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Abstract

This thesis reports the: cross section, parameterized differential cross section, and analyz-

ing power (a.k.a. the photon asymmetry), for neutron production via the photodisintegration

of the unpolarized deuteron at 18 MeV using linearly polarized photons: d(~γ,n)p.

The data were collected in October 2010 using the High Intensity Gamma Source (HI~γS)

at the Duke Free-Electron Laser Laboratory (DFELL) located at Duke University in Durham,

North Carolina. The ejectile neutrons from the photodisintegration reaction were measured

using the Blowfish detector array: a spherical array of 88 BC-505 liquid organic scintillator

cells which cover approximately π steradians.

The initial goal of our experiment was to perform tests on the detector characteristics

and check a few potential sources of systematic error, and so uncontaminated experimental

runs were only taken with the remaining beam-time. Our data are therefore not optimized

for precision, and so presented a number of data analysis challenges. This thesis delineates

the challenges and respective solutions.

Contrary to earlier results near deuteron binding energy threshold, we see reasonable

agreement with a theoretical calculation based on retarded one meson exchange with em-

pirical cutoffs in the propagators, including: off-shell corrections, relativistic corrections and

the ∆ isobar degree-of-freedom. Our results show similar agreement to theory as previous

experiments at 14 and 16 MeV, although we see no target length dependence: such has been

observed at 20 MeV.
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Chapter 1

Introduction

Photodisintegration of the deuteron1 using linearly polarized photons occurs when a lin-

early polarized photon causes a deuteron to break into its nuclear constituents: a neutron,

and a proton (destroying both the photon and deuteron in the process). In this experiment,

we measured the reaction: d(~γ,n)p i.e. we measured the ejectile neutron from the deuteron

photodisintegration reaction and ignored the recoiling proton.

1.1 Background

Low energy deuteron photodisintegration of unpolarized deuterons has purportedly been

well replicated by theory since the late 1980’s, when realistic nucleon-nucleon potentials

became available to perform accurate calculations, and, concurrently, Compton scattering

based photon sources: capable of gathering high precision data, became widely available

[Are91]. It was also during this time that inconsistencies in the spatial distribution of the cross

section near threshold energies (. 20 MeV) appeared [Ste87, Bir88], leading to a bifurcation

of theoretical calculations: Arenhövel ignored the results [Sch91, Are91], while Hadjimichael

et al. altered their theoretical calculation by fitting their higher order terms to the new

experimental data [Had87].

Sawatzky [Saw05] returned to the subject in 2005, and his results verified that there was

indeed a discrepancy with the then accepted theoretical calculations performed by Arenhövel

[Are00]; specifically in the spatial distribution of the cross section.

Blackston [Bla07] continued the search at 14 and 16 MeV and his data agreed with the

calculations by Schwamb and Arenhövel. Next, Kucuker [Kuc10] used unpolarized photons

1The deuteron is the nucleus of deuterium: 2H.
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to perform the photodisintegration at 20 MeV: her data agreed well with the same calcu-

lations, although she also found an unexplained short (2.0 cm) and long (10.7 cm) target

discrepancy: possibly due to some unaccounted scattering process (this was conjectured to

be spin-dependent scattering), or possibly due to an artifact of the analysis or experimental

procedure.

1.2 Experiment

Our experiment was performed at the High Intensity Gamma Source (HI~γS) facility at Duke

University, Durham, NC in October 2010. The HI~γS facility is a synchrotron with a free-

electron laser which utilizes Compton backscattering within an optical cavity to produce

highly polarized, nearly monochromatic photons at nuclear energies [Wel09].

We detected the ejectile neutrons using the Blowfish detector array: a spherical array of

88 organic scintillator detectors placed on an imaginary sphere of radius 40.64 ± 0.30 cm,

covering a solid angle of approximately π steradians over the interval θ ∈ [22.5◦, 157.5◦]

(polar angle) and φ ∈ [0◦, 360◦) (azimuthal angle).

The targets we used were composed of deuterated water: D2O, in lengths of: 2.0 ±

0.1 cm (short) and 10.7 ± 0.1 cm (long). We accounted for neutrons from sources other than

the deuteron; such as from 16O and 13C, by using a 10.7 ± 0.1 cm H2O target to measure,

and later subtract, the neutron cross section due to other reactions.

1.3 Motivation

Our ultimate goal is to provide accurate and precise data on the deuteron: to allow theoreti-

cians to improve the quality of their theoretical calculations. In this work, this specifically

means we will test the theoretical predictions for the: total cross section, analyzing power,

and polar angle differential cross section.

The data in this thesis were initially collected in order to test for possible sources of

error in the experimental configuration, and it was only when the author inherited these

data in 2011 that it became clear that the data taken were sufficiently precise to compare
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meaningfully to theoretical calculations. A secondary, pragmatic goal of this research is to

continue in the spirit of the collection of these data: to take a careful look at potential sources

of error using Blowfish at HI~γS in order to maximize the precision of future experiments.

Previous experiments with Blowfish [Saw05, Bla07, Wur10c, Kuc10] found a few discrep-

ancies which we would like to settle: old theoretical calculations showed discrepancies at low

energies [Saw05], the neutron light output of the Blowfish cells differ from the simulated data

[Bla07, Wur10c], and the short and long target produced inconsistent results [Kuc10]. We

aim to verify these results, or uncover the reason for the discrepancies observed.

1.4 Relevance

The importance of deuteron photodisintegration derives from the fact that the deuteron is

ostensibly the simplest nuclear system, and the photon is the “cleanest” (i.e. best understood)

probe [Are91]. Understanding how the deuteron is disintegrated by photons will allow for

more precise nucleon-nucleon potentials by directly improving the precision of the cutoff

parameters used in phenomenological potentials. Enhanced accuracy in nucleon-nucleon

potentials will improve calculations involving any nucleus.

The deuteron is also important on its own merit: it has by far the smallest binding energy

per nucleon of any stable nucleus (1.11 MeV
nucleon

contrasted to 7.59 MeV
nucleon

for 235U [Son13])

and therefore has the largest mass per nucleon available for conversion into energy, giving

it the potential for use as an energy resource (or as a weapon), or as an energy carrier.2

The future of deuteron-based technologies is limited only by engineering and the quality of

quantitative scientific data available. By testing the theoretical calculations we can either

increase confidence in nuclear predicative power, or provide evidence that theoreticians need

to improve the way they perform their calculations.

2For example, a reversible conversion between 4He and 2H would carry 24 MeV [Son13] per 4He nucleus;
in contrast to the ≈ eV (per atom) stored in atomic chemical reactions.
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1.5 Observables

The fundamental observable for unpolarized photodisintegration is the cross section, σ, and

its spatial distribution, dσ
dΩ

(i.e. the differential cross section). We therefore measured; and

report here, the total cross section and the differential cross section. We also report the

analyzing power (also known as the photon asymmetry) which is a function of the differential

cross section at azimuthal angles φ = 0◦ and 90◦ relative to the photon polarization. Schwamb

and Arenhövel [Sch01c, Sch01a, Sch01b] provided the theoretical calculations of: the φ-

averaged differential cross section (i.e. the unpolarized photodisintegration differential cross

section), the total cross section, and the analyzing power.

1.5.1 Total Cross Section

In order to deduce the total cross section, σ, we measured the total number of incident photons

using the Five Paddle Flux Monitor, and the total neutron yield using the Blowfish detector

array. Using a Monte Carlo simulation to replicate the experimental detector efficiency, we

can calculate the total cross section:

σ =
N sim

N sim
d

Ndµ

ρnN0(1− e−µx)
(1.1)

where: Nd is the neutron yield for detector, d, N sim
d is the neutron yield for detector, d, in

the simulation, N sim is the total number of events simulated, x is the target length, N0 is

the number of incident photons, σ is the cross section (cm2/atom), ρ is mass density of the

target (g/cm3), µ is the linear mass attenuation coefficient for photon interactions in the

target (cm−1),3 and n is the number density of the target (atoms/g).

The theoretical cross section agrees well with the interpolated data from earlier researchers

(figure 1.1 on the next page),4 but not very well with either of the direct measurements at

18 MeV, performed by: Skopik et al. [Sko74] (640±31 µbarns) and De Graeve et al. [DGr91]

3The attenuation due to the photodisintegration process is small relative to µ allowing this equation to
be approximately valid: since µ does technically include a contribution from σ.

4We performed a phenomenological fit in order to interpolate the cross section at 18 MeV for those
researchers who did measured the cross section at nearby energies but not 18 MeV.
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(716 ± 22 µbarns). Taking the weighted average [Tay97] of the previous experiments in

figure 1.1, one finds that the theory (685.14 µbarns) agrees very well with past experimental

results (690 ± 15 µbarns). The direct measurements agree with the theoretical prediction

only at an error interval of 2σ, and do not agree with each other.

Figure 1.1: Literature Review of Total Cross Section, with contemporary theory.

In this work we compute the total cross section with the hope of elucidating the discrep-

ancy between the two direct measurements, as well as testing the theoretical prediction.

1.5.2 Spatial Distribution

The spatial distribution of the cross section is described by the differential cross section:

dσ
dΩ

, and a few other observables, namely the analyzing power (eq. (1.3) on the next page).

The differential cross section can be represented as an expansion of the associated Legendre
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polynomials, and so our key measurements are the values of the parameters in the expansion:

dσ

dΩ
≈ σ

4π

[
1 +

4∑
k=1

akP
0
k (cos θ) +

4∑
k=2

ekP
2
k (cos θ) cos 2φ

+
2∑

k=1

ckP
1
k (cos θ) cosφ+

2∑
k=1

dkP
1
k (cos θ) sinφ

]
(1.2)

where: P i
k are the associated Legendre polynomials, ak, ek, ck and dk are fitting parameters,

and σ is the total cross section. This expansion is given in Cambi et al. [Cam82], with the

following changes: we absorbed the photon polarization factor into our ek parameters, and

we have added the ck and dk parameters to test target alignment (they are subsequently fixed

to zero once target alignment has been verified).

Using the differential cross section, we can calculate the analyzing power:

Σ(θ) ≡ 1

Σl

dσ
dΩ

(θ, φ = 0◦)− dσ
dΩ

(θ, φ = 90◦)
dσ
dΩ

(θ, φ = 0◦) + dσ
dΩ

(θ, φ = 90◦)

=
1

Σl

∑
k=2 ekP

2
k (cos θ)∑

k=1 akP
0
k (cos θ)

(1.3)

where: dσ
dΩ

is the differential cross section, Σl is the probability of an incident photon being

horizontal polarized, the ak and ek are the extracted parameters from the Legendre expansion,

and P i
k are the associated Legendre polynomials.

The horizontal polarization fraction in eq. (1.3), Σl, depends on the photon source used;

for our experimental setup at HI~γS, we expect that this values is close to 1 (i.e. 100%

polarization of incident photons).

In order to extract the parameters in eq. (1.2) we mapped each Legendre polynomial into

a probability density function, then used a GEANT4 simulation to calculate an expected
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yield for each term. This allowed us to fit directly to the neutron yield via:

Nd ≈A[(1−
4∑

k=1

ak − 3e2 − 6e3 − 10e4 − c1 −
3

2
c2 − d1 −

3

2
d2)N sim

d,00

+
4∑

k=1

akN
sim
d,0k + 3e2N

sim
d,22 + 6e3N

sim
d,23 + 10e4N

sim
d,24

+ c1N
sim
d,11 +

3

2
c2N

sim
d,12 + d1N

sim
d,11′ +

3

2
d2N

sim
d,12′ ] (1.4)

where: N sim
ki are the simulated neutron yields associated with their respective Legendre

polynomial, ak, ek, ck and dk are fitting parameters, and A is a scaling parameter proportional

to the: flux, target density, cross section, and efficiencies.

Previous researchers have found fairly good agreement with the theoretical calculations

by Schwamb and Arenhövel; however, the theory appears to underestimate the probability

of forward scattering in some experiments. For example, figure 1.2 on the next page at 20

and 29 MeV, and figure 1.3 on page 9 at 14 and 16 MeV.
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Figure 1.2: Unpolarized Differential Cross Section at 20 and 29 MeV.

Where: qlab is the lab energy (equal to the photon energy), and θCM is the center-of-

mass/momentum polar angle. The different lines represent the potential used: OBEPQ,

-T and -R are based on the Bonn potential [Mac87], and Paris is the Paris potential

[Lac81]. The references are: 23: Skopik et al. [Sko74], 41: Fink et al. (1989), 42: De

Pascale et al. (1985). Reference 23 is skewed in favour of small theta, and 42 is skewed

in favour of large theta. No substantial discrepancy is observed. Image credit: Schmitt

et al. [Sch91].
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Figure 1.3: Unpolarized Differential Cross Section at 14 and 16 MeV. No-

tice that the experimental data (blue and black) disagrees with theory (red) at the

forward scattering angles. SAPM: Schwamb-Arenhövel potential model. Image credit:

Blackston et al. [Bla08].

The analyzing power was also computed by Blackston [Bla07]: he found good agreement

with theory: figure 1.4 on the next page.
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Figure 1.4: Analyzing Power at 14 and 16 MeV. The experimental data (blue

and black) agrees well with the theoretical calculation performed by Schwamb and

Arenhövel (red). SAPM: Schwamb-Arenhövel potential model. Image credit: Blackston

et al. [Bla08].

The results of Stephenson et al. [Ste87] showed a discrepancy in the cross section at polar

angles: θ = 45◦, 135◦, and 155◦ when normalized to the cross section at θ = 90◦, Sawatzky

[Saw05] also found a discrepancy with theory, but was unable to replicate Stephenson et al.’s

results (figure 1.5 on the next page). It should be noted that it is believed that Stepheson

et al. had an unknown photon polarization when collecting their data [Kuc10], and so it is

therefore possible that their results are incorrect.5

5Stephenson et al. used the measured photon spectrum to calibrate their detectors, and so it is difficult
(if not impossible) to determine which of their results are incorrect.
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Figure 1.5: Ratio of Cross Section at Selected Neutron Lab Angles for

Energy in Range: 3-18 MeV. Open diamonds: Sawatzky [Saw05], solid squares:

Stephenson et al. [Ste87], the numbered lines are calculations performed by Had-

jimichael et al. [Had87], and the dotted line labeled Arenhövel is an old calculation

by Arenhövel et al. [Are00]. Arenhövel’s calculations greatly overestimates the back-

ward scattering cross section and underestimates the forward scattering cross section.

Image credit: Sawatzky [Saw05].

Our results do not demonstrate the observed discrepancy with theory by Sawatzky, indi-

cating that it may not extend to higher energies. We also failed to observe any significant

discrepancy with the theoretical forward scattering probability such has been observed pre-

viously.
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1.5.3 Theoretical Calculation

The theoretical calculations which we compare to were performed by Schwamb and Arenhövel

[Sch01c, Sch01a, Sch01b] and include: the total cross section, the φ-averaged differential

cross section (i.e. the unpolarized differential cross section), the analyzing power, and a

number of polarized observables which we cannot make use of (because our target was not

polarized). Schwamb and Arenhövel’s full calculation is based on the non-relativistic Elster

Potential [Sch01c]: the 1987 Bonn one-boson exchange parameterization in r-space (OPEBR)

potential [Mac87] with: off-shell meson corrections, ∆ baryon intermediate states, and meson

retardation.

The Bonn-OPEBR potential [Mac87] is a phenomenological, non-relativistic potential

which is based on single meson exchange, including the: π, ω, δ/a0(980), σ, η and ρ mesons

using the static limit for propagators. The mesons act as effective degrees of freedom for

quantum chromodynamics at low (i.e. nuclear) energies and large (& fm) distances [Wal04].

Regulating functions of the cutoff parameters must be included in the meson exchange prop-

agators to enable perturbation theory to be applied, these cutoffs are determined empirically

by fitting to experimental data. Also derived from the experimental data are the coupling

constants for each meson which represent the strength of the interaction.

The Elster Potential extends the Bonn-OPEBR above pion-threshold by including off-

shell meson corrections, ∆ baryon intermediate states, and meson retardation.

Schwamb and Arenhövel [Sch01c, Sch01a, Sch01b] used both the Bonn-OPEBR, and the

Elster Potential to demonstrate the importance of the following contributions in deuteron

photodisintegration: retarded meson exchange currents, ∆ baryon intermediate states, off-

shell corrections, and relativistic corrections. At 18 MeV these effects are small, and in the

end we found that comparing them was impertinent given the precision of our final data:

thus we compared our results only to the full calculation.

1.5.4 Outline

This thesis describes: the necessary background in chapter 2 on page 14, the experimental

methodology in chapter 3 on page 51, the simulation methodology in chapter 4 on page 104,
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the analysis methodology in chapter 5 on page 146, the results in chapter 6 on page 218,

and ends with some concluding remarks, including a description of the sources of error, in

chapter 7 on page 246. The author performed the simulation and analysis, including finalizing

the results, but did not participate in the collection of the data, nor any of the background

experiments.
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Chapter 2

Background

2.1 The Deuteron

The deuteron is the nucleus of deuterium, it consists of a neutron and a proton together

in a bound state. It is the only bound two nucleon state, and therefore it is reasonable to

expect that it is the closest nucleus to a composite two-body state, and the most direct way

of testing the nucleon-nucleon interaction.1

The deuteron has only one bound state: with a binding energy of approximately 2.226 MeV,

and lπ = 1+ (angular momentum of l = 1 and positive parity) [Han11]. It has also been

surmised from nucleon-proton scattering experiments that the deuteron has a quasi-bound

state at approximately 60 keV with angular momentum of 0. The presence of an electric

quadrupole moment (Q = 2.87500 ± 0.00002 · 10−27cm2 [Han11]) is indicative of an l = 2

state, and therefore the deuteron is modeled non-relativistically as a superposition of ≈ 96%

3S (l = 0, s = 1) and ≈ 4% 3D (l = 2, s = 1) states [Han11].2

The bound state of the deuteron provides a good test case for nucleon-nucleon potentials

[Sch89, Are91] and therefore high precision data on deuteron interactions; especially those

involving the well-known electromagnetic interaction, are important for both extracting pa-

rameters for phenomenological models and testing their accuracy.

1In light of recent developments in nuclear condensed matter physics (e.g. Ebran et al.’s [Ebr12] work on
4He clusters in the 20Ne nucleus), one wonders if the deuteron: a collection of two weakly bound fermions, is
the simplest testing ground for the nucleon-nucleon interaction, or if there is a larger nuclei which actually
has fewer degrees of freedom.

2s: total spin quantum number.
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2.2 Photodisintegration of The Deuteron

The photodisintegration of the unpolarized deuteron in the low energy region (. 40 MeV)

using unpolarized photons has been modeled to a high accuracy and precision for over two

decades by simple one meson exchange potential models of the deuteron [Sch91, Are91],

but with the important caveat that there are some conflicting experimental results near

disintegration threshold (. 20 MeV) [Ste87, Bir88, Saw05], which may be compensated for

via the use of an ad hoc empirical fit of higher-order terms [Had87].

There were issues with the total cross section values up to the 1980s due to the nearly

ubiquitous use of bremsstrahlung beams;3 which are prone to systematic errors due to their

dependence on theory to derive a total number of photons. These issues were smoothed

out with the development of tagged bremsstrahlung,4 and then verified by Laser Compton

Scattering (LCS) beams [Ber86] and early free-electron lasers [Are91].

On the theoretical side, one pion exchange potentials were long considered an adequate

description of the deuteron,5 and it was only when calculations aspired to reach higher

precision (and to describe new nuclei by incorporating multiple pions) that the need for more

realistic nucleon-nucleon interactions were recognized as necessary [Mac11]. The picture circa

1990 is illustrated in the figures below: figure 2.1 on the next page for the differential cross

section, and figure 2.2 on page 17 and figure 2.3 on page 18 for the total cross section.

3For example, Baglin et al. [Bag73], Whetstone and Halpern (1958) [Whe58], and Skopik et al. [Sko74]
all underestimated the currently accepted total cross section at 18 MeV by ≈ 10-20% using bremsstrahlung
beams.

4Ahrens et al. [Ahr74] were able to use an untagged bremsstrahlung beam to record cross sections at 15,
20, and 25 MeV which are consistent with contemporary results by comparing the relative photon attenuation
of heavy water versus light water, thus eliminating their dependence on theory for photon flux.

5In hindsight, this is because the deuteron is a relatively large nucleus (≈ 10% larger than the radius of
a neutron plus a proton [Ber12]) and therefore the effective QCD field is dominated by a single exchange of
the lightest mesons: the pions (because the potential is ∝ e−msr) [Won94].
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Figure 2.1: Unpolarized Differential Cross Section at 20 and 29 MeV.

Where: qlab is the lab energy (equal to the photon energy), and θCM is the center-of-

mass/momentum polar angle. The different lines represent the potential used: OBEPQ,

-T and -R are based on the Bonn potential [Mac87], and Paris is the Paris potential

[Lac81]. The references are: 23: Skopik et al. [Sko74], 41: Fink et al. (1989), 42: De

Pascale et al. (1985). Reference 23 is skewed in favour of small theta, and 42 is skewed

in favour of large theta. No substantial discrepancy is observed. Image credit: Schmitt

et al. [Sch91].
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Figure 2.2: Comparison of Total Cross Section to Theory for Deuteron

Photodisintegration from 0 to 75 MeV. The theoretical cross section was calcu-

lated using the Paris potential. Open squares: Bernabie et al. [Ber86] (laser Comp-

ton scattering beam), filled triangles: Ahrens et al. [Ahr74] (photon model indepen-

dent bremsstrahlung beam), open circles: Birenbaum et al. (1985; neutron capture

sources), open triangles: Bosman et al. (1979; inverse reaction), open triangles: Stiehler

et al. (1985; inverse reaction), and stars: Tudoric-Ghemo (1967; inverse reaction).

Bremsstrahlung experiments have been tactfully excluded (except Ahrens et al.) as

there are substantial discrepancies between bremsstrahlung experiments. No substan-

tial discrepancy is observed. Image credit: Bernabei et al. [Ber86].
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Figure 2.3: The Total Cross Section for Deuteron Photodisintegration from

5 to 25 MeV. The theoretical cross section (solid line) was calculated using the Paris

potential. The dissenting data set (open triangles) are from Baglin et al. [Bag73], and

were taken using an untagged bremsstrahlung beam. Closed circles: De Graeve et al.

[DGr92] (tagged bremsstrahlung), open circle: Birenbaum et al. (1985; neutron cap-

ture sources), open triangles: Baglin et al. [Bag73] (bremsstrahlung), closed squares:

Ahrens et al. [Ahr74] (photon model independent bremsstrahlung beam), closed tri-

angles: Wauters et al. (1990; inverse reaction), open squares: Bernabie et al. [Ber86]

(laser Compton scattering beam), and stars: Stiehler et al. (1985; inverse reaction). The

dotted line is the “historical” value: the first deuteron photodisintegration prediction,

calculated by Bethe and Peierls [Bet35]. Image credit: De Graeve et al. [DGr92].

The purported agreement between experiment and theory by: Schmitt et al. [Sch91]

(figure 2.1 on page 16), Bernabei et al. [Ber86] (figure 2.2 on page 17), and De Graeve et

al. [DGr92] (figure 2.3), was not without its detractors. Stephenson et al. [Ste87] offered

a novel experimental technique: three bremsstrahlung radiators at three different angles

and recorded by three detectors at three different angles. Their results disagree with then

contemporary calculations done by Partovi (by a scaling factor), and also disagree both in
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shape and magnitude with Arenhövel’s calculation in 2000 [Are00] (figure 2.4 on the next

page): which is similar to Schwamb and Arenhövel’s calculation [Sch01c, Sch01a, Sch01b].

Hadjimichael et al. [Had87] rectified the discrepancy between theory and Stephenson et al.’s

results by fitting the higher order parameters in their Legendre expansion of the differential

cross section to Stephenson et al.’s results.

Birenbaum et al. [Bir88] followed up and performed differential cross section measure-

ments between 6 and 9 MeV using various radioactive sources but were unable to fully

replicate Stephenson et al.’s results (in particular at θ = 45◦), although their results also

did not agree well with the calculations by Partovi nor recent calculations by Arenhövel (fig-

ure 2.4 on the next page). The discrepancy between Stephenson et al. and Birenbaum et al.

may have been due to the systematic error which Stepheson et al. later discovered in their

data: the bremsstrahlung beams were producing polarization from ≈ 25% at 3.5 MeV to

≈ 0% at 18 MeV [Kuc10]; because the partial polarization affected the detector calibration,

this means that their results are not reliable at any energy.

Motivated by ambiguities in the few experimental data which were available at low ener-

gies, Sawatzky [Saw05] used the Blowfish detector array at the HI~γS facility to measure the

photodisintegration of the deuteron using: 3.5, 4, 6, and 10 MeV linearly polarized photons.

His results (figure 2.4 on the next page and figure 2.5 on page 21) agree with Birenbaum

et al.’s but disagree with Stephenson et al.’s (especially at θ = 45◦), possibly due to the

systematic polarization in Stephenson et al.’s data.
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Figure 2.4: Ratio of Cross Section at Selected Neutron Lab Angles for

Energy in Range: 3-12 MeV. Open diamonds: Sawatzky [Saw05], solid squares:

Stephenson et al. [Ste87], solid circles: Birenbaum et al. [Bir88], blue line: indistin-

guishable theoretical calculations by Partovi [Par64] and Wiringa et al. [Wir84], dotted

line: an earlier theoretical calculation by Arenhövel et al. [Are00]. Arenhövel’s calcula-

tion clearly overestimates the backward scattering angles (θ > 90◦) or underestimates

the forward scattering (θ < 90◦). Image credit: Sawatzky [Saw05].
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Figure 2.5: Ratio of Cross Section at Selected Neutron Lab Angles for

Energy in Range: 3-18 MeV. Open diamonds: Sawatzky [Saw05], solid squares:

Stephenson et al. [Ste87], the numbered lines are calculations performed by Had-

jimichael et al. [Had87], and the dotted line labeled Arenhövel is an old calculation

by Arenhövel et al. [Are00]. Arenhövel’s calculation clearly overestimates the backward

scattering angles (θ > 90◦) or underestimates the forward scattering (θ < 90◦). Image

credit: Sawatzky [Saw05].

Subsequent research at HI~γS using Blowfish has yielded similar results: Blackston [Bla07]

used linearly polarized 14 and 16 MeV photons and found a forward scattering disagreement

with Schwamb and Arenhövel’s calculation similar to what Sawatzky observed [Saw05] (fig-

ure 2.6 on the next page). Since then, Kucuker [Kuc10] used circularly polarized photons
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at 20 MeV but her results have an unaddressed inconsistency concerning results taken using

different target lengths, and so are not discussed here.

Figure 2.6: Unpolarized Differential Cross Section at 14 and 16 MeV. Notice

that the experimental data (blue and black) disagrees with theory (red) at the forward

scattering angles, this is consistent with Sawatzky’s [Saw05] results. SAPM: Schwamb-

Arenhövel potential model. Image credit: Blackston et al. [Bla08].

Both Sawatzky [Saw05], and Blackston [Bla07] used the same methodology, detector

(Blowfish), and beam (HI~γS), and found a similar discrepancy with theory: that the forward

neutron yield is higher than theory and the backward neutron yield is lower than theory.

Given the nearly identical setup of their experiments, it is possible that this discrepancy is

due to a mutual systematic error, rather than a failure of the theoretical calculation.

The fundamental problem with testing the theoretical predictions for deuteron photodis-

integration is that the experimental results do not agree well with each other and therefore

the theorists are free to surmise which results to keep and which to throw away; not sur-

prisingly this results in a very agreeable fit of selected data to their personal calculations.

The reason for a lack of experimental consensus almost assuredly is due to the presence or

absence of certain systematic errors. This was starkly demonstrated by Rossi et al. [Ros89]

when they compared the total cross section data for deuteron photodisintegration with un-

tagged bremsstrahlung sources versus “monochromatic” sources: the former show abject
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disagreement with each other in the energy region ≈ 100-300 MeV while the latter show

excellent agreement; Rossi et al. were even able to fit a simple phenomenological function to

the “monochromatic” sources.

The solution is to replace old bremsstrahlung data with new, precise experimental data

with realistic error estimates, especially where all models are known to struggle: at high en-

ergies, at extreme scattering angles, and using polarized observables. This experiment will:

add data to the relatively sparse low energy region of polarized deuteron photodisintegra-

tion, test for inconsistencies in the differential cross section (such as those demonstrated at

lower energies), and hopefully enable future high precision polarization measurements using

Blowfish (e.g. fulfilling the original purpose of Blowfish by testing the Gerasimov-Drell-Hearn

Sum Rule [Saw05, Bla07, Kuc10]).

2.3 Kinematics

In this experiment, the 18 MeV beam is below pion-threshold and so we assume that the

process is elastic and two-body: a photon strikes a deuteron target producing a recoiling

proton and an ejectile neutron. In this section we present the pertinent kinematic results,

the calculation itself can be found in appendix C on page 284.

Assumptions:

1. The collision is elastic: i.e. the ejectile neutron and recoil proton are unbound and in

their ground states, with Eγ + ED = En + Ep.

2. The collision occurs in the xy-plane: this is purely for convenience sake since the z-axis

is independent of the x and y coordinates and therefore can always be chosen to be

perpendicular to the reaction plane.

3. The electron plays no role in the interaction: it is not accounted for in the mass of the

deuteron target, and it is not accounted for in the mass of the recoil proton.

The kinematics for this experiment are summarized by eq. (2.1) on the next page.
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Kinematics summary:

β =
Eγ

Eγ +mDc2
≈ 0.0095 (for Eγ = 18 MeV)

E ′γ = γEγ(1− β)

E ′D = γmDc
2

E ′ = E ′γ + E ′D

p′n =
1

c

√
(
E ′2 + (m2

p −m2
n)c4

2E ′
)2 −m2

pc
4

pn =


γ
c
E ′n + βγp′n cos θ′

γ
c
βE ′n + γp′n cos θ′

p′n sin θ′

0

 =


En
c

pn,x

pn,y

0


θ = arctan

(
pn,y
pn,x

)
En =

√
p2
nc

2 +m2
nc

4 (2.1)

where: the primed variables are in the CM frame, the unprimed variables are in the lab

frame, β is the CM frame velocity divided by c, E is the energy, p is the momentum, m is

the mass, θ is the scattering angle, and the subscripts are: γ: photon, D: deuteron and n:

neutron.

Notice that the momentum (and therefore energy) of the ejectile neutron depends only on:

the beam energy (Eγ), the polar angle (θ), and known physical constants (see eq. (2.1)). Since

we know the beam energy, the location of our detectors, and all of the physical constants: we

can predict the energies for prompt neutrons in our detectors. This is the motivation for the

time-of-flight cut: we know when the neutrons will arrive so we can simply ignore everything

which arrives at an incompatible time (see section 5.4.4 on page 204 for details).

The kinematics calculated here were used for the simulation and the time-of-flight cut.
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Figure 2.7: The neutron kinetic energy in the lab frame has been plotted using the

kinematic relations derived in this section. Photon energy: 18 MeV.

Figure 2.7 illustrates the polar angle (θ) dependence of the ejectile neutron’s energy.

2.4 Interactions of Particles with Matter

Detection is the fundamental goal of any experiment and; unless one wishes to be at the mercy

of blind luck, the construction of an effective (and hopefully efficient) detector depends on

a functional understanding of the measurability of the particular phenomenon being investi-

gated. This experiment measured the spatial location and intensity of neutrons and photons:

i.e. we measured particles, therefore it is appropriate to briefly describe how particles interact
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with detectors i.e. matter.

We can quantitatively predict a detector’s response using available theory, models, and

measurements to describe the energy deposition i.e. dE
dx

and the relative probability of an

interaction to occur i.e. cross sections. The energy deposition rate (dE
dx

) is indicative of the

type of particle incident, thus if our detector response is proportional to the energy deposi-

tion (see figure 2.8) then we can differentiate between particle types based on the detector

response: this is the fundamental principle behind pulse-shape discrimination (section 5.3.9

on page 184).

Figure 2.8: Energy loss (−dE
dx

) of common particles in air. Energy deposition

is clearly dependent on the particle, unless it is relativistic in which case the energy

deposition is roughly constant (so called “minimum ionizing particles”). Image credit:

Beiser [Bei52].

The probability for an interaction to occur is given by the cross section, which is defined
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empirically as the probabilistically weighted area that a target occupies:

dND

dx
= σρnN (2.2)

where: ND is the number of daughter particles produced by an interaction, N is the number

of incident particles at position x, σ is the reaction cross section as defined by this equa-

tion (cm2/atom), ρ is the target mass density (g/cm3), and n is the target number density

(atoms/g).

Eq. (2.2) can be be used either to compute the number of products in a nuclear reaction

(eq. (2.4)), or by substituting dND → −dN it yields the attenuation of an incident beam

(eq. (2.3)); these equations hold probabilistically for a single particle.

Solving eq. (2.2) for the case where the parent and daughter are the same particle (i.e.

dND → −dN) yields the probability of penetration:

P =
N

N0

= e−µx (2.3)

where: P is the probability of a particle reaching a position x without interacting, N0 is the

number of incident particles, N is the number of particles at position x, and µ ≡ σρn: σ

is the total cross section for all reactions, ρ is mass density, and n is the number density

[Pat11].

Alternatively, solving eq. (2.2) directly, by using eq. (2.3) to set N = N0e
−µx, yields the

expected number of daughter products produced:

ND =
σρn

µ
·N0(1− e−µx) (2.4)

where: ND is the number of daughter particles produced by an interaction, x is the longi-

tudinal position, N0 is the number of particles incident at position x = 0, σ is the reaction

cross section as defined by this equation (cm2/atom), ρ is mass density (g/cm3), and n is the

number density (atoms/g).

Finally, using the variation of eq. (2.3): N = N0e
−µx, we can calculate the average
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interaction point:

N = N0e
−µx

P =
N

N0

= e−µx

x = − ln(P )

µ

〈x〉 ≡ −
∫ x=l

x=0
ln(P )
µ
dP∫ x=l

x=0
dP

〈x〉 =
1

µ
− le−µl

1− e−µl
(2.5)

where: µ is the linear attenuation coefficient, 〈x〉 is the average interaction location, and l is

the target length.

A full discussion of the detection principles used in this experiment is presented in sec-

tion 3.8 on page 73, thus it suffices to simply outline how the particles of interest in this

experiment (MeV energy: photons and neutrons) interact with the material types present in

the detectors used; this is covered in appendix A on page 278 (photons), and appendix B on

page 282 (neutrons).

2.5 Theoretical Calculations

2.5.1 The Nucleon-Nucleon Interaction

“In the past quarter century physicists have devoted a huge amount of experimentation and

mental labour to this problem (the nucleon-nucleon interaction) probably more man hours

than have been given to any other scientific question in the history of mankind.”

H.A Bethe (1953) [Ari01]

When Bethe remarked about the intensive research being put into the nucleon-nucleon

(NN) interaction, theoretical nuclear physics was at an impasse. The one pion exchange mod-

els first proposed by Yukawa in 1935; which had been successful in predicting NN scattering

and deuteron binding [Mac11], proved to show severe signs of incompleteness at sufficiently
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small nucleon separations.6

Taketani, Nakamura, and Sasaki provided a circumspect framework for the NN interaction

in 1951; they identified three distinct regions in the binding of two nucleons which have

persisted as useful distinctions [Mac87]:

Regions of Nucleon-Nucleon Binding

1. The classical region (& 2 fm) where pion exchange dominates. Single pion exchange is

still believed to be the dominant process in this region.

2. The dynamical region (≈ 1-2 fm) where two pion exchange dominates. Contemporary

models include multi-pion exchange (i.e. > 2) and some heavy meson exchange in this

region as well.

3. The phenomenological region (. 1 fm). Since the acceptance of the quark-based Stan-

dard Model: quarks and gluons have been recognized as the fundamental degrees of

freedom in the sub-nuclear regime which can be approximated in the nuclear regime by

an effective field theory using multiple pion and heavy meson exchange.

The then inexplicable behaviour of NN binding in the phenomenological region was res-

cued by the discovery of heavy mesons in the 1960s, after which one boson exchange (OBE)

models began to dominate [Mac87]. One boson exchange models have shown good agree-

ment with empirical data for the deuteron at low energies (i.e. below pion-threshold) [Are91].

Skipping over the brief foray into dispersion relation potentials in the 1970s (e.g. the Paris

potential), the acceptance of QCD in the 1980s inspired open speculation that mesons repre-

sented the effective degrees of freedom of the quarks inside nucleons [Mac87, Els88a] based on

an essay by Weinberg [Wei79]; given in honour of Julian Schwinger’s 60th birthday in 1979,

when he remarked:

“...one might imagine weakening the forces of QCD by introducing some sort of infrared

cut-off, λ, and preserving the physical content of the theory by introducing the bound states

6For example, Brueckner and Watson demonstrated that if the nucleons get sufficiently close together then
perturbation theory cannot be applied using pion exchange because the expansion of the potential diverges
[Mac87].
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of the theory as fictitious elementary particles. These bound states are just the ordinary

hadrons, and they must be described by a chiral-invariant phenomenological Lagrangian.”

Weinberg [Wei79]

“...if one writes down the most general possible Lagrangian, including all terms consistent

with assumed symmetry principles, and then calculates the matrix elements with this

Lagrangian to any given order of perturbation theory, the result will simply be the most

general possible S matrix consistent with analyticity, perturbative unitarity, cluster

decomposition, and the assumed symmetry principles.” Weinberg [Wei79]

Weinberg’s essay was used by others to conjecture the physical meaning of empirically

fit cutoff parameters and coupling constants; the former were needed to enable the use of

perturbative expansions in meson exchange models [Mac87, Els88a, Sch01c]. The 1980s also

saw an increase in theoretical precision, for example: the inclusion of retarded meson prop-

agators,7 and off-shell corrections to the effective mass [Mac87, Els88a, Sch01c]. Weinberg

eventually proved his conjecture over a decade later in 1990 [Wal04]: mesons are the effective

degrees of freedom for nucleon binding so long as the symmetries of QCD are appropriately

preserved or broken [Mac11].

The seminal work of Weinberg provided the theoretical bases for chiral effective field

theories describing the NN interaction (for a review see Machleidt and Entem [Mac11]). These

effective field theories use meson exchange, but constrained by chiral symmetry [Mac11].

Metaphorically speaking, it is a well known (though rarely acknowledged) fact that sci-

entific theories and models obey Newton’s first law of motion; theories being nominally

relegated to models when acted upon by contradicting evidence: low energy theoretical nu-

clear physics will not advance beyond phenomenological one boson exchange potentials from

the 1980s until a significant discrepancy with experiment is observed. This experiment tests

a calculation performed by Schwamb and Arenhövel [Sch01c, Sch01a, Sch01b] based on two

modernized phenomenological one meson exchange potential models: one based on the 1987

Bonn-OBEPR8 [Mac87], and the other based on the Elster potential [Els88b, Els89]. An

7A retarded propagator accounts for the finite travel time of information.
8OBEPR: One Boson Exchange Parameterization in R(position)-space
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inconsistency in Schwamb and Arenhövel’s calculation below pion-threshold would be a blow

to phenomenological one boson exchange potentials, and would help to inspire more rigorous

calculations (such as those using an effective field theory).

2.5.2 Meson Exchange Potentials

Nucleon-nucleon (NN) interactions began being modeled via the exchange of mesons begin-

ning with Yukawa’s seminal paper in 1935 [Mac87] which modeled the nuclear force as the

exchange of a then unknown massive scalar meson: the Yukawa potential. The Yukawa

potential is derived from the scalar boson interaction Lagrangian:

L = gsψ̄ψφ (2.6)

where: gs is a coupling constant, ψ̄ and ψ are fermion fields (e.g. nucleons), and φ is a scalar

boson (e.g. a σ meson). In this section, “God-given units” (i.e. ~ = c = 1) [Pes95] are

particularly convenient and so they are used exclusively.

One can infer the non-relativistic potential by computing the S matrix for an arbitrary

process involving two fermions using the Lagrangian (eq. (2.6)), and then infer an effective

potential; then Fourier transform the effective potential into position-space (this is done in

appendix A of Walecka [Wal04]). The effective Yukawa potential (see table 2.1 on the next

page) can then be solved non-relativistically using the Schrödinger equation as a simple model

for the NN interaction.

Yukawa’s work has since been generalized to include vector, pseudoscalar, and pseudovec-

tor fields: these are summarized in table 2.1 on the next page [Wal04]. The basic concept

remains the same: model the NN interaction using the exchange of mesons.
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Exchange Particle Type L Veffective

Isoscalar Scalar gsψ̄ψφ − g2
s

4π
e−msr

r

Isoscalar Vector igνψ̄γµψωµ
g2
ν

4π
e−mνr

r

Isovector Vector igρψ̄γµ
1
2
~τψ · ~ρµ

g2
ρ

16π
~τ1 · ~τ2

e−mρr

r

Isovector Pseudoscalar igπψ̄γ5~τψ · ~π
g2
π

4π

(
mπ
2M

)2 1
3
~τ1 · ~τ2(

~σ1 · ~σ2 + S12

[
1 + 3

mπr
+ 3

(mπr)2

])
e−mπr

r

Table 2.1: Nucleon-Nucleon Lagrangians and Effective Potentials [Wal04].

Where: L is the Lagrangian, Veffective is the non-relativistic effective potential associ-

ated with the Lagrangian, the g are coupling constants, ~τ are the isospin matrices, ~σ

are the Pauli spin matrices, mα is the mass for a particle of type α, γµ are the Dirac

matrices (0 ≤ µ ≤ 5), S12 ≡ 3(~σ1·~r)(~σ2·~r)
r2 − ~σ1 · ~σ2, ~r is the radial vector, i =

√
−1, M

is the nucleon’s mass, ψ̄ and ψ are fermion fields (e.g. nucleons), φ is a scalar boson

field (e.g. a σ meson), ω is a vector boson field (e.g. an omega meson), ~ρ is an isovector

vector boson field (e.g. a rho meson), and ~π is an isovector pseudoscalar boson field

(e.g. a pion).

The fundamental problem associated with one boson exchange Lagrangians is that they

are not conducive to perturbative expansion. Although some quantum mechanical potentials

can be solved exactly, many of them cannot be [Dic12], and thus developing the necessary

tools to perform perturbative expansions is desirable. In order to perform perturbation

theory, one must derive a sum of terms with decreasing magnitude, then the sum can be

truncated to some desired level of precision. In QED the perturbative expansion is naturally

regulated by the fine structure constant (α ≈ 1
137

), but the underlying theory of the NN

interaction (QCD) contains momentum dependent coupling; worse yet, the coupling in QCD

increases with increasing distance [Gri87] (so QCD coupling is > 1 in the nuclear regime).

Meson exchange models tackle this problem by introducing form factors at all meson-

nucleon vertices representing the unknown underlying quark dynamics (illustrated in fig-

ure 2.9 on the next page), and introducing a counter term (i.e. cutoff) to the coupling

constant so that perturbation theory can be applied [Mac87, Els88a, Sch01c].
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Figure 2.9: A Meson-
Nucleon Vertex. A me-
son, M, interacts with a nu-
cleon, N via some unknown
quark-gluon process (grey
circle). One boson exchange
models insert a form factor
at the grey circle.

The form factor may be incorporated in the propagator: e.g. by replacing the typical

meson propagator to one with a cutoff, λ: 1
q2+m2 → 1

q2+m2
λ2

q2+λ2 [Bry72, Nag75], or by inserting

a form factor at the vertex which contains a cutoff: e.g. F (p−q) = λ2

λ2+(p−q)2 [Ger71, Nag75]

(p and q are momenta). This cutoff; λ, represents the scale at which the meson approximation

fails and the quark-gluon interaction takes over, and consequently all meson exchange models

must include it in one form or another (even effective field theories). The value of the cutoff,

λ, is expected to be on the scale of the nucleon mass (i.e. ≈ 1-2 GeV) and must be extracted

from empirical data.

The presence of cutoffs is expected based on the assumption that QCD is the underlying

theory which governs the NN interaction, but it should be noted that the values are derived

by fitting to the empirical data, rather than being based on some specific physical observation

(e.g. like the charge). This means that different physical processes used to extract the same

cutoffs may produce different results; even if the physical processes are very similar. For

example, the pion-nucleon-nucleon form factor must have different cutoff parameters for

elastic versus inelastic nucleon-nucleon scattering [Kuk01]. This has provided fodder for

criticism of the use of modeling the NN interaction with mesons.9 Though the most common

criticism has always been the inclusion of mesons who’s existence is questioned (i.e. the

scalar-isoscalar σ/ε meson [Mac11]), or the equivalent use of resonant multi-pion exchanges

(e.g. both are used in versions of the Bonn potential [Mac87]).

The best criticisms of one boson exchange models are provided by empirical data; thus

9Kukulin et al. [Kuk01] contains a brief review of criticisms of short range one boson exchange models.
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high precision experiments, especially those above pion-threshold or utilizing polarized ob-

servables, will provide or eliminate the impetus for increasingly ab initio theoretical nuclear

calculations.

2.5.3 The Schwamb and Arenhövel Model

In 1989 Schmitt and Arenhövel [Sch89] performed calculations of sub pion-threshold pho-

todisintegration of the deuteron in order to test three versions of the 1987 Bonn potential

[Mac87]: the OBEPQ,10 OBEPT,11 and OBEPR:12 these are meson exchange parameter-

izations based on the “full” Bonn potential [Mac87]. Arenhövel has since returned to the

problem with Schwamb [Sch01b] by incorporating full meson retardation effects (Schmitt and

Arenhövel [Sch89] used only leading-order retardation corrections) and extending the calcu-

lations above pion-threshold by using a different potential: the Elster potential [Sch01c].

Schwamb and Arenhövel have also generalized a set of transformation operators to incor-

porate missing meson retardation corrections into both the T matrix and the NN potential

up to the two pion threshold (≈ 270 MeV) [Sch01c];13 and used these generalizations to

calculate a generalized effective current for electromagnetic reactions involving the deuteron

[Sch01a].

The Elster and Bonn-OPEBR Potentials

Schwamb and Arenhövel performed calculations using two different one boson exchange po-

tentials: the Bonn-OPEBR and the Elster potential [Sch01c, Sch01b]. These potentials are

phenomenological one meson exchange potentials which use: π, ω, δ/a0(980), σ, η and ρ meson

exchange fitted with empirical coupling constants and cutoff parameters.

The Full Bonn potential [Mac87] is a relativistic model for the nucleon-nucleon interaction

using π, ω, δ/a0(980), and ρ meson exchange, and multi-meson exchanges (e.g. ππ and πρ)

10OBEPQ: One Boson Exchange Parameterization in Q(momentum)-space.
11OBEPT: One Boson Exchange Parameterization with Time-dependence.
12OBEPR: One Boson Exchange Parameterization in R(position)-space.
13The two pion threshold: the energy threshold for two pion production. Schwamb and Arenhövel [Sch01c,

Sch01a, Sch01b], and Elster et al. [Els88a, Els88b] only incorporated off-shell corrections for a single meson
and thus their predictions are not expected to hold above the threshold for two pion production.
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to compensate for not including the disputed σ meson (which is needed for the intermediate-

range interaction [Kuk01]).14 The Bonn-OPEBR potential is a simplification of the Full Bonn

potential which has a relatively small loss of accuracy: designed to make calculations easier.

The Bonn-OPEBR is a one boson exchange parameterization: replacing the 2π + πρ

exchange with a σ meson and adding the η meson which was excluded in the Full Bonn.

Retardation terms in the propagators cause an unwanted energy dependence, and therefore

the static limit was taken for the propagators. Finally, the cutoff and coupling parameters

were tweaked by refitting to empirical data [Mac87]. These simplifications were implemented

to decrease the computing power needed for numerical solution of the deuteron wave function

(such as the one performed from Schwamb and Arenhövel) [Bla07]. Due to the neglect of

retardation in the propagators, the Bonn-OPEBR was used by Schwamb and Arenhövel to

calculate the effect that retardation has on their calculations of deuteron photodisintegration

[Sch01b].

The Elster potential [Sch01c] is similar to the Bonn-OPEBR in that it also started with

a one boson exchange Bonn potential [Mac87]; however, the Elster potential was designed

to extend above pion-threshold (up to the two pion threshold) and thus required additional

considerations to improve accuracy. Extending the Elster potential beyond pion-threshold

required: the incorporation of meson retardation (described in [Els88b]), mass corrections to

nucleons due to off-shell (self-energy) contributions (described in [Els88a]), and the inclusion

of ∆ baryon intermediate states (so called “box diagrams”; described in [Els88b]).

In quantum field theory, particles interact with themselves, effectively increasing their

mass [Gri87]: the self-interactions “dress” the “bare” mass. These so called “off-shell” effects

must be taken into account in order to ensure consistency between the energy region where an

exchange particle is forbidden from the final state and one where it is not [Els88a] (e.g. below

and above pion-threshold, respectively). This means taking the bare mass and dressing it

by computing the self-energy interactions (figure 2.10 on the next page illustrates the lowest

order dressing). Since Elster et al. started from an already determined potential, this meant

they had to infer a transformation from the previously determined potential, V̂ , to an effective

potential, V̂ eff (i.e. a dressing operator, R̂, such that R̂V̂ = V̂ eff ).

14Törnqvist and Roos [Tor96] give a brief review of the σ meson dispute as well as evidence for its existence.
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Figure 2.10: Nucleon
Self-Energy. A nucleon,
N, interacts with its own
field via a meson, M. This is
the first-order mass correc-
tion due to the self-energy.

The Elster potential also includes meson retardation effects and ∆ baryon intermediate

states. In order to implement the former: the meson propagators used must include a

finite propagation speed; this can be included ab initio or ad hoc as an operator (Schwamb

and Arenhövel have generalized the latter technique [Sch01c, Sch01a, Sch01b]). ∆ baryon

intermediate states are implemented similarly, but require computing the contributions due

to “box diagrams”: figure 2.11 on the next page; leading to dressing factors [Els88b].

The importance of meson retardation has been emphasized by Arenhövel [Lei87, Sch01c,

Sch01a, Sch01b], who has made the argument that “one main reason” for discrepancies in the

NN interaction is the neglect of meson retardation in the meson exchange operators [Sch01c];

citing deuteron photodisintegration as an example [Sch01b]. Deuteron photodisintegration

also demonstrates the importance of including ∆ baryon intermediate states (so called “isobar

configurations”): the cross section differs by a factor of ≈ 2 in the isobar resonance range

(240-320 MeV) due to its contribution [Are91]; see section 2.5.3 on page 38.

With these inclusions (meson retardation, nucleon self-energy, and ∆ baryon intermediate

states), the Elster potential is expected to describe the NN interaction up to the two pion

threshold (≈ 270 MeV).

Verification of these potentials requires using them to calculate some observables; such

as those produced in a deuteron photodisintegration reaction, then comparing the results to

experiment. This experiment uses the calculations performed by Schwamb and Arenhövel

[Sch01b] in part to test the Elster potential below pion-threshold.
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Figure 2.11: Box Diagrams of ∆ Baryon Intermediate State. Two nucleons, N
and N’, form a ∆ isobar resonance via a meson, ρ or π.

Retarded Meson Exchange Currents

Meson exchange potentials model the transfer of information between nucleons via the ex-

change of a meson propagator: i.e. meson exchange currents. In the limiting case where the

kinetic energy transfer between the nucleons is 0, meson exchange is described by the static

meson propagator approximation:

1

(E − E ′)2 − (~p− ~p′)2c2 −m2c4
→ − 1

(~p− ~p′)2c2 +m2c4
(2.7)

where: E−E ′ is the progatator energy, ~p−~p′ is the propagator momentum, and m is its mass.

This is true in the limiting case ∆Tnucleon → 0:15 i.e. the nucleons the meson is mediating

exchange no kinetic energy [Car11].

The use of the Static Meson Propagator Approximation was essentially invariable in

calculations using meson exchange potentials up until Schwamb and Arenhövel [Sch01c].16

15This can be seen by considering a meson-nucleon vertex: the energy delta function forces the meson
energy to be zero if the nucleon energy is the same going into and out of the vertex, assuming the mass
doesn’t change, this means that the change in nucleon kinetic energy is zero: ∆Tnucleon → 0.

16Examples of the use of the Static Meson Propagator Approximation are supplied in Schwamb and
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Motivated by earlier conjecture regarding its importance, Schwamb and Arenhövel have cal-

culated observables for the photodisintegration of the deuteron both with and without the

Static Meson Propagator Approximation [Sch01b].

The necessary interaction Hamiltonian for arbitrary NN (nucleon-nucleon) interactions

were also derived by Schwamb and Arenhövel [Sch01c]; the parameters of their model were

fit to NN scattering data and deuteron properties. For technical reasons, Schwamb and

Arenhövel had to use the physical mass (rather than dressing) when considering meson

exchange and ∆ isobar resonance: this was then later rectified by use of dressing operators

(discussed in section 2.5.3 on page 40).

The deuteron photodisintegration observables calculated by Schwamb and Arenhövel

[Sch01b] used fully retarded meson exchange currents, including corrections due to the Siegert

Operators to calculate the T matrix (see section 2.5.4 on page 44).17

∆ Baryon Degree-of-Freedom Corrections

Schwamb and Arenhövel have included the possibility that there may be up to one, non-

relativistic, on-shell ∆ baryon at any given time by expanding the Hilbert space to include a

space consisting of n - 1 nucleons and a ∆ baryon [Sch01c] and computing both its on-shell

and off-shell contributions to deuteron photodisintegration [Sch01a, Sch01b]. The importance

of the inclusion of the ∆ baryon as both an intermediate and final state is illustrated by

figure 2.12 on the next page.

Arenhövel [Sch01c].
17The Siegert Operators implicitly include contributions to the meson exchange currents and therefore a

correction must be applied in order to prevent double counting. [Are91]
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Figure 2.12: The ∆ Isobar Contribution to the Deuteron Photodisintegra-

tion Cross Section. The inclusion of a ∆ baryon as an intermediate state has a

substantial affect on the total cross section in the ∆ isobar resonance region. Defini-

tions: N: nuclear potential, MEC(π + ρ): π and ρ meson exchange currents, IC: isobar

configurations (i.e. inclusion of the ∆ baryon), and RC: relativistic corrections. Image

credit: Arenhövel and Sanzone [Are91].

The on-shell affects of the ∆ baryon were included by considering π and ρ meson exchange

(figure 2.13 on the next page); the off-shell effects due to the ∆ isobar are discussed in

section 2.5.3 on the next page.
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Figure 2.13: On-shell ∆ Baryon Contributions. Feynman diagrams for the on-

shell ∆ baryon contributions to the nucleon-nucleon interaction.

Off-Shell Corrections

The observed mass of any nucleon is really a convolution of different processes which dress

the bare mass [Gri87] via self-energy diagrams (e.g. the left image of figure 2.14 on the next

page). A phenomenological calculation which utilizes the measured mass will encounter an

ambiguity when faced with the prospect of an on-shell meson (e.g. M in the right image of

figure 2.14 on the next page); this corresponds to the pion-threshold: where a pion can be

in the final state. Failure to include self-energy diagrams leads to discrepancies above pion-

threshold; for example, of: 25−30% in the analyzing power for proton-proton bremsstrahlung,

≈ 20% in the longitudinal response function for 12C, and ≈ 8% in the electron-nucleon cross

section [Sch01a].
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Figure 2.14: Meson Radiation and Nucleon Self-Energy. Left diagram: a

nucleon, N, interacts with its own field via a meson, M. This is the first-order mass

correction due to the self-energy. Right diagram: a photon, γ, is absorbed by a nucleon,

N, producing a meson, M, and a final state nucleon, N’ via a nucleon propagator N0.

Right adapted from Walker [Wal69].

Elster et al. [Els88a] performed off-shell corrections to the NN potential to first order via

a dressing operator. Schwamb and Arenhövel [Sch01c] derived a similar dressing operator, R̂

and applied it both to the NN (nucleon-nucleon) potential and T matrix:

(Ĥ0 + V̂ eff

N̄N̄
(Md))|d〉 = |d〉

V̂ eff

N̄N̄
= R̂(VN̄N̄ + [V̂B̄XĜV̂XN̄ ]con)R̂

where:

R̂[V̂B̄XĜV̂XN̄ ]conR̂ = V̂ Elster
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V̂ eff

N̄N̄
is the meson retardation corrected potential using the bare nucleon masses, R̂ are the

dressing operators to convert the bare nucleon potential into a dressed nucleon potential, Ĝ

is the retarded propagator operator, V̂B̄X is the meson/nucleon potential, and V̂ Elster is the

Elster potential. The T matrix is then:

T̂N̄N̄ = V̂ eff

N̄N̄
+ V̂ eff

N̄N̄
ĜT̂N̄N̄ (2.8)

We get a new recursive relation for our T matrix in terms of the effective potential: just

like the normal T matrix (described in section 2.5.4 on page 44), and allowing any arbitrary

NN process to be properly described past pion-threshold. In the static limit the effective

potential just simplifies to the nucleon-nucleon potential, thus returning everything to normal

(Schwamb and Arenhövel use the Bonn-OBEPR in that case).

Eq. (2.8) requires an effective NN potential which includes dressing of nucleons via mesons.

Schwamb and Arenhövel used the Elster potential to calculate the contribution in electro-

magnetic reactions with the deuteron [Sch01a] and specifically the photodisintegration of the

deuteron [Sch01b]. In addition to dressing factors, Schwamb and Arenhövel derived an effec-

tive nucleon current which includes off-shell electromagnetic effects (i.e. interactions with the

“virtual meson cloud” and ∆ isobar; e.g. figure 2.15 on the next page). The nucleon current

is used to calculate observables for deuteron photodisintegration as discussed in section 2.5.4

on page 44.
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Figure 2.15: Off-shell Contributions to Nucleon Current [Sch01a]. Where: N

and N’ are nucleons, M is a meson cloud, γ is a photon, and ∆ is a ∆ isobar.

Relativistic Corrections

Deuteron photodisintegration was once believed to be adequately described non-relativistically,

so Arenhövel and Sanzone [Are91] emphasize the “surprise” when Cambi et al. demonstrated

that relativistic spin-orbit contributions to the cross section at 0◦: at energies as low as

20 MeV were of “importance” [Are91]. The dominant electric transition (E1) depends on

a+ b sin2 θ [Had87] and therefore reaches a minimum at 0◦ and 180◦ (θ ∈ [0, π]), enabling the

relatively small relativistic correction to provide a significant contribution to the precision of

the calculation.

Relativistic corrections manifest in deuteron photodisintegration calculations via: the

deuteron binding, Lorentz contraction of the deuteron when boosting in the center of mo-

mentum frame, relativistic corrections to the current operator [Are91], and retardation of the

meson exchange currents [Bla07]. Of these manifestations, Schwamb and Arenhövel included

relativistic effects: by performing relativistic corrections to the current operator [Sch01b],

by using the fully relativistic energies of the final state nucleons, and by using retarded

meson exchange currents [Sch01c, Sch01a, Sch01b]. These contributions are expected to be

the dominant relativistic effects, but a discrepancy between our results and Schwamb and

Arenhövel’s calculation; in particular at the forward or backwards angles, could signify the

need for additional relativistic corrections e.g. to the binding of the deuteron or in boosting
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the center-of-momentum/mass frame.18

2.5.4 Deuteron Photodisintegration: the S and T Matrices

The S matrix or “Scattering Matrix” [Che97] is the probability amplitude for the time evo-

lution of some initial state |i〉 to some final state 〈f |:

〈f |Ŝfi|i〉 = 〈f |ÛI(−∞,∞)|i〉 (2.9)

where: |i〉 is the initial state, 〈f | is the final state, ÛI(−∞,∞) is the Interaction Picture

time-evolution operator, and Ŝfi is the S matrix defined by this equation [Che97]. Thus, the

S matrix describes how quantum mechanical systems evolve.

Given an interaction Hamiltonian, the time-evolution operator in eq. (2.9) (ÛI) can be

calculated directly, or using quantum field theory by defining a field as the Hamiltonian

density: ĤI =
∫
HId

3x = −
∫
LId3x [Pes95] (where I have included the Lagrangian for con-

venience).19 When using quantum field theory to calculate observables, ÛI generates a sum

of terms which are readily represented by Feynman diagrams. Feynman rules can be deduced

or referenced, and then used to calculate these diagrams. Arenhövel and Sanzone [Are91]

discuss the use of Feynman diagrams to calculate deuteron photodisintegration observables,

while Walecka [Wal04] provides a good description of a nucleon-nucleon meson exchange

model including the necessary Feynman rules.

The first term in eq. (2.10) has no dynamical quantities to it: it is simply a comparison

of the initial and final states and will always be 0 or 1 if the states are orthonormal. We

define the T matrix or “Transition Matrix” [Che97] to be where the action happens in the

transition from some initial state |i〉 to some final state 〈f |:

Ŝfi = 〈f |i〉+ (2π)4iδ(4)(pf − pi)T̂fi (2.10)

18The lack of a Lorentz boost to the deuteron bound state into the center-of-mass/momentum frame seems
reasonable for the energy region of our experiment: the deuteron only moves at 0.95% c in the center-of-
mass/momentum frame, but it seems questionable that this approximation is valid near the upper limit of
the model ≈ 500 MeV where the center-of-mass/momentum frame deuteron moves at 26% c.

19Note that I will refer to the Lagrange density as the Lagrangian.

44



where: pf is the final 4-momentum, pi is the initial 4-momentum, and Tfi is the T matrix

defined by this equation [Are91].

Thus the T matrix incorporates all higher order (above 0th) contributions to the S matrix.

The definition of the T matrix using eq. (2.10) on page 44 incorporates the basis dependence,

enabling general solutions for the cross section in terms of the T matrix that are independent

of choice of basis.

The T matrix is used to calculate the cross section data via the Golden Rule for scattering

of a two-body initial state into a two-body final state:

dσ = |M|2 (2π)4~2S

4
√

(pi1 · pi2)2 − (mi
1m

i
2c

2)2

c d3pf1

(2π)32Ef
1

c d3pf2

(2π)32Ef
2

δ(4)(p1
i + p2

i − p1
f − p2

f ) (2.11)

where: M = T is the scattering amplitude, pf is the final 4-momentum, pi is the initial

4-momentum, S = 1 is a statistical factor for identical particles in the final state [Gri87].

Using God-given units, eq. (2.11) for a photon plus one-body to two-body reaction in the

CM (center-of-mass/momentum) frame can be simplified to:

(
dσ

dΩ

)
CM

=

(
1

8π

)2 |Tfi|2

E2
CM

pL

EL
γ

(2.12)

where: T̂fi is the T matrix, pL is the final 3-momentum magnitude of either of the final state

particles, E2
CM is the total energy of the CM frame, and EL

γ is the lab frame energy of the

incident photon. Note: ~ = c = 1 [Gri87, Pes95].

Eq. (2.12) gives the cross section purely in terms of the T matrix and the kinematic vari-

ables. The kinematics can be computed exactly using conservation of energy and momentum

(this was discussed in section 2.3 on page 23), while the T matrix was calculated by Schwamb

and Arenhövel directly from their effective nucleon current [Sch01b] using:

Tfi =

√
α

2π2
〈n, p|εµJµ|d〉 (2.13)

where: Tfi is the T matrix, εµ is the photon polarization vector, Jµ is the current density

operator, α = e2

4π
is the fine-structure constant, |d〉 is the initial bound deuteron, and 〈n, p|

is the final unbound neutron + proton state [Are91].
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The nucleon current can be expanded into a series of multipole operators :

εµ(λ)Jµ = −
√

2π
∑
L,m

L̂(Ê
L

m + λM̂
L

m)DL
mλ(R)

where: ε(λ) is the photon polarization, Jµ is the current operator as used in eq. (2.13) on

page 45, Ê is the electric multipole operator, M̂ is the magnetic multipole operator, and D(R)

is an Edmonds rotation matrix [Are91]. The magnetic multipole operator is defined by:

M̂
L
≡
∫
ĵ · ~Almd3x =

∫
ĵ · [ iL−1√

L(L+ 1)
(~r ×∇)jL~Y

L
m ]d3x (2.14a)

where: M̂ is the magnetic multipole operator, ĵ is the current density operator, ~Am is the

magnetic multipole field operator, i =
√
−1, r is the radial distance, and ~Y L

m is the L,m

spherical harmonic [Are91]. The electric multipole operator is defined by:

Ê
L
≡
∫
ĵ · ~Aled3x =

∫
ĵ · i

ω
∇× ~Almd

3x (2.14b)

where: Ê is the electric multipole operator, ~Ae is the electric multipole field operator, and

the other variables are defined by eq. (2.14a) [Are91].

Eq. (2.14a) and eq. (2.14b) are expanded perturbatively to some arbitrary precision, giving

the T matrix via eq. (2.13) on page 45. The amplitudes calculated using these operators are

colloquially referred to by their type (M or E) and their index (L)20 e.g. E1 is the first-order

electric multipole transition amplitude. The magnetic and electric multipoles can be used

to calculate the differential cross section directly (via the T matrix), and they can be used

to calculate the parameters for the Legendre expansion of the differential cross section, as is

20The multipole indices are equal to the angular momentum of the transition photon; the parity is related
to the angular momentum and transition type as follows: the electric multipole parity is (−1)L, and the
magnetic multipole parity is (−1)L+1.
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discussed in section 2.5.5.

The time reversed reaction: n-p capture, can be conveniently described by:

T̂ cfi =
pL

EL
γ

(T̂ γfi)
∗ (2.15a)

dσc

dΩ
= |T̂ cfi|2 (2.15b)

where: c is for capture, T̂ cfi is the capture T matrix, T̂ γfi is the deuteron photodisintegration

T matrix, pL is the magnitude of the CM frame proton and neutron momenta, and EL
γ is

the lab frame energy of the incident photon [Are91]. The data from this experiment can

therefore be applied to the inverse reaction.

2.5.5 Legendre Expansion of the Cross Section

Section 2.5.4 on page 44 covers what the T matrix is and how to get the desired observables

(i.e. cross section data) from it. Ideally, this concludes the necessary calculations; however,

interpolating the angular dependence of the cross section (i.e. the differential cross section

dσ
dΩ

) from the experimental data using an arbitrary function or series would not be conducive

to scientific discussion. The solution is to break up the differential cross section into a linear

combination of functions which can easily be fit to experimental data, and can either be

easily fit to theoretical data or (ideally) calculated directly.

It is clear that we want to describe the differential cross section using a simple linear

combination of functions:

dσ

dΩ
(θ, φ) =

∑
k

akfk(θ, φ) (2.16)

where: dσ
dΩ

is the differential cross section, ak are scale parameters to be extracted by fitting

experimental data, and fk are some known functions.

An early parameterization was performed by Partovi [Par64] who provided a framework
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for deuteron photodisintegration reactions:

dσ

dΩ
(θ, φ) =a+ b sin2 θ ± c cos θ ± d sin2 θ cos θ + e sin4 θ

+ cos 2φ[f sin2 θ ± g sin2 cos θ + h sin4 θ] (2.17)

where: dσ
dΩ

is the differential cross section, a, b, ... and h are scale parameters to be extracted

by fitting experimental data, ± refers to the outgoing neutron (−) versus proton (+), φ is

the azimuthal angle, and θ is the polar angle relative to the incident photon [Saw05].

The problem with eq. (2.17) and similar expansions is that the terms of the expansion

depend on the multipole transition amplitudes in a complicated manner. This problem was

rectified in 1982 by Cambi et al. [Cam82] by using orthogonal Legendre functions in an

expansion equivalent to eq. (2.17):

dσ

dΩ
(θ, φ) =

∑
k=0

AkP
0
k (cos θ) +

∑
k=2

BkΣlP
2
k (cos θ) cos 2φ (2.18)

where: dσ
dΩ

is the differential cross section, Σl is the degree of linear polarization of the

incident beam, k is the total angular momentum, Ak and Bk are either calculated or treated

as scale parameters to be extracted by fitting experimental data, PL
k are associated Legendre

polynomials, φ is the azimuthal angle, and θ is the polar angle relative to the incident photon

[Cam82].

Cambie et al. showed the parameters in eq. (2.18) are closely tied to the initial (unprimed)

and final (primed) electric and magnetic multipole operators:

Ak ∝ δN,even(ELEL′ +MLML′)− δN,odd(ELML′ +MLEL′) (2.19a)

Bk ∝ δN,even(MLML′ − ELEL′) + δN,odd(MLEL′ − ELML′) (2.19b)

where: Ak and Bk are the parameters from eq. (2.18), k is the indexing variable from eq. (2.18)

(k is the total angular momentum) with the constraint |L−L′| ≤ k ≤ L+L′, the magnetic:

ML and electric: EL, reduced matrix elements are proportional to: EL + µML ∝ 〈f |EL +

µML|i〉, δN,even ≡ 1+(−1)N

2
, δN,odd ≡ 1−(−1)N

2
, N ≡ L+L′+k, and L (initial state) and L′ (final
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state) are the angular momenta (and multipole indices). Based on Cambie et al. [Cam82].

Unfortunately, there is no general way to invert the mapping such that a Legendre expansion

can be used to give a multipole expansion.

The terms in eq. (2.19) on page 48 with mixed electric and magnetic reduced matrix

elements or multipolarities are called “interference” [Cam82] terms. One can tell the pertinent

contributions to a parameter from Ê and M̂ by considering a particular value of k, for example:

the first contribution to A3 is L = 1, L′ = 2 (because |L−L′| ≤ k ≤ L+L′), and therefore only

the even terms contributes, leading to two interference terms: E1-E2 and M1-M2 [Cam82].

In our experiment, we: truncate, absorb the polarization (Σl) into the ek fit parameters,

and then add two additional terms to compensate for improper target alignment following

Kucuker [Kuc10], yielding:

dσ

dΩ
≈ σ

4π

[
1 +

4∑
k=1

akP
0
k (cos θ) +

4∑
k=2

ekP
2
k (cos θ) cos 2φ

+
2∑

k=1

ckP
1
k (cos θ) cosφ+

2∑
k=1

dkP
1
k (cos θ) sinφ

]
(2.20)

where: P i
k are the associated Legendre polynomials, ak are the Al of eq. (2.18) on page 48,

ek are the BlΣl of eq. (2.18) on page 48, the ck and dk terms verify the target alignment, and

σ is the total cross section.

Similar expansions have been applied by previous Blowfish researchers: e.g. Sawatzky

[Saw05], Blackston [Bla07], Kucuker [Kuc10], and Wurtz [Wur10c]. Sawatzky [Saw05] has

provided the necessary algebra to convert to the Partovi Expansion (eq. (2.17) on page 48),

see his work for details.

Schwamb and Arenhövel [Sch01c, Sch01a, Sch01b] provided us the differential cross sec-

tion, total cross section, photon asymmetry, and the multipole amplitudes up to l = 4 for

18 MeV deuteron photodisintegration. We perform a fit of eq. (2.20) to the differential cross

section and photon asymmetry values given by Schwamb and Arenhövel in order to compare

our results to their calculation.

We extract the same set of parameters from our experimental data by mapping eq. (2.20)

into a probability density function and use the Monte Carlo Method to simulate the expected
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neutron yield in each detector (described in section 4.4.2 on page 119). The simulated neutron

yields are then used as the fitting functions to parameterize the experimental neutron yield

and thus extract the parameters in eq. (2.20) on page 49.
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Chapter 3

Experimental Apparatus

“...once in a while, though, the sticks go together and I reach the banana.” -Richard Feynman

[Fey]

3.1 Introduction

The data were recorded at the High Intensity Gamma Source (HI~γS; section 3.3 on page 53)

in Durham, North Carolina during October of 2010. The reaction tested was the photodis-

integration of the deuteron at 18 MeV using linearly polarized photons: d(~γ,n)p; the ejectile

neutrons were measured by the Blowfish detector array.

The purpose of the experiment at the time was to test a few potential systematic errors

in preparation for future high-precision experiments; consequently the experiment was not

performed as carefully as possible and it is probable that the uncertainties estimated in this

work are higher than they need be in future experiments with Blowfish.

The author of this thesis did not participate in the collection of the data, but instead

inherited them in 2011 with the intent of extracting usable data.

3.2 Run Summary

Table 3.1 on the next page summarizes the experimental runs which were analyzed to provided

the data for this thesis.
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October 2010 Run Summary

Run Run Time Target/Source Arm Up Purpose

136 9-9:27 am AmBe Source 3 Verify run 139 results.

139 10:11-10:32 am AmBe Source 3 Calibrate gain and PSD (runs 142-143).

140 10:36-11:33 am Background 3 Test gain linearity.

141 1:19-1:20 pm 10.7 cm D2O 3 Align the TDCs.

142 1:22-2:05 pm 10.7 cm D2O 3 Data run.

143 2:07-2:42 pm 10.7 cm D2O 3 Data run.

149 3:51-4:28 pm 10.7 cm D2O 2 Data run.

150 4:28-5:07 pm 10.7 cm D2O 2 Data run.

152 5:51-6:35 pm 10.7 cm D2O 4 Data run.

153 6:39-7:16 pm 10.7 cm D2O 4 Data run at half photon flux.

154 7:33-8:18 pm 10.7 cm H2O 4 Measure background neutrons.

155 8:27-9:14 pm 2.0 cm D2O 4 Data run.

157 9:14-10:02 pm 2.0 cm D2O 4 Data run.

158 10:20-11:08 pm 2.0 cm D2O 2 Data run.

159 11:08-11:36 pm 2.0 cm D2O 2 Data run.

165 12:09-12:15 am AmBe Source 2 Calibrate gain and PSD (runs 158-159).

Table 3.1: List of runs used in this analysis. Runs were performed over a continuous

period from 9:01 am October 29th, 2010 12:34 am October 30th.
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3.3 The High Intensity Gamma Source (HI~γS)

Figure 3.1: The HI~γS Facility. Electrons enter from the linear accelerator (linac)

in the top right, then they are stored in the booster synchrotron until demanded by the

storage ring (main synchrotron). The free-electron laser operates via the OKs (Optical

Klystrons) and the FEL mirrors; we used the OK-4 in this experiment which produces

horizontally polarized photons. Definitions: LTB: Linear accelerator To Booster, BTR:

Booster To Ring, OK-5A/B: Optical Klystron (helical polarizer), OK-4A/B: Optical

Klystron 4 (linear polarizer), and FEL: Free-Electron Laser. Full discussion follows in

text. Image credit: Weller et al [Wel09].

The High Intensity Gamma Source (HI~γS) facility is located at Duke University in Durham,

North Carolina; it is a joint project operated by the Triangle Universities Nuclear Labo-

ratory.1 HI~γS uses a free-electron laser (FEL) capable of producing nearly 100% linear or

1The Triangle Universities are: Duke, North Carolina State and North Carolina at Chapel Hill.
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circularly polarized photons2 with high precision energy in the range of 1-95 MeV, at a flux

of 108-109 γ
s

[DFE10] (full metrics can be found in appendix D on page 289).

The High Intensity Gamma Source is compared to its contemporaries in table 3.2: as you

can see, HI~γS has relatively high flux and energy precision at the expense of energy; the high

flux compliments Blowfish well because Blowfish has a relatively low detection efficiency.

ROKK-1M GRAAL LEPS HI~γS

Location Russia France Japan USA

γ beam energy (MeV) 100-1600 550-1500 1500-2400 1-100

Energy resolution, % (∆E
E

) 1-3 1.1 1.25 0.8-10

Max flux at target (γ
s
) 106 3 · 106 5 · 106 104 − 5 · 108

Table 3.2: HI~γS Contemporaries. HI~γS compared with a few other Compton γ-

sources. As you can see, HI~γS is capable of high precision and flux at relatively low

energies: ideal for low energy nuclear photodisintegration experiments. Adapted from

Weller et al [Wel09].

Electrons are accelerated in groups of several electrons called bunches via a linear accellerator

(linac) into a booster ring from which they are fed into the storage ring on demand. The

booster ring was commissioned in 2006 in order to compensate for electron loss in the storage

ring [Wel09] and to accommodate higher energy beams: above 20 MeV there is continuous

loss of electrons in the storage ring [Mik07]. The booster ring is designed to inject new elec-

trons in phase with the storage ring [Mik07] (for specifications, please see Mikhailov et al.

[Mik07]).

Upon exiting the booster ring, the electron bunches are kept in the storage ring where they

produce gamma rays via the FEL; until they eventually are attenuated from the synchrotron.

The FEL operates by utilizing stimulated emission of polarized ultraviolet (UV) photons: this

enables high flux, with high energy photons achieved via Compton backscattering.

2Degradation of the ultraviolet mirrors can cause a change in polarization: Sawatzky [Saw05] measured a
9◦ deviation in the polarization axis due to mirror degradation. We verify the polarization in section 6.4 on
page 244 for this reason.
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The approximate energy of a photon after backscattering from a highly relativistic electron

(Ee >> mec
2) is:

Eγf ≈
4γ2Eγi

1 + (γθ)2 + 4γ
Eγi
mec2

(3.1)

where: Ee is the electron’s total energy, me is the electron’s rest mass, θ is the photon scatter

angle, Eγi is the incident photon’s energy, Eγf is the scattered photon’s energy, and γ = Ee
mec2

[Lit97]. The strong dependence on θ enables collimation to greatly reduce energy spread,

resulting in high energy precision.

The energy spread of the process is approximately:

∆Eγ
Eγ
≈ (γθ)2 (3.2)

where: Ee is the electron’s total energy, me is the electron’s rest mass, θ is the photon scatter

angle, Eγ is the scattered photon’s energy, ∆Eγ is the absolute uncertainty in the scattered

photon’s energy, and γ = Ee
me

[Lit97].

The initial polarized UV radiation in the FEL is emitted by “wiggling” the electrons via

a graduated magnetic field in the Optical Klystrons (a.k.a wigglers); the Optical Klystron

4 (OK-4) was used in this experiment. The optical cavity is perfectly timed such that

by the time an electron bunch has circumnavigated the storage ring: the UV photons have

bounced off both mirrors and are in the same position as the electrons, this enables stimulated

emission of additional UV photons in the wiggler. In order to produce gamma rays (i.e. high

energy photons), a second bunch of electrons is stored in the storage ring exactly half the

circumference away from the first, thus when the second bunch is in the middle of the optical

cavity it is perfectly in time to meet the UV photons moving in the opposite direction: if a

UV photon scatters from one of these electrons it will backscatter as a high energy photon

(i.e. gamma ray). This process conserves the polarization and thus the final product is a

photon with precise energy and polarization. This photon then penetrates the ultraviolet
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mirror and travels down a vacuum, through the flux monitor, into the upstream, and then

downstream target rooms where it impinges on the experimental target (depending on which

target room it is in); the process is illustrated in figure 3.2 on the next page.3

3A video of the process can be viewed at http://www.tunl.duke.edu/web.tunl.2011a.higs.php.
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Figure 3.2: Operation of the Free-Electron Laser at HI~γS [Wur10c]. This

simplified diagram shows only the storage ring. Two bunches of electrons are stored at

once: the first bunch radiates ultraviolet (UV) photons as it enters the wigglers. The

second bunch may collide with the UV photons from the first bunch, and it produces UV

photons of its own. The “gamma-ray photons” produced from Compton backscattering

pass through the mirror undeflected and impinge on the target.
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Under our experimental arrangement, the final result is a 5.58 MHz pulse laser (i.e. ≈ 1-

2 photons every 179 ns) with energy 18.00 ± 0.27 MeV.4 We receive a signal from the

accelerator each time an electron bunch should be at the collision point i.e. the starting point

for an 18 MeV photon, enabling us to time and shutter our data acquisition system with

respect to the beam.

3.3.1 Synchrotrons

The HI~γS FEL (free-electron laser) is driven by electrons: first electrons are accelerated by

a linear accelerator, then they are kept in a synchrotron (i.e. the booster ring) until they

are demanded by a second synchrotron where they perform the lasing (i.e. the storage ring).

Synchrotron operation is discussed here in order to provide the necessary background to

understand where the out-of-time photons (section 5.3.1 on page 152) are being produced.

Synchrotrons use synchronously oscillating electric and magnetic fields that are capable

of increasing, decreasing or maintaining the energy of charged particles while maintaining

a uniform radius [Pat11]. Maintaining a high precision energy and time spread is achieved

by using a time oscillating potential to accelerate charged particles; this is performed in a

radio-frequency5 chamber section of the synchrotron; a simplified version of this potential is

displayed in figure 3.3 on the next page.

4The uncertainty in the energy was estimated by linearly extrapolating the measured beam energy spread
by Blackston [Bla07] at 16 MeV.

5The name comes from the fact that the necessary oscillations are on the order of MHz which is in the
radio wave range of the electromagnetic spectrum. For example, HI~γS operates at 178.55 MHz [Wel09].
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Figure 3.3: Idealized Synchrotron Potential, based on Patel [Pat11]. Charged

particles (e.g. electrons) are stabilized at the black nodes (i.e. potential energy mini-

mums): charged particles arriving early or late get accelerated by a potential towards

the nearest node by an appropriately signed electric potential (as per ~F = q( ~E+~v× ~B)).

Illustrated is the steady state potential, in order to accelerate the synchrotron particles:

a constant is added to the electric potential. The oscillating frequency is given by the

circumference of the trajectory and energy of the charged particles.

As demonstrated in figure 3.3: there are many neighbouring stable potential minimums

where charged particles are in a stable trajectory. The storage ring at HI~γS has 64 potential

energy minimums (called “buckets”) each spaced 5.6 ns apart [Wel09]. In gamma ray opera-

tion: 2 of these potential energy minimums are occupied, each by a bunch of electrons. The

data from this experiment imply that there are also additional potential energy minimums

occupied as the electron bunches slowly spread into neighbouring potentials; this is discussed

in section 5.3.1 on page 152.
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3.4 Experimental Layout

Figure 3.4: Experimental Layout. The beam enters from the free-electron laser

(FEL) traveling left to right. The diagram represents the setup during a target run: the

copper absorbers and sodium iodide (NaI) detector are both off axis and the target is

in Blowfish. When we wanted to measure the NaI flux we added the copper absorbers

and slid the NaI detector along its track onto the beam axis. Figure not to scale. Image

adapted from Sawatzky [Saw05].

The key components of the experimental layout are diagrammed in figure 3.4. The beam was

collimated before entering the Five Paddle Flux Monitor (section 3.9 on page 85), then it

traveled some distance through the upper target room and into the lower (main) target room

which contained Blowfish. The flux monitor remained on axis for all runs: it sampled the

beam in order to determine the number of photons on target, which we use to compute the

total cross section. The sodium iodide detector must be kept off axis when running at full

flux to prevent damaging the crystal, so copper absorbers had to be added to attenuate the

beam when we took sodium iodide flux measurements (used to calibrate the flux monitor).

In this experiment we utilized a 11 mm (≈0.5 inch) radius collimator.
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3.5 Targets

Figure 3.5: Long Targets. Image credit: Kucuker [Kuc10]

The targets used in this experiment were built by Kucuker [Kuc10]. All targets were made

of 0.2 mm wide Lucite containers with two possible contents: D2O or H2O, and two possible

lengths: 10.7 cm (long) or 2.0 cm (short). The H2O target run was performed in order to

get an idea of the background neutrons produced from sources other than D.

Target Metrics

Target Contents Target Length (cm) Inner Diameter (cm)

D2O 10.7 ± 0.1 3.6 ± 0.1

H2O 10.7 ± 0.1 3.6 ± 0.1

Air 10.7 ± 0.1 3.6 ± 0.1

D2O 2.0 ± 0.1 3.6 ± 0.1

H2O 2.0 ± 0.1 3.6 ± 0.1

Air 2.0 ± 0.1 3.6 ± 0.1

Table 3.3: The 10.7 cm targets are referred to as the long targets and the 2.0 cm

targets are referred to as the short targets. No uncertainty was provided by Kucuker

[Kuc10], and so it had to be assumed to be 1 mm for the target lengths and inner

diameters based on the number of significant digits provided.
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The targets were held inside a Lucite frame and then suspended inside Blowfish by four

wires; the targets were all placed at the center of Blowfish to a precision of 1 mm (see

figure 3.6).

Figure 3.6: A Target Suspended in Blowfish. Image credit: Kucuker [Kuc10]

The Lucite frame was not simulated during the analysis of these data: its contribution

was shown to be negligible for 20 MeV photons and therefore is expected to be negligible for

18 MeV photons as well.
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3.6 Blowfish

Figure 3.7: The Blowfish Detector Array positioned in the beam-line at HI~γS.

The beam enters from the left, travels through the aluminum port, potentially interacts

with the target suspended in the middle (not shown), and then, if it fails to interact,

exits through the port in the other side. Image credit: Sawatzky [Saw05].
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Table 3.4: Blowfish Metrics

Coverage ≈ π st, polar angle:θ ∈ [22.5◦, 157.5◦], azimuthal angle: φ ∈ [0◦, 360◦)

Internal Radius 40.64± 0.30 cm

Num. Detectors 88

Num. Arms 8

Num. Rings 11

Detector Type BC-505 Scintillator

Detector Surface 7.6 x 7.6 cm2(active)

Detector Depth 6.4 cm (active)

Detector Surface 8.2 x 8.2 cm2(external)

Detector Depth 7.1 cm (external)

Blowfish owes its memorable name to its spherical shape and analogous spines which are

reminiscent of a blowfish in defensive posture. The spherical shape is designed to sample

the entire target emission surface, while the protruding spines are photomultiplier tubes,

connected to black detector cells on the inside of the metal arms that span longitudinally

down Blowfish.

There are 88 detection cells in the Blowfish Array, each contains a liquid scintillator (BC-

505) inside a Lucite container; the BC-5056 is idealized to measure photons and neutrons,

and is able to differentiate between them.7

The components of Blowfish were initially used in a detector system called Fly’s Eye: the

hardware was scavenged in 2000 by Brad Sawatzky and Blowfish was constructed from 2000-

2001 in a joint effort between the University of Virginia and the University of Saskatchewan.

Blowfish was “strongly influenced” [Saw05] by the desire to test the Gerasimov-Drell-Hearn

sum rule at HI~γS,8 that requires measurement of the photodisintegration cross section parallel

6The BC name derives from the name of the subsidiary that produces them: Bicron, it has since been
“united” under the Saint-Gobain brand.

7Even though BC-505 is considered one of the best detectors for pulse-shape discrimination of neutrons
and photons: it is no trivial task, see section 5.3.9 on page 184 for more information.

8The Gerasimov-Drell-Hearn sum rule experiment was finally scheduled to run in November of 2013, but
it has since been rescheduled as a yet to be defined run date sometime in 2014.
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and anti-parallel to the photon’s polarization. This requires measuring θ and φ at several

positions, ideally symmetrically: hence the spherical distribution of detectors around the

target.

In order to reduce spatial and cell biases, Blowfish is capable of being rotated, although

this is known to cause problems with the Gain Monitoring System (section 3.10.3 on page 97).

Considered as a whole, Blowfish is well-suited for photodisintegration measurements be-

cause it samples a wide range of values in φ and θ and is able to differentiate neutrons and

photons; unfortunately, it is not particularly efficient,9 and thus is best used in conjunction

with a high flux beam (such as HI~γS).

3.6.1 Detector Coordinates

Blowfish has 88 detectors placed approximately uniformly over a spherical frame covering π

steradians (1
4

of the surface of a sphere) from φ = 0◦ to φ = 360◦ and θ = 22.5◦ to θ = 157.5◦

(θ and φ are defined in figure 3.8 on the next page). The aluminum frame has an inner

diameter of 40.64 ± 0.30 cm (16.00 ± 0.12 inches), it consists of 8 longitudinal arms; each

∆φ = 45◦ apart and 11 transverse rings, each ∆θ = 13.5◦ apart.

9The spatial coverage is ≈ 25%, and the neutron detection efficiency for this experiment was ≈ 10%, so
the total neutron efficiency was ≈ 2.5%.

65



Figure 3.8: Blowfish Coordinates: the x-axis is aligned with the beam. The

coordinate system was chosen such that it is harmonized with the GEANT4 simulation.

Image credit: Wurtz [Wur10c].

We number the detectors starting at the upstream end10 and enumerate sequentially in

the clockwise direction from the perspective of the beam (see figure 3.9 on the next page).

10Upstream of the beam i.e. where the beam enters Blowfish.
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Figure 3.9: Blowfish Detector Numbering. Image credit: Wurtz [Wur10c].

One can convert from detector number to ring and arm number, then subsequently φ and

θ, respectively.
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φ is proportional to the arm number, which can be calculated using:

arm = (detector− 1) mod 8 + 1 (3.3a)

φ = 45◦(arm− arm on top + 2) (3.3b)

where: φ has been defined relative to the beam axis in figure 3.8 on page 66 [Wur10c].

θ is proportional to the ring number, which can be calculated using:

ring = bdetector− 1

8
c+ 1 (3.4a)

θ = 157.5◦ − 13.5◦(ring− 1) (3.4b)

where: b c is the floor operator, and θ has been defined relative to the beam axis in figure 3.8

on page 66 [Wur10c].

When arm 3 is up, the detector locations are correctly described by table 3.5 on the next

page.
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Arm Number (∝ φ)

Ring 1 2 3 4 5 6 7 8

Number θ φ: 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

1 157.5◦ 1 2 3 4 5 6 7 8

2 144.0◦ 9 10 11 12 13 14 15 16

3 130.5◦ 17 18 19 20 21 22 23 24

4 117.0◦ 25 26 27 28 29 30 31 32

5 103.5◦ 33 34 35 36 37 38 39 40

6 90.0◦ 41 42 43 44 45 46 47 48

7 76.5◦ 49 50 51 52 53 54 55 56

8 63.0◦ 57 58 59 60 61 62 63 64

9 49.5◦ 65 66 67 68 69 70 71 72

10 36.0◦ 73 74 75 76 77 78 79 80

11 22.5◦ 81 82 83 84 85 86 87 88

Table 3.5: Blowfish Detector Arrangement. The cell numbers are provided in

the bottom right section. The values of φ are given for arm 1 in the horizontal position

(φ = 0) i.e. parallel to the beam alignment in this experiment. Table adapted from

Blackston [Bla07].

In order to align the cells of Blowfish: a metal rod was inserted along the beam axis,

attached to this rod was a second rod capable of swinging in a 180◦ arc of radius 15.75 inches:

when the rotation axis of the second rod was aligned in the center of Blowfish, it was then

used to set all of the cell distances to the same value. A spacer of approximately 0.25 inches

was inserted between the rod and the Blowfish cells in order to prevent damaging the surface.

The inner radius of 16.00 inches is simply the sum of the spacer and rod; the error is estimated

at 0.12 inches (40.64± 0.30 cm).
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3.7 Detector Structure

Figure 3.10: A Blowfish Cell. Image credit: Bewer [Bew05].

The 88 detector cells in the Blowfish array each look like figure 3.10 inside: the scintillator

is housed in a Lucite box that is connected to a photomultiplier tube via a light guide, kept

“optically tight” by the spring and a silicone rubber “cookie”. The Lucite box is wrapped

loosely in aluminum foil in an attempt to maximize internal reflection of fluorescence, then

covered in black tape to keep out ambient visible wavelength light (the process is beautifully

described pictorially in Leo [Leo87] pages 197-199).

The process of converting a neutron or photon into a pulse of light is covered in detail

in section 3.8 on page 73; however, little attention is given to the step necessary to convert

that light pulse into an electronic signal. A photomultiplier tube converts the light pulse into

an analogue electronic signal, which then enters the electronics (section 3.10.1 on page 88)

where it is converted into a digital electronic signal and, finally, into bits of machine-language

data.
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3.7.1 Photomultiplier Tubes (PMTs)

Figure 3.11: A Photonis XP2262 Photomultiplier Tube (PMT). Image credit:

Photonis [XP06].

The photomultiplier tubes (PMTs) used in this experiment were Photonis XP2262/B, 12

dynode bi-alkali 51 mm detectors, its properties are summarized in table 3.6. A description

of PMT operation follows in this section.

Table 3.6: HadronsPhotonis XP2262/B PMT Metrics [XP06]

Window Material Lime Glass

Photocathode Bi-alkali

Refractive Index 1.54 (at 420 nm)

Spectral Range 290-650 nm

Maximum Sensitivity 420 nm

In a Blowfish detector, when the scintillator fluoresces the photon travels down the light

guide and into the photomultiplier tube (PMT) where it strikes a phosphorescent coating

on the surface window and then, hopefully, the photoelectric effect occurs and liberates an

electron that will subsequently start an electron cascade culminating in an electronic pulse
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(see figure 3.12). In essence a photomultiplier tube multiplies the number of photons detected

(i.e. the number of photoelectrons).

Figure 3.12: Photomultiplier tube operation. Description in text. Image credit:

Wikipedia.

The process begins when electrons are generated inside a thin layer of either conductive or

semi-conductive material just inside the window which is capable of generating photoelectric

electrons: called the photocathode. The relatively small photon energy (≈ eV for optical

photons) is barely enough energy to get the electron out of the thin layer photocathode and

into the vacuum, and so all PMTs have some threshold wavelength below which they are

insensitive.11

The photo-electrons enter the vacuum with barely any energy (≈ eV) and hence are

readily collected by the focusing electrode and strike the first dynode, which is held at a

high voltage (≈ 140 V
dynode

12); each dynode is held at a decreasing voltage from cathode to

anode. Once the electron strikes the first dynode it generates a spallation of electrons with

11Photomultiplier tubes are less sensitive near their energy threshold because there is some spread in
electron distance traveled depending on whether the electron is generated on the outside or inside of the
photocathode: the photo-electrons do not have enough energy to penetrate this layer.

12A typically voltage setting in our experiment was ≈ 1700 V across a total of 12 dynodes, so we expect a
1700
12 V ≈ 140 V potential per dynode.
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multiplicity δ, defined by [Kno00]:

δ =
number of secondary electrons emitted

number of incident electrons
(3.5)

Then the spallation of electrons proceeds towards the next dynode and the process repeats

until the anode is finally reached and the cascade of electrons becomes an electronic signal

that is sent out of the PMT. The electron kinetic energy (and hence the detector gain13) is a

function entirely of the applied voltage: the progenitor photon energy is trivial with regards

to the electron kinetic energy after accelerating through a dynode (≈ 140 eV14).

The entire process is typically linear [Kno00]: a single photoelectron gets multiplied into

107 − 1010 (approximately 5 per dynode: normal for PMTs like ours) final electrons. The

efficiency is dependent on the quantum efficiency of the photocathode (the electron cascade

is nearly 100% efficient) and is much less than 100%: we expect it to be on the order of

≈ 25% for our Bi-alkali PMTs at the scintillator’s typical wavelength (≈ 400 nm) [Kno00].

We do not account for the PMT efficiency in our simulations because we assume that we

always have enough photons from the scintillator to produce a proportional electrical signal.

3.8 Principles of Detection

Recall that the reaction we measured in this experiment was d(~γ,n)p: we use polarized

photons to photodisintegrate the deuteron then measure the recoiling neutron. Thus we are

ideally interested in measuring all of the neutrons produced from this process and nothing

else. Unfortunately, any detector will be sensitive to particles other than those we desire to

measure: we accept this as an inevitability and utilize a detector capable of differentiating

between photon and neutron events i.e. one capable of pulse-shape discrimination (PSD;

section 5.3.9 on page 184). Furthermore, we can utilize these formerly unwanted photons to:

calibrate the gain of our detectors using the Compton continuum, and determine the time of

13The number of secondary electrons produced at each dynode is proportional to the kinetic energy of the
incident electron, therefore the gain is proportional to the incident electron’s kinetic energy.

14Assuming a typical voltage of ≈ 140 V
dynode , after the electron’s last dynode interaction it should have a

final kinetic energy of ≈ 140 eV when it leaves the PMT.
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flight for the particles we detect.

How then does one detect a neutron? A circumspect answer is to first consider how

neutrons interact (i.e. deposit energy) in materials, then consider what the best way to

observe data in a human-readable format is, then fill in the steps inbetween.

Neutrons are electromagnetically neutrally charged particles, and they are extremely

light: thus if we are to measure neutrons we must either utilize a manifestation of: the

weak interaction (e.g. beta decay) or the strong interaction i.e. the nuclear interaction. We

want to perform data analysis with a computer, so we must convert the nuclear or weak

interaction into an electronic signal which can be read by a computer, and finally converted

into something meaningful for humans.

In Blowfish we utilize nuclear scattering between incident neutrons and the nuclei inside

a scintillating detector (section 3.8.1) which converts these scattering events into pulses of

light, these pulses of light are then collected by a light guide and enter a photomultiplier tube

(PMT; see section 3.7.1 on page 71) where they are converted into an analogue electrical signal

that can be converted via our data acquisition system (section 3.10 on page 88) into digital

data to be manipulated using software into human-readable format.

3.8.1 Organic Scintillators

The first step in converting an incident neutron into human-readable data is the scintillator:

in our detector a neutron is most likely to be measured if it has scattered off of a hydrogen

nucleus: which recoils and; through a few molecular processes, eventually results in the

emission of characteristic photons.

In general, a scintillator is any detector that absorbs energy from its surroundings and

emits some portion of it as photons. Organic scintillators are those scintillators which are

composed of aromatic hydrocarbons; they are desirable because they have a fast response

time (≈ ns), and are rich in hydrogen which; as is evident in eq. (3.6) on the next page, can

absorb a large portion of the incident neutron’s kinetic energy: thus the average neutron only

has to hit a few times to deposit all of its energy in the detector; furthermore, hydrogen has
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a relatively large cross section for neutron elastic scattering.15

The energy absorbed by a recoiling nucleus after being hit by a neutron in a non-

relativistic elastic scattering event is:

Erecoil =
4A

(1 + A)2
cos2θEneutron (3.6)

where: Erecoil is the kinetic energy of the recoiling nucleus hit, θ is the angle between the

incident neutron and the recoiling nucleus, Eneutron is the incident neutron kinetic energy,

and A = mass of recoil
mass of neutron

, which is approximately the atomic number of the recoiling nucleus

[Kno00].

The process of conversion from neutron scattering inside the scintillator to emission of

characteristic photons via fluorescence16 is outlined as follows, and diagrammed using energy

levels in figure 3.13 on page 77.

The process of neutron-induced scintillation:

1. The neutron scatters off of hydrogen or some other nucleus.

2. If the neutron scatters off of hydrogen causing ionization, this produces a proton with

energy given by kinematics. The neutron could just as well scatter from a different

nucleus, but we will focus on protons for argument’s sake; neutron-proton scattering is

the dominant process anyways (as shown in section 3.8.2 on page 80).

3. The liberated proton interacts readily with the electrons found inside the scintillator.

Most of the proton’s energy is lost due to quenching : non-radiative energy transfer

[Kno00] (not measured).

4. Some of the electrons that interact are the π electrons from the fluor molecules,17thus

exciting them to higher energy levels: we consider singlet and triplet states.

5. The excited π electrons either fluoresce promptly (from a singlet state), or enter quasi-

stable triplet states.

15Hydrogen also has a well measured neutron scattering cross section: allowing for accurate/precise effi-
ciency estimates.

16We use the definitions: fluorescence: de-excitation of singlet state via emission of a single photon;
phosphorescence: de-excitation of triplet state via emission of a single photon [Kno00].
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6. The excited triplet states may phosphoresce, or collide with other excited molecules

[Kno00] and return to the singlet state, then emit delayed fluorescence. Quenching

increases the rate of triplet state collisions by increasing local concentration of triplet

states.

Photon-induced scintillation proceeds in the same manner with the exception that the

photons are vastly more likely to interact with the atomic electrons rather than nuclei, and

thus they cause recoiling electrons to interact with the scintillator’s π electrons. By inter-

acting via electrons, the photons cause much less quenching than neutrons do and therefore

produce less delayed fluorescence.

17The fluor molecules are those that actually result in fluorescence; the other major components of scin-
tillator are an absorber and a wavelength shifter (optional) [Kno00].
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Figure 3.13: Scintillator Excitation (Energy Levels). The singlet state decays

rapidly (τ ≈ ns) while the triplet state remains meta-stable for a much longer time (up

to ms). Pulse-shape discrimination (section 5.3.9 on page 184) relies on the excitation

of triplet states back into singlet states which subsequently fluoresce (called delayed

fluorescence) [Kno00]. Image credit: Bewer [Bew05].

The important difference between the scintillation processes induced by photons versus

neutrons is the frequency of delayed fluorescence: it is more frequent when neutrons interact

with the scintillator. It is important to note that when a particle interacts with a scintillator,

it results in many excited π electrons, not just a few; and we therefore expect to see an

emission spectrum that includes prompt and delayed fluorescence. Since neutrons result in

more delayed fluorescence events than photons, we furthermore can expect to see that neutron

interactions with a scintillator will result in longer light pulses than photons. This is exactly

what is observed (see figure 3.14 on the next page) in organic scintillators, other types of

scintillators tend to destroy this particle-type information or fail to produce it: hence our
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motivation for using an organic scintillator.

Figure 3.14: Light Response of Stilbene (normalized). As you can see, neutrons

cause longer light pulses than gamma rays (photons): this difference in pulses can be

used to discriminate between the two (i.e. pulse-shape discrimination: section 5.3.9 on

page 184). Image credit: Bollinger and Thomas [Bol61].

BC-505 Liquid Organic Scintillator

BC-505 is formulated to provide the best overall performance of any liquid scintillator. It has

the highest light output of any liquid (80% anthracene) and excellent light transmission. Its

high flash point (48◦C) renders it particularly suitable for use in large volume detectors such as

anti-Compton and anti-coincidence shields and high energy neutron detectors. -Saint-Gobain

Crystals (manufacturer) [Sai08]

The reader is advised to take Saint-Gobain Crystals’ BC-505 sales-pitch with a grain of
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salt; for instance, its purported “high flash point” of 48◦C does not exactly instill confidence

(it’s really only “high” relative to other liquid organic scintillators). The full metrics of BC-

505 as provided by Saint-Gobain Crystals [Sai08] are shown in table 3.7, and its emission

spectrum is shown in figure 3.15.

Table 3.7: BC-505 Metrics [Sai08]

Light Output 80% of anthracene

Wavelength of Maximum Emission 425 nm

Decay Time (fast) 2.5 ns

Density (20◦C) 0.887 gcm−3

Ratio of H/C Atoms 1.331

Refractive Index 1.505

Flash Point 48◦C

Figure 3.15: BC-505 Emission Spectrum. Image credit: Saint-Gobain Crystals

[Sai08].

Sawatzky [Saw05] compared BC-505 to a few other liquid scintillators: a summary pro-

vides perspective for the BC-505 metrics (table 3.8 on the next page).
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Table 3.8: BC-505 Comparison [Saw05]

Property BC-505 NE-213 NE-102

Light Output(% anthracene) 80 78 65

Flash Point (◦C) 48 26 N/A

Density (gcm−3) 0.877 0.874 1.03

Ratio of H/C Atoms 1.331 1.211 1.103

Reading table 3.8, it should be clear that BC-505 benefits from a relative high light

output and flash point, both making it easier to work with. In fact, the relative ease with

which BC-505 can be handled was the deciding reason for its choice over other liquid organic

scintillators: specifically the fact the BC-505 doesn’t dissolve Lucite and hence could be

placed in Lucite containers [Pyw].

Relative to solid organic scintillators, liquid organic scintillators (like BC-505) have the

advantages of: being far more resilient to radiation damage, being cheaper, and typically

being superior at performing pulse-shape discrimination [Kno00]. The downside to liquid

organic scintillators is the necessary use of a volatile and reactive solvent.18

3.8.2 Scintillator Light Output

The obvious importance of understanding the light output of our scintillators is that without

it we would be unable to detect anything: what good is a scintillator that doesn’t scintillate!

What is not obvious is that the light output spectrum is an indispensable tool for deter-

mining the detector efficiency and validating the simulated detector response. The reason

for this is that although the spectrum has a complex analytical structure to ensure that a

serendipitous fit is unlikely, the physical processes are sufficiently simple that the spectrum

can be parameterized and simulated.

Bormann et al. [Bor70] decomposed the light output spectrum from stilbene (a solid or-

ganic scintillator) into physical processes that were simulated using the Monte Carlo Method

18Liquid organic scintillators are, in fact, simply solid organic scintillators which have been dissolved in
a solvent. Since solid organic scintillators are plastics this means it is very difficult to find a liquid organic
scintillator that can be kept inside a plastic container.
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(section 4.2.3 on page 109), their results are shown in figure 3.16.

Figure 3.16: Stilbene Detector Response. Left: Bormann et al. [Bor70] calculated

the separate effects of three processes occurring in the detector (a,b and d): (a) single

n-p19scattering with edge-effects, (b) double n-p scattering, (c) a + b, (d) n-p scattering

after the neutron has been scattered off of a carbon nucleus, and (e) sum of all effects.

Right: their experimental results confirm their Monte Carlo calculation (the tail is a

detector edge effect which has been suppressed in the left image).

The light output spectrum from Bormann et al. [Bor70] bears a resemblance to the light

output of our scintillator, BC-505: figure 3.17 on the next page.

19n: neutron, and p: proton.
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Figure 3.17: BC-505 Light Response [Pyw06] to 8.9 MeV neutrons. The exper-

imental data (blue points) compared to the GEANT4 simulation (red points) which

is based on the parameterization (solid red line). The simulation reproduces the ex-

perimental data well. Notice the qualitative similarity between this figure starting at

≈ 3 MeVee and figure 3.16 on page 81: evidently the dominant physical processes are

still: n-p, n-carbon + n-p, and double n-p scattering, and edge effects. Image courtesy

of Dr. Robert Pywell.

Figure 3.17 was used to validate the simulation when the efficiency of the detector was

known [Pyw06] and thus can now be used to determine the efficiency of the detector using the

simulation. The latter is done by simply applying the same light output cut (and all other

cuts; section 5.4 on page 193) to the simulation and the experimental data then normalizing

the number of simulated neutrons into an efficiency (via efficiency = neutrons measured
neutrons emitted

).

Extraction of the light output parameters was performed in Pywell et al. [Pyw06] using

the following derivation:
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Pywell et al. start with the expression from Chou [Cho52]:

dL

dx
= S

dE

dx
[1 + kB(

dE

dx
) + C(

dE

dx
)2]−1 ≡ Sf(

dE

dx
) (3.7a)

Where: S is a scaling factor, kB = 0.0061 ± 0.0003 gcm−2MeV−1 and C = (1.0 ± 0.1) ·

10−5 g2cm−4MeV−2 are fit parameters, L is the light output, E is the energy, and x is the

position.

Then a particle that stops at a distance R into the material will cause light output, L:

L(E) =

∫ R

0

dL

dx
dx = S

∫ R

0

f(
dE

dx
)dx (3.7b)

A “minimum ionizing particle” has approximately constant energy loss: dE
dx min

≈ constant

=⇒ f(dE
dx min

) ≈ constant (as demonstrated at the highly relativistic energies in figure 2.8

on page 26) so the integral becomes:

L(Emin) = Sf(
dE

dx min
)∆x (3.7c)

The energy deposited in this process must be:

Emin =
dE

dx
∆x (3.7d)
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Pywell et al. then defined the gain such that L(Emin) = Emin. This enables them to combine

eq. (3.7c) on page 83 and eq. (3.7d) on page 83 and solve for the scaling parameter, S:

S =
dE/dxmin

f(dE/dxmin)
(3.7e)

Substituting in the scaling parameter, S, into eq. (3.7b) on page 83:

L(E) =
dE/dxmin

f(dE/dxmin)

∫ R

0

f(
dE

dx
)dx (3.7f)

where: dE/dxmin is a measured parameter of the scintillator and f is given by eq. (3.7a) on

page 83.

The minimum ionizing energy (dE/dxmin) is considered a property of the scintillator;

not the incident particle type, it was calculated using the Bethe-Bloch formula with shell

corrections at low energies; the other parameters of f (i.e. kB and C) were measured using

neutrons of known energy [Pyw06]. Eq. (3.7f) can now be simulated in GEANT4 using

the Monte Carlo Method i.e. evaluating the expression at each step, ∆x, the particle takes

through the scintillator.

In this experiment, we used the parameters from Pywell et al. [Pyw06]: kB = 0.0061 ±

0.0003 gcm−2MeV−1, C = (1.0 ± 0.1) · 10−5 g2cm−4MeV−2, and dE
dx min

= 2.00 MeVg−1cm2.

We also used the GEANT4 implementation based on these parameters; written by Pywell et

al [Pyw06].
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3.9 The Five Paddle Flux Monitor

Figure 3.18: The Five Paddle Flux Monitor.

In this experiment we utilized the third generation of flux monitors at HI~γS: the Five Paddle

Flux Monitor. The Five Paddle Flux Monitor (Five Paddle) was constructed by Octavian

Mavrichi as his MSc project [Mav10] (its design was published in 2009 [Pyw09a]), it was an

improvement on the Three Paddle Flux Monitor, which was itself an improvement upon the

initial One Paddle Flux Monitor. Five Paddle is capable of measuring the beam flux at HI~γS

to within 2% systematic error [Mav10] (using eq. (5.8) on page 212).

Five Paddle is, appropriately, composed of five detecting paddles: each paddle is a 2 mm

BC-400 solid plastic organic scintillator coupled to a PMT [Mav10]. The particles it is de-

signed to detect are electrons and positrons produced by the radiator: a 2 mm sheet of

aluminum located between the 2nd and 3rd paddles (counting from upstream). High energy

electrons/positrons are highly interacting20 but they are virtually undeflected by each inter-

action (until they slow down) and will usually penetrate through all three of the downstream

paddles.21

20For example, the likelihood of a 9 MeV electron interacting with one of the paddles is very close to 1:
≈ 1− e−10000 [Rud04].

21For example, the likelihood of a 9 MeV electron being absorbed by one of the paddles is only ≈ 4%. The
likelihood of the same electron being absorbed by the air gap between paddles is negligible ≈ 0.05% [Zuc11].
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This means that the electrons/positrons produced by the radiator will have a high prob-

ability of traveling in a straight line: through each of the three paddles, and depositing

some of their energy in each paddle. In contrast, a photon has only a ≈ 1%22 chance of

interacting with a paddle, meaning that the likelihood of interacting with three has a prob-

ability of ≈ 1
1000000

. What this all means is: the Five Paddle Flux Monitor is simultaneously

non-intrusive (it barely attenuates the beam) and efficient (the photons it does attenuate are

almost all measured).

In order to compensate for other highly interacting charged particles e.g. cosmic ray

muons and electrons/positrons from other sources,23 a veto paddle is placed in front of the

radiator. Events are recorded which include a coincidence between paddle 3, 4 and 5, and an

anti-coincidence with paddle 2: the veto paddle; the number of veto events is also recorded in

order to perform a flux correction. An example of which events would be counted or excluded

is diagrammed in figure 3.19 on the next page.

22The probability of an 18 MeV photon interacting with a 2 mm paddle of BC-454 (a different solid organic
scintillator) is 1.04% [Sai11], we assume that interacting with BC-400 would have a similar likelihood.

23When in the beam-line, the Five Paddle Flux Monitor is sandwiched between two beam attenuators
capable of producing fast electrons.
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Figure 3.19: Five Paddle Flux Monitor Acceptance. Only those events which

interact with paddles 3, 4, and 5 are measured; if they interact with paddle 2 (the veto

paddle) then they are automatically excluded. The converter (i.e. radiator) is designed

to produce high energy electrons in order to sample the beam flux. Image credit: Wurtz

[Wur10c]

In order to compute the beam flux we need a calibration factor (f ′m in eq. (5.8) on

page 212), extracted using the sodium iodide detector flux data along with the Five Paddle

flux data. The sodium iodide detector measures the beam intensity directly from the HI~γS

beam by being placed in the beam-line; its position is diagrammed in figure 3.4 on page 60.
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3.10 Data Acquisition System

Once an analogue electrical signal has been generated by the detectors, their job is done. The

signal travels into the electronics of the data acquisition system where useful information is

extracted from the analogue signals and converted into digital signals to be: read, converted

into software variables, and then saved by the data acquisition software: Lucid (section 3.10.6

on page 102).

3.10.1 Circuit Logic

Electronic logic modules are used to increase data acquisition efficiency, for example by doing

basic exclusions and coincidence registries in order to properly characterize Blowfish’s live-

time. Raw data enter the electronics in analogue electronic form directly from the detectors

and into the CF8000 discriminators where they begin their circuit logic path: eventually being

stored in the time-to-digital converters (TDCs) and analogue-to-digital converters (ADCs)

as digital signals to be read out by Lucid. The logic circuits used in this experiment for data

collection are provided in full in this section together with brief overviews for each.

Additional circuit logic is discussed in: section 3.9 on page 85 (The Five Paddle Flux

Monitor), and section 3.10.3 on page 97 (The Gain Monitoring System).

The circuit diagram labeling convention is provided in figure 3.20 and figure 3.21 on the

next page

Figure 3.20: Circuit Symbol Legend. The veto windows are continuous yes/no

logic signals, the trigger signals are toggle yes/no logic signals, and the software signals

are toggle yes/no logic signals sent by the front-end computer.

88



Figure 3.21: Logical Symbols Used for Circuit Diagrams: symbol with meaning

to right of it. Note: a ‘not’+‘or’ symbol with only one input is drawn instead of simply

a ‘not’ symbol.

The Data Acquisition Windows

The first logical circuit to consider handles the acquisition windows (figure 3.22 on the next

page): these determine whether or not data are able to enter the electronics.
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Figure 3.22: Data Acquisition Windows. These veto windows determine when

data should be accepted or not: 0: data in/off, 1: no data/on. Data are allowed to

enter when windows are closed (i.e. 0). Definitions: N: neutron, G: gamma ray, win:

veto window, Gamma en: gamma enabled, and Accel on: accelerator on. All windows

start with a suitably delayed signal from the accelerator (the bunch pick-off signal):

this is when electrons are expected to be in position to produce gamma rays. N win

is used to accept data normally; the notch in time with G win is used to pre-scale the

number of hits in the region where the beam is expected. These windows are adjusted

using N-width and G-width. Gamma en and Accel on are commands executed by the

reader running on the front-end computer (see section 3.10.6 on page 102).
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We know that the photon beam at HI~γS operates (ideally) with a definite frequency:

5.58 MHz, and we furthermore know the time when the FEL is able to produce gamma rays.

We use these data in the form of the “bunch pick-off” signal i.e. a logic signal sent from the

accelerator indicating that gamma rays may have just been produced. After a suitable delay

(allowing the gamma rays to travel the rest of their path and hit the target), we allow this

signal to enter the logic circuits in order to determine an appropriate start time for the data

acquisition system to begin accepting data. This results in: (1) an appropriate start time to

turn on the TDCs, and (2) the four data acquisition veto windows.24

The four windows are: Out win, N+G win, N win (i.e. the neutron window), and G win

(i.e. the gamma window); their respective purposes are: accept no data, accept all data,

accept all data except the data near the arrival time of the beam, and accept just the data

near the arrival time of the beam (these windows are diagrammed on figure 3.22 on page 90).

G win can be enabled periodically by Lucid to send a Gamma en signal so that beam photons

can be used to calibrate the time-of-flight. The accelerator can be enabled or disabled using

Lucid to toggle Accel on: when the accelerator is disabled all of the windows are vetoed i.e.

data are always accepted.

The Detector Circuits

The next logical circuit (figure 3.23 on the next page) handles the actual detector data from

the cells. The purpose of this circuit is to apply basic exclusions and classifications, then

send the data to the TDCs and ADCs where they are digitized and recorded.

24When a veto window is disabled: data can come in, when the veto window is enabled: data can’t come
in. The windows work the way you would expect them to e.g. N win (the neutron window) allows data to
enter only at times when neutrons should be observed.
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Figure 3.23: Detector Circuit. The Neutron Cell, Pedestal and Target Triggers

handle acquisition of the detector data: it determines whether or not the analogue

electronic signal from the detectors are stored as digital values in the TDCs and ADCs.

Definitions: IGOR: independent-gate ADC ‘or’, IG: independent-gate ADC, N-OR: ‘or’

from all of the cells combined, ECL: emitter-coupled logic,25Ped en: enable pedestals,

and SCA: scaler.

The logic circuit starts at the discriminators where the raw analogue signal enters from

the detectors. The raw signals entering the discriminators are allowed to pass through to the

TDCs and ADCs directly after running through a delay: the ADCs can then integrate the

amount of charge in the pulse which arrives within the time interval defined by a gate supplied

to the ADC; in the event that a discriminator receives a raw signal above its threshold, it

also outputs a logical signal to the N-OR (neutron master ‘or’) module informing the data

acquisition system that an event has occurred, and a second signal to the TDCs providing

25Emitter-coupled logic is a logic signal that operates based on the relative voltage difference between two
signals instead of relative to 0.
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the arriving time for the detected particle (by stopping the cell’s TDC channel).

The TDC signals are a bit confusing because there are several delays involved which result

in the particle being measured by the discriminator before the TDC is actually started. In

simplest terms: the bunch signal from the accelerator starts the TDCs and the discriminators

stop a specific TDC channel if an event is detected in that TDC channel’s respective Blowfish

cell; appropriate delays are put in place so that the bunch signal only starts the TDCs if

there is a particle in one of the cells, but the relative time between the bunch signal and the

particle’s detection time is preserved. All TDCs are started after any one cell records a hit

above the discriminator’s threshold which was in coincidence with the delayed bunch signal

from the accelerator (if enabled), the stop signal is given the same delay (approximately) so

that it arrives some time after the bunch signal which is proportional to the detected particle’s

time-of-flight. The beam photons which scatter from the target arrive at approximately the

same time in the TDC and can be used as a reference time for the other signals in the TDC

spectrum, thus allowing the conversion of the TDC spectrum into a time-of-flight spectrum.

The P trig is initiated by Lucid sending a Ped en signal to the ADCs; the next event

recorded by a discriminator results in pedestal events for each cell which are a record of the

DC (direct current) offset of the ADC (see section 5.3.2 on page 158).

The N trig is a neutron trigger event which corresponds to real data arriving at an ap-

propriate time.

A logic pulse passing through either the neutron or pedestal trigger enters the Master

Trigger System (see section 3.10.1 on the next page) where it is vetoed if the data acquisition

system is not ready to accept it, or allowed to pass otherwise. In the event that the pulse

passes through the master trigger system, it is delayed and then split into a “wide” logic

pulse and a “narrow” logic pulse telling the ADC to integrate the raw signal that passed

through the discriminator over a long or short gate period, respectively; a logic pulse is also

sent to the TDC telling it that there is something worth recording and giving a start time.

A delayed logical signal then comes from the discriminator telling the TDC the correct stop

time.

When this circuit is complete the analogue signal from the electronics has been converted

into: a short gate digital value proportional to the integrated charge of the signal, a long gate
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digital value proportional to the integrated charge of the signal, and a digital value for the

relative arrival time. These values are then read-out by Lucid (section 3.10.6 on page 102)

and saved.

The Master Trigger System

The Master Trigger System (figure 3.24 on the next page) serves to prevent signals from

entering the electronics while the data acquisition system is busy, and thus rigidly enforces

the DAQ live-time: when the DAQ is busy, no data are recorded.
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Figure 3.24: The Master Trigger System. All of the triggers enter here from

the left; they set the “LATCH” which prevents new data from entering while the data

acquisition system is busy. When Lucid finishes reading data it sends a RESET signal

that opens the LATCH. The system can also be inhibited by Lucid via Ped en or

INHIBIT. Definitions: N trig: neutron trigger, P trig: pedestal trigger, Mon trig: flash

monitor trigger, Flash trig: flasher trigger, Pad trig: Five Paddle Flux Monitor trigger,

Flux trig: sodium iodide crystal trigger, DAQ: data acquisition system, CAMAC/VME:

types of electronics (crate/bus types), and SCA: scaler.

Each possible trigger enters in the form of a logic pulse into an inhibit module that stops

the pulse if the data acquisition system is busy (i.e. the system is latched). If a trigger is

not inhibited, then it inhibits the data acquisition (it latches the system shut) and sends
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a look-at-me signal informing the data acquisition system of the inhibition; the trigger can

then proceed as it normally would in its respective circuit.

While the system is inhibited, the scalers do not count events and no new triggers can

enter the electronics. The latch can be lifted by receiving a RESET signal from Lucid. Since

all data are latched together, we need not worry about dead-time: Blowfish is never partially

active, and all the data collected are complete. The system can also be inhibited by Lucid,

which occurs both: when it sends an INHIBIT signal, and when the pedestals are measured

via Ped en (pedestals enabled).

3.10.2 Gain

In general terms, gain is the change in a signal due to the influence of some agent, usually a

piece of electronics:

gain ≡ input signal

output signal
(3.8)

noting that the inverse of our definition is often used by other researchers: so it is important

to take note of the units given.

Controlling gain is important insomuch as it may be necessary to amplify a signal in order

to keep it above noise, or to attenuate a signal in order to prevent it from overflowing or

damaging a piece of electronics. Usually, though, it is unimportant what exactly the gain is

so long as it is known exactly for all inputs at all times. Realistically, we settle for electronics

that are relatively stable over time and have simple functions describing how they change

with respect to input (i.e. linear functions).

Analogue-to-digital converters aren’t the only things that have a gain associated with

them in our experimental setup: every piece of electronics we use will have some gain as-

sociated with it, as will the wires inbetween them; most of these contributions are trivial,

though. We have no desire, nor reason, to keep track of the gain of every piece of electronics:

instead we elect to treat the entire detector and data acquisition system as a single entity

with a single gain for each type of data it produces. This means that we only need to worry

about the gains of the time-to-digital converters (TDCs) and ADCs.
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The TDC gains were determined by measuring an event of a known time interval i.e. a

cable of a known signal propagation time was inserted into the wiring and the change in the

stop time was recorded: the TDC bin value is then used to divide the actual time in order

to determine the correct gain (see section 5.3.5 on page 172).

The ADC gains were determined by using radioactive sources with known energy spec-

trum features e.g. the Blowfish cells were calibrated using a known relationship between the

inflection point from the end of the Compton continuum and the Compton edge,26 then the

literature value for the Compton edge was used to determine the gain. Three radioactive

sources were used: AmBe to determine the gain (see section 5.3.2 on page 158), and 40K and

228Th to verify the gain is linear with zero intercept (see section 5.3.2 on page 163).

For the rest of this thesis it should be assumed that when referring to the gain it is the

ADC gain which is being referenced unless explicitly stated otherwise.

3.10.3 The Gain Monitoring System

It is an empirical fact that the ADC detector gains of Blowfish drift over time (e.g. figure 3.25

on the next page). The Gain Monitoring System was designed and installed on Blowfish by

Bewer [Bew05]: it enables the continuous tracking of gains inbetween calibration runs.

26BC-505, just like other liquid scintillators [Kno00], cannot resolve a photopeak.

97



Figure 3.25: Gain Drift During the Experiment. The average gain (for all cells)

was observed to drift over the course of the experiment, using the Gain Monitoring

System. Run 136 and 165 are calibration runs, while the gains for the intermediate

runs were computed using the Gain Monitoring System and the gain from run 136.

The Gain Monitoring System is designed to monitor the detector ADC gain using a

system of continuously calibrated light-emitting diodes (LEDs). Four LEDs are mounted

on Blowfish inside light-tight metal containers (called flashers) with a bundle of fiber optic

cables carrying the LED light into each Blowfish cell and four gadolinium-silicon-trioxide

(GSO) inorganic crystals (figure 3.26 on the next page). Each fiber optic bundle splits the

LED light into 30 strands: 1 is sent to a GSO crystal, 22 are sent to the Blowfish cells of 2

full arms, and 7 spares remain; the four flashers are able to cover all 88 Blowfish cells and 4

GSO crystals.

98



Figure 3.26: LED Flashers. To the left is a bundle of the fiber optic cables used;

to the right is a LED flasher box; with fiber optic cable bundle outgoing to cells and

a GSO crystal. The flasher box is mounted on one of Blowfish’s arms. Image credit:

Bewer [Bew05].

Each Blowfish cell has a hole drilled into the light guide and a fiber optic bundle glued

into that hole so that it can carry light from the flasher directly into the detector (recall

figure 3.10 on page 70).

The GSO crystals are used to continuously measure the LED light output in order to

detect any drifting of the LED intensity. In order to make sure the GSO detectors aren’t

drifting: a radioactive source is placed in a light-tight box with the 4 GSO crystals so that

they can be continuously monitored for their own gain. This system is referred to as the

flash monitoring system.

The flashers are driven by a simple pulse generator (called the pulser) which is, in turn,

enabled or disabled by the data acquisition system.

With everything installed we can continuously monitor the gain of each cell using the

flashers, so long as we can continuously monitor the output of the LEDs; the latter requires

that we assume the portion of light each cell receives relative to its corresponding flasher’s

GSO detector remains constant: this is approximately true, unless Blowfish is rotated (see

section 5.3.4 on page 170). The calculations necessary for tracking the gain are discussed in
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section 5.3.3 on page 165.

3.10.4 Analogue-to-Digital Converters (ADCs)

Analogue-to-digital converters (ADCs) are aptly named modules that convert the analogue

electrical signals coming from our detectors into digital machine-language.27 In this exper-

iment, we used 6 32-channel 12-bit v792 charge integrating ADC modules,28 a 12-channel

11-bit LeCroy 2249W charge integrating ADC, and an independent gate (IG) ADC model.

The independent gate ADC and 2249W handled miscellaneous signal integration while the

v792 ADCs integrated the Blowfish detector signals over a short and a long gate (i.e. time

interval).

Our primary concern in this experiment was the performance of the v792 ADCs rather

than the IG ADCs because the most important energy data (i.e. from Blowfish’s cells) was

recorded by the v792, therefore our discussion in this section will focus on the v792, although

much of what is discussed is analogously true for the other ADCs.29

Each channel of the v792 ADC module has 4096 (4096 = 212 i.e. 12 bit) Boolean bins:

the number of filled bins is proportional to the total charge which was integrated over the

gated time interval: the data readout by Lucid are thus simply integer values between 0

and 4095. The v792 ADCs are integrating threshold ADCs, meaning that they integrate

the total amount of charge of an electronic pulse over a given time period (supplied by a

logical pulse) then choose a proportionate bin to place that integral based on a series of

if-greater-than-or-equal-to sequences e.g. an integral of charge 100.9 bins would be recorded

in bin 100.

There is a certain subtlety to getting the best performance out of a set of ADCs. Our

experimental resolution is proportional to the number of bins we use: e.g. if we have some

energy range ∆E and spread it over 100 bins then our resolution is 1%, but if we spread it over

27When the ADCs are used to calculate the total charge in a pulse they are alternatively referred to as
QDCs: q is for charge: charge-to-digital converters.

28Each Blowfish cell requires two channels in the v792 ADC: one for the short and one for the long gate.
Since the v792 ADC modules can only have one gate width per module, this means we need 2 · d 88

32e = 6
modules.

29Information on the LeCroy 2249W can be found at http://teledynelecroy.com/lrs/dsheets/2249.
htm.
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1000 bins then our resolution is now 0.1%. In contrast, we must also consider the possibility

of overflow occurring: if a charge is greater than the largest bin it will overflow and the

energy information will be lost completely.30 Ideally, then, we would like the most probable

energy measured to be at the highest possible bin number with the maximum energy below

the maximum bin (4095). The voltages supplied to the photomultiplier tubes were tweaked

so that each cell’s event signals were using as many of the ADC bins as possible for this

experiment: this effectively alters the ADC gain.

A second performance consideration is the linearity of the ADCs used.31 Our modules

use the sliding-scale technique, which reduces the differential non-linearity32 but it effectively

reduces the maximum bin to 3840 [CAE10] (from 4096); furthermore, we observe suspicious

activity in bins less than that (& 3650) and so we don’t trust bins ≥ 3500 in order to be

conservative.

The module also automatically applies a constant DC voltage to improve ADC linearity;

this results in a pedestal: a minimum charge level for every integral of the ADC. The pedestal

must be determined precisely then subtracted from the raw ADC data during data analysis

in order to get the true pulse integral (see section 5.3.2 on page 158).

3.10.5 Time-to-Digital Converters (TDCs)

Time-to-digital converters (TDCs) convert the time difference between two signals into a

digital bin number proportional to the time. Our TDCs have a nominal gain of 0.1 ns
bin

and a

measured gain within about 5% of that (see section 3.10.2 on page 96 for more information).

In order to get the time-of-flight spectrum, we made regular measurements of the arrival

time of photons scattered from the target via the G win window (see figure 3.22 on page 90).

Run 141 was taken entirely with G win enabled (i.e. no pre-scaling of the expected beam

photon arrival time): it was used to align the experimental runs. The HI~γS FEL operates

in pulses, so we can align our TDCs by assuming a mean free path for the scattered beam

photons, then we can deduce the neutron time-of-flight for neutrons produced by the beam.

30The v792 has an overflow bit in its readout which signifies whether an overflow has occurred [CAE10].
31We verify that they are linear during data analysis, this is discussed in section 5.3.2 on page 163.
32Differential non-linearity is a measure of the actual bin widths of adjacent bins.
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During normal data runs, G win was enabled for approximately 1 in every 1000 events,

resulting in a small peak at the beam photon arrival time; unfortunately, because of the

angular dependence of the scattering probability (∝ θ) there were insufficient data in the

upstream cells. The downstream cells were used to track changes in the TDC alignment as

well as the presence of out-of-time photons (section 5.3.1 on page 152).

With the gains correctly determined and the time-of-flight spectrum aligned (section 5.3.5

on page 172) we can proceed to make accurate time-of-flight cuts to exclude neutrons that

are energetically forbidden by kinematics. We can also use the TDC spectra to: estimate the

number of out-of-time photons in the beam (section 5.3.1 on page 152), detect TDC drift,

and make necessary cell exclusions in the event of an irreconcilable presence of one of the

former two (section 5.4.7 on page 209).

3.10.6 Lucid

Lucid handles the interface between machine and human language within the data acquisition

system, it provides the electronics computer with commands to be sent to the electronics,

and it receives data from the front-end, then it: sorts the data into human-readable format,

does a few basic operations, and finally saves it all to disc.

Lucid operates using three primary programs the: reader, looker, and writer [Mur95].

The reader is the only mandatory program that must be built; it reads data from the

electronics (i.e. in CAMAC/VME data format), stores it in variables as defined in the user-

supplied .r reader file, and may perform a few rudimentary calculations on these variables.

At the beginning of an experiment, a copy of the reader file is downloaded onto the front-end

computer (running on the RTEMS operating system) to provided it with online commands

for the electronics.

The optional looker receives data in the form of Lucid variables from the reader, it is

designed to passively view the data stream so that more complex or frivolous calculations may

be performed on the data without increasing dead-time. The looker produces human-readable

format data (e.g. histograms) via a rudimentary window-based interface; data analysis could

be done using the looker, but in practice we convert to ROOT and use it instead, as it is a

more powerful option (section 5.2 on page 146).
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The other optional piece of software is the writer which receives data from the reader and

then saves it to disk.

The conceptual overview of Lucid is provided in figure 3.27.

Figure 3.27: Conceptual Overview of Lucid Integrated with Blowfish. Image

adapted from Sawatzky [Saw05].

The data from this experiment were recorded using Lucid; then, using RLucid (sec-

tion 5.2.1 on page 151), the data were converted to ROOT format (section 5.2 on page 146)

and analyzed using BFROOT (section 5.2.1 on page 149).
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Chapter 4

Simulation

4.1 Introduction

Reliable and realistic simulation software is a valuable tool capable of accounting for a breadth

of confounding experimental variables that we, for practical reasons, are uninterested in

clarifying experimentally. The underlying physics in the simulation software has already been

determined experimentally, placed on a sound model or theoretical basis, and the simulation

itself has been consistently validated:1 there is little merit in toiling in the lab to verify each

step we must take to reach our results when we can simply use the simulation.

The key simulations we performed were: the probability density functions needed for the

parameterized differential cross section, the Five Paddle Flux Monitor efficiency [Pyw09c],

the detector efficiency (including geometric effects) for the total cross section, and errors,

especially those associated with detector geometry. Stated concisely: efficiencies, errors, and

geometric effects were simulated.

The simulations were performed using the GEANT4 Monte Carlo simulation toolkit

[Ago03] and the BlowfishX package [Wur10a].

GEANT4 is a modular,2 object-orientated3 C++ toolkit that contains contemporary mod-

els and empirical data ranging from the energy domain of eV up to PeV.4

BlowfishX is a package which contains all of the detector geometry and physics for an

implementation of the Blowfish detector array in GEANT4; the X stands for: fill in the blank

1See section 4.2.4 on page 110 for details.
2The modular, object-orientated design allows users to be developers: they can replace or update ‘modules’

via the classes.
3Based on the Booch object-orientated methodology [Boo94].
41 PeV = 1015 eV
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[Wur10a].

4.2 GEANT4

GEANT4: Geometry And Tracking, Version 4.

We performed simulations of our experimental conditions using the GEANT4 toolkit

[Ago03]. The GEANT4 acronym was contrived for a good reason: GEANT4 was designed

to incorporate “geometry, tracking, detector response, run event and track management,

visualization, and user interface” [Pia99]; we take advantage of all of these virtues.

The primary lesson learned from previous implementations of GEANT was that GEANT4

must be modular and flexible so that the underlying physics is transparent (for validation) and

easily modified should it need to be supplemented or outright replaced [Ago03]. The software

language C++ is a versatile tool: it allows both high and low level user interfacing,5 there are

compilers on virtually every operating system (e.g. Mac, Windows and Linux) allowing C++

programs to be highly flexible and portable, it also has additional object-oriented features not

found in C (making it ideal for modular software), and; likely because of the former reasons:

C++ is popular, so many physicists (and other people) are familiar with the language [Gad09].

It should thus come as no surprise that C++ is the underlying software language of GEANT4

[Ago03].

GEANT4 is a “toolkit” [Ago03], meaning that it provides the tools (i.e. the classes:

including pertinent physics) necessary for constructing simulation software; the onus is on

the user to construct simulations using the tools GEANT4 has provided, and then verify

that simulation is consistent with empirical results [Apo08]. The implementation for this

experiment was performed using BlowfishX with full considerations discussed in section 4.3

on page 114.

What follows is a brief description of how GEANT4 works: in an attempt to familiarize

the reader with what considerations must be made by the user during an implementation,

and (hopefully) to elucidate potential sources of incongruency between GEANT4 simulations

5For example, one can micro-manage memory on the heap while simultaneously utilizing black-box class
implementations.
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and nature. The best way to understand the following description is to supplement it with

a sample of GEANT4 output, found in appendix E on page 291.

GEANT4 is fundamentally based on materials,6 particles7 and the interactions between

them. The user must therefore hard-code these three things; either ab initio or from pre-

defined libraries, along with desired output; then the simulation is ready to be run.

A simulation run begins when a particle is generated at some point in space (as described

by floating point numbers: x, y and z) with definite momentum and energy, then it is

tracked step-by-step: measured either as a distance (for particle velocity > 0) or as a time

(for particle velocity = 0); if the particle would cross a boundary between materials (the

transportation class is forbidden from crossing material boundaries) or run out of energy

(due to a continuous energy loss process like bremsstrahlung) then the step is stopped short.

During a particle’s step, the probability of an interaction occurring via any available physical

process is computed and the Monte Carlo method (section 4.2.3 on page 109) is used to

determine which, if any, interaction (called an event) occurs;8 if no interaction occurs then

the transportation class is called and the particle moves through the interval of space (or

time) [Ago03].

This step-by-step tracking occurs for each particle generated: the particle initially created

by the user’s generation parameters,9 and any particles subsequently generated by interac-

tions. A particle is tracked from generation until it is destroyed, either by: an interaction (e.g.

absorption or decay), running out of kinetic energy,10 being transported outside of the world

volume, or by any user-defined criteria. A run starts when the initial particle is generated,

and it ends when the last particle is destroyed.

The interaction data is computed at each step, then when the run has finished, a simplified

data set representing the trajectory taken is outputted in human-readable format:11 in text

(table E.1 on page 292) and as a graphic (figure E.1 on page 291) with highlighted particle

6The materials are of user defined elemental composition.
7Anything recognized by the Particle Data Group [Ber12] is considered a particle, be it: hadron, lepton

or boson.
8A particle only ever participates in one interaction during a step (i.e. no superpositions) and it is chosen

by a properly weighted random number generated.
9This takes place in G4PrimaryGeneratorAction::GeneratePrimaries().

10If it is stable, otherwise it will remain ‘at rest’ until it decays
11When run in GUI mode.
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trajectories; and in user-defined format. The BlowfishX [Wur10a] package tells GEANT4 to

output data in Lucid (section 3.10.6) format. Finally, the user may queue runs in which case

GEANT4 calls the next run in the queue. Once all of the runs have finished, the simulation

data can be compressed and stored for future analysis.

4.2.1 Physics Lists

It should come as no surprise that the physics lists provide GEANT4 simulations with a list

of formulae, models and empirical data to use when simulating interactions. GEANT4 devel-

opers validate their models using published thin-target data, but once they have completed

a physics list it is the user’s responsibility to validate the list in their domain of application

[Apo08].12

The physics list used in this analysis was the QGSP BERT HP physics list [Wel02]: the safest

choice though not the most efficient. The QGSP BERT HP physics list has the slowest CPU

performance, but it also has the best agreement with test-beam data, which is why it’s the

default choice for both the ATLAS and CMS collaborations [Apo08].

Table 4.1: QGSP BERT HP Physics List

QGSP
Quark-Gluon

Only active in 12 GeV-100 TeV range.
String Precompounded.

BERT Bertini cascade. Follows INUCL implementation [Ste88].

HP High Precision. High precision neutron package

used for 0-20 MeV range.

Since we are well below pion-threshold at the beam energy of 18 MeV: we don’t need to

worry about mesons and we can easily enumerate all of the possible particles involved in our

simulation and the libraries used by QGSP BERT HP in our energy region [QGS].13: table 4.2

on the next page

12More on this in appendix J on page 302.
13A full list is provided by the GEANT4 collaboration [QGS].
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Table 4.2: QGSP BERT HP Libraries

Particle Interaction Library(ies) Used

Hadrons

Elastic hElasticCHIPS

Inelastic BertiniCascade1

Neutron Transportation NeutronHP

Neutron Capture
G4LFission or

GheishaFissionXS2

Fission3
G4LFission or

GheishaFissionXS

Photons Inelastic
CHIPSGammaNuclear or

PhotoNuclearXS

Electrons/
Inelastic

CHIPSElectroNuclear or

Positrons ElectroNuclearXS

Any Electromagnetic
G4StEm with sub-package

for optical photons [Bur04]

Note: in the event of an overlap between libraries in an energy region: a random number

is generated and a linearly14 weighted selection is made between the two [Apo08]; we don’t

simulate any physics near a region of overlap [QGS].

4.2.2 Using GEANT4

Before using GEANT4, one must program a few key classes and integrate them into a single

int main() class containing the G4RunManager: this handles the time evolution of the

simulations. Once a functional piece of GEANT4 software has been created: the user can

implement specific details for the particles being simulated (e.g. initial particle position and

1A Bertini cascade consists of a cascade of individual scattering events using nuclear medium corrected
cross sections. Nuclei are modeled as a set of spherical shells.

2GheishaFissionXS lacks low energy resonances.
3Neutron induced.

14As a function of energy.
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energy) via: hard-coding it into the software, running a command-line macro, or using a

GUI.

How it works at a low level (skeleton):

1. Build a world volume and materials inside (G4VUserDetectorConstruction class).

2. Specify the physics involved (G4UserPhysicsList class).

3. Specify how particles are to be created (G4UserPrimaryGeneratorAction).

4. Specify how particles are tracked: between runs (G4UserRunAction) and between steps

(G4UserSteppingAction).

5. Specify what actions to perform when an interaction occurs, and what output is desired

(G4UserEventAction).

6. Provide a user interface for building the above and (contained in your int main() via

G4RunManager class) for executing commands (i.e. how to handle macros, a GUI or

simply hard-code) and managing events.

How it works at a high level (macro and GUI commands are entered via a Linux-emulating

terminal):

1. Pick a particle from the particle table (G4ParticleTable).

2. Define energy and momentum (G4ParticleGun or G4GeneralParticleSource).

3. Generate the particle (\run\beamOn) and watch what happens (G4RunManager).

4. Repeat (if desired).

4.2.3 The Monte Carlo Method

The predicted dynamics of nature will invariably be described by a set of equations, and yet

the first step a physicist takes when attempting to predict nature is typically to solve them,

regardless of how unpleasant the solution may be. The Monte Carlo method [Met49] circum-

vents this by emulating nature: each equation is simulated with some kind of probabilistic
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degree of freedom in order to deduce a heuristic prediction (or approximate solution). Simi-

larly, probabilistic predictions (such as those produced by quantum theory) can be simulated

using pseudo-random number generators with appropriate weighting: in order to predict

what an experiment might produce. GEANT4 uses the Monte Carlo method for the latter:

particles are generated at a position in space with a definite energy and momentum specified

by the user, then they move through the virtual world and interact with its virtual materials

probabilistically, losing energy and momentum until eventually they are absorbed or their

energy goes below the user-imposed threshold (or they leave the world volume altogether).

4.2.4 Simulation Consistency Checks

Our research group has performed consistency checks on: the GEANT3 implementation of

Blowfish [Saw05], the Blowfish detectors [Kor99, Pyw06], and the flux monitor [Pyw09c],

using empirical data; and: the physics list used [Wur10c], and the sampling technique, using

internal consistency checks on the simulated data. The physics list (QGSP BERT HP) has also

been verified at higher energies by both the ATLAS and CMS collaborations [Apo08].

GEANT4 is a popular simulation toolkit: the primary reference has over 8000 citations

[Gea]. We have little reason to doubt the validity of the mutual interactions simulated by the

majority of users e.g. photon interactions with common materials like aluminum; however,

we do have reason to believe that the simulation may be invalid for less commonly used

materials: namely, BC-505. Consequently most of the concern by our research group has

been on the performance of the detectors, specifically their light output efficiencies, although

Sawatzky [Saw05] performed some other fundamental tests on GEANT3.

The first experimental test of the simulated light output response of Blowfish’s detec-

tors (i.e. BC-505) was performed by Korkmaz et al. [Kor99] in 1999 at TRIUMF using the

p(γ,n)π+ reaction to produce neutrons of energies 6-13 MeV. The results showed a 9% dis-

crepancy between the experimental and simulated light output efficiencies of the BC-505

cells. Pywell et al. [Pyw06] re-analyzed the data in 2006; they discovered an error in the

previous analysis’ gain determination, and were able to deduce new light output parameters

for BC-505 such that the experimental and simulated light output responses were found to

agree within errors (figure 4.1 on the next page).
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Figure 4.1: Simulated BC-505 Light Output spectrum for 8.9 MeV neutrons

incident on a Blowfish detector (BC-505). Blue are the measured data; red are the

GEANT4 simulated data. The data appear to be consistent with the simulation. Fits of

this type were performed for neutrons of energies 6-12 MeV (see Pywell et al. [Pyw06]).

Image courtesy of Dr. Robert Pywell.

In this experiment, kinematics limited the neutrons to energies less than 9 MeV and we

performed a time-of-flight cut that would eliminate neutrons below 2 MeV. Therefore, it is

pertinent to mention low energy detector response (from 2-6 MeV) as well as the 6-13 MeV

response studied by Pywell et al. [Pyw06]. Ives [Ive03] used a 252Cf radioactive source15

to verify the light response and efficiencies of a BC-519,16 detector for neutrons of energies

0-6 MeV: his results showed a perfect agreement within error. It should be noted that Ives’

data were plagued by large uncertainties for neutron energies greater than 2 MeV, and Ives

did not simulate the scintillator used in this experiment. Wurtz [Wur10c] notes that an

15Californium-252 is an alpha emitter (96.% of the time) and a spontaneous fission source (3.09% of the
time) that produces neutrons with an average energy of 2.1 MeV [Mar00].

16BC-519 is a liquid organic scintillator produced by Saint-Gobain Crystals [Sai09] that is similar to the
scintillator used in this experiment: BC-505.
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attempt was made in 2005 to continue Ives’ work, but it was unable to improve upon Ives’

precision.

The flux monitor was also verified for consistency between experiment and simulation at

20, 25, 30 and 35 MeV beam energies [Pyw09c]. Good agreement was found at all energies

(e.g. figure 4.2 on the next page) and we extrapolate that for the beam energy used in the

current experiment (18 MeV), the flux monitor most likely shows good agreement as well.
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Figure 4.2: Simulated Flux Monitor Light Output energy spectra for photons

at 25 MeV. 0, 1, 2, 3, and 4 are the paddle numbers indexed from 0 (paddle 0 is

upstream; the aluminum radiator is inbetween paddles 1 and 2). Paddle 0 and 1 data

required a triple coincidence between paddles 0, 1 and 2 (hence the “123” label: these

are the paddle numbers indexed from 1 instead of 0), while paddle 2, 3 and 4 data

used the normal condition: i.e. paddle 1 acts as a veto (hence the “norm” label: for

normal). Black are experimental data points, red are simulation; the dotted blue line is

the hardware threshold. The data appear to be consistent with the simulation. Image

credit: SPIR-140 [Pyw09c].
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Internal consistency checks of the simulation were also performed in a few cases. Wurtz

[Wur10c] performed a consistency check on neutrons up to ≈ 35 MeV for the physics lists:

LHEP PRECO HP, LHEP, and QGSP BERT HP. He found that only QGSP BERT HP produced possible

results: this isn’t surprising since GEANT4 doesn’t recommend LHEP for any use other than

high energy calorimetry.17

In this work, several internal consistency checks of the simulation were performed (and

verified); these are discussed and compared to the experimental results in appendix J on

page 302.

4.3 Simulation Implementation

The GEANT4 simulation of our experiment was performed using BlowfishX (section 4.3.1)

as the framework and adding the necessary specifics of this experiment: the result was

BlowfishXI.

The experiment specific updates included considerations of: beam attenuation in the tar-

get via a probability density function (PDF) (section 4.4.1 on page 118), the Legendre prob-

ability density functions (section 4.4.2 on page 119); and the tools necessary to access these:

the analytical functions derived for the inverse transform sampling method (section 4.4.3

on page 141) and the numerical algorithms necessary to invert the non-analytical functions:

Newton’s method (section 4.4.5 on page 144) and the Bisection method (section 4.4.4 on

page 143).

4.3.1 BlowfishX

The BlowfishX package for GEANT4 contains all of the basic requirements for GEANT4

simulations performed using the Blowfish detector array, and; with the BXLucid package

installed, will automatically convert GEANT4 output into Lucid format. Explicitly, the

package includes: detection properties of BC-505 [Pyw06] and the correct digital output

17http://geant4.org/geant4/support/physicsLists/referencePL/useCases.shtml
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[Wur10a],18 realistic time-to-digital converter output [Wur10a]19, geometry and materials for

the entire detector array (including mount), sources (“Geantino”,20 americium-beryllium,

Na-22, Th-228, Th-232 and Cs-137), Lucid event types,21 and all of the necessary classes to

produce an executable file that is functional in GEANT4.

The BlowfishX package lacks experimental specifics because it was designed to be as

general as possible. The necessary implementations for the current experiment were carried

out, they include: target self-absorption attenuation, and probability density function.22 A

new particle generation class (G4GeneralizedParticleSource) was also implemented in order

to verify the previous particle generation class’ results. Both classes produced equivalent

results (see appendix J on page 302 for details).

A critical update was performed on the BlowfishX implementation of the G4HitsCollection

class (i.e. the BXHitsColletion class). BlowfishX was assuming that the array of hits inside

the G4HitsCollection class were ordered in time and calibrated the TDCs (time-to-digital

converters) based on this assumption: which is incorrect.23 What this means practically is

that when a particle interacts with the detector; e.g. if an incident neutron interacts with

multiple particles then it will take the last particle it interacts with as having been the earliest

and set the TDC value accordingly e.g. if that neutron hit three protons then it would think

that the third proton it hit was the first. This manifested itself in the data as what appeared

to be abnormally high energy particles arriving late in time (we would normally expect later

neutrons to be of lower energy because they either travel slower or have scattered, or both),

and consequently gave a skewed TDC spectrum (see figure 4.3 on the next page).

18That is: the correct digital output from the analogue/charge-to-digital converters.
19Please see Wurtz [Wur10a] for more information.
20The Geantino is a fictional non-interacting particle used in GEANT4 to track geometries.
21If BXLucid is installed.
22Based on Wurtz [Wur10a]; using the G4ParticleGun class.
23According to Geant v4.9.4.
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Figure 4.3: BlowfishX Update. A comparison of the TDC spectra for the

experimental data, and the simulation before and after the update to BlowfishX’

G4HitsCollection implementation.

With BlowfishX updated, the simulations now show consistencies in all of the raw data

they output: ADC (analogue-to-digital converter) spectra and TDC spectra (see appendix J

on page 302).

4.4 Probability Density Functions

GEANT4 is a Monte Carlo simulation toolkit and as such it requires probabilistic rules,

specifically for this experiment, for: target attenuation (section 4.4.1 on page 118) and the

Legendre probability density functions (section 4.4.2 on page 119). Using differential calculus,

we can define the correct probabilistic rules for the simulation to follow as probability density

functions (PDFs) with the properties outline in theorem 1.

Theorem 1. PDF Criteria

For a function, f, to be a probability density function, the following must be true [Gha96]:
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1. f must always be positive.

f : R 7→ [0,∞)

2. f must be normalized to unity.

∫∞
−∞ f(x)dx = 1

We constructed analytical PDFs for both the target attenuation and Legendre probability

density functions, then we used inverse transform sampling (section 4.4.3 on page 141) to

implement them in the GEANT4 simulation and thus, via the Monte Carlo method, the

pertinent heuristic result was extracted.

The inverse transform sampling method requires the cumulative distribution function

(CDF) for a given PDF as well as the inverse function: CDF−1. The analytical CDF exists

for all PDFs in this experiment, however, many of the PDFs do not have analytical inverse

CDFs: these are inverted numerically using Newton’s method (section 4.4.5 on page 144) or

the Bisection method (section 4.4.4 on page 143) when the former fails. This means that for

the target attenuation PDF, and each Legendre PDF the following functions needed to be

constructed:

1. Construct the PDF, f(x), using the PDF criteria (theorem 1 on page 116): any function

that obeys these two criteria is a PDF.

2. Calculate the CDF, noting that it must be normalized: C(x) ≡
∫ x
−∞ f(x′)dx′.

3. Invert the CDF, either numerically via Newton’s method or the Bisection method, or

analytically.

Once the inverse CDFs have been computed, they are implemented into the simulation by

supplying a uniformly sampled domain via a pseudo-random number generator as is discussed

in full in section 4.4.3 on page 141.
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4.4.1 Target Attenuation

PDF f(x) = σρe−µx

1−e−µl

CDF C(x) = 1−e−µx
1−e−µl

CDF−1 C−1(u) = − 1
µ
ln(1− u+ ue−µl)

Table 4.3: Target Attenuation Functions. Where: σ is the total cross section, ρ is

the target number density, µ is the photon linear attenuation coefficient for the target

material, and l is the target length.

When a beam of photons enters the target, most of the photons simply travel right through

unimpeded; the vast majority of the photons that do interact, interact with electrons in

the target and are removed from the beam-line:24 thus preventing them from causing nuclear

photodisintegration reactions. The simulation initiates by considering a neutron being ejected

from the target, thus the correct description of the experiment must include the photon

attenuation effect. Nuclear photo-processes are extremely rare relative to atomic photo-

processes so we simply neglect the former and consider it accounted for in the uncertainty of

the latter.25

The beam attenuation in the target was implemented using the particle absorption equa-

tion to construct the predictive PDF, and the inverse transform sampling method to imple-

ment it into the simulation. This required a function to describe the PDF, CDF and inverse

CDF: these are all given in table 4.3; the derivation of these functions is given in appendix F

on page 293.

24See appendix A on page 278 for details.
25One can demonstrate how trivial the contribution of nuclear photo-processes is by contrasting the total

atomic attenuation of H2O (µ) to the nuclear attenuation of the deuteron (σn) : µ ≈ 0.02 cm−1 [Mic89,
Sko74, Ahr74, DGr91]; σn ≈ 3 · 10−6 cm−1 =⇒ µ >> σn.
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4.4.2 Legendre Probability Density Functions

Recall from section 2.5.5 on page 47 that the differential cross section can be expanded in

terms of associated Legendre polynomials as a function of cos(θ):

dσ

dΩ
≈ σ

4π

[
1 +

4∑
k=1

akP
0
k (cos θ) +

4∑
k=2

ekP
2
k (cos θ) cos 2φ

+
2∑

k=1

ckP
1
k (cos θ) cosφ+

2∑
k=1

dkP
1
k (cos θ) sinφ

]
(4.1)

where: P i
k are the associated Legendre polynomials, and σ is the total cross section.

Although the data could be fit to this expansion directly, it would require a complete

description of the geometric effects. Alternatively, since GEANT4 contains all of the neces-

sary physics and BlowfishX contains all of the necessary detector information: the Legendre

polynomials can be simulated, then the detector neutron yields can be used to fit to the

data: this is what was done, following in the footsteps of: Kucuker [Kuc10], Wurtz [Wur10c],

Blackston [Bla07] and Sawatzky [Saw05].

The Legendre polynomials were converted to PDFs (probability density functions), then

they were simulated using inverse transform sampling (section 4.4.3 on page 141). In order to

construct PDFs from Legendre polynomials, the PDF criteria (theorem 1 on page 116) must

be met: the PDFs must be positive (and finite) over their entire domains and they must be

normalized to unity. This is readily achieved by adding a term to each Legendre polynomial

to ensure it is always positive, then add the negative of that term to the expansion and include

it in the 0th Legendre polynomial PDF and, finally, normalize the remaining function:

f =
dσ

dΩ

1

σ
=

1

4π

[
(1−

4∑
k=1

ak − 3e2 − 6e3 − 10e4 − c1 −
3

2
c2 − d1 −

3

2
d2)ρ00

+
4∑

k=1

akρ0k + 3e2ρ22 + 6e3ρ23 + 10e4ρ24

+c1ρ11 +
3

2
c2ρ12 + d1ρ11′ +

3

2
d2ρ12′

]
(4.2)
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where: k, l ∈ {Z|0 ≤ k ≤ 4, 0 ≤ l ≤ 2}; ρlk : (R) 7→ (R)+ ∀ k, l

∫ φ=2π

φ=0

∫ cos θ=1

cos θ=−1
ρlkd cos θdφ = 1 ∀ k, l, and:

ρ00(cos θ, φ) =
1

4π

ρ0k(cos θ, φ) =
1

4π
[1 + P 0

k (cos θ)]for1 ≤ k ≤ 4

ρ22(cos θ, φ) =
1

12π
[3 + P 2

2 (cos θ) cos 2φ]

ρ23(cos θ, φ) =
1

24π
[6 + P 2

3 (cos θ) cos 2φ]

ρ24(cos θ, φ) =
1

40π
[10 + P 2

4 (cos θ) cos 2φ]

ρ11(cos θ, φ) =
1

4π
[1 + P 1

1 (cos θ) cosφ]

ρ12(cos θ, φ) =
1

6π
[
3

2
+ P 1

2 (cos θ) cosφ]

ρ11′(cos θ, φ) =
1

4π
[1 + P 1

1 (cos θ) sinφ]

ρ12′(cos θ, φ) =
1

6π
[
3

2
+ P 1

2 (cos θ) sinφ]

P l
k are the associated Legendre polynomials. Note the normalization factor is exactly σ by

definition.

Eq. (4.2) on page 119 can be used to simulate an entire run (by supplying the values of

the 11 parameters) or a single distribution by setting the parameters to an appropriate set

of values such that one of the distributions is singled out.26 In order to apply eq. (4.2) on

page 119 to the simulation though, the CDFs (cumulative distribution functions) and inverse

CDFs had to be determined so that inverse transform sampling could be used.

The CDFs are a bit different for each parameter type because of their φ dependence. The

ρ0k PDFs and ρ00 are uniform in φ, so the total CDF is separated into two CDFs, one for φ

26For example, by setting all parameters to 0, except for e2 = 1
3 one would have f = ρ22.
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and one for θ:

C0k ≡
∫ φ′=φ
φ′=0

∫ cos θ′=cos θ

cos θ′=−1
ρ0kd cos θ′dφ′∫ φ′=2π

φ′=0

∫ cos θ′=1

cos θ′=−1
ρ0kd cos θ′dφ′

Cφ
0k(φ) =

φ

2π

Ccos θ
0k (cos θ) =

∫ cos θ′=cos θ

cos θ′=−1
ρ0id cos θ′∫ cos θ′=1

cos θ′=−1
ρ0id cos θ′

Ccos θ
00 (cos θ) =

1

2
(4.3a)

Ccos θ
01 (cos θ) =

1

4
(cos2 θ + 2 cos θ + 1) (4.3b)

Ccos θ
02 (cos θ) =

1

4
(cos3 θ + cos θ + 2) (4.3c)

Ccos θ
03 (cos θ) =

1

16
(5 cos4 θ − 6 cos2 θ + 8 cos θ + 9) (4.3d)

Ccos θ
04 (cos θ) =

1

16
(5 cos5 θ − 10 cos3 θ + 11 cos θ + 8) (4.3e)

where: Cφ
0k are the ρ0k CDFs with respect to φ and Ccos θ

0k are the ρ0k CDFs with respect to

cos θ.

The e, c and d parameters are most certainly not independent in φ and θ, so their CDFs

must be computed over both parameters. Fortunately, sampling θ over the average value of

φ removes the φ dependence in the θ CDF. The θ CDF can then be sampled for θs which is
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subsequently used in the φ CDF:

l = 1 or 2; k = 1, 2, 3 or 4; l,k ∈ Z

Clk ≡
∫ φ′=φ
φ′=0

∫ cos θ′=cos θ

cos θ′=−1
ρlkd cos θ′dφ′∫ φ′=2π

φ′=0

∫ cos θ′=1

cos θ′=−1
ρlkd cos θ′dφ′

Ccos θ
lk ≡

∫ cos θ′=cos θ

cos θ′=−1

∫ φ′=2π

φ′=0
ρlkdφ

′d cos θ′∫ cos θ′=1

cos θ′=−1

∫ φ′=2π

φ′=0
ρlkdφ′d cos θ′

=
1 + cos θ

2

Cφ
lk(cos θs, φ) ≡

∫ φ′=φ
φ′=0

ρlkdφ
′∫ φ′=2π

φ′=0
ρlkdφ′

= 2

∫ φ′=φ

φ′=0

ρlkdφ
′

Cφ
22(cos θs, φ) =

φ

2π
+
P 2

2 (cos θs) sin 2φ

12π
(4.4a)

Cφ
23(cos θs, φ) =

φ

2π
+
P 2

3 (cos θs) sin 2φ

24π
(4.4b)

Cφ
24(cos θs, φ) =

φ

2π
+
P 2

4 (cos θs) sin 2φ

40π
(4.4c)

Cφ
11(cos θs, φ) =

φ

2π
+
P 1

1 (cos θs) sinφ

2π
(4.4d)

Cφ
12(cos θs, φ) =

φ

2π
+
P 1

2 (cos θs) sinφ

3π
(4.4e)

Cφ
11′(cos θs, φ) =

φ

2π
+
P 1

1 (cos θs) cosφ

2π
(4.4f)

Cφ
12′(cos θs, φ) =

φ

2π
+
P 1

2 (cos θs) cosφ

3π
(4.4g)

where: Pl
k are the Associated Legendre polynomials, Cφ

lk are the ρlk CDFs with respect to

φ, and Ccos θ
lk are the ρlk CDFs with respect to cos θ.

Taking all of these CDFs into consideration, the full CDF for the entire differential cross

section has two parts (like eq. (4.4)): a CDF to sample cos θ from (Ccos θ
dσ
dΩ

) and a CDF to

sample an appropriate φ from (Cφ
dσ
dΩ

). As demonstrated earlier, the φ and cos θ dependencies

can be separated if cos θ is sampled from the average φ.
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Starting from the definition of the normalized CDF:

C dσ
dΩ
≡
∫ φ′=φ
φ′=0

∫ cos θ′=cos θ

cos θ′=−1
dσ
dΩ
d cos θ′dφ′∫ φ′=2π

φ′=0

∫ cos θ′=1

cos θ′=−1
dσ
dΩ
d cos θ′dφ′

we sample cos θ over average φ to get the cos θ CDF:

Ccos θ
dσ
dΩ

≡
∫ cos θ′=cos θ

cos θ′=−1

∫ φ′=2π

φ′=0
dσ
dΩ
dφ′d cos θ′∫ cos θ′=1

cos θ′=−1

∫ φ′=2π

φ′=0
dσ
dΩ
dφ′d cos θ′

= (1− a1 − a2 − a3 − a4)Ccos θ
00

+ a1C
cos θ
01 + a2C

cos θ
02 + a3C

cos θ
03 + a4C

cos θ
04 (4.5a)

we use the standard algorithm to construct the φ CDF:

Cφ
dσ
dΩ

≡
∫ φ′=φ
φ′=0

dσ
dΩ
dφ′∫ φ′=2π

φ′=0
dσ
dΩ
dφ′

=
(1− a1 − a2 − a3 − a4 − 3e2 − 6e3 − 10e4 − c1 − 2

3
c2 − d1 − 2

3
d2)φρ00

(1− a1 − a2 − a3 − a4)2πρ00 + a12πρ01 + a22πρ02 + a32πρ03 + a42πρ04

+
a1φρ01 + a2φρ02 + a3φρ03 + a4φρ04 + 3e2

1
2
Cφ

22 + 6e3
1
2
Cφ

23 + 10e4
1
2
Cφ

24

(1− a1 − a2 − a3 − a4)2πρ00 + a12πρ01 + a22πρ02 + a32πρ03 + a42πρ04

+
c1

1
2
Cφ

11 + 2
3
c2

1
2
Cφ

12 + d1
1
2
Cφ

11′ +
2
3
d2

1
2
Cφ

12′

(1− a1 − a2 − a3 − a4)2πρ00 + a12πρ01 + a22πρ02 + a32πρ03 + a42πρ04

(4.5b)

where (consistent with earlier):
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Pl
k are the Associated Legendre polynomials.

ρ00(cos θ, φ) =
1

4π

ρ0k(cos θ, φ) =
1

4π
[1 + P 0

k (cos θ)] ∀ 1 ≤ k ≤ 4, k ∈ R

Ccos θ
00 (cos θ) =

1

2

Ccos θ
01 (cos θ) =

1

4
(cos2 θ + 2 cos θ + 1)

Ccos θ
02 (cos θ) =

1

4
(cos3 θ + cos θ + 2)

Ccos θ
03 (cos θ) =

1

16
(5 cos4 θ − 6 cos2 θ + 8 cos θ + 9)

Ccos θ
04 (cos θ) =

1

16
(5 cos5 θ − 10 cos3 θ + 11 cos θ + 8)

Cφ
22(cos θs, φ) =

φ

2π
+
P 2

2 (cos θs) sin 2φ

12π

Cφ
23(cos θs, φ) =

φ

2π
+
P 2

3 (cos θs) sin 2φ

24π

Cφ
24(cos θs, φ) =

φ

2π
+
P 2

4 (cos θs) sin 2φ

40π

Cφ
11(cos θs, φ) =

φ

2π
+
P 1

1 (cos θs) sinφ

2π

Cφ
12(cos θs, φ) =

φ

2π
+
P 1

2 (cos θs) sinφ

3π

Cφ
11′(cos θs, φ) =

φ

2π
+
P 1

1 (cos θs) cosφ

2π

Cφ
12′(cos θs, φ) =

φ

2π
+
P 1

2 (cos θs) cosφ

3π

With the CDFs delineated, we can now consider the respective inverses. Three of the

CDFs are invertible analytically: l = 0, k = 0, 1 and 2 i.e. ρ00, ρ01, and ρ02. The analytical

inverses are outlined in table 4.4 on the next page.
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k l Inverse CDF (C−1(u))

0 0 2u

0 2 2
√
u− 1

0 1 3

√
2u− 1 + 2

√
u2 − u+ 7

27
− 3

√
1− 2u+ 2

√
u2 − u+ 7

27

Table 4.4: Analytical CDF Inverses for Invertible Legendre Probability Den-

sity Functions. Using the inverse transform sampling method, we used a uniformly

distributed u generated by a pseudo-random number generator in order to sample the

correctly distributed values of cos θ i.e. cos θs = C−1(u) where u ∈ [0,1] is uniformly

distributed.

The rest of the CDFs are inverted using Newton’s method: if Newton’s method fails to

converge27 then the Bisection method is employed. Since the CDFs are all monotonically

increasing functions: their respective inversion algorithms must always yield unique solutions

for φ and cos θ. Using Newton’s method (section 4.4.5 on page 144) or the Bisection method

(section 4.4.4 on page 143) we can invert the CDFs numerically using Eq. (4.6).

We need to know φ and cos θ. We sample either φ or cos θ (depending on the CDF), then

determine the unknown by finding the root of:

C(cos θ, φ)− u = 0 (4.6)

where: u is a pseudo-randomly generated number from 0 to 1.

Using these inversion algorithms (table 4.4 and eq. (4.6)), each probability density func-

tion ρlk was simulated for 50 million28 neutron generation events for both the short and long

target (because they have different geometries).

It is important to note that the ρlk PDFs are in the center-of-mass/momentum (CM)

frame while the simulation takes place in the lab frame; therefore, the sampled φ and cos θ

27Newton’s method converges monotonically (if it converges), so if the algorithm goes out of the domain
for φ ∈ [0, 2π] or cos θ ∈ [−1, 1] then it is known to have failed.

28Why 50 million? Lucid format data has a file size limit that is around the size of a 50 million event
simulation (≈ 2GB). Investigation into the file size limit found no user code implementing this limit: the file
size limit remains of unknown ontogeny.
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values provided by the CDF inverses needed to be Lorentz boosted into the lab frame: this was

done using kinematics to provide the necessary transformation (see appendix C on page 284

for details).

The simulation outputs a simulated detector response which is then analyzed using the

same data analysis procedure as the actual experimental data. We do this so that we can

make the necessary assumption that the simulated efficiency is identical to the experimental

efficiency. This necessitates applying identical cuts (when possible29) to both data sets: the

simulated data and the experimental data.

Once all of the cuts have been applied and the data analysis is complete, the result is a

neutron yield in each detector. The Legendre expansion of the cross section is assumed to be

a homeomorphism of the neutron yields using the following derivation by Wurtz [Wur10c].

In the absence of geometric effects, the number of neutrons, N , passing through each detector

is:

dN

dΩ
(θ, φ) = Φnl

dσ

dΩ

Let G be the function that describes the geometric effect of the experimental arrangement,

then what we measure is:

G(
dN

dΩ
(θ, φ)) = ΦnlG(

dσ

dΩ
)

Where: Φ is the photon flux as a function of target depth, n is the atomic number density

and l is the target length. The yield in a specific detector, Nd is:

Nd ≈ εd

∫
Ωd

G(
dN

dΩ
(θ, φ))dΩ

29For example, the background radiation cut cannot be performed on the simulation because there is no
background radiation.
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Where: Ωd represents the effective detector surface area in spherical coordinates and εd is

the detector’s efficiency.

Now we simply do a few substitutions and using the linearity of the integral operator we find:

Nd ≈ εd

∫
Ωd

ΦnlG(
dσ

dΩ
(θ, φ))dΩ

We sub in eq. (4.2) on page 119 for the differential cross section and multiply by σ:

Nd ≈ εdΦnlσ

∫
Ωd

G(
1

4π

[
(1−

4∑
k=1

ak − 3e2 − 6e3 − 10e4 − c1 −
3

2
c2 − d1 −

3

2
d2)ρ00(θ, φ)

+
4∑

k=1

akρ0k(θ, φ) + 3e2ρ22(θ, φ) + 6e3ρ23(θ, φ) + 10e4ρ24(θ, φ)

+c1ρ11(θ, φ) +
3

2
c2ρ12(θ, φ) + d1ρ11′(θ, φ) +

3

2
d2ρ12′(θ, φ)

]
)dΩ

We assume the geometric function, G, is a linear function of the parameterization30and

therefore:

Nd ≈ εdΦnlσ
1

4π

[
(1−

4∑
k=1

ak − 3e2 − 6e3 − 10e4 − c1 −
3

2
c2 − d1 −

3

2
d2)

∫
Ωd

G(ρ00(θ, φ))dΩ

+
4∑

k=1

ak

∫
Ωd

G(ρ0k(θ, φ))dΩ + 3e2

∫
Ωd

G(ρ22(θ, φ))dΩ + 6e3

∫
Ωd

G(ρ23(θ, φ))dΩ

+10e4

∫
Ωd

G(ρ24(θ, φ))dΩ + c1

∫
Ωd

G(ρ11(θ, φ))dΩ +
3

2
c2

∫
Ωd

G(ρ12(θ, φ))dΩ

+d1

∫
Ωd

G(ρ11′(θ, φ))dΩ +
3

2
d2

∫
Ωd

G(ρ12′(θ, φ))dΩ

]

If our simulation has perfectly incorporated all of the geometric effects in our experimental

arrangement, then a simulation of N sim neutrons with the probability density functions ρlk

will yield:

N sim
d,lk = εsimd N sim

∫
Ωd

ΦnlG(ρlk(θ, φ))dΩ
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If we assume εd
εsimd

is the same for all of the detectors,31 then lump together all of the

factors into a new parameter, A, and sub in the N sim
d,lk for the ρlk to get an expansion in terms

of neutron yields:

Nd ≈A[(1−
4∑

k=1

ak − 3e2 − 6e3 − 10e4 − c1 −
3

2
c2 − d1 −

3

2
d2)N sim

d,00

+
4∑

k=1

akN
sim
d,0k + 3e2N

sim
d,22 + 6e3N

sim
d,23 + 10e4N

sim
d,24

+ c1N
sim
d,11 +

3

2
c2N

sim
d,12 + d1N

sim
d,11′ +

3

2
d2N

sim
d,12′ ] (4.7)

where: Nd is the neutron yield in a detector, d, and N sim
d,lk is the simulated neutron yield for

the probability density function ρlk.

Therefore once we’ve simulated the probability density functions, ρlk, and applied all of

the data analysis cuts to get the neutron yields, N sim
d,lk , for each l and k : we can use eq. (4.7) to

extract the parameters for the Legendre expansion of the cross section using the 88 detectors

on Blowfish (Nd, {d|d ∈ Z ∧ d ∈ [1, 88]}).

The results of the ρlk PDF simulations for the long target follow;32 starting with figure 4.4

on the next page, and including the analytical plots for the respective ρlk in the CM frame.

Blowfish, the target and the probability density function are all symmetric in phi so the

‘bumpiness’ with respect to φ (in the figures) must be caused by the counting error.33

30We later verified this is the case by simulating the experimental parameters and extracting new param-
eters from the simulated data: the parameters are the same (see appendix J on page 302 for details).

31We test this assumption was well founded by rotating Blowfish during the experiment: so that different
detectors were at the same position.

32The short target simulations have similar overall shapes, but they have significantly different neutron
detector yields.

33The counting error is a statistical error of magnitude
√
N : where N is the number of events measured.

The relative error in each cell for the ρ00 simulation is approximately 0.1%.
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Figure 4.4: Simulated Neutron Yields from the ρ00 PDF. The top plot is the

analytical function ρ00 (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ00 (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ. The Lorentz transformation into the lab frame causes

the forward biasing (towards θ = 0). The dip at the first ring (θ = 22.5◦) is due to

the target’s geometry: the short target doesn’t show this feature. Note: θ ∈ [0◦, 180◦]

(polar angle) is measured from the downstream beam axis (0◦) up to the upstream

beam axis (180◦), φ ∈ [0◦, 360◦) is measured transverse to the beam axis (starting at

the left horizontal from the beam’s perspective).
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Figure 4.5: Simulated Neutron Yields from the ρ01 PDF. The top plot is the

analytical function ρ01 (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ01 (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.
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Figure 4.6: Simulated Neutrons Yields from the ρ02 PDF. The top plot is the

analytical function ρ02 (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ02 (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.
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Figure 4.7: Simulated Neutrons Yields from the ρ03 PDF. The top plot is the

analytical function ρ03 (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ03 (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.
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Figure 4.8: Simulated Neutrons Yields from the ρ04 PDF. The top plot is the

analytical function ρ04 (CM frame) (CM frame), while the bottom two are plots of the

neutron yields from the simulation of ρ04 (lab frame). The polar plot (bottom right)

has had the neutron yield averaged over φ.
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Figure 4.9: Simulated Neutrons Yields from the ρ22 PDF. The top plot is the

analytical function ρ22 (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ22 (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.
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Figure 4.10: Simulated Neutrons Yields from the ρ23 PDF. The top plot is

the analytical function ρ23 (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ23 (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.
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Figure 4.11: Simulated Neutrons Yields from the ρ24 PDF. The top plot is

the analytical function ρ24 (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ24 (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.
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Figure 4.12: Simulated Neutrons Yields from the ρ11 PDF. The top plot is

the analytical function ρ11 (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ11 (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.
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Figure 4.13: Simulated Neutrons Yields from the ρ12 PDF. The top plot is

the analytical function ρ12 (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ12 (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.
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Figure 4.14: Simulated Neutrons Yields from the ρ11’ PDF. The top plot is

the analytical function ρ11’ (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ11’ (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.
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Figure 4.15: Simulated Neutrons Yields from the ρ12’ PDF. The top plot is

the analytical function ρ12’ (CM frame), while the bottom two are plots of the neutron

yields from the simulation of ρ12’ (lab frame). The polar plot (bottom right) has had

the neutron yield averaged over φ.

Figures 4.4 through 4.15 illustrate how the Legendre PDFs transform when Lorentz

boosted, then simulated. It should be clear from a geometric point of view that all of

the Legendre PDFs could be homeomorphisms to the simulated neutron yields, something

which was tested empirically in appendix J on page 302. So long as a homeomorphism exists
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between the Legendre PDFs and the neutron yields we can safely assume that the parameters

extracted from fitting to the neutron yields will be the same as those used to describe the

differential cross section.

4.4.3 Inverse Transform Sampling

When dealing with software that utilizes probabilities, one invariably encounters the prob-

lem of sampling some probabilistic function (e.g. a PDF) with an appropriately weighted

algorithm. In this experiment, this fundamental problem was manifested as sampling the

target attenuation (section 4.4.1 on page 118) PDF and the Legendre PDFs (section 4.4.2

on page 119) in the simulation. One method for tackling this problem is inverse transform

sampling.

Inverse transform sampling proceeds as follows:

1. Find a PDF: f(x).

2. Calculate its CDF: C(x)

3. Invert the CDF: C−1(x)

4. Use some uniformly sampled u ∈ [0, 1] as input to the inverse CDF: C(u) = x and the

resulting distribution of x is identical to the PDF: f(x) [Dev94].

Inverse transform sampling is made possible by two theorems: theorem 2 and theorem 3

on the next page.

Theorem 2 (Devroye [Dev94]). Inverse Transform Sampling (1)

Let C(x) be an invertible cumulative distribution function defined on x ∈ R, then if u is

a uniformly distributed random variable in [0, 1] then C−1(u) has cumulative distribution

function C(x).

Proof.

Let C be a cumulative distribution function defined on R, then:

C : R 7→ [0, 1]

C(x) =
∫ x
−∞ f(x′)dx′ = probability that an arbitrary x′ is ≤ x
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where f is the probability density function corresponding to C.

C is invertible, so its inverse C−1 must be defined by:

C−1(u) = infimum{x : C(x) = u, u ∈ [0, 1]}

Let P (y) denote the probability of an event: y, occurring.

P (C−1(u) ≤ x) = P (infimum{y : C(y) = u} ≤ x)

= P (u ≤ C(x)) because C is monotonically increasing (it must be because it is defined as an

integral of a universally positive function).

= P (u ≤ C(x)) = C(x)

Theorem 3. Inverse Transform Sampling (2)

Let f be a probability density function defined on x ∈ R, if the cumulative distribution function

of f : C, satisfies theorem 2 on page 141 and u is a uniformly distributed random variable in

[0, 1] then sampling C−1(u) gives probability density function f(x).

Proof.

Let f be a probability density function defined on R, then:

1) f : R 7→ [0,∞) and 2)
∫∞
−∞ f(x)dx = 1

By analogy with discrete probability distribution functions, limdx→0 f(x)dx ∝ probability

that an event near x occurs.

The cumulative probability function is defined as:

C(x) =
∫ x
−∞ f(x′)dx′

or, by the Fundamental Theorem of Calculus (FTC): dC(x) = f(x)dx.

I will show that limdx→0 f(x)dx = limdu→0C
−1(u)du given C−1(u) = infimum{x : C(x) =

u, u ∈ [0, 1]} is the relationship between u and x: i.e. sampling C−1(u) over u ∈ [0, 1] is

equivalent to sampling f(x) over x ∈ R in the limit du→ 0.

Case 1: x 6= 1.

Consider some arbitrary ε > 0, then let δ = ε
|1−x| ∀ x 6= 1.

|f(x)dx− limdu→0C
−1(u)du| = |f(x)dx− xf(x)dx| using the FTC.

= |1− x|f(x)dx using condition (1) of f.

Now, suppose 0 < f(x)dx < δ, i.e. 0 < f(x)dx < ε
|1−x| ,

then |1− x|f(x)dx < ε.
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Case 2: x = 1

Consider some arbitrary ε > 0, then let δ = ε ∀ x = 1.

|f(x)dx− limdu→0C
−1(u)du| = |f(x)dx− xf(x)dx| using the FTC.

= |1− x|f(x)dx = 0 using condition (1) of f and substituting x = 1.

Now, suppose 0 < f(x)dx < δ, i.e. 0 < f(x)dx < ε,

then |1− x|f(x)dx < ε.

This covers all possible values of x, therefore limdx→0 f(x)dx = L = limdu→0C
−1(u)du by the

ε/δ definition of a limit.

The necessary functions (i.e. the inverse CDFs) for the target attenuation PDF and

the Legendre PDFs have already been outlined in their respective sections: these were the

functions used to implement the PDFs into the simulation. For those CDFs that could not be

analytically inverted, we used eq. (4.6) on page 125 to numerically invert them via Newton’s

method (section 4.4.5 on the next page) and the Bisection method (section 4.4.4).

4.4.4 The Bisection Method

The Bisection method is a simple application of the Intermediate Value Theorem, which

states that if f is continuous on an interval [a, b] and changes sign during that same interval

exactly once then f must cross 0 in the interval exactly once i.e. ∃ exactly one c ∈ [a, b]

such that f(c) = 0 [Tur01]. If we considered some sub-interval of [a, b], say [a +∆x, b] and

we found that f changed sign within this sub-interval, then the root must exist in the new

interval [a +∆x, b].

The bisection method takes the step, ∆x, to be half of the length of the interval: ∆x =

(b - a)/2 then proceeds by testing whether the root occurs in the left half i.e. [a, b - ∆x] or

right half i.e. [a +∆x, b] of the interval: the root must be in one of the halves,34 the one

which it resides in is kept and the other interval is thrown away, then the algorithm repeats

until the final interval is arbitrarily small around the root. Achieving a desired precision, say

δx, for a root x is achieved by iterating until the final interval is [x −δx, x +δx] (which can

34In the unlikely, though possible (because we use floating point numbers) event that the root falls in both
intervals i.e. at a + ∆x = b −∆x then that value (a +∆x = b −∆x) is taken as being the correct root; to
floating point precision.
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be tested for by simply taking the length of the interval). Note that for a piece of software,

any real number is only approximated to some precision defined by the amount of available

memory: by setting the desired precision to the precision of the floating point number one

can find the root of f without any loss of accuracy compared to the analytical root (although

it will almost certainly be slower).35

Outline of Bisection method: Given a continuous function f(x) = 0 over some domain [a,

b] with exactly one root, the root can be found by the following steps:

1. Select the midpoint: c = (a + b)/2.

2. Test to see if the root is in [a, c] or [c, b]: we know by the Intermediate Value Theorem

that if f(a) > 0 and f(c) > 0 or f(a) < 0 and f(c) < 0 then there is no root on the

interval [a, c], therefore the root must be in [c, b], but if f(a) < 0 and f(c) > 0 or f(a)

> 0 and f(c) < 0 then we know the root must be in [a, c]. If f(c) = 0 then we are done.

3. Shrink the interval by setting a = c if the root is in [c, b] or b = c if the root is in [a,

c] and repeat.

4.4.5 Newton’s Method

The Bisection method is a rigorous and stable algorithm for finding the root of a continuous

function on a closed interval, but it isn’t particularly fast: the interval converges linearly at

a rate of 1
2

per iteration. Newton’s method converges faster: quadratically [Tur01] (when it

converges); we attempt to use Newton’s method first in order to (hopefully) save time on

computations, then resort to the Bisection method if it fails.

Newton’s method is essentially an application of the local linear approximation (i.e. the

first-order Taylor series) near a root. The local linear approximation of f(x) is:

f(x) ≈ f(x0) + (x− x0)f ′(x0)

35The actual precision used for both numerical methods in the simulation was 10−10.
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where: x0 is some point near x. If x is the root, then:

f(x) = 0, =⇒ 0 ≈ f(x0) + (x− x0)f ′(x0)

=⇒ x0 −
f(x0)

f ′(x0)
≈ x

Assuming that the local linear approximation improves the initial estimate, x0, which is

near a root f(c) = 0, we can iterate this function using Newton’s iteration formula:

xn ≈ xn−1 −
f(xn−1)

f ′(xn−1)
(4.8)

(4.9)

where: n is the nth iteration of the formula and xn is the estimated root on the nth iteration.

Whether or not Newton’s iteration formula converges depends on the derivatives of f : f ’

and f”. Practically speaking, Newton’s method won’t converge if f ’ is small, causing f(x0)
f ′(x0)

to be large relative to |xn − x| because it will over-correct the subsequent iteration. The

conditions for convergence are given in theorem 4.

Theorem 4 (Turner [Tur01]). Convergence Conditions for Newton’s Method

Let f have a root on the interval [a, b], be twice differentiable on the interval, and satisfy the

conditions:

1. f(a)f(b) < 0

2. f ’ has no roots on [a, b]

3. f” has no roots on [a, b], and

4. | f(a)
f ′(a)
| < |b− a| and | f(b)

f ′(b)
| < |b− a|.

Then Newton’s method will converge to the root x such that f(x) = 0 from any starting point

on [a,b].

The proof of theorem 4 is beyond the scope of this thesis.
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Chapter 5

Analysis

5.1 Introduction

This chapter describes the steps taken in processing the raw experimental data into meaning-

ful, logically consistent data. Specifically, this means: calibrating the instruments (section 5.3

on page 151), performing the necessary cuts to eliminate impertinent events (section 5.4 on

page 193), and then extracting meaningful observables to compare with the theoretical cal-

culations: the total cross section, σ (section 5.5 on page 211), and the differential cross

section and analyzing power, both based on the parameterization of the associated Legendre

polynomials (section 5.6 on page 216).

First, we discuss the necessary software for manipulating the data, then we move onto

calibration, then cuts, and finally computing the final data (i.e. observables).

5.2 ROOT

“The development of ROOT is a continuous conversation between users and developers with

the line between the two blurring at times and the users becoming co-developers.” [ROO14]

ROOT [Ant09, ROO14, Bru97] is a data analysis framework capable of efficiently handling

large volumes of data [Ant09] and performing a variety of data analysis features e.g. data

acquisition, event reconstruction, detector simulation, event generation, and any type of rudi-

mentary data analysis desired [Bru97]. ROOT is an object-orientated “framework” [Bru97]

that is remarkably similar to the GEANT4 “toolkit” [Ago03] (section 4.2): “framework” and

“toolkit” are synonyms in this context.
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Like GEANT4, ROOT is based on object-orientated C++ programming with a suite of

built-in classes to enable: black-box programming, and modular updating by developers

(both official and unofficial: users are empowered to be developers). ROOT has a number of

other similarities to GEANT4, which should come as no surprise since they are both officially

supported by CERN [Ago03, Ant09], and the concept developers from ROOT previously

worked on GEANT3.1

The notable differences between ROOT and GEANT4 are: (1) ROOT is used primarily

for data acquisition and analysis, while GEANT4 is used for simulations, and (2) ROOT

strongly utilizes hierarchical object structure. The hierarchical object structure of ROOT

enables inheritance of important class members, the notable example is the TObject class

which the majority of classes in ROOT are descendants of. TObject controls basic object

functions like: Write() (saves the object), GetName() (returns name of the object), and

Delete() (deletes the object).

ROOT runs in three modes (just like GEANT4), via: a GUI (e.g. BFROOT section 5.2.1

on page 149), command line (i.e. the prompt shown in figure 5.1 on the next page), or batch

code. We elected to utilize the first mode and, continuing the work of Wurtz [Wur10b]:

we created all of the remaining GUI-accessible classes necessary to perform the entire data

analysis from start to finish (discussed in section 5.2.1 on page 149).

1Rene Brun and Fons Rademakers developed the concept behind ROOT [Bru97].
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*******************************************

* *

* W E L C O M E to R O O T *

* *

* Version 5.30/02 21 September 2011 *

* *

* You are welcome to visit our Web site *

* http://root.cern.ch *

* *

*******************************************

ROOT 5.30/02 (tags/v5-30-02@40973, Sep 22 2011, 10:55:04 on linux)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0]

Figure 5.1: ROOT prompt.

ROOT has an impressive number of data analysis classes developed by the ROOT team

and the rest of the ROOT community, to rigorously meet a plethora of data analysis demands.

Class information is currently stored on the ROOT website,2 but is most conveniently ac-

cessed by utilizing a non-scholarly search engine with the keyword “ROOT” accompanying

the object class name. Each class has a website with a list of: class members, inherited class

members, descendants, includes, and libraries. This makes it easy to find the correct syntax

and available members of any ROOT class.

2The classes can be referenced at: http://root.cern.ch/root/html/index.html.
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5.2.1 BFROOT

BFROOT is a ROOT GUI designed to handle data analysis for data produced specifically

by the Blowfish detector array. BFROOT was initially designed by, and the base classes

were built by Wurtz [Wur10b] to provide a more user-friendly and powerful option for data

analysis. Advanced classes to fill in the necessary steps for a complete analysis of deuteron

photodisintegration data using Blowfish were added during this work. The complete data

analysis of this experiment can now be performed entirely using the GUI, without writing a

single line of code.

BFROOT generates new ROOT classes, each with its own respective source and header

file: the TGBF prefixed classes are designed to handle the GUI (g for graphic), while the

TBF prefixed classes perform the actual operations; the T is for user defined Type; the BF

is for Blowfish. The graphical classes (TGBF) instantiate the operational classes (TBF) via

class pointers which are then used to perform operations based on the user’s GUI commands;

the graphical classes are instantiated by the main menu class (TGBFMainMenu) which is

instantiated by a simple batch code (rootlogon.C) that also loads the necessary libraries.

Thus the operation of BFROOT is performed entirely by the GUI interface, starting at the

main menu (figure 5.2 on the next page).
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Figure 5.2: BFROOT Main Menu. This class is instantiated by rootlogon.C and

is used to subsequently instantiate all other graphical classes via the buttons, which

then instantiate necessary operational files.

The raw data and most of the processed data are stored in trees: a ROOT vertical data

storage structure designed to optimize input/output and memory usage [Ant09]. Each tree

contains branches; the data are stored in the leaves of the branches.3

The TBFFileObjectControl handles manipulation of data via trees and histograms filled

by these trees. Utilizing the inheritance based structure of ROOT: all TBF classes are descen-

dants of TBFFileObjectControl (which is itself a descendant of the ROOT class: TObject),

thus enabling them to access the data stored by TBFFileObjectControl.

The graphical classes also utilize inheritance, but they are simply descendants of the

ROOT window frame class: TGMainFrame.

In summary, future deuteron photodisintegration experiments using Blowfish may be

3The classes are appropriately named: TTree, TBranch and TLeaf (respectively).
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performed entirely using BFROOT; with minimal updates necessary for similar experiments.

It is the hope that subsequent upgrades will utilize the modular design of BFROOT and

create optional packages specialized for a variety of experimental configurations.

The version of BFROOT created by Wurtz is available at: http://nucleus.usask.ca/

~ward/.

RLucid

Although it is possible to use ROOT to handle data acquisition, we elected to use Lucid in

this experiment because the Lucid code had already been written and optimized for other,

similar experiments (e.g. Sawatzky [Saw05]). Therefore, in order to utilize BFROOT we had

to first convert the Lucid format data files into ROOT format: this was performed by RLucid.

RLucid was created by Wurtz [Wur07] specifically for converting Blowfish data from Lucid

to ROOT format. The package runs harmoniously with BFROOT, and can be run either

independently or via the BFROOT GUI. See Wurtz [Wur07] for more information.

The latest version of RLucid is available at: http://nucleus.usask.ca/~ward/RLucid/

index.html.

5.3 Calibration

5.3.1 Beam Calibration

Verifying the Beam Polarization

The Optical Klystron-4 at HI~γS forces electrons in the storage ring to oscillate in the horizon-

tal plane, causing them to emit horizontally polarized ultraviolet (UV) synchrotron radiation

(as described fully in section 3.3 on page 53); these UV photons may then backscatter off of

the next bunch of electrons and produce MeV-energy polarized photons. Sawatzky [Saw05]

noticed during his data runs that there was an unexpected asymmetry in the neutron yields

with respect to the azimuthal angle (φ); this eventually led to the discovery that mirror

degradation had caused the UV photons to change polarization when they reflected off of

the optical cavity mirror (by ≈ 9◦), and thus the high energy photons from backscatter-
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ing showed this same change in the polarization. It is for this reason that we verify the φ

symmetry following the procedure of Blackston [Bla07].

Based on the expansion of the differential cross section (eq. (2.20) on page 49 dσ
dΩ
∝

cosφ, sinφ, and cos 2φ), it should be clear that the reaction is symmetric about the azimuthal

angle, φ. Therefore, if we observe an azimuthal asymmetry then we will know that Blowfish

is not properly aligned, or the polarization axis is not horizontal (or some admixture of the

two). The converse is also true because the φ distribution depends purely on the polarization:

if we do not observe an azimuthal asymmetry then the detectors are properly aligned and

the beam is polarized horizontally (or the two effects are perfectly canceling one another).

Excluding the parameters used to test target alignment (i.e. c and d in eq. (2.20) on

page 49), the most general function we can fit to the differential cross section for average

theta is:

Y (φ) = A+B cos(2φ− 2δ) (5.1)

where: A and B are fit parameters for scale, δ is a fit parameter which measures the deviation

of the polarization axis from horizontal, and φ is the azimuthal angle [Bla07].

Averaging the neutron yields for each arm then fitting eq. (5.1) yields a measure of the

deviation of the polarization axis (δ).

Out-of-Time Photons

As discussed previously in section 3.3.1 on page 58: HI~γS has 64 stable trajectories for

electrons (each 5.6 ns apart), but only 2 of these are supposed to be used to run the FEL (free-

electron laser) in gamma ray mode. In this experiment we saw evidence that the electrons in

the storage ring were spreading into other stable trajectories (or buckets); this is a theory to

explain the observed out-of-time photons produced by the beam, called the Bucket-Spillover

Theory.

Using a peak finding algorithm [Mor00], the time-to-digital (TDC) spectra were analyzed

for each run. A typical raw TDC spectrum looks something like figure 5.3 on the next page

(left) in contrast to what a normal spectrum should look like: figure 5.3 on the next page
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(right).

Figure 5.3: Out-of-Time Beam Photons in the TDC spectrum. Left image: a

typical downstream TDC spectrum with out-of-time photons. The red carets are the

peaks found by the peak finding algorithm[Mor00]. The downstream rings see the most

photons due to the angular dependence of the scattering cross section: most upstream

TDC spectra do not have visible peaks. Right image: what the TDC spectrum looks

like when out-of-time photons of less prevalent.

In order to test the Bucket-Spillover Theory, we measured the spacing of the out-of-time

photons in Run 154. Run 154 used a long, H2O target (10.7 cm) and consequently contains

only a few neutrons (i.e. much fewer than the D2O runs): it was used in an attempt to see

only the scattered photons. Analysis of the peaks found in the downstream ring of cells4

using Morhavc et al.’s algorithm [Mor00] showed that the peaks found; on average, were

5.36 ± 0.49 ns apart: consistent with the Bucket-Spillover Theory, which would predict a

5.6 ns (1 ‘bucket’) spacing.5

The number of out-of-time photons at each observed peak was estimated by utilizing

a background computing algorithm [Mor97] to estimate the number of background events

4Cells 81-88 excluding 87, which was empty. These were selected for improved statistics: photons scatter
at a rate inversely proportional to the angle.

55.6 ns is the nominal electron spacing of HI~γS, as is shown in appendix D on page 289 [Wel09].
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in the TDC, then integrating the peaks above this background. This provided quantitative

evidence of the out-of-time photons and was utilized to scale the total cross section to account

for these out-of-time events.

Some of the noteworthy properties of these out-of-time photons:

1. The relative number of out-of-time photons changes from run to run, but the timing of

their arrival remains constant. See figure 5.4 on the next page.

2. The relative number of out-of-time photons increased sharply when the short target

was put in. See figure 5.5 on page 156. The total cross section data between the long

and short targets agree after they are corrected for out-of-time photons: implying that

the increase in out-of-time photons when the short target was put in is not an artifact

of the analysis.

3. The relative number of out-of-time photons during a run appears to reach an equilib-

rium after which the length of time the beam has been running doesn’t affect the ratio

of out-of-time photons. See figure 5.5 on page 156.

4. There is no correlation between the beam flux and relative number of out-of-time

photons. See figure 5.6 on page 157.

5. The number of out-of-time photons in the final data depends strongly on the lower

light cut (section 5.4.3 on page 199) because they scatter primarily due to Compton

scattering at relatively large angles (> 22.5◦): increasing the lower light cut decreases

their prevalence in the data.
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Figure 5.4: Out-of-Time Beam Photon Arrival Time Constancy. A compar-

ison of the out-of-time photons observed in the TDC spectra for run 142 (red) vs run

143 (blue). The TDC has been calibrated and aligned such that the target-to-cell free

path photon time-of-flight corresponds to the expected time of arrival of the photons

(≈ 1.5 ns). Notice that the peaks of the two runs clearly coincide in time but not in

magnitude: this can be seen by observing that the blue spectrum has greater magnitude

peaks, but the red spectrum has greater magnitude the rest of the time (i.e. a larger

background). The time coincidence is consistent with the Bucket-Spillover Theory.
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Figure 5.5: Out-of-Time Beam Photon Time Evolution during Experiment.

The ratio of the number of photons that arrived at the expected time (within error) over

the total number of photons estimated in each TDC spectrum for cells with statistically

significant photon peaks (i.e. the downstream rings). Each data point represents a run,

runs include: 142, 143, 149, 150, 152, 154, 155, 157, 158 and 159 (chronological order).

The ratio was observed to change randomly over time for a given target length and

systematically when the target length was changed (likely coincidental).
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Figure 5.6: Out-of-Time Beam Photons as a Function of Beam Flux. The

ratio of the number of photons that arrived at the expected time (within error) over the

total number of photons estimated in each TDC spectrum for cells with statistically

significant photon peaks (i.e. the downstream rings). Each data point represents a run,

runs include: 142, 143, 149, 150, 152, 154, 155, 157, 158 and 159. There is no apparent

correlation between the flux and the ratio.

The fact that there doesn’t appear to be any correlation between the expected variables:

time and flux, implies that there is a different variable controlling the presence of out-of-time

photons. With this in mind, it is recommended that correlations be investigated for the other

important variables, namely: the storage ring energy and the timing of electron injections

from the booster ring. The out-of-time photon estimating algorithm should also be verified

rigorously.

The lingering question is: what changed when we put the short target in (that could

account for this systematic increase in out-of-time photons)?6

6Initial conjecture implicated higher flux rates were demanded for the short target, so more electrons were
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5.3.2 ADC Calibration

Pedestals

As mentioned in section 3.10.4 on page 100, in order to improve ADC linearity: a constant

DC current is drawn by the modules. The integrated value of this DC offset: called the

pedestal, must be measured and subtracted from the ADC values before any other analyses

are performed. This means measuring the amount of charge in the short and long gates; for

each cell, when there is nothing in the cell. The P trig trigger (see section 3.10.1 on page 88)

acts when an event is measured by the discriminators while Lucid is demanding a pedestal

read-out: gates are generated for each cell and the short and long ADC values are calculated.

Normally, the integrated charge is compared to a reference pedestal, plus a fudge factor to

account for electronic noise: if the charge is less than the reference charge then the cell is

assumed to have been empty and the data are not stored. When Lucid demands pedestals,

the comparison is not made and instead all ADC values are stored (as pedestal values).

This methodology isn’t perfect (it does allow true events into the pedestals) but it is able

to account for dark current being produced by PMTs, and since the multiplicity is relatively

low (typically 1-1.1 on average during this experiment) approximately 87 times out of 88 the

pedestal readout will not include an event. During analysis, the P trig triggered events are

plotted on a histogram for each ADC channel (i.e. cell) and a peak finding function is fit to

extract the median of the pedestal value, this looks like figure 5.7 on the next page.

injected into the storage ring and these electrons simply repelled each other via the Coulomb Force: causing
the buckets to spread out more drastically than the long target runs. The problem with this hypothesis is
that it is wrong: the photon flux wasn’t any higher for the short target runs (figure 5.6 on page 157).
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Figure 5.7: Pedestal Determination and Subtraction. The long (top left) and

short (top right) gated ADC values for pedestal events of run 139, cell 51 are show,

along with their values once the pedestals have been subtracted (bottom).

Once the pedestals have been determined, they are subtracted from the ADC values.

Determining the ADC Gains

The ADC gains need to be carefully adjusted in order to maximize the energy resolution

(∆E ∝ 1
#bins used

) while preventing useful data (i.e. neutrons) from overflowing. In practical

terms this means setting the gains such that the highest energy particles we want to detect are

as close as possible to ADC bin 3500 (of 4096): any higher and the data become confounded

(see section 3.10.4 on page 100), any lower and the binning will waste the energy resolution.
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The ADC modules have their gains set internally, so we adjust the gains by means of the

voltage applied to the PMTs.

In this experiment, a radioactive source with Compton edge7 near the energy of the

neutrons we intended to measure was placed in Blowfish and the voltages to each PMT cell

were altered such that the Compton edge appeared near the middle of the ADCs.

During analysis, the radioactive source runs were used to determine the gains by fitting a

detector response function to the energy spectrum. For the Blowfish cells this means finding

the inflection point of the energy spectrum by fitting eq. (5.2):8

f(x) = p0 + p1x+ p2erfc(
x− p3

p4

) (5.2)

where: f(x) is fit to the energy spectrum, pi are the fitting parameters (p3 is the inflection

point), and erfc is the complimentary error function. The inflection point is mapped into a

Compton edge location via a phenomenological scaling factor: figure 5.8 on the next page

illustrates.

7Liquid organic scintillators are, as a rule, incapable of giving photopeaks with which to fit [Kno00];
BC-505 is no different. Our detectors are also incapable of giving a Compton edge, but we can estimate its
location using the inflection point position.

8We use this same function to scale the light output (see section 5.3.2 on the next page).
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Figure 5.8: Determining the Gain of the Blowfish Cells. The spectrum on

the left is a raw americium-beryllium ADC spectrum, the spectrum on the right is the

same spectrum fitted with eq. (5.2) on page 160. The vertical black line indicates the

computed Compton edge position: this is compared to the literature value in order to

deduce the gain.

Gain runs were generally only taken at the start and end of the day, so we used the Gain

Monitoring System to track the gain run-by-run.

A complication arrived in determining the gain for runs 149-157 because the gain mon-

itoring system has been shown to drift when Blowfish is rotated [Pyw09b]; so the gain

monitoring system was not used for these runs and instead the correct gains were assumed

to lay somewhere between the values of the earliest and latest calibration runs.

Once determined, the gain data were used during data analysis to perform the light cuts

(section 5.4.3 on page 199).

Scaling the Light Output

In order to extract the differential cross section (section 5.6 on page 216) we assume that

after all of the data analysis cuts are applied, the simulation accurately replicates the detector

efficiencies in order to extract the total cross section (section 5.5 on page 211). Pywell

et al. [Pyw06] extracted the necessary light output parameters for BC-505 (discussed in

section 3.8.2 on page 80), then demonstrated that the simulation accurately reproduces the
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detector efficiency (figure 3.17 on page 82): using tagged neutrons at TRIUMF.

It therefore came as an unpleasant surprise when first Blackston [Bla07] and then Wurtz

[Wur10c] discovered that many of the Blowfish cells are producing smaller ADC responses

to neutrons than those predicted by the simulation, even after carefully calibrating the gains

using multiple photon sources.9 In the data from this experiment we observed the same prob-

lem: the calibrated ADC responses are smaller than we expect; and so we must compensate

for it by enhancing the ADC gain for neutrons i.e. multiplying the cell light output by a

corrective factor. These factors are extracted for each cell by scaling the calibrated ADC

spectrum to match the simulation (each cell has a unique scaling factor); once the scaling

factors are applied: the ADC spectra for the simulated and experimental data agree on the

shape of the distribution (they don’t before the factors are applied).

The physical reason behind this discrepancy was once believed to be an unknown aging

process in the BC-505 cells; however, re-analyzing the 2008 data of Kucuker [Kuc10] revealed

that the light scaling factors needed then were actually larger than those used for the 2010

data: if the cells are aging then the scaling factors should be smaller when the cells were

younger. That doesn’t mean the cells aren’t aging, but it does mean that it can’t be the only

variable at play.

We have already found cells leaking BC-505, therefore it is possible that the cells are

allowing oxygen to interact the BC-505. Less BC-505 may produce less light because there

will be a lower probability of the primary particle interacting,10 while the presence of oxygen

will increase non-radiative energy transfer [Kno00] which will both decrease light output

and reduce the quality of the pulse-shape discrimination [Sai].11 Some cells show essentially

unusable PSD, but there is no obvious correlation to the light scaling factors: this implies

that there are at least two variables at play in these cells: the oxygen reducing the light

output and some other confounding variable which is either increasing or decreasing the

9All comparisons of the photon ADC spectra from the simulated and experimental data demonstrate good
agreement: only the neutrons disagree.

10The secondary particle (i.e. an electron or proton) will almost certainly deposit all of its energy in the
BC-505 anyways (at our typical energies).

11The pulse-shape discrimination depends on the neutrons having much more non-radiative energy transfer
than the photons, if the non-radiative energy transfer increases for both then photons will look more like
neutrons.
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ADC response.12

Previous investigators have failed to find a different culprit for the reduced ADC response

to neutrons, the best current hypothesis (other than oxygen contamination); given the ev-

idence currently available, is that the long gate for the ADC is being cutoff by ≈ 50 ns

[Pyw09b], though this is widely considered improbable: but not impossible. It may be that

the long gated ADC is being cutoff and some cells have some oxygen contamination: in this

case the necessary loss of the long gate would be less than 50 ns (possibly much less).

At this time it seems most likely that there are two or more variables causing the problem,

and it is the relationship between the two which is preventing elucidation. Using something

simple like an α source to test the light output for each of Blowfish’s cells may prove remu-

nerative.

The actual values of the light scaling factors used are given in appendix H on page 297.

Gain Offset

We desire linear gains for the ADCs: with an intercept of 0, this way we can determine the

gain using only a single energy feature on the ADCs; so that we only need to use a single

radioactive source to calibrate. In this experiment, americium-beryllium (AmBe) sources

were exclusively used to calibrate the data extracted so it was necessary to verify that the

Blowfish gain was indeed linear with intercept 0; this can be achieved by plotting the feature

position in the ADCs (i.e. ADC bin number) determined by several different sources at

different energies and fitting the best function to describe the feature position as a function

of energy. The resulting fit was linear with intercept 0: ADC(E) = gE where g is the correct

gain: figure 5.9 on the next page shows the average gain for all cells, and figure 5.10 on

page 165 shows the gains for four arbitrarily selected cells; both plots have excellent fits

(linear regression, R2 > 0.99) to functions of the form ADC(E) = gE + 0.

12Dissolved oxygen can reduce the light output by ≈ 30% [Sai].
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Figure 5.9: Gain Linearity of Cell Average. The ADC bin number versus litera-

ture energy value (uncertainty is negligible) for the Compton edges of three radioactive

sources is plotted: 228Th, 40K and AmBe. The 228Th and 40K sources were performed

simultaneously using background radiation (run 140), while the AmBe source was per-

formed immediately prior (run 139) and the Gain Monitoring System was used to correct

for drifting between. A linear function with no intercept (y = 2.942x) fits excellently.
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Figure 5.10: Gain Linearity of Arbitrary Cells. The ADC bin number versus

literature energy value (uncertainty is negligible) for the Compton edges of three ra-

dioactive sources is plotted: 228Th, 40K, and AmBe. The 228Th and 40K sources were

active simultaneously using background radiation (run 140), while the AmBe source

was active immediately prior (run 139) and the Gain Monitoring System was used to

correct for drifting. Four cells were arbitrarily selected and fit with a linear function

with no intercept; all four show excellent fits (figure is colour coded with fit functions

and linear regression values).

Thus we see that only one radioactive source was needed to determine the gain for these

experimental runs: because the gain was linear with intercept 0.

5.3.3 Gain Tracking

The Gain Monitoring System (first described in section 3.10.3 on page 97) was used to

continuously track changes in the ADC gains for all cells. The principle behind gain tracking
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using the Gain Monitoring System is diagrammed in figure 5.11.

Figure 5.11: Gain Tracking Principle. The front-end computer turns the pulser

on and off: when it is on it sends a periodic pulse to drive the four LEDs, which

send a light pulse to all of the cells in Blowfish, as well as four pulses to the LED

gain monitoring scintillators (one from each LED). The gain monitoring scintillators

continuously monitor the LED light output. Image credit: Bewer [Bew05].

The quantitative principles of the Gain Monitoring System are outlined following the

derivation in Subatomic Physics Internal Report-142 [Pyw09b] in appendix G on page 295.

Tracking the gain relies on two key assumptions: that the ratio of light entering each strand

of the fiber optic bundle remains constant, and that we can accurately determine the location

of the LED feature on the cell and GSO ADCs.

We have no choice but to assume that the ratio of light remains constant; we can only

verify that it is by taking additional source runs. It is believed that the ratio will remain

constant so long as Blowfish is not moved, but if Blowfish is rotated then the ratios are likely

to change; this is discussed in section 5.3.4 on page 170.

Accurately determining the location of the LED feature on the cell and GSO ADCs is

readily achievable: in fact, the reason why LEDs were used is because they give a distinctive,
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Gaussian, energy distribution. The data acquisition system is setup such that the LED flasher

events are tagged and stored in a separate set of histograms. A typical ADC spectrum for

flasher events is shown in figure 5.12 with a Gaussian fit.

Figure 5.12: Detector Response to The LED Flash. Left: response of a Blowfish

cell (cell 13). Right: response of the LED monitor (GSO detector). Both spectra are

well fit by Gaussian distributions.

The GSO detectors are calibrated using a continuous gamma ray radioactive source, the

GSO detectors are particularly good at measuring gamma rays (as opposed to the Blowfish

cells) and are thus capable of distinguishing the photopeak. To determine the GSO detector

gain we fit eq. (5.3) to the detector response:

f(x) = C + p0e
− 1

2
(x−p1)2

p22 + ep3+p4x (5.3)

where: the pi are fitting parameters. This function is complemented by an algorithm which

estimates these parameters before the fit. Fitting this function to the detector’s light output

spectrum looks like figure 5.13 on the next page.
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Figure 5.13: LED Monitor Spectrum (GSO detector). Eq. (5.3) on page 167 is

used to find the location of the continuous radioactive source’s photopeak.

This concludes the necessary background for a high-level understanding of the Gain Mon-

itoring System; a description of the underlying electronics (figure 5.14 on the next page)

follows.
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Figure 5.14: The Gain Monitoring System Electronics. Description in text.

Definitions: LED: light-emitting diode, GSO: gadolinium-silicon-trioxide crystal (pho-

ton detector), IG: independent gate, QDG: charge-to-digital converter (ADC), NIM-

TTL: NIM to TTL (transistor-transistor logic) logic converter, Coin Reg: coincidence

register, NIM-ECL: NIM to ECL (emitter-coupled logic) logic converter, SCA: scaler,

CF8000 Disc: CF8000 model constant fraction discriminator, BNC555 Pulser: model

of the pulse generator used, Flash en: enable flasher signal, Mon en: enable monitor

signal, Ped en: enable pedestal signal, Flash trig: LED flasher trigger, Mon trig: LED

gain monitoring trigger, N trig: neutron trigger, P trig: pedestal trigger, and Out win:

out window (see figure 3.22 on page 90).

The Gain Monitoring System is initiated by Lucid sending a Flash en signal to the

BNC555 pulse generator which turns it on. The BNC555 is set to some known frequency,

once it is turned on it starts sending logical driving pulses to the four LED flashers (channels
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A-D) which cause the LEDs to flash. A signal (channel H) is also sent into the electronics

where it initiates a Flash trig that subsequently enters the Master Trigger System (latching

the system and preventing other triggers from obfuscating the flasher data). The signal from

channel H is also sent to the independent gate ADC (IG ADC); this could; in theory, be used

to monitor changes in the pulser gain, but instead it is only used to verify when the pulser

is actually active.

The four GSO crystals monitoring the flasher system are continuously receiving signals

from a nearby radioactive source. The CF8000 discriminator takes the GSO detector signals

as input and outputs an ‘or’ signal that enables the Mon trig trigger (toggled by the Mon en

signal), as well as outputting to a coincidence register that can be used to check that when

the LED flashes: it sends a signal to all four GSO crystals (as it should). The Flash trig

and Mon trig triggers gate the independent gate ADCs to ensure the signals are integrated

at the proper time.

P trig is initiated using Ped en to determine the pedestals of the IG ADC.

This section should suffice for a functional understanding of the Gain Monitoring System,

for a full account of the system please see Bewer [Bew05], the associated journal publication

is Bewer et al. [Bew09]; for further functional information, please see Subatomic Physics

Internal Report 142 [Pyw09b].

5.3.4 Gain Monitoring Problems

The Gain Monitoring System assumes that the ratio of light entering each strand of the

fiber optic bunch; fed by the LED flasher, remains constant over time (see appendix G on

page 295 for details). This assumption was tested by comparing the predictions of the Gain

Monitoring System using the light ratio (via the gain) of two different calibration runs: run

136 and run 165. An example of the result is plotted in figure 5.15 on the next page.
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Figure 5.15: Discrepancy in the Gain Monitoring System. The two lines

represent the gain at any point during the experiment, tracked with the Gain Monitoring

System using two different calibration runs: run 165 (red) and run 136 (blue). If the

light ratio remains constant over time then the two lines must agree perfectly: clearly

the two do not agree on the correct gain, although they do agree on the systematic

changes in the gain. Blowfish was rotated after run 143, after run 150 and after run

157. If this cell received less light after its rotations; or the GSO crystal received more

light, then the blue line would underestimate the gain at run 165, as is observed.

As figure 5.15 illustrates: the gains predicted by the Gain Monitoring System are clearly

in disagreement. This is believed to occur due to rotation of Blowfish: the rotation causes

stress on the fiber optic bunches which changes the positioning of the strands and thus the

relative ratio of light entering each strand [Pyw09b]. Our observed gains (e.g. figure 5.15)

are consistent with this hypothesis.
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5.3.5 TDC Calibration

Determining the TDC Gains

The gains of our TDCs are nominally 0.1 ns
bin

: this is the best resolution they are capable

of, and the scale is sufficiently large that we can measure everything we want within the

4096 bins of the modules. We measure the correct gain via the methodology outlined in

section 3.10.2 on page 96.

Aligning the TDCs

During the experiment, we received a signal from the accelerator when electrons were in

position to produce gamma rays (i.e. the bunch signal). We cannot use this signal to calibrate

the TDCs because we don’t know precisely how far the photons had to travel to hit the cells,

furthermore, it would be inconvenient to have to consider any and all delays due to the wiring

and electronics. Instead, we only use the accelerator signal to set the start time for the TDCs

and then zero them based on the arrival time of the promptly scattered beam photons. We

know the target-to-cell distance and the speed of the photons (c), so we can determine how

long the photon time-of-flight was and therefore we know when the beam interacted with

the target and can determine the neutron time-of-flight. With the neutron time-of-flight

determined, we can cut those events that are energetically forbidden by kinematics: based

on arrival time.

During data runs, the window of expected photon arrival (this is the G win in sec-

tion 3.10.1 on page 88) is pre-scaled to only be active once in every 1000 events in order

to reduce detector dead-time. Unfortunately, this factor is too small to correctly calibrate

the upstream cells: the photon scattering probability is highest at small angles,13 meaning

that the downstream cells get enough beam data but the upstream cells don’t. Fortunately,

runs were taken without pre-scaling for just such an eventuality. The nearest unscaled TDC

calibration run was run 141: it was used to calibrate the TDCs for all of the data runs.

The TDC alignment algorithm searches a user defined TDC bin interval for the largest

13As per the Klein-Nishina Equation: appendix A on page 278 i.e. dσ
dΩ ∝

1

1+
Eγ

mec2
(1−cos θ)

.
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peak using the Morhavc et al. algorithm [Mor00]. This peak is then fit with a Gaussian

function and the mean is stored as the TDC offset. Since the TDC alignment only matters

for the time-of-flight cut (section 5.4.4 on page 204) we didn’t bother storing the uncertainty

in the peak position for each cell:14 instead electing to estimate the uncertainty of all cells

as being the same. The process looks like figure 5.16.

Figure 5.16: TDC Alignment. The left figure is the TDC spectrum from cell 41,

run 141: as you can see the spectrum is dominated by the peak of promptly scattered

photons (compare to figure 5.3 on page 153). The peak is fit with a simple Gaussian

(shown right); the algorithm automatically zooms in on the peak so that the user can

verify the fit quality. Note: “rebuilt” means that the bins have been correctly scaled in

size to account for the variation from the nominal gain (i.e. the measured TDC gains

divided by the nominal gain).

We estimated that the uncertainty in the peak finding algorithm was 1 bin (0.1 ns),

though its contribution to the total TDC measurement uncertainty (see section 5.3.5 on the

next page) is negligible.

14We also use the TDC to calculate the neutron energies, but we do not apply any cuts to the energy
directly.
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Time-of-Flight Uncertainty

The time-of-flight (TOF) spectrum is derived from the TDC spectrum by calibrating its gain

(section 5.3.5 on page 172) and aligning it (section 5.3.5 on page 172). Each of these steps

has an uncertainty associated with it: the gain is subject to differential (0.0015 ns15) and

integral (0.41 ns16) non-linearity; and the alignment is subject to a small uncertainty in the

peak-finding algorithm (0.1 ns) as well as a large random error (0.48 ns) including, but not

limited to, the interaction point of the photons in the BC-505, and the discriminator trigger

point. Combining all of these sources of error in quadrature yields an estimated uncertainty

in the time-of-flight of 0.64 ns.

The random error was estimated by analyzing the variance of the photopeaks in the

TDC spectra. The position of the photopeak is subject to two primary sources of error:

the distance traveled by the photons detected, and the start/stop times determined by the

electronics. The former is a function of where and how often the photons scatter and where

they deposited their energy in the detector: both of these things we can estimate using known

cross section data, and we can simulate the entire process. The start/stop times determined

by the electronics cannot be simply simulated, so we elect to estimate this as a trigger-point

error by contrasting the experimental and simulated spectra: see figure 5.17 on the next

page.

15Nominally 1.5% of the bin width [CAE12].
16Nominally 0.1% of the full range scale (4095 bins) [CAE12].
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Figure 5.17: Time-of-Flight Uncertainty. Notice that the experimental spectrum

is much broader than the simulated spectrum. Fitting a Gaussian function to each

cell yields a mean variance of 0.48 ns for the experimental data and 0.13 ns for the

simulated data. The photon peak is expected to have some variance to it naturally

since the photon can scatter off of any part of the target and deposit its energy at any

point in the detector. This implies that the experimental data has a total uncertainty of

approximately 0.48 ns, of which 0.13 ns is due to photon distance traveled, and 0.35 ns

is due to the discriminator trigger point changing (or any other random error).

Comparing the simulated and experimental time-of-flight spectra (figure 5.17), we can
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estimate that the uncertainty due to the interaction point of the photons is 0.13 ns, and the

uncertainty due to the trigger-point (and any miscellaneous random errors) is 0.35 ns, for a

total of 0.48 ns. It is probable that the trigger-point error a convolution of the integral/differ-

ential non-linearity and the electronics, but we must accept that our estimated uncertainty

(0.64 ns) may be up to 0.16 ns too large (i.e. if the uncertainty was entirely random): we

consider this an acceptable loss of precision in order to compensate for the potential of a

systematic error.

There is an additional systematic error due to the assumption that the photons travel, on

average, from the center of the target to the center of the detector. Performing the necessary

calculations, the photons arrive 0.007 ns early due to their interaction point in the BC-505,

and they also arrive up to 0.006 ns early or late due to their interaction point in the target

(depending on the cell’s position); these are negligible relative to our estimated uncertainty

and therefore were not included.

There is also another systematic error introduced by the peak-fitting algorithm we use,

which may fit . 0.06 ns early (as is explained in section 5.3.6); this is small relative to our

uncertainty and therefore we ignore it.

5.3.6 Decomposing the TDC Spectrum

Once the TDC has been properly calibrated both with the correct gain (see section 5.3.5 on

page 172), and the correct alignment (see section 5.3.5 on page 172), we need not worry about

the time-of-flight of the photons and can focus purely on the neutrons. We simulated the

generation of neutrons under different conditions and discovered that the simulations predict

an asymmetric time-of-flight distribution (see figure 5.18 on the next page and figure 5.19

on page 178) that peaks approximately 0.5 ns earlier than the estimated time-of-flight : the

estimated time-of-flight is computed using the energy of the neutron from kinematics (see

section 2.3 on page 23) and assuming a free path from the middle of the target to the

middle of the detector (this is within 0.1 ns of the average time-of-flight). Evidently the

neutrons should arrive earlier than our simple estimate by ≈ 0.5 ns due to processes which

are accounted for in the simulation.
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Figure 5.18: Simulated Effects in Neutron Time-of-Flight Spectrum. A single

detector of variable width located perpendicular to the beam axis was simulated both

with and without the target present via generating a neutron within the (possibly

invisible) target. Red line: the thin detector has a width of a few mm; it can only

detect neutrons within this few mm region. Blue line: a normal detector (6.4 cm)

shows stretching out of linear slope topped peak: this corresponds to the neutrons

interacting at different points in the detector (the slope is due to attenuation). Yellow

line: a normal detector (6.4 cm) with the long D2O target in place shows an asymmetric

distribution with a peak at ≈ 0.5 ns earlier (at ≈ 11 ns) than the expected time-of-

flight (black line). This means that we do not expect to see a symmetric distribution

of neutrons. The estimated time-of-flight (black) assumes a free path from the middle

of the target to the middle of the detector.
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Figure 5.19: Asymmetric Neutron Time-of-Flight Spectrum in Simulation.

A closer look at the yellow peak in figure 5.18 on page 177. The simulation consisted

of a single detector of BC-505 and a long target of D2O and nothing else. A Landau

function (red) fits relatively well to the spurious peak (better than a Gaussian). The

expected peak location is at 11.5 ns, the Landau function predicts the mean to be at

10.991±0.013 ns and a Gaussian function predicts the mean to be at 11.0325±0.0085 ns:

both are early by approximately 0.5 ns. The estimated time-of-flight (black) assumes

a free path from the middle of the target to the middle of the detector.

Figure 5.18 on page 177 demonstrates that due to simple scattering and interaction point

processes (i.e. those processes at work in the simulation): the neutron time-of-flight peak

should occur 0.5 ns sooner than the estimated time-of-flight.17

17The shift is not due to attenuation in the BC-505: the average neutron interaction point is 0.1 ns earlier
than if they interacted at the middle of the detector (when detector attenuation is included); and the average
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This means that if we fit a function; such as a Gaussian, to the peak of the neutron

time-of-flight spectrum: we would be fitting to a peak 0.5 ns earlier than the mean neutron

arrival time, and we’d see a spurious offset.

This result is of interest because when we fit a function to the time-of-flight peak we see

that the experimental data shows a similar systematic offset : the neutrons in the experimental

data arrive approximately 0.5 ns earlier than the estimated time-of-flight (see table 5.1). For

the experimental data, the long target average (0.56 ± 0.22 ns) and short target average

(0.28 ± 0.22 ns) may disagree on the value of this offset, but the difference is small relative

to error (∆t = 0.28 ± 0.44 ns) and therefore it was deemed of little merit investigating this

phenomenon completely; as far as we can tell the simulated peak and experimental peak

locations agree within error for both the long and short targets and therefore the neutrons

are not arriving sooner than expected.

Run
Factor (ns)

Fit Peak

Long Target Sim 0.403± 0.025 0.36± 0.18

Short Target Sim 0.373± 0.073 0.434± 0.051

Run 142 (long) 0.50± 0.39 0.71± 0.56

Run 150 (long) 0.51± 0.39 0.65± 0.51

Run 155 (short) 0.30± 0.39 0.28± 0.51

Run 158 (short) 0.29± 0.33 0.25± 0.56

Table 5.1: Neutron Time-of-Flight Offsets. The average peak location for the

expected time-of-flight minus the measured time-of-flight. These numbers were derived

by employing two methods: we fit the time-of-flight spectrum with a Gaussian (col-

umn 2), and we used a peak finding algorithm [Mor00] (column 3). We see that the

neutrons arrive too early in the simulation and the experiment, and that the offsets are

the same within error.

photon interaction point has a trivial effect on the neutron time-of-flight (≈ 0.0001 ns).
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5.3.7 Upstream Scattering

The vacuum at the High Intensity Gamma Source (HI~γS) extends some distance (approxi-

mately 50 m) from the free-electron laser before ending at a thin window in the collimator

hutch. Photons are collimated, pass through the Five Paddle Flux Monitor then enter the

upstream target room, and finally the downstream target room where we performed our ex-

periment. This means that photons were able to: (1) scatter from the collimator, (2) scatter

from the air inbetween the end of the vacuum and the target, and (3) scatter from any of

the plethora of other objects inhabiting the target rooms.

In previous experiments (e.g. Blackston [Bla07]), some photons were observed to have

arrived earlier than expected in the upstream rings of Blowfish resulting in a pair of peaks

in the TDC spectrum. This experiment produced the same phenomenon (see figure 5.20

on the next page): the dominant peak in the TDC spectrum for the upstream ring (ring

1; θ = 157.5◦) arrives approximately 3.5 ns earlier than the photons which scatter off of

the target.18 This peak is markedly less significant in the neighbouring rings: decreasing in

magnitude in rings: 2 (θ = 144.0◦) and 3 (θ = 130.5◦), until by ring 4 (θ = 117.0◦) it is no

longer observed.

This phenomenon is consistent with upstream scattering of the beam: photons scatter

upstream and then enter the detectors directly instead of hitting the target first; this explains

both why they arrive earlier (they don’t have to travel to the target and back), and why their

presence is not detected in the downstream cells (Blowfish shields them with the upstream

cells). Blackston [Bla07] tested this hypothesis by aligning the TDCs using the target, then

he removed the target and measured the TDC spectra to see if the anomalous peak was still

observed: it was, confirming that the anomalous photons were not scattering from the target.

We performed additional analysis in this experiment and determined the following:

1. The early photon-peak has a dirty energy spectrum (detector response: 0-10 MeVee),

while the on-time photopeak is clean (0-1 MeVee): since Compton scattering is the

18Note: the out-of-time photons discussed in section 5.3.1 on page 152 are all spaced 5.36± 0.49 ns apart,
thus excluding the possibility that these early photons are produced by that mechanism. Furthermore, the
early photons discussed in this section were observed only in the upstream rings, rather than all cells.
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Figure 5.20: Upstream Scattering of Beam. Figures from left to right and top
to bottom are the upstream aligned TDC spectra for: cell 1 (φ = 0◦, θ = 157.5◦), cell
9 (φ = 0◦, θ = 144.0◦), cell 17 (φ = 0◦, θ = 130.5◦), and cell 25 (φ = 0◦, θ = 117.0◦).
Notice that the peak arriving before zero decreases in height as a function of θ, this is
consistent with the early peak being due to upstream scattering.
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dominant process, this is consistent with the early peak being composed of scattering

at a variety of angles.

2. The simulation predicts that scattering in air will produce the spurious peak (no air:

no peak), and it has a probability proportional to the distance the beam travels. With

the beam placed 3 m upstream (of the target) the simulation predicts an early peak

≈ 0.2 ns later than the experimentally observed one.

All of these observations are consistent with the anomalous peak being due to upstream

scattering. If the scattering is occurring in air, then the photons are probably scattering

primarily & 3 m upstream of the target.

5.3.8 Time-to-Digital Converter (TDC) Drift

The time-to-digital converter (TDC) offset values for the TDC calibration runs (i.e. those

without pre-scaling of the beam photons) were compared to verify their accuracy. Several

of the cells exhibited severe discrepancies between the valid TDC calibration runs (on the

order of 1 ns), these cells were: cell 26, cell 30, cell 56, cell 82, and cell 84. These cells

were immediately excluded from further data analysis (see section 5.4.7 on page 209), and

an investigation was launched into analyzing the time-evolution of the offset position.
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Figure 5.21: Time-to-Digital Converter Drift. Most cells exhibit stable peak

positions, but some show a continuous drift such as cell 83; these cells must be omitted

from analysis.19

Figure 5.21 was computed using data extracted from the downstream-most rings of the

experimental runs where the prompt beam peak could be reliably resolved. Contrary to

earlier observation via the TDC calibration runs: cells 82 and 84 did not appear to drift

meaningfully, nor did any other cell except cell 83. In order to be conservative, cells 82 and

84 remained on the exclusion list, and cell 83 was also added. Cells 11 and 14 were later

added to the exclusion list due to the suspicious shape of their TDC spectra in later runs,

which appeared to show the neutrons arriving far too early (causing part of the neutron

region of the TDC spectrum to be cutoff by the pre-scaling gamma window).

The final excludes due to inferred or observed TDC drift were cells: 9, 11, 14, 15, 22, 26,

19Note: run 142 was not included in figure 5.21 by mistake; it shows almost identical offset values as run
143.
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30, 56, 82, and 84.

5.3.9 Pulse-Shape Discrimination

Blowfish’s cells are sensitive to photons as well as neutrons, and so we had no choice but

to measure unwanted photons. Furthermore, there are a sundry of sources with enough

photons to produce more photons than neutrons in our detectors: background photons are

omnipresent, the beam spits out photons at the wrong time (see section 5.3.1 on page 152),

photons can be readily produced by delayed emission processes, and photons can spend many

nanoseconds bouncing off of stuff in the target room before being attenuated. If it weren’t

for the arrival of photons at unexpected times from the beam, we could eliminate: the beam

photons using a time-of-flight cut (see section 5.4.4 on page 204), the scattered and delayed

photons using a GEANT4 simulation (see section 4.2 on page 105), and the background

photons by simply assuming they’re relatively constant in time. Unfortunately, out-of-time

photons are a fact and so we had to find another way of eliminating photons from our data

so that we were left with only neutrons: this method was pulse-shape discrimination.

Pulse-shape discrimination takes advantage of the fact that organic scintillators; like

BC-505, are able to preserve differences in how photons and neutrons deposit their energy

in them.20 i.e. neutrons produce relatively more delayed fluorescence (see figure 3.14 on

page 78).

The data we read from the v792 ADCs are simply numbers proportional to the charge

they integrate, so we integrate each detector signal twice: once over a short interval (the

short gate) which only integrates the first part of the pulse and once over a long interval (the

long gate) which integrates the entire pulse (figure 5.22 on the next page illustrates).

20This is discussed in section 3.8.1 on page 74 See appendix A on page 278 and appendix B on page 282
for more information on photon and neutron interactions with matter (respectively).
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Figure 5.22: An Idealized View of How PSD is Performed. The pulses have

been normalized for comparison. The short and long gate represent the integration

periods used by the ADCs. A gamma ray (i.e. photon) deposits its energy faster than

a neutron does (see section 3.8.1 on page 74): hence the photon short gate receives

a larger portion of the total charge than does the neutron short gate. Image credit:

Sawatzky [Saw05]

Plotting the values of the normalized difference between the gates ( short - long
long

) versus the

long gate integral should then produce two lines: one representing the neutrons and one

representing the photons; this is seen in figure 5.23 on the next page.
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Figure 5.23: Raw PSD Plot. The short gated ADC integral and long gated ADC

integral are plotted (both pedestal subtracted). The photons deposit a relatively larger

portion of their energy in the short gate than the neutrons do, resulting in two distinct

lines: the top line is produced by the neutrons and the bottom line is produced by the

photons. The very low energy information (x < 100) is confounded by particles that

deposit only a small fraction of their energy in the detector (e.g. by scattering off the

edge of the detector).

In previous works (e.g. Sawatzky [Saw05], Blackston [Bla07], Kucuker [Kuc10], and Wurtz

[Wur10c]) a simple formula; eq. (5.4) on the next page, was used to separate these lines by

186



altering two of its parameters:

PSD = L− S + Φ−R · L (5.4)

where: PSD is the PSD parameter (neutrons have PSD > 0, ideally gammas have PSD < 0

too), L is the long gated ADC value, S is the short gated ADC value, Φ is a parameter called

the offset, and R is a parameter called the rotation.

Optimization of the parameters in eq. (5.4) manually would require plotting each event for

a given cell using eq. (5.4) and then altering the parameters until the neutron bunch all have

PSD > 0 and as many photons as possible have PSD ≤ 0; a PSD cut could then be applied

to exclude all events with PSD ≤ 0. Performing the PSD manually is time-consuming,

subjective, and incapable of accurately estimating the uncertainty in the PSD.

In the current work, a new algorithm was employed to separate the neutrons and photons

to an automatically estimated degree of certainty. The new algorithm is based on the obser-

vation that the y-axis variance in the neutron and photon lines of figure 5.23 on page 186 are

very well described by Gaussian distributions: the pair are thus well described with respect

to the y-axis by a double Gaussian distribution (the x dependence is well described by an

exponential decay on top of a soft-edged step function pedestal). We take regular projections

of the raw PSD scatterplot (e.g. figure 5.23 on page 186) at intervals along the x-axis: col-

lapsing the x-axis and causing the 3-dimensional plot in x, y and z to become a 2-dimensional

plot in y and z; then we fit a double Gaussian function to each slice (figure 5.24 on the next

page) and record all of this information.
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Figure 5.24: PSD Slice Plot Example. The 3-dimensional raw PSD scatter plot

(e.g. figure 5.23 on page 186) is sliced along the x-axis then projected into 2-dimensions,

yielding a series of 2-dimensional plots, or slices, such as this figure. Each slice is fit

very well by a double Gaussian distribution (red lines); fits with reduced χ2 values of

less than 2 were automatically excluded (e.g. the bottom right plot) and all other fits

were visual verified by the user.

After we have sliced and fit the PSD scatterplot, and have all of the pertinent informa-

tion regarding the double Gaussian function fits: we place a point with y-value 2 standard

deviations21 away from the neutron mean (towards the photon mean) and x-value equal to

the middle of the slice position along the x-axis on a new plot (e.g. figure 5.25 on the next

page).

21This value is arbitrarily selected by the user. We also tried 0 standard deviations, but it gave insufficient
precision to proceed (see section 7.1 on page 246 for details as to why).
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Figure 5.25: PSD Fit Plot. The fitting data from figure 5.24 on page 188 are used

to fill this plot with appropriate weighting (darker colours are more strongly weighted),

then a function of the form eq. (5.5) is fit (red line; lower plot) and appropriate pa-

rameters are extracted. These parameters are then used to plot a final PSD graph (e.g.

figure 5.26 on the next page) which is used to determine the PSD cut.

Figure 5.25 is fit with the current PSD formula:

PSD = 1000(1− S

L
+
φ

L
−R + Se−λL + J · L) (5.5)

where: PSD is the PSD parameter, L is the long gated ADC value, S is the short gated

ADC value, φ is a parameter called the offset, and R is a parameter called the rotation, S is

a parameter called the sheer, λ is a parameter called the decay, and J is a parameter called

the jerk. The change from eq. (5.4) on page 187 is to divide by L in order to prevent inflated

confidence in the PSD cut: the PSD is scaled by a constant instead (1000). Three additional

parameters were also added (the last two terms), though the Se−λL term is rarely used. The

parameters are extracted by a fitting algorithm used on the PSD fit plot e.g. figure 5.25 on

189



page 189.

Once the necessary parameters have been extracted from figure 5.25 on page 189, a

final PSD graph is plotted using eq. (5.5) on page 189 with the extracted parameters (e.g.

figure 5.26). The parameters have been automatically adjusted such that the neutrons all

appear with PSD > 0.

Figure 5.26: Final PSD Plot. An example of the final PSD plot from a source run

(run 139). Everything below x = 0 is cut, and above x = 0 is kept. The light cuts

(see section 5.4.3 on page 199) are placed at 1750 keVee and 9000 keVee in order to

exclude the regions of overlap (notice that the photons curve past 0 at approximately

long ADC bin 200).

One important point about this methodology is that it requires good statistics: lots of
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neutrons and photons at high enough energies to fill the upper long gated ADC values. In

this experiment AmBe source runs were used (run 139 and run 165) to determine the PSD,

but they did not have good enough neutron statistics at high energies and consequently the

PSD is the single largest contributor to the uncertainties in this experiment (see section 7.1

on page 246).22 Future experiments producing neutrons above the AmBe spectrum23 would

benefit from using a source that provides high energy photons and neutrons, such as simply

placing a lead block in Blowfish with the beam incident.

Once the PSD parameters had been computed for an AmBe source run, they were used in

the subsequent data runs with the assumption that the PSD properties of the cells shouldn’t

have changed unless the ADC integration times (i.e short and long gates) or the gains changed

significantly, because these are the only variables upon which the PSD depends.

Figure 5.27: PSD Parameters Change During the Experiment. The PSD

parameterization (red) clearly does not agree for both runs, likely due the systematic

change in the gains of 33 ± 11% between runs 139 (left) and 165 (right). A similar

change is observed between run 143 and run 149, but runs 139-143 agree as do runs

149-165.

22The solution to this appears to be either taking longer AmBe runs, or using a source with higher energy
neutrons.

23AmBe producing neutrons of energies 0-10.9 MeV [Leb07].
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Figure 5.27 on page 191 demonstrates that the best set of PSD parameters changed

sometime between run 143 and run 149 (the intermediate runs have no usable data). This

was likely due to a systematic shift in the gain because: the average gain for run 165 was

33 ± 11% larger than run 139, and no significant change in the pedestals was observed for

any of the runs (which would indicate a change in the gate widths).

In order to compensate for the systematic change in the gain, the PSD had to be done

twice: once before the change (run 139) and once after (run 165). Unfortunately, run 165 was

a particularly short run and is the only AmBe source run available after run 139; consequently

the uncertainties in the PSD for runs 149-159 are relatively high.

The new PSD methodology has been shown to give equivalent or better results than the

traditional PSD methodology and has the advantages of: being substantially faster, being

objective, and outputting an uncertainty estimate automatically [Pri14]. It is important that

a higher order term be included in the PSD, rather than just the rotation (i.e. the jerk term

in eq. (5.5) on page 189), otherwise the separation will be energy-dependent for cells showing

this behaviour (because one will have to estimate the jerk term using the offset, rotation and

a light cut) [Pri14].

A final note on PSD: several of the cells show exceptionally poor separation of the photons

and neutrons (e.g. figure 5.28 on the next page: right), one hypothesis for this is that these

cells have air in them. The presence of oxygen in the BC-505 cells increases non-radiative

energy transfer [Kno00] which, as discuss in section 3.8.1 on page 74, leads to more triplet

states which in turn leads to more delayed fluorescence: longer pulses. This confounds the

photons and neutrons as photons produce more delayed fluorescence and hence longer pulses.

In September 2013, two ostensibly undamaged Blowfish cells were removed for inspection

and it was discovered that they were both leaking substantially: it is therefore quite possible

that some of the cells have been exposed to air (recall that the ADC neutron spectra are lower

than expected and had to be scaled: discussed in section 5.3.2 on page 161). Figure 5.28 on

the next page may have been contaminated with air sometime between 2008 and 2010.
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Figure 5.28: Aging Cell PSD. Left image: the raw PSD for an AmBe run taken

in 2008. Right image: an AmBe run taken in 2010 with the same cell. Clearly the

lower arm (the photons) has a different slope, and the separation between the two arms

has been dramatically reduced. The photon arm should be horizontal, the fact that it

curves in the right image is consistent with oxygen contamination which has increased

quenching.

5.4 Analysis Cuts

Not surprisingly, raw data is not conducive to scientific discussion: the data must be pro-

cessed in order to eliminate noise and confounding variables, and then extract meaningful

observables. In this experiment we desired the total cross section, σ, and its angular depen-

dence dσ
dΩ

:24 this means we needed to accurately determine how many photons hit the target,

how many neutrons were produced by the photodisintegration of deuterons in the target, and

where the neutrons ended up going.

We used the Five Paddle Flux Monitor (described in section 3.9 on page 85) to measure

the beam intensity, then used these data to calculate the number of photons that were incident

24We can calculate the analyzing power using the cross section data.
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on the target; no cuts were required for these data, as they utilize corrective factors instead

(as discussed in section 5.5.1 on page 211).

The neutron yields for each cell required that the neutron events measured from the pho-

todisintegration of the deuteron be separated from all other measured events. The photons

were removed by performing the pulse-shape discrimination cut (section 5.4.2 on page 196),

complimented by the light cut (section 5.4.3 on page 199); followed by a background radia-

tion cut (section 5.4.5 on page 206). The background radiation cut also removed the cosmic

ray background of heavy charged particles entering the detectors. Most of the neutrons

formed from other sources (primarily photodisintegration of oxygen via 16O(γ,n)15O) were

removed by the time-of-flight cut (section 5.4.4 on page 204) or the light cut (section 5.4.3

on page 199), and the remaining neutrons (as well as anything else that made it through

all of the cuts) were removed using the H2O target correction (section 5.4.6 on page 208).

Known artifacts produced by the data acquisition and analysis systems were also removed by

the light cut, and the multiplicity cut (section 5.4.1 on the next page). Finally, cells which

demonstrated evidence of photons in the yield data after all of the cuts were applied; such

as out-of-time photons (section 5.4.8 on page 209, were excluded (section 5.4.7 on page 209);

along with cells which could not be properly calibrated for technical reasons.

Every cut has an uncertainty associated with it, in general the procedure for propagat-

ing the uncertainty in the neutron yields depended on first finding a way to estimate the

maximum and minimum values each cut can take within their estimated uncertainties, then

using these values to produce a neutron yield: changing only one cut value at a time, then

proceeding with the rest of the cuts as normal. This resulted in a perturbed final neutron

yield: the difference between this perturbed value and the normal value was deemed the

uncertainty in the neutron yield due to the respective cut.

We applied the same cuts to the simulated data as the experimental data in order to

assume the simulation accurately reproduces the experimental efficiency.

Note that the upper and lower cuts form an inclusive interval in all cases.
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5.4.1 Multiplicity Cut

Table 5.2: Multiplicity Cut Summary

Purpose Eliminate and compensate for incomplete signals in detectors.

Upper Cut 1

Lower Cut 1

Uncertainty Assumed to be 0.

The multiplicity is the number of cells which recorded concurrent events (i.e. within the ADC

integration intervals): e.g. a multiplicity of 2 means 2 cells recorded events above the detection

threshold. The multiplicity cut is necessary because if more than one cell recorded an event

(i.e. multiplicity > 1) then there may be partial signals which arrived in the ADCs while

they were already busy processing an earlier signal.25 The Blowfish array has 88 detectors

in it; when any one cell records an event (i.e. when the discriminator for that cell fires): all

cells are read (see section 3.10.1 on page 88 for details). If an event occurred in a second cell

while the cells were being read then it would appear as a partial event which may or may not

be fully integrated by the ADCs. Since we do not know if the ADC properly integrated the

second pulse, we cannot use it (its PSD wouldn’t be accurate), and so we elected to exclude

all events if more than one cell fired in Blowfish during a single readout.

The multiplicity cut must be applied before the PSD cut (section 5.4.2 on the next page)

and the lower light cut (section 5.4.3 on page 199) because short and long ADC gates may

not have been properly aligned and therefore their relative values would be meaningless for

the PSD and the value of the long gated ADC might be too small (causing the signal to fall

below the lower light cut).

The multiplicity was computed during data analysis by simply counting the number of

cells that fired at each readout. The number of excluded events due to the multiplicity cut:

called the multiplicity factor, was also recorded for each cell so that the data could be scaled

25It is also possible that the earliest signal is a partial signal: if the first signal arrives outside of the
neutron window. The key is the signal which generated the gates is complete, but any other signal could be
incomplete.
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up to compensate for the multiplicity cut. Once the multiplicity cut was performed, we

applied the rest of the cuts and afterwards compensated for the multiplicity cut by scaling

the total neutron yield in each cell by its unique multiplicity factor.

We assume that the cut was perfectly compensated for by the factor and hence do not

include an uncertainty calculation.

5.4.2 Pulse-Shape Discrimination (PSD) Cut

Table 5.3: PSD Cut Summary

Purpose Eliminate photon events from detectors.

Upper Cut None.

Lower Cut Mean minus 2 standard deviations.

Uncertainty Estimated using fitting algorithm.

The purpose of the pulse-shape discrimination (PSD) cut was to exclude as many photons

as possible from the data without introducing any new, unwanted error e.g. by excluding

an unknown number of neutrons. The location of the cut was based on the statistical fit

explained in section 5.3.9 on page 184: a double Gaussian function was fit to the neutrons

and photons (one Gaussian for each) and then the cut was placed at some point on the

neutron Gaussian. Two locations for the cut were tried: at the neutron mean and two

standard deviations towards the photons from the neutron mean, the latter cut was used on

the final data.

When the cut was applied at the mean of the neutron distribution: all of the photons

were eliminated; unfortunately this came at a price: the uncertainty in the fitting algorithm

was amplified causing large uncertainties in the neutron yields which prevented a reasonable

parameterization of the differential cross section: ostensibly because the parameterizing al-

gorithm couldn’t handle the large errors. This is a simple matter of the shape of the neutron

distribution (which is described by a Gaussian): the integral of the Gaussian function has

most of its area near the mean, so a small error in the position at the mean translates into a
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large total error; a large error in the position far from the mean translates into a relatively

small error.

The large errors generated by performing the PSD cut at the mean motivated instead the

use of a cut placed two standard deviations from the mean (i.e. encompassing 97.72% of the

neutrons). The price for this smaller uncertainty is that some photons survive the PSD cut

and become false positives. The background photons (i.e. not from the beam) surviving the

PSD cut were easily subtracted (see section 5.4.5 on page 206), but cells which demonstrated

out-of-time photons after the PSD cut was applied had to be excluded (see section 5.4.7 on

page 209 for details).

The fitting process which calculated the PSD parameter outputs up to 5 parameters, each

with an uncertainty generated using the Minos technique by the TMinuit class of ROOT

[Jam81, Ead06]. We used this to estimate the maximum error in the PSD using eq. (5.6) on

the next page.

Recall eq. (5.5) on page 189:

PSD = 1000(1− S

L
+
φ

L
−R + Se−λL + J · L)

where: PSD is the PSD parameter, L± dL is the long gated ADC value, S± dS is the short

gated ADC value, φ± dφ is a parameter called the offset, and R± dR is a parameter called

the rotation, S ± dS is a parameter called the sheer, λ± dλ is a parameter called the decay,

and J ± dJ is a parameter called the jerk.
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We estimate the error by computing the maximum and minimum values of PSD given a set

of uncertainties in its parameters:

PSDmax
min

= 1000(1− S

L
+
φ± dφ
L

− (R∓ dR) + (S ± dS)e−(λ∓dλ)L + (J ± dJ) · L) (5.6)

where one reads the upper symbol in a ± sign for maximum PSD value (PSDmax) and the

lower symbol for the minimum PSD value (PSDmin). There are covariances between the

parameters, hence why we chose to propagate the error using the above equation, rather than

a standard error propagation technique. We do not include an S∓dS
L

term because we any

variation in the short gate value is perfectly compensated for by a similar variation in the

long gate value.

The maximum and minimum values for the PSD were computed using eq. (5.6), then the

PSD cut was applied using these values along with the rest of the cuts performed normally.

This resulted in a neutron yield for each detector which differed from the correct yield only

due to the position of the PSD cut. Computing the difference in neutrons measured in each

detector when the PSD cut was normal, at a maximum, and at a minimum provided an

estimate for the upper and lower errors associated with the PSD cut. Figure 5.29 on the next

page illustrates the process.
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Figure 5.29: Estimating the Uncertainty in the PSD Cut. The left plot is a

normal PSD plot from run 142, the right plot is the maximum PSD plot from the same

run (calculated using eq. (5.6) on page 198). The data from both plots are completely

processed, culminating in two neutron yields for each Blowfish cell. The PSD cut

accepts all values above 0, so the neutron yield of the right plot will be larger than the

left plot: the difference is considered the upper error for the PSD cut. The lower error

is computed in the same way, except that the minimum PSD value is used instead of

the maximum PSD value.

5.4.3 Light Cuts

Table 5.4: Light Cut Summary

Purpose Eliminate photon events from detectors.

Upper Cut 9000 keVee

Lower Cut 1750 keVee

Uncertainty Calculated from uncertainty in ADC gain and linearity.
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The detector response of a scintillator (i.e. the light output) is commonly measured in

electron-equivalent electronvolts (eVee): the kinetic energy of an electron which would pro-

duce that much light (i.e. a 1 eV electron; by definition, causes a light output of 1 eVee in a

scintillator). Therefore, when we calibrate our detectors they are calibrated in terms of eVee:

i.e. in terms of light intensity; hence, we refer to the energy cuts applied to the detectors as

light cuts.

Recall figure 5.30 on the next page (the same as figure 5.26 on page 190): the light cut

was applied to eliminate false positives due to the photon PSD spectrum overflowing onto

the positive x-axis.
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Figure 5.30: Final PSD Plot. An example of the final PSD plot from a source run

(run 139). Everything below 0 is cut, and above 0 is kept. The light cuts are placed

at 1750 keVee and 9000 keVee in order to exclude the regions of overlap (notice that

the photons curve past 0 at approximately long ADC bin 200). Notice that there are a

few events above the upper light cut with PSD > 0: these must be photons since the

neutrons are kinematically restrained to fall below the upper light cut.

The lower light cut must be applied because PSD requires a difference between the short

and long gated ADC values:26 if a particle of any kind interacts within a small enough

window then the short and long gated ADC values will be the same and the particles will

have identical PSD parameters. Therefore, the lower light cut was placed at the highest

26Recall that the short and long gates refer to the time period over which the ADC integrates charge.
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estimated location of photon and neutron overlap for the majority of cells. An additional

benefit to this cut is that it was placed above the hardware threshold (which is ≈ 300 keVee)

thus eliminating the need to compensate for it.

The purpose of the upper light cut is to reject ADC artifacts at no cost: the neutrons

are energetically forbidden by kinematics to show up above 9 MeV, and even if some exotic

process was producing higher energy neutrons: the detector response of a 9 MeV neutrons

is ≤6 MeVee [Pyw06], meaning neutrons with energies up to ≈ 13.5 MeV would still be

included after the cut was applied. The ADC artifacts are known to occur as a consequence

of the sliding-scale technique (discussed in section 3.10.4 on page 100) [CAE10]: hence why

we must apply the upper light cut (we choose it such that all ADC bins ≥ 3500 are excluded

from analysis).

The light cut is illustrated using the calibrated long gate ADC spectrum in figure 5.31.

Figure 5.31: Effect of the Light Cuts. The left plot shows a typical uncut, long

gated calibrated ADC spectrum (from run143) and the right plot shows the same spec-

trum after the light cuts have been applied.

We assumed that the light cuts would not affect the data in any way that the simulation

would not account for by applying the same light cuts to the simulated data. We later altered
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the position of the light cuts to ensure that this assumption is valid: the final data do not

depend on the positions of the light cuts (see appendix J on page 302 for details).

We estimated the light cut uncertainty using standard error propagation techniques: the

nominal ADC uncertainties, the uncertainty in the pedestal, and the uncertainty in the gain

were appropriately scaled and added in quadrature.

The uncertainty in the neutron yield was propagated by raising and lowering the upper

and lower light cuts by the uncertainties calculated, then applying all other cuts normally.

This resulted in four sets of cell yields with varied light cuts, the difference between each set

of yields and the normal set was computed, resulting in an upper and lower error for both

the upper and lower light cuts.
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5.4.4 Time-of-Flight Cut

Table 5.5: Time-of-Flight Cut Summary

Purpose Eliminate beam photons and neutrons for other sources.

Window (long target)

Cells 1-8 cut from 7.12 to 17.31 ns (expected TOF: 12.33 ns)

Cells 9-16 cut from 7.02 to 17.19 ns (expected TOF: 12.23 ns)

Cells 17-25 cut from 6.90 to 17.01 ns (expected TOF: 12.09 ns)

Cells 26-33 cut from 6.76 to 16.78 ns (expected TOF: 11.92 ns)

Cells 33-40 cut from 6.61 to 16.51 ns (expected TOF: 11.73 ns)

Cells 41-48 cut from 6.45 to 16.23 ns (expected TOF: 11.53 ns)

Cells 49-56 cut from 6.30 to 15.95 ns (expected TOF: 11.33 ns)

Cells 57-64 cut from 6.16 to 15.68 ns (expected TOF: 11.15 ns)

Cells 65-72 cut from 6.05 to 15.44 ns (expected TOF: 11.00 ns)

Cells 73-80 cut from 5.96 to 15.23 ns (expected TOF: 10.87 ns)

Cells 81-88 cut from 5.90 to 15.08 ns (expected TOF: 10.78 ns)

Window (short target)

Cells 1-8 cut from 8.47 to 15.93 ns (expected TOF: 12.33 ns)

Cells 9-16 cut from 8.37 to 15.82 ns (expected TOF: 12.23 ns)

Cells 17-25 cut from 8.23 to 15.65 ns (expected TOF: 12.09 ns)

Cells 26-33 cut from 8.07 to 15.43 ns (expected TOF: 11.92 ns)

Cells 33-40 cut from 7.90 to 15.19 ns (expected TOF: 11.73 ns)

Cells 41-48 cut from 7.72 to 14.93 ns (expected TOF: 11.53 ns)

Cells 49-56 cut from 7.55 to 14.66 ns (expected TOF: 11.33 ns)

Cells 57-64 cut from 7.40 to 14.41 ns (expected TOF: 11.15 ns)

Cells 65-72 cut from 7.27 to 14.19 ns (expected TOF: 11.00 ns)

Cells 73-80 cut from 7.17 to 14.00 ns (expected TOF: 10.87 ns)

Cells 81-88 cut from 7.10 to 13.86 ns (expected TOF: 10.78 ns)

Uncertainty 0.64 ns (included in intervals)
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As discussed in section 2.3 on page 23: we assume that the photodisintegration of the deuteron

occurs elastically and compute the kinetic energy of the outgoing neutron as a function of

its emission angle. We used the computed kinetic energy, along with a conservative estimate

of the range of free paths that a neutron could take to predict the time-of-flight,27 then cut

all events which do not fall within this interval. This eliminates most of the confounding

neutrons produced by photodisintegration reactions of other nuclei.

The time-of-flight (TOF) interval includes all possible undeviated paths that a d(~γ,n)p

neutron can take from the target to a detector; we account for neutrons which scatter before

being detected by applying the same cut to the simulation. The intervals used are given in

table 5.5 on page 204. The cut is illustrated in figure 5.32.

Figure 5.32: Effect of the Time-of-Flight Cut. The left plot shows a typical

time-of-flight spectrum (from run 143) and the right plot shows the same spectrum

after the cut has been applied. The difference for this cell before and after the cut is

not dramatic because the PSD cut has already been applied.

The vast majority of the target is composed of 1H, 16O, 12C, and D: H has no neutrons, 12C

has a neutron separation energy greater than the beam energy (18.7 MeV [Son13]), and the

27Considering: the possible interaction points with respect to the geometry, the energy distribution ob-
served by each cell due to its angular size, and all pertinent uncertainties.
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neutrons from 16O(γ,n)15O have a minimum expected time-of-flight of 15 ns (the maximum;

without scattering, is 26 ns);28 meaning that after the time-of-flight cut almost all of the

neutrons left will have been produced by d(~γ,n)p. The time-of-flight cut also excludes the

vast majority of photons that make it past the PSD cut (section 5.4.2 on page 196) because

the prompt scattered photons from the beam are excluded (they arrive at ≈ 1.5 ns).

5.4.5 Background Cut

Table 5.6: Background Cut Summary

Purpose Subtract background radiation from detectors.

Background Interval [-30 ns, -10 ns]

Uncertainty
√

Counts

The background cut compensates for any background radiation that made it past the rest of

the cuts and into the neutron yield. We integrate the number of events that occurred before

the beam arrived (from -30 ns to -15 ns); which should include only background radiation,

then assume the background rate is the same in the part of the time-of-flight spectrum used.

We can safely assume that the background rate is uniform so long as there is no correlation

between the background rate and the beam; unfortunately, the out-of-time photons from the

beam (described in section 5.3.1 on page 152) arrive periodically every 5.36±0.49 ns relative

to the on-time beam. We therefore had no choice but to exclude cells with out-of-time

photons present.

A typical background cut for an included cell looks something like figure 5.33 on the next

page.

28This was calculated for the long target assuming that the neutron is generated at the closest point of the
target to the detector, then interacts at the closest edge of the detector using the separation energy from the
National Nuclear Data Center [Son13].
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Figure 5.33: Typical Background Spectrum (run 142). A background spectrum

consists of the recorded events between -30 and -15 ns (i.e. when the beam photons hit

the target), this should contain only background radiation and out-of-time photons from

the beam. Using eq. (5.7a), the spectrum corrects the neutron yields for background

radiation.

The average background count value is taken and then scaled up to the time-of-flight

interval and subtracted from the neutron yield:

N ′ = N − I

15 ns
B = N − I ·

∫ −15 ns

−30 ns
T (t)dt

15 ns
(5.7a)

where: N ′ is the background corrected neutron yield, N is the neutron yield before correction,

B is the background yield, T (t) is the time-of-flight spectrum (in hits/ns), and I is the time-

of-flight cut interval.
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We propagate the error using the normal technique but neglecting the error in the time

interval, then the error in the background counts is given by
√
B:

dN ′ =

√
dN2 + (

I

15 ns
dB)2 =

√
dN2 + (

I

15 ns
)2B (5.7b)

5.4.6 Water (H2O) Target Correction

Table 5.7: Water Target Correction Summary

Purpose Compensate for false-positives and neutrons from other sources.

Cut 1H2O data were fully analyzed then subtracted from other runs.

Uncertainty Full estimate: treated like D2O data.

Even after all of the cuts were performed, we still had a few false positives (photons and

other non-neutron radioactive particles) and neutrons from reactions other than d(~γ,n)p.

As mentioned earlier, 16O(γ,n)15O, is the primary culprit for other neutrons since it is in

abundance in the target and not energetically prohibited; 13C(γ,n)12C is another example.

Regardless of where the neutrons are from, so long as we utilize the experimental run with

a light water target (run 154): we will have nearly identical conditions except that there

are now almost no neutrons in the hydrogen nuclei (only those due to naturally occurring

deuterium); therefore, the neutron yield of run 154 will give the best estimate of the number

of false positives and neutrons from other reactions in our data.

In order to compensate for excluded cells (the H2O run has a different cell exclusion table

than the other runs), we elected to parameterize the differential cross section for neutron

production by the water target and extract an effective total cross section.

The parameters are reported in section 6.3 on page 224.

The total cross section was computed following the same methodology as the D2O data,

and is reported in section 6.2 on page 218.
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5.4.7 Cell Exclusions

The possible reasons for cell exclusion are: unable to calculate the gain (section 5.3.2 on

page 159), unable to produce meaningful PSD separation (section 5.3.9 on page 184), TDC

drift (section 5.3.8 on page 182), the cell recorded no events, or out-of-time (OOT) photons

were present after all cuts were made (section 5.4.8). These phenomena are described in their

respective sections.

The exclusions for all of the experimental runs analyzed are listed in appendix I on

page 298, along with the reasons for their exclusion.

5.4.8 Out-of-Time Photon Exclusions

Not all cells will have a significant contribution from out-of-time photons: they are much

more likely to scatter at low angles into the downstream cells (as per the Klein-Nishina

equation: eq. (A.1) on page 280), and the PSD cut may or may not exclude them. A

peak finding algorithm [Mor00] was applied to the background time-of-flight spectrum (i.e.

t ∈ [−50 ns, 0 ns]) to look for anomalies, then it was subjected to a validation algorithm

which verified the periodicity was consistent with the out-of-time photons (i.e. arriving every

5.36±0.49 ns), and finally the cell was recorded and the user was asked to verify the presence

of out-of-time photons in the spectrum.29 For example, a cell which was detected as having

out-of-time photons is shown in figure 5.34 on the next page.

29Future iterations of this algorithm could readily be made more robust and fully automated, but currently
it is insufficiently accurate for full automation.
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Figure 5.34: Typical Background Time-of-Flight Spectrum with Out-of-

Time Photons Present (run142). This cell was excluded based on the presence

of the peaks (red markers), which are believed to be out-of-time photons due to their

periodicity.

Cells which were verified by the user as having out-of-time photons in them were added

to the cell exclusion table and were not included in the final analysis (see section 5.4.7 on

page 209 for details). If they were not excluded then it is possible that they could bypass

the time-of-flight cut: by arriving at 5.6 ns or 11.2 ns (they have already bypassed the PSD

cut if they are found in the background spectrum).
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5.5 Total Cross Section

The total cross section is a probabilistically weighted area which represents how likely a

specific interaction is to occur. We therefore need to know: the number of nuclear targets

(i.e. the atomic density and target length), the number of photons available (i.e. the flux

at and in the target), and the number of neutrons produced via the reaction. We had to

measure: the target length, the photon flux (section 5.5.1), and the neutron yield; everything

else can be taken from literature to calculate the total cross section.

5.5.1 Computing the Beam Flux

We computed the beam flux using the Five Paddle Flux Monitoring System (described in

section 3.9 on page 85). The Five Paddle detector was placed into the beam-line; upstream

of the target, where it ‘sampled’ the beam: it detects a small portion of the photons in

the beam (≈ 2%) and allows the rest to pass unimpeded. The accelerator keeps track of

the number of electron bunches, and so we counted the number of times an electron was in

position to produce a photon in the FEL (free-electron laser). Knowing how often the beam

could produce a photon, we need only know the relative probability of it being detected in

order to appropriately scale up the number of photons detected by the Five Paddle detector:

this essentially comes down to accurately (and hopefully precisely) determining the efficiency

of the Five Paddle detector.

By taking a few beam measurements with both the Five Paddle detector and the sodium

iodide detector (both are described in section 3.9 on page 85) with varying beam intensities,

we determined the relative efficiencies of the detectors, and then using a GEANT4 simulation

to account for photon scattering and attenuation, we can determined the absolute efficiency

of the Five Paddle detector. The GEANT4 simulation is also capable of accurately predicting

the Five Paddle detector efficiency directly, however we only use it as a consistency check.

Runs 145-148 were performed with varying beam intensities and the sodium iodide detector in

place. The measured count rates of the sodium iodide detector and the Five Paddle detector

were then plotted against each other to determine the raw calibration factor (fm’ in eq. (5.8)

on the next page), this is illustrated in figure 5.35 on the next page.
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Figure 5.35: Calibrating the Five Paddle Flux Monitor. The sodium iodide

detector rate is plotted versus the Five Paddle rate in order to determine the relative

efficiencies.

With the raw calibration factor derived graphically using figure 5.35, simulations were

run to derive two calibration factors (CA and CB in eq. (5.8)). The remaining variables were

all measured in the lab: the live time of the experiment, and the Five Paddle measurements:

the total number of events (Nm in eq. (5.8)), the total number of veto events (Nν in eq. (5.8)),

and the background event rate (Bm in eq. (5.8)). With all of these data, we can compute the

beam flux at the target, Nt:

Nγ = CAf
′
mBln(

B −Nν

B −Nν −Nm

)

Ni

Tlive
= f ′m(

N ′m
Tlive

−Bm)

Nt =
Nγ

CB
(5.8)

where: Nt is the number of photons at the start of the target (this is what we want), f ′m is

a calibration factor extracted from figure 5.35, CA and CB are calibration factors extracted
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via the simulation, Ni is the integrated number of counts in the sodium iodide detector, Nm

is the flux monitor counts read by scaler 9, Tlive is the live-time of the experiment, B is the

number of bunches of electrons in the accelerator during the live time, Bm is the background

rate of Five Paddle, and Nν is the number of veto events measured by Five Paddle [Pyw11].

Eq. (5.8) on page 212 gives us an estimate for the number of photons incident on the

target, with an uncertainty (using standard techniques). Due to the presence of out-of-time

photons in the beam (section 5.3.1 on page 152), we must scale down the estimated number

of photons incident on the target, because the out-of-time photons will produce neutrons

that are eliminated by the time-of-flight cut. For example, if a photon arrives two periods

later than expected from the beam (i.e. at 11.2 ns) then the neutrons it produces will not

start to arrive until well after the time-of-flight cut (i.e. at ≈ 20 ns), even though they have

the appropriate energy and may have not scattered: if we do not correct for this then we will

have an artificially low total cross section due to rejection of valid data.

In section 5.3.1 on page 152, the technique used for estimating the ratio of out-of-time

photons from the beam was described. For simplicity sake, we assume that all out-of-time

photons which produce neutrons were excluded by the time-of-flight cut, then the out-of-time

corrected beam flux is given by:

N ′t = R ·Nt (5.9)

where the number of photons incident on the target (Nt) is corrected by the out-of-time

factor (R = Number of photons on time
Number of photons

), giving the corrected number of photons incident (N ′t).

We use N ′t from eq. (5.9) to calculate the total cross section, following the methodology

set forth in section 5.5.2 on the next page. We take the extreme conservative estimate for

the error in N ′t and take it as δN ′t = (1−R)Nt.
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5.5.2 Computing the Total Cross Section

The empirical definition of the cross section is derived in section 2.4 on page 25, we rearrange

eq. (2.4) on page 27 to get eq. (5.10):

σ =
NDµ

ρnN0(1− e−µx)
(5.10)

where: ND is the number of daughter particles produced by an interaction in a target of

length x, N0 is the number of incident particles, σ is the reaction cross section as defined

by this equation (cm2/atom), ρ is mass density (g/cm3), n is the number density (atoms/g),

and µ is the linear mass attenuation coefficient (cm−1).

Using eq. (5.10), we calculated the cross section from the number of neutrons that we

measured using eq. (5.11) on the next page: derived as follows.

The number of neutrons we measure depends on the efficiency:

Nd ≡ εdND

where: ND is the number of neutrons incident on a detector, d, εd is the detector’s efficiency

defined by this equation, and Nd is the number of neutrons measured by detector d. Similarly,

the simulation of the detector has relation:

N sim
d ≡ εsimd N sim
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where: N sim is the number of neutrons simulated, εsimd is the efficiency of the simulated

detector defined by this equation, d, and N sim
d is the number of neutrons measured by detector

d.

We then make the key assumption that the detector and simulation efficiencies are the same.

This enables us to solve eq. (5.10) on page 214 with available data:

σ =
N sim

N sim
d

Ndµ

ρnN0(1− e−µx)
(5.11)

Note that Wurtz [Wur10c] derived a similar result, but assumed that the target was infinites-

imally thin (i.e. 1− e−µx = µx)

Note that µ in eq. (5.11) is close but not equal to the linear mass attenuation coefficient

recorded in table A.2 on page 281. This is because we have different geometry than what

is used to measure the mass attenuation coefficients; using the simulation, we estimated

that the effective beam attenuation was 0.01604 ± 0.00015 cm−1 for the long target and

0.015844 ± 0.000096 cm−1 for the short target, this scales as an approximately 1% smaller

cross section than would be estimated using the linear mass attenuation coefficient from

literature.

Eq. (5.11) assumes that the experimental and simulated detector efficiencies are the same.

Although this is a source of error (discussed in section 7.1 on page 246), there is a compelling

argument for why it should be true. The factors involved in the efficiency are: geometry,

interaction probability with the detector, light output, dead-time, and electronic efficiency.

The geometry and interaction probability have been shown to be consistent in the past (see

section 4.2.4 on page 110), as has the light output [Pyw06]; furthermore, our raw data spectra

are perfectly consistent with the simulation (see appendix J on page 302). This leaves only

the dead-time and electronic efficiency, we assert here that these are both very close to

100% efficient: the former because we simply turn off the DAQ when the detector is busy
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(so the dead-time doesn’t matter), and the latter because the lower light cut (described in

section 5.4.3 on page 199) is well above the hardware threshold.

Thus, using eq. (5.11) on page 215 we can calculate the total cross section; the error

is estimated using standard error propagation (i.e. take the differential then add errors in

quadrature).

5.6 Differential Cross Section

The total cross section defines the magnitude of the deuteron photodisintegration interaction,

we wish to enhance our knowledge by including the spatial distribution of the interaction:

the differential cross section dσ
dΩ

. In section 4.4.2 on page 119 we showed that the Legendre

Expansion of the differential cross section (eq. (2.20) on page 49); can be written in terms of

the neutron yields N sim
d,lk from the simulation of probability density functions ρlk:

Nd ≈A[(1−
4∑

k=1

ak − 3e2 − 6e3 − 10e4 − c1 −
3

2
c2 − d1 −

3

2
d2)N sim

d,00

+
4∑

k=1

akN
sim
d,0k + 3e2N

sim
d,22 + 6e3N

sim
d,23 + 10e4N

sim
d,24

+ c1N
sim
d,11 +

3

2
c2N

sim
d,12 + d1N

sim
d,11′ +

3

2
d2N

sim
d,12′ ] (5.12)

where: Nd is the neutron yield in a detector, d, and N sim
d,lk is the simulated neutron yield for

the probability density function ρlk.

We simulated each probability density function, then processed the data from each simu-

lated run in the same manner as the experimental data: with all of the same cuts; this gave

us a neutron yield associated with each probability density function i.e. N sim
d,lk in eq. (5.12)

for each of the 88 detectors on Blowfish (Nd, {d|d ∈ Z ∧ d ∈ [1, 88]}).

With the neutron yields from the experimental and simulated data, we used the χ2 re-

ducing implementation of the TMinuit class in ROOT (including the Minos error estimation

technique [Jam75] and a robust correlation estimator for the parameters [Rou99]) to extract
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the parameters of best fit for eq. (5.12) on page 216.30 With the Legendre polynomial coef-

ficients extracted, and the total cross section data following the procedure in section 5.5 on

page 211 we can calculate the differential cross section using eq. (2.20) on page 49.

5.6.1 Analyzing Power

Using the Legendre expansion of the differential cross section; and the parameters extracted

as delineated in section 5.6 on page 216, we can compute the analyzing power:31 an observable

which depends only on the polar angle (θ), but is sensitive to variations in the polarization

(i.e. the e parameters). Recall that the analyzing power is:

Σ(θ) ≡ 1

Σl

dσ
dΩ

(θ, φ = 0◦)− dσ
dΩ

(θ, φ = 90◦)
dσ
dΩ

(θ, φ = 0◦) + dσ
dΩ

(θ, φ = 90◦)
(5.13a)

=
1

Σl

∑
k=2 ekP

2
k (cos θ)∑

k=1 akP
0
k (cos θ)

(5.13b)

where: dσ
dΩ

is the differential cross section, Σl is probability of an incident photon being

horizontal polarized, the ak and ek are the extracted parameters from the Legendre expansion,

and P i
k are the associated Legendre polynomials. Note: the polarization would normally

cancel in the second expression, but recall that we defined the e parameters such that they

incorporated the polarization.

30We also used the log-likelihood reducing algorithm: it produced the same result.
31The analyzing power is also known as the photon asymmetry.
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Chapter 6

Results and Discussion

6.1 Introduction

In this chapter we present and discuss the fully processed data: the total cross section

(section 6.2), the values for the parameters of the Legendre expansion of the differential cross

section (section 6.3 on page 224) and the subsequently calculated observables (section 6.3.1

on page 235).

We used our results to perform several consistency checks on the simulation, these are

described in appendix J on page 302.

6.2 Total Cross Section

Using the procedure in section 5.5 on page 211, we computed the total cross section for each

run using the total neutron yield from Blowfish and the number of incident photons from the

Five Paddle Flux Monitor (section 3.9); the results are given in: table 6.1 on the next page,

table 6.2 on page 220, and figure 6.1 on page 221.
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Run Target Cross Section (µbarns)

142 10.7 cm 661± 51

143 10.7 cm 670+59
−60

149 10.7 cm 644+51
−54

150 10.7 cm 644± 48

152 10.7 cm 649+55
−57

153 10.7 cm 667+62
−64

154 10.7 cm (H2O) 11+10
−9

155 2.0 cm 636+87
−85

157 2.0 cm 650+57
−58

158 2.0 cm 657+62
−58

159 2.0 cm 646+77
−72

Table 6.1: Run-by-Run Total Cross Section Data. These data have not had

the water target correction applied (i.e. the values include the contribution by the H2O

target: 11+10
−9 µbarns).
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Average Cross Section (µbarns)

Long Target 643± 55(25)

Short Target 638± 71(36)

Total 643± 62(21)

Theory 685.14

Skopik et al. [Sko74] 640± 31

Ahrens et al. [Ahr74] 672± 61 (interpolated)

Bernabei et al. [Ber86] 689± 69 (interpolated)

Michel et al. [Mic89] 693± 32 (interpolated)

DeGraeve et al. [DGr91] 716± 22

Weighted Average* 690± 15

Table 6.2: Averaged Total Cross Section Data. The experimental averages are

reported for the long target, short target, and both; after the water target correction has

been applied. Our data are reported with uncertainties, ∆σ estimated by assuming the

error for each run are entirely systematic (∆σ̄ = 1
N

∑N
i=1 ∆σi); parenthesis: uncertainty

if the run errors are entirely random (∆σ̄ = 1√PN
i=1 ∆σ−2

i

). *Weighted Average: weighted

average of Skopik et al., Ahrens et al., Bernabei et al., Michel et al., and Degraeve et

al.
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Figure 6.1: Total Cross Section. Our experimental results compared to the the-

oretical prediction, and the results of previous experiments. Our results agree with

theory and previous experiments: within error.

Our results agree with theory and previous experimental values if we take a conservative

estimate of our systematic error, and they agree with most experiments with a cavalier

estimate of our systematic error; but the cross section is lower than expected by ≈ 7%. This

implies that we may have had a systematic error present in all of the experimental runs, for

example: the radius of Blowfish (40.64 ± 0.30 cm) was set once, and it is highly unlikely

that it changed: if it was set to be too large by the uncertainty value then our cross section

would be lower by a factor of the surface area ratios (0.9851); the possible sources of such a

systematic error are discussed in detail in section 7.1 on page 246.

As a consistency check on our values, we also computed the cross sections by: assuming

that Blowfish acts as one large detector, and by using the overall scaling parameter from the

Legendre expansion of the neutron yield (eq. (6.2) on page 224). All methodologies agree on

the reported values.

1This propagates into a cross section which is Sr
Sr+dr

= ( r
r+dr )2 = 0.985 smaller than reality i.e. our cross

section would really be 653 µbarns.
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In order to determine the total cross section, we had to assume that the simulated efficien-

cies are equal to the experimental efficiencies for Blowfish. In section 5.3.2 on page 161 we

discussed how we forced the ADC spectra to agree between the simulation and experiment by

scaling the calibrated ADC values. There was a lingering question of the agreement between

simulated and experimental TDC spectra, though, (discussed in detail in section 5.3.6 on

page 176) and if they do not agree then the time-of-flight cut will cause the simulated and

experimental efficiencies to differ. Therefore we verified that the time-of-flight cut was not

changing the outcome of the experimental cross section data by drastically altering it: it

doesn’t, it only improves the precision (figure 6.2 and accompanying table 6.3 on the next

page).

Figure 6.2: Total Cross Section with Varied Time-of-Flight Cut. Notice that

all data agree very well with each other, and the theory. The time-of-flight cut is

working perfectly: it doesn’t change the cross section meaningfully, but it does reduce

the uncertainty. Soft TOF cut: 5-50 ns.
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Average Cross Section (µbarns)

Theory 685.14

Long Target 643± 55

Long Target (soft) 643± 72

Short Target 638± 71

Short Target (soft) 650± 150

Table 6.3: Total Cross Section with Varied Time-of-Flight Cut. Soft TOF cut:

5-50 ns.

6.2.1 Discussion of Cross Section Data

Our results agree with other researchers and theory, within error, although our results are

systematically lower than the weighted average of other researchers by approximately 7%

(47 µbarns).

Our results agree especially well with Skopik et al. [Sko74], but their results depended

on a model-derived photon flux, and the subsequent model-independent results of Ahrens et

al. [Ahr74] showed that Skopik et al.’s results were systematically high at 20 and 25 MeV,

implying there may have been problems with Skopik et al.’s photon flux model, and we

therefore must infer that the similarity between our results and Skopik et al.’s could be

merely a coincidence.

Our total cross sections agree after all reasonable consistency checks are made: changing

the time-of-flight cut, comparing the short and long targets, and changing the methodology

for computing the cross section. Our results are self consistent.

We conclude that our results are consistent with theory and other researchers, and that

our experiment may have had an appropriately quantified systematic uncertainty during all

of the runs which caused our results to be lower than expected. This is supported by the

observed ‘over-fit’ of the experimental parameterization: 〈χ2
red〉 = 1 [Tay97], yet our fit yields

χ2
red = 0.31; consistent with the presence of significant systematic error in our data. Two

possible systematic uncertainties which contributed are the beam energy and the radius of

Blowfish, together these could contribute to the cross section being an estimated 25 µbarns
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lower than expected (see section 7.1 on page 246 for details).

6.3 Legendre Parameterization of the Differential Cross

Section

Recall from section 2.5.4 on page 44 that the differential cross section can be expanded in

terms of the associated Legendre polynomials [Cam82, Kuc10]:

dσ

dΩ
≈ σ

4π

[
1 +

4∑
k=1

akP
0
k (cos θ) +

4∑
k=2

ekP
2
k (cos θ) cos 2φ

+
2∑

k=1

ckP
1
k (cos θ) cosφ+

2∑
k=1

dkP
1
k (cos θ) sinφ

]
(6.1)

where: P i
k are the associated Legendre polynomials, the ak, and the ek are theoretical pa-

rameters, and the ck and the dk are parameters used to verify the target alignment, and σ is

the total cross section.

The theoretical parameterization was extracted directly from the theoretical calculations

using eq. (6.1), while the experimental parameterization was extracted by mapping the Leg-

endre expansion into a simulated neutron yield (described in section 4.4.2 on page 119):

Nd ≈A[(1−
4∑

k=1

ak − 3e2 − 6e3 − 10e4 − c1 −
3

2
c2 − d1 −

3

2
d2)N sim

d,00

+
4∑

k=1

akN
sim
d,0k + 3e2N

sim
d,22 + 6e3N

sim
d,23 + 10e4N

sim
d,24

+ c1N
sim
d,11 +

3

2
c2N

sim
d,12 + d1N

sim
d,11′ +

3

2
d2N

sim
d,12′ ] (6.2)

where: Nd is the neutron yield in a detector, d, of Blowfish, N sim
ik are the simulated neutron

yields associated with the P i
k associated Legendre polynomial, the ak, ek, ck and dk parameters

are the same as in eq. (6.1), and A is a fit parameter proportional to the efficiencies and the

total cross section.

Following the procedure in section 5.6 on page 216, we extracted parameters for each
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of the experimental runs; including the H2O target run, using eq. (6.2) on page 224. We

verified the fit results from ROOT with a simple χ2 reducing algorithm, as well as via the

log-likelihood minimization implementation of TMinuit (ROOT), and found that they all

agreed on the parameter values within error. The runs were scaled by their respective value

of A in eq. (6.2) on page 224, and then averaged together giving two average neutron yields:

one for the long target, and one for the short target.2 The scaled average neutron yield is

given in figure 6.3 on the next page along with: its parameterization using the simulated

Legendre probability density functions (PDFs), and the theoretical parameters expressed

using the simulated Legendre PDFs. We see good agreement between the neutron yields

and both the extracted parameterization (χ2
red = 0.31 ) and the theoretical parameterization

(χ2
red = 0.74 ).

2The long and short target have different geometries and therefore required different simulations, thus it
would be frivolous to average their yields together: only their parameters are worth comparing.
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Figure 6.3: Parameterized Neutron Yield for Long Target Average. We see

good agreement between the neutron yields and both: the extracted parameterization

(χ2
red = 0.31 ), and the theoretical parameterization (χ2

red = 0.74 ). The agreement

between the theoretical and extracted parameterizations is excellent: every theoretical

prediction is within the error interval of the respective parameterized prediction, and is

typically very close to the median value. Note: Excluded cells are set to -1. 76 of the

88 cells were used.
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The long target runs provided the largest yields, and so they gave the most precise set of

parameters; while the short target parameters serve as a test for target length dependence.

The parameters for the long and short target averages are given in table 6.4 along with the

theoretical parameters from Schwamb and Arenhövel [Sch01c, Sch01a, Sch01b].

Parameter Long Target Value Short Target Value Theory

a1 −0.149± 0.020 −0.123± 0.043 −0.157

a2 −0.861± 0.030 −0.840± 0.070 −0.897

a3 0.120± 0.038 0.129± 0.071 0.146

a4 0.010± 0.033 −0.032± 0.055 −0.015

e2 0.4296± 0.0043 0.4224± 0.0081 0.45

e3 −0.0226± 0.0029 −0.0184± 0.0047 −0.024

e4 −0.0005± 0.0024 −0.0027± 0.0033 0.0014

Table 6.4: Legendre Expansion Parameters. The theoretical parameterization is

accurate to < 1%. Note: we assume the horizontal polarization is perfect, otherwise

our e parameters must be divided by the linear polarization ratio. We report the

first column (long target) parameters as our best parameters. Note: we report the

symmetric error, as the non-parabolic error is very close (table 6.6 on page 232).

The theoretical calculations for the photon asymmetry (i.e. analyzing power) and dif-

ferential cross section performed by Schwamb and Arenhövel (discussed in section 2.5.3 on

page 34) were used to extract the theoretical parameters in table 6.4 via a simple χ2 reducing

algorithm. The theoretical parameterization agrees with the theoretical calculations to well

within 1% at all data points for the analyzing power and differential cross section; figure 6.4

on the next page shows the quality of the theoretical parameterization.
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Figure 6.4: Parameterized Theoretical Predictions of the full Schwamb and

Arenhövel calculation. Left: the differential cross section averaged over φ. Right:

the analyzing power (a.k.a the photon asymmetry). All data points agree with the

parameterization to < 1%.

The individual contributions to the theoretical calculation from: meson exchange currents,

∆ baryon degrees of freedom, and relativistic corrections, showed too small of a difference in

their predictions to resolve any meaningful discrepancies given the level of precision of our

experimental data. Therefore, only the full calculation from Schwamb and Arenhövel has

been included here.

Neglecting the parameter errors in the theoretical values, we see that the short and long

targets agree with each other’s parameterizations but not with the theoretical one: figure 6.5

on the next page and figure 6.6 on page 230. Our best parameters (the long target ones)

agree with the theoretical parameters within 2σ 86% of the time, and agree within 1σ 57%

of the time: therefore, a case can be made that the discrepancy we see between theory and

experiment could be purely statistical.
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Figure 6.5: Comparison of the Extracted ak Parameters. The long and short

target parameters agree very well, but the agreement with theory is dubious (at least

for a2 and a4). Note that the a2 plot has a suppressed zero.
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Figure 6.6: Comparison of the Extracted ek Parameters. The long target pa-

rameters agree very well with the short target parameters, but not with the theoretical

parameters (except e3). Note that the e2 plot has a suppressed zero.

Although the associated Legendre polynomials are orthonormal, the simulated neutron

yields for the respective probability density functions clearly are not: there are strong corre-

lations between many of the parameters, allowing them to compensate for one-another. This

is most likely due to finite sampling of the Legendre polynomials, rather than an artifact

of the mapping into a neutron yield because we verified that the simulated neutron yields

preserve the parameterization when simulated (appendix J on page 302).

Some of these correlations may have a physical origin (see eq. (2.19) on page 48 for the

theoretically predicted correlations), namely the even parameters with each other and the

odd parameters with each other: for example the a1 and a3 parameters are approximately

equal in magnitude (opposite in sign) given a basic assumption about the photodisintegration

process (i.e. no splitting [Bla07]); others are unlikely to be, namely the even parameters are
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unlikely to be strongly correlated to the odd parameters. It is unclear whether the fitting

procedure was able to find these physical correlations in the data or if the correlations are

purely due to a poor fit. The robust correlation matrix is given in table 6.5: where outliers

have been automatically excluded via Rousseeuw et al.’s [Rou99] algorithm.

Parameter a1 a2 a3 a4 e2 e3 e4

a1 1 0.65 0.30 0.40 −0.36 0.41 0.19

a2 0.65 1 0.72 0.60 −0.61 −0.12 0.38

a3 0.30 0.72 1 0.67 −0.46 −0.52 0.59

a4 0.40 0.60 0.67 1 −0.40 −0.19 0.39

e2 −0.36 −0.61 −0.46 −0.40 1 0.18 −0.24

e3 0.41 −0.12 −0.52 −0.19 0.18 1 −0.23

e4 0.19 0.38 0.59 0.39 −0.24 −0.23 1

Table 6.5: Correlation of Fit Parameters (long target average). After fitting the

neutron yields to eq. (6.2) on page 224, the correlation matrix was calculated for the

extracted parameters. Noteworthy correlations: the a parameters are all correlated

strongly to one another, and a2 and e2 are strongly correlated (they’re the dominant

parameters in the expansion). Theory predicts correlations between even/even and

odd/odd but not even/odd parameter pairs.

Given the correlations in table 6.5 it was necessary to use the Minos error estimation

technique: which includes the contribution of parameter correlations to the uncertainty in

each parameter [Jam94]. The full parameter errors are given in table 6.6 on the next page:

clearly the symmetric uncertainties are very good approximations for the asymmetric ones.
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Parameter
Experimental Symmetric Upper Lower

Value Uncertainty Uncertainty Uncertainty

a1 −0.149 ±0.020 +0.020 −0.020

a2 −0.861 ±0.030 +0.030 −0.031

a3 0.120 ±0.038 +0.039 −0.038

a4 0.010 ±0.033 +0.033 −0.033

e2 0.4296 ±0.0043 +0.0043 −0.0043

e3 −0.0226 ±0.0029 +0.0029 −0.0029

e4 −0.0005 ±0.0024 +0.0024 −0.0023

Table 6.6: Full Errors for Parameterization (long target average). The parabolic

(symmetric) uncertainties are an excellent approximation for the asymmetric uncer-

tainties (lower and upper uncertainties).

The additional c and d parameters included in the Legendre expansion in order to

verify target alignment were found to be less than their respective errors, and we therefore

conclude that there was no problem with the target alignment (table 6.7); these parameters

were excluded from the final fit (i.e. table 6.4 on page 227).

Parameter Value

c1 0.01468± 0.02166

c2 0.00086± 0.01340

d1 −0.00091± 0.00936

d2 −0.00618± 0.00694

Table 6.7: Additional Parameters from fit to average (long target). All values are

0 within error.

All of the reported parameters include a neutron background subtraction (i.e. water target

correction) to remove neutrons from other sources, as described in section 5.4.6 on page 208.

The result of the light water target parameterization is given in table 6.8 on the next page.
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Parameter Value

A(4π) = σeff 11± 10µbarns

a1 0.17± 0.48

a2 −0.07± 0.63

a3 0.19± 0.60

a4 0.04± 0.48

e2 0.18± 0.065

e3 −0.007± 0.034

e4 −0.016± 0.022

Table 6.8: Light Water Target Parameters (long target).

The fit to the light water target (run 154) neutron yield is shown in figure 6.7 on the

next page. The parameterization was performed instead of subtracting the light water target

yield directly because there was only one H2O target run and most of the cells in that run

had to be excluded.
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Figure 6.7: Light Water Target Neutron Yield. The H2O target neutron yield

(black) was parameterized (red) so that it could be subtracted from the D2O data. The

fit is poor because there are many missing cells and the yield is small.
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6.3.1 Observables

Using the Legendre parameterizations from section 6.3 on page 224 we calculated the exper-

imental observables: the cross section and the analyzing power, for both the experimental

and theoretical parameterizations. All of the experimental observables in this section use the

long target parameters from table 6.4 on page 227; the theoretical observables were calcu-

lated using the theoretical parameters from table 6.4 on page 227 and were scaled, where

appropriate, by the experimental cross section from section 6.2 on page 218.

We start by considering the differential cross section projected into one dimension by

averaging over the azimuthal angle (φ): figure 6.8; this is equivalent to the unpolarized cross

section and depends only on the ak parameters.

Figure 6.8: Differential Cross Section vs θ in the CM Frame. The differential

cross section has been averaged over φ. The theoretical (blue) and experimental (red)

results agree, except for possibly near the backwards most angle (near θ = 180◦).

Theory has been scaled to the experimental results. Left image: Cartesian coordinates.

Right image: polar coordinates: angle is theta (in degrees), and the radius is cross

section (in microbarns). The legend is the same for both images.

We see excellent agreement between our results and the theoretical calculation for the
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unpolarized cross section in figure 6.8 on page 235, except at the backwards-most angles

where we find the theory is slightly lower than our measurement.

We have also computed some ratios shown to be of interest at lower energies (i.e. Eγ <

10 MeV) by previous researchers [Bir88, Ste87, Saw05], the unpolarized (i.e. φ-averaged)

cross section ratios at: 45◦/90◦, 135◦/90◦, and 155◦/90◦ are given in table 6.9, and compared

to previous researcher’s results in figure 6.9 on the next page.3

Ratio Our Results Theory

σ(45◦)
σ(90◦)

0.470± 0.029 0.460

σ(135◦)
σ(90◦)

0.631± 0.037 0.639

σ(155◦)
σ(90◦)

0.304± 0.030 0.281

Table 6.9: Ratio of Cross Section at Select Lab Polar Angles (θ). Our results

agree with the theoretical predictions, as expected from figure 6.8 on page 235.

3We cannot directly compare these ratios using the neutron yields because of Blowfish’s geometry, and so
we had to use the parameterization to calculate these ratios.
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Figure 6.9: Ratio of Cross Section at Selected Neutron Lab Angles for En-

ergy in Range 3-18 MeV. Closed circles: present work, open diamonds: Sawatzky

[Saw05], solid squares: Stephenson et al. [Ste87], the numbered lines are calculations

performed by Hadjimichael et al. [Had87], and the dotted line labeled Arenhövel is an

old calculation by Arenhövel et al. [Are00]. Our results clearly disagree with the predic-

tions of Hadjimichael, and agree reasonably well with Arenhövel’s old calculation. The

discrepancy between our data and Stephenson et al.’s is likely due to their unaccounted

for beam polarization.

The next observable we consider is the differential cross section averaged over the polar

angle (θ): figure 6.10 on the next page. The θ-averaged cross section depends on the even

parameters: a2, a4, e2, and e4.
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Figure 6.10: Differential Cross Section vs φ in the CM Frame. The differential

cross section has been averaged over θ (polar angle). We see agreement between theory

(blue) and our results (red) except near φ = 90◦ and 270◦, where the theory underes-

timates the cross section. Theory has been scaled to the experimental results. Left

image: Cartesian coordinates. Right images: polar coordinates: angle is φ in degrees,

and the radius is cross section in microbarns. The legend is the same in both images.

Figure 6.10 shows that our results agree well with theory, except near 90◦ and 270◦ (i.e.

in the vertical plane) where the theory is lower than our measurement.

Next we provide a visual representation of the experimental cross section in the center-

of-momentum/mass frame: figure 6.11 on the next page (theory is not included in these

plots).
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Figure 6.11: Cross Section in 3 Dimensional Plot. Left image: Cartesian

coordinates. Right image: polar coordinates: θ (polar angle) starts at the left end

(θ ∈ [0, π]) and φ (azimuthal angle) starts at the horizontal position directly into the

page (φ ∈ [0, 2π)).

Finally, we compare the analyzing power in figure 6.12 on the next page (defined by

eq. (5.13) on page 217), where we see the largest discrepancy between our results and theory.
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Figure 6.12: Analyzing Power. We see that our results (red) are systematically

lower than the theoretical prediction (blue). Left image: Cartesian coordinates. Right

image: polar coordinates: the angle is θ in degrees, and the radius is analyzing power

(unitless). The legend is the same in both images.

The analyzing power is highly sensitive to correlations in the a and e parameters because

it is proportional to the ratio of the sum of the e parameters over the sum of the a param-

eters. The fact that theory over-estimates the analyzing power relative to our results is a

manifestation of the disagreement between the theoretical and experimental parameters seen

in section 6.3 on page 224.

6.3.2 Discussion of Parameterization and Descendant Observables

It is clear from section 6.3 on page 224 that we must make a distinction between our exper-

imental data i.e. the neutron yields for each detector, and our parameterized results i.e. the

Legendre parameterization and the subsequent observables calculated using it (i.e. all of the

ones in section 6.3.1). The predicted neutron yield in our detectors by both the experimental

parameterization (χ2
red = 0.31) and the theoretical one (χ2

red = 0.74) agree with the actual

neutron yield, and; perplexingly, the parameterized neutron yield agrees perfectly with the
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theoretically predicted neutron yield (see figure 6.3 on page 226): despite the fact that the

actual parameters themselves don’t agree perfectly. If our data agree with the theoretical

prediction but our interpolation does not then our interpolation may be inaccurate; any dis-

crepancies between theoretical and parameterized observables would then be solely due to

the limitations of the fit.

The discrepancy with the theoretical parameterization can be rectified by considering the

correlation between the a2 and e2 parameters: e2 is smaller than theory and a2 is larger than

theory, and the two are correlated by a factor of -0.61; which explains why the theoretical

parameterization and analyzing power do not agree: a2 and e2 are compensating for each

other (a2 and e2 are the dominant parameters). Blackston [Bla07] performed a full transition

matrix element analysis and showed that the calculation by Schwamb and Arenhövel [Sch01c,

Sch01a, Sch01b] greatly over-estimates the M1 contribution at 14 and 16 MeV, assuming

that splitting of the partial waves occured. Using eq. (2.19) on page 48 we can see that

theoretically:

|a2| ∝ |E1|2 + |M1|2 + higher order terms

|e2| ∝ |E1|2 − |M1|2 + higher order terms

thus the E1 amplitude is the dominant contribution to the correlation between the a2 and

e2 parameters, with the M1 amplitude being the dominant contribution to any differences

between the two (Blackston shows that the next term, E2, is ≈ 1
10

th
the magnitude of M1 at

18 MeV). If the theoretical E1 amplitude was too large then both the a2 and e2 parameters

predicted would be too large: this is what we observed in our data. Blackston, however,

demonstrated that Schwamb and Arenhövel’s E1 transition amplitude agreed well with their

results at 14 and 16 MeV, contrary to this interpretation. There is another major problem

with this interpretation: there is no explanation for why some parameters which are not

expected to be physically correlated (i.e. even/odd pairs) are strongly correlated according

to the fitting algorithm (e.g. a1 and a2).

Due to the seemingly ubiquitous correlations in the parameters (every single parameter

is correlated to a different parameter to a correlation of > 0.5) we cannot fairly pairwise
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compare how one parameter could compensate for another and thus rectify the discrepancy

with theory. Instead we can use the correlation matrix as evidence that the parameters could

be compensating for one another sufficiently to cause the discrepancy. Since the Minos error

technique includes an estimate of the parameter correlations in the errors it reports [Jam94],

we can use a statistical argument that the theory could agree with the parameterization

within error.

Our best parameters (the long target ones in table 6.4 on page 227) agree with the

theoretical parameters within 2σ 86% of the time, and agree within 1σ 57% of the time: if the

estimated parameter uncertainties were exactly 1 standard deviation then we would expect

agreement within 1σ 68.3% of the time and agreement within 2σ 95.5% of the time: this is

close to the observed agreement frequency. It is possible, then, that our parameterization of

the experimental data only disagrees with theory because the minimization procedure found

a different minimum than the theoretical parameters due to parameter correlations, then the

fitter correctly estimated that the extracted parameters could be equivalent to the theoretical

ones. It is unclear why an incorrect parameterization gave the better minimum (fit: χ2
red =

0.31; theory: χ2
red = 0.74), but it seems reasonable that this could be a consequence of a

systematic error in the neutron yields (consistent with what was observed with the total

cross section).

Correlations between the Legendre parameters should not exist mathematically because

the terms in the Legendre expansion are orthogonal; however, we could not fit our exper-

imental data directly to the Legendre expansion: we mapped it into a finite data set (of

neutron yields) via the GEANT4 simulation. This process is the only reasonable source of a

non-physical correlation. The χ2 value of the parameterization we extract depends only on:

the number of data points, the expected neutron yields, observed neutron yields, and the un-

certainties in each of these: therefore, we can reduce the correlations between parameters by:

(1) increasing the number of cells on Blowfish (increasing the polar; θ, coverage at the same

time would help reduce spatial bias, such as by making the downstream-most cells usable),

or (2) improving our uncertainty estimates i.e. decrease the error estimates of accurate cells

and increase the error estimates of inaccurate cells.
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Increasing the number of cells in Blowfish would require a major overhaul,4 but improving

the error estimates in future experiments is readily achievable and desirable on its own merit.

The pulse-shape discrimination (PSD) methodology is by far the largest source of error (see

section 7.1 on page 246), and its uncertainties are larger than possible due to poor statistics:

we can improve the accuracy of this in future experiments by taking longer PSD source

runs (e.g. americium-beryllium). Reducing the PSD uncertainty may: increase the relative

uncertainty in inaccurate cells as other sources of error contribute a larger portion to the

uncertainty, and decrease the relative uncertainty in the accurate cells via the converse; this

will allow the accurate cells to weigh more heavily on the χ2 value, which should make the

absolute minimum χ2 value more distinct, which will reduce parameter cross correlations.

In spite of the issues with the Legendre expansion, we can always compare the expected

theoretical neutron yields directly to the measured neutron yields: this is the most rigor-

ous method of comparing our results to theory (because it is immune to issues with the

experimental parameterization).

The data do hint that there may be a discrepancy with the theoretically predicted cross

section at small polar angles, θ: this can be seen by the systematic underestimated neutron

yield prediction for the last ring in figure 6.3 on page 226. This discrepancy is, however,

significantly smaller than our error bars and therefore nothing can be concluded from our

observation.

This leaves the awkward task of weighing the two possible explanations: either the theo-

retical calculation for the multipole amplitudes is incorrect (most likely the E1 amplitude), or

there are non-physical correlations in the parameters due to the sampling methodology. Since

Blackston demonstrated the former was false at 14 and 16 MeV for the same reaction and

we observed inexplicable correlations between even/odd parameter pairs (e.g. a1 and a2) we

must conclude that the a2/e2 correlation we observed is most likely not due to a discrepancy

with theory. We conclude that no significant discrepancy exists with theory: any apparent

discrepancy with theory can be explained by a poor parameterization.

Finally, we note that no discrepancy exists in the parameterization due to the target

4Alternatively, we can make the last ring of Blowfish usable with a sufficiently strong PSD cut, such as
one placed at 0σ from the neutron mean. Altering the short gate width may also improve the PSD.
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length: the short and long target parameters agree well within their error intervals.

6.4 Beam

We verified the beam polarization following the procedure in section 5.3.1 on page 151:

assuming a φ symmetry, the shift is 0.95±0.51◦ from horizontal. The beam polarization

was, therefore, most likely 98.5-99% horizontal. We incorporated the polarization into the

e parameters, and so it would be reasonable to divide our e parameters by 0.9905 ± 0.0051

(though we do not).

Figure 6.13: Beam Asymmetry. The interpolated arm yield was parameterized

(red) by c0 + c1 cos(2(φ − c2)) (φ in degrees). The shift from perfect φ symmetry is

c2 = 0.95 ± 0.51◦ : this is fairly trivial.

We also checked to see if the experimental analyzing power in section 1.5 on page 4 could

be made to agree better with theory if it the polarization was not completely horizontal. We

found that the best agreement came at a horizontal polarization of 97.5%.
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Figure 6.14: Analyzing Power with Imperfect Beam Polarization. The exper-

imental parameterization (red) has been scaled by 0.975, this corresponds to a beam

which is 97.5% horizontally polarized. We see a better agreement with theory than if we

assume perfect horizontal polarization (figure 6.12 on page 240). Left image: Cartesian

coordinates. Right image: polar coordinates: angle is theta (in degrees), and the radius

is analyzing power (unitless). The legend is the same in both plots.

We conclude that the experimentally determined analyzing power would agree better with

theory if we considered that the beam was not completely polarized.

These data imply that the beam at HI~γS was not perfectly polarized (but close), or it is

also possible that imperfect detector alignment has caused the observed φ asymmetry.
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Chapter 7

Conclusion

In this chapter we discuss sources of error (section 7.1), we provide insight for future ex-

periments (section 7.2 on page 259), and we present our final data and conclusion (section 7.3

on page 261).

7.1 Sources of Error

In discussing the sources of error, we place specific focus on our best run: run 142 (long D2O

target). The largest source of error in our results is the PSD (pulse-shape discrimination) cut,

which in the case of the upper error in the neutron yield, accounts for over 90% of the reported

uncertainty (section 7.1.2 on page 248). Since we add our errors in quadrature, this means

that few other sources of error contribute significantly to the total reported uncertainties,

and we can therefore neglect the negligible contribution which a number of sources of error

would have (section 7.1.3 on page 255).

7.1.1 Estimating the Sources of Error

As was described in section 5.4 on page 193, we estimate the uncertainty associated with

each measurement and each data analysis cut using a combination of statistics, calculations,

simulations, and compensating factors. The latter-most comes into play only when scaling

the total flux to compensate for: out-of-time photons,1 and the multiplicity. In general, the

uncertainties were always estimated by: (1) standard error propagation using differentials

1The flux monitor measures the presence of out-of-time beam photons, but we do not measure the sub-
sequent neutrons produced by them; therefore we simply scale the flux so that it includes only the on-time
photons.
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and then the individual contributions were added in quadrature,2 (2) analyzing the results

of taking the minimum and maximum possible values, or (3) by altering a value in the simu-

lation then using (2). All error estimates in measurements include both the nominal device

uncertainty, and the propagated uncertainties (including any observed additional uncertain-

ties).

The standard methodology for estimating the uncertainty in the neutron yield was to

compute the uncertainty in a particular cut using standard techniques, then perturb the

cut by that value and record the change in the total neutron yield after all other cuts were

performed (each cut has its error described in its respective subsection of section 5.4 on

page 193). Where measurement errors could be propagated, they were, and where they

couldn’t be (or were difficult to) we simulated the effect.

The simulated uncertainties were estimated by using an early parameterization of the

differential cross section to simulate the expected neutron distribution, then sources of uncer-

tainty were simulated by altering the simulation setup (e.g. the longitudinal target alignment

was estimated by shifting the target forward by 1 mm in the simulation). The simulated data

and uncertainties were analyzed the same way as the experimental data (i.e. by perturbing

cut placement), then they were scaled linearly to the experimental neutron yield and included

in the experimental neutron yield uncertainty.

The quantified sources of error, and the method used to estimate its affect are summarized

in table 7.1 on the next page. A full discussion of the methods used will be found in each

source of error’s respective section.

2If the errors were clearly dependent, then they were simply added linearly.
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Table 7.1: Summary of Error Methodologies.

Source of Error Methodology

Target Alignment Simulation.

Detector Alignment Simulation.

Beam Alignment Simulation.

Beam Attenuation Simulation, and literature [Ber11].

Blowfish Radius Simulation.

Out-of-Time Photons Estimated fraction was added to error.

Beam Energy Beam specifications and experimental geometry.

Parameterization Minos technique [Jam75].

Light Output
Nominal ADC non-linearity [CAE10],

and gain uncertainty.

Time-of-Flight
Nominal TDC non-linearity [CAE12],

and statistical estimate of random error.

Counting Uncertainty
√

Counts [Kno00]

Pulse-Shape Discrimination Minos error in statistical fit [Jam75].

Target Length Inferred [Kuc10].

Target Density Literature [Wea79].

The effects of these sources of error are given in section 7.1.2.

7.1.2 Breakdown of Quantified Sources of Error

The original purpose of this experiment was to test a few potential sources of error in Blowfish

and the data acquisition system in order to prepare for future high precision experiments;

consequently, the uncertainties in this experiment were not rigorously minimized. If longer

radioactive source runs had been taken, then it is certain that the uncertainties in the light

cuts (via the gain) and the PSD cut could be smaller; the latter is of significant importance

since it is the largest source of error in the neutron yield, which in turn is the largest source

of error in the total cross section, and PSD is the only reliable way to remove photon events
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when out-of-time beam photons are present (therefore we had to exclude many cells due to

an imperfect PSD cut).

Here we breakdown the sources of error in our most precise run: run 142 (long D2O

target), along with a typical cell: cell 27 to provide perspective on errors in terms of neutron

yields. Relative to other runs, run 142 has a smaller uncertainty associated with the PSD

than runs 149-159 (run 143 has roughly the same uncertainties as run 142), and a smaller

uncertainty associated with the light cuts than the intermediate runs: runs 149-157.

Table 7.2 on the next page quantifies the uncertainties in cell 27 (with accompanying

figure 7.2 on page 251) and the total cell averages for run 142 as a whole (with accompanying

figure 7.1 on page 251).
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Error Summary of Neutron Yield for Cell 27 and Run 142.

Source
Uncertainty in % Total

Run Average
Cell Yield Cell Yield

Counting Uncertainty and Background ±72 1.4 2.6± 1.2

Lower Light Cut (low) −61 1.2 1.0± 0.4

Lower Light Cut (high) +45 0.9 1.0± 0.4

Upper Light Cut (low) 0 0 0± 0

Upper Light Cut (high) 0 0 0± 0

PSD (low) −732 14.0 13.9± 6.2

PSD (high) +81 1.5 5.8± 4.0

Beam Alignment ±57 1.1 2.5± 1.6

Detector Alignment ±57 1.1 1.3± 1.4

Blowfish Radius ±112 2.1 1.8± 1.3

Target Alignment: Longitudinal ±26 0.5 1.1± 1.1

Target Alignment: Transverse ±71 1.4 1.1± 0.9

Upper Total +196 3.7 8.0± 4.0

Lower Total −754 14.4 15.2± 5.7

Total Yield 5234 100 100

Table 7.2: A breakdown of the errors in the neutron yield for cell 27 and the run 142

average. The second column from the left gives the value (in number of neutrons) of

each source of error in the yield; values preceded by + are errors which can only increase

the yield, those preceded by − can only decrease the yield, and those preceded by ±

are equally able to increase or decrease the yield. Right-most column: run average ±

standard deviation.
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Figure 7.1: We compare the relative errors for each source of error in the cell average

of run 142. Note: these are not relative contributions to the total error because we add

the total error in quadrature.

Figure 7.2: We compare the relative errors for each source of error in cell 27 during

run 142. Note: these are not relative contributions to the total error because we add

the total error in quadrature.
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In table 7.2 on page 250 we see a great deal of variance from cell-to-cell in some of the

uncertainties: this may have caused problems with the fit minimization when we parameter-

ized the neutron yields: if the uncertainty estimates aren’t accurate; in fact, it could be the

source of the discrepancy in the parameterization observed in section 6.3 on page 224.

Reducing the total uncertainty in the neutron yield depends heavily on the PSD: for

cell 27 (run 142), the uncertainty in the low PSD cut accounts for 97% of the total upper

uncertainty, and the high PSD cut accounts for 41% of the total lower uncertainty. The

reason that the PSD uncertainty is so large may be that the americium-beryllium source

runs necessary to compute the PSD did not have enough events to get a good fit at energies

past ≈ 3500 keVee; future experiments must therefore ensure that there are many events

available to perform PSD, especially at higher energies (i.e. all the way up to the upper light

cut).

The PSD cut has an asymmetric error for two reasons: (1) the statistical distribution

of the neutrons, and (2) the fact that the lower light cut has some redundancy with the

high PSD cut. The neutrons closely follow a Gaussian distribution, and therefore since the

uncertainty in the position of the PSD cut is symmetric (i.e. the uncertainty in the mean and

standard deviation): the resulting change in the yield due to the PSD cut will be asymmetric.
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Figure 7.3: If the neutrons satisfy a Gaussian distribution, and the PSD cut is applied

at -2σ from the mean, µ ± d, then the ‘high’ error propagation (blue) will always be

smaller then the ‘low’ one (red).

Figure 7.3 illustrates that if the PSD cut is placed away from the neutron mean, then the

uncertainty is asymmetric. Since we placed the cut at 2σ, this will cause our total neutron

yields to be systematically low because the errors are asymmetric in favour of less neutrons

(but the errors we compute are symmetric).

We used the neutron yield to extract the parameters. The only remaining source of

error for the parameterization (that we’ve accounted for) is cross correlation between the

parameters, we discussed this in section 6.3 on page 224 and the robust correlation matrix

is given in table 6.5 on page 231.

The total cross section has several additional sources of error including the neutron yield.

Table 7.3 on the next page (and accompanying figure 7.4 on the next page) summarizes

the quantified sources of error for the total neutron production. We assume symmetric er-

rors because after the totals have been computed and averaged over all of the cells (error

averaged in quadrature) the difference between the lower and upper uncertainty becomes

trivial e.g. run 142 has a total cross section (including neutrons from other sources) of
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σ = 661(+51)(−51) µbarns.

Table 7.3: Error Summary of Total Cross Section for Run 142. Right column:

average value for all cells ± one standard deviation.

Source % Total Cross Section

Beam Attenuation 2.5386± 0.0045%

Target Density 7.2558± 0.0043%

Target Length 1.7126± 0.0048%

Flux 10.7748± 0.0046%

Neutron Yield 23.2± 7.8%

Simulated Neutron Yield 1.93± 0.46%

Total 27.6± 6.8%

Figure 7.4: We compare the relative errors for each source of error in run 142. Note:

these are not relative contributions to the total error because we add the total error in

quadrature.

Section 6.2 on page 218 unveiled that our measured cross section is lower than typical

experimental results (and theory) by ≈ 7% (≈ 45 µbarns); however, our results do agree
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within the quantified error interval. This implies that a systematic error; which we accounted

for, pervaded all of the runs. The radius of Blowfish is an obvious suspect since the cell radius

was set once then never changed, but this could only account for a change in the total cross

section of ≈ 1.5% (≈ 10 µbarns). The beam energy could have been systematically wrong

as well, based on interpolated data from several sources [Ahr74, Ber86, Mic89] a change in

energy from 18 MeV to 18.27 MeV would reduce the cross section by ≈ 2.3% (≈ 15 µbarns);

we wouldn’t observe the neutrons arriving later than kinematics predicts in the time-of-flight

spectrum because such a small change in energy would only appear as a 0.05 ns change in

time-of-flight: well below our TDC precision. If these two uncertainties systematically varied

from their expected values by their maximum uncertainties, there would still be another

≈ 3.1% (≈ 20 µbarns) unaccounted for in the cross section discrepancy between our data

and previous experiments.

The PSD uncertainty could cause a systematic underestimate in the neutron yield due

to the asymmetric error in the cut location: because the simulation has exceptional PSD, it

would not fully account for this effect. An underestimate in the neutron yield could easily

account for the missing events, as it contributes; on average, 23.2% (≈ 150 µbarns) to the

total uncertainty, and the dominant contribution to the neutron yield uncertainty is the PSD

cut.

We therefore conclude that one or more source of error in table 7.3 on page 254 was sys-

tematic, or, we over-estimated the errors and the source of the discrepancy is an unaccounted

for source of error.

7.1.3 Unaccounted Sources of Error

In this section we discuss unaccounted sources of error, the effect they would produce in

the data, and some estimate of their relative importance: based on a simulation or simple

calculation.

Incorrect Light Output

We found a substantial disagreement between the simulated and experimental calibrated

ADC spectra for neutrons i.e. their light output spectra. Since the light outputs for neutrons
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(when calibrating with photons) agreed previously in 2006 [Pyw06], we assumed that some

unknown process had caused the experimental light outputs for neutrons to drop and conse-

quently scaled up the experimental light output to compensate. This rectified the shape of

the experimental ADC spectrum with the simulation, but the uncertainty in the value of the

scaling factor was observed to be small, and therefore assumed to be negligible; which may

not be true.

In order to extract the scaling factors, we used the same fitting algorithm for the simulated

and experimental ADC spectra, and therefore we expect that an uncertainty in the scaling

factors is purely random: any systematic error would tend to cancel out when we took the ra-

tio of the simulated and experimental ADC inflection points (recall: scaling factor for cell i =

simulated inflection point
experimental inflection point

). A random error would tend to cancel out over the 88 cells (recall each

cell has a unique scaling factor) and therefore we do not expect a significant effect on either

the differential cross section or the total cross section.

It is also worth noting that if the light outputs are not correctly compensated for by a

simple multiplicative factor to the ADC neutron gain (e.g. if they need a constant added

to them), then the light cut will cause a bias in the data: we observed that the light cut

doesn’t change the results significantly, and therefore conclude that the multiplicative factor

is correctly compensating for the reduced neutron gain during this experiment, at least to

first-order.

Efficiencies

In order to extract the total cross section, we assumed that the simulated and experimental

efficiencies are the same. If the simulation does not accurately reproduce the actual efficiencies

then our cross section, σ will be incorrect and is proportional to the ratio of efficiencies:

σ ∝ simulation efficiency
efficiency

. This would also prevent us from reliably extract the differential cross

section from the neutron yield because the different simulation efficiency may produce a

spatial bias.
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Effect of Beam Attenuation in Neutron Yield

In our simulations we generated neutrons in the target in order to emulate photodisintegration

reactions without a knowledge of the cross section for the reaction. This means that we had

to compensate for beam photons which would scatter out of the target, or fall below the

threshold energy for the reaction, and thus reduce the number of photons available in the

downstream part of the target i.e. the effective beam attenuation coefficient, µ.3

The beam attenuation coefficient depends on our geometry and the threshold energy for

the reaction, this means that we need to consider both the specific geometry of our reaction

(including target length) and the photon energy at which the reaction will no longer be

measured (8 MeV4).

Using the simulation, we divided the target into numerous longitudinal slices and counted

the number of photons which entered each slice, and left each slice or scattered so that

they fell below the energy threshold. The simulations were run a few million times and

then the attenuation coefficients were extracted from the data: the long target attenuation

coefficient was µL,eff. = 0.01604± 0.00015 cm−1 and the short target attenuation coefficient

was µS,eff. = 0.015844± 0.000096 cm−1. These differ substantial from the literature value of

the linear mass attenuation coefficient, which is: µlit. = 0.01842± 0.00001 cm−1 [Ber11].

When simulating the Legendre probability density functions we used the literature value,

µlit., instead of the effective values, µL,eff. and µS,eff. (this was a matter of lack of foresight).

The discrepancy in the attenuation coefficient was discovered late in data analysis, and so

the new attenuation coefficients were not used when simulating the neutron yields (though

they were used for calculating the total cross section). We then verified this would not have a

substantial effect in the neutron yield by comparing the simulated neutron yield with different

attenuation coefficients and found no significant variation within the counting uncertainty

(figure 7.5 on the next page): meaning that relative to the experimental uncertainty this

effect is trivial.

3Probability of attenuation = e−µx.
4The minimum value for this threshold is 2.2 MeV (the threshold for deuteron photodisintegration), but

we also had to consider that the lower light cut was eliminating all neutrons below an energy of ≈ 3.5 MeVee;
performing the kinematic calculation this means that the incident photon must be above ≈ 8 MeV for it to
be capable of producing a measurable neutron.
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Figure 7.5: Effect of Beam Attenuation in Simulated Neutron Yield. Left

image: the literature value for the attenuation coefficient of the beam [Ber11] (red)

compared to the attenuation coefficient for our geometry, estimated using the simula-

tion (blue). Right Image: we take the data from the left image and subtract the red

histogram from the blue histogram; the result is randomly scattered around 0: implying

that the two results are the same, within error.

The effect of this error in the data would be to decrease the neutron yield in the down-

stream cells in the simulated data relative to the experimental results (because the attenua-

tion coefficient used in the simulation was too large), and therefore would cause a θ bias in

the parameters in favour of forward scattering (θ near 0◦).

Imperfect Beam Polarization

Sawatzky [Saw05] measured an ≈ 9◦ deviation in the horizontal polarization of the beam at

HI~γS during an experimental run, purportedly due to degradation of the UV mirrors. When

we parameterize the neutron yields per arm and fit a generalized expression to check the

azimuthal (φ) symmetry, we see a deviation of 0.95 ± 0.51◦, and conclude that the horizontal

polarization could vary by up to that much. The value of the e parameters we report in

section 6.3 on page 224 include the horizontal beam polarization in them, which we assume
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to be perfect (i.e. 1), this means that our e parameters are too small by a factor of 0.9905

± 0.0051.

The deviation from horizontal is small and has a large uncertainty in it, implying that

it is of minor importance. If the beam was not entirely horizontally polarized, then our e

parameters are too small and should be scaled by dividing by the correct horizontal polar-

ization ratio (because they are multiplied by the polarization relative to e.g. Cambi et al.

[Cam82]).

Miscellaneous Sources of Error

Blackston [Bla07] includes several more sources of error than reported here: the variation

in the solid angle coverage of each detector, the beam intensity profile, collimator size, de-

polarization of the beam due to scattering, and the parameterization of the light output

response function. These were all reported to be small relative to the time-of-flight and PSD

uncertainties [Bla07], and since we expect our PSD uncertainties to be much higher than

Blackston’s (because our error bars are larger), we conclude that these effects must be trivial

relative to our estimated uncertainties.

7.2 Future Considerations

This experiment required extensive data analysis, and a few novel techniques to deal with

old problems; future experiments will benefit from these techniques during data analysis, and

can improve precision with a few additional considerations: we elucidate these considerations

here.

First, future researchers will benefit from the new PSD algorithm which is faster and bet-

ter at estimating the uncertainty. Use of the offset parameter, φ, should be used cautiously:

some cells are much better fit by using the jerk parameter, J : fitting these cells to φ may

result in pathological separation.

By far the largest source of uncertainty in this experiment was the novel pulse-shape

discrimination (PSD) technique (described in section 5.3.9 on page 184), but we were forced

to use it because of the presence of out-of-time photons in the data. The key to minimizing
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the PSD uncertainty during analysis is good statistics in the source run used to calibrate the

PSD, and ensuring that the neutrons and photons span the entire energy range of the ADCs.

Future experiments in the 0-10 MeV neutron energy range (≈ 0-20 MeV beam energy)

should use a hot AmBe source to take a long source run5 after the long and short gates have

been set (and after anytime the long or short gates change); experiments at higher energies

should use a different source which has appropriately high energy neutrons and photons

e.g. using a lead target should work for arbitrary energies. It is also possible that the gate

optimization needs to be performed again: the PSD separation in 2010 was inferior to the

separation in 2008, despite using the same nominal gate timing. Furthermore, some cells may

have been contaminated with oxygen (e.g. cell 1 and cell 3): these cells should be thoroughly

tested (and potentially replaced).

The presence of out-of-time photons was the most common reason for cells to be excluded

in this experiment (see appendix I on page 298), but given it is unclear why they are forming

and so there is no obvious way to prevent their production. One could watch the TDC

spectra for the downstream cells carefully when taking data and stop the beam (dumping

the electrons in the synchrotron) when out-of-time photons become prevalent in the data.

This will seriously impact the data acquisition rate, and so an alternative is to insert a

sensitive photon detector (e.g. an inorganic crystal) into Blowfish to better characterize the

out-of-time photons present. During data analysis the distribution of out-of-time photons can

then be inferred assuming Compton scattering and/or using a GEANT4 simulation: once the

arrival times of the out-of-time photons are accurately known, the events arriving at those

times can simply be rejected (neutron yields at those times can then be interpolated).6

Another source of error was the time-of-flight due; in large part, to our inability to align

the TDCs for each run. Most of the cells have stable TDCs which only need to be aligned

once per day of running, but as was shown in figure 5.21 on page 183: ≈ 2
13

= 15% of cells

had significant (& 1 ns) drifts in their alignment over the course of this experiment. We can

align the TDCs during each run by setting the Gamma window activity rate at ≈ 1% of

events, it isn’t possible to calibrate the upstream TDCs if the Gamma window activity is set

5I.e. a Lucid data file > 300 MB, preferably close to the maximum: 2 GB.
6Such detectors would give additional freedom during analysis and could potentially be used to verify the

beam flux and energy.
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at 0.1% (such as it was during this experiment).

We should also test the calibration of our detectors: the decreased light output observed

in this work, in the work of Blackston [Bla07] and Wurtz [Wur10c] is sufficient evidence that

the BC-505 light outputs may have changed since they were last recorded in 2006 [Pyw06].

This may be indicative of an aging property of the BC-505 cells, and if so then it may prove

remunerative to start replacing the cells. If the light output parameters appear to have

changed, then they need to be recorded again so that the simulation accurately reproduces

the actual cells. The light outputs must be the same as the simulation in order to extract the

total cross section and the parameters for the differential cross section; furthermore, if the

light outputs have dropped over time then it is probable that the PSD does not provide as

much separation between neutrons and protons as it once did. With this said, we still don’t

know why the light output is lower in the experimental data than the simulated data: the

light output parameters are only one possible contributor to the problem.

Finally, when it came to extracting the associated Legendre polynomial parameters during

data analysis, we found strong correlations between the parameters. Adding more detectors

should decrease this correlation; however, it is more practical to simply take the steps outlined

in this section to reduce the uncertainties: the correlation may derive from a systematic error

in the neutron yields.

7.3 Conclusion

Our results (chapter 6 on page 218) are summarized as follows: the theoretical predictions,

our experimental results, and other researcher’s experimental results all agree within error.

The total cross section agrees within error with theory and other experiments, though

the reported value is ≈ 7% (47 µbarns) lower than expected (figure 7.6 on the next page).

We found that the total cross section was 643 ± 62 µbarns, compared to the weighted av-

erage of other researchers which is: 690 ± 15 µbarns; the theoretical calculation predicted

685.14 µbarns.
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Figure 7.6: Total Cross Section. Our total cross section agrees with other re-

searchers and the theoretical prediction (blue).

We parameterized our neutron yields using the associated Legendre polynomials:

dσ

dΩ
≈ σ

4π

[
1 +

4∑
k=1

akP
0
k (cos θ) +

4∑
k=2

ekP
2
k (cos θ) cos 2φ

]
(7.1)

where: P i
k are the associated Legendre polynomials, the ak, and the ek are fit parameters,

and σ is the total cross section.

Our neutron yields (figure 7.7 on the next page) are consistent with the theoretical pa-

rameterization (χ2
red = 0.74 ), but we also found a better set of parameters to fit our data

(χ2
red = 0.31 ).
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Figure 7.7: Parameterized Neutron Yield for Long Target Average. We see

good agreement between the neutron yields and both: the extracted parameterization

(χ2
red = 0.31 ), and the theoretical parameterization (χ2

red = 0.74 ). The agreement

between the theoretical and extracted parameterizations is excellent: every theoretical

prediction is within the error interval of the respective parameterized prediction, and is

typically very close to the median value. Note: Excluded cells are set to -1. 76 of the

88 cells were used.
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Our parameters were prone to strong cross correlations; we estimated the errors in them

using the Minos technique [Jam75], and found that although the parameterization we extract

from our data agrees with the theoretical parameterization within expectations (assuming

the errors represent 1 standard deviation): the experimental parameters agree with the the-

oretical parameters within 2σ 86% of the time, and agree within 1σ approximately 57% of

the time. This may imply that we fit to a χ2 minimum which existed purely as an arti-

fact of the analysis, or it may alternatively be due to a discrepancy with the theoretical E1

transition amplitude contrary to what was observed by Blackston [Bla07]. Our parameteri-

zation of the experimental data and the calculation performed by Schwamb and Arenhövel

[Sch01c, Sch01a, Sch01b] are given in table 7.4.

Parameter Long Target Short Target Theory

a1 -0.149 ± 0.020 -0.123 ± 0.043 -0.157

a2 -0.861 ± 0.030 -0.840 ± 0.070 -0.897

a3 0.120 ± 0.038 0.129 ± 0.071 0.146

a4 0.010 ± 0.033 -0.032 ± 0.055 -0.015

e2 0.4296 ± 0.0043 0.4224 ± 0.0081 0.45

e3 -0.0226 ± 0.0029 -0.0184 ± 0.0047

e4 -0.0005 ± 0.0024 -0.0027 ± 0.0033

Table 7.4: Legendre Expansion Parameters. The theoretical parameterization

is good to < 1%. Note: we assume the horizontal polarization is perfect, therefore

our e parameters should be divided by the linear polarization ratio (0.9905 ± 0.0051).

We report the first column (long target) parameters as our best parameters. Note: we

report the symmetric error, as the non-parabolic error is very close.

We calculated a few observables: the differential cross section and the analyzing power,

using the Legendre parameterization. These observables demonstrate the ability for some

parameters to compensate for each other: in the neutron yield (figure 7.7 on page 263) the

parameterizations agree exceptionally, in the φ-averaged cross section (figure 7.8 on the next

page) and the θ-averaged cross section (figure 7.9 on page 266) we see the parameterizations
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disagree at extreme angles, and finally in the analyzing power (figure 7.10 on page 267) the

different parameterizations show substantial disagreement.

Figure 7.8: Differential Cross Section vs θ in the CM Frame. The differential

cross section has been averaged over φ. The theoretical (blue) and experimental (red)

results agree, except near the backwards most angle (near θ = 180◦). Theory has

been scaled to the experimental results. Left image: Cartesian coordinates. Right

image: polar coordinates: angle is theta (in degrees), and the radius is cross section (in

microbarns). The legend is the same for both images.
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Figure 7.9: Differential Cross Section vs φ in the CM Frame. The differential

cross section has been averaged over θ (polar angle). We see agreement between theory

(blue) and our results (red) except near φ = 90◦ and 270◦, where the theory underes-

timates the cross section. Theory has been scaled to the experimental results. Left

image: Cartesian coordinates. Right images: polar coordinates: angle is φ (in degrees),

and the radius is cross section (in microbarns). The legend is the same in both images.
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Figure 7.10: Analyzing Power. We see that our results (red) are systematically

lower than the theoretical prediction (blue). Left image: Cartesian coordinates. Right

image: polar coordinates: the angle is theta (in degrees), and the radius is analyzing

power (unitless). The legend is the same in both images.

Continuing the investigation preformed by Sawatzky [Saw05], we computed the σ(θ =

90◦) normalized φ-averaged cross section at lab polar angles: θ = 45◦, 135◦, and 155◦, and

compared to the theoretical calculation by Schwamb and Arenhövel [Sch01c, Sch01a, Sch01b]

(table 7.5), as well as continuing the comparison performed by Sawatzky (figure 7.11 on the

next page)

Ratio Our Results Theory

σ(45◦)
σ(90◦)

0.470± 0.029 0.460

σ(135◦)
σ(90◦)

0.631± 0.037 0.639

σ(155◦)
σ(90◦)

0.304± 0.030 0.281

Table 7.5: Ratio of Cross Section at Select Lab Polar Angles (θ). Our results

agree with the theoretical predictions, as expected from figure 6.8 on page 235.
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Figure 7.11: Ratio of Cross Section at Selected Neutron Lab Angles for

Energy in Range 3-18 MeV. Closed circles: present work, open diamonds: Sawatzky

[Saw05], solid squares: Stephenson et al. [Ste87], the numbered lines are calculations

performed by Hadjimichael et al. [Had87], and the dotted line labeled Arenhövel is an

old calculation by Arenhövel et al. [Are00]. Our results clearly disagree with those of

Stephenson’s, and agree reasonably well with Arenhövel’s old calculation.

We see excellent agreement between our results and the calculation performed by Schwamb

and Arenhövel in table 7.5 on page 267 and we are close to the older calculations performed

by Arenhövel [Are00] as seen in figure 7.11. We also see a strong disagreement with the calcu-

lations performed by Hadjimichael et al. [Had87], and the experimental results of Stephenson

et al. [Ste87]. The latter is consistent with the purported confounding variable in Stephen-
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son et al.’s work because their detector calibration was affected by the partial polarization

[Kuc10].

Finally, we see no discrepancy in any of our results between the short and long target

runs,7 contrary to the results of Kucuker [Kuc10]. This implies that spin-dependent scattering

in our experimental setup is not significant relative to our uncertainties.

In conclusion, we see that our results are consistent with the calculation performed by

Schwamb and Arenhövel and our total cross section is consistent with previous experiments.

Our results do, however, suggest that the E1 transition amplitude calculated by Schwamb

and Arenhövel may be too large, but our uncertainties are too large to conclude anything

about it.

7There is no point comparing the observables for the short and long target because they are calculated
using the parameterization, and the parameters agree excellently between the short and long target runs.
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strum. Methods A401, 113 (1997).
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Appendix A

Photon Interactions with Matter

The photons involved in this experiment are almost entirely in the MeV energy range:
lower energy photons (. 500 keV) are drowned in a sea of noise in our detectors (because
the gain is calibrated to the MeV-scale), while higher energy photons (& 20 MeV) overflow
in our detectors and are thus meaningless; therefore the discussion present here will focus on
photons with energies between 500 keV and 18 MeV.

The important photon interaction mechanisms in nuclear physics are: The Photoelectric
Effect, Compton Scattering (off electrons), and Pair Production [Kno00].1 The photons
incident on the Five Paddle Beam Flux Monitor are at beam energy (18 MeV), while the
photons scattered into Blowfish cells are on the scale of 0.5-2 MeV (by kinematics). The
dominant process in this energy regime (0.5-18 MeV) is Compton scattering, followed by
pair production (when Eγ ≥ 1.022 MeV); for example, see figure A.1 on the next page.

1These processes are well understood and are not worth describing here. They can be found in any
introductory nuclear physics text; for example, Knoll [Kno00] has a full description of these processes
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Figure A.1: The cross sections for photon interactions with water (H2O) as a function
of energy are provided for example: the other materials involved in this experiment show
similar trends in the relative contribution of photo-processes. We expect Compton
scattering to dominate in Blowfish (≈ 1 MeV) and the Five Paddle Flux Monitor
(18 MeV); with pair production relevant in the latter and a minor effect in the former
(when possible).
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We can further characterize the relative probability of an event occurring using the Klein-
Nishina Equation for Compton Scattering:

dσ

dΩ
= Zr2

0

(
1

1 + α(1− cosθ)

)2(
1 + cos2θ

2

)(
1 +

α2(1− cosθ)2

(1 + cos2θ)[1 + α(1− cosθ)]

)
(A.1)

where: Z is the number of protons in the scattering target nucleus, r0 is the classical Bohr
radius, α = hν

mec2
, ν is the incident photon’s frequency, me is the electron’s mass, θ is the

scattering angle, and dσ
dΩ

is the differential cross section [Kno00].
The energy deposited in a material due to Compton Scattering is described by eq. (A.2):

Efinal =
Einitial

1 + Einitial
mec2

(1− cosθ)
(A.2)

where: E is the photon’s energy, me is the mass of an electron, and θ is the scattering angle
[Kno00].

The relative probability of pair production requires a more involved treatment: it was
performed by Bethe and Heitler [Bet34, Bet54, Dav54], first in 1934 and subsequently im-
proved upon in 1954. The energy deposited in a material due to pair production depends
on the penetrating power of the electron/positron pair in the material and the material’s
volume.

The probability of an interaction can alternatively be described empirically using models
based on available cross section data; data relevant to this experiment can be found in
table A.1 (elements) and table A.2 on the next page (materials).

Target Element Energy Scattering Photoelectric
Pair Production Total

Production Attenuation
(MeV) (barns) (barns) (barns) (cm−1)

1H 18 3.296·10−2 4.531·10−11 5.276·10−3 -
1H 1 2.114·10−1 0.000 0.000 -
16O 18 2.636·10−1 2.193·10−6 2.146·10−1 -
16O 1 1.691 1.101·10−4 1.693 -
27Al 18 4.284·10−1 2.279·10−5 5.450·10−1 0.0587
27Al 1 1.184·10−3 0.000 0.000 0.166
12C 18 1.977·10−1 5.345·10−7 1.244·10−1 -
12C 1 2.659·10−5 0.000 0.000 -

Table A.1: Photon Attenuation Coefficients for Elements in This Experi-
ment.
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Target Material Energy Scattering Photoelectric
Pair Total

Production Attenuation
(MeV) (barns) (barns) (barns) (cm−1)

Aluminum 18 4.284·10−1 2.279·10−5 5.450·10−1 0.0587
Aluminum 1 1.184·10−3 0.000 0.000 0.166

Water 18 3.295·10−1 2.193·10−6 2.252·10−1 0.01849
Water 1 2.115 1.101·10−4 0.000 0.07052

Heavy Water (D2O) 18 3.295·10−1 2.193·10−6 2.252·10−1 0.01842
Heavy Water (D2O) 1 2.115 1.101·10−4 0.000 0.07026

1,2,4-trimethylbenzene 18 2.175 4.811·10−6 1.801·10−1 0.01475
1,2,4-trimethylbenzene 1 1.396·101 2.393·10−4 0.000 0.06129

Lucite 18 1.779 7.059·10−6 5.363·10−1 0.02040
Lucite 1 1.142·101 3.532·10−4 0.000 0.08112

Table A.2: Photon Attenuation Coefficients for Materials in This Experi-
ment. The materials in this table were present in this experiment as follows. Alu-
minum: the frame of the Blowfish detector array is made of aluminum, and the Five
Paddle Flux Monitor has a aluminum radiator in it. Water and heavy water are both
used as targets. 1,2,4-trimethylbenzene is the primary component of the scintillator
used (BC-505). Lucite: the target and cell support structures are made out of Lucite.

These data are applied to calculations using eq. (2.3) on page 27. Note that the total
attenuation has been measured under detector geometry which is sensitive to low angle
scattering (i.e. it ignores low angle scattering as well as high angle scattering), whereas typical
detector geometries are not sensitive to this. For example, the target attenuation (D2O
at 18 MeV) in this experiment was estimated using a GEANT4 simulation (section 4.2 on
page 105) to be: 0.01604 ± 0.00015 cm−1 for the long target, and 0.015844 ± 0.000096 cm−1

for the short target.
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Appendix B

Neutron Interactions with Matter

Neutrons preferentially interact via the strong or weak force: the electromagnetic and
gravitational properties of neutrons are simply insufficiently strong to compete with the
other two fundamental forces. Our detectors utilize the nuclear force for neutron detection,1

so we discuss it here.
A neutron in matter can interact via the nuclear force by: scattering, or being absorbed;

either of these interactions will lead to an excited nucleus.2 The energy transfer due to elastic
scattering is described kinematically by:

Erecoil =
4A

(1 + A)2
cos2 θEneutron (B.1)

where: Erecoil is the kinetic energy of the recoiling nucleus hit, θ is the angle between the
incident neutron and the recoiling nucleus, Eneutron is the incident neutron kinetic energy,
and A = mass of recoil

mass of neutron
, which is approximately the atomic number of the recoiling nucleus.

This equation is only valid non-relativistically [Kno00].
The A2 term in the denominator of eq. (B.1) means that lighter nuclei are able to absorb

more of the incident neutron’s energy; this is the main reason why hydrogenous materials are
sought-after in neutron detectors (such as the detectors we use). In general, neutron interac-
tion cross sections are proportional to 1

v
(where v is the speed of the neutron), so materials

composed of small A nuclei will not only absorb more energy from a scattering neutron (and
hence have a better detector response), but they will also enhance the probability of further
scattering.

The energy transfer due to neutron absorption for inelastic scattering must be treated
case-by-case by imposing conservation of momentum and energy, and the relevant nuclear
energy levels.

Computing the relative probability of a neutron interaction depends on the nucleus in-
volved, and the model used to approximate the nuclear force. Consequently there is no
simple formula to predict a scattering or absorption event: thus day-to-day calculations rely
on empirical data and eq. (2.3) on page 27 to compute neutron interactions (see table B.1
on the next page for relevant cross section data). We discuss the theoretical predictions for
the neutron production cross section in this experiment in section 2.5 on page 28.

1The strong force is considered to be equivalent to the nuclear force here as the energies in this experiment
are well below quark excitation threshold i.e. pion-production threshold.

2I will judiciously assume that we are not dealing with free nucleon scattering. It should also be noted
that ‘nucleus’ includes a proton i.e. the nucleus of hydrogen.
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Element/
Energy Density

Atomic Total Attenuation
Compound Weight Cross Section Coefficient

(MeV) (g/cm3) (g/mol) (barns) (cm−1)
1H 8 - 1 1.11707 -
2H 8 - 2 1.22053 -
16O 8 - 16 0.865396 -
27Al 8 2.70 27 1.84204 0.111
12C 8 12.00 1.85292 -
H2O 8 1.008 18 3.1 0.1042
D2O 8 1.10534 20 3.306 0.1099

(CH3)3C6H3 8 0.8758 120 30. 0.1328(0.05963*)
Lucite (C5O2H8)n 8 1.18 100 20. 0.14

Table B.1: Neutron Cross Sections for Materials in Experiment. 1,2,4-
trimethylbenzene: (CH3)3C6H3, is the primary component of BC-505: the scintillator
we use in Blowfish. *This is the attenuation coefficient for just hydrogen scattering:
the detectors are much less likely to respond to 12C scattering because the recoiling 12C
nucleus typically carries less energy than the hardware threshold (depending on the
scattering angle).
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Appendix C

Full Kinematics Calculation

We perform the kinematic calculations for 18 MeV elastic deuteron photodisintegration.

Steps:

1. Assume the initial state is in the deuteron’s lab frame, then transform it into CM frame.

2. Compute β =
vframe

c
.

3. Deduce the neutron’s CM frame momentum using conservation of energy and mo-
mentum. Find an expression for the momentum in terms of the known experimental
variables: photon energy/momentum, deuteron rest energy, and CM emission angle, θ
(we can later transform the lab frame θ into the CM frame θ i.e. step 5).

4. Transform the neutron’s CM frame momentum into the lab frame.

5. Deduce relation between CM frame θ and lab frame θ using trigonometry and expres-
sions from steps 4 and 5.

Figure C.1: Deuteron Photodisintegration Kinematics. We take the origin to
be at the collision point.

1. We start in the lab frame with:

pγ = pγ


1
1
0
0

 ; pD =


mDc

0
0
0
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then we Lorentz transform using the contravariant boost matrix, L [Wur10c], into the CM
frame:

p′ = Lp

L =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 ; p′γ = γpγ


1− β
1− β

0
0

 ; p′D =


γmDc
−γβmDc

0
0



2. We compute β by applying the CM condition:

pγ,xx̂ = −pD,xx̂
=⇒ γpγ(1− β) = γβmDc

=⇒ β =
Eγ

Eγ +mDc2
(C.1)

where I have substituted in pγc = Eγ.

Eq. (C.1) gives β = 0.0095
c

for this experiment i.e. the CM frame is moving at 0.95%
c. As discussed in section 2.5.3 on page 34, the theoretical model we compare to assumes
that the deuteron is moving non-relativistically, which we can see is true to the order of
γ − 1 = 4.5 · 10−5.

Figure C.2: Center-of-Momentum Frame after Photodisintegration. We take
the origin to be the collision point. Proton (black fill), and neutron (white fill).
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3. We apply conservation of energy and momentum to deduce the neutron’s momentum and
energy (assuming an elastic collision):

E ′ ≡ E ′γ + E ′D = E ′n + E ′p, and ~p′γ + ~p′D = 0 = ~p′n + ~p′p

=⇒ (E ′n)2 = (E ′ − E ′p)2

=⇒ m2
nc

4 = m2
pc

4 + E ′2 − 2E ′
√
p′2n c

2 +m2
pc

4

=⇒ p′n =
1

c

√
(
E ′2 + (m2

p −m2
n)c4

2E ′
)2 −m2

pc
4

from which we can get the energy using E2 = p2c2 +m2c4.

4. We transform the neutron’s 4-momentum back into the lab frame by using the inverse
Lorentz Transformation (computed using L−1L = I):

p = L−1p′

pn =


γ
c
E ′n + βγp′n cos θ′

γ
c
βE ′n + γp′n cos θ′

p′n sin θ′

0

 ; L−1 =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1


(C.2)

5. We use trigonometry to find an expression for θ in terms of CM variables:

pn,x = pn cos θ

pn,y = pn sin θ

=⇒ tan θ =
pn,y
pn,x
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we can sub in using eq. (C.2) on page 286 to get θ as a function of CM variables:

tan θ =
p′n sin θ′

γ
c
βE ′n + γp′n cos θ′

Kinematics summary:

β =
Eγ

Eγ +mDc2
≈ 0.0095 (for Eγ = 18 MeV)

E ′γ = γEγ(1− β)

E ′D = γmDc
2

E ′ = E ′γ + E ′D

p′n =
1

c

√
(
E ′2 + (m2

p −m2
n)c4

2E ′
)2 −m2

pc
4

pn =


γ
c
E ′n + βγp′n cos θ′

γ
c
βE ′n + γp′n cos θ′

p′n sin θ′

0

 =


En
c

pn,x
pn,y
0


θ = arctan

(
pn,y
pn,x

)
En =

√
p2
nc

2 +m2
nc

4 (C.3)

C.1 Lorentz Transformation between Frames

We used kinematics to derive a transformation between the CM and lab frames for the angles
θ and φ.

φ is perpendicular to the motion of the frame, so:

φlab =φCM
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Using kinematics:

cos θlab =
βγEn

CM + γpnCM cos θCM
pnlab(θCM)

(C.4)

where: En is the neutron’s energy, pn is the neutron’s momentum, γ = 1√
1−β2

, and β = v
c
.

A rigorous treatment of the transformation of a probability density function from the CM
to Lab Frame is achieved through the use of the Jacobian:

ρCM = ρlab · |
dΩlab

dΩCM

| (C.5)

which is given by differentiating eq. (C.4).

Proof.

ρCM ≡
dn

dS

=
dn

dΩCM

=
dn

dΩlab

· | dΩlab

dΩCM

|

= ρlab · |
dΩlab

dΩCM

|

where: ρ is a PDF, S is the surface area, dΩ is a solid angle surface area element, and n is
the number of particles.
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Appendix D

The High Intensity Gamma Source (HI~γS)

Metrics

We summarize the primary components of the HI~γS facility here, including the: linear
accelerator, booster ring, storage ring, and FEL.

Linear Accelerator [OSh95]

Max Energy 0.295 GeV
Energy Spread 0.2%
Energy Jitter <0.1%
RF Frequency 2856.76 MHz
Electron Gun Thermionic RF with α-magnet
Pulse Current 40 mA

Booster Ring [Mik07]

Max Beam Energy 1.2 GeV
Energy Spread at Max ∆E

E
6.8·10−4

Circumference 31.902 m
RF Frequency 178.55 MHz

Number of Buckets 19

Storage Ring [Wel09]

Energy Range 0.24-1.2 GeV
Circumference 107.46 m
RF Frequency 178.547 MHz

Number of Buckets 64
Trajectory Spacing 5.6 ns

Max Current (one bunch) 95 mA
Max Current (two bunches) > 80 mA

Table D.1: HI~γS Metrics. Definitions: RF: Radio-frequency, used to describe the
oscillation of the applied electric potential. Buckets: the number of nodes in the os-
cillating potential (i.e. potential energy minimums, see section 3.3.1 on page 58 for
details).
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Free-electron Laser [Wel09]
Gamma Ray Energy

Operational Range 1-158 MeV
Used (this experiment) 18.00 ± 0.27 MeV

Polarization >95%
Gamma Ray Burst Frequency 5.58 MHz

Number of Wigglers 4 (2 of each polarity)
Max Magnetic Field of Wigglers 0.286 T (at 3 kA)

Resonant Cavity Length 53.73 m
Resonant Wavelengths 1064-190 nm

Optical Beam Size (σ)

At 1064 nm 0.61-0.68 mm
At 190 nm 0.26-0.29 mm

Electron Beam Size (σ)

Horizontal 0.14-0.40 mm
Vertical 0.02-0.07 mm

Table D.2: HI~γS FEL Metrics. There are two available polarities: horizontal and
circular. The FEL gamma ray energy refers to the energy of the Compton backscattered
photons that leave the optical cavity.
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Appendix E

GEANT4 Example

Using the BlowfishX implementation, a neutron was simulated starting inside a D2O
target with 8.49 MeV of kinetic energy moving in some direction. GEANT4 computes the
trajectory of the instantiated particle (in this case the 8.49 MeV neutron) using discrete steps
in space through the materials specified in the toolkit implementation, until it finally leaves
the world volume in one way or another. The verbatim output from GEANT4 is provided in
table E.1 on the next page, and example GUI output is provided in figure E.1.

Figure E.1: GEANT4 Output Example. A neutron (green line) is simulated as
leaving the target with some definite position and momentum, striking the aluminum
frame and then scattering out of the world volume. This graphic was taken from
a different; though similar, simulation than the output table (table E.1 on the next
page).
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Table E.1: GEANT4 Output Example. The initial particle (an 8.49 MeV neutron)
proceeded step-by-step through the world volume, interacting with materials as it went.
Notice that at step 17 there was an event named hadElastic, this was an elastic
scattering event between the incident particle (the neutron) and another hadron. In
this case, a proton was separated from whatever material the neutron interacted with.
When a separation event occurs, a new particle is created with energy and momentum
determined from the event, then it too is tracked just as the neutron was; thus cascading
into a series of particles. When the proton was separated at step 17, a proton was
generated at the same point in space (x = -339 mm, y = 247 mm and z = 259 mm)
with kinetic energy and momentum determined by kinematics. This proton was then
tracked, as you can see.

*********************************************************************************************************

* G4Track Information: Particle = neutron, Track ID = 1, Parent ID = 0

*********************************************************************************************************
Step X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName

0 32.6 -8.9 2.45 8.49 0 0 0 Target initStep

1 36 -12 6.21 7 0 5.95 5.95 Target hadElastic

2 -2.13 4.58 19 7 0 43.5 49.5 TargetWall Transportation

3 -2.58 4.77 19.1 7 0 0.512 50 ExpHallPhys Transportation

4 -340 152 132 7 0 385 435 ArrayContainerPhys Transportation

5 -350 155 135 7 0 10.3 446 CellContainerPhys Transportation

6 -352 156 136 7 0 2.35 448 CellWrapPhys Transportation

7 -352 157 136 7 0 1.01 449 CellLucitePhys Transportation

8 -363 161 140 6.04 0 12 461 CellLucitePhys hadElastic

9 -361 163 141 6.04 0 2.5 464 CellActivePhys Transportation

10 -354 173 144 2.82 0 12.6 476 CellActivePhys hadElastic

11 -347 215 207 2.82 0 76.5 553 CellLucitePhys Transportation

12 -347 217 210 2.82 0 3.77 556 CellWrapPhys Transportation

13 -347 218 211 2.82 0 1.19 558 CellContainerPhys Transportation

14 -344 237 239 2.82 0 34 592 NeutronCellPhys Transportation

15 -343 239 243 2.82 0 4.2 596 CellLightGuidePhys Transportation

16 -342 248 255 1.17 0 14.8 611 CellLightGuidePhys hadElastic

17 -339 247 259 1.09 0 5.43 616 CellLightGuidePhys hadElastic

18 -318 251 298 1.09 0 44 660 NeutronCellPhys Transportation

19 -310 253 314 1.09 0 18.2 678 CellContainerPhys Transportation

20 -310 253 314 1.09 0 0.453 679 ArmAssContainerPhys Transportation

21 -307 254 319 1.09 0 5.3 684 ArrayContainerPhys Transportation

22 -213 274 496 1.09 0 202 886 ExpHallPhys Transportation

23 849 500 2.5e+03 1.09 0 2.28e+03 3.16e+03 OutOfWorld Transportation
*********************************************************************************************************

*********************************************************************************************************

* G4Track Information: Particle = proton, Track ID = 6, Parent ID = 1

*********************************************************************************************************
Step X(mm) Y(mm) Z(mm) KinE(MeV) dE(MeV) StepLeng TrackLeng NextVolume ProcName

0 -339 247 259 0.0816 0 0 0 CellLightGuidePhys initStep

1 -339 247 259 0 0.0816 0.00104 0.00104 CellLightGuidePhys hIoni
*********************************************************************************************************
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Appendix F

Target Attenuation

Probability Density Functions

In order to simulate the beam attenuation due to atomic scattering, we used inverse trans-
form sampling (section 4.4.3 on page 141): this requires the correct attenuation probability
density function (PDF), its corresponding cumulative distribution function (CDF), and the
subsequent inverse of the CDF (CDF−1).

We simulated neutrons, so it was necessary to determine the PDF for neutron emission
from an attenuated beam of photons. Starting from the definition of cross section:

σ ≡ A · P
Γ

(F.1)

where: A is the total target area, P is the probability of an interaction and Γ is the number
of target nuclei within the target. The cross section, σ is the effective target size that the
projectile encounters.

Now consider N photons at position x, the next infinitesimal step (dx) produces a change
in photons (dN) via a cross section σ:

dN

N
= −σΓ

A

= −σρnAdx
A

= −σρndx (F.2)

where: A is the total target area, Γ = ρn is the number of target nuclei within the encountered
volume, ρ is the mass density, n is the number density, and σ is the target cross section.

Let σ be the total cross section for neutron production via photodisintegration, then the
change in the number of total neutrons produced (dNn) with respect to the step (dx) is:

dNn

dx
= − dN

N · dx
= σρn (F.3)

where: dNn is the number of neutrons produced during the step, N is the number of incident
photons at position x, σ is the respective cross section for the process and ρn is the target
density.

Since the number of neutrons is an integer, eq. (F.3) is valid only if we interpret dNn
dx

as a probability density function (PDF), thus allowing dNn to take on any real value. In
order for dNn

dx
to satisfy the neutron production PDF, it must first be normalizing by the

neutron production for the entire target length. Before this can be achieved, though, we
first needed to determine N(x): the number of gammas at position x. If one considers all
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possible processes for photon absorption (σtotal), then eq. (F.2) on page 293 can be solved
via integration, giving:

N = N0e
−µx (F.4)

where: N0 is the number of incident particles, N is the number of particles at position x and
µ ≡ σtotalρn [Pat11].

Note that the 18 MeV photon attenuation coefficient under good geometry [Ber11] is a
good approximation for the attenuation under our experimental geometry, but the correct
coefficient is ≈ 10% smaller (see section 5.5 on page 211 for details).

Now all of the pieces of the puzzle are available and the neutron production PDF can be
defined using:

f(x) =
dNn
dx∫ l

0
dNn
dx
dx

µ ≈ 0.02cm−1, σρn ≈ 3 · 10−6cm−1 =⇒ µ >> σρn

=⇒ f(x) =
σρe−µx

1− e−µl
(F.5)

where we have assumed that the attenuation due to nuclear effects (σ) is negligible. Noting
that the PDF criteria (theorem 1 on page 116) are met: f : R 7→ [0,∞), and

∫∞
−∞ f(x)dx = 1.

The simulation is implemented using Inverse Transform Sampling (section 4.4.3 on page 141),
which requires the inverse cumulative distribution function (CDF):

C(x) ≡
∫ x

−∞
f(x′)dx′

=⇒ C(x) =
1− e−µx

1− e−µl
(F.6)

Eq. (F.6) has an analytical inverse:

C−1(x) = − 1

µ
ln(1− x+ xe−µl)

=⇒ C−1(u) = − 1

µ
ln(1− u+ ue−µl) is the correct sampling function. (F.7)

Using a pseudo-random number generator provided by the GEANT4 toolkit, target at-
tenuation was implemented using eq. (F.7).
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Appendix G

Gain Tracking Principle

We demonstrate why the Gain Monitoring System has to assume a constant ratio of light
in order to track cell gains by presenting a derivation given in SPIR-142 [Pyw09b]. A full
description of the Gain Monitoring System hardware is given in section 3.10.3 on page 97,
and its operation is described in section 5.3.3 on page 165.

The pulser drives each flasher, causing them to output pulses of light from the LED, through
the fiber optics and into the Blowfish cells and GSO crystals. The LED intensity may drift
over time. Consider only one of the four LEDs and suppose that it outputs some amount of
light, L, and a fraction of that light xi reaches cell i which has gain gi; then the LED peak
will appear in ADC bin AFi:

AFi =
xiL

gi

Meanwhile, we continuously determine the gain of the GSO crystal using a radioactive source:
suppose that the feature we fit to has energy E and appears in ADC bin A of the GSO
detector, then; by definition, the gain of the GSO detector is g:

g =
E

A

Some fraction of the light, L, is also sent from the LED into the GSO detector; let that
fraction be x, let AF be the bin it appears in:

AF =
xL

g

We can determine g using the flash monitor radioactive source, and we can determine the
gain of the Blowfish cells gi by taking a radioactive source run. Using source run data we
define Ri as the ratio of light received by cell i over the ratio received by the GSO detector:

Ri ≡
xi
x

=
giAFi
gAF
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Now we wish to determine the gain during a data run with no radioactive source to calibrate
the cells and determine gi. Consider a data run some time after the source run. Let L′ be
the light produced by an LED, let g′i be the new cell gain, and let g′ be the new GSO gain.
We can determine g′ as above using:

g′ =
E

A′

Where E is the feature from the radioactive source in continuous use and A′ is the ADC bin
where that feature appeared.

The flasher produces a peak in cell i at ADC bin A′Fi that is proportional to the light: L′,
the gain: g′i and the new ratio of sent down the fiber optic: x′i:

A′Fi =
x′iL

′

g′i

Similarly, the flasher produces a peak in the GSO detector at channel A′F :

A′F =
x′L′

g′

Solving for the cell gain: g′i yields:

g′i = g′
A′F
A′Fi

x′i
x′

= g′
A′F
A′Fi

R′i

We can go no further: we know g′, A′F and A′Fi, but we don’t know R′i. In order to determine
the new cell gain, we must assume that the ratio of light reaching the GSO detector and cell
i: Ri remains constant i.e. Ri = R′i. With this assumption we have:

g′i = g′Ri
A′F
A′Fi

(G.1)

Thus after we take a source run to determine Ri, we can determine the cell gains at any
subsequent time so long as Ri remains constant

.
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Appendix H

Light Scaling Factors

The light scaling factors used in this experiment are given in this section. The calibrated
ADC value for each measured event was scaled by the appropriate cell-dependent factor in
table H.1 (depending on which cell the event was measured by) before any cuts were applied.
A full description of what light scaling factors are and why they were used can be found in
section 5.3.2 on page 161.

Cell: Factor Cell: Factor Cell: Factor Cell: Factor
1: 1.093 23: 1.106 45: 1.065 67: 1.143
2: 1.075 24: 1.090 46: 1.063 68: 1.049
3: 1.092 25: 1.040 47: 1.125 69: 1.052
4: 1.074 26: 1.070 48: 1.076 70: 1.019
5: 1.085 27: 1.076 49: 1.031 71: 1.090
6: 1.067 28: 1.078 50: 1.000 72: 1.039
7: 1.181 29: 1.058 51: 1.065 73: 1.014
8: 1.116 30: 1.089 52: 1.056 74: 1.039
9: 1.000 31: 1.086 53: 1.034 75: 1.158
10: 1.061 32: 1.100 54: 1.036 76: 1.035
11: 1.143 33: 1.192 55: 1.027 77: 1.194
12: 1.095 34: 1.055 56: 1.061 78: 1.016
13: 1.074 35: 1.111 57: 1.022 79: 1.423
14: 1.089 36: 1.083 58: 1.159 80: 1.017
15: 1.033 37: 1.069 59: 1.047 81: 1.082
16: 1.095 38: 1.064 60: 1.213 82: 1.118
17: 1.048 39: 1.041 61: 1.060 83: 1.000
18: 1.053 40: 1.070 62: 1.044 84: 1.000
19: 1.061 41: 1.042 63: 1.077 85: 1.054
20: 1.051 42: 1.058 64: 1.066 86: 1.040
21: 1.074 43: 1.074 65: 1.009 87: 1.000
22: 1.054 44: 1.059 66: 1.000 88: 1.184

Table H.1: Cell-by-Cell Light Scaling Factors.
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Appendix I

Cell Exclusions

The actual cell exclusion tables for this experiment are given in this section. A full
description of the reasons for cell exclusions can be found in section 5.4.7 on page 209

Table I.1: Cell Exclusions for Runs 142-149 (Long Target)

Run Reason for Exclusion Cell(s) Excluded

142

Any (total)
1, 6, 7, 8, 9, 11, 14, 15, 19, 22, 25, 26, 30, 32, 50, 56, 58
65, 67, 69, 73, 74, 76, 78, 81, 82, 83, 84, 85, 86, 87, 88

PSD 7, 9, 25
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 6, 8, 19, 25, 50, 56, 65, 67, 69, 73, 74, 76, 78,
81, 82, 83, 84, 85, 86, 88

143

Any (total)
1, 6, 7, 9, 11, 14, 15, 18, 19, 22, 25, 26, 30, 32, 50, 51,
52, 56, 58, 59, 62, 65, 66, 67, 69, 72, 73, 74, 76, 78,
81, 82, 83, 84, 85, 86, 87, 88

PSD 7, 9, 25
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 6, 14, 18, 19, 22, 50, 51, 52, 56, 59, 62, 65, 66, 67, 69,
72, 73, 74, 76, 78, 81, 82, 83, 84, 85, 86, 88

149

Any (total)
1, 5, 6, 8, 9, 11, 14, 15, 18, 19, 20, 22, 25, 26, 30, 32,
40, 50, 51, 53, 54, 55, 56, 58, 62, 65, 66, 67, 69, 71, 72,
73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88

PSD 6, 8, 9, 19, 25, 56
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 5, 6, 8, 18, 19, 20, 22, 25, 40, 50,
51, 53, 54, 55, 56, 62, 65, 66, 67, 69, 71, 72, 73,
74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88
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Table I.2: Cell Exclusions for Runs 150-153 (Long Target)

Run Reason for Exclusion Cell(s) Excluded

150

Any (total)
1, 5, 6, 8, 9, 11, 14, 15, 18, 19, 22, 25, 26, 30, 32, 40,
47, 49, 50, 51, 53, 54, 55, 56, 58, 62, 65, 66, 67, 69, 71,
72, 73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 85, 86, 87, 88

PSD 6, 8, 9, 19, 25, 56
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 5, 6, 8, 14, 18, 19, 25, 40, 47, 49, 50, 51,
53, 54, 55, 56, 62, 65, 66, 67, 69, 71, 72, 73,
74, 75, 76, 78, 79, 81, 82, 83, 84, 85, 86, 88

152

Any (total)
1, 6, 8, 9, 11, 14, 15, 18, 19, 22, 25,
26, 30, 32, 50, 53, 55, 56, 58, 64, 65, 66, 67, 69,
72, 73, 74, 75, 78, 81, 82, 83, 84, 85, 86, 87, 88

PSD 6, 8, 9, 19, 25, 56
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 6, 8, 14, 18, 19, 22, 25, 50, 53, 55, 56, 64, 65, 66,
67, 69, 72, 73, 74, 75, 78, 81, 82, 83, 84, 85, 86, 88

153

Any (total)
1, 6, 8, 9, 11, 14, 15, 18, 19, 22, 25, 26, 30,
32, 50, 51, 53, 56, 58, 62, 65, 66, 67, 69, 71,
73, 74, 76, 78, 81, 82, 83, 84, 85, 86, 87, 88

PSD 6, 8, 9, 19, 25, 56
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 6, 14, 18, 19, 25, 50, 51, 53, 56, 62, 65, 66, 67, 69,
71, 73, 74, 76, 78, 81, 82, 83, 84, 85, 86, 88

Table I.3: Cell Exclusions for Run 154 (Long H2O Target)

154

Any (total)
1, 6, 8, 14, 18, 19, 25, 33, 42, 45, 46, 50, 51, 53, 54, 55,
56, 57, 62, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79,
81, 82, 83, 84, 85, 86, 88

PSD 6, 8, 9, 19, 25, 56
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 6, 8, 14, 18, 19, 25, 33, 42, 45, 46, 50, 51, 53,
54, 55, 56, 57, 62, 64, 65, 66, 67, 69, 70, 71, 72,
73, 74, 75, 76, 78, 79, 81, 82, 83, 84, 85, 86, 88
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Table I.4: Cell Exclusions for Runs 155-157 (Short Target)

Run Reason for Exclusion Cell(s) Excluded

155

Any (total)
1, 6, 8, 9, 11, 14, 15, 18, 19, 20, 22, 25, 26,
30, 32, 50, 54, 56, 58, 62, 65, 67, 69, 71, 73,
74, 75, 78, 80, 81, 82, 83, 84, 85, 86, 87, 88

PSD 6, 8, 9, 19, 25, 56
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 6, 8, 14, 18, 19, 20, 25, 50, 54, 56, 62, 65, 67,
69, 71, 73, 74, 75, 78, 80, 81, 82, 83, 84, 85, 86, 88

157

Any (total)
1, 3, 4, 5, 6, 7, 8, 9, 11, 14, 15, 18, 19, 20, 21, 22, 25, 26,
30, 32, 40, 42, 50, 53, 55, 56, 58, 62, 65, 66, 67, 69, 71, 72,
73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88

PSD 6, 8, 9, 19, 25, 56
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 3, 4, 5, 6, 7, 8, 14, 18, 19, 20, 21, 25, 40, 42,
50, 53, 55, 56, 62, 65, 66, 67, 69, 71, 72, 73, 74,
75, 76, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88
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Table I.5: Cell Exclusions for Runs 158-159 (Short Target)

Run Reason for Exclusion Cell(s) Excluded

158

Any (total)
1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 14, 15, 18, 19, 20, 22, 25, 26,
30, 32, 37, 45, 50, 51, 53, 56, 58, 62, 65, 66, 67, 69, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88

PSD 6, 8, 9, 19, 25, 56
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 3, 4, 5, 6, 7, 8, 9, 10, 14, 18, 19, 20, 25, 37, 45, 50,
51, 53, 56, 62, 65, 66, 67, 69, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88

159

Any (total)
1, 3, 5, 6, 7, 8, 9, 11, 14, 15, 18, 19, 20, 22, 25, 26, 30,
32, 50, 53, 56, 58, 65, 66, 67, 69, 72, 73, 74, 75, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87, 88

PSD 6, 8, 9, 19, 25, 56
TDC 9, 11, 14, 15, 22, 26, 30, 56, 58, 82, 84
Gain 9, 32, 58
Empty 87

OOT Photons
1, 3, 5, 6, 7, 8, 14, 18, 19, 20, 25, 50, 53, 56, 65, 66, 67, 69,
72, 73, 74, 75, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88
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Appendix J

Simulation Consistency Checks

Previous researchers have performed consistency checks on the simulation of Blowfish
(see section 4.2.4 on page 110). We have performed additional consistency checks in order
to both provide additional evidence for future researchers, and to verify the internal consis-
tency of this experiment. For the first time, we have verified the probability density function
implementation method (i.e. primary generator action) in GEANT4 by comparing the re-
sults of two different particle generating classes, and we’ve also performed numerous internal
consistency checks between the simulated and experimental data to ensure that they match.

The probability density function implementation (see section 4.3 on page 114 for de-
tails) was tested for consistency by performing the same implementation using two different
methods that utilized two different classes (G4ParticleGun and G4GeneralizedParticleSource;
discussed in section 4.3 on page 114). The Legendre PDFs (probability density functions;
see section 4.4.2 on page 119 for details) were simulated via both implementations and they
were found to agree within statistical error so long as target attenuation of the beam was not
included.1 For example, the yield of a relatively complex Legendre PDF (ρ22) is shown in
figure J.1 on the next page.

1The reason for this discrepancy is: a linear approximation for target attenuation was used in the
G4GeneralizedParticleSource implementation; it was eventually abandoned for this reason
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Figure J.1: Particle Generation Consistency Check. A comparison between the
output of two different simulation implementations of the Legendre PDFs: one using the
G4ParticleGun class of GEANT4, and the other using the G4GeneralizedParticleSource
class.

The quantitative comparison between the two implementations is provided in table J.1.

Error Interval Cells in Agreement (of 88) Expected Cells in Agreement (of 88)
1σ 64 60 (68.2%)

1.5σ 85 76 (86.6%)
2σ 86 84 (95.4%)
3σ 88 88 (99.8%)

Table J.1: Particle Generation Consistency Check. The output of two different
simulation implementations of the ρ22 Legendre PDF: one using the G4ParticleGun
class of GEANT4, and the other using the G4GeneralizedParticleSource class were
compared to see if their error intervals (in standard deviations, σ) overlapped. This
was compared to the expected agreement achieved by assuming a normal distribution.
As you can see: the two methods agree to better than the expected level of agreement.

The observed agreement in the simulated Legendre Probability Density Functions provides
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confidence in the particle generation method used (G4ParticleGun).
Next we compared the final yield data extracted from the experiment to a simulation

based on the parameterization of the same experimental data. The experimental runs were
parameterized using the Legendre expansion, then simulated using the same parameters. The
final results; after all cuts have been applied, for the experimental data from run 142 and
the simulated data from that same run are plotted in figure J.2 on the next page. It must be
stressed that the comparison in figure J.2 on the next page is a convolution of the fit quality
of the parameterization and the accuracy of the simulation (because the simulated yield can
only agree as well as the parameterization of the yield does).
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Figure J.2: Simulation Consistency Check for Neutron Distribution and
Parameterization. The simulation was tested for consistency by comparing the ex-
perimental run (red) to a simulation run (blue) which used the parameters extracted
from the experimental run. These two data sets should agree perfectly if: the pa-
rameterization of the run was perfect, and the simulation accurately reproduced the
experimental conditions. We see that nearly all of the data points agree within error.
Note: missing data are excluded cells.

Figure J.2 demonstrates that the simulation is able to reproduce the experimental neutron
yields via the parameterization, this provides evidence that both our simulation and fitting
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procedure are working properly. In order to test purely the quality of the simulation, the
simulation was parameterized in the normal fashion and then the parameterizations of run
142 and its simulation were compared in figure J.3.

Figure J.3: Simulation Consistency Check for Neutron Distribution. The
interpolated data from run 142 (i.e. the parameterization; red) is compared to the
simulated yield (blue) which used the same parameterization. The two agree almost
perfectly, demonstrating that the simulation is accurately replicating the spatial distri-
bution of the neutron yield.

The excellent agreement in figure J.3 demonstrates that the simulation is not producing
any pathologies in the probability density function approach outlined in chapter 4 on page 104
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i.e. the simulation is working perfectly, any discrepancy in figure J.2 on page 305 must be due
to the parameterization.

The final consistency check we can make is to compare the raw data between the simu-
lation and an experimental run (run 142). The only raw data we use are: the TDC spectra
and the ADC spectra.

Comparing the ADC spectra, we initially saw that the simulation expects larger light
yields than the experiment for most cells (though some cells agree very well e.g. figure J.4:
left plot); this is starkly demonstrated by moving the light cut up: figure J.4: right plot.

Figure J.4: Simulated vs Experimental Light Output. The analogue-to-digital
converter spectrum for an experimental run (red) versus its simulation (blue) after all
of the cuts have been applied to both data sets. Left image: we see good agreement
between the spectra, with some random (symmetric) variation; this was a particularly
good cell (cell 53). Right image (cell 60): moving the light cut up to 2500 keVee, we
see that the experimental data greatly underestimates the light output compared to
the simulation.

Since we have good reason to believe that the simulation had an accurate light output
in the past [Pyw06, Ive03], we assume that the simulation is still correct and there is some
unknown affect reducing the ADC values given by neutrons. We scaled the light output
as outlined in section 5.3.2 on page 161, and then found that the results did not change
depending on the light cut position: figure J.5 on the next page.
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Figure J.5: The Simulation Correctly Reacts to the Light Cut. The simulated
and experimental data agree, even when the lower light cut is moved from 1750 keVee
(left) to 2500 keVee (right). The simulation thus is properly compensating for the lower
light cut. Note: missing data are excluded cells.

Scaling the experimental light output by heuristic factors rectified all lingering discrepan-
cies, and therefore allows us to assume that our simulation accurately replicates the detector
response.

The TDC spectra agree in shape, but there appears to be an offset of unknown origin,
this is discussed in detail in section 5.3.6 on page 176, and therefore not included here. The
TDC spectra are only pertinent to the data in determining the placement of the time-of-
flight cut. Given that there may exist an offset between the simulated and experimental
TDC spectra, we performed full data analyses for the data with a ‘hard’ time-of-flight cut
(determined by kinematics, usually ≈ 5-15 ns) and a ‘soft’ time-of-flight cut (5-50 ns): where
the soft time-of-flight cut was chosen such that a negligible number of late events would
be excluded from the data, and the only early data excluded would be photons. The final
results were found to be independent of the time-of-flight cut selected (though the ‘hard’ cut
gives better precision, as expected; see section 6.2 on page 218 and section 6.3 on page 224
for comparisons), demonstrating that the apparent discrepancy between the simulated and
experimental TDC spectra is negligible, or entirely subjective.

J.1 Discussion of Simulation Consistency

We failed to uncover any discrepancy between the simulated and experimental data which
would change our results. The detector efficiency and geometry is being well replicated by
the simulation, thus justifying our assumption that they were the same when we computed
the cross section (section 5.5.1 on page 211) and when we derived the Legendre expansion of
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the differential cross section in terms of simulated neutron yields (section 4.4.2 on page 119).
Furthermore, we see that the methodology for simulating the Legendre probability density
functions (section 4.4.2) is consistent with an entirely different approach.

We did; however, notice that the simulation is not replicating the ADC data for neutrons
anymore: we assume this is a problem with the experimental conditions, and not the simula-
tion. We can justify this assumption because the simulation is still correctly replicating the
photon ADC data, and there has been no significant change to the code since the neutron
light output was verified in 2006: it still uses the same light tables that it did then.
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