difference between GIEMS-2 data and the fen site observations, we 
selected the closest grid point from the GIEMS-2 data and surrounding eight grid points to the fen 
site for this comparison. In Figure 6a, the default 𝐹"#$ formula using the exponential function of 
the water table depth fails to represent the large magnitude and strong seasonal variation, as shown 
by the GIEMS-2 data. The modified formula using the first layer of soil moisture improves both 
the magnitude and seasonal cycle of the 𝐹"#$, while different capacity levels have little influence 
on the 𝐹"#$ . By increasing the 𝐹"#$  fraction and incorporating different storage capacity, the 
modeled ET increases, accounting for the evaporation contribution from wetland surface water 
(Figure 6c). Correspondingly, the modeled sensible heat fluxes decrease as water storage capacity 
increases (Figure 6d). As a result, the modeled Bowen ratio (SH/LH) also decreases, as more 
energy was partitioned into latent heat fluxes over sensible heat fluxes (Figure 6b).  
 
Given different capacity levels, WS=0 demonstrates the driest case with the smallest ET, highest 
SH, and largest Bowen ratio. This is because even with the 𝐹"#$ increasing, a larger amount of 
surface water is partitioned into runoff, but not collected by the wetland (WS=0), neglecting the 
surface water evaporation. By increasing the storage capacity, ET and latent heat fluxes are 
enhanced while sensible heat fluxes are suppressed (WS=5 and WS=50). With large storage 
capacities (WS=50 and WS=500), the summer evaporation demand cannot sufficiently dry out all 
water from the wetland, so the contribution to ET was the same for these two storage levels. 
Compared to the observations from the fen site, the WS=5 simulation provided the best estimate 
of ET, and although slightly underestimating SH, had the best estimation of Bowen ratio for 
partitioning surface energy at the wetland surface. 
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Figure 6. Single-point simulation at the fen site. (a) surface saturated fraction from default (DEF) 
and wetland scheme with different capacities (WS=0, 5, 50, 500 mm) and GIEMS-2 inundation 
extent, (b) Mean Bowen ratio from observation, default model and different WS simulations with 
one standard deviation error bar (c) scatter plot of monthly ET from DEF and WS models against 
observation; (d) same as (c) but for SH. A black 1:1 line is shown in both (c) & (d) for reference.   

 
3.2 Offline simulation over the PPR 
Two 13-year offline Noah-MP simulations were conducted: one with the default setting and one 
with the new wetland scheme. Three aspects of the model simulations were evaluated, including 
the terrestrial water storage (TWS) against the GRACE satellite data, the land surface temperature 
(LST) and evapotransporation (ET) against the MODIS Terra satellite data. Figure 7 shows the 
TWS trend from the GRACE satellite and Noah-MP model in the PPR. Over the 15-year GRACE 
period, the south PPR has experienced an increasing trend of around 15~30 mm/year (Figure 7a). 
This increasing trend is also shown by the timeseries in Figure 7b, together with results from two 
Noah-MP simulations. The annual cycle of the TWS anomalies are shown in Figure 7c. Both Noah-
MP simulations reasonably capture the increasing trend and annual cycle of the TWS. However, 
the DEF simulation shows smaller seasonal variation than GRACE TWS. On the other hand, the 
WS simulation produces higher TWS from spring to summer than DEF, which matches better with 
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the GRACE data. This increase in TWS can be attributed to the implementation of the wetland 
scheme, which collects inflow from snowmelt and rainfall, increasing the surface water storage, 
while decreasing surface runoff.    
 

 
Figure 7. (a) spatial distribution of the anomaly trend for GRACE Terrestrial Water Storage (TWS) 
in the Prairie Pothole Region; (b) timeseries of TWS anomalies from GRACE, default (DEF) and 
wetland scheme (WS) simulations; (c) annual cycle of TWS anomalies. 
 
Figure 8 demonstrates the effect of the wetland scheme on monthly ET compared to DEF and their 
evaluation against the MODIS Terra satellite over the PPR. The domain spatial plots are 13-year 
averages for May, June, July and August. The scatter plot is for the spring and summer months for 
the whole 13-year period (78 months). The increased ET from WS simulation mostly concentrates 
on the northeast domain, where 𝐹"#$@A are the highest (Figure 5), by about 20~40 mm/mon. As 
compared to the MODIS ET data, both DEF and WS simulations present overestimation in spring 
months (MAM) and underestimation in summer months (JJA). The increased ET in WS simulation 
improves the underestimation of ET in summer months compared to DEF, while also contributes 
to much overestimation in spring months. Overall, the WS simulation is more comparable to (77.12 
mm/mon) the MODIS ET data (80.01 mm/mon) than the DEF simulation (72.17 mm/mon). 
 

 
Figure 8. Differences in ET from wetland scheme (WS) and default (DEF) simulations (WS-DEF) 
from May to August (13-year average) and their scatter plot against the MODIS ET data in spring 
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and summer months. Two linear regression lines are fitted for the DEF (blue) and WS (red) 
simulation and a 1:1 line (black). 
 
Figure 9 shows the bar plot for regional average LST at daytime and nighttime from May to August 
in the PPR. The DEF simulation shows substantially warmer LST than the MODIS data, especially 
in July by more than 6 ℃ in the daytime. The enhanced ET and suppressed SH effect from the 
wetland scheme creates a cooling effect on LST for both daytime and nightime in all months 
compared to DEF. The cooling effect is stronger in the daytime (~3℃) than the nighttime (~1℃), 
contributing to reduced warm biases in the WS simulation (Day: 0.78℃; Night: 2.16℃) than in 
DEF simulation (Day: 3.57℃; Night: 2.69℃) relative to MODIS. 
 

 
Figure 9. Barplot of land surface temperature (LST) from MODIS data, default (DEF), and wetland 
scheme (WS) simulations from May to August in (a) daytime and (b) nighttime.  
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3.3 Regional climate simulation with coupled wetland dynamics 
To study the feedback from wetlands to regional climate, we performed two coupled WRF-wetland 
simulations for the summer of 2006. Our analysis focused on wetlands’ cooling effect on 
temperature from May to August, especially in 2006 when an intense summer heatwave occurred 
from mid-July to early August in the Central U.S. and Southern Canada.  
 
Figure 9 shows the monthly temperature biases from two simulations, and the cooling effect 
induced by the WS scheme in 2006. In the DEF simulation, it is clear that a warm bias exists in the 
southern part of the domain, ranging from more than 4℃ in the Central U.S. to 1℃ in the Western 
Canadian Prairies. This warm bias is stronger in July and August. The WS simulation shows a 
significant cooling effect in the Northeast portion of the domain, where the saturated fraction is 
high. The cooling in temperature ranges from less than 1℃ in May to about 1~2℃ in July. This 
cooling signal is evident in high-𝐹"#$ regions from May to August. 
 

 
Figure 10. Monthly temperature biases from default (DEF) and wetland scheme (WS) simulations 
agasint GHCN station observation, and the cooling effect (WS-DEF) in the summer (May-August) 
of 2006. 
 
In the summer of 2006, a record-breaking heatwave hit much of the U.S. and Southern Canada. 
The extreme heat conditions can be represented by the number of “hot days” during the summer, 
with the daily maximum temperature (Tmax) exceeding the 90th percentile (TX90) of the 30-year 
climatology. We calculated the number of hot days from May to August in 2006 from station 
observations and two simulations and the results are presented in Figure 11. Through these four 
months, the hottest region is in the southeast of the domain in South Dakota, Nebraska, and 
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Wyoming – with more than 30  hot days – while in the Canadian Prairies, there are about 10~20 
hot days. The DEF simulation demonstrates significant overestimation of hot days in the U.S. 
Midwest and Southeast PPR, with 8~30 days more than in observation data. The WS simulation 
shows that wetlands could effectively reduce the hot days by about 10~15 days in the entire domain, 
and it reduces the overestimation of hot days in the southern domain while overcooling in the 
Canadian Prairies. Two regions, including southern Manitoba and the area between Nebraska and 
Iowa, receive greater impacts from wetlands. The timeseries of regional average Tmax also shows 
a consistent cooling of 1~2 ℃ through the summer period. These results demonstrate the important 
role of wetlands in mitigating climate change, especially in extreme heat events.   
 

 
Figure 11. Number of hot days in default (DEF), wetland scheme (WS) simulations, and the 
reduction in hot days from WS to DEF, as well as the timeseries of Tmax in the summer of 2006 
from these two simulations and observation data. OBS is from the station temperature from 
GHCN network and TX90 represents the 90th percentile threshold to define extreme hot days.  
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Figure 12 shows the differences in model-simulated clould fraction (WS-DEF) for 2006, two cross-
sections are also provided at 52°N and -95°W. Through the summer of 2006, increased cloud 
fraction by the wetland scheme is evident for up to 0.1 in the Northeast of the PPR domain and is 
strongest in May. Vertically, this enhanced cloud fraction emerged below 1000 m in the lower 
troposphere. Conversely, the wetland scheme produces less cloud in the middle troposphere, 
roughly 7000 m in height. These results suggest that incorporating wetland storage in the WS 
simulation not only modifies surface energy and water balance, but also impacts cloud formation 
in the lower troposphere.  

 
Figure 12. Differences in cloud fraction from wetland scheme-default in May, June, July and 
August in 2006. Two vertical cross-sections of cloud fraction are shown at 52°N and -95°W. 
Upper, middle and lower roughly correspond to 15000, 7000, and 1000 m in height. 
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Figure 13 shows the differences in midday boundary layer height (∆PBLH) and soil moisture (∆SM) 
from the two simulations (WS-DEF). There is a significant negative correlation between ∆PBLH 
and ∆SM that is more evident in July and August. The WS simulation clearly reduces the midday 
PBLH occuring in these four months in 2006, ranging up to 800 m shallower than the DEF 
simulation. The greater reductions in PBLH are associated with wetter conditions in SM. This 
analysis further adds evidence to the wetland scheme modifying surface energy partitioning, 
suppressing boundary layer height at midday. On the other hand, the differences in ∆SM between 
the two simulations are not as obvious as the differences in ∆PBLH. Our study also found that 
precipitation differences in these two simulations are spatially heterogenous, with ~ 2 mm/mon 
more precipitation in the WS regional average. This change is not large enough to conclude there 
is a positive SM-precipitation feedback for the region due to high variability of precipitation (See 
supporting information).   

 

Figure 13.  Scatter plot of ∆PBLH and ∆SM are shown from the differences between WS and DEF simulation for May, 
June, July and August in 2006. Color represents the density of samples, red means data samples are more converged 
and blue means data samples are sparse. Linear repressions were performed with Pearson’s correlation coefficient and 
Student’s t-test P-value in the top right corner for each month. 
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4 Discussion 
Reasonable representations of sub-grid saturated fraction for wetland spatial extents and runoff 
generation processes for dynamic water storage are challenging in light of data scarcity, coarse 
model resolution, and insufficient understanding of the physical processes (Ringeval et al., 2012). 
Traditional TOPMODEL-based parameterization fails to represent highly variable Fsat seasonal 
cycles, as we showed in Section 2.2. Here we provide three possible reasons for the discrepancy 
between TOPMODEL 𝐹"#$ and the inundation dynamics from GIEMS-2 data. (1) The underlying 
assumption of the TOPMODEL method requires  “steady state” precipitation and soil moisture 
heterogeneity, which is more likely in wet, relatively shallow soils on moderate slopes (Beven and 
Kirkby, 1979; Kirkby et al., 2021). However, this is not the case in the Prairie Pothole Region, 
where the climate is usually semi-arid and the large-scale topography is flat with small-scale 
variation. (2) Another possible reason for this discrepancy is that the TOPMODEL method 
calculates a critical topographic index value when the local water table is at the surface. However, 
in the PPR, frozen soils in wintertime prevent interaction between the soil moisture and 
groundwater (Ireson et al., 2013). (3) The inadequency stems from the scale differences between 
regional-scale land surface simulation and the catchment-scale hydrological study, where 
TOPMODEL was originally developed.  
 
In our modification of the 𝐹"#$ formulation, we used the first layer of soil saturation to indicate the 
sub-grid saturation fraction. This method assumes the grid cell mean soil moisture saturation can 
be translated into a spatial fraction for surface saturation, which further plays an important role in 
the saturation runoff mechanism. This positive correlation between soil moisture and surface runoff 
is highlighted in Ghajarnia et al. (2020) and Ghajarnia et al. (2021, under review), in which the 
authors studied this close covariation from multi-catchment data across Europe and the globe, 
repectively. In these studies, the authors found that there is a strong correlation between soil 
moisture and runoff exihibited in independent observations and re-analysis data, but that fails to 
manifest in ESM data. Moreover, we also incorporate a spatially varied maximum 𝐹"#$@A map 
from the GIEMS-2 product to replace the default global mean value (0.38) in Noah-MP and WRF. 
Both modifications improve the spatial heterogeneity and the temporal dynamics of wetland 
extents in the PPR. 
 
The wetland scheme in this study sufficiently modified the surface energy and water partition in 
prairie wetlands, showing increased  ET with decreased surface runoff and an increase in LH with 
decreased SH. This finding aligns with our expectations, as well as with previous VIC model 
wetland and lake simulations in the U.S. Midwest region (Mishra and Cherkauer et al., 2010) and 
a floodplain modeling study in the Niger river delta (Dadson et al., 2010). 
 
One  highlight of this study is the wetland cooling effect on atmospheric temperature. Previous 
studies have documented this effect in detail,  specific to different wetland characteristics and 
dominant vegetation types (Pitman, 1991; Bonan, 1995). The cooling effect shown in the wetland 
simulation is not only due to modified surface energy partition, enhancing latent heat while 
suppressing sensible heat, but also the result of land-atmosphere interactions, involving boundary 
layer dynamics and cloud formation, which is analogous to the soil moisture-temperature feedback 
(Seneviratne et al., 2010). That inundated conditions are associated with shallow boundary layer 
height and smaller daily temperature range has been also demonstrated in an observational study 
in Mississippi and Missouri River flooding (Pal et al., 2019) and the long-lasting floods in the 
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Pampas (Houspanossian et al., 2018). A previous study using WRF with a prescribed soil moisture 
threshold to indicate wetlands in the Great Plains at coarser resolution (12-km) also showed a 
temperature cooling effect, but the precipitation effect was negligible (Capehart et al., 2012). The 
wetland cooling effect, especially during extreme heatwave events, echoes a previous study in the 
Central U.S. where antecedent soil moisture could effectively reduce the frequency, intensity, and 
duration of extreme heatwaves (Zhang et al., 2018).  
 
The simulated warm temperature biases associated with dry soil moisture conditions is a long-
standing issue in modeling the summer climate in Central U.S. (Cheruy et al., 2014; Klein et al., 
2006; Liu et al., 2017; Mueller & Senevirnatne 2014). Efforts have been dedicated to improve the 
representation of shallow groundwater in the MMF-GW scheme (Miguez-Macho et al., 2007), in 
which groundwater closely connects with soil moisture and provides a moisture source to ET and 
precipitation recycling, hence cooling the atmosphere (Barlage et al., 2021). Our study presents an 
alternative solution to mitigate the warm biases in the PPR, where surface wetland contribution to 
ET is non-negligible. However, the combined cooling effect of the MMF-GW scheme and the WS 
scheme is too strong, inducing cool biases in the Canadian Prairies (See Supporting Information). 
Moreover, the wetlands’ impacts on regional precipitation in the PPR (~ 2 mm/mon increase) is 
not as strong as the precipitation recycling shown in applying the MMF-GW scheme in the Central 
U.S. (~10 mm/mon). This may be because the PPR is further north than the Central U.S., which is 
characterized as one of the coupling "hot spots" for soil moisture-precipitation feedback (Koster et 
al., 2004). 
 
This study approach has some limitations. For example, there is uncertainty in prescribed wetland 
maximum extents from GIEMS-2 data. Aires et al. (2018) compared three high-resolution global 
inundation datasets, including two from visible satellites at 30-m, Global Surface Water Explorer, 
(GSWE) and Global 3 arc-second Water Body Map (G3WBM), and one downscaled product from 
GIEMS (GIEMS-D3) at 90-m. The advantages of the GIEMS method is that the multi-sensor 
technique minimizes limitations from single instruments, for example under vegetation canopy and 
cloudy conditions. The disadvantages of the GIEMS dataset is its low original resolution (25-km) 
which may underperform at detecting small water bodies. Although it has been widely used in 
prescribing wetland extents (Ringeval et al., 2012) and analysis of wetland-precipitation feedbacks 
(Taylor et al., 2018) at regional and global scales, it was challenging to apply at the single-point 
fen site. We compared the discrepancies between inundation fraction from GIEMS-2 and GSWE 
(aggregated to different resolution) and showed that GIEMS-2 data may overestimate surface water 
extent on water-saturated soils compared to GSWE data, while their seasonality are similar (see 
Supporting information). Although uncertainties exist for using different remote sensing product 
to prescribe maximum wetland extents, it would not change the main conclusions from this study. 
A final notable limitation is that different types of wetlands have distinct characteristics due to their 
soil composition and dominant vegetation and, hence, exihibit a large range in partitioning of 
surface energy (e.g., drier in bogs and wetter in fens). However, in this study, wetlands are only 
represented as open-water storage to capture their contribution to evaporation, neglecting these 
detailed classifications. Future studies are encouraged to include sophisiticated biogeophysical and 
biogeochemical processes to characterize different wetland types, yet scarcity in spatial data and 
uncertainties in model parameters may further emerge.  
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5 Conclusions 
Wetlands play a crucial role in Earth systems for their climatic and hydrological functions. 
However, reasonably representing the spatial extents and  dynamics of  small-scale wetlands has 
been challenging to LSMs and coupled ESMs. This is particularly important and urgent in the PPR  
as the wetlands are critical to the region’s ecology and the hydrological conditions are complex. In 
this research, we developed a wetland scheme with two modifications to represent wetland 
dynamics in the Noah-MP LSM: (1) modification of the sub-grid saturation fraction to represent 
spatial wetland extents based on grid cell soil moisture; (2) incorporation of a dynamic surface 
water storage scheme to represent the hydrological processes in wetlands. The new wetland scheme 
was incorporated in a single-point, offline regional simulation, and coupled WRF simulation in the 
PPR. The main findings are as follow: 
 
The single-point simulation at the fen site showed that the modified sub-grid 𝐹"#$  reasonably 
reproduces the magnitude and seasonality of surface inundation dynamics from the GIEMS-2 data, 
compared to the default TOPMODEL-based method. Incorporating the wetland scheme 
effectively modified the surface energy and water balance, enhancing latent heat fluxes and ET 
while suppressing sensible heat fluxes and surface runoff. This results in improved estimate of ET 
and the Bowen ratio but a slight underestimation of sensible heat fluxes. The modeled wetland’s 
impacts on surface energy and water balance also depend on its maximum capacity, 𝑊C#D , a 
parameter related to the shape of the wetland and its surrounding topography.  
 
Incorporating the wetland scheme in the PPR demonstrates three improvements: (1) the 
simulated terrestrial water storage increases from March to June, matching better results from 
the GRACE satellite. (2) the simulated ET also increases compared to the default simulation, 
reducing the underestimation of ET in summer months while overestimating ET in spring months. 
(3) These increases in ET and latent heat fluxes contribute to a cooling effect, reducing the warm 
biases in land surface temperature ~3℃ in the daytime and 1℃ at nighttime. 
 
Finally, the wetlands’ feedback to regional climate was explored in the coupled WRF-NoahMP-
Wetland model. The  cooling effect induced by wetlands was evident in summer for about 2~3℃ 
from May to August, significantly reducing warm biases from the default simulation. This cooling 
is the result of wetlands altering energy balance partitioning as well as interactions with 
atmosphere, shallowing the boundary layer height and promoting cloud formation. In the 
summer of 2006, when an extreme heatwave hit the Central U.S. and Southern Canada, the 
presence of wetlands could profoundly reduce the number of extreme hot days by more than 10 
during the summer period, effectively relieving the heat stress to human comfort.  
 
In recent years, the tradeoffs between agriculture and wetland conservation has been a serious topic 
of discussion among the public, universities, and government agencies. Agricultural land 
expansion at the cost of wetland drainage increases the risk of emerging flooding in springtime 
(Dumanski et al., 2015; Pattison-Williams et al., 2018). Wetland drainage also results in increased 
nutrient export (Badiou et al., 2018; Wilson et al., 2019) and carbon release to the atmosphere 
(Badiou et al., 2011), reducing resilience to drought and high temperature, which leads to crop 
failures (Hatifield, 2016). However, the loss of wetlands to agricultural, industrial and residential 
land development is not confined to the PPR but rather is a common problem worldwide and 
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requires greater attention (The Rasmar Convention 2007; Nature Geoscience, 2021). Our results 
show that the presence of wetlands could be beneficial to many sectors by cooling atmospheric 
temperatures during heatwaves. These highlights should inspire future studies to understand 
wetlands’ value in regional environments and the Earth system, especially those that have been 
neglected at the cost of human expansion. 
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