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ABSTRACT 

Many problems facing policymakers are complex and cannot be understood by reducing them to 

their component parts. However, many of the policy responses to complex problems continue to 

be based on simple, reductionist methods. Agent-based modeling (ABM) is one alternative 

method for informing policy that is well-suited to analyzing complex problems.   

ABM has practical implications for different stages of the policy process, such as testing 

alternatives, assisting with evaluation by setting up a counterfactual, and agenda setting. The 

objective of the research presented in this dissertation is to explore the opportunity for using 

ABM to examine complex problems of relevance for policy. To do so, three separate models 

were developed to investigate different aspects of food safety inspection systems. Complex 

problems involve interrelated feedback loops, many actors, exponential growth, asymmetric 

information, and uncertainty in outcomes and data, and food safety exhibits these traits, 

providing an interesting case study for the use of ABM.  

The first model explores three inspection scenarios incorporating access to information. The 

main finding was that the number of sick consumers is greatly reduced by giving consumers and 

inspectors more information about whether a retail outlet is contaminated, even if that 

information may be uncertain. The second model incorporated theories on risk and the role of 

transparency in encouraging consumer trust by giving consumers access to inspection scores.  

Overall, the findings were more nuanced: having access to restaurant inspection scores results in 

a slightly higher mean number of sick consumers, but less variation overall in the number of sick 

consumers.  As well, a greater number of compliant restaurants results in fewer sick consumers. 

Rather than investigating the structure of the inspection system, the third model examines the 

potential for mobile technology to crowdsource information about suspected foodborne illness. 

This model illustrates the potential for health-oriented mobile technologies to improve the 

surveillance system for foodborne illness.  

Overall, the findings from the three models support using stylized ABMs to study various 

aspects of food safety inspection systems, and show that these models can be used to generate 

insight for policy choices and evidence-based decision making in this area. 
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CHAPTER 1  

 AGENT-BASED MODELING AND THE POLICY CYCLE 

1.1 Introduction 

Many problems facing policymakers are complex: they cannot be understood by reducing them 

to their component parts. However, many of the policy responses to complex problems continue 

to be based on simple, reductionist methods. Agent-based modeling (ABM), a type of 

computational simulation modeling that focuses on the system-wide effects caused by 

autonomous agent interaction, is one alternative method for informing policy that is well-suited 

to managing complex problems.   

ABM has practical implications for different stages of the policy process – testing alternatives, 

assisting with evaluation by setting up a counterfactual and even agenda setting. While these 

aspects have not been fully explored, the method has been touted as having great potential for 

policy (Moss, 2008).  This dissertation applies ABM to the policy area of food safety, which 

exhibits many aspects of complex problems, including interrelated feedback loops, many 

informally and formally organized actors, exponential increases in trade, asymmetric 

information, and uncertainty in outcomes and data. Chapters two, three and four examine some 

of these aspects in more detail by applying stylized ABMs to various aspects of food safety 

inspection systems, with the intent of generating insight for policy choices and evidence-based 

decision making in this area.  

This introductory chapter discusses complex problems, the relevance of ABM to policy 

problems, some of the advantages or disadvantages of the method, as well as ways ABMs can 

better be applied to policy and made relevant to policymakers. Finally, some of the aspects of 

food safety that make it a complex problem will be further explored, and the overall structure of 

the remainder of the dissertation will be outlined. 

1.2 Complex Problems in Public Policy  

Many of today’s persistent policy issues, such as nuclear power, infrastructure planning, poverty, 

and food safety, seem to end up back on the agenda fairly frequently – they are settled, but never 

solved. These problems share the common characteristics of complex or ‘wicked’ problems.  
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Wicked problems have a number of important traits; for instance, the information required “to 

understand the problem depends upon one’s idea for solving it” (Rittel & Webber, 1973, p. 161). 

Generally, while trying to define a complex problem, solutions work their way into the problem 

definition. As such, complex problems are subject to competing problem frames and ‘causal 

stories’ (Stone, 1989). Additionally, wicked problems are never truly solved; any stopping rule is 

external to the problem itself (such as a lack of time or money, or changes in risk perception or 

values). Learning how to solve a wicked problem through trial and error is not feasible since 

trials cannot be reversed; every decision leaves its mark on the problem (Rittel & Webber, 1973). 

This also means that the solutions applied to wicked problems often result in unintended 

consequences.  

Wicked problems1 are interconnected problems: “Problems can be described as discrepancies 

between the state of affairs as it is and the state as it ought to be. The process of resolving the 

problem starts with the search for causal explanation of the discrepancy. Removal of that cause 

poses another problem of which the original problem is a ‘symptom’” (Rittel & Webber, 1973, p. 

165). King (1993) clarifies Rittel and Webber’s work through a discussion of a range of problem 

types, ranging from tame, to ‘messes’ to wicked problems. Tame problems are those that can be 

solved in “relative isolation from other problems” whereas messes cannot be solved in isolation 

(King, 1993, p. 106). The need to adopt a broad, cross-cutting view of problems also conflicts 

with the typical organization of governments into specific departments, and is particularly 

problematic in federal systems where jurisdiction constrains the actions of different levels of 

government into specific areas of responsibility.  

Policy systems are set up to address well-structured problems and are assumed to deliver clear, 

well-defined options derived from the application of consistent rules (H. A. Simon, 1997); 

however, if the pressing policy issues facing decision-makers are wicked problems, these 

                                                 

1 In another typology of problems, Hoppe (2011, p. 16) defines problems as “a deviation between an existing state 

(‘is’) and a desirable one (‘ought’),” which is a fundamentally normative viewpoint. He has developed a typology of 

problem structures that incorporates fully structured problems, where both the knowledge required to understand the 

problem and the values and norms that define the problem are agreed upon by stakeholders; unstructured problems, 

where there is little agreement on norms and values or on available knowledge; and moderately structured problems, 

where there is either agreement on norms and goals defining a desired outcome but knowledge is uncertain (ends), 

or where knowledge is certain but there is wide divergence on norms and values (means) (Hoppe, 2011, pp. 16, 73–

4). 
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assumptions are inaccurate, and may lead to unintended consequences if pursued to their logical 

conclusion.  

1.3 Tools for Approaching Complex Problems 

Many areas that are especially prone to complexity, such as transportation, environmental issues, 

and health care, fall under the purview of provincial jurisdiction in Canada; these are also areas 

with some federal involvement, which further contributes to complexity in the division of 

responsibilities and decision-making. Recent work by Howlett and Newman (2010) indicates that 

provincial policy analysts expressed a preference for informal analytical techniques over formal 

ones, a finding that is consistent with previous work which found that simple policy analysis 

tools were preferred by both the producers and consumers of analytical work (Nilsson et al., 

2008 as cited in Howlett & Newman, 2010). In their survey of provincial public servants, 

Howlett and Newman (2010) found that the most commonly practiced techniques2 were 

brainstorming, consultation exercises and checklists, which are less formal, more subjective 

methods of analysis. Of the more formal analytical methods, the most commonly used were cost 

benefit analysis, scenario analysis, risk analysis, cost-effectiveness analysis, and financial impact 

analysis. The development of sophisticated modeling tools, which would presumably include 

such methods as regression models, was only used by 11.2% of respondents.  

However, as King (1993) notes, issues can arise when decision makers frame messes as tame 

problems and use tame methods for solving them, because the methods used to cope with tame 

problems are very different from those required to handle messes. Tame methods are analytical 

and involve breaking down issues into their component parts and assessing known failure 

sequences, which is highly effective with simple problems but often ineffective or dangerous 

when dealing with complex problems. Messes must be sorted out by taking a broader view and 

focusing on processes and feedback loops. As stated by King, “Messes demand a commitment to 

understanding how things going on here-and-now interact with other things going on there-and-

later” (King, 1993, p. 106).  Dealing with messes is challenging, given the limits of human 

cognition and prediction. As we deal with problems that are increasingly complex, and involve 

                                                 

2 Interestingly, many of the methods listed (although some were infrequently used), including brainstorming, 

scenario analysis, social network analysis, Monte Carlo techniques, decision trees,  problem mapping, and 

robustness or sensitivity analysis, could play a role in participatory model development and the modeling cycle. 
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the voices and input of numerous stakeholders that are both formally and informally organized, 

specific methods that are uniquely suited to dealing with these challenging characteristics of 

complexity should be applied to the policy space. One such method is agent-based modeling 

(ABM).   

1.4 Overview of Agent-based Modeling 

A model is “a purposeful representation of some real system” (Starfield et al., 1990, as cited by 

Railsback & Grimm, 2012, p. 4) that can be manipulated to answer specific questions. In 

neoclassical economic models, initial equations are generally based on assumptions that rational 

actors optimize their behaviour, given their current constraints, information, and available 

options. Because of computational constraints, modellers tend to use averages, rather than a 

range of representative agents, and other assumptions, such as systems seeking equilibrium, are 

incorporated. This type of modeling is top down, in that high-level rules are imposed on the 

system, and then we look for the implications and effects of those rules. In contrast, agent-based 

models simplify the behaviour of individuals within the system, and allow the agents to interact. 

This type of modeling is bottom up, because system behaviour is caused by the interactions of 

individual agents (Miller & Page, 2007, pp. 65–66). As neatly summarized by Miller and Page 

(2007, p. 66), “Thus, in top down modeling we abstract broadly over the entire behavior of the 

system, whereas in bottom up modeling we focus our abstractions over the lower-level individual 

entities that make up the system.”  

ABMs are generally computer simulations that include many agents interacting with one another 

and their environment to reveal emergent properties (G. T. Jones, 2007). Emergence is present 

when the phenomena can only be described using terms that cannot be appropriately applied to 

the component parts of the system. Social phenomena, such as the spread of rumours or diseases, 

often exhibit emergent properties, given the non-linear relationships between actors within the 

system that affect the actors’ subsequent behaviour. Agents within the model are programmed 

using collections of rules so that they are able to perceive their environment, react to it, and 

communicate with other agents (Gilbert, 2004). As well, ABMs must be carefully specified and 

assumptions must be clearly evaluated in order for the model to adequately represent a social 

system. As such, models represent a trade-off between flexibility and precision (Miller & Page, 

2007, p. 79).   
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Simon’s (1955) seminal work on bounded rationality introduces satisficing as a feasible 

alternative to rational choice theory’s assumptions, which require a significant amount of 

information and computational capacity. Simon (1955, p. 104) states that “there is a complete 

lack of evidence that, in actual human choice situations of any complexity, these computations 

can be, or are in fact, performed.” Satisficing involves individuals holding an aspiration level, 

which defines a satisfactory outcome that can adjust as new information is processed. Rather 

than requiring an optimal decision, which would require fixed preferences and a complete 

ordering of possibilities, aspiration levels can go down if the decision-maker has difficulty in 

finding satisfactory alternatives, or increase if satisfactory options are easy to find. By using 

straightforward behavioural rules, ABMs can model decision-making in a more realistic manner.  

 ABMs provide an opportunity to use experimental methods on social phenomena that have very 

long time horizons or where experimentation would be unethical (Louie & Carley, 2008). These 

models are well suited for  modeling complex systems, where “the behaviour of the system as a 

whole cannot be determined by partitioning it and understanding the behaviour of each of the 

parts separately, which is the classic strategy of the reductionist physical sciences” (Gilbert, 

2004, p. 3). Although models may be used for predictive purposes, this is not their only function: 

ABMs may be employed to guide data collection, look for explanations of phenomena within a 

system, demonstrate trade-offs between alternatives, or generate new questions (Epstein, 2008). 

A number of authors have indicated that simulation and ABMs, as a specific type of simulation, 

represent a “third way” of doing science: Axelrod (2003, p. 5) mentions,  

like deduction, it starts with a set of explicit assumptions. But unlike deduction, it does 

not prove theorems. Instead, a simulation generates data that can be analyzed inductively. 

Unlike typical induction, however, the simulated data comes from a rigorously specified 

set of rules rather than direct measurement of the real world. While induction can be used 

to find patterns in data, and deduction can be used to find consequences of assumptions, 

simulation modeling can be used as an aid in intuition. 

 These statements are echoed by Epstein (1999, p. 44), who describes agent-based modeling as a 

method appropriate for ‘generative social science.’ Axelrod (2003, p. 5) further argues that most 

modeling in the social sciences is informed by rational choice theory because it allows for 

deduction, not because many scholars feel that its assumptions accurately represent human 
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behaviour. Adaptive behaviour requires simulation if it is to be a viable alternative, because the 

outcomes of adaptation cannot be deduced – this means that ABM fits in between deduction and 

induction ABM offers an opportunity to relax the assumptions of rational choice theory to more 

realistically model how individuals make decisions.  

1.5 Advantages and Disadvantages of ABM 

Some of the advantages of ABM follow from its unusual position as a method that straddles 

induction and deduction. Bankes (2002, p. 7199) mentions that researchers are often enthusiastic 

about ABMs  because they allow for departure from the restrictive assumptions of other 

modeling techniques, namely linearity, homogeneity, statistical normality, and stationarity.  

ABM’s ability to deal with heterogeneous populations that can be informed by individual data, 

rather than aggregate data, is a unique feature with strong application to policy issues, since 

many policies focus on encouraging individuals to change their choices and behaviour. 

Agent-based models offer a few distinct advantages. Bonabeau (2002, p. 7280) identifies three 

benefits of ABMs: firstly, they capture emergence; secondly, they provide a natural, bottom up 

description of a system; and thirdly, the method is very flexible. However, the author notes that 

the main benefit of capturing emergent phenomena largely powers the other two. Bankes (2002, 

p. 7199) also refers to the natural ability of ABMs to represent social systems due to the central 

place of agents within the system. Much social science is focused at the individual level, 

reflecting individual preferences, motivations for behaviour, and relationships; as well, policies 

often rest on individual choices and coordinating behaviours for system-level outcomes 

(Schneider & Ingram, 1990). Patt and Siebenhuener (2005) point out that the inclusion of social 

norms is an important factor in human decision-making, and that they are left out of traditional 

system dynamics models – but can more easily be incorporated in ABM because they can be 

modeled as a rule that agents follow, although some authors have argued that doing so can be 

problematic (O’Sullivan & Haklay, 2000). A further advantage of ABM, as argued by Epstein 

(1999, p. 47), is that modeling provides a “natural methodology” for interdisciplinary research. 

Although the social sciences are organized into separate academic disciplines, within society, 

economics, demography, epidemiology, sociology, and policy are all linked. The SugarScape 

model, which is a very simple model that yields surprisingly complex results, provides an 

example of an artificial society where everything from economic markets to cultural adaptation 
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to virus transmission is included (Epstein & Axtell, 1996). Although these elements do not need 

to be incorporated all at once, “[t]he claim is that the new techniques allow us to transcend 

certain artificial boundaries that may limit our insight” (Epstein, 1999, p. 47).  

Although ABMs have distinct advantages for handling policy problems, they come with a unique 

set of challenges. Bankes (2002, p. 7199) notes that although ABM shows great promise for 

providing insights into social problems, uptake has been inhibited by a “lack of clarity about the 

uses of computational models and the requirements for credible arguments using them.” 

Bonabeau (2002, p. 7287) notes a number of possible issues with ABM. In particular, ABMs 

must be purpose-built; general models are not feasible. Determining the appropriate level of 

detail to incorporate into a model so that it tells the researcher something useful about the 

problem but has been simplified enough to be understandable is a difficult skill to master – 

Bonabeau (2002) notes that this is more of an art than a science. This can make it difficult to 

evaluate and compare ABMs against one another if they are not properly documented.  As well, 

the specification of models is very technical and can be complicated, and since the currently 

available software packages require coding skills, the implementation of ABM may be out of 

reach for some who wish to study a problem well suited to modeling but lack the coding skills to 

build a model. 

 Additionally, introducing the ‘potentially irrational’ choice behaviour of humans can be difficult 

to incorporate into models, since it can be problematic to quantify these aspects of decision-

making. There may also be difficulties in accessing appropriate individual-level data3 with which 

to inform model parameters, particularly as this method has not been widely used in the social 

sciences. Finally, Bonabeau (2002) introduces a practical issue: computing power. Although 

huge advances in computation capacity have been made in the decade since his paper was 

published, this is still a practical concern.4  

                                                 

3 Some very interesting research in this area is ongoing at the University of Saskatchewan, where researchers in the 

Department of Computer Science have developed an Android App called iEpi, purpose-built for accessing 

individual-level health data to inform ABMs (Mohammad Hashemian et al., 2012). 
4 Some of the issues related to computing power is for ‘parallel problems’ that can be spread between different 

computational units, such as separate cores, processors, or machines.   
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On a deeper level, O’Sullivan and Haklay (2000, p. 1413) critique the tendency of ABMs to lean 

towards methodological individualism. They note that although this may not be avoidable, it is 

often an unstated assumption.5 They are concerned this leads to a “one way notion of emergence: 

the social can emerge from the individual but not the other way around” (O’Sullivan & Haklay, 

2000, p. 1414). The failure of some ABMs to allow for the pre-existence of culture and social 

norms, which shape our actions, choices, and development as individuals is considered by the 

authors to be an “impoverished” view of society (O’Sullivan & Haklay, 2000). Lastly, a criticism 

of applying ABM within the policy space is that the bottom up nature of ABM may make it 

difficult to apply some top down structures, such as the economic, social and political aspects of 

public policies, in simulations, without embedding them into the individual agents. Modellers 

may cope with this by incorporating these structures within agents, which hides the influence of 

the overall system on the individual agents and limits the modeller’s ability to look at whether 

the agents influence these global structures over time  (Ghorbani, Dechesne, Dignum, & Jonker, 

2014, p. 70); another alternative is that these structures could be incorporated into the agent 

environment and could include environmental dynamics. These concerns are valid and should be 

investigated further in order to build models that adequately reflect the constraints and 

opportunities for human interaction and choice within social structures.  

1.6 ABM in Practice 

Given the preceding background on ABM as a methodology and the advantages and 

disadvantages of using it, a discussion is needed on the types of problems ABM is well-suited to 

examining and the documentation required to effectively explain, evaluate and compare ABMs.  

The process of building and testing models is both time and resource intensive, and it also 

requires individual data to inform the rules that agents follow. As such, it can be well-suited to 

solving problems that meet certain criteria, but may not be a good fit for all issues facing policy-

makers. ABM is well-suited for handling complex problems, often involving heterogeneous 

actors and linked systems, which would result in a large, expensive program or policy with high 

set up costs and where initial choices would be difficult or impossible to revise at a later point in 

                                                 

5 Methodological individualism is likely compounded by the tendency of modellers to focus on individual agents, 

rather than the relationships between agents. Modellers can alleviate this by thinking critically about the model’s 

scope and key indicators.  
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time. For example, there have been some ABMs examining transportation infrastructure and 

comparing the results with other types of modelling (Doniec, Mandiau, Piechowak, & Espie, 

Stephane, 2008). Placing a new road, intersection or bridge in the wrong location could be an 

exceptionally expensive endeavour that cannot be undone, so an initial investment of time and 

money into building an ABM to investigate different options could be money well-spent.  

As well, programs or policies that depend on the behaviour of individuals to be successful can be 

modeled using ABM. For example, Chen and Zhan (2008) conducted a study comparing staged 

and simultaneous evacuation strategies using an ABM – the method was particularly well-suited 

to this problem because it depends both on the behaviour of individuals, so a model based on 

individuals is a natural fit, and because the stakes are too high to ‘learn from experience’ in this 

case. Evacuations tend to be uncommon, and  if one evacuation strategy is substantially better 

than another given the population density and road network of a given city, emergency 

management staff want to have this information ahead of time so it can be incorporated into 

plans and communicated.   

These two facets are not necessarily mutually exclusive; ABMs may be most useful when both 

the program would be expensive to set up and difficult to change, and when its success hinges on 

individuals complying with a certain kind of behaviour. Food safety in retail outlets is a problem 

that exhibits both of these traits, which is why it was chosen as the case study for the remainder 

of this dissertation. 

As noted above, one of the disadvantages of ABMs is that they can be difficult to compare and 

re-implement models if they are not properly documented. Following discussions within the field 

for a more systematic means of documenting ABMs (Richiardi, Leombruni, Saam, & Sonnessa, 

2006), the Overview, Design Concepts, and Details (ODD) protocol was developed (Grimm et 

al., 2010). The ODD protocol is designed to facilitate model replication by other researchers, as 

well as improve reader understanding by explaining models in a concise, complete and consistent 

way.  

The ODD begins by describing the purpose of the model; the entities, state variables, and scales 

used; and an overview of the processes in the model and their scheduling. The design concepts 

section covers basic principles, emergence, adaptation, objectives, learning, prediction, sensing, 
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interaction between agents, stochasticity or randomness, any collectives used, and observation6 – 

the data that comes out of the model. The details section focuses on initialization, any input data 

that is incorporated, and describing in detail the submodels within the model (Railsback & 

Grimm, 2012). The ODD forces the researcher to carefully think through all of the model’s key 

assumptions and document them, which both aids in the formulation of the model and in 

communicating it to others. As such, the ODD is a key element of transparency in model-

building; this transparency is important when building models using input from stakeholders, 

including policy-makers. 

1.7 ABM and the Policy Process 

Policy-making is fundamentally a deliberative, discursive process where actors operating under 

resource, time, and search constraints identify policy problems, articulate goals, make choices to 

match solutions involving policy tools to problems, and assess whether or not these goals have 

been met through evaluation (Howlett, Ramesh, & Perl, 2009, p. 4). Thus, policy-making 

incorporates both technical and political dimensions – the technical side defines which tools are 

best suited to addressing problems, whereas the political side deals with how the problem is 

framed, often involving competing interests and causal theories from different stakeholder 

groups (Stone, 1989), what kinds of tools are considered socially acceptable, and what types of 

knowledge are considered legitimate (Howlett et al., 2009). Implementing policies is complex, 

especially when dealing with wicked problems, because complexity limits our ability to predict 

and control outcomes in social systems which increases the significance of unintended 

consequences of policy actions (Sanderson, 2002). A further aspect of complexity in achieving 

policy goals, as noted by Schneider and Ingram (1990, p. 513), “public policy almost always 

attempts to get people to do things that they might not have done otherwise. For policies to have 

the intended impacts on society, a large number of people in different situations must make 

decisions and take actions in concert with policy objectives.” The role of individual choices in 

achieving desired policy outcomes via the application of policy tools to change behaviour is 

emphasized here. Given the importance of individual learning, choices, perceptions and 

                                                 

6 For a detailed list of key questions related to each design concept, see Railsback & Grimm, 2012, p. 41. 
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preferences in achieving system-level outcomes, ABM has great potential for generating insights 

in the policy process.  

The policy process is a conceptual model that simplifies policymaking by dividing it into discrete 

steps. The five step model is most commonly used (see Figure 1.1). The cycle begins with 

agenda-setting, where problems are brought to the attention of governments, then policy 

formulation, which involves devising policy alternatives, decision-making, where one of those 

alternatives is selected, implementation, where the chosen alternative is implemented, and 

evaluation, where the extent to which the policy outcomes match the policy goal is evaluated. 

The results of that evaluation, which may be undertaken by either the government itself or by 

outside actors, may contribute to adjustments or termination of the policy (Howlett et al., 2009). 

The advantage of breaking the policy process down into this series of steps is that it allows for 

better understanding and theory building of the overall process, and it is general enough that it 

can be used at all levels of government (Howlett et al., 2009), and by policy analysts to guide 

them in their work (Bridgman & Davis, 2003). The disadvantage of the policy cycle model is 

that it may appear that policy analysis proceeds in a linear fashion, although in reality the process 

is iterative and steps may be repeated. The policy process is not a causal theory; policy-making is 

embedded in a broader social and political context. As noted by Bridgman and Davis (2003, p. 

100), “A policy cycle is just a heuristic, an ideal type from which every reality will curve away.” 

The following section will examine the potential application of ABM to each stage of the policy 

process.  
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Figure 1.1 The policy cycle 

 

Agenda-setting: The agenda-setting process “is concerned with the way problems emerge, or 

not, as candidates for government’s attention. What happens at this early stage of the policy 

process has a decisive impact on the entire subsequent policy cycle and its outcomes” (Howlett 

et al., 2009, p. 92). Recognizing problems is not a neutral process. Difficulties need to be 

recognized as responsive to human intervention in order to be seen as problems, otherwise they 

are viewed as accidents or the work of nature (Stone, 1989, p. 281). Once problems have been 

framed into the realm of human involvement, the way they are defined shapes how they are 

approached and what solutions are viewed as viable: “Problem definition is a process of image 

making, where the images have to do fundamentally with attributing cause, blame and 

responsibility” (Stone, 1989, p. 282). Causal theories factor into problem definition, and often, 

different stakeholders will advance competing causal stories. Successful causal theories are 

powerful: they can challenge the established social order or protect the status quo, assign 

responsibility for the problem, empower certain stakeholders and their solutions, and create new 

political relationships amongst those who have been harmed (Stone, 1989, p. 295). 
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Stone discusses complex systems, but describes complexity stories as weak from a causal point 

of view because such systems involve so many actors and interactions that breakdowns are 

inevitable, and it is impossible to assign blame to any one actor for these failures. However, 

ABM can be used to make failures associated with complexity stories clearer by articulating 

causal pathways, with the possibility for assigning responsibility for system breakdowns.7 As 

well, science can be a powerful asset to those stakeholders who are advancing or refuting a 

causal theory. ABM, with its roots in Computer Science and its ability to incorporate real data as 

well as assumptions about how the world works, could potentially be used by policy 

entrepreneurs to show support for a specific causal theory.  

Policy formulation: Policy formulation, the second stage in the policy cycle, “refers to the 

process of generating options on what to do about a public problem” (Howlett et al., 2009, p. 

110). Formulation can be divided into four sub-stages. Firstly, the appraisal phase considers data 

and evidence on the identified policy problem and possible solutions. Secondly, the dialogue 

phase initiates communication and consultation between governments and other stakeholders and 

policy actors on potential solutions. Thirdly, governments weigh the evidence and draft a 

proposal in the formulation phase. Fourthly, feedback on the proposal and specific 

recommendations on a policy option to pursue will be generated in the consolidation phase 

(Howlett et al., 2009, pp. 111–112). Exploring these alternative courses of action and deciding 

which to take depends on both technical and political constraints. A specific policy option may 

be a reasonable idea for addressing the defined problem, but if it is politically unpalatable, it will 

not be accepted by government (Blakeney & Borins, 1998).  

Once an initial feasibility assessment is complete, there is clear potential for ABM to examine 

different policy tools and alternatives. Policy tools are the specific instruments that government 

uses to achieve policy goals, and policy goals will not be reached unless “target populations … 

comply with policy directives, utilize policy opportunities when these are offered, or engage in 

other forms of coproduction to promote socially desired results” (Schneider & Ingram, 1990, p. 

527). Different policy tools are designed to induce different behaviour in targeted individuals:  

                                                 

7 See Goldstein, 2011 for a preliminary effort to simulate the causal pathways of the 2008 financial crisis.  
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 Authority tools rely on the legitimacy of governments to induce behaviour;  

 Incentive tools, such as inducements and sanctions, assume that individuals maximize 

their utility and will change their behaviour in order to do so;   

 Capacity tools assume that individuals rely on heuristics because they lack information, 

and will make better decisions if given that information;  

 Symbolic tools assume intrinsic motivation, and manipulate symbols and values to induce 

the desired behaviour; and learning tools are more flexible and assume that targets do not 

know what they should do or what their options are; and  

 Policy tools should promote learning (Schneider & Ingram, 1990).  

Because these tools employ different assumptions about the nature of human behaviour and the 

best way to encourage behavioural change in order to meet policy goals at the global level, the 

focus of ABM on individual agents and their choices makes this method a natural fit for 

examining different policy tools and their emergent, system-wide effects.  

An ABM could be developed to test the application of the different policy tools listed above and 

their effects on agent behaviour. Following an initial testing of policy tools using such a model, 

these results could be used in the dialogue phase to engage with stakeholders and get their input 

on policy options, and to further improve the model. This phase may also allow for expert 

consultation, which is often needed to get the subject specific information and data required to 

build a grounded ABM. However, building and testing ABMs, then refining them to better 

reflect assumptions and key agent behaviour, requires a substantial input of time which may not 

be feasible at the earliest stages of policy formulation.  

Because ABMs require a lot of time to build and test, they are likely to be most useful at the 

formulation and consolidation phases of policy formulation. Following the dialogue phase, the 

preferred options could be simulated and the results may be useful in determining which option 

should be pursued and determining initial policy settings. A further advantage of ABM is that it 

can be used in areas where there are little empirical data, and thus may offer new insights for 

novel policy instruments. Sanderson (2002) critiques policy pilot projects that are actually 

prototypes, where prototyping emphasizes how the initiative worked, rather than whether or not 

it worked. Because ABMs are built with flexible parameters and many repeated simulations can 

be run quickly, ABMs can be subject to analyses to determine initial conditions that are most 
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amenable to success over many replications. This attribute has the potential to allow 

policymakers to focus on ‘prototyping’ in silico to get initial conditions closer to success, and 

then focus on setting up pilot projects for longer term evaluations where the focus is on whether 

or not the initiative was successful. 

Decision-making: The decision-making stage is where an option from the previous stage is 

approved and advanced in either a formal or informal statement indicating the government’s 

intent to proceed (Howlett et al., 2009, p. 139). Decisions can either be positive, in that they alter 

the status quo, or negative, in that they maintain the status quo. Negative decisions halt the 

policy cycle at this stage. Importantly, the decision-making stage is inherently political, and 

inevitably involves winners and losers, even if the status quo is maintained. The main role for 

ABM at this stage in the policy process would be to add to the evidence base for choosing which 

alternative to implement, as noted above.  

Implementation: The implementation stage is comprised of “[t]he effort, knowledge, and 

resources devoted to translating policy decisions into action” (Howlett et al., 2009, p. 160). The 

main role for ABM in implementation would be to assist bureaucrats with determining initial 

policy settings. Initially, using models can show a level of needed resources in order to have an 

effect, and sensitivity analyses can be conducted to show where the boundaries of that effect are. 

This could assist with implementing a more efficient policy from the beginning, and potentially 

resulting in less iteration between evaluation and implementation to get the policy settings 

‘right.’  

The tractability of the problem and the severity of the constraints facing government are also key 

factors affecting implementation. When practical constraints are low and the problem is 

relatively clearly defined and solvable, full implementation can be achieved. However, when the 

problem is intractable but constraints are low, policy experimentation may occur. High 

constraints and tractable problems experience contested implementation, where stakeholders 

continue to vie for resources to solve the problem. Intractable problems facing high constraints 

experience symbolic implementation. To overcome constraints, policymakers can increase their 

capacity for monitoring and forecasting in order to develop better policies (Howlett et al., 2009, 

pp. 175–176). ABM could play a role in this process by incorporating monitoring data into a 
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simulation that could then experiment with changes to policy implementation or different policy 

instruments.  

A further application of ABM to implementation research could come through the 

operationalization of ‘backward mapping’ (Elmore, 1979). Forward mapping begins with a clear 

statement of the policy’s objective and then describes a set of steps for achieving it, and defines 

an outcome for measuring success or failure. The forward mapping perspective emphasizes 

centralized control, consistent adherence to standards, and a focus on factors such as budget 

allocation that are easily controlled by policymakers. Elmore (1979, p. 603) points out that the 

weakness of this approach is that it assumes that policy implementation is controlled in a top 

down way. Top down approaches are not well suited to handling complexity or the ‘messiness’ 

of policy-making (Schofield, 2001). 

Forward mapping is contrasted with backward mapping, which begins “at the point at which 

administrative actions intersect private choices” (Elmore, 1979, p. 604). By beginning with a 

description of behaviour at the end of the implementation process that policy should affect, 

backward mapping questions the assumptions that policymakers control implementation from the 

top. Once the behaviour has been described, an objective is stated from an organizational 

operations standpoint, and then desired outcomes are described. Bottom up approaches pay 

attention to the actions and motives of actors in the policy system (Schofield, 2001). Importantly, 

the backward mapping approach, in contrast to forward mapping, disperses control and focuses 

on factors over which policymakers have little influence, such as incentive structures, bargaining 

relationships, and knowledge of administrators (Elmore, 1979). Backward-mapping focuses on 

problem-solving processes, rather than outputs, and views discretion and adaptive behaviour by 

lower level administrators as valuable for policy learning. Since ABM is well-suited to 

incorporating adaptive behaviour and heterogeneity of agents, the method is a natural fit for 

exploring the backward mapping approach.     

Evaluation: Policy evaluation is the stage of the policy cycle that “assesses the effectiveness of 

a public policy in terms of its perceived intentions and results” (Gerston, 1997, p. 120, as cited 

by Howlett et al., 2009, p. 178). Following evaluation, the problems, solutions and policy options 

involved may be revised, which re-starts the policy cycle, the policy may continue unchanged, or 

it may be judged a complete success or failure and the policy cycle may be terminated (Howlett 



17 

 

et al., 2009). Although some scholars present a normative view that broader policy analysis 

should remain separate from the more rational, objective task of evaluation (Geva-May & Pal, 

1999), others argue that evaluation maintains a political element and its results are open to 

judgment, interpretation and re-framing – policy successes may come to be viewed as failures 

over time, and vice versa (Bovens & ’t Hart, 1996).  

A new focus on evaluating outcomes came from reforms under the New Public Management 

(NPM) paradigm of public administration which included an emphasis on performance 

measurement, improving quality while reducing costs, and improving accountability (Borins, 

2002). In the UK and New Zealand, NPM was inspired by public choice theory, which assumes 

that bureaucrats are self-interested, rational actors, and agency theory, which focuses on 

principal-agent relationships where the agent makes decisions that impact the principal. The 

agency dilemma occurs because the agent is motivated to act in his own interests, not those of 

the principal, because of information asymmetry. ABMs can be used to represent principal-agent 

problems,8 and it is straightforward to model information asymmetry; the models described in 

later chapters of this thesis include information asymmetry, although not in a principal-agent 

context. Despite the emphasis that some NPM reformers placed on evidence-based learning, 

reforms were not always informed by evidence (Hood & Peters, 2004).  

Although governments have come to value improved efficiency and effectiveness (Hood, 1991), 

and place an emphasis on building the evidence base for public policy by explaining “what 

works for whom in what circumstances,” which “relies on the assumption that we can make 

policies work better if we understand how policy mechanisms bring about change in social 

systems to achieve desired outcomes” (Sanderson, 2002, p. 2). This process of examining what 

works, for whom, and why and adapting it to a new context is referred to as lesson drawing 

(Rose, 2005). As the social space in which policies are implemented has grown increasingly 

complex, the need for effective monitoring and evaluation to provide feedback and allow for 

policy course corrections has grown. Under these circumstances, “a major burden is placed upon 

policy experimentation and evaluation as key institutional practices in interactive governance to 

                                                 

8 It should be emphasized that although ABM can be used to represent theories of involving rational actors, one of 

the strengths of the method is that rationality is not required.  
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provide the basis for reflexive social learning” (Sanderson, 2002, p. 9). Although Sanderson 

highlights the role of pilot projects in policy experimentation and evaluation, this is also an area 

where ABM could be beneficial.  

There are some significant barriers to successfully evaluating policy pilot projects. Policies often 

effect change slowly, particularly when enacted on a small scale, and measuring these small 

changes and attributing them to the pilot, not other factors, can be challenging. Political interests 

often run counter to those of evaluation, in that politicians want shorter pilot projects so that 

politically relevant policies can be fully implemented, whereas evaluation is better served by 

longer time horizons and in depth study (Sanderson, 2002, p. 11). Although randomized control 

trials have been attempted, it is impossible to design a true control: similar communities will 

have important differences and may be influenced by other factors over the course of the study 

period that researchers could not have anticipated. Ethical objections also arise from withholding 

benefits from eligible participants. Finally, researchers cannot control all aspects of policy 

implementation and there may be variation between contexts, particularly in initiatives that are 

specific to individual or group needs (Sanderson, 2002, p. 12).  

ABMs provide a potential solution to these difficulties of evaluation. ABMs are well suited to 

situations with long time horizons (Louie & Carley, 2008). Simulations can be run numerous 

times with the exact same initial conditions, avoiding the problem of reflexivity that is inherent 

in complex problems. Because simulations can be run many times and quickly, an ABM that 

represents the pilot project could give insight into the amount of time needed to see an effect, 

which could help policymakers convince political interests that a longer time horizon is needed 

for effective evaluation. An ABM could be constructed to show the environment without the 

pilot, to give evaluators a counterfactual and highlight differences between the simulation and 

data generated from the pilot, and to serve as an in silico control. If ABMs were employed to test 

different policy options during the formulation stage, these models could be updated and used in 

evaluation to advance policy learning, and further link the policy cycle with the modeling cycle.  

ABM has practical implications for different stages of the policy process, particularly in testing 

policy alternatives and policy evaluation,  which have not been fully explored even though the 

method has been touted as having great potential for policy development (Ghorbani et al., 2014; 

Moss, 2008). The discussion here has advanced this line of thought by illustrating potential areas 
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for ABMs to generate insight in the policy process. However, because ABM is a relatively new 

tool in the policy space, it must be made relevant and accessible to policymakers.  

1.8 How can ABM be made relevant to policymakers? 

Although ABM has been used in some policy areas, namely land use management and water 

demand, it has not been frequently applied as a public policy tool (Moss, 2008). Some other 

areas where ABM has been discussed in a policy-relevant way are infrastructure (Rinaldi, 2004)  

and health (Maglio & Mabry, 2011), which are also areas that generally fall under provincial 

jurisdiction. Provincial public servants tend to work on a fairly small subset of issues, and spend 

a great deal of their time ‘firefighting,’ or working on problems that require immediate attention. 

As well, provincial policy analysts tend to mostly be trained in the social sciences,9 with little 

training specific to policy analysis and little experience outside of government; they are ‘process 

related’ experts, without much expertise to devote to gathering and interpreting evidence in their 

specific subject areas (Howlett & Newman, 2010). Howlett and Newman (2010, p. 131) note that 

this preoccupation with firefighting, relative inexperience, and lack of substantive subject area 

and policy analysis training indicate that provincial policy analysts “may not have the capacity to 

practice a high level of evidence-based policy analysis and policy-making.” 

ABM has a great deal of applicability to various stages of the policy cycle, particularly in adding 

to the evidence base of policy formulation and policy evaluation. It is a method well suited to the 

study of complex problems, which often fall into the realm of provincial jurisdiction. Model 

building has its own cycle, consisting of formulating the question, assembling hypotheses, 

choosing the model structure, implementing the model, analyzing the model, and looking for 

patterns in between stages (Railsback & Grimm, 2012, p. 7).  

                                                 

9 Howlett & Newman (2010) found that only 1.6% of the provincial public servants they surveyed had a degree in 

Computing Science. 
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Figure 1.2 The modeling cycle 

 

As with the policy cycle, the modeling cycle is not a linear process (see Figure 1.2): modellers 

will often move back and forth between steps and repeat the cycle several times before finally 

leaving the cycle to communicate the model. The model building process, which has the 

potential to generate as many or more insights as the actual model, can be very time consuming. 

Although ABM has a great deal of potential for generating insights in policy development, 

policy analysts likely require specialized training to interpret the results of ABM research, and 

will not contract out for ABM studies nor use the results if they are unfamiliar with them or view 

them as too difficult to interpret. Governments value efficiency and emphasize outcomes (Hood, 

1991) and will not invest time and money on a time-consuming method for policy analysis, 

particularly one that falls outside of the comfort zone and training of its policy analysts, unless 

there is significant value for money. Although ABM shows great promise for generating insights 

on the policy process, researchers must make the results of these models accessible to 

policymakers in order for them to become an accepted tool for policy analysis. How can 

researchers make ABMs accessible to policymakers?  
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Stakeholder engagement: Firstly, researchers need to open the ‘black box’ of model building 

through collaboration. As other authors have noted, “it is frequently the case that policymakers 

dismiss academic research as too theoretical, unrelated to the actual problems they are wrestling 

with, or in other ways irrelevant to their concerns…” (Gilbert, 2002, as cited by Ramanath & 

Gilbert, 2004, para. 2.1). Collaboration between subject matter experts, technical modellers and 

policy analysts is essential. By involving stakeholders in the modeling cycle, the finished product 

will better address their needs for policy formulation and evaluation, and the researcher will 

likely need to do fewer revisions to the model.  

Stakeholder involvement10 is particularly crucial in formulating a clear research question, which 

can be especially challenging when dealing with complex problems. A key element of ABMs is 

that they be simplified as much as possible, only focusing on key elements needed to understand 

the system (Railsback & Grimm, 2012), and subject matter experts are often helpful in narrowing 

down potential hypotheses. Policy analysts as model stakeholders may not be directly involved 

in devising parameters and state variables for the entities in the model; however, a policy maxim 

is ‘what gets measured gets managed’ so their understanding of the system, what they are 

interested in managing, and what data is available could be of use here. Technical experts should 

manage the technical aspects of model parameterization, implementation and testing. Lastly, 

following analysis of the model’s output, stakeholder groups should be involved in a discussion 

on how to revise the model. A further advantage of participatory model building is that it gives 

researchers an opportunity to inform policymakers as to the limitations of the model so that 

expectations for what ABM can achieve are in line with reality, and also to provide training on 

how to understand models and their associated documentation. Ghorbani et al. (2014, p. 70) note 

that “[a]lthough simulation results can be communicated to problem owners to facilitate 

participatory decision making, building collaborative agent-based models is not a common 

process.” Researchers must make an effort to change this in order for ABMs to become more 

widely used in the policy space.  

                                                 

10 See Ramanath & Gilbert, 2004 for a discussion of lessons drawn from agent-based participatory simulation 

studies. 



22 

 

Model Transparency: Model transparency is important for policy-making for two reasons. 

Firstly, given the iterative nature of the policy cycle, evidence used to construct policy may be 

revisited by different stakeholders again at a later time, and these stakeholders may have 

competing problem frames and evidence to contribute to defining the policy problem, 

formulating policy alternatives, and evaluating the effectiveness of current policies. In order to 

use models in this feedback process, their assumptions must be documented in a clear and 

transparent way. Secondly, whether or not a model is used in policymaking, researchers must 

also maintain detailed model documentation for models to be accessible and transparent to 

outside audiences. The documentation for any model must be complete and clear to allow for 

model replication by other researchers and a thorough understanding of all assumptions and data 

used. One such method for documentation is the ODD framework, a standard framework for 

describing models so that they can be understood and replicated.  

Engaging policymakers in modeling and developing transparent models for policy problems is 

not simply a benevolent exercise for researchers. One of the difficulties of building ABMs is 

access to reliable, individually-based data to inform ABMs. Governments often collect a great 

deal of data for their own evaluation purposes, and researchers could potentially influence this 

data collection activity to better suit the needs of ABM if governments see the value of ABMs 

for evidence-based policy-making. Although the full potential of ABMs for policy-making has 

yet to be unlocked, there are certainly opportunities for them to add value if researchers and 

policymakers are open to collaboration. 

1.9 Specific Case Study of a Complex Problem: Food Safety 

The following section describes food safety, which serves as a case study of a complex problem. 

The Public Health Agency of Canada estimates that approximately 4 million people, or 1 in 8 

Canadians, become sick each year. There is a great deal of uncertainty as to the full extent 

foodborne illness because many cases are mild and those affected do not seek medical treatment, 

which contributes to underreporting. Of those who do seek treatment, laboratory testing is not 

always completed and cases may not be reported to the appropriate authorities (Buzby & 

Roberts, 2009; Schlundt, 2002). Further, the food product that causes the illness is not always 

known (Batz et al., 2005). The actual number of foodborne illness outbreaks is thought to have 

declined in recent years, but there has been an increase in the number of food recalls, which has 
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negatively impacted public trust (Kramer, Coto, & Weidner, 2005). The uncertainty associated 

with estimates of foodborne illness impedes the development of effective interventions and 

policies to prevent foodborne illnesses. 

Ensuring that safe food reaches consumers, from a regulatory perspective, is a semi-structured 

problem (Hoppe, 2011), as the outcome, safe food, is widely agreed upon, but our methods of 

achieving it are sometimes ineffective and not always agreed upon. For example, the use of 

growth-enhancing hormones in beef has been judged to be safe when used according to sound 

veterinary practices in Canada and the United States, but many of these same hormones are 

banned in beef production in the European Union, leading to trade disputes (Kerr & Hobbs, 

2005). However, some disagreement exists as to the definition of ‘safety’ and what constitutes 

safe food. Nestle (2010) notes that although microbial food contamination sickens and kills 

people each year, many consumers are more concerned about the  safety of genetic engineering, 

which has not sickened or killed anyone to date. Thus, viewing food safety from a broader 

systems perspective, it can be considered a complex problem – both the problem and the means 

of solving it are contested. 

The following section explores the interconnected changes in terms of animal, environmental, 

processing, and human factors that contribute to the complexity of food safety.   

Animal factors: There have been numerous changes in animal production that have been linked 

to emerging foodborne diseases. Rocourt et al. (2003) cite changes in feeding practices, such as 

the move to including bone meal in cattle feed, as one of the factors behind the emergence of 

BSE in the 1980s. As well, increasingly intensive livestock operations have been linked to a 

greater prevalence of Salmonella and Campylobacter in poultry, pigs, and cattle (Rocourt et al., 

2003). Meanwhile, changes in public perception and animal welfare requirements have led to 

more animals being raised free-range; however, this potentially exposes animals to parasites like 

Trichinella, which can only be avoided if animals are housed completely indoors (Newell et al., 

2010). Trade-offs between animal welfare and safety concerns are often difficult to resolve.  

Environmental factors: Climate change has the potential to affect disease distribution through 

vectors like different mosquito species entering new habitats, changes in water supply, and 

possible disruption of cold chains in shipping due to higher temperatures (Havelaar et al., 2010, 
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p. S85). The continued intrusion of cities and agricultural production into wildlife habitat also 

presents opportunities for new pathogens to come into contact with people (Wolfe, Daszak, 

Kilpatrick, & Burke, 2005). Moreover, the popularity of organic production has led to more 

manure being used to fertilize fields; more outbreaks have been linked to fresh produce recently. 

While the mechanism of contamination is not always clear, there is concern that contaminated 

irrigation water and unsafe handling of produce may be contributing factors (Islam, Doyle, 

Phatak, Millner, & Jiang, 2004). Meanwhile, pathogens are evolving. There are many new 

strains of anti-microbial resistant bacteria, some of which may be foodborne; a Dutch study 

found methicillin-resistant Staphylococcus aureus (MRSA) in 11.9% of 2217 samples of raw 

meat at the retail level (De Boer et al. 2009, as cited in Newell et al., 2010).  

Processing factors: New production methods that incorporate technological advances in 

packaging, preservatives and storage have allowed for a wider variety of foods to travel longer 

distances to consumers (Rocourt et al., 2003). Trends in consumer preferences, such as minimal 

packaging and natural preservatives, may affect contamination, as packaging may minimize 

pathogen growth (Havelaar et al., 2010). An exponential increase in global trade has led to a 

greater distance between farm and fork. The resulting global trade system has increased in 

complexity now that fewer staples are traded, and many of the food products moving around the 

globe are branded, finished products (Ercsey-Ravasz, Toroczkai, Lakner, & Baranyi, 2012). 

Ercsey-Ravasz et al. (2012) argue that such a complex trade network could allow for foodborne 

pathogens to spread worldwide very quickly, with consequences for traceability. Some food 

products appear to be sourced from new supplier countries where regulations are less stringently 

enforced or monitored; the adulteration of fresh milk with melamine in China caused significant 

angst amongst China's trading partners.   Even in well-managed supply chains, it is impossible to 

assure absolute safety: testing for potential contaminants should be specific, sensitive, cost 

effective, deliver fast results, and be incorporated effectively into the supply chain (Kennedy, 

2008), but these goals often conflict with one another.  

Systemic risk refers to when “a system fails to perform because of the ways in which its various 

components interact” (Hennessy, Roosen, & Jensen, 2003, p. 78). Given the interactions within 

the food system, there is likely to be asymmetric information within the processing chain, where 

the actions of other processors are not known. Hennessy et al. (2003) report that this may result 
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in a failure to coordinate with respect to food safety, as some operators may not treat food with 

sufficient care if they feel that others have not done so. Information asymmetry trickles down to 

the consumer, as well, as food safety is an experience good (Hobbs, 2002), and is only fully 

detectable after the food is eaten (mold is one obvious exception).  

Human factors: Other factors, related to changes in consumer preference and lifestyles, also 

have an impact on food safety. People travel more by air than ever before, which gives pathogens 

new opportunities to move from one population to another incredibly quickly (Rocourt et al., 

2003). Consumers also eat in restaurants much more frequently than they did fifty years ago; 

now, eating in restaurants is a risk factor11 for contracting foodborne disease (T. F. Jones & 

Angulo, 2006). Consumers also demand more variety, in the form of more exotic, and in some 

cases, more locally-grown foods (DeWeerdt, 2009; Newell et al., 2010). Ready-to-eat foods are 

also more widely available, which has interesting implications for foodborne disease and 

traceability. For instance, the horsemeat scandal in the EU largely involved prepared foods, and 

Listeria, a pathogen that thrives in cooler conditions, depends on refrigeration and cold chains in 

supply networks.  Lastly, older people are more susceptible to foodborne disease, which will 

become increasingly important as the population in OECD countries ages (Rocourt et al., 2003). 

The Listeria monocytogenes outbreak in Canada in 2008 linked to Maple Leaf luncheon meats 

was particularly deadly because some of the contaminated meat was served in nursing homes to 

people vulnerable to being more severely affected by foodborne diseases (Weatherill, 2009). As 

medical technologies like anti-retroviral drugs and chemotherapies improve, it is likely that more 

immune-compromised people will be living longer; they are also more prone to foodborne 

diseases (Gerba, Rose, & Haas, 1996).  

On a micro level, there is also a growing body of literature related to how people make decisions 

in situations of uncertainty. It is well documented that people do not behave in a fully rational 

way when making choices, and this also applies to safety; as noted by Green et al. (2003, p. 49), 

“Concern about food safety is theoretical, and abstract, informing decisions about food choice in 

short term and contingent ways.” Although Havelaar notes that consumers view safety as a non-

                                                 

11 Jones and Angulo (2006) note that foodborne diseases cases originating in restaurants may be more frequently 

reported.  
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negotiable characteristic that is often not considered unless it becomes a problem, there are a few 

factors that influence ebbs and flows in consumer concern over food safety. One is risk 

perception. Risk is defined12 as the probability of a hazard occurring and the severity of the 

consequences should it occur (Smyth & Phillips, 2006; Yeung & Morris, 2001). In risk 

assessment, risks that are very unlikely, but cause serious problems, are considered to be low 

risk. However, “for many situations hazardous to public and environmental health, the identities 

and relative probabilities13 of outcomes are not fully known and therefore, by definition the 

context is one of ‘uncertainty’ rather than ‘risk’” (Yeung & Morris, 2001, p. 171). As noted 

above, individual consumers may have differing conceptions of safety; safety may be viewed as 

short-term, as in food that will not cause immediate illness, or in the long-term, as in foods that 

will not cause future health problems (Green et al., 2003).  

Figure 1.3 Complex interactions in the food system 

 

                                                 

12 Smyth and Phillips (2006) note that this is the scientific definition of risk, whereas the socially constructed 

definition of risk incorporates hazard and outrage. 
13 However, Tversky and Kahneman (1974) note that even those individuals with training in statistics are prone to 

errors of judgment when dealing with intricate problems.  



27 

 

1.10 Organization and Purpose of this Study 

The remainder of this dissertation follows the three paper model: chapters two, three and four 

were written as independent journal articles, and are followed by a conclusion. As such, some 

background information was required for each of the articles, and there is some repetition.  

The ABMs used in the following three articles namely explore possible policy alternatives, rather 

than all aspects of the policy cycle, and are stylized in nature and are not intended to be used as 

predictive tools. The first two articles follow a similar structure; the ODD framework has been 

used to describe the model in detail. The last paper, in order to account for length restrictions of 

the journal it will be submitted to, has not followed the ODD structure as explicitly.14 As well, it 

should be noted that these models followed the steps of the modeling cycle during their 

development, and the final product does not show all of the iterative steps.  

The three models, although distinct pieces each discussed in their own chapter, are related. The 

first model is the most simple of the three. It represents a simplified food safety system 

representing stores, consumers, and inspectors, with very simple procedures. The model was 

intended as a proof of concept and to test my own abilities with modelling. This model was 

implemented in NetLogo: firstly, because NetLogo is an open-sourced program, and secondly, 

because the visual representation and line by line coding is fairly easy to get started with. This 

model was extended in the second paper to incorporate restaurants, more sophisticated consumer 

and inspector agents, a more complex role for information, and some new procedures. Although 

NetLogo is an easier program to begin with, it is more rigid and requires considerable coding 

ability to implement more complicated agents and environments, and it also uses discrete time 

steps. AnyLogic, a more sophisticated and flexible program, was chosen for the third model, 

since this software allows for continuous time, an easier implementation of more complex agents 

and agent memory to allow for crowdsourcing information from agents, and it can run many 

iterations much more quickly. The third model is the most complex and involves even more 

sophisticated consumer agents, the ability to divide consumer agents into groups, an inspector 

with the ability to sort information given by consumers, and much lengthier experiments 

involving more model realizations. AnyLogic also incorporates structures that allow for 

                                                 

14 However, a full ODD can be accessed in the CoMSES model library, along with the model code. 
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messages to be passed between agents, which will facilitate extending this model for future work 

incorporating agent communication.  

The first paper has been accepted for publication in the Journal of Artificial Societies and Social 

Simulation,.  The models used in this paper were also presented as part of a poster at the ZIBI 

Summer School Scientific Symposium in Berlin, Germany in June 2013. Early drafts of this 

paper benefited from substantial comments from Drs. Peter Phillips and James Nolan. The 

second paper was presented at the Mapping the Global Dimensions of Policy 3 at McMaster in 

January 2014, and has been accepted for publication in the Journal on Policy and Complex 

Systems following comments from Drs. Phillips, Nolan and Osgood. The third paper will be 

submitted to the American Journal of Public Health and its development has been substantially 

influenced by Dr. Osgood’s other work in the Department of Computer Science. The model was 

built in AnyLogic15 which was greatly facilitated by his M.Sc student, Wenyi An. The work in 

these three articles advances the literature by contributing to the small existing base of ABMs 

focusing on food safety, while also discussing their application from a policy perspective.   

  

                                                 

15 For a detailed comparison of different software for designing ABMs, see Nikolai & Madey, 2009. 
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CHAPTER 2  

GROWING FOOD SAFETY FROM THE BOTTOM UP: AN AGENT-BASED 

MODEL OF FOOD SAFETY INSPECTIONS 

 

2.1 Abstract 

The overall burden of foodborne illness is unknown, in part because of under-reporting and 

limited surveillance. Although the morbidity associated with foodborne illness is lower than 

ever, public risk perception and an increasingly complex food supply chain contribute to 

uncertainty in the food system. This paper presents an agent-based model of a simple food safety 

system involving consumers, inspectors and stores, and investigates the effect of three different 

inspection scenarios incorporating access to information. The increasing complexity of the food 

supply chain and agent-based modeling as an appropriate method for this line of investigation 

from a policy perspective are discussed.  

2.2 Introduction 

Food exhibits multi-dimensional features; food plays a role in many contexts, including basic 

survival, cultural norms, economics, trade, and social situations. We all have a vested interest in 

food because we all have to eat. Underpinning all of these different roles is the notion that food 

should be safe.  There are many stakeholders, from consumers,16 to industry, food scientists, 

farmers, retailers, and regulatory agencies who have different criteria for determining appropriate 

food choices, leading to trade-offs and tensions in determining the best policy options for food 

safety systems. 

Over the past few decades, the global food supply chain has grown more complex, and 

breakdowns in food safety have garnered a lot of public attention. There are many notable 

examples of food safety crises that have ignited public discussion, changed consumer habits, and 

impacted legislation and industry practices:  the bovine spongiform encephalopathy (BSE) 

outbreak in the United Kingdom, which peaked in 1993 with approximately 1000 new cows 

being infected weekly (Centers for Disease Control and Prevention, 2013a); the Maple Leaf 

                                                 

16 For a more detailed discussion of food safety from a consumer perspective, see Smith DeWaal, 2003.  
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Foods Listeria monocytogenes outbreak in Canada in 2008, which resulted in 57 confirmed cases 

and 23 human deaths, partly because the deli meat in question was served to high-risk 

populations (Birk-Urovitz, 2011); and, most recently, the scandal in the European Union when 

horsemeat was found in prepared foods, such as lasagna and burgers, that were labeled as beef 

products (Waldie, 2013). These all led to demands for new and more stringent production 

methods and legislation. Food safety challenges have arisen from population growth and an 

aging population, a global market for food products and global supply chains, increased demand 

for protein, and climate change pressures on agricultural practices (Newell et al., 2010). These 

changes in food systems raise policy questions related to the optimal management of risk, which 

is also tied to food safety at an affordable cost.  

In order to investigate these concerns, a basic agent-based model (ABM) has been developed to 

explore the impact of small changes in system-level rules. Much of the literature examines 

consumer, industry, or government responses to food safety incidents in isolation; the agent-

based model considers the interaction between consumers, retailers, and inspectors. The model is 

intended to provide insight into these interactions, rather than serve as a predictive tool (Epstein, 

2008). Three model versions, representing different inspection scenarios, are described using the 

Overview, Design Concepts and Details (ODD) framework and compared. This paper provides 

background on the complexity of the food safety environment, the theory surrounding ABMs, 

employs the ODD framework for describing ABMs, the model results, and conclusions. 

2.3 Background 

The global food safety system is complex: trade, culture, microbiology and spatial and economic 

aspects all interact to form a system with interdependent elements (Miller & Page, 2007, p. 9). 

As defined by Simon (1962), a complex system is one where “a large number of parts … interact 

in a nonsimple way.” A distinction must be made here between complex and complicated 

systems; in complicated systems, the elements within the system maintain some degree of 

independence and can be studied independently. Complex systems are, by definition, not 

reducible (Miller & Page, 2007).  

A contributing factor to food safety’s complexity is a lack of certainty; the overall infection and 

disease burden from unsafe food, even in OECD countries, is unknown (Newell et al., 2010; 

Rocourt et al., 2003) and small breakdowns at any stage of the system can lead to widely 
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distributed outbreaks, given the interconnected trade system and extensive movement of people 

(Havelaar et al., 2010; Newell et al., 2010; Rocourt et al., 2003). Consumers may also assess 

safety along competing dimensions (Green et al., 2003); the safety of a food can be defined in 

the immediate term, for example, food that is not contaminated by bacteria, or in the long-term, 

as in food that will not cause health problems, such as high cholesterol, in the future.  Food 

safety can also be viewed through the competing lenses of values and science (Nestle, 2010): 

food produced in large, industrialized plants may be free from contamination and therefore 

considered safe, but consumers may express distrust of a complicated system involving 

industrialized agriculture, and its associated environmental effects, as well as the concentration 

of the food industry into the hands of a few very large, powerful companies.  As noted by 

Havelaar et al., (2010) “The consumer demands fresh, tasty, healthy and wholesome food 

products. Nevertheless, safety is in this framework considered an absolute requirement; placing 

unsafe food on the market is not an option in the consumer’s mind”. However, defining exactly 

what safe food means to consumers can be a challenging exercise. 

Food-borne disease, for the purposes of this paper, refers to all diseases caused by consuming 

food contaminated17 by any bacterial, viral, prion, or parasitic agent (Rocourt et al., 2003). 

Currently, the overall disease burden of food-borne diseases is unknown (Newell et al., 2010). 

The Centers for Disease Control and Prevention (CDC) estimates that there are 48 million cases, 

128,000 hospitalizations, and 3000 deaths related to foodborne illness annually in the United 

States; this means that 1 in 6 Americans are sick each year (Centers for Disease Control and 

Prevention, 2013b). The Public Health Agency of Canada estimates that 4 million Canadians, or 

1 in 8, are sick each year (Public Health Agency of Canada, 2013). These estimates come with 

many built-in assumptions, and both organizations acknowledge that there is underreporting. 

Although foodborne disease is caused by a variety of pathogens, including common bacteria 

such as Escherichia coli, Salmonella, and Campylobacter jejuni, viruses such as Hepatitis A and 

noroviruses, and parasites such as Trichinella and Toxoplasma gondii, the most common 

symptom is diarrhoeal disease. Most cases of foodborne disease are relatively mild, and many 

people do not view diarrhoea as a serious outcome of disease but rather an inconvenience, which 

                                                 

17 Contamination by chemical hazards or environmental pollution is beyond the scope of this study. 
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contributes to underreporting of pathogens that cause milder disease (Rocourt et al., 2003). 

However, in more serious cases, foodborne diseases may result in severe complications or death, 

particularly among vulnerable segments of the population: pregnant women, young children, 

immune-compromised individuals, and older adults (Gerba et al., 1996). Given differences with 

reporting structures and surveillance, it can be difficult to compare data across countries and 

jurisdictions, since a higher number of reported cases could simply be the result of a better 

surveillance system and not necessarily from more illnesses (Rocourt et al., 2003).  

It should be clarified that the current regime of Hazard Analysis Critical Control Points 

(HACCP) and risk analysis18 (Verbeke, Frewer, Scholderer, & De Brabander, 2007), developed 

over the last 30 years (Phillips, 2009), has led to declines in estimated foodborne disease 

incidence (Centers for Disease Control and Prevention, 2013b).  One definition of regulation that 

is applicable here is that it “is the sustained and focused attempt to alter the behaviour of others 

according to defined standards or purposes with the intention of producing  broadly identified 

outcome” (Black 2002, p. 20, as cited in Havinga, 2006). Most of the time, the system works at 

mitigating hazards, but when it does not, there can be serious illnesses and death, and public trust 

in the food system more generally is damaged. Changes in production systems and trade present 

new opportunities for pathogens to proliferate or adapt to new hosts. Food safety policies are 

often national or regional, but as the system has become increasingly globalized, current 

management systems of risk analysis and HACCP may be overwhelmed by new pathogens and 

hazards.  

Despite new efforts in testing and safety, no pathogens have been eradicated or contained, and 

new ones are emerging (Newell et al., 2010). Increasingly, viral pathogens are a food safety 

concern, as shown by  recent hepatitis A outbreaks in the US which have been linked to frozen 

berries and pomegranate seeds imported from Turkey (Centers for Disease Control and 

Prevention, 2013c), but global microbiological quality control criteria focus on bacterial counts, 

which is insufficient for dealing with viral contamination (Newell et al., 2010). The food system 

is also changing rapidly, challenging current policies.  

                                                 

18 For a discussion of principles for managing food safety, see Schlundt, 1999.  



33 

 

Rules that inform decision-making are fundamentally different in areas of uncertainty.  The 

perception of risk by people exposed to a hazard tends to also be fundamentally different from 

the technical assessment of risk. When social and psychological aspects are included, consumers 

tend to consistently overestimate some risks while underestimating others, and they are often 

keen to listen to negative information while ignoring positive information (Thaler & Sunstein, 

2008; Verbeke et al., 2007; Yeung & Morris, 2001). This has led to a gap between how experts 

and the general public view food risks, leading to frustration on both sides. Heuristics, or mental 

shortcuts used to make decisions, are prevalent in consumer decision-making and lead to 

persistent biases. The availability heuristic, for example, leads people to view  events that are 

recent, dramatic, or otherwise easily recalled as more likely to occur (Tversky & Kahneman, 

1974). Verbeke et al. (2007) highlight fright and panic elements in the social amplification of 

risk. Fright is related to the individual’s perception of the severity of the risk, and is increased if 

the risks are perceived as unavoidable or if there are differing stakeholder perspectives on 

managing the risk. Whether information is perceived as reassuring or frightening depends on 

one’s opinion (Sandman, 1994). Panic relates to the perception of risk: for example, how many 

people are exposed to the risk, whether it is unknown or uncertain, and whether it may come 

with long-term consequences has differing impact. Since food is a complex area, and a lot of 

information available may sound uncertain, incomplete, and contradictory (especially in the 

media and online), there is a lot of opportunity for public fear following foodborne illness 

outbreaks.  

The consequence is that while there is now a lower morbidity due to foodborne diseases, more 

recalls than ever are leading to poor public perception (Kramer et al., 2005). Outbreaks, due to 

the nature of our changed food system, tend to be spread out over a wide geographic area due to 

low-level contamination in processed foods (Rocourt et al., 2003, p. 8) and may require new 

approaches to dealing with their associated illnesses, in part because of anti-microbial resistance 

(Newell et al., 2010). As stated by Havelaar et al (2010, p. S80) “Due to the nature of microbes 

and our food chain, measures to ensure food safety have to be implemented on a global scale, 

necessitating a global approach.” Part of this global approach requires interdisciplinary research 

and new methods to understand and promote food safety from farm to fork in an interconnected, 

complex system. 
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2.4 Rationale for using Agent-Based Modeling 

ABM has been met with enthusiasm in some fields of the social sciences, but has not yet been 

extensively used in public policy. Although some success has been seen in modeling land use 

management, public health, and water policy, there have been fewer applications in business and 

policy analysis (Moss, 2008). This is especially true with respect to food policy.  

The strength of ABMs is that they provide a way to represent complex systems more simply, by 

focusing on the system’s individuals and their behaviours (Railsback & Grimm, 2012).  Axelrod 

(2003, p. 5) states that most modeling in the social sciences is informed by rational choice 

theory, not because many scholars feel that its assumptions accurately represent human 

behaviour, but because it allows for deduction. Adaptive behaviour offers a viable alternative to 

optimization; however, it requires simulation since the consequences of adaptation cannot be 

deduced.  ABM offers an opportunity to relax the assumptions of rational choice theory to more 

realistically model how individuals make decisions by using straightforward behavioural rules.  

 ABM’s ability to deal with heterogeneous populations that can use individual data, rather than 

aggregate data, is a unique feature with strong application to the social sciences. In many cases, 

social science problems are dealing with heterogeneous populations where variation is masked 

by aggregate data. The individual-based perspective marks an important departure from many 

theoretical positions in sociology and policy studies, which view society as a “hierarchical 

system of institutions and norms that shape individual behavior from the top down” (Macy & 

Willer, 2002, p. 144). Since people react to changes in their environment, and these reactions can 

cause further changes, this leads to difficulties in backtracking and applying different solutions to 

complex problems (Rittel & Webber, 1973). Methods that can incorporate change over time and 

control for these changes are able to more accurately capture social processes, and this is one 

area where simulation holds a lot of promise. 

Although many people consider prediction to be a primary goal of modelling, depending on the 

data available and the goals of the modeling exercise, it is not the only one. Epstein (2008) notes 

that there are many other reasons to build models, including explaining a phenomenon, guiding 

data collection, discovering new questions, illuminating uncertainties and dynamics, 

demonstrating trade-offs, challenging theory, and opening new opportunities for policy 

discussion. Importantly, since all models are simplified abstractions, Epstein (2008, para. 1.12) 
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also states that “all the best models are wrong. But they are fruitfully wrong.” Stylized models 

that are designed to offer insight to a complex system or problem so that further discussion of 

policy alternatives, legislative changes, or other adjustments may take place may still be very 

useful, even if they are incapable of prediction.  

Only a few authors have explored food safety using agent-based models.19 One example used the 

BSE outbreak in the United Kingdom as a case study to evaluate public risk perceptions using 

Cultural Theory (Bleda & Shackley, 2012). The archetypes (individualist, hierarchist, fatalist and 

egalitarian) from Cultural Theory were used to inform assumptions about agent perceptions. 

Social amplification of risk by the media and trust of government of science were also 

incorporated into the model. Verwaart and Valeeva (2011) constructed a model looking at 

producer decisions for improving animal health practices. The model incorporated economic 

incentives with social influence and was grounded in the theory of planned behaviour. Tykhonov 

et al. (2008) constructed an ABM of the trust and tracing game designed to collect data on 

decision-making behaviour in a food supply chain where there is asymmetric information about 

food safety and food quality. The model incorporated trading agents, representing producers, 

middlemen, retailers, and consumers as well as a tracing agent. The agents were separated into 

thrifty, opportunistic, or quality-minded categories, which affected their behaviour. Although it 

is possible to run experiments with human subjects to collect data on their behaviour in a trust 

and tracing game, these experiments are very time-consuming. By constructing a model, the 

authors could figure out which iterations of the game were the most interesting and then conduct 

these as experiments with human subjects. By incorporating theories of human behaviour with 

food safety scenarios, these models indicate the potential for advancing ABM in this area. 

A concern voiced in the literature involves the scientific rigor and reproducibility of ABMs. 

Many of the models published in the literature are not described using a standard format that 

allows for others to reproduce them, making independent replication of results impossible 

(Richiardi et al., 2006). In order to contribute a reproducible model, a model description 

following the Overview, Design Concepts, and Details (ODD) protocol is given below.  

                                                 

19 Another ABM looking at compliance and pig farmers is available in Dutch (van Asselt, Osinga, Asselman, & 

Sterrenburg, 2012). 
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2.5 Model Description 

The following section follows the ODD framework (Grimm et al., 2010) to clearly outline the 

objectives and implementation of a basic food safety inspection model. Using NetLogo (version 

5.0.1),20 a simulated environment was programmed where consumers, stores, and inspectors 

interact. One of the goals of the model was to observe the effect of information asymmetry on 

consumer behaviour. The system-level rules governing these interactions were changed in 

different versions of the model, allowing for comparisons between the scenarios. Insights from 

these scenarios can then be used to inform policy discussion.  

Purpose: The purpose of this model is to provide insight into the role of information and its 

influence on the optimal level of inspectors in a food system. To explore this, we compare three 

search strategies used by inspectors: a random strategy,21 one where stores can signal to 

inspectors and consumers that there is a problem,22 and lastly, an adaptation of the signalling 

stores scenario that includes false positive and false negative signals.23 

Entities, state variables and scales: The entities included in the model are stores, consumers and 

inspectors. Food products and suppliers are assumed to be embedded within the stores. The tick 

counter is used to keep track of discrete time steps. Each time the ‘go’ procedure is called, the 

tick counter increases by one tick. 

Patches: Patches have a variable called ‘store’; 100 store patches are scattered throughout the 

model. All other patches represent empty space. Stores are either contaminated or clean – these 

are represented by red and green in the model. In the scenario that includes possible errors in 

store signals, store patches also have a variable for the chance of a false positive or false negative 

signal, which ranges from .01 to .1. 

Consumers: Consumer agents are a breed of turtle in NetLogo. There are 2000 of them at the 

start of the model run.  

 

                                                 

20 NetLogo is available here: https://ccl.northwestern.edu/netlogo/  
21 View this model in the CoMSES Model Library: https://www.openabm.org/model/4137/version/2/view  
22 View this model in the CoMSES Model Library: https://www.openabm.org/model/4141/version/2/view  
23 View this model in the CoMSES Model Library: https://www.openabm.org/model/4139/version/2/view  

https://ccl.northwestern.edu/netlogo/
https://www.openabm.org/model/4137/version/2/view
https://www.openabm.org/model/4141/version/2/view
https://www.openabm.org/model/4139/version/2/view
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Table 2.1 Variable description 

Variable name Description 

Range Consumers use a range of patches within which to 

search for potential destination stores 

Immune system Consumers have a probability that ranges from 10% to 

50% of becoming sick should they land on a 

contaminated patch 

Sick Consumers become sick if they land on a contaminated 

store and the random number generated is less than 

immune-system 

Bad store patches List of stores that have made this consumer sick in the 

past 

Destination Changes each time step; set to the most suitable store 

within the consumer’s range that is not a member of 

bad-store-patches 

Heal counter If a consumer becomes sick, it remains sick for 3 time 

steps and does not move 

 

Inspectors: Inspectors have a range within which they look for patches to inspect; this range is 

twice the range of consumers. The number of inspectors in the model has been varied. Firstly, 

experiments were run using 1-15 inspectors to get a sense of model outcomes. More detailed 

experiments were then run using 1 inspector, 3 inspectors, and 5 inspectors, respectively. 

Minimal spatial element: Consumers and inspectors both have a range within which they can see 

potential destinations. There are no collectives in the model. Simulations last for 150 time steps 

(or ticks, in NetLogo); the length of one time step is not specified.  

Process Overview and Scheduling: Once the model is set up, the following processes, described 

under submodels, are executed in the following order.   

 One store per time step is randomly selected and becomes contaminated.  

 Consumers execute their consume procedure, as follows: 

o Destination-set  

 Consumers evaluate all stores within their range, and choose a store patch 

that is not on their list of bad-store-patches. If no such store exists, the 

consumer wanders by randomly setting its heading and moving forward 

three patches. 

o Eat 
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 If the store is contaminated and the random-number generated is less than 

immune-system, the consumer becomes sick and adds this patch to the list 

bad-store-patches. The consumer also sets its heal counter to 1. 

o If the consumer is sick, it does not execute the above two procedures, but instead 

adds 1 to its heal-counter.  

 Inspectors test 

o The testing procedure varies depending on the complexity of the model version. 

o In this most basic model, inspectors move randomly to a store within their range. 

If the store happens to be contaminated, the inspector changes the contaminated 

variable from 1 back to 0 and changes the store’s colour to orange. If the store is 

not contaminated, the inspector does nothing. 

o In the ‘stores signal’ scenario,  5 stores per time step are selected to signal; if they 

are contaminated, they turn pink, which lets consumers know to avoid the store 

and lets inspectors know to come check it first.  

o In the ‘stores signal with errors’ scenario, 5 stores per time step are selected to 

signal. If the store is contaminated and a random floating point number is greater 

than the store’s ‘signal-error’ variable, then the store signals. If the floating point 

number is smaller, then the store will not signal even though it is contaminated (a 

false negative). As well, if the selected store is not contaminated, but the random 

floating point number is less than the store’s ‘signal-error variable, then the store 

will signal even though it is not contaminated (a false positive.) 

 Consumers that have been sick for three time steps heal. 

Since there are no collectives in the model, the order in which each consumer, inspector or patch 

executes the above is not important.  

Design Concepts: 

A number of concepts and theories underlie the model’s design, and they have been used to 

influence the variables and the submodels used in the model.   

The following basic principles, adapted from the literature on food safety, have been 

incorporated into the model. 
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Embedded supply chain: In the model, suppliers and producers are embedded and only stores are 

explicitly shown in the model. Since consumers only interact with stores and restaurants, and 

they bear the brunt of responsibility for supplying ‘safe’ food products, this element greatly 

simplified the construction of the model. The literature also supports this point: “When major 

food safety issues arise, both retailers and manufacturers will be affected (if not harmed) by any 

recall, even if they are not to blame for the problem” (Grievink, Josten and Valk, 2002, p. 481-2, 

as cited by Havinga, 2006).  

Inspection system: In the Canadian context, the Canadian Food Inspection Agency is responsible 

for enforcing policies set by Health Canada that govern the safety of food sold in Canada; the 

CFIA fulfills this mission by inspecting federally-governed abattoirs and food processing plants. 

When food safety emergencies occur, the CFIA responds along with Health Canada, provincial 

ministries, and industry to respond; food recalls are coordinated by CFIA staff. The CFIA is also 

responsible for enforcing laws on labeling and packaging, regulating products derived from 

biotechnology (although Health Canada is responsible for assessing the safety of new foods) and 

certifying exports and initial import inspections of food and agricultural products, among other 

responsibilities (Government of Canada, 2013). Provincial governments are responsible for 

provincially-licensed abattoirs, which can only sell meat in the province in which they are 

licensed. Restaurant and food service inspection is quite fragmented, and is generally carried out 

by municipalities, regional health authorities, or the provincial government, depending on the 

province (Government of Canada, 2014). Although products sold in grocery stores and 

restaurants have generally been inspected further up the supply chain, these inspections are not 

represented in the model. The model presented in this paper most closely mirrors the inspection 

of restaurants and food service outlets.    

Immune system: This is one area where there is no real answer in the literature. Although there 

have been advancements in predictive microbiology, a method used to predictively model 

pathogen spread, persistence, and death in a food source (Lammerding & Paoli, 1997; Walls & 

Scott, 1997), this research does not provide a clear translation of how pathogen loads in a food 
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source affect the actual occurrence of illness.24 Certain groups, such as the elderly, young 

children, pregnant women, and immune-compromised people are more susceptible to foodborne 

pathogens than others (Gerba et al., 1996), but there is uncertainty as to the actual likelihood of 

illness from consuming contaminated food products. As such, model runs were completed using 

an immune system parameter that is heterogeneous and varies throughout the population between 

.1 and .5.  

Consumer avoidance: Previous research conducted by the Food Standards Association in the UK 

indicates that, if they had concerns about hygiene, up to 70% of respondents would not purchase 

again from a food service outlet (as cited by Choi, Nelson, & Almanza, 2011). As well, focus 

group research from the UK has indicated that personal experience with food poisoning is an 

important source of knowledge for changing food safety behaviour, and some quoted participants 

indicated that getting sick after eating specific products from a supermarket meant that they 

would never return (Green et al., 2003, p. 44). Since the literature did not provide adequate 

explanation of what factors would influence a consumer to return to a food service outlet where 

they believed they had contracted an illness, this concept was simplified for use in the model:  

consumer agents will not return to stores where they have become sick in the past.  

Store signals: It is possible for a store to close temporarily and trigger an investigation from 

inspectors if it realizes that there is a problem with its food. For example, during the 2012 XL 

Foods E. coli outbreak, a Regina restaurant called Flip decided to close its doors when five 

people reported cases of E. coli, and the only common feature with all five cases was that they 

had recently eaten at Flip (CBC News, 2012a). Although the restaurant had recently been 

inspected and had passed, the owner voluntarily closed the restaurant to keep any other 

customers from becoming sick while the source of the contamination was determined. This 

element has been incorporated as a signalling mechanism, where stores change their colour to 

                                                 

24 One such example that was decided by the courts took place in the United States, where FSIS tried to shut down a 

processing plant that had exceeded Salmonella counts. The plant refused on the basis that the product had come 

contaminated from the slaughterhouse, and the plant never failed any sanitation tests. A federal judge ruled that 

FSIS could not withdraw inspection based on Salmonella counts alones: “The appeals court ruling supports 

arguments of those who say that pathogen testing results should not be a basis for enforcement actions until 

scientists can determine what constitutes a unsafe level of Salmonella in ground meat” (Rawson & Becker, 2004). 
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communicate with inspectors that they should be inspected first and so consumers can avoid that 

location until the contamination has been rectified.  

Store signals with errors:  On occasion, stores with a suspected problem may choose to ignore it 

and not close; there is also the possibility that a store will close unnecessarily. The restaurant 

Flip, as mentioned above, closed temporarily to undergo thorough testing, which found no E. coli 

present on surfaces or food samples (CBC News, 2012b). This has been represented in the model 

by stores signalling with a small chance of either a false positive or false negative signal. This 

allows for less than perfect information in signalling, which reduces the efficiency of 

inspections. 

Asymmetric information:  This principle is informed by Akerlof’s (1970) work on asymmetric 

information in markets. Consumers and inspectors are unable to tell if a store is contaminated 

prior to landing on it. An interesting application of this theory in future models would be to 

incorporate signals of quality, such as branding, inspection certificates, or other quality assurance 

methods. 

No consumption while sick: Given the typical symptoms of diarrhea and vomiting that 

accompany foodborne illness, the assumption that one would stay home and avoid going out to 

stores or restaurants seems reasonable. This was also implemented for practical modeling 

reasons, as it prevents a consumer from landing on a contaminated store and becoming sick 

while already infected from a previous visit. 

Emergence:  The important results from the model are the overall numbers of sick agents, 

contaminated stores, inspected stores, and “naïve” agents at the end of the model. Since the 

changes between model versions are imposed by changes in the rules that agents follow, the 

results are built in and not the result of emergent behaviour.    

Adaptation/learning: Consumers adapt their behaviour by updating the list bad-store-patches. If 

they have gotten sick from eating at a contaminated store, they add this store to the list and avoid 

this patch in the future (even if the store has since been inspected and it is no longer 

contaminated). Consumers also avoid signalling stores.  
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Objectives: Consumers want to avoid getting sick, and this fits into their adaptive behaviour of 

avoiding stores that have made them sick in the past. Store patches want to avoid contamination, 

and if that is not possible, avoid making consumers sick by signalling – although this is imposed. 

An implicit assumption is that inspectors should inspect efficiently; again, the different 

inspection strategies are imposed, rather than allowing the agents to choose which they prefer.  

Sensing: Inspectors and consumers have the same sensing capabilities: both types of agent can 

sense when a patch is signalling, and they can tell whether a store is contaminated once they land 

on it. However, landing on a contaminated store may make consumers sick, but inspectors can 

reverse the contaminated variable so that the store is safe again. Consumers cannot sense 

whether a patch has recently been inspected or whether consumers near them are sick.  

Interaction: At this stage, neither consumers nor inspectors interact with one another directly. 

Consumers interact with stores by visiting them (although other consumers may be present there 

at the same time) and consuming, and inspectors interact with stores.  

Stochasticity is used in generating a random number to determine whether or not the consumer 

will get sick. Also, if consumers complete the ‘wander’ procedure, they determine a heading 

randomly and move three patches in that direction. Prediction is not used. There are no 

collectives, or “aggregations of agents that affect the state or behavior of member agents and are 

affected by their members” (Railsback & Grimm, 2012, p. 41), in the model. 

Observation: The following attributes are tracked using BehaviorSpace at each time step. This 

output was then analyzed in R (version 2.15.1)   

 The number of agents that are sick (indicated by brown agents in the model) 

 The number of signalling (pink) stores at any one time 

 The number of contaminated (orange) stores that inspectors inspect 

 The number of stores that stay contaminated (red) 

 The number of “naïve” consumers (those that have never gotten sick over the course of 

the model run, indicated by yellow agents)  
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Initialization: Model runs were executed with 2000 consumers, 100 stores, and 1, 3 or 5 

inspectors. The world was set to 33x33, for 1089 total patches, with a centre origin point. The 

world wraps both horizontally and vertically. Each simulation was run for 150 time steps. 

To determine the appropriate number of consumers and stores, simulations were run at various 

levels of stores and consumers. The actual density of food service outlets is about 1 for every 350 

Canadians (Statistics Canada, 2006). However, approximating this density in NetLogo would 

have a prohibitive time cost; running very large simulations in BehaviorSpace is extremely slow. 

To balance the effects of scaling up with the time cost of running multiple scenarios, 2000 

consumers and 100 stores were included in the model.  

Consumers: All consumers have immune-system set to between .1 and .5, sick set to 0, heal-

counter set to 0, and range set to 5. The lists destination and bad-store-patches are empty. 

Consumers are scattered randomly throughout the world.  

Patches: Of the 1089 patches in the environment, 100 are selected, and store is set to 1. All 

store-patches have the contaminated variable set to 0 at initialization. 

Inspectors: All inspectors have a range of 10. They are scattered randomly throughout the world.  

Most of these initial values were estimated, as there is little empirical data available. No data was 

incorporated from other models or external data files.  

Submodels:  

Consumers: “Healthy” consumers are asked to complete the consume procedure; consumers that 

are sick must remain on their last destination for 3 time steps. The consume procedure contains 

two sub-procedures: destination-set and eat. To destination-set, consumers identify which 

patches within their range are stores that are not on the list bad-store-patches (and are not 

signalling that they are contaminated, depending on the model version). They then choose one of 

these destinations from the patch-set and move there. If no patches within their range meet the 

criteria, the consumer wanders by setting their heading randomly and moving forward three 

patches. In the eat procedure, the consumer identifies whether or not the patch they have landed 

on is contaminated. If it is contaminated and the random number generated is less than the 

consumer’s ‘immune-system,’ the consumer’s sick variable changes to 1 from 0 and the 
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consumer changes its colour to brown,  then adds this patch to the its list bad-store-patches. All 

consumers execute this code in a random order. More than one consumer can land on a store at 

the same time. 

Inspectors: Inspectors are asked to complete the test procedure. Depending on the model version, 

the inspector is instructed to test any signaling (pink) stores within its range first, since these 

ones are signaling that they may be contaminated. Otherwise, the inspector chooses a store 

within its range at random and checks it. When the inspector lands on a store that is 

contaminated, it changes the store’s contaminated variable back to zero and changes the patch 

colour from red (or pink, if it was signaling) to orange. If the patch is not contaminated, the 

inspector does nothing.  

Patches: Only patches that are stores and belong to the agent-set ‘store-patches’ will be 

discussed here. All other patches simply represent empty space. Store patches all start out green 

to indicate that they are not contaminated, and one store per turn is instructed to change its 

contaminated variable to 1 from 0 and its colour to red. Agents cannot sense this information 

prior to landing on the store, unless the store is pink to signal contamination. In versions that 

incorporate signaling, five patches per time step are instructed to check themselves for 

contamination. If a selected patch is contaminated, it signals this to consumers and inspectors by 

changing its colour to pink. In the scenario that allows for signals with errors, the signal 

procedure incorporates a random floating point number. If the store is contaminated and the 

random number is less than its ‘signal-error’ variable, the store will not signal even though it 

should, and if the patch is not contaminated but the random number is less than its ‘signal-error’ 

variable, the store will signal, even though it is clean.  

Table 2.2 Scenario summary 

 Baseline Signal Signal with errors 

Consumers Avoid “bad 

stores” 

Avoid “bad stores” & 

signalling stores 

Avoid “bad stores”& signalling 

stores 

Inspectors Test randomly Test signalling stores first; if 

none in range, test randomly 

Test signalling stores first; if 

none in range, test randomly 

Patches Random 

contamination 

Random contamination, up 

to 5 stores signal per time 

step 

Random contamination, up to 5 

stores signal per time step (but 

signals are uncertain) 

 



45 

 

2.6 Analysis of Model Results  

Initially, all model scenarios were run with the number of inspectors ranging from 1-15. The 

marginal returns of adding additional inspectors are minimal once there are five inspectors in the 

model; therefore, more detailed runs were conducted using 100 repetitions each of one, three, 

and five inspectors. Each model run lasted for 150 time steps and all data was collected at the 

end of the model run. Analysis of variance (ANOVA) was conducted to check the statistical 

significance of having one, three, and five inspectors for each scenario, and was followed by 

post-hoc analysis using pair-wise t-tests, using the Bonferroni correction to account for multiple 

comparisons. Unless otherwise stated, the pairwise analysis results are statistically significant (p 

<.001). 

The first scenario is the most simple (see Table 2.3); inspectors move randomly from store to 

store and consumers receive no information besides whether or not they become ill.  The number 

of sick consumers declines substantially as the number of inspectors goes up, but with decreasing 

marginal returns. As well, the number of contaminated stores decreases as inspectors are added, 

and the number of inspected stores increases, again with decreasing marginal returns. The 

decrease in contaminated stores is likely fueling the declines in the number of sick consumers. 

Lastly, the number of naïve consumers increases as there are more inspectors in the model, but 

even with five inspectors, only a very small percentage (1.2%, on average) of the total population 

never experiences an illness over the course of the model run.   

Table 2.3 Random inspection scenario 

  1 inspector 3 inspectors 5 inspectors ANOVA 

  Mean SD Mean SD Mean SD F(1,298) p-value 

Sick Consumers 499.22 38.41 310.21 38.02 227.48 35.36 1807 p<.001 

Contaminated 

Stores 49.02 3.86 26.24 3.06 17.03 2.69 2463 p<.001 

Inspected Stores 29.47 3.36 51.97 3.84 60.62 4.09 1947 p<.001 

Naïve Consumers 0.91 1.627 8.35 3.83 25.66 10.58 633.2 p<.001 

 

The next step in advancing the model was to allow five randomly selected stores per tick to 

signal. This signaling mechanism would be similar to a store realizing that there was a problem 

and voluntarily closing its doors and inviting in inspectors to help rectify the issue. In this 
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scenario, signaling information is perfect; that is, a signal indicates that the store is definitely 

contaminated. The results of this scenario are shown in Table 2.4.  

Since inspectors move first to signaling stores within their range and consumers avoid these 

stores, even though very few stores were self-testing at any given time, the number of sick 

consumers was considerably reduced compared to the random inspection model.  The effect of 

signaling information is profound: outcomes are better with only one inspector when there is 

signaling (209.8 sick consumers, on average), compared to having five inspectors conducting 

random inspections (227.48 sick consumers, on average). Inspectors are also able to control the 

number of contaminated stores more effectively, particularly when there are few inspectors. 

Increasing the number of inspectors from 3 to 5 shows that the effectiveness of the signal 

mechanism is subject to considerable decreasing marginal returns, likely because the inspectors’ 

ranges begin to overlap and a signaling store could end up with more than one inspector there at 

the same time. In the case of signaling stores, there was no significant effect in post-hoc testing 

(p > .05) of increasing the number of inspectors from three to five, even though the overall 

ANOVA results were still significant. The number of naïve consumers also increases compared 

to the random inspection scenario, but even with five inspectors in the model only about 6% of 

the total population, on average, avoids becoming ill over the course of the model run. 

Table 2.4 Stores signal with certainty 

  1 inspector 3 inspectors 5 inspectors ANOVA 

  Mean SD Mean SD Mean SD F(1,298) p-value 

Sick Consumers 209.8 39.24 161.32 30.67 136.63 30.04 231.6 p<.001 

Contaminated 

Stores 20.57 2.55 11.92 2.22 9.21 2.15 883.4 p<.001 

Inspected Stores 57.61 3.62 66.16 3.75 68.6 3.97 368.8 p<.001 

Naïve Consumers 34.69 11.22 74.39 18.12 120.52 25.61 992.5 p<.001 

Signaling Stores 5.09 2.12 0.44 0.61 0.17 0.4 439.5 p<.001 

 

Finally, a scenario was constructed to investigate the impact of imperfect information in store 

signals. This variation on the stores signal scenario included errors:  when stores are selected to 

signal whether or not they were contaminated, there is a chance between 1% and 10% that a 

‘clean’ store may signal, or that a contaminated store may not. In this variation, there were 

slightly more sick consumers, on average, compared to the version with perfect signaling 
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information, as well as slightly higher levels of contaminated stores and lower levels of inspected 

stores.  However, the difference between the two scenarios shrinks as more inspectors are added. 

Once again, in the case of signaling stores, there was no significant effect of going from three to 

five inspectors in post-hoc testing (p >0.05), even though the overall ANOVA results were still 

significant. Table 2.5 shows the results for the scenario with stores signaling with errors.  

Table 2.5 Stores signal with errors 

  1 inspector 3 inspectors 5 inspectors ANOVA 

  Mean SD Mean SD Mean SD F(1,298) p-value 

Sick Consumers 223.55 37.37 168.63 26.64 139.81 31.72 327 p<.001 

Contaminated 

Stores 23.58 2.45 13.06 2.11 9.72 2.12 1224 p<.001 

Inspected Stores 48.26 4.11 55.55 4.33 58.7 4.31 287.4 p<.001 

Naïve Consumers 26.22 8.39 63.04 17.52 103.72 25.21 890.3 p<.001 

Signaling Stores 9.1 3.04 0.87 0.97 0.29 0.57 574.1 p<.001 

  

To check for a significant effect of scenario type while controlling for the number of inspectors 

present, analysis of variance was conducted. Post-hoc analysis using pair-wise t-tests was also 

completed. Unless otherwise stated, the pairwise analysis results are statistically significant (p 

<.001). The ANOVA results are reported in Table 2.6.  

Table 2.6 All three scenarios 

  1 inspector 3 inspectors 5 inspectors 

  ANOVA ANOVA ANOVA 

  F(2,297) p-value F(2,297) p-value F(2,297) p-value 

Sick Consumers 1812 p<.001 666 p<.001 252.5 p<.001 

Contaminated Stores 2678 p<.001 1013 p<.001 350.1 p<.001 

Inspected Stores 1494 p<.001 343.6 p<.001 161.8 p<.001 

Naïve Consumers 465.5 p<.001 575.5 p<.001 547.8 p<.001 

 

The post-hoc analysis showed that as inspectors are added, the difference between the scenarios 

shrinks; this is especially true for the stores signal with certainty and stores signal with errors 

scenarios. When there is one inspector, the difference in the number of sick consumers between 

stores signaling with certainty and stores signaling with errors is significant (p < .05), but with 

three inspectors, the results are not statistically significant (p > .05) and with five inspectors, they 
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are identical (p = 1). As well, with three inspectors, the difference in the number of contaminated 

stores is significant between the stores signal with certainty and stores signal with errors 

scenarios (p < .01), but once there are five inspectors, the results are no longer significant (p 

>.05).  

Figure 2.1 shows the differences in the number of sick consumers for all three scenarios.  The 

considerable difference in the number of sick consumers in the signaling scenarios compared to 

the random inspection scenario is clearly shown, as is the diminishing marginal returns of adding 

additional inspectors.  

Figure 2.1 Sick consumers, all scenarios 

 

Figure 2.2 shows the number of contaminated stores for all three scenarios. Giving inspectors 

more information through signaling, even if that information is flawed, considerably reduces the 

number of contaminated stores. 
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Figure 2.2 Contaminated stores, all scenarios 

 

 

Figure 2.3 shows the number of inspected stores for all three scenarios.  Since in the signal with 

errors scenario, some stores are signaling without actually being contaminated, fewer stores are 

successfully inspected. 
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Figure 2.3 Inspected stores, all scenarios 

 

Finally, Figure 2.4 shows the number of naïve consumers for all scenarios. Since consumers 

avoid stores that are signaling under the assumption that they are contaminated, fewer consumers 

become sick over the course of the model run in the stores signal with certainty scenario. 

However, when stores signal with errors, some stores that are contaminated should signal but do 

not, which results in slightly more consumers becoming ill at some point during the model run. 
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Figure 2.4 Naive consumers, all scenarios 

 

2.7 Discussion and Conclusions 

The above research shows that food safety is a complex problem, and that ABMs are an 

insightful way of studying complex problems. A simple model of a food safety system was 

presented using the ODD framework. The model results have a few applications to policy. 

Firstly, as stated by Bonabeau (2002) and Moss (2008), ABMs were noted as having great 

potential for policy but had been applied in only a few situations. This approach advances the 

literature by providing a model that incorporates inspectors, consumers, and stores into a food 

safety simulation. Only a handful of other models have been found in this area (Bleda & 

Shackley, 2012; Tykhonov et al., 2008; Verwaart & Valeeva, 2011). The model results also 

show the effect of giving inspectors and consumers more information: even if the information 

provided by stores signaling is uncertain, the outcome of having one inspector with access to 

imperfect signaling information (223.55 sick consumers, on average) is similar to five inspectors 

using random inspections (227.48 sick consumers, on average). In the current climate of 

government austerity, employing new means of improving consumer and inspector access to 

food safety information could improve outcomes without taxing already thin resources.  

There are a number of avenues for future work using this model. Namely, the model should be 

adapted to better take advantage of the strengths of ABM by incorporating more heterogeneity 
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and complexity into individual agents. As well, inspection rules that are closer to the real world 

system, such as a tiered system of oversight which is used by the Regional Health Authorities in 

Saskatchewan and has been proposed by the CFIA (Canadian Food Inspection Agency, 2012), 

will be incorporated in future work, as will the influence of retailer compliance on outcomes. 

Some jurisdictions have also made inspection results public, giving consumers more information 

with which to make decisions on where to eat (Filion & Powell, 2009; P. A. Simon et al., 2005); 

the effect of this information on decision making will be used to inform future models. Green et 

al.’s (2003) work on the social meanings of food choice, the influence of social norms on 

decision making, and the role of information in social networks could be incorporated by 

including communication between neighbouring agents to share information on experiences with 

the safety of certain food outlets. Different types of information could be incorporated, which 

could provide additional insights on the effect of information on choice and adaptive agent 

behaviour.  

In his work discussing New Public Management, Hood (1991) discusses three sets of core values 

in public management: sigma (efficiency), theta (fairness), and lamda (robustness). He 

characterizes sigma values as most closely related to New Public Management, where frugality is 

the standard of success and waste is the standard of failure. For theta values, the achievement of 

fairness is the standard of success and unfairness or bias is the standard of failure. Lastly, for 

lamda values, resilience is the standard of success and catastrophe, risk or breakdown is the 

standard of failure. These value sets apply to food production systems as well as to public 

management. In many supply chains, the tendency of business interests is to lean towards sigma 

values, where efficiency is king. However, as supply chains increase in complexity and change 

ever more rapidly as more actors are involved in the production and distribution of food, a 

movement towards greater resilience may be warranted,25 even as this results in redundancies. 

As noted by Miller and Page (2007), a certain level of redundancy in complex systems may 

make them more readily adaptable. The balance of valuing efficiency or resilience is another 

trade off within the food policy space, as Hensen and Caswell (1999, p. 591) note:  

                                                 

25 This sentiment is echoed by Henessey (2003), who comments that narrow technology development platforms that 

may not be able to adapt to changes may introduce systemic risk into food production. 
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Rather, it is evident that policy is the outcome of a complex trade-off between alternative 

demands that reflect the interests of the different groups that might be affected. In the 

case of food policy this will include consumer, food manufacturers, food retailers and 

farmers, both at home and abroad, as well as government itself and taxpayers. One of the 

key challenges facing policymakers is to balance these alternative demands because, in 

many cases, these different groups apply alternative criteria, both when judging the need 

for food safety regulation, ex ante, and the success/failure of food safety regulation, ex 

post. Furthermore, these criteria are generally not explicitly stated, with the result that the 

policy debate lacks coherence and, in some cases, transparency. 

 Complex problems, if they are to be effectively handled by regulatory structures, require 

transparency and information shared between all stakeholders. Agent-based models that 

incorporate transparency, accountability and information exchange may be a useful source of 

insight for accomplishing these objectives. 
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CHAPTER 3   

WHAT’S ON THE MENU: ASSESSING MANUFACTURED RISK IN 

RESTAURANT INSPECTION SYSTEMS USING AGENT-BASED MODELS 

3.1 Abstract 

To explore elements of foodborne disease as ‘manufactured risk’, an agent-based model (ABM) 

has been developed using NetLogo. The model shows a stylised version of the current policy 

environment for inspecting restaurants, and illustrates opportunities for improving the 

transparency of current inspection systems by disclosing inspection scores. The model also 

examines the effect of increasing restaurant compliance. The results show that giving consumers 

access to restaurant inspection scores results in a slightly higher mean number of sick consumers, 

but much less variation overall in the number of sick consumers. In both scenarios, more 

compliant restaurants results in fewer sick consumers. 

3.2 Introduction 

In his seminal work on the risk society, Beck (1992, p. 19) posited that “the social production of 

wealth is systematically accompanied by the social production of risks.” The way these risks are 

produced, distributed and defined by technical and scientific systems is a key source of conflict 

in modern society. A particularly interesting group of ‘manufactured risks’ is associated with 

foodborne disease. Given the modern, globally connected supply chain, and embedded threats to 

food safety combined with an aging population that is more likely to suffer from foodborne 

illnesses, it is clear that foodborne disease will become an increasingly important issue for 

Canadians. Eating outside the home has also been highlighted as a risk factor for foodborne 

disease (T. F. Jones & Angulo, 2006), and that Canadians continue to spend more on restaurant 

meals (GE Capital Franchise Finance, 2013; Statistics Canada, 2006), potentially increasing their 

chances of coming into contact with foodborne illness.  

To explore elements of foodborne disease as manufactured risk, we developed an agent-based 

simulation model (ABM). The model is designed to represent a stylized version of the current 

policy environment for inspecting restaurants, illustrating opportunities for improving the 

transparency of current food inspection systems by disclosing inspection results. Although this 

policy issue has been explored using other methods including surveys (Henson et al., 2006) and 
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statistical modeling (P. A. Simon et al., 2005), the application of ABM is a new method for 

investigating this space. Results from the simulation analysis show that giving consumers more 

information about restaurant inspection scores results in a slightly higher average number of sick 

consumers, but much less variability. Overall, as the number of restaurants that comply with 

regulations increases, the number of sick consumers decreases.  

3.2 The Risk Society 

Risks in the modern world are different. Whereas most hazards in the pre-industrial era were 

based on natural causes, we now deal with new risks that stem from our attempts to control the 

natural world – they are caused by the industrial advancement of society. These manufactured 

risks,26 as defined by Beck (1992, p. 21), are “a systematic way of dealing with hazards and 

insecurities induced and introduced by modernization itself.”27 Manufactured risks, such as the 

risks associated with nuclear power or widespread pollution from agricultural fertilizers, 

transcend the boundaries of individual households, regulatory jurisdictions, and nation-states. 

They are generally imperceptible and thus require expert assessment using the tools of modern 

science, and they are prone to social constructions and definitions, while also having an 

equalizing effect because they often affect people across classes and countries (Beck, 1992, p. 

23). The consequences of manufactured risks are political in nature. A key element of the risk 

society is that societal intervention involving decision-making and governance processes are 

what “transforms incalculable hazards into calculable risks” (Elliott, 2002, p. 295). This societal 

intervention changes the nature of society itself, and thus further changes the nature of risk 

through process known as reflexive modernization (Beck, 1992, p. 153).  

Although concerns related to food safety are ancient (Keusch, 2013), the role of science, 

technology and scale in food production has arguably led to more uncertainty now in food 

systems than previously. Many of the key features of manufactured risks are applicable to 

foodborne disease. In fact, the concept of food risks as manufactured risks has been explored 

elsewhere (Green et al., 2003), but will be expanded here. The first aspect of manufactured risks 

                                                 

26 Manufactured risks should be distinguished from manufactured uncertainty, which is when there is scientific 

consensus on the issue, but outside stakeholders (who may have questionable motives) “try to inject uncertainty into 

the equation” (Lofstedt, 2006, p. 882).  
27 As well, it should be noted that Beck, a philosopher, uses a very specific definition of risk. Risk definitions (such 

as hazard x exposure), as used in the bureaucratic Risk Analysis Framework, are more quantitative. 
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is their invisibility. Risks are hidden in everyday life, and are only brought to our attention 

through the application of the tools of science, such as risk assessments and microbiological 

analysis (Beck, 1992, p. 21). What is more confusing for consumers is that food that has been 

contaminated by bacteria generally looks, tastes and smells completely normal (Alberta Health, 

2014). The invisibility of modern food risk means that consumers need assurance about the 

safety of food by experts or inspection agencies. Since these modern risks are invisible, they are 

socially constructed and defined, and these definitions shift over time as the media and other 

factors influence public attention and risk perception. Indeed, because risks are invisible and 

require ‘scientization’ in order to be perceptible to individuals, it is often unclear whether 

exposure to the risk has increased, or whether public perception of it has become heightened 

(Beck, 1992, p. 55).  

A second aspect of manufactured risks is that they emerge from the production of wealth in 

modern, post-industrial societies (Beck, 1992). Like wealth, risks are distributed throughout 

society, but risk distributions are not directly tied to wealth distributions. Some risks affect the 

poor disproportionately, as some argue wealthy people may be able to “purchase safety and 

freedom from risk” (Beck, 1992, p. 35) in the form of higher quality of food that they perceive to 

be safer, for example, produce grown without the use of pesticides. Certainly, it could be argued 

that risk, globally, is dropping, thanks to many of the advantages of modernization such as 

vaccines and improved sanitation, but that it is not dropping equally for everyone. In terms of 

risks related to food, in many cases the ultimate consequence of foodborne disease is borne by 

the individual consumer who becomes ill. In these cases, knowledge about sources of food risk 

serves to shift risk distributions, as well as risk perceptions.  

Some foodborne illnesses result from inappropriate handling or other problems at the final 

preparation stage. Recent work by Batz, Hoffman and Morris (2011, p. 13) indicates that 70 to 

80% of outbreaks28 from multi-ingredient dishes resulted from foods prepared outside the home. 

This means that such risks can be equalizing in a distributional sense – even those with money or 

power may not be able to avoid them. Foodborne disease risk is present everywhere. In 2013, 

                                                 

28 The CDC (2014b) defines a foodborne disease outbreak as “an incident in which two or more persons experience 

a similar illness after ingestion of a common food, and epidemiologic analysis implicates the food as the source of 

the illness.” 
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Noma, a Copenhagen restaurant that is considered to be among the world’s finest, was the source 

of a norovirus outbreak that sickened 63 diners (Abend, 2013). Food risks also have a 

“boomerang effect”(Beck, 1992, p. 37) where even those who are producing the risks are 

afflicted by them. This is especially the case with food since we all need to eat.   

Lastly, modern risks are often politically explosive. There are extensive social, economic and 

political side effects of health risks, a situation made apparent in the fallout following the 

discovery of the link between bovine spongiform encephalopathy (BSE) and Creutzfeldt-Jakob 

Disease (vCJD) in the United Kingdom (Palmer, 1996). Following such an outbreak, people tend 

to employ risk avoiding behaviours (Yeung & Morris, 2001) and reduce their consumption of 

implicated foods, but then slowly return to previous consumption levels (Bocker & Hanf, 2000; 

Knight, Worosz, & Todd, 2009). This element of consumer behaviour is consistent with the risk 

society: “Where everything turns into a hazard, somehow nothing is dangerous anymore … The 

risk society shifts from hysteria to indifference and vice versa” (Beck, 1992, pp. 36–37).  

3.3 Emerging Issues Related to Foodborne Disease 

Food supply chains now are more interconnected and complex than ever. Global food trade has 

increased from approximately 50 billion USD in 1960, to 438 billion USD in 1998, to 1060 

billion in 2008 (Ercsey-Ravasz et al., 2012). Such a rapid increase has obvious implications for 

foodborne disease outbreaks, especially since trade has moved away from staples and into 

finished, ready to eat products, which pose challenges for traceability. Ultimately, the modern 

dense, complex global supply chain could allow for foodborne pathogens to spread very quickly 

and thus make it extremely difficult to isolate the source of an outbreak (Ercsey-Ravasz et al., 

2012; Keusch, 2013; McEntire, 2013). Risks that are global in nature and extend beyond national 

boundaries are key elements of the risk society (Beck, 1992). Since many foods are now 

imported, “food safety in Canada is not simply an outcome of a nationally bound system, but 

depends also on how well Canada’s food safety system interacts with global institutions and 

systems” (Munro, Le Vallee, & Stuckey, 2012, p. 3).  

However, there is uncertainty about the number of foodborne disease cases per year in North 

America. The overall disease burden of food-borne diseases is unknown (Newell et al., 2010). 

The Public Health Agency of Canada (PHAC) estimates that 4 million Canadians, or 1 in 8, are 

sick each year from foodborne illnesses (Public Health Agency of Canada, 2013). The Centers 
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for Disease Control and Prevention (CDC) estimates that there are 48 million cases, 128,000 

hospitalizations, and 3000 deaths related to foodborne illness annually in the United States. This 

means that 1 in 6 Americans are sick each year (Centers for Disease Control and Prevention, 

2013b). These estimates are built upon numerous assumptions; and both the CDC and PHAC 

acknowledge that there is underreporting, in part because many cases are relatively mild and thus 

not officially diagnosed.  

Given differences between national reporting structures and surveillance, it can be difficult to 

compare data across countries and jurisdictions. A higher number of reported cases could simply 

be the result of  better surveillance and  improved reporting, and not necessarily because of more 

illnesses (Rocourt et al., 2003). Additional data from the Conference Board of Canada suggests 

that there are 6.8 million cases of foodborne disease in Canada each year (Munro et al., 2012 

Appendix A) while survey data29 indicates that approximately 8.5% of Canadians missed work in 

the last year because of foodborne illness (Munro et al., 2012, p. 9). However, the uncertainty 

associated with these estimates makes evaluating the effectiveness of current monitoring systems 

difficult. Although the goals of risk governance in the food system are to reduce the number 

illnesses caused by foodborne diseases, determining whether this has occurred is tricky when 

there are gaps in our understanding of the true burden of foodborne diseases.  

Further uncertainties in demographic shifts illustrate the interconnectedness of foodborne 

diseases and demographics. In Canada, as in other OECD countries, population is aging at a 

rapid rate. Between 2006-2011, the number of seniors over 65 in Canada increased by 14.1% and 

now comprise around 5 million people, while the 60-64 age group grew by 29.1% over the same 

time period (Statistics Canada, 2013). The Canadian Food Inspection Agency identifies adults 

over 60 as an at-risk population for foodborne disease (Canadian Food Inspection Agency, 

2013). Additionally, pregnant women, young children, and immunocompromised people are 

more prone to foodborne illness (Gerba et al., 1996). As the Canadian population ages, the 

incidence of diseases that accompany age such as cancer and diabetes are likely to increase. 

Individuals who suffer from these illnesses are necessarily more prone to foodborne illness. 

Additionally, advancements in medical technology such as chemotherapy and anti-retroviral 

                                                 

29 The Conference Board of Canada obtained this data based on respondents self-reporting foodborne illness.  
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drugs will lead to a greater number of immunocompromised individuals living longer, with 

associated implications for foodborne illness incidence and severity. These interconnected 

elements of the food system further contribute to the uncertainty of managing risks related to 

foodborne diseases.  

Consumer Perceptions of Foodborne Illness Risk 

Particularly in the absence of a recent food illness catastrophe, focus group research shows that 

safety is just one of many attributes influencing food purchasing decisions. People report 

generally feeling quite competent at making food decisions (Green et al., 2003). But is this 

feeling correct? Although pronounced uncertainty remains as to the overall incidence and 

sources of foodborne illness (Jacob & Powell, 2009), estimates indicate that up to 70% of 

foodborne illnesses can be linked to foodservice establishments (as cited by Filion & Powell, 

2009, p. 287). In turn, Canadians are spending an increasing amount of money on restaurant 

meals (GE Capital Franchise Finance, 2013; Statistics Canada, 2006). Due to these issues, the 

remainder of this paper will focus specifically on foodborne illness risks associated with eating 

food prepared by others in a restaurant environment.  

Although restaurant inspection systems seek to lower the incidence of foodborne disease, 

evidence is mixed on how well inspection scores predict future illness outbreaks (P. A. Simon et 

al., 2005). In fact, the uncertainty in data on restaurant-related outbreaks makes it difficult to 

structure an effective study in this area  (Filion & Powell, 2009, pp. 293–294). There are also 

inconsistencies between jurisdictions as to what constitutes a critical violation as well as the 

frequency of inspections (Filion & Powell, 2009). The complexity of the food chain implies that 

a systems-level perspective on restaurant food safety from ‘farm-to-fork’ is required to fully 

understand what is happening. But often the final responsibility for such decisions is simply 

shifted to the consumer, leaving it up to her to make sound choices with the (often incomplete) 

food safety information available. In this regard, some scholars have advocated for a greater 

level of transparency to encourage trust in food systems affected by contemporary risks, such as 

genetically modified food products (Clark, 2013; Goncalves, 2004). This raises the question – 

will improving transparency in the restaurant inspection system help consumers stay safe?   
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Some jurisdictions employ methods for giving consumers better access to inspection scores. For 

example, other jurisdictions, including the province of Saskatchewan, make recent restaurant 

inspection results available online.30In other areas, consumers must formally request a copy of 

inspection results (Filion & Powell, 2009), a situation presenting a strong ‘default’ barrier for 

accessing appropriate information (Thaler & Sunstein, 2008). Although the former is an 

improvement with respect to information transparency, the process still requires a consumer to 

choose a restaurant ahead of time and look it up in advance. Other areas have chosen to make 

information available to the consumer at the actual decision point. For example, Toronto requires 

all restaurants to post their most recent inspection notice at or near the main entrance (City of 

Toronto, 2012),31 while the city of Los Angeles requires that inspection scores, in the form of 

letter grades, be posted near the entry of a restaurant, as well as in an online database (P. A. 

Simon et al., 2005).  

Previous related research in this area has focused on the economic concept of asymmetric 

information (Akerlof, 1970): by disclosing inspection results, consumers can incorporate this 

information in their decision-making, and restaurants have an economic incentive to comply with 

food safety statutes, lest they lose customers (Chatterji & Toffel, 2010; Jin & Leslie, 2003; P. A. 

Simon et al., 2005; Weil, Fung, Graham, & Fagotto, 2006). By giving consumers access to 

inspection information, transparency in the system would be improved, which could improve 

consumer trust; however, the interaction between increased trust and its effect on swings in 

consumer behaviour between hysteria and indifference requires further attention.     

3.4 Methodology 

This paper explores the questions of transparency in food inspection systems using an agent-

based simulation model. This type of modeling provides a way to represent a complex system 

more simply by focusing on the system’s individuals and their behaviours (Railsback & Grimm, 

2012).  Agent-based modeling represents a significant departure from other methods that focus 

on reducing a system to its component parts, or on aggregating data and looking at averages. 

New methods are required to assist with unpacking system-level behaviours that may help us 

                                                 

30 Saskatchewan Online Restaurant Inspection Information: http://orii.health.gov.sk.ca/rhaReport.aspx?RHA=6 
31 See Filion & Powell, 2009 for a more in-depth discussion of other jurisdictions and their disclosure systems. 

http://orii.health.gov.sk.ca/rhaReport.aspx?RHA=6
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cope with the interconnected nature of the risk society. As described by Bonabeau (2002, p. 

7280), “ABM is a mindset more than a technology. The ABM mindset consists of describing a 

system from the perspective of its constituent units.” This type of “microscopic modeling” 

involves modeling a system as a collective of semi-autonomous individuals making decisions 

(Bonabeau, 2002). Agents within the system are given simple rules for decision-making at the 

individual level; depending on these rules, agents can interact with others and react to changes in 

the environment (Gilbert, 2004). Emergence, a key concept in agent-based modeling, is present 

when these local interactions can give rise to interesting, and unexpected, macro-phenomena due 

to agents’ adaptive behaviour.  

A further advantage of agent-based models is that they avoid the issue of reflexivity, where the 

problem shifts as solutions are applied, in a fashion similar to wicked problems (Rittel & 

Webber, 1973), because the simulations provide a controlled environment that allows for policy 

experiments. ABMs are also useful studying situations where real experiments would endanger 

subjects and therefore be unethical, for example, modeling the spread of disease (Louie & 

Carley, 2008). Furthermore, the incremental nature of building social computational models 

allows for continued refinement, repurposing, and data collection as new insights are gained. 

Although these simulation models may be used for predictive purposes, that is not their only use. 

Such models, even if stylized, can be used to provide insight into hypothetical policy scenarios 

(Epstein, 2008). What follows is a basic description of our stylized restaurant inspection 

simulation model. It has been used to compare and evaluate two relevant food safety policy 

scenarios.  

3.5 Model Overview, Design Concepts, and Details  

The Overview, Design Concepts and Details (ODD) framework has been suggested as a 

foundation for describing agent-based models in a consistent, detailed manner so as to facilitate 

re-implementation (Railsback & Grimm, 2012). The ODD protocol will be used in this section to 

describe the simulation model and environment.  
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The restaurant inspection model was implemented in the NetLogo32 (version 5.0.1) software. As 

a purposely designed agent-based software package, NetLogo supports three kinds of agents. 

These are referred to as turtles, patches, and links. Turtles are mobile agents and are used here to 

represent consumers and inspectors. Patches are locations (on a grid) as defined in the NetLogo 

computational environment. These have been used here to represent restaurants. Finally, link 

agents were not necessary to model this particular problem. 

Purpose: The purpose of the model is to create a stylized food safety inspection system and 

compare two relevant policy scenarios. The first scenario incorporates elements of the current 

inspection system in the Canadian province of Saskatchewan.33 In this case, restaurants are 

inspected by local health authorities and are assigned a re-inspection priority on a scale of low, 

moderate or high depending on risk factors identified during the inspection procedure. The 

second scenario to be examined builds on the first by giving consumers access to the re-

inspection priority scores, and also incorporates elements of risk aversion in consumer choices.34 

Each scenario is evaluated based on the number of inspected restaurants, number of 

contaminated restaurants, and number of sick consumers over the course of the model run.  

Entities, state variables and scales: The model contains three kinds of agents: consumers, 

inspectors, and restaurants. Consumers are endowed with state variables. These describe; i) 

whether they are sick, ii) whether they belong to an at-risk group, iii) the range over which they 

can travel, iv) their choice of next destination, v) a list of restaurants that have made them sick in 

the past, and vi) a count of how long they stay sick. In the second scenario, a risk aversion 

parameter is added for the consumer. In turn, the inspector only has a state variable describing 

their geographic range of operations. Finally, restaurants are defined by a global variable that 

describes whether or not a given patch is a restaurant, and also possess state variables describing 

where they are located, whether they are contaminated, their re-inspection priority, and whether 

they are compliant. Patches in the computational environment that are not defined as restaurants 

represent empty space. As in most NetLogo models, the computational environment is a torus 

that measures 33x33 grid squares with a central origin point, comprised of 1089 patches. 

                                                 

32 NetLogo is available here: https://ccl.northwestern.edu/netlogo/ 
33 View this model in the CoMSES Model Library: https://www.openabm.org/model/4304/version/1/view 
34 View this model in the CoMSES Model Library: https://www.openabm.org/model/4300/version/2/view 

https://ccl.northwestern.edu/netlogo/
https://www.openabm.org/model/4304/version/1/view
https://www.openabm.org/model/4300/version/2/view
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Realizations of the model last for 75 time steps. The temporal scale of a time step and spatial 

scale of a patch are not specified.   

Process overview and scheduling: The following processes take place once per time step in the 

following order.  

a) Contamination spread: The likelihood of restaurants becoming contaminated depends on 

whether or not they comply with regulations. Restaurants that are compliant have a 0.5% 

chance of becoming contaminated each time step, but restaurants that are not compliant 

have a 3% chance of becoming contaminated each time step.  Restaurants that become 

contaminated change their contaminated variable from 0 to 1. This is shown visually in 

the model by changing the colour of the restaurant to red.  

b) Consume: Consumers who are not sick select a restaurant within their operating range 

that does not belong to their current list of ‘bad restaurants’ (places where they previously 

became ill) and move there to eat. If the consumer lands on a contaminated restaurant 

they have a chance of becoming sick, which also varies depending on whether they 

belong to an at-risk group. If the consumer becomes sick, they update their list of ‘bad 

restaurants’ and remain sick for a specified number of time steps, depending on whether 

the agent is part of an at-risk group. In the second scenario, the consumer also behaves in 

a risk averse manner for fifteen time steps after healing, meaning that they will only go to 

low re-inspection priority restaurants. If there are no suitable restaurants, i.e. restaurants 

that are not on the consumer’s ‘bad restaurants’ list, or, if the consumer has healed within 

fifteen time steps, are also at the lowest priority for re-inspection, within the consumer’s 

range, the consumer simply wanders to look for restaurants in future time steps. 

c) Test: Inspector agents prioritize restaurants based on three levels of re-inspection priority. 

Each time step they select a restaurant to inspect. They first choose high priority 

restaurants within their range, then moderate, then low. If the chosen restaurant is 

contaminated, the inspector fixes this by changing the restaurant’s contaminated variable 

from 1 to 0, and subsequently raises the re-inspection priority of that restaurant. If there is 

no contamination upon inspection, the inspector lowers the restaurant’s re-inspection 

priority (if possible).    
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d) Heal: Consumers that have been sick for three time steps heal and then re-circulate. If 

they belong to an at-risk group, it takes five time steps to heal.  

Design Concepts: Since this model represents a stylized restaurant inspection system, much of its 

design has been informed by the food safety literature. The following basic principles are 

incorporated into the design of the current model.   

Embedded supply chain: Producers, distributors and suppliers that make up the global supply 

chain are not explicitly observed in the model. Since consumers only directly interact with the 

supply chain at the retail level and the model focuses on restaurant inspections, only restaurants 

are included. Grover and Dausch (2000, as cited by Knight et al., 2009) estimate that a foodborne 

illness outbreak could cost food service outlets $100,000 and up to a 30% loss in sales due to 

decreased consumer trust. During a 1993 E. coli outbreak associated with 73 Jack in the Box 

restaurants in the US, 700 people became sick, and four children died. Although the 

contamination likely occurred during processing, the restaurant was held responsible for 

improper preparation35 and lost US $160 million in decreased sales, recall and legal costs in the 

18 months following the outbreak (Knight, Worosz, & Todd, 2007, pp. 476–478). Even though a 

restaurant may not actually be at fault for contaminating a food product, in this model if they 

serve the product to customers they bear responsibility.  

At-risk population: As noted, people who are elderly, very young, pregnant, or 

immunocompromised are more prone to foodborne illnesses and often suffer more severe 

consequences should they become sick (Gerba et al., 1996). For example, Listeria 

monocytogenes has a high mortality rate in high-risk individuals (up to 30%) and pregnant 

women who become infected with listeriosis may miscarry (Ramaswamy et al., 2007). In this 

model, 30% of consumer agents were designated as being at risk. This level was based on 2011 

Canadian census data on the number of Canadians five and under, and over age 60 (Statistics 

Canada, 2013). The number of pregnant women in the model was extrapolated from the census 

using the number of children under the age of one. The number of individuals suffering from 

diseases that contribute to immune-compromised status were available prior to 2011 but not in a 

                                                 

35 E. coli is killed by high temperatures, so proper preparation at the end of the supply chain would have limited the 

outbreak. 
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useful format. To avoid double-counting, this data was excluded, but the final level used in the 

model was rounded up to 30% from the prior estimates based on age and pregnancy (see Table 

3.1). We recognize that this estimate is incomplete and that the total number of at-risk 

individuals in Canada is likely to be even higher.  

Table 3.1 At-risk population36 

Total Canadian Population 33,476,690 

Adults over 60 6,997,725 

Children 5 and under 2,241,840 

Pregnant women 367,930 

Total at risk 9,607,495 

Percentage of population 28.70% 

 

In addition, exactly what level of contamination in a food product is unsafe and will thus 

translate into illness is unclear (Rawson & Becker, 2004). Therefore, any parameter for the 

probability of contracting an illness if a consumer goes to a contaminated restaurant is 

necessarily difficult to justify. The main point we seek to emphasize is that all else equal, the at-

risk population is more likely to become ill from exposure to a contaminated restaurant. In this 

context, the probability of an at-risk consumer becoming sick from exposure is set at 0.3 whereas 

we assume the rest of the population has a probability of 0.15 of becoming ill given exposure. 

Additionally, at risk consumers remain sick for five time steps as opposed to three, to reflect the 

more severe consequences of foodborne illness for high risk individuals.  

Consumer avoidance: Restaurant food is an experience good in that its quality cannot be 

ascertained prior to consumption (Henson et al., 2006). One survey that investigated consumers’ 

perception of restaurant food safety found that 56.4% of consumers stopped frequenting a 

restaurant based on food safety concerns (Henson et al., 2006, p. 285). In addition, research 

conducted by the Food Standards Association in the UK indicates that, if individuals had 

concerns about hygiene, up to 70% of respondents would not purchase again from a food service 

outlet (as cited by Choi et al., 2011). In this model, this concept of avoidance has been 

                                                 

36 Author’s calculations based on The Canadian Population: Age and Sex from Census 2011 (Statistics Canada, 

2013).  
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incorporated in a simplified way. Consumers that have become sick simply do not return to that 

restaurant. While a bit extreme, it does capture the notion of consumer memory and is not 

completely out of touch with actual reactions to this issue. This assumption is made recognizing 

that in reality, consumers may not be able to directly pinpoint the cause of foodborne disease, or 

may not realize that they have been affected by a foodborne illness if it is a mild case. Further 

research to determine the exact factors that would cause consumers to return to a restaurant 

where they had hygiene concerns will be needed to refine this assumption in the model.  

Risk aversion: Consumers in the second or alternative scenario will only go to restaurants with a 

low re-inspection priority rating for fifteen time steps after healing. This is consistent with 

hysteria and indifference swings (Beck, 1992) and the observed tendency of consumers to 

gradually resume prior consumption patterns following an outbreak (Bocker & Hanf, 2000).  

Asymmetric information: One assumption used in the model is that consumers and inspectors are 

unable to tell if a store is contaminated prior to arrival. This assumption is driven by the notion 

of asymmetric information (Akerlof, 1970). Elements of a restaurant that are relevant to safety, 

such as the cleanliness of food preparation and storage areas, are generally hidden from 

consumers, providing a further element of asymmetric information (Filion & Powell, 2009). 

However, the simulation allows for this fundamental asymmetry to be gradually eliminated, 

depending on agent type and scenario. In the first or base scenario, do recall that inspectors are 

privy to additional information in the form of the re-inspection priority levels. In the second or 

alternative scenario, consumers are able to see these levels as well, choosing only those 

restaurants with a low re-inspection priority following healing.  

The model’s key results and outputs include the number of sick consumers, the number of sick 

and at-risk consumers, the number of consumers that never get sick, the number of inspected and 

contaminated restaurants, and the number of restaurants for each re-inspection priority level. 

Most of the results seem to arise because of the rules and assumptions of the model. However, 

the reduction in variability seen in the second scenario is likely an emergent result that requires 

further discussion.  

Consumers adapt their behaviour by updating the list of bad restaurants and avoiding these 

locations in the future, even if an inspector has inspected the restaurant. This captures the 
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consumer objective of avoiding sickness. In the alternative scenario, consumers further pursue 

this objective by only visiting low-risk restaurants following illness, a behaviour motivated by 

risk aversion and imposed by the model’s rules. In the current model, there is no adaptive or 

learning behaviour exhibited by restaurants or inspectors. Given that some literature has shown 

that the introduction of grade score cards in Los Angeles County restaurants led to increases in 

inspection scores (Jin & Leslie, 2003), some form of adaptive restaurant behaviour should be 

introduced in future versions of this model.  

Inspectors have different sensing abilities than consumers in the baseline scenario. Inspectors are 

able to observe the re-inspection priority level of a restaurant and search for a restaurant to 

inspect based on this criterion. Consumers are only able to use this information in the alternative 

scenario. Importantly, neither consumers nor inspectors can tell if a restaurant is contaminated 

prior to arriving at it. In addition, consumers cannot sense whether a restaurant has recently been 

inspected or whether consumers near them are sick (from the restaurant).  

Consumers and inspectors do not interact in the model. Consumers interact with restaurants by 

visiting them, but they do not interact with other consumers who may also be present at that 

location at that time step. Inspectors interact with restaurants by inspecting them and changing 

their re-inspection priority and reversing contamination scores.  

Stochasticity has been incorporated into the simulation in a number of places. Consumers are 

randomly assigned a travel range between three and eight units. This is based on the assumption 

that consumers have differing access to restaurants depending on where they live and their 

transportation options. Consumers with a larger range can move around the environment faster 

and have more choices available to them each time step. As well, consumers that cannot find any 

suitable restaurants in their range adjust their heading randomly and wander. Consumers are also 

randomly assigned to either the at-risk or normal population groups. Probabilities also determine 

whether a consumer will get sick at a contaminated restaurant, while a Bernoulli distribution is 

used to select which restaurants will be contaminated each time step.  

BehaviorSpace, a built-in NetLogo extension for running simulation experiments, is used to track 

model output at the end of each model run. The data was then analyzed in R (version 2.15.1). 

This data includes: 
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 The number of sick consumers  

 The number of sick, at-risk consumers  

 The number of contaminated restaurants that inspectors inspect 

 The number of restaurants that are contaminated 

 The number of what we call “naïve” consumers (those that have never gotten sick over 

the course of the model run)  

 The number of restaurants at each level of re-inspection priority 

Initialization: Model realizations are executed with 2000 consumers (30% of which belong to the 

at-risk group) and 100 restaurants.37 There is one inspector in the model. Each realization lasts 

75 time steps. The percentage of compliant restaurants is initially set at 60%, and is scaled up to 

70%, 80% and 90%. For each change in the simulation model (i.e., for each increase in the 

percentage of compliant restaurants) the simulation is run 100 times, so each “experiment” lasts 

for 400 realizations.  

Consumers: Consumers have their travel range set between 3 and 8 units, while their sickness 

variable, heal counter and risk aversion variables are all initially set to 0. Thirty percent of the 

consumers are randomly assigned to the at-risk group. Initially, individual lists for destination 

and bad restaurants are empty. Consumers are then scattered with equal probability throughout 

the operating environment.  

Inspectors: All inspectors have a range of 10 units. They are initially scattered with equal 

probability throughout the environment.  

Patches: Of the 1089 patches in the environment, 100 are randomly selected to serve as 

restaurants, with their restaurant variable set to unity to indicate this. These patches are then 

added to a patch-set. Finally, restaurant patches are randomly assigned with a re-inspection level 

of 0, 1, or 2, 0 being low priority and 2 being highest priority.  

                                                 

37 The actual density of restaurants to consumers in Canada is approximately 1 to 350 (Statistics Canada, 2006). 

However, given the computational limits of NetLogo, this version of the model could not be scaled up to that level. 

Further work is ongoing with implementing a variation of this model in a software package called AnyLogic where 

the number of agents can be scaled up to more realistic levels. 
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3.6 Model Results 

Initially, both model scenarios (that is, where consumers do not have access to re-inspection 

priority scores, and where they do and display risk averse behaviour for 15 time steps following 

healing) were run for 150 time steps and runs were measured at every step. Given that there was 

a ‘burn-in’ period of about 35-40 time steps, we decided to end the model run at 75 time steps 

and collect data at the end of the model runs. Both scenarios were repeated 100 times at each 

setting of 60%, 70%, 80% and 90% compliant restaurants. The Kruskal-Wallis test was 

conducted to check the statistical significance of each increase in the percentage of compliant 

restaurants within each scenario, and this was followed by post-hoc analysis using pair-wise 

Mann-Whitney-Wilcoxon tests, using the Holm correction to account for multiple comparisons. 

Unless otherwise stated, the pairwise analysis results are statistically significant (p <.05). For 

comparisons between scenarios, Mann-Whitney-Wilcoxon tests were used to check for statistical 

significance of consumer risk aversion at each setting of 60%, 70%, 80% and 90% compliant 

restaurants (see Table 3.4).  
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Table 3.2 Kruskal-Wallis results from both scenarios 

  No consumer access to inspection scores 

  

0.6 Compliant 

Restaurants 

0.7 Compliant 

Restaurants 

0.8 Compliant 

Restaurants 

0.9 Compliant 

Restaurants 

Kruskal-Wallis  

(3 df) 

  Mean SD Mean SD Mean SD Mean  SD Chi-Sq p-value 

Sick 

Consumers 412.1 64.5 353.1 75.3 328.2 56.8 267.3 59 164.8 p<.001 

Sick, At Risk 

Consumers 205.2 30.7 179.1 37.7 167.3 26.7 139.2 29.8 151 p<.001 

Naïve 

Consumers 63.6 55.4 123.2 152.9 146 100.6 267.2 141.8 169.4 p<.001 

Inspected 

Stores 9.6 2.1 9.6 2 9.3 2.3 8.7 2 9.8 

p= 

0.02 

Contaminated 

Stores 45.5 4.8 38.6 4.1 34.4 3.9 28.4 4.1 285 p<.001 

Low Risk 

Stores 47.9 7.2 50.3 9.3 52.8 8.4 55.3 7.2 438 p<.001 

Moderate 

Risk Stores 51.6 7.2 49.3 9.3 46.9 8.4 44.3 7.2 41.4 p<.001 

High Risk 

Stores 0.5 0.6 0.3 0.5 0.3 0.4 0.3 0.5 13.1 

p= 

0.004 

  Full consumer access to inspection scores 

  

0.6 Compliant 

Restaurants 

0.7 Compliant 

Restaurants 

0.8 Compliant 

Restaurants 

0.9 Compliant 

Restaurants 

Kruskal-Wallis 

(3 df) 

  Mean SD Mean SD Mean SD Mean  SD Chi-Sq p-value 

Sick 

Consumers 418.9 45.9 385.8 45.8 342.1 47.4 297.9 41.2 209.5 p<.001 

Sick, At Risk 

consumers 206.4 24.1 192.6 24.2 175.2 26.1 154.7 21.4 166.7 p<.001 

Naïve 

Consumers 51.4 20.7 84.4 28.8 138.4 47.5 212.6 78.2 287.5 p<.001 

Inspected 

Stores 10.1 2.1 9.5 2.2 9 2.5 8.6 2.2 24.6 p<.001 

Contaminated 

Stores 44.7 4.2 38.8 3.9 33.8 4.2 28.7 4.1 278.3 p<.001 

Low Risk 

Stores 47.7 8 50.9 8.3 54.5 8.4 56 8.5 51.6 p<.001 

Moderate 

Risk Stores 51.9 7.9 48.8 8.3 45.3 8.5 43.8 8.6 49.4 p<.001 

High Risk 

Stores 0.4 0.5 0.4 0.5 0.2 0.5 0.2 0.4 10.6 

p= 

0.014 

 

In the first scenario, consumers do not behave in a risk averse manner following an illness. 

Interestingly, the mean number of sick consumers is slightly lower compared to the second 

scenario, where consumers are risk averse by only going to restaurants with a low re-inspection 

priority for 15 time steps following an illness (see Figure 3.1). However, note that this difference 
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between scenarios is only significant (p < .05) when there are 70% and 90% compliant 

restaurants in the model (see Table 3.4). Also, even though the mean number of sick consumers 

is slightly higher in the second scenario, the overall variation in the number of sick consumers is 

reduced substantially. 

Figure 3.1 Sick consumers, both scenarios 

 

The results for the number of consumers in the at-risk group who experience sickness are very 

similar: in the first scenario, the mean number of sick, at-risk consumers is slightly lower, but 

there is less variation in the second scenario (see Figure 3.2).  However, this difference between 

scenarios is only statistically significant when there are 90% compliant restaurants (p < .001). 
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Figure 3.2 Sick, at-risk consumers, both scenarios 

 

Generally, the results from the first scenario are more skewed and often leptokurtic, whereas the 

results from the second scenario were less skewed and closer to a mesokurtic, or normal, 

distribution. A leptokurtic distribution is more peaked than normal and has fat tails, meaning that 

there are higher densities of values at the extremes. This phenomenon was most apparent in the 

numbers of naïve consumers (see Figure 3.3), that is, the number of consumers that never 

became ill throughout the course of the model run. 

Table 3.3 Skewness and kurtosis test results for count naive consumers 

No consumer access to inspection scores 

  Skewness Kurtosis Standard Error 

0.6 Compliant Restaurants 2.41 8.39 5.54 

0.7 Compliant Restaurants 5.89 43.38 15.29 

0.8 Compliant Restaurants 2.61 12.08 10.06 

0.9 Compliant Restaurants 0.72 -0.33 14.18 

Full consumer access to inspection scores 

  Skewness Kurtosis Standard Error 

0.6 Compliant Restaurants 0.81 1.13 2.07 

0.7 Compliant Restaurants 0.8 0.39 2.89 

0.8 Compliant Restaurants 1.05 1.81 4.75 

0.9 Compliant Restaurants 0.91 0.74 7.82 
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Figure 3.4 shows the numbers of inspected restaurants in each scenario. The post-hoc analysis 

showed that, for the first scenario, showed that the differences between 60% and 70% compliant 

restaurants, between 60% and 80% compliant restaurants, between 70% and 80% compliant 

restaurants, and between 80% and 90% compliant restaurants were not statistically significant (p 

> .05). For the second scenario, the post-hoc analysis showed that the differences between 60% 

and 70% compliant restaurants, between 70% and 80% compliant restaurants, and between 80% 

and 90% compliant restaurants, were not statistically significant (p > .05). When the two 

scenarios were compared (see Table 3.3), none of the differences were statistically significant (p 

> .05). As well, for this indicator, the variation was not greatly reduced in the second scenario.  

The number of inspected restaurants appears to decline as compliance increases; this is in part 

due to the model’s construction, since compliant restaurants are less likely to become 

contaminated in the first place.  

 

 

 

 

 

 

 

Figure 3.3 Naive consumers, both scenarios 
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Figure 3.4 Inspected restaurants, both scenarios 

 

In both scenarios, the number of contaminated restaurants declines as the percentage of 

compliant restaurants increases; this is in part because of the model’s structure, since compliant 

restaurants are less likely to become contaminated (see Figure 3.5). The differences between 

scenarios were not statistically significant (p >.05). 

Figure 3.5 Contaminated restaurants, both scenarios

 

Table 3.4 sums up the comparisons between scenarios, divided by percentage of compliant 

restaurants.  
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Table 3.4 Mann-Whitney-Wilcoxon results 

  

0.6 Compliant 

Restaurants 

0.7 Compliant 

Restaurants 

0.8 Compliant 

Restaurants 

0.9 Compliant 

Restaurants 

  

Mann-Whitney-

Wilcoxon  

Mann-Whitney-

Wilcoxon  

Mann-Whitney-

Wilcoxon  

Mann-Whitney-

Wilcoxon  

  W p-value W p-value W p-value W p-value 

Sick 

Consumers 4805 p= 0.63 3764 

p= 

0.003 4225 

p= 

0.058 3456 p < 0.001 

Sick, At Risk 

consumers 4989 p= 0.98 4019.5 

p= 

0.016 4279 

p= 

0.078 3527.5 p < 0.001 

Naïve 

Consumers 4915.5 p= 0.84 5530.5 p= 0.19 4757 p= 0.55 6005.5 p= 0.014 

Inspected 

Stores 4308.5 p= 0.09 5192.5 p= 0.63 5299.5 p= 0.46 5293.5 p= 0.47 

Contaminated 

Stores 5397 p= 0.33 4864 p= 0.74 5360 p= 0.38 4826 p= 0.67 

Low Risk 

Stores 5142.5 p= 0.73 4916 p= 0.84 4375.5 p= 0.13 4719 p= 0.49 

Moderate Risk 

Stores 4821 p= 0.66 5103.5 p= 0.80 5620.5 p= 0.13 5246.5 p= 0.55 

High Risk 

Stores 5703 

p= 

0.045 4882.5 p= 0.73 5087 p= 0.78 5550 p= 0.07 

 

3.7 Policy Implications and Conclusions  

This study represents the application of a method for policy analysis that can be useful for 

shedding light on risks that typify the risk society, including foodborne illness, although further 

work is needed to improve the system perspective of the ABM featured here. The results from 

the model indicate that, overall, having access to restaurant inspection scores results in a slightly 

higher mean number of sick consumers, but much less variation in the overall number of sick 

consumers, over 100 realizations. This also holds true for the number of sick, at-risk consumers. 

For both scenarios, more compliant restaurants results in fewer sick consumers. As well, 

although there tended to be more naïve consumers when the consumers did not have access to 

inspection scores and therefore did not act in a risk averse way following an illness, these 

distributions tended to be leptokurtic, which indicates a higher probability of outcomes from the 

extremes; the results from the second scenario, when consumers did have access to inspection 

scores and behaved in a risk averse manner for 15 time steps following an illness, were generally 
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much closer to a normal distribution, with more predictable outcomes. Again, in both scenarios, 

a higher percentage of compliant restaurants results in more naïve consumers.  

Our basic findings have implications for policy systems. First of all, the model reflects a basic 

tension between how much policymakers can and should do through regulation and how much 

should come from informing citizens and allowing them to make choices. Although the mean 

number of sick consumers was slightly lower when consumers did not have access to re-

inspection scores, the high degree of variability in outcomes could present a challenge for 

inspectors; it may be preferable to have a slightly higher average number of illnesses, but more 

predictable and steadier outcomes, rather than large swings which could contribute to public 

panic and negative risk perceptions.38 As well, given that many statistical procedures rely on 

assumptions of normality, outcomes that more closely conform to a normal distribution could 

contribute to better understanding of what is going on within the system and better predictive 

capacity from a policy perspective, which would be an advantage despite the slightly higher 

average number of illness.  

Having a higher number of restaurants comply with regulations results in fewer sick consumers; 

empirical evidence shows that disclosing inspection results leads to increases in inspection scores 

(Jin & Leslie, 2003). Although a mechanism for restaurants choosing to comply with regulations 

was not explicitly considered in the model, there is evidence to suggest that disclosing scores 

would increase compliance, while improving transparency in the inspection system which would 

provide consumers with more information to make choices. However, Restaurants Canada, an 

industry lobby group, has indicated that they do not support the use of grades or scores to inform 

consumers about the hygiene of restaurants, indicating that “complex inspection findings based 

on subjective interpretations by individual inspectors cannot accurately or fairly be reduced to a 

single grade” (Griffith-Greene, 2014). The response from industry indicates that government 

intervention would be necessary to encourage transparency within the system. A further 

complicating factor is that restaurant inspections are the responsibility of regional health 

                                                 

38 Although large, widespread outbreaks of foodborne illness are relatively uncommon, it seems likely that they are 

subject to the availability heuristic (Tversky & Kahneman, 1973), whereby people assume they occur more 

frequently because they are easily recalled. The availability heuristic could influence panic and public risk 

perception related to foodborne illness. 
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authorities or provincial authorities, depending on the province (Government of Canada, 2014); 

thus, there is inconsistent information available across the country depending on what each 

jurisdiction has opted to make public and how.  

The incremental nature of model building will allow for additional exploration of inspection 

methods or information delivery methods in the future, one of the advantages of ABM modeling. 

Some possible extensions for this model include: communication between consumer agents, for 

example, a rumor mill indicating restaurants to avoid; a mechanism that allows restaurants to 

choose whether or not to comply with regulations, which may depend on whether they are 

receiving fewer visits from consumers; mechanisms that allow for the restaurant’s level of 

compliance to vary over time; for example, this could mimic the effect of more experienced staff 

working, or hygiene measures sliding somewhat when the restaurant is extremely busy; or 

incorporating agents who ‘learn-by-doing.’ The ability to incorporate heterogeneity in agents’ 

adaptive behaviour is a further advantage of ABM. 

As well, this model needs further analysis and verification. At this point many assumptions are 

embedded in this stylized model, including those about the probability of illness in at-risk and 

typical consumer populations, the connection between re-inspection scores, compliance and 

contamination probability, and consumer behavior. The assumption that risk averse behaviour is 

homogeneous throughout the population, in particular, requires further investigation. To truly 

provide transparency and gain insight into this aspect of consumer behaviour, experiments could 

be conducted with consumers to determine which method of inspection information delivery is 

preferred and works most effectively. This avenue for research in the area has been mentioned 

before in the literature (Filion & Powell, 2009). Results from such experiments could then be 

used to inform future versions of an agent-based model through parameter setting and proper 

scaling of the analysis.  

  



78 

 

CHAPTER 4  

AGENT-BASED MODELS AND HEALTH-ORIENTED MOBILE 

TECHNOLOGIES 

4.1 Abstract 

Objectives:  Using system science techniques, we investigate the potential for health-oriented 

mobile technologies to improve the surveillance system for foodborne illness, using an agent-

based model as a proof of concept.  

Methods: An agent-based model features consumers, restaurants, and an inspector. Three 

scenarios were developed to include a sentinel population equipped with a mobile technology: 

firstly, the mobile technology allows sentinels to report instances of mild to moderate symptoms 

of foodborne illness (namely, diarrhea and vomiting); secondly, the device’s location sensors 

report which restaurants sentinels have frequented more accurately than retrospective data 

collection; and thirdly, both aspects are combined.   

Results: The model results indicate that a substantial reduction in the number of clinical and mild 

to moderate cases can be achieved with a sentinel population of just 1%, when the sentinels self-

report symptoms of foodborne illness. These reductions were somewhat larger in the scenario 

involving sensor-based location records. However, the scenario where sentinels only had sensor-

based location records for restaurants they had visited, but did not self-report symptoms, was not 

successful. 

Conclusions: The model supports the application of health-oriented mobile technology in 

foodborne illness surveillance, and lends insight into the number of sentinels needed to 

effectively implement a pilot study using this technology.   

4.2 Introduction 

Each year in the United States, there are an estimated 47.8 million foodborne illnesses, resulting 

in 127,839 hospitalizations, and 3,037 deaths. The vast majority (80%) are caused by unspecified 

agents (Centers for Disease Control and Prevention, 2014a). The Public Health Agency of 

Canada estimates that approximately 4 million people, or 1 in 8 Canadians, become sick each 

year (Public Health Agency of Canada, 2013). Based on these estimates, an enhanced cost-of-
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illness model that incorporates pain, suffering, and disability, as well as medical cost and illness-

related mortality, found that the economic burden of foodborne illness in the United States was 

$77.7 billion (Scharff, 2012). Data on the full extent of foodborne illness is incomplete because 

many cases are mild, so those affected do not seek medical treatment; of those who do, cases are 

not always confirmed through laboratory testing and reported to the appropriate health 

department (Buzby & Roberts, 2009; Schlundt, 2002).  A further area of uncertainty is 

attributing diseases to specific foods (Batz et al., 2005); however, eating in restaurants has been 

identified as a risk factor for foodborne illness (T. F. Jones & Angulo, 2006). The uncertainty 

associated with estimates of foodborne illness and its associated costs impedes the development 

of effective interventions and policies to prevent foodborne illnesses.  

Recently, there has been increasing interest in the application of crowdsourcing and mobile 

technology to complement existing public health surveillance. In the field of foodborne illness, 

researchers have linked Tweets about foodborne illness to GPS tags from mobile phones 

indicating restaurants, and then correlated the data with health department inspections (Sadilek, 

Brennan, Kautz, & Silenzio, 2013). Another project used reviews on the website Yelp to find 

unreported cases where customers experienced foodborne illness in New York City.  In 

partnership with the Department of Health and Mental Hygiene (DOHMH), reviews were 

triangulated with 311 reports on restaurants, and in some cases DOHMH investigation was 

required. Three outbreaks were identified that had not previously been reported (Harrison et al., 

2014).  These studies have reported some successes, but the authors also noted that they are 

extremely labour intensive and could overwhelm local health departments. Most recently, IBM 

has built a system designed to help food retailers and public health officials detect the most likely 

sources of food contamination to assist with foodborne illness investigations: the system uses the 

location of supermarket food items sold each week to identify a set of possible sources that are 

likely causing the outbreak, using as few as 10 case reports. By integrating existing retail and 

public health data, public health investigators can see maps, distributions of potential foods, and 

case reports and lab reports from clinical cases. Additional reports feed into the algorithm used in 

order to update the probability that suspected food products are causing the illnesses (IBM, 

2014).   
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Although mobile health technology is a growing field with many applications for gathering 

health data that has generated much research interest recently, designing such studies is time 

consuming, expensive and difficult. To avoid such pitfalls, we were interested in using an agent-

based model (ABM), a simulation  methodology that allows for many interacting agents to reveal 

emergent properties of systems (G. T. Jones, 2007), to investigate the potential for 

crowdsourcing study design and to develop a proof of concept.  ABM has grown in popularity in 

the social and health sciences for its ability to simulate possible outcomes and test alternative 

scenarios. We have employed an ABM to evaluate the possibilities for an intervention: using a 

mobile technology that would crowdsource data on foodborne illness.  

4.3 Methods 

The purpose of the ABM39 is to investigate the effect on health and investigation length of a 

small proportion of the population, referred to as sentinels, equipped with a mobile technology 

that allows sentinels to collect data on visited restaurants and/or report mild to moderate signs of 

foodborne illness, and then transmits this information to public health inspectors in the event of 

an outbreak. 

The model contains three different entities: consumers, restaurants, and an inspector. The 

consumers have two important state variables: whether or not they are sick, and if they are, 

whether they are experiencing either mild to moderate or severe symptoms; and whether or not 

they are a sentinel. Consumers also have parameters that govern how frequently they eat in 

restaurants and whether or not they practice good food handling habits when cooking at home. 

Restaurants may either be in a contaminated or uncontaminated state; one restaurant is 

contaminated at the model’s initialization. The inspector begins in the routine inspection state, 

and if an outbreak occurs, it changes its inspection strategy to focus on restaurants most 

frequently reported as having been visited by ill consumers.  

The model was implemented in AnyLogic (version 6.9.0). Model time is continuous and 

measured in days, and there is no fixed stop time – the model stops when the inspector finds the 

contaminated restaurant. The model is does not depend on spatial relationships, but the 

                                                 

39 View this model in the CoMSES Model Library: https://www.openabm.org/model/4325/version/1/view  

https://www.openabm.org/model/4325/version/1/view
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implementation in AnyLogic used some spatial elements to improve understanding and allow for 

easier communication and debugging.  

The following processes occur continuously, not sequentially. The inspector conducts routine 

inspections by first forming a collection of all restaurants, ordered randomly. The inspector goes 

through the list in a round-robin fashion, inspecting restaurants at a rate of one per day.  The 

inspector has a 50% chance of correctly identifying a contaminated restaurant; this estimate is 

meant to reflect the fact that inspectors may inspect a restaurant when it is less busy, and sloppy 

errors in food handling may be less likely to occur, or when staff members who are more safety 

conscious may be working. A contaminated restaurant will comply with routine inspection 50% 

of the time. If the inspector correctly identifies the affected restaurant during a routine 

inspection, and if the restaurant complies with the inspector, the model realization ends.   

Consumers eat once per day either at home or at a restaurant. The likelihood of a consumer 

becoming ill depends on where they are eating; if they are eating at home, their likelihood of 

becoming ill depends on whether they practice good food handling, and if they are eating at a 

restaurant, it depends on whether they have been to the contaminated restaurant in the model. 

The risks associated with food handling practices were derived from empirical data; for further 

details, please see the calculations summarized in Appendix A.  

Once a consumer has been exposed to a pathogen, either in the home or in a restaurant, the 

consumer will transition from the healthy state to the illness exposure state, where they remain 

for one day in model time. Next, the consumer either experiences mild to moderate or severe 

symptoms. Symptoms severe enough to warrant a visit to the doctor and subsequent reporting to 

public health were assumed to occur in about 0.5% of cases and last for five days. Mild to 

moderate cases, that were not reported to a physician and hence were unrecognized by public 

health authorities, were assumed to last for two days.  

Two severe cases will trigger an outbreak investigation. If an outbreak is declared, the severely 

ill consumers update a list of visited restaurants.  Recollection is treated as imperfect, as 

consumers have a certain chance per day of forgetting restaurant locations that they have visited, 

and they are more likely to forget restaurant visits which occurred more distantly in the past. The 

consumers then pass their list of visited restaurants to the inspector, who maintains a count of 
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reports originating in each restaurant. Once an outbreak has been triggered, and on an ongoing 

basis until the contaminated restaurant is identified, the inspector will seek to visit the restaurant 

with the highest cumulative count of reports that has not yet been visited as part of the outbreak 

investigation. This process continues until the inspector correctly identifies the contaminated 

restaurant, which ends the model realization. During an outbreak investigation, the model treats 

the inspector as capable of recognizing the contaminated restaurant with perfect sensitivity and 

specificity; the elements of uncertainty in identification and compliance that are present in 

routine inspections are not used in outbreak investigations, because inspectors have more 

information to guide their investigation and could shut down the affected restaurant. 

Sentinel consumers behave in accordance with all of the above consumer processes, with minor 

changes depending on the scenario. The first scenario involves sentinels whose mobile devices 

track which restaurants have been visited, allowing sentinels to report with greater accuracy than 

consumers who must remember where they have been, and sentinels report mild to moderate 

symptoms of foodborne disease. In the second scenario, sentinels report mild to moderate 

symptoms, and report which restaurants they have visited with the same imperfect memory as 

non-sentinel consumers once an outbreak has been triggered. In both of these scenarios, four 

sentinels reporting any symptoms, or two severe cases, will trigger an outbreak. In the third 

scenario, sentinels do not report symptoms; however, if they experience mild to moderate illness, 

they provide visited restaurant data to the inspector once two severe cases have been reported. 

These scenarios will hereafter be referred to as scenarios one, two and three, respectively.  

An output file is created that keeps track of the time of the first severe case, the time between the 

first severe case and the inspector beginning an outbreak investigation, the length of the 

investigation, the count of severe illnesses, the count of mild to moderate illnesses, the number of 

sentinel consumers who experienced mild to moderate illness, the number of consumers who 

become sick eating at home, the  number of consumers who become sick from eating at 

restaurants, the total time length of the simulation, and the number of routine inspections. 

However, only a subset of these indicators is discussed here.  

The model is initialized with 5000 consumers and 100 restaurants, one of which is contaminated. 

There is one inspector in the model. Upon model initialization, consumers are placed in 

categories based on frequency of eating in restaurants: 6.7% of consumers eat out daily, 30.9% 
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three times a week, 23% once a week (Canadian Restaurant and Foodservices Association, 

2010), and the remaining 39.4% of consumers visit a restaurant once every two weeks. Each 

consumer selects a subset of 10 restaurants with uniform probability to form their list of possible 

restaurants to visit. Consumers are also randomly assigned to either practice good or poor 

hygiene while cooking at home: 20% of consumers practice good food handling habits, and 80% 

do not. Studies observing food safety practices while preparing meals in the home (Anderson, 

Shuster, Hansen, Levy, & Volk, 2004; Redmond, Griffith, Slader, & Humphrey, 2004) were 

used to inform this aspect of the model; the data reported by these studies is quite nuanced, so 

the 80/20 figure is an abstraction.  The per day chance of illness from eating a home meal 

prepared with good food safety practices, as backed out from empirical data, is 

0.0001511385888.40  We conducted 1000 realizations with 0% (baseline), and then 1%, 2%, and 

4% sentinels for each of the three scenarios.  

4.4 Results 

The results from the model were analyzed in R (version 2.15.1). The Kruskal-Wallis rank sum 

test was used to compare the results within each scenario with 1% of the population acting as 

sentinels, 2%, and 4%, to the baseline (see Table 11), as well as the results between scenarios 

with the same percentages of the population as sentinels (see Table 12). Next, post-hoc analysis 

using pairwise Mann-Whitney-Wilcoxon tests was completed, using the Holm correction to 

account for multiple comparisons. Unless otherwise stated, the pairwise analysis results are 

statistically significant (p <.001).  

 

 

 

 

 

 

 

 

                                                 

40 See Appendix A for details.  
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Table 4.1 Kruskal-Wallis test results for all scenarios, by sentinel percentage 

  Scenario 1: Sentinels Report Mild to moderate Symptoms and Restaurant Visits 

  Baseline 1% Sentinels 2% Sentinels 4% Sentinels Kruskal-Wallis 

  Mean SD Mean SD Mean SD Mean SD 

Chi-sq 

(3 DF) p-value 

Length of 

Investigation 18.6 51.9 10.2 34.4 10.8 28.3 6.4 15.8 65.4 p<.001 

Count Clinical 

Illnesses 1.3 1 1 0.9 0.8 0.9 0.5 0.7 347 p<.001 

Count Mild 

Illnesses 249.2 205.4 199 138.8 155.4 100.4 92.7 53.2 556.7 p<.001 

Count Sentinel 

Illnesses 0 0 2 1.6 2.9 1.7 3.6 1.5 2137.1 p<.001 

Overall Model 

Time 230.5 187.5 184.3 127 144.1 93.1 86.4 49.5 567.1 p<.001 

# of Routine 

Inspections 211.9 177 174.1 119.2 133.3 84.3 80 45.2 562.9 p<.001 

  Scenario 2: Sentinels Report Mild to moderate Symptoms 

  Baseline 1% Sentinels 2% Sentinels 4% Sentinels Kruskal-Wallis  

  Mean SD Mean SD Mean SD Mean SD 

Chi-sq 

(3 DF) p-value 

Length  of 

Investigation 18.6 51.9 27.8 57.6 26.8 45.7 25.2 36.9 215.5 p<.001 

Count Clinical 

Illnesses 1.3 1 10 1 0.8 0. 0.6 0.8 270.7 p<.001 

Count Mild 

Illnesses 249.2 205.4 214.4 153.1 164.8 102.7 112.5 63.9 369.1 p<.001 

Count Sentinel 

Illnesses 0 0 2.2 1.82 3.3 2.1 4.4 2.3 2099.1 p<.001 

Overall Model 

Time 230.5 187.5 198.3 140.5 153.31 94.4 105.3 59.3 368.1 p<.001 

# of Routine 

Inspections 211.9 177 170.5 119.6 126.5 77.9 80.1 45.1 544.1 p<.001 

  Scenario 3: Sentinels Report Restaurant Visits 

  Baseline 1% Sentinels 2% Sentinels 4% Sentinels Kruskal-Wallis  

  Mean SD Mean SD Mean SD Mean SD 

Chi-sq 

(3 DF) p-value 

Length of 

Investigation 18.6 51.9 9.1 30.1 5.7 24 2 7 54 p<.001 

Count Clinical 

Illnesses 1.3 1 1.2 1 1.2 0.9 1.1 0.9 5.1 p=.16 

Count Mild 

Illnesses 249.2 205.4 245.6 196.8 236.4 188.7 234.6 185.8 1.6 p=.66 

Count Sentinel 

Illnesses 0 0 2.5 2.5 4.8 4.6 9.3 8 2191.5 p<.001 

Overall Model 

Time 230.5 187.5 198.3 140.5 153.3 94.4 105.3 59.3 368.1 p<.001 

# of Routine 

Inspections 211.9 177 217.7 178.6 212.6 171.9 214.4 169.7 1.2 p=.74 
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In scenario one, where sentinels report both mild to moderate symptoms and visited restaurants, 

the number of sick consumers declines as the percentage of sentinels increases. The length of 

time required to identify the affected restaurant in an outbreak investigation also decreases as 

sentinels are added, and the variability is substantially reduced.  However, the Mann-Whitney-

Wilcoxon test showed  no statistically significant effect of increasing the amount of sentinels 

from 2% to 4% (p > .05). A related measure, the overall length of time that passes until the 

model run ends, also declines; because clinical cases are rare, relying on a second clinical case in 

order to trigger an outbreak results in longer model run times, which also means that there is 

more time for a greater number of consumers to become ill. When sentinels can report mild to 

moderate symptoms to trigger an outbreak, the outbreak investigation occurs earlier and is 

completed more quickly because inspectors have access to additional information on visited 

restaurants. 

Figure 4.1 Mild to moderate cases, all scenarios 

 

In scenario two, where sentinels report mild to moderate symptoms, the number of sick 

consumers decreases as sentinels are added, although the decrease is not quite as substantial as in 

scenario one. The difference between the baseline and having 1% sentinels for the number of 

consumers who became ill from home cooking, ill from eating at restaurants, and the overall 

length of time of the model was significant (p < .05 ). The most interesting result from this 
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scenario was that the length of outbreak investigation for all sentinel percentages was greater 

than for the baseline.  

Figure 4.2 Length of investigation, all scenarios 

 

Scenario three was not successful – there were few statistically significant differences between 

the baseline and sentinels. The difference between the baseline and 1% sentinels for the length of 

investigation was significant (p < .01), but the difference between 2% and 4% sentinels was not 

statistically significant (p > .05). Overall, the outbreak investigations in this scenario were the 

shortest, as seen in Figure 4.2. The difference between the baseline and 1% sentinels was 

statistically significant (p < .05) for the length of time from the beginning of the model when a 

pathogen first appears until the outbreak investigation completes.  

The results from scenario one show the greatest reductions in the number of sick consumers in 

both severe and mild cases (see Figure 4.1). However, this scenario only performs marginally 

better than scenario two; the results between these two scenarios for the number of mild to 

moderate illnesses were not statistically significant with 1% sentinels (p > .05), but was 

significant with 2% sentinels (p < .05) and 4% sentinels (p <.001). Overall, these two scenarios 

performed comparably.  
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Table 4.2 Kruskal-Wallis test results for all scenarios 

 1% Sentinels 2% Sentinels 4% Sentinels 

 Kruskal-Wallis Kruskal-Wallis  Kruskal-Wallis  

 

Chi-sq (2 

DF) p-value 

Chi-sq (2 

DF) p-value 

Chi-sq (2 

DF) p-value 

Length of Investigation 78.3 p<.001 305.1 p<.001 715.3 p<.001 

Count Clinical Illnesses 26.1 p<.001 111.1 p<.001 345.3 p<.001 

Count Mild Illnesses 15.4 p<.001 85.1 p<.001 427.5 p<.001 

Count Sentinel Illnesses 6.1 p<.05 60.4 p<.001 413 p<.001 

Count Sick from Home 

Cooking 15.4 p<.001 87.8 p<.001 490.9 p<.001 

Count Sick from 

Restaurants 15.9 p<.001 82 p<.001 472.6 p<.001 

Overall Model Time 14.5 p<.001 86 p<.001 487.4 p<.001 

Number of Routine 

Inspections 23.6 p<.001 132.6 p<.001 601.4 p<.001 

 

4.5 Discussion 

This model provides a proof of concept for using mobile technology to enhance foodborne 

illness surveillance. We have shown that even a very small proportion of the population serving 

as sentinels can substantially reduce the number of illnesses present in the population, which 

points to the feasibility of the technology.  The model has generated three important insights. 

First, having sentinels report visited restaurants, without reporting mild to moderate symptoms to 

trigger recognition of an outbreak, does not substantially reduce the number of illnesses. Thus, 

we can infer that it is not helpful for the inspector to only receive restaurant reports from 

sentinels; early reports of milder symptoms of foodborne illness that can trigger an outbreak are 

needed for the intervention to have an effect. Second, the model illuminates Peter Drucker’s 

quote, “what gets measured, gets managed” as applied to policy situations. Because we have 

perfect reporting of mild to moderate cases in the model, we can see that although the length of 

investigation is longer when sentinels only report mild to moderate symptoms, fewer people are 

ill overall. However, if a health department were to deploy this technology and were unaware or 

unconvinced of the reduction in illnesses, in part because many of these mild to moderate cases 

are unknown to begin with, they may think that the technology is actually making things worse 

because of the apparent adverse effect on the duration of outbreak investigations. Third, the 

model shows that adding sentinels can result in more stable and predictable levels of sickness 
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within the population, which is likely to be more easily managed by the public health system. 

Wide swings in outcomes that are unpredictable can be taxing on resources and contribute to 

negative public perception of public health and food safety.  

Crowdsourcing offers interesting possibilities for public involvement in public health, as shown 

here and in other recent work (Harrison et al., 2014; M Hashemian, Stanley, Knowles, Calver, & 

Osgood, 2012; Paul & Dredze, 2011; Sadilek et al., 2013). However, there are also limitations 

involving the compliance and honesty of those participating, as well as the potential for 

crowdsourcing initiatives to overburden public officials (Harrison et al., 2014).  

There are also some limitations to this work, including two key assumptions for future research. 

In the model, we have assumed that sentinel consumers carry the device and use it consistently 

all of the time, and that there is always one contaminated restaurant in the model. Given that past 

studies with similar technology have shown less than perfect compliance (M Hashemian et al., 

2012), the true number of sentinels required to show an effect in a pilot study might need to be 

slightly higher, to account for less than perfect compliance and a fuzzier definition of a 

contaminated restaurant.41  Such a pilot study would need to be conducted in collaboration with a 

local health department to ensure their needs were met and that the incoming data would not 

overburden staff members.   

The main advantage of the model presented here is that it provides a starting point for study 

design.  To fully synthesize simulation with novel mobile technology, we would use the data 

resulting from a pilot study deploying mobile technology to collect reports of foodborne illness 

symptoms to further refine and restructure the model’s assumptions. This is especially relevant 

for foodborne illness, because data is uncertain, in part due to under-reporting, and many argue 

that interventions can prevent some cases of foodborne disease (Batz et al., 2005; Buzby & 

Roberts, 2009; Schlundt, 2002). By linking these two tools in a fundamental way, we can 

provide better evidence for decision-making in public health. 

                                                 

41 The percentage of sentinels used in the model could be taken as indicating the fraction of reliably compliant 

individuals; however, the model does not provide assistance with determining how many sentinels would need to be 

recruited in order to achieve this percentage.    
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CHAPTER 5  

CONCLUSION 

5.1 Summary 

Many problems faced by policymakers are complex, meaning that they are not reducible and 

problems arise when they are approached by simple analytical tools. However, empirical 

evidence suggests that policymakers tend to prefer simpler methods, particularly those that are 

less formal and more subjective. The research presented here is fundamentally about adapting, 

adopting, and reducing new policy tools to practice: ABM is just one example. ABM is a method 

that has been touted as having great potential for analyzing policy problems, but has not been 

widely used. The opportunities for using ABM at each stage of the policy cycle were outlined; it 

appears that the method would be most useful at the policy formulation and policy evaluation 

stages, although there may be application at other points depending on the policy problem at 

hand and the rationale for choosing ABM.  

Ensuring safe food is an example of a complex problem: the system is global, exhibits 

interrelated feedback loops, a large number of actors, asymmetric information, and uncertainty. 

Using food safety as an illustrative example, three models representing simplified interactions 

between consumers, retailers and inspectors were developed and analyzed. The first model 

explores three inspection scenarios incorporating access to information: a random inspection 

scenario, a scenario where stores signal with certainty, and a scenario where stores signal with 

errors. The main finding to come from this modeling exercise was that the number of sick 

consumers is greatly reduced by giving consumers and inspectors more information about 

whether a store is contaminated, even if that information may be uncertain.  

The second model incorporated theories on risk and the role of transparency in encouraging 

consumer trust by exploring two scenarios: the first is the status quo, where consumers do not 

have ready access to restaurant inspection scores, whereas the second gives consumers access to 

inspection scores, and they behave in a risk averse manner by only frequenting low re-inspection 

priority restaurants for a limited time period following an illness. The percentage of restaurants 

that comply with regulations is increased from 60-90% over multiple simulation runs. Overall, 

the findings were more nuanced: having access to restaurant inspection scores results in a 
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slightly higher mean number of sick consumers, but much less variation overall in the number of 

sick consumers over 100 realizations. In both scenarios, more compliant restaurants results in 

fewer sick consumers.  

Rather than investigating the overlying superstructure of the inspection system, the third model 

investigates the potential for mobile technology to crowdsource information about suspected 

foodborne illness. This model provides a proof of concept for the potential for health-oriented 

mobile technologies to improve the surveillance system for foodborne illness. The model again 

features consumers, retailers and an inspector. Three different scenarios compare the impact of a 

‘sentinel’ population that uses a mobile technology to report mild to moderate symptoms of 

foodborne disease to the inspector, or sensor-based location data of the restaurants they have 

visited, or both. A baseline was determined by running 1000 realizations with no sentinels, 

which was compared to 1000 realizations involving 1%, 2% and 4% sentinels for each scenario. 

The scenario where sentinels report mild to moderate symptoms and visited restaurants showed 

the greatest decline in the number of consumers experiencing mild to moderate illness when 

compared to the baseline, although the scenario where sentinels only reported mild to moderate 

symptoms performed nearly as well. In both cases, increasing the number of sentinels led to 

fewer mild to moderate illnesses. However, the scenario where sentinels only report visited 

restaurants did not effectively reduce the number of mild to moderate cases.  

The three models presented here, although stylized representations of food safety inspection 

systems, provide a number of insights for policy.  

5.2 Policy Implications 

The research presented here discusses a number of policy implications.  

1) ABM has practical use in the policy cycle, particularly in demonstrating possible alternatives 

for policy formulation, which is what the three models in this dissertation have done. Models can 

be used to show a particular problem framing; the three scenarios presented in chapter two 

present food safety as a problem of information asymmetry, and show that greater access to even 

imperfect information can improve outcomes. Models can also be designed to provide a 

counterfactual for policy evaluation; the two scenarios presented in chapter three come close to 

this, as they present the status quo and then an alternative policy option for comparison. By 
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disclosing restaurant inspection scores to give consumers new information for decision-making, 

this model presents a policy tool that falls under the category of capacity tools (Schneider & 

Ingram, 1990). ABMs could also be used to determine the proper settings for initial policy 

deployment; the scenarios presented in chapter four may be used to inform the design of a pilot 

project, with the results of the pilot providing feedback into model design. A similar method 

could be used in policy development.  

However, applying ABM in policy analysis requires modellers to engage with government, 

consumer, and industry stakeholders. Very few modeling techniques are currently used in policy 

analysis, and unless ABM is made accessible and shown to be useful to policy analysts, it will 

not live up to its potential for use in policy development. In order to achieve broader use by 

governments42 and others outside of the small field of researchers currently using ABM, the 

following elements are needed: 

 Software that allows for drag and drop model building, rather than coding. The current 

software offerings for building ABMs can be intimidating for those without extensive 

experience with coding. To encourage use, software needs to be as simple to use as 

possible.  

 Improved visual analytics. Models that are easy to understand visually, and offer intuitive 

visual results, are easier to communicate to stakeholders and allow models to be used 

effectively as tools for supporting decision-making.  

New software that incorporates the above two elements has the potential to be used more 

extensively for participatory modeling, which could be a useful tool for democratic engagement. 

By involving stakeholders in the modeling process, the results of the modeling process are likely 

to be much richer. As well, there are opportunities for models to be communicated not just from 

researchers down to stakeholders, but for stakeholders to provide direct input on potential policy 

options throughout the modeling process. 

                                                 

42 For example, the Alberta government is interested in threats to the woodland caribou population and assessing the 

risks to herds. A project  at the University of Alberta used an ABM to simulate caribou movement behaviour and 

study the effects of human activity on herds (Hassanali, 2014).  
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2) Fundamentally, all three papers have explored aspects of the role of information in a complex 

system and its impacts on public health policy. In chapter two, the main policy implication is that 

giving consumers and inspectors more information, even if that information is uncertain, results 

in more favourable outcomes. The outcome of having one inspector with access to imperfect 

signalling information is similar to five inspectors using random inspections.  

In chapter three, the results reflect the tension between regulation and information. When 

consumers do not have additional information, and do not exhibit risk averse behaviours 

following an illness by only eating at low re-inspection priority restaurants, the mean number of 

illnesses is somewhat lower. However, when consumers are given access to restaurant re-

inspection priority scores, the mean number of illnesses is somewhat higher, but there is much 

less variation in the overall number of illnesses. This emergent result reflects several important 

points: firstly, it re-emphasizes the complexity of food safety – simply changing one variable is 

not going to fix the problem; secondly, more stable, predictable levels of sickness within the 

population are likely to be more easily managed by the public health system, as wide swings in 

outcomes are unpredictable and may further compound the public’s negative risk perception and 

‘swings from hysteria to indifference’; thirdly, more predictable outcomes that are close to a 

normal distribution are more amenable to typical statistical analyses and could contribute to 

understanding of the problem and future prediction.  

As well, higher levels of restaurant compliance also contribute to fewer sick consumers, and 

empirical evidence indicates that disclosing inspection scores improves compliance. However, 

since the industry has indicated unwillingness to disclose this information voluntarily, 

government action will be required to mandate the posting of scores and encourage a coordinated 

approach across jurisdictions.  

In chapter four, the model results showed that even having a small number of sentinels, or 

individuals within a population that report mild to moderate symptoms to trigger an outbreak, 

can substantially reduce the number of illnesses within a population.  

3) The model results also emphasize ‘what gets measured gets managed.’ This is most apparent 

in chapter four. Although the length of investigation is longer when sentinels only report mild to 

moderate symptoms, fewer people become ill overall, which was an emergent result from the 
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model. However, this is only obvious since the model shows, very clearly, the total number of 

illnesses; in reality, many illnesses are unreported. Thus, if a health department were to use this 

technology, the reduction in the number of illnesses may not be clear, but the department may 

view the technology as causing inefficiencies in investigations since they now take longer.  

There are also two broader policy implications that come out of using ABM as a policy tool: 

1) The precise documentation required by the ODD framework forces the modeller to be 

transparent and honest about choices made during model specification. All of the modeller’s 

assumptions and data sources must be made clear up front; this is in contrast to econometric 

modeling, where model fitting can be an opaque process that obscures the researcher’s 

assumptions (Leamer, 1983).  

2) Models also hold great value as communicative tools; the software available for implementing 

ABMs, which can allow for visual representation of processes and outputs, greatly facilitates 

communicating models to experts and stakeholders, and, as noted earlier, presents opportunities 

for the broader use of participatory modeling.  

A lot of the potential for modeling comes from models acting as ‘thinking tools’ – the process of 

developing a model to address a problem forces one to think through a number of issues that may 

not be obvious if presented in a less systematic way. The benefit of modeling may not 

necessarily be tied up in the final results of a finished model, but in using the model as a tool for 

thinking through problems and communicating the problem, and potential solutions, to others. 

This allows for easier interdisciplinary collaboration and discussion on complex policy problems. 

The models presented here could be expanded in a number of ways to further explore these 

policy implications or other research questions – a few extensions will be discussed below. 

5.3 Limitations of the Research 

Although the models presented in this thesis have generated some useful insights, their 

limitations cannot be ignored. First, as aptly noted by Epstein (2008), “[A]ll the best models are 

wrong. But they are fruitfully wrong.” The models presented here incorporate numerous 

simplifications and assumptions, as noted in the ODD model descriptions, about human 

behaviour, supply chains, and the level of pathogen exposure required to cause illness, among 
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other things. Further, the models assume that the agents, their actions, and the context in which 

they operate are not all changing interactively at the same time; something that cannot, in all 

fairness, be ruled out. They are stylized models that can generate insight, but should not be used 

for predictive purposes. In order for these models to serve as predictive tools, further data 

collection to inform initial conditions and more sophisticated representations of human 

behaviour, communication, and supply chain dynamics would need to be incorporated.  

Further, the very nature of ABM presents some limitations. The first is that there is often a lack 

of individual-level data to inform models and their assumptions. Although some work is 

underway in this area (M Hashemian et al., 2012), this poses a problem for building grounded 

models. Further, the bottom up nature of ABM makes it difficult to imply top down structures; 

policies are generally top down, so this aspect could limit certain applications of ABM within the 

policy space. However, for policies that intend to affect behaviour of individual actors, ABM 

still holds a lot of promise.  

5.4 Directions for Future Research 

By their very nature, ABMs are extremely flexible. Although this can at times be a disadvantage, 

as a lot of time can be spent adjusting model structure, it is an advantage when it comes to 

extending the models for future research. First, the models presented here could be adapted to 

explore new questions involving: 

 Changes in population structure, such as increased consumer heterogeneity with respect 

to likelihood of illness, more or less dense populations, and agents with more specific 

preferences for the type of restaurant they frequent; 

 Strategies where inspectors cooperate with one another; 

 Different pathogens, for example, different lengths of time between exposure and illness 

or pathogens that can be spread from person to person, not just acquired from a 

contaminated food product; 

 Information sharing between consumers about restaurants to avoid; 

 Restaurants that make explicit optimizing decisions about complying with food safety 

regulations.  

These are just a few examples of possible extensions to the models demonstrated here, and they 

vary in their complexity to implement from very simple to substantial, complicated changes to 

model structure. The models could also be adapted in terms of scale to focus more on federal 
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inspection of meatpacking plants or border control for imported food products. In this case, the 

model would likely involve a more complex supply chain, including processors and distributors. 

Further model development in this vein could be a promising space for hybrid modeling, since 

system dynamics and discrete-event models are well suited to representing supply chains and 

could be integrated with an agent-based model of consumers and inspectors. 

Second, there could be opportunities to work directly with public health officials to adapt models 

specifically to their needs in order to have a real policy impact.  The modeling cycle may be a 

useful tool for building insights and opening dialogue into processes and system outcomes. 

Given that the current climate in health in Saskatchewan is being dominated by LEAN, process 

improvement, and a focus on efficiency to deal with budget pressures, models that could be 

adapted to investigate how changes in processes or staff reductions could affect the overall 

system would be especially useful.  

Third, we have discussed conducting a pilot project with support from the Public Health Agency 

of Canada to investigate the potential for applying mobile technology and crowdsourcing, as in 

the model presented in chapter four.   

One of the difficulties with calibrating ABMs is access to individual data to inform agent 

behaviour in a rich and meaningful way. A fourth extension of the research presented here would 

be to link the models with behavioural experiments to generate results that could better inform 

agent behaviour and decision-making. The advantage of using behavioural experimentation, as 

opposed to surveys and focus groups, is that this method allows for individuals to demonstrate 

what they would do in a given situation, rather than telling the researcher what they would do. 

Data for these experiments thus allows for a more authentic representation of decision-making 

on an individual level. All of these extensions have the potential to further improve the 

applicability of ABM to evidence-based policy-making. 
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APPENDIX A: SUPPLEMENTAL MATERIAL 

The following formula introduces forgetfulness over time. By using a uniform distribution, there 

is between a 5% and 20% chance of the consumer forgetting: 

𝑒−(uniform(0.05,0.2))(𝑡𝑖𝑚𝑒−𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑀𝑒𝑎𝑙𝑇𝑖𝑚𝑒)  

To determine the probability of a consumer becoming sick per meal, the following stylized facts 

were used:  

 

 Approximately 1 in 8 Canadians become ill each year from foodborne illness (Public 

Health Agency of Canada, 2013). 

 Consumers have been divided into categories based on how frequently they eat in 

restaurants: 6.7% of consumers eat out daily, 30.9% three times a week, and 23% eat out 

once a week (Canadian Restaurant and Foodservices Association, 2010); the remaining 

39.4% visit a restaurant once every two weeks.  

 Restaurants are responsible for twice as many outbreaks as private homes (Smith DeWaal 

& Glassman, 2014). 

 Most consumers use poor food handling practices while cooking at home (Anderson et 

al., 2004; Redmond et al., 2004); in the model, 80% of the consumers use poor food 

handling practices and 20% use safe food handling practices when cooking at home. We 

assume that consumers who use poor food handling practices are twice as likely to 

contract an illness as those who use safe food handling practices. 

 We also know that, in the model, one out of 100 restaurants is contaminated.  

 Finally, a key assumption is that agents eat one meal per day: this means the per meal and 

per day chance of becoming ill are equivalent. 

 

𝑝 refers to the probability of becoming ill from eating a meal prepared safely at home.  

 

First, we derive the chance of becoming ill from an average home meal, based on the above.  

 

(2 ∗ 0.8 + 1 ∗ 0.2)𝑝 = the chance of becoming ill from an average home meal 

 

Next, we derive the average chance of becoming ill from a restaurant meal, which is twice the 

likelihood of becoming ill from the average home meal.  

 

2(2 ∗ 0.8 + 1 ∗ 0.2)𝑝 = the average chance of becoming ill from a restaurant meal 

 

Next, we determine the weighted average of becoming ill from any restaurant, which we want to 

equal twice the likelihood of becoming sick from a home meal.  We assume that there is no risk 

of becoming ill from a non-contaminated restaurant. 
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𝑝(𝐺𝑒𝑡𝑡𝑖𝑛𝑔𝑆𝑖𝑐𝑘𝐼𝑛𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡)

= 𝐹𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑 ∗ 𝑝 (
𝑠𝑖𝑐𝑘

𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑
)

+ (1 − 𝐹𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑)𝑝(
𝑠𝑖𝑐𝑘

𝑛𝑜𝑛 − 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑
) 

 

Which becomes: 

2(2 ∗ 0.8 + 1 ∗ 0.2)𝑝 =
1

100
∗ 𝑝 (

𝑠𝑖𝑐𝑘

𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑
) + 0 

360𝑝 = 𝑝(
𝑠𝑖𝑐𝑘

𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑒𝑑
) 

 

 

 

Now, we know that certain segments of the population eat at restaurants more or less frequently, 

and can use that to determine the overall fraction of meals at restaurants: 

 

𝐹𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡𝑚𝑒𝑎𝑙𝑠 = (0.067 ∗
7

7
+ 0.309 ∗

3

7
+ 0.23 ∗

1

7
+ 0.394 ∗

1

14
) 

𝐹𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡𝑚𝑒𝑎𝑙𝑠 = 0.2604 
 

This means that our overall chance per day of contracting foodborne illness, or ∝, is as follows: 

 

∝= (𝐹ℎ𝑜𝑚𝑒𝑚𝑒𝑎𝑙𝑠 ∗ 𝑐ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑒𝑐𝑜𝑚𝑖𝑛𝑔 𝑖𝑙𝑙 𝑓𝑟𝑜𝑚 ℎ𝑜𝑚𝑒 𝑚𝑒𝑎𝑙𝑠 + 𝐹𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡𝑚𝑒𝑎𝑙𝑠
∗ 𝑐ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑏𝑒𝑐𝑜𝑚𝑖𝑛𝑔 𝑖𝑙𝑙 𝑓𝑟𝑜𝑚 𝑟𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 𝑚𝑒𝑎𝑙𝑠) 

 

We also know that approximately 1 in 8 Canadians become sick each year, so we must use this 

in determining our per day chance of illness:  

 

𝑒−∝𝑡, where 𝑡 refers to 365.25 days.  

The fraction getting sick over a year would be 1 − 𝑒−∝∗365.25 

ln (1 −
1

8
) = −∝∗ 365.25 

∝= −
ln (1 −

1
8)

365.25
 

∝= 2.2688𝑝 

We then use ∝ to solve for 𝑝, the chance of becoming sick per day from a safely prepared home 

meal: 𝑝 = 0.000161138588 
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APPENDIX B: MODEL CODE 

The model code for each of the models used in this dissertation, along with accompanying 

documentation, has been uploaded to the CoMSES Computational Model Library which is 

available at www.openabm.org/models. The interested reader may find the exact links footnoted 

in each of the chapters.  

  

http://www.openabm.org/models
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