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Abstract

Composite materials are widely used in temperature fluctuating environments, which
make these materials highly prone to cracking. The cracking phenomenon is a result of
high thermal stresses that are generated by the mismatch in properties of the composite
constituents, particularly the mismatch in the thermal expansion coefficient. The main
objective of this study is to understand the micromechanics of such a phenomenon. The

problem has been investigated using the finite element method (FEM).

The analyses were performed utilizing 3-D prism and axisymmetric models.
Hexagonal fiber packing of unidirectional composites was considered. The dimensions of
the models were assumed such that the models could provide sufficient information on the
behavior near the free surface as well as the interior of fiber composites. Properties of the
constituents were considered to be temperature dependent. The elasto-plastic and visco-

elastic characteristics of the materials were also included.

The transient thermal analysis of the models showed that, for most practical
applications, the temperature gradient in the composite constituents has minor effects on
the stresses generated. Therefore, several stress analyses were performed assuming a

uniformly changing temperature throughout the composite.

The elastic analysis of thermal stresses and deformations showed high radial and
hoop stress concentrations occurring at the fiber end on the free surface. This is contrary to
the shear-lag theorem, which assumes that these stress components are negligible. An
overlapping hypothesis, based on the deformation of the fiber and matrix, is proposed to
explain such high radial and hoop stresses.



Using regular FEM elements, it was concluded that the stresses are singular in
-

nature. The stress singularity was numerically investigated and found to be of the type r

with o being dependent on the material properties but having a value close to 1/3.

The elasto-visco-plastic behavior of composites was also analyzed. Large plastic
strains were localized at the fiber end even for a small temperature change. Creep effects
that were significant at elevated temperatures brought about some stress relaxation during

the manufacturing process.

Thermally induced stress concentration in composites can be controlled, to some
extent, by changing the geometry of the free surface. The analysis of such effects indicated
that reduction of the contact angle between the fiber and the matrix on the free surface
reduced the high radial and hoop stress magnitudes. Also, the influence of covering the
free surface of the composite with a thin layer of matrix-like material was studied. The
magnitudes of the radial and hoop stress components were substantially reduced. The case
when the cover and the composite are made in separate stages (two-stage covering), was
also studied. Based on the analysis, effective and practical ways of applying the cover are

recommended.

To verify the effects of the covering process, experiments were conducted on large-
scale laboratory-made composite samples. The samples with the free surface covered with
a thin layer of matrix-like material showed no trace of cracking or fiber/matrix debonding
even after 1000 thermal cycles. On the other hand, in the samples without cover, exposed
to identical thermal cycling, numerous matrix cracks and extensive fiber/matrix debonding

were observed.
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1. Introduction

1.1 Background

For some time, mankind has learmned that some combination of materials gives
properties superior to those of their constituents. This experience goes back in history to
the time of the Prophet Moses or even earlier. For example, the people in Egypt used mud
bricks reinforced with straw, Mongols made bows from cattle tendons, wood, and silk
bonded together. Today, materials made by combining two or more different types of
materials are called composite materials. Composites consist of the load carrying
components (reinforcements), the binder (matrix) which transfers the applied loads to the
reinforcements and binds them together, and the interface between these two to secure

integrity and performance.

Composites can be divided into two groups: natural and artificially-made
composites. Examples of natural composites are wood, bone, and banana peel. The
artificially-made composites are divided into many sub-groups on the basis of the type of
reinforcements (fiber, particle, whiskers) and matrices (polymer, ceramic, metal).

In general, composites can be superior to conventional materials in terms of the ratio
of their strength and/or stiffness to weight. Also, a better thermal dimensional stability
(lower thermal expansion), higher fatigue strength, better corrosion resistance, and better
elevated temperature properties can be achieved by combining two or more distinctly
different materials. One of the main problems in composites resulting from their nature is
the internal thermal stress resulting from temperature changes. Usually, this is due to a
mismatch in the coefficient of thermal expansion (CTE) of the composite constituents.
These internal thermal stresses may cause interfacial debonding and matrix cracking
leading to structural integrity degradation.



1.2 Problem Definition

Thermal stress distribution plays a major role in the performance of composite
materials. This becomes crucial when either the coefficients of thermal expansion (CTE)
of the composite constituents are far apart in magnitude or the processing/working
temperature is high. The difference in CTE causes different expansion or contraction in
composite constituents under even a seemingly uniform temperature change. For example,
Figs. 1.1(a) and 1.1(b) show a cylindrical single fiber composite (with the CTE much
lower for the fiber than the matrix) under heating and cooling, respectively. To preserve
continuity, the constituents internally constrain one another generating thermal stress in the
material. Under high temperature, even a small mismatch in CTE creates high thermal
stresses. Additional thermal stresses may be created if the coefficients of thermal
conductivity and thermal capacity of the constituents are different or the mechanical and
thermal properties of the materials are functions of temperature. These phenomena will
create thermal gradients inside the material, which eventually generate thermal stresses.

————

a) Heating b) Cooling

Fig. 1.1: Thermal deformation of a single fiber composite.

Typically, high thermal stresses are generated in metallic matrix composites by their
high processing and service temperatures, while in polymeric matrix composites they are
generated by significant differences in material properties of the constituents. In either
case, these stresses would greatly degrade the composite performance. In particular, the
exposed surfaces of composites show signs of fiber/matrix debonding and/or matrix

cracking. These effects are observed to a lesser extent in the interior of the composites. A



free surface of a thermally cycled composite sample is shown in Fig. 1.2. Experiments
have shown that cracking and debonding mostly occur as a result of the cooling phase of
temperature cycles or upon cooling from the processing temperature.

Fig. 1.2: Free surface cracking of a thermally cycled composite
(Hildebrandt, 1990).

The process of cracking usually starts at the interface on the free surface where the
fiber has the largest distance to its neighboring fiber (see Fig. 1.3). Cracking then spreads
into the area with the least distance to the adjacent fibers. Many researchers have studied
this problem both theoretically and experimentally. Analytical solutions are extremely
complex near the free surface of composites and this may be why more results have been
published on calculating the thermal stresses deep inside the material rather than close to
the free surface. Also, most of the finite element modeling studies provide information on
the stress and deformation away from the composite free surface. In general, there is a lack
of information regarding the free surface and the inter-relationship of the stress and
deformation states at this region with those at the interior of composites. Moreover, in the

finite element method (FEM), inadequate meshing, using improper type of elements in the



areas of high stress gradients, not considering proper model sizes, and utilizing many
simplifying assumptions such as plane strain or stress states make the results insufficient

for drawing reliable conclusions.

Sites of crgck_‘initiation

Fig. 1.3: Usual thermally induced cracking pattern around the fibers.

Many experimental as well as a few numerical studies have attempted to provide an
insight into the reduction of the damaging effects of thermal stresses on the composite
performance specifically at the fiber/matrix interface. For example, coating the fibers with
a third material having properties intermediate to those of the fiber and the matrix was
considered by Amnold et al. (1992). A stronger coating material relative to the matrix
increases the capability of the composite in resisting the high stresses at the interface.
Assisting diffusion of the matrix into the fiber is another way of strengthening composites
against thermal stresses (Mall and Ermer, 1991). The matrix diffusion makes the interface
stronger. This reduces the chance of fiber/matrix debonding under thermal load. Another
method which has been tried, is that of utilizing different post-cure thermal treatments to
relax thermal residual stresses. For instance, imposing temperature cycles with decaying
maximum and minimum values has helped in some cases (Morris et al., 1989,). However,
no solution to the cracking phenomenon at the fiber/matrix interface on the exposed

surfaces has been suggested yet.
1.3 Research Objectives

The present study is mainly focused on how to deal with the thermal stresses and
how to strengthen composites in order to accommodate the unwanted thermal effects. In

order to reduce the adverse effects of thermal stresses in composites, a comprehensive



study of the stress and deformation states is required. In general, it is important to know
the behavior of composites during temperature changes and, more specifically, the nature
of the stresses in various regions of the composites. Also, the influence of the stress fields
(i.e. the stresses at the free surface and the interior of composites) on one another and,
more importantly, the effects of physical deformations (which may be triggered by the
temperature change) on the stresses should be fully understood. Therefore, to fulfill the
prime objective of this research work, a careful modeling study was undertaken. To
achieve this goal, it was necessary to study/model composites in an appropriate way. Thus,
a comprehensive investigation of the available approaches/models was performed to
identify their dominant limitations. It was required to develop an approach/model that does
not have the limitations of the existing ones. The modeling results were checked with the
available experimental results in terms of the nature of thermal stresses, formation of
plastic strains, and deformation of the free surface and interior of composites during
temperature changes. After achieving a good understanding of the stresses and
displacements imposed due to a temperature change, methods of containing the undesired

thermal effects were proposed and are discussed in detail.
1.4 Research Methodology

The equations governing the behavior of composites, along with all the boundary
conditions and the continuity requirements, are presented in Appendix A. Analytical
solutions to such a complex partial differential equation (PDE) set has been the subject of
many studies which are reviewed in the next chapter. All of these investigations were
conducted using many simplifying assumptions such as plane-stress, plane-strain, or
generalized axisymmetric conditions. With these assumptions, the PDE can be reduced to
the Lame-type of equation (see Appendix A). The Lame-equation is easier to solve, but the
results are limited to the interior region of the composite for a very small value of the fiber

volume fraction.

More sophisticated solutions have also been reported in the literature. For exampie,
the variational technique has been employed for calculating stress components at the end



of a single broken fiber embedded in a matrix by Naimn (1992) and a 3-D solution of the
reduced PDE for a single cylindrical fiber embedded in a matrix has been reported by Li
and Folias (1991). One of Nairn’s assumptions is that the axial displacements in the fiber
and the matrix are the same at any location along the fiber length (Lame condition). The
solution by Li and Folias was obtained assuming a large diameter for the fiber which
makes it invalid for composites since they usually contain a large number of very thin
fibers. Also, in addition to all of the simplifications, these solutions were obtained for a
single fiber and the effects of the neighboring fibers on the stress and displacement states
are yet to be taken into consideration. In addition, as will be discussed in Chapter 2, the
solution by Li and Folias does not satisfy the boundary conditions at the end of the fiber on
the free surface. To this date, the author is not aware of a complete solution of the PDE

that satisfies all the boundary conditions and the continuity requirements.

An alternative to the analytical approach is the finite element method (FEM) which
is broadly used in the engineering field. In this dissertation, the FEM is utilized to solve the
PDE set. Here, ANSYS, a FEM commercial software package is used. All the possible
nonlinearities such as structural nonlinearities (large strain, large deflection, stress
stiffening) and material nonlinearities (plasticity, creep) are considered.

A high accuracy of the approximate FEM solution can be obtained if the material
and geometry modeling are performed with sufficient care. The material should be
modeled as closely as possible to its behavior under the loading condition. In particular,
variation of the material parameters with temperature should be included. The geometry of
the model has to be as representative of the problem as possible. For example, for
unidirectional fiber composites, the 3-D FEM models should be considered to analyze the
stress and displacements at the end of the fiber on the free surface and at the interior of the
composite. Meshing of the model should be done in such a way that the size of the
numerical problem does not compromise the accuracy of the analysis in terms of stress and
displacements. In particular, dense meshing with higher order elements should be
considered for the areas with high stress gradients. This requires some knowledge of the

physics of the problem as well as other factors such as sharp comners, material



discontinuities, and geometric discontinuities that may affect the stress fields. Frequent
verifications of the accuracy of the resuits should also be performed.

In this dissertation a micro-mechanistic approach to composites is applied using the
FEM technique. Several important findings of the FEM analysis have been verified by
experimental tests performed on composite specimens. Other results are verified by
comparing them to the available experimental and analytical results obtained by other

researchers.



2. Mechanics of Composite Materials; A Review

2.1 Introduction

Although composite materials have been used for a long time, the technology of
modemn composites has been essentially developed during the last three decades. The
advances have been reported in a large number of publications and cover several areas of
science and technology. In this chapter the most recent results relevant to the objectives of

this dissertation are reviewed.
2.2 Basic Theories of Composite Materials

Composite materials are made from conventional materials by some special
techniques. Conventional materials may be divided into three major groups; metals,
ceramics, and polymers. In each category, the materials have some characteristic
properties, which are distinct for that group. However, the materials in each group have
weaknesses of their own that make them less desirable for some specific use. For example,
metals are superior in terms of stiffness and hygroscopic sensitivity, but their weaknesses
include high density and susceptibility to corrosion. Ceramics are ranked highest in terms
of compressive strength, stiffness, creep resistance, and thermal stability, however they are
brittle. The main advantages of polymers are low density and ductility, but they possess
low stiffness, strength, creep resistance, thermal and dimensional stability, and erosion
resistance. It would be desirable to combine various materials to make the best use of each

group’s characteristics for a particular application.

Inclusion of a solid material into another material creates a new system with new
gross or macro material properties. For example, long fibers of one material may be

incorporated into a second material referred to as matrix (Fig. 2.1). From a microscopic



point of view, considering the characteristic volumes J; or J,, the individual materials may
be isotropic. On a macroscopic scale the material system (volume ) is considered

anisotropic because the properties vary with orientation.

L

Fig. 2.1: Macroscopic (I) and microscopic (J; and J,) observations of
unidirectional composites.
Composites may contain continuous or discontinuous fibers. Fibers are also called

the reinforcement since they usually carry most of the load. The matrix binds, separates,
and transfers the load to the reinforcements. An additional phase, called the inter-phase,

may exist between the reinforcements and the matrix resulting from a chemical reaction

between the two components, or a purposely applied coating to enhance bonding.

Various types of reinforcements are used in composites depending on the kind of
application. For low performance composites, short fibers or even particles are used to
provide some stiffening but only local strengthening. In the case of high performance

composites, long fibers are used to increase the stiffness and strength of the composite in

the direction of the fibers.

A planar or curved layer of unidirectional or woven fibers in a matrix is called a
lamina or ply. A unidirectional lamina is orthotropic in nature with three principal axes in
the fiber direction (designated as 1), transverse to the fiber (2), and normal to the plane of
fiber (3) (see Fig. 2.2).
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Fig. 2.2: Principal coordinate axes in unidirectional composites.
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The level of consideration and the scale of analysis of a composite material depend
upon a particular characteristic and behavior requirement of the composite under
investigation. When local failures (such as buckling, breaking and failure of the fiber,
matrix breaking, or debonding) are of concern, the analysis is performed at the fiber and
matrix level and referred to as the micro-mechanics of composites (Fig. 2.3). This method
of analysis is particularly important for the study of properties such as strength, fracture
toughness, fatigue life, local plastic and viscoplastic deformations, and local stress
concentrations. These properties cannot be inferred from averaged characteristics of the
composite. The analyses in this dissertation are based on such a micro-mechanics approach

and are performed at the fiber and matrix level.

Micromechanics

(Laminate theory)
U

3
XXX XX XXX XXX s & §| <-+0
e S S L U8 0
)

Fig. 2.3: Various levels of analysis of composite materials.

At the lamina level, composites can be considered as homogeneous anisotropic
materials with average properties. In this approach, called macro-mechanics, the local
failure mechanisms are not taken into account. Instead, failure criteria are expressed in
terms of average stresses and overall lamina strength values. The overall behavior of a
laminate is analyzed as a function of lamina properties and stacking sequence. This
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approach is convenient for analysis of overall stiffness of composites. Details of the lamina
theory are found in most textbooks on mechanics of composite materials, e.g., Daniel and

Ishai (1994) and Chawla (1987).

In general, when compared to conventional materials, polymeric matrix composites
provide a higher specific strength (ratio of material strength to density) in the direction of
the high strength fibers. However, the transverse tensile strength of unidirectionally
reinforced composites is substantially reduced due to local stress concentrations around
fibers. The usually low fracture toughness of fibers is compensated by the matrix ductility
and by higher energy dissipation at the fiber/matrix interface.

The anisotropic nature of composites adds to the complexity of the
macro-mechanical analysis. The average material properties required for analysis of
composite structures can be calculated from the properties and arrangement of their
constituents. The experimental verification requires complex tests for determination of

many material constants.
23 Mechanics of Composite Materials

Analysis of stress-strain relationships in composite materials is complicated because
of the involvement of many parameters. For example, the type of reinforcement,
reinforcement volume fraction, interface strength, and properties of the constituents
influence the stress distribution in composites. The objective of the present research work
is to study the behavior of unidirectional composites subject to temperature changes. The
micro-mechanical approach is employed with the analyses conducted at the level of a fiber
and the surrounding matrix. In order to include the free surface effects the composite is
considered in a 3-D space. Several mathematical models of unidirectional composites are
considered. First, the difficulties of obtaining any 3-D analytical solution to the problem
involving a single fiber embedded in a matrix are addressed. Next, the application of FEM
in analyzing the elastic stress state in composites and the occurrence of possible singular
stress fields is discussed. Following this, the inelastic behavior of composites during
manufacturing and at service temperatures is analyzed.

11



24 Micro-mechanical Analysis of Unidirectional Fiber Composites

The local stress and deformation fields on a microscopic level directly affect the
performance of a composite structure. Prediction of the stress and deformation along the
fiber length and surrounding matrix and at their interface can help in detecting areas that
are susceptible to local damage. Normally, in the micro-mechanical approach, a single
fiber embedded in matrix is the basic element for the analysis. The derivation of the
governing equations for an arbitrary element in the fiber or the matrix are presented in
Appendix A. These equations are solved for a unit cell the geometry of which varies

depending on the type of fiber packing (Fig. 2.4) as discussed in Chapter 3.
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Fig. 2.4: Different fiber packing in unidirectional composites.

An analytical solution of the problem is very complicated or almost impossible. So
far, there have been many attempts to solve the equations by using many simplifications.
Most of the theoretical micro-mechanical studies conducted in the field of composite
materials assume plane strain or plane stress conditions. Any changes along the fiber
direction are neglected. Some of the results obtained from these analyses are applicable to
the interior of composites where the 2-D plane strain or plane stress conditions prevail.
Some solutions originate from the mechanics of edge-bonded dissimilar materials and the
analysis of inclusions in homogenous materials. Some of these results are presented in the

following two sections.
2.4.1 Mechanics of Edge-Bonded Dissimilar Materials

The nature and distribution of stresses along the interface and at the contact corner of
edge-bonded dissimilar materials (see Fig. 2.5) generated by a variety of load and
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boundary conditions have been studied by many researchers. The stress distribution along
the interface may contain singularities at the contact corner. A singular stress field of the
type r® was identified in many publications, where r is the distance to the contact corner
and o is a positive constant dependent on the material properties and the angle of each
material at the contact comer (e. g. 0, and 6,). For example, Bogy (1968) studied two
dissimilar materials bonded along one of their straight edges with 6; = 6; = 90°. The study
has been conducted under normal and shear traction. The orthogonal wedges were
considered to be elastic. It was determined that the order of singularity (ct) depends on the
ratio of the shear moduli and the Poisson’s ratios of the materials.

Material 1

Contact
corner . r

5P

)

Material 2
Fig. 2.5: General configuration of edge-bonded dissimilar materials.

Hein and Erdogan (1971) expanded Bogy’s work to include a range of arbitrary
angles for the wedges (provided 0, + 6, = 180°) and studied indenters bonded to a half
plane (i.e. 6;= 180°). Their results have shown that, depending on the wedge angle and the
material type, the stress field at the contact corner of the materials could be either

non-singular, or singular. For example, for 8, = 60° and 0.1 < (E./ Ez)s 10, the singular

stress disappears provided that 8; + 6, = 180°. This is a very important result in the
semiconductor industry. For example, a similar geometry occurs for the Si-SiO. or
Si-Si3N4 semiconductors for which the ratio of E,/E, is approximated either as 0.4 or 0.2.
A similar study was conducted by Gdoutos and Theocaris (1975) where the Poisson’s
ratios of the materials were also considered as parameters. It was shown that the Poisson’s

ratio of the materials also influences the order of singularity.
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The problem of a wedge with angle 6 contacting with a half plane under surface
traction was studied by Dundurs and Lee (1972). It was found that the order of the singular
stress field depends on two of the properties (E and v) of the wedge and the half plane and
also the angle of the wedge. For 8 = 180°, for all types of material properties, a singularity

of order o = Y2 (the crack type) was found.

Most recently, the thermal stress field at the contact comer of two edge-bonded
materials has been analyzed by loka et al. (1995, 1996) using the boundary element
method. They were able to convert the thermoelastic problem to an elastostatic problem. It

was shown again that the stresses near the contact comer have the singular form of the type
r ®. Independently, Chen and Nisitani (1993) also converted the thermal problem to an

elastostatic problem.

Designers of lap joints are aware that tapering or varying the shape of the adherents
can improve the strength of a connection. Chang and Muki (1974) were among the first
researchers to launch a study to understand the mechanism of this improvement. However,
their approach used over-simplified geometry near the contact comer of the joint. As a
result, prediction of the stress field at this point was not sufficiently accurate. Their work
was expanded by Westman (1975) who established a link between the loading condition
and the stress singularity. A possibility of minimizing the singularity by selecting a

particular value for the angle at the contact corner was discussed.

A shape optimization procedure was proposed by Muraka and Ueda (1989). They
reduced the failure of the Cw/Al,05 joint with 8, = 8, = 90° by modifying the boundary of
the side surface of the metal part 2 mm from the interface (A-B in Fig. 2.6). The concave
shapes were found to be effective in reducing the failure probability for the mechanical and
combined (mechanical-thermal) load. For thermal load, both concave and convex shapes
reduced the failure.
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Similarities of the mechanics of unidirectional composites on a microscale with the
mechanics of edge-bonded dissimilar materials leads to the conclusion that the stress field
at the fiber/matrix interface at the free surface may be singular with the order of singularity
dependent on the material properties. As in the results discussed above, this singularity
may disappear for certain material types and contact angles. These problems are discussed
in Chapters 6 and 9, in detail.

pA4
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Fig. 2.6: Optimization of the angle at the contact corner of
two edge-bonded dissimilar materials.

2.4.2 Disturbance in a Stress Field Due to Inclusions

The disturbance induced in a stress field by an inclusion has been the subject of
many studies. The presence of a hole in a plate acts as a stress riser and generates a stress
concentration at the circumference. Filling the hole with a rigid or elastic inclusion
changes the stress regime by reducing the stress concentration induced by the hole, but it
creates other stress concentrations. These stress concentrations practically vanish at a
distance of about four diameters away from the inclusion. The governing equation and
some of the solutions have been found to be applicable to 2-D studies of composite

materials.

Separation of a smooth circular inclusion from the matrix was treated by Keer et al.
(1973). The stress and the extent of separation depend on the level of adhesion at the
interface. The problem was solved for the matrix under bi-axial orthogonal tensile traction
with the traction being higher in one direction than the other. It was shown that for certain
combinations of the applied traction, the inclusion might separate from the matrix along
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some part of the interface. The angle of separation was related to the material properties of

the matrix and the inclusion.

Kelly and Wilhoit (1962) studied an equal sized rigid cylindrical multi-inclusion
problem. The work was extended to unequal size inclusions embedded in an elastic matrix
under in-plane stresses by Goree (1967). The problem was reduced to a 2-D plane strain
study. The solutions provide some information on the effects of the Poisson’s ratio and the
ratio of the radius of the inclusions and their spacing on the stress concentration between
inclusions. In general, the maximum principal stress sharply increased with decreasing

spacing of the inclusions and increasing Poisson’s ratio.

The disturbance by multiple inclusions in a uniform stress and/or bending stress field
was discussed by Yu and Sendeckyj (1974). The general solution for a circular elastic
inclusion was used for successive approximation of a multiple circular inclusion problem.
It was shown that the stress concentration decreased with increasing moduli of the
inclusions and with increasing number of inclusions. For example, when the number of
inclusions increased from two to three, the magnitude of the stress concentration decreased
by 30%.

The stress distribution around a single fiber embedded in a matrix under a lateral
force was presented by Tirosh et al. (1979) who studied the interaction of radial and
circumferencial cracks with the stresses around the fiber. The solution presented by the
authors indicates that, surprisingly, the maximum of the stress concentration occurs in the
matrix at a short distance away from the interface. The location of the maximum stress was
found to be dependent on the matrix Poisson’s ratio. This phenomenon may explain the
initiation of tangential cracks in the matrix close to the interface, which are frequently

observed in composites.
2.5 Stress Distribution Along the Fiber Length

The stress transfer between a single fiber and the matrix is usually analyzed with the

help of the shear-lag theory by considering the variation of the normal axial and
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longitudinal shear stresses along the fiber length. The early elastic stress analysis, which
included the effects of the fiber length, was proposed by Cox (1952), Rosen (1964), and
Amirbayat and Hearle (1969). Kelly and Tyson (1963) considered -elastic-plastic
deformations with the assumption of a constant interfacial shear stress in regions where the

interface had failed.

The load transfer mechanism is explained by assuming a cylindrical fiber embedded
in a cylindrical matrix. It is also assumed that the fiber and the matrix are perfectly bonded
together and that their Poisson’s ratios are similar in magnitude to avoid any radial stress
between them. Applying an axial load to the ends of the matrix cylinder, deforms the
matrix as shown in Fig. 2.7. The deformation is very high near the fiber ends and
diminishes along the fiber toward the mid-length. Transfer of the applied load from the
matrix to the fiber occurs by means of the shear stress at the interface. The treatment of the
stresses depends on the elastic or elasto-plastic response of the matrix material. The
detailed discussion of the shear-lag theory is presented in Appendix B where it is divided

into two cases, when the matrix is elastic and elasto-plastic.
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Fig. 2.7: Load transfer in fiber composites and axial and longitudinal
shear stress distributions along the fiber length.
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The high shear stress at the fiber end is referred to as the fiber end effects. Crack
initiation at the fiber end has typically been related to these effects. In this dissertation, the
end effects are discussed in detail in Chapter 5 using a 3-D approach.

The widely used shear-lag theory has several limitations. One of the problems is that
the radial and hoop stress components are ignored by this one-dimensional analysis. These
stress components are important for thermal loading (Abedian and Szyszkowski, 1997). In
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particular, the radial stress becomes large because differential thermal contraction of the
fiber and the matrix typically leads to a shrink fit or compressive radial stresses at the
interface (Nairn, 1985). The shear-lag analysis produces a stress state that does not obey
stress equilibrium (Whitney and Drzal, 1987). For a broken fiber embedded in a matrix,
the shear-lag theory predicts that the maximum shear stress occurs at the fiber breaks,
however the free surface boundary condition at the breaks requires zero shear stress at
these locations. Even applying the post-failure stress analysis of Kelly and Tyson (1963)
which is normally utilized to avoid some limitations of the shear-lag analysis does not

provide satisfactory results at the broken end of the fiber.

There have been several FEM and analytical attempts to improve the shear-lag
theory such as these by Carrara and McGarry (1968), Broutman and Agarwal (1974),
Whitney and Drzal (1987), and Nairm (1992). Among them, Naim’s semi-3D variational
technique provides an analytical solution that satisfies the boundary conditions (zero shear
stress at the fiber break) and also provides some information on the nature of the radial
stress distribution along the fiber length. This analysis begins with an admissible stress
state that obeys equilibrium and traction boundary conditions precisely. An approximate
stress state is then found by minimizing the complementary energy. The most important
fact about these results is the concentration of the radial stress at the fiber break. One
conclusion from this semi-3D analysis is that a more precise 3-D analysis of th.. stresses at
the fiber end on the free surface of unidirectional composites is required.

The axisymmetric analysis of a cylindrical rigid rod partially embedded and axially
loaded in an elastic half space was presented by Luk and Keer (1979). The numerical
solution, despite the free surface boundary condition, gives a singular longitudinal shear
stress component on the free surface of the half space. This inconsistency of the solution
was attributed to the numerical scheme adopted.

The singularity in the neighborhood of the intersection of a cylindrical inclusion and
a free surface was investigated by Folias (1989). The inclusion was assurned to be in the
form of a homogeneous isotropic material embedded in an isotropic plate of arbitrary
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thickness. Loading was in the form of a tensile lateral force in the plane of the piate. The
results reveal some interesting facts about the singularity such as the dependence of the
order of singularity on constituent properties such as shear modulus and Poisson’s ratio. It
was shown that the singularity exists when the elastic modulus of the inclusion is higher
than that of the plate material. The solution suggests that the singularity is of the type r™*,
where .= 2 - f and 1< B <2. The order of the singularity increases with increasing ratio of
the shear moduli of the inclusion and the plate. Penado and Folias (1989) presented the
distribution of some of the stress components in the vicinity of the singular point. It was

concluded that the maximum octahedral shear stress occurs at the interface.

More recently, Li and Folias (1991) have expanded the Penado and Folias study by
considering the fiber to be transversely isotropic. The value of B for carbon and glass fibers
(which typically have small diameters) in epoxy matrix was calculated to be equal to 1.693
and 1.737, respectively. It was suggested that the presence of a carbon fiber induces a
slightly higher singular stress field than that of a glass fiber and consequently the
carbor/epoxy composite is more prone to failure. One major drawback to the solution is
that the axial and longitudinal shear stress components on the free surface, instead of being

zero, are also singular.
2.6 FEM Analysis of the Stress Field in Composites

The finite element approach seems to be the only practical tool that is capable of
satisfying the boundary conditions comresponding to the assumed fiber packing
configuration. Different FEM models used, for example, by Bigelow et al. (1989) and
Fletcher and Oakeshott (1994,) for elastic, elasto-plastic, and creep analyses of
unidirectional composites are discussed in the following sections. The use of singular and

regular FEM elements in analyzing the singular stress fields are also discussed.
2.6.1 FEM Modeling
In order to reduce the cost of FEM calculations it is necessary to assume a regular

pattern for the fiber distribution in the matrix. Among the different patterns shown in
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Fig. 2.4, the rectangular and hexagonal patterns are widely used. A comprehensive
comparison of the models of different fiber patterns is provided by Bigelow et al. (1989)
and Fletcher and Oakeshott (1994,3).

Bigelow et al. used four micro-mechanical models to analyze metal matrix
composites. These models are the vanishing fiber diameter model (VFD), the Aboudi
model, the multi-cell model, and the discrete fiber-matrix model (DFM). Their unit-cell

representations are schematically shown in Fig. 2.8.
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Fig. 2.8: Various micromechanical models.

For the VFD model, it is assumed that the fibers have a very small diameter.
Although the fibers constitute an appreciable volume fraction of the composite, they do not
influence the matrix deformation in the transverse and thickness directions, but only in the

longitudinal direction.

The Aboudi model is based on the assumption that the continuous fibers extend in
the x,-direction and are arranged in a doubly periodic array in the transverse and thickness
directions. With the multi-cell model, the periodic structure of unidirectional composite
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ply is approximated by a square array unit cell model. The three sub-regions A, B, and C
shown in Fig. 2.8(c) are defined to characterize the “through-the-thickness non-uniformity

of the constituent stresses and material properties.”

The discrete fiber-matrix model (DFM) together with a finite element analysis
assumes that the fibers are dispersed in a uniform rectangular pattern in the matrix. This

model was first used by Foye (1966).

The first three models were originally developed for predicting lamina or laminate
properties or stress-strain behavior. The DFM model was designed primarly for the
prediction of the constituent stresses. However, the DFM model can be used to calculate
lamina properties. A comparison of the predicted lamina properties and constituent stresses
by the models described so far indicated that the DFM model was the best model for
calculating the constituent stresses. Also, this model provided lamina properties that were

very close to those calculated by the other three models.

Fletcher and Oakeshott (1994,) extended the above work by considering different
fiber packing patterns shown in Fig. 2.4. The 2-D plane strain assumption was considered.
It was shown that without a change in the other geometrical parameters the fiber packing
does not affect the magnitude of the maximum principal stress. However, it affects the von
Mises stresses. The stresses are reduced with increasing number of neighboring fibers. For
example, the hexagonal fiber pattern provides a lower von Mises stress than either the
rectangular or triangular patterns. However, the study does not provide a clear link
between the change in the magnitude of the von Mises stresses with fiber volume fraction.
The maximum of the von Mises stress was shown to occur at the interface along the line
which connects the centers of two neighboring fibers. Unfortunately, no reason for all of
the above results was offered. This phenomenon will be considered in this dissertation in
Chapter 5.

The issue of random fiber distribution has been studied by several investigators. For
example, Adams and Tsai (1969) investigated the effect of randomness in fiber
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distribution on the transverse stiffness of unidirectional composites. Their random array
analyses revealed the fact that the fibers in a composite conform more closely to the
hexagonal array rather than the square array. The transverse stiffness predicted by the
hexagonal array was more accurate in comparison with the experimental measurements on
random arrays. Due to these reasons, the hexagonal regular fiber pattern is considered in

this dissertation. The details of the FEM modeling will be discussed in Chapter 3.

The effects of randomness in fiber distribution on the predicted composite properties
were analyzed by Davy and Guild (1988). Fletcher and Oakeshott (1994,) studied the
stress fields in the fiber composites considering the random fiber arrays described by the
concept of a Voronoi cell (see Fig. 2.9). The Voronoi cell defines the region around a fiber
where all points are at distances from the fiber less than or equal to the distance to any
adjacent fiber. The study initially considers a “hypothetical” Voronoi cell model composed
of unit cells that were used in modeling the regular fiber arrays (Fig. 2.4) by the same
authors.

The model predicted that the maximum principal and von Mises stresses occur in the
region with shortest inter-fiber distance. However, the locations of the stresses were shown
to be in the matrix away from the interface where no traces of cracking were found
experimentally. The magnitudes of the stresses were in excess of those calculated by

means of the regular fiber arrays discussed earlier.

Voronoi cell

i Q

Fig. 2.9: Voronoi cell model (irregular fiber pattern).



2.6.2 Elastic Analysis of Unidirectional Composites

Many results on unidirectional composites were obtained assuming elastic properties
for the constituents. The transverse stresses generated by the difference in Poisson’s ratios
of the constituents of unidirectional composites under an axial load were studied by
Ostrowski et al. (1984). The interfacial pressure plotted along the fiber length indicated a
concentration of the radial and hoop stresses at the fiber end. The results also showed that
the stresses are reduced to some small values at a distance equal to about 5 fiber diameters
away from the fiber end. It was also shown that the maximum radial stress occurred at the
location with the shortest inter-fiber distance, while the maximum of the hoop stress
occurred at the highest inter-fiber distance. The magnitude of the interfacial hoop stress
was increased while that of the interfacial radial stress was reduced with increasing the

fiber volume fraction. More explanation on the above results are provided in Chapter 5.

A 3-D thermo-elastic stress analysis of unidirectional composites was conducted by
Haener and Ashbaugh (1967). Assuming a hexagonal pattern of fiber packing, it was
shown that the nature of the interfacial radial stress at the fiber end on the free surface is
different than the stress in the interior of the composite. The interfacial radial and hoop
stress components on the free surface were found to be very high. The nature of the hoop
stress on the free surface was shown to be similar to the interior of the composite. The
axial stress seemed to satisfy the free surface boundary condition (6, = 0), while the
longitudinal shear stress was found to be increasing when moving along the interface
toward the free surface. The study showed the stress concentrations at the fiber end but did

not mention any stress singularity at this location.

Thermo-elastic stresses in unidirectional polymeric matrix composites were studied
by Sottos et al. (1989) using hexagonal fiber packing. Using the Boundary Fitted
Coordinate Technique (BFCS), the unit cell for the hexagonal fiber array was meshed with
small rectangular elements. As stated by the authors, “this technique is essentially a
transformation or mapping of the physical domain where the problem is defined into a
simple computational domain where the problem is solved using traditional finite



difference technique”. The interfacial stress components in the interior of the composite
were calculated assuming perfect bonding at the interface and a decrease in temperature of
1°C. Upon cooling, it is expected that, due to the mismatch in coefficient of thermal
expansion (CTE) of the constituents, the sign of the hoop stress is tensile for the matrix
and compressive for the fiber. However, unexpectedly, it was shown that both of the
stresses are compressive. Also, the axial stresses of the fiber and the matrix are expected to
be of different signs, tensile in the matrix and compressive in the fiber, however they were
both found to be compressive. The location of the maximum radial stress was predicted to
be at the model comner in the matrix away from the interface. However, the study
conducted by Abedian and Szyszkowski (1997), where a similar model was analyzed using
FEM, showed the maximum radial stress to occur at the interface. A similar study by
Szyszkowski and King (1995) on axisymmetric models also showed that the maximum

radial stress occurs at the interface.

Sottos et al. also studied the effect of fiber volume fraction on the stress state. It was
found that the radial, hoop, and axial stress components increase with decreasing fiber
volume fraction (V). This is in contrary to the result obtained by Ostrowski et al. that was
discussed earlier. The validity of these results will be examined in this dissertation in full
detail (see Chapter 5). The effect of a weak interphase on the stresses was also analyzed by
Sottos et al.. The results showed that a coating weaker than the matrix matenial (lower
modulus, lower CTE) decreases the interfacial stresses which is in agreement with the

results obtained by Tirosh et al. (1979).

The stress field in unidirectional composites subjected to thermo-mechanical loading
was studied by Mikata and Taya (1985). The study focused on the effects of fiber coating
and the composite was modeled by four concentric cylinders (*“four-phase model™). The
inner most cylinder was considered to represent the fiber and the outermost to be the bulk
of the composite. The cylinder covering the fiber represented the coating and the cylinder
surrounding the coating represented the matrix. The fiber and the bulk of the composite
were considered to be transversely isotropic and the coating and the matrix were assumed

to be isotropic. The properties of the outermost cylinder were obtained by using the rule of
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mixture. A model for calculating the properties of the bulk composite using hexagonal
fiber pattern, which was proposed by Soh (1994), was also used. As for the loading, axial

and transversal mechanical loads as well as a temperature change were considered.

The stress distribution in the interior of the composite showed that the absolute value
of the hoop stress in the coating is higher than that of the radial stress. This result is similar
to the conclusion made by Sottos et al. (1989) who claimed that, in the interior of the
composite, even in the absence of coating, the hoop stress is higher than the radial stress in
the matrix. However, this is contrary to the results reported by Tirosh et al. (1979) who
suggested that for a uniform temperature change the absolute value of the radial stress is
always higher than that of the hoop stress.

Adams and Doner (1967) considered unidirectional composites with rectangular
fiber packing subjected to uniform transverse stress and under uniform temperature
change. The solution was obtained using the finite difference technique. The analyses
showed that, under uniaxial transverse loading, the maximum principal stress occurs at the
intersection of the line that connects the center of the two neighboring fibers with the
interface. The study also showed that under uniform temperature change, the maximum
radial stress occurs at the interface and increases with decreasing the fiber volume fraction.

This is contrary to the results presented by Sottos et al.

The stress concentration around a broken fiber in a unidirectional polymeric
composite was investigated by Nedele and Wisnom (1992). For a combined axial load and
a temperature change, it was shown that the stress concentrations in the fibers adjacent to
the broken fiber are less than that predicted by the shear lag theory.

Chandra and Xie (1993) extended the analytical solution proposed by Mikata and
Taya (1985) for a single fiber embedded in a matrix to consider the effect of neighboring
fibers on the stress distribution around a fixed fiber. Their results showed that the

maximum absolute value of the radial stress occurred at the interface at locations with the



shortest interfiber distances. The stress value decreased with increasing number of fibers

surrounding the central fiber.

Sherwood and Quimby (1995) using FEM analysis compared the stress-strain
characteristic of perfectly bonded and also completely unbonded composites. The
transverse properties of unidirectional composites were analyzed by De Kok et al. (1993).
The numerical and experimental studies showed that under transverse uniaxial tensile
mechanical loading, the interfacial bond strength did not affect the transverse tensile

modulus of the composite.
2.6.3 Singular Stress Field and Regular FEM Elements

Since a singular stress field is expected at the fiber/matrix interface on the free
surtace, the question is, how singularity can be handled by the regular FEM elements and
to what extent the results are accurate and reliable. There exist a vast amount of
publications explaining the application of FEM in determining the singular stresses at the
tip of a crack where the singularity is always of the type r™® (Gallagher (1978), Yamada
and Ezawa (1979), and Macherle and Fredriksson (1980)) with o = 0.5. However, for
problems dealing with the edge-bonded dissimilar materials, the order of singularity is

unknown and lies in therange 0 < < 1.

Many attempts have been made to develop special elements (variable power
singularity elements) to deal with such problems (Tracey and Cook (1977), Akin (1976),
Hughes and Akin (1980), and Stern (1979)). Several studies have been conducted to
establish a way of analyzing such singular stress fields utilizing regular FEM elements
(Staab (1983) and Schiermeier and Szabo (1989)). Such elements were used in the present
work to study the stress field at the fiber/matrix interface on the free surface of fiber
composites (see Chapter 6).

Staab investigated two known cases: the stress singularity at the tip of a crack in a
homogeneous plate and the stress field at the tip of a crack perpendicular to the interface of
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a perfectly bonded bi-material system. The stress was approximated by ¢ = cr ® in the
vicinity of the singularity where r is the radial distance from the singular point to the Gauss
point of the closest element. Plotting the above equation on a log-log scale, the slope of the
line (o) for the case of a crack in a homogeneous material was found to be very close to
0.5 which is exactly the same as calculated by analytical methods. It was shown that as the

mesh becomes finer, the slope gets closer to 0.5.

Schiermeier and Szabo (1989) calculated the order of the singularity at the contact
comner of edge-bonded dissimilar materials analytically and by means of FEM using
conventional elements. The difference between the orders of singularity calculated by these
two methods was found to be around 0.5%.

In this dissertation, a complete discussion of the order of singularity of the stress
field at the fiber end for unidirectional composites is presented in Chapter 6.

2.7 Inelastic Analysis of Unidirectional Composites

Inelastic analysis of unidirectional composites requires a substantially greater
numerical effort. It takes into account variation of thermo-mechanical properties of
constituents with stress and temperature. There are a number of studies dealing with the
generation of residual stresses during manufacturing and at service temperatures and the
damage caused by these stresses. Most of the studies have focused on the interior of
composites considering plane stress or plane strain assumptions. Only a few 3-D

investigations have been performed and the fiber end effects were ignored.
2.7.1 Elasto-Plastic Analysis of Thermal Residual Stresses in Fiber Composites

The generation of thermal residual stresses in SiC/Ti-6Al-4V composite when
cooling from a high manufacturing temperature was investigated by Nimmer et al. (1991).
3-D FEM elements were used to model the unit cell of the rectangle fiber array pattern.
However, the boundary conditions assumed simulated the 2-D plane strain behavior of the

composite. The von Mises yield condition was applied in conjunction with the kinematic
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hardening rule. The maximum absolute values of the radial and equivalent stresses were
shown to occur at the interface at the location with the least inter-fiber distance. The
equivalent stress distribution showed that no plastic strain in the interior of the composite

could occur.

Since there are different CTE values for Ti-6Al-4V in the literature, the authors
repeated the study with the highest reported values of CTE. The results showed that with
the new assumed property some plastic flow occurs in the matrix. However, the extent of
the plastic strains and whether the plastic flow continues up to room temperature were not

discussed. The results were found to correlate to some extent with the experimental results.

Similar thermal residual stresses resulting from the manufacturing process of the
composite were reported by Ananth et al. (1993) who studied the Ti-6Al4V and
aluminum matrices reinforced with SCS-6 fibers. The von Mises yield criterion along with
the associated flow rule were considered while strain hardening was ignored. The results
showed that the Ti-6A1-4V matrix remains elastic during the entire manufacturing process,
while the aluminum matrix showed a large amount of plastic strain.

Chandra et al. (1994) analyzed thermal residual stresses generated in
SCS-6/Ti-24Al-11Nb and SCS-6/Ti-6Al-4V composites by means of FEM using a
rectangular unit cell model. The effect of the stresses on the subsequent response of the
composites to transverse loading was also examined. The von Mises yield criterion along
with the associated flow rule and isotropic hardening were used. A comparison of the
stresses obtained by incorporating different assumptions (plane strain, generalized plane
strain, and 3-D model) was presented

The residual stresses in the Ti-6Al-4V matrix did not lead to any plastic deformation
as in the previous studies. However, the stresses in the Ti-24Al-1 1Nb matrix indicated that
a large part of the matrix yields plastically during the manufacturing process. The large
plastic strains effectively influenced the stress distribution in the matrix. The results
showed that the maximum of the hoop stress moves away from the interface due to the
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relaxation and redistribution effects of the plastic flow of the matrix. The plastic strain was
shown to be initiated at the interface at the locations with the smallest inter-fiber distances.
A good agreement between the calculated and the measured plastic strains by means of
Neutron Diffraction and X-ray Diffraction techniques (Wright et al., cited by the authors)
was reported.

Generation of thermal residual stresses in SCS-6/Ti-24Al-11Nb composite during
the manufacturing process was studied both experimentally and numerically by
Rangaswamy et al. (1994). The residual stresses measured by means of X-ray diffraction
were compared to those obtained using the FEM approach. The X-ray technique measures
the stresses on the free surface. Layers of the material were removed by an electropolishing
technique to find the stress distribution in the interior of composites. The measurements
showed that the axial and hoop stresses are tensile in the matrix. The profile of the
measured values showed that the stresses decrease as the fiber plane is approached. This
result was found to be in contrast to the 2-D results obtained by other researches. This
discrepancy was then attributed to microstructural features of the matrix examined by
metallography of the electropolished surface. However, in a recently published study by
Abedian et al. (1997), the nature of the stress distribution was attributed to the extensive
plastic deformation of the matrix. More details about the nature of the stresses can be

found in Chapter 7.

Rangaswamy and Jayaraman (1994) also modeled their X-ray tests using the FEM
approach. Material removal was simulated by the element birth/death option that will be
explained in Chapter 3. A perfect interface was assumed. The von Mises yield criterion
with associated flow rule and isotropic hardening were assumed. The analysis showed a
stress concentration at the fiber end on the free surface. The end effects diminished at a
distance equal to about 3 fiber diameters from the fiber end. This effect was also explained
by Abedian and Szyszkowski (1997).

Gdoutos et al. (1991) analyzed thermal stresses in SiC/6061-Al composite using

concentric cylinder models. The deformation theory of plasticity was usec: in conjunction
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with the von Mises vield criterion and the isotropic hardening rule. A good agreement
between the theoretical prediction and experimental measurement of the longitudinal and
transverse thermal residual strains of the composite was found.

The elasto-plastic analysis of thermal residual stresses in SCS-6/Ti-24Al-11Nb
composite was also carried out by Coker et al. (1993). The finite difference method was
used to analyze a representative volume element of the composite assuming generalized
plane strain condition. The Prandtl-Reuss relations were considered. The results matched
the FEM solution of the problem. Despite considering isotropic strain hardening and also
considering the fact that the matrix under consideration undergoes very high plastic
deformation, no evidence of the strain hardening effect was presented and the equivalent
stress simply followed the yield strength value of the unreinforced matrix available in the
literature. The effect of the residual stresses on the thermo-mechanical fatigue loading
which is normally the loading condition for this type of composites was also investigated.
Both the in-phase and out-of-phase conditions were considered. A good cormrelation

between modeling and experimental results was found.

The effect of plastic flow of composite constituents on the stress state of fiber
composites was studied by Hahn (1993) using a 3 concentric cylinder model to represent
the fiber, coating, and matrix. The generalized plane strain condition was assumed. The
study showed that the Tresca criterion is not sufficient for analysis of the plastic flow in the
coating. The analytical solution for plastic flow of the coating in two planes was then
developed using an approximate Prandtl-Reuss flow rule.

Residual stress development in polymeric matrix composites during the cure phase
was investigated by White and Hahn (1992;). A model was developed to predict the effects
of chemical and thermal strains during curing. The model included visco-plastic material
response, chemical and thermal shrinkage effects, and mechanical property development
during curing. The model developed required several material properties as the input. The

characterization and the experimental tests were reported in a companion paper (White and
Hahn, 1992,).
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2.7.2 Temperature Cycling of Unidirectional Composites

A simplified analytical elastic analysis of unidirectional fiber composites under
temperature cycling was performed by Misra (1993). The temperature dependent
properties for both composite constituents were incorporated. Upon cooling, the radial,
hoop, and axial stress components of the matrix were calculated. It was concluded that a
more comprehensive study of the plasticity is required to understand the true nature of the
stress components and the effective stress during the heating phase.

A numerical-experimental study of temperature cycling of metal matrix composites
was conducted by Wetherhold and Westfall (1988). The one-dimensional FEM study was
performed using beam elements. The stresses in the fiber and matrix and also the plastic
strain of the matrix were calculated during a temperature cycle. The results of the study
suggested that exposing the composite to an additional tensile load might decrease the
matrix cyclic plastic strain and thus decrease the damage. The tensile load may prevent the
compressive load from reversing the plastic strain. The experimental tests conducted on
the fibers revealed no difference in the strength between the as fabricated and the thermally
cycled fibers. The major drawback of this study is the one-dimensional analysis of the

stresses and strains.

Morris et al. (1989,) experimentally studied the effects of temperature cycling on the
stress and deformation states of a polymeric matrix composite reinforced with graphite
fibers. After a certain number of temperature cycles, the out-of-plane displacement of the
matrix on the cross section of the composite, caused by heating the composite to a constant
temperature level, was measured. The cut surface of the composite revealed many cracks at
the fiber/matrix interface. Cracking was least around the fibers in densely packed clusters.
Cracks were observed at the interface where the inter-fiber distance (the distance to the
neighboring fiber) was the largest (see Fig. 1.3). Morris et al. (1989%,) and Biemacki (1996)
also observed such a cracking pattern. In the Morris et al. (1989,) study, the thermally
cycled sample was sectioned and was heated again. It was observed that the fibers on the
free surface expanded in the radial direction and the epoxy sank into a trough. The depth of
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the trough was maximum at the center of the fiber triangle. The matrix deformation was
opposite to what one would expect from the CTE mismatch of the fiber and matrix. This
was attributed to thermal residual stresses. This study emphasized the history dependent
behavior of the composite, but its major drawback was the lack of distinguishing between
the characteristics of the free surface and the interior of the composite. Also, the analysis
of thermal stresses presented is inadequate in explaining the real cause of the unexpected

displacements in the matrix.

Thermal residual stresses in metal matrix composites reinforced with high or low
modulus graphite fibers were studied by Cheong and Marcus (1987). The composites
reinforced with PAN-based graphite fibers exhibited high residual stresses, while the
stresses were found to be low in composites with pitch-based high modulus graphite fibers.
The free surface deformation of the composites during a temperature cycle was monitored.
The convex cross section of the pitch-based fibers and the low residual stresses in the

composite were related to the low longitudinatl shear strength of the fibers.

Comparing the Cheong and Marcus (1987) results with the results obtained by
Morris et al. (1989,) a difference between the free surface deformation of metal matrix and
polymeric matrix composites reinforced with graphite fibers can be noticed. Upon heating,
the fibers of the polymeric composite sank in a trough, while for the metal matrix
composite the fibers protruded. This could be due to the different history-related behaviors

of the matrices.

The response of magnesium matrix composites reinforced with different types of
fibers (boron, silicon carbide, steel) to temperature cycling was investigated by
Maksimovich et al. (1988). The fibers were made by vapor-gas deposition of boron and
silicon carbide on tungsten wires. The composite samples were cycled between
+150°C and -196°C either slowly or rapidly to induce thermal shock. Microscopy of the
as-manufactured composite reinforced with boron fibers showed that 60% of the fibers
contained cracks which were mostly initiated at the boron/tungsten interface. However, no
cracks were initially detected in silicon-carbide/magnesium composite. The number of
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cracked fibers in both of the composites increased by increasing the number of temperature

cycles. Some cracks were observed in the matrix.
2.7.3 Creep Analysis of Unidirectional Composites

The behavior of aluminum reinforced carbon composites under temperature cycling
and an axial tensile mechanical stress, including creep strain, was examined by Furness
and Clyne (1991).

An elastic-viscoplastic micromechanical analysis of SiC/Ti-6Al-4V composite was
performed by Durodola and Ruiz (1993) utilizing FEM and using a rectangular fiber
pattern. It was shown that the cooling procedure affected the final residual stresses highly.
The stresses calculated under creep conditions were found to be much lower than those
calculated based on elastic and elasto-plastic assumptions. This was attributed to the
relaxation effect of the creep phenomenon. The stresses calculated under the creep
assumption were found to be in better agreement with the residual stresses in a thermally

cycled sample measured by means of a neutron diffraction technique.

The effect of microstructural damage on flexural creep deformation of unidirectional
composite materials was studied by Jeng and Yang (1993). The creep behavior of both
unnotched and notched titanium matrix composites under constant load and at elevated
temperatures was investigated. The unnotched composite sample exhibited a three-stage
creep behavior, i.e. primary, secondary, and tertiary creep. The creep power-law was used
to quantify the relationship between the creep strain rate and maximum applied stress at
the quasi-steady state creep region. The initiation and accumulation of the damage was

related to the creep behavior of the composite.

Cheng and Aravas (1997,) using 3-D constitutive equations have investigated the
creep behavior of unidirectional composites. The creep strain calculated using the
proposed constitutive equation was verified by 2-D FEM results obtained utilizing a
hexagonal fiber patten. The creep model was found to produce satisfactory results in
predicting the creep behavior of a unidirectional composite system.
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The effects of the fiber damage on the creep behavior were also studied by the same
authors (Cheng and Aravas, 1997,). The main drawback of the study was that constant and
uniform stresses in the fiber and matrix were assumed. In addition, it was assumed that the
corresponding axial strain in the fibers and the matrix are equal to the macroscopic strain

of the composite.

The momentary transverse creep behavior of thermoplastic polymer matrix
composites has been studied by modifying a semi-empirical micromechanical model and
also by means of the FEM approach by Wen et al. (1997). The visco-elastic transverse
compliance of the composite was calculated by applying the correspondence principle to
the semi-empirical equation for the elastic transverse modulus of the composite proposed
by Tsai-Hahn. The fiber was assumed to remain elastic. Good agreement was found
between the predicted values using the micromechanical model and the experimental

measurements.

One-dimensional elasto-perfectly plastic and elasto-viscoplastic analyses of
unidirectional composites subjected to varying temperatures were conducted by Daehn
(1989). Both the fiber and the matrix were considered to deform plastically and undergo
creep deformations obeying the power-law creep constitutive law. It was shown that the
fiber volume fraction has a considerable influence on the amount of the resulting plastic
strain. Two loading cases were considered namely a sinusoidal temperature cycle with or
without an external force. The external load affected the strain rate greatly. At low applied
stresses, the thermally cycled composite showed much higher deformation rates than
expected under the rule of mixtures based on isothermal properties. This can be attributed
to high thermally induced stresses. This study excluded the transverse stress components
from the calculations.

The behavior of particle reinforced metal matrix composites under temperature
cycling was investigated by Pickard and Derby (1991). The results of the study showed a
large decrease in the exponent of the stress in the power law creep characteristic of the
composite during cycling. Chen et al. (1990) used this weakening effect of temperature
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cycling (when it is accompanied by a small external load) on particle and whisker
reinforced metal matrix composites as a manufacturing procedure. Using this
phenomenon, they could successfully shape the material into a dome-shape configuration
without breaking the composite. This procedure generates large deformation in these types

of composites.
2.7.4 Methods of Reduction of Thermal Stresses in Unidirectional Composites

The thermal residual stresses in unidirectional composites generated during
manufacturing can be reduced by using high CTE fibers, fiber preheating, the compliant
layer concept (which is defined later), appropriate curing and post-curing cycles,

temperature cycling, and many other ways.

The compliant layer concept was used by Amold et al. (1992) and it involves an
interface material inserted between the fiber and the matrix to reduce residual stresses. A
parametric study was conducted concerning the properties of the interface material. The
elastic modulus, yield strength, plastic modulus, CTE, and the thickness of the layer were
considered as parameters. In particular, the radial, hoop, and axial stresses in the fiber,

matrix, and the interface layer were calculated as a function of the above parameters.

The effects of temperature rate and also annealing at constant temperature on the
residual stresses of modified 9Cr-1Mo steel matrix reinforced with W fibers (MMC3
composite) were investigated by Yeh and Krempl (1993). Among different cooling
histories tried, the stresses were found to be highest for the fastest cooling rates. However,
the difference between the stresses from different cooling regimes was found to be
negligible after about 30 days of storage time. Changing the cooling rate during processing
was shown to have some effect on the stresses. Slow cooling rates from high temperatures
followed by high cooling rates at lower temperatures were found to generate lower residual
stresses. The study presented that, to reduce the room temperature residual stresses, an

optimum cooling path for composites can be found.
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White and Hahn (1993) studied reduction of thermal residual stresses in polymeric
composites through optimization of the curing cycle. Three important parameters: time,
temperature, and pressure were considered. The experimental measurements were
compared to the calculated results obtained from an analytical model developed by the
same authors (White and Hahn, 1992,). The effects of curing temperature and time,
cool-down rates, cool-down pressure, and post-curing procedures were investigated.
Reduction in residual stresses with decreasing curing temperature was clearly evident
where the curvature of the samples showed a high decrease relative to the curvature
induced by the manufacturer’s recommended cure (MRC). However, the degree of curing
was found much lower than the MRC and as a resuit the undercurved samples led to a
reduction of the mechanical properties. It was also concluded that curing at lower
temperatures for longer time can reduce the residual stresses for thermosetting polymer

systems compared to the MRC cycles.

In this dissertation, the effects of temperature cycling and different cooling rates on
the residual stress level are presented in Chapters 7 and 8. The influence of the free surface
geometry on the thermal stresses is considered in Chapter 9.
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3. FEM Modeling and Procedures

3.1 Introduction

For a realistic computer simulation of a physical problem by the FEM an accurate
modeling of the geometry, the material, and the loads involved is necessary. On the other
hand, the FEM model must be numerically manageable and optimized in order to avoid
excessive computer time and storage space requirements. In this chapter, the important
aspects of balancing the accuracy with the numerical efficiency of the FEM analysis of

unidirectional composites are discussed.
3.2 Material Modeling

Normally, in unidirectional composite materials, the fibers are made up of strong and
rigid materials that carry most of the load and remain elastic during the normal service. On
the other hand, most of the matrices that serve as a binder of the fibers are more ductile
than the fibers, and may deform substantially. Due to the usually low yield strength of the
matrices, the deformation may be inelastic. Also, since the processing temperature of the
matrix is usually much lower than the melting temperature of the fibers, the creep

processes are much more pronounced in the matrix.

In general, any heating or cooling affects the stresses and subsequent deformation of
composites. Cooling the composite from the processing temperature in the manufacturing
phase introduces complex residual thermal stresses that may affect the properties and
performance of the composite. Any transient temperature field may be associated with
significant temperature gradients throughout the fibers and the matrix that can cause

additional large stresses and deformations.
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In this study, it is assumed that the fibers are elastic. Elasto-plastic and creep
properties are only considered for the matrix matenals. The thermal properties related to
heat transfer such as conductivity, convection, and capacitance coefficient are used in
transient thermal stress problems. Radiation is not included. All the material data are

assumed to be temperature-dependent.

3.2.1 Elastic Behavior

The fibers are assumed orthotropic with different mechanical properties and thermal
expansion coefficients in the axial and transversal directions. The elastic behavior is, in
general, characterized by the Young’s modulus E(T) and the Poisson’s ratio W(T). The
dependence of these properties on temperature makes the analysis nonlinear. Some

iterative procedure is required to obtain solutions.
3.2.2 Elasto-Plastic Behavior

The elasto-plastic behavior of the matrix material will be modeled using the elastic
modulus E.(T), the yield strength c(T), and the plastic modulus Ey(T) as shown in
Fig. 3.1(a). Such a model is referred to as the bilinear model. The elasto-plastic behavior of
matrix materials is characterized by the yield surface defined for the whole temperature
range. When the stress-strain characteristics of materials are temperature-dependent
(Fig. 3.1(a)), the yield surface will change with temperature (Fig. 3.1(b)). For example, the
yield surface will show an expansion with cooling of the material, i.e. material gets

stronger at a lower temperature.
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Fig. 3. 1: Effect of temperature on the (a) the stress-strain characteristics
(b) yield surface.
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The strain-hardening characteristic of materials will also change the yield surface.
That is, in subsequent loading and unloading cycles, the material will yield at different
stress levels if any plastic flow occurs during previous loading. Two types of hypotheses,
the isotropic (work) hardening and the kinematic hardening theorems, are normally used to
calculate the effect of the strain hardening phenomenon in materials. The isotropic
hardening causes the yield surface to expand uniformly. It assumes that the yield surface
grows as shown in Fig. 3.1(b). Under kinematic hardening, it is assumed that the strain
hardening pushes the yield surface or simply translates the yield surface axes. The
mathematical aspects of these two theories are discussed below.

The 3-D constitutive relations representing the yield surface for the kinematic and/or

for the isotropic hardening are assumed in the form

F(o,%,1)=0 (3.1)
x=Jo'de, (3.2)
Y=[Cden (3.3)

where o is the stress tensor (superscript T means transpose of the matrix), ) represents
plastic work in the isotropic hardening rule, vy indicates translation tensor of the yield
surface in the kinematic hardening rule, and &, denotes the plastic strain tensor.

For isotropic hardening the yield surface is defined as

3
F=ESTS—6'ZY(T)=O (3.4)
where S is the deviatoric stress tensor and
6% (M =03 (T)+2x £,(T) (3.5)
where
A E,(T)
TN=————. 3.6
E.(T) _EMD (3.6)
E.(T)

Eq. (3.5) specifies the increase of the yield strength due to plastic deformation

characterized by the parameter y and due to temperature T.
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The kinematic hardening rule is as follows
3 )
F=26-1)6-1)-cv(D=0 3.7
where the coefficient C in the translation tensor 7y is defined as
3.
= 5 Ep (T) (3 8)

Thus, the current yield surface is dependent on the temperature (since 6y(T), E(T) and
E(T) are functions of temperature) and the amount of plastic deformation accumulated.

In the present study, both of these theories are incorporated into the numerical code
for calculating the plastic strains in unidirectional composites. The bilinear stress-strain
option of the ANSYS (a FEM commercial software) is used to model the stress-strain
relations at different temperatures. This option can accommodate bilinear curves for up to
six different temperature levels. A linear interpolation is performed to get the stress-strain
characteristics for temperatures between any two consecutive curves. The temperature-
dependent properties add to the complication of the calculation of the elasto-plastic
process. Note that the temperature change may have hardening or softening effects on the
yield strength while the plastic strain always causes hardening (see Fig. 3.1). For example,
for cooling, the first curve marked as T¢ represents the stress-strain characteristic of the
composite as soon as it solidifies. When the matrix temperature is less than T but higher
than Ts, the stress-strain path travels to point B on the elastic section of the interpolated
bilinear curve (see the dashed line in Fig. 3.1(a)). When the matrix temperature drops to
Ts, the stress-strain path reaches point C that is still on the elastic section of the bilinear
curve Ts. The elastic process continues until the stresses reach the yield strength level at
Ts Plastic deformation starts at point D and continues to E on the plastic section of the
bilinear curve. The elasto-plastic process moves from one yield curve to another, from D to
E, using hardening and the characteristics interpolated between temperatures T4 and T3 and
then between T; and T.. Depending on the changes in the material properties with
temperature, plasticity may be either continued or terminated. When the increase in stress
falls behind the increase in the yield strength, the stresses may end up again on the elastic

part of the bilinear curve at point F. Then the process may remain elastic until room
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temperature is reached. Thus, despite the stress level rising continuously, the process may

switch back and forth between the elastic and the plastic domains.

Calculating the plastic strains with more accuracy is very important for
determination of the residual stresses at service temperatures. The relaxation and
redistribution of the stresses in subsequent temperature cycles are also highly dependent on
the amount of plasticity. In general, high plastic deformations are associated with low
residual stresses. Also, if the composite dimensional stability is of concern, a better
estimation of the plastic strains is desirable. Moreover, overestimation of the plastic
deformations gives a lower residual stress indication. This leaves some room for applying
higher working (mechanical-thermal) loads than the composite load bearing capacity.
Higher working loads may cause premature failure of composites.

3.2.3 Creep

Usually, creep becomes significant for a certain combination of temperature and
stress. Typically, the creep effects should be included only if T > 0.4T,,, where Tp, is the
melting temperature of the material. In composites, creep is considered meaningful only in

the matrix material.

In particular, during matrix solidification the creep phenomenon affects the residual
stress state quite substantially. Also, under temperature cycling creep may be important.
Understanding this phenomenon may help in controiling the level of thermal residual
stresses in unidirectional composites by modifying different heating and cooling regimes
or utilizing different maximum and minimum temperature levels for post-cure thermal
cycles. In the present work, the ANSYS creep capability is utilized to calculate the creep
strain imposed on the matrix by different rates of temperature change.

3.2.4 Transient Thermal Stresses

Thermal stresses in composites are generated mainly by the mismatch in mechanical

and thermal properties of the fiber and the matrix, specifically the mismatch in CTE.
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Another source of thermal stresses is temperature gradient. In general, temperature
distribution depends on the difference in thermal properties of the constituents like thermal
conductivity (k), thermal capacity (C), and density (p), especially for the transient process.
For example, a material with high thermal conductivity experiences a high volume of heat
transferred to the areas with low temperature in a short time. Hence, creating a high
temperature gradient in the vicinity of the materials with lower k which would serve as a
heat source. Also, a uniform temperature distribution throughout the material is achieved

in a shorter time for high k.

The transient thermal behavior of the composite constituents and the effects of the

thermal properties of the composites on the stresses are discussed in Chapters 4 and 9.

3.3 Geometry Modeling

It is usually assumed that the fibers are dispersed in the matrix in a regular pattern
for a 3-D FEM modeling of composites. Considering the symmetric aspects of the fiber
distribution in a composite leads to a representative volume or a unit cell. Regarding the
symmetry surfaces of the unit cells, the corresponding prism model can be established for
each pattern shown in Fig. 3.2. The whole composite can be rebuilt repeating each one of
these unit cells. The fiber volume fraction (Vy) for each particular pattern in terms of the
fiber radius (r) and the parameter (a) representing the distance between the fibers, is given
as

Ve=B(r/a)> (3.9)
For a given ratio of ( r/a ), the fiber volume fraction decreases from pattern A to pattern C.
Values of the coefficient B can be easily calculated: f= 2 1t /+/3 for pattern A, B = xt for
pattern B, and § = (4m)/(3+/3) for pattern C. Here, the unit cell of a regular hexagonal
pattern of long and straight fibers of circular section is modeled by a 3-D prism as shown

in Fig. 3.3. The details of the FEM meshing, types of elements, boundary conditions, and

model dimensions will be discussed in the following subsections.
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Fig. 3. 2: Various fiber packing arrangements in unidirectional composites.
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Fig. 3. 3: 3-D FEM prism model.
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The stress and deformation patterns become independent of the location along the
longitudinal axis away from the free surface. Therefore, 2-D plane strain or generalized
plane strain analysis can be performed to model the interior of composites. Since no
in-depth meshing is required in 2-D models, one can include more than one fiber in the
model. Essentially, this type of modeling is used to analyze non-regular fiber distribution.
The analysis of somewhat random fiber distribution by Fletcher and Oakeshott (1994y) has
shown that the maximum stresses are close to the stresses of a similar composite with
regular fiber distribution of the hexagonal pattern. Also, a comprehensive study of the 2-D
models presented by Fletcher and Oakeshott (1994,) shows that the maximum principal
and von-Mises stresses in composites are low for high values of § (i.e. the stresses in the
hexagonal array of fibers (pattern A) are lower than in the other patterns). Note that in
comparison to other models, each fiber in the hexagonal pattern is surrounded by the
highest number of neighboring fibers. As suggested by Chandra and Xie (1993), this
higher number of neighboring fibers increases the in-plane shear stress and reduces the

radial stress that is of more interest here.
3.3.1 Details of the 3-D Model

As discussed earlier, fibers and matrices in composites have different
thermomechanical properties. Due to material discontinuity, very high stresses may be
generated at and near the interface. Such a situation should be reflected in a preliminary
FEM mesh. Since the stress gradients are expected to be low in the central part of the fiber,
larger and linear elements (8-noded isoparametric bricks) are used in this area as shown in
Fig. 3.4. A dense mesh is applied in the vicinity of the interface in both the fiber and the
matrix. Due to the large stress gradients expected at and near the interface, quadratic
elements (20-noded isoparametric bricks) are employed. Again, 8-noded linear brick
elements are used for the matrix in the areas away from the interface. The mesh density
and the types of elements that were employed may be revised by performing an analysis of
the stress discontinuity between the elements. A denser mesh with quadratic isoparametric
elements may be used in the areas with a higher stress discontinuity.



For more accurate simulation of the behavior of the composite represented by the prism
model, proper boundary conditions (B.C.) should be imposed. For a fiber sufficiently distant from
the side-edge of the composite (typically two-three rows of fibers), several symmetry planes can
be identified as shown in Fig. 3.3. These symmetry planes simulate the effects of the neighboring
fibers on the fiber under consideration. Therefore, the corresponding B.C. should be imposed on
all symmetry planes. The nodes on line OO’ (shown in Fig. 3.4) are restrained in the X and Y
directions while the nodes on the OO'B'B surface are restrained in the X-direction. The AA'BB
surface remains planar. The nodes on the OO'A’A surface are allowed to move in the OA-direction
only. The surface AOB is assumed to remain planar during the cooling process to represent a plane
of symmetry in the middle of the prism. The surface A'O'B’ represents a free surface and the nodes

on this surface (except the boundaries) are free to deform in any direction.
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Fig. 3. 4: The 3-D prism model and FEM meshing.

Analysis of a fiber at the side-edge of the composite (edge-fiber) is much more
complex than that of the internal fibers (see Fig. 3.3) due to lack of symmetry planes. An
approximation of the stress/deformation state in such a fiber can be obtained by retaining

all previous symmetry planes but leaving the surface AABB free.
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For a transient thermal analysis, the B.C. for the temperature and the heat flux must
be imposed. When heating or cooling a composite, the edge-fibers have adiabatic B.C. (no
heat flux) on all planes of symmetry. Also, the free surface O'A'B' is the only surface
through which the heat to/from a medium is discharged/received through convection.
Therefore, the convection B.C. should be applied on this face of the model. For the edge-
fibers, the convection B.C. is also applied on the surface AAB'B.

To perform a coupled thermal-stress analysis, the meshing of the thermal elements
(for the thermal analysis) and the meshing of the structural elements (for the stress
analysis) are identical. Normally, a less dense mesh is needed for the thermal analysis than
for the stress analysis due to the lower mismatch between the thermal properties of the

composite constituents.
3.3.2 Dimensions of the 3-D Model

The fiber diameter and the fiber volume fraction (the ratio of entire fiber volume to
the total composite volume) define the dimensions of the 3-D model in the X-Y plane. In
particular, the parameter ‘a’ in Eq. (3.9), which characterizes the width of the prism, is
easy to find. However, the length of the model should be selected such that the model is as
short as possible but is capable of representing both the vicinity of the free surface (the end
zone) and the region distant from the free surface (the inner zone), even for very long
fibers.

The length of the prism can be selected by observing the longitudinal interfacial
shear stresses. These stresses decay substantially when moving away from the free surface
and become negligible in the inner zone. Consequently, the axial strain component (in the
z-direction) remains constant sufficiently away from the free surface and is practically
independent of the fiber length. This state of generalized plane strain dominates in the rest
of the composite. In order to represent both zones in the FEM analysis, the model must be
long enough for the longitudinal shear stress to disappear. Therefore, several models with
different lengths were considered in order to identify the ideal length for the model in
terms of the accuracy of the stresses and computational effort. The longitudinal shear and
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axial stresses at the distance of one fiber diameter from the plane of symmetry (the surface
OAB in Fig. 3.4) for all the models were monitored. Typical dependence of these stresses
on the model length is shown in Fig. 3.5. The shear stress decays to zero at a distance of
about 2.5 fiber diameters from the free surface (see Fig. 3.5(a)). The results reported by
Nairn (1985) and Ostrowski et al. (1984) suggested that the minimum length equal to five
fiber diameters for decaying the longitudinal shear stress was required. The axial stress at
the plane of symmetry for a sufficiently long model should converge to a Lame type
solution. Analytically, this solution can be obtained by assuming a generalized plane strain
state and solving Eq. (A.12) that is characteristic for the inner zone. Numerically, the inner
zone solution can be determined by coupling the free surface nodes in the longitudinal
direction. Fig. 3.5(b) shows how the calculated axial stresses for the model of a given
length converge to the axial stresses obtained from the Lame solution. The graphs in
Figs. 3.5(a) and (b) indicate that increasing the model length leads to a faster decrease in
the shear stress than in the discrepancy between the calculated axial stress and the Lame
stresses. Typically, when choosing a model about 3 fiber diameters long, the longitudinal
shear stress practically vanishes (less than 0.05%) while the axial stress deviates from the

Lame solution by less than 5%.
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Fig. 3. 5: Normal axial and longitudinal shear stress components
as a function of model length.

Here, in order to ensure that the numerical model is capable of simulating the fiber
end and the stress state away from the fiber end, the length of the model is assumed to be
equal to about five fiber diameters.
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3.3.3 Sub-Modeling Procedure

A high number of elements should be used along the model length in order to
provide a reasonable aspect ratio for the elements. Any further mesh refinement (the
h-refinement) in the end zone might run out of computer resource limits. Therefore, in the
present study, the h-refinement was performed by utilizing the sub-modeling capability of
the ANSYS software, which allows a smaller portion of a previously analyzed model to be

remeshed with smaller elements (see Fig. 3.6).

r4
Fig. 3. 6: Sub-modeling procedure.

Repeating this procedure several times, element sizes equal to 1/62000 of the fiber
radius were implemented to mesh the fiber/matrix interface at the free surface. This degree

of h-refinement was required to study rapid stress variations in this area.
3.3.4 Element Birth and Death

To analyze the effects of any material adding/removing (machining some part of a
material, casting or attaching new materials) the element birth and death capability of
ANSYS is used. This option allows for adding or removing any number of elements
during the solution phase of the calculations. For example, in stress analysis, the stiffness
of the killed (or deactivated) elements is severely reduced or, in thermal analysis, the heat
capacity of the elements is reduced and their thermal conductivity is highly increased.



More details about element birth and death procedure can be found in the ANSYS User’s
Manual (1996).

3.3.5 Axisymmetric Models

In the prism model, the highest stresses occur at the free surface in the narrow band
near the fiber/matrix interface. These stresses vary only a little along the fiber
circumference (see Chapter 5). This phenomenon is frequently used to reduce the
calculation time by replacing the prism model by the corresponding axisymmetric model
(Fig. 3.7). The stress/deformation states in the area of stress concentration for both models
are very similar. The axisymmetric model allows for very dense meshing of the stress

concentration zone.

The difference between the two types of models and their accuracy are discussed in
the next chapters. The results of the thermal transient analysis of the two models are
compared in Chapter 4, section 4.4 and the thermal stresses in both models will be
discussed in Chapter 5.

Similar to the 3-D model presented in section 3.3.1, a very dense mesh is used at the
fiber/matrix interface in the vicinity of the free surface of the axisymmetric model. Much
coarser mesh is used in both the fiber and the matrix in the inner zone. The details of the
axisymmetric model, with the boundary conditions and the mesh configuration, are shown
in Fig. 3.8. For meshing the model, 8-noded axisymmetric quadratic isoparametric
elements are used. Since the number of degrees of freedom for axisymmetric models is
much less than for the 3-D model, this quadratic element is used for meshing the entire
model. The free surface is represented by line DAM.

The model is selected to be sufficiently long so that the effects of the free surface on
the other end of the model (line CBM) are negligible. The boundary conditions along
CBM correspond to a generalized plane strain state characterization for the composite
away from the free surface. The nodes on line MM are assumed to be coupled. Coupling
the nodes along line MM in the radial direction results in the nodes being restrained
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against the relative movement in this direction. This keeps the line straight at all times. The
coupling assumption simulates the effects of an adjacent fiber on line MM. For
edge-fibers, the nodes on line MM are not restrained by this boundary condition. For
thermal analysis of internal fibers, an adiabatic boundary condition is assumed on all edges
of the model except line DAM (shown in Fig. 3.8) that remains free with the convection

coefficient applied on this line.
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Fig. 3. 7: The 3-D prism and Axisymmetric models.
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Fig. 3. 8: Axisymmetric model and FEM meshing.
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4. Thermal Transient Analysis

4.1 Introduction

Rapid changes in the temperature surrounding composites may cause sharp
temperature gradients inside the material. To simulate such situations and to determine the
corresponding thermal stresses a transient analysis is required. Such an analysis is
especially important in determining the thermal stresses generated in composite materials
during cooling from the processing temperature or the service temperatures. In this
chapter, the thermal transient analyses of unidirectional composites by means of the prism
and the axisymmetric models will be used to determine the temperature gradients that may

occur during the cooling process.

For better understanding of the heat transfer mechanism in composites, the
temperature distribution in a highly conductive fiber bonded to an almost insulating matrix
will be discussed first. In order to investigate the effect of the model length on the results
of the thermal analysis it is assumed that the model length is about 20 times of the fiber
diameter. This length is six times longer than the model length required for the stress
analysis discussed in Chapter 3. The analysis will be repeated for a model with the length
required for the stress analysis.

A high mismatch in thermal capacity (C) of the fiber and the matrix, typically
observed in the carbon fiber/polymeric matrix composites, will be assumed to investigate
the effects of mismatch in thermal capacitance on the temperature distribution. The
thermal behavior of metal matrix composites where the fiber and the matrix both are very
good thermal conductors will also be considered. Polymeric matrix composites that have
relatively higher thermal conductivity mismatch than metal matrix composites will also be
discussed. Finally, the results of the 3-D model will be compared to those of the
axisymmetric model.
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4.2 Effects of the Mismatch in Thermal Properties of Composite Constituents

For transient processes, the thermal conductivity and thermal capacity of composite
constituents play a key role in temperature distribution throughout composite materials. A
combination of a high thermal conductivity fiber with a very low thermal conductivity
matrix is used to analyze the mechanism of heat transfer along the fiber length. The length
of the model is considered to be 20 times of the fiber diameter. It is assumed that the
composite at uniform temperature of 900°C is placed in air of temperature 20°C. The
thermal properties of the constituents are presented in Table 4.1. The 3-D prism model
with the dimensions corresponding to the SCS-6 fibers is utilized. The diameters of the
graphite and SCS-6 fibers are 7.62um and 140um, respectively, and the fiber volume
fraction is set at 35%. The lateral dimension of the model is then determined by Eq. (3.9).

Table 4.1: Thermal properties of various composite components.

Graphite* Epoxy* SCS-6*  Ti-6Al-4V**
ki
Kg.um/(°K.s%) 83.6x10° 1.8x10° 16x10° 7x10°
ke
Kg.um/(°K.s’) 8.36x10° 1.8x10° 16x10° 7x10°

C (um/°Ks’) 838.4x10'7  1048x10'?  1200x10'*  590x10'?
p (Kg/um’) 1.7475x10°°  1.2759x10"°  3.32x10°  4.4x10™

* Weeton et al. (1987) and ** Grayson (1983).

Cooling of such a model in air from processing temperature of 900°C takes a long
time. The temperature distribution profile of the composite after 500 seconds of cooling in
air is shown in Figs. 4.1(a) and (b). Due to the symmetrical geometry of the model, all the
model sides are considered to be adiabatic except the free surface which discharges the
heat to the air through convection. A uniform temperature is seen along the fiber length as
the fiber has a very high conductivity. Due to the low matrix conductivity, the heat flow is
slow in the matrix, so the layers of the matrix which are closer to the free surface lose more

heat than the interior layers, Fig. 4.1(c).
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As the graphs show, the nodes on the free surface and away from the fiber (A" and
B") are cooled very fast while the nodes on the interior surface (A, B, P;) and the nodes on
the free surface but close to the fiber (i.e. P'|) are cooled rather slowly. The heat from the
interior layers of the matrix does not travel fast enough to compensate for the heat lost by
the free surface layers to the air, so a large temperature gradient occurs along the fiber
length in the matrix (Fig. 4.1(d)). The temperature at the interior layers of the matrix is
similar to the fiber temperature. This is due to the fact that the interior layers of the matrix
serve as a heat source. These layers control the fiber temperature. The heat from the
interior layers moves slowly to the fiber and rapidly discharges to the air. A small
transverse temperature gradient is seen in the matrix near the interface in the interior layers
due to the small radial dimension of the model compared to the axial dimension. The fiber
that acts as a heat pipe also influences the temperature of the matrix layers close to the
interface near the free surface. The temperature difference between points A and A' is
higher than the difference in temperatures at B and B'. On surface OAB, the shorter
distance of B to the fiber than A causes the temperature at B to drop faster. However, at the
free surface, the higher distance of A' to the fiber than B' causes less fiber influence on A’
than B'. Thus the minimum temperature in the matrix occurs away from the interface on

the free surface (i.e. at A").

The cooling process is long, and steady state is reached when the temperature of the
interior layers of the matrix drops to room temperature. The temperature gradient will be
steeper and the cooling process will be longer for composites with matrices that have
lower thermal conductivity and higher thermal capacity. The temperature around the
fiber/matrix interface at the free surface is uniform (Fig. 4.1(b)). This is also due to the
influence of the fiber temperature on the matrix at the interface. Therefore, this kind of
thermal behavior may affect the matrix expansion and contraction along line AA'. This

thermal behavior is more noticeable when the composite undergoes a thermal cycling load.

Two different temperature cycling schemes were considered. In the first scheme, the
composite sample is moving back and forth between hot and cold reservoirs. In this way,

the sample is heated and subsequently cooled in free convection. For the second scheme,
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the sample is heated and cooled at constant temperature rates with prescribed temperatures
applied to the nodes on the free surface (surface O'AB'). In this scheme the heat is
transferred through conduction only.

A plot of the temperature profiles with time under the first loading condition for
points P}, A', and B' on the free surface and P, A, and B on the interior surface are shown
in Fig. 4.2. The temperature profiles of points P}, A, and B show a big time delay. Due to
the insulating behavior of the matrix it takes a long time for the temperature of the interior
layer to reach the heating/cooling temperature of the medium. Also, the fiber near the free
surface at P’ shows the same time delay as the interior layer of the matrix. However, A’
and B' on the free surface follow the medium temperature closely. They lose and gain heat
very quickly because heat transfer between these points and the medium occurs at a higher
rate than that with the rest of the model. This is due to the very low conductivity of the

matrix.
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Fig. 4.2: Time-temperature profiles in the interior and at the free surface of
the 3-D model thermally cycled assuming free convection.
For the second temperature cycling scheme, the free surface temperature is the same
for the fiber and the matrix. The calculated temperature of the interior layer (Fig. 4.3)
follows the free surface temperature with a small delay due to the low conductivity of the
matrix. It is noted that the delay is not as significant as for the first scherne. That is because
the free surface temperature of the fiber is fixed and in this case it is the fiber that supplies
the heat to the interior layer and controls its temperature. The fiber supplies a large amount
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of heat into the matrix. The difference between the matrix and the medium temperature is

so small that it may be ignored.
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Fig. 4.3: Time-temperature profiles in the interior and at the free surface of the
3-D model thermally cycled assuming forced heating/cooling convection.

For the case of cooling the composite from the processing temperature, a plot of the
temperature along the matrix edge (line AA', Fig. 4.1(d)) shows that the steepest
temperature gradient appears along the length which is limited to about 3 to 5 fiber
diameters from the free surface. This length is similar to the model length required for
structural analysis as discussed in Chapter 3. To examine the possibility of improving the
numerical efficiency, the thermal analysis was repeated for a model of 1/6th of the length
of the original model (short model).

The temperature distribution during the cooling period for the short model shows
that a temperature gradient indeed occurs along most of the length of the model, but the
deepest descent is located closer to the free surface (see Fig. 4.4). Comparing the
temperature gradient for the short mode! with that of the long model shown in Fig. 4.1(d)
one can conclude that the temperature gradient depends on the model length only for a
matrix with extremely low conductivity. Longer models are capable of storing more heat.
Due to the low matrix conductivity assumed, the heat travels very slowly from one
location to another causing a very high difference in the temperature along the length and
producing much steeper temperature gradients. For short models, due to adiabatic
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conditions assumed along the interior and the side boundaries and the low heat storage a

lower temperature gradient is generated along the model length.
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Fig. 4.4: Temperature gradient along the length of the short model.

To find the effects of thermal capacitance mismatch of the fiber and the matrix on
the temperature gradient throughout composites, the analysis of the short model was
repeated with the thermal capacitance for the fiber reduced by 10° times. Note that with
reducing C for the fiber, the mismatch in C of the fiber and matrix is increased. Table 4.2
shows the temperature at points A’, B', B, and A after 500 seconds for the previous analysis
and for the current analysis with C for the fiber being 10° times smaller.

Table 4.2: Effect of mismatch in thermal capacitance on the temperature distribution.

MismatchinC A'¢°C) A (¢°C) B (°C) B (°C) A-A'(°C) B-B' (°0)
High 22.77 66.76 22.99 62.57 43.99 39.58
Low 28.05 14846 2893  140.73 120.41 111.80

It seems that the temperature gradient along both lines AA’' and BB' is reduced with
increasing the mismatch in C of the composite constituents. The difference between the
temperature at locations A and A' and B and B' (the columns marked with A-A' and B-B',
respectively) are much lower for the case with higher mismatch in C. Fibers with high
thermal capacitance store more heat than the fibers with low C. Therefore, it takes more
time for the fiber to lose its heat to the cooling medium. However, when C for the fiber is
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low, it discharges most of the heat it receives from the matrix to the surrounding medium.
It appears that the thermal capacitance and thermal conductivity mismatches of composite
constituents have opposite effects. The high mismatch in k increases the temperature
gradient throughout the composite, while the increase in the mismatch of C decreases the

temperature gradient.
4.3 Thermal Transient Analysis of Metallic and Polymeric Matrix Composites

Thermal analysis of a composite with its matrix having very low conductivity
showed that a temperature gradient occurs along the length of both short and long models.
The temperature gradient was reduced when the mismatch of the thermal capacitance of
the composite constituents increased. In this section, the thermal behaviors of SCS-6/Ti-
6Al-4V and graphite/epoxy composites are analyzed.

Due to the low mismatch in k and high mismatch in C of SCS-6 fibers with the
Ti-6Al-4V matrix (Table 4.1), it seems that the temperature gradient throughout the
composite is negligible. The composite is cooled from the processing temperature of
900°C in free convection. The time-temperature profiles of points P;, A, B (on the interior
surface) and P'|, A', B' (on the free surface) presented in Fig. 4.5 indicate uniform
temperature almost everywhere in the composite. It is noted that the difference between the

minimum and the maximum temperatures is less than 1°C, which is negligible.

900 T 1 T T ) L T T 1
800 |- -
G700_ A B -
pr
o600 /P' ! .
s A
5%0r 7
B w00 | 4
U
g-;oo— -
S 200 .
lm;— -
0 —t L | 1 1 L L
0 SO 100 150 200 250 300 350 400 450 500
Time (sec)

Fig. 4.5: Time-temperature profiles in the interior and at the
free surface of the SCS-6/Ti-6Al-4V composite.
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The minimum temperature occurs on the free surface at point A' (which has the maximum

distance to the fiber) and the maximum temperature occurs at A on the interior surface.

Thermal analysis of polymeric matrix composite is presented here. For comparison
with previous results, this composite is also cooled from 900°C. Since the graphite/epoxy
composite has higher k and lower C mismatches than the metal matrix composite (Table
4.1), a higher temperature gradient is expected in the former than the latter. However, as
Fig. 4.6 shows, the temperature values for the free surface and the interior layers of the
composite are almost the same, ie. the temperature gradient is negligible for this
polymeric composite for the dimensions considered here. One reason for this unexpected
result could be the low lateral dimension of the model due to the very small diameter of the
graphite fiber (7.62 pm). This small fiber diameter accompanied by a 35% fiber volume
fraction dictates a very small lateral size for the model (see Eq. (3.9)). This small lateral
size makes the fiber thermal conductivity a dominant factor. As a result, the temperature of
the composite is fully controlled by the fiber. Since the longitudinal thermal conductivity
of the graphite fiber is almost 6 times higher than SCS-6 fiber and the diameter of graphite
is small compared to that of the SCS-6 fiber (140 um), the graphite/epoxy composite cools
down faster than the SCS-6/Ti-6A1-4V composite (see Figs. 4.6 and 4.5).
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Fig. 4.6: Time-temperature profiles in the interior and at the free
surface of the graphite/epoxy composite.

To see how the model length affects the temperature gradient in polymeric matrix
composites, the analysis was repeated for a model with 6 times longer length. According to
the time-temperature profiles of the aforementioned points both on the free surface and the
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interior layer of the model (Fig. 4.7), the temperature gradient is again negligible. The only
difference between the long and the short model is the longer time, which the long model
needs to cool down to room temperature. This is due to the dependence of the stored heat

in the composite on the model sizes.

From these analyses, it can be concluded that the temperature gradient for metallic
and polymeric composites is almost negligible for the model length required for thermal-
stress analysis. The temperature gradient is higher inside the composite that may change
the stresses in the inner zone. However, such a change is not very significant. Therefore, in
most of the elasto-plastic stress analyses, a uniform temperature can be considered for
calculating the stresses for slow cooling rates. Only for visco-elastic analyses, in which the
time directly affects the strain-stress relations, the rate of cooling/heating may influence
creep deformation and final residual stress states.
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Fig. 4.7: Time-temperature profiles in the interior and at the
free surface of the long graphite/epoxy composite model.

4.4 Thermal Transient Analysis of the Axisymmetric Model

As it was discussed in Chapter 3, the 3-D model may be replaced with an
axisymmetric model but the accuracy of the analysis must be examined with the numerical
effort. The axisymmetric model may be utilized when a very fine mesh is required and the
computer resources are limited, or some simplifying assumptions do not affect

significantly the accuracy but reduce the time and the cost of the calculations. Here, the
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thermal transient analysis of the axisymmetric model is presented as the first test case and
the results are compared to those of the 3-D model. In this section, the analysis of the
composite with the very low conductivity matrix is repeated by using the axisymmetric
model. The model is meshed with similar element sizes as those used in the 3-D model.

Similar model dimensions and fiber volume fraction are also considered.

The contour plot of the temperature (Fig. 4.8) shows a similar distribution as for the
3-D model (Fig. 4.1(a)). The same reasoning, as discussed in section 4.2, is valid. The
temperature profile along line MM' (Fig. 4.9) of the axisymmetric model lies between
those of lines AA' and BB’ of the 3-D model. The reason is that the axisymmetric model
ignores the small matrix area confined between the hexagonal fiber cluster (see Fig. 3.7).
Therefore, for V¢ similar to the 3-D model, the distance of M’ on the axisymmetric model
to the fiber would be the average of the distances of A' and B' to the fiber for the 3-D
model. Since the matrix behaves as an insulator, the distance of a location on the matrix to
the fiber has a substantial effect on the temperature at that particular point. This
temperature difference can affect the out of plane deformation of the matrix. This is one of
those thermal details, which is ignored if the 3-D model is replaced with an axisymmetric
model. Fortunately, this temperature difference is small for both metallic and polymeric
matrix composites and its effect on the thermal gradient and the residual thermal stresses is

negligible.
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Fig. 4.8: Temperature distribution for the axisymmetric model.
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5. 3-D Elastic Analysis

5.1 Introduction

The thermal transient analysis presented in Chapter 4 showed that, due to the high
thermal conductivity of the fibers that act as heat pipes, in the composite heated or cooled
with sufficiently slow rate, the temperature gradients are small and the temperature is
increasing or decreasing almost uniformly. Consequently, any thermal stress effects
should be attributed to such a uniform temperature change and to the mismatch in the
thermal expansion coefficient of the fiber and the matrix. In order to understand this
phenomenon the elastic stress analysis under 1°C uniform temperature change is
presented in this chapter. This unit temperature change is considered as a nominal thermal
loading. Such a loading provides all the information about the thermal stress distribution
due to the mismatch of the CTE without affecting any of the mechanical properties of the
composite constituents. To estimate the stress magnitudes corresponding to a specified
temperature increment (and if the variation of mechanical properties of both constituents
within the temperature range considered is negligible and if the yield strength is not
reached) one should multiply the values shown on the plots by this temperature increment.
The results presented here were obtained for graphite (AS)/epoxy (IMHS) composite with
35% fiber volume fraction. The properties of the materials are listed in Table 5.1. Note
that, in general, the fiber is assumed axisymmetrically orthotropic with subscripts | and t
denoting the axial and transversal directions, respectively. The minor values of Poisson’s
ratios are denoted as v, and v,. Formally, in terms of the coordinate systems shown in
Fig. 5.1 the following applies: v. = v, and v, = V,, = V,.. In this study, the models with a
length of 4 fiber diameters were used for the 3-D analysis. The diameter of graphite fiber
is set at 7.62 pum.
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Table 5.1: Properties of the composite constituents used in the analysis
Weeton et al. (1987).

AS IMLS IMHS Polyamide

E, (GPa) 214 34 34 3.4
E, (GPa) 137 34 34 3.4
Vi 02 041 035 0.35
Va 025 041 035 0.35
CTE,(106)°C  -099 1026 6438 36
CTE,(105/°C  10.1 1026 6438 36

AS = Graphite fiber; IMLS = Intermediate modulus low strength
epoxy; IMHS = Intermediate modulus High strength epoxy.

Middle
Full Model y Surface

Fig. 5.1: Configuration of the 3-D prism model.

The analysis shows that the stress distribution near the free surface (the end zone) is
substantially different from the stresses in the inner zone. The inner and the end zone
divisions of the 3-D prism model were discussed in Chapter 3. The characteristic features
of the stress distributions in both zones are presented separately. The effect of the fiber
volume fraction V¢ (8.3% to 66.6%) is also investigated. It will be shown that the stresses
change with V¢. Composites with higher V¢ have lower interfacial thermal stresses in the
end zone compared to the composites with low Vi However, in the inner zone, V; will
decrease some of the stress components while it increases the others. In addition, the
composite dimensional stability i.e. the axial and transversal displacements are discussed.
The results obtained by the axisymmetric model will be compared to the results obtained
from the corresponding 3-D model.



5.2 Inner Zone

As explained in Chapter 3, the boundary conditions of the ABB'A’' surface can
determine whether the modeled fiber is away from the composite side edge or at the side
edge. Such fibers are referred to as the internal-fiber and the edge-fiber, respectively.
When the nodes on this surface are free (i.e. no restraining effect is applied on this surface
by the neighboring fiber) the conditions for a fiber at the side edge of the composite
prevails. It should also be mentioned that the main objective here is to determine the stress
and deformation states of the internal fiber. Unless the edge fiber is mentioned, this

chapter deals with the internal fiber.

The behavior of the inner zone is characteristic for the portion of the model where
general plane strain state dominates. In this zone, the longitudinal interfacial shear stresses
disappear and the stress components are independent of the location along the fiber. This
solution is valid for an infinitely long fiber. In the prism model the stresses depend on the
circumferential position around the fiber. The axial, radial, hoop, and equivalent von
Mises stresses in the matrix on surface OAB at the interface as functions of angle 0 are
presented in Figs. 5.2(a-d). For comparison, similar stress components in the matrix for
the edge-fiber are indicated with the broken lines. The stresses in the fiber along the

interface are shown in Fig. 5.2(e).

Under a positive temperature change, the matrix expands more than the fiber due to
its higher CTE value. In order to maintain continuity in the radial direction, a tensile radial
stress must develop at the fiber/matrix interface (Fig. 5.2(b)). For continuity in the axial
direction, the matrix has to be compressed (Fig. 5.2(a)) and the fiber must be stretched
(Fig. 5.2(e)). For similar reasons, the hoop stresses are tensile in the fiber (Fig. 5.2(e)) and
compressive in the matrix (Fig. 5.2(c)). A small in-plane shear stress also occurs at the

interface.

Upon cooling, the sign of the stresses would be reversed. The matrix will experience
high tensile hoop stress, which may cause the matrix to craze and crack around the fiber.

However, the compressive radial stress will reinforce the fiber/matrix interfacial bond. As
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discussed in Chapter 2, the interfacial stresses reported by Sottos et al. (1989) are not in
full agreement with the results shown here. Much higher axial stress for the matrix relative
to that of the fiber was reported. Also, the stress components in the fiber and matrix were

of the same sign.
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Fig. 5.2: The inner zone stress components in the fiber and matrix
on surface OAB at the interface.
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The other difference is related to the location of the maximum and minimum of
radial stress. According to Sottos et al. (1989) and Szyszkowski and King (1995), a lower
V¢ results in higher interfacial stresses. Higher stresses in the areas with higher fiber
distance to the neighboring fiber have been attributed to a lower local fiber volume
fraction in these areas. The local fiber volume fraction is defined as the square of the ratio
of fiber radius to the half distance between the center of two neighboring fibers
((OP//OAY) or (OP/OB)?). Since, for the 3-D model (OP//OA)” < (OP-/OB)?, higher local
stresses according to (Sottos et al., 1989) should be expected at P, (6 = 0°). This effect has
not been observed in this study. The graph for the radial stress (Fig. 5.2(b)) seems to have
opposite curvature relative to the results presented by Sottos et al. (1989). The maximum
radial stress was at 6 = 0° in (Sottos et al., 1989), while in the present study it occurs at
0 = 30°. However, as the same figure shows, the radial stress distribution for the edge
fiber is as predicted by Sottos et al. (1989) i.e. the maximum of the stress is at P; (8 = 0°).
The reason for this shift in the location of maximum stresses may be explained by the
nature of the deformations under the temperature change for the edge fiber. Upon heating,
for an internal fiber, the ABB'A' surface is required to remain planar and horizontal.
However, if this boundary condition is removed for the edge fiber this surface deforms as
shown in Fig. 5.3. The matrix expands more along line AP, than along line BP; and the
whole surface ‘rotates’ counter-clockwise. In order to have the surface horizontal again
for the internal fiber case, self-equilibrated extra radial stresses must b= generated which
are compressive along line AP, and tensile along BP-. In the inner zone, this extra stress,
raises the magnitude of the tensile radial stress at P, and lowers it at P,. Thus, the results
presented by Sottos et al. (1989) may have been produced by ignoring the symmetry
boundary condition on the surface ABB'A".

If the deformation mechanism outlined in Fig. 5.3 is applied to the interfacial
elements in the inner zone along line PP, (the elements are shown in Fig. 5.1), the
opposite nature of the stress components for the internal fiber and the edge fiber presented
in Fig. 5.2 can be easily explained. The thermal radial and hoop stress components for the
elements of the inner zone are presented in Fig. 5.4(a). Due to lower local Vi for P,

(element 1) than P, (element 2), higher stresses occur for element 1. Therefore, for the

67



edge fiber, the deformation of element 1 will be higher than that of element 2 due to free
movement of the nodes on ABB'A’ surface as shown in Fig. 5.4(b). It is noted that, due to
symmetry boundary conditions, face 1 of element 1 and face 3 of element 2 must remain
straight. If surface ABB'A’ is required to remain straight, the deformation of the elements
must reach an equilibrium state. So, a compressive radial force on face 4 of element | and
a tensile load on face 4 of element 2 are needed to bring the deformed elements to the
equilibrium position. This extra compressive radial load on element 1 tends to expand the
element in the circumferential direction, which is resisted by a compressive hoop stress.
Meanwhile, the circumferential shrinkage of element 2 due to the tensile radial load on its
face 2 is resisted by a tensile hoop stress (see Fig. 5.4(c)). As explained earlier, super-
positioning of these extra radial and hoop stresses of Fig. 5.4(c) on the thermal stresses of
Fig. 5.4(a) results in higher tensile radial stress at P, (8 = 30°) relative to P, (8 = 0°),
whereas it is opposite for the hoop stress. The compressive hoop stress of element 1 in
Fig. 5.4(c) increases the overall compressive hoop stress at P; (8 = 0°) and the tensile

hoop stress of element 2 reduces the overall hoop stress at P, (8 = 30°), see Fig. 5.4(a<).
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Fig. 5.3: Deformation pattern with the ABB'A’ surface free.
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These compressive extra radial and hoop stresses in Fig. 5.4(c) tend to impose an
axial elongation on element 1 (if it is viewed in 3-D) which is resisted by a compressive
axial stress, see Fig. 5.4(d). However, as the extra radial and hoop stress components are
tensile for element 2, the resultant axial load have to be tensile to resist shrinkage. Adding
these extra axial stresses to the thermal axial stress of the matrix at P; and P> which are

compressive in nature, reduces the absolute value of the axial stress at P, (8 = 30°), while

the absolute value of the stress increases at P (8 = 0°), see Fig. 5.2(a).
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Fig. 5.4: Effects of the restrained ABB'A’ surface on the stresses
of the interfacial inner zone elements.

For the edge fiber, since the surface ABB'A’ is free and due to lower local V¢ at P,
than at P, a higher radial stress occurs at P,;. This higher tensile radial stress is responsible

for altering the rest of the stress components at this location.
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The profile of the stress components discussed so far, directly affect the von Mises
equivalent stress distribution for both types of the fibers as shown in Fig. 5.2(d). The main
conclusion of this figure is that in the inner zone this stress is almost constant along the
circumference. For the internal fiber, the stress is slightly higher at 6 = 30° or where the
fiber has the least distance to the neighboring fibers. However, for the edge fiber the stress
is slightly higher at 6 = 0° where the fiber has the largest distance to the neighboring
fibers.

In order to understand the effects of fiber volume fraction on interfacial stresses, the
above analyses were repeated for different V¢ Figs. 5.5(a-d) show the interfacial radial,
hoop, axial, and equivalent stresses for the internal fiber where V; varies from 8.3% to

66.6%. As the graphs show, the stresses are almost constant if Vi< 33%.
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Fig. 5.5: Variation of the stress components of the matrix in the
vicinity of the interface in the inner zone with V.
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The average value of the stresses are plotted in Fig. 5.6 which are calculated from
four stress values presented on each one of the stress curves (Figs. 5.5(a-c)). The average
value of radial stress decreases with increasing V¢. However, the absolute average values
of hoop and axial stresses increase with increasing Vy. For small Vg, the distance between
the neighboring fibers is larger than the distance for a composite with high Vy. This allows
for more radial deformation of the matrix at the interface. Therefore, considering free
body thermal expansion of the fiber and matrix, a larger gap occurs between the fiber and
matrix at the interface. To eliminate the large radial gap between the fiber and the matrix
in order to satisfy the radial continuity, higher radial stresses are required. This effect is
opposite for hoop and axial stresses. With decreasing V¢, the restraining axial and
circumferential forces created by the fiber due to the CTE mismatch spread over a greater
matrix area in both axial and hoop directions reducing the compressive axial and hoop
stresses. Therefore, with increasing Vi higher absolute average interfacial axial and hoop

stresses are detected in the matrix.
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Fig. 5.6: The effect of volume fraction on the average value of the inner zone stress
components in the matrix in the vicinity of the interface.

For the edge fiber, the effects of V¢ on the average values of the stresses are
basically the same as the effects shown for the internal fiber. However, the locations of the
maximum and minimum of the stresses for different V¢ are opposite of thoes discussed for

the internal fiber.
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A contour plot of the radial and hoop stresses in the inner zone is shown in Fig. 5.7.
The characteristic elliptical pattern of the radial stress distribution was reported by Sottos
et al. (1989) and also in the experimental photo-elastic study conducted by Marloff and
Daniel (1969). A very similar state of the stress in the inner zone for a rectangular array of
fibers was presented by Koufopoulos and Theocaris (1969) in the experimental study
using photo-elastic models. This similarity indicates that the authors measured mainly the
stresses in the inner zone. The stresses in the end zone (which are usually much higher and
have opposite sign, but act in a relatively thin layer) did not seem to have contributed to
the recorded photo-elastic effect. This might have been possible if the thickness of the
photo-elastic model had been several times greater than the thickness of the end zone.

-0.19

Radial stress (MPa) Hoop stress (MPa)

Fig. 5.7: The radial and hoop stress distributions in the inner zone
of the 3-D prism model.

5.3 End Zone

The variations of stress components with the longitudinal distance from the free
surface are presented in Fig. 5.8. The state of stress is different in the end zone than the
inner zone. The graphs indicate high concentrations of radial and hoop stress components
at the fiber/matrix interface near the free surface. They also show that both the radial and
hoop stresses are compressive in the end zone. The axial and the longitudinal shear

components are shown to decay to zero at the free surface. The stress distributions are
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found to be in agreement with the work presented by Nairn (1992). How these stress
concentrations are generated and why the sign of the radial stress is opposite to the inner
zone stress have not been explained yet. This may be best explained by the difference in
thermal expansion of the composite constituents. Considering free expansion of the
composite constituents in the axial direction, the matrix expands more than the fiber due
to the temperature increase and axial loads are needed to reattach them in order to satisfy
the axial continuity requirements, Fig. 5.9(a). The modulus of elasticity of the matrix is
much lower than that of the fiber and under the influence of the axial load should deform
down and inward overlapping the fiber end. Away from the fiber end, the matrix expands
more than the fiber in the radial direction, creating a gap between the two. To eliminate
the overlap and the radial gap, a high compressive radial load is required at the fiber end
and a tensile radial load at some distance from the end, Fig. 5.9(b).
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Fig. 5.8: Variation of the stress components in the matrix along the fiber length
due to a 1°C temperature increase.

It is important to note that, upon cooling, the radial stress at the fiber end would be
tensile and several times greater than the shear stress. The tensile radial stress pulls the
fiber and the matrix apart and may contribute to debonding of the composite to a greater
extent than the interfacial shear stress. The above explanation of the deformations under

the thermal load is referred to as the overlapping hypothesis.
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When considering the free expansion in the axial direction, only tensile hoop stress
at the fiber end is expected when eliminating the overlapping. However, the stress
contours show a high compressive hoop stress in this area. This could be explained by
considering the deformation of a hollow cylinder under axial compressive thermal load on
its inner wall. The inner rim does not deform in the circumferential direction as easily as
in the radial direction due to the stronger structural support available to the matenal in this
direction. This smaller deformation or higher strength in this direction results in a very
high compressive hoop stress when the overlapping occurs. It is obvious that when the
matrix overlaps the fiber end, it contracts circumferentially as well. This compressive
stress is high enough so that the tensile hoop stress resulted from partial elimination of the
overlapping does not affect the sign of the overall stress.

- : Final
Overlapping C ol}lati‘}:ﬁty Configuration

(d)
Fig. 5.9: Free body thermal expansion of the fiber and matrix

(overlapping hypothesis).

To check upon the relationship of the stress concentrations and the element size, the
FEM mesh was refined in the area where the maximum absolute values of the stresses
occur. Using the sub-modeling technique, elements with minimum size of 1/62000 of the
fiber radius were used in this area. Since the stress concentrations occur on the free
surface, the radial and hoop stress distributions along lines O'A' and O'B' are presented in
Fig. 5.10.
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The plots show that the stresses are very low along the model edges except at the
fiber/matrix interface which are almost eight times larger than those shown in Fig. 5.8. It
is shown that the stresses are very sensitive to mesh sizing. Since the stress concentrations
are changing rapidly with the mesh refinement, the stresses might have a singular nature
and require more attention. The nature of these stress fields will be investigated in more
detail in Chapter 6.
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Fig. 5.10: The radial and hoop stress concentrations at the interface on the
free surface at 8 = 0° and at 8 = 30° for a temperature increase of 1°C.

Note some differences in the stress magnitudes at those circumfrential positions
around the fiber. This is due to the difference in 'local fiber volume fractions’ at = 0° and
at 8 = 30° which was discussed earlier. Since the stresses are higher at 8 = 0° this could be
the reason for crack initiation at these locations on the free surface of composites. This
kind of cracking was observed experimentally by Morris et al. (1989,5) and Biernacki
et al. (1998). Such a phenomenon was attributed to the longitudinal interfacial shear stress
in the literature by means of the shear lag theories. These one-dimensional theories, which
were discussed in Appendix B, mainly ignore the radial and hoop stress components.
However, the present study emphasizes the importance of these stress components in
causing cracking and debonding at the fiber end. Referring to Fig. 5.9, it is important to
note that, upon cooling, the radial and hoop stresses would be tensile and several times
bigger than the shear stress. Therefore, the tensile radial and hoop stress components
would be the most damaging factors to composite integrity. The tensile radial stresses pull
the fiber and matrix apart and may substantially contribute to debonding of the composite,

much more than the shear stress, while the high tensile hoop stress causes the matrix to
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craze and radially crack on the free surface. The importance of radial and hoop stress

components were also emphasized by Nairn (1992).

The effect of fiber volume fraction on the end zone stresses is shown in Fig. 5.11.

The radial and hoop stresses are higher and more uniform for lower V.

=
=2~ s e
& -
2 : 5 1
g I -2 Fvi=27% . »
2 - ‘ T < . ..——-———-—7 '
- I o — -
=3 z T =
& 121 yoies% 7 7] £ e
a4k /w =82% ] -L6 = ]
-l6E e = B yiaam 7 7
g ) ! ! 1 1 3 L I ! ! i
] 5 10 15 20 25 30 0 S 10 15 20 25 30
6 (degree) 0 (d>gree)
a) Radial stress in the matrix b) Hoop stress in the matrix
1.4 Y T T T T
1.35 Ve =82%
g 13
s 3
w 125
£
(7] 1.2 ]
Z Ve = 16.5%
g =
E] 115 K eVt =495%
g
1.05 Ve =333%

L 1

20 25 30

0 5 10 15
0 (degree)
c) Equivalent stress in the matrix

Fig. 5.11: Variation of the stress components in the matrix
at the interface in the end zone with V.

Opposite to the inner zone, the maximum absolute value of the stresses occurs at
P’y (8 = 0°), the location with the higher inter-fiber distance. As Fig. 5.12 shows, the
absolute average values of the radial and hoop stress components decrease with increasing
V¢ As for the inner zone, the reduction of radial stress with the increase in V¢ can be
attributed to the effects of the neighboring fibers. The higher Vi means less matrix
between the neighboring fibers. Therefore, the effects of the neighboring fiber on surface
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ABB'A' which tries to keep this surface straight and planar is higher and this effect may
account for the lower overlapping observed. Reduction of the fiber/matrix overlapping

results in lower absolute values of radial and hoop stresses in the end zone.
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Fig. 5.12: Comparison of the average radial and hoop stress components in the

matrix in the vicinity of interface in the end zone for the internal and edge fibers.

As for the inner zone (Fig. 5.2), the radial and hoop stress components in the end
zone of the edge fiber are also different than those of the internal fiber. This difference
appears to be only in the magnitude of the stresses here. The graphs of &, and oy in Fig.
5.13 and also the absolute average value of the stresses presented in Fig. 5.12 indicate that
the values of the stresses in the end zone for the edge-fiber are higher than that of the
internal-fiber. This could be due to the higher overlapping of the fiber end by the matrix
for the edge fiber relative to that of the internal fiber due to the free boundary condition of
the ABB'A' surface. The difference between the deformation patterns of the two cases will
be discussed in Chapter 9. For both types of fibers, the maximum absolute values of the

stress components occur at P'; (6 = 0°) due to the lower local fiber volume fraction.

The deformation pattern at the end zone of the edge fiber shows some differences
with the inner zone deformations. The deformation is smaller in the end zone than the
inner zone, see Fig. 5.3. This could be explained by considering the stress state of the
interfacial elements in the end zone shown in Fig. 5.14. Both radial and hoop stress
components in the end zone are compressive, hence, the deformation of the elements will
be totally different than that for the elements in the inner zone. Also, the end zone stresses
may not be influenced by the ABB'A' surface deformations as much as the inner zone

stresses.
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Fig. 5.14: Thermal stress components in the matrix at the fiber end.

5.4 Temperature Induced Deformation of Unidirectional Fiber Composites

The geometrical stability of composites under a temperature change is of great
concern since many are used in advanced engineering applications. Normally, due to
higher CTE of the matrix than that of the fiber, the excessive expansion or contraction of

the matrix may cause some problem when setting the tolerances in designing with
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composites. In this section, mainly the elastic displacements of unidirectional composites

due to temperature change are discussed.

A 3-D contour plot of axial displacements under 1°C temperature increase is
presented in Fig. 5.15. Very high displacement occurs near the free surface with its
maximum occurring at A' where the matrix has the maximum radial distance to the fiber.
It has been experimentally observed that the maximum bulge out (or deep trough in case
of cooling) occurs in the matrix in this area (Morris et al., 1989,). In the end zone, for any
location in the matrix, the radial distance to the fiber plays a major role in the amount of
axial displacement which that location receives. However, in the inner zone, since the
state of plane strain dominates, the axial displacement of the nodes in the matrix is the
same and independent of their distance to the fiber.
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Fig. 5.15: Distribution of thermal axial displacement under 1°C temperature change.

Fig. 5.16(a) shows graphs of axial displacements along lines AA' and BB' which
have different radial distances to the fiber. In the inner zone, the displacements are similar.
In the vicinity of the free surface, however, the higher axial displacement along line AA' is
due to the above fact that the nodes on this line have higher radial distance to the fiber.
The higher distance affects the degree of axial restriction that the fiber imposes on the
matrix due to its much lower CTE. Therefore, these nodes are much freer to move than the
nodes on line BB'.
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Fig. 5.16: Axial displacement in the matrix along lines AA' and BB' for various Vr.

To highlight the effect of this factor on the matrix displacements, the displacements
of the nodes on line AA' for the range of Vi from 8.3% to 66.6% are shown in
Fig. 5.16(b). For higher Vy, the nodes on surface ABB'A’ will be closer to the fiber and as
a result they will be influenced by the fiber in a higher extent. Thus, lower axial
displacements occur for higher V¢ For the nodes in the matrix which are closer to the
fiber, the compressive axial stress imposed by the fiber due to the CTE mismatch is
higher. This is clearly shown for the nodes on lines AA' and BB' in Fig. 5.17(a). A higher
compressive axial load on line BB' results in lower axial thermal expansion along this line.
This is more pronounced in Fig. 5.17(b) which presents the axial stresses along line AA'

for various V¢

Comparing the graphs in Fig. 5.16(a) and the displacements for the edge fiber (see
Fig. 5.18) indicates higher displacements along line AA' and BB' for the edge fiber. The
higher displacements could be the result of the absence of the neighboring fiber effects for
the case of an edge fiber. The lack of the restraining by the neighboring fiber permits for
higher axial displacements along both lines AA' and BB'.
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Fig. 5.18: Thermal axial displacement in the matrix along
lines AA' and BB' for the edge-fiber.

Comparing the axial stress values along lines AA' and BB' in Fig. 5.17(a) with those
of the edge fiber shown in Fig. 5.19 shows a high difference between the stress values
along these lines. This supports the nature of the axial stress in the inner zone of the
internal fiber due to the presence of the neighboring fiber (see Fig. 5.4(d)). This difference
between the stress values is discussed here. In the inner zone, for the internal fiber (i.e.
surface ABB'A' is restrained), Fig. 5.4(d) indicates that a compressive axial stress along
line AA' and a tensile axial stress along line BB' must be added to the axial stresses purely
generated by the mismatch in CTE of the fiber and the matrix (which are compressive in
the matrix). However, if this boundary condition is removed (i.e. edge fiber), a big
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difference between the axial stress for lines AA' and BB’ is expected (see Fig. 5.19).
Adding the compressive axial stress of Fig. 5.4(d) to the compressive axial stress of line
AA' 1n Fig. 5.19 will result in a higher compressive axial stress for this line as shown in
Fig. 5.17(a). In contrast, adding the tensile axial stress for line BB' (Fig. 5.4(d)) to the
compressive axial stress for this line in Fig 5.19 reduces the overall value of the stress for
line BB' (see Fig. 5.17(a)).
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Fig. 5.19: Thermal axial stress in the matrix along lines AA' and BB' for the edge-fiber.

5.4.1 Lateral Displacements

The radial displacements of the nodes in the matrix are directly related to their
distance to the interface as well. The displacement of a node increases uniformly by
increasing the node distance to the interface. This is due to the fact that the restraining
effect of the interface decreases when moving radially away from it. Note the circular
pattern of the displacement shown in Fig. 5.20. Since, the surface AAB'A’ should remain
horizontal and planar, the radial displacement along the fiber length must be constant.
Also, due to the same reason, the nodes on line AA' have higher radial displacements than
the nodes on line BB'.

The maximum radial displacement (Fig. 5.20) is higher than the axial displacement
presented in Fig. 5.15. These effects depend mainly on the CTE mismatch in axial and
radial directions (which is actually higher in the axial direction for the graphite/epoxy
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composite) but also may be dependent on the other physical deformations like overlapping
or the imposed boundary conditions on the model. For example, for the edge fiber that
does not have the restraining effects on its ABB'A' surface, the maximum of the axial
displacement is higher than that of the radial displacement (see Fig. 5.21). It is also noted
that for this model under the above circumstances, the radial displacement (Fig. 5.21(a)) is
not constant along the fiber length and the maximum occurs in the inner zone due to the

reasons discussed earlier (see Fig. 5.3).

Radialodisplacement
vy _MN i

.767E-04
.153E-03
.230E-0Q3
.307E-Q3
.383E-03
.460E-03
.537E-03
.613E-03
.690E-03

000

o

A Inner zone

Fig. 5.20: Distribution of thermal radial displacement under (1°C) temperature change.
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A contour plot of circumferential deformation is presented in Fig. 5.22. Since
OAA'O' and OBB'O’ are symmetry surfaces, the nodes on these surfaces are restrained in
the circumferential direction. Also, the nodes in the matrix which are closer to the fiber
are effectively restrained to move circumferentially under the fiber influence. Therefore,
only a small portion of the matrix close to ABB'A’ surface can circumferentially expand
under the temperature change. The expansion of the elements in this area compresses the
adjacent elements to the OAA'O' and OBB'O' surfaces causing circumnferential contraction
on these surfaces. The value of the circumferential expansion is not constant along the
fiber length. It is higher in the end zone than in the inner zone. This is due to the higher
compressive self-equilibrated radial load in the inner zone which is generated by the
tmposed boundary condition on surface ABB'A'. As explained before (see Figs. 5.4) the
higher compressive radial stress generates higher compressive circumferential stress in the
inner zone, preventing circumferential expansion. However, the effects of these
compressive forces are minimum in the end zone allowing for higher circumferential

expansion in this location.
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Fig. 5.22: Distribution of thermal circumferential displacement in the inner zone.

5.5 Axisymmetric Analysis of Thermal Stresses in Fiber Composites

As explained before, an axisymmetric FEM model can be selected for its numerical
efficiency and a relative accuracy in comparison with the 3-D prism model. The

axisymmetric model that is shown in Fig. 3.8, was exposed to 1°C temperature change.
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The inner zone stresses at the interface for the 3-D and axisymmetric models are presented
in Table 5. 2. The radial, hoop, and axial stresses at locations P, and P, and the average
value of the stresses along the circumference of the fiber for the 3-D model are compared

to the corresponding inner zone stresses at the interface of the axisymmetric model.

Table 5.2: Comparison of thermal stresses in the inner zone calculated by the 3-D and the
corresponding axisymmetric models.
Radial Stress Hoop Stress  Axial Stress

(MPa) (MPa) (MPa)

Axisymmetric
Model Location B 0.155 -0.426 -0.461
Location P, 0.123 -0.437 -0.479
3-D Model Location P; 0.173 -0.416 -0.448
Average value 0.150 -0.421 -0.452

The inner zone stresses of the axisymmetric model presented in Table 5.2 are very
close to the average value of the stresses calculated by the 3-D prism model.

The end zone stresses calculated by the axisymmetric model are also comparable
with the results obtained by the 3-D model. The maximum radial and hoop stress
components at the interface on the free surface (i.e. at locations P'; and P'; for the 3-D
model and at location A for the axisymmetric model) are presented in Table 5.3. From
similarities of the results of the two models it is concluded that, the axisymmetric model,
which substantially reduces the computational time and the effort required for the mesh

refinement, can also be used for stress analysis of fiber composites.

85



Table 5.3: Comparison of thermal stresses in the end zone calculated by the 3-D and the
corresponding axisymmetric models.

Radial Stress Hoop Stress

(MPa) (MPa)
Axisymmetric Model Location A -6.9 -3.5
Location P, 74 -4.05
3-D Model
Location P'; -6.2 -2.5




6. Stress Singularity

6.1 Imtroduction

The numerical elastic thermal stress analysis of unidirectional composites presented
in Chapter 5 revealed high radial and hoop stress concentrations at the fiber end (Fig. 5.8).
The stress concentrations were then shown to increase by refining the FEM mesh in this
area (Fig. 5.10). Here, the relation of these stresses to the mesh size is studied more

closely. The singular nature of the stresses is proven and analyzed.

As explained in Chapter 2, the singular stress field at the end of a single fiber has
been and continues to be the subject of many analytical studies. This issue is still

unresolved due to very complicated equations governing the behavior of composites.

In this part of the dissertation, the problem is attacked numerically. It is shown that
how the regular FEM elements can be used to determine the order of singularity, which is
a measure of the severity of the stress field. The dependence of the singularity on the
material properties is presented. Some practical methods of reducing the severity of the
singular stress field are discussed.

6.2 Stress Singularity

The analysis of the singularity is conducted here by the application of regular FEM
elements. Since the order of singularity is unknown the existing singular element (of order
0.5 or 1) cannot be used. A closer look is taken at the stresses in the vicinity of the
expected singular point for various sizes of the mesh. Thus, the method used in this study

relies on the h-refinement where h refers to the size of an element.
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6.2.1 Singularity vs. Element Size Relationship

It is important to mention that the original model had 4334 linear and quadratic brick
elements which was practically the limit of the computer resources available. Therefore,
the sub-modeling approach, discussed in Chapter 3, was used to refine the FEM mesh of
the 3-D model. This way, only a portion of the model close to the singularity is remeshed
with finer elements (see Fig. 3.6). The parameter h represents the size in the axial and

radial direction of the element adjacent to point P'; (see Fig. 6.1).

Fig. 6.1: The size of elements at the end of fiber for the 3-D prism model.

The radial and hoop stress components in the matrix at point P's versus element size
are shown in Fig. 6.2.
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Fig. 6.2: The effect of element size on the radial and hoop stress
components at the fiber end on the free surface.
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It is clear that the absolute values of the stresses increase with decreasing the element
size which is normalized by the fiber radius. For non-singular elements, this confirms the

presence of the stress singularity at point P';.

The same relationship between the element size and the stress values can be
approximated by a straight line if the log-log scale is used as in Fig. 6.3. In general, with
the origin of the coordinate system at point P'» (see Fig. 6.4), the straight-line
approximation on the log-log plots can be explained if the stresses in the vicinity of point

P'; are approximated by the following relationship

Gz=cp T +Tbap" (6.1)

where G is the stress component, p is the distance from point P';, and ¢, b,, @, and n are
constants. As the singular point is approached (p—0), the singular term (the first term on
the right hand side) dominates the stress value, while the second regular term comes into

effect sufficiently away from P';.
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Fig. 6.3: The effect of element size on the radial and hoop
stress components on a log-log scale.

In the FEM analysis, the element stresses calculated at the Gauss points are
considered the most accurate. Next, these stresses are extrapolated to the nodal stresses.

For isoparametric linear elements, the stresses in the plane r-Z are assumed in the form

o€ n) =a+aE+a;n+a.&n (6.2)
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where, £ and 1) are normalized coordinates and a,,..., a4 are constants determined using the
previously calculated values of the stress components at the four Gauss points. According
to Eq. (6.2), the stresses along each face of the element (§ = £1 or n} = *1) are linear
functions of the £ or 1 coordinate. Since in the vicinity of P', the visible side of elements
(on the r-Z plane) is always rectangular, the coordinates £ and 1 are proportional to the real
coordinates r and Z. Thus, for a constant  (or r) the stress distribution in terms of | (or Z)
is linear as shown in Fig. 6.5(a). The stresses at the Gauss point are assumed to be close to
those represented by Eq. (6.1). In the most immediate element to the singular point, the
regular term in Eq. (6.1) can be neglected and the stress (referred to as the true stress in
Fig. 6.5) approximated by the singular term only. Therefore, the stress calculated at Z = 0
(the singular point) is really the true stress at some distance (py;) from the singular point.
With decreasing element size (for example for h, = h;/2), the Gauss points move closer to
the singular point and the stress calculated at Z = 0 increases since the new distance pn»
decreases, see Fig. 6.5(b). Therefore, using an element with size h may be considered
similar to calculating the singular stress field at some distance py. It can easily be shown
(Szyszkowski and King, 1995) that py, is proportional to h, that is

pn=cih (6.3)
where the value of ¢, depends on the type of element used.

Free surface

oY

Fig. 6.4: Polar coordinate system located at the singular point.
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Fig. 6.5: FEM approximation of the radial stress in the vicinity of the free surface.

6.2.2 Order of Singularity

Using only the singular term in Eq. (6.1), this equation can be written in logarithmic

form as

logo =-alogp, +logc (6.4a)
or

logo =—-ologh +logc, (6.4b)
where ¢, = cc). Clearly, on a log-log scale, Eq. (6.4b) represents a straight line with slope
o. The FEM calculations presented in Fig. 6.3 can be approximated very closely by
straight lines. Thus, Eq. (6.1) applies to this case. Consequently, the slopes of the lines in
Fig. 6.3 could be interpreted as the orders of singularity for the radial and hoop stress
components, respectively. The least square approximation procedure was applied to
evaluate o using all ten different element sizes indicated in Fig. 6.3. It was found that
o= 0.327 for the radial stress and og= 0.346 for the hoop stress. However, if the first point
(for h/re = 1/62000) and the last point (for h/r = 1/260) are excluded, then the remaining
eight points coincide much closer with the new lines characterized by o, = 0.3348 and
on= 0.3355, respectively. Therefore, the order of radial and hoop stress singularities
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calculated by excluding the data for the nearest and the farthest points to the singular point
are considered to be more accurate. A similar observation was made by Staab (1983)
where a singularity around a crack tip was analyzed. In that study, it was concluded that
exclusion of the nearest and farthest points from the crack tip improves the accuracy of the
calculations of the order of singularity (the order for the crack in (Staab, 1983) was to be
0.5). The first point, which is nearest to the singularity, could be affected by the excessive
calculations required and possible numerical round up errors. The last point may be

influenced by the non-singular term of the stress in Eq. (6.1).

Similar values of the order of singularities were found using axisymmetric models.
For axisymmetric models square elements were used in the vicinity of the singularity in
both the fiber and the matrix (see Fig. 6.6). In this way the singular point is approached
equally from the two directions r and Z. Again, excluding the first point and the last point
in Fig. 6.7, the following values for o were obtained: o, =0.3339 and o, = 0.3350.
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Fig. 6.6: FEM mesh of the axisymmetric model.
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Fig. 6.7: The effect of element size on the radial and hoop stress
components calculated using axisymmetric modeling.
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6.2.3 Effects of Materials on the Order of Singularity

As discussed in Chapter 2, the singular stress field for two edge-bonded dissimilar
materials is dependent on the properties of the materials and the materials angles at the
contact corner. Here, the effects of the fiber and the matrix properties on the order of
singularity are studied. A detailed discussion of the effects of the free surface geometry of
composites on the singular stress field will be presented in Chapter 9.

Since the results obtained with the help of the prism and axisymmetric models are
very close, in order to reduce the numerical effort, only the axisymmetric model was used
to study the effects of the material properties on the order of singularity.

6.2.4 Effects of Composite Constituent Properties on the Order of Singularity

It is expected, (Li and Folias, 1991), that the physical properties of the fiber and
the matrix should affect the order of singularity in unidirectional composites in a similar
manner as with edge-bonded dissimilar materials (Hein and Erdogan (1971), Gdoutos
and Theocaris (1975), and Dondurs and Lee (1972)). For example, assuming the fiber in
Table 5.1 to be isotropic with;

Ef = Ef =214 (GPa); v} = vf =0.2; CTE, = CTE, = -0.99x10°/°C (6.5)
the results shown in Fig. 6.8 were obtained. Excluding the first and last points on the plot,
the orders of singularity for the radial and hoop stresses are o, = 0.363 and oy = 0.271,
respectively. In comparison with the results for the orthotropic fibers (Figs. 6.3 and 6.7),
the singularity order increased for the radial stress but decreased for the hoop stress. In this
case, the order of singularity for the radial stress is about 34% larger than the order of
singularity for the hoop stress. Similar results have been obtained by Szyszkowski and
King (1995) where isotropic fibers were analyzed. It should be noted that in fracture
mechanics or in the analytical solution presented in (Li and Folias, 1991), identical orders
of singularity were considered for all the stress components. Clearly, the order of
singularity depends on the material properties and is different for different stress
components. To investigate this dependence the calculations were repeated for a wide

range of sorne material parameters.
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Fig. 6.8: The effect of element size on the stress components
for a composite with isotropic fibers.

First, the calculations were performed for the IMLS epoxy matrix and the fibers
defined by Eq. (6.5). The transverse modulus E{, however, was varied from 13.7 GPa to
418 GPa. Fig. 6.9 shows the results obtained. The values of E{ on the horizontal axis were
normalized by the longitudinal modulus Ef= 214 GPa. As can be seen, E{ has opposite
effects on the order of singularity for radial and hoop stresses. By increasing E{, the order
of singularity for the radial stress increases, while it decreases for the hoop stress. When
E: decreases, the orders for both stress components become closer to one another. Note
that, according to Table 5.1, since the matrix modulus (E™) is smaller than Ef, increasing
E{ will result in increasing the mismatch in E, of the composite constituents.
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Fig. 6.9: The effect of the transverse modulus of the fiber
on the order of singularity.
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The effects of Poisson's ratio on the order of singularity are indicated in Fig. 6.10. These

results were obtained assuming the properties given by Eq. (6.5), but changing vy of the

fiber gradually from 0.14 to 0.3. As can be seen, the order of singularity for the radial

stress remains unaffected, but it increases with 1_{, for the hoop stress. The values of v on

this plot are normalized by vf = 0.2.

Decreasing the L d mismatch of the constituents
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Fig. 6.10: The effect of the transverse Poisson’s ratio of the fiber
on the order of singularity.

The effect of CTE. was examined assuming the properties in Eq. (6.5) and varying
this parameter from 0.2 CTE' to 6 CTE! (where CTE' = -0.99x10:6/°C). The results are
shown in Fig. 6.11. The graphs indicate that, the orders of singularity are insensitive to the
changes in CTEE .

Considering the results in Figs. 6.9 to 6.11, the lower o, for the isotropic fiber than
for the orthotropic fiber (compare Figs. 6.8 and 6.7) seems to be mostly due to the change

in mismatch of the transversal modulus (E {) for the constituents. Among the effects of
three transversal properties discussed so far, it is only the E ! mismatch which effectively

decreases . The change in E{ may also be the main factor in increasing o for the
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isotropic fiber compared to that of the orthotropic fiber since o is insensitive to the
changes in both v, and CTE; (see Figs. 6.10and 6.11).

Decreasing the (CTE), mismatch of the constituents
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Fig. 6.11: The effect of the transverse CTE of the fiber
on the order of singularity.

A similar study was also conducted to determine the effect of the longitudinal
properties of the fiber such as E f, u{,, and CTE f The results are shown in Fig. 6.12.

The nominal values used in the normalization were taken from Eq. (6.5). As can be seen,
O is sensitive to the variation of E | and VL. As for the variation of CTE( both a and o

remain unaffected.

The influence of the matrix properties on the orders of singularity was also analyzed.
According to Table 5.1, the variation in longitudinal or transversal properties of the fiber
changes the longitudinal or transversal mismatches in the constituents properties solely.
However, for isotropic matrices, any change in the matrix properties, affects both the
longitudinal and the transversal mismatch in properties of the composite constituents
simultaneously. The effects of the matrix properties on the orders of singularity are
presented in Fig. 6.13. The nominal values of the parameters for the IMLS matrix were
taken from Table 5.1. As can be seen, o, and ¢, increases as E, decreases or vy, increases.

Variation of the CTE, seems to have negligible effects.
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In addition to the above, the AS graphite fibers were matched with three types of matrices

specified in Table 5.1. Note that these matrices have different CTE’s. Fig. 6.14 shows the

log-log plot of the stresses vs. mesh size for these matrices. The parallel lines obtained

indicate that CTE,, does not affect the singularity, which is consistent with the results

shown in Fig. 6.13.
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Fig. 6.12: The effect of the variation in longitudinal properties of the fiber
on the order of singularity.
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Fig. 6.13: The effect of the variation in properties of the matrix
on the order of singularity.
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Fig. 6.14: The order of singularity for radial stress for composites with different matrix
materials (the matrices are different only in their CTEs).
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In general, reducing the mismatch in mechanical properties (E and v) of the
constituents may be helpful in containing the singularity. It is worthy to note that, although
the thermal stresses are generated by the mismatch in CTE of the constituents, apparently
this material property does not influence the order of singularity. In conclusion, since the
order of singularity is found to be around 1/3, to interpret and to analytically relate this
finding to the fracture mechanics is very challenging. It is considered to be beyond the

scope of this project.
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7. Elasto-Plastic Analysis of Unidirectional Fiber Composites

7.1 Introduction

The stress fields in unidirectional fiber composites discussed in Chapters 5 and 6
were obtained under the assumption of elastic fiber and matrix behavior. In this chapter,
plastic deformations are included in the analysis of the stress and deformation states
developed in the composite when it is cooled from the processing temperature (Tp) and
during the service temperature (cycling temperature (T.)). The creep effects will be

considered in the next chapter.

Two composites, SCS-6/Ti-6A1-4V and SCS-6/Ti-24Al-11Nb, known for the high
and low yield strength of their matrices, respectively, are used for the numerical analysis.
The results provide a qualitative perspective on the effects of plastic strain on the stress
and deformation states in such composites. The silicon carbide fiber (SCS-6) remains
elastic and its properties with temperature are almost constant. The properties of the two
matrices (Ti-6Al-4V and Ti-24Al-11Nb), which will be referred to as MMC (metal matrix
composite) and IMC (inter-metallic matrix composite), are presented in Tables 7.1 and 7.2,
respectively. The properties of the matrices are highly temperature dependent. At around
T=370°C the yield strength of the MMC matrix remains constant for a small temperature
range (see Table 7.1). The Prandtl-Reuss associated flow rule with the von Mises
equivalent stress as the yield criterion are employed. Also, the isotropic hardening rule is
adopted into the model. For comparison, the kinematic hardening analysis of the MMC is
also performed. The material properties presented in the aforementioned tables are used
with bilinear stress-strain characteristics defined for several specific temperature levels.
The stress-strain characteristics are linearly interpolated between these levels.
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Table 7.1: Properties of the Ti-6A1-4V (MMC) matrix at different temperatures
(Nimmer et al., 1991).

Ti-6Al-4V (MMC)
Temperature E. v o, E; CTEx10%/°C
°C (GPa) (MPa) (GPa) (secant)
21 113.7 0.3 900 4.6 9.44
149 107.5 0.3 730 4.7 9.62
315 97.9 0.3 517 54 9.78
482 81.3 0.3 482 4.3 9.83
649 49.6 0.3 303 1.7 9.72
900 20.7 0.3 35 1.2 9.81

Table 7.2: Properties of the Ti-24Al-11Nb (IMC) matrix at different temperatures
(Chandra et al., 1994).

Ti-24Al1-11Nb (IMC)

Temperature E. v oy Ep CTEx10°/°C

°C (GPa) (MPa) (GPa) (secant)
21 111 0.22 385 23 9

149 103.5 0.22 385 3 9.31

315 90 0.22 385 2.6 9.78

420 75.3 0.22 385 2.3 10.32
649 68 0.22 260 0.7 10.65
825 43 0.22 170 0.1 1.1

The SCS-6 fiber properties are v = 0.33, E = 413.7 GPa, CTE (secant) = 4.86¢e-06/°C.
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For simulating the geometry, both the 3-D prism and the axisymmetric models are
utilized. For clarity, the intersection of the fiber/matrix interface with the free surface will
still be referred to as the singular point. This is in spite of the fact that the stresses are
limited to within the yield surface in inelastic analysis. To determine the effects of the
elasto-plastic behavior of the matrix on the stress and strain states, a series of mesh
refinements in this region (close to the singular point) is implemented only for the
axisymmetric model. The results of the two models are compared and it is shown that the
results of the 3-D model are valid despite its coarser mesh near the singular point.

7.2 Residual Stresses in Unidirectional SCS-6/Ti-6A1-<4V Composite

The MMC composite solidifies at about 900°C. Then the composite is cooled to
room temperature (Fig. 7.1). The rate of cooling is assumed to be slow enough to neglect
the temperature gradient effects. As explained in Chapter 5, thermal stresses are essentially
induced by the mismatch in thermal expansion coefficients of the composite constituents.
It is assumed that the fiber remains elastic during the whole process, and only the stress

distribution in the matrix is presented.
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Fig. 7.1: Stress history for Ti-6Al-4V matrix in the end zone (P';)
and the inner zone (P»).
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3 2
The equivalent stress, G, = (ESTS‘) , refers to the von Mises stress. In the end zone,

the maximum stress occurs at location P'. However, in the inner zone, the maximum Geq
appears at P,. The stresses are much higher in the end zone and it is expected that plasticity
will be first initiated in this zone.

Fig. 7.1 shows how the original yield strength of the matrix (cy) and the yield
strength of the strain hardened matrix (c}) at P'; and P, vary with temperature, from

T, = 900°C to T,=20°C.

When cooling from 900°C to 360°C, the process remains elastic because Geq < Oy.
The thermal stresses are high enough to cause yielding only in the temperature range of

360-320°C as indicated by the overlapping of the curves G and o). In the temperature

range between 320°C and 20°C, the increment in O falls behind the increment of the
yield strength and plasticity is terminated. This was explained in Chapter 3. The process
remains elastic until room temperature is reached. Contour plots of the radial, hoop, and

equivalent stresses at 370°C are shown in Figs. 7.2(a) to 7.2(c), respectively.

Fig. 7.3 displays a distribution of the equivalent plastic strain, g% = [ %g TIE ot T ,in

the matrix at various temperatures. Since plasticity occurs in a narrow temperature range,
the magnitude of the plastic strain is small. The plastic region that starts at 360°C in the
end zone (Fig. 7.3(a)) spreads into the inner zone at about T=320°C. Fig. 7.3(b) shows the
equivalent plastic strain on the surface OAB (the inner zone) at 320°C. As can be seen, the
plastic deformation is present only in a narrow layer at the interface. However, unlike in
the end zone, the plastic strain in the inner zone appears first at location P; where the fiber
has the least distance to the neighboring fibers. Fig. 7.4 shows that in the inner zone the
minimum compressive value of radial stress also occurs at location P,, contributing the

most to the calculated G in the region.
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Fig. 7.2: Distribution of stress components in the matrix at T = 370°C.

The reason why the minimum radial stress occurs at P> was described in Chapter 5.
However, the problem was explained for heating. In cooling, the deformations would be
opposite since the sign of the thermal stresses are reversed. The hoop stresses, (see Fig.
7.4(b)) are almost the same along the interface, although the maximum still occurs at
location P;. The axial stresses are relatively uniform due to the absence of shear stress (Gy,)
in this zone. Therefore, in the inner zone, the only factor, which may cause plastic
deformation to start at location P, (instead of P)), is the relocation of the maximum
absolute value of the interfacial radial stress from P, to P.
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Fig. 7.3: Equivalent plastic strain in Ti-6Al-4V matrix.
o -198.187 = 116.251
==L _169.478 - I
_— mm 37
-140.769 171.174
N [
-112.059 198.536
- _83.35 o 226.097
— i -
-54.641 253.559
S e
- 25932 mm 28102
2.777 308.482 -
—— PP —— B TPIPY
- - 35
60.195 363.405
Radial stress (MPa) Hoop stress (MPa)

Fig. 7.4: Stress distribution in the inner zone for Ti-6A1-4V matrix at T = 320°C.

As Fig. 7.3(b) shows, only a limited amount of plastic deformation occurs in the

inner zone. According to Fig. 7.1, plasticity occurs only in a small temperature range. This

range is very narrow. Therefore, €5 in the inner zone at 320°C (see Fig. 7.3(b)) and at

room temperature (see Fig. 7.5(c)), are very similar. This suggests that when the
temperature drops below 320°C no further plastic strain is generated. This is due to the
nature of the material bilinear stress-strain curves as explained earlier. Comparing the
stress distributions at room temperature (see Figs. 7.5(a) and (b)) with the stresses at
320°C (Fig. 7.4), it can be observed that, due to limited amount of plastic deformation, the

location of the maximum absolute values of the stress components in the inner zone
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remains unchanged. This is also true for the stresses in the end zone. This indicates that
relaxation effect, which is inherent in plastic flow, is negligible due to the small plastic
strains. From the stress distribution perspective, due to the small plastic deformation, the
residual stresses in the matrix remain high and increase toward the interface. This could be
very damaging to the composite, particularly to the fiber/matrix interface. This limited
amount of plastic deformation has been observed experimentally by Kupperman et al.
(1992) using the neutron diffraction technique and, also, determined numerically by
Nimmer et al. (1991) and Rangaswamy and Jayaraman (1994). It should be mentioned that
the CTE values used in these studies for the matrix were different than the ones used here.
Various properties for the MMC matrix are reported in the literature. For example, the
CTE values for the MMC matrix reported by Nimmer et al. (1991) are much higher than
the values used in the present study. Clearly, higher mismatch in CTE of the fiber and
matrix generates much higher thermal stresses. The 2-D inelastic analyses (Chandra et al.
(1994) and Nimmer et al. (1991)) for rectangular fiber pattern of SCS-6/Ti-6Al-4V, with
material properties similar to those used in the present study, have not indicated any plastic

deformation in the interior of the composite.

The whole cooling process of the MMC composite was reanalyzed using the
kinematic hardening rule. Very similar results were obtained. Specifically, the plastic
process started at similar temperatures in both the end and inner zones and the amount of

plastic deformation was found to be very close in both zones.
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Fig. 7.5: Stress and plastic strain distribution in the inner zone for Ti-6Al-4V matrix
at room temperature.
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7.3 Response of SCS-6/Ti-6A1-4V Composite (MMC) to Temperature Cycling

Cooling the SCS-6/Ti-6Al-4V composite from the processing temperature (Tp)
generates very high residual stresses at room temperature as shown in Fig. 7.5. It is of
importance to determine the effects of these high residual stresses during temperature
cycling. In this section, consideration is given to a composite that has already been cooled
to room temperature and is subsequently thermally cycled using three different temperature
patterns. The patterns (see Fig. 7.6), differ in their maximum temperatures only. The
behavior of the matrix during the temperature cycles mentioned appears to be similar (the
reason will be explained later). Therefore, only the results of the cycle with a maximum

temperature of 900°C are discussed in detail.

As Fig. 7.1 shows, upon cooling the MMC composite from T, to room temperature,
a limited amount of plastic deformation occurs in both the inner and end zones but only
within a narrow temperature range. Therefore, the behavior of the matrix can be divided
into three stages: elastic (900°C to 360°C), elasto-plastic (360°C to 320°C), and elastic
again (320°C to 20°C). Such a behavior can affect the stress state during subsequent

temperature cycles. For example, Fig. 7.7 which shows oy, G}, anc Geq at P', for both

cooling from T, and during temperature cycling, reveals two distinct characteristics during

the heating phase of the cycle.
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Fig. 7.6: Various temperature cycling patterns used in the analysis.
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Fig. 7.7: Stress history for Ti-6Al-4V matrix in the end zone (P';)
during temperature cycling.

In the heating range 20°C-320°C, o4 follows the same path as that of the cooling
stage from T, (see Fig. 7.7). This is due to the elastic behavior of the matrix in this
temperature range during cooling from T,. For temperatures above T = 320°C to about
T =900°C the value of G is lower for heating than for cooling. This is attributed to plastic
deformation of the matrix generated during cooling from 360°C to 320°C. The effects of
the plastic strain appear as a relaxation phenomenon when heating to above 320°C.
However, Geq for T = 900°C in the heating phase is a small positive while it was zero for
cooling from T,. The reason could be explained by examining the history curves of the
radial and hoop stress components at this location (point P';) as shown in Fig. 7.8. It is
seen that both stress components have some negative values at T, = 900°C. As explained
in Chapter 35, the radial and hoop stress components at the end zone will be compressive
during heating. In addition the relaxation effect due to the plastic history of the material

will reduce the stresses even further. This change in stress components affects Ge,.

The state of stress components and the variation of G,q with temperature in the inner
zone for the temperature cycle are illustrated in Fig. 7.9. Since the plastic strain in the inner
zone is very small, the relaxation effect, which results from plastic deformation, is almost

negligible. Therefore, the difference between the stresses for the cooling phase (from Ty)
and the heating phase of the temperature cycle is very small. The history of €%

108



versus temperature during cooling from T, and the whole temperature cycle is shown in
Fig. 7.10. Since there is no new plastic deformation during the temperature cycle (see Fig.
7.10), the process remains elastic and the stresses for both zones follow the same path

during the heating and cooling phases of the cycle.
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Fig. 7.8: Radial and hoop stress components in the end zone at (P';)
during temperature cycling.
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Fig. 7.9: Radial and hoop stress components in the inner zone at (P») during
temperature cycling.

One important conclusion is that the magnitude of the residual stresses or the
stresses at room temperature for both zones seem to be unaffected by temperature cycling.

Consequently, no additional residual stresses are built up at service temperatures for this
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composite. The undesirable effect is that it may not be possible to reduce the unwanted

residual stresses by subsequent thermal treatments after the processing operations.
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Fig. 7.10: Equivalent plastic strain in the end zone (P'|) and the
inner zone (P;) during temp >rature cycling.

Next, dimensional changes in the composite during processing and temperature
cycling are analyzed. A plot of the axial displacement at locations A' and B' on the free
surface against temperature is shown in Fig. 7.11. Due to the elastic behavior of the matrix
during the temperature cycle, the maximum and minimum axial displacements on the free
surface that happen to occur at these locations (explained in Chapter 5) remain unchanged
after one temperature cycle. The axial stress, which resists the thermal axial contraction of
the matrix due to the presence of the fiber, remains constant. If the residual stresses
increase after the temperature cycle, the absolute value of the displacements will decrease
because the axial force is acting as a preventative force to thermal displacements. The
small contraction of the matrix at the maximum temperature of the cycle (T, = 900°C) can
be explained by the existence of a small compressive axial stress. The thermal axial stress
generated during cooling from T, is relaxed by the limited amount of plastic strains. Upon
heating, the matrix comes under a small compressive axial stress at T, = 900°C. This

compressive stress does not let the matrix contraction generated during cooling to relax

completely.
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Fig. 7.11: The axial displacements of the matrix at locations A' and B'
on the free surface during temperature cycling.

The last but important note about temperature cycling is the effect of strain
hardening on the yield strength of the matrix. As Fig. 7.7 shows, the matrix gets hardened
due to plastic deformation during cooling from the processing temperature. This process is

explained here in more detail. For cooling from the processing temperature and the
subsequent temperature cycle, 6, and ©y at location P'; are presented in Fig. 7.12. For
cooling from Ty, as expected, Gy of the material coincides with the Gy in the temperature
range 900°C-360°C, since there is no plastic deformation during this period. For
temperatures lower than 360°C the small amount of plastic deformation strengthens the

matrix. Therefore, the plastic work () obtained by the earlier plastic strain will add to the

strength of the material G, as explained in Chapter 3.

During the heating phase of the temperature cycle, in the temperature range
20°C-320°C, the values of the yield strength 6% do not change in comparison to the values
for the same temperature range during cooling from Tp. This is because the material has
already been strengthened for temperature levels in this range. For the rest of the cycle i.e.
in the temperature range 320°C-900°C the yield strength of the material again shows some
increase. This is due to the fact that the plastic work (%) increases the 6, of the material for
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temperatures higher than 320°C. Note that in spite of no more plastic deformation during
the temperature cycle, the yield strength increases because of the plastic strain history. The
plastic strain history at T=360°C of the heating phase is higher than for the same
temperature during cooling from T,. This difference affects the yield strength that is
calculated by Eq. (3.5). Although the increase in the yield strength continues up to
T=900°C of the heating phase, the yield strength for the cooling phase of the temperature
cycle is the same as that for the heating phase due to the elastic behavior of the matrix.
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Fig. 7.12: Effect of temperature cycling on the strength of the matrix.

7.4 Residual Stresses in SCS-6/Ti-24A1-11Nb Compeosite (IMC)

The IMC matrix has lower yield strength than the MMC matrix. Therefore, upon
cooling from the processing temperature, the IMC matrix deforms plastically much more
than the MMC matrix as discussed earlier.

A history of G, Oy, and &} for the matrix at location P'; (located in the end zone)
during cooling from Ty, is shown in Fig. 7.13(a). The matrix starts yielding in the end zone
at about 500°C where G and Gy overlap. Unlike in the previous case, yielding continues
for a long temperature range before the process becomes elastic around T=200°C. Here,

Geq falls again behind o} and this situation continues down to room temperature.
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Fig. 7.13: Stress history for Ti-6Al-4V matrix
during cooling from T,

A 3-D contour plot of €% in the matrix at room temperature is shown in Fig. 7.14.

The plastic zone at this temperature is much wider than that in the MMC matrix, indicating
that a significant portion of the matrix has already deformed permanently. Also, the
magnitude of plastic strain which this matrix experiences is very high compared to that of
the MMC matrix.

The increase in the amount of plastic deformation results from reduction in the yield
strength and this can be attributed to the high aluminum content of the IMC matrix. Due to

this large deformation and the stress-strain characteristic curve of the material at room
temperature, G, at point P'| (which, for isotropic hardening is calculated from Eq. (3.5))

shows a sudden large increase. Therefore, due to high strain hardening, the material does
not yield any more before room temperature is reached. This cguses the thermal residual

stresses to increase.
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Fig. 7.14: Equivalent plastic strain in Ti-24Al-11Nb matrix
at room temperature.
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As Fig. 7.14 shows, the plastic strain is also high in the inner zone. Using 2-D
models of rectangular fiber array, similar large plastic deformations have been reported by
Chandra et al. (1994) and Coker et al. (1993). Comparing O obtained by the 3-D prism
model and that by the 2-D plane strain model, Chandra et al. (1994), for the inner zone,
indicates that the 3-D model predicts yielding to start at 340°C. However, according to
Chandra et al. (1994), yielding starts at 370°C. The results obtained by Chandra et al.
(1994), are shown in Fig. 7.13(b).

The strain hardening effect is more pronounced in IMC than MMC because of the
high plastic deformation of the IMC matrix (compare Figs. 7.7 and 7.13). This is more
noticeable for the end zone than for the inner zone due to higher plastic deformation in the

end zone.

Very high plastic deformation can significantly redistribute and relax the stresses.
For the matrix, the large plastic deformation changes greatly the stress distribution and also
the stress values as indicated in Fig. 7.15. In this figure the radial, hoop, and axial stress
components in the inner zone for a temperature before the onset of plastic deformation,
T = 450°C, and at room temperature, T = 20°C, are presented. Due to stress redistribution,
the maximum compressive radial stress, which is initially located on line P>B at point P,
is transferred at room temperature to point P, along line P;A. The maximum hoop stress,
which first occurred at point P; (before yielding starts), moves to a point inside the matrix
area close to the interface on line P,B. Similar changes in location of the maximum and
minimum stresses have been reported by Ananth et al. (1993) for AI/SCS-6 composite.
These changes were attributed to stress redistribution due to matrix plastic deformation.
The plastic deformation changes the profile of the axial stress in the matrix in the inner
zone from relatively uniform before yielding to a pattern with a stress reduction when
moving towards the fiber/matrix interface. Similar axial and hoop stress profiles have been
experimentally determined at room temperature by Rangaswamy et al. (1994) utilizing
X-ray diffraction for the IMC composite. Comparable results have also been obtained by
Rangaswamy and Jayaraman (1994) and James (1991).
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Note that the 2-D analysis of the MMC composite by Chandra et al. (1994) and
Nimmer et al. (1991) did not show any plastic deformation. Therefore, one can conclude
that for this composite the 3-D analysis (which predicts plastic deformations) must have
yielded higher stresses exceeding the yield strength. However, for the IMC composite the
effects seem to be reversed. The results of the 2-D analysis taken from Chandra et al.
(1994) are presented in Fig. 7.13(b). According to these data, plastic deformation starts at
370°C that is earlier than what is observed for the present 3-D model (at about 340°C).
This shows that at 370°C the stresses calculated by the 3-D model are lower than those
determined by the 2-D model. These discrepancies can be explained by the difference in
plastic deformation of the two matrices and the relaxation and redistribution effects of this
phenomenon on the stresses. The large plastic deformation in the end zone relaxes the
stresses in the inner zone. Therefore, in the case of IMC, lower stresses occur in this zone.
However, comparing the plastic strains of the two matrices, the relaxation phenomenon is
negligible in the MMC matrix, thus allowing for more stress build-up in the inner zone.
This shows another advantage of the 3-D model that is capable of accounting for stress
relaxation and redistribution taking place in the direction of the fiber.

7.5 SCS-6/Ti-24Al-11Nb Composite in Service Temperatures

The effects of low matrix strength or high plastic strain on the behavior of
unidirectional composites under temperature cycling are explained here using the IMC
matrix. The composite is thermally cycled between room temperature and Tpa = 900°C
(see Fig. 7.6) after being cooled from T, which was discussed in the previous section.

115



Stress (MPa)

Stress (MPa)

Matrix Stresses before Yielding (T=450C)
T

250 T T T T T O
]
200 Axial Stress (Line PIA) \ ]
150 F :
]
100 —N Hoop Stress (Line P2B) |
50 F Hoop Stress (Line P1A) -
) ' Radial Stress (Line P1A) |
0 Matrix | Fiber -
-50 ' -
A :
-100 A B\-: Radial Stress (Line P2B) I‘(pl_,,2 B
~150 &g N ! I ! LN 1
0 10 20 30 40 50 60 70 80 90
Distance (um)
Matrix Stresses at Room Temp.
400 d I T LR 1 T
1
300 ; =
200 : ) -
] 5 '\ Hoop Stress (Line P2B) .
100 [- . Hoop Stress (Line P1A) : -
- Radial Stress (Line P1A) '
0 : g Matrix, Fiber .
A [
100+ . 1 =1
A ,
=200 " Radial Stress (Line P2B) -
KA B\ \ PP
-300 1 ot 1 1 ) AN 1
0 10 20 30 40 50 60 70 80 90

Distance (4 m)

at room temperature for Ti-24Al-11Nb matrix.

116

Fig. 7.15: Profile of stress components in the inner zone at T = 450°C and

Figs. 7.16(a) and (b) show G, Gy, and o5 for the cooling stage from T, to room

temperature and during the temperature cycle in the end zone (point P';) and the inner zone
(point P,), respectively. Due to high plastic deformation of the matrix in the cooling stage,
the stresses are highly reduced in the next temperature cycle. The difference between G
during the heating phase of the cycle and cooling from T, is higher compared to that of the
MMC matrix. This is due to high plastic deformation which causes high stress relaxation
(see Figs. 7.16(a) and Fig. 7.7). During the temperature cycle, despite higher plastic strain
in the end zone, G, in the inner zone relaxes more than in the end zone. One reason could

be the continuous increase in plastic strains in the inner zone up to room temperature



(when cooling from T;). However, during the same period, the plastic deformation stops at
about T = 200°C in the end zone. This elastic range affects the stresses during the
temperature cycle. It prevents the stresses from relaxing upon heating. The variation of
stress components with temperature for the inner zone is presented in Fig. 7.17. Note the
high absolute value of the stress components at T = 900°C. These stresses cause the value
of O in the inner zone (which is reduced during the heating phase up to T = 600°C) to
increase (see Fig. 7.16(b)).
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Fig. 7.16: Stress history for Ti-6Al1-4V matrix during temperature cycling.

The variation of €% at locations P'; and P for the cooling phase and the temperature

cycle are shown in Fig. 7.18(a). The graphs show that all the plastic strain occurs when
cooling from T, and no more plastic deformation is generated during the temperature
cycle. This indicates that the matrix behaves elastically for the whole temperature cycle.
Therefore, as shown in Fig. 7.16, G for the cooling phase of the temperature cycle
coincides with Geq Of the heating phase. Comparing G and oy curves in Fig. 7.16, one
can conclude that during the heating phase in both the inner and end zones, the strain
hardening of the matrix is substantial at room temperature and negligible at T = 900°C
despite the constant plastic strain. This phenomenon may be explained with the
temperature-dependent properties of the matrix. The strain hardening effect depends on
both the plastic strain history and the plastic modulus of the material at different
temperatures (Ep(T)). Since Ey(T) of the material is lower at T = 900°C compared to its
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room temperature value, it reduces the strengthening effect of the plastic strain. Note that
the plastic strain is constant during the temperature cycle.

As with the MMC matrix, it should also be mentioned that despite the high plastic
deformation, the residual stresses at room temperature in both the inner and end zones
remain unchanged after one temperature cycle (Figs. 7.16(a) and (b)). In the inner zone,

due to the very small difference between G, and oy at room temperature, any further

mechanical load can easily cause the matrix to deform plastically.

The dimensional stability of the composite is also affected by the high plastic strain.
Since the CTE values of the two matrices (MMC and IMC) are close (see Tables 7.1 and
7.2), the difference in their axial displacements could be a direct result of the difference in
the amount of their plastic deformations. Comparing the maximum plastic strains of the
two composites at location P'; (see Figs. 7.10 and 7.18(a)) shows that the strain in IMC is
almost four times higher than the plastic strain for the MMC matrix. This difference
between the plastic strains of the two composites is very noticeable in the inner zone (at
point P,). The plastic strain in the inner zone of IMC is close to the end zone value of the
MMC. The tensile plastic strain affects the displacements of the composite. The axial
displacements at locations A' and B’ for the cooling stage and during the temperature cycle
are shown in Fig. 7.18(b). The tensile plastic strain reduces the thermal contraction of the
matrix. For example, at T = 900°C of the temperature cycle, the axial displacement of the
matrix (which is supposed to be zero) is tensile due to the tensile plastic strain (see
Fig. 7.18(b)). Comparing the displacements at T = 900°C for both types of matrices
(Figs. 7.11 and 7.18(b)) shows that the displacement for MMC has a small negative value.
This is because of the negligible plastic strain and the compressive axial load that was

discussed earlier in section 7.3.
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7.6 Inelastic Analysis of SCS-6/Ti-6Al-4V Composite with Axisymmetric Models

The 3-D prism model has a relatively coarse mesh in the vicinity of the singular
point. Therefore, the results obtained do not provide very precise information on the stress
and displacement in the area very close to this point. It is possible to refine the mesh in this
area, but the sub-modeling approach used in the elastic analysis is not valid here. Cutting
the model at some distance away from the singularity ‘freezes’ the cut-off portion of the
model in the subsequent formulation of the problem. Therefore, the sub-modeling mesh
refinement does not provide any information on how the inter-relationship between the end
zone and the inner zone stress and deformation states are influenced by plastic
deformation. Therefore, it is important to verify the results of the 3-D model by comparing
them with the axisymmetric model.

In this section, the elasto-plastic analysis of SCS-6/Ti-6Al-4V composite is repeated
with axisymmetric models that allow the use of very small elements in the vicinity of the
singular point. The details of the mesh configuration in the vicinity of the singular point
are similar to the mesh presented in Fig. 3.8. The smallest element size is about 0.0002pum.

In the elastic analysis, the value of the stresses increases continuously to infinity with
decreasing element size. This is due to the singular nature of the stress field at the
fiber/matrix interface in the vicinity of the free surface. As explained earlier, the stresses
are limited to within the yield surface (G,) in the inelastic analysis. As soon as the
temperature is changed, very high stresses appear at the singular point and are
accompanied by a large amount of plastic deformation. Consequently, the yield strength
increases due to strain hardening effects.

Fig. 7.19(a) shows the variations in G, Oy, and ¢} of the matrix with temperature in
the inner and end zone locations. The corresponding equivalent plastic stains are shown in
Fig. 7.19(b). Point A is located at the singularity, point J is 0.0lpm away from the free
surface at the interface and, finally, point B is in the inner zone. As soon as the composite
begins to cool down, G reaches Gy at point A and the matrix plastically yields. Note that
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due to the coarser mesh of the 3-D model, the plastic deformation was shown to start at a
much lower temperature while, in the present case, it occurs immediately in a very small

zone around the singular point.

Since the elasto-plastic model used here does not have any limitations on the amount
of plastic strain and the associated hardening effects, the plastic deformation at location A
continues to increase up to about g2 = 0.8 at room temperature (see Fig 7.19(b)). The
strengthening effect of the plastic strain at this location is significant. The yield strength
increases up to almost 5000MPa (from about 900MPa for the unstrained material). Such

an increase in yield strength is extremely localized. For point J, which is located at the
distance of 0.01um from point A (fiber diameter 140um), o} is only about 1200MPa. As

expected, at location J and in the inner zone (point B), the stress and plastic strain are

relatively close to the results of the prism model (see Figs. 7.1 and 7.10).
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Fig. 7.19: Equivalent stress and equivalent plastic strain build-up at locations A, B,
and J upon cooling from the processing temperature (Ty).

0

The distribution of the interfacial plastic strain along the longitudinal axis is shown
in Fig. 7.20(a). The details of plastic strain in the vicinity of point A are shown in
Fig. 7.20(b). The very high plastic deformation at A is reduced to about 0.05 at a distance
less than 0.01pm away from the singularity (point J). It appears that the very high plastic
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deformation is limited to a very small neighborhood of the singular field. As a result, the
increase in the yield strength, which is strain dependent, is also a localized phenomenon.

Comparing these results with those of the 3-D model discussed at the beginning of
this chapter in section 7.2, the following observations can be made. The results obtained
from the 3-D model are good for a very small distance away from the singularity.
Comparing the stress curve at point J (which is 0.0lpum away from the singularity) in
Fig. 7.19(a) with the stress curve for point P'; in Fig. 7.1 shows that the stresses are close
in magnitude. A small difference between the stresses is due to the location of point J that
is closer to the free surface compared to the location at which the results of the 3-D model
were calculated. The stress curves for the inner zone are also very similar. It seems that the
very high stress and large plastic strain at the singular area do not affect the stress and
deformation states outside this area. Therefore, with the exception of the singular area, the
3-D model, which has a relatively coarser mesh than the axisymmetric model, provides

reasonably accurate results.
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Fig. 7.20: Plastic strain distribution along the interface at room temperature.

The elasto-plastic analysis presented gives very high stress and strain values at
location A due to the strain hardening model used. Most probably, these stresses would be
unacceptable causing the matrix to crack or the fiber/matrix interface to debond. The
cracking phenomenon would change the stress and strain states by relaxing some of the
stresses and releasing the strain energy, (King, 1994). The stress relaxation disappeared
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very rapidly with the distance from the singular point. Therefore, the results of the analysis

assuming a perfect interface are acceptable at some distance from the singularity.

The temperature cycling of the 3-D prism model with a relatively coarse mesh in the
vicinity of the singularity showed that no further plastic deformation occurs in the
composite during the cycle. It was also found that the residual stresses are substantially
reduced during the heating phase of the next temperature cycle. But after completion of the
cycle, no change in the residual stress state was observed. To see how these results are
affected by the meshing pattern, the temperature cycle with Tpax = 600°C as shown in Fig.
7.6 is applied to the axisymmetric model with very fine elements.

A plot of Gy and o) for point A during the temperature cycle is shown in Fig.
7.21(a). As soon as the heating phase of the temperature cycle begins (from (2) to (3)), the
residual stresses start to relieve resulting in lower equivalent stresses. However, the yield
strength of the material is now higher as compared to the strength at the same temperatures
in the cooling phase from T, (from (1) to (2)). Also, there is some increase in o} during
the cooling phase of the cycle (from (3) to (2)) compared to its values in the heating phase.
This is due to a small plastic deformation that occurs at T = 600°C during the heating

phase of the cycle at location A (see overlapping of Geq and &} in Fig. 7.21(a)).

The G in the heating phase of the cycle up to T = 360°C is lower than those in the
same temperature range during cooling from T. This is due to the relaxation caused by
previous plastic deformations. Above this temperature level up to 600°C, the stresses for
the heating phase (from (2) to (3)) are higher than for the cooling phase (from (1) to (2)).
This is in contrast to the results of the 3-D model, where G was lower throughout the
heating phase of the cycle compared to G, for the corresponding temperature levels during
cooling from Tp, (see Fig. 7.7). This discrepancy may be explained by the difference in the
temperature level at which the plastic strain starts in the two models during cooling from
T, (from (1) to (2)). As Fig. 7.21(a) shows for the axisymmetric model, plasticity starts
right away with cooling whereas it starts at lower temperatures for the 3-D model. The
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immediate plastic flow of the matrix for the axisymmetric model limits the stress
components in the material. The plastic strain appears before the stress components reach
their expected levels. However, in the heating phase (from (2) to (3)), the stresses in the
temperature range 360°C-600°C increase to higher levels. This is because the material
gains strength at location A due to the high plastic deformation. These values are much
higher than the stresses obtained during cooling from the processing temperature.

Fig. 7.21(b), which represents the stress components during the temperature cycle at
location A, supports the above hypothesis. As the graphs show, the stress components are
much higher for the heating phase of the cycle compared to the cooling phase from T, for
the temperature range of 360°C-600°C. Due to the small plastic strain that occurs at
T = 600°C of the temperature cycle (see Fig. 7.21(a)), G decreases in the cooling phase of
the cycle to room temperature because of the relaxation effect of the new plastic
deformation. However, the residual stresses after one temperature cycle are not much

lower than the stresses right after cooling the composite from Tj,.
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Fig. 7.21: Stress components at location A during temperature cycling.
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The effect of temperature cycling is minimized at some small distance from the
singularity (i.e. at point J) and in the interior of the composite (i.e. at point B). Thus, the
plastic strains which occur at location A during the cycling do not change the residual

stresses at locations J and B.
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8. Effects of Creep on the Stress and Displacement States in
Unidirectional Composites

8.1 Introduction

The creep phenomenon can effectively alter the stress and displacement states as
previously discussed in Chapter 7. The creep effects are different for different materials.
For example, the Ti-24Al-11Nb matrix (IMC) is considered to be insensitive to creep
(Nimmer (1990) and Kroupa (1991)). Therefore, the effects of creep behavior in the
Ti-6Al-4V matrix (MMC) are analyzed only.

Different cooling rates as well as temperature cycling are considered. Creep under
residual stresses for a long period of time is also discussed. All the above analyses are
performed utilizing the 3-D prism model.

8.2 Stress State Under Cooling Rate of 200°C/hr

The creep characteristic of the Ti-6Al-4V matrix is assumed to take the following
form (Nimmer et al. (1991) and Ananth et al. (1993))

€ = ao (oa' )(ta’ )exp[T :;373] 8.1

where G is the equivalent von Mises stress in MPa, & is the equivalent creep strain, T is
the temperature in °K, and t is the elapsed time in hours. The constants a; to a3 have the
following values: ag = 3.6x10° (MPa)>*®(r)?%!, a; = 3.403, a, = 0.9251, and
a3 = 3.6x10* (°C).

An incremental formulation suitable for the FEM has the form

de. = a0a: (o2 (2~ )exp[%]dt : (8.2)
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Eq. (8.2) represents the time-hardening creep hypothesis. It is used in the FEM together
with an appropriate time integration scheme to obtain the stress-strain-time-temperature

characteristics.

The creep phenomenon of MMC is very temperature dependent. Therefore, a high
creep strain should be expected at high temperature levels. Consequently, it is required
to take very small time steps for numerical convergence. This prolongs the
computational time required for the transient analysis considerably. The time-ambient
temperature profile of the cooling process is shown in Fig. 8.1 with the cooling steps
indicated. At these cooling steps the stress-strain state is analyzed in detail. The 3-D
prism model is used. It is assumed that the composite is cooled linearly and the
temperature is similar on both the fiber and matrix and is uniformly distributed in the

composite.
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Fig. 8.1: Profile of the slow cooling process (200°C/hr).
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The creep strain in both the end and inner zones are shown in Fig. 8.2. As the
contour plots show, the creep strains occur in the first cooling step at T=800°C. The
matrix develops a very high creep strain in both zones. The main factor, which
contributes to the high creep strain, is high temperature. The creep strain is even
observed in the inner zone where stresses are relatively small at this temperature. The
creep strain for the inner zone and the end zone as a function of temperature for the
complete cooling period is shown in Fig. 8.3. The figure also presents the absence of

plastic strain in the end zone for location P’ over the entire cooling range. This will be

127



discussed later. Due to the higher stresses at the end zone, higher creep strains occur in
this zone than in the inner zone. The material continues to creep strongly to about T =
500°C. Almost 40% of the total creep in the end zone and slightly over 32% of the total
creep for the inner zone occur in the first 100°C of cooling. Below T=500°C, the
material creeping slows down significantly. In comparison to the elasto-plastic analysis,
the permanent strains (which include the plastic and creep strains) show a very high

increase as illustrated in Figs. 7.10 and 8.3.
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The creep strains affect stress distribution in both the inner and end zones. The
plot of stress components against temperature for the locations P', in the end zone and P,
in the inner zone are shown in Figs. 8.4(a) and (b), respectively. In comparison to the
stresses for the same locations in the absence of creep (see Chapter 7, Figs. 7.8 and 7.9),
the stresses show a large drop. The high relaxation due to creep deformation of the
matrix will effectively alter the equivalent stresses at both the inner and end zones. The
von Mises equivalent stress (Geq) for the locations P> and P'; are plotted in Fig. 8.5. In
comparison to the equivalent stresses for the same locations depicted in Fig. 7.1, very
high changes are observed. With creep deformation, G falls well under the yield
strength of the matrix (0,) in both zones. Therefore, no plastic deformation would occur
even in the end zone. The plastic strain for point P'| during the cooling process is plotted

in Fig. 8.3. Note that the plastic deformation is zero due to the relaxation of the stresses

by creep.
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Fig. 8.4: Stress components in the end zone (P';) and in the inner zone (P3)
during cooling from processing temperature (Ty).

Creep also affects the displacements. The variation of matrix displacement at
locations A' and B' on the free surface with temperature is shown in Fig. 8.6. The
maximum longitudinal displacement (U,) of the composite decreased relative to the
elasto-plastic case considered earlier (compare Figs. 7.11 and 8.6). The higher creep
strain of the matrix relative to the plastic strain discussed in Chapter 7 reduces the axial
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thermal contraction of the matrix. Also, as Fig. 8.6 shows, the displacement U, for line
AA' is slightly higher than for line BB’ due to the higher distance of the nodes on the line
AA' to the fiber. In conclusion, with creep in effect, the residual stresses in the MMC
matrix (stresses at room temperature) are much lower than the stresses when only elasto-
plastic deformation is considered. Also, due to the low displacements the dimensional

stability of the composite increases.
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Fig. 8.5: Equivalent stress in the end zone (P'|) and in the inner zone (P-)
during cooling from processing temperature (Tp).
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8.3 Effect of Temperature Cycling

It is assumed that the composite undergoes the temperature cycle depicted in
Fig. 8.7. After cooling to room temperature, the composite is reheated to 600°C and then
cooled again to room temperature. The maximum temperature in this cycle is slightly
higher than the temperature at which matrix creeping was effectively stopped (T = 500°C)

during cooling from the processing temperature.
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Fig. 8.7: Profile of the temperature cycle with slow cooling rate (200°C/hr).

Here, the discussion is focused on the results of the temperature cycling. The creep
strains for the whole cycle for the inner zone (at location P-) and the end zone (at location
P')) are shown in Fig. 8.8. Also, shown in the figure is the plastic strain at P';. In the
heating phase of the cycle, practically no more creep strains are produced for temperatures
lower than T = 500°C. The strains increase from T = 500°C up to the maximum
temperature of the cycle (T = 600°C). Since residual stresses decrease with increasing
temperature, creep in this case is triggered mainly by temperature. The material continues
to creep until the temperature of the composite is reduced to T = 500°C. Below this
temperature level, no more creep occurs in the remaining part of the cooling phase to room
temperature. Interestingly, the new creep strain during the temperature cycle appears in
both the inner and end zones. This additional creep strain in the matrix affects the stress
and displacement states of the composite. The variation of stress components and G in

both the end and inner zones at locations P', and P, with temperature for cooling from T,
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and also during the temperature cycle are shown in Figs. 8.9(a) and (b). Due to relaxation

effect the stress components, and, consequently Geq for both zones decrease.
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1000

Fig. 8.10 shows the variation of the axial deformation at locations A' and B' with

time. The axial displacement at room temperature after cooling from Tp, U= -2.61473 pm

while after completion of the temperature cycle, U, = -2.60183 um. Thus, the absolute
value of the matrix displacement decreases after the additional temperature cycle. The

tensile creep strain reduces the axial thermal displacement of the matrix. Therefore,
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temperature cycling of this composite reduces the residual stresses and increases the
dimensional stability of the composite.
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Fig. 8.10: Axial displacement at locations A' and B’
during temperature cycling (T¢).

84 Long Period Creep at Room Temperature

The creep behavior of the matrix at room temperature over a long period of time
after being cooled from the processing temperature is analyzed by keeping the composite
at room temperature for 1000 hours. The only force causing creep is the residual stress
present. The time-temperature profile of the test is shown in Fig. 8.11.
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Fig. 8.11: Room temperature storage for 1000hr
after cooling with slow rate (200°C/hr).
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It is expected that most of the residual stresses resulting from the manufacturing
stage relax after a long period of storing the composite at room temperature. The creep
strains at the inner zone (at location P») and at the end zone (at location P") after 1000hr of
storing are shown in Fig. 8.12. Since creep in the MMC matrix occurs rapidly with
decreasing temperature, practically no more creep strain occurs in the matrix after 1000hr
of storage time (see Fig. 8.12). This implies that the residual stresses remain the same after
1000hr. The stress components and the equivalent stresses for both the inner and end zones

are illustrated in Figs. 8.13(a) and (b), respectively.
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Fig. 8.12: Creep strain in the end zone (P';) and in the inner zone (P3)
during the storage time.

The axial displacements at locations A' and B' over the 1000hr period are shown in
Fig. 8.14. The displacements also seem to remain constant with time. This dimensional
stability over time could be a very positive point for the composite during service

temperatures lower than T = 500°C.
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8.5 Creep Under High Cooling Rates

The effects of fast cooling rates (1000°C/br and 10000°C/hr) on the stress and
displacement states are presented in this section. For the first cooling scheme for which the

rate is 1000°C/hr, the composite is cooled from 900°C (assumed to be the processing

temperature) to room temperature in less than one hour. For the second scheme, the
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cooling process is completed in 5.4 minutes. The time-temperature profiles of both

schemes are shown in Fig 8.15.

The amount of creep strains in both the inner and end zones change with the cooling
rate as illustrated in Fig. 8.16. The plots show that the creep strain decreases with
increasing cooling rate. It is interesting to note that for all the cooling schemes considered,

creep in the matrix stops at T=500°C.
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Fig. 8.15: Profiles of temperature for 1000°C/hr and 10000°C/hr cooling rates.
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The decrease in creep strains is accompanied by an increase in residual stresses. A
comparison of the stress components in both zones for the 1000°C/hr cooling rate
(Figs. 8.17(a) and (b)) with the similar stress components for the 200°C/hr cooling rate
(Fig. 8.4) shows that the stresses are higher for the former. For very fast cooling rates
(quenching in water or oil), the von Mises equivalent stress may eventually reach the yield
stress of the matrix and create some plastic deformation as well as creep strains. However,
this does not happen for the three different cooling rates discussed here. As Figs. 8.18(a)
and (b) show, the von Mises equivalent stress increases with increasing cooling rate.
However, no plastic deformation occurs even with the 10000°C/hr cooling rate since all
the three von Mises curves fall under the yield strength of the material during the entire

cooling processes.

As explained earlier, due to reduction of plastic strain with increase in cooling rate,
the axial displacement of the matrix is expected to increase. Fig. 8.19 presents the axial
deformation of the matrix at location A' (where the maximum U, occurs) with respect to
different cooling rates. As the plots show, the maximum absolute value of U, occurs
during the 10000°C/hr cooling rate.
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Comparing the elasto-plastic results presented in Chapter 7 with those obtained in

this Chapter, the following conclusions can be made. For creep-prone materials, it is

necessary to include the transient behavior of the material. Creep deformation changes the

stress-strain and deformation states of the composite in both the inner and end zones

substantially. Finally, in presence of creep strains, modeling the strain hardening

phenomenon of the material with either isotropic or kinematic hardening does not affect

the results. Note that if the composite is quenched in water, the time for cooling is sharply

reduced and this will not allow the composite to creep. Usually, the cooling process for the
MMC composite takes less than a few seconds (Chandra et al., 1994). Therefore, the

transient behavior of the constituents, which requires a considerable amount of

computational time, may be ignored.

Equivalent stress at P)
I

900 ,
Oy (MMC) —

800 |y Ceq 200°Chr -o-
700 . . Ocq 1000°Chr
. .

Temperature ( ° C)
a)

Equivalent stress at P,

b)
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9. Effects of Surface Geometry of Composites
on Thermal Stress Distribution

9.1 Introduction

In this chapter, the role of the free surface geometry on the stress field at the fiber
end is analyzed. A practical solution to the cracking problem is presented as the conclusion
of the analysis. It is shown that by covering the free surface of composites by a thin layer
of matrix-like material the very high radial and hoop stress components at the fiber end are
sharply reduced. In Chapter S, these stresses were identified to be the major factor in
initiating the matrix cracking and fiber/matrix debonding at the fiber end. With reduction
of the stresses, it is expected that the matrix cracking and debonding are reduced or even
eliminated. Various practical manufacturing processes are simulated and discussed.
Covering the free surface of composites can be performed in several ways, two of which
are considered here. In the one-stage covering process, the covering layer could be applied
to the free surface of the composite during manufacturing of the composite. The two-stage
covering method refers to the process of covering the free surface of a composite following
manufacturing. In this method, the composite is first cooled from the processing
temperature and then (in the second stage) the cover is applied. Typically, very high
residual stresses may exist at the fiber end before the cover is applied. Different curing
cycles can be considered before applying the cover to reduce the residual stresses. The
two-stage covering can be conducted in two different ways, applying the cover either in the

presence or absence of the pre-formed residual stresses.

All of the above manufacturing methods and curing schemes are discussed in detail
in this chapter. First, the elastic analysis of one-stage covering under 1°C temperanire
change using axisymmetric models is examined. The elasto-plastic analysis of the

140



one-stage covering under the full processing temperature range using both the 3-D prism
and axisymrmetric models are also discussed. The elastic analysis of the two-stage covering
under 1°C temperature change is also discussed followed by the elasto-plastic study of the
process under the full temperature range. The two-stage processing is conducted using the

axisymmetric model only.
9.2 The Elastic Analysis

The elastic analysis results presented here are obtained for +1°C uniform
temperature change under which the variation of mechanical properties of both
constituents due to temperature, presented in Table 5.1, is neglected. All the stresses

presented in graphs and contour plots are in MPa and the models dimensions are all in pm.
9.2.1 Materials and Modeling

In this chapter, unidirectional composites with 7.62um diameter graphite (AS) fibers
embedded in epoxy matrix (this matrix has also been referred to in Chapters 5 and 6) with
35% fiber volume fraction (Vy) are simulated using axisymmetric FEM models. Since the
thermal stresses in composites increase with reduction in the fiber volume fraction, such a
low Vris used to enhance the stress effects. The analysis in Chapter 5, using the 3-D prism
model for the hexagonal fiber pattern, shows that the stresses along the fiber circumference
change very little. The average values of the stress components from the 3-D model are
approximately equal to the stresses calculated from the axisymmetric model. The effects
caused by reconfiguring the free surface (the fiber protrusion or fibers end covered by the
matrix) are much higher than the difference between the axisymmetric and the prism
models. Therefore, in order to focus on these effects it has been decided to use the
axisymmetric model, which substantially reduces the computation time and the efforts
required for the mesh refinement.

The model along with the boundary conditions is shown in Fig. 9.1(a). The model
was meshed with 8-noded axisymmetric elements with quadratic shape functions of the
ANSYS software. A very fine mesh was considered at the fiber matrix interface (FMI) in
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the vicinity of the free surface as shown in Fig. 9.1(b). Since (for the elastic case) the stress
field is singular and the size of elements could affect the results (Abedian and
Szyszkowski, 1997), for comparison, the size and orientation of elements at the FMI for all
models considered are identical. In the vicinity of A, the element size is 1/64000 of the
fiber radius.
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Fig. 9.1: Axisymmetric model of the composite.

In general, the free surface is not flat and may have a slope discontinuity as indicated
in Fig. 9.1(c). The present study is focused on the effects of fiber/matrix contact angles,
denoted as 6 and ¢ in Fig. 9.1(c), on the stress distribution at the FMI in the vicinity of the
free surface. More specifically, the models shown in Fig. 9.2(a)-9.2(h) will be considered
in detail. In Figs. 9.2(a)-9.2(d), it is assumed that the fiber is extending out of the matrix
such that 6 = 180° and the matrix contact angle is varying from ¢ = 90° to ¢ = 11°,
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Fig. 9.2: Models with different fiber/matrix contact angles, i.e. (8,0).
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Figs. 9.2(¢)-9.2(g) show the cases with 6 = 90° and with matrix contact angles of ¢ = 45°,
¢ = 26°, and ¢ = 11°. In the case shown in Fig. 9.2(h), the free surface or the fiber and

matrix cut surfaces are simply covered with a layer of matrix.
9.2.2 Effects of Different Fiber/Matrix Contact Angles on Free Surface Stresses

A brief review of the stresses at the FMI near the free surface for the flat free surface
model (8 = ¢ = 90°) is presented in this section. Such a model has been discussed
extensively in (Abedian and Szyszkowski, 1997). Then, the results for the models shown
in Fig. 9.2 will be examined in detail sequentially.

9.2.2.1 Case 1: 6 = 90°, $ =90°

For comparison, contour plots of the radial, hoop, and longitudinal shear stress
components at the FMI and in the vicinity of the free surface under a uniform unit
temperature change (+1°C) for the basic model are presented in Fig. 9.3. Very high
compressive radial and hoop stress regions as well as a relatively high interfacial shear
stress are presented in this area. The details of the overlapping hypothesis, which was used
to explain the stress state, were presented in Chapter 5.

Free surface Free surface Free surface

.43
.83
.26

-12.27
-10.85
-9.43
-8.01
-6.59
-5.17
-3.75
-2.33
-0.91
0.50

.93
.76
-1.43
-0.73

R U |
NWwWwuma

-
o

(FRRRNANR
(RENERANN
T

1.06

Fiber | Matrix Fiber ! Maurix Fibcr: Matrix
a) Radial stress (MPa) b) Hoop stress (MPa) c) Shear stress (MPa)
Fig. 9.3: Stress distributions for the flat surface model.

9.2.2.2 Case 2: 0 =180°, ¢ = 90°

When cutting composites, a very small portion of the fibers can be pulled out of the
matrix. The magnified 3-D picture of such a cut surface along with its axisymmetric
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meshed model is presented in Fig. 9.4. Here, the portion of the fiber that extends out of the
matrix is assumed to be 5% of the fiber diameter. As Fig. 9.5 shows, the stress components
change significantly under a small variation in the composite temperature (+1°C) relative
to the stresses shown for case 1, i.e. composite cut surface with a perfect surface finish (see
Fig. 9.3). For comparison, graphs of radial and hoop stress components along the FMI (line
AB in Figs. 9.1 and 9.4) in the vicinity of the free surface for both cases are shown in
Fig. 9.6. It appears that the stresses for case 2 are almost twice as high as in case 1 at the
free surface, while away from the free surface the stresses are almost identical. One of the
reasons for such a drastic change in the stress magnitude may be explained by the
difference in the deformation of the fibers. The fiber under compressive radial load, which
tends to eliminate overlapping (see Fig. 5.9), may deform radially more easily for case 1
than in case 2 (in which the fibers extend out of the matrix). Lower fiber deformations in
case 2 cause higher compressive radial stresses in both the fiber and the matrix. Upon
cooling, these stresses become tensile and can be very damaging to the fiber/matrix
bonding. This indicates the importance of the surface finish when cutting composites. The
analysis performed for a longer portion of the fiber extending out of the matrix, i.e. longer
than 25% of the fiber diameter, shows a further small increase in radial and hoop stresses,
thereby supporting the explanation based on the difference in the fiber compliance in the
radial direction between cases | and 2.
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Fig. 9.4: Fiber extending out of the matrix.
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Fig. 9.5: Stress distributions for the model with the fiber extending out of the matrix.

Fig. 9.6: Radial and hoop stress components on the fiber/matrix interface
in the vicinity of free surface.

9.2.2.3 Case 3: 8 =180°, ¢ = 45°

Filling the sharp free corner of the FMI and the free surface with the matrix material
(the angle ¢ becomes smaller than 90°) will change the stress regimes substantially. In the
current discussion, it is assumed that the corner is filled with the matrix material such that
the contact angle of the matrix with the fiber is ¢ = 45° (see Fig. 9.7). This case and almost
all of the following cases to be discussed in this section may mostly happen at the exposed
end of composite parts during manufacturing or when a composite is cut. The dimensions
of the ramp, i.e. a=b = 0.02 pm, are considered to be 0.0026 times the fiber diameter. The

analysis was repeated with a similar density of mesh pattern at both sharp corners of the
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ramp area. It appears that high stresses still occur at both comners, but it is clear that the
stresses are substantially lower at the fiber-matrix contact corner when ¢ = 45° relative to
¢ = 90° (see Figs. 9.5 and 9.8). These changes, caused by the decrease in contact angle,
may be explained by the hypothesis of overlapping as demonstrated in Fig. 5.9. Similarly
as before, the difference in the fiber and matrix free thermal expansion causes radial and
axial discontinuities. The load that is required for satisfying continuity in the axial
direction again causes an overlap which, however, is smaller than in the previous cases. It
is because, for ¢ = 45°, the axial load is distributed on the ‘a’ dimension of the ramp (see
Fig. 9.9) and the resultant load that is shown with the dashed arrow acts on the matrix
hollow cylinder at some distance from its inner rim. This reduces the amount of
overlapping and, as a result, lower radial stresses are required to eliminate the overlapping.

As it turned out the other stress components decrease substantially as well.
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Fig. 9.7: The model with filled fiber-matrix corners.
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Fig. 9.9: Distribution of axial load in the ramp area.

The sharp corner of the ramp (ramp/matrix contact angle, tan'¥ = b/a, Fig. 9.7) gives
rise to stresses in the matrix. However, this stress concentration is related only to the
geometrical discontinuity in the matrix material and should disappear if the discontinuity is
removed. If this sharp comer in the matrix away from the fiber is still present, the
corresponding stresses are high enough to damage the composite. This may be one of the
reasons for cracks occurring in the matrix area away from the interface. This has also been

found experimentally and will be discussed in Chapter 11.

It is worthy to see how the fiber and matrix contact angles affect the stresses. That is
why two more cases were analyzed by replacing the straight line KK of the ramp area (see
Fig. 9.2(b)) with curved lines having tangent angles ¢ = 26° and ¢ = 11° (see Figs. 9.2(c)
and 9.2(d)). For comparison, the radial and hoop stress components along the fiber matrix
interface for the last three cases are shown in Figs. 9.10(a) and 9.10(b). The graphs show
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that the stress components are essentially the same away from the fiber end but, as the free

surface is approached, the stresses show a large difference in magnitude. Note that for ¢

equal to 11° and 26°, the highest stress occurs away from the free surface. The lower

matrix contact angles decrease the absolute values of the very high stresses at the free

surface as shown in Fig. 9.11. For small ¢, the stresses at the free surface drop to almost

zero. In such cases, according to the results shown in Fig. 9.10, the maximum stresses will

be located inside the matrix. For reference purposes, these stresses are also presented in
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Fig. 9.10: Radial and hoop stress components along the fiber/matrix interface
for case 2 (6 = 180°) with different matrix contact angles (¢).
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Elimination of the sharp comers (i.e. reducing ramp/matrix contact angle, ‘¥) by
considering curved ramps generally reduces the stress concentration in the matrix as
indicated in Fig. 9.12.
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Fig. 9.12: Radial, hoop, and shear stress components at the free surface for
case 2 (6 = 180°) with different matrix/ramp contact angle ().

9.2.24 Case4:0=90° ¢=45°

The very high thermal residual stresses introduced during manufacturing (discussed
in detail in Chapter 7) may be partially relaxed and/or cause some microscopic
deformation on the cut surface of a composite. The creep phenomenon can also play a role
in deforming the cut surface. Under these circumstances, the fiber and the matrix may end
up at different heights on the cut surface as shown in Figs. 9.2(e)-2(g).

The mesh pattern for this case is presented in Fig. 9.13(a). The pattern of the mesh in
both comners of the 45° ramp is exactly the same as the one considered in case 3 (8 = 180°,
¢ = 45°). For comparison, the stress components along the interface for the current case
and also case 3 are presented in Fig. 9.13(b). The stresses seem to be higher for case 3 than
for the present case. This may be attributed to the same reasons as those discussed for
case 2 (B = 180°, ¢ = 90°). That is, the fiber for the current case (6 = 90°) may deform

more easily under the axial load which causes overlapping relative to case 3 where
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0 = 180°, reducing the absolute value of the radial component of the load. However, the

stresses at the ramp/matrix contact corner (i.e. angle W) are similar for both cases.
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Fig. 9.13: Radial and hoop stress components along the fiber/matrix interface
for matrix contact angle of (¢ = 45°).
The above numerical analysis was repeated for matrix contact angles of ¢ = 26° and
¢ = 11°. Compared to the cases discussed previously, lower stresses were obtained for

these angles as well. These results will be discussed in the next section.
9.2.2.5 Case 5: 0 =90°, ¢ = 270° (Free Surface Covering)

Covering the free surface (cut edge) of the fiber and matrix with a thin layer of
matrix-like material results in a contact angle of ¢ = 270° for the matrix at the interface
(see Figs. 9.14(a) and 9.2(h)). The covering process can be performed either during

manufacturing or as a repair process.

The FEM model with dense mesh pattern at the comer of the FMI is shown in
Fig. 9.14(b). Upon covering the free surface, the stress regimes right at the corner are
completely changed relative to the stresses presented for the composite model without the
covering layer, see Figs. 9.3 and 9.15. Interestingly, the absolute values of the compressive
radial and hoop stresses are substantially reduced. The reduction is so substantial that these

stresses (which will become tensile on cooling and could potentially damage composites
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by initiating circumferential and radial cracks in the matrix) should not be considered as
causing damage to composites. Such changes to these stress components may also be
explained again considering the free expansion of the composite constituents and the
overlapping as presented previously. The block diagram of a single fiber embedded in
matrix is shown in Fig. 9.16. Under axial load, which tends to satisfy the longitudinal
continuity, the deformation of block-S is obstructed by the block-T. This greatly reduces
the amount of overlapping and changes the deformation pattern. As a result, the absolute
value of the very high compressive radial stress is reduced to a very small value. This
radial stress can vary from a small compressive to a small tensile stress depending on the
degree of overlapping allowed by the properties of the block-T and the value of the other
stress components. The deformation of a hollow cylinder under a compressive axial load
on its inner wall can be used to explain the small compressive hoop stress. A lower
overlapping results in lower hoop stress as well. However, high stresses are still present in
the elements adjacent to element E' (shown in Fig. 9.14(b)) due to a type of stress
singularity which is inherent with sharp comers. Most notable are the very high tensile
radial, hoop, and axial stresses for these elements, see Fig. 9.15. Upon cooling composites
from the processing temperature, these stresses not only prevent cracking but also help to
keep the fiber and matrix intact due to the sign change in the stresses. The only stress
component, which may be detrimental at the fiber end (when covering the free surface). is

the longitudinal shear stress at the interface.
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Fig. 9.14: Model of a composite with a covering layer on the cut surface.
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Fig. 9.16: Block diagram of a composite with a covering layer.

These shear stresses play a major role in increasing the tensile hoop stress in the
elements adjacent to the element E' in the matrix area, see Fig. 9.15. Considering free
expansion of the composite constituents and ignoring the overlapping effect, the blocks T
and C will expand more than the fiber in the radial and hoop directions. To rejoin the block
corners with the fiber end, a tensile radial stress along with a compressive hoop stress are
required. Considering the overlapping effects of block-S, the stresses substantially change.
In addition, there is another important factor that greatly influences the hoop stress. Under
a shear stress, the comer elements (see Fig. 9.15) are pushed toward the fiber center,
creating a high deformation as shown in Fig. 9.17. This deformation is balanced by a

tensile hoop stress shown in the figure.

To determine the effects of the change in the fiber/matrix contact angles on the

stresses, the stress components along the interface for this case and the cases discussed in
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the previous section are plotted in Fig. 9.18. Large differences in stress values are seen in
the area close to the corner tip. According to the corner tip values of the stress against the
matrix contact angle of (¢) in Fig. 9.19, it seems that covering of the composite free
surface is an effective and practical way for decreasing the damage due to thermal stresses
at the fiber end in composites. This important finding has been verified experimentally and
is discussed in Chapter i1.
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Fig. 9.17: Deformation of the block-T under shear stress.
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Fig. 9.18: Radial and hoop stress components along the interface for
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Fig. 9.19: Radial, hoop, and shear stress components at the interface
on the free surface for cases 4 and 5 (0 =90°) with
different matrix contact angles (¢).

9.2.2.6 Effects of Layer Thickness and its Material Properties

The radial, hoop, and shear stress components at the tip of the fiber/matrix contact
corner are plotted against the thickness of the covering layer in Fig. 9.20. Significant
changes in the radial and hoop stresses are observed if a cut is covered with a small layer
of matrix material. The covering layer is most effective when its thickness is about 10% of
the fiber diameter. Increasing the thickness further does not show a major effect on the
stress components. However, a thicker covering layer causes a sign change in both the
radial and hoop stress components which is desirable for the cooling phase of the
manufacturing process. The higher thickness of the cover reduces the shear stress value by
only a few percentage points. Therefore, the chance of fiber/matrix de-bonding is still high
and it depends on the interface strength that is very critical in composites.

The effects of some of the properties of the covering layer on the stresses have also
been studied. It may not be possible or practical to get the same properties for the covering
layer as the ones for the matrix material. To investigate this, the modulus of the covering
layer was assumed to vary from 0.1 to 10 times the matrix modulus. In addition, Poisson
ratios of 50 to 75 percent of that of the matrix were considered. Also, some analysis was
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performed on the effect of the thermal expansion coefficient of the covering layer on the

stress concentration at the fiber-matrix contact comer.
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Fig. 9.20: Radial, hoop, and shear stress components at the fiber end vs. the ratio
of the covering layer thickness to the fiber diameter.
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As expected, the stiffness of the covering layer has a great effect on the nature of the
stresses at the fiber-matrix contact corner. As explained earlier, block-T (see Fig. 9.16)
plays a major role in preventing fiber/matrix overlapping under axial load. When block-T
is of low modulus material, it deforms easily and despite the elimination of the free
surface, very high compressive radial and hoop stress components appear at the comer tip.
Also, the high deformability of the covering layer reduces the very high tensile radial and
hoop stress components in the elements adjacent to the element E' in blocks T and C (see
Fig. 9. 21). A plot of the radial, hoop, and shear stress components in the vicinity of the
fiber-matrix corner tip against the ratio of the modulus of the covering layer to that of the
matrix material is shown in Fig. 9.22. It appears that the radial and hoop stress components
change from very high compressive to high tensile with increasing modulus of the
covering layer. This change is desirable for preventing matrix cracking and de-bonding
when cooling composites from their processing temperature. However, this may adversely
affect the composite during the heating phase of working temperature cycles. The very
high absolute values of the stresses for both the low and high modulus covering layers mﬁy
damage the composite in either phase of the temperature cycle. The stress values are low
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for E(covery/ Em = 1, therefore using a covering layer material identical to the matrix material
is recommended. Choosing a high modulus material for the cover may eliminate the
adverse effects of the radial and hoop stress components during cooling, but the high

longitudinal shear stress will still be present.
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Fig. 9.21: Stress components for the model with a low modulus-covering layer.
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Fig. 9.22: Effects of the Young's modulus of the covering layer
on the stress components at the fiber end.

The analysis of the changes in Poisson ratio of the covering layer reveals some
interesting results. Fig. 9.23 indicates that the small compressive radial and hoop stress
components at the tip of the contact corner of the fiber/matrix interface (see Fig. 9.15) are
replaced with high tensile stresses when the layer Poisson ratio (Veover) is decreased relative

to that of the matrix, vi. Such a change is desirable for cooling, but it may be harmful
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during heating. This also introduces a positive change to the shear stress for the element E'
in Fig. 9.14. A lower shear stress is detected at the tip of the fiber/matrix contact corner
when Poisson’s ratio is decreased. However, with a low vy, a relatively high shear stress
appears at the elements adjacent to element E' compared to that observed in case S. In
conclusion, a cover with a low Poisson’s ratio might prevent cracking in composites
during cooling even more effectively than using high modulus materials for the covering

layer.

The changes in the radial and hoop stress components due to different Poisson ratios
of the cover and matrix can be explained well with the differences in the amount of
contraction of the matrix and the covering layer. When Vo is lower than that of the
matrix, the covering layer tends to contract or expand less than the matrix in both the radial
and hoop directions. Therefore, the cover not only prevents overlapping but also, to satisfy
continuity, resists the matrix shrinkage in both radial and hoop directions generating high
tensile radial and hoop stresses at the fiber matrix corner tip. Also, decreasing V over results
in an increase in the shear modulus of the cover (G = E/2(1+Vv)). The matrix with shear
modulus lower than that of the covering layer tends to distort more than the covering layer.

This decreases the shear stresses in the matrix while increasing them in the covering layer.
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Fig. 9.23: Effects of the Poisson's ratio of the covering layer on the
stress components at the fiber end.
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Finally, the influence of different thermal expansion coefficients (CTE) for the
matrix and the covering layer was investigated for the range 0.5CTEy < CTEcover <
1.5CTEn. The results indicate that though the CTE mismatch for the composite
constituents is responsible for the thermal stress generation, it has little effect on the matrix
stresses at the fiber/matrix contact comner. A plot of the radial, hoop, and shear stress
components for the element E' against CTEcover / CTEq is shown in Fig. 9.24. The
differences are negligible. The reason could be that other geometrical deformations due to
overlapping at the fiber end, rather than the CTE mismatch (which imposes thermal
stresses), affect the stress distribution. The differences in v and E of the covering layer
affect the geometrical deformations at the fiber end, while the difference in CTE affects the
thermal stresses only. The changes due to the CTE mismatch of the cover and the matrix
are pronounced more in the covering layer than in the matrix. This is due to the absence of
geometrical deformations like those at the fiber end. The difference in CTE imposes
different expansions on the matrix and the covering layer under a unit temperature change.
For CTE.ove < CTEy, the matrix comes under compressive radial and hoop stresses to
maintain the same expansion as the covering layer and to satisfy continuity. Meanwhile, it
puts the covering layer under tensile stresses in both directions. That is why higher
compressive stresses are detected in both directions in the matrix relative to the values
obtained when CTE qve = CTEq. It is noted that this phenomenon also increases the tensile
stresses in both directions in the covering layer. The shear stress remains almost
unchanged in both the matrix and the covering layer, since the mismatch in CTE does not

affect the shear properties of the composite constituents.

In summary, with the 3 major material properties of the covering layer discussed so
far, it is concluded that it is important to cover the composite cut edges or free surfaces
with the same material as the matrix. In all cases, using similar materials for the matrix and
the covering layer results in very small radial and hoop stress components that are very
desirable. A covering layer with high modulus or with Ueover < Umarrix can be helpful during
cooling only.
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Fig. 9.24: Effects of the thermal expansion coefficient of the covering layer
on the stress components at the fiber end.

9.2.3 Fibers Close to the Composite Side Edge (Edge-Fibers)

The study presented so far was conducted on fibers well away from the composite
side edge (internal fiber). In this section, the effects of the composite side edge on the
stress distribution around the fiber end are discussed. The analysis performed in case 1 (see
Fig. 9.3) was repeated with the coupling boundary condition removed from the nodes
along the matrix side edge, i.e. line M-M in Fig. 9.1(a). Coupling the nodes along line
M-M in the radial direction results in the nodes being restrained against the relative
movement in this direction, thus keeping the line straight at all times. The coupling
assumption simulates the effects of an adjacent fiber on the line M-M. For the fibers at the
composite side edge, the nodes on line M-M are not restrained by this boundary condition.
Therefore, with a temperature change of +1°C, the matrix can deform down and inward
more easily under the axial load that tends to satisfy continuity in this direction. This
creates a higher degree of matrix overlapping at the fiber end than when line M-M is
restrained. The differences between the deformation of the edge-fiber and the internal fiber
are presented in Fig. 9.25. Much higher stresses appear along the interface in the vicinity of
the free surface for the edge-fiber than the internal fiber. A comparison between the
stresses shown in Fig. 9.26 and Fig. 9.3 indicates that, for edge fibers, about 50% increase
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in stress occurs at the interface in the vicinity of the free surface. Considering this fact, it
can be concluded that the edge fibers may be more prone to cracking than the internal
fibers. Also, for edge-fibers with covered free surface (depending on the properties of the
matrix and the covering layer and the interface strength) the possibility of matrix cracking
is higher than for those of the internal fibers.
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Fig. 9.25: Effects of fiber location on the deformation pattern of the free surface.
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Fig. 9.26: Stress components at the side edge of a composite.
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9.3 Inelastic Analysis of Composites with a Covering Layer

The elastic analysis has indicted that covering the free surface of composites with a
thin layer of matrix-like material is the most effective way of eliminating the very high and
damaging radial and hoop stress components at the fiber end. In this section, to examine
these effects further, the inelastic behavior of the composite similar to that presented in
Chapter 7 is performed. The transient effects are neglected for fast cooling processes
(i.e. quenching in water). It is assumed that the free surface of the 3-D model is covered
with a thin layer of matrix material (see Fig. 9.27). The thickness of the cover is considered
to be one tenth of the fiber diameter. This study is conducted on titaniumn based matrices
(Ti-6Al1-4V or Ti-24Al-11Nb) reinforced with SCS-6 fibers.

Cylindrical
coordinate system

Te/10

Fig. 9.27: 3-D model with a covering layer.

9.3.1 Residual Stresses in SCS-6/Ti-6A1-4V Composite

The 3-D prism model which simulates the SCS-6/Ti-6Al-4V composite with a
matrix-like covering layer on its free surface is cooled to room temperature from the
composite processing temperature (T, = 900°C). Note that, as in Chapter 7, the Ti-6Al-4V

matrix is referred to as MMC hereafter.

The thermal residual radial, hoop, and equivalent stress contours of the model at
room temperature are shown in Fig. 9.28. To make the matrix interface stresses visible, the
fiber stresses are not shown. Like the elastic case discussed previously in this chapter, the
results of the inelastic analysis show that the radial and hoop stresses in the vicinity of the
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interface at the fiber end are distinctly different from the stresses in composites without

cover discussed in Chapter 7 (compare Figs. 9.28 and 7.2 for example). After cooling from

Tp, the maximum value of the stress components, which were tensile and appeared at the

interface on the free surface for the model without cover, become compressive and show

lower absolute values at the interface. In fact, the extreme values of the stresses occur away

from the interface when the free surface of the composite is covered. The compressive

stresses, which are relatively small, appear at the interface in the vicinity of the fiber end.
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Fig. 9.28: Effect of covering on the radial, hoop, and equivalent stresses of the -

Ti-6Al-4V matrix composite generated during cooling from T,
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Despite the changes in radial and hoop stress components at the fiber end, the
maximum value of the equivalent stress appears in this region at the interface at location
P'|. The equivalent von Mises stresses (Geq) in locations P’y and P and the yield strength of
the matrix (6y) during cooling from T, are shown in Fig. 9.29. The curve for the inner zone
will be discussed later. In the end zone, the figure shows that plastic deformation starts
sooner than for the model without cover (compare Figs. 9.29 and 7.1). For the former,
plasticity starts at T=650°C, while for the latter it starts at T=360°C. One reason for this
difference could be the very high magnitudes of the axial and longitudinal shear stresses in
the matrix at the fiber end. These stresses are generated due to the formation of a sharp
comner in this location after covering the free surface. A 3-D contour plot of the axial and
longitudinal shear stress components at room temperature is shown in Fig. 9.30. As the
figure shows, very high axial and longitudinal shear stresses occur at the interface at the
fiber end. The maximum of the compressive stresses appears at location P';. The origin of

these stresses and their effects will be discussed in more detail in section 9.3.3.
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Fig. 9.29: Effect of covering on the stress history of Ti-6Al-4V matrix
in the end zone (P';) and the inner zone (P3).

For the composite without cover, these stress components are also present in the
vicinity of the fiber end but they cause a lower equivalent stress. The reason is that (for the
model without cover) all the stress components near location P'; are high and tensile but
the differences between them are small, thereby resulting in small G. For the model with
cover, the difference between the stress components is large due to smaller radial and hoop
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stresses and this results in higher equivalent stresses. This high equivalent stress causes
plastic strains in the early stage of cooling of the covered composite unlike in the

composite without cover. Fig. 9.31(a) presents the equivalent plastic strain (g% ) in the
matrix at T=360°C. The strain values are much different from those of Fig. 7.3(a) for the
model without cover. There are several other differences between the composites with and
without cover. For example, comparing the curves for G at location P'; presented in Figs.
9.29 and 7.1, it is clear that higher equivalent stresses appear at room temperature in the

end zone if the free surface of the composite is covered at the melting temperature.
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Fig. 9.30: Effect of covering on the axial and longitudinal shear stress components
of the Ti-6Al-4V matrix composite generated during cooling from T,.
Comparing O at location P in Figs. 9.29 and 7.1 shows that the plastic strain in the
inner zone starts at the same temperature as that for the composite without cover

(T=320°C). This indicates that covering does not influence the stresses in the inner zone.

However, € in the inner zone of the covered model at room temperature (see

Fig. 9.31(b)) is slightly lower than €% at room temperature for the model without cover

(see Fig. 7.3(b)) for the model without cover. One reason could be the high plastic strains
in the end zone of the covered model which cause a large amount of stress relaxation in the
rest of the composite, hence reducing the total amount of plastic strain in the inner zone.
As Fig. 9.29 shows, like the composite without cover, the equivalent stress in the inner

zone of the covered composite drops below the yield strength of the material at T=320°C.
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As a result, for temperatures lower than T=320°C no more plastic deformation occurs in
the inner zone. The stress components in the inner zone of the composite with cover
(which are not shown here) are very close to the stresses for the composite without cover

as shown in Fig. 7.5.

Again, the most important effect of covering the free surface of composites is the
change in sign of the radial and hoop stress components at the end of the fiber during
cooling from T,. The compressive stresses prevent crack opening or interface debonding.
For composites with free surfaces, the tensile radia! and hoop stress components may

damage the composite integrity by cracking the matrix or debonding the fiber/matrix

interface.
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Fig. 9.31: Effect of covering on the equivalent plastic strain
in the end zone and the inner zone of Ti-6A1-4V
matrix composite (at T = 360°C).

9.3.2 Residual Stresses in SCS-6/Ti-24A1-11Nb Composite

The effects of low strength matrices on the covering the free surface of composites is
studied by repeating the elasto-plastic analysis of the SCS-6/Ti-24Al-11Nb composite
(which was discussed in Chapter 7). Here, the composite is cooled from the processing
temperature (T;). As in the case of the composite without cover, the maximum values of

G in the end zone and the inner zone occur at locations P', and P, respectively. A graph
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of Oy (in these locations) versus temperature is shown in Fig. 9.32(a). The figure also
shows G, and & (the yield strength of the strain hardened matrix) at both locations versus
temperature. The corresponding equivalent plastic strain in the same locations is plotted
against temperature in Fig. 9.32(b). The figure shows that covering the free surface of this
composite also accelerates the plastic deformation of the matrix in the end zone. Changes
in the status of the radial and hoop stress components in the end zone due to the covering
layer affect the equivalent stress in this region. Upon cooling, an increase in Ge of the end
zone quickens the onset of plasticity, a feature not seen in the composite without cover
(compare Figs. 7.13(a) and 9.32). Therefore, more plastic strain is accumulated when the
composite is covered with a thin layer of matrix-like material. The yield strength of the
material is increased by the plastic strain accumulation due to the strain hardening
characteristic of the matrix. The figures show that the increase in yield strength (o)) at
point P’; is much higher than that obtained for the model without cover due to the higher
plastic strain for the covered composite. As Fig. 9.32(a) shows, &' of the matrix in the end
zone is well above G,. However, depending on the stress-strain characteristic of the
material at a certain temperature level, the high plastic strain may strengthen the material
such that G falls below o). Such a stress state occurs at T=200°C as shown in
Fig. 9.32(a). Therefore, as Fig. 9.32(b) shows, the plastic strain in the end zone at location
P'| remains constant at temperatures lower than T=200°C. Since o} is history dependent,

it increases until room temperature is reached.

Unlike the end zone, plastic deformation in the inner zone continues until room
temperature is reached. Again, it appears that covering the composite free surface does not
affect the start of the plastic deformation in the inner zone. However, at room temperature,
the plastic strain of the material is slightly different when compared to the resuits obtained
for the composite without cover (see Fig. 7.18(a)). The plastic strain of the composite with

cover is lower than that for the model without cover (maximum &£ = 0.2902e-2 and

0.2914¢-2 for models with and without cover in the inner zone, respectively). As explained
earlier, it could be due to the higher plastic strain in the end zone in presence of the cover.
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The stress relaxation associated with the plastic deformation reduces the plastic strain in
the inner zone. The changes in the yield strength and the inner zone stresses of the
composite with cover appears to be negligible due to the small difference in the amount of

inner zone plastic strains of the models with and without cover.

In general, as explained previously, the main effect of the covering is its ability to
reduce the high magnitude of radial and hoop stress components at the fiber end.
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Fig. 9.32: Effect of covering on the equivalent stress and plastic strain generated in the
end zone (P')) and in the inner zone (P,) of the Ti-24Al-1 I Nb matrix
composite during cooling from T,

9.3.3 Axisymmetric Analysis of Composites with Covered Free Surface

In the last two sections, the analysis of the covered 3-D model showed that G and
g in the end zone (at location P'|) increase in comparison to their values for the
composite without cover. To check how reliable these results are and whether the 3-D
prism model can be utilized in analyzing the composite with cover, the study is repeated by
employing the axisymmetric model. The same model used in Chapter 7 is considered with
a thin layer of matrix-like material on its free surface. The details of the discretization of
the model with its covered free surface in the vicinity of the singular point are similar to
that shown in Fig. 9.14. '
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The yield strength of the matrix (6y), O, and o, at locations A, J, and B during
cooling from T, are presented in Fig. 9.33(a). As usual, A is located at the fiber end at the
fiber/matrix interface, J is 0.0lum away from A at the interface, and B is located in the

inner zone. The variation of equivalent plastic strain (&2 ) for the same locations with

temperature are shown in Fig. 9.33(b). Comparing these plots with the plots of equivalent
stresses and strains at the same locations for the model without cover (presented in
Fig. 7.19) shows high changes in stress and strain magnitudes. The very high 6 and €5
in the end zone (at location A) are sharply reduced when covering is employed. This is
contrary to the results of the 3-D model mentioned above and will be explained in the next
paragraph. The reduction in stress and plastic strain is due to changes in stress components
at the fiber end in the presence of the cover. The radial, axial, and hoop stress components
become compressive and, due to the relatively close values, the magnitude of the
equivalent stress is reduced. These stresses and G during cooling from T, for location A
are shown in Fig. 9.34. Therefore, the plastic deformations for the model with covered free
surface are lower than those for the model without cover. The compressive nature of the
stress components at location A (Fig. 9.34) is substantially different than for the composite
with no cover. This may be explained as follows: Upon cooling, the extra covering layer of
the matrix on the fiber end will apply a compressive axial stress on the rest of composite
due to the CTE mismatch (Fig. 9.35). The compressive axial stress causes the matrix to
overlap the fiber end and is capable of changing the overall deformation and stress states at
the fiber end. The overlapping generates compressive radial and hoop stresses at the fiber
end (Abedian and Szyszkowski, 1997) (see Fig. 9.34). Note again that the stresses are

tensile when cooling the composite without cover.

The contradiction between the results of the 3-D and axisymmetric models in
predicting O and €% at the fiber end for the covered composite (as compared to the

composite without cover) may be explained as follows. One reason may be the difference
between the stress components calculated by the two models for the fiber end. Since the
3-D model is meshed with coarser elements, the magnitudes of the compressive radial and
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hoop stress components are smaller than those obtained with the axisymmetric model. This
will increase the equivalent stress and, as a result, the plastic strain shows some increase.

Note that G, is related to the difference between the stress components.
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Fig. 9.33: Axisymmetric modeling of the covering process; (a) equivalent stress
(b) equivalent plastic strain at locations A, J, and B.
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Fig. 9.34: Effect of covering on the stress components
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The plastic strain distribution along the interface of the axisymmaetric mode! at room
temperature is shown in Fig. 9.36(a). A larger scale graph of the curve around location A
in Fig. 9.36(a) is shown in Fig. 9.36(b). Like the composite without cover, the high plastic
strain at location A is shown to be a very localized phenomenon. The plastic strain drops
from about 0.25 at location A to less than 0.05 at about 0.06um away from the fiber end.
However, comparing the distribution of €% in Fig. 9.36(b) with that of the composite

without cover presented in Fig. 7.20, the plastic strain along the interface in the vicinity of
the fiber end (i.e. location J) is slightly higher for the model with cover. Comparing Ge,

and € at location J in Figs. 9.33 and 7.19 shows some increment in their values when the

free surface of the composite is covered. This may be due to the decrease in plastic strain at
location A in presence of the cover. A low plastic strain at this point results in a low stress
relaxation. Therefore, compared to the composite without cover, higher stresses and,
consequently, higher plastic strain can be expected at some point away from location A,

i.e. point J.

Comparing Figs. 7.19 and 9.33, the equivalent stress and plastic strain at point B
seem to be also affected by the presence of a covering layer. Compared to the composite
without cover, a higher plastic strain along the interface away from location A (i.e. at point
J) affects the stresses in the inner zone i.e. at point B. This is due to the relaxation effect of
the plastic strains, i.e. the lower stresses at point B result in lower plastic strains in the

inner zone. Due to the scale of the graphs, these differences are not clearly shown.
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Fig. 9.36: (a) Plastic strain distribution along the interface, (b) magnification
of the plastic strain in the vicinity of the fiber end

In general, the results obtained from the axisymmetric model are in a good
agreement with those of the 3-D prism model. Of course, the 3-D model analysis (due to
the coarse mesh) is less accurate in the neighborhood of the singular point than the
axisymmetric analysis. However, the solution at a short distance from the singular point is
very close. This similarity becomes more apparent when one compares the equivalent
stress and plastic strain obtained by the 3-D model with the results at points J and B of the
axisymmetric model. With covering, they show some increase at a short distance to the
singular point relative to the composite without cover. However, they decrease in the inner

zone.
9.4 Two Stage Process of Covering of Composites Free Surface

In the analysis of composites presented so far, it was assumed that the composite and
the covering layer on the free surface were manufactured in one single processing stage. It
was also assumed that the composite and the covering layer are cooled to room
temperature at the same time. However, from the manufacturing point of view, different
scenarios are possible. For example, for composite structures that are made from
pre-manufactured composite panels or rods, any required cutting would generate new free
surfaces. Also, drilling holes in composites makes fresh cut surfaces. Any fresh cut surface

may then be covered with a layer of a new material or matrix-like material.
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Simulation of such a covering process is analyzed in two successive stages. In the
first stage, the stress and displacements on the free surface of a composite cooled from the
processing temperature are analyzed. Very high residual stresses and plastic deformation
are already present at the fiber end. The analysis of the covering process is performed in
the second stage. Here, three schemes of the two-stage covering process that are different

from the manufacturing point of view are studied.

In the first scheme, a thin layer of the molten matrix material is applied on the free

surface of the composite which is at room temperature. In this scheme, the residual stresses
are sufficiently high so that applying the hot cover material can disturb the residual stresses
and plastic strains by partially relieving them. Note that for this scheme, the exact
temperature distribution in the material is difficult to obtain.

In the second scheme, the cooled composite is re-heated to slightly below its
processing temperature T, and then the cover is cast on the free s::mrface. The difference
between the two schemes is in the different magnitudes of the residual stress and plastic
deformations in the composite before applying the cover. For this scheme, the analysis of
the temperature distribution is easier. Also, re-heating of the composite close to its
processing temperature can relieve most of the residual stresses present.

For the third scheme, the residual stresses and plastic strains at the fiber end are
eliminated by physically cutting the end of the composite before applying the covering
layer. These analyses will be presented in sequence. To highlight the differences between
the one-stage and two-stage covering processes, an elastic study of the two-stage scheme is
discussed first.

94.1 Elastic Analysis of the Two-Stage Covering Process

A simplified elastic analysis of the two-stage covering process is discussed in brief.
The materials, which were considered in the elastic analysis of the one-stage scheme of the
covering process, are considered here again. Since in ANSYS all the elements must be
generated before the solution phase, the element birth-death capability is used. To model
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any material addition or removal occurring in the two-stage covering process, the
respective elements are deactivated or killed (material removal) or the previously killed
elements are reactivated (material addition).

The full model consisting of the composite and the covering layer (see Fig. 9.14) is
created first. To analyze the residual stresses before the cover is applied, the elements of
the covering layer are deactivated. When killing elements, the modulus of the affected
elements is reduced to a negligible value. In the second stage, to analyze the effect of the
covering layer on the already stressed composite, the elements of the covering layer are
reactivated (i.e. the elastic modulus of the elements is restored). Unlike the elastic analysis
of the one-stage covering process, the analysis is performed for 1°C temperature reduction.
In the second stage, after reactivating the elements of the cover, the temperature of the
composite is increased by 1°C to see how the covering layer affects the stress state. It is
expected that despite the assumed elastic nature of the process, the covering layer should
prevent relaxation to occur after this temperature cycle. In the last phase of the analysis, the
temperature of the system (i.e. composite plus the covering layer) is decreased by 1°C
again to compare the stress state with the stresses of the first stage (i.e. the stresses of the

cooled composite without the covering layer).

During the first cooling stage of the composite without the covering layer, very high
tensile radial and hoop stress components are expected to occur at the singular point. A
contour plot of the stress components for the composite cooled by 1°C is shown in
Fig. 9.37. At this stage, the elements of the cover are reactivated. The absolute values of
the stresses are the same as the results presented in Fig. 9.3 where a similar model was
heated for 1°C. The stress components, in the presence of the cover and after 1°C heating,
are shown in Fig. 9.38. Afier the temperature reversal, as the figure shows, the stresses
change but there are still high tensile stresses present near the singular point in the
composite. One reason for the stresses remaining high could be due to the resistance of the
covering layer in relieving the previous deformations. The covering layer does not let the
fiber and the matrix deform freely back to their original shape. For example, the axial
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displacement of the composite during the three-stage temperature change is shown in
Fig. 9.39. As Fig. 9.39(b) shows, the matrix contraction due to the first cooling stage (see
Fig. 9.39(a)) does not disappear fully after heating the composite and the cover to the
original temperature.

The above effects could alse be explained by the overlapping hypothesis. Previously,
(sections 9.2.2.5 and 9.3.3) it was shown that upon heating, the covering layer could
change the sign and magnitude of radial and hoop stress components at the fiber end by
reducing the overlapping. As Fig. 9.15 depicted, the stress values are sharply reduced at the
singular point. Therefore, when heating the composite with the cover in the two-stage
covering process, no more overlapping occurs. It results in very small changes in the
residual stresses. Hence, the stresses generated in the composite without cover during

cooling from the processing stage remain the same.

HIRE00
QLT
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Fig. 9.37: Radial and hoop stress components generated by 1°C cooling
of the graphite/epoxy composite without cover.
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Fig. 9.38: Radial and hoop stress components generated during reheating
the graphite/epoxy composite by 1°C in presence of the cover.
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Cooling the composite with cover again by 1°C shows that the stresses at the

singular point remain relatively constant. The radial and hoop stress contours for this stage

are shown in Fig. 9.40. The cover influences the stresses very little. The free surface

deformation is depicted in Fig. 9.39(c). The absolute value of the axial deformation of the

matrix shows a small increase.
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Fig. 9.39: Effect of covering on axial deformation of the composite
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Fig. 9.40: Radial and hoop stress components at the fiber end
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9.4.2 Nonlinear Elasto-Plastic Analysis of the Two-Stage Covering Process

Since pouring the hot covering material on the free surface of a composite sample

disturbs the temperatures of the fiber and the matrix to a distance from the free surface, a

coupled nonlinear thermal-stress study of the two-stage covering process was performed.

The temperature disturbance may influence the thermal residual stress distributions in the
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vicinity of the free surface. All three schemes discussed previously are considered. The
analyses are conducted using the axisymmetric model with the dimensions and mesh
pattern as used in section 9.3.3. The SCS-6/Ti1-6Al-4V composite is again considered.

94.2.1 Thermal Analysis of the Two-Stage Covering Process (Scheme 1)

In the first manufacturing scheme, it is assumed that the composite is cooled down
from the processing temperature (T,,) and then a hot covering material is poured on the free
surface of the composite. The elements of the cover are “killed” first to obtain the
temperature profile of the fiber and the matrix with time. The calculated temperature
distributions are used to find the residual stresses at the fiber end on the free surface due to

cooling of the composite from T,,.

The second stage of the thermal analysis simulates pouring the hot covering material
on the free surface. A short extra thermal load step was added to the thermal analysis
procedure such that after reactivating the “killed” elements in the first load step, these
elements were heated to the composite processing temperature (T=900°C). To ensure that
this heating stage of the elements of the cover is not affecting the temperature of the
composite, the thermal conductivity of the elements of the fiber and the matrix were
reduced to nearly zero, while their thermal capacities were assumed to retain their
magnitudes. In this way, due to the negligible thermal conductivity of the fiber and the
matrix, a very limited amount of heat could go through either one during heating the
elements of the cover. The unchanged thermal capacity of the fiber and the matrix helps in
retaining their temperature profiles (i.e. at room temperature). Finally, in the third stage,
with the restoration of the thermal properties of the fiber and matrix to their original
values, the heated cover and the composite were cooled together to room temperature. The
calculated nodal transient temperatures (varying with time) are subsequently used in the
stress analysis.

The temperature profiles at point A (which is located at the free surface at the
singular point) and point M' (located in the matrix in the inner zone) during the 3 stage
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thermal analysis are shown in Fig. 9.41. The cooling stage from T, (the part marked with I
on the graph) is similar to what was explained in Chapter 4. An almost uniform
temperature occurs in the whole composite during this stage due to high thermal
conductivity of the fiber and the matrix. However, the differences appear after the hot
covering layer is poured on the free surface of the cooled composite. As Fig. 9.41 shows,
upon pouring the hot covering material, the temperature of the nodes on the free surface
sharply increases (thermal shock). But, due to the low temperature of the composite, the
temperature of these nodes do not increase to the temperature of the cover. This is because
of the very high conductivity of the composite constituents and low thickness of the
covering layer. The thin covering layer stores a very low amount of heat that is not
sufficient to increase the temperature of the whole composite. Also, the high conductivity
of the composite constituents causes the composite to transfer heat from the covering layer
to other parts of the composite in a very short time. As the temperature profile of point A
shows, the temperature at this location increases to about 400°C. Point A is located on a
node which is shared with four elements (see Fig. 9.42). Two of the elements are on the
covering layer (which has a temperature of 900°C) and the other two elements are located
on the fiber and the matrix regions that are at room temperature. Therefore, considering
these elements temperature, an average temperature of more than 460°C is expected for the
node at location A. However, the lower temperature of A (i.e. 400°C shown in Fig. 9.41) is
due to the transfer of heat from the cover to the neighboring nodes in the fiber and matrix
that takes place in a very short period of time.

PointA —
PointM' o
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Fig. 9.41: Time-temperature profiles at locations A and M'
during covering process.
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Fig. 9.42: The meshed pattern at the fiber end.

The mechanism of the heat transfer, which causes a very rapid drop in the
temperature of the cover and the composite, is explained by the variation of temperature
distribution in the covered composite with time (Fig. 9.43). The high temperature gradient
between the cover and the composite and also between the cover and air cause the heat to
flow out of the cover into the composite and also into the air. This causes the temperature
of the cover to drop very fast. The conductivity of the fiber is higher than that of the
matrix. This causes the temperature of the cover on top of the fiber to drop faster than that
in the part that covers the matrix free surface (see Fig. 9.43(b)). In a very short time
(t = 0.024 sec), the temperature becomes relatively uniform across the model with a very
low gradient along the fiber length (Fig. 9.43(c)). The time is very short because of the
very small amount of heat that the cover has (its thickness and volume are small). In about
one second, the temperature of the system (fiber, matrix and cover) becomes uniform. The
temperature value in Fig. 9.43(d) shows that the heat stored in the covering layer is just

enough to increase the temperature of the whole composite by slightly over 10°C.
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Fig. 9.43: Temperature distribution in the first second of cooling of a hot
cover poured on a room temperature composite sample.

9.4.2.2 Stress Analysis of the Two-Stage Covering Process (Scheme 1)

The stress analyses corresponding to the temperature distribution in the composite
(see Fig. 9.41) are discussed in this section. The first stage of the process, which involves
cooling the composite without cover from T, = 900°C, is similar to what was discussed in
Chapter 7, section 7.6. A brief explanation on the small differences is presented here. The
second stage of the process (covering) imposes a temperature cycle on the areas close to
the free surface. However, as was shown before, the inner zone temperature of the
composite is changed only by 10°C. The corresponding stress analysis under the

temperature cycle will be discussed in sequence.

To model the free surface stresses for the stage where the composite is cooled from
T, the elements representing the cover are deactivated. Fig. 9.44(a) illustrates G and o
at locations A, J, and B and the variation of oy (of the matrix) with temperature. The
equivalent plastic strain at the same locations is also shown in Fig. 9.44(b). A small

difference was found when comparing these results with the results obtained for the

composite without cover (Fig. 7.19). This could be the result of numerical errors generated
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by the element birth-death procedure. The deactivation process does not eliminate the
effects of the elements completely. Although the elastic modulus of the elements is
reduced, the elements still exist and this may affect the results by a small percentage. As
Fig. 9.44 shows, this stage of the analysis results in high equivalent stress and plastic strain
that are localized at the singular point as was discussed in Chapter 7.
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Fig. 9.44: Effect of two-stage covering on the equivalent stress
and plastic strain at locations A, J, and B.

The process of pouring the covering layer on the free surface of the composite
induces a temperature cycle in the composite. The temperature in the region close to the
free surface goes up to about 400°C while the inner zone of the composite sees a
temperature increase of no more than 10°C. The effects of this temperature cycle upon the
residual stress and plastic strain states of the composite are explained here.

In addition to G and o}, the radial and hoop stress components at location A

corresponding to the temperature profile of Fig. 9.41 are presented in Fig. 9.45. The
thermal shock reduces the residual stresses at this location and consequently G, is reduced.
However, due to the strain hardening characteristic of the material and its dependence on
the plastic strain history, the material yield strength increases with thermal shock.
Comparing Ge, and 6} for the period of thermal shock shows that no more plastic strain

occurs during the cycle at point A. Despite the presence of the cover during the
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temperature cycle, the results obtained for G and &) are very similar to those of the

composite without cover discussed in Chapter 7 (see Fig. 7.21(a)). The radial and hoop
stress components are also similar to those of the model without cover (see Fig. 7.21(b)).
Comparing the results of the one-stage covering process with the results of the two-stage
process, some differences are noticed. The main difference appears in the sign of the stress
components. Fig. 9.45 shcws that the radial and hoop stress components for the two-stage
covering are tensile, while the stresses are compressive for the one-stage covering (see
Fig. 9.34). For the two-stage covering, despite the presence of the cover during the thermal
shock, the high residual stresses left over during cooling from T, govern the composite
response to thermal shock. Therefore, upon cooling, these tensile stresses may provoke
fiber/matrix debonding or matrix cracking while the compressive stresses prevent these

kinds of damages for the one-stage covering process.
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Fig. 9.45: Stress components at location A during cooling of the composite
from processing and during temperature cycling.

A plot of G and o) for locations J and B for the temperature profile shown in
Fig. 9.41 is presented in Fig. 9.46(a). The equivalent plastic strain values for points A, J,
and B for the same temperature profile are also presented in Fig. 9.46(b). As the stress and
plastic strain curves for point J show, the effects of thermal shock can be felt at some
distance from the singular point. Like the axisymmetric analysis of the composite without

cover in Chapter 7, the stresses at J show some increase and cause some more plastic strain
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under the thermal shock situation. The increase in Ge and the formation of plastic strain

under thermal shock are shown in Figs. 9.46(a) and (b).
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Fig. 9.46: Variation of the equivalent stress and plastic strain at locations
A, J, and B during temperature cycle imposed by pouring
hot cover on the room temperature composite.

Fig. 9.47 presents G and the stress components at location B in the inner zone for
the temperature profile of Fig. 9.41. It seems that thermal shock has no effect on the stress
and deformation of the inner zone. As Figs. 9.46(a) and 9.47 show, the equivalent stress
and the stress components remain constant before and after the thermal shock. (The stress
values for the thermal shock are located on top of the room temperature values of the

graph.) This is because the temperature in the inner zone increases by only 10°C during the
thermal shock that is negligible.
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Fig. 9.47: Stress components at location B during two-stage covering process.

9.4.2.3 Thermal-Stress Analysis of the Two-Stage Covering Process (Scheme 2)

A simulation of pouring a hot covering material on the cold free surface of a
pre-manufactured composite showed that the very high residual stresses at the fiber/matrix
interface on the free surface will partially relax. However, after cooling the composite and
the cover to room temperature, the residual stresses regained their previous values. This
would make a composite very vulnerable to damage in service temperatures and/or under
mechanical loads. The covering process may be more effective if the residual stresses
induced due to the manufacturing of the composite are removed or partially relaxed. It
would be ideal to provide the conditions of the one-stage covering process where the
covering is performed with no residual stresses present at the fiber end. One way may be
re-heating the composite, prior to casting the cover, to a high temperature close to the
temperature of the hot covering material or to the solidification temperature of the
composite. With re-heating the composite, most of the residual stresses left during the
manufacturing process or due to service temperature will be relieved. Cooling the
composite and the cover together to room temperature may change the residual stress state

in the composite end zone and also in the interior (inner zone).
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The thermal treatment of the composite is simulated as follows. The same FEM
model used in scheme 1 is employed here. The cover elements are deactivated and the
composite is cooled down from the 900°C processing temperature. The difference between
this scheme and the previous one is that before the cover is cast on the free surface, the
composite is reheated to 900°C. In the third step, the elements of the cover are reactivated
with T=900°C To set the temperature of the elements of the cover to this value, the extra
short thermal step expiained before is also appiied here. This step continues with the
cooling of the composite and the cover to room temperature. Since uniform temperature is
expected in the composite due to the high thermal conductivity of the constituents, only the
temperature profiles at locations A, J, and B of the composite are plotted in Fig. 9.48. The
three steps of the thermal analysis are labeled L, II, and III in the graph. As the figure
shows, the cooling profiles of the composite without and with the cover (steps I and III) are
similar. As expected, the profiles show that the composite loses heat very quickly at high
temperatures. Also, as the temperature profile for step II shows, the temperature gradient is
high at the beginning of the heating phase.
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Fig. 9.48: The temperature profile at locations A, J, and B during the
second scheme of the two-stage covering process.

The corresponding stress analysis follows the same procedure. The elements of the
cover are “killed” to simulate the free surface stresses for the case when the composite is

cooled from the processing temperature. After the stress analysis of the reheated composite
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with the free surface, the elements of the cover are reactivated. The last step of the stress

analysis is performed for the cooling of the composite and the cover to room temperature.

In addition to the matrix strength (Gy), O and o, at locations A, J, and B for all

three phases of the thermal treatment are presented in Figs. 9.49(a) and (b). The
corresponding plastic strains are shown in Fig. 9.49(c). Comparing the values of G at
room temperature (at the end of step I and step III) for locations A and J (see Figs. 9.49(a)
and (b)) shows that the equivalent residual stress increases with the application of the
cover. Also, Fig. 9.49(c) shows that more plastic strain occurs at locations A and J during
the temperature cycle. The reason(s) for such a stress-strain behavior can be best explained
when one looks at the stress components for these locations during the temperature cycle.
The stress components vs. temperature for location A are plotted in Fig. 9.50(a). Here,
radial, hoop, and axial stresses for steps I (i.e. cooling the composite without cover from
Tp) and II (re-heating the composite without cover to 900°C) are presented. To show a
clearer picture, the stresses for step III (cooling the composite and the cover to room
temperature) are presented in Fig. 9.50(b) separately. Based on the overlapping hypothesis,
as soon as the composite without cover begins to cool down from T, a tensile axial stress
in the neighborhood of the singular point will be inserted by the fiber on the inner rim of
the matrix hollow cylinder. The result of this tensile axial stress is very high tensile radial
and hoop stress components (see Fig. 9.50(a)). During re-heating, this tensile axial load
will be compressive and will result in compressive radial and hoop stresses at the singular
point. These compressive stresses will reduce the previously tensile stresses generated
during the cooling step I. However, from almost T = 400°C to T = 900°C the residual
stresses are higher than the stress magnitudes at the same temperature levels of the cooling
step I. This could be explained with the same reasoning detailed in Chapter 7. In brief,
plastic deformation begins at the start of the cooling step I (see Fig. 9.49(c)). Therefore, the
stresses are strictly controlled by the yield strength of the material. However, during the
heating step II, the strain hardened matrix allows the stress components to increase. As a
result, the stresses can increase to their real values without being relaxed by the plastic
strain or controlled by the yield strength of the material. Due to this reason, all the stress

185



components at location A end up to be tensile at T = 900°C (see Fig. 9.50(a)). These

stresses used to be compressive or almost zero for the end zone of the 3-D model for

which the plastic process began half way through the cooling phase from T, (see Fig. 7.8).

The stress components at location J during the three step thermal procedure are shown in
Fig. 9.51. According to Fig. 9.51(b), which presents the radial, hoop, and axial stress

components at point J for steps II and III, the stresses for point J are similar to those of the

3-D prism model at T=900°C (i.e. the radial stress is compressive and the axial and hoop

stresses are almost zero). This is because the plastic deformation at point J does not begin

immediately with the start of cooling from T, in step I (see Fig. 9.49(c)).
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During the last step of the thermal treatment (step III), the cover is in place.
Therefore, as explained in Fig. 9.35, upon cooling, a compressive axial load is expected to
be exerted on the outer rim of the matrix hollow cylinder due to the CTE mismatch
between the cover and the fiber. This compressive axial force gradually increases with the
cooling of the composite. At about T = 450°C, this force overcomes the tensile axial stress
left at location A after the heating step II (see Fig. 9.50(b)). During cooling from 900°C to
450°C, since the overall axial stress is tensile, the radial and hoop stresses will be tensile
due to the overlapping hypothesis and will continue to increase down to 450°C. Below this
temperature, the overall axial stress is compressive. So, the radial and hoop stress
components generated by this force will also be compressive. Therefore, the resultant
radial and hoop stresses begin to decrease down to room temperature. Consequently, the
residual stress components after the three-phase thermal treatment appear to be much less
than the corresponding residual stresses after cooling from T, (end of step I). However, G
1s higher and more plastic strain occurs during step III of the thermal procedure
(Fig. 9.49(c)). The change in G is due to increase in the difference between the stress
components in the presence of the cover in step IIl. Comparing the differences in radial
and hoop stresses with the axial stress at the end of steps I and III shows a high increase in
these differences because the axial stress is compressive in step [II at room temperature. In
comparison to the one-stage covering process (see section 9.3.3), one sirnilarity stands out
between the stress components in these two cases at point A. The axial stress is
compressive for both at the final step (compare Figs. 9.50(b) and 9.34).

The above rationale for the increase in Gq and €% at point A during the temperature

cycle becomes clearer when one looks at the plots of radial, hoop, and axial stress
components at location J against temperature for the last cooling step of the thermal
procedure (step III). This is shown in Fig. 9.51(b). As the figure shows, these stresses are
compressive for almost the entire temperature range of step III. This stress state is similar
to that at location A for the one-stage covering process (see Fig. 9.34). Therefore, it can be
concluded that the damage that may be inflicted by the tensile radial and hoop stresses at
location A for the two-stage covering process (Fig. 9.50(b)) is very localized. The high Geq
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will disappear at point J, which is located close to the free surface. However, according to

Figs. 9.49(a) and (b), G and the plastic strain at J are increased after step III of the thermal

treatment and this is not desirable.
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The radial, hoop, and axial stress components and Geq at location B are shown in Fig.
9.52. As the figure shows, the stresses induced during cooling from T, (step I) disappear
when re-heating the composite to T = 900°C (step I). This is an important effect that is

discussed further in the next section.
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Fig. 9.52: Stress components at location B during cooling from T, and
during the heating/cooling phases of the covering process.

9.4.2.4 Thermal-Stress Analysis of the Two-Stage Covering Process (Scheme 3)

From the foregoing analyses, it can be concluded that the residual stresses at the end
of the fiber left over from the processing of the composite cause a big difference in the
stress and plastic strain states after covering. It was shown that this is the main difference
between the one-stage and the two-stage covering processes. The thermal treatment of the
composite before applying the cover (scheme 2) indicated that it has little effect on the
final status of the residual stresses. Here, the stresses are considered to be eliminated by
physically cutting the composite end. Then the cover is applied on the fresh cut surface. A
long model was considered, the dimensions and the mesh configuration of which are
shown in Fig. 9.53. The model consists of six areas. Areas 1, 3, and 5 model the fiber and
areas 2, 4, and 6 represent the matrix. Areas 3 and 4 will serve as the cover after cutting the
composite at the boundary of areas 1 and 2. The length of the model is assumed to be
1000pum, which is exactly twice that of the previous model. This provides the required
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length for axisymmetric analysis after cutting the fiber end (i.e. cutting areas 3, 4, S, and 6).
As Fig. 9.53 shows, two regions of the model are densely meshed with very fine elements.
One is the region close to the free surface. The other is the middle of the model where the
composite is supposed to be cut and a new free surface formed. A dense mesh is required
at the free surface in order to calculate more accurately the stress and plastic strain at the

singular point and the relaxation effects of the plastic strain on the inner zone stress field.
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Fig. 9.53: Simulation of cutting the fiber end.

Different manufacturing procedures can be considered for this scheme. The
composite can be cut and the covering material is poured while the composite is at room
temperature or the composite can be reheated before the cover is applied. Another
procedure could be re-heating the composite before the composite is cut and the cover is
applied. Depending on the temperature level to which the composite is re-heated, the
procedures may be modified and the results may be different. All the procedures must

consist of cooling the composite (long model) from the processing temperature T, to allow
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for residual stresses to build up. Here, considering the discussion of the last two schemes,

the analysis of three of the procedures will be presented in brief.

For the first procedure, the end of the pre-manufactured composite is to be cut at
room temperature and the hot covering material poured on the new free surface of the cold
composite. The temperature distribution in the composite will be similar to that of scheme
1 that was discussed in section 9.4.2.1 (see Fig. 9.41). Note that the time for cooling the
large model from T, is longer and the final resultant residual stresses are different than
what was found for scheme 1. The reason is that the residual stresses on the free surface
are different for the two schemes. For the first scheme, as the composite with no cover 1s
cooled from T, the stresses on the surface (which is to be covered) are of the end zone
type whereas in scheme 3, as the end effects are eliminated, the stresses on the cut surface
are closer to the inner zone type. This difference in the free surface stresses of the two
schemes may substantially change the final stress status at the fiber end. This is discussed
in more detail later for the second procedure. Note that by cutting the fiber end, the axial
residual stress on the new cut surface must vanish to satisfy the free surface boundary

condition.

For the second thermal procedure, it is assumed that after cooling the composite
from T,, the end part of the model is cut at room temperature. However, to relax the
residual stresses on the fresh free surface as much as possible before the cover is applied,
the cut composite is re-heated to the temperature of the covering material. Thus, the heat
from the cover does not disturb the composite temperature. This temperature (T=900°C)
was chosen for re-heating the composite because this is the temperature at which the

matrix has already solidified and shows some strength.

From the residual siress point of view, this procedure also has another advantage.
The stresses on the new free surface are of the type of the inner zone stresses, therefore
compressive radial and tensile hoop stresses exist at the fiber/matrix interface. The axial
stress at the cut section due to the formation of the new free surface must become zero.
According to the overlapping hypothesis, re-heating the cut composite to the temperature
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of the cover should induce very high compressive radial and hoop stresses at the interface
on the free surface. Therefore, superimposing these stresses on the stresses of the new free
surface will increase the compressive radial stresses but will reduce the tensile hoop
stresses. Both changes in the stress state are desirable from the design point of view. The
compressive radial stress strengthens the fiber/matrix bond and the reduction of the tensile
hoop stress lowers the risk of matrix cracking around the fiber.

In the last stage of the covering (i.e. when the fiber and matrix are cooled together to
room temperature) compressive radial and hoop stresses are expected at the fiber end as
before due to the presence of the cover. The reason for such a stress state was explained in
Fig. 9.35. This procedure seems to be a very practical method. The final compressive
radial residual stress should improve fiber/matrix bonding and compressive hoop stress
should prevent the matrix from cracking at the fiber end.

In the third procedure, the long model is cooled from T, and then reheated to
T = 900°C before the fiber end effects are eliminated by physically cutting the composite
end. The cutting is performed at T=900°C. In this step the hot cover is poured on the new
fresh cut surface and then the composite and the cover are simultaneously cooled to room
temperature. The temperature at location A is shown in Fig. 9.54. The time for steps I and
I (cooling and re-heating the large model) will be longer than that of step IIl. This step

involves cooling the cut composite and the cover to room temperature.

The stresses generated at location A during re-heating phase of the composite from
room temperature to 900°C are different than those obtained for the previous procedure.
The stress components at location A (which is located in the inner zone of the large model
before the fiber end is cut) during cooling from T, and the re-heating phase are shown in
Fig. 9.55. The stresses for step III are also shown in this figure. Due to the negligible
plastic strain in the inner zone, i.e. elastic stress state, the residual stresses at location A are
completely released when the composite is re-heated. This is similar to the results of the
inner zone presented in Fig. 9.52 for scheme 2. Cutting the composite at this step and
applying the cover is the most effective method because there is no residual stress at the
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cut surface to affect the covering process. Cooling the composite and the cover under this
circumstance (i.e. no residual stresses at location A) is very similar to the one-stage
covering process discussed in section 9.3.3. The stress components for location A during
step III (Fig. 9.55) are very similar to the stresses obtained for the one-stage covering
process shown in Fig. 9.34.
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Fig. 9.54: The temperature profile at location A during scheme 3.
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10. Materials and Experimental Procedures

10.1 Introduction

The main objective of this part of the thesis is to experimentally study the effects of
the free surface geometry of fiber composites on the initiation and progression of damage
in the matrix and at the fiber/matrix interface with temperature cycling. In chapters 5-9, it
was shown how the free surface geometry of fiber composites affects the stress and
displacement states at the fiber end (end zone) and in the interior of the composite (inner
zone). Particularly, the covering method that was investigated in chapter 9 was found very
promising. As a result of covering the free surface with a thin layer of matrix-like material,
the forces inflicting damage to the composite integrity were highly reduced.

These numerical results have been verified by a series of experiments on laboratory-
made large-scale composite samples. Due to the small size of fibers in the commercially
available composites, measurement and visualization of the damage introduced by
temperature cycling is difficult. Therefore, large-scale composite samples were used.
Similar large-scale samples were used by Biemacki (1996). Biemnacki’s experimental
investigation was mainly focused on fiber protrusion, damage detection, and the
progression of the damage with the number of temperature cycles in the same large-scale
composites. The temperature-dependent properties of the matrix, the fiber/matrix bond
strength, and the creep characteristics of the matrix were determined. '

A new set of samples was made by modifying the molds and the molding procedure
developed by Biernacki. In this chapter, the properties of the matrix, the temperature
cycling apparatus and its calibration, and the molding procedure are discussed.
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10.2 Material Properties

Polyester resin type 1811 with a glass transition temperature T, = 60°C was used as
the matrix while 316L-type stainless steel rods were used as fibers. The variation of the
mechanical properties of the resin with temperature are presented in Table 10.1. For the
316-L S.S. fiber, the coefficient of thermal conductivity (k) and the CTE were considered
to be 75 (W.m™' °K™") and 8x10°%/°C, respectively. More detailed information can be found
in (Biernacki, 1996).

For 20°C < T < 60°C, the creep characteristics of the resin are approximated by the
following empirical equation (Biernacki, 1996)

1.52 253 0.166
GCo To to

where 6¢ = 1.375MPa, Ty = 40°C, to = 100min. In the above equation, G is the equivalent

stress, T is the temperature in °C, and t is the elapsed time in minutes.

Table 10.1: Properties of the materials used in the experiments (Biemacki, 1996).
1811 polyester resin

Temperature E. Ep CTE k
(°C) (MPa) (MPa) (x10%°C) (W.m™ .°K™)
25 385.8 81.6 52 0.6
35 252 74.7 53 -
a5 140 55.7 66 3
55 70 32.4 76 -
62 30.8 15.9 83 -
70 . - 88 -
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10.3 Molding Procedure

A special pre-made mold made of high-density polyethylene was used to make the
large-scale composite specimens. The mold consists of a rectangular bar with a cylindrical
hole in its center and two endcaps (see Fig. 10.1). The stainless steel rods were arranged
into hexagonal patterns by means of the caps. The hexagonal patterns were pre-drilled on

the caps, which were used as holders for the reinforcements.

Fig. 10.1: Mold for large-scale composite samples.

After polishing the stainless steel rods with 120 grit emery paper and washing them
with methanol, the rods were slid into the holes of the hexagonal patterns of the holders.
The polishing may enhance the resin penetration into the rods, increasing the bond
between the rods and the resin that is purely mechanical. After closing the mold, the liquid
resin (with a composition of 1g of hardener for 100g of polyester) is poured into the mold.
The solidification stage was performed in a ventilated booth. With 19 stainless steel rods
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(each with a diameter of 1.6mm) and the 19mm diameter cylindrical hole of the mold,
composite samples with 13.5% fiber volume fraction (V¢) were made. For making the
required samples to fulfill the objectives of the study, the mold and the molding procedure
used by Bieracki (1996) were slightly modified. These modifications are explained in

what follows.
10.4 Temperature Cycling Apparatus

A temperature cycling apparatus was used to apply temperature cycles to the
large-scale composite samples. The apparatus consists of a furnace (as a heat source) and a
freezer (as a cooling chamber). The composite sample is moved between the furnace and

the freezer by an air cylinder in a computer controlled temperature cycle.

A data acquisition system (lab-mate) was used to transfer the computer outputs into
electrical signals. The signals were then used for controlling two 2-way and 4-way
solenoid valves that supply air to the cylinder for transferring the samples from the fumac_e
into the cooling chamber. A photograph and a schematic diagram of the apparatus are
shown in Fig. 10.2.

10.5 Calibration of the Apparatus

The apparatus was calibrated for a temperature cycle of -21°C to +50°C. The
minimum temperature was limited by the cooling capacity of the freezer, while the

maximum temperature was kept below the T, of the resin.

The calibration was performed for the free surface temperature of the sample only
because cracking and debonding start at the interface on the free surface first. Also, the
debonding continues along the interface deep into the composite where the interfacial
temperature is very close to the free surface temperature due to the very high thermal
conductivity of the steel rods. The temperature cycle used in the experiments is shown in
Fig. 10.3. Close monitoring of the temperature of the free surface of the sample showed
that a complete cooling phase takes 18.5 minutes while the heating phase takes 15 minutes.
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Cooling from room temperature to -21°C takes 15 minutes. This is equal to the time for a
complete heating phase (-21°C to +50°C). As mentioned by Biernacki, the difference in
the free surface temperature and the matrix temperature well inside the large-scale sample

is very small for such cycles.

a) Temperature cycling apparatus

Air Cylinder

b) Schematic diagram of the apparatus

Fig. 10.2: Thermal cycling setup.
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Fig. 10.3: Temperature cycle profile.

10.6 Experimental Procedure

In chapter 9, it was concluded that a rough cut surface of unidirectional composites
increases the thermal residual stresses if the fiber ends protrude out of the matrix (see
Fig. 10.4(a)). If the sharp contact angle of the fiber and matrix (shown as ¢ = 90° in
Fig. 10.4(a)) is filled with some matrix-like material (ramp), the stresses change at the
fiber/ramp interface depending on the angle ¢. Note again that ¢ represents the angle
between the fiber and the line tangent to the ramp where the ramp meets the fiber. The
stresses decrease with decreasing ¢. However, very high stresses still appear at the contact
corner of the matrix with the ramp, causing matrix cracking. Similarly, stress
concentrations occur in the matrix for the case where the fibers bulge out of the matrix (see

Fig. 10.4(c)).

To experimentally verify these numerical results, the first type of samples was
made such that the ends of the fibers extended out of the matrix for about half a fiber
diameter. The samples were first made by partially embedding the stainless steel rods in
the matrix and cutting the end of the extended rods out of the matrix to the required
length. Due to vibrations of the unsupported fiber ends during cutting a lot of cracks
were observed at the interface on the free surface after the sample was cut. To eliminate
such cracking the mold shown in Fig. 10.5(a) was prepared to cut the sample with a slow
speed diamond saw. The three segments of the mold shown in this figure were then
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filled with the matrix material. After solidification of the matrix, the specimen was cut
from the middle segment of the composite shown in Fig. 10.5(b) with two separate cuts
through the high density Polyethylene holders (A and A' cut surfaces). The thin layers of
the Polyethylene holders remaining on the specimen were then peeled off. The
specimen, after being polished with 6pum and subsequently with |um diamond paste, is
shown in Fig. 10.6(a).

Fiber

\ ¢=90"  Matrix Ramp
i g - WSS
Composite

a) b) c)

Fig. 10.4: Large-scale composite sample with fibers extending out of the matrix.

The second type of specimens has the fibers embedded in the matrix at one end
and exposed at the other end. These specimens could also be cut from the pre-made
composite shown in Fig. 10.5(a). Provided that the fibers are of the same length and the
fiber cross sections are pre-polished and laid on a planar surface perpendicular to the
fibers length, segments I and III of the composite could be used for making the second
type of specimens. The finely polished specimen shown in Fig. 10.6(b) could be made
by two cuts (B and D) in segment [ or B' and D' in segment [II (see Fig. 10.5(c)). The cut
surface of D or D' of the specimen (the side with the end of fibers embedded in the
matrix) was used to verify the numerical results for the covering of the fibers free end
with a thin layer of matrix-like material. However, the B or B' end of the specimen was
used to show the differences in the surface effects between the cut (exposed) a_nd

covered surfaces.
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The third type of specimen, which has both ends covered with a thin layer of
matrix-like material, was made by a different procedure (see Fig. 10.5(e)). Here, only
one holder was used and the matrix material was poured in two separate stages. After
solidification of the matrix that was poured in the first stage, the composite was removed
from the holder, flipped over and then the second side of the specimen was made. The
extra matrix from both sides was then removed using a diamond saw. A matrix layer
with the thickness of one-tenth of the fiber diameter was left on the top end of the fibers.
To keep the effects of the two-stage manufacturing process to a minimum on the fiber
ends, the length of the specimen was considered to be twice that of the previous

specimens. The finely polished sample is shown in Fig. 10.6(c).

a)

S F—fﬂ_
\\_i.
= -

€)

Fig. 10.5: Molding of large-scale composite samples.

The fourth type of specimens were made with two cuts going through the fibers
(see the cut surfaces of C and C' in the middle segment of the composite shown in
Fig. 10.5(d)). These specimens were used to analyze the effects of a covering layer that
is applied in a separate stage (two-stage covering) on the cut surfaces of a fresh or a
thermally cycled sample after being cut and exposed to free surface conditions.
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To complete the curing process and to allow more relaxation of the residual
stresses generated during the manufacturing process of the composite specimens, all the
samples were stored in a desiccator for two weeks. Also, to prevent matrix deterioration
due to ultraviolet rays, the specimens were kept in dark at all times. The specimens were
then thermally cycled between -21°C and +50°C using the apparatus shown in Fig. 10.2.
The free surface effects on matrix cracking on the exposed surface and fiber/matrix
debonding along the fiber length are reported in the next chapter.

a) Fibers extending out of matrix.

b) One end free-one end covered. ¢) Both ends covered.

Fig. 10.6: Uncycled large-scale laboratory-made samples.
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11. Effects of Free Surface Geometry on Damage Initiation

in Composites: An Experimental Investigation

11.1 Imtroduction

A series of experiments were designed and conducted on the samples described in
Chapter 10 to verify the reduction of the thermally induced stresses and associated
damages at the end zone of unidirectional fiber composites. In particular, the effects of a
free surface, fibers extending out of the matrix, and covering the free surface by a thin

layer of matrix on the stress and damage in composites were studied.

First, the damage induced by temperature change to the composite with no cover is
investigated. The samples were carefully monitored before being cycled and the changes as
cycling progressed were recorded. These observations are presented in the next section.
The samples, which have the fiber ends extending out of the matrix, were also tested. Then
tests were conducted on the samples with one or both of their cut surfaces covered. The
results of these experiments revealed the effect of the covering layer in containing the
damage. In particular, the effect of the two-stage covering process (discussed in Chapter 9)
was also briefly studied by testing a sample that had its free surface covered in a separate
stage. The results of the above tests are discussed sequentially in the following subsections.

11.2 Free Surface Effects on the Damage Induced in Composites

The assessment of initiation and propagation of damage in composite samples
with exposed free surfaces is grouped and presented in two subsections. In the first
subsection, the damage induced in the manufacturing stage and the ways to minimize it

is discussed. Next, the damage due to temperature cycling is investigated. Also, the
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influence of the damage initiated during the manufacturing process on matrix cracking

and fiber/matrix debonding during exposure to the service temperature is discussed.
11.2.1 Damage in Composites Due to Manufacturing Process

The side and top views of a fresh specimen of the fourth type cut from the large-
scale composite along with the schematic diagram of its cross section are shown in
Figs. 11.1(a) and 11.1(b). The fibers in the hexagonal pattern, depending on their
distance to the side-edge of the specimen, are designated A, B, C, and D; where A
denotes the central fiber and D marks the fibers with the least distance to the side-edge

of the composite.
a)

Side view. Top view.

b)
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Fig. 11.1: (a) Top and side views of an uncycled sample with both ends free
(b) Designating fibers with letters based on their distance to the center.
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After cutting, for most of the D fibers and some of the C fibers, typically a very
small portion of the fiber/matrix interface (which faces the side-edge of the sample) was
debonded. The damage is shown on the side picture of the uncycled specimen. The
debonded portions of the interfaces are shown as the white parts at the end of the fibers
on Fig. 11.1(a). The length of the debonded interface is longer for the D than for the C
fibers. However, much smaller or, in most cases, no debonding was observed for the
fibers closer to the specimen center (A and B fibers). Soaking the sample in a colored
liquid showed that the liquid does not penetrate into a very small portion of the white
area. This indicates that the interface in this very small area is not completely debonded.
Therefore, the white area around the C and D fibers may include some inelastic
deformation of the matrix in the vicinity of the fiber. Interestingly, the pictures of the
interface at the cut surface for all the D and C fibers (taken by a high-resolution optical
microscope with a magnification of 800) show no sign of matrix cracking. }{owever, it

appears that the fiber and the matrix do not have the same heights at these areas.

The debonding phenomenon in the uncycled samples may have been caused by
two different sources. The first source, which is normally unavoidable, could be the
residual stresses that are present after manufacturing. When the fresh specimen is cut
from the bulk composite, the residual stresses may exceed the fiber/matrix bond strength
and/or the matrix yield strength causing debonding and/or matrix plastic deformation.
The second source, which may be more controllable, would be related to the polishing,
handling, and also storing conditions of the fresh sample. In fact, the debonding length
for the fresh sample was greatly reduced by polishing the sample under a very low
pressure, washing it with water at a controlled temperature of 20°C, and most
importantly, avoiding direct contact of the specimens with fingers around fiber ends in
all the processing and polishing steps explained above. It is very important to perform all

the above steps at room temperature.

In the numerical studies in Chapter 9, it was shown that for edge-fibers (i.e. the C
and D fibers), the stresses at the fiber/matrix interface in the vicinity of the fiber end are
about 50% higher than those of the internal fibers (i.e. the A and B fibers). Thus, the
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presence of free side-edge is responsible for the increase in the interfacial stresses. That
is why the fiber/matrix debonding along the D and C fibers are higher than along the B
and A fibers. The debonding of the D and C fibers normally starts at the sides that face
the free side-edge of the specimen. The other side of the D and C fibers shows much less
debonding because they are surrounded by other fibers. This reduces the magnitude of

the radial stress that causes the debonding.
11.2.2 Damage Induced in Composites During Temperature Cycling

The specimen shown in Fig 11.1(a) was exposed to the temperature cycle shown in
Fig. 10.2. The damage induced (i.e. fiber/matrix debonding, free surface deformation,
and matrix cracking) was recorded after 1, 2, 5, 10, 20, 50, 100, 500, and 1000 thermal
cycles. In this subsection, the increase in debonding length of the interface with the
number of thermal cycles is discussed first. Fiber protrusion that was extensively
discussed by Biernacki (1996) is briefly explained. Also, initiation and propagation of

cracks in the matrix on the free surface around different fibers are commented upon.

It has been observed that debonding occurs around all the fibers and its extent
increases as cycling progresses. The rate of debonding decreases as the number of cycles
increases and is finally halted. The debonding stops to increase when the debonded
length reaches some critical value that will be discussed later. Figs. 11.2(a)-11.2(f) show
the progression of debonding after 1, S, 10, 100, 500, and 1000 cycles. A plot of the
average debonded length of the interface for the D and C fibers versus the number of
cycles is shown in Fig. 11.3(a). The values represent the mean values of the debonded
length of the interface of all the D and C fibers of the specimen. The debonded length of
the interface for the D fiber reaches its final value faster (i.e. after a lower number of
cycles) compared to the C fiber due to the higher stresses around the D fiber than the C
fiber in the end zone. However, the final debonded length of the interface for all the
other fibers eventually converges to a relatively similar value as that for the D fibers (see
Fig. 11.3(b)). Fig. 11.3(b) shows the top view of the sample after 500 cycles where the

debonding length for other fibers is visible. The side view of the sample is shown in
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Fig. 11.2(e). The progression in the debonded length of the fiber/matrix interface stops
due to a decrease in the radial stress values in the presence of a crack (King (1994) and
Biernacki et al. (1998)). As explained earlier in Chapter 5, a very high tensile radial
stress at the end of the fiber is responsible for the fiber/matrix separation (Abedian and
Szyszkowski, 1997). The decrease in the radial stress was said to be due to the fact that
the cracked layer of the matrix reduces the deformation gradient near the tip of the crack
in comparison to the deformation gradient in the matrix at the free surface without any
crack. Therefore, with more progression in the debonding length, lower tensile radial
stresses are expected in the cooling phase of the subsequent cycles. The separation is
continued until the tensile radial stress at the tip of the crack decreases to a value which
is not high enough to further tear apart the fiber from the matrix. Therefore, no
measurable increase in the debonding length is observed with further cycling. It is also
interesting to note that the final debonding length as shown in Figs. 11.2(f) and 11.3(a)
varies from three to four fiber diameters. This is in full agreement with the results
discussed in Chapter 5 and by Abedian and Szyszkowski (1997) and Ostrowski et al.
(1984) where it was shown that the fiber end effects vanish at about 3 fiber diameters
from the fiber end.

The variation of the difference in height of the fiber and matrix at the free surface
(protrusion) with the number of cycles was discussed by Biernacki et al. (1998). It was
shown that protrusion is highest for the D fibers, decreases for the C fibers and is least
for the A fiber. The higher protrusion for the D fibers compared to others was attributed
to the small difference in temperature on the surface and at the interior of the specimen
during temperature cycling. Although the temperature gradient may play a role in
altering the fiber protrusion, the difference in debonded length of the D and the C fibers
during manufacturing may influence the protrusion as well. When debonding occurs, the
debonded portion of the matrix can contract more easily than the other parts because of
the absence of the restraining effect of the fiber. Hence, upon cooling, the debonded
portion of the matrix shows a high contraction thereby increasing the protrusion. As the
largest debonding during manufacturing occurs around the D fibers, the largest matrix
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contraction or the maximum fiber protrusion is expected to occur during cycling for
these fibers. The protrusion is smaller for the C fibers than the D fibers because of the
lower amount of debonding for the former than the latter. Protrusion is least for the A

fiber due to the minimum debonding for this fiber.

a) 1 cycle b) 5 cycles c¢) 10 cycles

d) 100 cycles e) 500 cycles f) 1000 cycles

Fig. 11.2: Effects of a free surface on the length of fiber/matrix
debonding with the number of cycles.
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b) Top view after 500 cycles.

Fig. 11.3: Progression in the fiber/matrix debonding with number of cycles.
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During the first cycle, the change in temperature of the specimen generates very
high tensile radial as well as hoop stress components around the fiber end. These
stresses are high enough to cause fiber/matrix debonding and matrix cracking. Fig. 11.4
presents the fiber/matrix interface region for the C and D fibers at two different locations
on the free surface after one temperature cycle. The sides of the C and D fibers that face
the side-edge of the specimen show a very limited number of cracks or, in most cases,
no cracking at all. However, the sides facing the neighboring fibers show some cracks
even after one temperature cycle. The reason could be that in the areas where the
interface has already been debonded (the part of the interface that faces the side-edge of
the composite and shows debonding during manufacturing) the stresses are more relaxed
than the side where the fiber and matrix still have a strong bond. As a result, no cracking
or a very limited number of cracks is observed in the debonded areas. With increasing
number of cycles, the cracks that were initiated on the side of the D or C fiber propagate
to the neighboring regions and this leads to a high degree of cracking in the matrix.
However, in the area facing the composite side-edge some kinks occur in the matrix.
Fig. 11.5 depicts the side of the D fiber that faces the side-edge of the sample after 2, 5,
and 10 cycles. The number of kinks in the matrix increases with the number of cycles
and, finally, they form shallow cracks in the matrix. The change in the cracking pattern
in the matrix on the free surface around all the fibers after 1 and 5 cycles, based on
scanning electron microscope observations, are sketched in Fig. 11.6. The circular lines
around the fibers represent very small cracks while the zigzag lines indicate the kinks in
the matrix. As the figure shows, the number of kinks around the C fibers is less than that
of the D fibers for a higher number of cycles. This is most probably due to the difference
in stress levels around these fibers. The stresses are more relaxed around the D fibers
due to a higher degree of debonding along the D fibers than along the C fibers.
Therefore, the kinks around the C fibers turn to low-depth cracks sooner than those
surrounding the D fibers.

The crack pattern around the fibers further away from the side-edge of a composite

was studied on the example of the A fiber since the C and D fibers exert an influence on
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the B fibers. After the first cycle, a few cracks were observed around the A fiber using
an optical microscope (see Fig. 11.7). However, by means of the scanning electron
microscope it has been found (Biernacki, 1996) that very tiny cracks occur everywhere
around the fiber even after the first cycle. The cracks are mostly initiated at the interface
at the sites where the A fiber is at larger distances to the neighboring fibers. This kind of
cracking pattern was also observed by other researchers (Morris et al. (1989,;) and
Biernacki et al. (1998)). This can be explained by the fact that the local fiber volume
fraction is smaller along the line which connects the center of the A and C fibers than
aloﬁg the line which connects the centers of the A and B fibers. This has been explained
in detail in Chapter 5 and also by Abedian and Szyszkowski (1997). The propagation of

the cracks to other sites with increasing the number of cycles is indicated in Fig. 11.6.
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Fig. 11.4: Cracking pattern around the C and D fibers after the first cycle.
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5 cycles 10 cycles

Fig. 11.5: Progression in matrix kinking around the C and D fibers with number of cycles.
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Cracking pattern after the first cycle.

Cracking pattern after the fifth cycle.

Fig. 11.6: Crack propagation on the free surface of the large-scale composite
specimens with number of cycles.
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Fig. 11.7: Cracking pattern around the A fiber after the first cycle.
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11.3 Effects of Fiber Protrusion on the Composite Deformation

As discussed in Chapter 9, the cut surface of a fiber composite may have three
different configurations that greatly influence the stress state at the fiber end. These
configurations are as follows. A small portion of the fiber end may extend out of the
matrix (see Fig. 10.4(a)), the sharp corner of the fiber and the matrix on the cut surface
may be filled with a ramp matrix-like material (Fig. 10.4(b)), and the fiber and matrix
may not have the same heights on the free surface (the fiber bulge out) as shown in
Fig. 10.4(c)).

The stresses for the first case (Fig. 10.4(a)) were shown to be higher than the
stresses for the flat cut surface presented in Fig. 9.1(a) (see Chapter 9). For the second
case (Fig. 10.4(b)), the high stresses may shift from the fiber/matrix interface to the
region away from the interface where the ramp meets the matrix. Depending on the
matrix strength and the fiber/matrix interface strength, cracks may develop either at the
interface or in the matrix. These results were experimentally examined by exposing the

first type of specimens (see Fig. 10.6(a)) to a single thermal cycle.

A sample with a small ramp of matrix around most of its fibers on the free surface
was manufactured for this purpose. However, the angle ¢ (see Fig. 10.4(b)) is not easily
controllable when manufacturing the specimen and is not the same for all the fibers.
Therefore, depending on the magnitude of this angle, different stress levels appear at the
contact corner of the ramp and the fibers on the free surface (Abedian et al., 1998) which
result in different debonding lengths along different fibers. Small ¢’s reduce the stresses
and result in short debonding lengths. For some fibers no debonding was observed at all.
In some cases, where there was no measurable ramp around the fiber (see Fig. 10.4(a)),
longer debonding appeared along the fiber. In this case, the stresses were much higher
than in the case when the fiber and the matrix have ideally the same heights on the free
surface (flat cut surface, Fig. 9.1(a)).
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After exposing the specimen to a full temperature cycle, many deep cracks in the
matrix area away from the interface were observed (see Fig. 11.8(a)). Deep cracks also
appeared around the A fiber as shown in Fig. 11.8(b). The deep circumferential cracks in
the matrix away from the interface confirmed the occurrence of the maximum radial
stress away from the interface. This is caused by the sharp contact angle of the ramp and
the matrix as predicted by the numerical analysis (see Fig. 9.10(a) and (Abedian et al.,
1998)). These circumferential cracks in the matrix have also been observed by Biernacki
(1996). Some cracks were also observed at the fiber/matrix interface that might be due
to the weak interface strength or a high stress caused by the fiber/matrix sharp corner
(see Fig. 11.8(c)). The high number of cracks and long fiber/matrix debonding show the

adverse effects of a fiber extending out of the matrix on a composite cut surface.
114 Effects of the Covering Layer on The Composite Deformation

Based on the fiber-matrix overlapping hypothesis explained in Chapter 5, the high
radial stress at the fiber end rather than the longitudinal shear stress was suggested to be
responsible for the damage on the free surface of composites. It was numerically shown
in Chapter 9 that upon cooling, the very high tensile radial and hoop stresses at the fiber
end of a composite without cover are either eliminated or become compressive when the
free surface is covered with a layer of matrix-like material (resin). Upon cooling, this
extra layer of resin on the cut surface promotes overlapping thereby reducing the radial
and hoop stress components, substantially. However, high longitudinal shear stress
components still exist at the fiber end due to the fiber/matrix sharp corner. Therefore, if
the radial stress causes cracking, the cracking should be eliminated or reduced by
covering the fiber end. A specific test was designed to check the above numerical
results. The test required specimens that have the end of their fibers embedded in the
matrix. The specimens were made with two different processing schemes. The first
scheme, in which the sample was made in one single processing stage, was presented in

Chapter 10 (see Figs. 10.5(c) and (e)).
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Fig. 11.8: Cracking pattern on the free surface of the sample with fibers
extending out of the matrix.
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Two different samples were made using the first scheme. The fibers of the first
sample were embedded in the matrix at one end and the other end was free. The second
sample had the fibers embedded in the matrix at both ends. The samples were exposed
to thermal cycling and analyzed after 1, 2, 5, 10, 20, 50, 100, 500, and 1000 cycles.
Fig. 11.9 shows the photographs of the samples after 10, 50, 100, 500, and 1000 cycles.
A comparison of both ends of the sample reveals a noticeable difference. The free
surface end shows a similar behavior to that previously observed for the sample having
both of its ends free (see Fig. 11.2). A similar progression in the debonding length
and crack pattern around the fibers on the free surface as that of the previous sample

(Fig. 11.3) were observed as cycling progressed.

For the covered end shown in Fig. 11.9, no sign of debonding or cracking was
found. Even the matrix around the D and C fibers (which are vulnerable to small
temperature change and show debonding even before being exposed to the actual
working temperature cycles) show no sign of cracking or debonding. As expected, the
thin matrix-like covering layer eliminates the very high radial tensile stress at the fiber
end that is generated in the cooling phase of the thermal cycle. As the numerical study
by Abedian et al. (1998) suggests, the normal axial and longitudinal interfacial shear
stresses (generated by the sharp contact corner of the fiber end with the cover) are not
high enough to cause fiber/matrix debonding. Also, at the contact surfaces between the
fiber cross section and the covering layer, no sign of any damage was observed. In fact,
upon cooling, the cover on the cross section of the fibers presses the fibers in the axial
direction, thus preventing fiber/cover debonding. In fact, this compressive axial load
causes overlapping which results in a compressive radial stress at the fiber end during
the cooling phase of the temperature cycle. Comparing the deformations at both ends of
the sample shows that one end of the sample is independent of the other or, simply, the

sample is sufficiently long that the stresses at each end do not interfere with each other.

The experiments were repeated for the second sample with both ends covered. The

thermal cycling results of these samples are shown in Fig. 11.10. Again, no sign of
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cracking or debonding is present at either end of the fiber. These resuits show the

effectiveness of the one-stage covering method.

The samples that were covered in a separate stage, behaved slightly differently.
They did not show any cracking or debonding for about 20 cycles. However, after 50
cycles, fiber/matrix debonding was observed along the fiber length and also at the
interface between the fibers and the cover as shown in Fig. 11.11. This indicates that the
samples prepared by the two-stage covering scheme are affected by the residual stresses

from the processing stage.

a) 10 cycle b) 50 cycles c) 100 cycles

d) 500 cycles e) 1000 cycles

Fig. 11.9: Effect of a covering layer on the damage at the fiber end with
number of cycles for a specimen with one end covered and one end free.
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a) 1 cycle b) 100 cycles ¢) 500 cycles

Fig. 11.10: Effect of a covering layer on the damage at the fiber end with number
of cycles for a specimen with both ends covered.

Fig. 11.11: Effect of the covering layer on the damage at the fiber end for a specimen
covered by a two-stage manufacturing scheme (after 50 cycles).



12. Conclusions and Recommendations

12.1 Conclusions

Several conclusions regarding modeling and technical handling of fiber composites
can be drawn from the study presented. These conclusions are divided into
recommendations to facilitate preparation of the simulation model, and recommendations

to help reduce the undesirable effects of temperature fluctuations.
12.1.1 Modeling

To model the variation in the stress and deformation states along the fiber length, in
the interior and specifically at the fiber end near a free surface, three-dimensional models
must be considered. The length of the model must be at least three times the fiber
diameters or longer. Due to the large stress gradient expected at the fiber/matrix interface
(which is generated by the mismatch in the modulus of elasticity or thermal expansion
coefficient of the constituents) very small, in comparison to the fiber diameter, FEM
elements and preferably of a higher order should be used in this area. The mesh could be
coarser in the fiber away from the interface due to the more uniform distribution of the
stress and deformation in the fiber. However, for thermal analyses, the elements can be
larger due to the relatively smaller mismatch in thermal capacitance or thermal

conductivity of the constituents.

Solving 3-D models requires a very large computational time and space. However,
assuming axisymmetric states of stress and deformation may reduce the cost of
calculations. This was shown to have little effect on the results achieved throughout this
investigation. From elastic, elasto-plastic, and elasto-visco-plastic analyses conducted
employing both types of models, the following observations were made:



The elastic analysis indicated that, the stress field is singular at the fiber end. This area
must be meshed with elements at least 1/10000 of the fiber radius to determine the

order of singularity.

Analysis of the singularity may be conducted using both the prism and axisymmetric
models. Due to lower number of degrees of freedom, the axisymmetric model allows
for the singular area to be meshed with a large number of fine elements. Using the 3-D

model requires the use of a sub-modeling approach.

The elasto-plastic analysis indicated that, the stress relaxation due to the plastic
deformation along the fiber length influences the stress state in the interior of fiber
composites. Therefore, for inelastic study of composites, using 2-D generalized plane

strain assumption is not sufficient.

For creep analysis, since the material is rate dependent, very small time steps are
required. This increases the computational time considerably. However, the creep
phenomenon may be ignored for very high cooling rates i.e. a few seconds (quenching

in oil or water).

Modeling the covering process needs careful use of element birth-death option. Also,
the analysis of covering does not need a very fine mesh at the fiber end.

The temperature dependent properties have a considerable impact on the state of stress

and deformation during manufacturing and service temperatures.

The inelastic behavior of materials plays a major role in relaxing and redistributing the
residual stresses in the manufacturing process.

12.1.2 Technical Observations

Traditionally, the shear-lag theory has been dominating the stress analysis at the

fiber/matrix interface. This theory ignores the radial and hoop stresses along the fiber
length and concentrates only on the longitudinal shear stress. This stress component is next
related to possible fiber/matrix debonding at the fiber end. However, the present study
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indicated that the radial and hoop stresses are important especially at the fiber end. The
overlapping hypothesis proposed in this study explains how these stresses are generated. In
comparison to the longitudinal shear stress, the radial and hoop stress components at the

fiber end are much larger which may influence the composite integrity to a higher extent.

The radial and hoop stresses at the fiber end are singular in nature if the analysis is
elastic. The regular FEM elements are capable of calculating the order of singularity to a
satisfactory degree. It was shown that the singular stresses are of the type r *. The order of
singularity (@) is sensitive to the material properties and is close to 1/3. This makes it
difficult to assess the initiation and propagation of cracks at the fiber end using classical
fracture mechanics that deals with singularities of the orders of 0.5.

The strength of the matrix is influencing significantly the integrity of composites and
should be carefully chosen. High strength matrices prevent residual stress relaxation,
increasing the chance of cracking during service temperatures. Low strength matrices are
preferable since the residual stresses are much smaller, however, the deformation of the
whole composite would be greater necessitating larger design tolerances. The creep
phenomenon reduces the residual stresses. Thus, creep sensitive matrices may be
advantageous. However, excessive creep strains threaten the dimensional stability of the
composite. To reduce the creep effects, cooling from the processing temperature should be
conducted with a very high rate (i.e. quenching in oil or water).

One of the contributions of the study is to suggest ways of reducing the thermal
stresses in composites. This was accomplished by the analysis of the covering process and
the effects of the free surface geometry. In particular, the study suggests that:

e The stress state at the free surface becomes more damaging if a fiber end extends out
of the matrix. Therefore, any fiber end extending out of the matrix should be removed.

e On the other hand, polishing the free surface of composites in order to produce a
smooth surface (removing fiber bulge-out) should also be avoided.



e Covering the free surface of composites with a thin layer of matrix like material can
change the magnitude and sign of the lateral stresses at the fiber end upon cooling. The
thickness of the cover should be about 1/10 of the fiber diameter. For best results, the
covering should be performed during manufacturing of the composite. This is because
there would exist no residual stresses at the fiber end prior to casting the cover to
influence the process. However, if it is not technically possible to perform the
simultaneous covering during the manufacturing process, two different covering
schemes are considered. In both schemes, prior to casting the cover, the fiber end
effects are to be removed by physically cutting the end of the composite part.
Therefore, the lateral stresses at the fiber end on the newly generated free surface
would be of the inner zone type which are small and relatively less damaging. In the
first scheme, prior to casting the hot covering material, the composite is to be reheated
to a temperature close to the temperature of the cover. In the second scheme, the

covering is to be performed while the composite is at room temperature.
12.2 Future Work

Modeling the influence of the free surface and the covering process on the stress and
deformation states of fiber composites presented here is in its preliminary stage only. The
information presented in this thesis, is a portion of a more involved study that should be
conducted using the proposed models and approaches. Several studies should be carried
out in the future to complement the results presented in this thesis.

o The inelastic analysis of the covering process was performed without considering the
creep deformations. It was assumed that the rate of cooling is fast enough to prevent
creep strains from occurring. However, it would be interesting to know how creep
affects the whole process.

e The present study provided information on thermal loads only. It would be useful to
know how the free surface and covering process influence the composite performance
under combined thermo-mechanical loads. The research group plans to repeat some of
the work conducted in this study under various temperature and mechanical load
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regimes. The effect of various rates of mechanical loading/unloading and
heating/cooling, in-phase and out-of-phase, will be considered.

A perfect interface was assumed in the present study. It is known that some
intermediate layer between the fiber and the matrix may exist and influence the
composite behavior. The effects of such layer on the stress state near the free surface or

after covering should be examined.

Further experimental work concerning the two-stage covering of laboratory-made
large-scale composite samples should be performed to verify the numernical results
obtained in this study.

The experimental study of the covering process should be extended to examine its
effectiveness in preventing thermal cycling induced damage in commercially available

unidirectional reinforced composites.
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Appendix A. Derivation of the Governing Equations of

Unidirectional Composites

In general, the matrix and the fiber satisfy the usual equations of continuum

mechanics that is the equilibrium equations

i =0. Lj=XY,2 (A.1)
The constitutive law

Cij = Diu & (A.2)
and the relations

€u =%(Uk.l+ Ui F Ui tia) + S0 o AT (A.3)

where all the material properties for the matrix are different than for the fiber. The proper
continuity conditions must be satisfied at the fiber/matrix interface. Due to this complexity
only unusual solutions are possible. Typically fibers are cylindrical. Therefore, cylindrical
coordinate systems are used especially in analytical solutions (Figs. A.1(a) and A.1(b)).

The general 3-D equilibrium equations in cylindrical coordinates for an arbitrary

element (as shown in Fig. A.1(c)) of the fiber or matrix have the following form

(9o, 1 0T, 1071
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Fig. A.1: An arbitrary element representing the fiber or matrix
in cylindrical coordinates.
For elastic behavior, using the generalized Hook's law for orthotropic materials and
the linear form of strain tensor for cylindrical coordinates, the equilibrium equations may

be written in terms of the displacements as follows
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where A |-A,, B,-B,, and C,-C, are material constants. These constants are different for the
fiber and matrix. For isotropic materials the constants are presented bellow.
l1-v

A|=B:=Bs=—C4=mE

A= A:=B=B:=Ci=C=C:=C=G

A= I-v E—G
¢ iZuz-i-U—li
-
= = = = = = E+G A.6
As=As=Bi=Bs=Cs Cam (A.6)
~(+v)
A7;=Bs - ()
2v°+v-1
-V
A I
_ -1
2vi+v-1

where E, v, and G are the material constants either for the matrix or for the fiber. Here, @
represents the CTE of the composite constituents. One of the most popular models is the
general 3-D model shown in Fig. A.2. The boundary conditions and continuity
assumptions are as follows
Boundary conditions: az=0=21=Te:=0
atz=0L"2=0G6,=1,=0
atr=rf=> o =67 (A.7)
at0=0° = ug =ug=0
at @ = 30° = u§ = uf= constant
atx =0 = u, = constant
atz=0=> ul =uf=0
Continuity: atr=n=>u"=uf; uf=uf; uP=ul
To solve the above set of partial differential equations (PDE), all the boundary conditions

as well as the continuity requirements should be satisfied.

240



Cylindneal
nate system

Free
Surface
Fig. A.2: The general 3-D model.

The next level of assumptions is based on the assumption of axisymmetric

displacement field. Equations (A.5) simplify to

(A (a'ur 1du, u A 9’ b A d%u, _A T
St rar T T Mo

{5, g P

By +Bigor =0 (A.8)
0°u, C;adu, %y, o’u, Cgadu, 0T

SR T A T TR TR T

All the derivatives with respect to z-direction are significant only in the vicinity of the free
surface. Since any changes in the 6-direction are neglected, the concentric cylindrical
model shown in Fig. A.3 can be considered. The boundary conditions and continuity
assumptions for the axisymmetric case are as follows
Boundary conditions: atz=0=1,=17,=0
atz=12=06,=1,=0
atr=rr= o' = o" (A.9)
atr=rp, &-1L/2<z<1/2 = uf" =constant
Continuity: atr=rr=>ul=ul; uf =us; ul=ul
Finally, if in the axisymmetric model the end effects are neglected, Eq. (A.8) can be further
simplified to the so-called Lame-problem. For this problem the equilibrium equation (A.4)

reduces to

241



Fig. A.3: Concenteric cylinder model.

do, 1
E-'*';(Gr_ce):o

G, =constant

(A.10)

The strain tensor will have only the following terms

186 =— (A.11)

It is assumed that the change in stresses and displacements along the fiber length are

constant. Therefore, Eq. (A.8) reduces to

A(dzu'_'__l.g_u_r Y —Ai l(___d(ur)) =A ﬂ
War? "rdr 2 dr|ce\ dr J| Tdr
" (A.12)
Ug
B, 2 =

This set is usually referred to as the Lame equations. Note that the stress and displacement
components are in term of the radius r only. These solutions are used to analyze the plane
stress (if 6,=0), the plane strain (if £,=0), or in the generalized plane strain (if €,= constant)
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states. A solution of the Lame equation is presented here and a comparison of the results
with the FEM solution obtained using ANSY'S, a commercial software, is discussed.

If the temperature gradient is negligible, Eq. (A.12) reduces to
u=C,r+£3 (A.13)
r
A small temperature change creates a contact pressure at the interface (P.). Substituting
Eq. (A.11) into Eq. (A.2) and subsequently substituting the resultant equation into
Eq. (A.13) yields

E C
= | = -2 +vg, |- K A.l4
G (1+UXI—ZU)[C| ( U)'F 3 ] ( )
where K= E wAT (A.15)
1-2v) ’

Considering the boundary conditions for the fiber, i.e.

At r = 0, since o, must have finite value, = C, =0
P+ RN+ )i —21)

Atr=l'f=> Cr=PC=> CI_ —Df££
Er
Substituting C, and C; into Eq. (A.13) yields
r —
Er
Similarly, the boundary conditions for the matrix are
Atr=1rr= gi'=P. (A.17)

Atr=rm= ¢gi"'=0

Substituting Egs. (A.17) into Eqgs. (A.14) and (A.15) yields

En rr—ra Em(l%-rﬁ:) r

Atr=r;= u™(r) =u’(r), hence
gie (1+um)(1—2u...)( koo Pert ]+ (1+Um)°c21':2n :
Em(\)m-\)t') It~ Im Em(\)m_\)fxrf_rm)
_[(PC-FK‘XHWXI-ZUJ]

Er (Um-vf)

(A. lé)
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Since €, and P. both are unknown, one more equation is required to solve for the
unknowns.
Rewriting the strain components in terms of the stresses from Eq. (A.2)

1
£, = E[cz—v(c,+ce)]+ o, AT (A.20)

To compute the axial strain (g,), both sides of the above equation are muitiplied by (Er)

and then integrated over the composite cross section (see Fig. A.3).
rm rm rm rm
g, |Erdr= [og,rdr - fu(o-,+ce)'dr+J(ozEATrdr (A.21)
0 0 0 0
For Lame solution &, is constant. Thus;
Te 1 2
€z jErdr = Ee Ef rf‘ + Em (rxzn - rl:)] (A.ZZ)
0 z
The first term of the right hand side of Eq. (A.20) is zero. From the equilibrium equation in
the axial direction;

or o.=P; (A.23)

do., _ dP
,=0= Sz =-C0:
2F = dz

dz
Since no external stress is considered, thus (P, = 6, = 0).

Eq. (A.10) may be used to calculate the second term of the right hand side of
Eq. (A.21).

| U(cr+oe}dr=£var-(rzcr)1f =(vr = Vm )i Pe (A24)
0

And the third term is calculated as follows
Tm 2 2 _ 2
fo. EATrdr = [""E‘“ *“’;Em A ")]T (A.25)
0

Substituting Eqgs. (A.22)-(A-25) back into Eq. (A.21) yields

1
€= E[— 2(5¢ = V) Ve P+ @ Ec T] (A.26)

C

where
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Vf = —2- * Vm - 2
Tm I'm
Ec = Ef Vf + Em Vm (A.27)
_rErVi+tOnEaVn
%= E

Egs. (A.19) and (A.27) are solved for €, and P..

To test the accuracy of the solution, an example was solved using the above

analytical formulation and ANSYS, a FEM software. Assuming the following data

@ =—-0.99¢e-6 um/um/°C ®n =102.6e—=6 yum/um/°C
E¢=213.73 GPa Ec=3.44 GPa

vr=0.2 vr =041

Ve =0.4935 V= 0.5065

re=3.81 ym Im =5.4235 um

AT =100"C

The axial stresses in the fiber and matrix at the interface calculated by the analytical
method using Eqs. (A.19) and (A.26) are as follows

At T=yp =>o'§ =49472 MPa
At T=r=07 =-49.0174 MPa

Similar stresses were calculated by ANSYS for the same problem.

At r=r;=0oL=49.205607 MPa
At r=r;=0; =—-48.00609 MPa

The error is less than 2%.

245



Appendix B. The Shear-Lag Theory

Normally, it is assumed that, transfer of the applied load to the fiber occurs by means
of the shear stress at the interface. The matrix behavior can influence the load transfer.
Here, the effects of two options, i.e. elastic and elasto-plastic response of the matrix

material are discussed.
B.1 Elastic Matrix

Assume the displacement of point K that is sufficiently away from the fiber end (see
Fig. 2.7) to be u in the presence and v in the absence of the fiber, respectively. Therefore,

the load transfer from the matrix to the fiber can be written as
—=B(u-v) (B.1)

Where B (the shear interaction parameter) is a constant that depends on the geometrical
packing of the fibers and the matrix properties. Differentiating this equation and

d P
substituting for the strain in the fiber (au = ﬁ) and for the strain in the matrix away
fONf

d
from the fiber (é = e, the imposed strain) yields

d’P P
2f - B( (.
dx E¢A¢

€) (B.2)

The solution to this partial differential equation (PDE) has the form

P; = E¢Are+SsinhBx + T coshfx (B.3)
where
B 172
=(—— 4
B= gD B.4)
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Using the boundary conditions of Ps= 0 at x =0 and x = L the following is obtained

coshB(L/2~x
O'f=&=Ef 1- B )

forO<x<L/2 (B.5)
A¢ coshBL/2

The maximum possible strain in the fiber is the imposed strain e, which creates a
maximum stress of g = eEr. A plot of o for a sufficiently long fiber is shown in Fig. 2.7.
The stress in the fiber will increase from both ends (where it is zero) to its maximum i.e.
on = eEr. The variation of the shear stress along the fiber length can also be found by

balancing the forces over an element of the fiber

2
? == (B.6)
X s
Substituting the differential of 6¢ from Eq. (B.5) into Eq. (B.6) yields
E¢rre  sinhf(L/2-x)
= 7
2 B cosh(BL /2) ®.7)

Variation of T along the fiber length is also presented in Fig. 2.7. It has been shown that the
geometric parameters (B or B) has the following form

1,2

2 Gn 2r
B=""3" or B= —L"R (B.8)
In— EfAfln—
It f

where Gp, is the shear modulus of the matrix. For example, for hexagonal fiber packing

R 1 2n R 1 (2=
_—-— — = —inl — ing. i th
lnrf 2ln( NG f] and lnrr zln(vf)for square packing. Defining Omax as the

R 1
maximum packing factor and substituting In— = Eln ¢\";"‘
It f

in Eq. (B.8) yields

172

4Gy,

)
ln max
EfA¢ ——Vf

B= ®B.9)
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Considering Eqs. (B.5) and (B.9), the variation in the fiber stress greatly depends on the
ratio of G/Er. The greater is this ratio, the more rapid is the increase in value of the stress
in fiber from the either ends.

B.2 Elasto-Plastic Matrix

Loading high strength fibers to their breaking stress in ductile matrices may be
accompanied by plastic flow of the matrix. Of course, the fiber/matrix interface will fail if
it is weaker than the matrix itself. Ignoring the matrix strain hardening, the shear yield
strength of the matrix (ty) or the interface strength in shear (t;) can be considered as the
upper limit for the shear stress at the fiber surface (T). The equilibrium of forces then

gives;
ntd? L
G;T=‘tynd5 (B.10)
L C¢
=_=1 11
d 21, (B.11)

The fiber length plays a major role in loading the fiber to its breaking strength (Gg,)
through the load transfer by the flowing matrix around it. If the critical length for a fiber
with constant diameter is called (L.) then

2 _On (2.12)

Over length (L.) the stress builds up on the fiber from both ends. Beyond L., the fiber and
matrix displacements are the same and the fiber carries most of the load while the matrix

role in carrying the load is minor. For L < L, the fiber is loaded to only

< GCg (2.13)

The L/d ratio is called the fiber aspect ratio and (L/d). the critical aspect ratio. The load in
the fiber as a function of its aspect ratio is shown in Fig. B.1.
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Fig. B.1: Effect of fiber length on the stress distribution.
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