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ABSTRACT 

  

 The studies presented in this thesis were designed to elucidate whether the 

abundance of ovulation-inducing factor/nerve growth factor (OIF/NGF) in alpaca semen can 

be used as a biomarker to predict male fertility. The neurotrophin, OIF/NGF has been 

identified in camelid, cattle and human semen. It is only in camelids, however, that an 

ovulation-inducing role for OIF/NGF has been described. The information gathered from 

several studies clearly demonstrate that this protein is the stimulus responsible for initiating 

the ovulatory cascade in camelids. In addition, intramuscular administration of OIF/NGF 

resulted in a dose-dependent response in terms of ovulation rate, corpus luteum (CL) 

lifespan, luteinizing hormone (LH) and progesterone secretion. I hypothesized that the 

quantity of OIF/NGF differs among male alpacas and this abundance arbitrates ovulation 

and pregnancy rates as well as CL formation and function. To substantiate this hypothesis, 

the following questions were answered: 1) can OIF/NGF in alpaca semen be quantified 

using a radioimmunoassay; 2) does the concentration and total abundance of OIF/NGF in 

alpaca semen vary within and among male ejaculates; 3) what is the glandular source of 

OIF/NGF that contributes to the male ejaculate; 4) is OIF/NGF concentration or abundance 

related to parameters associated with male fertility; 5) can  OIF/NGF concentration or total 

abundance in the ejaculate discriminate fertile and subfertile males using both retrospective 

and prospective approaches; and 6) can power Doppler ultrasonography be used to assess 

the luteotrophic effect of OIF/NGF  in tissue vasculature of the developing CL? I discovered 

that the source and the amount of OIF/NGF varies among species. In llamas, OIF/NGF is 

produced by both the corpus and disseminate portions of the prostate gland. In rats, 

OIF/NGF was detected in testis interstitial cells and in the lumen of the coagulating gland 
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(anterior prostate). Ovulation-inducing factor/NGF secretion by the ampullae and vesicular 

glands contributed to its presence in bull (cattle and bison) ejaculates.  In elk and white tail 

deer, OIF/NGF was detected in the ampullae and prostate glands, respectively.  To gain an 

understanding of the abundance of OIF/NGF in ejaculates and changes in its concentration 

within and among males, OIF/NGF levels in semen were quantified using the 

radioimmunoassay. The assay developed exhibited parallel displacement curves among 

recombinant NGF, OIF/NGF purified from llama seminal plasma, llama and bull (cattle) 

seminal plasma. Ovulation-inducing factor/NGF comprised a greater percentage of the total 

protein found in camelid ejaculates than in cattle. Ovulation-inducing factor/NGF 

concentration correlated positively with sperm concentration and negatively with pH and 

semen volume, while total abundance of OIF/NGF was related to total prostate area and 

OIF/NGF concentration. Although a correlation was found between sperm concentration, 

neither OIF/NGF concentration nor total abundance was associated with higher ovulation, 

pregnancy or live birth rates. A clear association of the quantity of OIF/NGF in the male 

ejaculate at breeding and CL form and function was not evident. The measurement of CL 

vasculature by power Doppler ultrasonography, however, was able to determine 

nonpregnancy in alpacas earlier than the assessment of changes in CL diameter.   In 

summary, my results did not support the hypothesis that the measurement of OIF/NGF 

concentration or total abundance in alpaca semen can be used to predict fertility in male 

alpacas.    
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1.0  GENERAL INTRODUCTION 

 

The stimulus or manner by which ovulation-induction is initiated are the criteria used to 

differentiate spontaneous from reflex-induced ovulators [1]. While both mechanisms of 

ovulation are dependent on the luteinizing hormone (LH) surge, the trigger for LH release is 

different. Spontaneous ovulation occurs when the negative effect of progesterone is removed and 

an increase in estradiol levels generate a positive feedback to the hypothalamus causing an 

immense release of GnRH which then evokes a surge of LH secretion from gonadotrope cells. 

This cyclic process is observed in human and nonhuman primates [2-5] and most of our domestic 

animals including cattle, ewe, pigs and horses[6-10].  In reflex ovulators, stimuli associated with 

mating  are responsible for the initiation of the preovulatory cascade.  By definition, reflex 

ovulation is brought about by afferent impulses from the genitalia, eyes, ears and nose that 

converge on the ventral hypothalamus and provoke an ovulation-inducing release of LH from the 

pituitary [11]. The complexity involved in understanding the physiology of reflex ovulators is 

caused by the variety of factors associated with breeding and the differential response on ovarian 

activity among species. For example, in alpacas, intromission was thought to be required for 

ovulation in females [12]. A more recent study showed that manual stimulation of the female 

tract did not cause ovulation; abrasion of the endometrial lining and deposition of seminal 

plasma, however, induced an ovulatory response [13]. Along with intromission, sensory 

stimulation caused by treading of the male’s forelimbs on the female's backside or auditory 

stimulation from humming sounds emitted by the male were not triggers for ovulation in these 

animals [12]. In the koala, glass rod stimulation of the cervix was not associated with CL 

formation nor progesterone secretion [14].  On the other hand, it is common veterinary practice 

to mechanically induce ovulation in domestic cats displaying signs of estrous [15]; and in 
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ovariectomized ferrets,  stimulation of the vagina and cervix in the presence of a male increased 

LH levels in circulation [16].  Rabbits and cats appear to be more sensitive to external stimuli for 

ovulation induction. Does [17] and queens [18] ovulated when  housed together and this 

observation suggests that males do not provide a distinctive stimulus that is required for 

ovulation.  

 Several hypotheses have been proposed to explain the evolution or benefit of different 

reproductive strategies. The most prevalent theory suggests that mating-induced ovulation is the 

primitive form, and due to various selection pressures, spontaneous ovulation evolved. In support 

of this hypothesis, induced ovulation is seen in primitive Orders, Insectivora and Rodentia [1, 

19-21], as well as the Infraclass Marsupialia which includes the koala and grey short-tailed 

possum [14, 22, 23]. Different from most nonmammalian species, the red-sided garter snake has 

also been shown to ovulate with mating [1, 24].  No clear discernible patterns, however, have 

been established using phylogenetic constructs to shed light on evolutionary trends of ovulation 

[25, 26]. Instead, it appears that induced ovulation evolved multiple times within individual 

species  which provides an explanation as to why there is not one strict copulatory stimulus 

conserved to all induced ovulators [27]. The observation that mating, genital stimulation and 

seminal plasma can influence female physiology within unrelated species, supports Conaway's 

opinion that the phenomenon of induced ovulation spans throughout most Orders and should not 

be considered as an opposition of spontaneous ovulation, but rather both traits should be viewed 

as two extremes of a single continuum [28]. This notion was later agreed upon and acknowledged 

that all mammals express some degree of induced ovulation [29, 30].  

Induced ovulation may be related to major population fluctuations [31, 32]. The 

synchrony of male and female gametes improves the likelihood of fertilization, thereby 
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promoting a rapid recovery from low population levels [31, 32]. Animals which display confined 

or solitary behaviours would also benefit from induced ovulation. For instance, if contact 

between males and females is scarce and if ovulation occurs following mating, then the chance 

of pregnancy would then be maximized [31, 33].  

A protein that has further complicated our understanding of induced ovulation is the 

neurotrophin, nerve growth factor (NGF). In 1986, Dr. Rita Levi-Montalcini received the Nobel 

Prize for the discovery and demonstration of importance of this 26 kDa homodimer protein in 

nerve development and maintenance [34-37]. Elucidation of its role in ovulation-induction and in 

camelid reproductive physiology has only begun.  In camelids, one of the earliest known studies 

which alluded to a purpose for seminal plasma beyond sperm transport and capacitation was 

done approximately 30 years ago. Chen et al., observed that the administration of seminal plasma 

could elicit an ovulatory response and luteal development in the Bactrian camel [38]. At that 

time, it was unknown that this ovulation-inducing factor (OIF) driving this phenomenon was β-

nerve growth factor (NGF)[39, 40]. For clarity, β-NGF of seminal plasma origin will be referred 

to as OIF/NGF throughout the thesis. Thus far, OIF/NGF has been detected in the ejaculate of 

camelids [39-41], cattle [42-44], horses [43, 45], ram [43], rabbits (unpublished), and men [46].    

The conservation of β-NGF in the semen of males whose related females are classic spontaneous 

ovulators (i.e. cattle, mare, sheep, and women) confers the biological importance of β-NGF and 

postulates its involvement with andrology and male fertility.   

Administration of OIF/NGF induces ovulation in camelids by triggering LH secretion 

(reviewed in[47]).  Ovulation occurs both with the use of seminal plasma from related and 

unrelated species [42, 45, 48]. In llamas that failed to ovulate after seminal plasma treatment, an 

increase in LH pulsatility was observed [45]. The effect of OIF/NGF depends on the route of 
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administration and the amount given[13, 49-51]. While intramuscular and intravenous 

administrations are most effective for ovulation induction in most if not all llamas, intrauterine 

deposition of seminal plasma requires a significantly higher dose to achieve a similar 

response[50]. In an earlier study, intrauterine administration of seminal plasma was only 

effective in eliciting the ovulatory response when the uterine lining was abraded[13]. Curettage 

of the uterine lining facilitates absorption of seminal plasma proteins into circulation and is most 

likely the method that occurs during natural mating. This dependency on dose to trigger LH 

secretion, ovulation and CL formation has been reported in in vivo [49, 50] and in vitro [52, 53] 

studies.  

A luteogenic effect of seminal plasma has been observed in a variety of unrelated species. 

Using the llama in vivo bioassay, corpus luteum formation was observed after intramuscular 

treatment of seminal plasma from bovine bulls [42],  bucks [54],  stallions and boars [45].  In 

cattle, a luteotrophic effect of OIF/NGF or bovine seminal plasma has also been 

characterized[55, 56] and in prepubertal gilts, transcervical treatment of seminal plasma 

produced heavier corpora luteum and higher concentration of progesterone[57]. In addition, 

ovarian weight was significantly greater in mice given seminal plasma in comparison to those 

treated with saline [58].   

The following literature review provides general information about the reproductive 

physiology in camelids in the context of reflex-induced ovulators and our current understanding 

of the role of OIF/NGF in semen.  
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1.1 Reproductive physiology in male camelids 

 The extant members of the Camelidae family encompasses both the larger old world 

(Camelus bactrianus (two-humped) and Camelus dromedarius (one-humped)) and new world 

(Lama glama (llama), Lama pacos (alpaca), Lama guanicoe (guanaco) and Vicugna vicugna 

(vicuna)) species[59]. At birth, both male testicles are fully descended and spermatozoa can be 

observed in the lumen of seminiferous tubules at approximately two years of age [59, 60]. 

Puberty is associated with an increase testis diameter,  circulating testosterone concentration, 

spermatozoa in the lumen of seminiferous tubules and the obliteration of preputial adhesions to 

the penis  [61]. Camelids have one of the smallest testes:body size ratio among other livestock 

animals ( 0.02-0.03% of total body weight [62]) which is believed to contribute to the low sperm 

concentration found in ejaculates [59, 63]. The duration of spermatogenesis in camelids is 

approximately 60 days  and is continuous throughout the year [64]. The seminiferous epithelium 

can be divided into eight distinct stages with progenitor spermatogonia and Sertoli cells in 

contact with the basal lamina while more mature cells are found towards the lumen [64, 65]. Like 

other domestic animals, spermatogenesis  is influenced by stress induced by poor nutrition, 

physical injury, and environmental changes [66]. High environmental temperature was 

associated with seminiferous tubule malformation and a reduction in sperm concentration [67].  

Similar to other livestock animals, the epididymis is the sperm reservoir. In camels, sperm were 

most abundant in the corpus of the epididymis (3 x 10
9
), followed by the cauda  (2.2 x 10

9
), and 

was less abundant in the caput[68].  The accessory genital organs in camelids include paired 

ampullae, dorsal corpus and disseminate portions of the prostate,  and paired bulbourethral 

glands [69]. The size and secretory activity of these glands were shown to increase with age [70]. 

 Llamas and alpacas can breed year round but in the Andes, semen characteristics vary 

with season.  While no difference was observed in semen volume, sperm motility or sperm 



    

 

6 

 

viability, ejaculates obtained in winter had a greater sperm concentration and less sperm tail 

abnormalities than  those collected in summer [71]. In South America, the breeding season 

corresponds with forage-growing weather to optimize breeding management [72]  and typically 

occurs between December and March, but has been reported as early as November and as late as 

May [63, 72-75]. Similarly in China, the breeding period begins at the end of December, when 

daylight periods are longer and the temperature is low, until mid-April [38]. This period was 

associated with higher plasma testosterone concentration and greater testes diameter in vicuna 

[76]. In contrast, the summer season was associated with poor libido, lower testosterone 

concentrations and a reduction in seminiferous tubule diameter and spermatogenesis in camels 

[77, 78].   

 Camelids ejaculate continuously throughout copulation and are often referred to as 

'dribble' ejaculators  [79, 80]. During intromission, the male moves his pelvis forwards and 

backwards, a process reported to last anywhere from 3 – 65 minutes depending on the species of 

camelid [73, 81, 82]. Urethral pulses monitored by digital palpation [80] or transrectal 

ultrasonography [79] were found to occur throughout the copulation period.  

 Semen collection in camelids has been attempted by electroejaculation [71], artificial 

vagina [83, 84], intravaginal condom [62], intravaginal sponge [85], and vaginal aspiration post-

mating [62]. Of all these methods, electroejaculation and artificial vagina are most frequently 

used. Irrespective of the method, great variation has been observed in ejaculates collected within 

and among males [71, 83, 86].   

 In addition to low sperm motility and concentration, camelid ejaculates are highly 

viscous. Mucin 5B appears to be the principle factor responsible for viscosity in camelids as a 

correlation between its concentration and semen viscosity was found in alpacas [87]. Semen 
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viscosity can liquefy on its own or with the use of hydrolytic enzymes such collagenase, 

fibrinolysin, hyaluronidase and trypsin  [88, 89]. Of all enzymes, collagenase did not impair 

sperm motility or viability [89].  

1.2 Ejaculation as a nervous reflex 

 

 Ejaculation is a spinal reflex that requires the cooperation of sympathetic, 

parasympathetic and somatic innervation. Stimulation of the hypogastric and splanchnic nerves 

is required for seminal emission and closure of the internal urethral orifice [90].  Innervation of 

male reproductive tissue originate from the pelvic, sympathetic chain, mesenteric and dorsal root 

glanglia [91-94].   Ejaculation is defined as  the expulsion of seminal fluids through the urethral 

meatus and can be divided into two distinct processes: emission and expulsion [95]. Emission 

incorporates smooth  muscle contractions to simulate the secretion of seminal fluids from 

glandular epitheliae into the pelvic urethra [95].  The coordinated process of emission is 

dependent on the closure of the neck of the bladder, contraction of seminal vesicles, prostate and 

bulbourethral gland, followed by contraction of the ductus deferens and epididymides. After 

emission, the seminal fluid in the proximal urethra is expelled out of the urethral meatus by the 

process of ejaculation. Expulsion of semen uses sympathetic and somatic nervous stimulation for 

rhythmic contractions of striated perineal muscles, primarily the bulbospongiosus muscle [95].   

 The importance of an intact nervous system on male reproductive potential is best 

illustrated in men with spinal cord injuries. A dysfunction in the ejaculatory mechanism and poor 

semen quality result from spinal lesions and the severity is dependent on the location of the 

injury and the degree of damage [96]. The lumbosacral region of the spinal cord is the control 

center for ejaculation. This is best illustrated by the ability of vibratory stimulation to induce 
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ejaculation despite spinal cord lesions[97]. The ejaculates from men with a spinal cord injury are 

inferior in comparison to those collected from normal men in terms of semen volume, sperm 

motility[96, 98] and morphology [98] while  sperm concentration has been reported as  normal 

[98-100] or low [96]. Some of these aberrations in sperm parameters may be the consequence of 

factors in seminal plasma. The supplementation of seminal plasma from injured men to sperm 

taken from normal men impaired sperm motility within five minutes of addition [101]. 

Correspondingly, adding  normal seminal plasma  to sperm collected from injured men rescued 

sperm motility within five minutes [101].  Furthermore, sperm collected from injured men at the 

level of the ductus deferens had a higher motility and viability in comparison to ejaculated sperm 

while no difference was reported in normal males between ejaculated and aspirated sperm from 

the ductus deferens[102].  

1.3 Seminal plasma and fertility 

 

 The male accessory genital glands vary considerably in terms of topographical location, 

size, morphology and secretions which collectively reflect the diversity of their contribution to 

male reproduction and the species-specific requirements for fertility. The importance of male 

accessory genital glands is highlighted whenever there is a loss of their functionality either by 

surgical removal [103-105] or infection [106, 107].  In rats, pregnancy rates were lowered when 

the seminal vesicles, dorsal and ventral prostates were removed[108]. Ablation of the 

coagulating gland had no effect on pregnancy rates and litter size decreased only with seminal 

vesicle removal[108].  In another study, the ablation of the ventral prostate had no effect on 

fecundity but the removal of the dorsalateral lobes of the prostate or seminal vesicles induced 

complete infertility[103]. The removal of seminal vesicles in the house mouse caused a reduction 
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in pregnancy rate and birthing interval, while the average litter size was not changed; sperm 

collected in the uterus  had lower progressive motility than sham operated males [109]. 

 In the golden hamster, the removal of accessory glands had no effect on pregnancy rates, 

but delayed embryo cleavage and impaired implantation approximately four days post coitus 

[104]. In addition, pups born from breedings with males without accessory genital glands 

displayed abnormal traits such as abnormal physical growth, accelerated acoustic startle, more 

frequent rearing and premature cessation of nest patch odor preferences[110]. The removal of the 

ventral prostate reduced pregnancy rates but had no influence on litter size in the golden hamster; 

in litters born from seminal vesicle ablation, more males were born in the litter[105].  

 The effect of seminal plasma on sperm motility is controversial. Lower seminal plasma 

concentration was associated with better sperm motility in stallions with cooling or after 

cryopreservation [111, 112].  Removal of seminal plasma by centrifugation before long-term 

cooling improved sperm motility in the ejaculates from stallions that had poor tolerance to 

cooling and storage; the removal of seminal plasma by centrifugation in ejaculates with a 

superior tolerance to cooling did not improve sperm motility [113]. In contrast, others report that 

the presence of seminal plasma during cooled storage did not impair sperm motility but it did 

cause increased DNA damage [114]. In addition, the removal of seminal plasma had no effect on 

sperm motility after cooled storage and that total sperm motility was reduced after storage in the 

absence of seminal plasma [115]. The removal of seminal plasma was beneficial to maintain 

sperm plasma membrane integrity on fresh and cooled semen which was evident by the hypo-

osmotic swelling test [115]. Seminal plasma collected from males of the same species is not the 

same. The addition of seminal plasma from stallions with high post-thaw viability to 

spermatozoa before freezing significantly increased sperm motility[116]. The addition of seminal 
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plasma from stallions with low post-thaw sperm motility to spermatozoa reduced sperm motility 

in relation to extender-only controls [116]. Seminal plasma from  bull cattle with above average 

fertility improved fertilization capability using epididymal sperm, while no benefit was observed 

when seminal plasma from bulls of lower fertility was used [117].    

 The role of seminal plasma proteins on male fertility has been investigated in a variety of 

species. The comparison of seminal plasma protein profiles in Holstein bulls that were 

categorized in terms of fertility showed two proteins were present at a higher concentration in 

more fertile bulls [118]. These two proteins were later identified as lipocalin-type prostaglandin 

D [119] and the phosphoprotein, osteopontin [120]. Osteopontin secretion was localized in the 

lumen and epithelial cells of the seminal vesicle and ampulla [121].  Osteopontin is conserved in 

the seminal plasma of other domestic animals.  While osteopontin concentration was positively 

correlated with fertility in stallions [122], a negative correlation was observed in  boars  [123].  

Osteopontin appears to regulate sperm binding and zona penetration and prevents early 

capacitation of epididymal sperm. In boars, the addition of increasing doses of osteopontin 

reduced polyspermy rates in in vitro  trials but had no effect on sperm motility or viability [124].

 In addition to osteopontin, other proteins have been identified as potential biomarkers to 

predict fertility in stallions.  Total protein content in the ejaculate was negatively related to first 

cycle conception rate [125]. Enzymes found in the ejaculate including malate dehydrogenase  

fumarate hydratase, α-enolase, dihydrolipoamide dehydrogenase  and citrate synthase were all 

positively related to first cycle conception rate [125].  The secretion patterns of six seminal 

plasma proteins change with fertility.  Seminal plasma that contained less IGF1 content was 

associated with the most fertile stallions. Four different isoforms of PLUNC (palate, lung, and 

nasal epithelium) -associated proteins were negatively related to IGF1 concentrations and had a 
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positive relationship with first cycle conception rate in seminal plasma[125]. Clusterin was 

associated with IGF1 concentrations and was negatively associated with fertility. Kallikrein-1E2 

was also present in two different isoforms each of which had a negative and positive relationship 

with overall pregnancy rates [125]. Seminal plasma protein (SP) 1 and 2 were both negatively 

associated with first cycle conception rates. A cysteine-rich secretory protein 3 (CRISP3) was the 

only seminal plasma protein to have a positive association with first cycle conception rate[125].  

1.4. Reproductive physiology in camelids and other reflex ovulators 

 

All camelids are induced ovulators and as such, do not have an estrous cycle. 

Consequently, this makes it difficult to determine sexual maturity. In alpacas, ovarian function 

was detected as early as 10 months of age [126] and can be bred at 12-14 months of age [72]. 

Body weight has also been used as an indicator of puberty: llamas and alpacas weighing 50-60% 

their final body weight demonstrate signs of sexual maturity [127, 128]. In spite of these 

observations, in Peru, llamas and alpacas are not bred until they reach 2 to 3 years of age [59, 

128].  

 

1.4.1 Follicular phase 

 

Camelid ovaries are in a constant state of follicular proliferation and regression [74, 129-

131]. Ovarian follicles develop in a wave-like pattern throughout the reproductive life of 

camelids [130, 131].  Ultrasonography and histology sections have been used to demonstrate that 

this pattern of follicular development occurs in spontaneous and induced ovulators [130-139].  In 

cattle and camelids, FSH induces follicle recruitment [140, 141], [142].  There is a period of 
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overlap between successive waves but no alternating pattern exists in waves emerging from 

either ovary [130, 143, 144].  Each wave can be divided into a growing, static and regressing 

phase [133].  Follicular waves in New world camelids are comparable in duration. The  growth 

phase spans approximately 7-8 days in llamas [130, 145], alpacas [144] and guanaco [146]. No 

change in the diameter of the dominant follicle was observed for approximately 5-7 days before 

regressing [130, 131, 146, 147]. The lifespan of anovulatory follicular waves ranges from 20-25 

days in llamas and with a mean inter-wave interval of 19.8 ± 0.7 days [130].  Shorter follicular 

waves may be the consequence of high levels of progesterone in circulation (pregnant or 

nonpregnant luteal phase), lactation, or malnutrition [130, 148]. The reported length of a 

follicular wave is longer, however, in Old world camels [149] and shorter in vicuna [139].  

Administration of LH (to induce ovulation) or the use of ultrasound-guided follicle 

aspiration of all follicles with a diameter of  ≥ 5 mm, are methods used to synchronize wave 

emergence  within 2 days treatment [150]. Follicles ≥ 6mm are LH dependent and capable of 

ovulation [151, 152]and selection of the dominant follicle represses further growth of 

subordinate follicles [130, 144, 153]. During the follicular phase, circulating levels of 

progesterone are low because of the absence of a functioning CL. Circulating levels of estradiol 

17-β are associated with follicular growth and peak concentrations were found prior to when the 

dominant follicle reaches its maximum diameter [146, 149, 154].   

Follicle size does not influence sexual receptivity; females with only 3 mm follicles were 

equally receptive to male advances as those with follicle diameters ≥ 7 mm [155].  Females that 

are receptive take the sternal recumbent position on their own or after the male exerts force on 

their hindquarters [81]. Once the female is in the recumbent position the male enters a half-

sitting mounting position at her rear and adjusts his pelvis to facilitate intromission.  



    

 

13 

 

 

1.4.2 Ovulation  

 

Ovulation is the physiological process whereby rupture of an ovarian follicle results in 

the release of an oocyte that may be used for subsequent fertilization by spermatozoa. This event 

is associated with differentiation of follicular cells to luteal cells and rapid changes in gene 

expression, angiogenesis, hormone secretion and cell morphology [156-158].  Ovulation in 

camelids is preceded by a rise in circulating levels of LH secreted by gonadotrope cells within 

the adenohypophysis. Ovulation-induction after sterile or non-sterile mating, GnRH, OIF/NGF, 

seminal plasma or exogenous LH occurs approximately 30 hours after treatment [159, 160]. The 

effect of LH is mediated by binding to its receptor on granulosa and theca cells, which initiates 

signaling pathways involved in ovulation and luteinization [161-163]. The LH surge regulates 

gene expression by turning off genes involved in folliculogenesis and initiating the expression of 

other genes, such as the early growth response protein -1 (EGR-1) [164]. The early growth 

regulatory factor-1 (EGR) is a transcription factor in granulosa cells and mice expressing the null 

allele for EGR-1 were infertile due to impaired development of the anterior pituitary gland [164, 

165]. Prostaglandin and enzyme synthesis involved in follicle rupture are also LH dependent 

[164].  The LH surge also induces expression  of the proteases ADAMTS-1 (A Disintegrin And 

Metalloproteinases with Thrombospondin motifs 1) and cathepsin-1 in granulosa cells which are 

believed to be involved in the degradation of the follicular wall [166]. The LH surge induces the 

expression of the progesterone receptor. Blocking the action of the progesterone receptor impairs 

ovulation in rats [167].   

 Following an LH surge, the LHβ secretory granules are depleted from gonadotrope cells 

and replenishment of these granules is only partial after 48 hours [168]. To support this notion, a 
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second LH-secreting stimulus given six or twenty-four hours after GnRH or copulation failed 

induce LH release in llamas and alpacas [160].     

Two main hormones are used to trigger LH secretion and ovulation induction in 

camelids: GnRH and OIF/NGF. Gonadotropin-releasing hormone (GnRH) is viewed as the 

central regulator of LH pulses in mammals [169]. The distribution of neurons that secrete GnRH 

varies among species but they are commonly concentrated in the preoptic and medial basal 

region of the hypothalamus [31]. GnRH is released into primary portal capillaries in the median 

eminence and is targeted to gonadotrope cells via the  hypothalamo-hypophyseal portal system 

[170]. Exogenous GnRH is an effective hormone for ovulation induction and its function appears 

necessary to elicit this effect in camelids [48, 150, 171, 172]. Llamas that were given a GnRH 

antagonist prior to OIF/NGF administration, showed no increase in circulating LH levels and 

failed to ovulate[171]. The impediment of GnRH was evident by annihilating LH release [171].     

The secretion of GnRH in relation to mating stimuli has also been shown in other induced 

ovulations. Push-pull perfusion sampling of the medial basal and anterior region of the 

hypothalamus showed an increase in GnRH concentration from 1.15 ± 0.29 pg/mL to 106.67 ± 

37.42 pg/mL in rabbits before and after coitus, respectively [173]. A  3-fold reduction in residual 

GnRH  in hypothalamic neurons was observed in voles after mating  [174] and in ferrets, 

mechanical stimulation of the vagina and cervix caused abrupt release of GnRH which was 

evident by a  50% depletion of GnRH neurons prior to the LH surge [16].  

Most of the information regarding the influence of nerve growth factor (NGF) on LH 

secretion in camelids has either been reported as ovulation-inducing factor (OIF) or within the 

context of seminal plasma. This neurotrophin is found in camelid semen and is the most 

abundant protein in llamas and alpacas semen [43]. The administration of seminal plasma or 
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OIF/NGF purified from seminal plasma, initiates the ovulatory cascade by stimulating LH 

secretion [48, 49, 171]. The response to this hormone is rapid and a significant increase in 

circulating LH levels has been reported as early as fifteen minutes after treatment [48, 175].  A 

similar pre-ovulatory LH secretion pattern was observed  in llamas that were administered rabbit 

or llama seminal plasma [54]. In females that failed to ovulate, there was an increase in LH 

pulsatility with the administration of either horse or pig seminal plasma [45].  

In reflex ovulators, there has been little evidence that estradiol production contributes to 

the preovulatory LH surge. In rabbits, estradiol-17β concentration remained unchanged during 

periods of estrous and pseudopregnancy [176] and the administration of exogenous estradiol had 

no effect on LH secretion in rabbits as well as ferrets [177, 178]. In one study, however, the 

possible role for estradiol was reported to augment the sensitivity of LH to GnRH [179]. 

Luteinizing hormone levels following OIF/NGF treatment was lower in ovariectomized llamas 

than in intact llamas. Estrogen priming did improve the LH response but was still significantly 

lower than what was observed in intact animals [180]. A clear relationship between estradiol 

concentration and follicle size is evident [138, 139, 181] and thus, at the time of coitus, a 

dominant follicle and elevated levels of estradiol are present. Estradiol levels decline and remain 

low 48h after ovulation [181]. A similar relationship was evident in cats, where levels of 

estradiol-17β fluctuated during estrous with the growth of the follicle, but appeared to have no 

effect on the magnitude or duration of the LH surge [182] .  

 

1.4.3 Luteogenesis  
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In response to high levels of LH production and ovulation, luteinization of theca and 

granulosa cells from the ovulated follicle forms the corpora luteum [183]. During the luteal 

phase, progesterone concentrations are high (> 1 ng/mL) which is evident by unreceptive 

females and regular emergence of short-spanning, anovulatory follicular waves [130]. 

Corresponding with CL formation and growth, significantly higher levels of progesterone are 

observed two days after ovulation  (D4 after treatment) and continues to increase until the CL 

reaches its maximum diameter by Days 8-9 after treatment [184-186]. There is a strong 

correlation between the diameter of the preovulatory follicle and subsequent diameter of the 

corpus luteum [187].     

1.4.4 Placentation and Luteolysis  

 

 If mating successfully results in pregnancy, the CL is maintained throughout the entire 

gestation length [187] which spans 331-347 days in llamas [63] and 325-361 days in alpacas 

[73]. The placenta in camelids is described as epitheliochorial and diffuse, which  is different 

from other ruminants but similar to what is found in pigs [188, 189].  Maternal recognition of 

pregnancy occurs between Days 8-10 in camelids [190]. Contrary to cattle, where interferon tau 

is the maternal signal for pregnancy[191-193], estradiol production by the blastocyst signals 

pregnancy in camelids [194]. The production of estradiol occurs as early as Day 7 in llama 

blastocysts, increases 4-fold by Day 11 and a dramatic 200-fold increase is observed by Day 13 

[194].This period is associated with a slight decrease in progesterone concentration in circulation 

[190]. Correspondingly, estrogen receptors (α and β) have been localized to the CL and uterus of 

llamas, which further supports the role of estrogen in pregnancy signalling [195]. Exogenous 

administration of estradiol on Days 8 and 9 (D0= GnRH treatment), however,  did not improve 
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pregnancy rates when used in an embryo transfer program [196]. Estrogen production precedes 

blastocyst elongation and stimulates calcium and prostaglandin secretion into the uterine lumen 

[197].  In llamas, blastocyst elongation begins around Day 11 and is completely filamentous by 

Day 13 [194].  

Prostaglandin F2α  is the physiological luteolysin in camelids when pregnancy does not 

occur. The pulsatile release of prostaglandin (PGF2α) from the uterus occurs as early as Day 7 

and peaks between Days 8-11 in llamas [198, 199]. Correspondingly, the first significant 

decrease in CL diameter and progesterone concentration in nonpregnant llamas occur on day 9 

and 10, respectively [187]. Prostaglandin F2α secretion is by the uterus.  Prevention of luteolysis 

and thus, maintenance of the CL lifespan can occur by the  removal of either the right or left 

uterine horn.  The left uterine horn can cause luteolysis in both ovaries while right uterine horn 

can induce luteolysis only in the ipsilateral ovary [200, 201]. These results demonstrated a local 

and systemic luteogenic pathway in camelids. This different activity between uterine horns is the 

consequence of the angioanatomy; a branch of the right uterine artery supplies the left horn and a 

corresponding major vein that originates from the left horn, terminates as a branch of the right  

uterine vein [201]. Prostaglandin secretion by the uterus and its effect on the CL is mediated by 

the vascular countercurrent diffusion mechanism whereby the proximity of the ovarian artery and 

veins allows rapid exchange of metabolites into circulation [201]. The response to PGF2α is 

dependent on the age of the CL.  Luteolysis was not observed in llamas given prostaglandin 3 or 

4 days after GnRH administration and less than 20% showed complete luteolysis on Day 5 [202]. 

Complete luteolysis, evident by the reduction in progesterone concentration and CL diameter 

(via ultrasonography), was observed in all animals when prostaglandin was administered six 

days after GnRH treatment [202]. Although the exact mechanism for prostaglandin secretion is 
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unclear, oxytocin, which is secreted by the pituitary or luteal cells, was shown to stimulate 

prostaglandin pulsatility [203, 204].  

 

1.5  Nerve growth factor and reproductive cycle 

 

 The importance of NGF and its receptors is apparent by the degree of protein 

conservation among species including primates [205, 206], bovids [44, 207, 208], rodents [209-

212], camelids [39, 40], xenopus [205], serpents [205, 213], fish [205] and aves [205]. The 

biological roles that NGF plays within the female reproductive system are crucial for follicular 

development, ovulation induction and uterine changes throughout the estrous cycle.  

 The nervous tissue density of the uterus changes throughout the estrous cycle and in 

many species, pregnancy induces denervation of the uterus [214]. In hamsters, NGF detection 

increased from low on Day 2 to very high on Day 4 in luminal epithelial and stromal cells, while 

no change was detected in the glandular epithelial cells [214]. High NGF levels (Day 4) 

corresponded with high estradiol-17β levels and the administration of exogenous estradiol-17β 

further increased the immuno-staining intensity of NGF in epithelial and stromal cells in the uteri 

of  ovariectomized hamsters [214]. The expression pattern of trkA (its high affinity receptor) 

appears to follow NGF more than p75 (its low affinity receptor) in stromal cells: high NGF and 

estradiol-17β levels corresponded with very strong trkA detection in stromal cells but had no 

effect on p75 [214]. The administration of estradiol-17β to ovariectomized hamsters increased 

the detection of both receptors in the endometrium and p75 in the glandular epithelium [214]. In 

rats, the expression of trkA was inversely related with mean estradiol concentrations[215]. High 

expression of trkA occurred during the morning of diestrus when mean serum levels of estradiol 
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was low and low expression was detected during the afternoon of proestrus when mean 

concentrations of estradiol was at its highest [215]. In this study, no changes in NGF expression 

was reported [215].   

 Changes in circulating estrogen concentrations have been shown to influence cholinergic 

neurons of the basal forebrain in rats and estrogen replacement can improve basal forebrain 

cholinergic function [216-219]. Colocalization of steroid and  the p75 common neurotrophin 

receptor in  cholinergic nuclei demonstrates a relationship between estrogen and NGF on 

nervous tissue function [220]. A disruption of the mouse NGF gene caused severe cell loss in 

both sensory and sympathetic ganglia, but the continued differentiation of basal forebrain 

cholinergic neurons demonstrated that other neurotrophins, such as BDNF [221-223], can rescue 

nervous tissue function in the absence of NGF [224].  Lower estrogen levels associated with 

aging and ovariectomy resulted in decreased trkA expression in medial septum neurons which 

may impair the responsiveness of the cholinergic neurons to NGF [225]. In addition to the brain, 

rats given estradiol valerate formed polycystic ovaries which were attributed to an increase of 

sympathetic ovarian neurons, higher NGF and p75 levels in the ovaries and adrenal glands 30 

days post injection [226-229]. Normal estrous cyclicity and ovulation in rats with polycystic 

ovaries was restored using NGF antiserum or by transection of the superior ovarian nerve [226, 

227]. Impaired follicular development, loss of sympathetic innervation, decrease in androgen and 

estradiol production, delayed puberty and disrupted estrous cycle were also observed in neonatal 

rats immunized against NGF[230].  

 The organization and development of the ovarian follicles is NGF dependent. 

Histological assessment of homozygous NGF-mutant mice showed improper organization of 

ovarian follicles, increased number of naked oocytes, and a significant reduction in the number 
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of primary and secondary follicles, with no change in the number of primordial follicles [231]. 

These histopathological changes in morphology were not caused by or had an influence on the 

adrenal or pituitary gland[231]. Both receptors for NGF (trkA and p75) have been localized to rat 

ovaries and their expression levels change in relation to ovarian follicular dynamics [231, 232]. 

In humans, NGF treatment was associated with delayed luteogenesis. Human granulosa cells 

respond to NGF with increased estradiol secretion and expression of FSH receptor mRNA, and 

reduced progesterone output within 18 h of treatment [233]. A luteotrophic effect of NGF was 

shown in vitro when bovine lutein cells stimulated progesterone secretion with NGF treatment 

[234].  
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2.0 HYPOTHESES AND OBJECTIVES 

2. 1 General Hypothesis 

The overarching hypothesis of the work described in this thesis is the concentration or total 

abundance of OIF/NGF in semen is related to male fertility in South American Camelids. 

 

2.2 General objective 

The main goal of the work described in this thesis is to elucidate whether OIF/NGF 

concentration or total abundance in semen can be used to predict male fertility in South 

American Camelids.  

 

2.3 Specific objectives 

 

Based on the following observations: 

 Seminal plasma proteins have been associated with male fertility and sperm 

parameters in cattle[118, 120, 235, 236], horses[122, 125] and pigs [123] ; 

 Male accessory genital gland secretions and relationship with fecundity are 

variable among mammals [103-106, 108, 109, 237]; 

 Administration of seminal plasma, purified OIF/NGF from seminal plasma and 

NGF from mouse salivary gland induces ovulation in female llamas and alpacas   

[39, 40, 45, 54, 238]; 

 The ovulation-induction effect of seminal plasma or OIF/NGF is dose dependent 

in in vivo and in vitro bioassays [49, 50, 52, 239]; 
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 OIF/NGF promotes a longer lasting LH surge in comparison to that characterized 

following GnRH treatment in llamas and alpacas [175, 238, 240]; 

 OIF/NGF is luteotrophic evidenced by producing larger CL diameter and more 

progesterone [175, 238, 240]; 

 OIF/NGF exerts a luteotrophic effect by altering LH secretion and enhancing CL 

vascularization [175]. 

 

The primary objectives of the first study (Chapter 3) was to: 

 Characterize the source of OIF/NGF secretion in male accessory genital glands; 

 Develop a method for measuring OIF/NGF concentration in semen. 

The primary objective of the second study (Chapter 4) was to: 

 Elucidate the breeding and semen parameters which were related to OIF/NGF 

concentration and total abundance in alpaca semen. 

The primary objective of the third study (Chapter 5) was to: 

 Determine if a higher OIF/NGF concentration in semen was associated with high 

ovulation, pregnancy and live birth rates. 

The primary objective of the fourth study (Chapter 6) was to: 

 Determine if higher OIF/NGF abundance in an ejaculate was associated with 

more luteogenic CL; 

 To elucidate the efficiency of using Power Doppler Ultrasonography to assess CL 

form and function between pregnant and nonpregnant animals. 
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3.0 SOURCE AND ABUNDANCE OF OVULATION-INDUCING FACTOR / NERVE 

GROWTH FACTOR (OIF/NGF) IN THE SEMINAL PLASMA AMONG MAMMALIAN 

SPECIES 

 

 3.1 Abstract 

 

 The seminal plasma protein, ovulation-inducing factor (OIF), is the well-characterized 

neurotrophin, nerve growth factor (NGF). The administration of exogenous OIF/NGF or seminal 

plasma in camelids initiates the ovulatory cascade through the release of luteinizing hormone. An 

attenuated ovulatory response has also been documented in camelids using seminal plasma from 

cattle, horses and pigs. Thus, we hypothesize that this protein is a widely conserved component 

of semen among mammals but is most abundant in camelid ejaculates. The objectives of the 

study were to compare the presence and distribution of OIF/NGF in male reproductive organs 

and to determine the abundance of OIF/NGF in the ejaculates of species representative of both 

spontaneous and induced ovulators. Immuno-histochemical analysis was performed on tissue 

from llamas, rats, cattle, bison, elk, and white-tailed deer, and the abundance of OIF/NGF in the 

ejaculates of camelids (llamas and alpacas), cattle, horses and pigs were quantified by 

radioimmunoassay. The density of immuno-reactive material among accessory genital glands 

was most abundant in the following regions: llama prostate gland (epithelium and gland lumen); 

rat coagulating gland (anterior prostate; blood vessel lumen); bovine ampulla and vesicular 

glands (epithelium and lumen); bison and elk ampulla (epithelium); and white-tailed deer (body 

of the prostate). Of all tissues, the llama prostate gland contained the most intense and abundant 

immuno-reaction. Quantitative analysis showed that the concentration of OIF/NGF in seminal 

plasma in camelids was higher than that of bulls (P<0.05). In llamas and alpacas, OIF/NGF 
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represented 27% of total seminal proteins and less than 1% in bulls (P<0.05). Reduced OIF/NGF 

levels in bull semen corresponds with previous reports where a lower ovulatory response in 

camelids was detected. These observations further support that OIF/NGF behaves in a dose 

dependent manner and that OIF/NGF may have greater importance, in terms of reproductive 

physiology, in induced than spontaneous ovulators. Although OIF/NGF was detected within the 

lumen or glandular epithelium of at least one accessory gland of all species investigated, we were 

unable to detect OIF/NGF in the ejaculates of either horses or pigs. Thus our general hypothesis 

that OIF/NGF is conserved among all mammals was only partially supported.  
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3.2 Introduction 

 

Semen is comprised of spermatozoa carried in fluid derived from accessory genital 

glands and, to a lesser extent, the epididymis and testis. The accessory genital glands are 

composed of paired ampullae of the ductus deferens, paired vesicular glands, the body and 

disseminate parts of the prostate, and paired bulbourethral glands [241]. These exocrine glands 

vary considerably among species in terms of size, secretions, and anatomical and histological 

structure. For example, while all glands are present in cattle [242] and horses [243], the vesicular 

glands are absent in camelids [81], dogs, and cats [241]. The prostate, whether it is confined in a 

solid organ (body) or dispersed in the mucosa around the pelvic urethra (disseminate), is the only 

accessory genital gland that is present in all mammals [241]. In light of the diversity in structure, 

the contribution of each gland and the degree to which its secretions influence male fertility 

remains to be elucidated.  

Nerve growth factor (NGF) is a 26 kDa homodimer protein that is classically known for 

its involvement in neuronal survival and maintenance [35]. However, this protein has been 

implicated in several biological pathways outside of nervous system. Its detection in semen has 

led to a new line of research that focuses on its effects on the female reproductive endocrine 

system [39, 44, 208, 211, 244, 245]. Referred to originally as ovulation-inducing factor (OIF) in 

seminal plasma for its potent ovulation-eliciting effect in camelids [48, 246], results of recent 

studies revealed that it is β nerve growth factor (NGF) [39]. Results from a series of studies have 

demonstrated that the administration of seminal plasma or purified OIF/NGF from seminal 

plasma triggers a surge in circulating concentrations of LH which leads to ovulation and corpus 

luteum (CL) formation (reviewed in [47]). The endocrine response is related to the quantity of 

OIF/NGF or seminal plasma that is given [49]: in vitro, a pituitary culture augmented its LH 
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release when treated with higher doses of OIF/NGF or seminal plasma [52, 53]. This response 

was paralleled in vivo: the preovulatory LH surge, ovulation rate and diameter of the CL were 

greater with increasing doses of OIF/NGF [49]. 

 It appears that OIF/NGF is the primary stimulus for ovulation-induction in camelids 

replacing the dogmatic view that ovulation occurs via penile stimulation of somatosensory 

neurons in vagina [1].  However, it is evident that OIF/NGF has more than one function in 

regards to male and female reproduction and these functions vary among species.  Nerve growth 

factor is involved in sperm development and maturation.   Nerve growth factor and its receptors 

TrkA and p75 were found in developing sperm cells in the testis of mouse and rat [247], golden 

hamster[248], cattle [249], alpaca [250], Japanese monkey [251], and human [252, 253]. Of all 

of these species, only one (alpaca) is classified as an induced ovulator whereby OIF/NGF it been 

shown to cause ovulation in their respective females [47, 254]. While the direct effect of  

OIF/NGF on camelid sperm has not been reported,  incubation of NGF with sperm cells in vitro  

increased sperm motility in a dose dependent manner and increased the number of cells that 

underwent the acrosome reaction following capacitation in the golden hamster[248]. In humans, 

NGF promoted sperm motility [252, 255], however, the quantity of NGF was not different 

comparing ejaculates that had normal and low sperm motility [46]. Exogenous NGF had no 

effect on mitochondrial activity or acrosome reaction, in cattle, but did improve sperm 

vitality[249].  Thus, it may be likely that the function of OIF/NGF in males of spontaneous 

ovulators is to assist sperm while in the female tract, and not necessarily induce changes in 

female physiology.  

 Historically, seminal fluids and its constituents have been deemed essential for sperm 

transport, nutrition, capacitation and fertilization (reviewed in [256, 257]). The necessity for 
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accessory genital glands is evident by the consequence of their removal in an assortment of 

species. Mating of intact female mosquitoes with males whose accessory glands were removed 

caused a reduction in the total number of fertile eggs laid [237]. The removal of vesicular glands 

in mice had a negative effect on sperm progressive motility and resulted in lower pregnancy rates 

[258]. In a later mouse study, the removal of vesicular and prostate glands diminished pregnancy 

rates, while no effect was observed when the coagulating gland was ablated [259]. Excision of 

the bulbourethral glands in llamas impaired sperm binding to the oviduct and it was proposed 

that proteins secreted from this gland were needed for the formation of the oviductal-sperm 

reservoir [260]. These observations suggest that the importance of respective accessory genital 

glands is species-specific and the product of one gland may be more expendable than another in 

terms of male fertility. The comparative distribution, relative abundance, and importance of 

OIF/NGF in the male reproductive tissues have not been examined critically. 

 Several assays have been used to detect NGF within tissue and to measure NGF in fluid 

secretions. These include the differentiation of immortalized rat pheochromocytoma cells (PC12) 

[39, 261], chicken dorsal root ganglion [262], enzyme-linked immunosorbant assay [46, 263], 

radioimmunoassay [262] and llama bioassay [45, 48, 49, 54]. Qualitative methods, such as 

immunohistochemistry provide important information of detection and distribution, but signal 

intensity can be skewed by tissue preservation, antibody affinity, staining procedures and 

experimenter bias. Quantitative assays, such as radioimmunoassay where known amounts of 

labeled ligand competes with unlabeled ligand for antibody binding sites within the sample of 

interest, provide repeatable numerical assessment of the amount of the antigen of interest [264]. 

Abundant levels of NGF have been detected in the salivary gland of the adult male mouse 

[36, 210], snake venom [265, 266] and the prostate gland of guinea pigs [211]. The concentration 
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of NGF can be influenced by age, gender, and endocrine status. The synthesis of NGF in salivary 

glands begins after puberty and is higher in males than in female mice [35, 37]. Elevated levels 

of NGF in circulation appear to be related to the release of NGF from salivary glands in response 

to psychosocial behaviour and stress [209, 263, 267, 268]. 

Based on the overwhelming evidence in literature, we hypothesize that OIF/NGF is a 

widely conserved component of semen but it is most abundant in camelid ejaculates. Thus, the 

objectives of the present study were to determine the source of OIF/NGF secretion among 

different mammalian species and to quantify its abundance in the ejaculate using qualitative 

(immunohistochemistry and PC12 differentiation) and quantitative (radioimmunoassay) 

methods. To our knowledge, OIF/NGF storage and secretion sites that contribute to the 

mammalian ejaculate have not been reported in llamas.  

 

3.3 Materials and Methods 

Experimental procedures were performed in accordance with the animal care protocols 

established by the University of Saskatchewan.  

3.3.1 Tissue sources of OIF/NGF in the male reproductive organs 

 The male reproductive organs from adult male llamas, rats, bulls, bison, elk and white-

tailed deer were used (n=2 males/species). Tissues were dissected within one hour of euthanasia 

and were fixed overnight at 4°C in 4% paraformaldehyde and 0.1% glutaraldehyde in 0.1M 

monophosphate buffer (pH 7.4). Tissues were processed to obtain 5 µm-thick paraffin sections 

on poly-L-lysine coated glass slides. 
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3.3.2 Immunohistochemistry 

 Slides were washed three times each, first in xylene and then in absolute ethanol. Slides 

were dipped in a successive gradient of ethanol solutions (95%, 70% and 50%), rinsed with 

distilled water (five minutes in running water) and then immersed in phosphate buffered saline 

(PBS; 15 minutes). Slides were then incubated with pepsin (2 mg/mL in 0.01N HCl; Sigma-

Aldrich, Oakville, Ontario, Canada) inside a humidified chamber (for antigen retrieval), rinsed 

with distilled water (as described above) and immersed in hydrogen peroxide (10% in methanol; 

for endogenous peroxidase blocking) for 45 minutes. Slides were again rinsed with distilled 

water for one hour at room temperature before blocking with 5% BSA (Sigma-Aldrich, Oakville, 

Ontario, Canada). The primary antibody for immuno-histochemical localization of NGF was 

polyclonal rabbit antiserum raised against human ß-NGF (1:400 in 1% BSA for all tissues except 

for rat (1:200); Santa-Cruz Biotechnology Inc., Dallas, Texas, USA). Slides were incubated 

overnight at 4°C then washed three times for five minutes each with phosphate buffered saline 

and incubated inside a humidified chamber with the secondary antibody 1:400 in 1% BSA 

(polyclonal goat anti-rabbit IgG-HRP; Daka Canada, Inc. Burlington, Ontario, Canada).  

VECTOR VIP peroxidase substrate kit (Vector Laboratories, Inc; Burlington, Ontario, Canada) 

was used for colour development and VECTOR Methyl green (Vector Laboratories Inc.) was 

used as a counter stain. VectaMount permanent mounting medium was used for slide 

preservation (Vector Laboratories Inc). Slides incubated with 1% BSA without the primary 

antibody were used as negative controls, and slides of adult rat dorsal root ganglia or llama 

prostate gland were used as positive controls. Adjacent sections were stained with hemotoxylin 

and eosin for normal histology assessment.  
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 The overall presence and distribution of positively labeled tissue were examined by light 

microscopy at low magnification (400x); high magnification was used for analysis of intensity 

and cellular localization (1000x). A minimum of 15 fields were visualised for each slide for the 

assessment of positive cells in the mucosa, submucosa, muscularis and serosa/adventitia layers. 

All tissue sections were analyzed by the same observer and scored based on NGF-staining 

intensity as +++ (very strong), ++ (strong), + (moderate to weak) ± (faint), - (absent), or ND (not 

determined).  

 

3.3.3 .Semen collection and handling 

 Ejaculates (n=69) were collected from male llamas (n=5) and alpacas (n=12) using an 

artificial vagina and phantom mount [84] during June and July (summer) near Saskatoon, 

Saskatchewan (52°N, 106°W, and 482 meters above sea level). Briefly, males were introduced to 

a receptive female and were allowed to mount. Once libido was stimulated, the male was 

transferred to an adjacent phantom mount fitted with an artificial vagina. Males included in the 

study were selected from larger groups at each of 3 farms on the basis of acceptance of the 

phantom mount and artificial vagina. Successive ejaculates from individual males were collected 

with at least one full day of rest between collections. Ejaculates were centrifuged at 400 x g for 

15 minutes and the supernatant was centrifuged again for 1500 x g for 15 minutes. The seminal 

plasma was decanted, and an aliquot was examined under a light microscope. If spermatozoa 

were detected, the centrifugation process was repeated until no spermatozoa were detected in the 

seminal plasma [48, 269]. The seminal plasma of individual ejaculates was then stored at -80°C. 

 Semen was collected from bovine bulls by electroejaculation (n=53 ejaculates; n=36 

bulls), from stallions by artificial vagina (n=6 stallions, n=4 ejaculates/ stallion), and from boars 



    

 

31 

 

by the gloved-hand method (n=4; n=4 ejaculates/boar), as previously described [45]. The gel 

fraction of equine and porcine ejaculates was removed immediately after collection. Ejaculates 

were centrifuged and seminal plasma was decanted and examined to ensure the removal of 

spermatozoa, as described for llamas and alpacas. Seminal plasma was stored at -80
◦
C. Upon 

thawing, an aliquot of seminal plasma was pooled within species for use in radioimmunoassay 

development and the PC12 bioassay; quantification of OIF/NGF was performed on individual 

ejaculates.   

 

3.3.4 OIF/NGF purification and in vivo bioassay 

 After thawing, pooled llama/alpaca seminal plasma was eluted by hydroxyl apatite 

column chromatography to obtain a partially purified fraction that was furthered purified by 

FPLC [39, 269]. Approximately 6 mg of purified llama OIF/NGF was diluted in phosphate 

buffered saline (pH 7.4) to a stock solution of 1.0 mg/mL. The diluted, purified OIF/NGF was 

stored in 10 µL aliquots at -80ºC. 

 A llama in vivo bioassay was used to validate the bioactivity of purified OIF/NGF, as 

described previously [269]. Ovarian follicular development of mature llamas (n=6) was 

monitored for at least three consecutive days by transrectal ultrasonography. When a growing 

follicle ≥7 mm in diameter was detected, the llama was assigned randomly to one of two groups 

and treated intramuscularly with 2 mL of purified OIF/NGF (500 µg in saline) or saline 

(n=3/group, Day 0 = day of treatment). Llamas were examined by transrectal ultrasonography on 

Day 3 and Day 7 to detect the disappearance of the ovulatory follicle and the subsequent 

formation of the corpus luteum. 
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3.3.5 In vitro bioassay 

 Immortalized rat pheochromocytoma (PC12) cells were cultured according to the method 

previously described [261]. Briefly, the PC12 cells were grown in a 75 cm
2 

Falcon cell culture 

flask (BD Bioscience, San Jose, California, USA) at 37°C in 5% CO2 in RPMI 1640 medium 

(Sigma-Aldrich, Oakville, Ontario, Canada) with 10% heat-inactivated horse serum (Life 

Technologies, Burlington, Ontario, Canada), 5% fetal calf serum (HyClone; Thermo Scientific, 

Logan, UT, USA), 25 U/mL penicillin, and 25 ug/mL streptomycin. Cells were cultured in vitro 

on laminin-coated 6-well tissue culture dishes at a concentration of 2 x 10
6
 cells/ well (BD 

Bioscience, San Jose, California, USA) for 24 hours before treatment.  

 To detect the presence or absence of OIF/NGF in the seminal plasma of different species, 

the culture medium was aspirated and replenished with fresh medium containing 50 ng/mL 

recombinant NGF (Sigma-Aldrich, Oakville, Ontario, Canada; positive control), 1µg/mL seminal 

plasma-derived OIF/NGF, and 5 µL of undiluted seminal plasma from llamas/alpacas, bulls, 

horses or pigs (3 wells/treatment). As the amount of OIF/NGF was unknown in each sample, a 

volume of 5 µL was chosen arbitrarily. All media with respective treatments were passed 

through a 0.22 µm filter (Millipore, Billerica, MA, USA) immediately before use. Two days after 

the start of in vitro culture, the medium was replenished with respective treatments. Cells were 

observed daily to monitor changes in cell morphology using an inverted microscope at 400x 

magnification. Four days after the start of in vitro culture, the wells were scored as differentiated 

or undifferentiated. Cells were scored as 'differentiated' if they contained dendritic processes that 

were ≥ 2 x the length of the cell body. 

 To confirm that PC12 differentiation was associated with OIF/NGF in seminal plasma, 

rabbit polyclonal β- NGF antibody (Santa-Cruz Biotechnology Inc.) was added to the culture 
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medium. Cells were cultured in the similar manner as described above. Following the 24 hour 

culture period, cells (n=4 wells/group) were given fresh medium containing 1µg/mL purified 

OIF/NGF or Cytochrome c. Cytochrome c was chosen as a negative control due to its similar 

molecular weight and isoelectric point as NGF. At the time of treatment, rabbit polyclonal β- 

NGF antibody (1:1000; Santa-Cruz Biotechnology Inc.) was added to half of the wells 

(n=2/group). Two days after culture, the medium was replenished with respective treatments. 

Cells were monitored (by an inverted microscope) for four days after the first treatment. Cells 

were scored as 'differentiated' if they contained dendritic processes that were ≥ 2x the length of 

the cell body. The total number of differentiated cells in 10 microscopic fields (at 40x 

magnification) per well (total of 20 fields per treatment group) were counted.  

 

3.3.6 Radioimmunoassay 

 Purified, biologically active OIF/NGF isolated from pooled llama/alpaca seminal plasma 

was labeled with 
125

I by the chloramine-T method [270]. Phosphate buffer (0.25 M; pH 7.5) was 

prepared using sodium dihydrogen orthophosphate (monobasic) and disodium hydrogen 

orthophosphate heptahydrate (VWR, Radnor, Pennsylvania, USA). A total of 2 µg of purified 

OIF/NGF was added to 20 µL of 0.25 M phosphate buffer. Dissolved protein was then added to 

125
I (1 mCi; Perkin Elmer, Massachusetts, USA). Chloramine T was added to the reaction, 

vortexed and incubated at room temperature for 90 seconds. Sodium metabisulfite was added to 

stop the reaction. The iodinated peptides were purified by column chromatography (PD-10 

column; Bio-Rad Laboratories, Inc., Hercules, California, USA). Phosphate buffered saline with 

gel was used as an eluent and 1 mL fractions were collected into 12 x 75 mm borosilicate tubes. 

Radioactivity was assessed in 5 µL aliquots of each fraction by gamma-counter.  
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 Serial dilutions of recombinant human NGFβ (Sigma-Aldrich, Oakville, Ontario, 

Canada), purified OIF/NGF, and llama seminal plasma were made and combined with four 

different concentrations of rabbit polyclonal β- NGF antibody (Santa-Cruz Biotechnology Inc.) 

to optimize binding specificity. The working dilution of 1:1000 rabbit β-NGF polyclonal 

antibody was chosen for all subsequent studies. To determine cross-reactivity with other 

neurotrophins, serial dilutions of purified brain-derived neurotrophic factor (BDNF) and 

neurotrophin-4 (NT-4) were made and combined with 1:1,000 rabbit NGF antibody. Specificity 

was also tested by comparing the specific binding after the addition of either llama OIF/NGF or 

BSA to different dilutions of llama blood plasma, and llama or bull seminal plasma. Llama blood 

was collected by jugular venipuncture into heparinized tubes. 

 Antibody binding was tested by comparing the profile of displaced iodinated OIF/NGF 

from anti-NGF antibody binding sites using increasing volumes of seminal plasma from 

llamas/alpacas, bulls, horses and pigs. Seminal plasma dilutions were made with phosphate-

buffered saline and 1% polyethelene glycol (PEG) buffer. The amount of OIF/NGF in samples 

(unknowns), standards, and references (25 and 100 µg for low and high references, respectively) 

were measured in duplicate. The standard curve ranged from 0 to 200 µg/mL. A volume of 0.1 

mL of sample was placed in glass tubes and incubated with rabbit NGF antibody (1:1000) 

overnight at 4°C. The following day, 0.1 mL of 
125

I-NGF (containing 10,000 cpm) was added, 

vortexed, and incubated at 4°C overnight. Goat-anti-rabbit serum (0.5 mL; 1:500) and 5% PEG 

(0.5 mL) was made in-house [271] and were added to each tube, vortexed, and incubated at 4°C 

overnight. Tubes were centrifuged at 3000 x g and the supernatant was decanted. The relative 

amount of unbound tracer in each tube was measured by gamma-counter.  
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3.3.7 Total protein quantification 

   Total protein concentrations for llama/alpaca and bovine seminal plasma was evaluated 

by Bradford's method [272] (Bio-Rad Laboratories, Mississauga, Ontario, Canada). A standard 

curve was generated using bovine gamma-globulin standard (Bio-Rad Laboratories). Seminal 

plasma samples were diluted in saline (v:v) 1:2, 1:4, 1:10, 1:25, 1:50 and 1:100 and values which 

fell within the numerical values of the standard curve were used.  

 

3.3.8 Statistical analyses 

 Student's t test was used for comparison of OIF/NGF and total protein concentration 

between llama/alpaca and cattle seminal plasma samples by radioimmunoassay. Equine and 

porcine samples were excluded due to low to absent detection of OIF/NGF. Analysis of variance 

(ANOVA) using PROC MIXED procedure was used to compare PC12 differentiation among 

groups. Tukey's multiple comparison was used as a post-hoc test when treatment means were 

significant (P<0.05). All statistical analyses were made using SAS software (SAS, Statistical 

Analysis System Institute Inc., Cary, NC, USA). 

 

3.4 Results 

 

3.4.1 OIF/NGF Immunolocalization- Llama 

  Immuno-staining of ßNGF was detected in the connective tissue of all reproductive 

organs (Table 3.1). The detection of OIF/NGF was greatest in the body and disseminate parts of 

the prostate gland (+++). The protein was localized in the apical region of epithelial cells and 

frequently found within the glandular lumen of the prostate gland (Fig. 3.1). On no occasion was 
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OIF/NGF detected solely at the basement membrane. Its subnuclear detection was evident only 

when OIF/NGF was present throughout the cell. Ovulation-inducing factor/ NGF appeared to be 

stored in secretory vesicles of different sizes. The scarcity of OIF/NGF-negative vesicles 

suggests that most if not all acini contained OIF/NGF. The presence of immuno-reactive material 

in the epithelium was omnipresent in the body of the prostate gland. Based on the appearance 

and size of epithelial cells and their nuclei, all cells appeared to be of same cell type and were 

OIF/NGF- positive. The abundance of OIF/NGF detected in the secretory acini was markedly 

less in the disseminate portion of the prostate gland (Figs. 3.1A and Fig 3.1C). In contrast to the 

body of the prostate, many acini did not contain OIF/NGF in the epithelium or in the lumen. In 

addition, where OIF/NGF was detected in the lumen in the disseminate prostate, many acini were 

devoid of OIF/NGF in the epithelium, and the number of cells containing OIF/NGF within a 

single acinus was lower compared to the body of the prostate (Fig. 3.1C) The distribution of 

secretory granules in the disseminate part, however, was similar to that of the body and were 

polarized to the apical region of the epithelial cells. The perinuclear distribution of OIF/NGF in 

several cells illustrates protein translation and storage into secretory vesicles (Fig. 3.1B and D). 

Another discernible difference between the body and disseminate regions of the prostate was the 

abundance of OIF/NGF detected in endothelium of blood vessels. The protein was detected in a 

greater proportion of arterial and venous vessels in the disseminate part than in the body of the 

prostate (Fig. 3.1D). Diffuse positive staining was found in the connective tissue between 

prostatic lobules that were closest to the acini; detection of OIF/NGF was lesser around vessels 

that were surrounded mostly by connective tissue and further away from acini.  

 The seromucus-secreting epithelium of the ampullae had no immuno-reaction to anti-

OIF/NGF, while faint scattered staining was detected in the bulbourethral gland. OIF/NGF-
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positive regions of bulbourethral glandular epithelium were few and found in the most apical 

region of the cells. Immuno-reactive OIF/NGF was not detected in the penile urethra, epididymis 

(head, body or tail) or the seminiferous tubule epithelium. Sperm within the testes and 

epididymides were also OIF/NGF negative. Myoid epithelial cells surrounding the seminiferous 

tubules were positive for OIF/NGF (++). A strong reaction was detected in the vascular 

endothelium and connective tissue fibers in the stroma and rete testes, but not in the interstitial 

cells.  

 Within the penis, the crura of the corpus cavernosum and corpus spongiosum were 

negative. The majority of positive staining was found in the connective tissue fibers of the tunica 

albuguinea.  Several blood vessels within the connective tissue had a weak to moderate immuno-

reaction in the endothelium.  
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Table 3.  1 OIF/NGF immuno-reactivity in the male reproductive organs of llamas. 

Tissue Epithelium Lumen Connective 

tissue 

Smooth muscle 

Testis - - ++ - 

Epididymis (head) - - ++ - 

Epididymis (body) - - ++ - 

Epididymis (tail) - - + - 

Ductus deferens - - ++ - 

Ampulla - - + - 

Prostate (body) +++ +++ + - 

Prostate (disseminate) +++ ++ + - 

Bulbourethral gland  ± ± + - 

Penis - - ++/+++ - 

Relative OIF/NGF staining intensities were graded: +++ (very strong), ++ (strong), + (moderate 

to weak), ± (faint), - (absent).  
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Figure 3.  1. Immuno-histochemical detection of OIF/NGF (purple) in the body (A and B) and 

disseminate (C and D) parts of the prostate gland of llamas. Cell nuclei are stained with methyl 

green. (A) OIF/NGF positive cells present in all acini of glandular epithelium. (B) Abundant 

OIF/NGF immuno-reactivity is detected in epithelial cells of a single prostatic acinus. Secretory 

granules are confined to the apical region of epithelial cells and secretion of OIF/NGF-

containing granules into the lumen is evident (arrowheads). Little reactivity present in the 

endothelium or lumen of blood vessels (BV). (C) Relatively fewer OIF/NGF-positive acini in the 

disseminate prostate. (D) Detection of OIF/NGF immuno-reactivity in prostatic acini and blood 

vessel (BV). Presence of secreted OIF/NGF is evident in the lumen of glandular epithelium 

(arrowheads) and blood vessels (arrows). Yellow arrowheads indicate OIF/NGF distributed 

towards the basal portion and around the nucleus of the epithelial cells. ET: Epithelium; CT: 

Connective tissue. Scale bars as indicated. 
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3.4.2 OIF/NGF Immunolocalization- Rat 

 Immuno-staining for OIF/NGF was not detected in the epithelium of any of the accessory 

sex glands, but positive staining was observed in the lumen of blood vessels in the coagulating 

gland (Fig. 3. 2D). The connective tissue was OIF/NGF-positive within all organs but was 

variable in intensity (Table 3. 2). The appearance of the OIF/NGF-positive fibers in the 

connective tissue was similar among animals and was interpreted as nerve endings. Immuno-

positive staining was detected in stereociliated cells of the head of the epididymis in scattered 

regions, but the reaction did not extend into the body or tail of the epididymis and was variable 

among individuals (Fig. 3. 2 A and B). Staining was repeated for the epididymal tissue, with 

similar results. OIF/NGF was not detected in the seminiferous tubule epithelium or in the lumen 

containing spermiated spermatazoa. Interestingly, intense staining was observed in interstitial 

cells in discrete aggregates throughout the testes. The connective tissue of the testis, ductus 

deferens, penis, coagulating gland displayed the greatest intensity of OIF/NGF-positive staining 

in the respective tissues.  
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Table 3.  2. OIF/NGF immuno-reactivity in the male reproductive organs of the rat. 

Tissue  Epithelium Lumen Connective 

tissue 

Smooth muscle 

Testis ± - +++ - 

Epididymis (head) 
- 

-/+++
*
 + - 

Epididymis (body) - - + - 

Epididymis (tail) - - + - 

Ductus deferens - - ++ - 

Vesicular gland - - + - 

Coagulating gland - +++
** 

+++ - 

Dorsal prostate - - + - 

Bulbourethral gland - - - - 

Penis - - +++ - 

Relative OIF/NGF staining intensities were graded: +++ (very strong), ++ (strong), + (moderate 

to weak), ± (faint), - (absent), nd (not determined). 

* Relative OIF/NGF staining intensities were different between rat 1 and rat 2.  

** Detection found in lumen of blood vessels 
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Figure 3.  2. OIF/NGF immuno-histochemical staining of the reproductive organs of the male 

rat. Differential staining was observed in the luminal surface of the head epididymis epithelium 

from Rat 1 (A) and Rat 2 (B). C, Ductus deferens epithelium exhibits strong OIF/NGF-immuno-

reactivity in the CT. D, OIF/NGF-positive staining in blood vessel lumen of the coagulating 

gland. Strong (+++) reaction product is seen in interglandular blood vessels and connective 

tissue (arrows). E, Seminiferous tubules and OIF/NGF-positive reaction in interstitial tissue 

(arrowheads) . F, No OIF/NGF is detected in the glandular epithelium or lumen of the 

coagulating gland. But NGF-positive staining is visible in the connective tissue and lumen of 

blood vessels (arrows). ET: Epithelium; CT: Connective tissue. Scale bars are as indicated. 
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3.4.3 OIF/NGF Immunolocalization-Cattle 

 Tissue OIF/NGF immuno-reactivity in bulls is summarized in Table 3.3 and illustrated in 

Fig. 3.3. In contrast to llamas, OIF/NGF was detected within the epithelium of the ampullae. The 

degree of reactivity to OIF/NGF varied among glandular acini. For example, immuno-reaction 

was present in only a few cells of ampullary acini while in others it was present in most if not all 

the cells. Immuno-staining was strongest in the apical region of the glandular epithelium and was 

also detected in the lumen of the ampulla. Spermatozoa within the lumen of the ampulla, 

however, were OIF/NGF -negative. The distribution of OIF/NGF reactivity in the vesicular gland 

was similar to that in the ampulla. Positive immuno-reactivity was localized in the apical portion 

of the glandular epithelial cells and within the lumen. The peri-nuclear region of glandular 

epithelial cells was strongly positive in some and devoid of reaction in others within the same 

acinus. No immuno-reactivity was observed in the transitional epithelium lining the penile 

urethra or the endothelium of the sinuses of the corpus spongiosum and corpus cavernosum. The 

connective tissue surrounding the corpus spongiosum contained more OIF/NGF -positive fibers 

than the corpus cavernosum. OIF/NGF staining was evident in the smooth muscle layers 

surrounding the epididymis and blood vessels.  

 Weak staining was detected in the bulbourethral gland, and was confined to connective 

tissue and smooth muscle (Table 3.3). Immuno-reactivity to OIF/NGF was localized to the body 

of the prostate in glandular epithelial cells (Table 3.3). 

 In the testis, OIF/NGF immuno-reactivity was observed in the myoid epithelial cells 

around seminiferous tubules, spermatogonia, primary spermatocytes and sertoli cells. Round and 

elongated spermatids and interstitial cell cytoplasm were OIF/NGF negative. The vascular 
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endothelium in the testes and all regions of the epididymis were OIF/NGF positive. The nuclei in 

the epithelium of the tail displayed a weak immuno-reactive response.  
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Table 3.  3. OIF/NGF immuno-reactivity in the male reproductive organs of cattle. 

Tissue Epithelium Lumen Connective 

Tissue 

Smooth Muscle 

Testis +++ - ++ + 

Epididymis (head) ± - +++ ++ 

Epididymis (body) + - +++ + 

Epididymis (tail) + - +++ +/++ 

Ductus Deferens ± + +++ ++ 

Ampulla +++ +++ +++ + 

Prostate (body) ++ - +++ + 

Vesicular gland +++ +++ ++ + 

Bulbourethral gland  - - + + 

Penis - - +++ + 

Relative OIF/NGF staining intensities were graded: +++ (very strong), ++ (strong), + (moderate 

to weak), ± (faint), - (absent), nd (not determined). 
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Figure 3.  3. OIF/NGF-positive immunoreactivity is detected (purple) in the ampullae (A and B) 

and vesicular glands (C and D) in cattle. A, Epithelium of glandular acini showing strong (**) 

and weak (*) immuno-staining staining in the ampullary gland. B, Magnified view of A, showing 

positive staining in the glandular epithelium (ET), lumen and connective tissue (CT). (Arrows) 

demark OIF/NGF detection in interlobular blood vessels. C, OIF/NGF-positive staining in the 

connective tissue and glandular epithelium of vesicular glands. D, Magnified view of C, showing 

OIF/NGF-positive staining in the apical region of epithelial cells and lumen. OIF/NGF-negative 

(*) and OIF/NGF-positive immuno-reactive epithelial cells are present within the same acini. 

ET: Epithelium; CT: Connective tissue.  Scale bars as indicated. 
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3.4.4 OIF/NGF Immunolocalization- Bison 

 The ampulla and vesicular gland had the greatest immuno-reactive response among 

accessory glands in bison (Table 3. 4 and Fig. 3.4). Positive staining was detected in the 

connective tissue of the bulbourethral and prostate glands, but not in the glandular epithelium or 

lumen. While the connective tissue surrounding the glandular epithelium was OIF/NGF-positive, 

the nuclei of the cells were negative. The reactivity of the body of the prostate is similar to that 

observed in the disseminate prostate: no reactivity was seen in the glandular epithelium nor 

lumen. Although OIF/NGF immuno-reaction was detected in both bison bulls, the vesicular 

glands in one had more OIF/NGF in the epithelium and lumen than in the other where several 

acini were devoid of OIF/NGF in both the epithelium and the lumen (Fig. 3.4 A and B). 

 Ovulation-inducing factor /NGF positive sites were detected in the smooth muscle layers 

around the epididymal epithelium. Similarly, OIF/NGF was detected in the smooth muscle 

surrounding blood vessels as well as in the endothelium. Immuno-reactivity was not detected in 

the nuclei of smooth muscle or connective tissue cells. The nuclei of myoid cells found at the 

interface of the basement membrane and the lamina propria-submucosa expressed OIF/NGF 

strongly, along with other stellate-shaped nuclei in that region. The fibers within this region did 

not have uniform affinity to anti-OIF/NGF. Scattered fibers of similar diameter but variable 

lengths were strongly reactive in the stroma. These fibers were scarce in the connective tissue 

surrounding the glandular epithelium but were plentiful in the connective tissue more closely 

associated with the tunica muscularis. The arbitrary arrangement of these fibers as well as 

branching is consistent with terminal nerve tracts found in connective tissue. The nuclei of 

neurolemmocytes within peripheral nerve bundles as well as nerve axons contained OIF/NGF.  
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Table 3.  4. OIF/NGF immuno-reactivity in the male reproductive organs of bison. 

Tissue Epithelium Lumen Connective 

Tissue 

Smooth Muscle 

Testis - - +++ - 

Epididymis (head) - - +++ ++/+++ 

Epididymis (body) ± - +++ ++/+++ 

Epididymis (tail) ±/+ - +++ ++/+++ 

Ductus Deferens ± - +++ ++/+++ 

Ampulla ++/+++ +++ +++ - 

Prostate (body) - - +++ ± 

Prostate (disseminate) - - +++ ± 

Vesicular gland +/++ +++ +++ - 

Bulbourethal gland - - ++ - 

Penis - - +++ ++ 

Relative NGF staining intensities were graded: +++ (very strong), ++ (strong), + (moderate to 

weak), ± (faint), - (absent), nd (not determined). 
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Figure 3.  4. OIF/NGF-positive immunoreactivity (purple) is detected in the ampullae (A and B) 

and vesicular glands (C and D) of bison. A, Acini showing positive (*) and negative (**) 

OIF/NGF staining in the ampullar gland. B, Magnified view of A, showing positive staining in 

the glandular epithelium (ET), lumen and connective tissue (CT). C, OIF/NGF-positive staining 

in the connective tissue and lumen of glandular lumen. D, Magnified view of C, showing 

OIF/NGF -positive staining in the connective tissue and lumen.  Scale bars as indicated. 
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3.4.5 OIF/NGF Immunolocalization- Elk 

 Ovulation-inducing factor/NGF was detected in the lumen and glandular epithelium of 

the ampulla, but not in the glandular portion of any other accessory gland (Fig. 3.5). No immuno-

reactivity was observed in the seminiferous epithelium or interstitial cells of the testis. A strong 

positive reaction was detected in the connective tissue of all organs examined, and were 

interpreted as tissue innervation around blood vessels (Table 3. 5).  
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Table 3.  5. OIF/NGF immuno-reactivity in the male reproductive organs of North American Elk 

(Wapiti). 

Tissue Epithelium Lumen Connective Smooth Muscle 

Testis - - +++ + 

Epididymis (head) - - ++ ± 

Epididymis (body) - - +++ + 

Epididymis (tail) - - +++ + 

Ductus deferens - - +++ + 

Ampulla ++ + ++ - 

Prostate gland (body) - - ++ - 

Vesicular gland - - +++ - 

Bulbourethral gland nd nd nd nd 

Relative OIF/NGF staining intensities were graded: +++ (very strong), ++ (strong), + (moderate 

to weak), ± (faint), - (absent), nd (not determined). 
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Figure 3.  5. OIF/NGF immuno-histochemical staining in elk ampullary gland. A, OIF/NGF -

positive staining in the glandular epithelium and lumen of the ampullary gland. Arrowheads 

demark positive OIF/NGF reactions of varying intensities. B, Fibers within the connective tissue 

were stained by OIF/NGF antibody. Cellular nuclei were OIF/NGF negative in this section. ET: 

Epithelium; CT: Connective tissue. Scale bars as indicated. 
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3.4.6 OIF/NGF  Immunolocalization- White-tailed Deer 

 Immuno-reactivity was detected in the epithelium and lumen of the prostate (Table 3. 6). 

The intensity of the detection in the epithelium was weak; several cell nuclei had a moderate 

reaction and reaction product within the glandular lumen was scattered and infrequent. The 

bulbourethral gland had a weak reaction and was confined to the nuclei within the epithelium. 

The nuclei of the cells of the epididymis were also positive. Strong immunoreactivity was 

detected in the smooth muscle cells surrounding the epididymal tubules.  
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Table 3.  6. NGF immuno-reactivity in the male reproductive organs of white-tailed deer. 

Tissue Epithelium Lumen Connective 

Tissue 

Smooth Muscle 

Testis ± - ++ ++ 

Epididymis (head) + - ++ ++ 

Epididymis (body) ± - +++ ± 

Epididymis (tail) ± - +++ ± 

Ductus deferens ± - +++ ± 

Ampulla ± + +++ - 

Prostate gland (body) +/++ + +++ ± 

Vesicular gland - - +++ ± 

Bulbourethral gland  + - + - 

Relative NGF staining intensities were graded: +++ (very strong), ++ (strong), + (moderate to 

weak), ± (faint), - (absent). 
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3.4.7 Bioassays 

 The biological activity of OIF/NGF purified from llama/alpaca seminal plasma was 

confirmed by an in vivo llama bioassay and an in vitro PC12 differentiation assay. All female 

llamas given purified OIF/NGF derived from pooled llama/alpaca seminal plasma ovulated (3/3; 

100%) while none of those treated with saline ovulated (0/3; 0%). Thus, the purified OIF/NGF 

was deemed suitable for subsequent studies.  

 Differentiation of PC12 cells in vitro was observed in wells treated with recombinant-

NGF, purified OIF/NGF, and seminal plasma from llamas/alpacas and bulls (Table 3.7). Cells 

treated with seminal plasma from horses or pigs did not differentiate. The number of PC12 cells 

induced to differentiate (dendrite growth) was greater in wells treated with OIF/NGF than in 

those treated with Cytochrome c (P<0.05), and was decreased by the addition of anti-NGF (Table 

3.8; P<0.05).  
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Table 3.  7. Proportion of in vitro culture wells containing PC12 cells that displayed dendrite 

growth (PC12 differentiation assay for detecting NGF-like activity) after treatment with purified 

OIF or seminal plasma. 

 

Treatment 

Differentiated wells 

rNGF 100% (3/3) 

OIF/NGF  100% (3/3) 

Llama/alpaca seminal plasma 100% (3/3) 

Bull (bovine) seminal plasma 100% (3/3) 

Equine seminal plasma 0% (0/3) 

Porcine seminal plasma 0% (0/3) 
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Table 3.  8. Number of differentiated PC12 cells per well (mean ± SEM) in 10 microscopic fields 

at a magnification of 400x) after 4 days of in vitro culture with Cytochrome c or OIF/NGF, with 

or without NGF antibody. 

 Cytochrome c OIF/NGF 

Without anti-NGF 0.4 ± 0.13
a 

17.5 ± 5.53
b 

With anti-NGF 0.1 ± 0.03
a 

0.2 ± 0.06
a 

 
abc

 Values with different superscripts are different P<0.05.  
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3.4.8 Radioimmunoassay of OIF/NGF in semen  

 A total of 69 and 53 ejaculates were collected from llama/alpaca and cattle, respectively. 

Parallel displacement curves were observed with recombinant NGF, OIF/NGF, llama and bull 

seminal plasma (Fig. 3.6). Competition for antibody binding sites was observed in samples 

spiked with OIF/NGF but not with BSA. In addition, no displacement was found with either NT4 

or BDNF neurotrophins, demonstrating the specificity of the assay. The lowest detectable limit 

was 10 µg/mL. The intra-assay coefficients of variation for the high (100 µg) and low references 

(25 µg) were 6 and 11%, respectively.  

 The total protein concentration was more than 40-fold greater in bull seminal plasma than 

llama/alpaca seminal plasma (P<0.0001), but the OIF/NGF concentration was less than 1/10
th

 

that of llama/alpaca seminal plasma (P<0.05; Table 3.9). No specific binding or parallel 

displacement was detected by radioimmunoassay with horse or pig seminal plasma. OIF/NGF 

represented 27.2% of total protein in llama/alpaca seminal plasma, and 0.2% of total protein in 

bull seminal plasma proteins (P<0.05).  
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Figure 3.  6. Radioimmunoassay displacement curves among purified OIF/NGF from llama seminal 

plasma, llama and bull seminal plasma. The mean ± SEM of 4 different curves represent the 

OIF/NGF. The log 0 concentration of OIF/NGF corresponded to 2.0 mg/mL. Diluted llama 

seminal plasma (1:1) was used as the Log 0 value for llama seminal plasma. Undiluted bull 

(cattle) seminal plasma was used as the Log 0 value. Parallel displacement curves are seen 

among the three samples.   
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Table 3.  9. Comparison of total protein and OIF/NGF concentration (mean ± SEM) in 

llama/alpaca and bovine seminal plasma (SP). 

Species Total protein (mg/mL) OIF/NGF (mg/mL) 

Llama/alpaca SP (n=69)  4.4 ± 0.59
a 

1.2 ± 0.21
a 

Bovine SP (n=53) 48.6 ± 4.84
b 

0.10± 0.03
b 

ab 
Means (± SEM) within columns are statistically different (P<0.05) 
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3.5 Discussion 

 

 Contrary to our expectation that the source of this widely conserved protein would be the 

widely conserved prostate gland, the principal source of OIF/NGF in seminal plasma was 

different among species. Of the six species examined in this study, the llama, bull (cattle) and 

white-tailed deer had immuno-reactivity to OIF/NGF in the mucosa of the prostate. Based on the 

presence of immuno-reactivity in both the glandular epithelium and glandular lumen, the prostate 

gland was the main source of seminal OIF/NGF in llamas and alpacas, but was the vesicular 

gland and ampullae in bovids (cattle and bison), the ampullae and the prostate in cervids (elk and 

white-tailed deer, respectively). 

 The extraordinary abundance of OIF/NGF immuno-reactivity in the llama prostate 

corroborates the high level found in seminal plasma. The perinuculear localization of OIF/NGF 

and the pattern of OIF/NGF storage in the llama prostate gland suggest that this protein is 

packaged in secretory vesicles. The diffuse pattern of OIF/NGF in connective tissue among all 

species is interpreted as tissue innervation [273]. 

 An objective of this study was to further understand the importance of OIF/NGF in 

seminal plasma between animals categorized as spontaneous and induced ovulators. The 

differences in the abundance and distribution of OIF/NGF that were observed in the present 

study may relate to the biological importance of OIF/NGF in the respective species. Female 

llamas and alpacas ovulated in response to heterospecific seminal plasma but at a rate 

significantly lower than in response to camelid seminal plasma [42, 45, 54]. In contrast, neither 

pre-pubertal heifers nor mature cows ovulated in response to treatment with seminal plasma or 

purified OIF/NGF [55, 56]. However, bovine seminal plasma given to cows at the time of estrus 

resulted in more synchronous ovulations, and tended to stimulate a more rapid increase in 
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circulating progesterone concentration [56], similar to the luteotrophic effect seen previously in 

heifers (increase in CL diameter and plasma progesterone concentration) [55]. While OIF/NGF 

did not influence LH secretion and did not cause ovulation in cattle, treatment was associated 

with the release of FSH and earlier wave emergence [55]. Using an in vitro primary culture 

pituitary cells, it appears that the trkA receptor or the mechanism for LH secretion is conserved 

in mice[53], llamas and cattle[52]. In addition, seminal plasma has also been associated with an 

ovulatory role in mice [45], and estrous synchronization and  luteogenesis in pigs [57, 274] 

[275].  

 The extraordinary difference in the abundance of OIF/NGF among species suggests a 

greater physiological importance in camelids. OIF/NGF represented approximately 27% of total 

protein in llama/alpaca ejaculates and less than 1% of total protein in bovine ejaculates. The 

difference in the OIF/NGF bioactivity of the seminal plasma of these species was confirmed by 

PC12 differentiation assay. The difference in OIF/NGF concentration in the seminal plasma 

between these two species is consistent with the ovarian response in vivo. Seminal plasma from 

bulls induced ovulation in camelids at a rate comparable to that of llamas only when the amount 

of bovine semen given was increased to an estimated equivalent dose of OIF/NGF [42, 56]. This, 

and the finding that the endocrine and ovarian response to OIF/NGF is dose-dependent in 

camelids [49], provides rationale for the hypothesis that male fertility is positively related to the 

amount of OIF/NGF in the ejaculate.  

 Other than biological importance, the differences in the abundance of OIF/NGF in the 

ejaculate and in tissues in the present study may have been influenced by the method of semen 

collection and season of the year. Llama/alpaca ejaculates were collected by artificial vagina and 

phantom mount while bulls were collected by electroejaculation. Protein configuration within 
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ejaculates can be altered by collection method. A comparison of the seminal plasma proteome in 

cats where semen was collected by electroejaculation or urethral catheterization found that while 

total protein concentrations were not different, two proteins were absent and the abundance of 

three different proteins were higher in samples collected by electroejaculation [276]. Similar 

results were found in Guirra rams; the concentration of two proteins were higher and one protein 

absent in samples collected by electroejaculation in comparison to samples collected by artificial 

vagina [277]. These observations confirm that the ejaculation mechanism is somewhat altered 

with electroejaculation. In addition, semen was collected from llamas/alpacas during the summer 

months while semen was collected from bulls during winter and spring months. Although 

camelids and cattle are not seasonal breeders, two dimensional electrophoresis of ram seminal 

plasma identified at least 16 proteins which quantitatively changed in relation to the season 

[278].  

 Interestingly, no OIF/NGF was detected in the seminal plasma of horses or pigs by either 

PC12 assay or by radioimmunoassay. In a recent study involving multidimensional 

chromatography to compare seminal plasma proteins among species, OIF/NGF was found in the 

seminal plasma of bulls, stallions and camelids but was absent in boars [43]. This is in contrast to 

the results of a previous study in which boar seminal plasma given intramuscularly induced 

ovulation in 18% (3/17) llamas [45]. In the latter study, however, a biological response was 

observed using a volume that was five-times greater than that of llama seminal plasma. 

Histological confirmation of OIF/NGF in horse and pig male reproductive system was not done 

in this study. Since OIF/NGF were not measureable in the seminal plasma of horses and pigs but 

can still induce an ovulatory response in camelids, suggests that the quantity of this protein is 
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very low, below the detection limit of our assay, or perhaps there are other factors in addition to 

OIF/NGF in seminal plasma than can trigger an ovulatory repose in camelids.  

 OIF/NGF in testis and epididymides, and sperm: In this study, a strong reaction was 

detected in the seminiferous epithelium of cattle but not in llamas. In an earlier study, NGF 

immuno-reactivity was detected in the perinuclear cytoplasm of germ cells from prepubertal and 

pubertal alpacas [250]. However, it was mentioned that the immuno-detection of NGF had 

decreased in mature 24-month old alpacas in comparison to prepubertal 12-month old 

alpacas[250]. In our study, all animals used were pubertal.  The detection of NGF in nuclei in the 

seminiferous epithelium supports that NGF is a mitogenic factor[279, 280] or transcription factor 

[281, 282]. NGF stimulated meiotic DNA synthesis of preleptotene spermatocytes cultured in 

vitro culture in a dose-dependent manner [283] and also rapidly induced the expression of genes 

involved germ cell differentiation[284, 285].  

 One of the most interesting observations from this study was the abundance of the 

OIF/NGF present within the vascular endothelium circulatory system. Fighting episodes, male 

aggression or stress in mice caused a dramatic increase in NGF levels in circulation [209, 286, 

287] and in both mRNA and protein levels in the hypothalamus [268]. The administration of 

testosterone propionate did not elevate NGF levels in nonaggressive males but augmented serum 

NGF levels in aggressive males [286]. The salivary glands and not the male accessory genital 

glands were the source of NGF secretion in mice related to aggressive episodes since no change 

in NGF concentration was observed once the submandibular-sublingual salivary glands were 

removed [209, 286]. However, the detection of OIF/NGF in the vascular endothelium in male 

reproductive tissue suggests there are additional sources of OIF/NGF found in circulation. 

Uptake into circulation suggests that endogenous NGF has a direct effect on spermatogenesis. 
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The presence of the high affinity (trkA) and low affinity (p75) NGF receptors in male 

reproductive organs and sperm suggest a role for NGF on sperm function [249, 251, 288, 289].   

Correspondingly, the OIF/NGF receptors have been localized in the testes and their expression 

changes in relation to the hormonal state and stage of the cycle of the seminiferous epithelium 

[283]. In rats, the low affinity OIF/NGF receptor was detected in the plasma membrane of Sertoli 

cells and its distribution to either the apical or basal regions of the cell was dependent on the 

stage of the cell cycle [283]. The expression of the p75 receptor in Sertoli cells was detected only 

in stages VII and VIII of the seminiferous epithelium cycle which corresponds to the stages of 

meiosis [283]. During these stages, the p75 receptor is down regulated by testosterone. 

Testosterone has also been shown to downregulate p75 expression in certain regions of the brain 

[290]. Rats infused with NGF directly into the testes resulted in an increase of androgen-binding 

protein mRNA in Sertoli cells [291]. 

 In most cases, the distribution of OIF/NGF was similar between animals among species. 

One remarkable difference was observed in the head of the epididymis of the rat. The detection 

of OIF/NGF in proximity to stereocilia of rat 2, suggests the absorption of OIF/NGF into the 

epithelium. The weak detection of OIF/NGF in developing germ cells was different from what 

was reported previously in rat where OIF/NGF was detected in germ cells of all stages of 

spermatogenesis as well as in mature spermatazoa [247, 283]. No reaction, however, was 

observed in Sertoli or Leydig cells [210]. In rats, OIF/NGF was detected in the cytoplasm of 

developing germ cells but was absent in Sertoli cells and was found in very few interstitial cells. 

The weak reaction of OIF/NGF in the cytoplasm of developing germ cells may be the result of 

dose or antibody affinity. In the present study, a dilution of primary antibody of 1:200 was used 

to visualize OIF/NGF immuno-reactivity because no reaction was observed with the dilution 
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used for the other tissue (1:400). In one study, three different antibodies were used to screen 

OIF/NGF in male mice genitalia and immuno-reactivity was detected with only one of the 

antibodies [210]. The same antibody was used for all other tissues from all species in this 

experiment to allow direct comparison of staining intensities. In addition, in vitro studies to 

confirm antibody specificity of binding to OIF/NGF, detection of monomer, dimer and 

prohormone forms, and the suppression of OIF/NGF neurite growth from PC12 cells were 

conducted in our laboratory.   

 We conclude that the prostate gland is the primary source of OIF/NGF in the ejaculates 

of llamas and white-tailed deer but not in other species. The purpose for OIF/NGF in other 

species is unclear and needs further investigation. The differences observed between animals, 

such as rats and bison, indicate that OIF/NGF abundance differs among animals of the same 

species. Use of the methodology developed in the present study will enable testing of the 

hypothesis that male fertility is positively related to the amount of OIF/NGF in the ejaculate.  
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4.0 THE RELATIONSHIP BETWEEN OVULATION-INDUCING FACTOR/NERVE 

GROWTH FACTOR (OIF/NGF) AND MALE REPRODUCTIVE PHYSIOGNOMIES IN 

LLAMAS AND ALPACAS 

 

 

4.1 Abstract  

 

 Ovulation in camelids is initiated by the seminal plasma protein, ovulation inducing 

factor/nerve growth factor (OIF/NGF). The intramuscular administration of OIF/NGF has 

demonstrated that this protein elicits an ovulatory response in a dose-dependent manner. 

However, the abundance of this protein has not been quantified in camelids to ascertain whether 

the concentration is variable among males. We hypothesize that the abundance of OIF/NGF 

differs among males and that OIF/NGF concentration is correlated with normozoospermic semen 

samples. The objectives of the present study were to determine if OIF/NGF quantity in seminal 

plasma is associated with male reproductive parameters and to elucidate the variability of 

OIF/NGF levels in alpaca ejaculates. The experiment was conducted at Quimsachata research 

station in Peru and ejaculates (n≥3/animal) from alpacas (n=47) were collected. Semen was 

collected by artificial vagina and the duration of breeding, sperm concentration, semen pH and 

volume, total protein and OIF/NGF concentrations were recorded. Total protein concentrations 

were quantified by Bradford´s assay and OIF/NGF concentrations were quantified by 

radioimmunoassay. Areas of the testes, bulbourethral and prostate glands were estimated by 

calipers (testes) and transrectal ultrasonography (bulbourethral and prostate). Although OIF/NGF 

concentration was not related to sperm motility, vitality or morphology, there was a positive 

association with sperm concentration. The total quantity of OIF/NGF per ejaculate, however, 
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was not associated with any semen parameter and was related to prostate area, duration of 

mounting and semen volume.   
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4.2 Introduction 

 

 Ovulation in South American camelids occurs naturally following mating. The current 

hypothesis suggests the male ejaculate contains an abundant protein that is absorbed into 

circulation via penile abrasion of the uterine lining, stimulating LH release and initiating the 

ovulatory mechanism [48, 171, 239, 292]. This protein was originally referred to as ovulation-

inducing factor (OIF) [48, 246], but recent studies have revealed that this protein is identical in 

sequence and structure to the neurotrophin, nerve growth factor (NGF) [39, 40]. For clarity and 

continuity, the factor isolated and purified form camelid seminal plasma will be referred to 

herein as OIF/NGF. The existence of OIF/NGF or an ovulatory effect of seminal plasma have 

been documented in the ejaculates of several species including camelids [39-41], bulls [44, 293], 

koala [294], boars[45, 295], stallions[45], mice [45]  and men [46].  

 The isolation of OIF/NGF from camelid seminal plasma has allowed the ability to 

directly study the effect of OIF/NGF on female physiology. The administration of OIF/NGF to 

llamas or alpacas, increases circulating levels of LH within 15 minutes. In comparison to GnRH, 

the LH surge lasts longer with OIF/NGF administration and the resulting CLs formed, are more 

luteotrophic[48, 52, 171, 239, 292]. Ovulation rate, LH and progesterone concentration in 

circulation and CL lifespan are influenced by the dose of OIF/NGF administered when given 

intramuscularly [49, 52]. It remains to be elucidated whether the abundance of OIF/NGF varies 

among males and if this difference is manifested in an attenuated ovulatory response in females.  

 The primary source of OIF/NGF is the prostate gland in camelids (Chapter 3, Bogle 

Thesis, 2015).  The ability of vasectomized alpacas and llamas to induce ovulation in females 

clearly demonstrate that sperm and factors derived from the epididymis and testis are not 
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required [12].  However, the presence of the high affinity receptor (trkA) and low affinity 

receptor (p75) for NGF in male reproductive organs and sperm suggest a role for NGF in sperm 

function [249, 251, 288, 289]. In support of this notion, the addition of exogenous NGF to 

golden hamster semen increased sperm motility in a dose- and time-dependent manner, and 

increased the percentage of sperm that underwent the acrosome reaction [248]. The addition of 

NGF to human ejaculates increased motility in progressively motile sperm [255] and in bovine, 

exogenous NGF increased sperm viability [249]. 

 Few reports are available on the concentration of NGF in mammalian semen or its 

relationship with sperm morphology and function. In one study, NGF concentration in human 

seminal plasma was quantified using an enzyme-linked immunosorbent assay with values that 

ranged from 0.13 to 1.4 ng/mL [296]. The variation in NGF  concentration in seminal plasma 

were not attributed to male fertility as no difference were observed  among fertile, 

oligoasthenozoospermic or asthenozoospermic men (0.82 ± 0.1 ng/mL, 0.68 ± 0.2 ng/mL and 

0.79 ± 0.1 ng/mL, respectively) [46].  Nevertheless, the associations between OIF/NGF 

concentration or total abundance in an ejaculation with male reproductive parameters has not 

been elucidated in alpacas. We hypothesize that ejaculates containing greater quantity of 

OIF/NGF will also have better semen quality in terms of sperm concentration, motility and 

viability. The objectives of the present study were to 1) determine OIF/NGF concentrations in 

alpaca semen and 2) to evaluate the relationships between OIF/NGF concentration/total 

abundance in the ejaculate with male reproductive organs and semen characteristics.  
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4.3 Materials and Methods 

 

4.3.1 OIF/NGF radioimmunoassay  

 Total protein concentration of seminal plasma was quantified using Bradford's method 

according to the manufacturer’s directions [272] (Bio-Rad Laboratories, Mississauga, Ontario, 

Canada), and OIF/NGF concentration was measured by validated double-antibody 

radioimmunoassay (Bogle et al., 2014, Chapter 3 PhD thesis). Purified, biologically active 

OIF/NGF isolated from pooled llama/alpaca seminal plasma was labeled with 
125

I by the 

chloramine-T method [270]. The primary antibody was a rabbit anti-human NGF polyclonal 

antibody (Santa Cruz Biotechnology, Dallas Texas, USA) and was used at a dilution of 1:1000. 

The secondary antibody was goat serum raised against rabbit globulins (Western College of 

Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada [271]. Seminal plasma 

samples were diluted with PBS to a concentration that was within the range of assay detection. 

Values were then corrected for their dilution factor. Samples were assayed in duplicate with a 

standard curve ranging from 0 to 200 µg/mL. The lowest detectable limit of the assay was 10 

µg/mL. Within each experiment, all seminal plasma samples were measured in a single assay to 

remove interassay variation. The intra-assay coefficient of variation for the low (25µg) and high 

(100 µg) references were 10% and 6%, respectively.  

 

4.3.2 Semen collection 

 The study was conducted during January and February (rainy season) at the Quimsachata 

Research Station in the department of Puno, Peru (15°S, 71°W, and 4500 m above sea level). 

Males were chosen from a herd of about 100 based on their ability to serve the phantom mount. 
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Males (n=39 Huacaya and n=8 Suri) ranged from 4-14 years of age, 45-74 kg body weight, and 

were maintained on natural pasture throughout the study.  

 Animal procedures were performed in accordance with the guidelines of the 

Canadian Council on Animal Care and were approved by the University of Saskatchewan 

Protocol Review Committee.  

 Males were trained to use the phantom mount for a three-week period before sample 

collections. Acceptance of the phantom mount was encouraged by applying freshly collected 

vaginal swabs of urine from receptive females to the phantom mount and orifice of the artificial 

vagina. In some instances, a live receptive female was placed beside the phantom mount to train 

the male to associate it with copulation. Once the association was established, a live female was 

no longer used. To facilitate the workload, males were divided into one of three collection 

periods (first group: n=16 males; second group: n=16; third group: n=15). Semen samples from 

males within groups were collected on the same day using four separate phantom mounts. 

Ejaculates were collected twice from each male on each of 6 collection days, with at least five 

hours of rest between collections on a given day, and at least one full day of rest between 

collection days. The duration of mounting and time of day were recorded for each collection 

period. Males were allowed six independent opportunities to service a mount. A successful 

collection was defined as the ability of a male to mount and give a sample that contained semen.   

 

4.3.3 Analysis of ejaculates 

 Ejaculates were evaluated for semen volume, froth volume, viscosity, pH, sperm 

concentration, motility, viability and morphology. Semen volume and froth volume were 

determined directly from the collecting tube (BD Biosciences, San Jose, California). Semen 
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volume was defined as the liquid portion of the aliquot at the bottom of the tube; the froth 

volume was the foamy portion that was not liquefied. Viscosity was determined by aspirating 

semen through an 18 Ga needle, placing a drop onto a glass slide and pulling the semen mass 

upwards. The distance from the initial drop of semen on the slide to the maximum distance 

before the semen retracted back to the slide was taken as the viscosity measurement. Samples in 

which viscosity resembled that of water were given a measurement of 0 mm. Semen pH was 

measured using a pH-meter (Hanna Instruments, Premier Farnell UK Limited, Leeds, United 

Kingdom) and confirmed with a litmus paper  (Whatman/GE Healthcare, Mississauga, Canada). 

 Semen concentration was estimated using a Neubauer hemocytometer. Semen was 

homogenized using a transfer pipette and a 10 µL aliquot was aspirated and placed on each side 

of the hemocytometer chamber. The mean number of sperm counted in both chambers was used 

as the concentration. Samples where no spermatozoa were observed in fresh preparations were 

considered azoospermic [297].  

 Total sperm motility was determined by observing a minimum of 10 fields at random 

using a light microscope under 400 x. Sperm viability and morphology were evaluated using 

Eosin-Nigrosin stain. A minimum of 20 fields and 200 sperm per sample were assessed for both 

live-dead and sperm morphology counts under 1000x with immersion oil. The sperm were 

examined for defects of the head, mid piece, principle piece and acrosome. Samples with a low 

sperm concentration (where 200 sperm were not counted) were excluded from morphology 

analysis. Analysis of all ejaculates was done by the same operator. 

 Ejaculates were processed according to previous studies [45, 48] with slight modification: 

ejaculates were centrifuged first at 500 x g for 15 minutes to separate plasma from spermatozoa 

without breaking/disrupting cell membranes. The supernatant was re-centrifuged at 1500 x g for 
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15 minutes. An aliquot of seminal plasma was viewed under a light microscope to ensure that no 

spermatozoa remained in the sample. If sperm were present, samples were re-centrifuged at 1500 

x g for 15 minutes until no sperm were observed under a light microscope. The seminal plasma 

was stored in liquid nitrogen until assay. 

 

4.3.4 Morphometry of testis and accessory sex glands  

 Testis area (mm
2
) was calculated by vernier calipers. The maximum height and width of 

the right and left lobes of the body of the prostate (prostate gland area: mm
2
), and the maximum 

height and width  of the right and left bulbourethral glands (bulbourethral gland area mm
2
) were 

estimated by transrectal ultrasonography (7.5 MHz linear array transducer, MyLab Five, Esaote, 

Italy: Fig. 4. 1). The area (A) formula for an ellipse was used to estimate the area of each 

accessory gland:                                                 . The areas of the left and 

right lobes of the prostate gland and left and right bulbourethral glands were summed, 

respectively, to provide a total area measurement. Accessory sex gland, testis and a blood sample 

for testosterone measurement were taken once, on the same day, during the collection period.  

 

4.3.5 Testosterone concentration 

 One blood sample was collected from each male during the collection period into 

heparinized tubes by jugular venipuncture (BD Biosciences, Mississauga, Canada) and 

centrifuged at 1500 x g for 15 minutes. The plasma was aspirated and stored at -20°C until 

testosterone assay. Testosterone concentrations were measured using a commercial 

radioimmunoassay kit (Siemens Medical Solutions USA, Inc., Malvern, PA, USA). All samples 
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were measured in a single assay. The intra-assay coefficient of variation for the low, medium and 

high references were 14%, 6% and 5%, respectively. 

 

4.3.6 Statistical analyses 

Statistical analyses were performed using the Statistical Analysis System package 

(SAS, Learning Edition, version 4.1, SAS Institute Inc., Cary, NC, USA, 2006). The 

concentration of OIF/NGF and total OIF/NGF among males were compared by Kruskal - 

Wallis nonparametric test. The degree of heterogeneity of OIF/NGF concentration and total 

abundance within males were assessed by Kruskal Wallis nonparametric test of the absolute 

values of residuals from the mean.  Stepwise regression was used to build a prediction 

model for the total OIF/NGF per ejaculate. 

Spearman's rank correlation was used to determine the relationship between 

variables. Student's t-test was used to compare differences in semen parameters between the 

first and second ejaculates on a given collection day. All data are reported as mean ± SEM 

and P ≤ 0.05 were considered significant, whereas P >0.05 but ≤ 0.10 were considered 

trends approaching significance.  

 

4.4 Results 

 

4.4.1  Relationship between OIF/NGF concentration and other characteristics of the ejaculate 

 A total of 316 collections were attempted and a total of 243 ejaculates were collected and 

analyzed. Failed collections (n=73) were due to 1) inclement weather (38/73), lack of libido 

(26/73), failed ejaculation (6/73) and urine contamination (3/73). The means (±SEM) for all 
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endpoints measured are shown in Tables 4.1-4.3. Only 9.1% (22 of 243) of ejaculates did not 

contain sperm. Almost all ejaculates had froth (241/243; 99%). The only endpoint which 

correlated with amount of froth was mounting duration (ρ=0.35: P=0.001).   An overview 

of male reproductive endpoints and sperm morphology are shown in Tables 4.1- 4.3 and Fig.4.1- 

4.3.  

 The mean concentration of OIF/NGF per ejaculate was 6.1 ± 0.7 mg/mL and the total 

OIF/NGF per ejaculate was 7.0 ± 1.1 mg (n=153). Total protein concentration and protein 

content per ejaculate were 11.6 ± 1.4 mg/mL and 15.5 ±1.9 mg, respectively. The amount of 

OIF/NGF per ejaculate and per mL of seminal plasma were different among males (P=0.03). The 

heterogeneity in both OIF/NGF concentration (P<0.0001) and total abundance per ejaculate 

(P<0.0001) was reflected in the analysis of absolute residuals for each male. The majority of the 

ejaculates collected contained more than 250 µg of OIF/NGF (Table 4. 4).   

 Correlations between all endpoints are shown in Table 4.5. OIF/NGF concentration was 

positively correlated with sperm concentration and total prostate area and negatively with semen 

volume, viscosity, pH and bulbourethral area. Total OIF/NGF per ejaculate was positively 

correlated with OIF/NGF concentration, prostate area, duration of mounting and semen volume 

(Table 4. 5). The application of stepwise multiple regression analysis revealed 3  independent 

variables, namely OIF/NGF concentration, semen volume and prostate area to predict the amount 

of total OIF/NGF per ejaculate with 56% (R
2
=0.56)  total variance explained  (Table 4. 6).  

   Overall, first and second collections on a given day did not differ in OIF/NGF 

concentration (6.3 ± 1.0 vs. 5.1 ± 1.0 mg/mL; P=0.43), total OIF/NGF per ejaculate (7.7 ± 1.6 vs. 

5.4 ± 1.3 mg; P=0.33), semen viscosity (3.0 ± 0.3 vs. 3.2 ± 0.3 mm; P =0.58), sperm 

concentration (89.3 ± 14 vs. 62.1 ± 9.2 x 10
6
 sperm/mL; P=0.16), or percentage of motile sperm 
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(39.3 ± 2.4 vs. 40.0 ± 3.1; P=0.86). Similarly, sperm morphology was not different. The duration 

of collection (24.8 ± 0.6 vs. 22.3 ± 0.6 minutes; P=0.01), semen volume (1.9 ± 0.2 vs. 1.1 ± 0.2 

mL; P=0.03), and pH (7.6 ± 0.04 vs. 7.5 ± 0.05; P= 0.03) were greater in the first ejaculate of the 

day than in the second.  

 Sperm morphology was not associated with OIF/NGF concentration or total amount in 

the ejaculate (Table 4.5). Abnormal head shape was most the commonly observed morphologic 

defect in ejaculates, followed by midpiece defects (Table 4. 3; Figs. 4. 3 and 4. 4). Head defects 

were higher in older males (ρ=0.29; P=0.007) with low sperm concentration (ρ=-0.20; P=0.01) 

lower acidic-neutral semen pH (ρ=0.27; P=0.01). Midpiece abnormalities were negatively 

associated with sperm motility (ρ = -0.23; P=0.04).  
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Figure 4. 1. Gross and ultrasonographic morphology of the pelvic urethra and accessory glands 

of a male alpaca. A, Ex situ dissection of pelvic urethra (dorsal view) showing the left and right 

lobes of the compact portion of the prostate (Pr) and the left and right lobes of the bulbourethral 

gland (Bu). Ultrasound image of a sagittal section of the prostate gland (B) and bulbourethral 

gland (C) along the plane indicated by the dashed lines. Arrowheads outline the glandular tissue. 

Note the crescent-shaped anechoic region along the caudal aspect of the bulbourethral gland. 

Distance between major scale lines is 1 cm. Ultrasound images taken using a transrectal 7.5 MHz 

probe.
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Figure 4. 2. The morphology of different sperm abnormalities found in alpaca ejaculates taken 

1000x under oil immersion. A. Normal alpaca head with missing mid and principle pieces. B) 

Stump tail with a proximal droplet. C) *Large vacuole found in the apical region of the head. 

Arrows depict decapitated sperm with detached midpiece from the capitulum. D) Pyriform head 

shape of sperm with absent midpiece (arrow). E) Teratoid sperm. F) Tapered head shape 

abnormality with segmentations in the midpiece (arrows). G) Pear-shaped head abnormality H) 

Microcephalic abnormality with a large apical vacuole (arrow) and coiled principle piece. '*' 

Depicts proximal droplet. I) Tapered head with a short tail defect (missing principle piece) and 

heterogeneous chromatin appearance in the head. J) Beaded acrosome defect. K) Tapered head; 

Arrow is pointing to the proximal droplet L) Normal head sperm morphology with a prominent 

proximal droplet (arrow). M) Short or interrupted midpiece (arrow). N) Coiled mid and principle 

pieces. O) Abaxial tail. P) *, Macrocephalic sperm with a shattered midpiece and accessory 

sperm tails. Q) Distal midpiece reflex with intact midpiece and normal head morphology. R) 

Coiled principle piece and abnormal head shape S) Distal midpiece reflex with shattered 

midpiece. T) Normal sperm morphology. 
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Figure 4. 3. Overview of alpaca sperm morphology abnormalities. Values represent the 

percentage of each particular defect among all defects found in 199 ejaculates collected from 47 

different males. 
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Table 4. 1. Morphometry of accessory sex glands and plasma testosterone concentration in 

alpacas (n=47). 

 Age 

(years) 

Body 

weight 

(kg) 

Plasma 

testosterone 

(ng/mL)  

Testes area 

(left & 

right 

combined) 

(cm
2
)* 

Prostate 

area (left & 

right 

combined) 

(cm
2
)** 

Bulbourethral 

area - left & 

right 

combined 

(cm
2
)** 

Mean 

±SEM 

7.3±0.4 56.2±1.0 4.8±0.5 14.1±0.4 45.9±2.3 31.1±1.0 

Range 4-14 43-74 0.9-15.5 8.8-20.7 16.8-82.6 17.5-53.1 

* Measurement done by vernier calipers 

** Measurement done by transrectal ultrasonography 
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Table 4. 2. Physical and chemical characteristics of ejaculates collected from alpacas by artificial vagina (n=243 ejaculates). 

 Duration 

(min) 

Volume 

(semen*; mL) 

Volume 

(froth**; mL) 

Viscosity 

(cm) 

pH Sperm 

concentration 

(x 10
6
/mL) 

Sperm 

motility 

Mean 

± SEM 

23.6±0.5 1.7±0.1 5.09±0.3 3.1±0.2 7.6±0.1 77.3 ± 9.1 39.6± 1.9 

Range 5-30 0-12 0-20 0-18 6.4-8.8 0-1,373 0-100 

 

* Semen volume is the measurement of the liquid portion of the ejaculate 

** Froth volume is the measurement of the foam portion of the ejaculate 
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Table 4. 3. Morphologic characteristics of sperm collected from adult alpacas by artificial vagina (mean ± SEM; n= 199 ejaculates). 

Mean 

(%) 

53.8±1.6 37.2±1.3 37.6±1.3 20.5±1.1 9.7±0.84 8.6±0.61 1.3±0.28 1.3±0.21 

Range 

(%) 

0-98 0-90 1-100 0-91 0-80 0-45 0-30 0-25 
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Table 4. 4. Distribution of total OIF/NGF abundance in alpaca seminal plasma collected 

artificial vagina (n=153). 

 

  

Quantity of OIF/NGF per 

ejaculate 

Proportion by ejaculates (%) Ovulation rate observed in 

Tanco et al., 2011[49] 

≤ 60 µg 4/153 (2.6%) -- 

60 < OIF/NGF≤125 µg 6/153 (3.9%) 30 

125 < OIF/NGF≤250 µg 5/153 (3.3%) 70 

≥ 250 µg 138/153 (90.2%) 90 
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Table 4. 5. Correlation (Spearman Rho coefficient; P<0.05) among male reproductive 

parameters: A = age of male; B = weight of male; C = duration of breeding; D = OIF/NGF 

concentration; E = Total OIF/NGF per ejaculate; F = sperm concentration; G = pH; H = volume 

of semen; I = sperm motility; J = semen viscosity; K = plasma testosterone concentration; L = 

total testis area; M = total prostate area; N = total bulbourethral area; O = % live sperm per 

ejaculate; P = % normal sperm per ejaculate. 
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 A B D E F G H I L N P 

A     -0.19*       

B      0.33       

C      0.36     0.25 0.28  

D  
 

    0.27 -0.24      

E 
 

  0.70         

F -0.19*  0.33 0.27    -0.41      

G    -0.24
 

  -0.41  0.32 -0.33    

H   
 

-0.19*
 

0.49    0.32      

I   0.28      0.37 -0.33       

J  -0.35
 

-0.26
 

  -0.19*    0.23      

K                   

L                  

M 0.37 0.24   0.21* 0.22           0.19* 

N 0.38 0.20* -0.19*               

O -0.20*   
 

  0.47 -0.33  0.76 0.29   0.24 

P   0.22     0.34  -0.26*       

* Tendency for a correlation (P<0.10) 

 

 



  

 

95 

 

Table 4. 6. Stepwise multiple regression analysis results: Dependent variable: Total 

OIF/NGF per ejaculate (n=153) 

Independent variables β- weight t value P-value 

OIF/NGF Concentration 0.63 8.11 <0.0001 

Semen volume 0.424 5.54 <0.0001 

Prostate area 0.22 2.84 0.006 

Constant  -3.25 0.002 

model R= 0.75; R
2
=0.56; Adjusted R

2
=0.54; F= 33.22 ; p<0.0001 
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4.5 Discussion  

 

 The abundance of OIF/NGF in alpaca semen and its relationship with reproductive 

parameters are reported in these studies. OIF/NGF constituted approximately 45.2% of total 

seminal plasma protein in alpaca.  However, high individual variability existed not only in 

seminal plasma OIF/NGF concentration, but also with total protein. Azoospermic samples were 

found in only 9.1% of samples which corresponds with the range that has been reported 

previously (5% to 22% [71, 84, 298, 299]).  

 The dose of OIF/NGF is important in triggering LH secretion and inducing ovulation [49, 

52]. A 60 µg dose administered intramuscularly corresponded with a 30% ovulation rate; 

increasing the dose to 250 µg induced ovulation in 90% of llamas treated[49]. 

Only, 2.6% of ejaculates contained less than 60 µg of OIF/NGF. We hypothesize that these 

ejaculates do not contain sufficient OIF/NGF to induce ovulation during copulation which may 

contribute to ovulation failure in camelids. It is noteworthy that the 90% ovulation rate found in 

llamas and alpacas directly corresponds to the percentage of ejaculates containing 250 µg or 

greater. This suggests that the 10% ovulation failure rate could also be attributed to low 

OIF/NGF in the ejaculate as well as female-derived pathologies. 

 Interestingly, a relationship between OIF/NGF and sperm was observed. Sperm 

concentration was correlated with OIF/NGF concentration but not with total OIF/NGF per 

ejaculate. It is unclear whether OIF/NGF is present in alpaca sperm as two immunohistochemical 

studies using different antibodies came to different conclusions [250, 300]. However, NGF has 

been characterised in bovine sperm[249]. In the present study, sperm cells were separated from 
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seminal plasma by low centrifugation to ensure sperm membranes remained intact. Thus, it is 

unlikely that sperm-derived proteins contributed to the OIF/NGF quantified in seminal plasma.  

  Unlike in the golden hamster [248]or men[255], a linear relationship between OIF/NGF 

and sperm motility was not observed. However, this may be the consequence of collection 

method and the difficulty of assessing progressive motility in camelid semen due to viscosity.  

 The primary source of OIF/NGF in camelids is the prostate gland [300]. 

Correspondingly, a significant relationship between total OIF/NGF per ejaculate and male 

prostate size was observed during this study. The camelid corpus of prostate has two lateral 

(right and left) entities that are connected by a smaller isthmus. A possible reason as to why a 

stronger correlation was not observed between OIF/NGF abundance and prostate area may be 

because the measurements of the largest diameter of the right and left prostate lobes were used to 

estimate total prostate size. In reality, the area of the prostate is significantly larger when the 

whole organ is measured. In addition, the measurement of the corpus does not includes the 

amount of OIF/NGF -containing secretory units found in the disseminate prostate [301]. In 

agreement with histology data, testis and bulbourethral gland had no influence on total OIF/NGF 

content.  

 The mean ejaculate volume observed was 1.7 ± 0.12 mL and the estimated froth volume 

was 5.1 ± 0.27 mL. The estimated froth/foam volume did not take into consideration the density 

or compaction of bubbles. The presence of froth/foam is a consequence of using artificial vagina 

as a collection method. In one study, approximately 11% of ejaculates contained ≥ 40% of foam 

when artificial vagina collection method was used [71]. Volume measurements in the present 

study did not take foam/froth volume into consideration. However, it is most likely that during 

copulation, foam/froth volume is liquefied in vivo and could potentially increase total semen 
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volume and total OIF/NGF abundance. Thus, it is a plausible explanation as to why correlations 

between total NGF in the ejaculate and sperm parameters such as motility and concentration 

were not observed. 

 We conclude that the amount of OIF/NGF in camelid semen is variable within and 

among males and may be related with sperm parameters such as concentration, but has no 

influence on sperm motility, viability or morphology. Our future objective is to determine if the 

quantity of OIF/NGF in semen is associated with ovulation and pregnancy rates in alpacas. 
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5.0 RELATIONSHIP BETWEEN OVULATION-INDUCING FACTOR/NERVE 

GROWTH FACTOR (OIF/NGF) IN SEMINAL PLASMA AND FERTILITY IN 

ALPACAS 

 

5.1 Abstract 

 

 Two experiments were conducted to determine whether factors associated with mating 

correlated with fertility in alpacas. We hypothesized that levels of OIF/NGF in semen would be 

one of the candidates that could be used as an indicator of male fertility in terms of ovulation, 

pregnancy and live birth rates. For both experiments, semen was collected (n=3 to 6 ejaculates/ 

male) using an artificial vagina inserted into a phantom mount. Semen volume, pH, sperm 

concentration, motility, viability and morphology were recorded for each sample. The 

concentration of OIF/NGF in seminal plasma was determined by radioimmunoassay. In 

Experiment 1, the breeding history of twenty-two males from the previous year was taken as 

their fertility assessment; i.e., the number of live births from the number of females that were 

bred. In Experiment 2, males were selected at random from a larger herd to determine if the 

amount of OIF/NGF in semen could discriminate between more and less fertile males. Data from 

males were combined based on total OIF/NGF abundance and expressed as low (n=2 males; 0.8 

± 0.4 mg/mL), medium (n=4 males; 3.7 ± 0.7 mg/mL) and high (16.2 ± 5.7 mg/mL; n=2 males) 

of OIF/NGF. A total of 160 controlled breedings (n=20 females/ males) were conducted. 

Females were bred once when a growing ovarian follicle ≥ 7 mm was detected by daily 

ultrasonography. Ovulation was assessed on Day 3 (Day 0= day of breeding) and confirmed on 

Day 7 by the presence or absence of a CL. Ultrasonography was used to measure the diameter of 

the CL on Days 7 and 20, and diagnose and confirm pregnancy on Days 20 and 25, respectively. 
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In Experiment 1, the number of live births tended to be related to OIF/NGF concentration (ρ 

=0.38; P=0.09) and total OIF/NGF per ejaculate (ρ =0.36; P=0.09). In Experiment 2, ovulation 

rates were not different among the low, medium or high OIF/NGF groups (32/40 [80%], 62/80 

[78%] and 36/40 [90%], respectively, P=0.13). Similarly, pregnancy rates were not different 

among groups (18/40 [45%], 41/80 [51%], 16/40 [40%], respectively, P=0.47). Pregnancy rates 

were strongly correlated with sperm concentration (ρ=0.65; P=0.04) and viability (ρ=0.85; 

P=0.004), and tended to be correlated with sperm motility (ρ=0.55; P=0.08) and morphology 

(ρ=0.49; P=0.10). Retrospective comparison of males of high and low fertility suggested a 

relationship between fertility and the concentration of OIF/NGF in seminal plasma; however, 

results of a prospective comparison of males with low, medium and high concentrations of 

OIF/NGF did not support the hypothesis that seminal OIF/NGF can be used as a predictor of 

fertility in alpacas.  
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5.2 Introduction 

 

 South American camelids are induced ovulators [185]. As such, copulation is required 

not only for the delivery of sperm for fertilization, but also for the release of the oocyte from the 

ovarian follicle [302]. Coitus in camelids is associated with an increase in the circulating 

concentration of luteinizing hormone (LH) that precedes ovulation [151, 160, 303]. The LH 

secretion profile observed in females after copulation (with an intact or vasectomized male [151, 

160, 186]) also occurs after intramuscular administration of homologous seminal plasma [42, 45, 

48, 54]. Hence, it is unlikely that penile stimulation of somatosensory nerves is the primary 

stimulus for ovulation in these animals. Furthermore, ovulation occurred in alpacas after 

intrauterine deposition of seminal plasma with endometrial abrasion, but not occur after 

intrauterine deposition of saline with or without abrasion [13, 47]. The ovulation-inducing factor 

(OIF) responsible has been identified as the well-known neurotrophin, β-nerve growth factor 

(βNGF) [39-41]. The potency of this factor has been demonstrated in several studies [39, 40, 49, 

292] where more than 90% of female llamas or alpacas, isolated from male contact, ovulated 

after a single dose of seminal plasma or purified OIF/NGF. A dose representing 1/200
th

 (60 µg) 

of OIF/NGF found in a normal ejaculate caused a 30% ovulation rate, and increasing the dose to 

1/50
th

 (250 µg) resulted in ovulation rates of ≥ 90% [49]. In a recent study, as little as 10 µg of 

human recombinant NGF induced ovulation in 60% (3/5) of alpacas while all animals (5/5) 

ovulated when the dose increased to 100 µg or 1000 µg [254]. This dose-related response 

appears to be related to the amount of LH that is released by the adenohypophysis [49] [47]. In 

two independent in vitro studies, alpaca seminal plasma or OIF/NGF purified from llama seminal 

plasma stimulated LH release from gonadotrope cells in culture, and the concentration of LH 

secretion was related to the dose [52, 53]. These results correspond with those of in vivo studies 
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[42, 45, 54] and may be the basis for a luteotrophic effect (greater CL diameter and progesterone 

concentration) observed with increasing doses of OIF/NGF [47, 49].  

 

 We hypothesize that the total amount of OIF/NGF per ejaculate is related to male fertility 

and can be used to discriminate between more and less fertile males. Rationale for the hypothesis 

is based on: 1) OIF/NGF elicits its response in a dose-dependent manner in llamas and alpacas, 

2) OIF/NGF is luteogenic, 3) the amount of OIF/NGF is variable among male camelids (Thesis 

Chapter 4), and 4) the concentration of OIF/NGF tends to be higher in semen samples with 

greater sperm concentration (Thesis Chapter 4). The present study was designed to determine if 

the abundance of OIF/NGF in alpaca semen is associated with a) previous fertility among males 

(retrospective comparison, Experiment 1) and b) male-induced ovulation and pregnancy rates 

(prospective comparison, Experiment 2).  

 

5.3 Materials and methods 

 

 Data collection for live-animal endpoints were conducted during January to April at the 

Quimsachata Research Station in the Department of Puno, Peru (15°S, 71°W, and 4500 m above 

sea level). Laboratory analyses were conducted at the University of Saskatchewan, Canada. 

Experimental procedures were performed in accordance with the animal care protocols 

established by the University of Saskatchewan.  
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5.3.1 Experiment 1- Retrospective study on semen OIF/NGF concentrations and live birth 

rates 

 

 Semen was collected by artificial vagina [84] from 22 male alpacas that had been used 

during the previous breeding season and for which pregnancy rates for that season were known. 

The males varied in age (from 4-14 years), weight (from 44-74 kg), breed (Huacaya or Suri). 

Ejaculates were collected twice on a given day, at an interval of ≥5 hr. Males were given at least 

one full day of rest between collection days (n=3-6 ejaculates per male). After collection, an 

aliquot of semen was taken to assess sperm concentration, motility, viability and morphology. 

Ejaculates were centrifuged at 500 x g for 15 minutes to remove spermatozoa without disrupting 

the sperm cell membrane. The supernatant was collected and centrifuged for 1500 x g for 15 

minutes to ensure only seminal plasma remained. Samples were stored in liquid nitrogen for the 

duration of the study in Peru, and then stored at -80°C in Canada until OIF/NGF assay.  

 The overall mean OIF/NGF concentration for a given male was the average of the 

concentrations measured in individual ejaculates for that male. The mean concentration for each 

male was used to correlate the number of offspring produced relative to the number of females 

bred during the previous breeding season. The 22 males were involved in a total of 171 

breedings. Nonpregnancy was diagnosed (or assumed) if the female was re-bred during the same 

breeding season or failed to give birth, and pregnancy was confirmed by live birth during the 

following birthing season. Breedings were controlled and recorded by staff from the 

Quimsachata Research Station. Birth rates were calculated as the number of live offspring 

relative to the number of breedings by a given male.  
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5.3.2 OIF/NGF assay 

 A double-antibody radioimmunoassay for OIF/NGF, previously validated for use with 

seminal plasma (Thesis Chapter 3), was used. The primary antibody was a rabbit antihuman-

OIF/NGF polyclonal antibody (Santa Cruz Biotechnology, Dallas Texas, USA). The secondary 

antibody was goat serum raised against rabbit immunoglobulins [271]. Samples were assayed in 

duplicate with a standard curve ranging from 0 to 200 µg/mL. The minimum detectable limit was 

10 µg/mL. All seminal plasma samples were measured within the same assay to remove 

interassay variation. The intra-assay coefficients of variation for low (25 µg) and high (100 µg) 

references were 10% and 6%, respectively. Ejaculates were diluted with PBS to fit within the 

standard curve. Values were then corrected by the dilution factor to calculate the concentration 

found within seminal plasma. Total OIF/NGF abundance within an ejaculate is calculated by 

multiplying the concentration of OIF/NGF measured by the total volume of semen collected.  

 

5.3.3 Experiment 2 – Prospective breeding trial 

  Adult male alpacas (n=8) were selected at random from a herd of 47 males. Semen 

samples (3 to 6 ejaculates/male) were collected and processed as described for Experiment 1, and 

OIF/NGF concentrations in seminal plasma were assayed. Based on the mean concentration 

OIF/NGF, males were categorized into low (n=2 males; 0.8 ± 0.4 mg/mL), medium (n=4 males; 

3.7 ± 0.7 mg/mL) and high (16.2 ± 5.7 mg/mL; n=2 males) OIF/NGF groups, and pregnancy 

rates were compared among male groups in a subsequent breeding trial.  

 Mature, non-pregnant, non-lactating, female alpacas (n=160) ranging from 3 to 12 years 

were used. The alpacas were selected from a group of 200 based on an initial examination to 

confirm that they were in adequate body condition and were non-pregnant with no apparent 
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pathological conditions of the reproductive tract, as detected by transrectal ultrasonography (7.5 

MHz linear array transducer, MyLab Five, Esaote, Italy). Ovarian follicle development was 

examined once daily [304] for at least three consecutive days by transrectal ultrasonography 

before breeding. Alpacas with a growing follicle ≥ 7mm in diameter in either ovary were 

assigned randomly to one of the eight males for breeding. Breedings were done in the same 

location as semen collection to minimize potential effects of environment on male behaviour, 

and males were allowed to breed the female for a maximum of 30 minutes. The breeding (pair 

was monitored during copulation to ensure proper vaginal intromission had occurred. If 

copulation was interrupted at <30 minutes, the male was given the opportunity to mount the 

same female again; if he showed no interest, the male was removed and the total intromission 

time was recorded. Two females were bred to an individual male per day, one in the morning and 

one in the afternoon. At least one full day of rest was given to each individual male before the 

next day of mating. A total of 160 copulations were monitored (20 females/ male x 8 males).  

 Females were examined by transrectal ultrasonography on Day 3 (Day 0 = day of 

copulation) to detect ovulation. Ovulation was defined as the absence of a pre-ovulatory sized 

follicle (≥ 7 mm) which had been present at the time of breeding, and confirmed by detection of 

a CL on Day 7 [48]. Transrectal ultrasonography was done on Days 7, 20 and 25 to determine 

CL diameter and pregnancy status. A definitive diagnosis of pregnancy was based on detection 

of an embryo proper with a heart beat [305]. Pregnant females were examined again on Days 30 

and 40 to assess maintenance of pregnancy. Pregnancy rate was defined as the number of 

females that were diagnosed pregnant from the number of females that were bred.  

 

5.3.4 Statistical analyses  
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 Statistical analyses were done using the Statistical Analysis Software package (SAS 

Learning Edition, 9.1; SAS Institute Inc., Cary, NC, USA). Experiment 1: Associations between 

OIF/NGF concentration or total OIF/NGF abundance in semen with live birth rates were 

assessed using nonparametric Spearman rank correlation tests, given the non-normal distribution 

of these variables. Experiments 2: Data from males with similar abundance of OIF/NGF in their 

ejaculates were combined and categorized as low (n=2 males), medium (n=4) and high (n=2) 

OIF/NGF groups. Ovulation and pregnancy rates were compared among groups by Chi-Square 

analysis (proc genmod procedure, SAS). Non-serial data (i.e., follicle diameter on Day 0, CL 

diameter on Day 7, and maximum CL diameter) were compared among OIF/NGF groups by 

analysis of variance. All values are expressed mean ± SEM.  

 

5.4 Results 

 

5.4.1 Experiment 1- Retrospective study on OIF/NGF concentration and live birth rates 

 According to the reproductive records provided by the research station, the number of 

females bred per male ranged from 3 to 13. The birth rates (number of live offspring from the 

number of breedings by a given male) obtained from the 22 males for the previous breeding 

season ranged from 14% to 100%. The number of live births per male tended to be positively 

correlated with OIF/NGF concentration (ρ=0.38; P=0.09) and total OIF/NGF per ejaculate  

(ρ =0.36; P=0.09).  

 

5.4.2 Experiment 2 – Prospective breeding trial 
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 The age of the females, copulation time, and follicle diameter at breeding was similar 

among low, medium and high OIF/NGF groups (Table 5.1). Copulation with males containing 

low, medium or high amounts of OIF/NGF in their ejaculate was not associated with ovulation or 

pregnancy rates (Table 5.1). Ovulation rates induced by individual males ranged from 40% to 

100% and were not correlated with OIF/NGF concentration (ρ=0.33; P=0.42) or pregnancy rate 

(ρ=0.05; P=0.45; Table 5.2). Spearman's rank correlations on variables associated with 

pregnancy are shown in Table 2. Sperm concentration, viability and sperm morphology were all 

important factors related to pregnancy (P≤0.05) while sperm motility tended to be related with 

higher pregnancy rates. Higher pregnancy rates were correlated with younger female alpacas 

(ρ=-0.78; P=0.01).  
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Table 5. 1. Summary of the ovarian response (mean±SEM) in female alpacas (n=160) bred to 

males containing low (n=2), medium (n=4) and high (n=2) concentrations of OIF/NGF in their 

ejaculates (Experiment 2). 

Male 

group 

Low Medium High 

Number of females 40 80 40 

Age of females 6.6 ±0.39 6.5±0.41 6.9±0.42 

Duration of mating (min) 22.1±1.08 21.9±0.98 23.1±1.20 

Follicle diameter at mating (mm) 9.2±0.23 9.1±0.26 9.4±0.23 

Ovulation rate 32/40 (80%) 62/80 (78%) 36/40 (90%) 

Pregnancy rate 18/40 (45%) 41/80 (51%) 16/40 (40%) 

CL diameter on Day 7* (mm) 13.0±0.30 12.9±0.25 12.9±0.28 

*Day 0 = day of mating 
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Table 5. 2. Correlations between pregnancy rate and breeding parameters in alpacas (Experiment 

2) 

Factor  Spearman-rho correlation 

coefficient 

ρ 

P-value 

Total OIF  0.05 0.45 

Sperm concentration 0.65 0.04
* 

Sperm motility 0.55 0.08 

Sperm viability 0.85 0.004
* 

Semen pH -0.76 0.01
* 

Total testis area -0.68 0.03
* 

Normal morphology 0.49 0.10 

Midpiece defect -0.72 0.02
* 

Proximal droplet -0.60 0.06 

Acrosome defect -0.88 0.002
* 

Age of female -0.78 0.01 

Maximum CL diameter 0.15 0.36 

*Correlation is significant at the 0.05 level (2-tailed) 
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5.5 Discussion 

 

 The results of Experiment 1, a retrospective correlation of male fertility and semen 

OIF/NGF content, were consistent with the hypothesis that the abundance of OIF/NGF in semen 

is related to male fertility, but results of Experiment 2, a prospective study, did not support the 

hypothesis that the abundance of OIF/NGF in semen can be used to predict the degree of male 

fertility. The dichotomy in results of the two experiments justifies further investigation into the 

relationship between OIF/NGF in seminal plasma and male fertility. Limitations of Experiment 2 

were the relatively small number of males used to make the correlations, and the potentially 

independent effects of sperm quality and OIF/NGF in seminal plasma. Ovulation rates induced 

by individual males ranged from 40% to 100%. The male with the most OIF/NGF in his 

ejaculate, also had the highest ovulation rate but one of the lowest pregnancy rates. Analysis of 

his semen revealed very low sperm concentration and numerous sperm defects. The ovulation 

rate of the male with the least OIF/NGF per ejaculate was among the lowest but sperm quality 

(normal morphology, motility and concentration) was high. The low OIF/NGF male had a 

greater percentage of normal sperm which lead to higher pregnancy rates (35% vs. 60% pregnant 

for the high OIF/NGF and low OIF/NGF male respectively).  

 Variation among ejaculates from the same male may also have contributed to the 

dichotomy in results of the two experiments. The amount of OIF/NGF ejaculated by each male 

was estimated by semen collection using an artificial vagina inserted into a phantom mount. 

However, the amount of OIF/NGF in semen is not equal and in a previous study great variation 

was found both within and among ejaculates of male alpacas (Bogle PhD thesis, Chapter 4). This 

variation was not found in all males: some males ejaculated relatively similar amounts of 

OIF/NGF, semen volume and sperm concentration while others were inconsistent. This may 
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have been one of the most important factors in limiting our ability to test the hypothesis stated in 

Experiment 1.  The mean percentage of normal sperm (37%) observed in ejaculates was similar 

to that reported by Lichtenwalner et al. [84] but considerably lower to what was reported by 

Bravo et al. [306]. Low pregnancy rates could also be related with mounting efficiency/intra-anal 

intromission instead of intrauterine. All males were monitored for vaginal intromission at the 

beginning of breeding but frequent monitoring was not done. Once the male had dismounted, on 

several occasions, the female had anal swelling, an agape anus or semen around the perineum. A 

study designed to characterize the ejaculatory pattern in llamas reported 26 of 71 intromissions 

were in the anus and this phenomenon occurred in 3 of the 5 male llamas that were used [80].  

 Previous studies have demonstrated that administering seminal plasma or purified 

OIF/NGF from seminal plasma will trigger LH release, ovulation and CL development in a dose 

dependent manner [49, 52]. However, in the present study, the route of administration changed 

from intramuscular to intrauterine (via copulation) and included other male-derived factors 

associated with breeding. Evaluation of the ejaculates in the prospective experiment revealed two 

important factors that may have confounded the results: 1) the mean OIF/NGF content in the 

seminal plasma of the low group was ≥250 µg, and 2) many of the ejaculates collected had a 

significant volume of froth. The amount of 250 µg was the minimum dose of seminal plasma 

derived OIF/NGF reported to generate a 90% ovulation rate in llamas given intramuscularly [49], 

while the dose of 100 µg of human recombinant NGF induced ovulation in all alpacas [254]. 

Perhaps no significant differences were observed in the present study because OIF/NGF 

concentrations in even the low group exceeded that necessary to induce ovulation. The presence 

of froth is commonly observed in ejaculates collected from llamas and alpacas using an artificial 

vagina. Quantification of total OIF/NGF in the ejaculate was expressed as the product of semen 
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volume and OIF/NGF concentration; however, the volume of foam was excluded because of the 

inability to consistently measure its volume. Hence, the total volume and amount of OIF/NGF 

deposited into the uterus during normal copulation was underestimated in the measurements used 

in the present study. To emphasize the potential impact this may have had, intrauterine 

deposition of 1 mL diluted seminal plasma (1:1) did not induce ovulation in alpacas [48] but 

ovulations (41%) occurred when the volume increased to 2 mL diluted seminal plasma (1:1) 

[13]. The quantity of OIF/NGF in the seminal plasma was not known in the latter studies, but the 

volume used for ovulation induction was less than the mean volume used in the present study 

(1.7 mL undiluted; Bogle thesis, Chapter 4). Further studies to investigate the absorption of 

OIF/NGF by the endometrium is needed. In addition, a dose-response study should be conducted 

to determine if the intrauterine deposition of OIF/NGF can induce ovulation.   

 The effect of mating frequency on ovulation and pregnancy rates have been reported in 

alpacas. Males bred twice for nine consecutive days had a 81% ovulation rate and 78% 

pregnancy rate [307]. Although ovulation rates were not different when breeding frequency was 

increased to four and six times a day, a decline in the number of pregnant animals was observed 

with six breedings [307]. In this study, males were: 1) allowed to breed only two females per 

day; 2) breedings were separated by a minimum of four hours; 3) breeding days were not 

consecutive but were separated by one full day. Consequently, duration of breeding, pregnancy 

and ovulation rates were not influenced by the schedule or day of breeding. Of the 160 pairings, 

there was only one (0.6%) isolated event when a male showed no libido and did not mate the 

female which may suggest physical exhaustion or lack of sexual interest.  

 The fertilization rate of alpaca embryos collected from sacrificed animals three days post 

mating was 88% [308]. Based on this observation, we assume that there was a total fertilization 
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rate of 70% (128 (total number of ovulations) x 0.88 (fertilization rate)/ 160 (total number of 

breedings)). A pregnancy rate of 47% indicates an embryonic loss of 23% which is low in 

comparison to other studies. A loss of approximately 50% embryos within the first month of 

gestation has been reported previously in alpacas [308].  

 In conclusion, retrospective correlation of male fertility and semen OIF/NGF content was 

consistent with the hypothesis that the abundance of OIF/NGF in semen is related to male 

fertility, but the hypothesis was not supported by results of a prospective test. Further testing is 

warranted in studies that better control for variation among ejaculates within males, and provide 

more distinct selection of males with low vs. high OIF/NGF content in their semen.  
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6.0 POWER FLOW DOPPLER ULTRASONOGRAPHY TO ASSESS A 

LUTEOTROPHIC EFFECT OF OIF/NGF AFTER MATING IN PREGNANT AND 

NONPREGNANT ALPACAS 

 

6.1 Abstract  

 

 Ovulation-inducing factor/nerve growth factor (OIF/NGF) is a seminal plasma protein 

that induces ovulation and CL formation in camelids in a dose-dependent manner. A luteotrophic 

effect of OIF/NGF has been reported in llamas, alpacas, and cattle. To test the hypothesis that 

CL form and function is enhanced in female alpacas mated to males with more OIF/NGF in their 

ejaculate, we compared changes in CL vasculature by power flow Doppler ultrasonography and 

circulating concentrations of progesterone in pregnant and nonpregnant alpacas bred to males 

with varying quantities of OIF/NGF in their ejaculates. Female alpacas with a growing follicle of 

7 -12 mm were bred to a male with low (n=2 males; 0.8 ± 0.4 mg/mL; n=8 females), medium 

(n=4 males; 3.7 ± 0.7 mg/mL; n=16 females) or high (n=2 males; 16.2 ± 5.7 mg/mL; n=8 

females) concentrations of OIF/NGF in their ejaculate. Cineloops of ultrasound images of the 

ovary containing the developing CL were recorded in brightness- and power flow Doppler-

modalities. Alpacas were examined every 4 hours from the time of breeding (Day 0) until 

ovulation, and every other day until Day 20. If pregnant, alpacas were scanned again on Days 30 

and 40. Doppler recordings of the ovary containing the CL were taken from the caudal to cranial 

pole. Still-frame images corresponding to cross-sections at 1/4, 1/2 (maximum CL diameter) and 

3/4 of the way through the CL were used for image analysis to estimate vascular area. Positive 

correlations were found between CL diameter and plasma progesterone concentration (r=0.68; 

P<0.0001), CL diameter and vascular area (r=0.53; <0.0001), and progesterone concentration 

and vascular area (r=0.35; P<0.0001). The male groups (low-, medium-, and high-OIF/NGF in 
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ejaculates) did not influence LH secretion, CL diameter, progesterone concentration or CL 

vascularization in pregnant and nonpregnant alpacas. The first significant reduction in 

progesterone concentration (P<0.01) and blood flow area (P=0.05) occurred on Day 9 in 

nonpregnant alpacas whereas a decrease in CL diameter using B- mode was not detected until 

Day 11 (P≤0.01). Results did not support the hypothesis that CL form and function is enhanced 

in female alpacas mated to males with more OIF/NGF in their ejaculate. Differences in CL blood 

flow area, detected by power flow Doppler, were apparent in pregnant vs. non-pregnant alpacas 

by 9 days after mating.  
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6.2 Introduction 

 

 The corpus luteum (CL) is an endocrine gland that develops after rupture of the dominant 

follicle during ovulation [161, 309]. The dynamic process of CL formation involves rapid tissue 

remodeling, angiogenesis, cell differentiation, synthesis of various proteins and steroids, 

followed by rapid regression in non-pregnant animals [310-314]. Maintenance of the CL and 

elevated concentrations of progesterone are essential for sustaining pregnancy in alpacas; i.e., 

removal of the CL anytime during the first 9 months of gestation resulted in abortion within two 

days [315]. Circulating concentrations of progesterone remain elevated throughout pregnancy, 

until a steady decline beginning 72h before parturition [316]. In addition, rescue of the CL from 

luteolysis between 8 and 10 days after ovulation has been implicated in maternal recognition of 

pregnancy in llamas [186], and higher plasma progesterone concentrations during the first week 

of gestation have been shown to improve embryo survival in cattle [317]. Since CL development 

is vital in the establishment and maintenance of pregnancy, luteotrophic factors may improve 

reproductive efficiency by enhancing CL function.  

 Nerve growth factor (NGF) is a protein that exerts a physiological response in several 

biological processes including nervous tissue development [35, 36, 318], angiogenesis [319-

322], male reproduction [46, 248, 249, 255, 323], ovarian follicular development [227, 231, 232, 

324, 325] and ovulation-induction [39, 40]. Recently, it has been reported that the seminal 

plasma protein described as an ovulation-inducing factor (OIF) in llamas and alpacas is β-NGF, 

based on similar molecular, structural and functional properties [39, 40]. For the purpose of this 

report, OIF/NGF will be used to denote β-NGF of seminal plasma origin.  

Several methods may be used to induce ovulation in camelids, such as mating, the 

administration of seminal plasma, or treatment with hormones such as OIF/NGF, GnRH or LH 
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[38, 130, 159, 185]. In each method of induction, the ovulatory mechanism results in an increase 

in circulating concentrations of LH [159, 160, 326]. A luteotrophic effect of seminal plasma or 

OIF/NGF has been reported in several studies in which treatment resulted in a longer CL lifespan 

or higher concentrations of progesterone in circulation in comparison to animals given GnRH 

[48, 49, 55, 175, 293]. In addition, in vitro perfusion of mid-luteal stage CL with NGF stimulated 

progesterone secretion [234]. Furthermore, LH secretion in vivo and in vitro was higher with 

increasing doses of OIF/NGF or seminal plasma, and CL function was directly related to the 

dose of OIF/NGF administered intramuscularly in camelids [45, 49, 53]. The mechanistic 

relationship between OIF/NGF and GnRH is unclear. Both hormones initiate the ovulatory 

mechanism through LH secretion in camelids [49, 172], but it appears that OIF/NGF acts 

indirectly through GnRH in vivo since pre-treatment with a GnRH antagonists before OIF/NGF 

treatment blocked the LH surge and ovulation [171].  

 The concept that OIF/NGF is a luteotrophic factor stemmed from studies in which plasma 

progesterone concentration was higher in llamas given OIF/NGF than GnRH even though the CL 

was of similar size [175, 240]. Llamas given two doses of OIF/NGF, one to induce ovulation and 

another at the time of ovulation-detection, had a longer CL lifespan, greater maximum CL 

diameter, and higher progesterone concentration than those given a single pre-ovulatory dose or 

a third dose 24 h after ovulation detection [51]. The LH secretion profile was associated with the 

luteotrophic response; i.e., LH secretion was more prolonged after treatment with OIF/NGF than 

with GnRH [48, 175, 180, 327]. In this regard, a correlation between the duration of the 

preovulatory LH surge and the degree of luteogenesis has been reported for other mammalian 

species [328, 329]. Furthermore, intrauterine infusion of seminal plasma in pigs was associated 

with larger corpora lutea and higher circulating concentrations of progesterone [57], and 
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intramuscular administration of seminal plasma or OIF/NGF in cows and pubertal heifers 

resulted in a more rapid increase in circulating progesterone concentration and delayed 

regression of the extant corpus luteum  [55, 293]. The mechanism by which OIF/NGF influences 

luteal function is unclear, but may be mediated via an angiogenic stimulus. Vascular endothelial 

growth factor (VEGF) was found to be essential for corpus luteum angiogenesis and 

progesterone secretion [330], and NGF was found to stimulate VEGF expression in cultured 

neonatal rat ovaries [331]. 

 The present study was designed to test the hypothesis that CL function is enhanced in 

female alpacas bred to males containing a greater quantity of OIF/NGF in their ejaculate. We 

determined 1) the relationships among CL diameter, vascular perfusion, and plasma progesterone 

concentration, 2) if the amount of OIF/NGF in semen influences CL blood flow, and 3) the 

difference in CL blood flow between pregnant and nonpregnant alpacas using power flow 

Doppler imaging. 

6.3 Materials and methods  

 

 Alpacas at the Quimsachata Research Station in the department of Puno, Peru (15°S, 

71°W, and 4500 m above sea level) were used during the rainy season (March and April). 

Hormone and image analyses were conducted at the University of Saskatchewan, Saskatoon, SK, 

Canada. Experimental procedures were performed in accordance with the animal care protocols 

established by the University of Saskatchewan. 

6.3.1 Semen collection and OIF/NGF assay 

 Mature alpaca males (n=8) were selected at random from a herd of 47 males of proven 

fertility. The males were trained to serve an artificial vagina inserted into a phantom mount [84] 

for a three-week period before sample collections. Acceptance of the phantom mount was 
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encouraged by applying freshly collected vaginal secretions or urine from receptive females to 

the phantom mount and orifice of the artificial vagina. In some instances, a live receptive female 

was placed beside the phantom mount to train the male to associate it with copulation. Once the 

association was established, a live female was no longer used. After the 3-week training period, 

the males were allowed six independent opportunities to serve the phantom mount. Semen 

samples (3 to 6 ejaculates/male) were collected, centrifuged once at 500 x g to remove intact 

spermatozoa and the supernatant was centrifuged again at 1500 x g to remove any remaining 

cellular debris. An aliquot was visualized under a light microscope to ensure no sperm cells were 

present. Seminal plasma was stored in liquid nitrogen until radio-immunoassay.  

 The concentration of OIF/NGF was measured by validated double-antibody 

radioimmunoassay (Bogle et al., 2015, Chapter 3 PhD thesis). Purified, biologically active 

OIF/NGF isolated from pooled llama/alpaca seminal plasma was labeled with 
125

I by the 

chloramine-T method [270]. The primary antibody was a rabbit anti-human NGF polyclonal 

antibody (Santa Cruz Biotechnology, Dallas Texas, USA) and was used at a dilution of 1:1000. 

The secondary antibody was goat serum raised against rabbit globulins (Western College of 

Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada [271]. Seminal plasma 

samples were diluted with PBS to a concentration that was within the range of assay detection. 

Values were then corrected for the dilution factor. Samples were assayed in duplicate with a 

standard curve ranging from 0 to 200 µg/mL. The lowest detectable limit of the assay was 10 µg. 

All seminal plasma samples were measured in a single assay. The intra-assay coefficient of 

variation for the low (25 µg) and high (100 µg) references were 10% and 6%, respectively.  

 

6.3.2 Breedings, examinations and image capture 
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 Mature, non-pregnant, non-lactating, female alpacas (n=32), ranging from 3 to 12 years 

of age, were selected randomly from a group of 160. Ovarian follicle development was examined 

by transrectal ultrasonography once daily [304] for at least three consecutive days before 

breeding. Females were assigned randomly to a male and allowed a single breeding when a 

growing follicle between 7 and 12 mm in diameter was detected (n=4 females per male). 

Breedings were done in the same location as semen collection to minimize potential effects of 

environment on male performance, and males were allowed to breed the female for a maximum 

of 30 minutes. The breeding pair was monitored during copulation to ensure proper vaginal 

intromission had occurred. Females were examined by transrectal ultrasonography every 4 h 

after copulation (Day 0 = breeding) until ovulation was detected or until 42h after treatment, and 

every-other-day until Day 20 to monitor CL development. A blood sample was taken before and 

at 1, 2, 3, 4 and 8 hours after copulation to determine changes in plasma LH concentration, and 

every-other-day until Day 20 to determine plasma progesterone concentration. If pregnant, 

alpacas were examined again on Days 30 and 40. Blood samples were collected into heparinized 

tubes by jugular venipuncture (BD Biosciences, Mississauga, Ontario, Canada). Samples were 

centrifuged at 1500 x g for 15 minutes and the cellular portion was decanted and the supernatant 

was stored frozen at -20°C.  

 For all examinations, three-second cine-loops of the ovary containing the CL were 

captured in both B-mode and power flow Doppler mode using a linear-array transducer with a 

frequency of 5 to 7.5 MHz (MyLab Five, Esaote North America, Inc., Indianapolis, IN, USA). 

Still-frame images corresponding to cross-sections at 1/4, 1/2 (maximum CL diameter) and 3/4 

of the way through the cine-loop of the CL were used for image analysis to estimate vascular 
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area. This was done by calculating the total number of serial frames occupied by the CL and 

selecting frames at the 25
th

, 50
th

, and 75
th

 percentile of those representing the CL. The percentage 

of blood-flow area was calculated as the mean number of colored (power flow) pixels tabulated 

from the three images of the CL divided by the total number of pixels (B-mode) of the CL, as 

described previously [313]. Gray-scale images were used to estimate the border of the CL and 

the inclusion limit of the pixels for analysis.  

 

6.3.3 LH and progesterone assays 

  

 Plasma LH was measured using a double-antibody radioimmunoassay [332]. Samples 

were analyzed in duplicate in a single assay. The minimum detectable limit was 0.1 ng 

NIAMDDK-oLH-24. The range of the standard curve was 0.06 ng (80% ligand-labeled LH) to 

8.0 ng (20% ligand-labeled LH). The intra-assay coefficients of variation for the low (0.45 ng) 

and high (2.2 ng) reference standards were 6% and 9%, respectively.  

 Plasma progesterone concentrations were measured using a commercially available 

double-antibody radioimmunoassay kit (Coat-A-Count Total Progesterone; Diagnostic Products 

Corporation, Los Angeles, CA, USA). Samples were analyzed in three assays with an inter-assay 

coefficient of variation of 4%, 2% and 6% for reference concentrations 1.9, 3.6 and 16.6 ng 

respectively.  

 

6.3.5 Statistical analyses  

 Data from males with similar abundance of OIF/NGF in their ejaculates were combined 

and categorized as low (n=2 males; 0.8 ± 0.4 mg/mL), medium (n=4 males; 3.7 ± 0.7 mg/mL) 
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and high (16.2 ± 5.7 mg/mL; n=2 males) groups. Ovulation and pregnancy rates were compared 

among groups by proc Genmod in SAS (SAS Learning Edition, 9.1; SAS Institute Inc., Cary, 

NC, USA). Non-serial data (i.e., follicle diameter on the day of breeding and interval to 

ovulation) were compared among OIF/NGF groups by analysis of variance. Serial data (i.e., 

hormone concentrations, CL diameter, CL vasculature) were compared by analysis of variance 

for repeated measures (Proc-mixed in SAS) to determine the effects of OIF/NGF in seminal 

plasma, and pregnancy status. Least significant difference (LSD) was used as a post-hoc test. All 

values are expressed mean ± SEM.  

 

6.4 Results 

 

6.4.1 Effect of OIF/NGF concentration 

Follicle diameter at the time of mating was similar among male groups, and no 

differences were detected among groups in the proportion of females that ovulated or became 

pregnant (Table 6.1). The interval from breeding to ovulation was longest to shortest in the low, 

medium and high OIF/NGF groups, respectively, but differences were not significant (P=0.28; 

Table 6.1). Data from three alpacas were excluded from hormone and CL analysis because of 

double ovulation and twin pregnancy (one in the high OIF/NGF group), a short luteal phase 

of 5 days (one in the medium OIF/NGF group), and illness (one in the high OIF/NGF 

group). Comparisons for remaining end points were based on observations from 29 females 

(n = 8, 15 and 6 in the low-, medium- and high-OIF/NGF male groups, respectively). 

Plasma LH concentrations were elevated by 1 hour after breeding, peaked at 3 hours and 

had not yet returned to basal levels by 8 hours after breeding (Fig. 6.1). Although plasma LH 
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concentration in the high OIF/NGF was numerically higher over the first four hours post-

breeding, differences among groups were not significant.  

 B-mode and power Doppler images of the corpus luteum are illustrated in Figures 6.2 

and 6.3. During the first 7 days after breeding, CL diameter and blood flow area tended to 

be higher in the high OIF/NGF group than the other groups (P≤0.09; Fig. 6.4). A treatment-

by-time interaction (P<0.02) in CL blood flow area of non-pregnant alpacas was attributed 

to a greater rise from Days 3 to 7 in the high OIF/NGF group than in the other groups (Fig. 

6.5). In pregnant alpacas, the luteal blood flow area increased over time (P<0.001), but was 

not influenced by male group (Fig. 6.6). 

A similar pattern was observed in plasma progesterone concentrations. Progesterone 

concentration was numerically but not statistically higher in the high OIF/NGF group during 

the first 7 days in the non-pregnant alpacas (Figs. 6.4 & 6.5). In pregnant alpacas, plasma 

progesterone concentrations increased over time (P<0.001), but were not influenced by male 

group (Fig. 6.6).  

 A comparison of the temporal changes in CL diameter, plasma progesterone 

concentration and CL blood flow area in pregnant versus non-pregnant alpacas (irrespective 

of male OIF/NGF group) is shown in Fig. 6.7. Plasma progesterone concentration and CL 

blood flow area were higher in pregnant vs. non-pregnant alpacas by Day 9, and CL 

diameter was greater by Day 11. Plasma progesterone concentrations decreased to <1 ng/mL 

on Day 11 in non-pregnant animals. Correlations were found between CL diameter and 

progesterone concentration (r=0.68; P<0.0001), CL diameter and vascular area (r=0.53; 

<0.0001), and progesterone concentration and vascular area (r=0.35; P<0.0001). 
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Table 6. 1. Summary of the ovarian response (mean±SEM) in female alpacas bred to males 

containing low (n=2), medium (n=4) and high (n=2) concentrations of OIF/NGF in their 

ejaculates. 

End point* Male groups based on [OIF/NGF] in semen 

OIF/NGF grouping (number of males) Low (n=2) Medium (n=4) High (n=2) 

Number of females bred 8 16 8 

Follicle diameter at mating (mm)  8.8 ±0.55 8.2±0.33 9.2±0.72 

Interval to ovulation (hr) 29.8 ± 1.4 28.2 ± 0.9 26.5 ± 1.5 

Ovulation rate* 6/8 (75%) 15/16 (94%) 7/8 (88%) 

Pregnancy rate** 4/8 (50%) 9/16 (56%) 3/7(44%) 

* No statistical difference among groups for any end point  

**The number of alpacas that ovulated or diagnosed pregnant divided by the number bred 

Note that one alpaca was excluded from pregnancy rate due to illness. 
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Figure 6. 1. Plasma LH concentrations (mean ± SEM) in female alpacas that ovulated following 

mating with males categorized as having low (n=6 females), medium (n=14 females) or high 

(n=5 females) concentrations of OIF/NGF in their ejaculates. 
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Figure 6. 2. B-mode and power flow Doppler images showing changes in the corpus luteum 

in a pregnant alpaca from Day 3 to Day 13 (Day 0 = day of breeding). White arrows in each 

image delineate the CL. The scale on the left is in 1 cm increments.   



  

  

130 

 

 

DAY 30

B-mode Power-flow mode

DAY 20

DAY 40



  

  

131 

 

Figure 6. 3. B-mode and power flow Doppler images showing changes in the corpus luteum 

in a pregnant alpaca on Days 20, 30 and 40 (Day 0 = day of breeding). White arrows in each 

image delineate the CL. Yellow arrowheads demark the embryonic vesicle in the cross 

section of the left uterine horn (Day 30). The scale on the left is in 1 cm increments.  
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Figure 6. 4. CL diameter (top panel), circulating progesterone concentration (middle panel) 

and CL vasculature (bottom panel; Mean±SEM) in alpacas bred to males with low (n=6 

females), medium (n=14 females), or high (n=5 females) concentrations of  OIF/NGF in 

their ejaculates (Day 0 = day of breeding). 
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Figure 6. 5.  Circulating plasma progesterone concentration (top panel) and CL blood flow 

area (bottom panel; Mean±SEM) in pregnant alpacas bred to males categorized as having 

low (n=4 females), medium (n=9 females), or high (n=3 females) concentrations of 

OIF/NGF in their ejaculates (Day 0 = day of breeding). 
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Figure 6. 6. Circulating plasma progesterone concentrations (top panel), blood flow area 

(bottom panel; mean±SEM) in alpacas that did not become pregnant after breeding to males 

with low (n=2 females), medium (n=5 females) or high (n=2 females) concentrations of 

OIF/NGF in their ejaculates (Day 0 = day of breeding). 

* Blood flow area was greater in the high OIF/NGF group on Day 7 than in the medium 

OIF/NGF group (P<0.05).  
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Figure 6. 7. CL diameter (top panel), circulating progesterone concentration (middle panel), 

blood flow area (bottom panel) in pregnant (n=16) and nonpregnant (n=9) alpacas 

(Mean±SEM; Day 0 = day of breeding). 

* First day of significant difference between pregnant and nonpregnant animals  
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6.5 Discussion 

  

 We hypothesized that there is a positive relationship between the amount of OIF/NGF in 

the ejaculate of the male and the form and function of the CL in females to which they were 

mated. The trend across endpoints in the present study was consistent, in support of the 

hypothesis, though most differences were not statistically significant. Numerically, female 

alpacas bred to males in the high OIF/NGF group had a shorter interval to ovulation, larger pre-

ovulatory LH surge, greater CL diameter and CL blood flow during early CL development, and 

higher plasma progesterone concentrations. While a luteotrophic effect of OIF/NGF has been 

reported previously when given by intramuscular administration [49, 175, 240, 254], the 

influence of differing quantities of OIF/NGF that occur naturally in male alpacas on luteogenesis 

in naturally mated females has not been previously examined. The consistency in results, and a 

better estimate of the degree of variance among factors in the present study, suggest that an 

increase in sample size will provide more definitive support for a cause-and-effect relationship 

between male OIF/NGF and female fertility.  

 In addition, we determined in retrospect that the amount of seminal OIF/NGF in the low 

group was likely not low enough to influence ovulation and CL development. Assuming a mean 

ejaculate volume for alpacas as 1.7 mL (Bogle, PhD thesis, Chapter 4), the total amount of 

OIF/NGF in the ejaculate of males in the low group was approximately 1.36 mg. This is more 

than the dose previously found to induce ovulation in 100% of treated alpacas [254] and more 

than 5 times the dose used to achieve a 90% ovulation rate in llamas [49]. Llamas given 125 µg - 

500 µg of OIF/NGF intramuscularly, showed no difference in Day 8 CL diameter or lifespan 

[49]. Corpora lutea produced by intramuscular administration of OIF/NGF in llamas had a 

greater vascular area than those produced by administration of GnRH [175], but the dose-effect 
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of OIF/NGF among males in the present study may have been obscured by quantities of 

OIF/NGF that exceeded the minimum effective level. In this regard, all males used in the present 

study were used as sires in the breeding herd and had produced offspring in the past. 

 An increase in circulating concentrations of LH within the first hour of intramuscular 

treatment with OIF/NGF was taken as evidence for a systemic rather than local effect on ovarian 

activity [13, 48], and is consistent with the effect on LH secretion in the present study. However, 

NGF has also been shown to directly stimulate progesterone secretion from in luteal cells in vitro 

[234], and it is possible that both a local and systemic effects of OIF/NGF are involved in 

luteogenesis. During copulation in camelids, the male ejaculates over a prolonged period 

(ranging from 3-65 minutes) and deposits semen directly into both uterine horns (reviewed in 

[333]). Based on anatomical descriptions of the utero-ovarian vasculature, both local and 

systemic luteolytic/trophic pathways may exist in camelids [201, 334]. A branch of the right 

uterine artery supplies the left horn and a corresponding major vein that originates from the left 

horn, terminates as a branch of the right uterine vein which allows rapid exchange of 

prostaglandin, metabolites, and possibly OIF/NGF into circulation between the ovary and the 

uterus [201]. As a consequence, the left uterine horn induces luteolysis in both ovaries while the 

right uterine horn may induce luteolysis only in the ipsilateral ovary [201, 334]. Nerve growth 

factor has been reported to have a direct local angiogenic effect on the ovary [331], cornea [319], 

muscle [321], skin [322], umbilical vein endothelial cells[320], circulating endothelial progenitor 

cells (CD34+) [335], and nervous tissue [336], providing rationale for the hypothesis that 

OIF/NGF induces angiogenesis in CL formation in camelids following mating. 

 Although we did not find a correlation between OIF/NGF abundance and CL vasculature 

in the present study, luteal flow area correlated with CL diameter and progesterone concentration 
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and was a useful technique for distinguishing between pregnancy and non-pregnancy. Luteal 

blood flow area increased from its first detection on Day 3 to a maximum on Day 7 in non-

pregnant alpacas. A sharp decline in luteal blood flow area was detected on Day 9 concomitant 

with a sharp decline in plasma progesterone concentration – both of which preceded the first 

detectable decline in CL diameter on Day 11 in non-pregnant alpacas, similar to that previously 

reported [186]. In pregnant alpacas, luteal blood flow area was maximal by Day 9 and remained 

elevated, consistent with CL diameter and plasma progesterone concentrations in this and 

previous studies [10]). In general, the estimated percentage of the CL with blood flow signals in 

alpacas was lower than reported in cattle [313]. 

  In conclusion, although results of endocrine and ultrasonographic endpoints tended to 

support the hypothesis that that CL function is enhanced in female alpacas bred to males 

containing a greater quantity of OIF/NGF in their ejaculate, unequivocal support will require a 

larger number of females and selection of males representative of the minimum extreme in 

OIF/NGF in their ejaculate.  Luteal blood flow measured by power flow Doppler, was strongly 

correlated with plasma progesterone concentration, and identified females that failed to become 

pregnant by Day 9; i.e., at the first significant decrease in plasma progesterone during luteolysis. 

Assessment of the CL by power flow Doppler may become a common tool for early pregnancy 

diagnosis.  
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7.0 GENERAL DISCUSSION 

 

Other than a breeding trial, there currently is no method or biomarker to accurately 

predict fertility in male camelids. Because of the  long gestational period (331-347 days in llamas 

[63] and 325-361 days in alpacas [73]), the identification of a biomarker and the ability to 

accurately measure its concentration would benefit camelid husbandry in terms of time and 

money.  I investigated OIF/NGF in seminal plasma as a candidate biomarker for fertility in 

alpacas.  

The effect of OIF/NGF on ovarian activity clearly documents its role as the principal 

stimulus for ovulation induction in camelids [38-41]. Because ovarian and endocrine responses 

to OIF/NGF are dependent on dosage, I hypothesized that the quantity of OIF/NGF in semen 

varied among males and this abundance arbitrates fertility in alpacas.  The findings presented in 

this thesis were not sufficient to support my hypothesis. However, subsequent studies utilizing a 

different approach may be necessary to further test this hypothesis. 

The cruxes of the studies presented herein involved measuring OIF/NGF in semen and 

observing the physiological response in females when there is a change OIF/NGF abundance. 

We know that the administration of OIF/NGF im or iv elicits the ovulatory cascade by triggering 

LH release and the level of response is dependent on the source of seminal plasma (camelid, 

cattle, rabbit, horse or pig)  and the amount given [13, 39, 40, 42, 49, 52, 54, 55, 171, 293]. 

Although these studies demonstrate the biological activity of OIF/NGF, a perpetual criticism is 

the disregard of the" natural route" of administration, i.e. intromission or breeding. Hence, my 

overall objective was to demonstrate that similar to what has been published with im and iv 

routes of administration, breeding females to males containing increasing concentrations of 

OIF/NGF would result in greater ovarian response in female alpacas.  
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I believe that there are several possible explanations as to why we did not see a 

discernible difference among males with varying doses of OIF/NGF including high variation of 

OIF/NGF within ejaculates from the same male, excessive OIF/NGF in samples, low sample size 

and ejaculation differences between AV vs. breeding.   

Determinants of male fertility are difficult to assess because of fluctuations found in 

semen parameters. Sperm concentration and morphology varies considerably with collection 

procedure, stress, season, climate nutrition [71, 84, 306, 337, 338]. High variability in OIF/NGF 

concentration, total abundance and other semen parameters were found within and among 

ejaculates. In both Chapters 3 and 4, a minimum of 3 ejaculates per male were collected to 

determine mean OIF/NGF abundance per each animal. Perhaps analyzing more ejaculates from 

the same male would have allowed a better representation of the total amount of OIF/NGF 

naturally occurring in each male.   

 The proportion that OIF/NGF comprises the camelid seminal plasma proteome was 

variable between the studies described in Chapters 3 and 4 (27% vs. 45%, respectively). Possible 

reasons for this difference include site of collection (Canada vs. Peru); season of collection 

(summer vs. rainy season); year of collection (2011 vs. 2012); frequency of collection (once vs. 

twice daily) and experience of males (companion animals vs. research breeding station). Animals 

were given the same relative training time but mounting efficiency was better in those animals 

from the research breeding station. As mentioned previously, froth volume was not taken into 

consideration when semen volume was calculated. This disregard may have contributed to error 

in total OIF/NGF quantification which would either over- or underestimate the total amount of 

OIF/NGF measured. Froth is commonly observed when semen is collected by AV[84]. However, 

we suspect that in vivo, this volume is liquefied. Artificial vagina inserted into a phantom mount 
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was the method chosen for semen collection because 1) we could mimic the sensory and 

olfactory stimuli associated with breeding and 2) evidence that electroejaculation could alter the 

seminal plasma proteome [276, 277]. Nevertheless, the possibility exists that the ejaculate 

collected by AV was not a good representation of what occurred during breeding. On the other 

hand,  I observed that 90.2% of ejaculates collected by artificial vagina exceeded the dosage 

necessary for a 90% ovulation rate [49] and this is percentage corresponds to the ovulation rate 

after breeding (Chapter 5).  

The observation that seminal plasma or nerve growth factor administration (im) elicits an 

endocrine and ovulatory response in female camelids [13] suggests that the principle effect of 

NGF is systemic and through LH secretion. However, the different sources of OIF/NGF that 

could contribute or influence the ovulatory response needs further elucidation in camelids.  

Seminal plasma has also been associated with leukocyte recruitment to the site of ovulation in 

pigs [339, 340]. Inflammation has also been associated with elevated levels of NGF [341, 342] 

and the lengthy copulation duration and intrauterine deposition of the penis during intromission 

causes trauma to the vagina and endometrium [333]. Thus, there may be an endogenous source 

of NGF which contributes to the ovulatory response during mating. The ovary is also a source of 

NGF and trkA [343].  The expression of trkA appears dependent of  LH: in vitro challenge of 

theca cells induced trkA expression after 8 hours [343]. Either blocking the effect of TrkA or 

immunoneutralization of NGF actions in vivo impaired ovulation in rats[344]. Furthermore, NGF 

stimulated both androgen and progesterone release in bovine thecal cells [325].   

The secretion of LH in response to OIF/ NGF challenge has been examined in camelids 

by in vivo and in vitro bioassays. The role of NGF on camelid follicular dynamics and FSH 

secretion has not been investigated. Overwhelming evidence in humans and rodents demonstrate 
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that NGF and TrkA are important factors in follicular development and ovulation [231, 232, 325, 

343, 344]. NGF increases the expression of FSH receptors in antral cells [233, 324, 325] and 

elevated levels of NGF have been associated with polycystic ovarian syndrome [227, 229]. One 

problem in assessing the effect of NGF on ovarian follicular dynamics in camelids in the early 

follicular phase is the presence of an ovulatory follicle in either ovary [130]. However, follicle 

ablation followed by OIF/NGF treatment could be used to determine whether NGF would induce 

FSH secretion, hasten wave emergence and recruit more ovarian follicles which could be used in 

superstimulation protocols.  

One weakness in the experimental design was that I was unable to measure OIF/NGF 

prior to breeding trials. On one hand, this ensured a complete blind experiment where no one had 

any knowledge OIF/NGF concentration or mating history. However, in light of this, 8 males 

were chosen at random for breeding trials and then arbitrarily divided into low, medium or high 

OIF/NGF groups. The ability to measure OIF/NGF prior to breeding would have allowed better 

selection of males that either had less intra-variation within ejaculations and males that had 

OIF/NGF protein levels below the threshold value of 250 µg.  

The correlation between sperm morphology and fertility has not been explored in 

camelids as it has in cattle [337, 345-347]. In Chapter 5, I observed that pregnancy rates in 

alpacas were positively correlated with sperm concentration and viability. Factors in semen that 

were associated with infertility or nonpregnancy were semen pH, and sperm morphologies 

including midpiece and acrosome defects. Correspondingly, the male that produced the highest 

ovulation rates had low sperm concentration which is most likely the reason for low pregnancy 

rates. Sperm head morphology (which includes acrosome defects) was the most common defect 

observed among ejaculates which indicates disturbances arose during spermatogenesis and not 
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during epididymal transport. The fertilization capability of sperm with varying defects need 

further investigation.  

Mounting behaviour was not critically assessed in this experiment. However, the male 

that showed unrestrained sexual interest to females, also had poor mounting efficiency, frequent 

interrupted matings, low ovulation rates and low  pregnancy rates. This finding was interesting 

because it further demonstrated that other mating stimuli such as male humming, tactile stroking 

of the female hindquarters and scent was insufficient to induce ovulation.  

The relationship between sexual behaviour and neural circuits within the central nervous 

system is one that has been investigated in several species.  Vaginocervical stimulation in 

women activated various regions of the brain including the hypothalamic paraventricular nuclei 

[348, 349]. In women, neuroimaging showed the female  orgasm was associated with influx of 

blood supply to the pituitary gland [350]. Plasma concentrations of pituitary hormones, LH, 

oxytocin and prolactin, have also been shown to increase in association with intercourse and 

orgasm [351-354]. Vaginocervical stimulation in the ewe was found to significantly increase 

oxytocin release in the mediobasal hypothalamus when ewes were sexually receptive. When 

ewes were under the influence of progesterone or were not sexually receptive, vaginal 

stimulation had no effect on oxytocin release[355]. In contrast, plasma concentrations of cortisol, 

FSH, β-endorphin, progesterone and estradiol were unaffected by orgasm [354]. To my 

knowledge, LH is the only hormone that has been measured in camelids in response to mating, 

however strong evidence suggests that other pituitary hormones such as oxytocin and prolactin 

should be investigated.  

To my knowledge, this is the first report that the site of storage and secretion of nerve 

growth factor is the prostate gland in camelids (Chapter 3). OIF/NGF was stored in the glandular 
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epithelium as secretory vesicles and observed in the lumen of acini and blood vessels.  

Correspondingly, OIF/NGF was greater in the ejaculates of males that had larger prostate glands. 

Because OIF/NGF found in camelid semen appears to come from one gland, it would be 

interesting to ablate the prostate and compare OIF/NGF concentration, ovulation and pregnancy 

rates before and after its removal from the same male. This design would provide the advantage 

of eliminating inter male variation. 

 The observation of NGF in circulation suggests a role in other reproductive tissue. In 

rodents, both trkA and p75 receptors have been localized in germ cells, Sertoli cells and 

accessory genital glands, including seminal vesicles, prostate and coagulating gland [288]. A 

relationships between endocrine activity and behaviour has also been made in a variety of 

mammals. In humans and rodents, NGF concentration in circulation increases in relation to stress 

[263, 267, 287, 356].  An intriguing observation was that NGF in circulation was higher in 

aggressive male mice and the hypothalamus was one region where altered NGF detection was 

related to this behaviour [209, 268, 286].  Intravenous injection of NGF  into rats produced a 

dose dependent increase in circulating concentrations of adrenocoticotropin (ACTH) and 

corticosterone [357, 358]. While cortisol levels increased in men undergoing acute stress, NGF 

concentration in circulation remained unchanged [359]. 

 Although male behaviour was not critically measured in the context of this thesis, there 

was no relationship between testosterone concentration and total NGF content found in the 

ejaculate. A relationship between testosterone concentration and mating or aggression could not 

be inferred in the context of this thesis as only one blood sample was collected. Nevertheless, we 

illustrate an additional source for NGF secretion that contributes to its levels detected in 

circulation which is rational to investigate the role of NGF in the hypothalamic-pituitary-testis.  
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To my knowledge the effect of exogenous OIF/NGF in male camelids has not been 

investigated. However, the secretion of LH in response to OIF/NGF or seminal plasma observed 

in females [45, 48, 52, 54, 239] may be mimicked in males. Pituitary LH stimulated testosterone 

secretion by Leydig cells, and FSH optimizes testosterone concentration in the seminiferous 

tubules by increasing the production of androgen binding protein in the Sertoli cells [360-363]. 

Treatment of Holstein bulls with GnRH resulted in an increase in scrotal surface temperature, 

LH and testosterone but did not increase sperm output [364, 365].  In addition, immunization 

against GnRH in male camels showed a reduction in testosterone concentration, libido and 

acrosome morphology but did not influence testicular volume [366]. Although testes size was not 

a reliable measurement of sperm output in pubertal cattle [367] or alpacas (Chapter 5), the 

endocrine response to exogenous treatment of OIF/NGF and whether changes are reflected in 

spermatogenesis needs to be determined.  

 An association between OIF/NGF quantity at the time of breeding and CL luteogenesis 

could not be determined in this study (Chapter 6).  However, the tendency for higher CL tissue 

vasculature in the OIF/NGF group suggests that repeating the experiment with a greater number 

of animals is needed. An interesting finding was that nonpregnant alpacas could be detected 

earlier from pregnant ones using power Doppler to measure CL vasculature.  

To summarize, the information presented in this thesis contributes to our understanding 

of the role of nerve growth factor in camelid physiology. To our knowledge, this body of work 

includes the first account describing the prostate gland as the primary source of OIF/NGF 

secretion in the camelid ejaculate (Chapter 3); the quantity of OIF/NGF in alpaca seminal plasma 

(Chapters 3 and 4); semen parameters associated with ovulation and pregnancy rates in alpacas 
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(Chapter 5); the use of power Doppler to measure CL tissue vasculature for early pregnancy 

detection in alpacas (Chapter 6).   
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8.0 CHAPTER CONCLUSIONS 

 

CHAPTER 3  

Principle observations:  

 OIF/NGF was found in the connective tissue of all organs 

 OIF/NGF is stored and produced in the prostate gland of llamas 

 OIF/NGF is found in the vesicular and ampullar glands of cattle 

 OIF/NGF is found in the vesicular and ampullar glands of bison 

 OIF/NGF is found in the ampullar gland of elk 

 OIF/NGF is found in the prostate gland of white tail deer 

 OIF/NGF represented approximately 27% of the alpaca proteome in seminal 

plasma 

 OIF/NGF represented <1% of the proteome found in bull seminal plasma  

 Radioimmunoassay developed can detect OIF/NGF in seminal plasma from bull, 

alpaca and llama seminal plasma 

 OIF/NGF was not detected in llama blood or seminal plasma from stallions and 

boars 

 No cross reaction of the NGF antibody was observed with NT4 and BDNF 

 

CHAPTER 4  

Principle observations:  

 OIF/NGF concentration  but not total OIF/NGF abundance was associated with 

sperm concentration 
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 Positive correlation was observed between total OIF/NGF per ejaculate and total 

semen volume and prostate area 

 

CHAPTER 5 

Principle observations:  

 Males with higher quantities of OIF/NGF in their ejaculates did not have better 

ovulation or pregnancy rates 

 Pregnancy rates were related to sperm concentration, morphology,  semen pH and 

female age 

 

 

CHAPTER 6 

Principle observations:  

 Power Doppler colour pixels were an accurate assessment of progesterone concentration 

and CL viability 

 The use of power Doppler colour pixel measurement detected pregnancy earlier than with 

CL measurement  by B-mode ultrasound 

 Males with greater OIF/NGF abundance in semen did not produce more luteogenic CLs 
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