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Abstract 

Composite materials are widely used in temperature fluctuating environments, which 

make these materials highly prone to cracking. The cracking phenomenon is a result of 

high thermal stresses that are generated by the mismatch in properties of the composite 

constituents, particularly the mismatch in the thermal expansion coefficient. The main 

objective of this study is to understand the micromechanics of such a phenomenon. The 

problem has been investigated using the finite element method (FEM). 

The analyses were performed utilizing 3-D prism and axisymmetric models. 

Hexagonal fiber packing of unidirectional composites was considered. The dimensions of 

the models were assumed such that the models could provide sufficient information on the 

behavior near the free surface as well as the interior of fiber composites. Properties of the 

constituents were considered to be temperature dependent. The elasto-plastic and visco- 

elastic characteristics of the materials were also included. 

The transient t h e d  analysis of the models showed that, for most practical 

applications, the temperature gradient in the composite constituents has minor effects on 

the stresses generated. Therefore, several stress analyses were performed assuming a 

uniformly changing temperature throughout the composite. 

The elastic analysis of thermal stresses and deformations showed high radial and 

hoop stress concentrations occurring at the fiber end on the free surface. This is contrary to 

the shear-lag theorem, which assumes that these stress components are negligible. An 

overlapping hypothesis, based on the deformation of the fiber and matrix, is proposed to 

explain such high radial and hoop stresses. 



Using regular FEM elements, it was concluded that the stresses are singular in 

nature. The stress singularity was numerically investigated and found to be of the type r " 
with a being dependent on the material properties but having a value close to 1/3. 

The elasto-visco-plastic behavior of composites was also analyzed. Large plastic 

strains were localized at the fiber end even for a small temperature change. Creep effects 

that were significant at elevated temperatures brought about some stress relaxation during 

the manufacturing process. 

Thermally induced stress concentration in composites can be controlled, to some 

extent, by changing the geometry of the free surface. The analysis of such effects indicated 

that reduction of the contact angle between the fiber and the matrix on the free surface 

reduced the high radial and hoop stress magnitudes. Also, the influence of covering the 

free surface of the composite with a thin layer of matrix-like material was studied. The 

magnitudes of the radial and hoop stress components were substantially reduced. The case 

when the cover and the composite are made in separate stages (two-stage covering), was 

also studied. Based on the analysis, effective and practical ways of applying the cover are 

recommended. 

To venfy the effects of the covering process, experiments were conducted on large- 

scale laboratory-made composite samples. The samples with the free surface covered with 

a thin layer of matrix-like material showed no trace of cracking or fiber/matrix debonding 

even after 1 0  thermal cycles. On the other hand, in the samples without cover, exposed 

to identical thennal cycling, numerous matrix cracks and extensive fiber/matrix debonding 

were observed. 
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1. Introduction 

1.1 Background 

For some time, mankind has learned that some combination of materials gives 

properties superior to those of their constituents. This experience goes back in history to 

the time of the Prophet Moses or even earlier. For example, the people in Egypt used mud 

bricks reinforced with straw, Mongols made bows from cattle tendons, wood, and silk 

bonded together. Today, materials made by combining two or more different types of 

materials are called composite materials. Composites consist of the load carrying 

components (reinforcements), the binder (matrix) which transfers the applied loads to the 

reinforcements and binds them together, and the interface between these two to secure 

integrity and performance. 

Composites can be divided into two groups: natural and artificially-made 

composites. Examples of natural composites are wood, bone, and banana peel. The 

artificially-made composites are divided into many subgroups on the basis of the type of 

reinforcements (fiber, particle, whiskers) and ma~ces @o lymer, ceramic, metal). 

In general, composites can be superior to conventional materials in terms of the ratio 

of their strength and/or stifiess to weight. Also, a better thexmal dimensional stability 

(Iower thermal expansion), higher fatigue strength, better corrosion resistance, and better 

elevated temperature properties can be achieved by combining two or more distinctly 

different materials. One of the main problems in composites resulting fiom their nature is 

the internal thermal stress resulting h m  temperature changes. Usually, this is due to a 

mismatch in the coefficient of thermal expansion (CTE) of the composite constituents. 

These internal thermal stresses may cause interfacial debonding and matrix cracking 

leading to structural integrity degradation. 



1.2 Problem Definition 

Thermal stress distriiution plays a major role in the performance of composite 

materials. This becomes crucial when either the coefficients of thermal expansion (CTE) 

of the composite constituents are far apart in magnitude or the processing/working 

temperature is high. The diffaence in CTE causes different expansion or contraction in 

composite constituents under even a seemingly uniform temperature change. For example, 

Figs. 1 .l(a) and l.l(b) show a cylindrical single fiber composite (with the CTE much 

lower for the fiber than the matrix) under heating and cooling, respectively. To preserve 

continuity, the constituents internally constrain one another generating thexmal stress in the 

material. Under high temperature, even a small mismatch in CTE creates high thermal 

stresses. Additional thermal stresses may be created if the coefficients of thermal 

conductivity and thermal capacity of the constituents are different or the mechanical and 

thermal properties of the materials are fhctions of temperature. These phenomena will 

create thennal @ents inside the material, which eventually generate thermal stresses. 

I t  
I I 
I I 
I I 
I I 
I I 

a) Heating 

Fig. 1.1 : Thennal deformation of a single fiber composite. 

Typically, high thermal stresses are generated in metallic matrix composites by their 

high processing and service temperatures, while in polymeric matrix composites they are 

generated by significant differences in material properties of the constituents. In either 

case, these stresses wouid greatly degrade the composite pedonnance. In particular, the 

exposed surfaces of composites show signs of fiberhatrix debonding andlor matrix 

cracking. These effects are obsmed to a lesser extent in the interior of the composites. A 



fke surface of a thermally cycled composite sample is shown in Fig. 1.2. Experiments 

have shown that cracking and debonding mostly occur as a result of the cooling phase of 

temperature cycles or upon cooling fiom the processing temperature. 

Fig. 1.2: Free surface cracking of a thermally cycled composite 
(Hildebrandt, 1 990). 

The process of cracking usually starts at the interface on the free surface where the 

fiber has the largest distance to its neighboring fiber (see Fig. 1.3). Cracking then spreads 

into the area with the least distance to the adjacent fibers. Many researchers have studied 

this problem both theoretically and experimentally. Analytical solutions are extremely 

complex near the free surface of composites and this may be why more results have been 

published on calculating the thermal stresses deep inside the material rather than close to 

the fiee surface. Also, most of the finite element modeling studies provide information on 

the stress and deformation away fiom the composite fke surface. In general, there is a lack 

of information regarding the free d a c e  and the inter-relationship of the stress and 

deformation states at this region with those at the interior of composites. Moreover, in the 

finite element method (FEM), inadequate meshing, using improper type of elements in the 



areas of high stress gradients, not considering proper model sizes, and utilizing many 

simplifying assumptions such as plane strain or stress states make the results insufficient 

for drawing reliable conclusions. 

Sites of ~ck-initiation . . . .  

Matrix 

Fig. 1 -3 : Usual thermally induced cracking pattern around the fibers. 

Many experhental as well as a few numerical studies have attempted to provide an 

insight into the reduction of the damaging effects of thermal stresses on the composite 

performance specifically at the fibedmatrix interface. For example, the fibers with 

a third material having properties intermediate to those of the fiber and the matrix was 

considered by Arnold et al. (1992). A stronger coating material relative to the matrix 

increases the capability of the composite in resisting the high stresses at the interface. 

Assisting diffision of the matrix into the fiber is another way of strengthening composites 

against thermal stresses (Mall and Emer, 199 1). The matrix diffusion makes the interface 

stronger. This reduces the chance of fiberlmatrix debonding under thermal load. Another 

method which has been tried, is that of utilizing different post-cure thermal treatments to 

relax thermal residual stresses. For instance, imposing temperature cycles with decaying 

maximum and minimum values has helped in some cases (Morris et al., 19893. However, 

no solution to the cracking phenomenon at the fibedmatrix interface on the exposed 

Maces  has been suggested yet. 

13 Research Objectives 

The present study is mainly focused on how to deal with the thermal stresses and 

how to strengthen composites in order to accommodate the unwanted thermal effects. In 

order to reduce the adverse effects of thermal stresses in composites, a comprehensive 



study of the stress and deformation states is required. In general, it is important to know 

the behavior of composites during temperature changes and, more specifically, the nature 

of the stresses in various regions of the composites. Also, the innuace of the stress fields 

(i-e. the stresses at the fke sudace and the interior of composites) on one another and, 

more importantly, the effects of physical deformations (which may be triggered by the 

temperature change) on the stresses should be l l l y  understood. Therefore, to 11fi11 the 

prime objective of this research work, a careM modeling study was undertaken. To 

achieve this goal, it was necessary to study/model composites in an appropriate way. Thus, 

a comprehensive investigation of the available approaches/models was performed to 

identify their dominant limitations. it was required to develop an approachlmodel that does 

not have the limitations of the existing ones. The modeling results were checked with the 

available experimental results in terms of the nature of thema1 stresses, formation of 

plastic strains, and deformation of the fiee d a c e  and interior of composites during 

temperature changes. Afier achieving a good understanding of the stresses and 

displacements imposed due to a temperature change, methods of containing the undesired 

thermal effects were proposed and are discussed in detail. 

1.4 Research Methodology 

The equations governing the behavior of composites, along with all the boundary 

conditions and the continuity requirements, are presented in Appendix A. Analytical 

solutions to such a complex partial differential equation (PDE) set has been the subject of 

many studies which are reviewed in the next chapter. All of these investigations were 

conducted using many simplifying assumptions such as plane-stress, plane-stmin, or 

generalized axisymmetric conditions. With these assumptions, the PDE can be reduced to 

the Lame-type of equation (see Appendix A). The Lame-equation is easier to solve, but the 

results are limited to the interior region of the composite for a very small value of the fiber 

volume hction. 

More sophisticated solutions have also been reported in the literature. For example, 

the variational technique has been employed for calculating stress components at the end 



of a single broken fiber embedded in a matrix by Naim (1992) and a 3-D solution of the 

reduced PDE for a single cylindrical fiba embedded in a matrix has been reported by Li 

and Folias (1991). One of Nairn's assumptions is that the axial displacements in the fiber 

and the matrix are the same at any location along the fiba length (Lame condition). The 

solution by Li and Folias was obtained assuming a large diameter for the fiber which 

makes it invalid for composites since they usually contain a large number of very thin 

fibers. Also, in addition to all of the simplifications, these solutions were obtained for a 

single fiber and the effects of the neighboring fibers on the stress and displacement states 

are yet to be taken into consideration. In addition, as will be discussed in Chapter 2, the 

solution by Li and Folias does not satisfy the boundary conditions at the end of the fiber on 

the fiee surface. To this date, the author is not aware of a complete solution of the PDE 

that satisfies all the boundary conditions and the continuity requirements. 

An alternative to the analytical approach is the finite element method (FEM) which 

is broadly used in the engineering field. In this dissertation, the FEM is utilized to solve the 

PDE set. Here, ANSYS, a FEM commercial software package is used. All the possible 

nonlinearities such as structural nonlinearities (large strain, large deflection, stress 

stiffening) and material nontinearities (plasticity, creep) are considered. 

A high accuracy of the approximate FEM solution can be obtained if the material 

and geometry modeling are performed with sufficient care. The material should be 

modeled as closely as possible to its behavior under the loading condition. In particular, 

variation of the material parameters with temperature should be included. The geometry of 

the model has to be as representative of the problem as possible. For example, for 

unidirectional fiber composites, the 3-D FEM models should be considered to analyze the 

stress and displacements at the end of the fiber on the fiee d a c e  and at the interior of the 

composite. Meshing of the model should be done in such a way that the size of the 

numeicd problem does not compromise the accuracy of the analysis in terms of stress and 

displacements. In particular, dense meshing with higher order elements should be 

considered for the areas with high stress gradients. This requires some howledge of the 

physics of the problem as well as other factors such as sharp comers, material 



discontinuities, and geometric discontinuities that may affect the stress fields. Frequent 

verifications of the accuracy of the results should also be performed. 

In this dissertation a micro-mechanistic approach to composites is applied using the 

FEM technique. Several important findings of the FEM analysis have been verified by 

experimental tests performed on composite specimens. Other resuits are verified by 

comparing them to the available experimental and analytical results obtained by other 

researchers. 



2. Mechanics of Composite Materials; A Review 

2.1 Introduction 

Although composite materials have been used for a long time, the technology of 

modem composites has been essentially developed during the last three decades. The 

advances have been reported in a large number of publications and cover several areas of 

science and technology. In h s  chapter the most recent results relevant to the objectives of 

this dissertation are reviewed. 

23 Basic Theories of Composite Materials 

Composite materials are made fiom conventional materials by some special 

techniques. Conventional materials may be divided into three major groups; metals, 

ceramics, and polymers. In each category, the materials have some characteristic 

properties, which are distinct for that group. However, the materials in each group have 

weaknesses of their own that make them less desirable for some specific use. For example, 

metals are superior in terms of stifiess and hygroscopic sensitivity, but their weaknesses 

include high density and susceptibility to corrosion. Ceramics are ranked highest in terms 

of compressive strength, sti&ess, creep resistance, and thermal stability, however they are 

brittle. The main advantages of polymers are low density and ductility, but they possess 

low stifiess, strength, creep resistance, thermal and dimensional stability, and erosion 

resistance. It would be desirable to cornbine various materials to make the best use of each 

group's characteristics for a particular application. 

Inclusion of a solid material into another material creates a new system with new 

gross or macro material properties. For example, long fibers of one material may be 

incorporated into a second material referred to as matrix (Fig. 2.1). From a microscopic 



point of view, considering the characteristic volumes J I or J2, the individual materials may 

be isotropic. On a macroscopic scale the material system (volume I) is considered 

anisotropic because the properties vary with orientation. 

Fig. 2.1 : Macroscopic (I) and microscopic (J I and J2) observations of 
unidirectional composites. 

Composites may contain continuous or discontinuous fibers. Fibers are also called 

the reinforcement since they usually cany most of the load. The ma& binds, separates, 

and transfers the Ioad to the reinforcements. An additional phase, called the inter-phase, 

may exist between the reinforcements and the matrix resulting fkom a chemical reaction 

between the two components, or a purposely applied coating to enhance bonding. 

Various types of reinforcements are used in composites depending on the kind of 

application. For low performance composites, short fibers or even particles are used to 

provide some stiffening but only local strengthening. In the case of high performance 

composites, long fibers are used to increase the stifiess and strength of the composite in 

the direction of the fibers. 

A planar or curved layer of unidirectional or woven fibers in a matrix is called a 

lamina or ply. A unidirectional lamina is orthotropic in name with three principal axes in 

the fiber direction (designated as l), transverse to the fiber (2), and normal to the plane of 

fiber (3) (see Fig. 2.2). 

Fig. 2.2: Principal coordinate axes in unidirectional composites. 



The level of consideration and the scale of analysis of a composite material depend 

upon a particular characteristic and behavior requirement of the composite under 

investigation. When local failures (such as buckling, breaking and failure of the fiber, 

matrix breaking, or debonding) are of concern, the analysis is performed at the fiber and 

matrix level and refmed to as  the micro-mechanics of composites (Fig. 2.3). This method 

of analysis is particularly important for the study of properties such as strength, hcture 

toughness, fatigue life, local plastic and viscoplastic deformations, and local stress 

concentrations. These properties cannot be inferred f?om averaged characteristics of the 

composite. The analyses in this dissertation are based on such a micro-mechanics approach 

and are performed at the fiber and matrix level. 

Micromechanics 

Macromechanics 

0 0 ~ 0 -  ***am 

(Laminate theorv) 

Fig. 2.3: Various levels of analysis of composite materials. 

At the lamina level, composites can be considered as homogeneous anisotropic 

materials with average properties. In this approach, called macro-mechanics, the local 

failure mechanisms are not taken into account. Instead, failure criteria are expressed in 

terms of average stresses and overall lamina strength values. The overall behavior of a 

laminate is analyzed as a function of lamina properties and stacking sequence. This 



approach is convenient for analysis of overall stifkess of composites. Details of the lamina 

theory are found in most textbooks on mechanics of composite materials, e.g., Daniel and 

Ishai (1994) and Chawla (1987). 

In general, when compared to conventional materials, polymeric matrix composites 

provide a higher specific strength (ratio of material strength to density) in the direction of 

the high strength fibers. However, the transverse tensile strength of unidirectionally 

reinforced composites is substantially reduced due to local stress concentrations around 

fibers. The usually low hcture toughness of fibers is compensated by the matrix ductility 

and by higher energy dissipation at the fiberhatrix intdace. 

The anisotropic nature of composites adds to the complexity of the 

macro-mechanical analysis. The average material properties required for analysis of 

composite structures can be calculated h m  the properties and arrangement of their 

constituents. The experimental verification requires complex tests for determination of 

many material constants. 

23 Mechanics of Composite Materials 

Analysis of stress-strain relationships in composite materials is complicated because 

of the involvement of many parameters. For example, the type of reinforcement, 

reinforcement volume hction, interface strength, and properties of the constituents 

influence the stress distribution in composites. The objective of the present research work 

is to study the behavior of unidirectional composites subject to temperature changes. The 

micro-mechanical approach is employed with the analyses conducted at the level of a fiber 

and the surrounding matrix. In order to include the h e  d a c e  effects the composite is 

considered in a 3-D space. Several mathematical models of unidirectional composites are 

considered. First, the difficulties of obtaining any 3-D analytical solution to the problem 

involving a single fiber embedded in a matrix are addressed. Next, the application of FEM 

in analyzing the elastic stress state in composites and the occurrence of possible singular 

stress fields is discussed. Following this, the inelastic behavior of composites during 

manufacturing and at service ternpaahaes is analyzed. 



2.4 Micro-mechanical Analysis of Unidirectional Fiber Composites 

The local stress and deformation fields on a microscopic level directly affect the 

performance of a composite structure. Prediction of the stress and deformation along the 

fiber length and surrounding matrix and at their interface can help in detecting areas that 

are susceptible to local damage. Normally, in the micro-mechanical approach, a single 

fiber embedded in matrix is the basic element for the analysis. The derivation of the 

governing equations for an arbitrary element in the fiber or the matrix are presented in 

Appendix A. These equations are solved for a unit cell the geometry of which varies 

depending on the type of fiber packing (Fig. 2.4) as discussed in Chapter 3. 

Rectangular panem Hexagonal panern TrianguIar pattern 

Fig. 2.4: Different fiber packing in unidirectional composites. 

An analytical solution of the problem is very complicated or almost impossible. So 

far, there have been many attempts to solve the equations by using many simplifications. 

Most of the theoretical micro-mechanical studies conducted in the field of composite 

materials assume plane strain or plane stress conditions. Any changes along the fiber 

direction are neglected. Some of the results obtained from these analyses are applicable to 

the interior of composites where the 2-D plane strain or plane stress conditions prevail. 

Some solutions originate from the mechanics of edge-bonded dissimilar materials and the 

analysis of inclusions in homogenous materials. Some of these results are presented in the 

folIowing two sections. 

2.4.1 Mechanics of Edge-Bonded Dissimilar Materials 

The nature and distribution of stresses along the interface and at the contact comer of 

edge-bonded dissimilar materials (see Fig. 2.5) generated by a variety of load and 



boundary conditions have been studied by many researchers. The stress distribution along 

the interface may contain singularities at the contact corner. A singular stress field of the 

type fa  was identified in many publications, where r is the distance to the contact comer 

and a is a positive constant dependent on the material properties and the angle of each 

material at the contact comer (e. g. O1 and €I2). For example, Bogy (1968) studied two 

dissimilar materials bonded along one of their stmight edges with 8, = O2 = 90°. The study 

has been conducted under normal and shear traction. The orthogonal wedges were 

considered to be elastic. It was determined that the order of singularity (a) depends on the 

ratio of the shear moduli and the Poisson's ratios of the materials. 

Fig. 2.5: General configuration of edge-bonded dissimilar materials. 

Hein and Erdogan (1971) expanded Bogy's work to include a range of arbitrary 

angles for the wedges (provided O1 + €I2 = 180°) and studied indenters bonded to a half 

plane (i.e. e2 = 180"). Their r d t s  have shown that, depending on the wedge angle and the 

material type, the stress field at the contact coma of the materials could be either 

non-singular, or singular. For example, for 0 = 60" and 0.1 5 (E I/ E ~ )  5 1 0 , the singular 

stress disappears provided that O1 + e2 = 180". This is a very important result in the 

semiconductor industry. For example, a similar g e o m q  occurs for the Si-Sia  or 

Si-Si3N4 semiconductors for which the ratio of EI/E2 is approximated either as 0.4 or 0.2. 

A similar study was conducted by Gdoutos and Theocaris (1975) where the Poisson's 

ratios of the materials w a e  also considered as parameters. It was shown that the Poisson's 

ratio of the materials also influences the order of singularity. 



The problem of a wedge with angle 0 contacting with a half plane under d a c e  

traction was shldied by Dundurs and Lee (1972). It was found that the order of the singular 

stress field depends on two of the properties (E and v) of the wedge and the half plane and 

also the angle of the wedge. For 0 = 1 80°, for all types of material properties, a singularity 

of order a = % (the crack type) was found. 

Most recently, the thermal stress field at the contact comer of two edge-bonded 

materials has been analyzed by Ioka et al. (1995, 1996) using the boundary element 

method. They were able to convert the thermoelastic problem to an elastostatic problem. It 

was shown again that the stresses near the contact comer have the singular form of the type 

r-" . Independently, Chen and Nisitani (1993) also converted the thermal problem to an 

elastostatic pro blern. 

Designers of lap joints are aware that tapering or varying the shape of the adherents 

can improve the strength of a connection. Chang and Muki (1974) were among the first 

researchers to launch a study to understand the mechanism of this improvement. However, 

their approach used over-simplified geometry near the contact comer of the joint. As a 

result, prediction of the stress field at this point was not sufficiently accurate. Their work 

was expanded by Westman (1975) who established a link between the loading condition 

and the stress singularity. A possibility of minimizing the singularity by selecting a 

particular value for the angle at the contact corner was discussed. 

A shape optimization procedure was proposed by Muraka and Ueda (1989). They 

reduced the failure of the WAI2O3 joint with 8, = e2 = 90' by modifjmg the boundary of 

the side d a c e  of the metal part 2 mm h m  the interface (A-B in Fig. 2.6). The concave 

shapes were found to be effective in reducing the failure probability for the mechanical and 

combined (mechanical-thermal) load. For thennal load, both concave and convex shapes 

reduced the failure. 



Similarities of the mechanics of unidirectional composites on a microscale with the 

mechanics of edge-bonded dissimilar materials leads to the conclusion that the stress field 

at the fibedmatrix interface at the fkee surface may be singular with the order of singularity 

dependent on the material properties. As in the results discussed above, this singularity 

may disappear for certain material types and contact angles. These problems are discussed 

in Chapters 6 and 9, in detail. 

Fig. 2.6: Optimization of the angle at the contact comer of 
two edge-bonded dissimilar materials. 

2.4.2 Disturbance in a Stress Field Due to Inclusions 

The disturbance induced in a stress field by an inclusion has been the subject of 

many studies. The presence of a hole in a plate acts as a stress riser and generates a stress 

concentration at the circumference. Filling the hole with a rigid or elastic inclusion 

changes the stress regime by reducing the stress concentration induced by the hole, but it 

creates other stress concentrations. These stress concentrations practically vanish at a 

distance of about four diameters away h m  the inclusion. The governing equation and 

some of the solutions have been found to be applicable to 2-D studies of composite 

materials. 

Separation of a smooth circular inclusion fiom the matrix was treated by Keer et al. 

(1973). The stress and the extent of separation depend on the level of adhesion at the 

interface. The problem was solved for the matrix under bi-axial orthogonal tensile traction 

with the traction being higher in one direction than the other. It was shown that for certain 

combinations of the applied traction, the inclusion might separate h m  the matrix along 



some part of the interface. The angle of separation was related to the material properties of 

the matrix and the inclusion. 

Kelly and Wilhoit (1962) studied an equal sized rigid cylindrical multi-inclusion 

problem. The work was extended to unequal size inclusions embedded in an elastic matrix 

under in-plane stresses by Goree (1967). The problem was reduced to a 2-D plane strain 

study. The solutions provide some information on the effects of the Poisson's ratio and the 

ratio of the radius of the inclusions and their spacing on the stress concentration between 

inclusions. In general, the maximum principal stress sharply increased with decreasing 

spacing of the inclusions and increasing Poisson's ratio. 

The disturbance by multiple inclusions in a uniform stress and/or bending stress field 

was discussed by Yu and Sendecb (1 974). The general solution for a circular elastic 

inclusion was used for successive approximation of a multiple circular inclusion problem. 

It was shown that the stress concentration decreased with increasing moduli of the 

inclusions and with increasing number of inclusions. For example' when the number of 

inclusions increased from two to three, the magnitude of the stress concentration decreased 

by 30%. 

The stress distribution around a single fiber embedded in a matrix under a lateral 

force was presented by Tirosh et al. (1979) who studied the interaction of radial and 

circumferential cracks with the stresses around the fiber. The solution presented by the 

authors indicates that, surprisingly, the maximum of the stress concentration occurs in the 

matrix at a short distance away h m  the interface. The location of the maximum stress was 

found to be dependent on the matrix Poisson's ratio. This phenomenon may explain the 

initiation of tangential cracks in the matrix close to the interface, which are fkquently 

observed in composites. 

2.5 Stress Distribution Along the Fiber Length 

The stress transfer between a single fiber and the matrix is usually analyzed with the 

help of the shear-lag theory by considering the variation of the normal axial and 



longitudinal shear stresses along the fiber length. The early elastic stress analysis, which 

included the effects of the fiber length, was proposed by Cox (1952), Rosen (1964), and 

Amirbayat and Hearle ( 1969). Kelly and Tyson (1 963) considered elastic-plastic 

deformations with the assumption of a constant interfacial shear stress in regions where the 

interface had failed. 

The load transfer mechanism is explained by assuming a cylindrical £ibex embedded 

in a cylindrical matrix. It is also assumed that the fiber and the matrix are perfectly bonded 

together and that their Poisson's ratios are similar in magnitude to avoid any radial stress 

between them. Applying an axial load to the ends of the matrix cylinder, deforms the 

matrix as shown in Fig. 2.7. The deformation is very high near the fiber ends and 

diminishes along the fiber toward the mid-length. Transfer of the applied load fiom the 

matrix to the fiber occurs by means of the shear stress at the interface. The treatment of the 

stresses depends on the elastic or elasto-plastic response of the matrix material. The 

detailed discussion of the shear-lag theory is presented in Appendix B where it is divided 

into two cases, when the matrix is elastic and elasto-plastic. 

Fig. 2.7: Load transfer in fiber composites and axial and longitudinal 
shear stress distributions along the fiber length. 

The high shear stress at the fiber end is referred to as the fiber end effects. Crack 

initiation at the fiber end has typically been related to these effects. In this dissertation, the 

end effects are discussed in detail in Chapter 5 using a 3-D approach. 

The widely used shear-lag theory has several limitations. One of the problems is that 

the radial and hoop stress components are ignored by this onedimensional analysis. These 

stress components are important for thermal loading (Abedian and Szyszkowski, 1997). In 



particular, the radial stress becomes large because differential thermal contraction of the 

fiber and the matrix typically leads to a shrink fit or compressive radial stresses at the 

interface (Naim, 1 985). The shear-lag analysis produces a stress state that does not obey 

stress equilibrium (Whitney and M, 1987). For a broken fiber embedded in a matrix, 

the shear-lag theory predicts that the maximum shear stress occurs at the fiber breaks, 

however the h e  d a c e  boundary condition at the breaks requires zero shear stress at 

these locations. Even applying the post-failure stress analysis of Kelly and Tyson (1963) 

which is nonnally utilized to avoid some limitations of the shear-lag analysis does not 

provide satisfactory results at the broken end of the fiber. 

There have been several FEM and analytical attempts to improve the shear-lag 

theory such as these by Canara and McGarry (1968), Broutrnan and Agarwal (1974), 

Whitney and Drzal (1 987), and Nairn ( 1 992). Among them, Naim's semi-3D variational 

technique provides an analytical solution that satisfies the boundary conditions (zero shear 

stress at the fiber break) and also provides some donnation on the nature of the radial 

stress distribution along the fiber length. This analysis begins with an admissible stress 

state that obeys equilibrium and traction boundary conditions precisely. An approximate 

stress state is then found by m i . g  the complementary energy. The most important 

fact about these results is the concentration of the radial stress at the fiber break. One 

conclusion from this sani-3D analysis is that a more precise 3-D analysis of tk stresses at 

the fiber end on the fke surface of unidirectional composites is required. 

The axisymmetric analysis of a cylindrical rigid rod partially embedded and axially 

loaded in an elastic half space was presented by Luk and Keer (1979). The numerical 

solution, despite the fkee d a c e  boundary condition, gives a singular longitudinal shear 

stress component on the f k  d a c e  of the half space. This inconsistency of the solution 

was attributed to the numerical scheme adopted. 

The singularity in the neighborhood of the intersection of a cylindrical inclusion and 

a fkee surface was investigated by Folias (1989). The inclusion was assumed to be in the 

form of a homogeneous isotropic material embedded in an isotropic plate of arbitmy 



thickness. Loading was in the form of a tensile lateral force in the plane of the plate. The 

results reveal some interesting facts about the singularity such as the dependence of the 

order of singularity on constituent properties such as shear modulus and Poisson's ratio. It 

was shown that the singularity exists when the elastic modulus of the inclusion is higher 

than that of the plate material. The solution suggests that the singularity is of the type f a  , 

where a = 2 - and I< a. The order of the singularity increases with increasing ratio of 

the shear moduli of the inclusion and the plate. Penado and Folias (1989) presented the 

distribution of some of the stress components in the vicinity of the singular point. It was 

concluded that the maximum octahedral shear sttess occurs at the interface. 

More recently, Li and Folias (1991) have expanded the Penado and Folias shldy by 

considering the fiber to be transversely isotropic. The value of for carbon and glass fiben 

(which typically have small diameters) in epoxy matrix was calculated to be equal to 1.693 

and 1.737, respectively. It was suggested that the presence of a carbon fiber induces a 

slightly higher singular stress field than that of a glass fiber and consequently the 

carbodepoxy composite is more prone to fibre. One major drawback to the solution is 

that the axial and longitudinal shear stress components on the free surface, instead of being 

zero, are also singular. 

2.6 FEM Analysis of the Stress Field in Composites 

The finite element approach seems to be the only practical tool that is capable of 

satisfying the boundary conditions mmesponding to the assumed fiber packing 

configuration. Different FEM models used, for example, by Bigelow et al. (1989) and 

Fletcher and Oakeshott (1994a) for elastic, elasto-plastic, and creep analyses of 

unidirectional composites are discussed in the following sections. The use of singular and 

regular FEM elements in analyzing the singular stress fields are also discussed. 

2.6.1 FEM Modeling 

In order to reduce the cost of FEM calculations it is necessary to assume a regular 

pattern for the fiber distriiution in the matrix. Among the different patterns shown in 



Fig. 2.4, the rectangular and hexagonal patterns are widely used. A comprehensive 

comparison of the models of diffaent fiber patterns is provided by Bigelow et al. (1989) 

and Fletcher and Oakeshott ( 1 994&b). 

Bigelow et al. used four micro-mechanical models to analyze metal matrix 

composites. These models are the vanishing fiber diameter model (VFD), the Aboudi 

model, the multi-cell model, and the discrete fiber-matrix model (DFM). Their unit-cell 

representations are schematically shown in Fig. 2.8. 

m f m  X j  m l  
Parallel fiber 
maaix bars 

a) Vanishing fiber diameter model (VFD) 

+x 

b) Aboudi model 
XI x 3 

C )  Multictll model d) Discrete fiber ma& (DM) mode1 

Fig. 2.8: Various micromechanical models. 

For the VFD model, it is assumed that the fibers have a very small diameter. 

Although the fibers constitute an appreciable volume fraction of the composite, they do not 

influence the matrix deformation in the transverse and thickness directions, but only in the 

longitudinal direction. 

The Aboudi model is based on the assumption that the continuous fibers extend in 

the xl-direction and are arranged in a doubly periodic array in the transverse and thickn&s 

directiom. With the multi-cell model, the periodic structure of unidirectional composite 



ply is approximated by a square array unit cell model. The three sub-regions A, B, and C 

shown in Fig. 2.8(c) are defined to characterize the "through-the-thichess non-uniformity 

of the constituent stresses and material properties." 

The discrete fiber-matrix model (DFM) together with a finite element analysis 

assumes that the fibers are dispersed in a uniform rectangular pattern in the matrix. This 

model was first used by Foye (1966). 

The first three models were originally developed for predicting lamina or laminate 

properties or stress-strain behavior. The DFM model was designed primarily for the 

prediction of the constituent stresses. However, the DFM model can be used to calculate 

lamina properties. A comparison of the predicted lamina properties and coLlStituent stresses 

by the models described so far indicated that the DFM model was the best model for 

calculating the constituent stresses. Also, this model provided lamina properties that were 

very close to those calculated by the other three models. 

Fletcher and Oakeshott (1994a) extended the above work by considering diffaent 

fiber packing patterns shown in Fig. 2.4. The 2-D plane strain assumption was considered. 

It was shown that without a change in the other geometrical parameters the fiber packing 

does not affect the magnitude of the maximum principal stress. However, it affects the von 

Mises stresses. The stresses are reduced with increasing number of neighboring fibers. For 

example, the hexagonal fiber pattern provides a lower von Mises stress than either the 

rectangular or triangular patterns. However, the study does not provide a clear link 

between the change in the magnitude of the von Mises stresses with fiber volume hction. 

The maximum of the von Mises stress was shown to occur at the interface along the line 

which connects the centers of two neighboring fibers. Unfortunately, no reason for all of 

the above results was offered. This phenomenon will be considered in this dissertation in 

Chapter 5. 

The issue of random fiber distribution has been studied by several investigators. For 

example, Adams and Tsai (1969) investigated the effect of randomness in fiber 



distribution on the transverse stiflhess of unidirectional composites. Their random array 

analyses revealed the fact that the fibers in a composite conform more closely to the 

hexagonal array rather than the square array. The transverse stifbess predicted by the 

hexagonal array was more accurate in comparison with the experimental measurements on 

random arrays. Due to these reasons, the hexagonal regular fiber pattern is considered in 

this dissertation. The details of the FEM modeling will be discussed in Chapter 3. 

The effects of randomness in fiber distribution on the predicted composite properties 

were analyzed by Davy and Guild (1988). Fletcher and Oakeshott (1994b) studied the 

stress fields in the fiber composites considering the random fiber arrays described by the 

concept of a Voronoi cell (see Fig. 2.9). The Voronoi cell defines the region around a fiber 

where all points are at distances fiom the fiber less than or equal to the distance to any 

adjacent fiber. The study initially considers a '%ypothetical" Voronoi cell model composed 

of unit mils that were used in modeling the regular fiber arrays (Fig. 2.4) by the same 

authors. 

The model predicted that the maximum principal and von Mises stresses occur in the 

region with shortest inter-fiber distance. However, the locations of the stresses were shown 

to be in the matrix away fiom the intexface where no traces of cracking were found 

experimentally. The magnitudes of the stresses were in excess 

means of the regular fiber arrays discussed earlier. 

of those calculated by 

Fig. 2.9: Voronoi cell model (irregular fiber pattern). 



2.6.2 Elastic Analysis of Unidirectional Composites 

Many results on unidirectional composites were obtained assuming elastic properties 

for the constituents. The transverse stresses generated by the difference in Poisson's ratios 

of the constituents of unidirectional composites under an axial load were studied by 

Ostrowski et al. (1984). The interfacial pressure plotted along the fiber length indicated a 

concentration of the radial and hoop stresses at the fiber end The results also showed that 

the stresses are reduced to some small values at a distance equal to about 5 fiber diameters 

away h m  the fiber end. It was also shown that the maximum radial stress occurred at the 

location with the shortest inter-fiber distance, while the maximum of the hoop stress 

occurred at the highest inter-fiber distance. The magnitude of the interfacial hoop stress 

was increased while that of the interfacial radial stress was reduced with increasing the 

fiber volume hction. More explanation on the above results are provided in Chapter 5. 

A 3-D thermo-elastic stress analysis of unidirectional composites was conducted by 

Haener and Ashbaugh (1967). Assuming a hexagonal pattern of fiber packing, it was 

shown that the nature of the interfacial radial stress at the fiber end on the fie d a c e  is 

different than the stress in the interior of the composite. The interfacial radial and hoop 

mess components on the ftee d a c e  were found to be very high. The nature of the hoop 

stress on the free d a c e  was shown to be similar to the interior of the composite. The 

axial stress seemed to satis@ the free d a c e  boundary condition (0, = 0), while the 

longitudinal shear stress was found to be increasing when moving along the interface 

toward the free surface. The study showed the stress concentrations at the fiber end but did 

not mention any stress singularity at this location. 

Thenno-elastic stresses in unidirectional polymeric matrix composites were studied 

by Sottos et al. (1989) using hexagonal fiber packing. Using the Boundary Fitted 

Coordinate Technique (BFCS), the unit cell for the hexagonal fiber array was meshed with 

small rectangular elements. As stated by the authors, "this tecimique is essentially a 

transformation or mapping of the physical domain where the problem is defined into a 

simple computational domain where the problem is solved using traditional finite 



difference technique". The interfacial stress components in the interior of the composite 

were calculated assuming perfect bonding at the interface and a decrease in temperature of 

1°C. Upon cooling, it is expected that, due to the mismatch in coefficient of thermal 

expansion (CTE) of the constituents, the sign of the hoop stress is tensile for the matrix 

and compressive for the fiber. However, unexpectedly, it was shown that both of the 

stresses are compressive. Also, the axial stresses of the fiber and the matrix are expected to 

be of diffaent signs, tensile in the matrix and compressive in the fiber, however they were 

both found to be compressive. The location of the maximum radial stress was predicted to 

be at the model comer in the matrix away h m  the interface. However, the study 

conducted by Abedian and Szyszkowski (1 997), where a similar model was analyzed using 

FEM, showed the maximum radial stress to occur at the interface. A similar study by 

Szyszkowski and King (1995) on axisymmetric models also showed that the maximum 

radial stress occurs at the interface. 

Sottos et al. also studied the effect of fiber volume ifaction on the stress state. It was 

found that the radial, hoop, and axial stress components increase with decreasing fiber 

volume fraction (Vr) This is in contrary to the result obtained by Ostrowski et al. that was 

discussed earlier. The validity of these results will be examined in this dissertation in 111 

detail (see Chapter 5). The effect of a weak interphase on the stresses was also analyzed by 

Sottos et al.. The results showed that a coating weaker than the matrix material (lower 

modulus, lower CTE) decreases the interfacial stresses which is in agreement with the 

results obtained by Tirosh et al. (1 979). 

The stress field in unidirectional composites subjected to thermo-mechanical loading 

was studied by Mikata and Taya (1985). The study focused on the effects of fiber coating 

and the composite was modeled by four concentric cylinders ("four-phase model"). The 

inner most cylinder was considered to represent the fiber and the outermost to be the bulk 

of the composite. The cylinder covering the fiber represented the coating and the cylinder 

surrounding the coating represented the matrix. The fiber and the bulk of the composite 

were considered to be tranmerseIy isotropic and the coating and the matrix were assumed 

to be isotropic. The properties of the outennost cylinder were obtained by using the rule of 



mixture. A model for calculating the properties of the bulk composite using hexagonal 

fiber pattern, which was proposed by Soh (1994), was also used. As for the loading, axial 

and transversal mechanical loads as well as a temperature change were considered. 

The stress distribution in the interior of the composite showed that the absolute value 

of the hoop stress in the coating is higher than that of the radial stress. This result is similar 

to the conclusion made by Sottos et al. (1989) who claimed that, in the interior of the 

composite, even in the absence of coating, the hoop stress is higher than the radial stress in 

the matrix. However, this is contray to the results reported by Tirosh et al. (1979) who 

suggested that for a uniform temperature change the absolute value of the radial stress is 

always higher than that of the hoop stress. 

Adams and Doner (1967) considered unidirectional composites with rectangular 

fiber packing subjected to uniform transverse stress and under uniform temperature 

change. The solution was obtained using the finite diffaence technique. The analyses 

showed that, under uniaxial transverse loading, the maximum principal stress occurs at the 

intersection of the line that connects the center of the two neighboring fibers with the 

interface. The study also showed that under uniform temperature change, the maximum 

radial stress occurs at the interface and increases with decreasing the fiber volume hction. 

This is contrary to the results presented by Sottos et al. 

The stress concentration around a broken fiber in a unidirectional polymeric 

composite was investigated by Nedele and Wisnom (1992). For a combined axial load and 

a temperature change, it was shown that the stress concentrations in the fibers adjacent to 

the broken fiber are less than that predicted by the shear lag theory. 

Chandra and Xie (1993) extended the analytical solution proposed by Mikata and 

Taya (1985) for a single fiber embedded in a matrix to consider the effect of neighboring 

fibers on the stress distribution around a fixed fiber. Their results showed that the 

maximum absolute value of the radial stress occurred at the interface at locations with the 



shortest interfiber distances. The stress value decreased with increasing number of fibers 

nrrmunding the central fiber. 

Sherwood and Quirnby ( 1995) using FEM analysis compared the stress-strain 

characteristic of perfectly bonded and also completely unbonded composites. The 

tramverse properties of unidirectional composites were analyzed by De Kok et al. (1 993). 

The numerical and experimental studies showed that under transverse uniaxial tensile 

mechanical loading, the interfacial bond strength did not affect the transverse tensile 

modulus of the composite. 

2.63 Singular Stress Field and Regular FEM Elements 

Since a singular stress field is expected at the £iber/matrix interface on the free 

surface, the question is, how singularity can be handled by the regular FEM elements and 

to what extent the d t s  are accurate and reliable. There exist a vast amount of 

publications explaining the application of FEM in determining the singular stresses at the 

tip of a crack where the singularity is always of the type r-a (Gallagher (1978), Yarnada 

and Ezawa (1979), and Macherle and Fredriksson (1980)) with a = 0.5. However, for 

problems dealing with the edge-bonded dissimilar materials, the order of singularity is 

unknown and lies in the range 0 < a < 1. 

Many attempts have been made to develop special elements (variable power 

singularity elements) to deal with such problems (Tracey and Cook ( 1977), Akin (1 976), 

Hughes and Akin (1980), and Stern (1979)). Several studies have been conducted to 

establish a way of analyzing such singular stress fields utilizing regular FEM elements 

(Staab (1 983) and Schiexmeier and Szabo (1989)). Such elements were used in the present 

work to study the stress field at the fibedrnatrix interface on the f i e  surface of fiber 

composites (see Chapter 6). 

Staab investigated two known cases: the stress singularity at the tip of a crack in a 

homogeneous plate and the stress field at the tip of a mck perpendicular to the interface of 



a perfectly bonded bi-material system. The stress was approximated by o = cr in the 

vicinity of the singularity where r is the radial distance fiom the singular point to the Gauss 

point of the closest element. Plotting the above equation on a log-log scale, the slope of the 

line (a) for the case of a crack in a homogeneous material w a ~  found to be very close to 

0.5 which is exactly the same as calculated by analytical methods. It was shown that as the 

mesh becomes finer, the slope gets closer to 0.5. 

Schiermeier and Szabo (1989) calculated the order of the singularity at the contact 

comer of edge-bonded dissimilar materials analytically and by means of FEM using 

conventional elements. The difference between the orders of singularity calculated by these 

two methods was found to be around 0.5%. 

In this dissertation, a complete discussion of the order of singularity of the stress 

field at the fiber end for unidirectional composites is presented in Chapter 6. 

2.7 Inelas tic Analysis of Unidirectional Composites 

Inelastic analysis of unidirectional composites requires a substantially greater 

numerical effort. It takes into account variation of thermo-mechanical properties of 

constituents with stress and temperature. There are a number of studies dealing with the 

generation of residual stresses during manufacturing and at service temperatures and the 

damage caused by these messes. Most of the studies have focused on the interior of 

composites considering plane stress or plane strain assumptions. Only a few 3-D 

investigations have been perfomed and the fiber end effects were ignored. 

2.7.1 Ehsto-Plastic Analysis of Thermal Residual Stresses in Fiber Composites 

The generation of thermal residual stresses in SiC/Ti-6AI-4V composite when 

cooling fiom a high manufacturing temperature was investigated by Nimrner et al. (1 99 1). 

3-D FEM elements were used to model the unit cell of the rectangle fiber array pattern. 

However, the boundaq conditions assumed simulated the 2-D plane strain behavior of the 

composite. The von Mises yield condition was applied in conjunction with the kinematic 



hardening rule. The maximum absolute values of the radial and equivalent stresses were 

shown to occut at the interface at the location with the least inter-fiber distance. The 

equivalent m a s  distribution showed that no plastic strain in the interior of the composite 

could occur. 

Since there are different CTE values for Ti-6A1-4V in the literature, the authors 

repeated the study with the highest reported values of CTE. The resuIts showed that with 

the new assumed property some plastic flow occm in the matrix. However, the extent of 

the plastic strains and whether the plastic flow continues up to room temperature were not 

discussed. The results were found to correlate to some extent with the experimental results. 

Similar thermal residual stresses resulting fiom the manufacturing process of the 

composite were reported by Ananth et al. (1993) who studied the Ti-6A1-4V and 

duminum matrices reinforced with SCS-6 fibers. The von Mises yield criterio~~ dong with 

the associated flow rule were considered while strain hardening was ignored. The results 

showed that the Ti-6Al4V matrix remains elastic during the entire manufacturing process, 

while the aluminum matrix showed a large amount of plastic strain. 

Chandra et al. (1994) analyzed thermal residual stresses generated in 

SCS-6Ki-24Al-1 lNb and S C S - ~ I T ~ ~ A I - ~ V  composites by means of FEM using a 

rectangular lmit cell model. The effect of the stresses on the subsequent response of the 

composites to transverse loading was also examined. The von Mises yield criterion along 

with the associated flow rule and isotropic hardening were used. A comparison of the 

stresses obtained by incorporating different assumptions (plane strain, generalized plane 

strain, and 3-D model) was presented 

The residual stresses in the Ti-6Al-4V matrix did not lead to any plastic deformation 

as in the previous studies. However, the stresses in the Ti-24A.l-11Nb matrix indicated that 

a large part of the matrix yields plastically during the manufacturing process. The large 

plastic strains eRectively duenced the stress distniution in the matrix. The results 

showed that the maximum of the hoop stress moves away fiom the interface due to the 



relaxation and redistribution effects of the plastic flow of the matrix. The plastic strain was 

shown to be initiated at the interface at the locations with the smallest inter-fiber distances. 

A good agreement between the calculated and the measured plastic strains by means of 

Neutron Difhction and X-ray Diection techniques (Wright et al., cited by the authors) 

was reported. 

Generation of thermal residual stresses in SCS-6ni-24AI-I 1Nb composite during 

the manufacturing process was studied both experimentally and numerically by 

Rangaswamy et al. (1 994). The residual stresses measured by means of X-ray diEaction 

were compared to those obtained using the FEM approach. The X-ray technique measures 

the stresses on the free surface. Layers of the material were removed by an electropolishing 

technique to find the stress distribution in the interior of composites. The measurements 

showed that the axial and hoop stresses are tensile in the maeix. The profile of the 

measured values showed that the stresses decrease as the fiber plane is approached. This 

result was found to be in contrast to the 2-D d t s  obtained by other researches. This 

discrepancy was then attributed to microsbuctural features of the matrix examined by 

metallography of the electropolished surface. However, in a recently published study by 

Abedian et al. (1997), the nature of the stress distribution was attributed to the extensive 

plastic deformation of the matrix. More details about the nature of the stresses can be 

found in Chapter 7. 

Rangaswarny and Jayaraman (1994) also modeled their X-ray tests using the FEM 

approach. Material removal was simulated by the element birth/death option that will be 

explained in Chapter 3. A perfect interface was assumed. The von Mises yield criterion 

with associated flow rule and isotropic hardening were assumed. The analysis showed a 

stress concentration at the fiber end on the fiee d a c e .  The end effects diminished at a 

distance equal to about 3 fiber diameters from the fiber end. This effect was also explained 

by Abedian and Szyszkowski (1 997). 

Gdoutos et al. (1991) analyzed thennal stresses in Sic1606 1-A1 composite using 

concentric cylinder models. The deformation theory of plasticity was used in conjunction 



with the von Mises yield criterion and the isotropic hardening rule. A good agreement 

between the theoretical prediction and experimental measurement of the longitudinal and 

transverse thermal residual strains of the composite was found. 

The elasto-plastic analysis of thermal residual strases in SCS-6mi-24A1- 1 1% 

composite was also carried out by Coker et al. (1993). The finite difference method was 

used to analyze a representative volume element of the composite assuming generalized 

plane strain condition. The Prandd-Reuss relations were considered. The results matched 

the FEM solution of the problem. Despite considering isotropic strain hardening and also 

considering the fact that the matrix under consideration undergoes very high plastic 

deformation, no evidence of the strain hardening effect was presented and the equivalent 

stress simply followed the yield strength value of the unreinforced matrix available in the 

literature. The effect of the residual stresses on the thenno-mechanical fatigue loading 

which is normally the loading condition for this type of composites was also investigated. 

Both the in-phase and outsf-phase conditions were considered. A good correlation 

between modeling and experimental results was found. 

The effect of plastic flow of composite constituents on the stress state of fiber 

composites was studied by Hahn (1993) using a 3 concentric cylinder model to represent 

the fiber, coating, and matrix. The generalized plane strain condition was assumed. The 

study showed that the Tresca criterion is not sufficient for analysis of the plastic flow in the 

coating. The analytical solution for plastic flow of the coating in two planes was then 

developed using an approximate Prandtl-Reuss flow rule. 

Residual stress development in polymeric matrix composites during the cure phase 

was investigated by White and Hahn (1 9923. A model was developed to predict the effects 

of chemical and thermal strains during curing. The model included visco-plastic material 

response, chemical and thermal shrinkage effects, and mechanical property development 

during curing. The model developed required several material properties as the input. The 

characterization and the experimental tests were reported in a companion paper (White and 

Hahn, 1992b). 



2.7.2 Temperature Cycling of Unidirectional Composites 

A simplified analytical elastic analysis of unidirectional fiber composites under 

temperature cycling was performed by Misra (1993). The temperature dependent 

properties for both composite constituents were incorporated. Upon cooling, the radial, 

hoop, and axial stress components of the matrix were calculated. It was concluded that a 

more comprehensive study of the plasticity is required to understand the true nature of the 

stress components and the effective stress during the heating phase. 

A numericalexperimental study of temperature cycling of metal matrix composites 

was conducted by Wetherhold and Westfall (1988). The one-dimensional FEM study was 

performed using beam elements. The stresses in the fiber and matrix and also the plastic 

strain of the matrix were calculated during a temperature cycle. The results of the study 

suggested that exposing the composite to an additional tensile load might decrease the 

matrix cyclic plastic strain and thus decrease the damage. The tensile load may prevent the 

compressive load £kom reversing the plastic strain. The experimental tests conducted on 

the fibers revealed no difference in the strength between the as fabricated and the thermally 

cycled fibers. The major drawback of this study is the one-dimensional analysis of the 

stresses and strains. 

Moms et al. (1985) experimentally studied the effects of temperature cycling on the 

stress and deformation states of a polymeric matrix composite reinforced with graphite 

fibers. After a certain number of temperature cycles, the out-of-plane displacement of the 

matrix on the cross section of the composite, caused by heating the composite to a constant 

temperature level, was measured. The cut d a c e  of the composite revealed many cracks at 

the fibedmatrix interface. Cracking was least around the fibers in densely packed clusters. 

Cracks were observed at the interface where the inter-fiber distance (the distance to the 

neighboring fiber) was the largest (see Fig. 1.3). Morris et al. (1 98gb) and Biernacki (1 996) 

also observed such a cracking pattern. In the Monis et al. (1989,) study, the thermally 

cycled sample was sectioned and was heated again. It was observed that the fibers on the 

fiee d a c e  expanded in the radial direction and the epoxy sank into a trough. The depth of 



the trough was maximum at the center of the £iber triangle. The matrix deformation was 

opposite to what one would expect fkom the CTE mismatch of the fiber and matrix. This 

was attriiuted to thermal residual stresses. This study emphasized the history dependent 

behavior of the composite, but its major drawback was the lack of distinguishing between 

the characteristics of the fiee d a c e  and the interior of the composite. Also, the analysis 

of thermal stresses presented is inadequate in explaining the real cause of the unexpected 

displacements in the matrix. 

Thermal residual stresses in metal matrix composites reinforced with high or low 

modulus graphite fibers were studied by Cheong and Marcus (1987). The composites 

reinforced with PAN-based graphite fibers exhiiited high residual stresses, while the 

stresses were found to be low in composites with pitch-based high modulus graphite fibers. 

The free surface deformation of the composites during a temperature cycle was monitored. 

The convex cross section of the pitch-based fibers and the low residual stresses in the 

composite were related to the low longitudinal shear strength of the fibers. 

Comparing the Cheong and Marcus (1987) results with the results obtained by 

Morris et al. (1989,) a difference between the kee surface deformation of metal matrix and 

polymeric matrix composites reinforced with graphlte fibers can be noticed. Upon heating, 

the fibers of the polymeric composite sank in a trough, while for the metal matrix 

composite the fibers protruded. This could be due to the different history-related behaviors 

of the matrices. 

The response of magnesium matrix composites reinforced with different types of 

fibers (boron, silicon carbide, steel) to temperature cycling was investigated by 

Maksirnovich et al. (1988). The fibers were made by vapor-gas deposition of boron and 

silicon carbide on tungsten wires. The composite samples were cycled between 

+ 1 50°C and - l96OC either slowly or rapidly to induce thermal shock. Microscopy of the 

as-manufactured composite reinforced with boron fibers showed that 60% of the fibers 

contained cracks which were mostly initiated at the bomn/tungsten interface. However, no 

cracks were initially detected in silicon-carbidelmagnesium composite. The number of 



cracked fibers in both of the composites increased by increasing the number of temperature 

cycles. Some cracks were observed in the matrix. 

2.73 Creep Analysis of Unidirectional Composites 

The behavior of aluminum reinforced carbon composites under temperature cycling 

and an axial tensile mechanical mess, including creep strain, was examined by Fumess 

and Clyne (1991). 

An elastic-viscoplastic micromechanical analysis of SiCTTi-6M-4V composite was 

performed by Durodola and Ruiz (1993) utilizing FEM and using a rectangular fiber 

pattern. It was shown that the cooling procedure affected the final residual stresses highly. 

The stresses calculated under creep conditions were found to be much lower than those 

calculated based on elastic and elasto-plastic assumptions. This was attributed to the 

relaxation effkct of the creep phenomenon. The stresses calculated under the creep 

assumption were found to be in better agreement with the residual stresses in a thermally 

cycled sample measured by means of a neutron difhction technique. 

The effect of microstructural damage on flexural creep deformation of unidirectional 

composite materials was studied by Jeng and Yang (1993). The creep behavior of both 

unnotched and notched titanium matrix composites under constant load and at elevated 

temperatures was investigated. The unnotched composite sample exhibited a threestage 

creep behavior, i.e. primary, secondary, and tertiary creep. The creep power-law was used 

to quantify the relationship between the creep strain rate and maximum applied stress at 

the quasi-steady state creep region. The initiation and accumulation of the damage was 

related to the creep behavior of the composite. 

Cheng and Aravas (1997,) using 3-D constitutive equations have investigated the 

creep behavior of unidirectional composites. The creep strain calculated using the 

proposed constitutive equation was verified by 2-D FEM results obtained utilizing a 

hexagonal fiber pattern. The creep model was found to produce satisfactory results in 

predicting the creep behavior of a unidirectional composite system. 



The effects of the fiber damage on the creep behavior were also studied by the same 

authors (Cheng and Aravas, 19971,). The rnain drawback of the study was that constant and 

uniform stresses in the fiber and matrix were assumed. In addition, it was assumed that the 

corresponding axial strain in the fibers and the matrix are equal to the macroscopic strain 

of the wmposite. 

The momentary transverse creep behavior of thermoplastic polymer matrix 

composites has been studied by modifying a semi-empirical micromechanical model and 

also by means of the FEM approach by Wen et al. (1997). The visco-elastic tramverse 

compliance of the composite was calculated by applying the correspondence principle to 

the semi-empirical equation for the elastic transverse modulus of the composite proposed 

by Tsai-Hahn. The fiber was assumed to remain elastic. Good agreement was found 

between the predicted values using the micromechanical model and the experimental 

measurements. 

One-dimensional elasto-perfectly plastic and elasto-viscoplastic analyses of 

unidirectional composites subjected to varying temperatures were conducted by Daehn 

(1989). Both the fiber and the matrix were considered to deform plastically and undergo 

creep deformations obeying the power-law creep constitutive law. It was shown that the 

fiber volume hction has a considerable influence on the amount of the resulting plastic 

strain. Two loading cases were considered namely a sinusoidal temperature cycle with or 

without an external force. The external load affected the strain rate greatly. At low applied 

stresses, the thermally cycled composite showed much higher deformation rates than 

expected under the rule of mixtures based on isothermal properties. This can be attriiuted 

to high thermally induced stresses. This study excluded the transverse stress components 

fiom the calculations. 

The behavior of particle reinforced metal matrix composites under temperature 

cycling was investigated by Pickard and Derby (1991). The results of the study show@ a 

large decrease in the exponent of the stress in the power law creep characteristic of the 

composite during cycling. Chen et al. (1990) used this weakening effect of temperature 



cycling (when it is accompanied by a small external load) on particle and whisker 

reinforced metal matrix composites as a manufacturing procedure. Using this 

phenomenon, they could successfully shape the material into a dome-shape configuration 

without breaking the composite. This procedure generates large deformation in these types 

of composites. 

2.7.4 Methods of Reduction of Thermal Stresses in Unidirectional Composites 

The thermal residual stresses in unidirectional composites generated during 

manufacturing can be reduced by using high CTE fibers, fiber preheating, the compliant 

layer concept (which is defined later), appropriate curing and post-curing cycles, 

temperature cycling, and many other ways. 

The compliant layer concept was used by Arnold et al. (1992) and it involves an 

interface material inserted between the fiber and the matrix to reduce residual stresses. A 

parametric study was conducted concerning the properties of the interface material. The 

elastic modulus, yield strength, plastic modulus, CTE, and the thickness of the layer were 

considered as parameters. In particular, the radial, hoop, and axial stresses in the fiber, 

matrix, and the interface layer were calculated as a hc t ion  of the above parameters. 

The effects of temperature rate and also annealing at constant temperature on the 

residual stresses of modified 9Cr-1Mo steel matrix reinforced with W fibers (MMC3 

composite) were investigated by Yeh and Krempl (1993). Among different cooling 

histories tried, the stresses were found to be highest for the fastest cooling rates. However, 

the difference between the stresses h m  different cooling regimes was found to be 

negligible after about 30 days of storage time. Changing the cooling rate during processing 

was shown to have some effect on the stresses. Slow cooling rates from high temperatures 

followed by high cooling rates at lower temperatures were found to generate lower residual 

stresses. The study presented thas to reduce the room temperature residual stresses, an 

optimum cooling path for composites can be found. 



White and Hahn (1 993) studied reduction of thamal residual stresses in polymeric 

composites through optimization of the curing cycle. Three important parameters: time, 

temperature, and pressure were considered. The experimental measurements were 

compared to the calculated results obtained fiom an analytical model developed by the 

same authors (White and Hahn, 1992,). The effects of curing temperature and time, 

cooldown rates, cool-down pressure, and post-curing procedures were investigated. 

Reduction in residual stresses with decreasing curing temperature was clearly evident 

where the curvature of the samples showed a high decrease relative to the curvature 

induced by the manufactlaer's recommended cure (MRC). However, the degree of cuing 

was found much lower than the MRC and as a result the undercwed samples led to a 

reduction of the mechanical properties. It was also concluded that curing at lower 

temperatures for longer time can reduce the residual strases for thennosetting polymer 

systems compared to the MRC cycles. 

In this dissertation, the effects of temperature cycling and different cooling rates on 

the residual stress level are presented in Chapters 7 and 8. The influence of the f?ee d a c e  

geometry on the thermal stresses is considered in Chapter 9. 



3. FEM Modeling and Procedures 

3.1 Introduction 

For a realistic computer simulation of a physical problem by the FEM an accurate 

modeling of the geometry, the material, and the loads involved is necessary. On the other 

hand, the FEM model must be numerically manageable and optimized in order to avoid 

excessive computer time and storage space requirements. In this chapter, the important 

aspects of balancing the accuracy with the numerical efficiency of  the FEM analysis of 

unidirectional composites are discussed. 

3.2 Material Modeling 

Normally, in unidirectional composite materials, the fibers are made up of strong and 

rigid materials that carry most of the load and remain elastic during the normal service. On 

the other hand, most of the matrices that serve as a binder of the fibers are more ductile 

than the fibers, and may deform substantially. Due to the usually low yield strength of the 

matrices, the deformation may be inelastic. Also, since the processing temperature of the 

matrix is usually much lower than the melting temperature of the fibers, the creep 

processes are much more pronounced in the matrix. 

In general, any heating or cooling affects the stresses and subsequent deformation of 

composites. Cooling the composite fbm the processing temperature in the manufacturing 

phase introduces complex residual thennal stresses that may affect the properties and 

performance of the composite. Any transient temperature field may be associated with 

significant temperature gradients throughout the fibers and the matrix that can cause 

additional large stresses and deformations. 



In this study, it is assumed that the fibers are elastic. Elasto-plastic and creep 

properties are only considered for the matrix materials. The thermal properties related to 

heat transfer such as conductivity, convection, and capacitance coefficient are used in 

transient thermal stress problems. Radiation is not included. All the material data are 

assumed to be temperaturedependent. 

3.2.1 Elastic Behavior 

The fibers are assumed orthotropic with different mechanical properties and thermal 

expansion coefficients in the axid and transversa1 directions. The elastic behavior is, in 

general, characterized by the Young's modulus E(T) and the Poisson's ratio u O .  The 

dependence of these properties on temperature makes the analysis nonlinear. Some 

iterative procedure is required to obtain solutions. 

3.2.2 Elasto-Plastic Behavior 

The elasto-plastic behavior of the matrix material will be modeled using the elastic 

modulus E;O, the yield strength q0, and the plastic modulus E@') as shown in 

Fig. 3.l(a). Such a model is referred to as the bilinear model. The elasto-plastic behavior of 

matrix materials is characterized by the yield surface defmed for the whole temperature 

range. When the stress-strain characteristics of materials are temperaturedependent 

(Fig. 3.l(a)), the yield surface will change with temperature (Fig. 3.1(b)). For example, the 

yield surface will 

stronger at a 1owe1 
1250, 

1000. 

, 750- 

show an expansion with cooling of the material, i.e. material gets 

temperature. 

(a) (b) 
Fig. 3. 1 : Effect of temperature on the (a) the stress-strain characteristics 

(b) yield surface. 



The strain-hardening characteristic of materials will also change the yield smfaace. 

That is, in subsequent loading and unloading cycles, the material will yield at different 

stress levels if any plastic flow occurs during previous loading. Two types of hypotheses, 

the isotropic (work) hardening and the kinematic hardening theorems, are nonnally used to 

calculate the effect of the strain hardening phenomenon in materials. The isotropic 

hardening causes the yield d a c e  to expand uniformly. It assumes that the yield d a c e  

grows as shown in Fig. 3.l(b). Under kinematic hardening, it is assumed that the strain 

hardening pushes the yield d a c e  or simply translates the yield surface axes. The 

mathematical aspects of these two theories are discussed below. 

The 3-D constitutive relations representing the yield surface for the kinematic andor 

for the isotropic hardening are assumed in the form 

F(a, X ,  Y) = 0 (3.1) 

x = S Q ~ ~ E , ,  (3 4 

Y = ICd&,l (3-3) 

where a is the stress tensor (superscript T means transpose of the matrix), x represents 

plastic work in the isotropic hardening rule, y indicates translation tensor of the yield 

surface in the kinematic hardening rule, and denotes the plastic strain tensor. 

For isotropic hardening the yield surface is defined as - 

where S is the deviatoric stress tensor and 

6: 03  = CT$ (TI + 2% 6 ,  (TI 

where 

E, (TI kP (T) = 
E, (T) I-- 
Ee (TI 

Eq. (3.5) specifies the increase of the yield strength due to plastic deformation 

characterized by the parameter x and due to temperature T. 



The kinematic hardening rule is as follows 

3 
F = -(s-Y)~ (S - 7)- & (T) = 0 

2 

where the coefficient C in the translation tensor y is defined as 

Thus, the current yield surface is dependent on the temperature (since WT), EAT) and 

b(T) are functions of temperature) and the amount of plastic deformation accumulated. 

In the present study, both of these theories are incorporated into the numerical code 

for calculating the plastic strains in unidirectional composites. The bilinear stress-strain 

option of the ANSYS (a FEM commercial software) is used to model the stress-strain 

relations at d i f f i t  temperatures. 'This option can accommodate bilinear curves for up to 

six different temperature levels. A linear interpolation is performed to get the stress-strain 

characteristics for temperatures between any two consecutive cuntes. The temperature- 

dependent properties add to the complication of the calculation of the elasto-plastic 

process. Note that the temperature change may have hardening or softening effects on the 

yield strength while the plastic strain always causes hardening (see Fig. 3.1). For example, 

for cooling, the first curve marked as 4 represents the stress-strain characteristic of the 

composite as soon as it solidifies. When the matrix temperature is less than T6 but higher 

than T5, the stress-strain path travels to point B on the elastic section of the interpolated 

bilinear c w e  (see the dashed line in Fig. 3. l (a)). When the matrix temperature drops to 

T5, the stress-strain path reaches point C that is still on the elastic section of the bilinear 

c w e  Ts. The elastic process continues until the stresses reach the yield strength level at 

Tq Plastic deformation starts at point D and continues to E on the plastic section of the 

bilinear curve. The elasto-plastic process moves from one yield a w e  to another, kom D to 

E, using hardening and the characteristics interpolated between temperatures T4 and T3 and 

then between T3 and Tt. Depending on the changes in the material properties with 

temperature, plasticity may be either continued or terminated. When the increase in stress 

falls behind the increase in the yield strength, the stresses may end up again on the elastic 

part of the bilinear curve at point F. Then the process may remain elastic until room 



temperature is reached. Thus, despite the stress level rising continuously, the process may 

switch back and forth between the elastic and the plastic domains. 

Calculating the plastic strains with more accuracy is very important for 

determination of the residual stresses at service temperatures. The relaxation and 

redimibution of the stresses in subsequent temperature cycles are also highly dependent on 

the amount of plasticity. In general, high plastic deformations are associated with low 

residual stresses. Also, if the composite dimensional stability is of concem, a better 

estimation of the plastic is desirable. Moreover, overestimation of the plastic 

deformations gives a lower residual stress indication. This leaves some room for applying 

higher working (mechanical-thermal) loads than the composite load bearing capacity. 

Higher working loads may cause premature failure of composites. 

3.2.3 Creep 

Usually, rreep becomes significant for a certain combination of temperature and 

stress. Typically, the creep effects should be included only if T 2 0.4Tm, where T, is the 

melting temperature of the material. In composites, creep is considered meaningful only in 

the matrix material. 

In particular, during matrix solidification the creep phenomenon affects the residual 

stress state quite substantially. Also, under temperature cycling creep may be important. 

Understanding this phenomenon may help in controlling the level of thermal residual 

stresses in unidirectional composites by modifying diffaent heating and cooling regimes 

or utilizing different maximum and minimum temperature levels for post-cure thermal 

cycles. In the present work, the ANSYS creep capability is utilized to calculate the creep 

strain imposed on the matrix by different rates of temperature change. 

3.2-4 Transient ThermaI Stresses 

Thermal stresses in composites are generated mainly by the mismatch in mechanid 

and thermal properties of the fiber and the matrix, specifically the mismatch in CTE. 



Another source of thermal stresses is temperature @at .  In general, temperature 

distri'bution depends on the difference in thermal properties of the constituents like thermal 

conductivity (k), thermal capacity (C), and density (p), especially for the transient process. 

For example, a material with high thermal conductivity experiences a high volume of heat 

transfared to the areas with low temperature in a short time. Hence, creating a high 

temperature gradient in the vicinity of the materials with lower k which would serve as a 

heat source. Also, a uniform temperature distribution throughout the material is achieved 

in a shorter time for high k. 

The transient thermal behavior of the composite constituents and the effects of the 

thermal properties of the composites on the stresses are discussed in Chapters 4 and 9. 

3 3  Geometry Modeling 

It is usually assumed that the fibers are dispersed in the matrix in a regular pattern 

for a 3-D FEM modeling of composites. Considering the symmetric aspects of the fiber 

distribution in a composite leads to a representative volume or a unit cell. Regarding the 

symmetry surfaces of the unit cells, the corresponding prism model can be established for 

each pattern shown in Fig. 3.2. The whole composite can be rebuilt repeating each one of 

these unit cells. The fiber volume hction (Vf) for each particular pattern in terms of the 

fiber radius (r) and the parameter (a) representing the distance between the fibers, is given 

as 

vf = p( r/a )2. (3-9) 

For a given ratio of ( r/a ), the fiber volume hc t ion  decreases fkom pattern A to pattern C. 

Values of the coefficient /3 can be easily calculated: B= 2 IT /fi for pattern A, P = K for 

pattern B, and p = (4n)/(3 a) for pattern C. Here, the unit cell of a regular hexagonal 

pattern of long and straight fibers of cirdar section is modeled by a 3-D prism as shown 

in Fig. 3.3. The details of the FEM meshing? types of elements, boundary conditions, and 

model dimensions will be discussed in the following subsections. 



(A) 

Fig. 3.2: Various fiber packing arrangements in unidirectional composites. 
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Fig. 3.3: 3-D FEM prism model. 



The stress and deformation patterns become independent of the location along the 

longitudinal axis away fiom the f i e  d a c e .  Therefore, 2-D plane strain or gendized 

plane strain analysis on be performed to model the interior of composites. Since no 

in-depth meshing is required in 2-D models, one can include more than one fiber in the 

model. Essentially, this type of modeling is used to analyze non-regular fiber distribution. 

The analysis of somewhat random fiber distribution by Fletcher and Oakeshott (1 99%) has 

shown that the maximum stresses are close to the stresses of a similar composite with 

regular fiber distribution of the hexagonal pattern. Also, a comprehensive study of the 2-D 

models presented by Fletcher and Oakeshott (1994,) shows that the maximum principal 

and von-Mses stresses in composites are low for high values of P (i.e. the stresses in the 

hexagonal array of fibers (pattern A) are lower than in the other patterns). Note that in 

comparison to other models, each fiber in the hexagonal pattern is surrounded by the 

highest number of neighboring fibers. As suggested by Chandra and Xie (1993), this 

higher number of neighboring fibers increases the in-plane shear stress and reduces the 

radial stress that is of more interest here. 

3.3.1 Details of the 3-D Model 

As discussed earlier, fibers and matrices in composites have different 

thennomechanical properties. Due to material discontinuity, very high stresses may be 

generated at and near the interface. Such a situation should be reflected in a preliminary 

FEM mesh. Since the stress gradients are expected to be low in the central part of the fiber, 

larger and bear elements (8-noded isoparametric bricks) are used in th is  area as shown in 

Fig. 3.4. A dense mesh is applied in the vicinity of the interface in both the fiber and the 

matrix. Due to the large stress gmchents expected at and near the interface, quadratic 

elements (20-noded isoparametric bricks) are employed. Again, 8-noded linear brick 

elements are used for the matrix in the areas away fiom the interface. The mesh density 

and the types of elements that were employed may be revised by paforming an analysis of 

the stress discontinuity between the elements. A denser mesh with quadratic isoparametric 

elements may be used in the areas with a higher stress discontinuity. 



For more accurate simulation of the behavior of the composite represented by the prism 

model, proper boundary conditions (B.C.) should be imposed. For a fiber sufficiently distant from 

the side-edge of the composite (typically two-three rows of fibers), several symmetry planes can 

be identified as shown in Fig. 3.3. These symmetry planes simulate the effects of the neighboring 

fibers on the fiber under consideration. Therefore, the corresponding B.C. should be imposed on 

ail symmetry planes. The nodes on Iine 00' (shown in Fig. 3.4) are restrained in the X and Y 

directions while the nodes on the OO'B'B surface are restrained in the Xdirection. The AA'B'B 

surface remains planar. The nodes on the OO'A'A surface are dlowed to move in the OAdirection 

only. The surface AOB is assumed to remain planar during the cooIing process to represent a plane 

of symmetry in the middIe of the prism. The surface A'O'B' represents a free surface and the nodes 

on this surface (except the boundaries) are free to deform in any direction. 

C ylindricai 
- . . . . - . - - coordinate system 
Full Model 

od' - 4 *-- 

Fig. 3.4: The 3-D prism model and FEM meshing. 

Analysis of a f i r  at the side-edge of the composite (edge-fiber) is much more 

complex than that of the internal fibers (see Fig. 3.3) due to lack of symmetry planes. An 

approximation of the stresddefonnation state in such a fiber can be obtained by retaining 

all previous symmetry planes but leaving the surface AAB'B h e .  



For a transient thermal analysis, the B.C. for the temperature and the heat flux must 

be imposed. When heating or cooling a composite7 the edge-fibas have adiabatic B.C. (no 

heat flux) on all planes of symmetry. Also, the free d a c e  O'A'B' is the only d a c e  

through which the heat t o b m  a medium is discharged/received through convection. 

Therefore, the convection B.C. should be applied on this face of the model. For the edge- 

fibers, the convection B.C. is also applied on the surface AA'B'B. 

To perform a coupled thermal-stress analysis, the meshing of the thamal elements 

(for the thermal analysis) and the meshing of the structural elements (for the stress 

analysis) are identical. Normally, a less dense mesh is needed for the thmd analysis than 

for the stress analysis due to the lower mismatch between the thermal properties of the 

composite constituents. 

3.3.2 Dimensions of the 3-D Model 

The fiber diameter and the fiber volume hction (the ratio of entire fiber volume to 

the total composite volume) define the dimensions of the 3-D model in the X-Y plane. In 

particular, the parameter 'a' in Eq. (3.9), which characterizes the width of the prism, is 

easy to find. However, the length of the model should be selected such that the model is as 

short as possible but is capable of representing both the vicinity of the free surface (the end 

zone) and the region distant from the fke surface (the inner zone), even for very long 

fibers. 

The length of the prism can be selected by observing the longitudinal interfacial 

shear stresses. These stresses decay substantially when moving away from the f?ee surface 

and become negligible in the inner zone. Consequently, the axial strain component (in the 

zdirection) remains constant sufficiently away from the £ke d a c e  and is practically 

independent of the fiber length. This state of generalized plane strain dominates in the rest 

of the composite. In order to represent both zones in the FEM analysis, the model must be 

long enough for the longitudinal shear stress to disappear. Therefore, several models with 

different lengths were considered in order to identify the ideal length for the model in 

terms of the accuracy of the stresses and computational effort. The longitudinal shear and 



axial stresses at the distance of one fiber diameter h m  the plane of symmetry (the surface 

OAB in Fig. 3.4) for all the models were monitored. Typical dependence of these stresses 

on the model length is shown in Fig. 3.5. The shear stress decays to zero at a distance of 

about 2.5 fiber diameters h m  the free surface (see Fig. 3.5(a)). The results reported by 

Naim (1985) and Ostrowski et ai. (1984) suggested that the minimum length equal to five 

fiber diameters for decaying the longitudinal shear stress was required. The axial stress at 

the plane of s p e w  for a sufficiently long model should converge to a Lame type 

solution. Analytically, this solution can be obtained by assuming a generalized plane strain 

state and solving Eq. (A. 12) that is characteristic for the inner zone. Numerically, the inner 

zone solution can be determined by coupling the fkee surface nodes in the longitudinal 

direction. Fig. 3.5(b) shows how the calculated axial stresses for the model of a given 

length converge to the axial stresses obtained &om the Lame solution. The graphs in 

Figs. 3.5(a) and (b) indicate that increasing the model length leads to a faster decrease in 

the shear stress than in the discrepancy between the calculated axial stress and the Lame 

stresses. Typically, when choosing a model about 3 fiber diameters long, the longitudinal 

shear stress practicaily vanishes (less than 0.05%) while the axial stress deviates h m  the 

Lame solution by less than 5%. 
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Fig. 3. 5: Normal axial and longitudinal shear stress components 
as a function of model length. 

Here, in order to ensure that the numerical model is capable of simulating the fiber 

end and the stress state away h m  the fiber end, the length of the model is assumed to be 

equal to about five fiber diameters. 



3 3 3  Sub-Modeling Procedure 

A high number of elements should be used along the model length in order to 

provide a reasonable aspect ratio for the elements. Any further mesh refinement (the 

h-refinement) in the end zone might run out of computer resource limits. Therefore, in the 

present study, the h-refinement was performed by utilizing the sub-modeling capability of 

the ANSYS software, which allows a smaller portion of a previously analyzed model to be 

remeshed with smaller elements (see Fig. 3.6). 
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Fig. 3.6: Sub-modeling procedure. 

Repeating this procedure several times, element sizes equal to 1/62000 of the fiber 

radius were implemented to mesh the fibedmatrix interface at the fiee surface. This degree 

of h-refinement was required to study rapid stress variations in this area. 

33.4 Element Birth and Death 

To analyze the effects of any material adding/removing (machining some part of a 

material, casting or attaching new materials) the element birth and death capability of 

ANSYS is used. This option allows for adding or removing any number of elements 

during the solution phase of the calculations. For example, in stress analysis, the s t i f i s  

of the killed (or deactivated) elements is severely reduced or, in thermal analysis, the heat 

capacity of the elements is reduced and their thermal conductivity is highly increasd 



More details about element birth and death procedure can be found in the ANSYS User's 

Manual (1996). 

33.5 Axis ymmetric Models 

In the prism model, the highest stresses occur at the free surface in the narrow band 

near the fibedmatrix interface. These stresses vary only a little along the fiber 

circderence (see Chapter 5). This phenomenon is fieqtiently used to reduce the 

calculation time by replacing the prism model by the corresponding axisymmetric model 

(Fig. 3.7). The stress/deformation states in the area of stress concentration for both models 

are very similar. The axisymmetric model allows for very dense meshing of the stress 

concentration zone. 

The difference between the two types of models and their accuracy are discwed in 

the next chapters. The results of the thermal transient analysis of the two models are 

compared in Chapter 4, section 4.4 and the thermal stresses in both models will be 

discussed in Chapter 5. 

Similar to the 3-D model presented in section 3.3.1, a very dense mesh is used at the 

fibedmatrix interface in the vicinity of the free d a c e  of the axisyrnrnetric model. Much 

coarser mesh is used in both the fiber and the matrix in the inner zone. The details of the 

axisyrnrneaic model, with the boundary conditions and the mesh configuration, are shown 

in Fig. 3.8. For meshing the model, 8-noded axisymmetric quadratic isoparametric 

elements are used. Since the number of degrees of freedom for axisymmetric models is 

much less than for the 3-D model, this quadratic element is used for meshing the entire 

model. The fkee d a c e  is represented by line DAM. 

The model is selected to be sufficiently long so that the effects of the fiee d a c e  on 

the other end of the model ( h e  CBM) are negligible. The boundmy conditions along 

CBM correspond to a generalized plane strain state characterization for the composite 

away from the fke surface. The nodes on line MM are assumed to be coupled. Coupling 

the nodes along line MM in the radial direction results in the nodes being restrained 



against the relative movement in this direction. This keeps the line straight at all times. The 

coupling assumption simulates the effects of an adjacent fiber on line MM. For 

edge-fibers, the nodes on line MM are not restmined by this boundary condition. For 

thermal analysis of internal fibers, an adiabatic boundary condition is assumed on all edges 

of the model except line DAM (shown in Fig. 3.8) that remains free with the convection 

coefficient applied on this line- 

3-D model Axlsymmerric model 
b) c) 

Fig. 3. 7: The 3-D prism and Axisymmetric models. 

2 1 Frte Surface 

a) Axisymmetric model b) FEM mesh 

Fig. 3.8:  Axisymmetric model and FEM meshing. 



4. Thermal Transient Analysis 

4.1 Introduction 

Rapid changes in the temperature surrounding composites may cause sharp 

temperature gradients inside the material. To simulate such situations and to determine the 

corresponding thermal stresses a transient analysis is required. Such an analysis is 

especially important in determining the thermal stresses generated in composite materials 

during cooling from the processing ternperatwe or the service temperatures. In this 

chapter, the thermal transient analyses of unidirectional composites by means of the prism 

and the axisymmetric models will be used to determine the temperature gradients that may 

occur during the cooling process. 

For better understanding of the heat transfer mechanism in composites, the 

temperature distribution in a highly conductive fiber bonded to an almost insulating matrix 

will be discussed first. in order to investigate the effect of the model length on the results 

of the thermal analysis it is assumed that the model length is about 20 times of the fiber 

diameter. This length is six times longer than the model length required for the stress 

analysis discussed in Chapter 3. The analysis will be repeated for a model with the length 

required for the stress analysis. 

A high mismatch in thermal capacity (C) of the fiber and the matrix, typically 

observed in the carbon fibedpolymeric matrix composites, will be assumed to investigate 

the effects of mismatch in thermal capacitance on the temperature distribution. The 

thermal behavior of metal matrix composites where the fiber and the matrix both are vay 

good thennal conductors will also be considered. Polymeric matrix composites that have 

relatively higher thermal conductivity mismatch than metal matrix composites will also be 

discussed. Finally, the results of the 3-D model will be compared to those of the 

axisyrnrnetric model. 



4.2 Effects of the Mismatch in Thermal Properties of Composite Constituents 

For transient processes, the thermal conductivity and thermal capacity of composite 

constituents play a key role in temperature distribution throughout composite materials. A 

combination of a high thermal conductivity fiber with a very low thermal conductivity 

matrix is used to analyze the mechanism of heat transfer along the fiber length. The length 

of the model is considered to be 20 times of the fiber diameter. It is assumed that the 

composite at uniform temperature of 900°C is placed in air of temperature 20°C. The 

thermal properties of the constituents are presented in Table 4.1. The 3-D prism model 

with the dimensions corresponding to the SCS-6 fibers is utilized. The diameters of the 

graphite and SCS-6 fibers are 7 . 6 2 ~  and 1 4 0 ~  respectively, and the fiber volume 

hction is set at 35%. The lateral dimension of the model is then determined by Eq. (3.9). 

Table 4.1 : Thermal properties of various composite components. 
Graphite* EPOXY* SCS-6* Ti-6AI-4V** 

kt 

K ~ . C ~ ~ / ( ~ K - S ~ )  8 . 3 6 ~  1 o6 1.8x105 16x10~ 7x10~ 

C ~ " K s 3 )  838.4~10 '~  1048x10'~ 1200x10'~ 590x10" 

p (ISg/pn3) 1.7475xl0-'~ 1.2759~1 0-l5 3 . 3 2 ~ 1 0 ' ~ ~  4 .4~10"~  

* Weeton et ai. ( 1987) and ** Grayson (1  983). 

Cooling of such a model in air from processing temperature of 900°C takes a long 

time. The temperature distribution profile of the composite after 500 seconds of cooling in 

air is shown in Figs. 4.1 (a) and (b). Due to the symmetrical geometry of the model, all the 

model sides are considered to be adiabatic except the fke d a c e  which discharges the 

heat to the air through convection. A uniform temperature is seen along the fiber length as 

the fiber has a very high conductivity. Due to the low matrix conductivity, the heat flow is 

slow in the matrix, so the layers of the matrix which are closer to the h e  surface lose more 

heat than the interior layers, Fig. 4.1 (c). 
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Fig. 4.1 : (a)-@) Temperature distribution after SOOsec cooling in air, 
(c) temperature profiles in the interior and at the fkee surface with time, 

and (d) temperature gradient along the fiber length. 



As the graphs show, the nodes on the fkee d a c e  and away fkom the fiber (A' and 

B') are cooled very fast while the nodes on the interior surface (A, B, P I )  and the nodes on 

the eee surface but close to the fiber (i.e. PII) are cooled rather slowly. The heat fkom the 

interior layers of the matrix does not travel fast enough to compensate for the heat lost by 

the fkee surface layers to the air, so a large temperature @ent occurs dong the fiber 

length in the matrix (Fig. 4.l(d)). The temperature at the interior layers of the matrix is 

similar to the fiber temperature. This is due to the fact that the interior layers of the matrix 

serve as a heat source. These layers control the fiber temperature. The heat from the 

interior layers moves slowly to the fiber and rapidly discharges to the air. A small 

transverse temperame gradient is seen in the matrix near the interface in the interior layers 

due to the small radial dimension of the model compared to the axial dimension. The fiber 

that acts as  a heat pipe also lduences the temperature of the matrix layers close to the 

interface near the fiee surface. The temperature diffaence between points A and A' is 

higher than the difference in temperatures at B and B'. On d a c e  OAB, the shorter 

distance of B to the fiber than A causes the temperature at B to drop faster. However, at the 

fke d a c e ,  the higher distance of A' to the fiber than B' causes less fiber influence on A' 

than B'. Thus the minimum temperature in the matrix occurs away &om the interface on 

the fiee surface (i-e. at A'). 

The cooling process is long, and steady state is reached when the temperature of the 

interior layers of the matrix drops to room temperature. The temperature gradient will be 

steeper and the cooling process will be longer for composites with matrices that have 

lower thema1 conductivity and higher thermal capacity. The ternperature around the 

fiberlmatrix interface at the free surface is uniform (Fig. 4.l(b)). This is also due to the 

influence of the fiber temperature on the matrix at the intdace. Therefore, this kind of 

thermal behavior may affect the matrix expansion and contraction along line AA'. This 

thermal behavior is more noticeable when the composite undergoes a thermal cycling load. 

Two diffkrent temperature cycling schemes were considered. In the first scheme, the 

composite sample is moving back and forth between hot and cold reservoirs. In this way, 

the sample is heated and subsequently cooled in h e  convection. For the second scheme, 



the sample is heated and cooled at constant temperature rates with prescribed temperatures 

applied to the nodes on the fke surface (surface O'AB'). In this scheme the heat is 

transferred through conduction only. 

A plot of the temperature profiles with time under the first loading condition for 

points P'l, A', and B' on the fke d a c e  and Pl, A, and B on the interior d a c e  are shown 

in Fig. 4.2. The temperature profiles of points P 1, A, and B show a big time delay. Due to 

the insulating behavior of the matrix it takes a long time for the temperature of the interior 

layer to reach the heatingholing temperature of the medium. Also, the fiber near the free 

d a c e  at PtI shows the same time delay as  the interior layer of the matrix. However, A' 

and Bt on the fiee surface follow the medium temperature closely. They lose and gain heat 

very quickly because heat transfer between these points and the medium occurs at a higher 

rate than that with the rest of the model. This is due to the very low conductivity of the 

matrix. 

0 loo0 2000 3000 4000 so00 6000 
Time (sec) 

Fig. 4.2: Time-temperature profiles in the interior and at the kee d a c e  of 
the 3-D model thermally cycled assuming fkee convection. 

For the second temperature cycling scheme, the fiee d a c e  temperature is the same 

for the fiber and the matrix. The calmfated temperature of the interior layer (Fig. 4.3) 

follows the fiee sUTface temperature with a small delay due to the low conductivity of the 

matrix. It is noted that the delay is not as significant as for the first scheme. That is because 

the h e  d a c e  temperature of the fiber is fixed and in this case it is the fiber that supplies 

the heat to the interior layer and controls its temperature. The fiber supplies a large amount 



of heat into the matrix. The difference between the matrix and the medium temperature is 

so small that it may be ignored. 

0 loo0 2000 3000 4000 5000 6000 

Time (sec) 

Fig. 4.3: Time-temperature profiles in the interior and at the free surface of the 
3-D model thermally cycled assuming forced heatingkooling convection. 

For the case of cooling the composite fkom the processing temperature, a plot of the 

temperature dong the matrix edge (line AA', Fig. 4.l(d)) shows that the steepest 

temperature gradient appears dong the length which is limited to about 3 to 5 fiber 

diameters from the fke surface. This length is similar to the model length required for 

structural analysis as discussed in Chapter 3. To examine the possibility of improving the 

numeric. efficiency, the thermal analysis was repeated for a model of 1/6th of the length 

of the original model (short model). 

The temperature distribution during the cooling period for the short model shows 

that a temperature gradient indeed occurs along most of the length of the model, but the 

deepest descent is located closer to the fi-ee d a c e  (see Fig. 4.4). Comparing the 

temperature gradient for the short model with that of the long model shown in Fig. 4.l(d) 

one can conclude that the temperature gradient depends on the model length only for a 

matrix with extremely low conductivity. Longer models are capable of storing more heat. 

Due to the low matrix conductivity assumed, the heat travels very slowly fkom one 

location to another causing a very high difference in the temperature along the length and 

producing much steeper temperature gradumts. For short models, due to adiabatic 



conditions assumed along the interior and the side boundaries and the low heat storage a 

lower temperature gradient is generated along the model length. 

160 1 1 ~ ~ 1 1 1 1  Along Iine AA' I 
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Fig. 4.4: Temperature gradient along the length of the short model. 

To find the effects of thermal capacitance mismatch of the fiber and the matrix on 

the temperature gradient throughout composites, the analysis of the short model was 

repeated with the thermal capacitance for the fiber reduced by 1 o6 times. Note that with 

reducing C for the fiber, the mismatch in C of the fiber and matrix is increased. Table 4.2 

shows the temperature at points A', B', B, and A after 500 seconds for the previous analysis 

and for the current analysis with C for the fiber being 1 o6 times smaller. 

Table 4.2: Effect of mismatch in thermal capacitance on the temperature distribution. 

Mismatch in C A' (T) A ('C) B' (OC) B (OC) A - A' (OC) B - B' (OC) 
High 22.77 66.76 22.99 62.57 43.99 39.58 

Low 28.05 148.46 28.93 140.73 120.4 1 11 1.80 
- .- . -- - - 

It seems that the temperature gradient along both lines AA' and BB' is reduced with 

increasing the mismatch in C of the composite constituents. The difference between the 

temperature at locations A and A' and B and B' (the columns marked with A-A' and B-B', 

respectively) are much lower for the case with higher mismatch in C. Fibers with high 

thermal capacitance store more heat than the fibers with low C. Therefore, it takes more 

time for the fiber to lose its heat to the cooling medium. However, when C for the fiber is 



low, it discharges most of the heat it receives fiom the matrix to the surrounding medium. 

It appears that the thermal capacitance and thermal conductivity mismatches of composite 

constituents have opposite effects. The high mismatch in k increases the temperature 

gradient throughout the composite, while the increase in the mismatch of C decreases the 

temperature @ent 

4 3  Thermal Transient Analysis of Metallic and Polymeric Matrix Composites 

Thermal analysis of a composite with its matrix having very low conductivity 

showed that a temperature gradient occurs along the length of both short and long models. 

The temperature gradient was reduced when the mismatch of the thermal capacitance of 

the composite constituents increased. In this section, the thermal behaviors of SCS-6/T- 

6N4V and graphitdepoxy composites are analyzed. 

Due to the low mismatch in k and high mismatch in C of SCSd fibers with the 

Ti-6M4V matrix (Table 4.1), it seems that the temperature p d ~ e n t  throughout the 

composite is negligible. The composite is cooled fiom the processing temperature of 

900°C in fke convection. The time-temperature profiles of points PI, A, B (on the interior 

surface) and P',, A', B' (on the free surface) presented in Fig. 4.5 indicate uniform 

temperature almost everywhere in the composite. It is noted that the difference between the 

minimum and the maximum temperatures is less than 1°C, which is negligible. 

0 50 100 150 200 250 300 350 400 450 m 
Time (sec) 

Fig. 4.5: Time-temperature profiles in the interior and at the 
free surface of the SCS-6/Ti-6AMV composite. 



The minimum temperature occurs on the free surface at point A' (which has the maximum 

distance to the fiber) and the maximum temperature occurs at A on the interior d a c e .  

Thermal analysis of polymeric matrix composite is presented here. For comparison 

with previous results, this composite is also cooled from 900°C. Since the graphitdepoxy 

composite has higher k and lower C mismatches than the metal matrix composite (Table 

4-11? a higher temperature gradient is expected in the former than the latter. However, as 

Fig. 4.6 shows, the temperature values for the free surface and the interior layers of the 

composite are almost the same, i.e. the temperature gradient is negligible for this 

polymeric composite for the dimensions considered here. One reason for this unexpected 

result could be the low lateral dimension of the model due to the very small diameter of the 

graphite fiber (7.62 p). This small fiber diameter accompanied by a 3 5% fiber volume 

hct ion dictates a very small lateral size for the model (see Eq. (3.9)). This small lateral 

size makes the fiber thermal conductivity a dominant factor. As a result, the temperature of 

the composite is fully cuntrolled by the fiber. Since the longitudinal thermal conductivity 

of the graphite fiber is almost 6 times higher than SCS-6 fiber and the diameter of graphite 

is small compared to that of the SCS-6 fiber (140 p), the graphitdepoxy composite cools 

down faster than the SCS-6/Ti-6Al-4V composite (see Figs. 4.6 and 4.5). 

0 1 o 2 o 3 o 4 o s o 6 o m 8 o w  
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Fig. 4.6: Time-temperature profiles in the interior and at the kee 
surface of the graphite/epoxy composite. 

To see how the model length affects the temperature @ent in polymeric matrix 

composites, the analysis was repeated for a model with 6 times longer length. According to 

the time-temperature profiles of the aforementioned points both on the fiee d a c e  and the 



interior layer of the model (Fig. 4.7), the temperature gradient is again negligible. The only 

difference between the long and the short model is the longer time, which the long model 

needs to cool down to room temperature. This is due to the dependence of the stored heat 

in the composite on the model sizes. 

From these analyses, it can be concluded that the temperature gradient for metallic 

and polymeric composites is almost negligible for the model length required for thermal- 

stress analysis. The temperature gradient is higher inside the composite that may change 

the stresses in the inner zone. However, such a change is not very significant. Therefore, in 

most of the elasto-plastic stress analyses, a uniform temperature can be considered for 

calculating the stresses for slow cooling rates. Only for visco-elastic analyses, in which the 

time directly affkcts the strain-stress relations, the rate of coolingmeating may influence 

creep deformation and final residual stress states. 
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Fig. 4.7: Time-temperature profiles in the interior and at the 
free surface of the long graphitdepoxy composite model. 

4.4 Thermal Transient Analysis of the &isymmetric Model 

As it was discussed in Chapter 3, the 3-D model may be replaced with an 

axisymmetric model but the accuracy of the analysis must be examined with the numerical 

effort. The axisymmetric model may be utilized when a very fine mesh is required and the 

computer resources are limited, or some simpli+g assumptions do not affect 

significantly the accuracy but reduce the time and the cost of the calculations. Here, the 



thermal transient analysis of the axisymmetric model is presented as the first test case and 

the results are compared to those of the 3-D model. In this section, the analysis of the 

composite with the very low conductivity matrix is repeated by using the axisyrnrnetrk 

model. The model is meshed with similar element sizes as those used in the 3-D model. 

Similar model dimensions and fiber volume fraction are also considered. 

The contour plot of the temperature (Fig. 4.8) shows a similar distribution as  for the 

3-D model (Fig. l.l(a)). The same reasoning as discussed in section 4.2, is valid. The 

temperature profile along line MM' (Fig. 4.9) of the axisymmetric model lies between 

those of lines AA' and BB' of the 3-D model. The reason is that the axisymrnetric model 

ignores the small matrix area confined between the hexagonal fiber cluster (see Fig. 3.7). 

Therefore, for Vf similar to the 3-D model, the distance of M' on the axisymmetric model 

to the fiber would be the average of the distances of A' and B' to the fiber for the 3-D 

model. Since the matrix behaves as  an insulator, the distance of a location on the matrix to 

the fiber has a substantial effect on the temperature at that particular point. This 

temperature difference can affect the out of plane deformation of the matrix. This is one of 

those thermal details, which is ignored if the 3-D model is replaced with an axisymmetric 

model. Fortunately, this temperature difference is small for both metallic and polymeric 

matrix composites and its effect on the thermal gradient and the residual thermal stresses is 

negligible. 
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Fig. 4.8: Temperature distribution for the axisymmetric model. 
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Fig. 4.9: Temperature profile along line MM'. 



3-D Elastic Analysis 

5.1 Introduction 

The thermal transient analysis presented in Chapter 4 showed that, due to the high 

thexmal conductivity of the fibers that act as heat pipes, in the composite heated or cooled 

with sufficiently slow rate, the temperature gradients are small and the temperature is 

increasing or decreasing almost uniformly. Consequently, any thermal stress effects 

should be attributed to such a uniform temperature change and to the mismatch in the 

thermal expansion coefficient of the fiber and the matrix. In order to understand this 

phenomenon the elastic stress analysis under 1°C uniform temperature change is 

presented in this chapter. This unit temperature change is considered as a nomind thermal 

loading. Such a loading provides all the information about the thermal stress distribution 

due to the mismatch of the CTE without affecting any of the mechanical properties of the 

composite constituents. To estimate the stress magnitudes corresponding to a specified 

temperature increment (and if the variation of mechanical properties of both constituents 

within the temperature range considered is negligible and if the yield strength is not 

reached) one should multiply the values shown on the plots by this temperature increment. 

The results presented here were obtained for graphite (AS)/epoxy (IMHS) composite with 

35% fiber volume hction. The properties of the materials are listed in Table 5.1. Note 

that, in general, the fiber is assumed axisymmetrically orthotropic with subscripts 1 and t 

denoting the axial and transversal directions, respectively. The minor values of Poisson's 

ratios are denoted as v. and v.. Formally, in terms of the coordinate systems shown in 

Fig. 5.1 the following applies: v. = v. and v. = v, = v,. In this study, the models with a 

length of 4 fiber diameters were used for the 3-D analysis. The diameter of graphite fiber 

is set at 7.62 p. 



Table 5.1 : Properties of the composite constituents used in the analysis 
Weeton et al. (1987). 
AS IMLS IMHS Polyamide 

E, ( GPa) 2 14 3.4 3.4 3 -4 

AS = Graphiu: fiber, MIS = htcrmcdiatc modulus low strength 
epoxy: iMHS = in- modulus High mcngth epoxy. 

Middle 
FuII Model Y -  S I urface 

Fig. 5.1 : Configuration of the 3-D prism model. 

The analysis shows that the stress distribution near the free surface (the end zone) is 

substantially different from the stresses in the inner zone. The inner and the end zone 

divisions of the 3-D prism model were discussed in Chapter 3. The characteristic features 

of the stress distributions in both zones are presented separately. The effect of the fiber 

volume fraction Vf (8.31 to 66.6%) is also investigated. It will be shown that the stresses 

change with Vf. Composites with higher Vf have lower interfacial thermal stresses in the 

end zone compared to the composites with low Vf. However, in the inner zone, Vf will 

decrease some of the stress components while it increases the others. In addition, the 

composite dimensional stability i.e. the axial and transversal displacements are discussed. 

The results obtained by the axisymmetric model will be compared to the results obtained 

from the corresponding 3-D model. 



5.2 h e r  Zone 

As explained in Chapter 3, the boundary conditions of the ABBtA' surface can 

determine whether the modeled fiber is away from the composite side edge or at the side 

edge. Such fibers are referred to as the internal-fiber and the edge-fiber, respectively. 

When the nodes on this surface are free (i.e. no restraining effect is applied on this surface 

by the neighboring fiber) the conditions for a fiber at the side edge of the composite 

prevails. It should also be mentioned that the main objective here is to determine the stress 

and deformation states of the internal fiber. Unless the edge fiber is mentioned. this 

chapter deals with the internal fiber. 

The behavior of the inner zone is characteristic for the portion of the model where 

general plane strain state dominates. In this zone, the longitudinal interfacial shear stresses 

disappear and the stress components are independent of the location along the fiber. This 

solution is valid for an infinitely long fiber. In the prism model the stresses depend on the 

circumferential position around the fiber. The axial. radial, hoop, and equivalent von 

Mises stresses in the matrix on surface OAB at the interface as functions of angle 0 are 

presented in Figs. 5.2(a-d). For comparison, similar stress components in the matrix for 

the edge-fiber are indicated with the broken lines. The stresses in the fiber along the 

interface are shown in Fig. 5.2(e). 

Under a positive temperature change, the matrix expands more than the fiber due to 

its higher CTE value. In order to maintain continuity in the radial direction, a tensile radial 

stress must develop at the fiberlmatrix interface (Fig. 5.2(b)). For continuity in the axial 

direction, the matrix has to be compressed (Fig. 5.2(a)) and the fiber must be stretched 

(Fig. 5.2(e)). For similar reasons, the hoop stresses are tensile in the fiber (Fig. 5.2(e)) and 

compressive in the matrix (Fig. 5.2(c)). A small in-plane shear stress also occurs at the 

interface. 

Upon cooling, the sign of the stresses would be reversed. The matrix will experience 

high tensile hoop stress, which may cause the matrix to craze and crack around 

However, the compressive radial stress will reinforce the fiberlmatrix interfacial 

the fiber. 

bond. As 



discussed in Chapter 2, the interfacial stresses reported by Sottos et al. (1989) are not in 

full agreement with the results shown here. Much higher axial stress for the matrix relative 

to that of the fiber was reported. Also, the stress components in the fiber and matrix were 

of the same sign. 
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Fig. 5.2: The inner zone stress components in the fiber and matrix 
on surface OAB at the interface. 
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The other difference is related to the Iocation of the maximum and minimum of 

radial stress. According to Soaos et al. (1989) and Szyszkowski and King (1995). a lower 

Vr results in higher interfacial stresses. Higher stresses in the areas with higher fiber 

distance to the neighboring fiber have been attributed to a lower local fiber volume 

fraction in these areas. The local fiber volume fraction is defined as the square of the ratio 

of fiber radius to the half distance between the center of two neighboring fibers 

((oP~/oA)~ or ( 0 ~ ~ 1 0 ~ ) ' ) .  Since, for the 3-D model ( 0 ~ ~ 1 0 ~ ) '  c (OP~IOB)', higher local 

stresses according to (Sottos et al., 1989) should be expected at PI (0 = OO). This effect has 

not been observed in this study. The graph for the radial stress (Fig. 5.2(b)) seems to have 

opposite curvature relative to the results presented by Sottos et al. (1989). The maximum 

radial stress was at 8 = 0" in (Sottos et al., 1989), while in the present study it occurs at 

0 = 30°. However, as the same figure shows, the radial stress distribution for the edge 

fiber is as predicted by Sottos et al. (1989) i.e. the maximum of the stress is at PI (0 = 0"). 

The reason for this shift in the location of maximum stresses may be explained by the 

nature of the deformations under the temperature change for the edge fiber. Upon heating, 

for an internal fiber, the ABB'A' surface is required to remain planar and horizontal. 

However, if this boundary condition is removed for the edge fiber this surface deforms as 

shown in Fig. 5.3. The matrix expands more along line API than along line BP? and the 

whole surface 'rotates' counterclockwise. In order to have the surface horizontal again 

for the internal fiber case, self-equilibrated extra radial stresses must be generated which 

are compressive along line AP1 and tensile dong BP2. In the inner zone, this extra stress, 

raises the magnitude of the tensile radial stress at P2 and lowers it at PI. Thus, the results 

presented by Sottos et al. (1989) may have been produced by ignoring the symmetry 

boundary condition on the surface ABB'A'. 

If the deformation mechanism outlined in Fig. 5.3 is applied to the interfacial 

elements in the inner zone along line PIP2 (the elements are shown in Fig. 5.1), the 

opposite nature of the stress components for the internal fiber and the edge fiber presented 

in Fig. 5.2 can be easily explained. The thermal radial and hoop stress components for the 

elements of the inner zone are presented in Fig. 5.4(a). Due to lower local Vf for PI 

(element 1) than Pz (element 2), higher stresses occur for element 1. Therefore, for the 



edge fiber, the deformation of element 1 will be higher than that of element 2 due to free 

movement of the nodes on ABB'A' surface as shown in Fig. 5.4(b). It is noted that, due to 

symmetry boundary conditions, face 1 of element 1 and face 3 of element 2 must remain 

straight. If surface ABB'A' is required to remain straight, the deformation of the elements 

must reach an equilibrium state. So, a compressive radial force on face 4 of element 1 and 

a tensile load on face 4 of element 2 are needed to bring the deformed elements to the 

equilibrium position. This extra compressive radial load on element 1 tends to expand the 

element in the circumferential direction, which is resisted by a compressive hoop stress. 

Meanwhile, the circumferential shrinkage of element 2 due to the tensile radial load on its 

face 2 is resisted by a tensile hoop stress (see Fig. 5.4(c)). As explained earlier, super- 

positioning of these extra radial and hoop stresses of Fig. 5.4(c) on the thermal stresses of 

Fig. 5.4(a) results in higher tensile radial stress at P2 (0 = 30°) relative to PI (0 = 0°), 

whereas it is opposite for the hoop stress. The compressive hoop stress of element 1 in 

Fig. 5.4(c) increases the overall compressive hoop stress at PI (0 = 0°) and the tensile 

hoop stress of element 2 reduces the overall hoop stress at P2 (0 = 30°), see Fig. 5.4(a-c). 
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Fig. 5.3: Deformation pattern with the ABB'A' surface free. 
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These compressive extra radial and hoop stresses in Fig. 5.4(c) tend to impose an 

axial elongation on element 1 (if it is viewed in 3-D) which is resisted by a compressive 

axial stress. see Fig. 5.4(d). However, as the extra radial and hoop stress components are 

tensile for element 2. the resultant axial load have to be tensile to resist shrinkage. Adding 

these extra axial stresses to the thermal axial stress of the matrix at PI and P2 which are 

compressive in nature, reduces the absolute value of the axial stress at Pz (8 = 30°). while 

the absolute value of the stress increases at PI (0 = 0°), see Fig. 5.2(a). 

Thermal stresses in the matrix 

I - - - - - - - - I  

i------*---: 0 
Deformation under thermal stresses 

nz 
Equilibrium stresses in 3-D 

Stresses required to satisfy equilibrium 
for the case of restrained ABB'A' surface 

Fig. 5.4: Effects of the restrained ABB'A' surface on the stresses 
of the interfacial inner zone elements. 

For the edge fiber, since the surface ABB'A' is free and due to lower local Vf at PI 

than at P2, a higher radial stress occurs at PI. This higher tensile radial stress is responsible 

for altering the rest of the stress components at this location. 



The profile of the stress components discussed so far, directly affect the von Mises 

equivalent stress distribution for both types of the fibers as shown in Fig. 5.2(d). The main 

conclusion of this figure is that in the inner zone this stress is almost constant along the 

circumference. For the internal fiber, the stress is slightly higher at 8 = 30" or where the 

fiber has the least distance to the neighboring fibers. However, for the edge fiber the stress 

is slightly higher at 8 = 0" where the fiber has the largest distance to the neighboring 

fibers. 

In order to understand the effects of fiber volume fraction on interfacial stresses, the 

above analyses were repeated for different Vf. Figs. 5.5(ad) show the interfacial radial, 

hoop, axial. and equivalent stresses for the internal fiber where Vf varies from 8.3% to 

66.6%. As the graphs show, the stresses are almost constant if Vf S 33%. 
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Fig. 5.5: Variation of the stress components of the matrix in the 
vicinity of the interface in the inner zone with Vf. 



The average value of the stresses are plotted in Fig. 5.6 which are calculated from 

four stress values presented on each one of the stress curves (Figs. 5.3a-c)). The average 

value of radial stress decreases with increasing Vf. However, the absolute average values 

of hoop and axial stresses increase with increasing Vf. For small Vf, the distance between 

the neighboring fibers is larger than the distance for a composite with high Vf. This allows 

for more radial deformation of the matrix at the interface. Therefore, considering free 

body thermal expansion of the fiber and matrix, a larger gap occurs between the fiber and 

matrix at the interface. To eliminate the large radial gap between the fiber and the matrix 

in order to satisfy the radial continuity, higher radial stresses are required. This effect is 

opposite for hoop and axial stresses. With decreasing Vf, the restraining axial and 

circUIIlferential forces created by the fiber due to the CTT: mismatch spread over a greater 

matrix area in both axial and hoop directions reducing the compressive axial and hoop 

stresses. Therefore, with increasing Vf higher absolute average interfacial axial and hoop 

stresses are detected in the matrix. 

Radial stress .+ 1 
Hoop stress + - 1 

Fig. 5.6: The effect of volume fraction on the average value of the inner zone stress 
components in the matrix in the vicinity of the interface. 

For the edge fiber, the effects of Vf on the average values of the stresses are 

basically the same as the effects shown for the internal fiber. However, the locations of the 

maximum and minimum of the stresses for different Vf are opposite of hoes discussed for 

the internal fiber. 



A contour plot of the radial and hoop stresses in the inner zone is shown in Fig. 5.7. 

The characteristic elliptical pattern of the radial stress distriiution was reported by Sottos 

et al. (1989) and also in the experimental photo-elastic study conducted by Marloff and 

Daniel (1 969). A very similar state of the stress in the inner zone for a rectangular array of 

fibas was presented by Koufopoulos and Theocaris (1969) in the experimental study 

using photo-elastic models. This similarity indicates that the authors measured mainly the 

stresses in the inner zone. The stresses in the end zone (which are usually much higher and 

have opposite sign, but act in a relatively thin layer) did not seem to have contxibuted to 

the recorded photo-elastic effect This might have been possible if the thickness of the 

photo-elastic model had been several times greater than the thickness of the end zone. 

Radial stress (MPa) Hoop stress (MPa) 

Fig. 5.7: The radial and hoop stress distributions in the inner zone 
of the 3-D prism model. 

The variations of stress components with the longitudinal distance fiom the fiee 

surface are presented in Fig. 5.8. The state of stress is different in the end zone than the 

inner zone. The graphs indicate high concentrations of radial and hoop stress components 

at the fibedmatrix interface near the fiee d a c e .  They also show that both the radial and 

hoop stresses are compressive in the end zone. The axial and the longitudinal shear 

components are shown to decay to zero at the free surface. The stress distributions are 



found to be in agreement with the work presented by Naim (1992). How these stress 

concentrations are generated and why the sign of the radial stress is opposite to the inner 

zone stress have not been explained yet. This may be best explained by the difference in 

thermal expansion of the composite constituents. Considering free expansion of the 

composite constituents in the axial direction, the matrix expands more than the fiber due 

to the temperature increase and axial loads are needed to reattach them in order to satisfy 

the axial continuity requirements, Fig. 5.9(a). The modulus of elasticity of the matrix is 

much lower than that of the fiber and under the influence of the axial load should deform 

down and inward overlapping the fiber end. Away from the fiber end, the matrix expands 

more than the fiber in the radiai direction, creating a gap between the two. To eliminate 

the overlap and the radial gap, a high compressive radial load is required at the fiber end 

and a tensile radial load at some distance from the end, Fig. 5.9(b). 

Radial stress 
J A' B' 
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Fig. 5.8: Variation of the stress components in the matrix along the fiber length 
due to a 1°C temperature increase. 

It is important to note that, upon cooling, the radial stress at the fiber end would be 

tensile and several times greater than the shear stress. The tensile radial stress pulls the 

fiber and the matrix apart and may contribute to debonding of the composite to a greater 

extent than the interfacial shear stress. The above explanation of the deformations under 

the thermal load is referred to as the overlapping hypothesis. 



When considering the fi-ee expansion in the axial diredon, only tensile hoop stress 

at the fiber end is expected when eliminating the overlapping. However, the stress 

contours show a high compressive hoop stress in this area This could be explained by 

considering the deformation of a hollow cylinder under axial compressive thermal load on 

its inner wall. The inner rim does not deform in the circumferential direction as easily as 

in the radial direction due to the stronger structural support available to the material in this 

direction. This smaller deformation or higher strength in this direction results in a very 

high compressive hoop stress when the overlapping occurs. It is obvious that when the 

matrix overlaps the fiber en4 it contracts circumferentially as well. This compressive 

stress is high enough so that the tensile hoop stress resulted fiom partial elimination of the 

overlapping does not affect the sign of the overall stress. 

0 
Free Expansion 

(b) 
Fig. 5.9: Free body thermal expansion of the fiber and mahix 

(overlapping hypothesis). 

To check upon the relationship of the stress concentrations and the element size, the 

FEM mesh was refined in the area where the maximum absolute values of the stresses 

occur. Using the sub-modeling technique, elements with minimum size of 1/62000 of the 

fiber radius were used in this area. Since the stress concentrations occur on the free 

surface, the radial and hoop stress distrihtions along lines O'A' and OW are presented in 

Fig. 5.10. 



The plots show that the stresses are very low along the model edges except at the 

fiberhatrix interface which are almost eight times larger than those shown in Fig. 5.8. It 

is shown that the stresses are very sensitive to mesh sizing. Since the stress concentrations 

are changing rapidly with the mesh refinement, the stresses might have a singular nature 

and require more attention. The nature of these stress fields will be investigated in more 

detail in Chapter 6. 
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Fig. 5.10: The radial and hoop stress concentrations at the interface on the 
free surface at 0 = 0" and at 8 = 30" for a temperature increase of 1°C. 

Note some differences in the stress magnitudes at those circumfrential positions 

around the fiber. This is due to the difference in 'local fiber volume fractions' at 8 = 0" and 

at 8 = 30" which was discussed earlier. Since the stresses are higher at 0 = O0 this could be 

the reason for crack initiation at these locations on the free surface of composites. This 

kind of cracking was observed experimentally by Moms et al. (1989,b) and Biemacki 

et al. (1998). Such a phenomenon was attributed to the longitudinal interfacial shear stress 

in the Literature by means of the shear lag theories. These one-dimensional theories, which 

were discussed in Appendix B, m d y  ignore the radial and hoop stress components. 

However, the present study emphasizes the importance of these stress components in 

causing cracking and debonding at the fiber end. Refemng to Fig. 5.9, it is important to 

note that, upon cooling, the radial and hoop stresses would be tensile and several times 

bigger than the shear stress. Therefore, the tensile radial and hoop stress components 

would be the most damaging factors to composite integrity. The tensile radial stresses pull 

the fiber and matrix apart and may substantially contribute to debonding of the composite, 

much more than the shear stress, while the high tensile hoop stress causes the matrix to 



craze and radially crack on the free surface. The importance of radial and hoop stress 

components were also emphasized by Nairn (1992). 

The effect of fiber volume fraction on the end zone stresses is shown in Fig. 5.1 1. 

The radial and hoop stresses are higher and more uniform for lower Vf. 
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Fig. 5.1 1 : Variation of the stress components in the matrix 
at the interface in the end zone with Vf. 

Opposite to the inner zone, the maximum absolute value of the stresses occurs at 

PI (8 = 0°), the location with the higher inter-fiber distance. As Fig. 5.12 shows, the 

absolute average values of the radial and hoop stress components decrease with increasing 

Vf. As for the inner zone, the reduction of radial stress with the increase in Vf can be 

attributed to the effects of the neighboring fibers. The higher Vc means less matrix 

between the neighboring fibers. Therefore, the effects of the neighboring fiber on surface 



ABB'A' which tries to keep this surface straight and planar is higher and this effect may 

account for the lower overlapping observed. Reduction of the fibedmatrix overlapping 

results in lower absolute values of radial and hoop stresses in the end zone. 

Fig. 5.12: Comparison of the average radial and hoop stress components in the 
matrix in the vicinity of interface in the end zone for the internal and edge fibers. 

As for the inner zone (Fig. 5.2), the radial and hoop stress components in the end 

zone of the edge fiber are also different than those of the internal fiber. This difference 

appears to be only in the magnitude of the stresses here. The graphs of 0, and Q in Fig. 

5.13 and also the absolute average value of the stresses presented in Fig. 5.12 indicate that 

the values of the stresses in the end zone for the edge-fiber are higher than that of the 

internal-fiber. This could be due to the higher overlapping of the fiber end by the matrix 

for the edge fiber relative to that of the internal fiber due to the fiee boundary condition of 

the ABB'A' d a c e .  The difference between the defomation patterns of the two cases will 

be discussed in Chapter 9. For both types of fibers, the maximum absolute values of the 

stress components occur at PII (0 = 0°) due to the lower local fiber volume hction. 

The deformation pattern at the end zone of the edge fiber shows some differences 

with the inner zone deformations. The deformation is smaller in the end zone than the 

inner zone, see Fig. 5.3. This could be explained by considering the stress state of the 

interfacial elements in the end zone shown in Fig. 5.14. Both radial and hoop stress 

components in the end zone are compressive, hence, the deformation of the elements will 

be totally different than that for the elements in the inner zone. Also, the end zone stresses 

may not be influenced by the ABB'A' d a c e  deformations as much as the inner zone 

stresses. 
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Fig. 5.13: Comparison of the radial and hoop stress components in the matrix in the 
vicinity of interface in the end zone for the internal and edge fibers. 

Fig. 5.1 4: Thermal stress components in the matrix at the fiber end. 

5.4 Temperature Induced Deformation of Unidirectional Fiber Composites 

The geometrical stability of composites under a temperature change is of great 

concern since many are used in advanced engineering applications. Normally, due to 

higher CTE of the matrix than that of the fiber, the excessive expansion or contraction of 

the matrix may cause some problem when setting the tolerances in designing 4 t h  



composites. In this section, mainly the elastic displacements of unidirectional composites 

due to temperature change are discussed. 

A 3-D contour plot of axial displacements under 1°C temperature increase is 

presented in Fig. 5.15. Very high displacement occurs near the fke surface with its 

maximum occurring at A' where the matrix has the maximum radial distance to the fiber. 

It has been experimentally observed that the maximum bulge out (or deep ~ o u g h  in case 

of cooling) occurs in the matrix in this area (Morris et al., 1 9893. In the end zone, for any 

location in the matrix, the radial distance to the fiber plays a major role in the amount of 

axial displacement which that location receives. However, in the inner zone. since the 

state of plane strain dominates, the axial displacement of the nodes in the matrix is the 

same and independent of their distance to the fiber. 

Fig. 5.1 5: Distribution of thermal axial displacement under 1 "C temperature change. 

Fig. 5.16(a) shows graphs of axial displacements along lines AA' and BB' which 

have different radial distances to the fiber. In the inner zone, the displacements are similar. 

In the vicinity of the free surface, however, the higher axial displacement along line AAf is 

due to the above fact that the nodes on this line have higher radial distance to the fiber. 

The higher distance affects the degree of axial restriction that the fiber imposes on the 

matrix due to its much lower CTE. Therefore, these nodes are much keer to move than the 

nodes on line BB'. 
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Fig. 5.16: Axial displacement in the matrix aiong lines M' and BB' for various Vf. 

To highlight the effect of this factor on the matrix displacements, the displacements 

of the nodes on line AA' for the range of Vf fiom 8.3% to 66.6% are shown in 

Fig. 5.16(b). For higher Vf, the nodes on surface ABB'A' will be closer to the fiber and as 

a result they will be influenced by the fiber in a higher extent. Thus, lower axial 

displacements occur for higher Vf. For the nodes in the matrix which are closer to the 

fiber, the compressive axial stress imposed by the fiber due to the CTE mismatch is 

higher. This is clearly shown for the nodes on lines &I' and BB' in Fig. 5.17(a). A higher 

compressive axial load on line BBf results in lower axial thermal expansion aiong this h e .  

This is more pronounced in Fig. 5.17(b) which presents the axial stresses dong line AA' 

for various Vf. 

Comparing the graphs in Fig. 5.16(a) and the displacements for the edge fiber (see 

Fig. 5.18) indicates higher displacements along line AA' and BB' for the edge fiber. The 

higher displacements could be the result of the absence of the neighboring fiber effects for 

the case of an edge fiber. The lack of the r e g  by the neighboring fiber permits for 

higher axial displacements along both lines AA' and BB'. 
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Fig. 5.17: (a) Thexmal axial stress in the matrix along lines a' and BB' and 
(b) thermal axid stress dong line AA' for various Vf. 
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Fig. 5.18: Thermal axial displacement in the matrix dong 
lines AA' and BB' for the edge-fiber. 

Comparing the axial stress values along lines M' and BB' in Fig. 5.1 7(a) with those 

of the edge fiber shown in Fig. 5.19 shows a high difference between the stress values 

along these lines. This supports the nature of the axial stress in the inner zone of the 

internal fiber due to the presence of the neighboring fiber (see Fig. 5.qd)). This difference 

between the stress values is discussed here. In the inner zone, for the internal fiber (i.e. 

surface ABB'A' is restrained), Fig. 5.4(d) indicates that a compressive axial stress dong 

line M' and a tensile axial stress along line BB' must be added to the axial stresses purely 

generated by the mismatch in CTE of the fiber and the matrix (which are compressive in 

the matrix). However, if this boundary condition is removed (i.e. edge fiber), a big 



difference between the axial stress for lines AA' and BB' is expected (see Fig. 5.19). 

Adding the compressive axial stress of Fig. 5.4(d) to the compressive axial stress of line 

AA' in Fig. 5.19 will result in a higher compressive axial stress for this Line as shown in 

Fig. 5.17(a). In contrast, adding the tensile axial stress for Line BB' (Fig. 5.4(d)) to the 

compressive axial stress for this line in Fig 5.19 reduces the overall value of the stress for 

line BB' (see Fig. 5.17(a)). 
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Fig. 5.19: Thermal axial stress in the matrix dong lines AA' and BB' for the edge-fiber. 

5.4.1 Lateral Displacements 

The radial displacements of the nodes in the matrix are directly related to their 

distance to the interface as well. The displacement of a node increases uniformly by 

increasing the node distance to the interface. This is due to the fact that the restraining 

effect of the interface decreases when moving radially away from it. Note the circular 

pattern of the displacement shown in Fig. 5.20. Since, the surface AAB'A' should remain 

horizontal and planar, the radial displacement along the fiber length must be constant. 

Also, due to the same reason, the nodes on line AA' have higher radial displacements than 

the nodes on line BB'. 

The maximum radial displacement (Fig. 5.20) is higher than the axial displacement 

presented in Fig. 5.15. These effects depend mainly on the CTE mismatch in axial and 

radial directions (which is actually higher in the axial direction for the graphitdepoxy 



composite) but also may be dependent on the other physical defonnations like overlapping 

or the imposed boundary conditions on the model. For example, for the edge fiber that 

does not have the r e s m g  effects on its ABB'A' surface, the maximum of the axial 

displacement is higher than that of the radial displacement (see Fig. 5.21). It is also noted 

that for this model under the above circumstances, the radial displacement (Fig. 5.2 1 (a)) is 

not constant along the fiber length and the maximum occurs in the inner zone due to the 

reasons discussed earlier (see Fig. 5.3). 

Radial _displacement 

Full model 9 ~ n n e r  zone 

Fig. 5.20: Distribution of thermal radial displacement under ( 1 O C )  temperature change. 

(a) Radial displacement (b) Axial displacement 

Fig. 5.2 1 : Distribution of thermal radial and axial displacements for the edge-fiber. 
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A contour plot of circumferential deformation is presented in Fig. 5.22. Since 

OAA'O' and OBB'O' are symmetry surfaces, the nodes on these surfaces are restrained in 

the circderential direction. Also, the nodes in the matrix which are closer to the fiber 

are effectively restrained to move circumferentially under the fiber influence. Therefore, 

only a small portion of the matrix close to ABB'A' d a c e  can circumferentially expand 

under the temperature change. The expansion of the elements in this area compresses the 

adjacent elements to the OAA'O' and OBB'O' surfaces causing circumferential contraction 

on these surfaces. The value of the circumferential expansion is not constant along the 

fiber length. It is higher in the end zone than in the inner zone. This is due to the higher 

compressive self-equilibrated radial load in the inner zone which is generated by the 

imposed boundary condition on surface ABB'A'. As explained before (see Figs. 5.4) the 

higher compressive radial stress generates higher compressive circumferential stress in the 

inner zone, preventing circumferential expansion. However, the effects of these 

compressive forces are minimum in the end zone allowing for higher circumferential 

expansion in this location. 

. . 
Inner zone 

Fig. 5.22: Distribution of thermal circumferential displacement in the inner zone. 

5.5 Axisymrnetric Analysis of Thermal Stresses in Fiber Composites 

As explained before, an axisymmetric FEM model can be selected for its numerical 

efficiency and a relative accuracy in comparison with the 3-D prism model. The 

axisymmetric model that is shown in Fig. 3.8, was exposed to 1°C temperature change. 



The inner zone stresses at the interface for the 3-D and axisyrnrnetric models are presented 

in Table 5. 2. The radial, hoop, and axial stresses at locations PI and P2 and the average 

value of the stresses along the circumference of the fiber for the 3-D model are compared 

to the corresponding inner zone stresses at the interface of the axisyrnmetric model. 

Table 5.2: Comparison of thermal stresses in the inner zone calculated by the 3-D and the 
corresponding axisymmetric models. 

Radial Stress Hoop Stress Axial Stress 

. .- - - .- - 

Axisymmetric 

Model Location B 0.155 -0.426 -0.46 1 

Location P1 0.123 -0.437 -0.479 

3-D Model Location P2 0.173 -0.4 16 -0.448 

Average value 0.150 -0.42 1 -0.452 

The inner zone stresses of the axisymetric model presented in Table 5.2 are very 

close to the average value of the stresses calculated by the 3-D prism model. 

The end zone stresses calculated by the axisymmetric model are also comparable 

with the results obtained by the 3-D model. The maximum radial and hoop stress 

components at the interface on the h e  surface (i.e. at locations PtI and PI2 for the 3-D 

model and at location A for the axisyrnmetric model) are presented in Table 5.3. From 

similarities of the results of the two models it is concluded that, the axisymmetric model, 

which substantially reduces the computational time and the effort required for the mesh 

refinement, can also be used for stress analysis of fiber composites. 



Table 5.3 : Comparison of thermal stresses in the end zone calculated by the 3-D and the 
corresponding axisymmetric models. 

Radial Stress Hoop Stress 

hisymmetric Model Location A -6.9 -3.5 

Location P' 1 -7.4 -4.05 
3-D Model 

Location P$ -6.2 -2.5 



6.  Stress Singularity 

6.1 Introduction 

The numerical elastic thermal stress analysis of unidirectional composites presented 

in Chapter 5 revealed high radial and hoop stress concentrations at the fiber end (Fig. 5.8). 

The stress concentrations were then shown to increase by refining the FEM mesh in this 

area (Fig. 5.10). Here, the relation of these stresses to the mesh size is studied more 

closely. The singular nature of the stresses is proven and analyzed. 

As explained in Chapter 2, the singular stress field at the end of a single fiber has 

been and continues to be the subject of many analytical studies. This issue is still 

unresolved due to very complicated equations governing the behavior of composites. 

In this part of the dissertation, the problem is attacked numerically. It is shown that 

how the regular FEM elements can be used to determine the order of singularity, which is 

a measure of the severity of the stress field. The dependence of the singularity on the 

material properties is presented Some practical methods of reducing the severity of the 

singular stress field are discussed. 

6.2 Stress Singularity 

The analysis of the singularity is conducted here by the application of regular FEM 

elements. Since the order of singularity is unknown the existing singular element (of order 

0.5 or 1) cannot be used. A closer look is taken at the stresses in the vicinity of the 

expected singular point for various sizes of the mesh. Thus, the method used in this study 

relies on the h-refinement where h refers to the size of an element. 



6.2.1 Singularity vs. Element Size Relationship 

It is important to mention that the original model had 4334 hear and quadratic brick 

elements which was practically the Limit of the computer resources available. Therefore, 

the sub-modeling approach, discussed in Chapter 3, was used to refme the FEM mesh of 

the 3-D model. This way, only a portion of the model close to the singularity is remeshed 

with finer elements (see Fig. 3.6). The parameter h represents the size in the axial and 

radial direction of the element adjacent to point Pt2 (see Fig. 6.1). 

Fig. 6.1: The size of elements at the end of fiber for the 3-D prism model. 

The radial and hoop stress components in the matrix at point PI2 versus element size 

are shown in Fig. 6.2. 
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Fig. 6.2: The effect of element size on the radial and hoop stress 
components at the fiber end on the free surface. 



It is clear that the absolute values of the stresses increase with decreasing the element 

size which is normalized by the fiber radius. For non-singular elements, this confirms the 

presence of the stress singularity at point P'z. 

The same relationship between the element size and the stress values can be 

approximated by a straight line if the log-log scale is used as in Fig. 6.3. In general, with 

the origin of the coordinate system at point p12 (see Fig. 6.4), the straight-line 

approximation on the log-log plots can be explained if the stresses in the vicinity of point 

P'? are approximated by the following relationship 

where o is the stress component, p is the distance £?om point Ptz, and c, b., a, and n are 

constants. As the singular point is approached (p+O), the singular term (the first t a m  on 

the right hand side) dominates the stress value, while the second regular term comes into 

effect sufficiently away f?om PI2. 
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Fig. 6.3: The effect of element size on the radial and hoop 
stress components on a log-log scale. 

In the FEM analysis, the element stresses calculated at the Gauss points are 

considered the most accurate. Next, these stresses are extrapolated to the nodal stresses. 

For isoparametric linear elements, the stresses in the plane r-Z are assumed in the form 

~ ( b l ) = a ~ + a & + a A + a & ' l  (6.2) 



where, 6 and q are normalized coordinates and a1 ,. . ., a4 are constants determined using the 

previously calculated values of the stress components at the four Gauss points. According 

to Eq. (6.2), the stresses along each face of the element (5 = +1 or q = i l )  are hear 

fimctions of the 6 or q coordinate. Since in the vicinity of P5, the visible side of elements 

(on the r-Z plane) is always rectangular, the coordinates E, and q are proportional to the real 

coordinates r and 2. Thus, for a constant 6 (or r) the stress distri'bution in terms of q (or 2) 

is linear as shown in Fig. 6.5(a). The stresses at the Gauss point are assumed to be close to 

those represented by Eq. (6.1). In the most immediate element to the singular point, the 

regular term in Eq. (6.1) can be neglected and the stress (referred to as the true stress in 

Fig. 6.5) approximated by the singular term only. Therefore, the stress calculated at Z = 0 

(the singular point) is really the true mess at some distance (phi) eom the singular point. 

With decreasing element size (for example for hz = h1/2), the Gauss points move closer to 

the singular point and the stress calculated at Z = 0 increases since the new distance ph2 

decreases, see Fig. 6.5(b). Therefore, using an element with size h may be considered 

similar to calculating the singular stress field at some distance ph. It can easily be shown 

(Szyszkowski and Kingy 1995) that is proportional to h, that is 

Ph = clh 

where the value of cl depends on the type of element used. 

FIU surface 

Fig. 6.4: Polar coordinate system located at the singular point. 



Fig. 6.5: FEM approximation of the radial stress in the vicinity of the fYee surface. 

6.2.2 Order of Singularity 

Using only the singular term in Eq. (6.1 ), this equation can be written in logarithmic 

form as 

logo = -alogp, +loge (6.4a) 

or 

logo = -alogh + logc2 (6.4b) 

where cz = ccl. Clearly, on a log-log scale, Eq. (6.4b) represents a straight line with slope 

a. The FEM calculations presented in Fig. 6.3 can be approximated very closely by 

straight lines. Thus, Eq. (6.1) applies to this case. Consequently, the slopes of the lines in 

Fig. 6.3 could be interpreted as the orders of singularity for the radial and hoop stress 

components, respectively. The least square approximation procedure was applied to 

evaluate a using all ten different element sizes indicated in Fig. 6.3. It was found that 

&= 0.327 for the radial stress and ah= 0.346 for the hoop stress. However, if the first point 

(for h/rf = 1/62000) and the last point (for h/rf = 1/260) are excluded, then the remaining 

eight points coincide much closer with the new lines characterized by a, = 0.3348 and 

a+,= 0.3355, respectively. Therefore, the order of radial and hoop stress singularities 



calculated by excluding the data for the nearest and the farthest points to the singular point 

are considered to be more accurate. A similar observation was made by Staab (1983) 

where a singularity around a crack tip was analyzed. In that study, it was concluded that 

exclusion of the nearest and farthest points from the crack tip improves the accuracy of the 

calculations of the order of singularity (the order for the crack in (Staab, 1983) was to be 

0.5). The fmt point, which is nearest to the singularity, could be affected by the excessive 

calculations required and possible numerical round up emon. The last point may be 

influenced by the non-singular term of the stress in Eq. (6.1). 

Similar values of the order of singularities were found using axisymmetric models. 

For axisymmetric models square elements were used in the vicinity of the singularity in 

both the fiber and the matrix (see Fig. 6.6). In this way the singular point is approached 

equally from the two directions r and 2. Again, excluding the fmt point and the last point 

in Fig. 6.7, the following values for a were obtained: o; = 0.3339 and a+, = 0.3350. 

r 

Fig. 6.6: FEM mesh of the axisymrnetric model. 

Radial stress 

0.0000 1 0.000 1 0.00 1 0.0 1 
h/rf (Elem. Size/Fiber Radius) 

Fig. 6.7: The effect of element size on the radial and hoop stress 
components calculated using axisymmetric modeling. 



6.23 Effects of Materials on the Order of Singularity 

As discussed in Chapter 2, the singular stress field for two edge-bonded dissimilar 

materials is dependent on the properties of the materials and the materials angles at the 

contact comer. Here, the e f h s  of the fiber and the matrix properties on the order of 

singularity are studied. A detailed discussion of the effects of the kee d a c e  geometry of 

composites on the singular stress field will be presented in Chapter 9. 

Since the results obtained with the help of the prism and axisymmetric models are 

very close, in order to reduce the numerical effort, only the axisyrnmetric model was used 

to study the effects of the material properties on the order of singularity. 

62.4 Effeets of Composite Constituent Properties on the Order of Singularity 

It is expected, (Li and Folias, 199 l), that the physical properties of the fiber and 

the matrix should affect the order of singularity in unidirectional composites in a similar 

manner as with edge-bonded dissimilar materials (Hein and Erdogan ( 1 97 1 ), Gdoutos 

and Theocaris (1975), and Dondurs and Lee (1972)). For example, assuming the fiber in 

Table 5.1 to be isotropic with; 

E: = E: =2 14 (GPa); u: = u: = 0.2; CTE, = CTE, = -0 .99~1 O ~ / O C  (6.5) 

the results shown in Fig. 6.8 were obtained. Excluding the first and last points on the plot, 

the orders of singularity for the radial and hoop stresses are a, = 0.363 and = 0.27 1, 

respectively. In comparison with the results for the orthotropic fibers (Figs. 6.3 and 6.7), 

the singularity order increased for the radial stress but decreased for the hoop stress. In this 

case, the order of singularity for the radial stress is about 34% larger than the order of 

singularity for the hoop stress. Similar results have been obtained by Szyszkowski and 

King (1 995) where isotropic fibers were analyzed. It should be noted that in fracture 

mechanics or in the analytical solution presented in (Li and Folias, 1991), identical orders 

of singularity were considered for all the stress components. Clearly, the order of 

singuIarity depends on the material properties and is different for different stress 

components. To investigate this dependence the calculations were repeated for a wide 

range of some material parameters. 



p, = 0.360 Radial Stress 0 $ 
Hoop Stress 

1e-05 0.0001 0.001 0.01 
h/rf (Elem. Axial Length/fiber Radius) 

Fig. 6.8: The effect of element size on the stress components 
for a composite with isotropic fibers. 

First, the calculations were performed for the IMLS epoxy matrix and the fibers 

defined by Eq. (6.5). The transverse modulus E:, however, was varied fiom 13.7 GPa to 

418 GPa Fig. 6.9 shows the results obtained. The values of E: on the horizontal axis were 

normalized by the longitudinal modulus E: = 214 GPa. As can be seen, E: has opposite 

effects on the order of singularity for radial and hoop stresses. By increasing E: , the order 

of singularity for the radial stress increases, while it decreases for the hoop stress. When 

E: decreases, the orders for both stress components become closer to one another. Note 

that, according to Table 5.1, since the matrix modulus (Em) is smaller than E: , increasing 

E: will result in increasing the mismatch in Et of the composite constituents. 

Increasing the E ,mismatch of the constituents 
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Fig. 6.9: The effect of the transverse modulus of the 
on the order of singularity. 

fiber 



The effects of Poisson's ratio on the order of singularity are indicated in Fig. 6.10. These 

results were obtained assuming the properties given by Eq. (6.5)' but changing yf of the 

fiber gradually fkom 0.1 4 to 0.3. As can be seen, the order of singularity for the radial 

stress remains unaffected, but it increases with & for the hoop stress. The values of on 

this plot are normalized by $ = 0.2. 

Decreasing the U ,  mismatch of the constituents 

Fig. 6.10: The effect of the transverse Poisson's ratio of the fiber 
on the order of singularity. 

The effkct of CTE: was examined assuming the properties in Eq. (6.5) and varying 

this parameter from 0.2 CTE to 6 CTE: (where CTE: = -0.99~1 0-V0C). The results are 

shown in Fig. 6.1 1. The graphs indicate that, the ordm of singularity are insensitive to the 

Considering the results in Figs. 6.9 to 6.1 1, the lower for the isotropic fiber than 

for the orthotropic fiber (compare Figs. 6.8 and 6.7) seems to be mostly due to the change 

in mismatch of the transversal modulus (E :) for the constituents. Among the effects of 

three transversal properties discussed so far, it is only the E : mismatch which effectively 

decreases a. The change in E: may also be the main factor in increasing a, for the 



isotropic fiber compared to that of the orthotropic fiber since a, is insensitive to the 

changes in both v. and CTE, (see Figs. 6.1 0 and 6.1 1 ). 

Decreasing the (CE) , mismatch of the constituents 

Fig. 6.1 1 : The effect of the transverse CTE of the fiber 
on the order of singularity. 

A similar study was also conducted to determine the effect of the longitudinal 

properties of the fiber such as E :, d, and CTE [. The results are shown in Fig. 6.12. 

The nominal values used in the normalization were taken fkom Eq. (6.5). As can be seen, 

at, is sensitive to the variation of E [ and d. As for the variation of CTE: both and a, 

remain unaffected. 

The influence of the matrix properties on the orders of singularity was also analyzed. 

According to Table 5.1, the variation in longitudinal or transversal properties of the fiber 

changes the longitudinal or transversal mismatches in the coIlStituents properties solely. 

However, for isotropic matrices, any change in the matrix properties, affects both the 

longitudinal and the transversal mismatch in properties of the composite constituents 

simultaneously. The effects of the matrix properties on the orders of singularity are 

presented in Fig. 6.13. The nominal values of the parameters for the IMLS matrix were 

taken from Table 5.1. As can be seen, a, and a+, increases as E, decreases or v, increases. 

Variation of the C&, seems to have negligible effects. 



In addition to the above, the AS graphite fibers were matched with three types of matrices 

specified in Table 5.1 . Note that these matrices have different CTE's. Fig. 6.14 shows the 

log-log plot of the stresses vs. mesh size for these matrices. The parallel lines obtained 

indicate that CTE, does not affect the singularity, which is consistent with the results 

shown in Fig. 6.13. 

Increasing the E 1 mismatch of the constituents * 
0.46 1 I I I I I I 

Decreasing the U- mismatch of the constituents 

Decreasing the (CrE),rnisrnatch of the constituents 
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c 

Fig. 6.12: The effect of the variation in longitudinal properties of the fiber 
on the order of singularity. 
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Fig. 6.13: The effect of  the variation in properties of the matrix 
on the order of singularity. 
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Fig. 6.14: The order of singularity for radial stress for composites with different matrix 
materials (the matrices are different only in their CTEs). 



In general, reducing the mismatch in mechanical properties (E and u) of the 

constituents may be helpful in containing the singularity. It is worthy to note that, although 

the thermal stresses are generated by the mismatch in CTE of the constituents, apparently 

this material property does not influence the order of singularity. In conclusion, since the 

order of singularity is found to be around 1/3, to interpret and to analytically relate this 

finding to the hcture mechanics is very challenging. It is considered to be beyond the 

scope of this project. 



7. Elasto-Plastic Analysis of Unidirectional Fiber Composites 

7.1 Introduction 

The stress fields in unidirectional fiber composites discussed in Chapters 5 and 6 

were obtained under the assumption of elastic fiber and matrix behavior. In this chapter, 

plastic deformations are included in the analysis of the stress and deformation states 

developed in the composite when it is cooled h m  the processing temperature (T,) and 

during the service temperature (cycling temperature &)). The creep effects will be 

considered in the next chapter. 

Two composites, SCSdlTi-6WV and SCS-6Ri-24A1- 1 1 Nb, known for the high 

and low yield strength of their matrices, respectively, are used for the numerical analysis. 

The results provide a qualitative perspective on the effects of plastic strain on the stress 

and deformation states in such composites. The silicon carbide fiber (SCS-6) remains 

elastic and its properties with temperature are almost constant. The properties of the two 

matrices (TidAl4V and Ti-24AI-1 lNb), which will be r e f d  to as MMC (metal matrix 

composite) and IMC (inter-metallic matrix composite), are presented in Tables 7.1 and 7.2, 

respectively. The properties of the matrices are highly temperature dependent. At around 

T=370°C the yield strength of the MMC matrix remains constant for a small temperature 

range (see Table 7.1). The Prandd-Reuss associated flow rule with the von Mises 

equivalent stress as the yield criterion are employed. Also, the isotropic hardening rule is 

adopted into the model. For comparison, the kinematic hardening analysis of the MMC is 

also performed. The material properties presented in the aforementioned tables are used 

with bilinear stresstrain characteristics defined for several specific temperature levels. 

The stress-strain characteristics are linearly interpolated between these levels. 



Table 7.1 : Properties of the TidAl-4V (MMC) matrix at different temperatures 
(Nirnmer et al., 199 1). 

Ti-6A.l-4V (MMC) 

Table 7.2: Properties of the Ti-24Al-11Nb (IMC) matrix at different temperatures 
(Chandra et al., 1 994). 
Ti-24Al- I 1 Nb (IMC) 

Temperature & u OY b CTEX 1090~ 

"C @Pa) W a )  (GW 6-t) 

21 1 1  1 0.22 385 23 9 

149 103.5 0.22 385 3 9.3 1 

315 90 0.22 385 2.6 9.78 

420 75.3 0.22 385 2.3 10.32 

649 68 0.22 260 0.7 10.65 

825 43 0.22 170 0.1 11.1 

The SCS-6 fiber properties are v = 0.33, E = 413.7 GPa, CTE (secant) = 4.86e4W°C. 



For simulating the geometry, both the 3-D prism and the axisymmetric models are 

utilized. For clarity, the intersection of the fibedmatrix interface with the free surface will 

still be referred to as the singular point. This is in spite of the fact that the stresses are 

limited to within the yield surface in inelastic analysis. To determine the effects of the 

elasto-plastic behavior of the matrix on the stress and seain states, a series of mesh 

refinements in this region (close to the singular point) is implemented only for the 

axisymrnetric model. The results of the two models are compared and it is shown that the 

results of the 3-D model are valid despite its coarser mesh near the singular point. 

7.2 Residual Stresses in Unidirectional SCS-6/Ti4AI4V Composite 

The MMC composite solidifies at about 900°C. Then the composite is cooled to 

room temperature (Fig. 7.1). The rate of cooling is assumed to be slow enough to neglect 

the temperature gradient effects. As explained in Chapter 5, thermal stresses are essentially 

induced by the mismatch in thermal expansion coefficients of the composite constituents. 

It is assumed that the fiber remains elastic during the whole process, and only the stress 

distniution in the matrix is presented. 

0 200 400 600 800 1000 
Temperature ( " C) 

Fig. 7.1 : Stress history for Ti-6A1-4V matrix in the end zone (P',) 
and the inner zone (P2). 



I 

The equivalent stress, cq = , refas to the von Mises stress. In the end zone, 

the maximum stress occrns at location P',. However, in the inner zone, the maximum oq 

appears at P2. The stresses are much higher in the end zone and it is expected that plasticity 

will be first initiated in this zone. 

Fig. 7.1 shows how the original yield strength of the matrix (q,) and the yield 

strength of the strain hardened matrix (0 : )  at P', and Pz vary with temperature, h r n  

Tp = 9OO0C to Tr= 20°C. 

When cooling h m  900°C to 360°C, the process remains elastic because G~ < G,,. 

The thermal stresses are high enough to cause yielding only in the temperature range of 

360-320°C as indicated by the overlapping of the curves and 0:. In the temperature 

range between 320°C and 20°C, the increment in o, fdk behind the increment of the 

yield strength and plasticity is terminated. 'This was explained in Chapter 3. The process 

remains elastic until room temperature is reached. Contour plots of the radial, hoop, and 

equivalent stresses at 370°C are shown in Figs. 7.2(a) to 7.2(c), respectively. 
I 

Fig. 7.3 displays a distribution of the equivalent plastic strain, E!i = -ed& , in ( i T  p 
the matrix at various temperatures. Since plasticity occurs in a nmow temperature range, 

the magnitude of the plastic strain is small. The plastic region that starts at 360°C in the 

end zone (Fig. 7.3(a)) spreads into the inner zone at about T=320°C. Fig. 7.3(b) shows the 

equivalent plastic strain on the d a c e  OAB (the inner zone) at 320°C. As can be seen, the 

plastic deformation is present only in a narrow layer at the interface. However, unlike in 

the end zone, the plastic strain in the inner zone appears first at location P2 where the fiber 

has the least distance to the neighboring fibers. Fig. 7.4 shows that in the inner zone the 

minimum compressive value of radial stress also occurs at location Pt, contributing the 

most to the calculated oq in the region. 
\ 



Radial stress (MPa) Hoop stress (MPa) 

Equivalent stress (MPa) 

Fig. 7.2: Distribution of stress components in the matrix at T = 370°C. 

The reason why the minimum radial stress occm at P2 was descriied in Chapter 5. 

However, the problem was explained for heating. In cooling, the deformations would be 

opposite since the sign of the thamal stresses are reversed. The hoop stresses, (see Fig. 

7.4(b)) are almost the same along the interface, although the maximum still occurs at 

location PI.  The axial stresses are relatively uniform due to the absence of shear stress (0a 
in this zone. Therefore, in the inner zone, the only factor, which may cause plastic 

deformation to start at location Pz (instead o f  PI), is the relocation of the maximum 

absolute value of the interfacial radial stress &om P 1 to P2. 



a) Start of plastic strain in the end zone at f=360° C. 6 )  Start of plastic main in the inner zone at ~ = 3 2 i  C. 
(The whole model) 

Fig. 7.3: Equivalent plastic strain in Ti-6A.l-4V matrix. 

Radial stress (MPa) Hoop stress (MPa) 

Fig. 7.4: Stress distribution in the inner zone for Ti-6Al-4V matrix at T = 320°C. 

As Fig. 7.3(b) shows, only a limited amount of plastic deformation occurs in the 

inner zone. According to Fig. 7.1, plasticity occurs only in a small temperature range. This 

range is very narrow. Therefore, 4 in the inner zone at 320°C (see Fig. 7.3@)) and at 

room temperature (see Fig. 7.5(c)), are very similar. This suggests that when the 

temperature drops below 320°C no fhrher plastic strain is generated. This is due to the 

nature of the material bilinear stress-strain curves as explained earlier. Comparing the 

stress distributions at room temperature (see Figs. 7.5(a) and (b)) with the stresses at 

320°C (Fig. 7.4), it can be observed that, due to limited amount of plastic deformation, the 

location of the maximum absolute values of the stress components in the inner zone 



remains unchanged. This is also true for the stresses in the end zone. This indicates that 

relaxation effea, which is inherent in plastic flow, is negligible due to the small plastic 

strains. From the stress distribution perspective, due to the small plastic deformation, the 

residual stresses in the matrix remain high and increase toward the interface. This could be 

very damaging to the composite, particularly to the fibedmatrix interface. This limited 

amount of plastic d e f o d o n  has been observed experimentally by Kuppexman et al. 

(1992) using the neutron dimction technique and, also, determined numerically by 

Nimmer et d. (1991) and Rangaswamy and Jayaman (1994). It should be mentioned that 

the CTE values used in these studies for the matrix were different than the ones used here. 

Various properties for the MMC matrix are reported in the literature. For example, the 

CTE values for the MMC matrix reported by Nimmer et al. (199 1) are much higher than 

the values used in the present study. Clearly, higher mismatch in CTE of the fiber and 

matrix generates much higher thennal stresses. The 2-D inelastic analyses (Chandra et al. 

( 1 994) and Nimmer et al. (1 99 1 )) for rectangular fiber pattern of SCS-6ni-6Al-4V, with 

material properties similar to those used in the present study, have not indicated any plastic 

deformation in the interior of the composite. 

The whole cooling process of the MMC composite was reanalyzed using the 

kinematic hardening rule. Very similar results were obtained. Specifically, the plastic 

process started at similar temperatures in both the end and inner zones and the amount of 

plastic deformation was found to be very close in both zones. 

RadiaI stress (MPa) Hoop stress (MPa) Equivalent plastic strain 

Fig. 7.5: Stress and plastic strain distribution in the inner zone for TidA1-4V matrix 
at room temperature. 



73 Response of SCS-6/Ti-6Al-4V Composite (MMC) to Temperature Cycling 

Cooling the SCS-6/Ti-6Al-4V composite from the processing temperature (Tp) 

generates very high residual stresses at room temperature as shown in Fig. 7.5. It is of 

importance to determine the effects of these high residual stresses during temperature 

cycling. In this section, cons iddon  is given to a composite that has already been cooled 

to room temperature and is subsequently thermally cycled using three different temperature 

patterns. The patterns (see Fig. 7.6), differ in their maximum temperatures only. The 

behavior of the matrix during the temperature cycles mentioned appears to be similar (the 

reason will be explained later). Therefore, only the results of the cycle with a maximum 

temperature of 900°C are discussed in detail. 

As Fig. 7.1 shows, upon cooling the MMC composite from Tp to room temperature, 

a limited amount of plastic deformation occurs in both the inner and end zones but only 

within a narrow temperature range. Therefore, the behavior of the matrix can be divided 

into three stages: elastic (900°C to 360°C), elasto-plastic (360°C to 320°C), and elastic 

again (320°C to 20°C). Such a behavior can affect the stress state during subsequent 

temperature cycles. For example, Fig. 7.7 which shows G,,, a!, a d  oq at PfI  for both 

cooling from Tp and during temperature cycling, reveals two distinct characteristics during 

the heating phase of the cycle. 

Load step Load step 

Fig. 7.6: Various temperature cycling pa- used in the analysis. 



" 
0 200 400 600 800 loo0 

Temperature ( " C )  

Fig. 7.7: Stress history for Ti-6AMV matrix in the end zone (P',) 
during temperature cycling. 

In the heating range 20°C-320°C, o, follows the same path as that of the cooling 

stage fiom Tp (see Fig. 7.7). This is due to the elastic behavior of the matrix in this 

temperature range during cooling from Tp. For temperatures above T = 320°C to about 

T = 900°C the value of oq is lower for heating than for cooling. This is attributed to plastic 

deformation of the matrix generated during cooling from 360°C to 320°C. The effects of 

the plastic strain appear as a relaxation phenomenon when heating to above 320°C. 

However, oq for T = 900°C in the heating phase is a small positive while it was zero for 

cooling fiom Tp. The reason could be explained by examining the history curves of the 

radial and hoop stress components at this location (point PII) as shown in Fig. 7.8. It is 

seen that both stress components have some negative values at Tc = 90O0C. As explained 

in Chapter 5, the radial and hoop stress components at the end zone will be compressive 

during heating. In addition the relaxation effect due to the plastic history of the material 

will reduce the stresses even further. This change in stress components affects o,. 

The state of stress components and the variation of o, with temperature in the inner 

zone for the temperature cycle are illustrated in Fig. 7.9. Since the plastic strain in the inner 

zone is very small. the relaxation effect. which results fkom plastic deformation, is almost 

negligible. Therefore, the difference between the stresses for the cooling phase (from Tp) 

and the heating phase of the temperature cycle is very small. The history of 4 



versus temperature during cooling fiom Tp and the whole temperature cycle is shown in 

Fig. 7.10. Since there is no new plastic deformation during the temperature cycle (see Fig. 

7.10), the process remains elastic and the stresses for both zones follow the same path 

during the heating and cooling phases of the cycle. 

900 I I 

Radial stress -G - 
s o o q  - Hoop stress + - 

Temperature ( " C) 
Fig. 7.8: Radial and hoop stress components in the end zone at (PII) 

during temperature cycling. 
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Temperature ( O C) 
Fig. 7.9: Radial and hoop stress components in the inner zone 

temperature cycling. 
at (P2) during 

One important conclusion is that the magnitude of the residual stresses or the 

stresses at room temperature for both zones seem to be unaffected by temperature cycling. 

Consequently, no additional residual stresses are built up at service temperatures for this 



composite. The undesirable effect is that it may not be possible to reduce the unwanted 

residual stresses by subsequent thermal treatments after the processing operations. 
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Fig. 7.10: Equivalent plastic strain in the end zone (PIl) and the 
inner zone (P2) during temp -=ratwe cycling. 
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Next, dimensional changes in the composite during processing and temperature 

- cooling (Tc ) 

Aoint P; 

cycling are analyzed. A plot of the axial displacement at locations A' and B' on the fke 

surface against temperature is shown in Fig. 7.1 1 .  Due to the elastic behavior of the matrix 

during the temperature cycle, the maximum and minimum axial displacements on the free 

m a c e  that happen to occur at these locations (explained in Chapter 5) remain unchanged 

after one temperature cycle. The axial stress, which resists the thermal axial contraction of 

the matrix due to the presence of the fiber, remains constant. If  the residual s m e s  

increase after the temperature cycle, the absolute value of the displacements will decrease 

because the axial force is acting as a preventative force to thermal displacements. The 

small contraction of the matrix at the maximum temperature of the cycle (Tc = 900°C) can 

be explained by the existence of a small compressive axial stress. The thermal axid stress 

generated during cooling h m  Tp is relaxed by the limited amount of plastic strains. Upon 

heating, the matrix comes under a small compressive axial stress at Tc = 9W°C. This 

wmpressive stress does not let the ma& contraction generated during cooling to relax 

completely. 



Fig. 7.1 1 : The axial displacements of the matrix at locations A' and B' 
on the free d a c e  during temperature cycling. 

The last but important note about temperature cycling is the effect of strain 

hardening on the yield strength of the matrix. As Fig. 7.7 shows, the matrix gets hardened 

due to plastic defonnation during cooling fiom the processing temperature. This process is 

explained here in more detail. For cooling fiom the pmcessing temperature and the 

subsequent temperature cycle, 4 and a: at location PII are presented in Fig. 7.12. For 

cooling eom T, as expected, 0: of the material coincides with the a,, in the temperature 

range 900°C-360°C, since there is  no plastic deformation during this period. For 

temperatures lower than 360°C the small amount of plastic deformation strengthens the 

matrix. Therefore, the plastic work (X) obtained by the earlier plastic strain will add to the 

strength of the material o,, as explained in Chapter 3. 

During the heating phase of the temperature cycle, in the temperature range 

20°C-320°C, the values of the yield strength o! do not change in comparison to the values 

for the same temperature range during cooling h m  T,. This is because the material has 

already been strengthened for temperature levels in this range. For the rest of the cycle i.e. 

in the temperature range 320°C-900°C the yield strength of the material again shows some 

increase. This is due to the fact that the plastic work 01) increases the g of the material for 



temperatures higher than 320°C. Note that in spite of no more plastic deformation during 

the temperature cycle, the yield strength increases because of the plastic strain history. The 

plastic strain history at T=360°C of the heating phase is higher than for the same 

temperature during cooling fkoxn Tp. This diffaence affects the yield strength that is 

calculated by Eq. (3.5). Although the increase in the yield strength continues up to 

T=900°C of the heating phase, the yield strength for the cooling phase of the temperature 

cycle is the same as that for the heating phase due to the elastic behavior of the matrix. 

Temperature ( " C )  

Fig. 7.12: Effect of temperature cycling on the strength of the matrix. 

7.4 Residual Stresses in SCS6/Ti-24AI-llNb Composite (IMC) 

The IMC matrix has lower yield strength than the MMC matrix. Therefore, upon 

cooling fiom the processing temperature, the IMC matrix deforms plastically much more 

than the MMC matrix as discussed earlier. 

A history of oq, oy, and o! for the matrix at location P', (located in the end zone) 

during cooling h m  Tp is shown in Fig. 7.13(a). The matrix starts yielding in the end zone 

at about 500°C where ow and a,, overlap. Unlike in the previous case, yielding continues 

for a long temperature range before the process becomes elastic around T=200°C. Here, 

ow falls again behind 0: and this situation continues down to room temperature. 
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Fig. 7.13: Stress history for Ti-6Al-4V matrix 
during cooling fiom Tp. 

A 3-D contour plot of E$ in the matrix at room temperature is shown in Fig. 7.14. 

The plastic zone at this temperature is much wider than that in the MMC matrix, indicating 

that a significant portion of the matrix has already deformed permanently. Also, the 

magnitude of plastic strain which this matrix experiences is very high compared to that of 

the MMC matrix. 

The increase in the amount of plastic deformation results fiom reduction in the yield 

strength and this can be attributed to the high aluminum content of the IMC matrix. Due to 

this large deformation and the stress-strain characteristic curve of the material at room 

temperature, o! at point PtI (which, for isotropic hardening is calculated fiom Eq. (3.5)) 

shows a sudden large increase. Therefore, due to high strain hardening, the material does 

not yield any more before room temperature is reached. This causes the thermal residual 
0 

stresses to increase. 
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Fig. 7.14: Equivalent plastic strain in Ti-24N- 1 1Nb matrix 
at room temperature. 



As Fig. 7.14 shows, the plastic strain is also high in the inner zone. Using 2-D 

models of rectangular fiber array, sirnilsimilar large plastic deformations have been reported by 

Chandra et al. (1 994) and Coker et al. (1 993). Comparing a, obtained by the 3-D prism 

model and that by the 2-D plane strain model, Chandra et al. (1994), for the inner zone, 

indicates that the 3-D model predicts yielding to start at 340°C. However, according to 

Chandra et al. (1994), yielding starts at 370°C. The results obtained by Chandra et al. 

(1 994), are shown in Fig. 7.1 3(b). 

The strain hardening effect is more pronounced in IMC than MMC because of the 

high plastic deformation of the IMC matrix (compare Figs. 7.7 and 7.13). This is more 

noticeable for the end zone than for the inner zone due to higher plastic deformation in the 

end zone. 

Very high plastic deformation can significantly redistribute and relax the stresses. 

For the matrix, the large plastic deformation changes greatly the stress distribution and also 

the stress values as indicated in Fig. 7.15. in this figure the radial, hoop, and axial stress 

components in the inner zone for a temperature before the onset of plastic deformation, 

T = 450°C, and at room temperature, T = 20°C, are presented. Due to stress redistribution, 

the maximum compressive radial stress, which is initially located on line P2B at point P2, 

is transferred at room temperature to point Pi along line PIA. The maximum hoop stress, 

which first occurred at point PI (before yielding starts), moves to a point h i d e  the matrix 

area close to the interface on line P2B. Similar changes in location of the maximum and 

minimum stresses have been reported by Ananth et al. (1 993) for AVSCS-6 composite. 

These changes were attributed to stress redistribution due to matrix plastic defonnation. 

The plastic deformation changes the profile of the axial stress in the matrix in the inner 

zone %om relatively uniform before yielding to a pattern with a stress reduction when 

moving towards the fibedmatrix interface. Similar axial and hoop stress profiles have been 

experimentally determined at room temperature by Rangaswamy et al. (1994) utilizing 

X-ray di£Eaction for the IMC composite. Comparable results have also been obtained by 

Rangaswamy and Jayamman (1 994) and James (1 99 1 ). 



Note that the 2-D analysis of the MMC composite by Chandra et al. (1 994) and 

Nimmer a al. (1991) did not show any plastic deformation. Therefore, one can conclude 

that for this composite the 3-D analysis (which predicts plastic deformations) must have 

yielded higher stresses exceeding the yield strength. However, for the IMC composite the 

effects seem to be reversed. The results of the 2-D analysis taken fkom Chandra et al. 

(1994) are presented in Fig. 7.13(b). According to these data, plastic deformation starts at 

370°C that is earlier than what is observed for the present 3-D model (at about 340°C). 

This shows that at 370°C the stresses calculated by the 3-D model are lower than those 

determined by the 2-D model. These discrepancies can be explained by the difference in 

plastic deformation of the two matrices and the relaxation and redistribution effects of this 

phenomenon on the stresses. The large plastic deformation in the end zone relaxes the 

stresses in the inner zone. Therefore, in the case of IMC, lower stresses occur in this zone. 

However, comparing the plastic strains of the two matrices, the relaxation phenomenon is 

negligible in the MMC matrix, thus allowing for more stress build-up in the inner zone. 

This shows another advantage of the 3-D model that is capable of accounting for stress 

relaxation and redistribution talcing place in the direction of the fiber. 

7 5  SCS-6/Ti-2441-llNb Composite in Service Temperatures 

The effects of low matrix strength or high plastic strain on the behavior of 

unidirectional composites under temperature cycling are explained here using the IMC 

matrix. The composite is thermally cycled between room temperature and T,, = 900°C 

(see Fig. 7.6) after being cooled fiom Tp which was discussed in the previous section. 
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Fig. 7.15: Profile of stress components in the inner zone at T = 450°C and 
at room temperature for Ti-24A1- 1 1Nb matrix. 

Figs. 7.16(a) and (b) show oq, a,,, and 0: for the cooling stage h r n  Tp to room 

temperature and during the temperature cycle in the end zone (point PII) and the inner zone 

(p in t  Pz), respectively. Due to high plastic deformation of the matrix in the cooling stage, 

the stresses are highly reduced in the next temperature cycle. The difference between oq 

during the heating phase of the cycle and cooling fiom Tp is higher compared to that of the 

MMC matrix. This is due to high plastic deformation which causes high stress relaxation 

(see Figs. 7.16(a) and Fig. 7.7). During the temperature cycle, despite higher plastic strain 

in the end zone, crq in the inner zone relaxes more than in the end zone. One reason could 

be the continuous increase in plastic strains in the inns zone up to room temperature 



(when cooling h m  T,). However, during the same period, the plastic deformation stops at 

about T = 200°C in the end zone. This elastic range affects the stresses during the 

temperature cycle. It prevents the stresses fkom relaxing upon heating. The variation of 

stress components with temperature for the inner zone is presented in Fig. 7.17. Note the 

high absolute value of the stress components at T = 900°C. These stresses cause the value 

of oq in the inner zone (which is reduced during the heating phase up to T = 600°C) to 

increase (see Fig. 7.1 6(b)). 
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Fig. 7.16: Stress history for Ti-6A1-4V matrix during temperature cycling. 

The variation of $ at locations PII and Pz for the cooling phase and the temperature 

cycle are shown in Fig. 7.1 &a). The graphs show that all the plastic strain occurs when 

cooling h m  Tp and no more plastic deformation is generated during the temperature 

cycle. This indicates that the matrix behaves e las t idy for the whole temperature cycle. 

Therefore, as shown in Fig. 7.16, o, for the cooling phase of the temperature cycle 

coincides with o, of the heating phase. Comparing oq and a: curves in Fig. 7.16, one 

can conclude that during the heating phase in both the inner and end zones, the strain 

hardening of the matrix is substantial at room temperature and negligible at T = 900°C 

despite the constant plastic strain. This phenomenon may be explained with the 

temperaturedependent properties of the matrix. The strain hardening effect depends on 

both the plastic strain history and the plastic modulus of the material at different 

temperatures 60). Since QO of the material is lower at T = 900°C compared to its 



room temperature value, it reduces the strengthening effect of the plastic strain. Note that 

the plastic strain is constant during the temperature cycle. 

As with the MMC matrix, it should also be mentioned that despite the high plastic 

deformation, the residual stresses at room temperature in both the inner and end zones 

remain unchanged after one temperature cycle (Figs. 7.16(a) and (b)). In the inner zone, 

due to the very small difference between a, and a) at room temperature, any further 

mechanical load can easily cause the matrix to deform plastically. 

The dimensional stability of the composite is also affected by the high plastic strain. 

Since the CTE values of the two matrices (MMC and IMC) are close (see Tables 7.1 and 

7.2), the difference in their axial displacements could be a direct result of the difference in 

the amount of their ~lastic deformations. Comparing the maximum plastic strains of the 

two composites at location PtI (see Figs. 7.10 and 7.1 $(a)) shows that the strain in IMC is 

almost four times higher than the plastic strain for the MMC matrix. This difference 

between the plastic strains of the two composites is very noticeable in the h e r  zone (at 

point P2). The plastic strain in the inner zone of IMC is close to the end zone value of the 

MMC. The tensile plastic strain af fec f~  the displacements of the composite. The axial 

displacements at locations A' and B' for the cooling stage and during the temperature cycle 

are shown in Fig. 7.18(b). The tensile plastic strain reduces the thermal contraction of the 

matrix. For example, at T = 900°C of the temperature cycle, the axial displacement of the 

matrix (which is supposed to be zero) is tensile due to the tensile plastic strain (see 

Fig. 7.18@)). Comparing the displacements at T = 900°C for both types of matrices 

(Figs. 7.1 1 and 7.18(b)) shows that the displacement for MMC has a small negative value. 

This is because of the negligible plastic strain and the compressive axial load that was 

discussed earlier in section 7.3. 
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Fig. 7.1 7: Variation of stress components in the inner zone (P2) 
during temperature cycling. 
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Fig. 7. L 8: (a) Equivalent plastic strain at locations P'I and Pz and 
(b) axial displacement in the matrix at locations A' and B' 

on the fke d a c e  during temperature cycling. 



7.6 Inelastic Analysis of SCS4Ti4Ai4V Composite with htisymmetric Models 

The 3-D prim model has a relatively coarse mesh in the vicinity of the singular 

point. Therefore, the results obtained do not provide very precise information on the stress 

and displacement in the area very close to this point. I t  is possible to refine the mesh in this 

area, but the sub-modeling approach used in the elastic analysis is not valid here. Cutting 

the model at some distance away fiom the singularity 'freezes' the cut-off pornon of the 

model in the subsequent formulation of the problem. Therefore, the sub-modeling mesh 

rehement does not provide any information on how the inter-relationship between the end 

zone and the inner zone stress and deformation states are influenced by plastic 

deformation. Therefore, it is important to verify the results of the 3-D model by comparing 

them with the axisymmetric model. 

h this section, the elasto-plastic analysis of SCS-6fli-6A14V composite is repeated 

with axisymmetric models that allow the use of very small elements in the vicinity of the 

singular point The details of the mesh configuration in the vicinity of the singular point 

are similar to the mesh presented in Fig. 3.8. The smallest element size is about 0.0002pm. 

In the elastic analysis, the value of the stresses increases continuously to infinity with 

decreasing element size. This is due to the singular nature of the stress field at the 

fibedrnah intaface in the vicinity of the fke d a c e .  As explained earlier, the stresses 

are limited to within the yield d a c e  (4) in the inelastic analysis. As soon as the 

temperature is changed, very high stresses appear at the singular point and are 

accompanied by a large amount of plastic deformation. Consequently, the yield strength 

increases due to strain hardening effects. 

Fig. 7.19(a) shows the variations in a,, 4, and c: of the matrix with temperature in 

the inner and end zone locations. The corresponding equivalent plastic stains are shown in 

Fig. 7.19(b). Point A is located at the singularity, point J is 0.01pm away fkom the fiee 

d a c e  at the interface and, M y ,  point B is in the inna zone. As soon as the composite 

begins to cool down, oq reaches q at point A and the matrix plastically yields. Note that 



due to the coarser mesh of the 3-D model, the plastic deformation was shown to start at a 

much lower temperature while, in the present case, it occurs immediately in a very small 

zone around the singular point. 

Since the elasto-plastic model used here does not have any limitations on the amount 

of plastic strain and the associated hardening effects, the plastic deformaton at location A 

continues to increase up to about & = 0.8 at room temperature (see Fig 7.19(b)). The 

strengthening effect of the plastic strain at this location is significant. The yield strength 

increases up to almost 5000MPa (from about 900MPa for the uIlStrained material). Such 

an increase in yield strength is extremely localized. For point J, which is located at the 

distance of 0.0 1 pm fiom point A (fiber diameter 1 4 0 p ) ,  a: is only about 1200MPa As 

expected, at location J and in the inner zone (point B), the stress and plastic strain are 

relatively close to the results of the prism model (see Figs. 7.1 and 7.1 0). 
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Fig. 7.19: Equivalent stress and equivalent plastic strain build-up at locations A, B, 
and J upon cooling from the processing temperature (T,). 

The distribution of the interfacial plastic strain along the longitudinal axis is shown 

in Fig. 7.20(a). The details of plastic strain in the vicinity of point A are shown in 

Fig. 7.20(b). The very high plastic deformation at A is reduced to about 0.05 at a distance 

less than 0.0lpxx-i away h m  the singularity (point J). It appears that the very high plastic 



deformation is limited to a very small neighborhood of the singular field. As a result, the 

increase in the yield strength, which is strain dependent, is also a localized phenomenon. 

Comparing these results with those of the 3-D mode1 discussed at the beginning of 

this chapter in section 7.2, the following observations can be made. The results obtained 

fiom the 3-D model are good for a very small distance away kom the singularity. 

Comparing the stress m e  at point J (which is 0.Olp.m away 6om the singularity) in 

Fig. 7.19(a) with the stress curve for point P', in Fig. 7.1 shows that the stresses are close 

in magnitude. A small difference between the stresses is due to the location of point J that 

is closer to the free surface compared to the location at which the results of the 3-D model 

were calculated. The stress curves for the inner zone are also very similar. It seems that the 

very high stress and large plastic strain at the singular area do not affect the stress and 

deformation states outside this area. Therefore, with the exception of the singular area, the 

3-D model, which has a relatively comer mesh than the axisymmetric model, provides 

reasonably accurate results. 
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Fig. 7.20: Plastic strain distribution along the interface at room temperature. 

The elasto-plastic analysis presented gives very high stress and strain values at 

location A due to the strain hardening model used. Most probably, these stresses would be 

unacceptable causing the matrix to crack or the fibedmatrix interface to debond. The 

cracking phenomenon would change the stress and strain states by relaxing some of the 

stresses and releasing the strain energy, (King, 1994). The stress relaxation disappeared 



very rapidly with the distance fiom the singular point. Therefore, the resuits of the analysis 

assuming a perfect interface are acceptable at some distance £?om the singularity. 

The temperature cycling of the 3-D prim model with a relatively coarse mesh in the 

vicinity of the singularity showed that no finther plastic deformation occurs in the 

composite during the cycle. It was also found that the residual stresses are substantially 

reduced during the heating phase of the next ternperature cycle. But after completion of the 

cycle, no change in the residual stress state was observed. To see how these results are 

affected by the meshing pattern, the ternperature cycle with T,, = 600°C as shown in Fig. 

7.6 is applied to the axisymmetric model with very fine elements. 

A plot of a, and 0: for point A during the temperature cycle is shown in Fig. 

7.2 1 (a). As soon as the heating phase of the temperature cycle begins (fiom (2) to (3)), the 

residual stresses start to relieve resulting in lower equivalent stresses. However, the yield 

strength of the material is now higher as compared to the strength at the same temperatures 

in the cooling phase f?om Tp (kom (1) to (2)). Also, there is some increase in a! during 

the cooling phase of the cycle (from (3) to (2)) compared to its values in the heating phase. 

This is due to a small plastic deformation that occurs at T = 600°C during the heating 

phase of the cycle at location A (see overlapping of crq and cr! in Fig. 7.2 1 (a)). 

The o, in the heating phase of the cycle up to T = 360°C is lower than those in the 

same ternperature range during cooling h m  T,,. This is due to the relaxation caused by 

previous plastic deformatons. Above this temperature level up to 60O0C, the stresses for 

the heating phase (from (2) to (3)) are higher than for the cooling phase @om (1) to (2)). 

This is in contrast to the results of the 3-D model, where G- was lower throughout the 

heating phase of the cycle compared to oq for the corresponding temperature levels during 

cooling fiom Tp (see Fig. 7.7). This discrepancy may be explained by the difference in the 

temperature level at which the plastic strain starts in the two models during cooling fbm 

TP (hm (1) to (2)). As Fig. 7*21(a) shows for the axisyrnmetric model, plasticity starts 

right away with cooling whereas it starts at lower temperatures for the 3-D model. The 



immediate plastic flow of the manix for the axisymmetric model limits the stress 

components in the material. The plastic strain appears before the stress components reach 

their expected levels. However, in the heating phase (fkom (2) to (3)), the stresses in the 

temperature range 360°C-600°C increase to higher levels. This is because the material 

gains strength at location A due to the high plastic deformation. These values are much 

higher than the stresses obtained during cooling fiom the processing temperature. 

Fig. 7.2 I@), which represents the stress components d h g  the temperature cycle at 

location A, supports the above hypothesis. As the graphs show, the stress components are 

much higher for the heating phase of the cycle compared to the cooling phase from Tp for 

the temperature range of 360°C-6000C. Due to the small plastic strain that occurs at 

T = 600°C of the temperature cycle (see Fig. 7.2 1 (a)), cq decreases in the cooling phase of 

the cycle to room temperature because of the relaxation effect of the new plastic 

deformation. However, the residual stresses after one temperature cycle are not much 

lower than the stresses right after cooling the composite fkom Tp. 
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Fig. 7.2 1 : Stress components at location A during temperature cycling. 



The effect of temperature cycling is minimized at some small distance f?om the 

singularity (i.e. at point J) and in the interior of the composite (i-e. at point B). Thus, the 

plastic strains which occur at location A during the cycling do not change the residual 

stresses at locations J and B. 



8. Effects of Creep on the Stress and Displacement States in 
Unidirectional Composites 

8.1 Introduction 

The creep phenomenon can effectively alter the stress and displacement states as 

previously discussed in Chapter 7. The creep e f f ~  are different for different materials. 

For example, the Ti-24A.l-11Nb matrix (IMC) is considered to be insensitive to creep 

(Nimmer (1 990) and Kroupa (1991)). Therefore, the effects of creep behavior in the 

Ti-6Al-4V matrix (MMC) are analyzed only. 

Different cooling rates as well as temperature cycling are considered. Creep under 

residual stresses for a long period of time is also discussed. All the above analyses are 

performed utilizing the 3-D prism model. 

82 Stress State Under Cooling Rate of 200°C/hr 

The creep characteristic of the Ti-6Al-4V matrix is assumed to take the following 

form (Nimmer et al. (1991) and Ananth et al. (1993)) 

where o is the equivalent von Mises stress in MPa, E, is the eq ent cr eep strain, T is 

the temperature in O K ,  and t is the elapsed time in hours. The constants a to a3 have the 
-0.925 1 following values: Q = 3.6~10' @fPa)".403(hr) , a1 = 3.403, a2 = 0.9251, and 

a,= 3.6~10~ (OC). 

An incremental formulation suitable for the FEM has the form 

d = a. a2 (@I )(taz - ' )ex+ T + 273 Jdt . 



Eq. (8.2) represents the time-hardening creep hypothesis. It is used in the FEM together 

with an appropriate time integration scheme to obtain the mess-snain-time-temperature 

characteristics. 

The creep phenomenon of MMC is very ternperature dependent. Therefore, a high 

creep strain should be expected at high temperature levels. Consequently, it is required 

to take very mall time steps for numerical convergence. This prolongs the 

computational time required for the transient analysis considerably. The time-ambient 

temperature profile of the cooling process is shown in Fig. 8.1 with the cooling steps 

indicated. At these cooling steps the stress-strain state is analyzed in detail. The 3-D 

prism model is used. It is assumed that the composite is cooled linearly and the 

temperature is similar on both the fiber and matrix and is uniformly distributed in the 

composite. 
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Fig. 8.1 : Profile of the slow cooling process (200°C/hr). 

The creep strain in both the end and inner zones are shown in Fig. 8.2. As the 

contour plots show, the creep strains occur in the first cooling step at T=800°C. The 

matrix develops a vay  high creep strain in both zones. The main factor, which 

contributes to the high creep strain, is high temperature. The creep strain is even 

observed in the inner zone where stresses are relatively small at this temperature. The 

creep strain for the inner zone and the end zone as  a h c t i o n  of temperature for the 

complete cooling period is shown in Fig. 8.3. The figure also presents the absence of 

plastic strain in the end zone for location P', over the entire cooling range. This will be 



discussed later. Due to the higher stresses at the end zone, higher creep saains occur in 

this zone than in the inner zone. The material continues to creep strongly to about T = 

500°C. Almost 40% of the total creep in the end zone and slightly over 32% of the total 

creep for the inner zone occur in the first 100°C of cooling. Below T=500°C, the 

material creeping slows down significantly. In comparison to the elasto-plastic analysis, 

the permanent strains (which include the plastic and creep strains) show a very high 

increase as illustrated in Figs. 7.10 and 8.3. 
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Fig. 8.2: Creep strain distribution at T=800°C. 
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Fig. 8.3: Creep strain in the end zone (PI )  and in the h e r  zone (P2) 
during cooling from processing temperature (Tp). 



The creep strains affkct stress distribution in both the inner and end zones. The 

plot of stress components against temperature for the locations P', in the end zone and Pz 

in the inner zone are shown in Figs. 8.4(a) and (b), respectively. In comparison to the 

stresses for the same locations in the absence of creep (see Chapter 7, Figs. 7.8 and 7.9), 

the stresses show a large drop. The high relaxation due to creep deformation of the 

matrix will effectively alter the equivalent stresses at both the inner and end zones. The 

von Mises equivalent stress (a,) for the locations P2 and P', are plotted in Fig. 8.5. In 

comparison to the equivalent stresses for the same locations depicted in Fig. 7.1, very 

high changes are observed. With creep deformation, oq falls well under the yield 

strength of the matrix (oY) in both zones. Therefore, no plastic deformation would occur 

even in the end zone. The plastic strain for point P', during the cooling process is plotted 

in Fig. 8.3. Note that the plastic deformation is zero due to the relaxation of the stresses 

by creep. 
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Fig. 8.4: Stress components in the end zone (P' 1) and in the inner zone (Pz) 
during cooling fiorn processing temperature (TJ. 

Creep also affects the displacements. The variation of matrix displacement at 

locations A' and B' on the free surface with temperature is shown in Fig. 8.6. The 

maximum longitudinal displacement (Ua of the composite decreased relative to the 

elasto-plastic case considered earlier (compare Figs. 7.1 1 and 8.6). The higher creep 

strain of the matrix relative to the plastic strah discussed in Chapter 7 reduces the axial 



thennd contraction of the matrix. Also, as Fig. 8.6 shows, the displacement U, for line 

AA' is slightly higher than for line BB' due to the higher distance of the nodes on the line 

AA' to the fiber. In conclusion, with creep in effect, the residual stresses in the MMC 

matrix (stresses at room temperature) are much lower than the stresses when only eiasto- 

plastic deformation is considered. Also, due to the low displacements the dimensional 

stability of the composite increases. 

G, (Point P',) + . ' 
700 0, (Point P,) + . - 

0 200 400 600 800 1000 
Temperature ( " C) 

Fig. 8.5: Equivalent stress in the end zone (Pt1) and in the inner zone (P2) 
during cooling f?om processing temperature (Tv). 
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Fig. 8.6: Axial displacement at location A' and B' during 
processing temperature (Tv). 



8 3  Effect of Temperature Cycling 

It is assumed that the composite undergoes the temperature cycle depicted in 

Fig. 8.7. Mer cooling to room temperature, the composite is reheated to 600°C and then 

wold  again to room temperawe. The maximum temperature in this cycle is slightly 

higher than the temperature at which matrix creeping was effectively stopped (T = 500°C) 

during cooling &om the processing temperature. 
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Fig. 8.7: Profile of the temperature cycle with slow cooling rate (200°C/hr). 

Here, the discussion is focused on the resuits of the temperature cycling. The creep 

strains for the whole cycle for the inner zone (at location Pz) and the end zone (at location 

P'I) are shown in Fig. 8.8. Also, shown in the figure is the plastic strain at Pil.  In the 

heating phase of the cycle, practically no more creep strains are produced for temperatures 

lower than T = 500°C. The strains increase h m  T = 500°C up to the maximum 

temperature of the cycle (T = 6W°C). Since residual stresses decrease with increasing 

temperature, creep in this case is triggered mainly by temperature. The material continues 

to creep until the temperature of the composite is reduced to T = 500°C. Below this 

temperature level, no more creep occurs in the remaining part of the cooling phase to room 

temperature. Interestingly, the new creep strain during the ternperatme cycle appears in 

both the inner and end zones. This additional creep strain in the matrix affects the stress 

and displacement states of the composite. The variation of stress components and in 

both the end and inner zones at locations P'l and P2 with temperam for cooling from Tp 



and also during the temperature cycle are shown in Figs. 8.9(a) and (b). Due to relaxation 

effect the stress components, and, consequently o, for both zones decrease. 
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Fig. 8. 8: Creep strain in the end zone (P'[) and in the inner zone (P2) 
during temperature cycling (T,). 
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Fig. 8.9: Stress components in the end zone and in the inner zone 
(P2) during temperature cycling (T,). 

Fig. 8.10 shows the variation of the axial deformation at locations A' and B' with 

time. The axial displacement at room temperature after cooling h m  Tp U, = -2.6 1473 pn 

while after completion of the temperature cycle, Uz = -2.601 83 pm. Thus, the absolute 

value of the matrix displacement decreases after the additional temperature cycle. The 

tensile neep strain reduces the axial thermal displacement of the matrix. Therefore, 



temperature cycling of this composite reduces the residual messes and increases the 

dimensional stability of the composite. 
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8.10: Axial displacement at locations A' and 
during temperature cycling (T,). 

8.4 Long Period Creep at Room Temperature 

The creep behavior of the matrix at room temperature over a long period of time 

after being cooled from the processing temperature is analyzed by keeping the composite 

at room temperature for 1000 hours. The only force causing creep is the residual stress 

present The time-temperature profile of the test is shown in Fig. 8.1 1. 

0 2 4 6 8 k  1000 
Time (hr) 

Fig. 8.1 1 : Room temperature storage for 1 OOOhr 
after cooling with slow rate (2OO0Chr). 



It is expected that most of the residual stresses resulting from the manufacturing 

stage relax after a long period of storing the composite at room temperature. The creep 

strains at the inner zone (at location Pz) and at the end zone (at location P',) &a 1000hr of 

storing are shown in Fig. 8.12. Since creep in the MMC matrix occurs rapidly with 

decreasing temperature, practically no more creep strain occurs in the matrix after lOOOhr 

of storage time (see Fig. 8.12). This implies that the residual stresses remain the same after 

1000hr. The stress components and the equivalent stresses for both the inner and end zones 

are illustrated in Figs. 8.13(a) and (b), respectively. 
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Fig. 8.12: Creep strain in the end zone (F1) and in the inner zone ( P 2 )  

during the storage time. 

The axial displacements at locations A' and B' ova the 1OOOh.r period are shown in 

Fig. 8.14. The displacements also seem to remain constant with time. This dimensional 

stability over time could be a very positive point for the composite during service 

temperatures lower than T = 500°C. 
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Fig. 8.13: Stress components in the inner zone (P2) and in the end zone (P'I) 
during the storage time. 
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Fig. 8.14: Axial displacement at locations A' and B' 
during the storage time. 

8.5 Creep Under High Cooling Rates 

The effects of fast cooling rates (lOOO°Clhr and 1000O°C/hr) on the stress and 

displacement states are presented in this section. For the first cooling scheme for which the 

rate is 1000*C/br, the composite is cooled h m  900°C (assumed to be the processing 

temperature) to room temperature in less than one hour. For the second scheme, the 



cooling process is completed in 5.4 minutes. The time-temperature profiles of both 

schemes are shown in Fig 8.1 5. 

The amount of creep strains in both the inner and end zones change with the cooling 

rate as illustrated in Fig. 8.16. The plots show that the creep strain decreases with 

increasing cooling rate. It is interesting to note that for all the cooling schemes considered, 

creep in the matrix stops at T=500°C. 
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Fig. 8.15: Profiles of temperature for 1 OOO°C/hr and 1 OOOO°C/hr cooling rates. 
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Fig. 8.16: Equivalent plastic strain in the end zone (PI) and in the inner zone (Pz) 

for three cooling rates. 



The decrease in creep strains is accompanied by an increase in residual stresses. A 

comparison of the stress components in both zones for the 1000°C/hr cooling rate 

(Figs. 8.17(a) and (b)) with the similar stress components for the 200°C/hr cooling rate 

(Fig. 8.4) shows that the stresses are higher for the former. For very fast cooling rates 

(quenching in water or oil), the von Mises equivalent stress may eventually reach the yield 

stress of the matrix and create some plastic deformation as  well as creep strains. However, 

this does not happen for the three different cooling rates discussed here. As Figs. 8.18(a) 

and (b) show, the von Mises equivalent stress increases with increasing cooling rate. 

However, no plastic deformation occurs even with the 1000O°C/hr cooling rate since all 

the three von Mises curves fall under the yield strength of the material during the entire 

cooling processes. 

As explained earlier, due to reduction of plastic strain with increase in cooling rate, 

the axial displacement of the matrix is expected to increase. Fig. 8.19 presents the axial 

deformation of the matrix at location A' (where the maximum U, occurs) with respect to 

different cooling rates. As the plots show, the maximum absolute value of U, occurs 

during the 1 000O0Clhr cooling rate. 
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Fig. 8.17: Stress components in: (a) the end zone (P'I) and 
(b) the inner zone (Pz) for 1 OOO°C/hr cooling rate. 



Comparing the elasto-plastic results presented in Chapter 7 with those obtained in 

this Chapter, the following conclusions can be made. For creep-prone materials, it is 

necessary to include the transient behavior of the material. Creep deformation changes the 

stress-strain and deformation states of the composite in both the inner and end zmes 

substantially. Finally, in presence of creep strains, modeling the strain hardening 

phenomenon of the material with either isotropic or kinematic hardening does not affect 

the results. Note that if the composite is quenched in water, the time for cooling is sharply 

reduced and this will not allow the composite to creep. Usually, the cooling process for the 

MMC composite takes less than a few seconds (Chandra et d., 1994). Therefore, the 

transient behavior of the constituents, which requires a considerable amount of 

computational time, may be ignored. 
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Fig. 8.1 8: Equivalent stress in: (a) the end zone (P'I) and 
(b) the inner zone (Pz) for three cooling rates. 
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Fig. 8.19: Axial displacement at location A' for three cooling rates. 



9. Effects of Surface Geometry of Composites 

on Thermal Stress Distribution 

9.1 Introduction 

In this chapter, the role of the fkee d a c e  geometry on the stress field at the fiber 

end is analyzed. A practical solution to the cracking problem is presented as the conclusion 

of the analysis. It is shown that by covering the free surface of composites by a thin layer 

of matrix-like material the very high radial and hoop stress components at the fiber end are 

sharply reduced. In Chapter 5, these stresses were identified to be the major factor in 

initiating the matrix cracking and fibedmatrix debonding at the fiber end. With reduction 

of the stresses, it is expected that the matrix cracking and debonding are reduced or even 

eliminated. Various practical manufacturing processes are simulated and discussed. 

Covering the £tee d a c e  of composites can be performed in several ways, two of which 

are considered here. In the one-stage covering process, the covering layer could be applied 

to the fkee stdace of the composite during manufacturing of the composite. The two-stage 

covering method refers to the process of covering the flee surface of a composite following 

manufacturing. In this method, the composite is first cooled h m  the processing 

temperature and then (in the second stage) the cover is applied. Typically, very high 

residual stresses may exist at the fiber end before the cover is applied. Diffaent curing 

cycles can be considered before applying the cover to reduce the residual stresses. The 

two-stage covering can be conducted in two different ways, applying the cover either in the 

presence or absence of the pre-formed residual stresses. 

AU of the above rnanufktwing methods and curing schemes are discussed in detail 

in this chapter. First, the elastic analysis of one-stage covering under 1°C temperature 

change using axisymmetric models is examined. The elasto-plastic analysis of the 



one-stage covering under the full processing temperature range using both the 3-D prism 

and axisymmetric models are also discussed. The elastic analysis of the two-stage covaing 

under 1 "C temperature change is also discussed followed by the elasto-plastic study of the 

process under the full temperature range. The two-stage processing is conducted using the 

axisymmetric model only. 

92 The Elastic Analysis 

The elastic analysis results presented here are obtained for 4 ° C  uniform 

temperature change under which the variation of mechanical properties of both 

constituents due to temperature, presented in Table 5.1, is neglected. All the stresses 

presented in graphs and contour plots are in MPa and the models dimensions are all in pm. 

9.2.1 Materials and Modeling 

In this chapter, unidirectional composites with 7 . 6 2 ~  diameter graphite (AS) fibers 

embedded in epoxy matrix (this matrix has also been referred to in Chapters 5 and 6) with 

35% fiber volume fraction (Vf) are simulated using axisymmetric FEM models. Since the 

thermal stresses in composites increase with reduction in the fiber volume hction, such a 

low Vf is used to enhance the stress effects. The analysis in Chapter 5, using the 3-D prism 

model for the hexagonal fiber pattern, shows that the stresses along the fiber circumference 

change very little. The average values of the mess components h m  the 3-D model are 

approximately equal to the stresses calculated fiom the axisymmetric model. The effects 

caused by reconfiguring the fhe surface (the fiber protrusion or fibers end covered by the 

matrix) are much higher than the difference between the axisymmetric and the prism 

models. Therefore, in order to focus on these effects it has been decided to use the 

axisymmetric model, which substantially reduces the computation time and the efforts 

required for the mesh refinement. 

The model along with the boundary conditions is shown in Fig. 9.l(a). The model 

was meshed with 8-noded axisymmetric elements with quadratic shape hctions of the 

ANSYS wftware. A very fine mesh was considered at the fiber matrix interface (FMI) in 



the vicinity of the free d a c e  as shown in Fig. 9.1 (b). Since (for the elastic case) the stress 

field is singular and the size of elements could affect the results (Abedian and 

Szy~zkowski, 1997), for comparison, the size and orientation of elements at the FMI for d 

models considered are identical. In the vicinity of A, the element size is 1164000 of the 

fiber radius. 
L 

Fiber I Matrix 

Free Surface 

c cu 
L L  

Fig. 9.1 : Axisymmetric model of  the composite. 

In general, the h e  d a c e  is not flat and may have a slope discontinuity as indicated 

in Fig. 9 4 ~ ) .  The present study is focused on the effects of fiberhatrix contact angles, 

denoted as 9 and 4 in Fig. 9.1 (c), on the stress distribution at the FMI in the vicinity of the 

fiee d a c e .  More specifically, the models shown in Fig. 9.2(a)-92(h) will be considered 

in detail. In Figs. 9.2(a)-9.2(d), it is assumed that the fiber is extending out of the matrix 

such that 8 = 180" and the matrix contact angle is varying fkom @ = 90° to @ = 1 lo. 

e) 9 g h) 

Fig. 9.2: Models with different fibedmatrix contact angles, i.e. (8,@). 



Figs. 9.2(e)-9.2(g) show the cases with 8 = 90° and with matrix contact angles of $ = 45". 

@ = 26"- and $ = 1 lo. In the case shown in Fig. 9.2(h). the free surface or the fiber and 

matrix cut surfaces are simply covered with a layer of matrix. 

9.2.2 Effects of Different Fiber/Matrix Contact Angles on Free Surface Stresses 

A brief review of the stresses at the FMI near the free surface for the flat free surface 

model (0 = @ = 90°) is presented in this section. Such a model has been discussed 

extensively in (Abedian and Szyszkowski, 1997). Then, the results for the models shown 

in Fig. 9.2 will be examined in detail sequentially. 

93.2.1 Case 1: 8 = 90°, @ = 90° 

For comparison, contour plots of the radial, hoop, and longitudinal shear stress 

components at the FMI and in the vicinity of the free surface under a uniform unit 

temperature change (+l°C) for the basic model are presented in Fig. 9.3. Very high 

compressive radial and hoop stress regions as well as a relatively high interfacial shear 

stress are presented in this area The details of the overlapping hypothesis, which was used 

to explain the stress 

Free surface 

Fiber I Matrix 
I 

state, were presented in Chapter 5. 

Free surface 

Fiber I Mamx 
I 

a) Radial stress (MPa) b) Hoop stress @Pa) 
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C )  Shear stress W a )  

Fig. 9.3: Stress distributions for the flat surface model. 

9.2.2.2 Case 2: 8 =180°, 41 = 90° 

When cutting composites, a very small portion of the fibers can be pulled out of the 

matrix. The magnified 3-D picture of such a cut surface along with its axisymmetric 



meshed model is presented in Fig. 9.4. Here, the portion of the fiber that extends out of the 

matrix is assumed to be 5% of the fiber diameter. As Fig. 9.5 shows, the stress components 

change significantly under a small variation in the composite temperatwe (+l°C) relative 

to the stresses shown for case 1, i.e. composite cut surface with a perfect surface finish (see 

Fig. 9.3). For comparison, graphs of radial and hoop stress components along the FMI (Line 

AB in Figs. 9.1 and 9.4) in the vicinity of the free surface for both cases are shown in 

Fig. 9.6. It appears that the stresses for case 2 are almost twice as high as in case 1 at the 

free surface, while away from the free surface the stresses are almost identical. One of the 

reasons for such a drastic change in the stress magnitude may be explained by the 

difference in the deformation of the fibers. The fiber under compressive radial load, which 

tends to eliminate overlapping (see Fig. 5.9)- may deform radially more easily for case 1 

than in case 2 (in which the fibers extend out of the matrix). Lower fiber deformations in 

case 2 cause higher compressive radial stresses in both the fiber and the matrix. Upon 

cooling, these stresses become tensile and can be very damaging to the fiberfmatrix 

bonding. This indicates the importance of the surface finish when cutting composites. The 

analysis performed for a longer portion of the fiber extending out of the matrix, i.e. longer 

than 25% of the fiber diameter, shows a Further small increase in radial and hoop stresses, 

thereby supporting the explanation based on the difference in the fiber compliance in the 

radial direction between cases 1 and 2. 

Fiber 

Fig. 9.4: Fiber extending out of the matrix. 



Fig. 9.5: Stress distributions for the model with the fiber extending out of the matrix. 

Fig. 9.6: Radial and hoop stress components on the fiberfmatrix interface 
in the vicinity of free surface. 

9.2.2.3 Case 3: 8 =180°, $ = 4S0 

Fig the sharp free comer of the FMI and the free surface with the matrix material 

(the angle @ becomes smaller than 90°) will change the stress regimes substantially. in the 

current discussion, it is assumed that the comer is filled with the matrix material such that 

the contact angle of the matrix with the fiber is @ = 45O (see Fig. 9.7). This case and almost 

a l l  of the following cases to be discussed in this section may mostly happen at the exposed 

end of composite parts during manufacturing or when a composite is cut. The dimensions 

of the ramp, i.e. a = b = 0.02 p, are considered to be 0.0026 times the fiber diameter. The 

analysis was repeated with a similar density of mesh pattern at both sharp corners of the 



ramp area It appears that high smsses still occur at both comers, but it is clear that the 

stresses are substantially lower at the fiber-matrix contact comer when $ = 45O relative to 

$ = 90" (see Figs. 9.5 and 9.8). These changes, caused by the decrease in contact angle, 

may be explained by the hypothesis of overlapping as  demonstrated in Fig. 5.9. Similarly 

as before, the difference in the fiber and matrix free thermal expansion causes radial and 

axial discontinuities. The load that is required for satisfying continuity in the axial 

direction again causes an overlap which, however, is smaller than in the previous cases. It 

is because, for $ = 4S0, the axial load is distributed on the 'a' dimension of the ramp (see 

Fig. 9.9) and the resultant load that is shown with the dashed arrow acts on the matrix 

hollow cylinder at some distance from its inner rim. This reduces the amount of 

overlapping and, as a result, lower radial stresses are required to eliminate the overlapping. 

As it turned out the other stress components decrease substantially as well. 

Composite 

u 

Fig. 9.7: The model with filled fiber-matrix comers. 
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Fig. 9.8: Stress distribution for the model with filled fiber-matrix comer. 

Fig. 9.9: Distribution of axial load in the ramp area. 

The sharp comer of the ramp (ramp/matrix contact angle, tanY = bla, Fig. 9.7) gives 

rise to stresses in the matrix. However, this stress concentration is related only to the 

geometrical discontinuity in the matrix material and should disappear if the discontinuity is 

removed. If this sharp comer in the matrix away from the fiber is still present, the 

corresponding stresses are high enough to damage the composite. This may be one of the 

reasons for cracks occurring in the matrix area away from the interface. This has also been 

found experimentally and will be discussed in Chapter 1 1. 

It is worthy to see how the fiber and matrix contact angles affect the stresses. That is 

why two more cases were analyzed by replacing the straight line KK of the ramp area (see 

Fig. 9.2(b)) with curved lines having tangent angles + = 26" and + = 1 lo (see Figs. 9.2(c) 

and 9.2(d)). For comparison, the radial and hoop stress components along the fiber matrix 

interface for the last three cases are shown in Figs. 9.1O(a) and 9.10(b). The graphs show 



that the stress components are essentially the same away b r n  the fiber end but, as the free 

d a c e  is approached, the stresses show a large difference in magnitude. Note that for @ 

equal to 1 lo and 26", the highest stress occurs away fiom the fke d a c e .  The lower 

matrix contact angles decrease the absolute values of the very high W s a  at the fkee 

d a c e  as shown in Fig. 9.1 1 .  For small @, the stresses at the free surface drop to almost 

zero. In such cases, according to the results shown in Fig. 9-10, the maximum stresses will 

be located inside the matrix. For reference purposes, these stresses are also presented in 

Fig. 9.1 1. 
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Fig. 9.10: Radial and hoop stress components along the fibedmatrix interface 
for case 2 (0 = 1 80°) with different matrix contact angles (6). 
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Fig. 9.1 1 : Radial and hoop stress components at the interface on the free d a c e  for 
case 2 (0 = 1 80°) with different matrix contact angles ($). 



Elimination of the sharp comers (i.e. reducing ramplmatrix contact angle, by 

considering nwed ramps generally reduces the stress concentration in the matrix as 

indicated in Fig. 9.12. 
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Fig. 9.12: Radial, hoop, and shear stress components at the free surface for 
case 2 (8 = 1 80°) with different matrix/ramp contact angle (v)- 

92.2.4 Case 4: 8 = 90°, @ = 45" 

The very high thermal residual stresses introduced during manufacturing (discussed 

in detail in Chapter 7) may be partially relaxed and/or cause some microscopic 

deformation on the cut d a c e  of a composite. The creep phenomenon can also play a role 

in deforming the cut surface. Under these circumstances, the fiber and the matrix may end 

up at different heights on the cut d a c e  as shown in Figs. 9.2(e)-2(g). 

The mesh pattern for this case is presented in Fig. 9.1 3(a). The pattem of the mesh in 

both comers of the 45" ramp is exactly the same as the one considered in case 3 (8 = 180°, 

+ = 45"). For comparison, the stress components along the intaface for the merit case 

and also case 3 are presented in Fig. 9.13(b). The mses sean to be higha for case 3 than 

for the present case. This may be attributed to the same reasons as those discussed for 

case 2 (0 = 180°, 9 = 90°). That is, the fiber for the current case (8 = 90°) may defonn 

more easily under the axial load which causes overlapping relative to case 3 where 



8 = 180". reducing the absolute value of the radial component of the load. However, the 

stresses at the ramp/rna& contact comer (i.e. angle Y) are similar for both cases. 
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Fig. 9.13: Radial and hoop stress components along the fibedmatrix interface 
for matrix contact angle of (@ = 45"). 

The above numerical analysis was repeated for matrix contact angles of 41 = 26" and 

$ = 11". Compared to the cases discussed previously, lower stresses were obtained for 

these angles as well. These results will be discussed in the next section. 

9.2.2.5 Case 5: 0 = 90°, @ = 270° (Free Surface Covering) 

Covering the free surface (cut edge) of the fiber and matrix with a thin layer of 

matrix-like material results in a contact angle of $ = 270" for the matrix at the interface 

(see Figs. 9.14(a) and 9.2(h)). The covering process can be performed either during 

manufacturing or as a repair process. 

The FEM model with dense mesh pattern at the comer of the FMI is shown in 

Fig. 9.14(b). Upon covering the free surface, the stress regimes right at the comer are 

completely changed relative to the stresses presented for the composite model without the 

covering layer, see Figs. 9.3 and 9. IS. Interestingly, the absolute values of the compressive 

radial and hoop stresses are substantially reduced. The reduction is so substantial that these 

stresses (which will become tensile on cooling and could potentially damage composites 



by initiating circumferential and radial cracks in the matrix) should not be considered as 

causing damage to composites. Such changes to these stress components may also be 

explained again considering the free expansion of the composite constituents and the 

overlapping as presented previously. The block diagram of a single fiber embedded in 

matrix is shown in Fig. 9.16. Under axial load, which tends to satisfy the longitudinal 

continuity, the deformation of block-S is obstructed by the block-T. This greatly reduces 

the amount of overlapping and changes the deformation pattern. As a result, the absolute 

value of the very high compressive radial stress is reduced to a very small value. This 

radial stress can vary from a small compressive to a small  tensile stress depending on the 

degree of overlapping allowed by the properties of the block-T and the value of the other 

stress components. The deformation of a hollow cylinder under a compressive axial load 

on its inner wall can be used to explain the small compressive hoop stress. A lower 

overlapping results in lower hoop stress as well. However, high stresses are still present in 

the elements adjacent to element E' (shown in Fig. 9.14@)) due to a type of stress 

singularity which is inherent with sharp corners. Most notable are the very high tensile 

radial, hoop, and axial stresses for these elements, see Fig. 9.15. Upon cooling composites 

from the processing temperature, these stresses not only prevent cracking but also help to 

keep the fiber and matrix intact due to the sign change in the stresses. The only stress 

component, which may be detrimental at the fiber end (when covering the free surface). is 

the longitudinal shear stress at the interface. 
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Fig. 9.14: Model of a composite with a covering layer on the cut surface. 
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Fig. 9.15: Stress components for the model with a matrix-like covering layer. 
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Fig. 9.16: Block diagram of a composite with a covering layer. 

These shear stresses play a major role in increasing the tensile hoop stress in the 

elements adjacent to the element E' in the matrix area, see Fig. 9.15. Considering free 

expansion of the composite constituents and ignoring the overlapping effect, the blocks T 

and C will expand more than the fiber in the radial and hoop directions. To rejoin the block 

comers with the fiber end, a tensile radial stress along with a compressive hoop stress are 

required. Considering the overlapping effects of block-S, the stresses substantidy change. 

In addition, there is another important factor that greatly influences the hoop stress. Under 

a shear stress, the comer elements (see Fig. 9.15) are pushed toward the fiber center, 

creating a high deformation as shown in Fig. 9.17. This deformation is balanced by a 

tensile hoop stress shown in the figure. 

To determine the effects of the change in the fiberlmatrix contact angles on the 

stresses, the stress components along the interface for this case and the cases discussed in 



the previous section are plotted in Fig. 9.18. Large differences in stress values are seen in 

the area close to the comer tip. According to the comer tip values of the stress against the 

matrix contact angle of (@) in Fig. 9.19, it seems that covering of the composite fiee 

d a c e  is an effective and practical way for decreasing the damage due to thermal stresses 

at the fiber end in composites. Ths important finding has been verified experimentally and 

is discussed in Chapter l1. 
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Fig. 9.18: Radial and hoop stress components dong the interface for 
cases 4 and 5 (9=90°) with different matrix contact angles (@). 
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Fig. 9.19: Radial, hoop, and shear stress components at the interface 
on the fiee surface for cases 4 and 5 (0 =90°) with 

different matrix contact angles (4). 

9.2.2.6 Effects of Layer Thickuess and its Material Properties 

The radial, hoop, and shear stress components at the tip of the fibedrnatrix contact 

comer are plotted against the thickness of the covering layer in Fig. 9.20. Significant 

changes in the radial and hoop stresses are observed if a cut is covered with a small layer 

of matrix material. The covering layer is most effective when its thickness is about 10% of 

the fiber diameter. Increasing the thickness further does not show a major effect on the 

stress components. However, a thicker covering layer causes a sign change in both the 

radial and hoop stress components which is desirable for the cooling phase of the 

manufacturing process. The higher thickness of the cover reduces the shear stress value by 

only a few percentage points. Themfore, the chance of fibedrnatrix de-bonding is still high 

and it depends on the interface strength that is very critical in composites. 

The effects of some of the properties of the covering layer on the stresses have also 

been studied. It may not be possible or practical to get the same properties for the covering 

layer as the ones for the matrix material. To investigate this, the modulus of the covering 

layer was assumed to vary h m  0.1 to 10 times the matrix modulus. In addition, Poisson 

ratios of 50 to 75 percent of that of the matrix were considered. Also, some analysis was 



performed on the effect of the thermal expansion coefficient of the covering layer on the 

stress concentration at the fiber-matrix contact corner. 
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Fig. 9.20: Radial, hoop, and shear stress components at the fiber end vs. the ratio 
of the covering layer thickness to the fiber diameter. 

As expected, the stifhess of the covering layer has a great effect on the nature of the 

stresses at the fiber-matrix contact comer. As explained earlier, block-T (see Fig. 9.16) 

plays a major role in preventing fibedmatrix overlapping under axial load. When block-T 

is of low modulus material, it deforms easily and despite the elimination of the free 

surface, very high compressive radial and hoop stress components appear at the comer tip. 

Also, the high deformability of the covering layer reduces the very high tensile radial and 

hoop stress components in the elements adjacent to the element E' in blocks T and C (see 

Fig. 9. 2 1). A plot of the radial, hoop, and shear stress components in the vicinity of the 

fiber-matrix comer tip against the ratio of the modulus of the covering layer to that of the 

matrix material is shown in Fig. 9.22. It appears that the radial and hoop stress components 

change from very high compressive to high tensile with increasing modulus of the 

covering layer. This change is desirable for preventing matrix cracking and de-bonding 

when cooling composites h m  their processing temperature. However, this may adversely 

affect the composite during the heating phase of working temperature cycles. The vay 

high absolute values of the stresses for both the low and high modulus covering layers may 

damage the composite in either phase of the temperature cycle. The stress values are low 



for I E, = 1, therefore using a covering layer material identical to the matrix material 

is recommended. Choosing a high modulus material for the cover may eliminate the 

adverse effects of the radial and hoop stress components during cooling, but the high 

longitudinal shear stress will still be present. 

- Mamx - Matrix 

a) Radid stress (MPa) b) Hoop stress (MPa) 

Fig. 9.2 1 : Stress components for the model with a low modulus-covering layer. 
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Fig. 9.22: Effects of the Young's modulus of the covering layer 
on the stress components at the fiber end. 

The analysis of the changes in Poisson ratio of the covering layer reveals some 

interesting results. Fig. 9.23 indicates that the small compressive radial and hoop stress 

components at the tip of the contact corner of the fiber/matrix interface (see Fig. 9.15) are 

replaced with high tensile stresses when the layer Poisson ratio (v,,) is decreased relative 

to that of the matrix, v,. Such a change is desirable for cooling, but it may be harmful 



during heating. This also introduces a positive change to the shear stress for the element E' 

in Fig. 9.14. A lower shear stress is detected at the tip of the fibedmaaix contact corner 

when Poisson's ratio is decreased. However, with a low v,, a relatively high shear stress 

appears at the elements adjacent to elanent E' compared to that observed in case 5. In 

conclusion, a cover with a low Poisson's ratio might prevent cracking in composites 

during cooling even more effectively than using high modulus materials for the covering 

layer. 

The changes in the radial and hoop stress components due to different Poisson ratios 

of the cover and matrix can be explained well with the differences in the amount of 

contraction of the matrix and the covering layer. When v,, is lower than that of the 

matrix, the covering layer tends to contract or expand less than the matrix in both the radial 

and hoop directions. Therefore, the cover not only prevents overlapping but also, to satisfy 

continuity, resists the matrix shrinkage in both radial and hoop directions generating high 

tensile radial and hoop stresses at the fiber matrix comer tip. Also, decreasing v,, results 

in an increase in the shear modulus of the cover ( G = ~ / 2 ( 1  +v)  ). The matrix with shear 

modulus lower than that of the covering layer tends to distort more than the covering layer. 

This decreases the shear stresses in the matrix while increasing them in the covering layer. 

Covering Layer Poisson's Ratio Effects 
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Fig. 9.23: Eflects of the Poisson's ratio of the covering layer on the 
stress components at the fiber end. 



Finally, the influence of different thermal expansion coefficients (CTE) for the 

matrix and the covering layer was investigated for the range 0.5- 5 C T E , v =  I 

IS-. The results indicate that though the CTE mismatch for the composite 

constituents is responsible for the thermal stress generation, it has little effect on the matrix 

stresses at the fibedmatrix contact comer. A plot of the radial, hoop, and shear stress 

components for the element F against C&,, / C&, is shown in Fig. 9.24. The 

differences are negligible. The reason could be that other geometrical deformations due to 

overlapping at the fiber end, rather than the CTE mismatch (which imposes thermal 

stresses), affect the stress distribution. The diEerences in v and E of the covering layer 

affect the geometrical deformations at the fiber end, while the difference in CTE affects the 

thermal stresses only. The changes due to the CTE mismatch of the cover and the matrix 

are pronounced more in the covering layer than in the matrix. This is due to the absence of 

geometrical deformations like those at the fiber end. The difference in CTE imposes 

different expansions on the matrix and the covering layer under a unit temperature change. 

For m, 5 a, the matrix comes under compressive radial and hoop stresses to 

maintain the same expansion as the covering layer and to satisfy continuity. Meanwhile, it 

puts the covering layer under tensile stresses in both directions. That is why higher 

compressive stresses are detected in both directions in the matrix relative to the values 

obtained when CTE,vd = C&,. It is noted that this phenomenon also increases the tensile 

messes in both directions in the covering layer. The shear stress remains almost 

unchanged in both the matrix and the covering layer, since the mismatch in CTE does not 

affect the shear properties of the composite constituents. 

In summary, with the 3 major material properties of the covering laya discussed so 

far, it is concluded that it is important to cover the composite cut edges or free surfaces 

with the same material as the matrix. In aU cases, using similar materials for the matrix and 

the covering layer results in very small radial and hoop stress components that are very 

desirable. A covering layer with high modulus or with u,, c can be helpll during 

cooling only. 
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Fig. 9.24: Effects of the thermal expansion coefficient of the covering layer 
on the stress components at the fiber end. 

9.23 Fibers Close to the Composite Side Edge (Edge-Fibers) 

The study presented so far was conducted on fibers well away fkom the composite 

side edge (internal fiber). In this section, the effects of the composite side edge on the 

stress dihbution around the fiber end are discussed. The analysis performed in case 1 (see 

Fig. 9.3) was repeated with the coupling boundary condition removed from the nodes 

along the matrix side edge, i.e. line M-M in Fig. 9.l(a). Coupling the nodes dong line 

M-M in the radial direction results in the nodes being restrained against the relative 

movement in this direction, thus keeping the line straight at all times. The coupling 

assumption simulates the effects of an adjacent fiber on the line M-M. For the fibers at the 

composite side edge, the nodes on line M-M are not restrained by this boundary condition. 

Therefore, with a temperature change of +l°C, the matrix can deform down and inward 

more easily under the axial load that tends to satisfy continuity in this direction. This 

creates a higher degree of matrix overlapping at the fiber end than when line M-M is 

restrained. The difkrences between the deformation of the edge-fiber and the internal fiber 

are presented in Fig. 9.25. Much higher stresses appear along the interface in the vicinity of 

the £he surface for the edge-fiber than the internal fiber. A comparison between the 

stresses shown in Fig. 9.26 and Fig. 9.3 indicates that, for edge fibers, about 50% increase 



in stress occurs at the interface in the vicinity of the free surface. Considering this fact, it 

can be concluded that the edge fibers may be more prone to cracking than the internal 

fibers. Also, for edge-fibers with covered fke surface (depending on the properties of the 

matrix and the covering layer and the interface strength) the possibility of matrix cracking 

is  higher than for those of the internal fibers. 

Initial sate Initial state 
Fiber Mamx 

I 3( Fiber Mamx 
I I 
I I 
I I 
I Deformed state I 
I 

i 

I 
I k a T i '  

a) Internal fiber b) Edge fiber 

Fig. 9.25: Effects of fiber location on the deformation pattern of the fkee surface. 
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Fig. 9.26: Stress components at the side edge of a composite. 



9 3  Inelastic Analysis of Composites with a Covering Layer 

The elastic d y s i s  has indicted that covering the fiee d a c e  of composites with a 

thin layer of matrix-like material is the most effective way of eliminating the very high and 

damaging radial and hoop stress components at the fiber end. In this section, to examine 

these effects hrther, the inelastic behavior of the composite similar to that presented in 

Chapter 7 is performed. The transient effects are neglected for fast cooling processes 

(i.e. quenching in water). It is assumed that the fiee surface of the 3-D model is covered 

with a thin layer of matrix material (see Fig. 9.27). The thickness of the cover is considered 

to be one tenth of the fiba diameter. This study is conducted on titanium based matrices 

(Ti-6A1-4V or Ti-24A1- 1 1 Nb) rrinforced with SCS-6 fibers. 

Fig. 9.27: 3-D model with a covering layer. 

9.3.1 Residual Stresses in SCS-6/Ti-6Al4V Composite 

The 3-D prism model which simulates the SCS-6/Ti-6Al-4V composite with a 

matrix-like covering layer on its free surface is cooled to room temperature fiom the 

composite processing temperature (T, = 900°C). Note that, as in Chapter 7, the Ti-6Al-4V 

matrix is referred to as MMC hereafter. 

The thermal residual radial, hoop, and equivalent stress contours of the model at 

room temperature are shown in Fig. 9.28. To make the matrix interface stresses visible, the 

fiba stresses are not shown. Like the elastic case discussed previously in this chapter, the 

results of the inelastic analysis show that the radial and hoop stresses in the vicinity of the 



interface at the fiber end are distinctly different from the stresses in composites without 

cover discussed in Chapter 7 (compare Figs. 9.28 and 7.2 for example). Afier cooling fiom 

Tp the maximum value of the stress components, which were tensile and appeared at the 

interface on the fiee surface for the model without cover, become compressive and show 

lower absolute values at the interface. In fact, the extreme values of the stresses occur away 

fiom the interface when the kee surface of the composite is covered. The compressive 

stresses, which are relatively small, appear at the interface in the vicinity of the fiber end. 

Radial stress w a )  Hoop stress (MPa) 

Equivalent stress (MPa) 

Fig. 9.28: Eff- of covering on the radial, hoop, and equivalent stresses of the . 

Ti-6Al-4V matrix composite generated during cooling from Tp 



Despite the changes in radial and hoop stress components at the fiber end, the 

maximum value of the equivalent stress appears in this region at the interface at location 

Pi,. The equivalent von Mises stresses (Q in locations P'! and P2 and the yield strength of 

the matrix (0,) during cooling hxn Tp are shown in Fig. 9.29. The curve for the inner zone 

will be discussed later. In the end zone, the figure shows that plastic deformation starts 

sooner than for the model without cover (compare Figs. 9.29 and 7.1). For the former, 

plasticity sttarts at T=650°C, while for the latter it starts at T=360°C. One reason for this 

difference could be the very high magnitudes of the axial and longitudinal shear messes in 

the matrix at the fiber end. These stresses are generated due to the formation of a sharp 

comer in this location after covering the free surface. A 3-D contour plot of the axial and 

longitudinal shear stress components at room temperature is shown in Fig. 9.30. As the 

figure shows, very high axial and longitudinal shear stresses occur at the interface at the 

fiber end. The maximum of the compressive stresses appears at location PII. The origin of 

these stresses and their effects will be discussed in more detail in section 9.3.3. 
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Fig. 9.29: Effect of covering on the stress history of Ti-6A.l-4V matrix 
in the end zone (PIl) and the inner zone (Pz). 

For the composite without cover, these stress components are also present in the 

vicinity of the fiber end but they cause a lower equivalent stress. The reason is that (for the 

model without cover) all the stress components near location P'l are high and tensile but 

the differences between them are small, thereby resulting in small nq. For the model with 

cover, the difference between the stress components is large due to smaller radial and hoop 



stresses and this results in higher equivalent stresses. This high equivalent stress causes 

plastic strains in the early stage of cooling of the covered composite unlike in the 

composite without cover. Fig. 9.3 1(a) presents the equivalent plastic strain (E:) in the 

matrix at T=360°C. The strain values are much different fiom those of Fig. 7.3(a) for the 

model without cover. There are several other differences between the composites with and 

without cover. For example, comparing the curves for a, at location P', presented in Figs. 

9.29 and 7.1, it is clear that higher equivalent stresses appear at room temperature in the 

end zone if the fke surface of the composite is covered at the melting temperature. 

Axial stress ( m a )  Longitudinal shear stress @Pa) 

Fig. 9.30: Effect of covering on the axial and longitudinal shear stress components 
of the Ti-6Al-4V matrix composite generated during cooling fiom Tp 

Comparing 0, at location P2 in Figs. 9.29 and 7.1 shows that the plastic strain in the 

inner zone starts at the same temperature as that for the composite without cover 

(T=320°C). This indicates that covering does not influence the stresses in the inner zone. 

However, in the inner zone of the covered model at room temperature (see 

Fig. 9.3 I@)) is slightly lower than E: at room temperature for the model without cover 

(see Fig. 7.3(b)) for the model without cover. One reason could be the high plastic strains 

in the end zone of the covered model which cause a large amount of stress relaxation in the 

rest of the composite, hence reducing the total amount of plastic strain in the inner zone. 

As Fig. 9.29 shows, like the composite without cover, the equivalent stress in the inner 

zone of the covered composite drops below the yield strength of the material at T=320°C. 



As a result, for temperatures lower than T=320°C no more plastic deformation occurs in 

the inner zone. The stress components in the inner zone of the composite with cover 

(which are not shown here) are very close to the stresses for the composite without cover 

as shown in Fig. 7.5. 

Again, the most important effect of covering the free surface of composites is the 

change in sign of the radial and hoop stress components at the end of the fiber during 

cooling &om Tp. The compressive stresses prevent crack opening or interface debonding. 

For composites with fiee d a m ,  the tensile radia! and hoop 53ess components may 

damage the conposite integrity by cracking the matrix or debonding the fiberlmatrix 

interface. 

Equivalent plastic strain (Mi model) Equivalent plastic strain (inner zone) 

Fig. 9.3 1 : Effect of covering on the equivalent plastic strain 
in the end zone and the inner zone of Ti-6Al-4V 

matrix composite (at T = 360°C). 

9.3.2 Residual Stresses in SCS-6/Ti-24Al-1 lNb Composite 

The effects of low strength matrices on the covering the f i e  surface of composites is 

studied by repeating the elasto-plastic analysis of the SCS-6/Ti-24Al- 1 1 Nb composite 

(which was discussed in Chapter 7). Here, the composite is cooled h m  the processing 

temperature CT,). As in the case of the composite without cover, the maximum values of 

a, in the end zone and the inner zone occur at locations P'I and Pz, respectively. A graph 



of crq (in these locations) verms temperature is shown in Fig. 9.32(a). The figure also 

shows G,, and a! (the yield strength of the strain hardened ma&) at both locations versus 

temperature. The corresponding equivalent plastic strain in the svne locations is plotted 

against temperature in Fig. 9.32@). The figure shows that covering the free surface of this 

composite also accelerates the plastic deformation of the matrix in the end zone. Changes 

in the status of the radial and hoop stress components in the end zone due to the covering 

layer affect the equivalent stress in this region. Upon cooling, an increase in oq of the end 

zone quickens the onset of plasticity, a feature not seen in the composite without cover 

(compare Figs. 7.13(a) and 9.32). Therefore, more plastic strain is accumulated when the 

composite is covered with a thin layer of matrix-like material. The yield strength of the 

material is increased by the plastic strain accumulation due to the strain hardening 

characteristic of the matrix. The figures show that the increase in yield strength (0: )  at 

point P'! is much higher than that obtained for the model without cover due to the higher 

plastic strain for the covered composite. As Fig. 9.32(a) shows, o: of the matrix in the end 

zone is well above ay. However, depending on the stress-strain characteristic of the 

material at a certain temperature level, the high plastic strain may strengthen the material 

such that o, falls below 0:. Such a stress state occurs at T=200°C as shown in 

Fig. 9.32(a). Therefore, as Fig. 9.32(b) shows, the plastic strain in the end zone at location 

P', remains constant at temperatures lower than T=200°C. Since a: is history dependent, 

it increases until room temperature is reached. 

Unlike the end zone, plastic deformation in the inner zone continues until room 

temperature is reached. Again, it appears that covering the composite fke surface does not 

affect the start of the plastic deformation in the inner zone. However, at room temperature, 

the plastic strain of the material is slightly different when compared to the results obtained 

for the composite without cover (see Fig. 7.18(a)). The plastic strain of the composite with 

cover is lower than that for the model without cover (maximum 4 = 0.2902e-2 and 

0.29 14e-2 for models with and without wver in the inner zone, respectively). As explained 

earlier, it auld  be due to the higher plastic strain in the end zone in presence of the wver. 



The stress relaxation associated with the plastic defonnation reduces the plastic strain in 

the inner zone. The changes in the yield strength and the inner zone stresses of the 

composite with cover appears to be neghgible due to the smdl difference in the amount of 

inner zone plastic strains of the models with and without cover. 

In general, as explained previously, the main effect of the covering is its ability to 

reduce the high magnitude of radial and hoop stress components at the fiber end. 
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Fig. 9.32: Effect of covering on the equivaient stress and plastic strain generated in the 
end zone (P'I) and in the inner zone (Pz) of the Ti-24Al- 1 1 Nb matrix 

composite during cooling £?om Tp. 

9 3 3  Axisyrnmetric Analysis of Composites with Covered Free Surface 

In the last two sections, the analysis of the covered 3-D model showed that oq and 

4 in the end zone (at location P',) increase in comparison to their values for the 

composite without cover. To check how reliable these results are and whether the 3-D 

prism model can be utilized in analyzing the composite with cover, the study is repeated by 

employing the axisymmetric model. The same model used in Chapter 7 is considered with 

a thin layer of matrix-like material on its fke surface. The details of the discretization of 

the model with its covered fke d a c e  in the vicinity of the singular point are similar to 

that shown in Fig. 9.14. 



The yield strength of the matrix (oJ, o,, and 0: at locations A, J, and B during 

cooling fiom Tp are presented in Fig. 9.33(a). As usual, A is located at the fiber end at the 

fiberlmatrix in tdce ,  J is O . O I p  away fkom A at the interface, and B is located in the 

inner zone. The variation of equivalent plastic strain (4) for the same locations with 

temperature are shown in Fig. 9.33(b). Comparing these plots with the plots of equivalent 

stresses and strains at the same locations for the model without cover (presented in 

Fig. 7.19) shows high changes in stress and strain magnitudes. The very high CF- and E: 

in the end zone (at location A) are sharply reduced when covering is employed. This is 

antmy to the results of the 3-D model mentioned above and will be explained in the next 

paragraph, The reduction in stress and plastic strain is due to changes in stress components 

at the fiber end in the presence of the cover. The radial, axial, and hoop mess components 

become compressive and, due to the relatively close values, the magnitude of the 

equivalent stress is reduced. These stresses and ow during cooling fiom Tp for location A 

are shown in Fig. 9.34. Therefore, the plastic deformations for the model with covered fiee 

surface are lower than those for the model without cover. The compressive nature of the 

stress components at location A (Fig. 9.34) is substantially different than for the composite 

with no cover. This may be explained as follows: Upon cooling, the extra covering layer of 

the matrix on the fiber end will apply a compressive axial stress on the rest of composite 

due to the CTE mismatch (Fig. 9.35). The compressive axial m a s  causes the matrix to 

overlap the fiber end and is capable of changing the overall deformation and stress states at 

the fiber end. The overlapping generates compressive radial and hoop stresses at the fiber 

end (Abedian and Szyszkowski, 1997) (see Fig. 9.34). Note again that the stresses are 

tensile when cooling the composite without cover. 

The contradiction between the results of the 3-D and axisymmetric models in 

predicting a, and &, at the fiber end for the covered composite (as compared to the 

composite without cover) may be explained as follows. One reason may be the difference 

between the stress components calculated by the two models for the fiber end. since'the 

3-D model is meshed with coarser elements, the magnitudes of the compressive radial and 



hoop stress components are smaller than those obtained with the axisymmetric model. This 

will increase the equivalent stress and, as a result, the plastic strain shows some increase. 

Note that cq is related to the diffefence between the saess components. 
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Fig. 9.33: Axisymmetric modeling of the covering process; (a) equivalent stress 
@) equivalent plastic strain at locations A, J, and B. 
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Fig. 9.34: Effect of covering on the stress components 
at the fiber end at location A. 
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Fig. 9.35: Effect of thermal contraction of the cover on composite deformations. 

The plastic strain distribution along the interface of the axisymmetric model at room 

temperature is shown in Fig. 9.36(a). A larger scale graph of the crwe around location A 

in Fig. 9.36(a) is shown in Fig. 9.36@). Like the composite without cover, the high plastic 

strain at location A is shown to be a very localized phenomenon. The plastic strain drops 

fiom about 0.25 at location A to less than 0.05 at about 0 . 0 6 ~  away from the fiber end. 

However, comparing the distriiution of 4 in Fig. 9.36(b) with that of the composite 

without cover presented in Fig. 7.20, the plastic strain along the interface in the vicinity of 

the fiber end (ie. location J) is slightly higher for the model with cover. Comparing a, 

and 4 at location J in Figs. 9.33 and 7.19 shows some increment in their values when the 

fiee surface of the composite is covered. This may be due to the decrease in plastic seain at 

location A in presence of the cover. A low plastic strain at this point results in a low stress 

relaxation. Therefore, compared to the composite without cover, higher stresses and, 

consequently, higher plastic strain can be expected at some point away fkom location A, 

i.e. point J. 

Comparing Figs. 7.19 and 9.33, the equivalent stress and plastic strain at point B 

seem to be also affected by the presence of a covering layer. Compared to the composite 

without cover, a higher plastic strain along the interface away h m  location A (i-e. at point 

J) affects the stresses in the inner zone i.e. at point B. This is due to the relaxation effect of 

the plastic strains, i.e. the lower stresses at point B result in lower plastic strains in the 

inner zone. Due to the scale of the graphs, these differences are not clearly shown. 
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Fig. 9.36: (a) Plastic strain distribution along the interface, (b) magnification 
of the plastic strain in the vicinity of the fiber end 

In generd, the results obtained &om the axisyrnmetric model are in a good 

agreement with those of the 3-D prism model. Of course, the 3-D model analysis (due to 

the coarse mesh) is less accurate in the neighborhood of the singular point than the 

axisymmetric analysis. However, the solution at a short distance fiom the singuIar point is 

very close. This similarity becomes more apparent when one compares the equivalent 

stress and plastic strah obtained by the 3-D model with the results at points J and B of the 

axisymmetric model. With covering, they show some increase at a short distance to the 

singular point relative to the composite without cover. However, they decrease in the inner 

zone. 

9.4 Two Stage Process of Covering of Composites Free Surface 

In the analysis 3f wmposites presented so far, it was assumed that the composite and 

the covering layer on the f i e  d a c e  were manufactured in one single processing stage. It 

was also assumed that the composite and the covering layer are cooled to room 

temperature at the same time. However, *om the manufacturing point of view, different 

scenarios are possible. For example, for composite structures that are made fiom 

pre-manufactured composite panels or rods, any required cutting would generate new f i e  

surfaces. Also, drilling holes in wmposites makes fresh cut slrrfaces. Any fksh cut M a c e  

may then be covered with a layer of a new material or matrix-like material. 



Simulation of such a covering process is analyzed in two successive stages. In the 

first stage, the stress and displacements on the free d a c e  of a composite cooled from the 

processing temperature are analyzed. Very high residual stresses and plastic deformation 

are already present at the fiber end. The analysis of the covering process is performed in 

the second stage. Here, three schemes of the two-stage covering process that are different 

from the manufacturing point of view are studied. 

In the first scheme, a thin layer of the molten matrix material is applied on the free 

surface of the composite which is at room temperature. In this scheme, the residual stresses 

are sufficiently high so that applying the hot cover material can disturb the residual stresses 

and plastic strains by partially relieving than. Note that for this scheme, the exact 

temperature distriiution in the material is difficult to obtain. 

In the second scheme, the cooled cumposite is re-heated to slightly below its 
A 

processing temperature Tp and then the cover is cast on the free surface. The difference 

between the two schemes is in the different magnitudes of the residual stress and plastic 

defamations in the composite before applying the cover. For this scheme, the analysis of 

the temperature distriiution is easier. Also, re-heating of the composite close to its 

processing temperature can relieve most of the residual stresses present. 

For the third scheme, the residual stresses and plastic strains at the fiber end are 

eliminated by physically cutting the end of the composite before applying the covering 

layer. These analyses will be presented in sequence. To highlight the differences between 

the one-stage and two-stage covering processes, an elastic study of the two-stage scheme is 

discussed first, 

9.4.1 Elastic Analysis of the TwoStage Covering Process 

A simplified elastic analysis of the two-stage covering process is discussed in brief 

The materials, which were considered in the elastic analysis of the one-stage scheme of the 

covering process, are considered here again. Since in ANSYS all the elements must be 

generated before the solution phase, the element birthdeath capability is used. To model 



any material addition or removal occllrring in the two-stage covering process, the 

respective elements are deactivated or killed (material removal) or the previously killed 

elements are reactivated (material addition). 

The full model consisting of the composite and the covering layer (see Fig. 9.14) is 

created first. To analyze the residual stresses before the cover is applied, the elements of 

the covering layer are deactivated. When killing elements, the modulus of the affected 

elements is reduced to a negligible value. In the second stage, to analyze the effect of the 

covering layer on the already stressed composite, the elements of the covering layer are 

reactivated (i.e. the elastic modulus of the elements is restored). Unlike the elastic analysis 

of the one-stage covering process, the analysis is performed for I "C temperature reduction. 

In the second stage, after reactivating the elements of the cover, the temperature of the 

composite is increased by 1 O C  to see how the covering layer affects the stress state. It is 

expected that despite the assumed elastic nature of the process, the covering layer should 

prevent relaxation to occur after this temperature cycle. In the last phase of the analysis, the 

temperature of the system (i.e. composite plus the covering layer) is decreased by 1°C 

again to compare the stress state with the stresses of the first stage (i.e. the stresses of the 

cooled composite without the covering layer). 

During the first cooling stage of the composite without the covering layer, very high 

tensile radial and hoop stress components are expected to occur at the singular point. A 

contour plot of the stress components for the composite cooled by 1°C is shown in 

Fig. 9.37. At this stage, the elements of the cover are reactivated. The absoiute values of 

the stresses are the same as the results presented in Fig. 9.3 where a similar model was 

heated for 1 "C. The stress components, in the presence of the cover and after 1 "C heating, 

are shown in Fig. 9.38. Mer the temperature reversal, as the figure shows, the stresses 

change but there are still high tensile stresses present near the singular point in the 

composite. One reason for the stresses remaining high could be due to the resistance of the 

covering layer in relieving the previous deformations. The covering layer does not let the 

fiber and the matrix defoxm h l y  back to their 0rigma.l shape. For example, the axial 



displacement of the composite dlning the three-stage temperature change is shown in 

Fig. 9.39. As Fig. 9.39@) shows, the matrix contraction due to the first cooling stage (see 

Fig. 9.39(a)) does not disappear fully after heating the composite and the cover to the 

original temperaturee 

The above effkcts could also be explained by the overlapping hypothesis. Previously, 

(sections 9.2.2.5 and 9.3.3) it was shown that upon heating, the covering layer could 

change the sign and magnitude of radial and hoop stress components at the fiber end by 

reducing the overlapping. As Fig. 9.15 depicted, the stress values are sharply reduced at the 

singular point. Therefore, when heating the composite with the cover in the two-stage 

covering process, no more overlapping occurs. It results in very small changes in the 

residual stresses. Hence, the stresses generated in the composite without cover during 

cooling from the processing stage remain the same. 

Radial stress ( m a )  Hoop stress (MPa) 
Fig. 9.37: Radial and hoop stress components generated by 1 OC cooling 

of the graphite/epoxy composite without cover. 
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Fig. 9.38: Radial and hoop stress components generated during reheating 
the graphitdepoxy composite by 1°C in presence of the cover. 



Cooling the composite with cover again by I0C shows that the stresses at the 

singular point remain relatively constant. The radial and hoop stress contours for this stage 

are shown in Fig. 9.40. The cover influences the stresses very little. The free surface 

deformation is depicted in Fig. 9.39(c). The absolute value of the axial deformation of the 

matrix shows a smali increase. 

a) Without cover (f C cooling) b)With cover (lo C heating) c) With cover ( f' C cooling) 

Fig. 9.39: Effect of covering on axial deformation of the composite 
during cooling and heating. 

Radial stress (MPa) Hoop stress (ma) 

Fig. 9.40: Radial and hoop stress components at the fiber end 
in presence of the cover for 1°C cooling. 

94.2 Nonlinear Elasto-Plastic Analysis of the TwoStage Covering Process 

Since pouring the hot covering material on the free surface of a composite sample 

disturbs the temperatures of the fiber and the matrix to a distance fkom the free surface, a 

coupled nonlinear thermal-stress study of the two-stage covering process was performed. 

The temperature disturbance may influence the thermal residual stress distributions in the 



vicinity of the fkee surface. All three schemes discussed previously are considered. The 

analyses are conducted using the axisymmetric model with the dimensions and mesh 

pattern as used in section 9.3.3. The SCS-6fli-6Al4V composite is again considered. 

9.43.1 Thermal Analysis of the Two-Stage Covering Process (Scheme 1) 

In the first manufacturing scheme, it is assumed that the composite is cooled down 

f?om the processing temperature (TJ and then a hot covering material is poured on the fiee 

surface of the composite. The elements of the cover are "killed" first to obtain the 

temperature profile of the fiber and the matrix with time. The calculated temperature 

distributions are used to find the residual stresses at the fiber end on the fkee surface due to 

cooling of the composite h m  Tp 

The second stage of the thamal d y s i s  simulates pouring the hot covering material 

on the free surface. A short extra thermal load step was added to the thermal analysis 

procedure such that after reactivating the 'Wled" elements in the first load step, these 

elements were heated to the composite processing temperature (T=900°C). To ensure that 

this heating stage of the elements of the cover is not affecting the temperature of the 

composite, the thamal conductivity of the elements of the fiber and the matrix were 

reduced to nearly z m ,  while their thermal capacities were assumed to retain their 

magnitudes. In tlus way, due to the negligible thermal conductivity of the fiber and the 

matrix, a very limited amount of heat could go through either one during heating the 

elements of the cover. The unchanged thermal capacity of the fiber and the matrix helps in 

retaining their temperature profiles (i.e. at mom temperature). Finally, in the third stage, 

with the restoration of the thexmal properties of the fiber and matrix to their original 

values, the heated cover and the composite were cooled together to room temperature. The 

calculated nodal transient temperatures (varying with time) are subsequently used in the 

stress analysis. 

The ternpaatlrre profiles at pint A (which is located at the fke surface at the 

singular point) and point M' (located in the matrix in the inner zone) during the 3 stage 



thermal analysis are shown in Fig. 9.41. The cooling stage fiom Tp (the part marked with I 

on the graph) is similar to what was explained in Chapter 4. An almost uniform 

temperature occurs in the whole composite during this stage due to high thermal 

conductivity of the fiber and the matrix. However, the differences appear after the hot 

covering layer is poured on the f i e  surface of the cooled composite. As Fig. 9.41 shows, 

upon pouring the hot covering material, the temperature of the nodes on the fiee d a c e  

sharply increases (thermal shock). But, due to the low temperature of the composite, the 

temperature of these nodes do not increase to the temperature of the cover. This is because 

of the very high conductivity of the composite constituents and low thickness of the 

covering layer. The thin covering layer stores a very low amount of heat that is not 

sufficient to increase the temperature of the whole composite. Also, the high conductivity 

of the composite constituents causes the composite to transfer heat kern the covering layer 

to other parts of the composite in a very short time. As the temperature profile of point A 

shows, the temperature at this location increases to about 400°C. Point A is located on a 

node which is shared with four elements (see Fig. 9.42). Two of the elements are on the 

covering layer (which has a temperature of 900°C) and the other two elements are located 

on the fiber and the matrix regions that are at room temperature. Therefore, considering 

these elements temperature, an average temperature of more than 460°C is expected for the 

node at location A. However, the lower temperature of A (i.e. 400°C shown in Fig. 9.41) is 

due to the transfer of heat fiom the cover to the neighboring nodes in the fiber and matrix 

that takes place in a very short period of time. 

Fig. 9.41 : Time-temperature profiles at locations A and M' 
during covering process. 



Fig. 9.42: The meshed pattern at the fiber end. 
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The mechanism of the heat transfer, which causes a very rapid drop in the 

temperature of the cover and the composite, is explained by the variation of temperature 

distribution in the covered composite with time (Fig. 9.43). The high temperature gradient 

between the cover and the composite and also between the cover and air cause the heat to 

flow out of the cover into the composite and also into the air. This causes the temperature 

of the cover to drop very fast The conductivity of the fiber is higher than that of the 

matrix. This causes the temperature of the cover on top of the fiber to drop faster than that 

in the part that wvers the matrix fkee d a c e  (see Fig. 9.43(b)). In a very short time 

(t = 0.024 sec), the temperature becomes relatively uniform across the model with a very 

low gradient along the fiber length (Fig. 9.43(c)). The time is very short because of the 

very small amount of heat that the cover has (its thickness and volume are small). In about 

one second, the temperature of the system (fiber, matrix and cover) becomes uniform. The 

temperature value in Fig. 9.43(d) shows that the heat stored in the covering layer is just 

enough to increase the temperature of the whole composite by slightly over 10°C. 
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b) t = 504.005 (sec) 

Fig. 9.43: Temperature distribution in the fmt second of cooling of a hot 
cover poured on a room temperature composite sample. 

9.4.2.2 Stress Analysis of the Two-Stage Covering Process (Scheme 1) 

The stress analyses corresponding to the temperature distribution in the composite 

(see Fig. 9.41) are discussed in this section. The fmt stage of the process, which involves 

cooling the composite without cover from Tp = 900°C, is similar to what was discussed in 

Chapter 7, section 7.6. A brief explanation on the small differences is presented here. The 

second stage of the process (covering) imposes a temperature cycle on the areas close to 

the free surface. However, as  was shown before, the inner zone temperature of the 

composite is changed only by 10°C. The corresponding stress analysis under the 

temperature cycle will be discussed in sequence. 

To model the h e  surface stresses for the stage where the composite is cooled from 

Tp, the elements representing the cover are deactivated. Fig. 9.44(a) illustrates a, and c$ 

at locations A, J, and B and the variation of o, (of the matrix) with temperature. The 

equivalent plastic strain at the same locations is also shown in Fig. 9.44(b). A small 

difference was found when comparing these results with the results obtained for the 

composite without cover (Fig. 7.19). This could be the result of numerical errors generated 



by the element birth-death procedure. The deactivation process does not eliminate the 

effects of the elements completely. Although the elastic modulus of the elements is 

reduced, the elements still exist and this may affect the results by a small percentage. As 

Fig. 9.44 shows, this stage of the analysis results in high equivalent stress and plastic strain 

that are localized at the singular point as was discussed in Chapter 7. 
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Fig. 9.44: Effect of two-stage covering on the equivalent mess 
and plastic strain at locations A, J, and B. 

The process of pouring the covering layer on the fiee d a c e  of the composite 

induces a temperature cycle in the composite. The temperature in the region close to the 

fie surface goes up to about 400°C while the inner zone of the conlposite sees a 

temperature increase of no more than 1 O°C. The effect. of this temperature cycle upon the 

residual stress and plastic strain states of the composite are explained here. 

In addition to aq and G:, the radial and hoop stress components at location A 

corresponding to the temperature profile of Fig. 9.41 are presented in Fig. 9.45. The 

thermal shock reduces the residual messes at this location and consequently crq is reduced. 

However, due to the strain hardening characteristic of the material and its dependence on 

the plastic strain history, the material yield strength increases with thermal shock. 

Comparing G~ and a! for the period of thermal shock shows that no more plastic strain 

occurs during the cycle at point A. Despite the presence of the cover during the 



temperature cycle, the results obtained for a, and 0: are very similar to those of the 

composite without cover discussed in Chapter 7 (see Fig. 7.21(a)). The radial and hoop 

stress components are also similar to those of the model without cover (see Fig. 7.2 I@)). 

Comparing the results of the one-stage covering process with the results of the two-stage 

process, some differences are noticed. The main difference appears in the sign of the stress 

components. Fig. 9.45 shcws that the radial and hoop stress components for the two-stage 

covering are tensile, while the stresses are compressive for the one-stage covering (see 

Fig. 9.34). For the two-stage covering, despite the presence of the cover during the thermal 

shock, the high residual stresses left over during cooling from Tp govern the composite 

response to thermal shock. Therefore, upon cooling, these tensile stresses may provoke 

fibedmatrix debonding or matrix cracking while the compressive stresses prevent these 

kinds of damages for the one-stage covering process. 

Radial stress + 
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Fig. 9.45: Stress components at location A during cooling of the composite 
from processing and during temperature cycling. 

A plot of G, and a: for locations J and B for the temperature profile shown in 

Fig. 9.41 is presented in Fig. 9.46(a). The equivalent plastic strain values for points A, J, 

and B for the same temperature profile are also presented in Fig. 9.46(b). As the stress and 

plastic strain curves for point J show, the effects of thermal shock can be felt at some 

distance fkom the singular point Like the axisymmetric analysis of the composite without 

cover in Chapter 7, the stresses at J show some increase and cause some more plastic strain 



under the thermal shock situation. The increase in oq and the formation of plastic strain 

under thermal shock are shown in Figs. 9.46(a) and (b). 
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Fig. 9.46: Variation of the equivalent stress and plastic strain at locations 
A, J, and B during temperature cycle imposed by pouring 

hot cover on the room temperature composite. 

Fig. 9.47 presents and the stress components at location B in the inner zone for 

the temperature profile of Fig. 9.41. It seems that thamal shock has no effect on the stress 

and deformation of the inner zone. As Figs. 9.46(a) and 9.47 show, the equivalent stress 

and the stress components remain constant before and after the thermal shock. (The stress 

values for the thermal shock are located on top of the room temperature values of the 

graph.) This is because the temperature in the inner zone increases by only L O°C during the 

thermal shock that is neagible. 
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Fig. 9.47: Stress components at location B during two-stage covering process. 

9.4.2.3 Thermal-Stress Analysis of the TwoStage Covering Process (Scheme 2) 

A simulation of pouring a hot covering material on the cold f i e  surface of a 

pre-manufactured composite showed that the very high residual stresses at the fibedmatrix 

interface on the fkee surface will partially relax. However, after cooling the composite and 

the cover to room temperature, ,e residual stresses regained their previous values. This 

would make a composite very vulnerable to damage in service temperatures and/or under 

mechanical loads. The covering process may be more effective if the residual stresses 

induced due to the manufacturing of the composite are removed or partially relaxed. It 

would be ideal to provide the conditions of the one-stage covering process where the 

covering is paformed with no residual stresses present at the fiber end. One way may be 

re-heating the composite, prior to casting the cover, to a high temperature close to the 

temperature of the hot covering material or to the solidification temperature of the 

composite. With re-heating the composite, most of the residual stresses left duxing the 

manufacturing process or due to service temperature will be relieved. Cooling the 

composite and the cover together to room temperature may change the residual stress state 

in the composite end zone and also in the interior (inner zone). 



The thermal treatment of the composite is simulated as follows. The same FEM 

model used in scheme 1 is employed here. The cover elements are deactivated and the 

composite is cooled down fiom the 900°C processing temperature. The difference between 

this scheme and the previous on2 is that before the cover is cast on the fiee d a c e ,  the 

composite is reheated to 900°C. In the third step, the elements of the cover are reactivated 

with T=900°C To set the temperature of the elements of the cover to this value, the extra 

short thermal s t q  expiained before is also appiied here. This step continues with the 

cooling of the composite anc! the cover to room temperature. Since uniform temperature is 

expected in the composite due to the high thermal conductivity of the constituents, only the 

temperature profiles at locations A, J, and B of the composite are plotted in Fig. 9.48. The 

three steps of the thamal analysis are labeled I, It, and III in the graph. As the figure 

shows, the cooling profiles of the composite without and with the cover (steps I and III) are 

similar. As expected, the profiles show that the composite loses heat very quickly at high 

temperatures. Also, as the temperature profile for step I1 shows, the temperature gradient is 

high at the beginning of the heating phase. 
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Fig. 9.48: The temperature profile at locations A, J, and B during the 
second scheme of the two-stage covering process. 

The co~esponding stress amdysis follows the same procedure. The elements of the 

cover are 'lcilled" to simulate the eee d a c e  stresses for the case when the composite is 

cooled h m  the processing temperature. After the stress d y s i s  of the reheated composite 



with the f i e  surface, the elements of the cover are reactivated. The last step of the stress 

analysis is performed for the cooling of the composite and the cover to room temperature. 

In addition to the matrix strength (o,), and 0: at locations A, J, and B for all 

three phases of the thermal treatment are presented in Figs. 9.49(a) and (b). The 

corresponding plastic s t m k  are shown in Fig. 9.49(c). Comparing the values of flq at 

room temperature (at the end of step I and step m) for locations A and J (see Figs. 9.49(a) 

and (b)) shows that the equivalent residual stress increases with the application of the 

cover. Also, Fig. 9.49(c) shows that more plastic strain occurs at locations A and J during 

the temperature cycle. The reason(s) for such a stress-strain behavior can be best explained 

when one looks at the stress components for these locations during the temperature cycle. 

The stress components vs. temperature for location A are plotted in Fig. 9.50(a). Here, 

radial, hoop, and axial stresses for steps I (i.e. cooling the composite without cover h m  

Tp) and I1 (re-heating the composite without cover to 900°C) are presented. To show a 

clearer picture? the stresses for step ID (cooling the composite and the cover to room 

temperature) are presented in Fig. 9.50(b) separately. Based on the overlapping hypothesis, 

as soon a s  the composite without cover begins to cool down fiom T, a tensile axial stress 

in the neighborhood of the singular point will be inserted by the fiber on the inner rim of 

the matrix hollow cylinder. The &t of this tensile axial sttess is very high tensile radial 

and hoop stress components (see Fig. 9.50(a)). During re-heating, this tensile axial load 

will be compressive and will result in compressive radial and hoop stresses at the singular 

point. These compressive stresses will reduce the previously tensile stresses generated 

during the cooling step I. However, f h m  almost T = 400°C to T = 900°C the residual 

stresses are higher than the stress magnitudes at the same temperature levels of the cooling 

step I. 'This could be explained with the same reasoning detailed in Chapter 7. In brief, 

plastic deformation begins at the start of the cooling step I (see Fig. 9.49(c)). Therefore, the 

stresses are strictly controlled by the yield strength of the material. However, during the 

heating step 11, the strain hardened matrix allows the stress components to increase. a 

result, the stresses can increase to their real values without being relaxed by the plastic 

strain or controlled by the yield strength of the material. Due to this reason, a l l  the stress 



components at location A end up to be tensile at T = 900°C (see Fig. 9.50(a)). These 

stresses used to be compressive or almost zero for the end zone of the 3-D model for 

which the plastic process began half way through the cooling phase h m  Tp (see Fig. 7.8). 

The stress components at location J during the three step thermal procedure are shown in 

Fig. 9.5 1 .  According to Fig. 9.5 1 @), which presents the radial, hoop, and axial stress 

components at point J for steps II and El, the stresses for point J are similar to those of the 

3-D prism model at T=900°C (i.e. the radial stress is compressive and the axial and hoop 

stresses are almost zero). This is because the plastic deformation at point J does not begin 

immediately with the start of cooling fiom Tp in step I (see Fig. 9.49(c)). 
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Fig. 9.49: Equivalent stress (a) at location A, (b) at locations J and B, 
and (c) equivalent plastic strain at A, J, and B 

during the two-stage covering process. 



During the last step of the thermal treatment (step III), the cover is in place. 

Therefore? as explained in Fig. 9.35, upon cooling, a compressive axial load is expected to 

be exated on the outer rim of the matrix hollow cylinder due to the CTE mismatch 

between the cover and the fiber. This compressive axial force gradually increases with the 

cooling of the composite. At about T = 450°C, this force overcomes the tensile axial stress 

left at location A after the heating step [I (see Fig. 9.50@)). DLlring cooling fkom 900°C to 

450°C, since the overall axial stress is tensile, the radial and hoop stresses will be tensile 

due to the overlapping hypothesis and will continue to increase down to 450°C. Below this 

temperature? the overall axial stress is compressive. So, the radial and hoop stress 

components generated by this force will also be compressive. Therefore, the resultant 

radial and hoop stresses begin to decrease down to room temperature. Consequently, the 

residual stress components after the three-phase thermal treatment appear to be much less 

than the corresponding residual stresses after cooling &om Tp (end of step I). However, a, 

is higher and more plastic strain occurs during step III of the thermal procedure 

(Fig. 9.49(c)). The change in o, is due to increase in the difference between the stress 

components in the presence of the cover in step m. Comparing the differences in radial 

and hoop stresses with the axial stress at the end of steps I and III shows a high increase in 

these differences because the axial stress is compressive in step EI at room temperature. In 

comparison to the one-stage covering process (see section 9.3.3), one similarity stands out 

between the stress components in these two cases at point A. The axial stress is 

compressive for both at the final step (compare Figs. 9.50(b) and 9.34). 

The above rationale for the increase in oq and 4 at point A during the temperature 

cycle becomes clearer when one looks at the plots of radial, hoop, and axial stress 

components at location J against temperature for the last cooling step of the thexmal 

procedure (step m). This is shown in Fig. 9.5 1 (b). As the figure shows, these stresses are 

compressive for almost the entire temperature range of step ID. This stress state is similar 

to that at location A for the one-stage covering process (see Fig. 9.34). Therefore, it can be 

concluded that the damage that may be inflicted by the tensile radial and hoop stresses at 

location A for the two-stage covering process (Fig. 9.50(b)) is very localized. The high oq 



will disappear at point J, which is located close to the fkee surface. However, according to 

Figs. 9.49(a) and (b), oq and the plastic strain at J are increased after step III of the thermal 

treatment and this is not desirable. 
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Fig. 9.50: Stress components at location A (a) during cooling from Tp and the 
heating phase of the covering process, (b) during cooling 

phase of the covering process. 
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Fig. 9.5 1 : Stress components at location J (a) during cooling fiom Tp, 
(b) during heating and cooling phases of the covering process. 



The radial, hoop, and axial stress components and aq at location B are shown in Fig. 

9.52. As the figure shows, the messes induced during cooling h m  Tp (step I) disappear 

when re-heating the composite to T = 900°C (step II). This is an important effect that is 

discussed finther in the next section. 
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Fig. 9.52: Stress components at location B during cooling &om Tp and 
during the heating/cooling phases of the covering process. 

9.4.2.4 Thermal-Stress Analysis of the Two-Stage Covering Process (Scheme 3) 

From the foregoing analyses, it can be concluded that the residual stresses at the end 

of the fiber left over fiom the processing of the composite cause a big difference in the 

stress and plastic strain states after covering. It was shown that this is the main difference 

between the one-stage and the two-stage covering processes. The thermal treatment of the 

composite before applying the cover (scheme 2) indicated that it has little effect on the 

final status of the residual stresses. Here, the stresses are cunsidered to be eliminated by 

physically cutting the composite end. Then the cover is applied on the f i s h  cut d a c e .  A 

long model was considered, the dimensions and the mesh configuration of which are 

shown in Fig. 9.53. The model consists of six areas. Areas 1, 3, and 5 model the fiber and 

areas 2,4, and 6 represent the matrix. Areas 3 and 4 will save as the WVR afier cutting the 

composite at the boundary of areas 1 and 2. The length of the model is assumed to be 

1000p1, which is exactly twice that of the previous model. This provides the required 



length for axisymmetric analysis after cutting the fiber end (i.e. cutting areas 3,4, 5, and 6). 

As Fig. 9.53 shows, two regions of the model are densely meshed with v q  fine elements. 

One is the region close to the free surface. The other is the middle of the model where the 

composite is supposed to be cut and a new fke surface formed. A dense mesh is required 

at the kee d a c e  in order to calculate more accurately the stress and plastic strain at the 

singular point and the relaxation effects of the plastic strain on the inner zone stress field. 
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Fig. 9.53: Simulation of cutting the fiber end. 

Different manufacturing procedures can be considered for this scheme. The 

composite can be cut and the covering material is poured while the composite is at room 

temperature or the composite can be reheated before the cover is applied. Another 

procedure could be re-heating the composite before the composite is cut and the cover is 

applied. Depending on the temperature level to which the composite is re-heated, the 

procedures may be modified and the results may be different. All the procedures must 

consist of cooling the composite (long model) fiom the processing temperature Tp to allow 



for residual stresses to build up. Here, considering the discussion of the last two schemes, 

the analysis of three of the procedures will be presented in brief. 

For the first procedure, the end of the pre-manufactured composite is to be cut at 

room temperature and the hot covering material poured on the new fiee surface of the cold 

composite. The temperature distribution in the composite will be similar to that of scheme 

1 that was discussed in section 9.4.2.1 (see Fig. 9.41). Note that the time for cooling the 

large model fkom Tp is longer and the final resultant residual stresses are different than 

what was found for scheme 1. The reason is that the residual stresses on the free surface 

are different for the two schemes. For the first scheme, as the composite with no cover is 

cooled from Tp, the stresses on the surface (which is to be covered) are of the end zone 

type whereas in scheme 3, as the end effects are eliminated, the stresses on the cut surface 

are closer to the inner zone type. This difkrence in the fke surface stresses of the two 

schemes may substantially change the final stress status at the fiber end. This is discussed 

in more detail later for the second procedure. Note that by cutting the fiber end, the axial 

residual stress on the new cut s d a c e  must vanish to satisfy the fiee surface boundary 

condition. 

For the second thermal procedure, it is assumed that after cooling the composite 

£kom Tp the end part of the model is cut at room temperature. However, to relax the 

residual stresses on the fiesh fiee SllTface as much as possible before the cover is applied, 

the cut composite is re-heated to the temperature of the covering material. Thus, the heat 

fiom the cover does not disturb the composite temperature. This temperature (T=900°C) 

was chosen for re-heating the composite because this is the temperature at which the 

matrix has already solidified and shows some strength. 

From the residual s m s  point o f  view, this procedure also has another advantage. 

The stresses on the new free surface are of the type of the inns zone stresses, therefore 

compressive radial and tensile hoop stresses exist at the fiberlmaaix interface. The axial 

stress at the cut section due to the formation of the new fke surface must become zero. 

According to the overlapping hypothesis, re-heating the cut composite to the temperature 



of the cover should induce very high compressive radial and hoop stresses at the interface 

on the fke surface. Therefore, superimposing these stresses on the stresses of the new fkee 

surf'ace will increase the compressive radial stresses but will reduce the tensile hoop 

stresses. Both changes in the stress state are desirable fiom the design point of view. The 

compressive radial stress strengthens the fibedrnaaix bond and the reduction of the tensile 

hoop stress lowers the risk of matrix cracking around the fiber. 

In the last stage of the covering (i.e. when the fiber and matrix are cooled together to 

room temperature) compressive radial and hoop stresses are expected at the fiber end as  

before due to the presence of the cover. The reason for such a stress state was explained in 

Fig. 9.35. This procedure s e w s  to be a very practical method. The h a l  compressive 

radial residual stress should improve fibedmatrix bonding and compressive hoop stress 

should prevent the matrix h m  cracking at the fiber end. 

In the third procedure, the long model is cooled h m  Tp and then reheated to 

T = 900°C before the fiber end effects are eliminated by physically cutting the composite 

end. The cutting is performed at T=90U0C. In this step the hot cover is poured on the new 

fresh cut d a c e  and then the composite and the cover are simultaneously cooled to room 

temperature. The temperature at location A is shown in Fig. 9.54. The time for steps I and 

II (cooling and re-heating the large model) will be longer than that of step DI. This step 

involves cooling the cut composite and the cover to room temperature. 

The stresses generated at location A during re-heating phase of the composite fiom 

room temperature to 90°C are different than those obtained for the previous procedure. 

The stress components at location A (which is located in the inner zone of the large model 

before the fiber end is cut) during cooling fiom Tp and the re-heating phase are shown in 

Fig. 9.55. The stresses for step EI are also shown in this figure. Due to the negligible 

plastic strain in the inner zone, i.e. elastic stress state, the residual stresses at location A are 

completely released when the composite is reheated. This is similar to the results of the 

inner zone presented in Fig. 9.52 for scheme 2. Cutting the oomposite at this step and 

applying the cover is the most effective method because there is no residual stress at the 



cut surface to affect the covering process. Cooling the composite and the wver under this 

circumstance (i.e. no residual stresses at location A) is very similar to the one-stage 

covaing process discussed in section 9.3.3. The stress components for location A during 

step ID (Fig. 9.55) are vay similar to the stresses obtained for the one-stage covering 

process shown in Fig. 9.34. 
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Fig. 9.54: The temperature profile at location A during scheme 3. 
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Fig. 9.55: Stress components at location A during the covering process of scheme 3. 



1 0. Materials and Experimental Procedures 

10.1 Introduction 

The main objective of this part of the thesis is to experimentally study the effects of 

the lkee d a c e  geometry of fiber composites on the initiation and progression of damage 

in the matrix and at the fibedmatrix interface with temperature cycling. In chapters 5-9, it 

was shown how the fiee surface geometry of fiber composites affects the stress and 

displacement states at the fiber end (end zone) and in the interior of the composite (inner 

zone). Particularly, the covering method that was investigated in chapter 9 was found very 

promising. As a result of covering the free surface with a thin layer of matrix-like material, 

the forces inflicting damage to the composite integrity were highly reduced. 

These numerical results have been verified by a series of experiments on laboratory- 

made large-scale composite samples. Due to the small size of fibers in the commercially 

available composites, measurement and visualization of the damage introduced by 

temperature cycling is difficult. Therefore, large-scale composite samples were used. 

Similar large-scale samples were used by Biernacld (1 996). Biemacki's experimental 

investigation was mainly focused on fiber protrusion, damage detection, and the 

progression of the damage with the number of temperature cycles in the same large-scale 

composites. The temperaturedependent properties of the matrix, the fibedmatrix bond 
P 

strength, and the creep characteristics of the matrix were determined. 

A new set of samples was made by rnodifjmg the molds and the molding procedure 

dweloped by Biernacki. In this chapter, the properties of the matrix, the temperature 

cycling apparatus and its calibration, and the molding procedure are discussed. 



10.2 Material Properties 

Polyester resin type 18 1 1 with a glass transition temperature Tg = 60°C was used as 

the matrix while 3 16L-type stainless steel rods were used as fibers. The variation of the 

mechanical properties of the resin with temperature are presented in Table 10.1. For the 

3 16-L S.S. fiber, the coefficient of thermal conductivity (k) and the CTE were considered 

to be 75 ( ~ . m "  .OK-') and 8x 1 O?OC, respectively. More detailed information can be found 

in (Biernacki, 1996). 

For 20°C < T < 60°C, the creep characteristics of the resin are approximated 

following empirical equation (Biemacki, 1 996) 

by the 

where 00 = 1.375MPa, To = 40°C, = 100mi.n. In the above equation, G is the equivalent 

stress, T is the temperature in OC, and t is the elapsed time in minutes. 

Table 10.1 : Properties of the materials used in the experiments (Biemacki, 1 996). 
1 8 1 1 polyester resin 



103 Molding Procedure 

A special pre-made mold made of highdensity polyethylene was used to make the 

large-scale composite specimens. The mold consists of a rectangular bar with a cylindrical 

hole in its center and two endcaps (see Fig. 10.1). The stainless steel rods were arranged 

into hexagonal patterns by means of the caps. The hexagonal patterns were pre-Wed on 

the caps, which were used as  holders for the reinforcements. 

Fig. 10.1 : Mold for large-scale composite samples. 

After polishing the stainless steel rods with 120 grit emery paper and washing them 

with methanol, the rods were slid into the holes of the hexagonal pattems of the holders. 

The polishing may enhance the resin penetration into the rods, increasing the bond 

between the rods and the resin that is purely mechanical. Mer closing the mold, the liquid 

resin (with a composition of lg of hardener for lOOg of polyester) is poured into the mold. 

The solidification stage was performed in a ventilated booth. With 19 stainless steel rods 



(each with a diameter of 1.6m.m) and the 19mm diameter cylindrical hole of the mold, 

composite samples with 13.5% fiber volume hction (Vr) were made. For making the 

required samples to fulfill the objectives of the srudy, the mold and the molding procedure 

used by Biemacki (1996) were slightly modified. These modifications are explained in 

what follows. 

10.4 Temperature Cycling Apparatus 

A temperature cycling apparatus was used to apply ternperature cycles to the 

large-scale composite samples. The apparatus consists of a furnace (as a heat source) and a 

freezer (as a cooling chamber). The composite sample is moved between the furnace and 

the fireezer by an air cylinder in a computer controlled ternperature cycle. 

A data acquisition system (labmate) was used to transfer the computer outputs into 

electrical signals. The signals were then used for controlling two 2-way and Cway 

solenoid valves that supply air to the cyhder for transferring the samples from the furnace 

into the cooling chamber. A photograph and a schematic diagram of the apparatus are 

shown in Fig. 10.2. 

10.5 Calibration of the Apparatus 

The apparatus was di'brated for a temperature cycle of -21°C to +50°C. The 

minimum temperature was lirmted by the cooling capacity of the freezer, while the 

maximum temperature was kept below the T, of the resin. 

The calibration was performed for the free d a c e  temperature of the sample only 

because cracking and debonding start at the interface on the fiee s d a c e  first. Also, the 

debonding coctinues along the interface deep into the composite where the intedacial 

ternperature is very close to the fiee sUTface temperature due to the very high thennal 

conductivity of the steel rods. The ternperature cycle used in the experiments is shown in 

Fig. 10.3. Close monitoring of the temperature of the fke d a c e  of the sample showed 

that a complete cooling phase takes 18.5 minutes while the heating phase takes 15 minutes. 



Cooling fkom room temperature to -21 OC takes 15 minutes. This is equal to the time for a 

complete heating phase (-2 1°C to +50°C). As mentioned by Biernacki, the difference in 

the fke d a c e  temperature and the matrix temperature well inside the large-scale sample 

is very small for such cycles. 

a) Temperature cycling apparatus 

b) Schematic diagram of the apparatus 

Fig. 10.2: Thermal cycling setup. 



Fig. 10.3: Temperature cycle profile. 

10.6 Experimental Procedure 

In chapter 9, it was concluded that a rough cut d a c e  of unidirectional composites 

increases the thermal residual stresses if the fiber ends protrude out of the matrix (see 

Fig. 10.qa)). If the sharp contact angle of the fiber and matrix (shown as 4 = 9U0 in 

Fig. 10.qa)) is filled with some matrix-like material (ramp), the stresses change at the 

fibedramp interface depending on the angle @. Note again that @ represents the angle 

between the fiber and the line tangent to the ramp where the ramp meets the fiber. The 

stresses decrease with decreasing 6. However, very high messes still appear at the contact 

corner of the matrix with the ramp, causing matrix cracking. Similarly, stress 

concentrations occur in the matrix for the case where the fibers bulge out of the matrix (see 

Fig. 1 0 .q~) ) .  

To experimentally verify these numerical results, the first w e  of samples was 

made such that the ends of the fibers extended out of the matrix for about haIf a fiber 

diameter. The samples were first made by partially embedding the stainless steel rods in 

the matrix and cutting the end of the extended rods out of the matrix to the required 

length. Due to vibrations of the unsupported fiber ends during cutting a lot of cracks 

were observed at the interface on the free d a c e  after the sample was cut. To eliminate 

such cracking the mold shown in Fig. 10.5(a) was prepared to cut the sample with a slow 

speed diamond saw. The three segments of the mold shown in this figure were then 



filled with the matrix material. AAer solidification of the matrix, the specimen was cut 

fiom the middle segment of the composite shown in Fig. 10.5@) with two separate cuts 

through the high density Polyethylene holders (A and A' cut surfaces). The thin layers of 

the Polyethylene holders remaining on the specimen were then peeled off. The 

specimen, after being polished with 6pm and subsequently with lpm diamond paste, is 

shown in Fig. 10.6(a). 

Fiber 

\ Matrix 

p&y, @ ---mt-m 
1 composite 1 1 

Fig. 10.4: Large-scale composite sample with fibers extending out of the matrix. 

The second m e  of specimens has the fibers embedded in the matrix at one end 

and exposed at the other end. These specimens could also be cut from the pre-made 

composite shown in Fig. 10.5(a). Provided that the fibers are of the same length and the 

fiber cross sections are pre-polished and laid on a planar d a c e  perpendicular to the 

fibers length, segments I and III of the composite could be used for making the second 

type of specimens. The finely polished specimen shown in Fig. 10.6@) could be made 

by two cuts (B and D) in segment I or B' and D' in segment III (see Fig. 1 OS(c)). The cut 

d a c e  of D or D' of the specimen (the side with the end of fibers embedded in the 

matrix) was used to verify the numerical results for the covering of the fibers free end 

with a thin layer of matrix-like material. However, the B or B' end of the specimen was 

used to show the differences in the surface effects between the cut (exposed) and 

covered surfaces. 



The third m e  of specimen, which has both ends covered with a thin layer of 

matrix-like material, was made by a different procedure (see Fig. IO.j(e)). Here, only 

one holder was used and the matrix material was poured in two separate stages. After 

solidification of the matrix that was poured in the first stage, the composite was removed 

from the holder, flipped over and then the second side of the specimen was made. The 

extra matrix firom both sides was then removed using a diamond saw. A matrix layer 

with the thiclcness of one-tenth of the fiber diameter was left on the top end of the fibers. 

To keep the effects of the two-stage manufacturing process to a minimum on the fiber 

ends, the length of the specimen was considered to be twice that of the previous 

specimens. The finely polished sample is shown in Fig. 10.6(c). 

Polwthvlm holder 
/ - 

Fig. 10.5: Molding of large-scale composite samples. 

The fourth of specimens were made with two cuts going through the fibers 

(see the cut surfaces of C and C in the middle segment of the composite shown in 

Fig. 10.5(d)). These specimens were used to analyze the effects of a covering layer that 

is applied in a separate stage (two-stage covering) on the cut surfaces of a fiesh or a 

thermally cycled sample after being cut and exposed to fke d a c e  conditions. 



To complete the curing process and to allow more relaxation of the residual 

stresses generated during the manufacturing process of the composite specimens, all the 

samples were stored in a desiccator for two weeks. Also, to prevent matrix deterioration 

due to ultraviolet rays, the specimens were kept in dark at all times. The specimens were 

then thermally cycled between -2 1 "C and +50°C using the apparatus shown in Fig. 1 0.2. 

The fkee surface effects on matrix cracking on the exposed d a c e  and fibedmatrix 

debonding along the fiber length are reported in the next chapter. 

a) Fibers extending out of matrix. 

b) One end fkee-one end covered. c) Both ends covered. 

Fig. L 0.6: Uncycled large-scale laboratory-made samples. 



11. Effects of Free Surface Geometry on Damage Initiation 

in Composites: An Experimental Investigation 

11.1 Introduction 

A series of experiments were designed and conducted on the samples described in 

Chapter 10 to verify the reduction of the thermally induced stresses and associated 

damages at the end zone of unidirectional fiber composites. In particular, the effects of a 

free surface, fibers extending out of the matrix, and covering the fkee surface by a thin 

layer of matrix on the stress and damage in composites were studied. 

Firsf the damage induced by temperature change to the composite with no cover is 

investigated. The samples were carefbliy monitored before being cycled and the changes as 

cycling progressed were recorded. These observations are presented in the next section. 

The samples, which have the fiber ends extending out of the matrix, were also tested. Then 

tests were conducted on the samples with one or both of their cut surfaces covered. The 

results of these experiments revealed the effect of the covering layer in containing the 

damage. In particular, the effect of the two-stage covering process (discussed in Chapter 9) 

was also briefly studied by testing a sample that had its fiee d a c e  covered in a separate 

stage. The results of the above tests are discussed sequentially in the following subsections. 

112 Free Surface Effects on the Damage Induced in Composites 

The assessment of initiation and propagation of damage in composite samples 

with exposed fiee surfaces is grouped and presented in two subsections. In the first 

subsection, the damage induced in the manufacturing stage and the ways to minimize it 

is discussed. Next, the damage due to temperature cycling is investigated. Also, the 



influence of the damage initiated during the manufacturing process on matrix cracking 

and fibedmatrix debonding during exposure to the senrice temperature is discussed. 

L 1.2.1 Damage in Composites Due to Manufacturing Process 

The side and top views of a f k h  specimen of the fourth type cut &om the large- 

scale composite along with the schematic diagram of its cross section are shown in 

Figs. 1 l.l(a) and 11.1@). The fibers in the hexagonal pattern, depending on their 

distance to the side-edge of the specimen, are designated A, B, C, and D; where A 

denotes the central 

of the composite. 

Fig. 11 

fiber and D marks the fibers with the least distance to the side-edge 

Side view. Top view. 

. I  : (a) Top and side views of an uncycled sample with both ends &ee 
(b) Designating fibers with letters based on their distance to the center. 
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After cutting, for most of the D fibers and some of the C fibers, typically a very 

small portion of the fibedmatrix interface (which faces the side-edge of the sample) was 

debonded. The damage is shown on the side picture of the uncycled specimen. The 

debonded portions of the interfaces are shown as the white parts at the end of the fibers 

on Fig. 1 1.1 (a). The length of the debonded interface is longer for the D than for the C 

fibers. However, much smaller or, in most cases, no debonding was obsemed for the 

fibers closer to the specimen center (A and B fibers). Soaking the sample in a colored 

liquid showed that the liquid does not penetrate into a very small portion of the white 

area. This indicates that the interface in this very small area is not completely debonded. 

Therefore, the white area around the C and D fibers may include some inelastic 

deformation of the matrix in the vicinity of the fiber. Interestingly, the pictures of the 

interface at the cut d a c e  for all the D and C fibers (taken by a high-resolution optical 

microscope with a magnification of 800) show no sign of matrix cracking. Iiowever, it 

appears that the fiber and the matrix do not have the same heights at these areas. 

The debonding phenomenon in the uncycled samples may have been caused by 

two different sources. The first source, which is normally unavoidable, could be the 

residual stresses that are present after manufacturing. When the fiesh specimen is cut 

from the bulk composite, the residual stresses may exceed the fiber/matrix bond strength 

and/or the matrix yield strength causing debonding and/or matrix plastic deformation. 

The second source, which may be more controllable, would be related to the polishing, 

handling, and also storing conditions of the fksh sample. In fact, the debonding length 

for the fkesh sample was greatly reduced by polishing the sample under a very low 

pressure, washing it with water at a controlled temperature of 20°C, and most 

importantly, avoiding direct contact of the specimens with fingers around fiber ends in 

all the processing and polishing steps explained above. It is very important to perform all 

the above steps at room temperature. 

In the numerical studies in Chapter 9, it was shown that for edge-fibers (i.e. the C 

and D fibers), the stresses at the fibedmatrix interface in the vicinity of the fiber end are 

about 50% higher than those of the internal fibm (i.e. the A and B fibers). Thus, the 



presence of free side-edge is responsible for the increase in the interfacial stresses. That 

is why the fibedmatrix debonding along the D and C fibers are higher than along the B 

and A fibers. The debonding of the D and C fibers normally starts at the sides that face 

the free side-edge of the specimen. The other side of the D and C fibers shows much less 

debonding because they are surrounded by other fibers. This reduces the magnitude of 

the radial stress that causes the debonding. 

11.2.2 Damage Induced in Composites During Temperature Cycling 

The specimen shown in Fig 1 1. l (a) was exposed to the temperature cycle shown in 

Fig. 10.2. The damage induced (i.e. fibedmatrix debonding, free surface deformation, 

and matrix cracking) was recorded after 1, 2, 5, 10, 20, 50, 100, 500, and 1000 thermal 

cycles. In this subsection, the increase in debonding length of the interface with the 

number of thermal cycles is discussed first. Fiber protrusion that was extensively 

discussed by Biemacki (1996) is briefly explained. Also, initiation and propagation of 

cracks in the matrix on the fiee surface around different fibers are commented upon. 

It has been observed that debonding occurs around all the fibers and its extent 

increases as cycling progresses. The rate of debonding decreases as the number of cycles 

increases and is finally halted. The debonding stops to increase when the debonded 

length reaches some critical value that will be discussed later. Figs. 1 1.2(a)- 1 1.2(f) show 

the progression of debonding after 1, 5, 10, 100, 500, and 1000 cycles. A plot of the 

average debonded length of the interface for the D and C fibers versus the number of 

cycles is shown in Fig. 1 1.3(a). The values represent the mean values of the debonded 

length of the interface of all the D and C fibers of the specimen. The debonded length of 

the interface for the D fiber reaches its final value faster (i.e. after a lower number of 

cycles) compared to the C fiber due to the higher stresses around the D fiber than the C 

fiber in the end zone. However, the h a l  debonded length of the interface for all the 

other fibers eventually converges to a relatively similar value as that for the IS fibers (see 

Fig. 1 1.3@)). Fig. 1 1.3(b) shows the top view of the sample after 500 cycles where'the 

debonding length for other fibers is visible. The side view of the sample is shown in 



Fig. 1 1.2(e). The progression in the debonded length of the fibedmatrix interface stops 

due to a decrease in the radial stress values in the presence of a crack (King (1 994) and 

Biernacki et al. (1 998)). As explained earlier in Chapter 5, a very high tensile radial 

stress at the end of the fiber is responsible for the fiberlrnatrix separation (Abedian and 

Szyszkowski, 1 997). The decrease in the radial stress was said to be due to the fact that 

the cracked layer of the matrix reduces the deformation gradient near the tip of the crack 

in comparison to the deformation gmhent in the matrix at the fiee surface without any 

crack. Therefore, with more progression in the debonding length, lower tensile radial 

stresses are expected in the cooling phase of the subsequent cycles. The separation is 

continued until the tensile radial stress at the tip of the crack decreases to a value which 

is not high enough to further tear apart the fiber fiom the matrix. Therefore, no 

measurable increase in the debonding length is observed with further cycling. It is also 

interesting to note that the final debonding length as shown in Figs. 1 1.2(f) and 1 1.3(a) 

varies from three to four fiber diameters. This is in full agreement with the results 

discussed in Chapter 5 and by Abedian and Szyszkowski (1997) and Ostrowski et al. 

(1984) where it was shown that the fiber end effects vanish at about 3 fiber diameters 

&om the fiber end. 

The variation of the difference in height of the fiber and matrix at the fke d a c e  

(protrusion) with the number of cycles was discussed by Biernacki et al. (1998). It was 

shown that protrusion is highest for the D fibers, decreases for the C fibers and is least 

for the A fiber. The higher protrusion for the D fibers compared to others was attributed 

to the small difference in temperature on the d a c e  and at the interior of the specimen 

during temperature cycling. Although the temperature gradient may play a role in 

altering the fiber protrusion, the difference in debonded length of the D and the C fibers 

during manufacturing may influence the protrusion as well. When debonding occurs, the 

debonded portion of the matrix can contract more easily than the other parts because of 

the absence of the resbahing effect of the fiber. Hence, upon cooling, the debonded 

portion of the matrix shows a high contraction thereby increasing the protrusion. As the 

largest debonding during manufacturing occurs around the D fibers, the largest matrix 



contraction or the maximum fiber protrusion is expected to occur during cycling for 

these fibers. The protrusion is smaller for the C fibers than the D fibers because of the 

lower amount of debonding for the former than the latter. Protrusion is Least for the A 

fiber due to the minimum debonding for this fiber. 

a) 1 cycle b) 5 cycles c) 10 cycles 

d) 100 cycles e) 500 cycles f) 1000 cycles 

Fig. 1 1.2: Effects of a free surface on the length of fiberhatrix 
debonding with the number of cycles. 
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b) Top view after 500 cycles. 

Fig. 1 1.3: Progression in the fibedmatrix debonding with number of cycles. 



During the t k t  cycle, the change in temperature of the specimen generates very 

high tensile radial as well as hoop stress components around the fiber end. These 

stresses are high enough to cause fiberlmatrix debonding and matrix cracking. Fig. 1 1.4 

presents the fibedmatrix interface region for the C and D fibers at two different locations 

on the free surface after one temperature cycle. The sides of the C and D fibers that face 

the side-edge of the specimen show a very limited number of cracks or, in most cases, 

no cracking at all. However, the sides facing the neighboring fibers show some cracks 

even after one temperature cycle. The reason could be that in the areas where the 

interface has already been debonded (the part of the interface that faces the side-edge of 

the composite and shows debonding during manufacturing) the stresses are more relaxed 

than the side where the fiber and matrix still have a strong bond. As a result, no cracking 

or a v q  limited number of cracks is observed in the debonded areas. With increasing 

number of cycles, the cracks that were initiated on the side of the D or C fiber propagate 

to the neighboring regions and this leads to a high degree of cracking in the matrix. 

However, in the area facing the composite side-edge some kinks occur in the matrix. 

Fig. 1 1.5 depicts the side of the D fiber that faces the tide-edge of the sample after 2, 5, 

and 10 cycles. The number of kinks in the matrix increases with the number of cycles 

and, finally, they foxm shallow cracks in the matrix. The change in the cracking pattern 

in the matrix on the free surface around all the fibers after 1 and 5 cycles, based on 

scanning electron microscope observations, are sketched in Fig. 1 1.6. The circular lines 

around the fibers represent very small cracks while the zigag lines indicate the kinks in 

the matrix. As the figure shows, the number of kinks around the C fibers is less than that 

of the D fibers for a higher number of cycles. This is most probably due to the diffkrence 

in stress levels around these fibers. The stresses are more relaxed around the D fibers 

due to a higher degree of debonding along the D fibers than along the C fibers. 

Therefore, the kinks around the C fibers turn to low-depth cracks sooner than those 

surrounding the D fibers. 

The crack pattern around the fibers further away h m  the side-edge of a composite 

was studied on the example of the A fiber since the C and D fibers exert an influence on 



the B fibers. After the first cycle, a few cracks were observed around the A fiber using 

an optical microscope (see Fig. 1 1 -7). However, by means of the scanning electron 

microscope it has been found (Biemacki, 1996) that very tiny cracks occur everywhere 

around the fiber even after the first cycle. The cracks are mostly initiated at the interface 

at the sites where the A fiber is at larger distances to the neighboring fibers. This kind of 

cracking pattern was also observed by other researchers (Moms et al. (198gab) a .  

Biemacki et al. (1998)). This can be explained by the fact that the local fiber volume 

hction is smaller along the line which connects the center of the A and C fibers than 

along the line which connects the centers of the A and B fibers. This has been explained 

in detail in Chapter 5 and also by Abedian and Szyszkowski (1997). The propagation of 

the cracks to other sites with increasing the number of cycles is indicated in Fig. 1 1.6. 



Fig. 1 1.4: Cracking pattern around the C and D fibers after the first cycle. 
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Fig. 1 1.5: Progression in matrix kinking around the C and D fibers with number of cycles. 



Cracking pattern after the first cycle. 

Fig. 1 1.6: Crack propagation on the fiee surface of the large-scale composite 
specimens with number of cycles. 



Fig. 1 1.7: Cracking pattern around the A fiber after the first cycle. 



112 Effects of Fiber Protrusion on the Composite Deformation 

As discussed in Chapter 9, the cut surface of a fiber composite may have three 

different configurations that greatly influence the stress state at the fiber end. These 

configurations are as follows. A small portion of the fiber end may extend out of the 

matrix (see Fig. 10.4(a)), the sharp corner of the fiber and the matrix on the cut surface 

may be filled with a ramp matrix-like material (Fig. 10.4@)), and the fiber and matrix 

may not have the same heights on the free d a c e  (the fiber bulge out) as shown in 

Fig. 1 0.4(c)). 

The stresses for the first case (Fig. 10.4(a)) were shown to be higher than the 

stresses for the flat cut surface presented in Fig. 9.l(a) (see Chapter 9). For the second 

case (Fig. 10.4(b)), the high stresses may shift fiom the fiberlmatrix interface to the 

region away fkom the interface where the ramp meets the matrix. Depending on the 

matrix strength and the fiberhatrix interface strength, cracks may develop either at the 

interface or in the matrix. These results were experimentally examined by exposing the 

first type of specimens (see Fig. 10.6(a)) to a single thennal cycle. 

A sample with a small ramp of matrix around most of its fibers on the free surface 

was manufactured for this purpose. However, the angle + (see Fig. 10.4(b)) is not easily 

controllable when manufacturing the specimen and is not the same for all the fibers. 

Therefore, depending on the magnitude of this angle, different stress levels appear at the 

contact corner of the ramp and the fibers on the fkee surface (Abedian et al., 1998) which 

result in different debonding lengths along different fibers. Small @'s reduce the stresses 

and result in short debonding lengths. For some fibers no debonding was observed at all. 

In some cases, where there was no measurable ramp around the fiber (see Fig. 10.4(a)), 

longer debonding appeared along the fiber. In this case, the stresses were much higher 

than in the case when the fiber and the matrix have ideally the same heights on the free 

surface (flat cut d a c e ,  Fig. 9. l (a)). 



AAer exposing the specimen to a full temperature cycle, many deep cracks in the 

matrix area away from the interface were observed (see Fig. 1 1.8(a)). Deep cracks also 

appeared around the A fiber as shown in Fig. 1 1.8(b). The deep circumferential cracks in 

the matrix away fiom the interface confirmed the occurrence of the maximum radial 

stress away from the interface. This is caused by the sharp contact angle of the ramp and 

the matrix as predicted by the numerical analysis (see Fig. 9.10(a) and (Abedian et al., 

1998)). These circumferential cracks in the matrix have also been observed by Biemacki 

(1996). Some cracks were also observed at the fibedmatrix interface that might be due 

to the weak interface strength or a high stress caused by the fibedmatrix sharp corner 

(see Fig. I 1.8(c)). The high number of cracks and long fibedmatrix debonding show the 

adverse effects of a fiber extending out of the matrix on a composite cut surface. 

11.4 Effects of the Covering Layer on The Composite Deformation 

Based on the fiber-matrix overlapping hypothesis explained in Chapter 5, the high 

radial stress at the fiber end rather than the longitudinal shear stress was suggested to be 

responsible for the damage on the fiee surface of composites. It was numerically shown 

in Chapter 9 that upon cooling, the very high tensile radial and hoop stresses at the fiber 

end of a composite without cover are either eliminated or become compressive when the 

free surface is covered with a layer of matrix-like material (resin). Upon cooling, this 

extra layer of resin on the cut surface promotes overlapping thereby reducing the radial 

and hoop stress components, substantially. However, high longitudinal shear stress 

components still exist at the fiber end due to the fiberlmaaix sharp comer. Therefore, if 

the radial stress causes cracking, the cracking should be eliminated or reduced by 

covering the fiber end. A specific test was designed to check the above numerical 

results. The test required specimens that have the end of their fibers embedded in the 

matrix. The specimens were made with two different processing schemes. The first 

scheme, in which the sample was made in one single processing stage, was presented in 

Chapter 10 (see Figs. 10.5(c) and (e)). 



a) Large crack in the matrix away from 
the interface around the B fiber. 

b) Large crack in the matrix away from 
the interface around the A fiber. 

Fig. 1 1.8: Cracking pattern on the kee d a c e  of the sample with fibers 
extending out of the matrix. 



Two diffaent samples were made using the fint scheme. The fibers of the first 

sample were embedded in the matrix at one end and the other end was free. The second 

sample had the fibers embedded in the matrix at both ends. The samples were exposed 

to thermal cycling and analyzed after 1, 2, 5, 10, 20, 50, 100, 500, and 1000 cycles. 

Fig. 1 1.9 shows the photographs of the samples after 10, 50, 100, 500, and 1000 cycles. 

A comparison of both ends of the sample reveals a noticeable difference. The fke 

surface end shows a similar behavior to that previously observed for the sample having 

both of its ends fke (see Fig. 11.2). A similar progression in the debonding length 

and crack pattern around the fibers on the fkee surface as that of the previous sample 

(Fig. 1 1.3) were observed as cycling progressed. 

For the covered end shown in Fig. 11.9, no sign of debonding or cracking was 

found. Even the matrix around the D and C fibers (which are vulnerable to small 

temperature change and show debonding even before being exposed to the actual 

working temperature cycles) show no sign of crackmg or debonding. As expected, the 

thin matrix-like covering layer eliminates the very high radial tensile stress at the fiber 

end that is generated in the cooling phase of the thermal cycle. As the numerical study 

by Abedian et d. (1 998) suggests, the normal axial and longitudinal interfacial shear 

stresses (generated by the sharp contact comer of the fiber end with the cover) are not 

high enough to cause fibedmatrix debonding. Also, at the contact surfaces between the 

fiber cross section and the covering layer, no sign of any damage was observed. In fact, 

upon cooling, the cover on the cross section of the fibers presses the fibers in the axial 

direction, thus preventing fibedcover debonding. In fact, this compressive axial load 

causes overlapping which redts  in a compressive radial stress at the fiber end during 

the cooling phase of the temperature cycle. Comparing the deformations at both ends of 

the sample shows that one end of the sample is independent of the other or, simply, the 

sample is sufficiently long that the stresses at each end do not interfere with each other. 

The experiments were repeated for the second sample with both ends covered. The 

thermal cycling results of these samples are shown in Fig. 11.10. Again, no sign of 



cracking or debonding is present at either end of the fiber. These results show the 

effectiveness of the one-stage covering method. 

The samples that were covered in a separate stage, behaved slightly differently. 

They did not show any cracking or debonding for about 20 cycles. However, after 50 

cycles, fiberlmatrix debonding was observed along the fiber length and also at the 

interface between the fibers and the cover as shown in Fig. 1 1.1 1. This indicates that the 

samples prepared by the two-stage covering scheme are affected by the residual stresses 

from the processing stage. 

a) 10 cycle b) 50 cycles c) 100 cycles 

d) 500 cycles e) 1000 cycles 

Fig. L 1.9: Effect of a covering layer on the damage at the fiber end with 
number of cycles for a specimen with one end covered and one end free. 



a) 1 cycle b) 100 cycles c) 500 cycles 

Fig. 1 1.10: Effect of a covering layer on the damage at the fiber end with number 
of cycles for a specimen with both ends covered. 

Fig. 1 1 .1  1 : Effect of the covering layer on the damage at the fiber end for a specimen 
covered by a two-stage manufacturing scheme (after 50 cycles). 
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12. Condusions and Recommendations 

12.1 Conclusioris 

Several conclusions regarding modeling and technical handling of fiber composites 

can be drawn fkom the study presented. These conclusions are divided into 

recommendations to facilitate preparation of the simulation model, and recommendations 

to help reduce the undesirable effects of temperature fluctuations. 

12.1.1 Modeling 

To model the variation in the stress and deformation states along the fiber length, in 

the interior and specifically at the fiber end near a free d a c e ,  three-dimensional models 

must be considered. The length of the model must be at least three times the fiber 

diameters or longer. Due to the large stress @ent expected at the fibedmatrix interface 

(which is generated by the mismatch in the modulus of elasticity or thermal expansion 

coefficient of the constituents) very small, in comparison to the fiber diameter, FEM 

elements and preferably of a higher order should be used in this area. The mesh could be 

coarser in the fiber away &om the interface due to the more uniform distribution of the 

stress and deformation in the fiber. However, for thermal analyses, the elements can be 

larger due to the relatively smaller mismatch in thermal capacitance or thermal 

conductivity of the constituents. 

Solving 3-D models requires a very large computational time and space. However, 

assuming axisymmetric states of stress and deformation may reduce the cost of 

calculations. This was shown to have little effect on the results achieved throughout this 

investigation. From elastic, elasto-plastic, and elasto-visco-plastic analyses conducted 

employing both types of models, the following obsewations were made: 



The elastic analysis indicated that, the stress field is singular at the fiber end. This area 

must be meshed with elements at least 1/10000 of the fiber radius to determine the 

order of singularity. 

Analysis of the singularity may be conducted using both the prism and axisymmeaic 

models. Due to lower number of degrees of fieedom, the axisymmetric model allows 

for the singular area to be meshed with a large number of fine elements. Using the 3-D 

model requires the use of a sub-modeling approach. 

The elasto-plastic analysis indicated that, the stress relaxation due to the plastic 

deformation along the fiber length influences the stress state in the interior of fiber 

composites. Therefore, for inelastic study of composites, using 2-D generalized plane 

strain assumption is not sufficient. 

For creep analysis, since the material is rate dependent, very small time steps are 

required. This increases the computational time considerably. However, the creep 

phenomenon may be ignored for very high cooling rates i.e. a few seconds (quenching 

in oiI or water). 

Modeling the covering process needs careful use of element birth-death option. Also, 

the analysis of covering does not need a very fine mesh at the fiber end. 

The temperature dependent properties have a considerable impact on the state of mess 

and deformation during manufacturing and senice  temperatures. 

The inelastic behavior of materials plays a major role in relaxing and redistributing the 

residual stresses in the manufacturing process. 

12.1.2 Technical Observations 

Traditionally, the shear-lag theory has been dominating the stress analysis at the 

fiberlmatrix interface. This theory ignores the radial and hoop stresses along the fiber 

length and concentrates only on the longitudinal shear stress. This stress component is next 

related to possible fiberhabrix debonding at the fiber end. However, the present study 



indicated that the radial and hoop stresses are important especially at the fiber end. The 

overlapping hypothesis proposed in this study explains how these stresses are generated. In 

comparison to the longitudinal shear stress, the radial and hoop stress components at the 

fiber end are much larger which may influence the composite integrity to a higher extent. 

The radial and hoop stresses at the fiber end are singular in nature if the analysis is 

elastic. The regular FEM elements are capable of calculating the order of singularity to a 

satisfactory degree. It was shown that the singular stresses are of the type r The order of 

singularity (a) is sensitive to the material properties and is close to 1/3. This makes it 

difficult to assess the initiation and propagation of cracks at the fiber end using classical 

hcture mechanics that deals with singularities of the orders of 0.5. 

The strength of the matrix is influencing significantly the integrity of composites and 

should be carefully chosen. High strength matrices prevent residual stress relaxation, 

increasing the chance of cracking d h g  service temperatures. Low strength matrices are 

prefaable since the residual stresses are much smaller, however, the deformation of the 

whole composite would be greater necessitating larger design tolerances. The creep 

phenomenon reduces the residual stresses. Thus, creep sensitive matrices may be 

advantageous. However, excessive creep strains threaten the dimensional stability of the 

composite. To reduce the creep effects, cooling from the processing temperature should be 

conducted with a very high rate (i-e. quenching in oil or water). 

One of the contributions of the study is to suggest ways of reducing the h a 1  

stresses in composites. This was accomphshed by the analysis of the covering process and 

the effects of the fiee d a c e  geometry. In particular, the study suggests that: 

The stress state at the h e  surface becomes more damaging if a fiber end extends out 

of the matrix. Therefore, any fiber end extending out of the matrix should be removed. 

On the other hand, polishing the fke surface of composites in order to produce a 

smooth surface (removing £iba bulge-out) should also be avoided. 



Covering the fiee surface of composites with a thin layer of matrix like material can 

change the magnitude and sign of the lateral stresses at the fiber end upon cooling. The 

thickness of the cover should be about 1/10 of the fiber diameter. For best results, the 

covering should be performed during manufacturing of the composite. This is because 

there would exist no residual stresses at the fiber end prior to casting the cover to 

influence the process. However, if it is not technically possible to perform the 

simultaneous covering during the manufacturing process, two different covering 

schemes are considered. In both schemes, prior to casting the cover, the fiber end 

effects are to be removed by physically cutting the end of the composite part. 

Therefore, the lateral stresses at the fiber end on the newly generated fiee d a c e  

would be of the inner zone type which are smd1 and relatively less damaging. In the 

first scheme, prior to casting the hot covering material, the composite is to be reheated 

to a temperature close to the temperature of the cover. In the second scheme, the 

covering is to be pdormed while the composite is at room temperature. 

12.2 Future Work 

Modeling the influence of the free d a c e  and the covering process on the stress and 

deformation states of fiber composites presented here is in its preliminary stage only. The 

information presented in this thesis, is a portion of a more involved study that should be 

conducted using the proposed models and approaches. Several studies should be carried 

out in the fbture to complement the results presented in this thesis. 

The inelastic analysis of the covering process was performed without considering the 

creep deformations. It was assumed that the rate of cooling is fast enough to prevent 

creep strains fiom occurring. However, it would be interesting to know how creep 

affects the whole process. 

The present study provided information on thermal loads only. It would be usefbl to 

how how the fiee surface and covering process influence the composite perfonnqce 

under combined thenno-mechanical loads. The research group plans to repeat some of 

the work conducted in this study under various temperature and mechanical load 



regimes. The effect of various rates of mechanical loading/doading and 

heating!cooling, in-phase and out-of-phase, will be considered. 

A perfect interface was assumed in the present study. It is known that some 

intermediate layer between the fiber and the matrix may exist and influence the 

composite behavior. The effects of such layer on the stress state near the free surface or 

after covering should be examined. 

Further experimental work concerning the two-stage covering of laboratory-made 

large-scale composite samples should be perfomed to verify the numerical results 

obtained in this study. 

The experimental study of the covering process should be extended to examhe its 

effectiveness in preventing thermal cycling induced damage in commercially available 

unidirectional reinforced composites. 
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Appendix A. Derivation of the Governing Equations of 

Unidirectional Composites 

In general, the matrix and the fiber satisfy the usual equations of continuum 

mechanics that is the equilibrium equations 

qSj = 0. it j = X, y,z 

The constitutive law 

Q,j = Diju € j  

and the relations 

where all the material properties for the matrix are different than for the fiber. The proper 

continuity conditions must be satisfied at the fiber/matrix interface. Due to this complexity 

only unusual solutions are possible. Typically fibers are cylindrical. Therefore. cylindrical 

coordinate systems are used especially in analytical solutions (Figs. A. l (a) and A. 1 (b)). 

The general 3-D equilibrium equations in cylindrical coordinates for an arbitrary 

element (as shown in Fig. A. l(c)) of the fiber or matrix have the following form 



Fig. A. 1 : An arbitrary element representing the fiber or matrix 
in cylindrical coordinates. 

For elastic behavior, using the generalized Hook's law for orthotropic materials and 

the linear form of strain tensor for cylindrical coordinates, the equilibrium equations may 

be written in terms of the displacements as  follows 



where A,-A,, B ,-B,, and C ,-C, are material constants. These constants are different for the 

fiber and matrix. For isotropic materials the constants are presented bellow. 

I-u 
A4 = '-1 E-G 

where E, u, and G are the material constants either for the matrix or for the fiber. Here, o 

represents the CTE of the composite constituents. One of the most popular models is the 

general 3-D model shown in Fig. A.2. The boundary conditions and continuity 

assumptions are as follows 

Boundary conditions: a t z = 0 - - 4 ~ = z C h = O  

Continuity: atr=rf* u:=uf; G=d; u:=u, f 

To solve the above set of partial differential equations (PDE), all the boundary conditions 

as well as the continuity requirements should be satisfied. 



Fig. A.2: The general 3-D model. 

The next level of assumptions is based on the assumption of axisymmenic 

displacement field. Equations (AS) simplify to 

All the derivatives with respect to z-direction are significant only in the vicinity of the fkee 

surface. Since any changes in the 8-direction are neglected, the concentric cylindrical 

model shown in Fig. A.3 can be considered. The boundary conditions and continuity 

assumptions for the axisymmetric w e  are as follows 

Boundary conditions: a t z = O * z , = ~ = O  

Finally, if in the axisymmetric model the end eff- are neglected, Eq. (A.8) can be M e r  

simplified to the so-called Lameproblem. For this problem the equilibrium equation (A.4) 

reduces to 



Fig. A.3: Concenteric cylinder model. 

(0. = cons tan t 

The strain tensor will have only the following texms 

(A. 10) 

(A. 1 I )  

E, = cons tan t 

It is assumed that the change in stresses and displacements along the fiber length are 

constant, Therefore, Eq. (A.8) reduces to 

This set is refared to as the Lame equations. Note that the stress and 

(A, 12) 

displacement 

components are in term of the radius r only. These solutions are used to analyze the plane 

stress (if crz=O), the plane seain (if &a)), or in the genefalized plane W (if %= constant) 



states. A solution of the Lame equation is presented here and a comparison of the results 

with the FEM solution obtained using ANSYS, a commercial software, is discussed. 

If the temperature gradient is negligible, Eq. (A. 12) reduces to 

! 1 A small temperature change 

Eq. (A. 1 1 ) into Eq. (A.2) 

Eq. (A. 13) yields 

where 

C2 u = c,r+- (A. 13) 
r 

creates a contact pressure at the interface (P,). Substituting 

and subsequently substituting the resultant equation into 

Considering the boundary conditions for the fiber, i-e. 

At r = 0, since or must have finite value, C2 = 0 

Substituting CI and C2 into m. (A. 13) yields 

Similarly, the boundary conditions for the matrix are 

(A. 14) 

(A. 1 5 )  

(A. 1 6) 

(A. 1 7) 

Substituting Eqs. (A. 1 7) into Eqs. (A. 14) and (A. 15) yields 

At r = rf (r) = uf (r) , hence 

(A. 19) 



Since E, and PC both are unknown, one more equation is required to solve for the 

~ O W D S .  

Rewriting the strain components in terms of the stresses fkom Eq. (A.2) 

To compute the axial strain (a, both sides of the above equation are multiplied by (Er) 

and then integrated over the composite cross section (see Fig. A.3). 

For Lame solution & is constant. Thus; 

The first term of the right hand side of  Eq. (A.20) is zero. From the equilibrium equation in 

the axial direction; 

Since no external stress is considered, thus (P, = o, = 0). 

Eq. (A-10) may be used to calculate the second tenn of the right hand side of 

Eq. (A.2 1 ). 

And the third term is calculated as follows 

rm 
fa, EATrdr = ~ E I ~ : + o ~ E ~ G ~  -&) 
0 2 

Substituting Eqs. (A.22)-(A-25) back into Eq. (A.2 1) yields 

I 

where 



Eqs. (A. 19) and (A.27) are solved for E, and PC. 

To test the accuracy of the solution, an example was solved using the above 

analytical formulation and ANSYS, a FEM software. Assuming the following data 

= -0.99e - 6 p / p / ' C  &=102.6e-6 pm/pd0C 

E~ =213.73 GPa ~ ~ ~ 3 . 4 4  GPa 
~f = 0.2 U, = 0.41 
Vf = 0.4935 V, = 0.5065 
rr ~ 3 . 8 1  r, =5.4235 

AT = 10O0C 

The axial stresses in the fiber and rnatxix at the interface calculated by the analytical 

method using Eqs. (A. 19) and (A.26) are as follows 

Similar stresses were calculated by ANSYS for the same problem. 

At r = rr aoi = 49.205607 MPa 

At r = rf = -48.00609 MPa 

The error is less than 2%. 



Appendix B. The Shear-Lag Theory 

Normally, it is assumed that, transfer of the applied Load to the fiber occurs by means 

of the shear stress at the intdace. The matrix behavior can influence the load transfer. 

Here, the eRkcts of two options, i.e. elastic and elasto-plastic response of the matrix 

material are discussed. 

B.1 Elastic Matrix 

Assume the displacement of point K that is sufficiently away fiom the fiber end (see 

Fig. 2.7) to be u in the presence and v in the absence of the fiber, respectively. Therefore, 

the load transfw &om the matrix to the fiber can be written as 

Where B (the shear interaction parameter) is a constant that depends on the geometrical 

packing of the fibers and the matrix properties. Differentiating this equation and 

du Pf 
substituting for the strain in the fiber (- = - ) and for the strain in the matrix away 

dx ErAr 

dv 
from the fiber (- = e , the imposed strain) yields 

dx 

The solution to this partial differential equation (PDE) has the form 

where 



Using the boundary conditions of Pf= 0 at x = 0 and x = L the following is obtained 

The maximum possible strain in the fiber is the imposed strain e, which creates a 

maximum stress of G& = eEf. A plot of q for a sufficiently long fiber is shown in Fig. 2.7. 

The stress in the fiber will increase fkom both ends (where it is zero) to its maximum i.e. 

~h = ek. The variation of the shear stress along the fiber length can also be found by 

balancing the forces over an element of the fiber 

Substituting the differential of of fiom Eq. (B.5) into Eq. (B.6) yields 

Variation of T along the fiber length is also presented in Fig. 2.7. It has been shown that the 

geometric parameters (B or B) has the following form 

where Gm is the shear modulus of the matrix. For example, for hexagonal fiber packing 

InE = h(lr ') aod ln for square packing. Defining & as the 
rr 2 J5vf rr 2 

R 1 $, 
maximum packing factor and substituting ln- = ;r In, in Eq. (B.8) yields 

rf 



Considering Eqs. (B.5) and (B.9), the variation in the fiber stress greatly depends on the 

ratio of G,,.,/Ef. The greater is this ratio, the more rapid is the increase in value of the stress 

in fiber from the either ends. 

2 Ellasto-Plastic Matrix 

Loading high strength fibers to their breaking stress in ductile matrices may be 

accompanied by plastic flow of the matrix. Of course, the fibedmatrix interface will fail if 

it is weaker than the matrix itself Ignoring the matrix strain hardening, the shear yield 

strength of the matrix (7,) or the interface strength in shear (ri) can be considered as the 

upper limit for the shear stress at the fiber surface (T~). The equilibrium of forces then 

The fiber length plays a major role in loading the fiber to its breaking strength (oh) 

through the load transfer by the flowing matrix around it. If the critical length for a fiber 

with constant diameter is called (L) then 

Over length (L) the stress builds up on the fiber fiom both ends. Beyond L, the fiber and 

matrix displacements are the same and the fiber carries most of the load while the matrix 

role in carrying the load is minor. For L < L, the fiba is loaded to only 

The Ud ratio is called the fiber aspect ratio and (Ud), the critical aspect ratio. The load in 

the fiber as a hc t ion  of its aspect ratio is shown in Fig. B. 1. 



Fig. B. 1 : Effect of fiber length on the stress distribution. 
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