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Abstract 

It has been recognized recently that the magnetic coupling between the direct and 

quadrature axes of saturated synchronous machines (cross-magnetizing phenomenon) 

plays an important role in their analysis using the two-axis frame models. To de-

termine the parameters which represent this cross-magnetizing effect, the machine 

saturation curves in the various intermediate axes are needed. 

If a synchronous machine has two windings: one in the direct axis and the other 

in the quadrature axis, saturation curves in the intermediate axes can be obtained by 

exciting the machine from both these windings simultaneously under open-circuited 

condition. However, there is usually no field winding in the quadrature axis of in-

dustrial synchronous machines and, thus, the saturation curves in the intermediate 

axes cannot be obtained by the open-circuit test. This thesis presents an analytical 

method for determining the saturation curves in the intermediate axes of cylindrical-

rotor synchronous machines from their measured d- and q-axis saturation curves. The 

accuracy of this method is verified by comparing the measured saturation curves in 

the intermediate axes of a specially-designed cylindrical-rotor synchronous machine, 

which has d- and q-axis field windings, with those calculated using the proposed 

method. The thesis also presents a method for determining the parameters repre-

senting the cross-magnetizing effect from the calculated intermediate-axis saturation 

curves of synchronous machines. By applying these methods also to the cases of 

salient-pole synchronous machines, their generality is demonstrated. 

Moreover, a modified two-axis frame model of saturated synchronouns machines 

which includes the cross-magnetizing effect is presented in this thesis. The accuracy 

of this modified model is verified by comparing the measured active and reactive 

power/load angle curves of a cylindrical-rotor and a salient-pole synchronous genera-

tors with the curves obtained analytically by applying the proposed modified two-axis 

frame model. 
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Chapter 1 

Introduction 

1.1 General 

During the last few decades, the tendency to exploit the available sources of electrical 

energy at maximum level has increased. To achieve this, the accurate determination 

of the characteristics of the electrical energy sources, i.e. synchronous generators, has 

become of paramount importance. 

The characteristics of synchronous generators are affected by many factors. Among 

these factors is the saturation of the iron paths of the machines [1-6]. Under saturated 

operation, the machine parameters are no longer constant, but dependent on the load-

ing conditions [2, 7, 8]. Power system researchers have concluded that the saturation 

in synchronous generators is one of the most important causes for the changes in the 

machine's behavior [9, 10, 11]. An accurate and reliable representation of the satu-

ration phenomena in synchronous generator models can thus help in the prediction 

of their accurate operating characteristics [12, 13, 14]. Moreover, this can be useful 
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during the design process of the generators and their excitation systems. 

1.2 Methods of representing saturation in synchronous ma-
chine models 

The choice of the models for investigating the performance of saturated synchronous 

machines depends to a large extent on the objectives of the investigation. If, for ex-

ample, the purpose of the investigation is to determine the magnetic flux distribution 

in specific parts of the machine's magnetic circuit (air-gap, armature, teeth), complex 

models are usually required, and the time consuming finite difference or finite element 

approaches have to be applied [15]. On the other hand, the analysis of large power 

systems involving large number of generators need models which are simple, efficient 

in computing time, and yet, sufficiently accurate [2, 16]. 

1.3 The two-axis frame model 

In the analysis of synchronous generators and power systems, the two-axis frame 

models, represented by the phasor diagram of Fig.(1.1), are commonly used [12, 13, 

17]. In such a model, it is usually assumed that there is no magnetic coupling between 

the direct and the quadrature axes and thus, each axis has its own electro-magnetic 

relationships. Also, in these models, it is assumed that the saturation affects only 

the mutual flux paths while the leakage flux paths are not affected by it [18]. Based 

on these assumptions, various models of saturated synchronous machines have been 

proposed. In all of these models, the saturation is basically represented by modifying 

2 



d-axis 

Figure 1.1: Phasor diagram of a synchronous generator 

the machine's synchronous reactances. These synchronous reactances can be written 

as: 

Xd = Xmd+ X1 

Xq = Xmq + Xl (1.2) 

where Xd and Xq are the d- and q-axis synchronous reactances, X md and Xmq are 

the corresponding mutual reactances, and X1 is the leakage reactance. The saturated 
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values of the d- and q-axis synchronous reactances. Xds and Xqs, can be expressed as 

follows: 

Xds = Xmds XI 

= KdXmdu XI 

X qs = X TrigS + Xl 

= KgX,,q.+ 

(1.3) 

(1.4) 

where X mds and Xmq, are the saturated d- and q-axis mutual reactances, X mdu and 

Xmqu are the unsaturated d- and q-axis mutual reactances, and Kd and Kg are the 

d- and q-axis saturation factors, respectively. 

The values of the saturation factors Kd and Kg are obtained from the relationships 

between the ampere-turns AT and the magnetic flux (I) for the direct and quadra-

ture axes, respectively. In both axes, the relationship between 1' and AT has similar 

variation, and can be depicted as in Fig.(1.2). For each axis, the value of the unsatu-

rated mutual reactance Xmu is proportional to the slope of the air-gap line AC of the 

respective axis. With a well designed per-unit system, the value of the unsaturated 

synchronous reactance Xmn in p.u. can be made equal to the slope of this line: 

CF 
AF' 

4 

(1.5) 



0.0 0.5 1.0 

Ampere-turns AT, [p.u.] 

1.5 

Figure 1.2: Defining the saturation factors using the saturation curves 

and its saturated value can be expressed as follows: 

XX 
EF 

is AF 

From Eqs(1.3) to (1.6), the following relationships can be obtained: 

EF 
Xms = 

u CF' 

K 
EF 

CF .

(1.6) 

(1.7) 

(1.8) 

It can be also found from Fig.(1.2) that the saturation factor K can also be expressed 
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as follows: 

K 
= BD 

BE 

The differences between all the two-axis frame models of saturated synchronous ma-

chines, which have been used till recently, are related to the choice of the values of 

these saturation factors. 

For the cases of saturated salient-pole synchronous machines, several researchers 

have assumed that the saturation in the quadrature axis is negligible, i.e. Kq = 1, and 

only the direct axis saturation is to be taken into account [5, 13]. However, several 

other researchers do not agree with this assumption since it leads usually to inaccurate 

results [4, 19]. In fact, experiments have shown that the quadrature axis saturated 

in certain salient-pole synchronous machines at least as much, and even more, as the 

direct axis [20, 21]. For the cases of saturated cylindrical-rotor synchronous machines, 

the assumption of neglecting the saturation in the quadrature axis is in general not 

valid. If the q-axis saturation curves are not available, it is usually assumed that 

Kq = Kd. In reference [4], polynomial representations have been derived for Kd

and Kq as a function of the total air-gap magnetic flux and it was found that, for 

different sized machines, the changes of these saturation factors have similar patterns 

as depicted in Fig.(1.3). As this figure shows, there are noticeable differences between 

the values of Kd and Kq in the saturated region. In more recent papers [19], it has 

been found that, instead of using the total air-gap magnetic flux as a factor which 

determines the saturation level, it is more convenient to use the total ampere-turns. 
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Figure 1.3: Saturation factors as functions of the flux linkage 

Other researchers [13, 16, 22] have defined the polynomials representing Kd and 

Kq using only the d- and q-axis components of the total air-gap magnetic flux or of 

the total ampere-turns, respectively. As it has been proven [7, 8], this approach can 

lead to considerable discrepancies between the measured and calculated operating 

characteristics. 

1.4 The cross-magnetizing phenomenon 

In the classical two-axis frame model representation of synchronous machines, the as-

sumption is made that there is no magnetic coupling between their direct and quadra-

ture axes [23]. However, experiments [16, 19] and magnetic field plotting [15, 24] have 
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shown that a magnetic coupling between the direct and quadrature axes of saturated 

synchronous machines exists, and that the magnitude of this coupling depends on how 

the saturation phenomena are modeled. Due to this magnetic coupling, the d- and 

q-axis components of the air-gap magnetic flux are affected by both the ampere-turns 

in the direct and quadrature axes. This magnetic coupling effect is usually called in 

the literature as the cross-magnetizing phenomenon [7, 8, 25]. 

In general, this cross-magnetizing phenomenon is the result of two causes [19]. 

One of the causes is the difference between the saturation levels in the axis of the 

total air-gap ampere-turns and those in the direct and quadrature axes. The magnetic 

saliency in the synchronous machines is the second cause for this phenomenon. In 

the cases of cylindrical-rotor synchronous machines, the cross-magnetizing effect is 

mainly due to the first cause while, in the case of salient-pole synchronous machines, 

the magnetic saliency has a relatively larger contribution to this effect. 

1.5 The objectives of the thesis 

Researchers have recognized for some time that the two saturation factors approach 

does not represent adequately the saturation effect in synchronous machine models. 

Using this approach, discrepancies up to 21 percent have been reported between the 

measured and calculated power/load angle characteristics of synchronous generators 

[12, 19, 26]. Since the two-axis approach to synchronous machines modeling is a 

widely used procedure, any modification aimed to improve the accuracy of these 
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models should still be made in the same d- and q-axis frame in order to maintain 

their previously used mathematical representation. 

In an attempt to obtain more accurate representation of saturation in the two-axis 

frame models of synchronous machines, El-Serafi et. al. [7, 8] have introduced two 

new parameters to represent the cross-magnetizing phenomenon. For determining 

these parameters, the saturation curves in the intermediate axes of synchronous ma-

chines and the corresponding phase angles of the total magnetic fluxes are needed. 

Since this information cannot be obtained experimentally for industrial synchronous 

machines, Wu [18] has proposed an analytical approach for determining such infor-

mation for salient-pole synchronous machines from their measurable d- and q-axis 

saturation curves. In his approach, an equivalent permeability magnetic model for 

the salient-pole synchronous machines has been used to determine the intermediate-

axis saturation curves and the phase angles of the total air-gap magnetic fluxes of 

these machines. However, this magnetic model does not represent the magnetic rela-

tionships in the cylindrical-rotor synchronous machines and, thus, cannot be used in 

the cases of these types of machines. 

In this context, the main objectives of this thesis are focused on the following 

aspects: 

• To obtain a new magnetic model which could be used to calculate the intermediate-

axis saturation curves and the phase angles of the total magnetic fluxes of 

cylindrical-rotor synchronous machines; 
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• To verify experimentally the accuracy of this model; 

• To determine the parameters representing the cross-magnetizing phenomenon 

in cylindrical-rotor synchronous machines using this developed model, and to 

verify the accuracy of these parameters using measured results; 

• To modify the two-axis frame model of cylindrical-rotor machines to include the 

cross-magnetizing effect; 

• To verify the accuracy of the modified two-axis frame model for the cases of 

cylindrical-rotor synchronous generators; 

• To verify if the proposed magnetic model is also applicable to the cases of 

salient-pole synchronous generators. 
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Chapter 2 

Saturation curves in the intermediate axes of 
cylindrical-rotor synchronous machines 

As mentioned in Chapter 1, the intermediate-axis saturation curves of saturated syn-

chronous machines and the corresponding angles of the magnetic fluxes are needed to 

determine the parameters representing the cross-magnetizing effect. However, these 

saturation curves and the angles of the magnetic fluxes cannot be obtained exper-

imentally, unless the synchronous machine has also an auxiliary excitation winding 

in its interpole axis (i.e. quadrature axis). In this chapter, an analytical method 

for determining the saturation curves in the intermediate axes of cylindrical-rotor 

synchronous machines from their measured d- and q-axis saturation curves will be 

presented. This method allows also for the determination of the angles of the total 

air-gap magnetic fluxes. The method is so general that it can be also applied to the 

cases of salient-pole synchronous machines. 

2.1 Description of the method 

In the proposed method, an equivalent permeability is used for the magnetic paths 

of the synchronous machine. Moreover, considering the rotor structure of cylindrical-
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rotor synchronous machines (Fig.(2.1)), it is assumed that, under unsaturated con-

dition, the equivalent permeability along the rotor periphery has the form shown in 

Fig.(2.2), where it is the value of the equivalent permeability between 9 = and 

= Oi corresponding to the unslotted region of the rotor, and aft is the value of 

the equivalent permeability between 0 = — 1i and 0 = and between 0 = Oi and 

9 = 2 corresponding to the slotted region of the rotor. The equivalent permeability 

under one pole pitch can thus be expressed mathematically as: 

/1 for —02 < < 0721
P(0) = 

ay for —2<0<—/2 and /3z2r- < 0 < 

(2.1) 

Under saturated condition, the values of the equivalent permeabilities along the 

rotor periphery are obtained by modifying their unsaturated values by using appropri-

ate saturation functions. For cylindrical-rotor synchronous machines, the saturation 

can adequately be represented by two saturation functions Sd(0) and Sq (0). The sat-

uration function Sd(0) represents the saturation in the unslotted region of the rotor, 

while the saturation function Sq (0) represents the saturation in the slotted region of 

the rotor. Thus, the saturation functions can be represented as follows: 

Sd(0) for —137;- < 9 < 13"r 
SO) = (2.2) 

Sq (0) for < < and 132 < 0 < 

The value of the saturation function S(0) at a given point 0 away from the pole 

axis depends on the value of the total ampere-turns F(0) at this point. A polyno-

mial representation of this saturation function is a convenient way to represent this 

12 



ir

Figure 2.1: Rotor structure of a cylindrical-rotor synchronous machine 

dependency. Under this assumption, the saturation function can be written as: 

1.00 — E7-1 aid1F(0)1i for —,32 < 0 < /3712- 
S(0) = (2.3) 

1.00 — EriLl aiq jF(0)12 for < 0 < 

where a id and ctiq have constant values for a given machine. 

13 

and Oi < 0 < 



d-axis 

11 

- r - ap, 

—7c/2 4E/2 0 (arc/2 ic/2 

Figure 2.2: Equivalent permeability model of a cylindrical-rotor synchronous ma-
chine 

2.2 Equations of the components of the air-gap magnetic flux 

Using Eqs.(2.1) and (2.3), the air-gap magnetic flux density at any point 0 can be 

calculated from the following equation: 

B(0) = kBF (0)S (0)µ(0), (2.4) 

where kB is a constant which is dependent on the machine dimensions. In synchronous 

machine studies, it is customary to assume that only the fundamental components 

of the involved electro-magnetic values will determine the operating conditions. The 

fundamental component of the magnetic flux density can be written as: 

B1(0) = B d COS(0) B sin(0) , (2.5) 

where B d and Bq are the amplitudes of the fundamental d- and q-axis components of 

the air-gap magnetic flux density. These d- and q-axis components can be calculated 

14 



by applying the Fourier series analysis to Eq.(2.4) as follows: 

Bd = B(0) cos(0)c10 
7r 

2 f 
kBFMS(0)//(0) cos(9)de 

71 

2 
Bq f B(0) sin(0)de 

2 

2 
f kBF (0)S (0) µ,(0) sin(6)de 

1

(2.6) 

(2.7) 

Assuming also that the ampere-turns distribution over one pole pitch is sinusoidal, 

F(0) can be expressed as follows: 

F(0) = AT • cos(0 — (-) , (2.8) 

where AT is the amplitude of the ampere-turns distribution function and c is the 

angle between the axis of the ampere-turns distribution function and the direct axis. 

If the axis of the ampere-turns distribution function is located in the direct axis, i.e. 

= 0, Eq.(2.8) becomes: 

F(0) = AT • cos(8 — 0) = AT • cos(0) (2.9) 
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If the axis of the total ampere-turns distribution function is located in the quadrature 

axis (( Eq.(2.8) becomes: 

F(9) = AT • cos(0 — = AT • sin(0). (2.10) 

2.2.1 The d-axis component of the air-gap magnetic flux 

The d-axis component of the air-gap magnetic flux can be calculated using Eq.(2.6) 

as follows: 

= k(DBd 

= —2 f k F (0)S (0)/1(0) cos(0)d0 
'7T - 2 

Substituting Eqs.(2.1) and (2.2) in Eq.(2.11), cl)d can be subsequently written: 

f 
2 
- kBk4,F(0)S q(60/1 cos(0)d0 

- 

2 /13 i'
+— k Bk4, F (0)Sd(0) cos(0)d0 

71 . -0 1j 

+-2 p kB1c4,F(0)Sq(9)apcos(0)6 
71 

16 

(2.11) 

(2.12) 



Since kB,k4, andµ have constant values for a given machine, they can be grouped as 

a single constant value: 

k = kBk4,it. 

With the newly introduced factor k, I id becomes: 

d 
2 f - 0 
—ka F(0)Sq (0)cos(0)d0 
ir 

+-2 k F (0) S d(9) COS(0)c10 
7r -02i 

+2ka F(0)Sq (0)cos(0)d0 
7T Oi 

(2.13) 

(2.14) 

Substituting Eqs.(2.3) and (2.8) in Eq.(2.14), the d-axis component of the air-gap 

magnetic flux can be written as: 

= 2ka 
j -13i 

— AT cos(0 — () (1.00 — E aiglAT cow) — 01i) cos(0)d0 
'7r 

+-
2

k 
fOi 

AT cos(e — () (1.00 — E aid 1AT cos(B — O cos(0)d0 
7r i=1 

+-
2

ka 
fi 

AT cos(0 — O(1.00 — E aiglAT cos(o — or) cos(0)d0 
71 03- i=1 

(2.15) 
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Equation (2.15) can be simplified to: 

Ti
= (ag q Igd) AT — E (aaij id, + aide d) (2.16) 

i =1 

where: 

id 
Oq f—k cos(0 — cos(0)d0 f

2 - 0-1 
O

7r - 

iq

d
I od 

+ 2 k f 
2 

cos(0 — Ocos(0)0 (2.17) 
'71 

—k cos(0 — () cos(0)c10 
i2 fn 

(2.18) 
71 

2 f - O i 
—k cos(0 — cos(O — cos(9)d9

—

+-2-k f cos(0 — cos(e — cos(9)d9
71

e d = 
2 

f n  k cos(0 — ()1 cos(O — cos(0)0 
i 

'71- Qi 

2.2.2 The q-axis component of the air-gap magnetic flux 

(2.19) 

(2.20) 

Using Eq. (2.7) and applying the same approach as for the d-axis component of the air-

gap magnetic flux, the q-axis component of the air-gap magnetic flux can be written 
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as: 

(Dg 

2 f - O  i 
—kcx AT cos(0 — () (1 — E aigoTcos(o — 
71 - i = 1 

where: 

Igd 

sin(0)d0 

+-k f  AT cos(0 — O(1 — E cos(0 — () 12) sin(0)c10 
7T -0 

i=1 

+ —2 ka f 3 AT cos(0 — O(1 — aig lAT cos(9 — Or) sin(0)d0 (2.21) 
7r 03- i=1 

(ag q Igd) AT — E (cectigizq + aixd) Ar+1, (2.22) 
i=i 

2
k 

f - 0 -3-
— cos(0 — () sin(0)d0 

- 

+—k 
fi 

cos(0 — Osin(0)d0 
71 /3 

2 k /03-
— cos(0 — () sin(0)61
71 -0 

2 k f —Oi 
— cos(0 — cos09 — 011 sin(0)0 
7T - 

+—k cos(0 — ()1cos(0 — sin(0)c10 
7r /Pi 

-2k f /3 cos(0 — cos(0 — sin(0)0 
- 
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(2.23) 

(2.24) 

(2.25) 

(2.26) 



In the above depicted equations, two types of unknowns have been introduced. 

The constants a, k, aid and ctiq are not variable for a given machine and can be 

conveniently calculated once. On the other hand, the coefficients / idd, /,dq , / iqd, / iqd (i = 

0 • • • n) are dependent on the location of the axis of the ampere-turns distribution 

function, expressed by the angle and they have to be calculated for each operating 

condition separately. 

2.3 Determination of the constants k and a 

The parameters a and k can be determined from the values of the unsaturated B-

and q-axis mutual reactances. In general, the mutual reactance in per-unit can be 

represented by the equation: 

X, = 
AT

. (2.27) 

Substituting = 0, a id = 0 (i.e. Sd(0) = 1.00), and aw = 0 (i.e. Sq (9) = 1.00) in 

Eq.(2.15) and using Eq.(2.27), the unsaturated d-axis mutual reactance in per-unit 

can be represented by the equation: 

Xmdu 2ka 
f 

cos(0) • cos(0)d0 
7r - 

+-
2

k fdi cos(0) • cos(8)d8 
71 — 

2 , 
03- cos(0) • cos(0)d0 

7r 
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= 
-4

k • {f cost (0) •d0+a•f i cos2 (0)d0} . 
7r 0 

(2.28) 

In order to evaluate analytically Eq.(2.28), the following relationship will be used: 

sin(20) + 20  
f cos2 (0)d0 = 

+ 
4 

and Eq.(2.28) will become: 

Xn.idu = k • {(1 — a) • sin07) + (1 — a) -137 + a7r 

(2.29) 

(2.30) 

Similarly, the unsaturated q-axis mutual reactance in per-unit can be determined 

using Eq.(2.27) and substituting ( = = 0 (i.e. Sd (0) = 1.00) and dig = 0 (i.e. 

Sq (0) = 1.00) in Eq.(2.21). This reactance can then be expressed as follows: 

Xmqu —k o 
)(3 

sine (0)d0 + f sin2 (0)d0 

In order to evaluate Eq.(2.31), the following relationship will be used: 

f sin2
20 — s4in(20) 

+ c=  , 

and Eq.(2.31) will become: 

Xmqu = k {(ct — 1) sin(,37) + (1 — a),37r + a7r 

(2.31) 

(2.32) 

(2.33) 

Knowing the values of the unsaturated d- and q-axis mutual reactances, Xmdu 

and Xmqu, and the parameters a and k can be obtained by solving Eqs.(2.30) and 

(2.33) as follows: 
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k 

a = 

IT Xrnqu 

{(a — 1) • sin(07) + (1 — a) • j37 + a7r1 

(Xmqu + Xmdu) • sin(07r) + (Xmqu — Xmdu) • 0 7

(2.34) 

(Xmqu + Xmdu) • sin(07) + (Xmqu — Xmdu) • 137 (Xmdu Xrnqu) • R.

(2.35) 

For cylindrical-rotor synchronous machines, the value of 3 lies in practice in the 

range of 0.2 to 0.4 and can be taken as the ratio of the unslotted region width over 

one pole to the pole pitch. It is worthy to mention here, that it has been found 

that the accuracy of determining the saturation characteristics in the various axes of 

cylindrical-rotor synchronous machines is insensitive to any reasonable variation of 

the value 0. Figures (2.3) to (2.6) illustrate how the constants a and k will depend 

on l3 and the unsaturated d- and q-axis mutual reactances. 

2.4 Determination of the saturation function coefficients 

The coefficients aid and ctiq (i = 1 • • • n) of the saturation functions are constant for 

a given machine. They can be obtained from the measured d- and q-axis saturation 

curves by applying the least square errors fitting technique. 
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Figure 2.3: The constant a as a function of ,3 and X mqu, X mdu = 1.8 p.U. 
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Figure 2.4: The constant k as a function of /3 and X mqu, Xmdu = 1.8 p.u. 
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Figure 2.5: The constant a as a function of 13 and Xmdu, Xmqu = 1.6 p.u. 
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Figure 2.6: The constant k as a function of )3 and Xmdul Xrnqu = 1.6 P.U. 
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Substituting ( = 0 in Eq.(2.15), the equation of the d-axis saturation curve can 

be written as follows: 

2 
f

- Oi 2 
= - akAT cos2 (0)c10 + - 

r 
k AT COS2 (0)Cle 

7T 7T -01 -

+-2 fi 
ak AT COS2 (0)d0 

71 

—E 
i=1 

2- fOi 
aigakATi+1 cosi+2 (B)dB 

7 

-
2 r 

aidk ATi+1 COS 2+2(0)d0 
71

2

,n 2 f 
- 2 - aigokATi+1 cosi+2 (0)dO 

'7r 

The above equation can be rewritten as follows: 

where: 

Cod AT - E(4qaiga + c`Laid)ATi+1
i=1 

co = -2 ka (f cost(B)dB + f -2- cos2(0)d8 
7r 

27 

+- 
71 

(2.36) 

(2.37) 

cos2 (0)c10 (2.38) 



Ciq

,d 

2k (f Oi
2 - - cosi+2 (0)d0 + f cosi+2 (0)d0)

_ a_ 
2 

2 fOi 
k cosi+2 (0)d0 

7 — 012-r

(2.39) 

(2.40) 

Substituting c = z in Eq.(2.21) and taking into consideration that 1F(0)1 = -F(0) 

for -."7r < 0 < 0 for this case, the equation of the q-axis saturation curve can similarly 

be written as follows: 

(I)q = 
2 f - Oli 
- ak AT sin2 (0)d0 + -2 f 13' k AT sin2 (0)d0 
7T — — 

+-2 f ak AT sin2 (0)d0 
71 

• 2  — E(-1)2 f — aigalcATi±1 sini+2
i=i 7r 

[(-1)2 f ° aidkATi+l sinz+2(0)d0 + 
- 

n— E — f aigakATi+1 sin2+2 (6)d0 
1 3

The above equation can also be rewritten as: 

n 

(I) = cgAT - E(el a -q + cldaid)ATi+1q t
i=1 

28 

aidkATi+1 sinz+2 (0)d0 

(2.41) 

(2.42) 



where: 

Cog = —
2

Ica (f sin2(0)0 + f 2 Sin 2 Ma) + 
-2 k f sin2 (0) 

1; 71 
(2.43) 

ciqg = (-1)i — k f 131- sir-el-2(0)a + —2 k f 
2 

sin2+2 (0)ds9 (2.44) 
71 — '71 

o 
(-1)2 —k f sinz+2 (0)d0 + 2 —k 

71 —0 71 /0 
0 sini+2 (0)c10 (2.45) 

Comparing Eqs.(2.28) and (2.31) with Eqs.(2.38) and (2.43), respectively, it is 

clear that: 

C
d 
O = X nidu 

co == Xmqu 

(2.46) 

(2.47) 

The representation of the d- and q-axis saturation curves of Eqs.(2.37) and (2.42) 

are polynomials in terms of the ampere-turns AT, and can be rewritten in the fol-

lowing forms: 

41)d = bgAT — E bidATi+i 
i=1 

(1)q = bgAT — E 
i=1 

29 

(2.48) 

(2.49) 



where: 

L 
-- (-

d ,d 
Xv0 0 mdu 

bZ — co = Xn,qu

ba = cc,Igaiq a + cLaid

ciq-etiqa + ciqdaid

with i = 1 • • 11. 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

Using the measured d-axis saturation curve, the coefficients bg and bd of Eqs. (2.48) 

and (2.49) can be obtained by applying the least square errors fitting technique. 

If ATdi , ATd2, ATdr, (m =number of measured points) are the ampere-turns of 

the measured points on the d-axis saturation curve, and C11, C121 • • • (i) dm are the 

corresponding measured magnetic fluxes on the saturation curve, the following matrix 

equation can be set up: 

GI)  dl ATdi ATI • • • A21 

(1:1d2 ATd2 ATd2 • • • ATd2 

dm ATd, Ann • • • ATcnim

30 

bg 

—14 
(2.54) 



Using the notations: 

43.d1 ATdi Aril • • • AT7dli bg 

(1)d2 ATd2 ATd2 • • • A771'2 - bd
Ad = 7 Cd — , Dd (2.55) 

(IDdm ATdm ATdm • • • ATdm bd

Eq.(2.54) becomes: 

Ad CdDd• (2.56) 

To obtain the values of the coefficients bid (i = 0 • • • n), Eq.(2.56) can be solved 

using the pseudo-inverse of Cd. Multiplying both left sides of Eq.(2.56) with CI, the 

following relationship is obtained: 

Then, 

Cd • Ad = CI • Cd • Dd. 

Dd — [CI • Cd] 1 • C d  • Ad 

(2.57) 

(2.58) 

Applying the same procedure of obtaining Eq.(2.58), a similar equation for the 

quadrature axis can be set up: 

Dq = [CgT • Cq]-1 • CqT • Aq (2.59) 
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with: 

(Do ATql Ani • • • Argli

(1)q2 ATo ATq22 • • • ATZ'12
Aq , Cq = , Dq = 

AT AT2 • • • ATn qm gni qm 

where ATql , ATo, ATqn, (m =number of measured points) 

bg 

b7 
(2.60) 

are the ampere-turns 

of the measured points on the q-axis saturation curve, and (Do, (Do, . . . 4) qm are the 

corresponding measured magnetic fluxes on the saturation curve. 

Knowing the values of bcii and b!, a set of linear equations with the saturation 

functions coefficients, aid and aw, as unknowns can be set up using Eqs.(2.52) and 

(2.53) as follows: 

bd = aelgaiq + ccildaid

bq = ac7gaig + cLaid

(2.61) 

Solving Eqs.(2.61), the saturation functions coefficients can be obtained as follows: 

_ -1 

a? acd. zq cd b`l 

a id acq Cd 

(2.62) 

where i = 1, • • • , n. 

2.5 Calculation of the saturation curve in an intermediate 
axis 

As seen from Eq.(2.3), the expressions of the saturation function contains the ab-

solute value of the ampere-turns and it is necessary to substitute —F(0) for IF(0)1 
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quadrature axis 

—7c/2 

direct axis 

0 

quadrature axis 

rc/2 

0 

Figure 2.7: Total air-gap ampere-turns in different axes 

for the regions where F(0) < 0 (Fig.(2.7)). In order to obtain analytical solutions 

for Eqs.(2.19), (2.20), (2.25) and (2.26), different integration intervals have to be 

identified. These are represented in Fig.(2.8) for the case when ( < 2 (1 — 0) and 

in Fig.(2.9) for the case when > 2 (1 — 0). For the case that < 2 (1 — 0), the 

intervals are also listed in Table (2.1), while for the case > 2 (1 — 0), the intervals 

are listed in Table (2.2). 
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quadrature axis 
1, 

direct axis 

igir/2 

quadrature axis 

—n/2 —13102 0 137c/2 7t/2 

[rad] 

Figure 2.8: Integration intervals for ( < — 

Table 2.1: Integration intervals for ( < 2(1 — ,(3) 

interval F(0) µ(0) 
A —F(8) 
B F(9) cep 

C F(0) 
D F(8) 
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quadrature axis 

1 

direct axis quadrature axis 

F(0) 0 y - 0 µ(0) 

—7c/2 —13702 0 [37c/2 
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—n/2 

Figure 2.9: Integration intervals for ( > — j3) 

Table 2.2: Integration intervals for > 2 (1 — j3) 

interval IF (0) µ(0) 
A' —F(0) ap 
B' — F (0) µ 
C' F(0) µ 
D' F(0) ap, 
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2.5.1 Case ( < (1 — 0) 

For the case < 2 (1 — /3), the d-axis component of the air-gap magnetic flux can be 

obtained using Eq.(2.16). In it, the coefficients .1-4 and Id are given by Eqs.(2.17) and 

(2.18), respectively. Using Table (2.1) and Eqs.(2.19) and (2.20), the other coefficients 

I lq and I zdd (i = 1 • • • n) can be written as: 

Iq 
= 2 k i±(( 1)i c i+1— os (0 — () cos(0)d0 cosi+1(0 — () cos (0)d0 

+ fQ 2 cosi+1(0 — () cos(0)d0 

2 
k 

/35- 
cos2+1 (0 — cos(0)d0 

71 

(2.63) 

(2.64) 

For the case when ( < 2 (1 — /3), the q-axis component of the air-gap magnetic 

flux can be obtained using Eq.(2.22). In it, the coefficients I 9 and /gd are given by 

Eqs.(2.23) and (2.24), respectively. Using Table (2.1) and Eqs.(2.25) and (2.26), the 

other coefficients I zqg and .11 (i = 1 • • • n) can be written as: 

Iq = —
2

k 
7T 

f_ +C (-1)' cosi+1 (0 — () sin(0)d0 + cosi+1 (0 — (-) sin(0)d0 
2 

+ fa cos 'i-H (0 — () sin(0)d0 

36 
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I zgd = 2k f COSi+1 (0 — Osin(0)d0 (2.66) 
— 

2.5.2 Case > 2 (1 — )3) 

For the case > 2 (1 — )3), the d-axis component of the air-gap magnetic flux can 

be obtained using Eq.(2.16). In it, the coefficients /4 and Md will have the same 

expression as in Eqs.(2.17) and (2.18). Using Table (2.2) and Eqs.(2.19) and (2.20), 

the other coefficients can be written as: 

1 -idg = —2 k {f -fie (-1)i cost-F-1(0 — () cos(0)c10 + f 3  COSi+1  (0 - () cos(0)a} 
7r 

(2.67) 

-k {f--72L-K 
(-1)z cosi+1 (0 — () cos(B)d0 + f cosi+1 (0 — () cos(0)c10) 

- 

(2.68) 

When > 2 (1 — )3), the q-axis component of the air-gap magnetic flux can be 

obtained from Eq.(2.22), with the coefficients Ioq and Igd given by Eqs.(2.23) and 

(2.24). The other coefficients can be written as: 

2 
k {f COSi  +1  (0 () sin(9)d8 + cosi+1(0 — () sin(0)c/0} 

71- — 

(2.69) 
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IZd 
2 

= k 
{f-i-F( 

— (-1)i cos i (9 — () sin(0)d0 +  cos'+' (0 — () sin(0)a} 

(2.70) 

2.6 The total air-gap magnetic flux 

Using the d- and q-axis components of the total air-gap magnetic flux (1.d and it. q 

expressed in Eqs.(2.16) and (2.22), the magnitude of the total air-gap magnetic flux 

can be calculated as: 

(I)t = + (2.71) 

The angle between the axis of the total air-gap magnetic flux and the direct axis is 

also obtainable from Eqs.(2.16) and (2.22), and can be calculated as: 

(I) 
8' = tan-1 —g-

il l cl .
(2.72) 

In general, the angles ( and (5' are not equal (Fig.(2.10)). The difference between them 

is partly due to the difference in the saturation levels in the direct and quadrature 

axes and partly due to any existence of saliency when the machine is unsaturated. 
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Figure 2.10: Air-gap magnetic flux and ampere-turns 
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Chapter 3 

Experimental verification of the accuracy of the 
proposed method for determining the 
intermediate-axis saturation curves 

In the previous chapter, a new method for determining the saturation curves in the 

intermediate axes of cylindrical-rotor synchronous machines has been introduced. 

The experimental investigations carried out to check the accuracy of this method are 

presented in this chapter. 

3.1 The machine used in the investigation 

To verify the accuracy of the proposed method for determining the saturation curves 

in the intermediate axes of cylindrical-rotor synchronous machines, experimental in-

vestigations were carried out on a 3-kVA, 220-V, three-phase, 4-pole, 60-Hz, cylindrical-

rotor synchronous machine (Mawdsley's Machine, S.N. EA41875). The stator of this 

machine has a three-phase, four-wire, star-connected winding. The rotor is fitted with 

two field windings, one in the direct axis and the other in the quadrature axis and, 

thus, the machine can be excited from both axes. This will allow for its excitation in 

any intermediate axis. 
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3.2 The electrical parameters of the cylindrical-rotor syn-
chronous machine used in the investigations 

The values of the unsaturated d- and q-axis synchronous reactances and the armature 

leakage reactance of the machine used in the investigation were obtained experimen-

tally. These values are needed to determine the k and a constants of the previously 

proposed method. They will also be used to find a suitable per unit system for the 

machine. 

3.2.1 The unsaturated synchronous reactances 

In order to obtain the unsaturated values of the d- and q-axis synchronous reactances, 

the conventional open-circuit and short-circuit tests were used [25, 27]. The unsat-

urated d-axis synchronous reactance X du was obtained from the open-circuit and 

short-circuit tests when the machine was excited by the d-axis field winding, while 

the unsaturated q-axis synchronous reactance Xqu was obtained from the open-circuit 

and short-circuit tests when the machine was excited by the q-axis field winding. 

If ad, [V/A] is the slope of the d-axis open-circuit characteristic (o.c.c.) air-gap 

line and ad„ [Al A] is the slope of the d-axis short-circuit characteristic (s.c.c.) (Fig. 

(3.1)), then X do can be written as: 

X do = ado = 30.14 Q 
V 3adsc 

(3.1) 

If the open-circuit characteristic is represented using the phase voltages, the .13 has 

to be omitted from Eq.(3.1). 
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Figure 3.1: Direct-axis open-circuit and short-circuit characteristics 

Similarly, if ago [V/A] is the slope of the q-axis open-circuit characteristic air-gap 

line and aq„ [A/A] is the slope of the q-axis short-circuit characteristic (Fig.(3.2)), 

then Xqt, can be written as: 

Xqz, =  i_aq° = 28.93 Q. 
v 3agsc

3.2.2 The armature leakage reactance 

(3.2) 

It is a common procedure to approximate the leakage reactance by the Potier reac-

tance measured at rated terminal voltage [18]. However, investigators have found 
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Figure 3.2: Quadrature-axis open-circuit and short-circuit characteristics 

that the value of the Potier reactance determined by this method is larger than the 

value of the leakage reactance [28]. Several authors have reported that the value of 

the leakage reactance approaches the value of the Potier reactance only if the latter 

is measured under highly saturated conditions [29]. In Fig.(3.3) the Potier reactance 

has been obtained [25] for the highly saturated conditions using the open-circuit, 

short-circuit and zero-power-factor (z.p.f.) characteristics and, thus, its value can be 

considered equal to the value of the leakage reactance. 

X1 Xp = 2.58 S2 (3.3) 
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Figure 3.3: Determination of the Potier reactance 

3.3 The per-unit system 

Per-unit systems have been extensively used in the analysis of electrical machines. 

In such an approach, all machine parameters and electrical quantities are used in 

per-unit values, obtained using corresponding base values. In an adequately chosen 

per-unit system, the per-unit values of the open-circuit terminal voltage and the 

corresponding air-gap magnetic flux of a synchronous machine will be equal. Also, 

the per-unit values of the field current and the corresponding ampere-turns will be 
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equal. Thus, the open-circuit characteristics will represent the saturation curves. 

3.3.1 Stator base values 

It is a common practice to choose the rated armature current and the rated terminal 

voltage of synchronous machines to be the stator current and voltage base values, 

respectively: 

/ /,'JA] = /Tal[A] = 7.87 A (3.4) 

Vtb[V] = Vtn[V] = 220 V (3.5) 

where Vb and I t'', are the voltage and armature current base values, and Vtn and Pal 

are the rated terminal voltage and armature current, respectively. Thus, the per-unit 

values of the terminal voltage and armature current can be introduced as: 

Vt[V] Vt[V] 
Vtb[V] Vtn[V] 

/ a[A] /a[A] 
/PL[A] /7:[A] 

Also, the power base value is taken equal to the rated VA, i.e.: 

(3.6) 

(3.7) 

Sb = S n [VA] = 3000 VA, (3.8) 
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and thus, the per-unit representation of the powers can be introduced as: 

S[p.u.] 

P[p.u.] 

Q[p.u.] 

S[VA] S[VA] 
Sb[VA] Sn [VA] 

P[W] P[W] 
Sb[VA] = ST, [VA] 

Q[VAr] Q[VAr] 
Sb [VA] ST, [VA] 

Using Eqs.(3.6) and (3.7) the impedance base value is obtained as follows [30]: 

146 rq 
Zb [C2] = =16.131

faiP z [A] 

3.3.2 Rotor base values 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

The base values for the d- and q-axis field currents are chosen according to the "Xma"-

base per-unit system [31]. In this case, the base value of the d-axis field current is 

expressed as follows: 

rb = i b • X m,du = l a • (X du — X1) = 
f d 7.28 A. 

0 0d and 
(3.13) 

It should be noticed that and has to be calculated here using the phase value of the 

terminal voltage. Similarly, the q-axis field current base value can be expressed as 

follows: 

Ib • (X — Xi ) 
/b —   = 8.06 A fq 

ClOq 
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Using Eqs.(3.13) and (3.14), the base values of the -d and q-axis field winding 

ampere-turns can be expressed as follows: 

ATS = (3.15) 

AT: = (3.16) 

where Nd and Nq are the effective number of turns of the d- and q-axis field windings, 

respectively. For the cylindrical-rotor synchronous machine used for the investigations 

of this thesis, Nd and Nq are 103 and 93, respectivelly. 

From the definitions of the adopted per-unit system, the d- and q-axis base values 

of the field windings ampere-turns should be equal, i.e.: 

ATd = (3.17) 

Using Eqs.(3.13) to (3.16), Eq.(3.17) can be rewritten as follows: 

• (xdu — xi ) , a • (xqu — xi) , Nd
— IV • q 

aOd (14
(3.18) 

Knowing the values of the effective number of turns of the d- and q-axis field windings, 

Nd and Nq, Eqs.(3.18) suggests another approach to find experimentally the value of 

X1, which can be expressed as follows: 

Xi = 
Xdu AQL X AL

and 
qtt ao

q = 2.55 Q. 
N d Nq 

a0d aOq 

(3.19) 

This value is very close to the value obtained in section 3.2.2. 
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3.3.3 Per-unit values of the electrical parameters of the cylindrical-rotor 
synchronous machine used in the investigations 

Using the base impedance value given in Eq.(3.12), the per-unit values of the resis-

tance and reactances of the cylindrical-rotor synchronous machine used in the inves-

tigation are calculated, and they are listed in Table (3.1). 

Table 3.1: Data of the cylindrical-rotor synchronous machine 

Unit Xmdu Xmqa Xl Ra 

[Q] 30.14 28.93 2.58 0.371 
[p.u.] 1.708 1.633 0.160 0.023 

3.4 Calculation of the a and k constants 

Using Eqs.(2.34) and (2.35), and the data of Table (3.1), the constants k and a, which 

are needed to determine the intermediate-axis saturation curves, were calculated for 

the cylindrical-rotor synchronous machine. In this calculation, was taken as the 

ratio of the unslotted region width over one pole to the pole pitch of the machine. 

Table (3.2) lists the values of all these constants. 

Table 3.2: Constants /3, a and k of the cylindrical-rotor synchronous machine 

j3 a k 
0.2 0.891 1.83 
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3.5 The open-circuit characteristic curves 

To verify the accuracy of the method proposed in Chapter 2 for calculating the sat-

uration curves of the cylindrical-rotor synchronous machine under investigation, its 

open-circuit characteristic curves were obtained experimentally by exciting it from 

both its direct and quadrature axes simultaneously, and were compared with the 

saturation curves calculated using the proposed technique. As mentioned in section 

3.3, the open-circuit characteristics and the saturation curves, represented using the 

adopted per-unit system, should be similar. 

In the calculation of the saturation curves, different orders for the polynomials 

representing the saturation functions Sd and Sq have been used to check the minimal 

order of the polynomials which would give acceptable results. 

3.5.1 Using second-order polynomials to represent the saturation func-
tions 

The first set of calculations are done using second-order polynomials to represent the 

saturation functions. In this case, n is equal 2, and the saturation functions can be 

expressed as follows: 

Sd(9) = 1.00 — aidIF(0)1 — a2dIF(9)12 (3.20) 

Sq (0) = 1.00 — ctiq lF(0)1 — a2q1F(9)12 (3.21) 

Applying the method presented in section 2.4 for obtaining the saturation function 
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coefficients, the values of aid and aiq can be calculated (Table (3.3)). Using Eqs.(2.16) 

and (2.22), the d- and q-axis saturation curves are calculated and depicted in Fig. (3.4) 

together with the corresponding measured open-circuit characteristics. Intermediate-

axis saturation curves for = 30°, 45°, 60° and 75° are also obtained using Eq.(2.71), 

and are depicted in Figs.(3.5) to (3.8) together with the corresponding measured 

open-circuit characteristics. It can be observed from these figures that a second order 

polynomial representation for Sd and Sq is not accurate enough, and a higher order 

than n = 2 should be considered. 

Table 3.3: Second-order saturation function coefficients 

i aid aig
1 0.214 0.397 
2 0.042 -0.027 

3.5.2 Using third-order polynomials to represent the saturation functions 

Since the second-order polynomial representation of the saturation functions has not 

produced acceptable results, the case of third-order polynomials has been applied. 

The saturation function coefficients for the case when n = 3 are listed in Table (3.4). 

Figure (3.9) depicts the measured d- and q-axis open-circuit characteristics together 

with the calculated saturation curves. Figures (3.10) to (3.13) are representing the 

measured intermediate-axis open-circuit characteristics and the calculated saturation 

curves for = 30°, 45°, 60° and 75°, respectively. As seen from these figures, the 

calculated saturation curves are still not adequately close to the measured values, 
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Figure 3.4: Direct- and quadrature-axis saturation curves of the cylindrical-rotor 
synchronous machine using second-order saturation functions 
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Figure 3.5: Intermediate-axis ((- = 30°) saturation curve of the cylindrical-rotor 
synchronous machine using second-order saturation functions 
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Figure 3.6: Intermediate-axis (( = 45°) saturation curve of the cylindrical-rotor 
synchronous machine using second-order saturation functions 
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Figure 3.7: Intermediate-axis (( = 60°) saturation curve of the cylindrical-rotor 
synchronous machine using second-order saturation functions 
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Figure 3.8: Intermediate-axis (( = 75°) saturation curve of the cylindrical-rotor 
synchronous machine using second-order saturation functions 
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Figure 3.9: Direct- and quadrature-axis saturation curves of the cylindrical-rotor 
synchronous machine using third-order saturation functions 
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Figure 3.10: Intermediate-axis (( = 30°) saturation curve of the cylindrical-rotor 
synchronous machine using third-order saturation functions 
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Figure 3.11: Intermediate-axis (( = 45°) saturation curve of the cylindrical-rotor 
synchronous machine using third-order saturation functions 
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Figure 3.12: Intermediate-axis (( = 60°) saturation curve of the cylindrical-rotor 
synchronous machine using third-order saturation functions 
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Figure 3.13: Intermediate-axis (( = 75°) saturation curve of the cylindrical-rotor 
synchronous machine using third-order saturation functions 
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Table 3.4: Third-order saturation function coefficients 

aid aiq
1 -0.174 0.121 
2 0.620 0.401 
3 -0.205 -0.156 

and still higher order polynomials should be considered. 

3.5.3 Using fourth-order polynomials to represent the saturation func-
tions 

As it can be seen from Figs.(3.14) to (3.18), the use of the fourth-order polynomials 

to represent the saturation functions result in calculated saturation curves which are 

adequatly close to the measured open-circuit characteristics. The coefficients of these 

saturation function polynomials are listed in Table (3.5). 

Table 3.5: Fourth-order saturation function coefficients 

i a id ci,g
1 -0.425 -0.261 
2 1.315 1.420 
3 -0.791 -0.994 
4 0.154 0.216 

3.5.4 Comparison between the measured and calculated results 

The discrepancies between the measured open-circuit characteristics and the calcu-

lated saturation curves can be represented in the sense of the average error per mea-

surement, and can be found using the following equation: 

Em
E _ 
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Figure 3.14: Direct- and quadrature-axis saturation curves of the cylindrical-rotor 
synchronous machine using fourth-order saturation functions 
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Figure 3.15: Intermediate-axis (( = 30°) saturation curve of the cylindrical-rotor 
synchronous machine using fourth-order saturation functions 
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Figure 3.16: Intermediate-axis (( = 45°) saturation curve of the cylindrical-rotor 
synchronous machine using fourth-order saturation functions 
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Figure 3.17: Intermediate-axis (( = 60°) saturation curve of the cylindrical-rotor 
synchronous machine using fourth-order saturation functions 
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Figure 3.18: Intermediate-axis (( = 75°) saturation curve of the cylindrical-rotor 
synchronous machine using fourth-order saturation functions 

In Eq.(3.22), m is the number of the measured points on an open-circuit charac-

teristic curve,  J are the measured values, and are the calculated values at 

the measured points. Table (3.6) depicts the values obtained for € for the axes 

= 0°, 30°, 45°, 60°, 75°, 90°. As these results show, the discrepancy between the 

measured open-circuit characteristics and the calculated saturation curves decreases 

as the order of the polynomials representing the saturation functions increases. It is 

clear that the fourth-order representation is sufficient to give an adequate result for 

the calculated saturation curves for the cylindrical-rotor synchronous machine used 

in the investigations of this thesis. 
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Table 3.6: Errors obtained using different order polynomials for the saturation func-
tions 

( 2nd order 3 rd order 4th order 
0 0.031 0.012 0.004 

30 0.029 0.016 0.012 
45 0.032 0.022 0.019 
60 0.030 0.016 0.014 
75 0.028 0.016 0.011 
90 0.026 0.014 0.004 

3.6 The air-gap magnetic flux angles 

During the experimental investigations, the air-gap magnetic flux angles (5' were also 

measured using a digital load-angle instrument which has an accuracy within one 

degree, and are given in Fig.(3.19). The values of this angle were also calculated 

using the method presented in Chapter 2, and are depicted in the same figure. It can 

be seen from this figure that there is a good agreement between the calculated (n = 4) 

and the measured values. It has also been observed that the order of the polynomials 

representing the saturation functions has no major influence on the accuracy of the 

calculated values of the air-gap magnetic flux angles. 

3.7 Application to the cases of salient-pole synchronous ma-
chines 

Although the method proposed in Chapter 2 is mainly developed to calculate the 

intermediate-axis saturation curves for cylindrical-rotor synchronous machines, it is 

general in nature and can be applied to the cases of salient-pole synchronous ma-
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Figure 3.19: Air-gap magnetic flux angles S' of the cylindrical-rotor synchronous 
machine 

chines. In order to verify this, the method was applied to obtain the intermediate-axis 

saturation curves of a salient-pole synchronous machine. 

The tested salient-pole synchronous machine has two wound damper windings, 

one in the direct axis and the other in the quadrature axis, in addition to the d-axis 

field winding. Exciting the machine from the direct axis using the field winding, 

and from the quadrature axis using the wound q-axis damper winding, the d-, q-

and intermediate-axis open-circuit characteristics were obtained. Moreover, the cor-

responding saturation curves were calculated using the proposed method. Tables 

(3.7) and (3.8) give the data of this machine which are needed to apply the proposed 
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method and the measured open-circuit characteristics and the calculated saturation 

curves of this salient-pole synchronous machine are presented in Fig.(3.20). The air-

gap magnetic flux angles were also obtained for this machine, and their measured 

and calculated values are depicted in Fig.(3.21). The presented calculated results 

are for the case using fourth-order polynomials for representing the saturation func-

tion and Table (3.9) gives the coefficients of these polynomials. As it can be seen 

from Figs.(3.20) and (3.21), there is a good agreement between the measured and 

calculated results. 

Table 3.7: Data of the salient-pole synchronous machine 

X du X qu Xl Ra
[52] 16.15 9.84 2.58 0.371 

[p.n.] 1.001 0.610 0.230 0.023 

Table 3.8: Constants 0, a and k of the salient-pole synchronous machine 

a 
0.75 0.175 1.004 

Table 3.9: Fourth-order saturation function coefficients for the salient-pole syn-
chronous machine 

i aid a u?

1 0.037 -0.149 
2 -0.111 -0.330 
3 0.180 0.365 
4 -0.045 -0.086 
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Figure 3.20: Saturation curves of the salient-pole synchronous machine 
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Figure 3.21: Air-gap magnetic flux angles (5' of the salient-pole synchronous machine 

63 



Chapter 4 

Inclusion of the cross-magnetizing effect in the 
two-axis frame model of a saturated synchronous 
generator 

As mentioned in Chapter 1, the assumption that there is no magnetic coupling be-

tween the direct and quadrature axes in the two-axis frame model of saturated syn-

chronous machines is one of the main sources of errors when these models are used 

in power systems analysis. Such a magnetic coupling is usually, as mentioned in 

Chapter 1, referred to in the literature as the cross-magnetizing phenomenon. In this 

chapter, a physical interpretation of this phenomenon is presented and the inclusion 

of its effect in the two-axis frame model is discussed. To verify the accuracy of this 

modified two-axis frame model, experimental investigations were carried out on the 

synchronous machines described in Chapter 3. 

4.1 Mathematical representation of the cross-magnetizing phe-
nomenon 

As shown in. Chapters 2 and 3, the total ampere-turns in a saturated synchronous 

machine will result in a total air-gap magnetic flux, whose magnitude, (1)t , and location 

depend on the total ampere-turns, ATE, and the angle between the axis of the ampere-
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turns and the direct axis, In general, the angle between the axis of the resulted 

air-gap magnetic flux and the direct axis, Si, is smaller than the angle (". Figure (4.1) 

shows these relationships represented in a phasor diagram form. In this case, the total 

ampere-turns, ATt, could be represented by two components: one in the direct axis, 

ATd, and one in the quadrature axis, ATq. These two components can be expressed 

mathematically as follows: 

ATd = ATtcos(() (4.1) 

ATq = ATt sin(() (4.2) 

Similarly, the resulted air-gap magnetic flux could be represented by two components: 

one in the direct-axis, ltd,  and the other in the quadrature axis, (DN. These two 

components can also be expressed mathematically as follows: 

(Dtd = (1) t WS(S' ) (4.3) 

4)tq = cl)t sin(Y) (4.4) 

If the d- and q-axis components of the total ampere-turns, ATd and ATq, are 

applied separately to the d- and q-axis saturation curves respectively, as it is the 

case in the conventional two-axis frame model, i.e. if the magnetic coupling between 

the two axes (cross-magnetizing phenomenon) is neglected, the corresponding air-gap 
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(1.„ 

q-axis 

ATq

Figure 4.1: Air-gap flux and ampere-turns phasor diagram 

magnetic flux, Cis and (Dv, will be larger than (Did and 1tq, respectively. Thus, the 

effect of the cross-magnetizing phenomena is to reduce the components of the air-gap 

magnetic flux of the conventional two-axis frame model and can be represented by 

the differences between Ids  and (Dm, and between 11)qs and (DN. Mathematically, the 

cross-magnetizing effect (c.m.e.) can be expressed as follows: 

°Ddq = 40ds 'td 
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= KAdu — Jt cos(J') (4.6) 

(I)qd = (Ns — (Dtq (4.7) 

= K — I t sin(8'), (4.8) 

where T dq and 4'qd are the parameters representing the cross-magnetizing effects in 

the direct and quadrature axes, respectively. 

Analytically, the values of ( clq and 1.0  can be determined using Eqs. (4.6) and 

(4.8). In these equations, the values of the total air-gap magnetic flux (13.t and the 

angle 6' can be calculated using Eqs.(2.71) and (2.72), respectively. The values of 

ds and CD qs can be obtained from the measured d- and q-axis saturation curves, or 

can be calculated using Eqs.(2.37) and (2.42), respectively. To check the accuracy of 

this analytical approach, the two synchronous machines described in Chapter 3 were 

used. From their measured open-circuit characteristics and air-gap magnetic flux an-

gle curves for the various axes, the values of ) dq and (Do can also be calculated using 

the above described procedure. It is worthy to mention here again, that the per-unit 

values of the open-circuit terminal voltage and the corresponding air-gap magnetic 

flux of a synchronous machine are equal. Figures (4.2) to (4.9) show the analytically 

determined values of 4:14 and (i)  qd for both the cylindrical-rotor and salient-pole syn-

chronous machines described in Chapter 3. In Figs.(4.2), (4.3), (4.5) and (4.6), the 

measured values of (I)dq and ' qd are also depicted. 
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Figure 4.5: The cross-magnetization effect I: qd of the cylindrical-rotor synchronous 
machine in various intermediate axes 
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4.2 The phasor diagram of a synchronous generator with the 
cross-magnetizing effect included 

The reductions in the d- and q-axis components of the air-gap magnetic flux of the 

two-axis frame model of saturated synchronous machines due to the cross-magnetizing 

effect, 'dq  and (DO, could be considered as reductions in the corresponding induced 

e.m.fs., E ql d and Edq, respectively. In the adopted per-unit system, these reductions 

in the induced e.m.fs. are equal to the corresponding reductions in the magnetic 

fluxes components, i.e. Eq' d = 4:14 and Edq = (DO, and should lag the corresponding 

reductions of the magnetic flux components by as shown in the phasor diagram of 

Fig.(4.10). 

Since the effect of armature reaction is traditionally represented in the voltage 

phasor diagrams of synchronous machines by voltage drops, /dXd, and / qXqs, the 

same practice is also applied here in representing the effect of the cross-magnetization. 

As shown in the voltage phasor diagram of Fig.(4.10), the inclusion of the cross-

magnetizing effect is represented by two voltage drops, Eqd and Edq , which are equal 

to, and in a direction opposing the corresponding reduction in the induced e.m.fs., 

Eqd and E dq, respectively. 
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I dXdV

Figure 4.10: Phasor diagram of a saturated synchronous generator with the cross-
magnetizing effect included 

4.3 Power/load angle curves with the cross-magnetizing ef-
fect included 

From the phasor diagram of Fig.(4.10), the following equations can be written for the 

direct and quadrature axes: 

0 = IdRa +14 sin(S) + Edq — / aXas (4.9) 

Ef = / dXds + Vt cos(6) + I gRa E qd 
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Using Eqs. (4.9) and (4.10), the d- and q-axis components of the armature current can 

be expressed as: 

Id 
f V Ra 

=   cos(S) 
Xds 

q
Xds 

Eqd

Xds -Ads -Ads Xds 

Ra Edq= V
sin(6) + + 

q Xqs Xqs Xqs 

(4.11) 

(4.12) 

Also, the active and reactive powers at the terminal of the machine can be obtained 

as: 

P = I dVtd IaVtg

= IdV sin(6) + 4Vt cos(6) 

Q = 107N - I gVtd -

= IdVt cos(S) — / qVt sin(6) 

(4.13) 

(4.14) 

Substituting Eqs.(4.11) and (4.12) in Eqs.(4.13) and (4.14) the expressions of the 

steady-state power/load-angle characteristics of synchronous machines including the 

cross-magnetizing effect can be written as follows: 

f
P = 

VtE  
sin(6) + 

Vt2 ( 1 1  ) sin(26) + ViRa 
(i d cos(6) sin(6)1 

Xds 2 Xqs Xds Xqs Xds ) 
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Q 

COS(8) — E qd
Sill(o)

X

) 
ds

2 

vds 

f 
cos(S) Vt

tE 

2 ds qs / 

1 vt2 

2 X ds 

1 
cos(26) 

X„) 

—11„Vt (t is cos(6) +  d xqs sin(8) E qd Ed) — Vt cos(8) + sin(S)) 
A ds X qs 

(4.15) 

(4.16) 

If the effect of the cross-magnetization is neglected (i.e. Edq = 0, Eqd = 0), the 

expressions of the power/load angle characteristics could be obtained using Eqs.(4.15) 

and (4.16), and expressed as follows: 

-Ad Xqs

P = 
 s 

Vm(6) 
E f V2 (  1 1  ) 

+ sin(28) + VtRa 
(Id cos(S) / q sin(S)) 

_Ads 2 Xqs X ds ) 

XVt E f 
 cos(8) 17!: + 

V2( 1 1 cos(2s)
ds z ds qs 2 X dS I 

— Ra Vt 
d 

cos(6) + sin(S) ) . 
ds Xqs 

(4.17) 

(4.18) 

Since the values of the saturated reactances X ds and Xqs and the components 

representing the cross-magnetizing effect depend on the saturation level determined 
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by the loading conditions of the machine, the active and reactive powers as functions 

of the load angle have to be calculated using iterative techniques. The flow chart of 

the program used for such calculations is presented in Fig.(4.11). 

4.4 Experimental verification of the accuracy of the modified 
two-axis frame model 

To check the accuracy of the modified two-axis frame model with the cross-magnetizing 

effect included, the active and reactive powers under various levels of saturation have 

been measured at different load angles for the cylindrical-rotor and salient-pole syn-

chronous generators described in Chapter 3. The measured values have been com-

pared with the analytically determined results using the modified two-axis frame 

model, the same model without including the cross-magnetizing effect, and a two-axis 

frame model with the saturation effect neglected. The values obtained by measure-

ment together with the calculated curves are depicted in Figs.(4.12) to (4.21) for both 

these machines. 

As can be seen from Figs.(4.12), (4.13), (4.18) and (4.19), when the machine 

is operating in the unsaturated region, the effect of saturation is negligible. Under 

saturated operating conditions, the effect of the cross-magnetization on the calculated 

active and reactive powers is evident as shown in Figs.(4.14)-(4.17), (4.20) and (4.21). 

For the calculations using the two-axis frame model with saturation neglected or 

without the proper representation of the cross-magnetizing effect, discrepancies arise 

between the measured and calculated active and reactive power/load angle curves as 
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Figure 4.11: Flow chart of the program used for calculating the active and reactive 
powers for a saturated synchronous machine 
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seen from these figures. From these figures, it can be seen also that the accuracy 

of the calculated reactive powers are more influenced by the neglection of the cross-

magnetizing effect. 

In general, it is clear from all these figures, that there is a good agreement between 

the measured and calculated results when the effect of the cross-magnetization is 

included in the two-axis frame model of saturated synchronous machines. 
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Figure 4.17: Reactive power/load angle curve of the cylindrical-rotor synchronous 
machine; Vt = 1.09 p.u., I I = 1.23 p.u. 
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Figure 4.19: Reactive power/load angle curve of the salient-pole synchronous ma-
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Figure 4.20: Active power/load angle curve of the salient-pole synchronous machine; 
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Figure 4.21: Reactive power/load angle curve of the salient-pole synchronous ma-
chine; Vt = 1.182 p.u., I f = 1.57 p.u. 
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Chapter 5 

Summary and conclusions 

5.1 Summary 

This thesis presents some aspects of the effect of saturation on the modeling and 

steady-state performance of cylindrical-rotor synchronous machines. The main as-

pects of the thesis can be summarized as follows: 

• Chapter 1 is an introduction to the saturation phenomena in synchronous ma-

chines, and a presentation of the conventional approaches to saturated syn-

chronous machines modeling. 

• Chapter 2 presents an analytical method for determining the saturation curves 

in the intermediate axes of cylindrical-rotor synchronous machines from their 

measured d- and q-axis open-circuit characteristics. In the proposed method, an 

equivalent permeability is assumed for the magnetic paths of the synchronous 

machine. Saturation of these magnetic paths is represented by modifying the 

values of the equivalent permeability using polynomial saturation functions. 
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The coefficients of these polynomial functions are determined by applying fitting 

techniques to the measured d- and q-axis open-circuit characteristics of the 

machine. Using the proposed method, the intermediate-axis saturation curves 

and the angles between the air-gap magnetic flux and the direct axis have been 

obtained analytically. 

• In Chapter 3, the accuracy of this proposed method has been verified by com-

paring the measured open-circuit characteristics and the calculated saturation 

curves for various axes for a cylindrical-rotor and a salient-pole synchronous 

machines that can be excited from both their direct and quadrature axes. 

• The concept of the magnetic coupling between the direct and quadrature axes 

(cross-magnetizing phenomenon) of saturated synchronous machines is pre-

sented in Chapter 4. The inclusion of this cross-magnetizing phenomenon in 

the two-axis frame model of synchronous machines is introduced. The cross-

magnetization has been represented as voltage drops caused by the cross-mag-

netizing effect, therefore, allowing the inclusion of the cross-magnetizing effect 

in the phasor diagram of the machine. Power/load angle relationships have 

been developed with the cross-magnetizing effect included. The accuracy of 

this modified two-axis frame model has been verified for both the cylindrical-

rotor and salient-pole machines by comparing the measured values of the active 

and reactive powers with the calculated values for different load angles and 

saturation levels. 
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• In the Appendices, analytical derivations for the saturation function coefficients 

have been included up to the fourth-order polynomial representation. The proof 

of the simplified equations applied in the thesis for the calculation of the unsat-

urated synchronous reactances is also included. 

5.2 Conclusions 

The investigations conducted in this thesis yield the following conclusions: 

• Accurate modeling of saturated synchronous machines in power systems stud-

ies cannot be done without the knowledge of the intermediate-axis saturation 

curves. 

• The method proposed in this thesis for determining the intermediate-axis sat-

uration curves of cylindrical-rotor synchronous machines provides an accurate 

approach for achieving this. The accuracy of this proposed method can be 

improved significantly by using higher order polynomial functions to represent 

the saturation function used to modify the equivalent permeability of the mag-

netic machine model. The order of the polynomials which gives an acceptable 

accuracy is machine dependent. 

• Regarding the air-gap magnetic flux angles of cylindrical-rotor synchronous ma-

chines, the experimental investigations have found that the proposed method 

gives also a good approximation for the calculation of the angles between the 
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axis of the air-gap magnetic flux and the direct axis. Moreover, it has been 

found in the investigations of this thesis, that the calculated values of the angle 

are not sensitive to the order of the polynomials representing the saturation 

functions. 

• The proposed method for determining the intermediate-axis saturation curves of 

cylindrical-rotor synchronous machines is general in nature and can be applied 

also to the cases of salient-pole synchronous machines. 

• It has been found that magnetic coupling (cross-magnetizing phenomenon) ex-

ists between the direct and quadrature axes of both cylindrical-rotor and salient-

pole saturated synchronous machines. This cross-magnetizing phenomenon is 

machine dependent, and it is caused by both the nonlinearity of the saturation 

curves and the saliency of the synchronous machines. 

• The inclusion of the cross-magnetizing effect in the two-axis frame model of syn-

chronous machines improves its accuracy. Neglecting this phenomenon results 

in noticeable inaccuracies in the calculated results using these models. 
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Appendix A 

Analytical derivations 

This appendix contains the analythical expressions for the coefficients cìid, 

and I iqq, introduced in Chapter 2. 

A.1 The coefficients cd idand cd of Eqs.(2.39) and (2.40) zq 

Cdlq 

Cd2c, 

dC3q
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A.2 The coefficients c7q and c7d of Eqs.(2.44) and (2.45) 
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7r 4 

_2 k Er [— cos2(0 — ()] cos(0)0 + f_fri _12: ( cos2(0 — () cos(0)d0 

+ cost (0 — () cos(0)c10 

2 
k 

sin ( 4 (+231 + 3 sin (4(±1r 13) 3 sin (4(-21T /3) 2 

71- 12 

94 



2 — sin ( 4 (- 23") 16 cos( + 12 sin (74) 

12 

i621q 2 k
/ 

f cos3(0 — () cos(0)d0 + f cos3 (0 — C) cos(0)de 

+ fat  cos2(0 — () cos(0)c10 \ 

2 ksin(3(+270)+22 sin (3( + 70) —2 sin(3( - 71 /3) 
71 32 

2 k — sin (3( — 270) 6 sin (( + —6 sin (( — 710) ± (12 713 — 1271) cos( 
71 32 

' 3q = 
—2

k 
7r 

1 _E_K
f {— cost' (0 — ()] cos(0)c10 + f ;, +; cos4 (0 — cos(0)d0 

cos2(0 — cos(0)de 

2 3 sin (8(±
2571 + 5 sin ( 8(+7T13 ) 5 sin ( 8(2") 3 sin (8(-- ") 

7r 240 

2 
k 

20 sin (4(±23'°) + 60 sin (4(2"°) 60 sin (4—+13 ) 

7 240 

2 —20 sin (4(-23") 256 cos( + 180 sin (q) 
k

240 

Ia 

 2 f_ —„i+( cos5(0 — ()cos(0)c/0 + f 2 COS5 (0 - () cos(0)0 
— — k 2

71 
COS5 (19 - () cos(0) d 0 

= k
2 sin (5 ( + 370) + 3 sin (5( + 270) —3 sin (5( — 270) 

7r 384 
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2 
k 

—2 sin (5 ( — 3 7 /(3) + 15 sin (3 ( + 2 7 /3) + 30 sin (3 ( + 7 ,3) 

384 

2 
k 

—30 sin (3 ( — it /3) — 15 sin (3 ( — 2 7,3) + 60 sin (( + 7,3) 

384 

2 
k 

—60 sin (( — it ,3) + (12071 /3 — 120 7) cos ( 
7r 384 

od = 2 k fOi cos(B — () cos(0)c10 
i - 

— 2
k 

sin (( 7,3) — sin (( — 7 /3) + 2 7,3 cos ( 

4 

- 2k f fi ;  cos2(0 — ()cos(0)c/0 
i —,(3i 

2
- k 

sin (4(+237°) + 3 sin (4(+2") 3 sin (4(71 sin (4(-23") + 12 sin (q) 

71- 12 

Ic2id - 2k r cos3(0_,)cos(0)d0 
- 

— 2
k

sin (3 ( + 2 7 /3) + 2 sin (3 + 7 /3) —2 sin (3 ( — 7 — sin (3 ( — 2 7 3) 

32 

+
2

k
6 sin((+7 /3)— 6 sin(( -7,3)+ 127,3 cos( 

32 

= 2k f 
i

02: cos4 (0 — cos(0)c10 
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2 k 3 sin (8C+251  +5 sin (8(+: 5 sin (8c—: ") 3 sin ( 8(-"7T13 ) 
=

71 240 

2 20 sin (4(+231 + 60 sin ( 4(+2"  (4( ) 60 sin  270 ) + k 
71 240 

2 —20 sin ( 4(—:'' 3) + 180 sin (") 
+ k 

71 240 

= 2k / 13012: cos5(0 — () cos(6)d0 

= 2
k

2 sin(5(+370)+3 sin(5(+270)— 3 sin(5(— 270)
71 384 

+
2

k
-2 sin(5(— 370)+15 sin(3(+270)+30 sin(3(+70) 

71 384 

+ 
2 

k 
—30 sin (3 ( — 71- 0) - 15 sin (3 ( — 2 7 0) + 60 sin (( +71/3) 

7r 384 

+ 
2 

k 
—60 sin (( — 71/3) + 120 7 0 cos( 

7r 384 

A.4 The coefficients Iig q and l iqd of Eqs.(2.23) to (2.26) for the 
case ( < 2 (1 — 0) 

!-k (f cose9 — () sin(0)0 + cos(0 — ()sin(0)c/O) 
71 Ofrr

— 2 
k

cos (( + 71-) — cos (( — + (2 071 -  2 7) sin ( 

7r 4 
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Iiq 
= 2 k f 

2 
[— cos2 (0 — sin(0)d0 + f 

+C 
COS2 (0 - Osin(0)dO 

+ f 023_ cost (0 — () sin(0)c10 

2 cos (4(+2 3") 3 cos (“+") + 3 cos (4(-2") 

71 12 

2 —cos (4(-23") 16 sin( 

7T 12 

= 2 k 2
+C cos3 (0 — () sin(0)0 + f_+( cos3(0 — () sin(0)d0 

+foi cos3(64 — ()sin(0)c/0 

= 2
k

cos ( + 2 7r —2 cos (3 ( + 7r0) + 2 cos (3 ( — 70) 
71 32 

2
k  

— cos (3( — 27r + 6 cos (( + — 6 cos (( + (1270 — 1270 sin(
71 32 

f_ +( [— cos4 (0 — sin(0)d0 + f a+( cos4(0 — () sin(0)c10 
- 2 k

2 

7r 
+ 43i cos(0 — Osin(0)c/0 

2 3 cos ( 8(±251 5 cos ( 8(+23" ) ± 5 cos ( 8( 2 "x ) 

7r 240 

2 —3 cos (8 :" cos ) + 20 (4(+237r13) 60 cos (4(±2") 

71" 240 

2 
k 

60 cos (4(-2") 20 cos (4(-3") 256 sin( 

71 240 
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Iq 
= 

z 
2 f — 2 -E( cos5 (0 — () sin (0)c/0 + f_1_( cos5 (0 — () sin(0) 

2 

7r 
±fa 

2 
 COS5  (0 - () sin (0)c/0 

—

I 

2
k

2 cos (5 ( + 3 7 /3) — 3 cos (5 ( + 2 7 + 3 cos (5 ( — 2 70) 
7r 32 

2 k -2 cos (5 ( — 3 7 3) + 15 cos (3 ( + 2 7 —30 cos (3 ( + 7 
7r 32 

2
k

30 cos (3 ( — 7 ,3) — 15 cos (3 ( — 2 773) + 60 cos (( + 3) 

32 

2 
k 

—60 cos (( — 7 ,3) + (120 7 3 — 120 it) sin ( 

384 

Igd = —2 k f 133 cos(0 — () sin(0)c10 
7 

Ild 

= cos (C + 71 3) — cos — 7 ,3) + 2 7 )3 sin 

4 

fOi 
—2 

 
cos2(0 — () sin(0)d0 

7r 

COS ( 
(  

7 )4(+23713) 3 cos (4  -2 r°') + 3 cos ( 4 2 COS 

12 

= 2k 
fOi 

cos3 (0 — (-) sin(0)c10 
7r

13

4(-37 )3)
2 

— 2
k

cos (3 ( + 2 7,3) —2 cos (3 ( + 7 /3) + 2 cos (3 ( — 73) 
7r 32 
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+
2

k
—cos(3(-270)+6 cos((+70)— 6 cos((-70)+1270sin( 

71 32 

2 fOi 4
— k cos (0 — () sin(0)c10 
71 

2 k 3 cos (8(1-57°) 5 cos (8(+2 31  + 5 cos 2 

71 240 

(8(- 237/3)

2 —3 cos (8(-25'1 + 20 cos (4(+23") 60 cos (4(-713) 
k 

71 240 

2 60 cos (4(-21 20 cos (4(-231 
+ k 

71 240 

= 2k 
fOi 

cos5 (0 — sin(0)c10 
71 

— 2
k

2 cos(5(+ 370) — 3 cos(5(+ 270)+3 cos(5(— 270) 
7r 384 

+
2

k
-2 cos (5( — 370) + 15 cos (3( + 270) — 30 cos (3( + 70) 

7r 384 

+ 
2 

k 
30 cos (3 ( — 7 0) — 15 cos (3 ( — 2 70) + 60 cos (( + 71 13) 

71 384 

+ 
2 

k 
—60 cos (( — 7 + 120 7 0 sin ( 

71 384 
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A.5 The coefficients l iciq and /6 of Eqs.(2.17) to (2.20) for the 
case ( > 2(1 — /3) 

1 2 
Oi — r ir 

2 rd 
= —k (f cos(0 — () cos(0)d0 + f cos(0 — cos(9)c10) Oq 

71 

= 2
k

sin (( + 70) — sin (( — 7 + (270 — 2 7r) cos 
7r 4 

I = k (f 13; [— cos2 (0 — ()] cos(0) + f 2 cos t  (0 — () cos(0)a) 
71 

2 k sin (4442371 + 3 sin (4 
2 13) + 3 sin (4( 271 + sin (4( 23") 

71 12 

2 0i 
—k (f cos3 (0 — C) cos(0)c10 + f 2 COS3 (e () COS(0)a )
71 

= 
2

k
sin(3(+ 270)+2 sin(3(+73)— 2 sin(3(-70) 

7r 32 

2
k

— sin (3( — 270) + 6 sin (( + 7 —6 sin (( — 70) — (12 70 — 127x) cos(
71 32 

I d 
3q = —2 k (f [—cos4(0 — ()] cos(0)c/0 + f 2r cos4 (0 — ()cos(0)c/O) 

7 

2 3 sin (8(+2 "a) + 5 sin (8(+ ") + 5 sin (8(- 2371 + 3 sin (8(-257r1(3) 
= k 

7r 240 

+ 
2 

k 
20 sin ( 4(±231 + 60 sin (4(+2") + 60 sin (4(-2" (-23   ) + 20 sin ( 4 713) 

71 240 
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rd 2 t. 
-1 4q 7r n,

I f d 

d 

COS5  (0 — C) COS(e)de f 
2 

COS5  (0 — () COSONO) 

2 

= 
2

k
2 sin(5(+37,3)+3 sin(5(+27,3)— 3 sin(5(— 273)

it 384 

2
k
-2 sin(5(— 37,3)+15 sin(3(+27 /3)+30 sin(3(+7,3) 

384 

2 
k 

—30 sin (3 ( — 7r /3) — 15 sin (3 ( — 2 it /3) + 60 sin (( + it /3) 

384 

2 
k 

—60 sin (( — 7 /3) + (120 71- 8 — 120 7) cos ( 

384 

= 2k / 1302  cos(0 — () cos(0)d0 

sin (( + 7,(3) — sin (( — 7,3) + 2 IT /3 cos 

4 

2
k 

(f —i -K 
— {— cos2 (0 — ()] cos(0)d0 + f cos2 (0 — () cos(0)c19) 

—137-f, — 

2 sin (4(±23") +3 sin (4(+2' 13) +3 sin (4(-21 + sin (4(—: 71 16 cos
k 

12 

-1 
—
2 k (f 

-FC cos3 (0 — () cos(0)d0 + f /3 cos3 (0 — (-) cos(0)c10) 
7T 

— 2
k

sin (3( + 27 /3) + 2 sin (3( + 7,3) — 2 sin (3( — 7,3)
it 32 
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+
2—sin(3( — 270)+6 sin((+ 70) —6 sin(( — 70) +12 7r0 cos( 

7T 32 

Isd 
—•r-1-( fr )3 i 

= — (f oz2 [— cos4 0 ()] cos(0)d0 + f 72,+( cos4 (0 — ()cos(0)d0) 

2
k

3 sin (8(+251 + 5 sin (8(±23") + 5 sin (8(-231r ) 

7r 240 

2 
k 

3 sin (8(-251 + 20 sin (4(±23") + 60 sin (4 -f—C ) 

7T 240 

2 60 sin (4(-2") + 20 sin ( 4 c 2371 256 cos( 
k 

7r 240 

Oir 
= ±( 

—2 k (f—i-F( cos5 — ()cos(0)c10 + f cos5 (0 — ()cos(0)c10 
71 -0z21 - 21

— 2
k
2sin(5(+3713)+3sin(5(+270)-3sin(5(-270)

71" 384 

+
2

k
-2 sin (5( — 3 70) + 15 sin (3( + 2 7r13) + 30 sin (3( + 7r i3) 

7r 384 

+
2

k
-30 sin (3( — -  15 sin (3 ( — 2 7r ,(3) + 60 sin (( + 7r ,(3) 

71 384 

+ 
2 

k 
—60 sin (( — 7r /3) + 120 7r cos

7T 384 
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A.6 The coefficients and lid of Eqs.(2.23) to (2.26) for the 
case > — 

Ioq = —k (f coso — sin(B)c/0 + f 2 cos(g — ()sin(0)c/O) 
71 - 

— 2
k

cos (( + 70) — cos (( — 7 0) + (270 — 27) sin( 

4 

2 —01- ,7
— k (f [— cos2 (0 — sin(0) dO + 

z Q2 

2 cos (4(+23 ' 13) 3 cos (4 air) 3 cos 

71 12 

k cos ( 4(— 
2 
370) +12 cos (q) 2 

7r 12

cos2(9 — ()sin(9)d6) 

( 4 -27r  ) 

I2q = —2 k (f — 
cos3 (0 — Osin(0)d0 + f 2 COS3  (0 - ()sin(0)c/O) 

71 - f' 

— 2
k
cos(3(+270)-2 cos(3(+70)+2 cos(3(-70) 

7r 32 

2
k

— cos (3( — 270) + 6 cos (( + 7 0) 
71 32 

2 
k 

—6 cos (( — + (12 713 — 12 7) sin( 
7r 32 

7r — 

—0 7 i r
— k (f [— cos4 (0 — ()] sin(0)c10 + f 2 cos4 (0 — () sin(0)a) 

- 
2 
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2k 3 cos (8(+257r1 5 cos (8(± 237/3) 5 cos ( 8( 23" ) 
=

it 240 

2 3 cos ( 8(-25") + 20 cos ( 4(+23") 60 cos (4 
2"[3)+ k 

240 

+2 k
-60 cos ( 4(-2") + 20 cos ( 4(-3" ) + 180 cos (Y) 2 

240 

2
k 

(f - Oli 
— cos5 (0 — sin(0)0 + f cos5 (0 — sin(8)d9)
71 0 -1 

— 2
k

2 cos(5(+3713)— 3 cos(5(+270)+3 cos(5(— 27,3) 
384 

2
k
-2 cos (5( — 37 + 15 cos (3(+ 2 713) —30 cos (3 ( + 7 0) 

384 

2 
k

30 cos (3 ( — 7r /3) — 15 cos (3 ( — 2 710) + 60 cos (( + 713) 

384 

2 
k
-60 cos (( — 713) + (120 713 — 120 7) sin

71 384 

Ioa = —2 k f 13i COO — () sin(0)c10 
it — 

= 2
k
cos((+713)—cos((-7,3)+27,3 sin( 

4 

2.r.+
Ila 

= k 
T 

( - 2 ( 
r— cos2(0 — ()] sin(0)0 + f cos2(8 — () sin(0)0) 

7r -fii 
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2 cos (4(4.: ") 3 COS (“+") 3 COS ( 4(-2" ) 
2 

7r 12 

s (4(-23") 16 sin( + 12 cos ( 7--fl 

12 

—
2

k (fiC cos3 (0 — ()sin(0)d0 + f cos3(9 — Osin(0)d0) 
71 -43i 

— 2
k

cos (3( + 2 70) — 2 cos (3( + 7 (3) + 2 cos (3( — 713) 

32 

+ 2 k — cos (3( — 270) + 6 cos +7r,3) 

32 

+ 
2 

k 
—6 cos (( — 7 0) + 127r/ sin(

71 32 

— 7r [_cos4(0 — ()] sin(0)de + f cos4 (0 — ()sin(0)a) 

2 3 cos (8(1- ") 5 cos (8(+3'/ 5 cos (8(-3") 
2 2 j  2 j 

7r 240 

2 3 cos (8" 2 2") + 20 cos (4(1-2 31  60 cos (“±") 

7r 240 

— 
2 

k 
—60 cos (4(-2" 23 ) + 20 cos (4 C — ' 13) 256 sin( + 180 cos ( q ) 

240 

_ k (f --5-2+C 
cos5(0 — ()sin(0)0 + f cos5(0 — ()sin(0)0) 
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- 2
k

2 cos(5C+37,3)— 3 cos(5(+270)+3 cos(5 — 271/3) 
71 384 

+ 
k 

2 —2 cos (5 — 3 7r /3) + 15 cos (3 + 2 it /3) — 30 cos (3 + 7r /3) 

71 384 

+ 
2 

k 
30 cos (3(— — 15 cos (3 ( — 2 71 0) + 60 cos (( + 0) 

71 384 

+ 
2 

k 
—60 cos (( — 7i 0) + 120 71 0 sin 

71 384 
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Appendix B 

Proof of Eqs.(3.1) and (3.2) 

In Eq.(3.1), the synchronous reactance in the direct axis is given by the following 

expression: 

X du = 
CE q0 

Oc:Eq„ • 
(B.1) 

According to the IEEE standards [27], the unsaturated synchronous reactance in the 

direct axis is given by: 

Vn
X du — r , 

scn 
(B.2) 

where VT, is the nominal terminal voltage per phase, and i scri is the short-circuit 

armature current which corresponds to the field excitation that produces 177, on the 

air-gap line. 

If the field current which produces the nominal terminal voltage on the air-gap 

line is If n, the slope of the air-gap line can be written as: 

Vn
ad0 = I 

n

108 

(B.3) 



The short-circuit current corresponding to the field current Ifn can be obtained 

using the slope ad„ of the short-circuit curve as: 

Idscn = adscI fn• 

Using Eq.(B.3), Eq.(B.4) becomes: 

Idscn = adscI fn 

Vn
= adsc • 

ad0 

(B.4) 

(B.5) 

Thus, the expression of the direct-axis unsaturated synchronous reactance can sub-

sequently be written as: 

Vn
Xdu = 

Idscn 

Vn
V 

ads c ado

Od0 
adsc 

(B.6) 

If the terminal voltage is plotted using the line-to-line representation, the slope of 

the direct-axis air-gap line has to be transformed in phase values and will become: 

ado = ado do 

Thus, the unsaturated direct-axis synchronous reactance is expressed by: 

Xdu
aL—L 

dO 
Oadsc •

109 

(B.7) 

(B.8) 



Similar procedure can be applied to obtain the expression of the quadrature-axis 

synchronous reactance: 

X qu = 

110 

(B.9) 
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