
 

 

DEVELOPMENT AND APPLICATION OF  

AN ANTIBODY-BASED PROTEIN MICROARRAY 

 TO ASSESS STRESS IN GRIZZLY BEARS 

 (URSUS ARCTOS)  

 

A Thesis Submitted to the College of 

 

Graduate Studies and Research 

 

in Partial Fulfillment of the Requirements 

 

for the Degree of Doctor of Philosophy 

 

in the Toxicology Graduate Program 

 

University of Saskatchewan 

 

Saskatoon 

   

By 

Ruth Ilona Carlson 

 

© Copyright Ruth Ilona Carlson, March 2011. All rights reserved. 

 



 

i 

PERMISSION TO USE 

In presenting this thesis/dissertation in partial fulfillment of the requirements for a Postgraduate 

degree from the University of Saskatchewan, I agree that the Libraries of this University may 

make it freely available for inspection. I further agree that permission for copying of this 

thesis/dissertation in any manner, in whole or in part, for scholarly purposes may be granted by 

the professor or professors who supervised my thesis/dissertation work or, in their absence, by 

the Head of the Department or the Dean of the College in which my thesis work was done. It is 

understood that any copying or publication or use of this thesis/dissertation or parts thereof for 

financial gain shall not be allowed without my written permission. It is also understood that due 

recognition shall be given to me and to the University of Saskatchewan in any scholarly use 

which may be made of any material in my thesis/dissertation. 

DISCLAIMER 

Reference in this thesis/dissertation  to any specific commercial products, process, or service by 

trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, 

recommendation, or favoring by the University of Saskatchewan. The views and opinions of the 

author expressed herein do not state or reflect those of the University of Saskatchewan, and shall 

not be used for advertising or product endorsement purposes. 

Requests for permission to copy or to make other uses of materials in this thesis/dissertation in 

whole or part should be addressed to: 

 Director of Toxicology Centre  

 University of Saskatchewan 

 44 Campus Dr. 

 Saskatoon, Saskatchewan S7N 5B3 

 Canada 

 

 



 

ii 
 

Abstract 

There is an inherent conflict over land use between humans and wildlife.  Human 

activities can alter habitat, creating pressure on North American large carnivore populations.  

Traditional wildlife techniques can be slow to show population declines, especially in long lived 

species with slow reproduction rates and high mortality of young, such as grizzly bears (Ursus 

arctos), which leads to delayed information for land managers trying to find the balance between 

human use of land and preservation of wildlife.  Concern about population health of grizzlies in 

Western Alberta, Canada has lead to investigation of the impacts of current land use within 

grizzly bear habitat.  The objective of this work was to develop a protein microarray that could 

detect patterns of physiological stress in a rapid manner with small samples of grizzly bear 

tissue.  Sampling from four regions in the foothills of the Rocky Mountains in Alberta resulted in 

the capture of 133 bears.  During the developmental phase, proteins involved with mitochondrial 

function were found, using two dimensional gel electrophoresis, to be altered in situations of 

increased stress.  Limited cross-reactivity was found when evaluating grizzly bear stress protein 

expression using commercially available protein microarrays.  The protein microarray developed 

in this thesis consists of 31commercial antibodies validated for grizzly bears.  These antibodies 

recognize proteins associated with different aspects of the stress response, including the 

hypothalamic-pituitary-adrenal axis, apoptosis/cell cycle, cellular stress, and oxidative stress and 

inflammation. Skin was selected as the tissue for evaluation of protein expression.  Strong 

correlations were found between many of the proteins within functional categories.  Model 

selection for the protein categories revealed variation that corresponded with region, serum 

markers of stress (total cortisol and hsp60), growth, the density of roads in the habitat and the 

amount of anthropogenic change in the bear’s home range.  Regional trends of expression found 

bears in Swan Hills and bears from North highway 16 having elevated expression of the proteins 

measured by the microarray.  The protein microarray was thus able to detect expression patterns 

reflecting physiological and environmental markers.  The array shows great promise for future 

use in detection of potential distress in wildlife populations due to alterations of their habitat. 



 

iii 
 

Acknowledgments 

I would like to thank my thesis supervisor David Janz and my committee Marc Cattet, 

Gordon Stenhouse, Barry Blakley and Scott Napper for their time and assistance.  I would like to 

thank the Foothills Research Institute Grizzly Bear Program for their efforts obtaining all of my 

samples and for allowing me to shadow them, learn about grizzly bear capture and the 

experience of briefly meeting a grizzly in the wild.  For their assistance, I would like to thank P. 

Semchuk, S. Bolch, and A. Lopez-Campistrous from the Institute of Biomolecular Design at the 

University of Alberta, Z. Cheng and B. McConkey from the University of Waterloo as well as 

the technicians who have worked on this project at University of Saskatchewan: B. Sarauer, P. 

Gellrich, L. McPhee and N. Gentner.  Funding was provided through a Natural Sciences and 

Engineering Research Council (NSERC) postgraduate scholarship, Western College of 

Veterinary Medicine (WCVM) Research Trust Fund, WCVM Wildlife Health Fund, the 

Foothills Model Forest, Hinton, AB, Alberta Innovation and Science, a NSERC Collabourative 

Research and Development (CRD) grant, and the partners of the Foothills Research Institute 

Grizzly Bear Research Program. 

For the three and a half years in Saskatoon and persistent faith in me I would like to thank 

my husband, Rob.  For their support and patience I would like to thank my mother, father, and 

brother.  For keeping me sane during my years in Saskatoon I would like to thank Jorgelina, 

Simone and Niti. 

 

  



 

iv 
 

Table of Contents 

Permission to Use  i 

Disclaimer  i 

Abstract  ii 

Acknowledgments  iii 

Table of Contents  iv 

List of Tables  vii 

List of Figures  viii 

List of Abbreviations  x 

 

Chapter 1 Introduction 1 

1.1 Wildlife population health 1 

1.2 Stress 3 

 1.2.1 Allostasis 4 

 1.2.2 Reactive scope model 6 

1.3 Monitoring wildlife health 7 

1.4 Grizzly bears 8 

1.5 Grizzly bears in Canada 10 

1.6 Foothills Research Institute (FRI) grizzly bear research 11 

1.7 Proteins involved in the stress response 12 

 1.7.1 Hypothalamic-pituitary-adrenal (HPA) axis 12 

 1.7.2 Apoptosis and cell cycle 16 

 1.7.3 Cellular stress 19 

 1.7.4 Oxidative stress and inflammation 24 

1.8 Stress protein expression as an “early warning” of animal health 27 

1.9 Hypothesis and goal of study 28 

Chapter 2 Methods 30 

2.1 Animal capture and sample collection 30 

2.2 Sample preparation 31 

 2.2.1 Sample processing for microarrays and western blotting 32 



 

v 
 

 2.2.2 Sample preparation for two dimensional electrophoresis 32 

         2.2.2.1 Keratin stripping of skin samples for two dimensional                            

polyacrylamide gel electrophoresis 

33 

2.3 Two dimensional polyacrylamide gel electrophoresis 34 

2.4 Commercial microarrays 35 

2.5 Antibody testing 35 

2.6 Antibody printing and microarray production 36 

2.7 Antibodies categorized by functional category 39 

2.8 Pooled standard 40 

2.9 Protein labeling 40 

2.10 Microarray hybridization 40 

2.11 Microarray scanning 41 

2.12 Microarray data processing 42 

2.13 Intra-array variation 43 

2.14 Inter-array variation 43 

2.15 Dye exchange experiment 43 

2.16 Antibody and protein dilution experiment 44 

2.17 Protein degradation and preservative experiment 44 

2.18 Assessment of the effects of biological factors and capture method 44 

2.19 Serum measures 46 

2.20 Environmental measures 46 

2.21 Allostatic load 46 

2.22 Comparison of skin and muscle 47 

2.23 Comparison of skin sampling locations 47 

2.24 Statistical analysis 47 

Chapter 3 Results 50 

3.1 Two dimensional polyacrylamide gel electrophoresis 50 

3.2 Commercial arrays 53 

3.3 Grizzly bear protein microarray 53 

 3.3.1 Array validation 53 

 3.3.1.1 Intra- and inter-assay variation 53 



 

vi 
 

 3.3.1.2 Dye experiment 55 

 3.3.1.3 Antibody dilution 56 

 3.3.1.4 Comparison of protein quantities 57 

 3.3.1.5 Protein degradation 58 

 3.3.1.6 Comparison of protein degradation with and without preservative 60 

 3.3.1.7 Tissue comparison (skin and muscle) 61 

 3.3.1.8 Skin sampling location comparison 62 

 3.3.2 Correlation among proteins 63 

 3.3.3 Influence of biological factors, capture method and environmental 

measures on protein expression 

68 

Chapter 4 Discussion 73 

4.1 Relationship between stress protein expression and environmental and 

health measures  

73 

 

4.2 Relationship between stress proteins and health measures 78 

 4.2.1 Body measures 78 

 4.2.2 Serum measures 79 

4.3 Summary measures of protein expression 81 

4.4 Two dimensional gel electrophoresis 84 

4.5 Commercial vs. custom protein microarrays 85 

4.6 Tissue comparison 86 

4.7 Protein quantity 88 

4.8 Protein degradation 89 

4.9 Factors affecting protein expression 91 

4.10 Antibody dilution, dye flipping and array variation 91 

4.11 Conclusion and future directions 92 

Literature Cited 95 

Appendix 1 122 

Appendix 2 125 

Appendix 3 127 

  



 

vii 
 

List of Tables 

2.1 Antibodies chosen for the grizzly bear microarray chip 38 
   
2.2 Physiological function categories of the protein microarray antibodies on the 

custom grizzly bear microarray 
39 

   
3.1 Proteins found to be elevated when comparing a bear thought to be more 

stressed to a matched bear theorized to be less stressed 
51 

   
3.2 Proteins with lower expression when comparing a bear thought to be more 

stressed to a matched bear theorized to be less stressed 
52 

   
3.3 Intra- and inter- array variation: coefficient of variation (%CV) assessment 

of protein expression measurement 
54 

   
3.4 Correlations among proteins involved in the hypothalamic-pituitary-adrenal 

axis 
64 

   
3.5 Correlations among proteins involved in apoptosis and the cell cycle 65 
   
3.6 Correlations among proteins involved in the cellular stress cascade 66 
   
3.7 Correlations among proteins involved with oxidative stress and 

inflammation 
67 

   
A1.1 Validation of antibodies selected from the Hypromatrix commercial array by 

western blotting 
122 

   
A1.2 Validation of antibodies selected from the Sigma commercial array by 

western blotting 
123 

   
A1.3 Validation of antibodies selected from the Spring Bioscience commercial 

array by western blotting 
124 

 

  



 

viii 
 

List of Figures 

2.1 Visual inspection of arrays: missing spots (A), deviant from circular 
(B), hollow centers (C) and debris contamination (D) 

41 

   
2.2 Map of Alberta, Canada showing areas where grizzly bears were 

captured 
45 

   
3.1 Effects of switching dye labeling on grizzly bear skin protein 

expression 
55 

   
3.2 Effects of cytokeratin antibody dilution on measured cytokeratin 

protein expression in grizzly bear skin 
56 

   
3.3 Printing inconsistencies detected with increasing printing buffer 

concentration 
57 

   
3.4 Effects of differing protein amounts on measured protein expression in 

grizzly bear skin 
58 

   
3.5 Effects of holding grizzly bear skin samples at room temperature for 4 

to 48 hours on expression of microarray proteins 
59 

   
3.6 Comparison of measured expression of all 31 proteins between grizzly 

bear skin samples preserved with RNA-later with unpreserved samples 
after holding the samples for 0 to 24 hours at room temperature 

61 

   
3.7 Comparison of protein expression in grizzly bear skin and muscle 62 
   
3.8 Comparison of protein expression sampled from different skin 

locations 
63 

   
3.9 Regional comparison of the first hypothalamic-pituitary-adrenal axis 

(HPA) principal component (PC1) modeled without environmental 
measures 

68 

   
3.10 Regional comparison of the first apoptosis and cell cycle (ACC) 

principal component (PC1) modeled without environmental measures 
69 

   
3.11 Regional comparison of the first cellular stress (CS) principal 

component (PC1) modeled without environmental measures 
70 

   

3.12 Regional comparison of the first oxidative stress and inflammation 
(OSI) principal component (PC1) modeled without environmental 
measures 

71 

   

3.13 Regional comparison of the protein index modeled without 
environmental measures 

72 

   

A2.1 Regional comparison of the cellular stress (CS) differential score 
modeled with environmental measures 

126 



 

ix 
 

   

A3.1 Regional comparison of the hypothalamic-pituitary-adrenal axis (HPA) 
index modeled without environmental measures 

127 

   

A3.2 Regional comparison of the apoptosis and cell cycle (ACC) index 
modeled without environmental measures 

128 

   

A3.3 Regional comparison of the cellular stress (CS) index modeled without 
environmental measures 

129 

   

A3.4 Regional comparison of the oxidative stress and inflammation (OSI) 
index modeled without environmental measures 

130 

  



 

x 
 

List of Abbreviations 

ACC   apoptosis and cell cycle 

ACTH   adrenocorticotropic hormone 

AIF   apoptosis inducing factor 

Akt   protein kinase B 

Apaf   apoptotic peptidase activating factor 

APC   antigen presenting cells 

AVP   arginine vasopressin 

ASK   apoptosis signal-regulated kinase 

BCI   body condition index 

CCR5   chemokine (C-C motif) receptor 

COSEWIC  Committee on the Status of Endangered Wildlife in Canada 

COX   cyclooxygenase 

CRH   corticotropin-releasing hormone 

CS   cellular stress 

CV   coefficient of variation 

Cy   cyanine 

D   dimensional 

E-Cadherin  epithelial-cadherin 

eNOS   endothelial nitric oxide synthase 

FRI   Foothills Research Institute 

GAPDH  glyceraldehyde 3-phosphate dehydrogenase 

GGT   gamma-glutamyltransferase 

GR   glucocorticoid receptor 

GRP   glucose regulated protein 

HO   heme oxygenase 

HPA   hypothalamic-pituitary-adrenal axis 



 

xi 
 

HSC   heat shock cognate 

HSP   heat shock protein 

IFN   interferon 

IL   interleukin 

iNOS   inducible nitric oxide synthase 

IUCN   International Union for Conservation of Nature 

JNK   c-Jun N-terminal kinase 

K   keratin 

L   leukocyte 

LPS   lipopolysaccharide 

MHC   major histocompatibility complex 

NF   nuclear factor 

NO   nitric oxide 

OSI   oxidative stress and inflammation 

PAGE   polyacrylamide gel electrophoresis 

PC   principal components 

POMC   proopiomelanocortin 

PRDX   peroxiredoxin 

R   receptor 

RSF   resource selection function 

SOD   superoxide dismutase 

Th   T helper 

TNFα   tumor necrosis factor alpha 

 



 

1 

Chapter 1 Introduction 

1.1 Wildlife population health  
There is concern about wildlife population health and sustainability worldwide (Cardillo et 

al. 2004, 2006, Millennium Ecosystem Assessment 2005).  A wildlife population is considered 

threatened if it meets one of five of the International Union for Conservation of Nature (IUCN) 

Red List criteria.  The IUCN criteria for labeling a wildlife population as either threatened, 

critically endangered, or endangered and vulnerable, include declining population, geographic 

range fragmentation or decline, small population size combined with fragmentation or decline, 

very small population size, very restricted distribution or a high extinction risk (IUCN 2010).  

Population size is measured as the number of mature individuals capable of reproduction (IUCN 

2001). Climate change, harvest and invasive species are some examples of potential threats to 

wildlife populations (Cardillo et al. 2004, Millennium Ecosystem Assessment 2005, Carroll 

2007).  Expanding human populations and associated impacts such as habitat loss have also been 

attributed as causes of wildlife population declines (Cardillo et al. 2004, Millennium Ecosystem 

Assessment 2005).  An integral part of anthropogenic landscape change is road development.  

Roads have been found to negatively impact some wildlife species through subdivision of 

populations, direct mortality, avoidance or attraction (Forman and Alexander 1998).  

Recreational use of wildlife habitat has also been associated with declines in population density 

of wildlife.  Nature-based tourism and recreational use of wildlife habitat are forecast to increase 

worldwide (Reed and Merenlender 2008).   Extinction risk varies between wildlife species.  

Extinction risks of smaller mammals have been found to be primarily environmental, while in 

larger mammals (above 3 kg in mass) extinction risk is influenced by environmental factors and 

intrinsic traits, such as reproductive rate, population density, geographic range size and weaning 

age (Cardillo et al. 2004, 2005).  With increasing anthropogenic landscape change declines in 

populations are predicted to be more rapid for larger mammalian species (Cardillo et al. 2005).  

Conservation of wildlife species requires understanding of the biogeographic patterns, 

community structure, population dynamics, and individual behaviour and health (Deem et al. 

2001).   Biogeography is defined as where a species lives, at what abundances and why they are 
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present or absent in a particular geographic area (Martiny et al. 2006). The individual health 

issues of interest are those that could affect population health (Deem et al. 2001).   

There are numerous field techniques available to monitor population health, but many are 

labour intensive and expensive. These field techniques include monitoring trends in abundance, 

mortality and reproductive rates. Monitoring population numbers, births and mortalities are 

techniques slow to produce information on population health, and are relatively insensitive to 

immediate changes within populations (Mattson et al. 1996).  Conservation physiology, 

monitoring physiological responses of organisms to human habitat alteration that may cause or 

contribute to population declines, is another, potentially more expedient way to evaluate 

populations that has been employed in the field in recent years (Wikelski and Cooke 2006).  

Studies of endocrinology, immunology, epidemiology and physiological genomics are some 

examples of disciplines that are encompassed by conservation physiology (Wikelski and Cooke 

2006).  Some of the tools of conservation physiologists can even be employed remotely with 

minimal disruption to the animal (Wikelski and Cooke 2006).  Conservation physiology is a 

developing field which can encompass many sensitive and reliable techniques to assess wildlife 

population health. Connecting physiological changes to anthropogenic activities, such as habitat 

alteration, will be important for demonstrating that the physiological changes observed are not 

within the normal fluctuations of the species.  Gene expression changes have been linked to 

reproductive changes in a population after exposure to a chemical stressor (Heckmann et al. 

2008).  The capacity to anticipate problems early enough to take corrective action is vital for 

ecological forecasting, such as wildlife population sustainability analysis (Clark et al. 2001). 

Protein microarrays are one of the latest methods for monitoring human health in the 

clinical setting (Barrier and Mirkes 2005, Cahill 2001, Cutler 2003, Espina et al. 2003, Haab 

2003, Liotta et al. 2003, Templin et al. 2003, Walter et al. 2002).  Similar to technology used in 

gene (cDNA) microarrays, protein arrays consist of a series of molecules that are immobilized 

(spotted) onto known locations on a matrix, allowing determination of increased or decreased 

protein expression compared to a reference sample.  In human studies, patterns of protein 

expression detected by protein microarray have been correlated with pathological states (Wilson 

and Nock 2003).  Protein arrays are able to determine the protein expression patterns in tissue 

homogenates or serum.  The need for protein arrays stems from the generally poor correlation 
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observed between mRNA and protein expression in cells (Cutler 2003).  Advantages of protein 

microarrays include speed, sensitivity and the ability to use small samples, which is very 

beneficial when monitoring wildlife in a non-lethal manner (Wilson and Nock 2003). 

1.2 Stress 

Stress can be defined as a state of threatened homeostasis caused by physiological, 

psychological or environmental stressors (Black and Garbutt 2002).  One of the pioneers of the 

study of stress was Walter Cannon, who proposed that organisms had an evolutionarily adaptive 

physiological reaction to acute stressors, involving adrenalin and the mobilization of energy 

(Cannon 1914).  Another pioneer in stress research was Hans Selye who studied organism 

reactions to stress and proposed the 3-step general adaptation syndrome (alarm-resistance-

exhaustion) (Selye 1936).  The stress response results in the heightening of the senses, 

diminished sensitivity to pain, mobilization of energy and disruption of various biological 

processes (digestion, reproduction, growth, immune response) (Boonstra et al. 1998, Curry and 

Edwards 1998). An animal’s perception of a stressor, shaped by physical condition, physiology 

and prior exposure to the stressor, can influence the nature and extent of the stress response 

(Curry and Edwards 1998, Curry 1999, Romero 2004). An animal’s reaction to a stressor is also 

affected by the type, intensity and duration of the stressor (Curry 1999).  Stressors that represent 

immediate threats to physiological homeostasis activate somatic, visceral or circumventricular 

sensory pathways.  Stressors that an animal anticipates, using higher cortical processes, activate 

limbic-sensitive pathways (Tilbrook and Clarke 2006).  Short term stress can be considered 

adaptive, such as avoiding predators, dealing with overheating resulting from summer weather, 

exercise, or immunological challenge. Long-term stress on the other hand, is generally 

maladaptive and can have various deleterious effects on an individual’s health, long-term 

survival and reproductive output (Boonstra et al. 1998).  Chronic exposure to physiological 

mediators outside normal operating ranges, due to long-term stress, can lead to physiological 

dysregulation of interrelated physiological systems over time.  Physiological dysregulation can 

lead to poor psychological, physical and cognitive functioning and could be viewed as an early 

indicator of morbidity and mortality (Seplaki et al. 2005). 

Long-term stress can have population as well as individual level effects.  Chronically 

elevated glucocorticoid levels have been found to suppress growth, inhibit reproduction, 
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suppress the immune system, affect thyroid function, disrupt secondary cell messengers, disrupt 

learning and memory, suppress growth and cause neuronal cell malfunction (Charmandari et al. 

2005, Das et al. 2005, Wingfield 2005).  Stress can be a risk factor for disease, since prolonged 

stress has been found to accelerate disease processes. The risk for developing disease in an 

individual is an interaction of genetics and environmental factors (Schmidt et al. 2008).  Long-

term stress can also have metabolic effects, as glucocorticoids suppress the actions of growth 

hormone and sex steroids on fat tissue, muscle and bone, which can result in increased visceral 

adiposity and decreased muscle and bone mass (Charmandari et al. 2005).  Corticotropin-

releasing hormone (CRH) can also decrease gastric acid secretion and emptying which affects 

colonic motor function.  Individual heterozygosity in stress responsiveness may result from 

genetic polymorphisms in CRH and arginine vasopressin (AVP) receptors or regulators 

(Charmandari et al. 2005).  Extrapolation to population health from the measurements performed 

on individuals is a key goal when studying wildlife.  Impairments that interfere with or modulate 

an individual’s normal responses to changes in environmental factors, such as nutrition, 

infections or climatic conditions, may negatively affect the long-term persistence of populations, 

through changes in mortality or reproduction (Deem et al. 2001, Wobeser 2006).  A major 

concern is the potential effects of long-term stress on individual health (growth, reproduction and 

immune function) resulting in negative effects on population dynamics. 

1.2.1 Allostasis 

Animals in any environment have predictable changes to deal with, such as breeding and 

hibernating, and unpredictable changes encountered, such as storms.  The process of maintaining 

stability through change as a way an organism deals with unpredictable or predictable challenges 

is termed allostasis (McEwen and Wingfield 2003).  Allostasis is a continuum of all predictable 

and unpredictable events that includes the effects of experience, body condition and habitat.  The 

cumulative cost of allostasis to the body is termed allostatic load.  Allostatic load is the toll on 

the body resulting from its attempts to adapt to physical or psychosocial challenges (McEwen 

2000).  Allostatic load can result from long-term stress (frequent stimulation of the physiological 

stress response by novel stressors), repeated exposure to the same stressful event to which the 

body fails to habituate, failure to terminate the stress response efficiently and inadequate 

hormonal stress response which allows excessive activity of other allostatic systems, such as the 
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inflammatory response of the immune system (McEwen 1998, 2000).  Individual differences in 

response to stressful challenges result from perception and interpretation of the situation, body 

condition, and genetics; this in turn influences an individual’s allostatic load (McEwen 1998, 

McEwen and Seeman 1999). 

Allostatic overload is the condition where an animal’s ability to cope is overwhelmed and 

the potential for harm is high (McEwen and Wingfield 2003).  Allostatic overload has been 

broken down into 2 categories: Type 1 occurs when energy supply cannot meet energy demand 

and Type 2 occurs when there is adequate energy consumption accompanied by social stressors.  

Type 1 allostatic overload triggers temporary physiological changes, an emergency life stage, 

that allows an animal to survive.  The emergency life stage lowers energy demand by sacrificing 

energetic input into processes such as growth or reproduction.  If the energy supply is now 

sufficient to meet demand, the Type 1 overload ends and the animal’s stress response is lowered 

(McEwen and Wingfield 2003, Wingfield 2005).  Emergency life stage is adaptive if it lasts for a 

short time, inhibiting reproductive behaviour, regulating the immune system, increasing 

gluconeogenesis, and increasing foraging behaviour.  If the emergency life stage is prolonged, 

detrimental effects occur such as inhibited reproduction, suppressed immunity, breakdown of 

skeletal muscle and reduced growth (Wingfield and Romero 2001).  Type 2 allostatic overload 

has been observed in humans and captive mammals and is caused by social conflict, captivity, 

injury, depression and a lack of control.  Type 2 allostatic overload does not trigger an 

emergency life stage and can only by alleviated through learning or changes in the environmental 

conditions, such as social structure (McEwen and Wingfield 2003, Wingfield 2005).  Fear and 

anticipatory anxiety can also affect energetic balance as the behavioural changes associated with 

fear can change access to food resources, for example a dominant conspecific can influence 

where, when and the duration of foraging (McEwen and Wingfield 2010).  Beyond energetic 

demands of allostatic load there is also the issue of sustained elevation and dysregulation of 

stress mediators, which can contribute to allostatic load (McEwen and Wingfield 2010).  There is 

concern that the frequency, duration and intensity of changes that free-living vertebrates face in 

their environment has increased because of human activity, such as logging and urban 

development (Wingfield 2005, McEwen and Wingfield 2010). 
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Within the realm of human medicine a cumulative index of biological health risk has 

been created, termed allostatic load (McEwen 1998, McEwen and Seeman 1999).  Symptoms of 

allostatic load, in humans suffering from anxiety disorders, hostile and aggressive states, 

depression and post-traumatic stress disorder, include chemical imbalances, perturbations of 

diurnal rhythm and in some people atrophy of regions of the brain (McEwen 2000).  There is 

evidence of an association between cardiovascular disease, other systemic disorders, and 

depression and hostility (McEwen 2000).  In these human studies, allostatic load was evaluated 

by scoring individual indicators of physiological activity relating to major regulatory systems, 

such as the hypothalamic-pituitary-adrenal (HPA) axis, metabolic processes and the 

cardiovascular system.  Individuals with scores in the top quartile across all patients for 

individual health measures were assigned a point.  The allostatic load score was the sum of all 

the points for each patient (McEwen 2000, Seeman et al. 2004).  The allostatic load score is 

postulated to reflect the diurnal rhythms of stress mediators, diet as well as stress (McEwen 

2000).  Allostatic load was found to account for more of the variance between patients than 

individual health measures, and had higher predictive value for morbidity and mortality than 

individual physiological markers (Seeman et al. 1997, Seeman et al. 2004).  The allostatic load 

during childhood associated with poverty has been observed to predict working memory in 

young adulthood (Evans and Schamberg 2009).  An association has been observed between 

lower socioeconomic status and higher allostatic load (Bird et al. 2009, Seeman et al. 2010).  

Higher allostatic load scores have been associated with declining cognitive and physical function 

in elderly patients as well as being associated with increased risk of cardiovascular disease, 

abdominal obesity, hypertension, diabetes and arthritis (Seeman et al. 1997, Mattei et al. 2010). 

1.2.2 Reactive scope model 

The reactive scope model is an alternative proposal to the allostatic load model (Romero 

et al. 2009).  Reactive scope has four ranges for concentrations of physiological mediators 

involved in the stress response.  Normal reactive scope of an organism includes predictive 

homeostasis, the range that encompass circadian and seasonal variation, and reactive 

homeostasis, the range that responds to unpredictable or threatening environmental changes.  

Reactive homeostasis is equivalent to the emergency life history stage described above.  

Homeostatic overload occurs when the concentrations of mediators rise above the normal 
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reactive scope, while homeostatic failure occurs when levels fall below normal reactive scope.  

Homeostatic overload will be detrimental to individual health if persistent, which may manifest 

as pathology and disease.  Homeostatic failure could be detrimental more acutely.  Cost or wear 

and tear of maintaining physiological mediators in the reactive homeostasis range is modeled by 

a decrease in threshold between reactive homeostasis and homeostatic overload.  The reactive 

scope model tries to bypass the perceived weaknesses of the allostatic model, such as a 

dependence on energy use which can fluctuate with stressors, different life history stages and 

interspecific differences.  Mediators included in the reactive scope model include immune, HPA, 

cardiovascular and central nervous system mediators as well as behavioural changes.  Different 

mediators are modeled separately.  This model can also accommodate responses in anticipation 

of a stressor as well as a response to an actual stressor.  The reactive scope model slopes can be 

determined empirically with young, healthy, naïve animals and are expected to differ between 

species (Romero et al. 2009).  Direct applications of this empirical determination may prove 

problematic for wildlife species, but the principals could be applied. 

1.3 Monitoring wildlife health 

Within the arena of wildlife research there is concern that the stress wildlife experience 

has been increasing with increasing anthropogenic activity in their habitats and landscape 

modification, and that increased stress on individuals may impact population health of certain 

species (Wasser et al. 1997, Wasser et al. 2004, Martinez-Mota et al. 2007, Macbeth et al. 2010).  

As well as the potential for detrimental effects of long-term stress, there is concern that the 

energetic demand of allostasis in addition to the energetic demands of life history stages such as 

breeding, molting, migration and hibernation may create conditions of negative energy balance 

which can result in the switch to an emergency life stage during which reproduction and growth 

of the organism are suppressed (Arlettaz et al. 2007, McEwen and Wingfield 2003).   

 Collecting a large tissue specimen from a species in the wild could lead to infection and 

cause further stress to an already potentially stressed individual.  Like other field methods, in 

wildlife biology the goal is not to do harm to the animals.  However, protein samples obtained 

from small skin and muscle tissue biopsies could be collected from bears without causing undue 

stress.  From these small tissue samples, patterns of stress-associated proteins determined by an 

increase or decrease of protein expression using a protein microarray could be analyzed and 
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validated by correlation to other field data, such as body weight, immune markers in the blood, 

reproductive status or history, and landscape of the animals.  A protein microarray of this type 

may provide an essential tool for early warning of problems in bear populations that would 

indicate the need for further attention.  Furthermore, if the protein microarray is based on 

evolutionarily conserved stress proteins, it potentially could be applied to a wide range of 

wildlife species of concern. 

Thus, protein microarrays could be used to evaluate a suite of stress proteins in free-

ranging wildlife.  This suite of proteins could represent various stress-associated processes in the 

animal, such as oxidative stress, cellular proteotoxicity, neuroendocrine regulation, and cell cycle 

control (i.e., apoptosis and mitosis).  Use of this technique may therefore provide unique and 

detailed information regarding animal stress. As there is no single consistent biological response 

to long-term stress, it can be difficult to identify and measure (Curry and Edwards 1998).  

Mammalian physiology is a complex web of induction and feedback inhibition cascades, and 

proteins associated with stress may be either induced or suppressed.  Depending on the type of 

stressor some inducible proteins may suppress the expression of other proteins via feedback 

loops in the stress response (Tsigos and Chrousos 2002).  Importantly, both increases and 

decreases of stress protein expression are detectable using protein microarray technology.  

1.4 Grizzly bears 

Habitat alteration is a concern for the sustainability of wildlife populations.  Large 

mammalian predators with long lives, high mortality of young, a developmental period of years 

before beginning reproduction, and slow reproduction due to nurturing young for extended 

periods, are at highest risk because problems at the population level may be difficult or take a 

long time to detect.  In addition, such wildlife populations have a low probability of recovering 

quickly assuming the cause of the population decline can be determined and management 

decisions can be made to help the population (Garshelis 2002, Mattson et al. 1996, Pasitschniak-

Arts 1993).  Grizzly bears (Ursus arctos) in certain areas of North America fit into this risk 

category.  

Concerns about the sustainability of grizzly bear populations stem largely from changes 

in their habitat. Grizzly bears are theorized to have a lower resistance to environmental 

disturbances because of the strong philopatry of female offspring to maternal home ranges, the 
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need for quality forage in spring and fall, and their low reproduction rate (Weaver et al. 1996).  

On the western slopes of the Rocky Mountains, grizzly bear populations that were partially 

isolated from the continuous bear population to the north were found to have a lower population 

density.  As the food availability of the two areas was not found to be different it was theorized 

that the difference in density resulted from human impacts on survival and bear habitat (Mowat 

et al. 2005).  Grizzlies have expansive home ranges, from 24 to 1398 km2 for males and from 12 

to 430 km2 for females depending on the distribution of food, distribution of cover, topography 

and various individual characteristics, such as, age, social status and condition of the animal 

(Pasitschniak-Arts 1993).  Habitat alteration is extensive and occurring rapidly in some areas 

because of resource exploration and development and human recreational activities.  In recent 

years extensive alteration of habitat in western Alberta, Canada due to industrial development, 

mining, oil and gas extraction, forestry, municipal development, recreation and road construction 

has occurred.  Roads fragment habitats and the negative effects of this have been observed in 

bears as well as other wildlife.  Roads allow greater human access into bear habitat which can 

lead to human-caused grizzly bear mortality (McLellan et al. 1999, Ciarniello et al. 2007, 

Nielsen et al. 2008, Graham et al. 2010).  It has been reported that grizzly bears underutilize 

habitat near roads, especially female bears (Mattson et al. 1996, Gibeau et al. 2002).  By 

avoiding roads and traffic noise, grizzly females have been found to avoid certain high quality 

habitats (Gibeau et al. 2002).  Female grizzly bears in west-central Alberta have been found to 

cross roads more frequently than males, especially in daylight hours (Graham et al. 2010).  

Females crossing roads would have a greater chance of human encounters, which could increase 

the incidence of female grizzly bear mortality (Graham et al. 2010).  Female grizzly bears were 

also found more often using areas closer to human settlements and places where people may be 

encountered such as parks, areas where bears encounter humans and off-road vehicles as well as 

cars and trucks (Gibeau et al. 2002).  The use of sub-optimal habitats and increased probability 

of encounters with humans could have negative impacts on female survival and reproductive 

output. 

Humans are the leading cause of grizzly bear deaths in the Rocky Mountain area, despite 

controlled hunts and legal protection (Mattson et al. 1996, Benn and Herrero 2002, Garshelis et 

al. 2005).  It has been estimated in areas of interior Rocky and Columbia mountains with legal 

hunting >70% grizzly bear mortality is human related, while in areas without legal hunting 
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where humans have greater access to the habitat the number of bears killed by humans that are 

unreported is likely similar to the number reported (McLellan et al. 1999).  A positive correlation 

has been found between reduced habitat use by bears, bear death and human access to bear 

habitat (Mattson et al. 1996, Benn and Herrero 2002, Nielsen et al. 2004b).  Bears that become 

habituated and food-conditioned live more successfully near humans, but they have a higher 

probability of a shortened lifespan (Mattson et al. 1996, Gibeau et al. 2002).  Grizzlies may 

choose less suitable habitats in order to avoid the stress of human interaction.  There is some 

evidence of adult males using the back-country, less human accessible habitats, forcing adult 

females and younger bears into areas with high probability of human contact (Mattson et al. 

1996). Today it is increasingly difficult to find areas where humans do not have access.  Altered 

bear behaviour, increased bear-human conflicts, and increased need for bear removals and 

displacement of certain cohorts, such as females with young, have been found to result from 

increased human access to the backcountry (Benn and Herrero 2002). 

1.5 Grizzly bears in Canada 

In 2002, the status of the grizzly bear in Canada was classified as a species of Special 

Concern by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC).  

Concern was raised about human use of grizzly bear habitat (Ross 2002). The government of 

Alberta designated the grizzly bear as a threatened species on June 3, 2010.  Use of bear habitat 

for human recreation and resource extraction were primary concerns (Alberta Sustainable 

Resource Development 2006).  Modeling of the relative risk of mortality of grizzly bears in the 

central Rocky Mountains of Canada found that risk of mortality was positively associated with 

human access (Nielsen et al. 2004b).  Grizzly bear females from the eastern slopes of the 

Rockies in Alberta have been found to have a longer interval between litters as well as lower 

reproductive rates compared to grizzlies in other areas. At this time it has not been determined 

why these females have lower reproductive output (Garshelis et al. 2005, Stenhouse et al. 2003). 

Some possible factors that could affect reproduction are chronic stress, disease and low energy 

uptake. It has been found in other species of mammals that reproductive function can be 

compromised when the animal undergoes chronic stress, possibly due to habitat alteration or 

energy use exceeding energy availability (Chrousos and Gold 1992, Schneider 2004). 

Reproduction is energetically expensive, and if an animal has a reduced caloric intake then their 
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reproductive potential may decrease as their body suppresses reproductive hormones (Martin et 

al. 2008).   

Some bears may be lured in by “attractive sinks”, areas where there is higher habitat 

quality linked with higher risk of mortality (Nielsen et al. 2004b). It has been predicted that the 

grizzly bear, an indicator of health of terrestrial ecosystems, will continue to experience habitat 

alterations and population declines in the Canadian Rockies (Benn and Herrero 2002, Nielsen et 

al. 2004b), thus threatening the sustainability of certain populations. 

 One issue for wildlife managers trying to sustain grizzly bear populations is setting 

sustainable harvest rates. Male biased hunting is supposed to protect grizzly bear populations, 

but it has been suggested that excessive adult male mortality may allow immigration of subadult 

and younger adult males that may displace females and kill their cubs (Mattson et al. 1996). A 

three year moratorium of licensed grizzly bear hunting in Alberta was established in 2006 and 

extended through 2009 and 2010 (Alberta Grizzly Bear Recovery Team 2008, Government of 

Alberta 2010).  In order to accurately set hunting limits and protect bear populations, there must 

be information on both the absolute numbers of animals and the health of the bear populations. 

Resource utilization industries also require this information, in order to determine what habitats 

are needed to maintain healthy bear populations.  

1.6 Foothills Research Institute (FRI) grizzly bear research 

In 2008, the Alberta grizzly bear recovery plan was released.  One of its 

recommendations is to increase the knowledge base on grizzly bear habitat and health data 

(Alberta Grizzly Bear Recovery Team 2008).  The Foothills Research Institute (FRI) grizzly bear 

research program brings together collaborators from several academic institutions as well as the 

Alberta government to gather information on food resource use, habitat structure and use, and 

grizzly bear health in Alberta (Stenhouse and Graham 2008).  This project is just one of several 

pertaining to Alberta grizzly bear health. 

1.7 Proteins involved in the stress response 

Animals have an evolutionary conserved suite of proteins that help their bodies deal with 

stress.  These proteins respond to multiple stressors, such as infection and contaminants.  

Patterns of stress protein induction and suppression represent many important physiological 
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processes, such as apoptosis, mitosis, cellular detoxification, oxidative stress, and 

neuroendocrine regulation.  In the following sections, key proteins involved in various aspects of 

the stress response will be introduced. 

1.7.1 Hypothalamic –pituitary-adrenal (HPA) axis 

The molecular cascade after perception of a stressor is rapid.  Within seconds of stress 

perception, there is increased secretion of epinephrine and norepinephrine from the sympathetic 

nervous system and adrenal medulla, increased secretion of oxytocin from the neural lobe of 

pituitary and release of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) 

from pericellular neurons of the hypothalamus into the portal circulation (Carrasco and Van de 

Kar 2003).  AVP potentiates the stimulatory effects of CRH on adrenocorticotropic hormone 

(ACTH) secretion (Carrasco and Van de Kar 2003, Volpi et al. 2004).  Release of CRH and AVP 

from pericellular neurons into the hypophyseal portal system and delivery to the anterior 

pituitary initiates endocrine release of proopiomelanocortin (POMC) derivatives, such as ACTH 

(Carrasco and Van de Kar 2003, Charmandari et al. 2005).  Within five to ten seconds there is an 

increase in ACTH secretion from the pituitary into the general circulation.  Seconds later, there is 

a decrease in secretion of pituitary gonadotropins and increase in secretion of prolactin, growth 

hormone, glucagon and renin from the anterior pituitary, pancreas and kidneys, respectively 

(Carrasco and Van de Kar 2003). Within minutes the adrenal cortex releases glucocorticoids into 

the general circulation, which produces immediate mobilization of glucose for muscle and 

stimulation of hepatic gluconeogenesis (Boonstra 2005).  Physiological changes resulting from 

glucocorticoids include increased focus on perceived threats, mobilization of energy for brain 

and muscle function, redistribution of blood flow, enhanced respiration, heightened 

cardiovascular output, decreased feeding behaviour, alteration of immune function, and 

inhibition of reproductive behaviour (Carrasco and Van de Kar 2003).  As mentioned previously 

this is adaptive in the short term, but can cause deleterious effects with repeated or long-term 

exposure to stress. 

One of the first neuropeptides released in the HPA cascade is CRH (also known as 

corticotropin releasing factor or CRF), which stimulates POMC expression and release of 

ACTH.  Corticotropin-releasing hormone is also a participant in the activation of the sympathetic 

nervous system (Carrasco and Van de Kar 2003).  Two receptors for CRH, CRH-R1 and CRH-
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R2, are found in the central nervous system as well as some areas in the periphery including the 

skin.  The predominant form found in the brain and pituitary is CRH-R1, while CRH-R2 is the 

more prevalent form expressed in peripheral tissues (Slominski et al. 2001).  CRH-R1 expression 

in the hypothalamus is rapidly up-regulated in response to stress and CRH (Herman et al. 2003).  

Both CRH-R1 and CRH-R2 appear to be reciprocal in their roles in modulating anxiety and 

stress induced behaviour, with CRH-R1 involved in anxiety-like behaviour and initiating the 

acute phase of the HPA stress response and CRH-R2 involved in a lessening of anxiety and 

recovery from stress (Carrasco and Van de Kar 2003).  Corticotropin-releasing hormone has 

been associated with immunomodulation both systematically and locally in the skin (Slominski 

and Wortsman 2000).  Corticotropin-releasing hormone and its receptors are therefore intimately 

involved in the body’s reaction to stress. 

Secreted from the hypothalamus, AVP acts synergistically with CRH to activate secretion 

of ACTH and is itself a weak activator of ACTH secretion (Carrasco and Van de Kar 2003).  

Implicated as a neuropeptide that allows for bypass of the negative glucocorticoid feedback, 

AVP may allow for further reaction to stressors in an animal already reacting to a stressor.  It has 

been suggested that in cases of repeated activation of the HPA axis, AVP may be able to override 

the negative glucocorticoid feedback of ACTH release, resulting in continued responsiveness of 

corticotrophs to novel stressors (Carrasco and Van de Kar 2003).  With chronic stress an increase 

in AVP expression and secretion was found (Black 2002, Carrasco and Van de Kar 2003, Volpi 

et al. 2004, Schmidt et al. 2008).  Differences in reaction to specific stressors exist also between 

the sexes.  When challenged with a psychological stressor males employ AVP as the primary 

hormone to cope, whereas oxytocin is the primary hormone used in females (de Kloet 2003).  

Genetic polymorphisms in CRH and AVP receptors or regulators have been theorized to account 

for individual heterozygosity in stress responsiveness (Charmandari et al. 2005).  In addition to 

ACTH release, AVP is involved in body fluid homeostasis, vasoconstriction and facilitating 

social and reproductive behaviours (Donaldson and Young 2008, Aoyagi et al. 2009).  AVP V1a 

receptor, one of the subtypes of AVP receptors, is widely distributed having been located in 

brain, platelets, blood vessels, liver, adrenal gland and uterus (Carrasco and Van de Kar 2003). 

Proopiomelanocortin is released from the anterior pituitary following stimulation by CRH 

and AVP.  Prohormone convertases process POMC into ACTH, β-endorphin and α-melanocyte 
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stimulating hormone.  Adrenocorticotropic hormone is a key regulator of glucocorticoid 

secretion from the zona fasciculata in the adrenal cortex (Carrasco and Van de Kar 2003, 

Charmandari et al. 2005).  Adrenal androgens and aldosterone are also regulated by ACTH 

(Charmandari et al. 2005).  Negative feedback acts to limit the duration of the stress reaction by 

inhibiting POMC gene expression (Sapolsky et al. 2000, Slominski et al. 2000, Dostert and 

Heinzel 2004). 

Glucocorticoids are involved in basic physiological functioning as well as the stress 

response.  Glucocorticoids are involved in carbohydrate and lipid homeostasis, immune function 

regulation, negative feedback on the HPA axis, and gene regulation.  Baseline glucocorticoid 

levels have been found to regulate immune function, increase gluconeogenesis and fat storage, 

regulate ion transport and provide negative feedback for release of ACTH and CRH (Wingfield 

2005).  Basal glucocorticoid levels change temporally as do responses to stressors (Boonstra 

2005).  Glucocorticoids have two types of receptors, high affinity mineralocorticoid and lower 

affinity glucocorticoid receptors (GR) (Carrasco and Van de Kar 2003).  Mineralocorticoid 

receptors are responsible for selection of behavioural responses to stress, controlling the 

sensitivity of the stress system and preventing disruption of cellular homeostasis.  Glucocorticoid 

receptors are involved in behavioural adaptation, facilitating recovery of cellular homeostasis, 

promoting memory formation, controlling energy metabolism, and restraining stress-induced 

responses (de Kloet 2003).  The number of GRs is highly variable depending on cell type 

(Sapolsky et al. 2000).  After activation the receptor translocates to the nucleus where it binds to 

glucocorticoid response elements located in the promoter region of target genes.  Binding of 

glucocorticoid response elements can result in either negative or positive regulation depending 

on the gene.  Activated glucocorticoid receptors can also physically interact with transcription 

factors to modulate gene expression (Charmandari et al. 2005).  Glucocorticoids can down-

regulate GRs (Sapolsky et al. 2000).  Medical students undergoing examination stress were 

found to have decreased levels of GR (Webster Marketon and Glaser 2008).  Chronic stress 

reduced mineralocorticoid receptor and GR mRNA levels in rat hippocampus (Chao et al. 1993, 

Sterlemann et al. 2008).  Central GR desensitization to the negative feedback inhibition by HPA 

axis has been found with chronic stress (Leonard 2005). 
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Prolactin has physiological roles beyond its well known involvement in pregnancy and 

lactation.  Prolactin is involved in immune regulation, growth and osmoregulation of epithelial 

tissues.  Prolactin has been found to be immunostimulatory (Paus 1991, Webster Marketon and 

Glaser 2008).  Prolactin is released following exposure to various stressors, such as competitive 

stress, occupational stress and exercise (Mastorakos et al. 2005, Aizawa et al. 2006, Tomei et al. 

2006).  Other stressors, such as hostile behaviour, parental stress and energetic constraints have 

been found to result in decreased prolactin levels (Cherel et al. 1994, Malarkey et al. 1994, 

Angelier and Chastel 2009).  Prolactin has been found to reduce HPA responsiveness to stress in 

both males and females (Tilbrook and Clarke 2006).  Glucocorticoids can inhibit prolactin gene 

expression (Dostert and Heinzel 2004, Sapolsky et al. 2000).  Prolactin is secreted from the 

anterior pituitary as well as extra-pituitary sites, such as peripheral blood lymphocytes, skin, and 

hair follicles (Paus 1991, Arck et al. 2006, Webster Marketon and Glaser 2008). 

The skin has been found to have a peripheral equivalent of stress-activated HPA axis 

(Arck et al. 2006, Hosoi 2006, Paus et al. 2006).  Skin, the body’s largest organ, is responsible 

for maintaining homeostasis while exposed to a changing external environment.  Mammalian 

skin produces POMC, ACTH, glucocorticoids and GR (Slominski et al. 2000, Slominski and 

Wortsman 2000, Ito et al. 2005, Arck et al. 2006).  Prolactin is produced by mouse skin as well 

as mouse and human hair follicles (Arck et al. 2006).  Species differences have been found, with 

human skin producing CRH, while mouse skin may receive CRH from a neuronal source (Ito et 

al. 2005).  In human and mouse skin, CRH-R1 and CRH-R2 have been detected with species 

specific localization (Slominski et al. 2007).  In mice, CRH-R2 was found in all skin components 

tested (Slominski et al. 2004).  Although the enzymes responsible for processing POMC to 

ACTH and other products have been detected in human skin, epidermal keratinocytes and 

melanocytes, cutaneous nerves, and circulating immune system factors may contribute POMC 

peptides to the skin (Slominski et al. 2000, Konig et al. 2006).  In mouse skin, POMC expression 

and production of POMC peptides is inhibited by glucocorticoids and affected by the hair growth 

cycle (highest levels found in anagen/growth phase) (Slominski et al. 2000, 2007).  Skin 

expression of CRH, POMC and ACTH are also affected by interleukin (IL) 1 and tumor necrosis 

factor α (TNFα) release, cutaneous pathology, and ultraviolet radiation (Slominski et al. 2000).  

Skin pigmentation, immune response and auxiliary systems can be regulated by CRH and POMC 

peptides (Arck et al. 2006).  Acute stress has been found to increase skin CRH expression and 
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enhance skin immune function while long-term stress suppresses skin immunity (Dhabhar 2000, 

Ito et al. 2005).  Acute stress enhancement of immunity is thought to prepare the skin for 

potential wounding and risk of infection (Dhabhar 2000).  Hair follicles have also been found to 

produce CRH, CRH receptor, GR, glucocorticoids and POMC (Slominski and Wortsman 2000, 

Slominski et al. 2000, Kono et al. 2001).  Melanocytes have been found to produce 

glucocorticoids (Arck et al. 2006).  In hair follicles, increasing CRH has been reported to up-

regulate CRH-R1 and 2, and ACTH stimulates the production of glucocorticoids; in addition 

there is evidence of the presence of negative feedback control of glucocorticoid production in 

skin (Ito et al. 2005).  Increased glucocorticoids, resulting from psychological stress, impair skin 

integrity and increase severity of infections (Slominski et al. 2008).  Since skin of mammals 

appears to possess a functional equivalent of the HPA, determination of HPA-associated proteins 

in skin may be a biologically relevant approach to assess chronic stress in wildlife such as grizzly 

bears.  Central stress axis responses and skin stress responses have been found to be linked 

(Pavlovic et al. 2008).  Psychoemotional stress has been found to increase the number of 

cutaneous nerve fibers containing substance P, shifts the cytokine profile in the skin toward TH2 

and increases the parameters of apoptotic dermatitis (Pavlovic et al. 2008, Evers et al. 2010).   

1.7.2 Apoptosis and cell cycle proteins 

Physiological cell death (apoptosis) is part of normal development and maintenance of 

healthy tissue.  Apoptosis, triggered by pro-death signals, is a highly regulated cell death cascade 

characterized by cytoplasmic shrinkage, nuclear disintegration, DNA fragmentation, membrane 

blebbing, and finally fragmentation of the cell into apoptotic bodies (Degterev et al. 2003).  

Apoptosis is an important route for clearing dysfunctional cells such as virally infected cells 

from the body (Cohen 1997).  There are two main apoptosis pathways in mammalian cells.  In 

the mitochondrial pathway, mitochondria play a key role by initiating the release of cytochrome 

c, which results in assembly of the apoptosome and subsequent downstream activation of caspase 

9 and caspase 3.  In the death receptor pathway, binding of members of the death-receptor 

family, Fas and TNFα, to their receptors results in formation of an apoptosis inducing signaling 

complex and subsequently activation of caspase 8 and caspase 3 (Hengartner 2000, van Empel et 

al. 2009).  Diseases such as neurodegeneration, autoimmunity and cancer can result from 

dysregulation of apoptosis (Degterev et al. 2003). 
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The mitochondrial pathway of apoptosis is mediated by the mitochondrial flavoprotein 

apoptosis-inducing factor (AIF).  Induction of the mitochondrial pathway of apoptosis results in 

AIF translocating from the mitochondrial intermembrane space to the nucleus where it facilitates 

chromatin condensation and DNA fragmentation (van Empel et al. 2009).  Apoptosis-inducing 

factor may have oxidoreductase and peroxide scavenging activities and therefore may also have 

an anti-apoptotic role by regulating the production of reactive oxygen species (Krantic et al. 

2007).  Protection against neuronal apoptosis caused by oxidative stress was found to be 

provided by AIF (van Empel et al. 2009). 

Caspases are cysteinyl aspartate-specific proteases that play a central role in apoptosis 

(Lamkanfi et al. 2007).  Caspases are selective about which proteins they cleave (Hengartner 

2000).  Caspases are often categorized as initiator or executioner caspases.  Initiator caspases 

function at the beginning (upstream portion) of the apoptosis cascade, while executioner 

caspases are involved downstream in the apoptosis cascade.  Caspase 1 is considered part of the 

inflammatory caspase group as it is involved in both inflammation and apoptosis (Degterev et al. 

2003, Lamkanfi et al. 2007).  Caspase 1 is an initiator caspase, however it is has not been found 

to be necessary for apoptosis (Cohen 1997).  Caspase 1 is also responsible for the maturation of 

pro-IL 1β and pro-IL18 (Lamkanfi et al. 2007).  Caspase 1 is activated in response to a number 

of bacterial ligands and nucleic acids (Lamkanfi et al. 2002, Lamkanfi et al. 2007).  Caspase 2, 

which has properties of both an initiator and effector caspase, is one of the best conserved 

caspases across species.  Apoptosis triggered by DNA damage, TNF, and different pathogens 

and viruses appears to need caspase 2 at the onset.  Two isoforms of caspase 2 exist, 2L and 2S.  

Caspase 2 is thought to play a role in both positive and negative regulation of cell death.  

Overexpression of caspase 2L and 2S result in induction and suppression of cell death, 

respectively.  Caspase 2 appears to engage the mitochondrial apoptotic pathway by 

permeabilizing the outer mitochondrial membrane and or by changing the association of 

cytochrome c with the inner mitochondrial membrane (Degterev et al. 2003, Zhivotovsky and 

Orrenius 2005).  Caspase 6 is an executioner caspase (Degterev et al. 2003).  Although apoptosis 

in most cases does not require new protein synthesis, in certain circumstances such as 

lipopolysaccharide (LPS) exposure or ischemia, caspase transcription is upregulated (Degterev et 

al. 2003). 
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Proteins within the annexin family are involved in a diverse array of functions within the 

cell from plasma membrane dynamics to cellular differentiation. Annexins have been linked to 

the cell cycle (Schlaepfer and Haigler 1990).  Annexins are highly conserved calcium effector 

proteins, expressed in a variety of tissues (Gerke and Moss 2002).  Dramatic changes in calcium 

and pH homeostasis result from the activation of intracellular pathways via chronic physiological 

stress.  Annexins respond to disease and stress-related cellular changes to assist in the restoration 

of intracellular homeostasis (Monastyrskaya et al. 2009).  Annexin II has been implicated in 

wound closure (Monastyrskaya et al. 2009), and has been linked to stabilization or formation of 

actin assembly and attachment sites at cellular membranes (Gerke et al. 2005).  The ability of 

annexin II to organize ordered lipid microdomains might be important for stabilization of cell-to-

cell contact sites in endothelial and epithelial monolayers and in cell signaling.  Annexin II in 

smooth muscle may be involved in muscle contraction (Gerke and Moss 2002, Gerke et al. 

2005).  Annexin II has been found to be induced in certain cells by changes in cellular redox 

state, both hypoxia and hyperoxidative stress (Gerke and Moss 2002).  Both annexin II and IV 

have been hypothesized to be involved in endocytosis and exocytosis.  Annexin IV has been 

found to have an inhibitory effect on Ca2+-dependent Cl- ion channel activity in epithelial cells 

(Monastyrskaya et al. 2009).  The activity of NF-κB, a transcription factor that regulates genes 

involved in immune response, cell survival and apoptosis, is affected by annexin IV in a Ca2+ 

dependent manner.  Annexin IV may be a substrate for caspase 3 (Jeon et al. 2010). 

Epithelial (E)-cadherin is involved in maintaining structural integrity of the tissues in 

which it is expressed as well as assisting cellular communication and antigen processing.  E-

cadherin is expressed on cell surfaces of all epidermal layers and is involved in selective 

adhesion of epidermal cells (Furukawa et al. 1997).  E-cadherin is involved in the immune 

response by affecting the persistence in the epidermis of Langerhans cells, which present 

antigens to T helper cells (Tang et al 1993).  Actin cytoskeleton-regulated cell communication in 

various developmental and pathological conditions has been found to depend on E-cadherin-

mediated adherens-type intercellular junctions (Mege et al. 2006). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is involved in many cellular 

processes, such as endocytosis, microtubule bundling, and apoptosis, and may be involved in 

RNA and DNA movement and repair.  Present in the cytoplasm, nucleus, endoplasmic reticulum, 
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mitochondria and plasma membrane, GAPDH is a glycolytic enzyme (Tarze et al 2007).  

GAPDH binds to microtubules, affects their bundling, contributes to membrane fusion and is 

involved in endocytosis (Hara et al. 2006, Sirover 1997).  GAPDH may also be involved with 

tRNA export, gene transcription, DNA replication, DNA repair and RNA export (Hara et al. 

2006, Tarze et al 2007).  GAPDH is involved with the initiation of apoptosis and may serve as an 

intracellular sensor of oxidative stress (Berry and Boulton 2000, Chuang et al. 2005).  During 

apoptosis GAPDH is over-expressed and was found to accumulate in the nucleus and 

mitochondria (Chuang et al. 2005, Tarze et al. 2007).  Within the mitochondria GAPDH is 

involved in permeability transition pore complex dependent permeabilization of the inner 

mitochondrial membrane via association with the voltage-dependent anion channel 1 resulting in 

release of cytochrome c and AIF, a critical step in the mitochondrial apoptosis pathway (Tarze et 

al. 2007). 

1.7.3 Cellular stress proteins 

Heat shock proteins (hsp) are involved in a diverse group of cellular functions, including 

cellular protection, protein folding, transport and degradation, and protein-membrane interactions 

(Kopecek et al. 2001).  Heat shock proteins play a role in cellular protection from stressors such 

as cytokines, energy depletion, hypoxia, acidosis, reactive oxygen species, reactive nitrogen 

species, viral infection, thermal damage and ischemia (Kregel 2002).  Hsps are expressed in the 

epidermis, dermis and muscle (Garrido et al. 2001, Liu and Steinacker 2001).  Different hsp 

families are classified based on molecular size with individual hsps differing in cellular locations 

and functions within the cell (Kopecek et al. 2001).  Heat shock protein production requires both 

transcription and posttranscriptional regulatory steps, for instance, a cell can produce more hsp70 

mRNA in response to a stressor, with little hsp70 protein production (Kregel 2002).   

Heat shock protein 27 is involved in enzyme protection and cellular structure 

stabilization.  Certain detoxifying enzymes, such as glutathione transferase, are protected against 

oxidation by hsp27.  Phosphorylated hsp27 protects cells from oxidative stress by modulating 

reactive oxygen species and glutathione levels (Arrigo 2001).  Hsp27 stabilizes microfilaments 

and cytokine signal transduction (Liu and Steinacker 2001).  Within smooth muscle, hsp27 is 

theorized to be involved in actin dynamics and cross-bridge function (Gerthoffer and Gunst 

2001). 
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Hsp70 proteins are highly conserved across species and have diverse protective actions 

within cells.  The hsp70 family includes several proteins that are synthesized in response to 

different stimuli.  Hsp73 or heat shock cognate (Hsc70) is present in unstressed cells at a 

constant level and has been termed constitutive, while hsp72 or hsp70i is highly inducible in 

response to a variety of stressors.  Stressors that result in hsp70i induction include hyperthermia, 

reactive oxygen species, nitric oxide and other reactive nitrogen species and viral infection.  The 

hsp70 family is involved in protein folding, refolding misfolded proteins, prevention of protein 

aggregation, maintenance of structural proteins, degradation of unstable proteins and transitory 

thermotolerance (Kregel 2002).  Hsc70 is involved in unfolding proteins prior to their 

translocation to the mitochondria and targeting proteins for lysosomal degradation (Gething and 

Sambrook 1992).  Hsp70i is induced in muscle during exercise, with heat production being only 

one of the factors in induction (Kregel 2002).  Hsp70i may also be regulated by proinflammatory 

cytokines such as TNFα, IL-1α, and IL-6 (Liu and Steinacker 2001).   

Cellular compartments have specific hsp proteins.  Glucose-regulated protein (Grp) 78, 

also known as binding protein (BiP), is a calcium-dependent chaperone, which binds to partially 

folded proteins in the endoplasmic reticulum (ER) preventing their aggregation. Grp78 is one of 

the proteins involved in triggering the unfolded protein response within the ER which slows 

protein production until unfolded proteins can be folded or marked for destruction, sustains 

cytosolic calcium homeostasis, hinders apoptosis by forming complexes with pro-apoptotic 

molecules, such as caspase 7 and 12, acts as a receptor on the plasma membrane, and plays a role 

in cellular protein secretion  (Gething and Sambrook 1992, Feder and Hofmann 1999, Quinones 

et al. 2008, Zhang and Zhang 2010).  Hsp60, a mitochondrial chaperone, binds unfolded proteins 

and holds them in unassembled states before they are exported or assembled into protein 

oligomers.  Hsp60 also assists in the folding and assembly of polypeptides translocated into the 

mitochondria (Gething and Sambrook 1992).  Within the mitochondria hsp60 is vital for protein 

maturation (Welch 1993).  Hsp60 also functions to refold proteins and prevent aggregation of 

denatured proteins (Kregel 2002). 

Hsp90 has diverse roles within the cell including aiding the conformational maturation of 

proteins, cell cycle control and involvement in the nitric oxide production.  Hsp90 also has roles 

in regulation of steroid hormone receptors and protein translocation (Kregel 2002).  Hsp90 
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shows specificity in binding proteins aiding conformational maturation of steroid hormone 

receptors and signal transducing kinases, such as the death domain kinase receptor-interacting 

protein (Garrido et al. 2001, Vanden Berghe et al. 2003).  Hsp90 is also involved in cell 

proliferation, cell cycle control and mitochondrial homeostasis (Feder and Hofmann 1999, 

Wandinger et al. 2008).  Hsp90 may be involved in the negative feedback loop regulating 

cellular nitric oxide (NO) production (Wandinger et al. 2008), and is required for endothelial NO 

synthase (eNOS) activity.  Conversely, hsp90 can modified by NO, inhibiting its activity, which 

inhibits upregulation of eNOS activity by hsp90 (Wandinger et al. 2008).   

Hsp110 and hsp40 function as cofactors or “assistants” to other hsps.  Hsp110, found in 

the cytoplasm and nucleus, has been found to enhance the rate and yield of hsp70 mediated 

protein refolding (Easton et al. 2000, Dragovic et al. 2006).  Hsp110 binds to and prevents 

aggregation of denatured proteins within cells, but does not assist directly in their refolding.  

Hsp110 assists hsp70 by binding protein while hsp70 folds the protein.  Hsp110 is a nucleotide 

exchange factor for hsp70 (Shaner and Morano 2007).  Hsp40 accelerates ATP hydrolysis which 

enhances hsp70 activity (Shaner and Morano 2007).  Hsp40 also chaperones proteins that target 

proteins to hsp70 and influences hsp70 subcellular location (Fan et al. 2004). 

Stress can induce or result in the induction of a variety of hsps.  Heat shock proteins were 

first discovered by exposing Drosophila melanogaster to a sudden increase in temperature 

(Ritossa 1962).  Heat shock proteins from the hsp70 family have been found to be the most 

sensitive to hyperthermia (Kregel 2002).  Acquired transitory thermotolerance has been observed 

with cells and organism which have been exposed to a prior sublethal heat exposure and has been 

attributed to induction of hsp20, hsp60, hsp70 and hsp110 families (Sanders 1993).  Induction of 

hsps has been associated with increased tolerance to a variety of stressors beyond hyperthermia 

(Kregel 2002).  As natural fluctuations in environmental temperature can result in induction of 

hsps, recent thermal history should be considered when using hsps as a biomarker (Sanders 

1993).  Increased core and tissue temperature resulting from resisting snares or culvert traps or 

running from vehicles used during darting may also have to be considered when evaluating hsps 

in wildlife species such as bears (Kregel 2002).  Hsp27, hsp40, hsp60, hsp70i and hsp90 are 

induced by various stressors, while hsc70 is constitutively expressed (Charveron et al. 1995, 

Scheibel and Buchner 1998, Garrido et al. 2001, Kalmar and Greensmith 2009).  Induction of 
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hsp70 depends on the type of stressor; for example acute electric tail shock, but not acute 

restraint stress, has been found to increase extracellular hsp70 (Campisi et al. 2003).   

Heat shock proteins have also been found to be involved in the regulation of apoptosis.  

Hsp27 and hsp70 have been found to be antiapoptotic.  Hsp60 is reported to be both proapoptotic 

and antiapoptotic (Garrido et al. 2001, Arya et al. 2007, Chandra et al. 2007).  Hsp90 is primarily 

anti-apoptotic (Arya et al. 2007).  Hsp110 can be proapoptotic (Cande et al. 2002).  Hsp27 can 

inhibit apoptosis by interacting with components in the apoptotic signaling pathway involved 

with caspase activation, e.g. caspase 3 and 9 (Garrido et al. 2001, Concannon et al. 2003).  

Hsp60, when released from the mitochondria, has been found to promote caspase 3 maturation 

(Xanthoudakis and Nicholson 2000, Garrido et al. 2001, Chandra et al. 2007).  Under certain 

apoptotic conditions, cytosolic hsp60 appears to increase without mitochondrial release and 

hsp60 promotes cell survival (Chandra et al. 2007).  Hsp60 can bind pro-apoptotic Bax and Bak 

proteins, thereby inhibiting apoptosis (Arya et al. 2007).  The role of hsp60 in apoptosis may 

depend on tissue type, cell type and the apoptotic inducer (Chandra et al. 2007).  Caspase 9 

maturation can also be prevented by hsp70 and hsp90 binding Apaf1.  Hsp70 inhibits AIF 

induced chromatin condensation and Jun N-terminal kinase (JNK) activation (Xanthoudakis and 

Nicholson 2000, Garrido et al. 2001, Chandra et al. 2007).  Hsp70 is also thought to be able to 

interfere with the apoptosis cascade downstream of the activation of caspase 3 (Xanthoudakis 

and Nicholson 2000).  Hsp70 can interfere with the release of cell death factors from the 

mitochondrial membrane (Arya et al. 2007).  Hsp90 can induce nuclear factor (NF)-κB mediated 

inhibition of apoptosis by interaction with Akt and receptor interacting protein (RIP)-1 kinase 

(Xanthoudakis and Nicholson 2000, Garrido et al. 2001, Chandra et al. 2007).  Hsp90, when in 

complex with Akt, can inactivate ASK-1, which inhibits JNK-mediated cell death (Arya et al. 

2007).  In contrast, the mitochondrial apoptosis pathway is induced by hsp90 translocation into 

the mitochondria through interacting with hypoxia-responsive pro-apoptotic protein (Arya et al. 

2007).  Hsp110 can be a caspase activator as it stimulates the apoptosome (Cande et al. 2002).   

Various stressors can result in an increase in extracellular heat shock proteins.  Physical 

trauma, behavioural stress, and reaction to immune signals can result in release of hsp27, hsp60, 

hsp70, grp78, hsp90 and hsp110 from cells.  These extracellular hsps can interact with adjacent 

cells or in the case of hsp60 and hsp70 enter the bloodstream.  They function to initiate signal 
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transduction cascades and transport antigenic peptides.  Extracellular hsps have been found to 

have immune effects.  Extracellular hsp60 has been found to be pro-inflammatory while 

extracellular hsp27 and grp78 have been found to be anti-inflammatory (Calderwood et al. 

2007). 

Various hsp are involved in the actions of the immune system.  Grp78 is involved in the 

initiation of folding of major histocompatibility complex (MHC) I and II (Zugel and Kaufmann 

1999).  Extracellular grp78 and hsp27 have been found to have anti-inflammatory properties 

(Calderwood et al. 2007).  Hsp70 is involved in the processing and presentation of antigens 

(Zugel and Kaufmann 1999).  Hsp70 has been found to increase inducible NO synthase (iNOS) 

and increase NO release from activated antigen presenting cells (APC) (Panjwani et al. 2002).   

Extracellular hsp60, conversely, has been found to be pro-inflammatory and may be involved in 

shifting immune response toward T helper (Th)1 responses via its induction of interferon (IFN)-γ 

and IL-12 following stress exposure (Breloer et al. 2001, Calderwood et al. 2007).  It has been 

hypothesized that extracellular hsp70 may be involved in limiting the reaction to self-antigens 

following tissue damage (Panjwani et al. 2002).  Hsp60 and hsp70 have also been implicated in 

the development of autoimmunity (Zugel and Kaufmann 1999). 

Other than the hsp families described above, another important cellular stress protein is 

cytokeratin.  Depending on the cellular context, cytokeratin can impact cellular size, architecture, 

proliferation and tissue integrity.  Cytokeratin protects cells from mechanical stress and plays a 

role in cellular migration and differentiation (Magin et al. 2007).  Through cell to cell contacts 

cytokeratin play a role in epithelia integrity and mechanical stability (Moll et al. 2008).  The 

keratin cytoskeleton is made up of type I and type II cytokeratins which are part of the cell’s 

intermediate filaments (Magin et al. 2007).  Within the epithelium the cytokeratins present 

depend on the cell type and the stage of cellular differentiation.  Hair follicles and fibers within 

the skin also have many cytokeratins (keratin (K) 25-28 and K71-75, and K31-40 and K81-86, 

respectively) (Moll et al. 2008).  Certain cytokeratins are inducible (K6, K16 and K17) while 

some are up and down regulated following tissue wounding (K1-10) (Magin et al. 2007).  

Cytokeratin intermediate filaments are involved in the resistance to various stresses and 

apoptosis, such as osmotic and hypo-osmotic stress and starvation.  It has been suggested that 

cytokeratins sequester stress-activated phosphate kinases thereby protecting the cell from injury.  



 

24 
 

Cytokeratins can interact to moderate death receptor and cell-intrinsic apoptosis pathways 

(Magin et al. 2007).  Cytokeratins may be affected by glucocorticoids as several isoforms have 

negative glucocorticoid response elements within their DNA sequence (Dostert and Heinzel 

2004). 

1.7.4 Oxidative stress and inflammation proteins 

Stress can affect immune function.  The magnitude of the effect depends on the type of 

stress, intensity and duration (Spencer et al. 2001).  Glucocorticoids are thought to produce a 

shift in immunity with downregulation of Th1 cytokines and upregulation of Th2 cytokines 

(Webster Marketon and Glaser 2008).  Glucocorticoids suppress the production of pro-

inflammatory cytokines and up-regulate various anti-inflammatory cytokines.  Glucocorticoids 

suppress maturation, differentiation and proliferation of innate immune cells (monocytes), T 

cells and B cells (Webster et al. 2002).   

The duration of stress exposure affects whether shifting immunity is harmful or beneficial 

for an organism.  Acute stress generally brings about immunoenhancement, while chronic stress 

is associated with immunosuppression (Dhabhar 2000). The advantages of the selective 

suppression of the immune system by chronic stress include a check on inflammation which can 

be damaging to tissues and suppression of the lethargy and other sickness behaviours that allow 

animals to heal, but might interfere with coping with or escaping the current chronic stressor(s) 

faced.  Immunosuppression associated with chronic stress is not absolute however; as there is 

evidence that in some cases of repeatedly applied and chronic stress there is an attenuation of 

glucocorticoid immunosuppression resulting in immunoenhancement (Black 2002, Nakano 

2004).  Chronic stress has been found to be associated with a rise in pro-inflammatory cytokines 

(Leonard 2005).  In humans, chronically elevated glucocorticoids are associated with protracted 

wound healing and increased susceptibility to viral infections (Webster et al. 2002).  In cattle, 

stressors such as transportation, weaning, restraint, cold and social organization were found to 

increase susceptibility to infection with viruses and bacteria (Aich et al. 2007).  Increased disease 

severity in captive compared to free-ranging cheetahs (Acinonyx jubatus) was hypothesized to 

result from chronic stress (Munson et al. 2005). 
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Oxidative stress is the imbalance between production of free radicals and reactive 

metabolites and antioxidant systems that can lead to damage of biomolecules and organs 

(Durackova 2010). Reactive oxygen species include radicals and metabolites, such as nitric 

oxide, superoxide and hydroxyl radical (Durackova 2010).  Nitric oxide synthases produce NO 

within cells and are important for tissue integrity.  Maintenance of skin barrier function and 

blood flow rate to the microvasculature seem to depend on low level, constitutive NO 

production.  Higher levels of NO production, generated by endothelial NO synthase (eNOS) and 

inducible NO synthase (iNOS), are involved in wound healing (Cals-Grierson and Ormerod 

2004).  At one cellular concentration NO can be protective to the cell and at a higher 

concentration it can promote apoptosis (Cals-Grierson and Ormerod 2004).  Most of the vascular 

NO is produced by eNOS (Forstermann 2006).  The epidermis and dermis are comprised of a 

variety of cells that have been found to express iNOS.  Melanocytes, fibroblasts, 

microvasculature, arrector pili muscle, eccrine coiled duct, apocrine and eccrine secretory glands 

and hair follicles have been found to express eNOS (Cals-Grierson and Ormerod 2004).  

Cytokines or LPS can induce iNOS (IFN-γ, IL-1β, TNF-α) and after induction it produces NO 

until it is degraded (Guzik et al. 2003, Kleinert et al. 2004).  Both Th1 and Th2 cells produce NO 

and their expression may be inhibited by it (Guzik et al. 2003).  Elevated levels of NO can be 

pro-inflammatory (Cals-Grierson and Ormerod 2004).  Antiviral, antimicrobial, and antiparasital 

effects have been attributed to NO (Kleinert et al. 2004).  Nitric oxide and iNOS are influenced 

by and can influence the stress axis.  Glucocorticoids, tumor growth factor-β, IL-4 and IL-10 can 

inhibit the induction of iNOS (Guzik et al. 2003).  Nitric oxide can inhibit CRH-induced ACTH 

secretion and corticosterone secretion (Guzik et al. 2003).  Nitric oxide production can have 

negative consequences within cells.   Nitric oxide reacts with superoxide to form peroxynitrite 

which can interact with proteins, lipids, carbohydrates and DNA leading to oxidative damage of 

tissues (Aktan 2004).   

The immune response and oxidative stress of tissues are influenced by different forms of 

heme oxygenase (HO).  Products of HO activity include biliverdin and Fe.  Biliverdin inhibits 

viral replication and bilirubin, the product of biliverdin, is a potent antioxidant (Maines 1997).  

Both biliverdin and bilirubin inhibit inflammatory responses.  Heme oxygenase 2 (HO2) has 

been suggested as a possible “sink” for NO and gaseous heme ligands (Maines and Panahian 

2001).  Heme oxygenase 2 (HO2) levels are increased by glucocorticoids (Maines 1997).  
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However, long-term restraint stress results in decreased HO2 concentration in the hippocampus 

(Chen et al. 2005). 

Superoxide dismutase (SOD) and peroxiredoxin (PRDX) are part of the evolutionarily 

conserved cellular response to oxidative stress (Kultz 2005).  Superoxide anions are converted by 

superoxide dismutase to hydrogen peroxide, which is then converted to water by peroxiredoxin 

(Kultz 2005).  The isoform SOD1 (Cu/Zn SOD) is found in cytoplasm, while SOD2 (Mn SOD) 

is found in the mitochondria (Zelko et al. 2002).  Both SOD1 and SOD2 are constitutively 

expressed and mRNA levels have been found to dramatically fluctuate under various 

physiological conditions.  Cellular exposure to heavy metals, NO, hydrogen peroxide and 

hypoxia has been found to cause fluctuations in SOD1 levels.  Exposure to cytokines, such as IL-

1, IL-4, IL-6 and TNF-α has been associated with fluctuations in SOD2 (Zelko et al. 2002).  

There is evidence to suggest that SOD2 protects mitochondria functionality from oxidative stress 

(Kokoszka et al. 2001).  Reactive oxygen species are produced to defend against invading 

bacteria during skin wound healing.  Both SOD1 and SOD2 have been found to be involved in 

detoxification of ROS at wound sites, with SOD1 upregulation lasting longer than SOD2, up to 7 

days (auf dem Keller et al. 2006).  Peroxiredoxins are part of the cellular adaptation to oxidative 

stress (Kultz 2005).  There are six mammalian PRDX isoforms (Rhee et al. 2005).  

Peroxiredoxin 3 is a mitochondrial scavenging enzyme for hydrogen peroxide.  Hydrogen 

peroxide, although a weak oxidant, is readily converted to the more powerful oxidant, hydroxyl 

radical, by the Fenton reaction.  Depletion of PRDX3 was found to result in increased hydrogen 

peroxide concentrations and an acceleration of apoptosis triggered by TNFα (Chang et al. 2004).  

Maintaining normal mitochondrial function may require PRDX3 (Wonsey et al. 2002). 

CC chemokine receptor 5 (CCR5) is involved in immune functioning.  Regulating 

trafficking and effector functions, CCR5 is found in memory/effector Th1 cells, immature 

dendritic cells, macrophages and natural killer cells, and is involved in viral pathogenesis and 

inflammatory diseases.  Migration of monocytes, natural killer cells and Th1 cells towards 

inflammation sites involves CCR5 (Balistreri et al. 2007).  CC chemokine receptor 5 is suspected 

to be one of the cell surface receptors involved in mediating the effects of extracellular hsp70 

(Calderwood et al. 2007).   
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Cyclooxygenase (COX) enzymes are involved in prostaglandin production, which affects 

a wide variety of physiological processes.  The first two steps of prostanoid biosynthesis are 

catalyzed by the COX isozymes COX1 and COX2 (Zaric and Ruegg 2005).  A range of normal 

physiological processes involve prostaglandins, such as vasomotor tone, platelet aggregation, 

differentiation of immune cells, nerve growth, wound healing, bone metabolism, renal function, 

initiation of labour, ovulation and kidney function (Dubois et al. 1998, Steer and Corbett 2003).  

COX2 is thought to have a pro-inflammatory role in an acute immune reaction which switches to 

an anti-inflammatory role as the reaction resolves (Willoughby et al. 2000).  Prostaglandins 

participate in regulation of viral replication and modulation of inflammatory response (Steer and 

Corbett 2003).  Viral infection, inflammation and the release of inflammatory cytokines, such as 

TNF, IL1β and IL6, results in an increase in COX2 expression (Dubois et al. 1998, Steer and 

Corbett 2003, Zaric and Ruegg 2005).  Anti-inflammatory cytokines, such as IL4 and IL9, have 

been found to inhibit COX2 expression (Hinz and Brune 2002).  Expression of iNOS and COX2 

are thought to be coordinately regulated under certain inflammatory conditions (Steer and 

Corbett 2003). Stress affects COX2 expression, since glucocorticoids have been shown to inhibit 

the production of COX2 (Sapolsky et al. 2000).   

1.8 Stress protein expression as an “early warning” of animal health 

In developing a protein microarray to measure expression patterns of multiple stress-

associated proteins in wildlife such as grizzly bears, the goal is not to develop a replacement for 

traditional field techniques, as they provide vital information, but instead to develop a unique 

tool to rapidly determine which populations may need the most attention, so as to better allocate 

limited resources and provide an early warning that a wildlife population is at risk.  This 

technique may thus provide more information about stressed populations, which will be useful 

for management decisions.  The rapid assessment of individual grizzly bear health using a stress 

protein microarray may provide justification for use of other, more labour intensive approaches.  

Additionally, in certain endangered and/or protected species this may provide the only glimpse at 

the health of the population.   

Some wildlife techniques may carry risk to specific species.  For example, female 

brushtail possums (Trichosurus vulpecula) handled frequently by researchers were found to have 

lower survival as did their young prior to the age of weaning (Clincy et al. 2001).  Long 
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immobilization during capture has been linked to reduced female fertility of black rhinoceros 

(Diceros bicornis) (Alibhai et al. 2001).  There is also concern about chemical immobilization 

reducing production of young and increasing abandonment of young in mountain goats 

(Oreamnos americanus) (Cote et al. 1998), although in other species no effect of immobilization 

was observed (Cote et al. 1998, Creel et al. 1997).  Age-specific body condition was found to be 

generally poorer in grizzly bears captured more than once (Cattet et al. 2008a).  Previously 

captured grizzly bears were reported have decreased movement rates for up to 3-6 weeks and a 

small proportion of bears were found to have evidence of muscle injury in the limb snared by the 

leg-hold snare (Cattet et al. 2008a).  A tool that would allow evaluation of chronic stress in 

wildlife without the need of capture or immobilization would be a valuable addition to a wildlife 

researcher’s arsenal.  If a microarray indicated increased stress, it may be a strong indicator that 

more scientific study using other research tools is needed. 

A more comprehensive picture of the problems encountered by grizzly bears is required 

for grizzly bear conservation.  Without adequate information of the difficulties faced by these 

animals, wildlife managers and other concerned individuals will not be able to effectively 

allocate or mobilize limited resources (Mattson et al. 1996).  There has been a call in the 

literature for the development of new techniques to assess bear population health, because of the 

uncertainties that exist with current methods (Garshelis 2002).  The increase in ecological 

understanding of wildlife health issues is needed in order to facilitate forecasting of the effects of 

ecological change and assist decision-making process (Clark et al. 2001).  The proteomic 

technique developed in this thesis will add valuable information regarding the health status of 

bear populations and in the future may be adapted to use for other wildlife species, thus making 

its application and significance more extensive. 

1.9 Hypothesis and goal of thesis 

The stress response can be beneficial for reasons varying from avoiding physical attack to 

fending off infection or parasite invasion. The danger exists when an animal is subjected to long-

term stress. Some stress systems cause direct tissue damage when in excess. Chronic stress can 

lead to inhibition of growth, immune function and reproduction that is not only detrimental to 

individual bear health, but also has the potential to have adverse effects at the population level. 

Determining whether long-term stress is influencing a grizzly bear population with lower than 
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normal reproductive rate would be a vital contribution towards forecasting the continued health 

of these populations.  The general working hypothesis of my thesis is that long-term stress 

caused predominantly by landscape change can negatively affect individual grizzly bear health, 

thereby negatively affecting the sustainability of bear populations. 

The overall objective of my research was to develop a protein microarray that detects 

long-term stress in tissue (skin or muscle) biopsy samples collected from free-ranging grizzly 

bears.  The goal was to develop a technique to measure a suite of stress-associated proteins that 

may be up- or down-regulated in individual bears, thus providing a monitoring tool to assist 

wildlife managers in evaluating bear populations at potential risk.  This tool was used to 

determine if the patterns of stress protein expression could be correlated with decreased 

condition in bears or human activity within the bear’s home range, such as road density, 

anthropogenic change and the proportion of habitat protected, thus creating a new tool for 

detecting problems in wildlife population health.  Ideally, the stress protein expression patterns 

will help elucidate whether the grizzly bears in the foothills of Alberta are experiencing long-

term stress, and what specific changes in bear health are occurring. This information may help in 

elucidating why certain grizzly bears in Alberta have a lower reproductive rate than grizzly bears 

in other areas (Garshelis et al. 2005).  



 

30 
 

Chapter 2 Methods 

2.1 Animal capture and sample collection 

The Foothills Research Institute (FRI) Grizzly Bear project captured grizzly bears in 

western Alberta encompassing the area from the Montana border north into the boreal forest and 

centrally to the Swan Hills from 2004 to 2008.  Captures mainly occurred between May and 

June, but trapping began in March and ended in November.  For my thesis research, n=133 

individual bears were captured.  Bears captured by culvert trap included 16 females, 24 males 

and 2 bears whose sex was not determined.  Bears captured by helicopter dart included 12 

females and 12 males.  Bears captured by snare included 22 females and 45 males.  Sex was 

determined by examination of external genitalia.  Capture methods included leg-hold snare, 

remote drug delivery from helicopter and culvert traps (see Cattet 2008 for a detailed capture and 

handling protocol).  Accessibility and terrain openness were used to choose which capture 

method was used (Hobson 2006, Hobson et al. 2008).  Skin and muscle samples were collected 

from captured bears using biopsy needle, biopsy punch or biopsy dart and frozen as soon as 

possible at -20oC.  This protocol was approved by the University of Saskatchewan University 

Committee on Animal Care and Supply each year for the duration of the project.  The protocol 

was in accordance with guidelines of the American Society of Mammalogists Animal Care 

(1998) and Use Committee and the Canadian Council on Animal Care (2003). 

In 2004, muscle biopsies were taken using a Tru-cut biopsy needle (Travenol 

Labouratories Inc., Morton Grove, IL, USA) from the quadriceps muscles of anesthetized bears 

by a veterinarian in the field.  From 2005-2008, one to six 4mm diameter skin samples were 

collected by sterile disposable biopsy punch (Miltex Inc., York, PA, USA) from different areas 

of the body (neck, left forelimb, right forelimb, left hindlimb and right hindlimb).  Before 

sampling, either skin or muscle, a small area (2-3cm diameter) was shaved with rechargeable 

clippers.  The biopsy site was scrubbed with Povidone-iodine and alcohol and then 3-5mL of 2% 

Lidocaine with epinephrine was injected at the biopsy site. Muscle samples were taken by 

making a 2.5mm incision using a scalpel to permit the use of the Tru-cut biopsy needle.  If 

necessary the wound was closed using one or two interrupted sutures (3-0 coated Vicryl).  Skin 

samples were also collected by biopsy dart (Paxarms NZ Ltd., Timaru, NZ) from the left 

hindlimb in bears captured by leg-hold snare.  A Paxarms biopsy dart (5mm long x 4 mm wide 
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cutting head) was fired at close range into the thigh of an anesthetized bear.  The darts fell from 

the skin post impact. 

In addition to the small (approximately 50-100 mg) skin and muscle samples collected 

from captured bears, larger pieces of skin and muscle (approximately 1-2 kg) were 

opportunistically collected from six bears that died through bear management measures, self 

defense actions or were killed by another predator.  In these latter samples, each bear carcass was 

at ambient temperature for between 2 to 12 hours before storage of tissue was possible.  The 

larger bulk quantities of tissue from these bears were used for development of the stress protein 

microarray, as described below. 

In order to determine if there was a difference in skin protein expression depending on 

the location of samples, thirty-one bears had multiple skin samples from varying locations taken 

at time of capture.  From three bears muscle and skin samples were collected for comparative 

analysis.  From 2004-2008, each bear was fitted with an ear-tag radio transmitter. After shaving a 

small (4cm2) area, a 6mm biopsy punch (Miltex, Inc., York, PA, USA) was then used to make a 

hole in the ear to allow the ear-tag to be applied.  The ear punch biopsies were taken and frozen 

for stress protein microarray analysis. 

2.2. Sample preparation 

Microarray development was approached from three angles, using the bulk skin and 

muscle samples described above: (1) testing of commercially available antibodies for their cross-

reactivity with specific grizzly bear proteins, and thus utility in the microarray, (2) two 

dimensional polyacrylamide gel electrophoresis (2D-PAGE) of grizzly bear skin and muscle 

samples followed by mass spectrometry of individual proteins, in order to identify proteins that 

were significantly up- or down-regulated following stress, and (3) evaluation of three 

commercially available antibody-based protein microarrays developed for human biomedical 

(clinical diagnostic) applications.  Once a suitable panel of stress-associated proteins were 

selected using these approaches, the antibodies were used to create a custom protein microarray. 

 For the western blotting and microarrays, skin and muscle samples were processed using 

a modification of established methods (Haab and Zhou 2004).  For the 2D-PAGE, skin and 
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muscle samples were processed using a modification of established methods (Choudhury et al. 

2006 and Doran et al. 2004 respectively). 

2.2.1 Sample processing for microarray and western blotting 

Grizzly bear samples, stored at -80˚C, were homogenized to powder by freezing in liquid 

nitrogen and ground using mortar and pestle. In the case of skin samples, all hair was removed 

prior to homogenization. Proteins were isolated from the homogenized samples by adding 10 ml 

lysis buffer (50 mM HEPES buffer pH 7, 5 mM EDTA, 50 mM NaCl, 10 mM sodium 

pyrophosphate, 50 mM NaF,  10 mM sodium vanadate, 1% Nonidet P40, complete protease 

inhibitor (Roche, Toronto, ON, Canada) per gram of tissue and incubating 15 minutes on ice. 

After centrifuging the lysed samples, the supernatant was collected and concentrated using 

dialysis membrane (Spectra/Por Biotech regenerated cellulose dialysis membrane 133-110, 

Spectrum Labouratories, Inc., Rancho Dominguez, CA, USA) or centrifugal filters (Ultracel 

YM-10, catalog no. 42408, Millipore Corp., Bedford, MA, USA) and stored at -80˚C.  

2.2.2 Sample preparation for two dimensional polyacrylamide gel electrophoresis 

Frozen grizzly bear skin samples were homogenized to powder by freezing in liquid 

nitrogen, removing all hair to skin level and ground using mortar and pestle.  Proteins were 

isolated from the homogenized samples by adding 5ml per gram tissue of lysis solution 

(10 mM Tris pH 8.0, 5 mM magnesium acetate, 8 M urea, 2M thiourea, 4% CHAPS and 

Complete wide-spectrum protease inhibitor Mini (Roche)).  Samples were incubated for 1 hr 

then briefly sonicated at room temperature. Samples were then centrifuged at 4oC for 15 minutes 

at 7500g.  The supernatant was collected and diluted with rehydration solution (2M thiourea, 8M 

urea, trace coomassie brilliant blue, 0.1% Tergitol NP7, 2% CHAPS, Complete wide-spectrum 

protease inhibitor Mini).  This solution was incubated for 30 minutes and then centrifuged at 

11,300g for 2 minutes at 4oC.  The supernatant was then collected and frozen at -80˚C for 

subsequent 2-D gel electrophoresis. 

Frozen grizzly bear muscle samples were homogenized to powder by freezing in liquid 

nitrogen and ground using mortar and pestle.  Proteins were isolated from the homogenized 

samples by adding 5ml per gram tissue of cold buffer A (0.175 M Tris HCl pH 8.8, 5% (w/v) 

SDS, 15% (v/v) glycerol, 0.3 M dithiothreitol, protease inhibitor cocktail including 1 mM EDTA 
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(Roche), 2 μl DNase I / 100 μl buffer).  The homogenate was then filtered through 2 layers of 

miracloth (Calbiochem 475855, EMD Bioscience, Gibbstown, NJ, USA).  Four volumes ice-cold 

100% (v/v) acetone was added and the mixture was mixed by vortexing.  The sample was 

incubated for 1 hour at -20ºC to precipitate the protein.  The sample was centrifuged at 5000g for 

15 minutes at 4oC.  The pellet was washed with 20 ml ice-cold 80% (v/v) acetone.  The sample 

was vortexed, sonicated and washed again.  The sample was centrifuged and resuspended by 

gently vortexing and adding 1 ml buffer B (10 mM Tris pH 8.0, 5 mM magnesium acetate, 

9.5 M urea, 4% CHAPS).  The sample was incubated for 3 hours at room temperature, vortexing 

every 10 minutes for 5 seconds.  The samples were then centrifuged for 20 minutes at 20,000g 

and 4oC.  The supernatant was collected as the sample to be used for 2D-PAGE. 

2.2.2.1 Keratin stripping of skin samples for 2D-PAGE 

Keratin stripping was performed on the skin samples prior to running on 2D-PAGE in 

2006.  Removal of abundant proteins enables one to detect less abundant proteins with 2D-

PAGE (Girault et al. 1989, Shaw and Riederer 2003).  Briefly, the cytokeratin antibody (Abcam 

ab9377, Cambridge, MA, USA) buffer was exchanged by concentrating the antibody (Millipore 

micron ultracel YM-3 cat#42420), centrifuged at 13,000g at 4oC for 60minutes, and then 

resuspended in 7mM HEPES coupling buffer.  Affigel 10 (Bio-Rad 153-6099, Hercules, CA, 

USA) was placed in a column rinsed with 3 volumes of 10mM cold sodium acetate and then 

incubated in a 5mL tube with antibody solution.  The tube was rotated on platform for 4 hours at 

4oC. The gel mix was then transferred back to the column and washed with coupling buffer 6 

times. The last wash was collected and protein content was determined to ensure no protein had 

eluted. The sample was then added to the funnel, and unbound sample was eluted with 0.5% 

Triton X-100 and collected. The protein concentration was then determined (RCDC kit, Bio-

Rad) and the samples were diluted to 1μg protein/μl with buffer B (13mM Tris base pH 8.0, 

18mM magnesium acetate, 9M urea, 65mM CHAPS).  Unless otherwise stated, protein 

concentrations were determined using DC Bio-Rad Protein Assay (Bio-Rad), which is a 

modification of Lowry et al. (1951). 

  



 

34 
 

2.3 Two dimensional polyacrylamide gel electrophoresis 

 Two dimensional gel electrophoresis was used as a tool to identify proteins altered in 

bears paired by age and sex, but thought to be experiencing different levels of stress.  In 2006 

and 2007 2D-PAGE was completed following a protocol in the 2-D electrophoresis handbook of 

GE Healthcare (Piscataway, NJ, USA).  The 2D-PAGE procedure was performed at the Institute 

of Biomolecular Design (IBD, Edmonton, AB, Canada) in 2006 and at the University of 

Waterloo (Waterloo, ON, Canada) in 2007.  Proteins of interest from 2006 and 2007 underwent 

mass spectrometry and identification using MALDI-Tof/Tof and Q-Tof mass spectrometry and 

Mascot software at the IBD. 

 The two dimensional electrophoresis procedures for 2006 and 2007 were conducted 

according to the protocol of GE Healthcare (Piscataway, NJ, USA).  Determination of 

differentially expressed proteins and sample extraction methods were different for each year.  In 

2006, two muscle samples and four skin samples were taken to the Institute of Biomolecular 

Design. Pairs of samples from bears with putatively less and greater stress were compiled using 

the health and landscape data collected when the bears were sampled.  Three 2-dimensional 

electrophoresis experiments were run, one for the muscle pairing and two for the skin samples.  

Each sample was dyed with fluorescent dyes, so that each gel had one sample dyed with cyanine 

(Cy) 3 and one sample dyed with Cy5.  A pool of the skin samples dyed with mono-reactive 

NHS ester cyanine fluorophores Cy2 (GE Healthcare) was used as an internal reference for the 

gels that contained skin samples and a similar pool of muscle was labeled with Cy2.  Protein 

expression pattern differences were evaluated by comparing the fluorescence of Cy3 and Cy5 for 

each protein in the gel, scanned with a GE Typhoon Imager.  For the 2006 samples elevated or 

depressed expression was determined as 5 to 10 fold difference in expression.  For the 2007 

samples elevation and depression of expression was determined by the DeCyder software.  The 

spot picking was done on the same gels stained with Coomassie with an automated Perkin Elmer 

MassPrep Station (Waltham, MA, USA).  Proteins of interest were tryptic digested in gel.  

Briefly, proteins in the gel were de-stained, reduced (DTT), alkylated (iodoacetamide), and 

digested with trypsin (Promega Sequencing Grade Modified).  Digested proteins underwent mass 

spectrometry using MALDI-Tof/Tof and Q-Tof mass spectrometry Protein identities were 

determined using Mascot software (Matrix Science Inc., Boston, MA, USA). 
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Two-dimensional polyacrylamide gel electrophoresis was also conducted in 2007 at the 

University of Waterloo.  The method was the same as above until the analysis of the 2nd 

dimension gel.  The scanning was again conducted with a Typhoon imager but this time 

DeCyder software (GE Healthcare) was used, which was able to determine significant 

differences between paired samples (t-test, p<0.05).  Additional duplicated gels were then run 

with unlabeled samples.  The gels were Coomassie stained and the spots with significant changes 

were picked manually.  The gel pieces were frozen and shipped to the Institute for Biomolecular 

Design where they went through the same in gel digestion and identification as the 2006 

samples. 

2.4 Commercial microarrays 

 Three commercial antibody-based protein microarrays were tested using skin samples 

processed following the method of Haab and Zhou (2004). The same skin samples from the 2D-

PAGE work described above were used. The arrays tested were Hypromatrix Signal 

Transduction antibody array (Hypromatrix, Worcester, MA, USA), Spring Bioscience antibody 

microarray (Spring Bioscience, Fremont, CA, USA) and Sigma Panorama Antibody Cell 

Signaling array (Sigma Aldrich, St. Louis, MO, USA).  The same tissue processing technique 

described above was used except blocking agents and wash buffers provided by suppliers were 

used.  Slides were scanned with an Affymetrix Array Scanner (Affymetrix, Santa Clara, CA, 

USA) with Jaguar software.  The resulting images were processed by ArrayVision software, and 

fold differences were determined by ArrayPipe software (Genome Canada Pathogenomics 

Project, Vancouver, BC, Canada).  The antibodies that showed two-fold or greater differences in 

binding when comparing one sample to another were then validated for use in the customized 

grizzly bear microarray using western blotting, as described below.  The samples run for the 

western blotting were processed using the same technique as the microarray samples. 

2.5 Antibody testing 

As all of the antibodies tested were raised against proteins from non-bear species (human, 

mouse, rat, etc.), a large number of antibodies (285) from 19 companies were screened using 

western blotting (Towbin et al. 1979) to obtain 32 antibodies for subsequent microarray 

development with strong signal and low background (i.e., non-specific binding).  Isolated 
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proteins from bulk bear tissue samples were denatured and separated by size with SDS-PAGE 

using 7.5%, 12.5% or 15% acrylamide gels.  Proteins larger than 100kDa were separated with 

7.5% gels, while those smaller than 40kDa were separated with 15% gels.  Proteins in the gel 

were then transferred to a 0.22 μm nitrocellulose membrane (PVDF Transfer membrane Hybond-

P, GE Healthcare) and hybridized with a dilution of a chosen antibody.  Hybridization of the 

antibody was detected using enhanced chemiluminescence (ECL Plus Western Blotting detection 

reagents RPN2133, GE Healthcare) wherein a secondary horseradish peroxidase-conjugated 

antibody (rabbit anti-goat IgG ab6741 [Abcam, Cambridge, MA, USA], donkey anti-mouse 

6410-05 [Southern Biotech, Birmingham, AL, USA], or donkey anti-rabbit 6440-05 [Southern 

Biotech]) was hybridized to the bound primary antibody and the enzymatic chemiluminescence 

reaction was subsequently initiated and detected using autoradiography film.  Based upon initial 

results, the primary antibody dilution was optimized and each antibody re-tested.  The size of the 

resultant band(s) was determined through comparison to molecular standards (Kaleidoscope 

prestained standards 161-0324 or Precision Plus Kaleidoscope 161-0375, Bio-Rad) and only 

those antibodies that recognized protein bands of the correct molecular weight were selected as 

positive.  Additionally, those antibodies that recognized additional nonspecific bands were 

rejected. 

2.6 Antibody printing and microarray production 

Microarrays were printed (i.e., antibodies immobilized onto glass slides) by First Phase 

Technologies (Tempe, AZ, USA) onto Full Moon BioSystems (Sunnyvale, CA, USA) protein 

array substrate (PTR) slides.  Before the final slides used to determine stress protein expression 

in individual bears were printed, a set of dilution slides were printed.  These slides consisted of a 

dilution series of antibodies diluted 1:625, 1:125, 1:25 and 1:5 with printing buffer and one 

undiluted spot.  The antibodies printed were hsp60 antibody (h3524, Sigma-Aldrich), caspase 2 

antibody (RB-1699, Lab Vision, Fremont, CA, USA), ACTH antibody (E54057M, Biodesign, 

Saco, ME, USA), cytokeratin antibody (ab9377, Abcam), caspase 3 antibody (sc-1225, Santa 

Cruz Biotechnology Inc., Santa Cruz, CA, USA), POMC antibody (ab32893, Abcam), and 

hsp70i antibody (SPA-810, Stressgen Biotechnologies Corp., Victoria, BC, Canada).  Also 

printed on each array were a dye labeled protein selected by First Phase Technologies diluted 

1:625, 1:125, 1:25, 1:5 and 1:1 with printing buffer and four spots of print buffer.  These 
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preliminary microarrays were used to test methods of isolating replicate arrays on each slide, 

blocking buffers, wash buffers, and time of incubation. 

Once the initial validation was completed, final protein microarrays were produced.  Six 

replicate microarrays were printed onto each slide, with each array consisting of 36 spots in a 

6x6 grid consisting of 31 distinct antibodies specific for grizzly bear stress proteins, antibody 

that did not recognize bear proteins (a spike control), a print buffer-only spot (negative control), 

and a dye-labeled protein spot (positive control, provided by First Phase Technologies) (Table 

2.1).  Among the antibodies printed onto the array was a dilution series of an anti-cytokeratin 

antibody printed at dilutions of 1:1, 1:5, and 1:25 in print buffer.  Other antibodies were diluted 

1:1 in print buffer.  Once printed, arrays were stored at room temperature in a sealed desiccator 

until use.  Six separate print runs were used to generate all the slides necessary.  Slides were 

placed in a randomized sequence to minimize the contributions of print run variation.   
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Table 2.1 Antibodies chosen for the grizzly bear microarray chip 

Antibody 
Monoclonal/ 
polyclonal Supplier Catalog # 

Host 
Animal 

Antigen 
Source 

Adrenocorticotropic hormone 
(ACTH) 

M 
Biodesign BDE54057M 

Mouse Human 

Apoptosis Inducing Factor 
(AIF) 

M 
Santa Cruz sc-13116 

Mouse Human 

Annexin II P Santa Cruz sc-1924 Goat Human 

Annexin IV P Santa Cruz sc-1930 Goat Rat 
Arginine Vasopressin (AVP) 
Receptor V1a 

P 
Santa Cruz sc-30025 

Rabbit Human 

Caspase 1 P Santa Cruz sc-514 Rabbit Mouse 

Caspase 2 P Lab Vision RB-1699 Rabbit Human 

Caspase 3 P Santa Cruz sc-1225 Goat Human 

Caspase 6  Sigma C7599 Rabbit Human 
Chemokine (C-C motif) receptor 
(CCR5) 

 
Sigma C8604 

Rabbit human 

Cyclooxygenase (Cox) 2 P Santa Cruz sc-7951 Rabbit Human 
Corticotropin-Releasing 
Hormone Receptor (CRHR) 1/2 

P 
Santa Cruz sc-5543 

Rabbit Human 

Cytokeratin P Abcam ab9377 Rabbit Bovine 

Epithelial (E) Cadherin P Santa Cruz sc-31020 Goat Human 
Endothelial Nitric Oxide 
Synthase (eNOS) 

P 
Abcam ab5589 

Rabbit Human 

Glyceraldehyde 3-Phosphate 
Dehydrogenase (GAPDH) 

P 
Assay Designs 905-734-100 

Rabbit human 

Glucocorticoid Receptor (GR) P Santa Cruz sc-1002 Rabbit human 
Glucose Regulated Protein (grp) 
78/BiP  

 
Sigma G9043 

Rabbit human 

Heme Oxygenase (HO) 2 P Santa Cruz sc-11361 Rabbit Human 

Heat Shock Protein (hsp) 110  Sigma H7412 Rabbit human 

Heat Shock Protein (hsp) 27 P Stressgen SPA-524 Rabbit Human 

Heat Shock Protein (hsp) 40  Sigma H4038 Rabbit human 

Heat Shock Protein (hsp) 60 M Sigma H3524 Mouse Human 

Heat Shock Protein (hsp) 70 M Santa Cruz sc-24 Mouse Human 
Inducible Heat Shock Protein 70 
(hsp70i) 

M 
Stressgen SPA-810 

Mouse Human 

Heat Shock Protein (hsp) 90 P Stressgen SPS-771 Rabbit Mouse 
Inducible Nitric Oxide Synthase 
(iNOS) 

 
Sigma N7782 

Rabbit mouse 

c-terminal Proopiomelanocortin 
precursor (POMC) 

P 
Abcam ab32893 

Goat Human 

Peroxiredoxin (PRDX3)  Sigma P1247 Rabbit human 

Prolactin P Santa Cruz sc-7805 Goat Human 
Superoxide Dismutase (SOD) 1 
(Cu/Zn) 

P 
Santa Cruz sc-8637 

Goat Human 

Superoxide Dismutase (SOD) 2 
(Mn) 

P 
Abcam ab13533 

Rabbit human 
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2.7 Antibodies categorized by functional category 

 Of the 37 antibodies validated by western blotting to be specific for grizzly bear skin 

and/or muscle, 31 were selected for the grizzly specific array.  The proteins were divided into 4 

groups: HPA axis, apoptosis and cell cycle, cellular stress, and oxidative stress and inflammation 

based on their biological function and relationship to stress (Table 2.2).  Caspase 3 was chosen as 

a control antibody. 

Table 2.2 Physiological function categories of the protein microarray antibodies on the custom 

grizzly bear microarray.  Each antibody is listed with its full protein target name, abbreviated 

name. 

Category Protein 

Hypothalamic-

pituitary-adrenal 

axis 

adrenocorticotropic hormone (ACTH), arginine vasopressin receptor 

(AVP) Receptor V1a, corticotropin-releasing hormone receptor (CRH)-

Receptor 1/2 (CRHR-1/2), glucocorticoid receptor (GR), C-terminal 

proopiomelanocortin (POMC) precursor, prolactin 

Apoptosis and 

cell cycle 

apoptosis inducing factor (AIF), annexin II, annexin IV, caspase 1, 

caspase 2, caspase 6, epithelial (E)-cadherin, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) 

Cellular stress cytokeratin, glucose regulated protein (grp78 / BIP), heat shock protein 

(hsp)110, hsp27, hsp40, hsp60, hsp70, hsp70 inducible (i), hsp90 

Oxidative stress 

and 

inflammation 

chemokine (CC-motif) receptor (CCR) 5, cyclooxygenase (COX)2, heme 

oxygenase (HO)-2, endothelial nitric oxide synthase (eNOS), inducible 

(iNOS), peroxiredoxin 3 (PRDX3), superoxide dismutase (SOD)1, SOD2 
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2.8 Pooled standard 

 To normalize slide to slide variation, a pooled standard was run on each slide.  The 

fluorescence of each individual bear sample was divided by (compared to) the fluorescence of 

the pooled standard.  One large pool of sample was made up from skin from the six large 

samples available.  Each bear’s skin was homogenized separately. At the end of the tissue 

processing an equal amount of protein from each of the six bears was added to make the pooled 

standard.  The pooled standard was then separated into 300μl aliquots and frozen. 

2.9 Protein labeling 

In order to detect the proteins that were specifically bound to the antibodies on the array, 

proteins were labeled with fluorescent dyes.  Proteins for microarray hybridization were labeled 

using the synthetic cyanine dyes, Cy3 and Cy5, following the protocol provided with the dyes 

(GE Healthcare).  Individual bear samples were labeled with Cy5, and the pooled standard 

labeled with Cy3. 

For the labeling reaction, Cy dyes were dissolved in DMSO to 1.5 mM.  Samples were 

labeled by incubating on ice with 300 µM of each Cy dye in 50mM carbonate buffer (pH8.5), 

and the reaction was quenched after incubation with the addition of 1M Tris-HCl (1/10 total 

reaction volume).  Excess dye was subsequently removed from the labeled protein using 10DG 

disposable chromatography columns (Bio-Rad Labouratories cat. no. 732-2010 or Microcon 

Ultracel YM-10, Millipore cat. no. 42408). Labeled protein samples were concentrated using 

centrifugal filters, and protein assays (Lowry et al. 1951) were conducted to determine the 

protein concentration of the labeled individual bear sample and the labeled pooled standard.  

2.10 Microarray hybridization 

Silicone isolators were clamped onto microarray slides (Grace Bio Labs, cat. no. 204862, 

Bend, OR, USA) to separate the six replicate arrays and create discrete wells on the slide.  

Arrays were blocked prior to use by incubation with 1% bovine serum albumin (BSA, 2910-OP 

EMD Biosciences, Gibbstown, NJ, USA) for 30 minutes, rinsed with ddH2O, then washed 5 

times for 5 minutes with phosphate buffered saline with 0.5% Tween-20 (0.5% PBST, pH 7.4), 3 

more times for 5 minutes with ddH2O and finally dried under a stream of N2.  Equal amounts of 
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protein (80 µg) from the labeled pooled standard and test sample were combined, diluted with 

5% BSA, and then added to each of three arrays on a slide, with two samples applied per slide.  

Thus each sample was run in triplicate if sufficient sample protein was available.  The 

hybridization reaction was incubated for 1 hour with agitation before the samples were removed 

from the arrays and rinsed with 0.1% PBST, washed 7 times for 5 minutes in 0.1% PBST, twice 

in sodium citrate for 5 minutes, and 7 times for 5 minutes with ddH2O.  After removal of the 

silicone isolators washed arrays were dried under N2 before scanning. 

2.11 Microarray scanning 

Array scanning was conducted using an Axon Instruments GenePix 4000B scanner 

(Molecular Devices, Sunnyvale, CA, USA) and GenePix Pro 6.1 software.  Slides were scanned 

immediately upon completion of the hybridization, washing and drying procedures.  Scans were 

performed at 635 nm and 532 nm, the excitation wavelengths of Cy5 and Cy3 respectively.  

Arrays were scanned at two or three PMT (optical photomultiplier) settings, typically one setting 

which resulted in 5% saturated pixels, then a lower setting which resulted in no saturation but 

may leave some spots under-resolved, thus ensuring that results were obtained from all usable 

spots on each set of arrays.  GenePix output includes multiple images and exported data which 

was subsequently used for data analysis.  Scanned images of each slide at each array setting were 

carefully checked for saturated pixels, missing or malformed spots, scratches, debris and 

background inconsistencies that might affect the spot values (Figure 2.1).  The fluorescence 

measurements from the dye-labeled protein, caspase 3 antibody and print buffer spots were 

removed from the scanning file. 

 

Figure 2.1 Visual inspection of arrays: missing spots (A), deviant from circular (B), hollow 
centers (C) and debris contamination (D). 

B 
A 

D 

C 
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2.12 Microarray data processing 

Record was kept of the block, column and row of each saturated or defective spot.  The 

dye-labeled protein was intended to be a landmark spot on each array with a constant 

fluorescence; however no visible fluorescence was detected on any chip.  The caspase 3 

antibody, intended to be the spike control of the array, was specifically chosen because it did not 

cross-react with bear skin when tested by Western blotting.  Unfortunately, no reaction to 

purified human caspase 3 protein (sc-1225, Santa Cruz Biotechnology Inc., Santa Cruz, CA, 

USA), labeled with Cy3 and Cy5 dyes using the same procedure as described earlier, could be 

obtained, even with significant addition of the protein.  The print buffer spot was designed to be 

a negative control spot, but spot inconsistencies did not allow its use. 

Starting with the text file of scanned data corresponding to the highest laser settings used, 

over saturation was corrected first.  As mentioned earlier, each antibody was spotted once on 

each of the three blocks that made up the array.  If even one spot of the three on the array was 

over saturated then the set of spots corresponding to one antibody was replaced with the values 

from a lower laser scan which did not have oversaturated pixels.  Next, using the notes made 

from the visual inspection, each spot that was missing, deviated from circular, had a hollow 

center, had debris that covered part of the spot, or had been scratched was flagged as a bad spot 

and not used in any further analysis.  This file was then renamed with the slide number and 

sample name.  A revised version of the file was then made by deleting all columns except, Flags, 

Block, Column, Row, Name, F635 Mean and F532 Mean.  The flag column consisted of 

negative numbers corresponding to spots that were flagged during the visual inspection in the 

GenePix program.  Block, column and row columns identified where the spot was located on the 

array.  Name column identified the antibody that was printed for each spot.  F635 mean and 

F532 mean were the mean values for all the pixels within the spot for the scan at 635nm and 

532nm respectively.  Using the flag column, all spots flagged as bad were deleted. A column was 

inserted which calculated the F635/F532 mean for each spot.  Columns were then inserted which 

calculated the average of the three spots corresponding to each antibody, the standard deviation 

and the coefficient of variation  for F635, F532 and F635/F532.  Any antibody with a coefficient 

of variation (standard deviation/mean × 100%) exceeding 15% for F635, F532 or F635/F532 was 

checked for obvious errors in the replicates.  If the deletion of one spot allowed the coefficient of 
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variation to drop to or below 15% then the other spots were kept.  If not then all three spots were 

deleted.  A further spreadsheet was then made containing only the Name and F635/F532 Mean 

columns.  This data was then imported into a larger spreadsheet with all the samples present. 

To summarize, scanned values of each of 31 stress-associated proteins from each 

individual grizzly bear sample run in triplicate on the microarray was standardized by dividing 

by the value obtained from the pooled grizzly bear reference standard run on the same array.  

Thus, each grizzly bear sample produced triplicate values for the expression of each stress-

associated protein in relation to the same standard sample.  These triplicate values were averaged 

to provide a single “relative protein expression” value to be used for statistical analyses. 

2.13 Intra-array variation 

Ten individual bears were run on separate microarrays and the coefficient of variation 

was calculated to determine intra-assay variability.  This assessment was done after the visual 

evaluation for missing or malformed spots that were removed. 

2.14 Inter-array variation 

A series of preliminary laboratory validation experiments were conducted using the six 

bulk tissue samples described previously prior to running samples from individual bears biopsied 

in the field as well as 4 individual bear samples.  Ten individual bears were run on two separate 

microarrays and the coefficient of variation was calculated to determine inter-assay variability.  

Intra-array variation was controlled at 15% or less by the methods described previously. 

2.15 Dye exchange experiment 

 To determine if dye labeling would have an effect on the values of individual proteins, a 

“dye flip” experiment was performed.  Six arrays were run, with one bear sample labeled with 

Cy5 and an equal amount of protein from the pooled standard labeled with Cy3.  The same six 

bear samples were then labeled with Cy3 and run on six arrays with an equal amount of protein 

from the pooled standard labeled with Cy5.  The results of the protein expression were then 

compared to determine if the dye used to label the tissue affected the measured protein 

expression. 
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2.16 Antibody and protein dilution experiments 

As described previously a dilution series of an anti-cytokeratin antibody was printed on 

each array at dilutions of 1:1, 1:5, and 1:25 in print buffer.  An analysis was performed to 

determine what effect the dilution of the antibodies had on the measured relative cytokeratin 

expression. In a separate experiment, different amounts of protein (80, 20 and 10 μg) were added 

to the array in order to determine if small protein quantities could be used on the chips while still 

receiving a strong signal. 

2.17 Protein degradation and preservative experiments 

 The ideal situation when monitoring a cryptic species that covers a vast portion of the 

landscape is to be able to use incidental samples that become available periodically, such as 

management kills, self-defense kills and recent road or train kills.  Unfortunately, immediate 

refrigeration or freezing is not possible in these situations.  To determine what effect time at 

room temperature would have on the protein expression, larger skin samples from three bears 

were sub-sectioned and left at room temperature (22-26oC) for 0, 4, 8, 12, 24 or 48 hours.  Each 

sample was placed on a weigh boat covered with parafilm.  At the end of the time at room 

temperature the samples were refrozen and then processed in the same manner as the other 

samples. 

 RNA-later (Applied Biosystems / Ambion, Foster City, CA, USA) is well known as a 

preservative that retards RNA degradation.  It is being used by other researchers involved in the 

FRI Grizzly Bear project and the question arose whether samples immersed in RNA-later could 

be used for protein determination by microarray.  To determine the effects of RNA-later on 

protein expression and determine if it could slow protein degradation at room temperature, larger 

skin samples from three bears were sub-sectioned, immersed in a cryovial filled with 400 μl of 

RNA-later and left for 0, 24, 72 or 336 hours.  Before refreezing, each sample was removed from 

the RNA-later and allowed to drip dry before placing it in a new cryovial. 

2.18 Assessment of the effects of biological factors and capture method 

Grizzly bear sex, age, region of capture, reproductive class and capture method were used 

as variables to determine if they affected the expression of proteins evaluated by the microarray.  
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Reproductive classes were defined as solitary adult female ≥4 years old (1), adult female with 

dependent offspring (2), juvenile female <4 years old (3), adult male (4) and juvenile male <5 

years old (5).  Capture and health data were provided by Karen Graham, Gordon Stenhouse and 

Marc Cattet.  Regions where the bears were captured are depicted in Figure 2.2.  Contributing to 

the delineation of the regions was the partial population separation caused by the east-west 

highways discovered by genetic survey (Proctor and Paetkau 2004). 

 

Figure 2.2 Map of Alberta, Canada with the areas where grizzly bears were captured.  Dark 

shaded areas are areas with known bear populations including the Foothills Model Forest (FMF) 

Core.  The lighter mountain areas in the Southwest are national parks: Jasper National Park 

(JNP) and Banff National Park (BNF). 
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2.19 Serum measures 

 Serum-based stress data were provided by Jason Hamilton, Brian Chow, Matt Vijayan 

and Marc Cattet.  Serum total cortisol was measured by a commercial 125I cortisol 

radioimmunoassay kit (#07-221102 MP Biomedicals, Irvine, CA, USA).  Serum hsp60 and 

hsp70 were measured using enzyme-linked immunosorbent assay kits (#EKS-600, #EKS-700 

Stressgen Biotechnologies, Victoria, BC, Canada) (Hamilton 2007). 

2.20 Environmental measures 

 Environmental measurement scores were calculated by Jerome Cranston.  They 

condensed many of the environmental measures taken of 95% of the kernel home range of the 

grizzlies.  The proportion protected score was the proportion of area within a bear’s home range 

that was park or protected land.  The road density score was calculated using spatial analyst 

neighborhood statistics based on circular search of road density within a 1600m radius in the 

bear’s home range.  The average of three seasonal resource selection functions (RSF) calculated 

for a bear’s home range was termed the mean RSF.  Resource selection functions are calculated 

by multiple regression of bear use vs. availability of land to model the bear’s use of a landscape 

(Alberta Grizzly Bear Recovery Team 2008).  Anthropogenic change was calculated as the 

proportion of a bear’s home range occupied by recently built features.  Recently built features 

were defined as the features built from the fall previous to the year of capture to the fall of the 

year of capture.  Some home ranges had no recently built features.  

2.21 Allostatic load 

Using a modification of Seeman et al. (1997), allostatic load scores were calculated for 

each bear.  For each of the 31 stress proteins, the top quartile of expression among all n=108 

bears analyzed with the microarray was determined.  For each protein with an expression value 

within the top quartile a point (1) was assigned.  The allostatic load points from the individual 

protein measures were then summed for each bear to determine that bear’s stress protein index.  

Sex, age, region of capture, reproductive class and capture method were evaluated to determine 

if they affected the stress protein index of the bears. 
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2.22 Comparison of skin and muscle 

Initially the project evaluated muscle to determine stress protein expression, however 

concern was raised because of the difficulty in obtaining consistently sized samples and because 

of the length of the wound tract created in the bear’s muscle by the biopsy needle.  It was 

decided to switch to skin as sampling is less invasive and incidental samples are taken on any 

new bear that is captured (bears that have not been previously captured have small discs of skin 

removed from the ear to allow for the placement of identifying ear tags).  A comparison of the 

protein expression in skin and muscle samples was performed. 

2.23 Comparison of skin sampling locations 

 To assess whether the location on the body had an impact on the protein expression found 

in the skin, multiple locations on the body were sampled (ear plug, neck, fore leg and hind leg). 

2.24 Statistical analyses 

The statistical software SAS 9.1 was used to perform the statistical analyses of normality 

and correlations (SAS Institute Inc., Cary, NC, USA).  Normality, skewness and kurtosis of the 

data were tested (Zar 1999).  Normality was also assessed with boxplots, Kolmogorov-Smirnov 

test and normal probability plots.  Deviations from normality in some variables were observed, 

so log10 transformation was performed on body measures of length and mass as well as the 

serum measures of GGT, total cortisol, hsp 60 and hsp70.  The coefficient of variation (%CV; 

SD/mean x 100%) was used to assess the intra-array and inter-assay variation.  Pearson 

correlation was performed to evaluate relationships between proteins in bears.  The remaining 

statistical analyses were performed using statistical software SPSS 19 (SPSS Inc., Chicago, IL, 

USA).  

For the comparison of tissue types (skin and muscle), skin sampling location, dye 

exchange experiment, differing antibody and protein concentrations, protein degradation and 

preservative effects analyses the larger tissue samples from six bears were used. Microarray 

validation analysis of dye effects, muscle vs. skin comparison, skin sampling location 

comparison, protein quantity comparison, antibody dilution, and decay evaluation were 

performed with repeated measures ANOVA, type IV model, followed by Sidak post-hoc 
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comparison where appropriate.  Analysis of the effects of RNA-later was performed with paired 

t-tests comparing preserved and unpreserved samples at 0 and 24 hours.  For all comparisons 

proteins were evaluated as a group by protein category (see Table 2.2).  A Bonferroni correction 

was performed to correct for the 4 protein categories being evaluated (p<0.013).  Missing values, 

eliminated from analysis during preprocessing, were interpolated prior to analysis by averaging 

protein values within the protein category and treatment.   

First principal component values were calculated for each protein category by using 

principal component analysis (PCA) for dimension reduction of all proteins within the category 

based on eigenvalues >1.  Stress protein index was calculated by assigning a point to each bear 

for each protein expression at or above the 75th percentile in expression for that protein and 

summing the points for each bear. 

Investigative modeling with univariate Type IV model ANOVA was performed to 

evaluate whether biological, capture, growth, serum measures or environmental measures were 

related to the protein category expression as measured by first principal component or stress 

protein differential score.  Only the capture methods of culvert trap, helicopter dart and snare 

were included in the analysis as the capture methods hunter kill, NWT Wildlife service, hit by 

vehicle and zoo provided insufficient (1-2) bears captured by these methods.  Biological 

measures were evaluated first and included region, sex, age, year captured, Julian day captured 

and an interaction between capture year and region.  The interaction between capture year and 

region was included as trapping effort in specific regions differed by year.  Once a biological 

model was found with all variables significant (p<0.1), capture variables were added to the 

model.  Capture variables included capture method, number of times each bear was captured and 

an interaction between region and capture method.  The interaction between region and capture 

method was included as terrain and accessibility differences resulted in capture method 

differences between regions.  The biological and capture model with only significant variables 

(p<0.1) was then modified with the addition of growth variables.  Growth variables included log 

length, log mass and BCI.  The significant biological, capture and growth model was then 

modified with serum measures.  Serum measures included log GGT, log total cortisol, log hsp60 

and log hsp70.  The best model was then chosen and accepted as the model for that protein 

category with high sample size.  Another model was also created using the best model plus 
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environmental measures.  Environmental measures included anthropogenic change, mean RSF, 

road density and proportion protected.  The best model with these variables was also determined.  

The model including the environmental measures had a reduced sample size as environmental 

measures were not determined for all bears.  This reduced sample size is the reason two models 

were selected as it was feared that some variables in the environmental model would be 

eliminated solely due to the smaller sample size and not because they were not related to the 

protein category.  Both final models for each protein categories were further evaluated using 

Sidak post-hoc testing.   
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Chapter 3 Results 

3.1 Two dimensional polyacrylamide gel electrophoresis 

 Two dimensional gel electrophoresis evaluations revealed several proteins that were 

elevated or depressed in the muscle and skin from 2 bears matched by age and sex with 

contrasting body conditions and presumed to be differentially stressed (Tables 3.1 and 3.2).  In 

muscle, higher expression of ATP synthase subunits β, e and complex F1, mitochondrial 

succinate dehydrogenase flavoprotein subunit, hemoglobin α, succinyl-CoA synthase β subunit, 

myosin light chain 1, α-actin, annexin A5, stratifin, malate dehydrogenase, and porin 31HM was 

observed in the bear believed to be more stressed.  In contrast, hsp27, ATP synthase F0 complex, 

substrate protein of mitochondrial ATP-dependent proteinase SP-22, electron transfer 

flavoprotein, α B-crystallin, glyceraldehyde 3-phosphate dehydrogenase, enolase 3, desmin, 

troponin, tropomyosin, triosephosphate isomerase, myoglobin, myosin light chain 1, actin, 

ubiquinol-cytochrome c reductase, tripartite motif protein 50, peroxiredoxin 6 and α tropomyosin 

had lower expression in bears believed to more stressed.  In skin, higher expression of 

hemoglobin α and β, keratin 1 and stratifin, and lower expression of albumin, β-actin, 

myoglobin, aldehyde dehydrogenase, immunoglobulin precursor and transferrin, were observed 

in the bear believed to be more stressed.  Although certain of these proteins represented good 

candidates for stress-associated proteins to include in the microarray, commercial antibodies that 

recognize them in grizzly bear skin were not found, with the exception of hsp27.  
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Table 3.1 Proteins with elevated expression when comparing a bear thought to be more stressed 

to a matched bear presumed to be less stressed. 

Protein identity  Tissue Year 

α-actin  Muscle 2007 

annexin A5  Muscle 2007 

ATP synthase β subunit  Muscle 2007 

ATP synthase, h+ transporting, mitochondrial f1f0 complex, subunit e  Muscle 2006 

ATP-specific succinyl-CoA synthase β subunit  Muscle 2007 

hemoglobin α  Muscle 2006 

mitochondrial ATP synthase H+ transporting F1 complex α  Muscle 2007 

porin 31HM  Muscle 2007 

Predicted: similar to malate dehydrogenase, cytoplasmic isoform 1  Muscle 2007 

succinate dehydrogenase (ubiquinone) flavoprotein subunit, mitochondria  Muscle 2007 

Predicted: similar to fatty-acid binding protein adipocyte  Skin 2006 

hemoglobin α  Skin 2006 

hemoglobin β  Skin 2006 

Predicted: similar to keratin 1, isoform 1  Skin 2006 

stratifin  Skin 2007 
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Table 3.2 Proteins with lower expression when comparing a bear thought to be more stressed to 

a matched bear presumed to be less stressed. 

Protein identity  Tissue Year 

α B-crystallin  Muscle 2007 

ATP synthase, H+ transporting, mitochondrial F0 complex  Muscle 2007 

desmin  Muscle 2007 

electron transfer flavoprotein, α peptide  Muscle 2006 

enolase 3  Muscle 2007 

fast muscle actin  Muscle 2007 

glyceraldehyde-3-phosphate dehydrogenase  Muscle 2007 

heat shock protein 27  Muscle 2006 and2007 

myoglobin  Muscle 2007 

Predicted: peroxiredoxin 6  Muscle 2007 

Predicted: similar to tripartite motif protein 50  Muscle 2007 

Predicted: similar to ubiquinol-cytochrome c reductase core protein  Muscle 2007 

striated muscle α tropomyosin  Muscle 2006 

substrate protein of mitochondrial ATP-dependent proteinase SP-22  Muscle 2007 

triosephosphate isomerase (TIM) (Triose-phosphate isomerase)  Muscle 2007 

tropomyosin, α isoform  Muscle 2006 

tropomyosin, chain b  Muscle 2006 

troponin  Muscle 2007 

albumin  Skin 2007 

aldehyde dehydrogenase, mitochondrial (ALDH class 2)  Skin 2007 

β-actin  Skin 2007 

myoglobin  Skin 2007 

Predicted: similar to Immunoglobulin lambda-like polypeptide 1 precursor  Skin 2007 

transferrin  Skin 2007 
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3.2 Commercial microarrays 

 Very few of the antibodies from the three commercial protein microarrays tested 

recognized grizzly bear proteins.  Although initial scanning of the commercial microarrays 

revealed putative signals from bear skin, further validation and confirmation attempts using 

western blotting showed that only 7 of 58 antibodies against stress-associated proteins cross-

reacted with grizzly bear proteins (Appendix A1.1-A1.3).  Six antibodies were from the Sigma 

Panorama cell signaling array: caspase 6 (C7599), iNOS (N7782), MAP kinase (M7927), MAP 

kinase p38 (M0800), protein kinase Bα (PKBα) (P1601) and PRDX3 (P1247), and one from the 

Spring Bioscience array (myoglobin; E2994).  Of these 7 antibodies, two were selected for use in 

our custom microarray: caspase 6 and iNOS from the Sigma Panorama array. Although the lack 

of useful information from the commercial microarrays was discouraging, it reinforced the need 

to develop a custom grizzly bear-specific protein microarray. 

3.3 Grizzly bear protein microarray 

3.3.1 Array validation 

3.3.1.1 Intra- and inter-assay variation 

To determine the consistency of the results obtained from the 3 individual spots on each 

array, intra-assay repeatability using the %CV was calculated for each protein.  Ten individual 

bear samples were run on separate microarrays, and the mean %CV between the 3 spots on each 

array was calculated (Table 3.3).  This calculation was done after the visual evaluation of spot 

quality was used to eliminate some spots.  The majority of proteins (28/31) had a %CV below 10 

percent, and three proteins had a %CV between 10 to 15 percent. 

To determine the reproducibility of results obtained from the same samples run on 

separate microarrays, inter-assay repeatability using %CV was calculated for each protein.  Ten 

individual bear samples were run on two separate arrays, and the mean %CV between the two 

arrays was calculated (Table 3.3).  The majority of proteins (27/31) had a %CV below 15 

percent, and four proteins had a %CV between 15 to 18 percent. 

The dye labelled spot (internal control), print buffer spot (negative control) and caspase 3 

spot (positive control) with purified caspase 3 could not be used to normalize between the arrays.  
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The dye labelled spot added by the print company did not fluoresce, the print buffer spots were 

inconsistent and the caspase 3 antibody did not react to the purified sample of caspase 3 added.  

The pooled sample labelled with Cy3 run on each array was used as an internal control.   

Table 3.3 Intra- and inter- array variation: coefficient of variation (%CV) assessment of protein 
expression measurement.  Abbreviations for proteins are found on pp. x-xi. 

Protein 

Intra-array 
variation 
(mean, n) 

Inter-array 
variation 
(mean, n) 

ACTH 
4.27, 10 8.9, 9 

AVP R 
V1a 

6.82, 10 9.4, 9 

CRH-R 1/2  
8.18, 10 10, 10 

GR 
6.46, 10 10.5, 10 

POMC 
11.90, 10 17.6, 8 

Prolactin 
5.42, 10 10.1, 10 

AIF 
7.84, 10 9.1, 9 

Annexin II 
8.93, 10 6.4, 10 

Annexin 
IV 

9.17, 10 7, 10 

Caspase 1 
7.67, 10 11.6 

Caspase 2 
6.58, 10 6.5 

Caspase 6 
4.76, 4 12.3 

E cadherin 
6.87, 10 9.1 

GAPDH 
7.84, 10 15.4 

Cytokeratin 
4.86, 10 10.8 

Grp78 
2.42, 9 12.9, 7 

Hsp27 
2.87, 6 12, 4 

Hsp40 
5.63, 10 8.2, 10 

Hsp60 
3.81, 2 13.8, 6 

Hsp70 
7.60, 9 6.8, 9 

Hsp70i 
11.26, 10 8.9, 10 

Hsp90 
1.83, 5 15.8, 6 

Hsp110 
4.59, 8 6.8, 9 

CCR5 
10.26, 10 10.7, 9 

COX2 
7.51, 10 7, 10 

HO2 
8.03, 10 7.2, 10 

eNOS 
4.92, 8 15.8, 10 

iNOS 
2.38, 5 6.3, 3 

PRDX3 
3.88, 10 7.9, 9 

SOD1 
6.98, 10 9.7, 10 

SOD2 
5.22, 10 5.6, 9 
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3.3.1.2 Dye experiment 

The effect of switching the fluorescent dye used to label the samples vs. the pooled 

standard was investigated for each protein category.  Matched samples analyzed on the array in 

two ways, where the sample was first labelled with Cy5 and the pooled sample was labelled with 

Cy3 and the second run the labelling was reversed (sample with Cy3 and pooled standard with 

Cy5).  Protein expression measured for bear samples labeled with Cy5 was elevated compared to 

the same bear samples labeled with Cy3 for HPA proteins (repeated measures ANOVA; F=19.0, 

p<0.001, n=6), ACC proteins (repeated measures ANOVA; F=51.5, p<0.001, n=6), CS proteins 

(repeated measures ANOVA; F=11.4, p=0.001, n=6) and OSI proteins (repeated measures 

ANOVA; F=42.8, p<0.001, n=6).  Significant ANOVAs were followed up by Sidak post-hoc 

tests (HPA proteins (p<0.001), ACC proteins (p<0.001), CS proteins (p=0.001), OSI proteins 

(p<0.001)) (Figure 3.1).  

 

Figure 3.1 Effects of switching fluorescent dye labels (Cy5 to Cy3) on measured grizzly bear 
skin protein expression.  Mean values labeled with asterisks are significantly different 
(p<0.0125) from each other, as determined by repeated measures ANOVA followed by Sidak 
test (n=6).  Abbreviations: ACC, apoptosis and cell cycle, CI, confidence interval; CS, cellular 
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stress; Cy, cyanine; HPA, hypothalamic-pituitary-adrenal axis, OSI, oxidative stress and 
inflammation. 

3.3.1.3 Antibody dilution 

To determine the effect of diluting the antibody with increasing amounts of printing 

buffer before printing microarray slides, three spots were added to the array with differing 

dilutions of the cytokeratin antibody.  This antibody dilution was one of the inter-assay controls 

included in each microarray.  A difference was detected between the cytokeratin antibody 

dilutions (Figure 3.2).  Increasing dilution of cytokeratin antibody with printing buffer had a 

significant effect on measured cytokeratin expression (repeated measures ANOVA, F=384.5, 

p<0.001, n=86).  Each antibody dilution was significantly different from each other and there 

was decreasing cytokeratin expression with increasing dilution (Sidak, p<0.0001).  

Inconsistencies in spot morphology were observed with increasing amounts of printing buffer 

(Figure 3.3). 

 

Figure 3.2 Effects of cytokeratin antibody dilution on measured cytokeratin protein expression 

in grizzly bear skin.  The cytokeratin antibody dilution was 1 part antibody to 1, 5 or 25 parts 

printing buffer.  Significant differences were found with a>b>c, as determined by repeated 

measures ANOVA followed by Sidak test (p<0.0125). 
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Figure 3.3 Printing inconsistencies detected with increasing printing buffer concentration.  Spots 

were printed from left to right as 1:1, 1:5 and 1:25 dilutions of cytokeratin antibody: printing 

buffer.  A: black lines in the 1:25 spots.  B: Reduced size of the 1:25 spots and inconsistent spot 

morphology.  C: Missing centers, especially 1:25 spots. 

3.3.1.4 Comparison of protein quantities 

 To determine if very small skin samples with low protein yields could be run and still 

produce a detectable signal on the antibody based array, a protein dilution series was run.  The 

protein dilution series consisted of different protein quantities (10, 20 and 80 μg) from three 

individual bears paired with the pooled standard at the same protein quantity.  The protein 

quantity was found to have a significant effect on measured HPA protein expression (repeated 

measures ANOVA, F=67.5, p<0.001, n=2), ACC protein expression (repeated measures 

ANOVA, F=68.6, p<0.001, n=2), CS protein expression (repeated measures ANOVA, F=13.3, 

p<0.001, n=2) and OSI protein expression (repeated measures ANOVA, F=33.8, p<0.0001, 

n=2).  Protein quantity was found to have an effect on the measured protein expression (Sidak 

post-hoc test, p<0.0125), and an increasing measure of protein expression with increasing protein 

amount was detected (Figure 3.4).  The CS proteins measured at 10 µg versus 20µg were not 

significantly different (Sidak, p=0.013), but the trend was continued. 

C 

B A 
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Figure 3.4 Effects of differing protein amounts on measured protein expression in grizzly bear skin.  

Significant differences (p<0.0125) were found as determined by repeated measures ANOVA 

followed by Sidak test (n=2).  Results of comparison of means by Sidak test are indicated by lower 

case letters where: a>b>c.  Abbreviations: ACC, apoptosis and cell cycle, CI, confidence 

interval; CS, cellular stress; HPA, hypothalamic-pituitary-adrenal axis, OSI, oxidative stress and 

inflammation. 

3.3.1.5 Protein degradation 

To determine if skin samples that had undergone some level of protein degradation, as 

might occur in field collections, could be used for protein microarray analysis, an experiment 

was conducted in which sub-sectioned grizzly bear skin from three individual bears was 

subjected to varying amounts of time (4 to 48 hours) at room temperature.  The time at room 

temperature was found to have a significant effect on measured HPA protein expression 

(repeated measures ANOVA, F=21.2, p<0.001, n=3), ACC protein expression (repeated 
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measures ANOVA, F=11.2, p<0.001, n=3), CS protein expression (repeated measures ANOVA, 

F=6.9, p<0.001, n=3) and OSI protein expression (repeated measures ANOVA, F=4.8, p=0.001, 

n=3).  Lower measured protein expression with increasing time at room temperature was 

detected for HPA proteins and ACC proteins (Sidak post-hoc test, p<0.013) (Figure 3.5).  The 

trend of decreased measured protein was also found as a trend for zero hours compared to 48 

hours (Sidak, p=0.049).  The measured expression of CS proteins was higher at 48 hours 

compared to 24 hours.  No significant differences were found for OSI proteins, however a trend 

for increased expression measured at zero hours and twelve hours compared to 24 hours was 

detected (Sidak, p=0.031 and 0.019 respectively). 

 

Figure 3.5 Effects of holding grizzly bear skin samples at room temperature for 4 to 48 hours on 

expression of microarray proteins.  Significant differences (p<0.0125) were found as determined 

by repeated measures ANOVA followed by Sidak test (n=3).  Results of comparison of means by 

Sidak test are indicated by lower case letters where: a>b>c>d.  Abbreviations: ACC, apoptosis 

and cell cycle, CI, confidence interval; CS, cellular stress; HPA, hypothalamic-pituitary-adrenal 

axis, OSI, oxidative stress and inflammation. 
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3.3.1.6 Comparison of protein degradation with and without preservative 

To determine what effect the commonly used preservative RNA-later, in comparison to 

no preservative, might have on samples that had undergone potential protein degradation, an 

experiment was conducted in which sub-sectioned grizzly bear skin from three individual bears 

was subjected to 24 hours at room temperature either immersed in RNA-later or unpreserved.  A 

significant difference was observed between preserved and unpreserved samples at zero hours at 

room temperature for HPA proteins (paired t test; t=-4.8, p<0.001, n=3). No difference was 

observed between preserved and unpreserved samples at zero hours at room temperature for 

ACC proteins (paired t test; t=-2.7, p=0.013, n=3), CS proteins (paired t test; t=0.2, p=0.85, n=3) 

and OSI proteins (paired t test; t=0.2, p=0.84, n=3).  No difference was observed between 

preserved and unpreserved samples at 24 hours at room temperature for HPA proteins (paired t 

test; t=-2.2, p=0.05, n=2), ACC proteins (paired t test; t=-2.2, p=0.043, n=2), CS proteins (paired 

t test; t=-2.7, p=0.016, n=2) and OSI proteins (paired t test; t=-2.1, p=0.053, n=2) (Figure 3.6).  

Although not significant, there was a trend for higher protein expression in the samples 

preserved with RNA-later within all protein categories after 24 hours at room temperature 

compared to unpreserved samples. 
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Figure 3.6 Comparison of measured expression of protein function groups between grizzly bear 

skin samples preserved with RNA-later with unpreserved samples after holding the samples for 0 

to 24 hours at room temperature.  Significant differences (p<0.0125) were found as determined by 

paired t test (n=3).  Results of comparison of means test are indicated by lower case letters where: 

a>b.  Abbreviations: ACC, apoptosis and cell cycle, CI, confidence interval; CS, cellular stress; 

HPA, hypothalamic-pituitary-adrenal axis, OSI, oxidative stress and inflammation. 

3.3.1.7 Tissue comparison (skin and muscle) 

Samples from muscle and skin tissue were evaluated to determine if there were 

differences in protein expression.  A difference in protein expression between skin and muscle 

was detected for HPA proteins (repeated measures ANOVA; F=130.2, p<0.001, n=3), ACC 

proteins (repeated measures ANOVA; F=324.6, p<0.001, n=3), CS proteins (repeated measures 

ANOVA; F=21.8, p<0.001, n=3) and OSI proteins (repeated measures ANOVA; F=121.6, 

p<0.001, n=3).  For all protein categories, elevated protein expression in skin compared to 
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muscle samples was confirmed by Sidak test (HPA proteins (p<0.001), ACC proteins (p<0.001), 

CS proteins (p<0.001) and OSI (p<0.001)) (Figure 3.7).  As discussed in the Methods, as this 

microarray was being developed it was decided to focus on grizzly bear skin samples as they 

were less invasive to obtain and could be incidentally collected when placing tags in bear ears for 

identification. 

 

Figure 3.7 Comparison of protein expression in grizzly bear skin and muscle.  Skin was found to 

have higher mean expression (p<0.0125, marked with asterisks) as determined by repeated 

measures ANOVA followed by Sidak test (n=3).  Abbreviations: ACC, apoptosis and cell cycle, CI, 

confidence interval; CS, cellular stress; HPA, hypothalamic-pituitary-adrenal axis, OSI, 

oxidative stress and inflammation. 

3.3.1.8 Skin sampling location comparison 

A detailed experiment was conducted to investigate the effect of skin sample location 

(ear plug, neck, fore leg [triceps] and hind leg [thigh]) on protein expression.  Only a limited 

number of bears were sampled for multiple tissues, because of concern about extended 

anaesthesia time and creating multiple small wounds.  Samples from differing skin locations 

were evaluated to determine if there were differences in protein expression.  A protein 
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expression difference between skin locations was not detected for HPA proteins (repeated 

measures ANOVA; F=0.7, p=0.54, n=4), ACC proteins (repeated measures ANOVA; F=0.1, 

p=0.94, n=4), CS proteins (repeated measures ANOVA; F=2.4, p=0.08, n=4) and OSI proteins 

(repeated measures ANOVA; F=1.1, p=0.34, n=4) (Figure 3.8).   

 

Figure 3.8 Comparison of protein expression sampled from different skin locations. 

Abbreviations: ACC, apoptosis and cell cycle, CI, confidence interval; CS, cellular stress; HPA, 

hypothalamic-pituitary-adrenal axis, OSI, oxidative stress and inflammation. 

3.3.2 Correlations between proteins 

Initial statistical analyses with the grizzly specific microarray indicated that many 

proteins were significantly correlated both within and between the four protein categories.  

Within the HPA axis and apoptosis and cell cycle proteins, all proteins were positively correlated 

(Table 3.4 and 3.5).  Within the cellular stress proteins, 6 of 8 were positively correlated with 

cytokeratin, grp78 was positively correlated with 1 of 8 proteins, hsp27 was positively correlated 

with 2 of 8 proteins, hsp60, hsp70i and hsp90 were positively correlated with 3 of 8 proteins, and 

hsp40, hsp70 and hsp110 were positively correlated with 4 of 8 proteins (Table 3.6).  Within the 

oxidative stress and inflammation proteins, iNOS was positively correlated with 1 of 8 proteins, 
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eNOS was positively correlated with 5 of 8 proteins and CCR5, COX2, HO2, PRDX3, SOD1 

and SOD2 were positively correlated with 6 of 8 proteins (Table 3.7). 

Table 3.4 Correlations among proteins involved in the hypothalamic-pituitary-adrenal axis.  

Values reported are the r (Pearson correlation coefficient), p-value and the number of bears 

sampled.  Highlighted numbers are significant, as determined by Pearson correlation (p<0.0016).  

Abbreviations for proteins are found on pp. x-xi. 

  ACTH 
AVP R 
V1a 

CRH-R 
1/2 GR POMC Prolactin 

ACTH             

AVP R 
V1a 

0.65, 
<.0001, 
104           

CRH-R 
1/2 

0.75, 
<.0001, 
102 

0.94, 
<.0001, 
105         

GR 

0.75, 
<0.0001, 
103 

0.95, 
<0.0001, 
106 

0.98, 
<0.0001, 
104       

POMC 

0.71, 
<.0001, 
100 

0.68, 
<.0001, 
103 

0.77, 
<.0001, 
100 

0.78, 
<0.0001, 
101     

Prolactin 

0.75, 
<.0001, 
103 

0.95, 
<.0001, 
107 

0.96, 
<.0001, 
104 

0.98, 
<0.0001, 
105 

0.77, 
<.0001, 
102   
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Table 3.5 Correlations among proteins involved in apoptosis and the cell cycle.  Values reported 

are the r (Pearson correlation coefficient), p-value, and the number of bears sampled.  

Highlighted numbers are significant, as determined by Pearson correlation (p<0.0016).  

Abbreviations for proteins are found on pp. x-xi. 

  AIF 
Annexin 
II 

Annexin 
IV 

Caspase 
1 

Caspase 
2 

Caspase 
6 

E- 
cadherin GAPDH 

AIF                 

Annexin 
II 

0.93, 
<.0001, 
103               

Annexin 
IV 

0.95, 
<.0001, 
103 

0.99, 
<.0001, 
104             

Caspase 1 

0.95, 
<.0001, 
105 

0.96, 
<.0001, 
104 

0.97, 
<.0001, 
105           

Caspase 2 

0.76, 
<.0001, 
104 

0.82, 
<.0001, 
103 

0.82, 
<.0001, 
104 

0.77, 
<.0001, 
107         

Caspase 6 

0.64, 
<.0001, 
47 

0.64, 
<.0001, 
45 

0.64, 
<.0001, 
45 

0.62, 
<.0001, 
47 

0.81, 
<.0001, 
47       

E- 
cadherin 

0.97, 
<.0001, 
104 

0.97, 
<.0001, 
103 

0.98, 
<.0001, 
104 

0.97, 
<.0001, 
106 

0.81, 
<.0001, 
105 

0.66, 
<.0001, 
46     

GAPDH 

0.53, 
<.0001, 
104 

0.45, 
<.0001, 
103 

0.46, 
<.0001, 
104 

0.50, 
<.0001, 
107 

0.56, 
<.0001, 
106 

0.55, 
<.0001, 
46 

0.50, 
<.0001, 
105   
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Table 3.6 Correlations among proteins involved in the cellular stress cascade.  Values reported 

are the r (Pearson correlation coefficient), p-value, and the number of bears sampled.  

Highlighted numbers are significant, as determined by Pearson correlation (p<0.0016).  

Abbreviations for proteins are found on pp. x-xi. 

  
Cyto- 
keratin Grp78 Hsp27 Hsp40 Hsp60 Hsp70 Hsp70i Hsp90 Hsp110 

Cyto- 
keratin                   

Grp78 

0.06, 
0.5447,    
93                 

Hsp27 

0.24, 
0.0652,    
59 

0.30, 
0.0223, 
56               

Hsp40 

0.55, 
<.0001,  
106 

0.22, 
0.0289, 
95 

-0.04, 
0.7513, 
60             

Hsp60 

0.49, 
<.0001,    
60 

-0.26, 
0.0522, 
58 

0.57, 
0.0002, 
38 

0.18, 
0.1629, 
62           

Hsp70 

0.50, 
<.0001,  
105 

0.30, 
0.0032, 
94 

-0.12, 
0.3477, 
59 

0.82, 
<.0001, 
107 

-0.06, 
0.6422, 
61         

Hsp70i 

0.60, 
<.0001,   
102 

-0.03, 
0.7988, 
91 

-0.13, 
0.3468, 
58 

0.83, 
<.0001, 
104 

0.20, 
0.1304, 
60 

0.75, 
<.0001, 
103       

Hsp90 

0.52, 
<.0001,    
78 

0.22, 
0.0597, 
73 

0.72, 
<0.0001
, 52 

0.03, 
0.8228, 
79 

0.63, 
<.0001, 
53 

0.05, 
0.6333, 
78 

0.02, 
0.8314, 
76     

Hsp110 

0.31, 
0.0014,  
101 

0.85, 
<0.0001
, 93 

0.34, 
0.0094, 
57 

0.48, 
<.0001, 
103 

0.02, 
0.8783, 
61 

0.47, 
<.0001, 
102 

0.26, 
0.0081, 
99 

0.25, 
0.0304, 
77   
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Table 3.7 Correlations among proteins involved with oxidative stress and inflammation.  Values 

reported are the r (Pearson correlation coefficient), p-value, and the number of bears sampled.  

Highlighted numbers are significant, as determined by Pearson correlation (p<0.0016).  

Abbreviations for proteins are found on pp. x-xi. 

  CCR5 COX2 HO2 eNOS iNOS PRDX3 SOD1 SOD2 
CCR5                 

COX2 

0.81, 
<.0001, 
104               

HO2 

0.78, 
<0.0001, 
102 

0.96, 
<0.0001, 
106             

eNOS 

0.79, 
<.0001, 
95 

0.72, 
<.0001, 
98 

0.67, 
<0.0001, 
96           

iNOS 

0.15, 
0.2227, 
67 

0.23, 
0.0614, 
69 

0.30, 
0.0139, 
67 

0.09, 
0.4650, 
63         

PRDX3 

0.32, 
0.0012, 
102 

0.38, 
<.0001, 
106 

0.43, 
<0.0001, 
104 

0.21, 
0.0387, 
96 

0.88, 
<.0001, 
69       

SOD1 

0.78, 
<.0001, 
104 

0.97, 
<.0001, 
108 

0.97, 
<0.0001, 
106 

0.72, 
<.0001, 
98 

0.24, 
0.0509, 
69 

0.42, 
<.0001, 
106     

SOD2 

0.69, 
<.0001, 
98 

0.72, 
<.0001, 
102 

0.72, 
<.0001, 
101 

0.55, 
<.0001, 
93 

0.12, 
0.3511, 
65 

0.34, 
0.0005, 
100 

0.76, 
<.0001, 
102   
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3.3.3 Influence of biological factors and capture method on protein expression 

Principal component 1 for HPA axis proteins explained 88% of the variance.  Model 

selection for HPA principal component 1(PC1) without the environmental variables suggested 

that HPA PC1 varied by region (F=4.8, p=0.004), capture year (F=3.4, p=0.07) and log total 

serum cortisol (ng/ml) (F=3.2, p=0.08) (Adjusted R2=0.16, n=109).  After controlling for total 

serum cortisol and capture year, bears from South highway 11 were found to have lower HPA 

PC1 compared to those originating from Swan Hills (p=0.003) (Figure 3.9).  Model selection for 

HPA PC1 including the environmental variables suggested that HPA PC1 varied by region 

(F=6.0, p=0.005), log total serum cortisol (F=4.5, p=0.04) and anthropogenic change (F=5.0, 

p=0.03) (Adjusted R2=0.21, n=49).  After controlling for total serum cortisol and anthropogenic 

change, bears from North highway 16 were found to have elevated HPA PC1 compared to those 

originating from South highway 11 (p=0.004; data not shown due to low sample sizes). 

 

Figure 3.9 Regional comparison of the first hypothalamic-pituitary-adrenal axis (HPA) principal 

component (PC1) modeled without environmental measures.  Significant differences (p<0.1) are 

labeled with letters (a>b), as determined by repeated measures ANOVA followed by Sidak test.  

Abbreviation: CI, confidence interval. 
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Principal component 1 for ACC explained 83% of the variance.  Model selection for 

ACC PC1 excluding the environmental variables suggested that ACC PC1 varied by region 

(F=7.1, p<0.001), log body length (F=4.2, p=0.04) and log total serum cortisol (F=4.4, p=0.04) 

(Adjusted R2=0.21, n=101).  After controlling for length and total serum cortisol, bears from 

Swan Hills were found to have elevated ACC PC1 compared to those originating FMF Core 

(p=0.002), North highway 16 (p=0.02) and South highway 11 (p<0.001) (Figure 3.10).  Model 

selection for ACC PC1 including the environmental variables suggested that ACC PC1 varied by 

region (F=6.7, p=0.003), anthropogenic change (F=5.5, p=0.02) and road density (F=3.1, 

p=0.08) (Adjusted R2=0.24, n=52).  After controlling for anthropogenic change and road density, 

bears from North highway 16 were found to have elevated ACC PC1 compared to those 

originating from South highway 11 (p=0.002; data not shown due to low sample numbers). 

 

 

Figure 3.10 Regional comparison of the first apoptosis and cell cycle (ACC) principal 

component (PC1) modeled without environmental measures.  Significant differences (p<0.1) are 

labeled with letters (a>b), as determined by repeated measures ANOVA followed by Sidak test.  

Abbreviation: CI, confidence interval. 
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Principal component 1 for CS explained 48% of the variance.  Model selection for CS 

PC1 excluding the environmental variables suggested that CS PC1 varied by region (F=3.7, 

p=0.02), log total serum cortisol (F=5.0, p=0.03), log mass (F=5.0, p=0.03) and log length 

(F=10.6, p=0.002) (Adjusted R2=0.21, n=89).  After controlling for total serum cortisol, mass 

and length, bears from Swan Hills were found to have elevated CS PC1 compared to those 

originating FMF Core (p=0.01) and North highway 16 (p=0.02) (Figure 3.11).  Adding the 

environmental variables did not improve the CS principal component 1 model. 

 

Figure 3.11 Regional comparison of the first cellular stress (CS) principal component (PC1) 

modeled without environmental measures.  Significant differences (p<0.1) are labeled with 

letters (a>b), as determined by repeated measures ANOVA followed by Sidak test.  

Abbreviation: CI, confidence interval. 

Principal component 1 for OSI explained 69% of the variance.  Model selection for OSI 

PC1 excluding the environmental variables suggested that OSI PC1 varied by region (F=4.4, 

p=0.006), capture year (F=4.2, p=0.04) and log total serum cortisol (F=3.6, p=0.06) (Adjusted 

R2=0.17, n=109).  After controlling for capture year and total serum cortisol, bears from Swan 

Hills were found to have elevated OSI PC1 compared to those originating FMF Core (p=0.09) 

and South highway 11 (p=0.004) (Figure 3.12).  Model selection for OSI PC1 including the 
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environmental variables suggested that varied by region (F=5.0, p=0.01), log total serum cortisol 

(F=3.4, p=0.07) and anthropogenic change (F=6.6, p=0.01) (Adjusted R2=0.19, n=49).  After 

controlling for total serum cortisol and anthropogenic change, bears from North highway 16 

were found to have elevated OSI PC1 compared to those originating from South highway 11 

(p=0.009; data not shown due to low sample sizes). 

 

Figure 3.12 Regional comparison of the first oxidative stress and inflammation (OSI) principal 

component (PC1) modeled without environmental measures.  Significant differences (p<0.1) are 

labeled with letters (a>b), as determined by repeated measures ANOVA followed by Sidak test.  

Abbreviations: CI, confidence interval. 

Model selection for stress protein index excluding the environmental variables suggested 

that the protein index varied by region (F=6.9, p<0.001), capture year (F=13.6, p<0.001) and log 

serum hsp60 (F=7.3, p=0.008) (Adjusted R2=0.25, n=108).  After controlling for capture year 

and serum hsp60, bears from South highway 11 were found to have depressed OSI index 

compared to those originating from North highway 16 (p=0.001) and Swan Hills (p=0.002) 

(Figure 3.13).  Adding the environmental variables did not improve the protein index model. 
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Figure 3.13 Regional comparison of the stress protein index modeled without environmental 

measures.  Significant differences (p<0.1) are labeled with letters (a>b), as determined by 

repeated measures ANOVA followed by Sidak test.  Abbreviation: CI, confidence interval. 
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Chapter 4 Discussion 

 In my research, an antibody-based microarray was developed to measure stress-

associated proteins in grizzly bear skin.  The microarrays were then used to evaluate stress 

protein expression in the skin of free ranging grizzly bears from Western Alberta.  Relationships 

between stress protein expression in individual bears and other stress, health and environmental 

variables were then investigated using ANOVA modeling. 

4.1 Relationships between stress proteins and environmental measures 

Grizzly bears in Alberta consist of five genetically distinct groups, with divisions 

between populations coinciding with major traffic arteries, such as highways 1, 11 and 16 

(Proctor and Paetkau 2004).  Bears, especially females, have been found to be resistant to 

crossing highways (Proctor et al. 2005).  The bears from FMF Core and South highway 11 are 

genetically independent groups while those from North highway 16 are somewhat isolated from 

Swan Hills, but immigration from North highway 16 to Swan Hills is suspected as evidence was 

found of some interchange of genetics between the groups (Proctor and Paetkau 2004, Boulanger 

2009).  These population units have home ranges that have differing degrees of anthropogenic 

influence (Alberta Sustainable Resource Development and Alberta Conservation Association 

2010).  Thus it was predicted that differential expression of stress proteins would be detected 

among population units.  All principal component and stress protein index models for grizzly 

bear protein expression were able to detect regional differences in protein expression among 

bears from different population units in Alberta.   This suggests proteomic changes due to 

differences in habitat and encountered stressors within the regions.  

Historically, grizzly bears have not fared well as human activity expanded in their habitat 

along with resulting landscape modifications.  Worldwide, grizzly bear populations have 

declined when their home ranges put them in contact with humans (Storer and Trevis 1955, 

Brown 1985, Naves et al. 2003).  It was hypothesized that human-bear interactions would lead to 

stress and elevated stress protein profiles as well as increased mortality.  Mortality and 

presumably human-bear interactions tend to increase in disturbed areas (Berland et al. 2008).  A 

survey of British Columbia grizzly bears found those living on a plateau which was extensively 

modified by human activities had one quarter the density of those in nearby mountain habitats, 
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despite eating more high quality food items (Ciarniello et al. 2007).  A similar finding was 

reported in Alberta with high densities of grizzly bears in the mountains and lower densities in 

the foothills which had been developed to a greater extent (Mowat et al. 2005).  Two measures of 

human activity within the environment, anthropogenic change and road density, were found to be 

associated with the expression of stress proteins in grizzly bear skin in my thesis. 

Anthropogenic alteration of habitat has been found to be detrimental to bear populations 

(Mowat et al. 2005, Ciarniello et al. 2007, Berland et al. 2008).  Anthropogenic changes in a 

bear’s environment were hypothesized to be a factor influencing stress protein expression in bear 

skin.  Anthropogenic change was found to be a covariate for HPA PC1, ACC PC1 and OSI PC1 

models.  It was predicted that bears sampled from the South highway 11 region would have the 

highest protein expression measured when compared to the other regions in models that included 

anthropogenic change.  The South highway 11 region is one of the most extensively developed 

landscapes in which grizzly bears still persist in Alberta, and grizzly bears from in and around 

Banff National Park have previously been reported to have the lowest reproduction rate of any 

studied grizzly population (Garshelis et al. 2005).  However an inverse pattern to this prediction 

was observed, with expression of the protein category principal components and indexes being 

lower in the South highway 11 bears compared to bears originating in the North highway 16 

region.   

The hypothesized positive association between stress protein expression and 

anthropogenic change was not found.  The relationship between HPA PC1, ACC PC1 and OSI 

PC1 and anthropogenic change was found to be negative.  The relationship between bear habitat 

use and anthropogenic change is complicated as grizzly bear habitat preferences sometimes 

overlap with human development and activities, which increases the likelihood of human-bear 

interactions (Gibeau et al 2002).  Wildfire creates open canopy areas in the forest that have been 

found to increase the production of food items that grizzly bears prefer, but historically wildfires 

have been suppressed in the Alberta foothills since the 1940s (Hamer and Herrero 1983, 1987, 

Raine and Riddell 1991, Hamer 1996a, 1996b, Nielsen et al. 2004c).  Prescribed fires have been 

used in Banff National Park to simulate the landscape changes that would happen if wildfires 

were not suppressed, but at levels well below the historical average of natural burns (Green et al. 

1996).  Lower amounts of open canopy have resulted in a decrease of some major grizzly bear 



 

75 
 

food items, such as buffaloberry (Hammer 1996a, 1996b).  Grizzly bear habitat quality may be 

increased by cutblocks resulting from forestry that stimulate the production of certain grizzly 

bear foods, but the roads created diminish the positive impacts (Nielsen et al. 2004c, Nielsen et 

al. 2008).  Female grizzly bears from an area with extensive forestry activities were found to 

have better body condition than those from a relative undeveloped area (Ciarniello et al. 2009).   

Human activity through addition of cutblocks can increase the quantity of preferred bear 

foodstuffs but increases the risk of human-bear interactions.  Forestry and associated cutblocks 

require roads, which have been found to be detrimental to bears (Boyce et al. 2009).  Thus, the 

negative association between anthropogenic change and stress protein expression may have been 

strongly influenced by food availability.  

Development of roads has been found to have indirect and direct negative effects on 

wildlife.  There is worldwide concern about the impact of roads on wildlife (Spellerberg 1998, 

Fahrig and Rytwinski 2009).  Certain species have been predicted to respond negatively to road 

develepment, such as species attracted to roads or showing no avoidance of roads, species with 

large home ranges, low reproductive rates and low natural densities and small animals that avoid 

habitat due to traffic disturbance (Fahrig and Rytwinski 2009).  Roads have been found to 

negatively affect  a variety of biota, including plants, insects, birds and mammals (Spellerberg 

1998).  Road development can lead to direct loss of habitat, fragmented habitat, the isolation of 

populations and mortality (Spellerberg 1998).  As mentioned previously, highways have been 

found to limit bear movement (Proctor and Paetkau 2004, Alberta Grizzly Bear Recovery Team 

2008).  Roads into grizzly bear habitat have been found to be detrimental  because of increases in 

human caused mortality risk (Nielsen et al. 2008, Alberta Grizzly Bear Recovery Team 2008, 

Boyce et al. 2009).  Human access to grizzly bear range in Alberta has been increased as roads 

have been added to allow for natural resource extraction (coal, natural gas, oil and timber) and is 

projected to increase further in the next couple of decades (Nielsen et al. 2008).  The majority of 

grizzly bear mortalities are related to human access and are human-caused (McLellan et al. 1999, 

Benn and Herrero 2002, Nielsen et al. 2004b).  Benn and Herrero (2002) found that 90% of the 

grizzly bear mortality in their Alberta study was caused by humans, and the locations of death 

were within 500m of a road or 200m of a trail.  It has been suggested that decommissioning 

roads to equal the number being added to areas previously unaccessed may maintain critical 

habitat for grizzly bears (Nielsen et al. 2006).  Within the habitat of this study, the foothills of 
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Alberta, road construction is progressing at a rapid pace (Schneider 2002).  It was hypothesized 

that road density would affect protein expression.  The impact of road density was detected in the 

modeling of ACC PC1, with greater ACC protein expression associated with increasing road 

density.  It was hypothesized that the bears originating from the Southern highway 11 region 

would have a higher expression in models incorporating road density due to the high amount of 

human development of the landscape described above. The opposite pattern was observed in 

bears from North highway 16, where they were found to have elevated ACC stress protein 

expression compared to South highway 11 bears.  The predicted habitat deficit, highest food 

availability combined with displacement of bears from a habitat, was high for the lower foothills 

of North highway 11 and Swan Hills (Nielsen 2010).  It would be worthwhile to see future 

modeling including the South Highway 11 area and see if it fit the pattern of expression found 

for the protein expression models that included anthropogenic change or road density. 

Although road avoidance has been found to occur, grizzly bears have been found in 

several studies to use habitat closer to roads (Wasser et al. 2004, Roever et al. 2010).  Roads that 

bears were more likely to be found were associated with habitats attractive to bears, such as 

cutblocks (Roever et al. 2010).  Male grizzly bears living in the mountains were hypothesized to 

use primary and secondary logging roads for ease of travel as well as for the foraging 

opportunities presented by early-seral vegetation associated with roads, when the resource 

selection models found bears closer to the roads than random encounters would suggest 

(Ciarniello et al. 2007).  It was suggested that the increased distance traveled between successive 

telemetry locations taken at 4 hour intervals, step length, observed could be a reaction to reduce 

the time spent by bears at risk near roads (Roever et al. 2010).  Speed and traffic volume may 

affect how much a bear uses habitat near a road.  It has been found that high speed, high volume 

highways detract from the attraction of bears to high quality habitat, possibly due to noise 

(Gibeau et al. 2002).  Female grizzly bears were found further away from high volume traffic, 

but closer to human settlement, which brings its own risks of human encounters (Gibeau et al. 

2002).  It has been recommended that in Alberta open road density threshold be set at 0.6 km km-

2 for core grizzly bear habitats (Alberta Grizzly Bear Recovery Team 2008).  Yet even in an area 

with road densities below the proposed 0.6 km km-2 threshold, a smaller grizzly bear population 

than expected was observed, and it was suggested that perhaps attractants should be restricted 

more strictly as well (Roever et al. 2010).   
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The proportion of a bear’s habitat that is protected was predicted to be negatively related 

to protein expression.  This was not found to be the case as no model of principal component or 

index included proportion of habitat protected.  If a bear’s habitat encompasses both disturbed 

and undisturbed land, it could be at high risk since during certain foraging seasons, notably 

hypophagia (hibernation), grizzly bear use of disturbed areas increases (Berland et al. 2008).  

Disturbed areas, such as clearcuts and roadsides, can provide a diverse array of grizzly bear 

foods, such as tubers and roots, insects and plants (Nielsen et al. 2004c, Roever et al. 2008).  

Recreational activity on protected lands has been found to have negative impacts on wildlife 

(Hornocker and Hash 1981, Titus and VanDruff 1981, MacArthur et al. 1982, Copeland 1996, 

Hamann et al. 1999, Olliff et al. 1999, Arlettaz et al. 2007, Reed and Merenlender 2008).  

Recreational activity may have been one of the factors adding to the variability of stressors 

encountered by bears within the protected habitats. 

Mean RSF is the probability that a bear will use a resource unit within its home range 

(Boyce 2006).  A resource unit is a location in the landscape that an animal selects for use 

(McLoughlin et al. 2006).  It can designate where the bear is, but not why (Boyce and McDonald 

1999).  Resource selection functions are statistical models that estimate the probability of use of 

a resource unit relative to the availability of that resource in the environment (Boyce 2006, 

McLoughlin et al. 2006).  Patterns of habitat use have been observed to vary seasonally, which 

can result in separate RSF models for each season (Nielsen et al. 2004a, Boyce 2006).   Mean 

RSF avoids the seasonality detected in RSF measurements by averaging 3 seasons.  It has been 

suggested that RSF can describe the extent of habitat use and might hint at quality and 

abundance of resources in the area (Boyce and McDonald 1999).  Increasing mean RSF indicates 

a greater probability of selective use of the environment versus random use of a bear’s home 

range.  There is concern that RSF models may not relate to population measures, such as density, 

or individual health and some have begun to question their utility for management of populations 

(Nielsen et al. 2005, Johnson and Seip 2008).  No selectivity of habitat use was detected with 

principal component models or the stress protein index in my thesis. 

Habitat alteration and human activity within the environment are factors reported to be 

stressors for wildlife (Creel et al. 2002, Homan et al. 2003, Arlettaz et al. 2007, Martinez-Mota et 

al. 2007).  Human activity has also been found to negatively influence wildlife use of available 



 

78 
 

habitat (Johnson et al. 2005).  Long-term stress has been found to decrease reproductive success 

in wildlife, which potentially impacts population health and can lead to a lag in detection of the 

problem (Chapman and Lambert 2000, Cyr and Romero 2007).  Grizzly bears, with their large 

body size, low fecundity and large home ranges have a greater chance of population declines due 

to habitat alteration and other stressors (Cardillo et al. 2005).  There is a time lapse, sometimes 

decades, between anthropogenic habitat alteration and declines in wildlife population health 

(Struhsaker 1976, Findlay and Bourdages 2000).  For species of concern, such as the grizzly 

bears in Western Alberta, the custom protein microarray is a potential tool for rapidly assessing 

alterations in cellular stress which could then be extrapolated to individual health.  Establishing 

linkages between cellular changes and population level processes is a huge challenge for 

conservation physiology (Cooke and O’Connor 2010).  One fortunate element of being 

associated with such a large project studying a species from many different approaches is that 

modeling has been performed to determine if the estimated population densities observed are the 

densities that the habitat can support. Unfortunately this information, which is costly to obtain, 

may not available to all wildlife researchers (Chapman and Lambert 2000). 

4.2 Relationship between stress proteins and health measures 

4.2.1 Body measures 

 The observed relationship between lower body length and higher stress protein 

expression may suggest stress-induced inhibition of growth.  Growth hormone secretion is 

inhibited by the signal cascade triggered by stress, and long-term stress can result in depressed 

growth (Wingfield and Romero 2001, Tsigos and Chrousos 2002).  Body length was found 

through first principal component modeling to have a negative relationship with ACC and CS 

proteins.  If the protein categories are reflecting chronic stress, then a negative association with 

growth would be predicted. 

Body mass has been found to alter the response to stress.  It has been suggested that 

animals with lower body masses and thus energy reserves may have a slower increase in 

glucocorticoid levels and a delayed recovery to baseline levels (Heath and Dufty 1998).  Stress 

has also been found to alter body mass.  Repeated stress exposure has been observed to induce 

temporary hypophagia and a long-term suppression of weight (Harris et al. 2002).  Translocated 
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wild birds were reported to have reduced body weight and decreased sensitivity of the HPA axis 

to negative feedback (Dickens et al. 2009).  Modeling of CS PC1 revealed a positive relationship 

with body mass.  With hibernation losses and hyperphagic gains the body weight of a grizzly 

bear can vary a great deal during the year.  Weight changes would be expected to vary in 

response to food available within the bear’s home range and as mentioned above may vary with 

stress.  Grizzly bear weight can fluctuate 20-70% seasonally, with the greatest weight change 

occuring in older females over the winter period due to the demands of gestation and lactation 

(Schwartz et al. 2003).  The nutritional demands of bears are high, with a peak over summer and 

fall when individuals accumulate fat to survive winter (Rode et al. 2006, Berland et la. 2008).  

Female bears with young have an additional nutritional demand in the spring (Forley and 

Robbins 1995, Rode et al. 2001).  Body length does not fluctuate as greatly, although rates of 

growth can vary due to age and yearly growth rate, which can be influenced by food availability 

and potentially stress.  The positive association of CS PC1 with body mass may be related to 

higher food availability in a more stressful environment as serum cortisol was also found to have 

a positive relationship with CS PC1. 

Body condition index is based on the standard residuals from body mass and body length, 

has been found to reflect body condition (fat and muscle mass), and is independent of body size 

(Cattet et al. 2002).   It was not unexpected that the stress protein relationships to BCI were not 

identical to those of body length or mass.   No optimized models for stress protein categories 

demonstrated a relationship to BCI.  Heterogeneity within the bear populations may have masked 

any relationship with true body condition, or alternatively protein expression may be more 

influenced by factors that also affect length and mass on a shorter time scale.  

4.2.2 Serum measures 

One complicating factor when studying grizzly bears in the wild is the uncertainty of 

frequency of exposure and the bear’s perceptions of potential stressors in the environment.  The 

degree of HPA and sympathetic nervous system activation depends on the stress duration, 

intensity and type (Dronjak et al. 2004).  Cortisol and ACTH expression are increased rapidly 

after the onset of stress; however, certain long-term stressors also result in elevated ACTH and 

cortisol release (Dronjak et al. 2004).  Repeated exposure to a low to moderate stressor can lead 

to habituation with low to no HPA activation (Armario 2006).  Repeated exposure to a severe 
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stressor can lead to a partial habituation of the HPA axis with the degree of habituation 

negatively related to the interval between exposures and intensity of stressor (Armario 2006).  

Certain stressors do not elicit habituation with repetition but rather produce an enhanced 

response (Armario 2006).  Assessment of glucocorticoid levels has been one of the traditional 

assessments of whether a wildlife population is under threat from human activity (Arlettaz et al. 

2007); however, a review of the literature found that the relationship between baseline 

glucocorticoids and fitness of individuals or populations is not consistent for all populations 

(Bonier et al. 2009).  The expression of proteins as modeled by the first principal component 

found a positive relationship with total serum cortisol for all four stress protein categories.  

Increased protein expression associated with increased total serum cortisol could reflect acute, 

repeated or long-term stress; however the lack of association with capture stress combined with 

the association with landscape measures supports the notion that skin stress protein expression is 

reflecting longer term stress. 

Acute psychological stress has been positively associated with serum hsp70 (Fleshner et 

al. 2004).  Serum hsp70 has been found previously to differ in grizzly bears from different 

regions in Alberta and thus may also be able to reflect longer term stress (Cattet et al. 2008c).  

Controlling for capture method, it was found that serum hsp70 was inversely correlated to the 

proportion of the grizzly bear home range that was protected from human activity (Hamilton 

2007).  Bears whose home range was ≤15% protected from human activity were found to have 

elevated serum hsp70 (Hamilton 2007).  Percent protected habitat is a complex variable, since 

protected habitats often have less food available seasonally due to wildfire suppression, edges of 

protected habitat may have greater human encounters, and increased mortality and recreational 

activity within protected habitats have been found to create stressful situations for wildlife.  

Stress protein functional groups and the protein index were not found to have a relationship to 

serum hsp70 levels or proportion of grizzly bear home range that was protected.  The lack of 

relationship with serum hsp70 could reflect the lack of relationship found within the models for 

the proportion of habitat within a grizzly bear’s home range that was protected. 

Serum hsp60 has been reported to increase with a variety of longer term stressors such as 

cardiovascular disease, artificial enlargement of bird brood size, psychological stress in humans, 

and was inversely associated with psychosocial measures such as socioeconomic status (income), 
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indicating a responsiveness to chronic stress (Lewthwaite et al. 2002, Pockley 2003, Merino et 

al. 2006, Shamaei-Tousi et al. 2007).  Another study of Alberta grizzly bears found that serum 

hsp60 did not reflect regional location of the bears (Cattet et al. 2008c).  In contrast, the stress 

protein index was found to have a positive association with serum hsp60 and included a regional 

component.  Differing hsp60 and hsp70 associated changes are not surprising as hsp60 and 

hsp70 have distinct actions within the body (Henderson 2010).  Extracellular hsp60 and hsp70 

may be signals of cellular trauma and stress to any particular part of an organism as well as 

immunomodulators, but what stresses they respond to and their actions within the body may 

differ (Calderwood et al. 2007, Pockley et al. 2008, Henderson 2010).   

Serum GGT was not found to have a relationship with skin stress protein expression.  

Serum GGT is often used in human medicine as a marker of liver dysfunction, and has also been 

associated with cardiovascular risk, diabetes, kidney disease and cancer (Targher et al. 2010).   It 

has been suggested previously that serum GGT may be a marker for oxidative stress (Lee et al. 

2004).  The changes in serum GGT associated with oxidative stress in human studies were within 

the normal physiological range (Lee et al. 2004).  Serum GGT in wildlife has generally not been 

found to vary with the stressors of parasites, reproduction, handling, capture or captivity (St. 

Aubin et al. 1979, Weber et al. 2002, Barnes et al. 2010, dos Santos Schmidt et al. 2010, Topal et 

al. 2010).  However there are other studies examining different species and capture methods that 

do show serum GGT differences with capture type and positive correlations with time between 

capture and sampling, although within the normal reference range of the species (Kreeger et al. 

1990, Omsjoe et al. 2009).  The inherent variability of wildlife may have masked any 

relationship that may have existed between the OSI proteins and serum GGT as in human studies 

the GGT elevations were within normal physiological ranges. 

4.3 Summary measures of protein expression 

An HPA response alone cannot be interpreted as a stress response, as the HPA axis is 

involved in the homeostatic response to a stimulus (Armario 2006).  The acute stress response is 

also vital to survival of wildlife, while chronic stress can result in pathology (Dickens et al. 

2010).  Stimulation of the HPA axis is not only involved in short-term adaptation to maintain 

homeostasis in the face of challenges, but is also involved in the normal day-to-day activities 

associated with increased locomotion, exploratory behaviour, appetite and food seeking 
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behaviour (McEwen et al. 1998, Sapolsky 1992).  The altered expression of proteins involved in 

all four of the stress protein categories evaluated in association with various health and 

environmental variables gives a stronger indication that bears were encountering stressors in 

their environment, and the possibility of that such stress was causing dysregulation within the 

body.  The challenge with interpreting proteomic changes within animals in the wild is the 

uncertainty of the stressors encountered and their potential physiological effects.   

Allostasis is the body’s attempt to maintain stability through the activation of 

physiological processes.  Chronic elevated activity or inactivity of the physiological systems 

involved in allostasis can lead to wear and tear on the body and brain, which has been termed 

allostatic load (McEwen 1998).  In human medicine, it has been found that an allostatic load 

index that incorporates a variety of physiological parameters was positively related to adverse 

health outcomes (Seeman et al. 1997, McEwen 2000, Seeman et al. 2004).  Calculations of 

allostatic load have been based on distribution of each biomarker rather than clinical thresholds 

as many of the variables do not have accepted clinical cutoffs and the focus is on sub-clinical 

dysregulations (Seplaki et al. 2005).  Human health was found to be more accurately reflected by 

allostatic load rather than the individual parameters used to calculate the index (Seeman et al. 

1997, Seeman et al. 2004).   

In this study, grizzly bear summary measures were calculated based on the same 

principles used to calculate allostatic load in humans.  Different modeling techniques for 

understanding grizzly bear protein expression were compared.  The more classical elevation and 

depression allostasis model was attempted with the top 10% and bottom 10% of expression 

incorporated with little success, as there were no regional effects found except for the CS 

functional group model when environmental measures were included and the models had a much 

lower fit to the data (Appendix 2, Adjusted R2 = 0.04-0.18).  A variant of the allostatic load 

approach found was also attempted based on a recent publication.  Summation of the extreme 

scores at one tail of the biomarker distributions was found to perform better than summation of 

extreme scores at both tails (Hampson et al. 2009).  This agrees with my findings, as the model 

that only accounted for the top 25% of protein expression had a higher fit measure (Appendix 3, 

Adjusted  R2 = 0.15-0.28), detected regional effects, and had similar findings to the first principal 

component models.  The stress protein index was calculated from the expression of all 31 
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proteins on the array, which encompassed physiological processes such as apoptosis, cell cycle, 

cellular stress, oxidative stress, inflammation and the HPA axis.  The stress protein index was 

chosen as the summary measure for all of the functional protein categories. 

The model chosen for each stress protein functional category was the first principal 

component determined by principal component analysis.  Principal component analysis is used to 

condense information from a large number of original variables (McGarigal et al. 2000).  The 

expression of 31 stress proteins in skin samples from over 100 bears represents a large data set, 

and presents challenges in interpretation.  Condensed measures are easier to present and interpret 

when attempting to investigate relationships between protein expression patterns and measures 

of grizzly bear health and environment.  Multivariate techniques are problematic due to 

dependencies among variables, and principal component analysis can be used to handle the 

dependencies by creating new independent variables (McGarigal et al. 2000).  The first principal 

component was chosen for the model as it explains the maximum amount of variation possible in 

one dimension (McGarigal et al. 2000).  The first principal components were able to account for 

88, 83, 69 and 48 percent of the variation for the HPA, ACC, OSI and CS proteins, respectively.  

Both principal component analysis and grouping by functional categories has been performed 

previously for DNA microarray data (Mootha et al. 2003, Pavlidis et al. 2004, Subramanian et al. 

2005, Kong et al. 2006).  Grouping of genes, using a priori knowledge, facilitates interpretation 

of results such that the effects seen without grouping may miss weak effects (Mootha et al. 2003, 

Kong et al. 2006). 

In agreement with the results of my thesis were the findings of Southern et al. (2002), 

who reported elevated expression of OSI (COX2, iNOS, SOD1, SOD2), HPA (GR), ACC 

(caspase 8), and CS (grp75, hsp25, hsp40, hsp90) proteins in the skin of spotted dolphins 

(Stenella attenuate) stressed by fisheries.  Dolphins stressed by fisheries have also been found to 

have physiological damage in the form of focal heart lesions (Forney et al. 2002).  Cardiac health 

has been found to be altered by chronic stress (Dickens et al. 2010). 

 Fitting the current study into the reactive scope model, which has been proposed to be a 

next step in the evolution of stress modeling, after allostasis, is more complex (Romero et al. 

2009).  The reactive scope model calls for a young, naïve animal to provide the limit to the 

reactive homeostasis for that mediator to determine at what level homeostatic overload begins 
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(Romero et al. 2009).  How does one fit non-domesticated organisms into the model?  One of the 

problems encountered with this study was the challenge of working without a classic control.  

How does one find a grizzly bear that is not stressed?  Zoo animals were considered, but the 

significant psychological stress in animals confined in zoos, especially large mammals (Terio et 

al. 2004, Clubb and Mason 2003, Mason and Veasey 2010), raised concerns over this approach.  

Even if zoo animals were used as a control, one would have to find a number of zoos willing to 

allow application of light to moderate stressors and skin sampling.  Using a closely related 

animal as an alternative could also lead to confusion if life histories were not taken into account.  

For example, two species within the family Sciuridae, red squirrels (Tamiasciurus hudsonicus) 

and Arctic ground squirrel (Spermophilus parryii), with differing life histories were found to 

have differing stress responses (Boonstra and McColl 2000).   

Allostatic load calculations have been employed in the human health field and were 

found to account for more variance than the separate parameters evaluated, which was thought to 

reflect the allostatic load score encompassing information from multiple biological pathways 

(Seeman et al. 2004).  Human health studies have reported allostatic load to reflect increased risk 

of cardiovascular disease, poor cognition and physiological functioning (Seeman et al. 1997, 

Evans and Schamberg 2009, de Castro et al. 2010, Mattei et al. 2010).  Allostatic load scores 

have been observed to reflect chronic stress that people experience, such as poverty (Evans and 

Schamberg 2009, Bird et al. 2009).  Due to concern about whether human influence on natural 

ecosystems is causing conservation issues, there is a call for assessment of stress in wildlife 

(Wikelski and Cooke 2006).  Evidence of increased allostatic load has been found in other 

mammals.  A study of dominance hierarchies in male cynomolgus monkeys (Macaca 

fascicularis) found an elevation of blood pressure and accelerated atherosclerotic plaque 

formation in males vying for position associated with the release of catecholamines (McEwen 

and Seeman 1999).  There has been a call in the literature to evaluate the effects of allostasis at 

the cellular level, such as changes in protein expression (McEwen and Seeman 1999), and my 

thesis research has contributed to this emerging area by investigating changes in stress protein 

expression in free-ranging grizzly bears. 

4.4 Two dimensional gel electrophoresis 
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Alteration of mitochondrial protein expression, which has been linked to chronic stress, 

was discovered in grizzly bear skin and muscle using two dimensional gel electrophoresis.  

Several of the proteins found to be altered between grizzly bears under stressful conditions 

compared to bears theorized to be less stressed, such as components of the ATP synthase 

complex, are related to mitochondrial function.  Chronic stress has been found to cause 

mitochondrial dysfunction as well as alteration of mitochondrial protein expression (Duclos et al. 

2001, Madrigal et al. 2001, Liu et al. 2004, Manoli et al. 2007).  These mitochondrial proteins 

altered by stress are worth further investigation as mitochondria seem to be affected by many 

diverse stressors in fish and mammals (Moens et al. 2006, Mancia et al. 2008, Galindo et al. 

2009). To date no antibodies have been found that react to ATP synthase proteins in grizzly bear 

tissue, but validation testing will continue.  Future refinement of antibodies on the grizzly bear 

microarray I developed should add antibodies related to mitochondrial function.  The two 

dimensional gel electrophoresis resulted in one antibody added to the array, however it did hint 

to a functional group of proteins involved in mitochondria activity that would be an interesting 

addition to future versions of this microarray.  The inability to find an antibody to evaluate 

mitochondrial activity highlights the difficulty of finding commercial antibodies that can be 

validated for grizzly bears. 

4.5 Commercial vs. custom protein microarrays 

Custom protein arrays may be the most feasible way to monitor stress protein expression 

in wildlife.  The commercial antibody arrays were found to have low reactivity and many of the 

antibodies from the commercial arrays, when validated by western blotting, did not react to the 

target antigen in grizzly bear tissue.  A large number of antibodies (253) that were screened and 

rejected during the developmental phase of the microarray was also an indication that use of 

untested antibodies could lead to erroneous protein expression data.  Extreme caution should be 

employed when using commercial antibody arrays designed for use with laboratory animals or 

humans for wildlife without validation of the antibodies on the chip.  Concern about cross-

reactivity and divergent sequences resulting in failed hybridization has led to a call for species-

specific DNA microarrays as well (Kennerly et al. 2008). 

Custom protein and DNA microarray work has been used to assess stress in other wildlife 

species.  A DNA microarray study of wild bottlenose dolphins (Tursiops truncatus) acutely 
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stressed by capture-release found increased expression of energy metabolism, stress and trauma 

responsive genes, as well as down regulation of certain immune related genes (Mancia et al. 

2008).  Protein profiling using a reverse array, in which the protein is fixed to slides and flooded 

with an antibody cocktail, was able to differentiate between diseased and healthy African 

elephants (Loxodonta africana) (Bechert and Southern 2002).  Protein profiling, also using a 

reverse array, was able to differentiate between spotted dolphins stressed by fisheries and those 

unaffected (Southern et al. 2002).  European wild boar (Sus scrofa) were found to have gene 

expression affected in functional categories including intermediary metabolism, apoptosis, 

immune response, cell growth and protein synthesis when infected by Mycobacterium bovis 

(Galindo et al. 2009).  Endocrine disrupting compounds have been found via DNA microarray to 

alter the expression of many genes in common carp (Cyprinus carpio) including hsp60, 

cytoskeletal genes and those involved in mitochondria function (Moens et al. 2006).  Rainbow 

trout (Oncorhynchus mykiss) exposed to various stressors were reported to have altered liver 

gene expression (Momoda et al. 2007).  Custom protein and DNA microarray work conducted in 

a variety of species have demonstrated the utility of these tools when assessing the impact of 

disease, chemical insult and anthropogenic stress.  Protein arrays avoid one of the major 

criticisms of DNA microarrays, with respect to the large differences detected between the 

transitory message, mRNA, and the effectors in the cell, proteins (Wastling et al. 2009, Lundberg 

et al. 2010). 

4.6 Tissue comparison 

 Skin was selected as the optimal tissue for analysis.  This was due to the collection of 

skin from the ear in conjunction with the placement of ear tags, the less invasive procedure of 

obtaining the tissue compared to muscle collection, and for its ability to be remotely sampled.  

The use of remote biopsy darts to collect skin samples is an exciting possibility for the future of 

wildlife microarray use.  The darts collect small samples remotely without the need for 

anesthesia or the stress of capture.  Dr. Marc Cattet has begun investigation of use of these darts 

on grizzly bears with the collection of dart samples from several of the snared grizzly bears (data 

unpublished).  Biopsy darts have been successfully used for skin biopsy collection from 

cetaceans, elephants, hippopotamus (Hippopotamus amphibious) and South Andean deer 
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(Hippocamelus bisulcus) (Roca et al. 2001, Beckwitt et al. 2002, Bechert and Southern 2002, 

Dizon et al. 2002, Tovar et al. 2008).   

Skin has been found to have a stress response cascade that mirrors the HPA axis 

(Slominski et al. 2000, Arck et al. 2006).  It has been proposed that the skin, nervous, endocrine 

and immune systems are a large multidirectional complex rather than autonomous units (Reich et 

al. 2010).  The stress protein expression profiles of grizzly bears in my thesis research were 

consistently higher for the skin compared to muscle.  Skin sampling location was not found to 

affect the expression of array proteins.  Contrasting with this finding, hair cortisol concentrations 

in grizzly bears have been found to vary across different body locations, with neck hair having 

higher concentrations (Macbeth et al. 2010).  Skin consists of a variety of cell types, some of 

which form the peripheral mimic to the central HPA axis.  Fibroblasts, melanocytes and hair 

follicles produce cortisol (Ito et al. 2005, Slominski et al. 2007).  The skin samples used for this 

study had the hair shorn off at the skin level.  The skin cells sampled would have consisted of a 

variety of cells including the keratinocytes, melanocytes, Langerhans cells, Merkel cells, hair 

follicles and fibroblasts (Boulais and Misery 2008).  Perhaps the heterogeneity of cells in skin 

samples resulted in the lack of difference seen between skin sampling locations, contrasting with 

the hair cortisol concentrations resulting from the hair follicle contributions.  Future analysis of 

skin protein expression and hair cortisol expression patterns in relation to environmental 

measures is recommended to determine if the patterns are correlated.  Based on this information, 

it appears that skin biopsy samples can be collected from a variety of body locations without 

influencing results.  Greater expression of stress proteins from skin compared to the muscle is 

ideal for wildlife research as there is concern for wildlife welfare which results in researchers 

and wildlife managers wanting to create the smallest wound possible to minimize infection risk 

and speed healing.  The skin sampling procedure was much less invasive than the procedure for 

collecting muscle, and skin is currently collected in many wildlife studies currently as ear tags 

are inserted to aid animal identification. 

A link between central HPA activation and effects on the skin has been detected in 

humans.  Psychological stress has been associated with comprised skin barrier function, 

decreased epidermal proliferation and decreased expression of various proteins (involucrin, 

loricrin and filaggrin) leading to thinner epidermis (Slominski et al. 2008).  Psychological stress 
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has also been linked to the severity of psoriasis in humans.  Interestingly, patients with greater 

stress levels had lower serum cortisol compared to the patients reporting less stress, yet still had 

stress effects on the skin (Evers et al. 2010).  In addition to the skin stress axis reacting to HPA 

activation, stress can cause an influx of immune cells to the skin (Reich et al. 2010).  Psoriasis is 

an autoimmune condition of the skin.  Activation of the autonomic nervous system and psoriasis 

has been correlated (Chapman and Moynihan 2009). 

The skin, endocrine, nervous and immune systems are revealing themselves to be a large 

complex system with multidirectional communication (Reich et al. 2010).  Physiological systems 

(e.g. immune, metabolic and endocrine) react and influence each other in relation to selection 

pressures in the environment, such as disease, food availability, predation and environmental 

unpredictability (Ricklefs and Wikelski 2002).  Bidirectional communication occurs between the 

central nervous system and the immune system (Glaser and Kiecolt-Glaser 2005, Chapman and 

Moynihan 2009).  Acute and chronic stress, anxiety, and depression have been linked to changes 

in innate and adaptive immune responses (Glaser and Kiecolt-Glaser 2005).  

Psychoneuroimmunology is the study the complex interactions of the central nervous system, 

endocrine and immune systems (Glaser and Kiecolt-Glaser 2005).  Stress-related immune 

dysregulation results in delayed wound healing, and altered pathophysiology of viral infection, 

hypothesized to cause premature aging of immune cells (Glaser and Kiecolt-Glaser 2005).  

Evaluating skin protein expression could therefore be a very useful approach for investigating 

the complex interactions among different physiological systems in wildlife. 

4.7 Protein quantity 

Small skin samples (50 to 200 mg) contain sufficient protein to evaluate protein 

expression in grizzly bears.  Ear plug samples, biopsy punch and biopsy dart samples all had 

sufficient protein quantities to label the tissue and run 80 µg in duplicate or triplicate wells of 

one microarray.  The lowest protein concentration attempted in this study, 10 μg of sample 

protein and 10 μg of pooled standard in 230 μl volume, produced a detectable signal on the 

custom protein microarray, which is within the published limits of the sensitivity of fluorescent 

labeling of proteins captured by protein microarray, as proteins have been previously detected to 

a limit of approximately 1pg/μl (MacBeath 2002).  The higher the protein amount incubated on 

the microarray, from 10 μg to 80 μg, the higher the relative protein expression measured with the 
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noted exception of 20 μg, which was found to produce lower measured protein expression for 

HPA, ACC and OSI proteins.  Contributing to this effect may have been higher background 

fluorescence occurring in the 20µg samples without an increase in protein signal measured.  

Higher background fluorescence may have contributed to the larger variation in the 80 µg 

protein samples.  Background fluorescence has been observed to be problematic for protein 

microarrays (Haab et al. 2001).  Rolling circle amplification could be used in future iterations of 

this array to amplify the protein signal (Spisak and Guttman 2009).  Two-color, rolling circle 

amplification procedures, which labels samples with small markers such as biotin or digoxigenin, 

would be preferential over the procedure requiring two specific antibodies for each protein (Zhou 

et al. 2004, Schweitzer et al. 2002).  Validation of commercial antibodies to non-domestic 

species, such as wildlife, can have a low rate of validation requiring a great investment of time 

and money.   Further work reducing the background fluorescence or adopting a method of 

amplifying the spot signal in the future is recommended. 

4.8 Protein degradation 

One concern with all protein work is the time from sampling to the time of freezing in 

order to preserve proteins from degradation.  Significant changes in protein expression were 

noted for HPA and ACC proteins by 24 hours at room temperature for unpreserved grizzly bear 

skin.  For the CS proteins an increase from 24 to 48 hours was observed.  Protein degradation is 

not homologous, as it is influenced by parameters such as size, structure, composition and post-

translational modifications (Spisak and Guttman 2009).  Postmortem increases in protein 

expression of myosin light chain 1 and lactoylglutathione lysase along with decreases in hsp27 

and hsp20 have been detected in bovine muscle by 2D electrophoresis followed by MALDI-

TOF/TOF MS (Jia et al. 2006).  In contrast another study of bovine muscle found an increase in 

hsp27 and decrease in hsp70 within 48 hours postmortem (Bjarnadottir et al. 2010).  Generally, 

partially degraded protein molecules can bind to microarrays, but they usually have a weaker 

signal (Spisak and Guttman 2009).  It is possible that degradation could have resulted in a 

change of solubility of the protein, which has been observed previously, or perhaps the protein in 

its native state was still partially in complex with other proteins as it is the cell and degradation 

released the protein (Perdew 1988, Rogalla et al. 1999, Bjarnadottir et al. 2010). 
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Preservation of samples collected in the field can be a challenge.  In a laboratory setting 

samples are taken and frozen immediately, often at -80oC.  Even in the medical field, protein 

instability is a concern for protein microarray work (Spisak and Guttman 2009).  Field work 

poses unique challenges to research monitoring protein expression, as the time between sampling 

and freezing is often prolonged.  It is often hard to find space to bring ice, dry ice or liquid 

nitrogen on a helicopter, or carry enough storage materials to keep the samples cold or frozen 

when out in the field for a full day.  Freezers at base camps are a luxury that was available for 

this project, but may not be available to all wildlife researchers.  Grizzly bear population size in 

Alberta is low compared to a nearby population in Montana and a great deal of effort is 

expended capturing bears (Nielsen et al. 2009).  Low population density makes use of 

opportunistic samples such as recently deceased bear carcasses of bears killed by cars and trains 

desirable.  Three of the four protein categories demonstrated altered measurement of protein 

expression within one to two days at room temperature.  This indicates that use of samples left 

for a day or more at room temperature, such as road kill or other incidental samples from dead 

animals may lead to increased variation in the microarray data leading to complications in 

interpretation. 

Use of a preservative such as RNA-later may be an important addition to using protein 

microarrays to study stress in wildlife.  The effects of degradation on measured protein 

expression may have been influenced by the prolonged exposure at ambient temperature that the 

samples available for this experiment underwent before freezing, so there may already have been 

protein degradation that occurred in these tissues.  Investigation of preservatives such as RNA-

later may make protein microarrays more practical for wildlife research.  Preservatives would 

allow for small samples to be taken in the field without need for immediate refrigeration or 

freezing.  No differences were detected after 24 hours for samples immersed in RNA-later 

compared to those that were not preserved although there was a trend for elevated protein 

expression with the preserved samples.  Caution should be employed because of the significant 

finding of elevated measured expression with immersion in RNA-later at zero hours for HPA 

proteins and the trend for increased protein expression of ACC proteins.  It is recommended that 

further testing should be done to determine if RNA-later preserves the proteins of interest and 

whether protein expression measured is artificially elevated by immersion in RNA-later.  

Another evaluation of RNA-later with samples that had not already undergone some time at 
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ambient temperature post-mortem may reveal a difference degradation with RNA-later preserved 

samples.  RNA-later has been noted for its preservation of proteins in previous studies (Rodrigo 

et al. 2002, Barclay et al. 2008).  RNA-later, and potentially other preservatives, may expand the 

ability of wildlife researchers to utilize technology evaluating protein expression, such as the 

microarray developed during my research. 

4.9 Factors affecting protein expression 

The grizzly protein microarray detected no differences in stress protein expression by 

sex, age or capture type.  This corresponds with the findings of no effect of age, sex or 

reproductive class effects on serum hsp60 and hsp70 or total serum cortisol in grizzly bears 

(Hamilton 2007, Lindsjo 2009).  Differing from the findings of this study, capture type has been 

associated with increased serum hsp70 and total cortisol levels in grizzly bears (Hamilton 2007, 

Lindsjo 2009).  A lack of sex and age class variation was also found with manatees (Trichechus 

manatus latirostris) with serum cortisol highest in injured or diseased animals (Tripp et al. 

2010).  The lack of responsiveness of skin protein expression to capture (an acute stressor) could 

reflect a lag in skin stress axis responsiveness compared to the central HPA axis, or the skin 

stress axis responding more to chronic HPA activation rather than acute activation.  Fecal 

glucocorticoid levels, which reflect glucocorticoid secretion in grizzly bears over time rather 

than acute pulsatile secretion into the serum which varies diurnally, have not been found to 

detect sex differences (Monfort et al. 1993, von der Ohe 2004, Wasser et al. 2004). 

Unfortunately, because of terrain differences capture methods were not used evenly in 

each region.  Within Swan Hills 100% of the bears were captured by snare, North Highway 16 

66.1% of bears were captured by snare, South Highway 11 27.5% were captured by snare and 

FMF Core 15.8% were captured by snare.  Total cortisol in serum has been found previously in 

grizzly bears to be affected by capture stress (Cattet et al. 2003, Hamilton 2007).  Snaring bears 

has been found to result in indications of greater muscle injury and stress in bears indicated by 

higher serum cortisol levels and a stress-associated change in leukocytes compared to those 

darted from a helicopter (Cattet et al. 2003, Hamilton 2007, Cattet et al. 2008b).  The observation 

that microarray proteins were not affected by capture type lends support that the array is not 

detecting changes in protein expression resulting from acute capture stress. 
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4.10 Antibody dilution, dye flipping and array variation 

The information generated during the development of this protein array, such as 

decreasing measured protein expression and printing efficiency with increasing printing buffer 

concentration will contribute to the optimization of future custom wildlife arrays.  The intra- and 

inter- assay variation were within acceptable criteria.  The printing inconsistencies were likely to 

have contributed to the variation found for certain antibody features.  It will be a priority to 

improve the printing consistency and lower the inter-assay variation for future generations of this 

array.  The relative protein expression (sample fluorescence/pooled standard fluorescence) 

measured on the grizzly bear protein array has been found with other protein microarray studies 

to be unaffected by changes in spot size or density (Haab 2001).  This may have helped counter 

any minor issues with printing efficiency.  The flipping of the dyes resulted in differing relative 

protein expression. The fluorescent dyes Cy3 and Cy5 are known to have differing fluorescence 

characteristics (Mujumdar et al. 1993, Berlier et al. 2003).  To avoid this variability, the dye 

choice should therefore be kept constant for the sample and reference pool. 

4.11 Conclusion and future directions 

Wildlife research is an exciting field at present with a wide selection of new techniques 

available and even more being adapted from the human health field.  However, work with 

reclusive species with large territories may limit the techniques applicable.  For instance, an 

immunoaffinity chromatography method has been developed to simultaneously evaluate a 

variety of neural and immune biomarkers in human sweat, collected through cutaneous sweat 

patches (Marques et al. 2010). This method is noninvasive, however cutaneous sweat patches 

have to be applied which would require the stress of capture and in order to retrieve the patches 

for analysis. The animal would have to be recaptured or the patches would have to drop off on 

their own, and retrieving the patches in a species that can travel for kilometers in a day would be 

arduous.  A danger with using new technologies is over reliance on one technique to the 

exclusion of other information, which can result in a “technology trap”: quick results with 

limited biological information or interpretability (Nielsen et al 2010).  The protein array is not 

meant to replace all other techniques for studying wildlife.  The array would be a valuable 

addition to a wildlife researcher’s arsenal for evaluating whether a population is in need of 

further study.  Protein expression in skin can be related to both anthropogenic environmental 
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change and health measures in grizzly bears.  Another area the array may be useful is to evaluate 

whether there is an improvement after ecological restoration activities.  There has been a call for 

integration of physiology measurement and ecological restoration within the literature (Cooke 

and Cory 2008).  Use of physiological stress measures has been limited on free-ranging animals 

due to the invasiveness and potential for bias of capturing and withdrawing blood from wild 

animals (von der Ohe 2004).  Skin samples taken remotely by dart would eliminate these 

concerns, and represents an important area for future research. 

  Time and funding did not allow for a lab based assessment of the custom array 

developed in my thesis.  Future studies involving an unpredictable schedule of repeated stressors 

in a laboratory or field research station using a species with a more limited home range would 

further elucidate the changes in skin protein expression relative to long-term stress. It would be 

interesting to evaluate protein expression in the skin in comparison with other indicators of stress 

such as behavioural changes, adipose deposition and atherosclerotic plaque formation.  A caveat 

should be recognized if one tries to use domesticated animals, as the human selection over 

generations for domestic animals to be calm and less prone to flight has attenuated their reactions 

to stress compared to their wild relations (Kunzl and Sachser 1999).  With the great interest in 

assessing the health of genetically heterogeneous wildlife populations, perhaps a study could be 

conducted with logistically less challenging wildlife such as rodents or birds. Simultaneous 

evaluation of interacting systems, such as HPA axis, cellular stress, apoptosis, the cell cycle, 

oxidative stress and inflammation with noninvasive techniques may help elucidate the 

underlying reciprocal actions of these systems and their role in the progression of stress-related 

disorders. 

In summary, the protein microarray developed in my thesis was able to detect regional 

differences in protein expression in small nonlethal skin samples, and the use of a preservative 

would make skin sampling more viable in the field.  A “snap shot” of skin protein expression 

altered by long-term stress in individual grizzly bears represents a valuable tool for detecting 

potential population problems.  This microarray has potential to be used for other wildlife 

species, as the antibodies were developed to target antigens from humans, rats, mice or cattle and 

were validated for grizzly bear proteins.  The antibodies on the microarray would be predicted to 
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bind to a region of the protein that does not vary between widely divergent species, and would be 

expected to bind to the correct antigen in other wildlife species. 

Future laboratory refinement, such as improvements in the printing of the arrays, could 

lead to lower array variation and expanded use of the array in the field.  Wildlife research 

involves large genetic as well as habitat variation that are not encountered in laboratory studies.  

Refinement of the microarray would help balance the variability inherent with bears and their 

habitats.  Further optimization of printing should be done to minimize the printing 

inconsistencies seen in this first trial of the custom grizzly bear microarray.  A different printing 

buffer or additional purification of the antibodies prior to printing may help the consistency of 

the spot morphology.  The RNA-later study should be repeated with a larger number of samples 

and with tissues frozen immediately after collection.  The large grizzly bear skin samples 

available for initial array development and laboratory validation in this study were invaluable, 

but there was a lag time between the mortality of the bear and tissue sampling allowing time for 

protein degradation to possibly occur.  With validation of the antibodies via western blotting for 

other species of mammals, perhaps the preservative testing could be repeated with an animal 

whose tissues were easier to obtain such as rats or cattle.  Studying stress in a species such as the 

grizzly bear is an exciting challenge.  The habitat of grizzly bears is in flux and as studies are 

conducted to mitigate the impacts of anthropogenic habitat change, the allostatic load of the 

bears may change.  It is difficult to determine what grizzlies encounter as their habitat is 

sometimes densely forested, the bears have cryptic coloration and their territories are vast.  

Therefore, work has commenced involving video cameras on bear collars.  Additionally, concern 

regarding the stress experienced by the grizzly bears between the time of capture and time of 

handling is lessened as activation alarms are added to traps.  These technological advances could 

provide greater insight into the daily experiences of grizzly bears and reduce the duration of 

stress imposed by capture. 

The custom microarray developed in this study evaluated protein expression in the skin 

of grizzly bears from Western Alberta and found patterns of protein expression that correlated 

with assessments of health, such as body length and mass, and landscape measurements, such as 

the anthropogenic change and road density in the landscape.  The challenge with all biomarkers 

is evaluating linkages between biomarker responses and adverse effects on individual fitness and 
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population dynamics.  Protein expression changes in skin may provide wildlife managers with 

another indicator of potential allostatic load or reactive scope to utilize in making decisions 

regarding wildlife conservation and potential impacts of landscape alterations. 
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Appendix 1 

Validation of Antibodies 

Table A1.1 Validation of antibodies selected from the Hypromatrix commercial array by 

western blotting.  Also noted is whether the antibody was selected for the custom bear 

microarray. 

Antibody 
Catalog 
No. 

Commercial 
Array 

Validated 
by 
Western 
blotting 

Selected 
for bear 
specific 
array? 

eNOS (endothelial nitric oxide synthase) HM1253 Hypromatrix No No 
ISGF-3 γ (Interferon-stimulated transcription factor 
3γ) HM1202 Hypromatrix No No 

Lck (leukocyte-specific protein tyrosine kinase) HM1346 Hypromatrix No No 
L-selectin (leukocyte) HM1329 Hypromatrix No No 
MGMT (O 6 -methylguanine-DNA 
methyltransferase) HM1227 Hypromatrix No No 
nip2 (Nek2-interacting protein 2) HM1251 Hypromatrix No No 
PARP (poly (ADP-ribose) transferase) HM1277 Hypromatrix No No 
Pax5 (Paired box gene 5) HM1278 Hypromatrix No No 
Phospholipase D HM1284 Hypromatrix No No 
p-selectin (platelet)(ELMA-1) HM1330 Hypromatrix No No 
p-Stat3 (phosphorylated-signal transducer and 
activator of transcription 3) HM1356 Hypromatrix No No 
RACK1 (receptor for activated C kinase) HM1301 Hypromatrix No No 
Rad51 (DNA repair protein) HM1302 Hypromatrix No No 
RAIDD (RIP associated ICH-1/Ced-3 homologous 
protein with a death domain) HM1305 Hypromatrix No No 
Ran BP-1 (Ran/TC4-binding protein) HM1412 Hypromatrix No No 

Rel B HM1320 Hypromatrix No No 

Sam68 (Src-associated in mitosis 68 kDa protein) HM1327 Hypromatrix No No 
SHC ((Src homology 2 containing) transforming 
protein) HM1331 Hypromatrix No No 
Sik (Src-related intestinal kinase) HM1333 Hypromatrix No No 
Stat2 (signal transducer and activator of 
transcription) HM1354 Hypromatrix No No 
Stat4 HM1357 Hypromatrix No No 
TRAF2 (TNF receptor associated factor) HM1378 Hypromatrix No No 
TRAF3 HM1379 Hypromatrix No No 
TRAF4 HM1380 Hypromatrix No No 
XRCC4 (x-ray repair cross-complementing protein-
4) HM1397 Hypromatrix No No 
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Table A1.2 Validation of antibodies selected from the Sigma commercial array by western 

blotting.  Also noted is whether the antibody was selected for the custom bear microarray. 

Antibody 
Catalog 
No. 

Commercial 
Array 

Validated 
by 
Western 
blotting 

Selected 
for bear 
specific 
array? 

AOP-1 (Antioxidant-like Protein 1) A7674 Sigma No No 
Caspase 3 C9598 Sigma No No 
Caspase 3 (active) C8487 Sigma No No 
Caspase 6 C7599 Sigma Yes Yes 
Estrogen receptor E0521 Sigma No No 
Hsp70 (i + c) (heat shock protein 70 inducible and 
constitutive) H5147 Sigma No No 
iNOS (Nitric Oxide Synthase, inducible) N7782 Sigma Yes Yes 
iNOS N9657 Sigma No No 
MAP Kinase (Mitogen-activated protein kinase) (ERK 
1, 351-368) M7927 Sigma Yes No 
MAP kinase p38 M0800 Sigma Yes No 
MAP Kinase-activated protein kinase 2 M3550 Sigma No No 
Nerve Growth Factor Receptor N5408 Sigma No No 
PKBα/Akt1 (Protein kinase B alpha) P1601 Sigma Yes No 
PRDX3 (Peroxiredoxin 3) P1247 Sigma Yes No 
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Table A1.3 Validation of antibodies selected from the Spring Bioscience commercial array by 

western blotting.  Also noted is whether the antibody was selected for the custom bear 

microarray. 

Antibody 
Catalog 
No. 

Commercial 
Array 

Validated 
by 
Western 
blotting 

Selected 
for bear 
specific 
array? 

6-Histidine E6984 Spring Bioscience No No 

CD2 (Cluster of differentiation 2) E3044 Spring Bioscience No No 
CD20 E2564 Spring Bioscience No No 
CD5 M3194 Spring Bioscience No No 
CD74 E131 Spring Bioscience No No 
Collagen II E5634 Spring Bioscience No No 
Cullin-1 E3794 Spring Bioscience No No 
GCDFP-15 (Gross Cystic Disease Fluid Protein15) E1684 Spring Bioscience No No 
Hepatic Nuclear Factor 3B E1299 Spring Bioscience No No 
Keratin 19 E5924 Spring Bioscience No No 
MAP2a,b E6114 Spring Bioscience No No 
MMP-10 (Matrix Metalloproteinase-10) E6734 Spring Bioscience No No 
MPA (Medroxyprogesterone Acetate) E1047 Spring Bioscience No No 
Myogenin E1964 Spring Bioscience No No 
Myoglobin E2994 Spring Bioscience Yes No 
p57 E6354 Spring Bioscience No No 
Plasma Cell Marker E6374 Spring Bioscience No No 
RNP (Ribonucleoprotein) E6424 Spring Bioscience No No 
SIRP alpha (Signal Regulatory Protein) E6454 Spring Bioscience No No 
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Appendix 2 

Stress protein differential score was calculated for each protein category by assigning a 

point to each bear for each protein expression at or above the 90th percentile or at or below the 

10th percentile in expression for that protein and summing the points for each bear by protein 

category. 

Model selection for HPA differential score without the environmental variables suggested 

that the HPA differential score varied by log hsp60 serum (F=5.8, p=0.02) and log hsp70 serum 

(F=6.3, p=0.01) (Adjusted R2=0.07, n=108).  Model selection for HPA differential score with the 

environmental variables suggested that HPA differential score varied by log hsp70 serum (F=3.5, 

p=0.07) and proportion protected (F=5.1, p=0.03) (Adjusted R2=0.08, n=67).   

Model selection for ACC differential score without the environmental variables 

suggested that ACC differential score varied by region (F=2.2, p=0.092), region*capture year 

interaction (F=2.2, p=0.092) and log hsp60 serum (F=5.4, p=0.02) (Adjusted R2=0.02, n=108).  

Model selection for ACC differential score including the environmental variables suggested that 

ACC differential score varied by mean RSF (F=3.8, p=0.06) (Adjusted R2=0.04, n=72).   

Model selection for CS differential score without the environmental variables suggested 

that CS differential score varied by log hsp60 serum (F=6.1, p=0.02) and log hsp70 serum 

(F=3.4, p=0.07) (Adjusted R2=0.06, n=108).  Model selection for CS differential score with the 

environmental variables suggested that CS differential score varied by region (F=3.2, p=0.03), 

log hsp70 serum (F=3.3, p=0.08), proportion protected (F=9.4, p=0.003) and mean RSF (F=6.0, 

p=0.02) (Adjusted R2=0.18, n=9-37).  After controlling for hsp70 serum, proportion of habitat 

protected and mean RSF, bears from FMF core were found to have elevated CS differential score 

compared to those originating from North highway 16 (p=0.031) and Swan Hills (p=0.03) 

(Figure A2.1). 
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Figure A2.1 Regional comparison of the cellular stress (CS) differential score modeled with 

environmental measures.  Data points labeled with different letters are significantly different 

from each other, as determined by repeated measures ANOVA followed by Sidak test (p<0.03).   

Model selection for OSI differential score without the environmental variables suggested 

that OSI differential score varied by log hsp60 serum (F=7.2, p=0.01) and log hsp70 serum 

(F=7.8, p=0.01) (Adjusted R2=0.09, n=107).  Model selection for OSI differential score with the 

environmental variables suggested that OSI differential score varied by log hsp70 serum (F=5.8, 

p=0.02), proportion protected (F=6.0, p=0.02) and mean RSF (F=5.0, p=0.03) (Adjusted 

R2=0.16, n=66).   

Model selection for protein differential score without the environmental variables 

suggested that protein differential score varied by log hsp60 serum (F=7.5, p=0.01) and log 

hsp70 serum (F=6.4, p=0.01) (Adjusted R2=0.09, n=107).  Model selection for protein 

differential score including the environmental variables suggested that protein differential score 

varied by log hsp70 serum (F=5.2, p=0.03), proportion protected (F=5.5, p=0.02) and mean RSF 

(F=7.3, p=0.01) (Adjusted R2=0.17, n=66).   
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Appendix 3 

Stress protein index was calculated for each protein category by assigning a point to each 

bear for each protein expression at or above the 75th percentile in expression for that protein and 

summing the points for each bear by protein category. 

Model selection for HPA index without the environmental variables suggested that HPA 

index varied by region (F=4.3, p=0.007), log length (cm) (F=3.3, p=0.07) and log hsp60 serum 

(F=7.7, p=0.007) (Adjusted R2=0.15, n=100).  After controlling for length and serum hsp60, 

bears from South highway 11 were found to have lower HPA index compared to those 

originating from North highway 16 (p=0.032) and Swan Hills (p=0.062) (Figure A3.1).  Model 

selection for HPA index including the environmental variables suggested that HPA index varied 

by region (F=4.2, p=0.009), log length (cm) (F=4.1, p=0.05) and road density (F=3.2, p=0.08) 

(Adjusted R2=0.16, n=65).  After controlling for length and road density, bears from North 

highway 16 were found to have elevated HPA index compared to those originating from South 

highway 11 (p=0.005; data not shown due to low sample sizes). 

 

Figure A3.1 Regional comparison of the hypothalamic-pituitary-adrenal axis (HPA) index 

modeled without environmental measures.  Significant differences are labeled with letters (a>b), 

as determined by repeated measures ANOVA followed by Sidak test (p<0.065).   
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Model selection for ACC index excluding the environmental variables suggested that 

ACC index varied by region (F=6.9, p<0.001), capture year (F=6.4, p=0.01) and log serum hsp60 

(ng/ml) (F=10.9, p=0.001) (Adjusted R2=0.22, n=108).  After controlling for capture year and 

serum hsp60, bears from South highway 11 were found to have depressed ACC index compared 

to those originating from North highway 16 (p=0.001) and Swan Hills (p=0.011) (Figure A3.2).  

Model selection for ACC index including the environmental variables suggested that ACC index 

varied by region (F=3.2, p=0.03), log serum hsp60 (ng/ml) (F=4.3, p=0.04) and road density 

(F=3.4, p=0.07) (Adjusted R2=0.17, n=67).  After controlling for serum hsp60 and road density, 

bears from North highway 16 were found to have elevated ACC index compared to those 

originating from South highway 11 (p=0.02; data not shown due to low sample sizes). 

 

Figure A3.2 Regional comparison of the apoptosis and cell cycle (ACC) index modeled without 

environmental measures.  Significant differences are labeled with letters (a>b), as determined by 

repeated measures ANOVA followed by Sidak test (p<0.015).   

Model selection for CS index excluding the environmental variables suggested that CS 

index varied by region (F=3.3, p=0.02) and log total serum cortisol (ng/ml) (F=3.0, p=0.09) 

(Adjusted R2=0.08, n=109).  After controlling for total serum cortisol, bears from Swan Hills 

were found to have elevated CS index compared to those originating FMF Core (p=0.03), North 

highway 16 (p=0.03) and South highway 11 (p=0.06) (Figure A3.3).  The addition of the 

environmental variables did not improve the CS index model. 
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Figure A3.3 Regional comparison of the cellular stress (CS) index modeled without 

environmental measures.  Significant differences are labeled with letters (a>b), as determined by 

repeated measures ANOVA followed by Sidak test (p<0.065).   

Model selection for OSI index excluding the environmental variables suggested that OSI 

index varied by region (F=8.5, p<0.001), capture year (F=9.2, p=0.003), log length (m) (F=3.5, 

p=0.07) and log serum hsp60 (ng/ml) (F=3.9, p=0.05) (Adjusted R2=0.28, n=100).  After 

controlling for capture year, length and serum hsp60, bears from Swan Hills were found to have 

elevated OSI index compared to those originating from FMF Core (p=0.02), South highway 11 

(p<0.001), while bears from North highway 16 were found to have an elevated OSI index in 

comparison to bears originating from South highway 11 (p=0.004) (Figure A3.4).  Model 

selection for OSI index including environmental variables suggested that OSI index varied by 

region (F=7.2, p=0.002), capture year (F=6.1, p=0.02), log length (F=4.9, p=0.03) and 

anthropogenic change (F=4.8, p=0.03) (Adjusted R2=0.22, n=49).  Controlling for capture year, 

length and anthropogenic change, bears from South highway 11 were found to have depressed 

OSI index compared to those originating from North highway 16 (p=0.002; data not shown due 

to low sample sizes). 
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Figure A3.4 Regional comparison of the oxidative stress and inflammation (OSI) index modeled 

without environmental measures.  Significant differences are labeled with letters (a>b & c>d), as 

determined by repeated measures ANOVA followed by Sidak test (p<0.025).   
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