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Abstract 
 
The research described in this thesis began with a single long-term objective: modelling 

of the vertebral artery during chiropractic manipulation of the cervical spine. Although 

chiropractic treatment has become prevalent, the possible correlation between neck 

manipulation and subsequent stroke in patients has been the subject of debate without 

resolution.  Past research has been qualitative or statistical, whereas resolution demands 

a fundamental understanding of the associated mechanics.  

 

Analysis in the thesis begins with a study of the anatomy and properties pertinent to the 

chiropractic problem.  This indicates that the complexity of the problem will necessitate 

a long-term multidisciplinary effort including a nonlinear finite element formulation 

effective in analysing image data for soft tissue modelled as nearly incompressible.  This 

leads to an assessment of existing finite element methods and the conclusion that new 

equation solving techniques are needed to ensure numerical stability.  

 

Three techniques for effectively eliminating the source of numerical instability are 

developed and demonstrated with the aid of original finite element codes.  Two of the 

methods are derived as modifications of matrix decomposition algorithms, while the 

third method constitutes a new finite element formulation.  In addition, the 

understanding gained in developing these methods is used to produce a theorem for 

assessing a different but related problem: deformation of a nearly incompressible 

material subjected to a single concentrated force.  Throughout the thesis, an 

interdisciplinary path from chiropractic problem to numerical algorithms is outlined, and 

results are in the form of mathematical proofs and derivations of both existing and new 

methods. 
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Ĵ  Matrix relating strains to derivative of displacements with respect to 

natural coordinates 
 
K Coefficient/stiffness matrix 
 
K̂  Global stiffness matrix with order of columns reversed 
 
Kij Individual components of stiffness matrix 
 
K~  Nonsingular submatrix of K with displacements as unknowns 
 

freeK  Global stiffness matrix for free variables  
 
k Degree of indeterminacy 

 xiv



 
L̂   Lower triangular matrix in LU decomposition 
 
 
M  Interpolation matrix for the pressures in the bottom block of 

incompressible finite element equations 
 
m  Number of elements in the finite element mesh 
 
N Nullspace of a matrix 
 
Nj

(i)  Traditional linear shape function corresponding to node j and element (i) 
 
N ′  Matrix containing derivatives of shape functions to relate the nodal 

displacement vector to vector of derivative of displacements with respect 
to natural coordinates 

 
n Variable denoting size of a matrix 
 
n̂   Unit vector 
 
no  Number of displacement unknowns for Dirichlet case 
 
np   Number of parameters defining the pressure field 
 
nu   Number of parameters defining the displacement field  
 
nz  Number of zero rows in a matrix 
 
P  Pressure 
 
P  Permutation matrix 
 
p  Hydrostatic pressure 
 
p  Number of pressure unknowns 
 
p   Pressure vector in incompressible finite element matrix equations 
 
pc  Constant pressure vector 
 
pi  Internal pressure of cylinder 
 
po  External pressure of cylinder 
 
q  Pressure mode vector 

 xv



 
q  Dimension of the nullspace of a matrix 
 
qo Dimension of the nullspace for a model in which displacements are 

prescribed on the entire boundary 
 
Q  Orthogonal matrix 
 
R   Upper triangular matrix in QR decomposition 
 
R  Row space of a matrix 
 
ri  Inner radius of cylinder 
 
ro  Outer radius of cylinder 
 
r0  Rank of G for Dirichlet case 
 
r  Polar coordinate on cylinder 
 

elimS   Final matrix of coefficients of eliminated variables 
 

*
elimS   Intermediate matrix of coefficients of eliminated variables 

 
freeS   Final matrix of coefficients of free variables 

 
*
freeS   Intermediate matrix of coefficients of free variables 

 
s  Vector of normal stresses 
 
s′  Modified vector of normal stresses multiplied by Λ to get b′ 
 
T  Matrix relating elemental degrees of freedom to free variables 
 
Tglob  Matrix relating all of the nodal displacements to the free variables 
 
U  Internal strain energy of a system 
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Chapter 1 

Introduction 

 

 

1.1 Motivation 

For centuries, the principles and techniques of applied mechanics have been developed 

and applied successfully to many engineering problems.  Traditionally, methods of stress 

analysis have mainly focussed on steel and aluminum structures.  More recently, 

however, these principles and techniques are being extended to the medical sciences.  

There is tremendous potential for researchers in engineering mechanics to make 

fundamental contributions in this area. One area in particular is the field of 

biomechanics of soft tissue.  In most problems involving the mechanics of soft tissue, 

advanced theories and methodologies are required in almost all aspects:  constitutive 

laws, kinematic relations, and stable and efficient numerical implementations.   

 

The graduate work underlying this thesis is motivated by a particular problem in 

biomechanical modelling: arterial deformation during chiropractic manipulation of the 

cervical spine.  This problem is of great concern to practitioners in both chiropractic and 

traditional medicine since strokes, leading in some cases to death, have occurred 

following chiropractic manipulation of the cervical spine.  There is dispute among the 
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practitioners regarding the incidence of these events and whether the chiropractic 

manipulation itself caused the stroke in any given case.  Medical researchers have 

performed numerous case studies and have used various imaging modalities to observe 

physiological and morphological changes to arteries in the neck region subsequent to 

manipulation.  However, there is still a need to develop quantitative research methods 

for establishing the cause of these changes.  The purpose of the research described in 

this thesis is to provide a foundation for performing detailed engineering analyses of this 

problem. 

 

 

1.2 General Research Approach and Thesis Outline 

To realise the long-term goal of analysing the vertebral artery under actual loading 

conditions will require multiple research projects and a highly interdisciplinary 

approach.  The objective of this thesis is to intiate the process by making vital 

conceptual connections between biology, engineering, and applied mathematics to 

develop a means for analysis.  This dissertation follows a path that begins with 

assessment of the biomedical problem, suggests a long-term plan towards finite element 

modelling, identifies issues within the mathematics associated with combining tissue 

properties and existing finite element solution techniques, and finally contributes new 

mathematical approaches which eliminate obstacles to future modelling.  This format is 

designed specifically to solve an important problem, the solution to which may 

otherwise remain inaccessible.  It is true that the literature already contains medical 

studies of the vertebral artery as well as numerous mathematical treatments of the finite 

element method.  By following an open-ended path towards tailoring a finite element 
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approach to this specific problem, however, the thesis provides an avenue through which 

a greater understanding into the consequences of neck manipulation may ultimately be 

achieved. 

 

In Chapter 2, a biomedical literature review provides the context for the work.  

Anatomical details of the cervical spine and the vertebral artery are presented, together 

with a brief description of the neck manipulation used by chiropractors in clinical 

practice.  The controversy surrounding this procedure is studied, with references to the 

literature in both the biomedical and chiropractic areas.  This review, which is the first 

contribution of the dissertation, is used to establish the societal interest in the problem, 

as well as the pressing need for an engineering approach and method of quantitative 

analysis.  In addition, the description of the anatomical detail and the chiropractic 

technique is used as a basis for suggesting a new direction towards physical modelling 

and analysis of the problem.  The suggested direction is to combine in vivo 

measurements of arterial deformation together with data analysis by special-purpose 

finite element algorithms developed within this thesis. 

 

The biomedical literature review of Chapter 2 is followed by an assessment in Chapter 3 

of issues surrounding finite element analysis of the problem.  Although there are many 

issues that researchers in biomechanics will encounter as they attempt to understand and 

analyse the chiropractic problem, the fundamental issue identified as the focal point for 

this thesis is the nearly incompressible behaviour of soft tissue and, in particular, the 

potential of this behaviour to seriously affect the reliability of finite element solutions.  It 

is well known within the area of finite element analysis that near-incompressibility can 
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lead to catastrophic calculation and/or modelling errors in the form of artificial over-

stiffening referred to as displacement locking and numerical instability in terms of 

physical and spurious pressure modes.  (Displacement locking and pressure modes will 

be explained with reference to the literature in Chapter 3.)  For over thirty years, a vast 

literature has been amassed in mathematics and engineering to develop special-purpose 

methods for dealing with these specific issues.  It is hypothesised here, however,  that 

for the specific conditions required for in vivo analysis of the vertebral artery, existing 

finite element techniques are insufficient to ensure reliable solutions. 

 

Chapter 3 tests this hypothesis by reviewing the state-of-the-art in finite element 

techniques designed specifically for nearly and fully incompressible materials, and then 

testing these techniques on numerically generated displacement data.    Since these 

methods are all mathematical in nature, the review is primarily in the language of 

mathematics.  Within this description, the author has contributed new or alternative 

derivations and proofs which may provide new perspectives of the methods and, in some 

cases, make the governing principles accessible to a wider engineering audience.  These 

derivations and proofs will be identified to the reader as they arise in the Chapter.  The 

numerical experiments are used to test the performance of existing algorithms for 

different element types and a range of compressibility.  The result of these experiments 

is to demonstrate the need for developing a new robust approach. 

 

Chapters 4 and 5, which represent the culmination of the author’s research, provide a 

path towards a robust approach for stress analysis of nearly-incompressible materials 

from measured displacement data.  Chapter 4 begins with a general strategy for 
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eliminating the source of numerical instability.  This strategy is based on the concept of 

replacing the original nearly incompressible material with a fully incompressible model.  

This then permits clear identification of the source of instability as a singularity which 

can be more easily removed. The implementation of this concept is then developed 

through a series of specific mathematical methods.  These methods are variations of well 

known methods in applied mathematics and include a modified LU decomposition 

(Chapter 4), a modified QR decomposition (Chapter 4), and a new variational 

formulation (Chapter 5).  In this progression of methods, the order is such that each 

successive method improves upon the previous techniques.  These chapters also include 

numerical experiments which demonstrate the cost, in terms of accuracy, of modelling a 

nearly incompressible material with one that is fully incompressible. 

 

Finally, Chapter 6 presents an additional, though potentially useful, theorem based on 

the approach of Chapter 5.  This mathematical result assesses catastrophic displacement 

locking when a single force boundary condition is known and the remainder of the 

boundary conditions consist of measured displacements.  It has potential application for 

addressing certain inverse problems in biomechanics where material properties are to be 

determined from measured boundary displacements in response to a load transducer 

applied at various locations in the body of tissue.  Numerical experiments in this chapter 

demonstrate how the theorem may be used to identify unacceptable finite element 

models for property determination. 
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1.3 Specific Research Objectives 

In summary, the research objectives that form the basis of this dissertation are as 

follows: 

(1) to review and assess the biomedical research pertinent to chiropractic manipulation 

of the cervical spine, confirm the societal need for resolution of the issue, and 

establish a foundation for physical modelling and finite element analysis; 

 
(2) to review and assess the state-of-the-art in finite element methods for nearly 

incompressible materials and test the hypothesis that improvements are needed to 

deal with the specific conditions posed by in vivo analysis of the vertebral artery 

from measured displacement data; 

 
(3) to provide alternate mathematical descriptions and proofs which the author has 

developed to enhance the presentation of certain existing finite element methods for 

analysing nearly incompressible materials; 

 
(4) to develop robust finite element methods for analysing nearly incompressible 

materials from displacement data by using a fully incompressible model and 

eliminating the resulting singularity; and 

 
(5) to demonstrate the proposed methods with numerical examples. 

  

 

 



Chapter 2 

The Chiropractic Problem – Manipulation of the Cervical Spine 

 

 

2.1 Introduction 

According to the Canadian Chiropractic Association, “Chiropractic today is one of the 

largest primary care health professions in Canada with over 6,000 practicing 

chiropractors. Approximately four and a half million Canadians use the services of a 

chiropractor each year” [www.ccachiro.org].  Despite their prevalence, however, some 

chiropractic procedures have been criticised with regard to their safety.  In particular, 

there is considerable controversy regarding manipulation of the cervical spine.     

 

The first objective of this thesis is to review and assess the biomedical research pertinent 

to chiropractic manipulation of the cervical spine, confirm the societal need for 

resolution of the relevant issues, and establish a foundation for physical modelling and 

finite element analysis.  In this chapter, the nature of debate between chiropractors and 

medical doctors is explored.  This establishes the degree to which medical professionals 

are uncertain about the true risks associated with neck manipulation.  A description of 

the anatomy associated with the problem and a review of applicable scientific studies 

lead to the conclusion that resolution requires a methodology combining medical 

imaging with engineering stress analysis. 
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2.2 Background Information 

Manipulation of the cervical spine is used to treat patients with head and neck disorders, 

including neck pain and stiffness, muscle-tension headache and migraine [Di Fabio, 

1999].  It involves the application of a thrusting force that moves the spinal joints 

beyond the normal range of motion [Vautravers and Maigne, 2000].  Most 

complications of cervical spine manipulation (CSM) are vascular [Vautravers and 

Maigne, 2000].  One of the risks is the possibility of having a stroke or cerebrovascular 

accident caused by vertebral artery dissection following cervical spine manipulation.  

The actual incidence of complications has been estimated from a variety of studies to be 

within the range of 1 in 50000 to 1 in 5 million [Di Fabio, 1999].  Considering 

chiropractic and medical sources, a commonly agreed upon number appears to be one 

incident per million adjustments.  However, a report from the World Chiropractic 

Alliance argues that even this is an overestimation since a temporal relationship between 

two events (the chiropractic adjustment and the stroke) does not mean that one was 

caused by the other [World Chiropractic Alliance, 2001].  On the other hand, Frisoni 

and Anzola [1991] suggest that the estimates are low since not all cases are reported in 

the medical or chiropractic literature. 

 

Although the incidence of complications is rare, the outcome is often unfavourable.  In a 

study of 182 published cases; death occurred in 29 cases, 86 people had permanent 

neurologic impairment, 44 people recovered and in six cases, the outcome was unknown 

[Vautravers and Maigne, 2000].  From various reviews of case studies in the literature, it 

has been found that most of the cases of vertebral artery dissection are in people less 

than 45 years of age and in those that have had more than one cervical spine 
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manipulation [Frisoni and Anzola, 1991; Hufnagel et al., 1999; Di Fabio, 1999; 

Rothwell et al., 2001].  Reviews have also shown that when the type of manipulation 

was identified, rotational thrust was the mechanism of manipulation [Plaugher, 1994; Di 

Fabio, 1999; Smith and Estridge, 1962].    

 

A pre-manipulative test, called the extension-rotation test, has been developed to 

determine those at risk of stroke. This test has the patient in a supine position with the 

head extended beyond the end of the table.  The head is then rotated to each side while 

in the extended position.  The patient then rotates his head to the extreme range of 

motion keeping his eyes open.  While these movements are being performed, the patient 

is watched for signs of blanching, nystagmus or cyanosis around the mouth.  If any of 

these occur or the patient complains of dizziness or nausea, manipulation in this position 

is contraindicated [Gatterman, 1990].  Unfortunately, the pre-manipulative test may not 

identify whether a patient is at risk since the adjustment will move the joints farther than 

the test and the rapid thrust of the manipulation is missing in the test [Di Fabio, 1999; 

Rothwell et al, 2001].  Also, the pre-manipulative test itself may cause a stroke 

[Plaugher, 1994; Di Fabio, 1999].  

 

Key to understanding mechanisms by which a stroke could be caused by CSM is the 

anatomy of the vertebral artery.  A pair of vertebral arteries runs through the cervical 

spine and supplies the brain stem which plays an important role in numerous 

physiologic functions, such as regulating the heart and lungs [Mader, 1985].  Each 

vertebral artery winds around the uppermost vertebra to enter the skull.  At this point it 

is vulnerable to torsion injury and abrupt rotation may stretch the artery and tear the 
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inner lining of the artery [Norris et al., 2000].  In fact, in cases where angiography has 

been performed, vertebral artery dissection has been observed most often at the joint of 

the upper two vertebrae [Norris et al., 2000; Frisoni and Anzola, 1991; Hufnagel et al., 

1999].  However, this does not explain why some people have strokes but most do not. 

 

Several hypotheses have been proposed to explain the predisposition of some people to 

vertebral artery dissection caused by cervical spine manipulation.  Smith and Estridge 

[1962] proposed that pre-existing vascular abnormalities (such as, hypoplasia of one of 

the vertebral arteries) or bony abnormalities (such as, osteophyte formation or 

calcification of the atlantooccipital ligaments) would cause trauma to the vertebral artery 

when the head is rotated and hyperextended.  Frisoni and Anzola [1991] suggested that 

repeated manipulations might cause small lesions in the arterial wall leading to a final 

lesion.  They also proposed possible risk factors: vertebral artery size asymmetry, 

irregular vertebral artery anatomy, atherosclerosis, osteoarthritis, vertebral ligament 

laxity and risk factors for vascular disease, such as hypertension, stroke, diabetes, oral 

contraceptive use, migraine or transient ischemic attack [Frisoni and Anzola, 1991].  

Komiyama et al. [2001] found a correlation between a left vertebral artery of aortic 

origin and arterial dissection.  They hypothesised that this correlation may be caused by 

larger shear stress in the artery due to the anatomical differences.  

 

A need for further research in this area is made evident by the above discourse.  Clearly, 

there is not a reliable scientific paradigm which can be used as a basis for safe and 

effective practice.  Since chiropractic medicine has become commonplace in society, 

this situation must be remedied.  Towards this end, the rest of this chapter aims to 
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further explore the relevant anatomy, describe the existing scientific studies, and then, 

finally, to propose a direction for the remainder of the thesis and future research in the 

area. 

 

 
2.3 Relevant Anatomy, Properties and Kinematics 

Anatomy of the neck is well established, with similar descriptions found in several 

medical sources [e.g., Heller and Pedlow, 1998; Cramer and Darby, 1995].  The cervical 

spine consists of seven vertebrae:  four typical (Figure 2.1) and three atypical (e.g. 

Figures 2.2 and 2.3).  The cervical vertebrae are numbered starting with C1, on which 

the head rests, and then continuing in the inferior direction.  The typical cervical 

vertebrae, shown in Figure 2.1, are C3 to C6.  They are comprised of a vertebral body, 

vertebral arch and processes (articular, transverse and spinous) that allow for muscle 

attachment.  The vertebral body gives strength and support for two thirds of the 

vertebral load [Heller and Pedlow, 1998].  It is composed of a cancellous (porous) core 

surrounded by a thin shell.  All vertebrae possess a vertebral foramen which is the 

central “hole” forming the spinal canal.   In contrast, only cervical vertebrae C1 to C6 

possess transverse foramina (Figures 2.1, 2.2 and 2.3) which form a pathway and 

support structure (Figures 2.4, 2.5 and 2.6) for the vertebral arteries feeding the brain 

stem.  Typically, each of the two vertebral arteries enters a transverse foramen of C6 

and continues superiorly to pass through each subsequent foramen, from C5 to C1. 
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Figure 2.1:  Typical Cervical Vertebra  A. Superior View  B. Lateral View (from Heller 
and Pedlow, 1998). 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.2:  Atlas (C1)  A. Superior View  B. Inferior View (from Heller and Pedlow, 
1998). 
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Figure 2.3:  Axis (C2)  A. Superior View  B. Anterior View (from Heller and Pedlow, 

1998). 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.4:  Second and Third Parts of the Vertebral Artery (from Cramer and Darby, 
1995). 
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Figure 2.5:  Arteries of the Neck (from Heller and Pedlow, 1998). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6:  Third and Fourth Parts of the Vertebral Artery (from Cramer and Darby, 

1995). 
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The atypical vertebrae are C1, C2 and C7.  The geometric path of the vertebral arteries 

in and around C1 and C2 is particularly complex.  C1, or the atlas (shown in Figure 2.2), 

is composed of two lateral masses joined by an anterior arch and a posterior arch.  On 

the superior surface of the posterior arch, a groove exists for the vertebral artery.  The 

vertebral artery proceeds superiorly through the transverse foramen of C1, around the 

superior articular process and lies on top of the posterior arch (Figure 2.6).  The groove 

is sometimes covered either completely or partially by bone, which results in the 

formation of an additional foramen [Heller and Pedlow, 1998].   

 

C2, known as the axis, is shown in Figure 2.3 and has a process or dens that projects 

upward from the body to articulate with the posterior side of the anterior arch of C1.  

The superior articular processes of the axis articulate with the inferior articular facets of 

C1.  The configuration of these joints allows for much rotation (approximately 45° to 

each side) between the atlas and axis [Cramer and Darby, 1995].   

 

Taken together, then, the geometry and supporting structures of the vertebral artery pose 

a considerable challenge for any attempts at stress analysis.  This challenge is intensified 

by characteristics associated with arterial properties and spine kinematics.  The vertebral 

artery has a complex material structure which is described in detail by Fung [1993].  

Like other arteries, or blood vessels in general, it consists of three layers: the intima, 

media and adventitia.  The intima is the innermost layer and contains endothelial cells.  

The media is the middle layer and contains smooth muscle cells.  The adventitia is the 

outermost layer and contains collagen and ground substances.  The stiffness of the inner 
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two layers is greater than that of the outer layer.  The stress-strain relationship of this 

nonhomogeneous, composite structure is nonlinear and exhibits hysteresis.  Creep 

occurs under constant stress and stress relaxation occurs under constant strain.  Fung 

[1993] also suggests that the stresses and strains in an arterial wall may be related by a 

strain-energy function.   

 

In terms of kinematics, the large rotation at the C1-C2 level of the spine has been shown 

to cause problems with kinking of the vertebral artery.  Selecki [1969] found that after 

30 degrees of rotation, there is kinking and stretching of the contralateral vertebral 

artery.  At 45 degrees of rotation, kinking of the ipsilateral artery also occurs [Selecki, 

1969].  This kinking and stretching may be caused by the fact that during axial rotation, 

the atlantoaxial joint on the ipsilateral side of rotation is relatively fixed, and on the 

contralateral side the atlas moves forward on the axis [Thiel, 1991].  This may also 

cause the opening of the vertebral artery to be stretched. 

 

 

2.4 Previous Studies of the Cervical Spine and Vertebral Artery 

The cervical spine has been the subject of numerous research studies.  Not all, however, 

have been related to the vertebral artery or cervical manipulative therapy (CMT).   For 

example, the anatomy of various portions of the cervical spine has been quantified.  Oh 

et al. [1996] and Panjabi et al. [1991] quantified the three-dimensional anatomy of the 

mid to lower cervical spine (C3 to C7) to provide guidelines to the surgeon and improve 

safety of surgery in that area.  Doherty and Heggeness [1994; 1995] had the same 

objective for their studies of the atlas and axis.  The biomechanics of the cervical spine 
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has been studied using physical experiments on cadavers to determine injury 

mechanisms [Yoganandan et al. 1990], as well as static and dynamic bending responses 

[Voo et al., 1998].   

 

In addition to physical experiments, the spine has been studied using finite element 

models outside the context of CMT.  In 1996, Yoganandan et al. wrote a review of the 

current finite element models of the human cervical spine, including models treating the 

vertebrae as rigid masses and the connective tissues as spring elements.  At that time, 

they reported five new models with a higher level of technical detail.  This included 

two-dimensional static analysis [Saito et al. 1991], three-dimensional static and dynamic 

analyses [Kleinberger, 1993;  Bozic et al., 1994;  Teo et al., 1994 ], and finally a three-

dimensional, linear, static stress analysis of the C4-C5-C6 spinal unit including discs, 

endplates and all ligaments [Yoganandan et al., 1996].   

 

Since that review of the finite element models existing prior to 1996, other models have 

been produced.  Maurel et al. [1997] created a three-dimensional parameterised finite 

element model of the cervical spine from C3 to C7.  They parameterised the geometry 

of the vertebrae to study the effect of different geometry on the mechanical behaviour of 

the cervical spine.  This model included intervertebral discs, ligaments and some 

geometric and material nonlinearities.  They found that the behaviour of their model 

varied greatly with small changes in the geometry [Maurel et al., 1997].  In 1997, 

Yoganandan et al. created a three-dimensional finite element model of C4 to C6 using a 

computed tomography (CT) scan.  Their model was geometrically accurate but did not 

include the ligaments.  They used linear, isotropic, homogeneous material properties and 
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performed a parametric study by varying the properties of the vertebral endplates and 

the intervertebral discs.  The same model was used to study various biomechanic effects, 

including laminectomy and facetectomy [Kumaresan et al., 1997], responses of a 

paediatric neck by modifying the anatomy and material properties [Kumaresan et al., 

1997; Kumaresan et al., 2000], and changes in the external and internal responses of the 

model that occurred from varying Young’s modulus of the cortical shell and cancellous 

core of the vertebral body, endplates, intervertebral disc and the ligaments [Kumaresan 

et al., 1999].  Clausen et al. [1997] created a model of the C5-C6 motion segment from 

CT scans to study the effect of uncinate processes and uncovertebral joints on the 

biomechanics of the cervical spine.  Sadegh et al., [2000] used a dynamic load and 

viscoelastic material properties within their finite element models to predict the stresses 

in each vertebra and intervertebral disc.   

 

In 2002, Fagan et al. created a review of spinal finite element models.  Their review 

included whole spine models, vertebral body models, disk models, and cervical and 

lumbar spine models.  The cervical spine models reviewed were mainly used for 

assessment of spinal cord injury.  Using CT images, Brolin and Halldin [2004] created a 

finite element model of the upper cervical spine to study ligament characteristics.  

Tropiano et al. [2004] analysed the cervical spine in whiplash conditions using a finite 

element model of the entire human body (HUMOS).  This model includes all bones, 

ligaments, tendons, skin, muscle and internal organs.  Greaves et al. [2008] created a 

three-dimensional cervical spine model which included vertebrae, ligaments, discs and 

the spinal cord to investigate injury mechanisms.  The spinal cord was modelled as 

linear, elastic and nearly incompressible (i.e. 490.=ν ).  Forces were applied to the 
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vertebrae and resulting reaction forces to the spinal cord.  Finally, Wheeldon et al. 

[2008] modelled the lower cervical spine to determine the internal response of the spine 

to external loading.  This used nonlinear material properties for the ligaments and 

vertebral discs thereby improving on previous models.  These finite element models 

illustrate the biomechanics of the cervical spine for various movements and different 

loads.  While these models show stresses and interactions between the vertebrae, 

intervertebral discs and some ligaments and muscles, they do not include the vertebral 

artery or aspects of CMT.   

 

Studies which have included the vertebral artery have largely examined blood flow 

dynamics only, without analysing stresses or deformation within the arterial wall.  Both 

experimental and numerical investigations have been conducted.  A major category of 

experimental inquiry has employed imaging modalities.  Duplex Doppler sonography 

has been used to visualise and evaluate blood flow in the extracranial portion [Trattnig 

et al., 1990] as well as the intracranial portion [Kaps et al., 1992] of the vertebral 

arteries.  Doppler measurements have also been used to assess the effect of disk 

degeneration on vertebral arterial flow [Bayrak et al., 2009].  These studies confirmed 

the validity of this type of sonography in imaging the vertebral arteries, and other 

researchers have used it to study the flow with various types of spinal movements.   

 

Refshauge [1994], for example, used duplex Doppler sonography to study the blood 

flow in the vertebral and internal carotid arteries.  He found that blood velocity 

increased in 45 degree contralateral rotation and decreased in full rotation, but this was 

not consistent across all vessels studied.  He concluded that sustained rotation influences 
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blood velocity in the extracranial vessels.  Thiel [1991] used duplex Doppler 

sonography to study the blood flow in the vertebral artery while Wallenberg’s test was 

performed.  (Wallenberg’s test is a pre-manipulative chiropractic procedure that places 

the head and neck in a position of sustained extension with rotation to screen for 

vertebrobasilar insufficiency.)  Licht et al. [1998; 1999; and 2000] have used Doppler 

ultrasound extensively to study the effect of manipulation on the flow in the vertebral 

artery.  In 1998, they studied the flow velocity to determine whether changes occur after 

spinal manipulation.  They found no change in peak flow velocity.  In 1999, they 

measured the volume blood flow in the vertebral artery of pigs during spinal 

manipulation and pre-manipulative testing.  They found that the flow increased 

significantly after cervical manipulation for 40 seconds and then returned to normal, but 

the pre-manipulative tests did not change the flow significantly.  In 2000, they studied 

vertebral artery blood flow in patients with positive pre-manipulative tests that were 

referred by chiropractors.  They measured the flow velocities in both vertebral arteries 

but found no significant differences with different head positions.  They concluded that 

a positive pre-manipulative test is not necessarily a contraindication to manipulation of 

the cervical spine.   

 

Rivett et al. [1999] also used duplex Doppler sonography with colour flow imaging to 

determine the effect of pre-manipulative testing on the vertebral and internal carotid 

arteries.  In contrast to the previous studies mentioned, they found that there were 

significant changes of flow velocity in the vertebral arteries in end-range positions 

involving rotation and extension.  They concluded that the use of pre-manipulative 

testing is supported by their research. 
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To the best of the author’s knowledge, the only numerical studies of blood flow in 

specifically the vertebral arteries are the finite element analyses by Krijger et al., [1992] 

and Ravensbergen et al., [1996], [1997].  In both cases, the vertebral artery was 

modelled to study the flow at the junction of the vertebral and basilar arteries.  Neither 

of these investigations included the interaction between the arteries and the cervical 

spine. 

 

Many of the experimental and numerical flow studies outlined above could be pertinent 

in future discussions of chiropractic manipulation of the cervical spine and its inherent 

risks.  However, none of these investigations directly address the issue of CMT in terms 

of stresses in the arterial wall, and potential consequences including arterial dissection 

and dislodging of plaque. 

 

Although little research has been conducted into arterial stresses during CMT, there 

have been studies into the properties and morphological response of the vertebral artery 

itself.  Kawchuk et al. [2004] established an “experimental platform” for using 

intravascular ultrasound to provide two dimensional and three dimensional 

representations of the vertebral artery.  They developed their platform using sedated 

canine subjects.  Magnetic resonance imaging (MRI) has also been used to provide 

various images of the vertebral artery and arterial dissection [Kansagra et al., 2008; 

Jacobs et al., 1997; Mascalchi et al., 1997].  Johnson et al. [2000] considered 

biomechanics of the artery.  They compared the tensile behaviour in longitudinal and 

circumferential extension.  Four biomechanical parameters were studied:  percent 

extension required to break the sample, tensile strength, peak load and Young’s 
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modulus.  They found that the tensile strength of the longitudinal specimens was 

significantly lower than that of the circumferential specimens, possibly explaining why 

hyperextension or rotation of the neck can damage the vertebral artery by stretching it.  

They also found that the biomechanical parameters change along the length of the 

artery.   

 

Less common is a study performed by Sheth et al. [2001] that considered the rotational 

changes in the morphology of the vertebral artery.  They used magnetic resonance 

angiograms to study, in vivo, the normal rotational anatomy of the vertebral arteries and 

the bone at the C1-C2 junction.  They found that when the head is rotated by 45°, the 

calibre of the contralateral artery as it exits the transverse foramen of C1 is decreased 

compared to the ipsilateral artery and when the head is in neutral position.  This 

narrowing caused approximately seven percent elongation of the artery from C2 to the 

dural entry point.  They did not consider this a significant change. They concluded that 

the likely site of vertebral artery dissection is the exit of the transverse foramen of C1 as 

opposed to the C1-C2 junction as other studies identify [Sheth et al., 2001]. 

 

In terms of work directly targeting the effect of CMT on the potential for stroke or other 

injury, numerous case studies have been conducted [Ernst et al., 2002; Ernst, 2007; 

Kawchuk et al., 2008], but most are based on a qualitative medical methodology and are 

bereft of quantitative analysis.   The quantitative research that has been identified from 

the author’s examination of the literature is by researchers from the Human Performance 

Laboratory at the University of Calgary who are studying the biomechanics of spinal 

manipulative therapy.  They have measured the forces exerted during different 
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techniques used for manipulation of the spine in the cervical, thoracic and sacroiliac 

regions of human volunteers. To take these measurements, they used a flexible pressure 

mat and found that the forces exerted on the cervical spine are considerably smaller than 

those exerted on the other two areas [Herzog et al., 1993].  The same group of 

researchers also studied the effect of manipulation on the vertebral artery [Symons et al., 

2002].  They attached ultrasonic crystals to the vertebral arteries of unembalmed 

cadavers and performed manipulations while recording the strains.  Mechanical testing 

was performed on the same arteries which had been removed from the bodies to 

determine the strain at failure.  Comparing the strains in situ to the failure strain, they 

concluded that the artery does not experience enough strain during manipulation to 

“mechanically disrupt it” [Symons et al., 2002].     The methods used for this study have 

been criticised by some chiropractors [Carstensen, 2004; Good, 2003]. 

 

 

2.5 A Plan for Engineering Analysis 

In the preceding sections, the background and pertinent questions surrounding the 

“chiropractic problem” have been identified.  Although the chiropractic problem is 

important to society and has generated considerable discussion and debate by 

professionals in both chiropractic and traditional medicine, it is clear that existing 

research has not answered the key questions.  In this section, the information from §2.1 

to §2.4 is compiled and assessed with a goal of establishing a direction for future 

biomechanical research in the field. 
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The literature is rife with case studies based on qualitative methodology and statistical 

“evidence” in attempts to establish the cause and incidence of vertebral artery dissection 

in connection with chiropractic manipulation of the cervical spine.  The result has been a 

series of conflicting opinions and conclusions without a definitive resolution.  Clearly, a 

bias exists in that the conclusions drawn depend on which group, i.e. chiropractic or 

traditional medicine, is conducting the study. 

 

Quantitative research beyond statistics has either focused on aspects which do not 

directly address the issue of vertebral artery dissection, or make assumptions which 

leave the validity of the results in question.  Although the studies of arterial flow 

provide important information regarding scenarios where blood flow could be impeded, 

they do not consider the stress field or potential failure of the arterial wall.  The analyses 

that have focused on the arterial wall depend on cadavers and employ questionable 

procedures.  The ultrasonic crystal data which has been collected corresponds to 

locations on the artery which, according to other studies, are not critical to the problem.  

The time of propagation values provide, at best, a rough estimate of some average strain 

measure along an artery during manipulation.  This value is then compared to a failure 

load which was obtained for a specific material orientation in a tension test.  No 

reference is made to the specific components of the strain tensor, the anisotropy of tissue 

properties, or failure measures from established theories in the mechanics of deformable 

bodies.  The relevance of existing research, therefore, must be questioned and yet this 

research has been used as a basis for strongly concluding that a single thrust during 

spinal manipulative therapy is “unlikely to tear or otherwise mechanically disrupt the 

VA [vertebral artery]” [Symons et al., 2002]. 
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To provide a more meaningful quantitative analysis, engineering principles and, 

specifically, the methods of advanced stress analysis can be applied.  It is practically 

impossible, however, to obtain an analytical solution to the governing equations of 

stress and strain for a problem of this complexity.  Referring to §2.3, and in particular 

Figures 2.4, 2.5, and 2.6,  the intricacy of geometry and boundary conditions of the 

vertebral artery requires numerical solution of the corresponding boundary value 

problem.  In solid mechanics, the most widely used and accepted technique is the finite 

element method.  With a suitable finite element formulation, the stress field resulting 

from cervical manipulative therapy could be evaluated, and there would be potential to 

answer a number of fundamental questions:  Are some people predisposed to arterial 

dissection from cervical spine manipulation due to anomalous anatomy and variations in 

arterial properties?  What type of manipulation (i.e., loading) causes the damage?  Does 

the change in blood pressure from systolic to diastolic within the artery affect the 

chances of a vertebral artery dissection?  Can the pre-manipulative test cause a stroke 

and does it accurately predict those that might have a stroke, since the thrust component 

of the chiropractic manipulation is missing? 

 

A suitable finite element formulation for this application must satisfy certain 

requirements.  First and foremost, it must be appropriate for the analysis of soft tissue 

and, therefore, nearly-incompressible material [Vito & Dixon, 2003; Weinberg & 

Kaazempur-Mofrad, 2006].  Next, the formulation must accommodate the effects of 

large deformation (i.e., geometric nonlinearity) that is indicated by the rotations 

associated with head movement and CMT, as described in §2.3 and §2.4.  Many 

commercial finite element codes are capable of an analysis of this type.  However, an 
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added challenge occurs due to the complex nature of the loading conditions experienced 

by the vertebral artery during cervical manipulative therapy.  The forces applied directly 

to the artery are unknown without modelling the anatomical detail between the 

practitioners hands on the surface of the neck and the resulting forces on the artery due 

to both the bony structures (vertebrae and transverse foramina) and soft tissues 

(ligaments and musculature).  Due to anatomical differences, this modelling would be 

required for each individual person (as confirmed by the work of Maurel et al. [1997] 

reviewed in §2.4).  While forces on the neck have been measured (as reviewed in §2.4), 

the forces on the artery, in vivo, cannot be inferred from these measurements.  This fact 

alone could preclude finite element analysis of the vertebral artery.  Fortunately, the 

review in §2.4 shows that useful boundary information in the form of measured 

displacements can be obtained with imaging techniques such as ultrasonography or 

magnetic resonance imaging (MRI).  Thus, the finite element formulation appropriate to 

modelling the vertebral artery, in vivo, must incorporate near-incompressibility, 

geometric nonlinearity, displacement boundary conditions, and the associated 

uncertainty in the measured displacements.  As demonstrated in the next chapter, 

achieving this result with existing finite element methods is problematic and necessitates 

a new approach. 



Chapter 3 

Fundamental Issues with Finite Element Modelling 

 

 

3.1 Preliminary Comments on the Finite Element Method 

The finite element method (FEM) has been a work in progress for several decades.  Its 

evolution has come from several disciplines.  Mathematicians use the method for 

numerical solution of partial differential equations in boundary value problems.  

Originally, engineers used the FEM in the form of the flexibility method mainly for 

aircraft design in which forces were the primary unknowns or the stiffness method in 

which displacements were the primary unknowns [Felippa, 2001].  Calculations at this 

time were performed by hand.  For nonstructural applications, such as the analysis of 

solids, fluid flow or heat transfer, variational principles used an extension of the 

Rayleigh-Ritz method and Castigliano’s First Theorem by minimisation of a potential 

functional.  In applications where a variational principle is not appropriate, such as mass 

transport, Galerkin’s Residual Method was applied [Logan, 1993].  

 

Although there are many different implementations or formulations of the FEM and 

many different areas of application, there is a common thread throughout.  An unknown 

field is discretised or divided into a set of smaller and simpler interconnected bodies or 
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elements.  For example, the variation of a certain quantity over the entire field may be 

unknown, whereas over an element its variation may be approximated as linear.  The 

governing equations, such as equilibrium and compatibility, are satisfied either 

approximately or exactly throughout the discretised field and boundary conditions are 

applied.  Finally, values of the quantity at discrete points in the field are determined by 

solving a system of simultaneous linear equations which is formed from the individual 

element equations.  Whatever the formulation or application, the appeal of the finite 

element method is due to its ability to produce an approximate solution to a problem 

with complicated geometry, loading or material properties for which an analytical 

solution is not available.  However, as shown in the next section, finite element 

calculations become unreliable when dealing with the parameters chosen to model the 

vertebral artery during chiropractic manipulation:  near-incompressibility, measured 

displacement data, and geometric nonlinearity. 

 

 

3.2 A Motivating Example – FEM of a Simple Patch 

The remainder of this chapter and subsequent chapters will explore the pertinent 

technical aspects of the finite element method in detail.   It will be instructive, however, 

to first show the results of a preliminary simulation demonstrating the fundamental 

shortcomings of applying the finite element method in the present context.  Consider a 

loaded rectangular plate of thickness t and in-plane dimensions b and h, as shown in 

Figure 3.1.  The plate is subjected to pressure P along two opposite sides and is 

constrained in the z-direction to create a uniform state of plane strain in the x-y plane.  A 

rudimentary finite element mesh, consisting of four rows and four columns of identical 
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rectangular elements, is also shown in the figure.  The objective of the analysis is to 

determine unknown stresses and displacements over each element from known 

conditions on the boundary of the plate.  This simple test case is an example of a broader 

series of classical tests, known as the patch test, used to assess finite element 

convergence.  (The patch test will be discussed in more detail later in the thesis.)   For a 

method to be reliable for analysing complicated problems, it must be robust for the 

simplest fields, including a uniform distribution. 

 

 

b 

h 

y 
x

P 

 

 

 

 

 

 

Figure 3.1: Plane strain compression of rectangular plate by pressure P (finite element 
mesh included). 

 

For a linear elastic material, the analytical solution to this problem may be obtained 

directly from generalised Hooke’s law and the classical strain-displacement relations, 

giving 

 Px −=σ  , (3.1) 

 0=yσ  , (3.2) 

 Pz νσ −=  , (3.3) 
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where E is Young’s modulus, ν is Poisson’s ratio, σx, σy, and σz are the normal stresses, 

and u and v are the displacements in the x- and y-directions, respectively.  For the 

arbitrarily selected values of P = 0.1 kN/mm2, E = 70 kN/mm2, b = 100 mm, and 

h.=.200.mm, equations (3.4) and (3.5) were used to produce displacement boundary 

conditions so that the problem could be recast as a Dirichlet boundary value problem 

where, on the boundary, u and v are known but P is unknown as would be encountered 

in the chiropractic problem.  As will be discussed in detail later in this chapter, a 

material is “nearly incompressible” when Poisson’s ratio is “close to 0.5”.  ANSYS®, a 

commercially available finite element software package, was used to solve the test 

problem for values of Poisson’s ratio from 0.4 to 0.4999.  For this preliminary 

simulation, a standard linear elastic, plane strain, displacement formulation with 

classical four node quadrilateral elements was used. To simulate uncertainty in the 

boundary displacement data, a random error distribution with a maximum value of 1% 

was applied to the data.  The results for σx, σy, and σz are given in Tables 3.1, 3.2, and 

3.3, respectively.   

 

The purpose of considering a range of Poisson’s ratio values is to compare the 

performance of the finite element method for compressible materials versus materials 

that approach incompressibility. For each case, the theoretical stress field is uniform 

over the plate, while ANSYS® gives a stress variation as shown in the tables.  For 
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ν.=.0.4 and ν.=.0.45, the error in the stress values calculated by ANSYS® are of the 

same order of magnitude as the uncertainty in the data.  However, for ν.=.0.49 and 

ν.=.0.4999, the results indicate a fundamental problem with obtaining usable stress 

values from displacement data for Poisson’s ratio in this range,  precisely the range 

normally used in modelling soft tissue [Baldewsing, 2006].  A relatively small 

uncertainty in the given data was used to produce these results, and further simulations 

would show that changing the specific error distribution causes erratic changes in the 

solution for Poisson’s ratio close to 0.5.  Furthermore, for problems which exhibit 

geometric nonlinearity, iterative methods are typically used. Each iteration would 

require solution of a linearised system, and any erratic behaviour would be magnified 

with each step in the process. 

 

Table 3.1:  Comparison of Theoretical and Finite Element Values for σx. 

ν 
Theoretical 

Value 
(MPa) 

Maximum 
FEM Value 

(MPa) 

Minimum 
FEM Value 

(MPa) 
0.4000 -100.0 -98.98 -102.7 
0.4500 -100.0 -98.81 -104.1 
0.4900 -100.0 -60.91 -65.72 
0.4999 -100.0 -227.0 -488.9 

 

Table 3.2:  Comparison of Theoretical and Finite Element Values for σy. 

ν 
Theoretical 

Value 
(MPa) 

Maximum 
FEM Value 

(MPa) 

Minimum 
FEM Value 

(MPa) 
0.4000 0 0.4307 -1.854 
0.4500 0 0.1447 -3.461 
0.4900 0 41.31 37.47 
0.4999 0 -127.4 -389.8 
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Table 3.3:  Comparison of Theoretical and Finite Element Values for σz. 

ν 
Theoretical 

Value 
(MPa) 

Maximum 
FEM Value 

(MPa) 

Minimum 
FEM Value 

(MPa) 
0.4000 -40.00 -39.74 -41.82 
0.4500 -45.00 -44.75 -48.39 
0.4900 -49.00 -9.128 -12.71 
0.4999 -49.90 -177.2 -439.3 

 

 

For over 40 years, this numerical instability has been the subject of a major research 

effort in the finite element community.   As a result, much has been achieved toward this 

problem.  One of the goals of this thesis, however, is to show that even the most 

advanced finite element formulations specifically designed for nearly incompressible 

materials are inadequate for the combination of conditions posed by the chiropractic 

problem.  In the remainder of this chapter, a presentation of the underlying theory is 

developed to form a basis for:  identifying the fundamental source of numerical 

instability; assessing the pertinent finite element formulations; and, most importantly, 

extending the theory to resolve the instability issue.  In the remainder of this thesis, these 

mathematical developments and extensions, together with the theorems, proofs, and 

algorithms that result, constitute the majority of the research contribution.  Simple 

numerical examples are used throughout only to demonstrate and reinforce the 

fundamental concepts embodied in the mathematics. 
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3.3 FEM and Incompressibility 

3.3.1 Constitutive Modelling 

The most accurate model of biological materials would account for several properties.  

Accordingly, numerous constitutive models have been developed to include: material 

and geometric nonlinearity; anisotropy; incompressibility; time dependence; 

inhomogeneity; and multiaxial effects.  For reviews of methods used to determine soft 

tissue material properties and soft tissue constitutive models, see [Sacks and Sun, 2003] 

and [Vito and Dixon, 2003], respectively.  See also Simon et al. [1998], McAfee et al., 

[1994], Itskov and Aksel [2002], and Fung [1993] which has been a standard for many 

years.  Linear elasticity, or more specifically Hooke’s law, has also been used with 

success to model soft tissue [Fung 1993; Coley, 2000].  Although linear elasticity is 

clearly an approximation, Fung [1993] found that the stress-strain curve for soft tissue 

has a very shallow curve initially and then slopes upward at a steep angle.  Even in cases 

where hyperelasticity is usually assumed, the relationship between stresses and strains is 

often linear, or close to linear.  The stress-strain curve can remain approximately linear 

for strains up to 40 percent [Coley et al., 2000]. Depending on the magnitude of the rigid 

body rotations, material linearity can also hold true while the deformation is 

geometrically nonlinear. 

 

These constitutive models all focus on certain aspects of soft tissue properties, but all 

rely on the assumption of near-incompressibility.  The issues surrounding near-

incompressibility are manifest in both linear and nonlinear cases and, in addition, the 

iterative solution of nonlinear problems involves a series of linearised substeps.  

Therefore, the ramifications of near-incompressibility, i.e., numerical instability,  can be 
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examined within the context of linear elasticity theory and, in particular, the governing 

equations for a Hookean material.   

 

The first approach that was used in this research to investigate the mathematical cause of 

instability was an examination of the eigenvalues associated with generalised Hooke’s 

law.  For isothermal processes, the linearly elastic, isotropic constitutive relation 

between normal stresses and strains can be written as 

  dCs =  (3.6) 

where  
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ν is Poisson’s ratio, E is Young’s modulus, σi are the normal stresses at a point and iε  

are the normal strains at that point.  Matrix C in equation (3.7) has eigenvalues 1 + ν, 

1i+iν  and 1i−i2ν.  Mathematically, relative to the basis of matrix C, the eigenvectors 

corresponding to the repeated eigenvalue, 1*+*ν, lie in a plane perpendicular to the unit 

vector, [ T111
3

1
=n̂ ] while the eigenvector corresponding to 1 - 2ν falls on a line 

parallel to n̂ . 
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Accordingly, C can be diagonalised by writing 

  (3.10) TQQΛC =

where Q is chosen to be the orthogonal matrix 
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Equation (3.6) can be rewritten, therefore, as 

 dsΛ ′=′  (3.13) 

where  
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For full incompressibility, the volume change in a body during deformation is zero.  To 

demonstrate the significance of this, consider the classical expression for dilatation 

[Beer et al., 2002] given by 

 zyxe εεε ++= , (3.16) 

where e is the change in volume per volume of an infinitesimal element, and (3.16) is 

valid within the context of linear elasticity.  From the third linear algebraic equation of 

(3.13),  

 )(21
zyxzyx E

σσσνεεε ++
−

=++ , (3.17) 

and for fully incompressible materials, by definition, 0=e

yx

 for any loading, and 

therefore ν must be 0.5.  This also implies that the sum zσσσ ++  is arbitrary and the 

hydrostatic component of stress (also called the hydrostatic pressure), 

 
3

zyxp
σσσ ++

= , (3.18) 

is undetermined by the constitutive relations; i.e., an infinite number of mathematically 

consistent solutions exist.  This conclusion is valid for both three dimensional fields and 

and states of plane strain.  Furthermore, the diagonalised form of matrix C shown in 

equation (3.12) clearly shows that for 50.=ν , C has a zero eigenvalue, a determinant of 

zero and is singular.  For nearly incompressible materials, ν is close to 0.5 and C is 

therefore ill-conditioned; i.e., small variations or uncertainty in strain values can result in 

large variations in the calculated values of stress.  The ramifications of this 

indeterminacy within the context of finite element modelling will be reviewed in the 

next sub-section.    
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3.3.2 Classical Finite Element Formulation 

Many FEM formulations in solid mechanics are based on the classical principle of 

stationary potential energy [Budynas, 1999; Hughes, 1987].  This principle, based on a 

potential energy functional,  is reviewed here to identify the relationship between finite 

element analysis and the issues associated with nearly incompressible materials.  This 

review also provides the foundation for a new method, based on a modified potential 

energy functional, which is introduced later in the thesis.  Typically, for compressible 

materials, the principle of stationary potential energy [Budynas, 1999] states that the 

equilibrium configuration can be obtained by minimising 

      ΩΠ += U  , (3.19) 

where 

Π = the total potential energy of the system in static equilibrium, 

U = the internal strain energy,  

Ω = the potential energy of the external forces, 

and, for the standard FEM formulation, Π  is considered to be a function of only the 

nodal displacement degrees of freedom. 

 

The numerical instability arises in the derivation of the strain energy which for linear 

elastic materials is given by  

 U = ∫ Vzxzxyzyzxyxyzzzzyyyyxxxx d111111
⎥
⎤

⎢
⎡ +++++ γτγτγτεσεσεσ

222222 ⎦⎣
 . (3.20) 
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or ∫= VU d
2
1 Tεσ  (3.21) 

where ,  [ ]Tzxyzxyzzyyxx τττσσσ=σ [ ]T
zxyzxyzzyyxx γγγεεε=ε , V is volume, σij are the 

normal stress components, τij are the shear stress components, εij are the normal strain 

components, and γij are the shear strain components.  

 

When the body is discretised into nodes and elements in the FEM, the standard strain-

displacement relations become 

 uBε =  (3.22) 

where B is the matrix which contains derivatives of the shape functions used to relate 

nodal position to nodal displacements in an element and u is the column vector of nodal 

displacements for that element.  The stress-strain relations are 

 DBuDεσ ==  (3.23) 

where D is the material relation between stresses and strains.  When equations (3.22) 

and (3.23) are substituted into equation (3.21) the expression for the strain energy 

becomes 

 U = 
2
1 ∫ . (3.24) VdTTT uBDBu

The total potential energy Π  is found by adding U  to Ω  = - ΣFiui  where Fi are the 

nodal forces and ui are the associated nodal displacements.  When this is minimised with 

respect to u, the result is the usual finite element formulation [Budynas, 1999] 

 FKu = , (3.25) 
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where K is the coefficient or stiffness matrix, and F is the column vector of nodal forces.  

For compressible materials, there are generally no problems with this formulation.  The 

problem with near incompressibility arises from the determination of the matrix D, 

which relates stresses to known strains and is the mathematical inverse of C given in 

equation (3.7).  As was shown previously, for three-dimensional and plane strain 

formulations under the idealisation of full incompressibility, C is singular and therefore 

has no inverse (but may have a generalised inverse [Loredo & Klocker, 1997; Zheng, 

2002]).  Thus, D does not exist.  For nearly incompressible materials, C is ill-

conditioned and it may be shown that its inverse D is ill-conditioned to the same degree.   

 

The analysis above demonstrates that the mathematical distinction between full 

incompressibility and near incompressibility is a fine one.  From a practical standpoint, 

the problem is the same for the two cases; either way the result is a system of equations 

that cannot be relied upon to give numerically stable solutions.  That is, any small 

numerical perturbation can lead to a dramatic change in calculated values, as was shown 

in Section 3.2.  This necessitates a deviation from the standard FEM formulation.  

Consequently, research over the past thirty years to resolve this issue has resulted in 

numerous methods for both fully and nearly incompressible materials.  However, a 

distinction between near incompressibility and full incompressibility is not always 

emphasised.  In the review to follow, the word “incompressibility” will be used to 

denote both, except where a distinction is required. 
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3.4 Prototypical Methods for Incompressible Materials 

As shown in the preceding sections, the hydrostatic pressure for incompressible 

materials is either indeterminate or numerically unstable in the constitutive law of the 

standard FEM.  To solve this problem, the pressure p is often treated as an unknown, 

like the displacements, and determined as part of the solution.  This is referred to as a 

mixed formulation of the FEM [Weissman et al., 1992].  The manner in which the 

mixed method is applied has been a major topic in finite element analysis.  A journal 

paper by Kumaresan et al. [1994] reviews various mixed methods including applications 

and a comparison of the methods. 

 

3.4.1 Full Incompressibility 

For full incompressibility, the indeterminacy of p and singularity of matrix C may be 

circumvented by separating the internal strain energy into its deviatoric and hydrostatic 

components. Therefore, equation (3.19) becomes 

 ( ) ΩΠ ++= ∫ VepÛp,ui d  (3.26) 

where Û  is the deviatoric component of the internal strain energy, the second term 

represents the hydrostatic component, and both Û  and Ω are functions of ui only. 

Component U is not related to classical matrix D and therefore is not ill-conditioned.  In 

addition, if the discretised field consists of a single element for which the hydrostatic 

pressure is constant, then the p may come outside of the integral.  To find a solution to 

the problem, Π   is minimised by setting 

ˆ
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ˆ

u ii ∂∂
+

∂
==

∂ 0Π ∫ iFVe
−

iu∂
∂ d  (3.27) 

and 

 dVe
p ∫==

∂
∂ 0Π . (3.28)   

 

By optimising with respect to both ui and p, minimisation of the potential energy is still 

achieved and the hydrostatic component of the constitutive law, , is enforced in an 

approximate sense through integration over each element.  The description given by 

equations (3.26), (3.27), and (3.28), involving a decomposition of U into hydrostatic and 

deviatoric components, is standard and may be found in a number of sources [Hughes, 

1987;  Bathe, 1996].  Furthermore, it is usually posed as an application of the classical 

Lagrange multiplier method [Hughes, 1987; Bathe, 1996; Bonet & Wood, 1997; Oden 

and Key, 1970]. 

0=e

 

The Lagrange multiplier method is used in mathematics to optimise a function subject to 

a constraint [Trim, 2004].  In this method, a constrained optimisation problem is 

converted to an unconstrained optimisation problem with extra unknown(s).  For 

instance, when a function f(xi) is to be minimised with respect to variables xi subject to 

the constraint , it may be converted to the minimisation of  ( ) 0=ixg

 ( ) ( ) ( )iii xgxf,x λλ +=ℑ  (3.29) 

where λ is a scalar parameter, the Lagrange multiplier, whose physical meaning depends 

on the problem being considered.  Minimising ( )λ,xiℑ  with respect to xi and λ gives 
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and ( )ixg==
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ℑ∂ 0
λ

. (3.31) 

By comparing (3.26) and (3.29) and using the correspondence 

 ( ) ( )p,u,x ii Πλ =ℑ , (3.32) 

 ∫= Veg d , (3.33) 

and Ω+= Ûf , (3.34) 

the Lagrange multiplier equations (3.30) and (3.31) give the mixed FEM formulation 

(3.27) and (3.28) for full incompressibility.  In the literature, the above correspondence 

is usually implied directly from equations (3.27) and (3.28) without addressing the 

subtlety introduced by equation (3.34), where the function to be minimised is  

rather than the total potential energy 

Ω+Û

Ω+U , as required by the principle of stationary 

potential energy.  While this may seem to be inconsistent, it is easily reconciled.  By the 

Lagrange multiplier method, a function is minimised within the constraint space.  In this 

case, the constraint space is a subspace where the volume does not change.  By 

definition, the hydrostatic (volumetric) component of strain energy is zero within this 

subspace, and therefore the total strain energy U is equal to the deviatoric strain energy 

. Û

 

The Lagrange multiplier approach described above leads to global finite element 

systems of the form [Hughes, 1987; Zienkiewicz et al., 1986; Zienkiewicz & Taylor, 

1997] 
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where the system of equations from the top block of (3.35), i.e. Au + GTp = b1, 

represents the equilibrium equations, and the bottom block, i.e. Gu = b2, represents the 

constraint equations.  A is a matrix of stiffnesses corresponding to the second partial 

derivatives of the distortional strain energy, and the matrix G contains geometric terms 

each of which relates the change in volume per volume of an element due to a deflection 

of a single displacement degree of freedom.  The vector b1 is the load vector after 

imposition of the displacement boundary conditions, and the vector b2 is equal to zero 

until the displacement boundary conditions are imposed.   

 

3.4.2 Near Incompressibility 

In the literature, functionals for near incompressibility have been devised using a 

number of different approaches, including general variational forms [Rong et al., 2001; 

Bathe, 1996; Herrmann, 1965; Reissner, 1950] and “penalty” methods [Bonet & Wood, 

1997; Hughes, 1987; Hughes et al., 1979)].  However, the variational forms are usually 

introduced without using the principle of stationary potential energy as the starting point, 

and the penalty formulations do not always follow the classical penalty approach of 

applied mathematics. This section presents an alternative derivation which follows the 

same steps as those used above to derive the functional for full incompressibility, with a 

goal of providing a formulation which is accessible to a broader engineering audience 

and may be useful for future pedagogical and research applications. 
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Using equation (3.19), the variational principle for the standard displacement finite 

element formulation may be written as 

 ΩΠ += ∫ VW)( du  (3.36) 

where W is the strain energy per volume.  The notation Π (u) indicates that the potential 

energy functional, Π, depends only on displacement field u.  The stress and strain fields 

are not independent variables since in the context of the standard formulation, both the 

strain-displacement and the stress-strain (constitutive) relations are enforced exactly at 

all points.  Mathematically, the point-wise enforcement of these relations may be 

indicated by writing that ε = ε (u), σ = σ (ε) and, therefore, σ = σ (u).  The strain energy 

density, W, may be decomposed into distortional and volumetric parts giving 

  (3.37) W~ŴW +=

and therefore, equation (3.36) can be rewritten as  

 ΩΠ ++= ∫∫ VW~VŴ)( ddu  (3.38) 

where is the distortional part of the strain energy density and W is the volumetric 

part.  By definition, for the volumetric component of a stress state, 

Ŵ  

~

p~~~
zyx === σσσ  

and 0== zxyz
~~~ =xy τττ , where i

~σ and ij
~τ  are, respectively, the normal and shear stresses 

associated with the volumetric part of the stress state.  Referring to equation (3.20), the 

classical expression for strain energy density within a linear elastic material then gives 

 zzyyxx
~~~~~~W~ εσεσεσ

2
1

2
1

2
1

++=  (3.39) 

where from Hooke’s law, as given by equations (3.6) to (3.9) and (3.17), the volumetric 

normal strain components, i
~ε are 
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and κ  is the bulk modulus given by 

 ( )ν
κ

213 −
=

E   . (3.41) 

Thus, equation (3.39) becomes 

 
κ2

2pW~ =  . (3.42) 

Equation (3.42) can be found in a number of sources.  The manner in which (3.42) is 

rearranged algebraically is the key to obtaining the equations for near incompressibility.  

Although not an obvious choice, let (3.42) be written as 

 
κκ 2

22 ppW~ −=  . (3.43) 

The volumetric component of the constitutive law is 

 ep κ=   (3.44) 

and so equation (3.43) can become 

 
κ2

2pepW~ −=  . (3.45) 

Substituting (3.45) into (3.38) gives  

 Ω
κ

Π +−+= ∫∫ VpVpeÛ)pu( i d
2

d,
2

, (3.46) 

where p is now treated as an independent unknown and the relationship between 

deviatoric strain energy U and deviatoric strain energy density W is given by ˆ ˆ

 ∫= VŴÛ d  . (3.47) 
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To demonstrate that equation (3.46) is the prototypical functional for near 

incompressibility,  is minimised in similar fashion to the approach that was 

used for full incompressibility, giving 

)pu( i ,Π

 pU
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Comparing these equations to (3.27) and (3.28), the same energy minimisation with 

respect to ui is achieved,  but the hydrostatic component of the constitutive law is 

ep κ= , rather than the fully incompressible equation 0=e .  Again, this part of the 

constitutive law is enforced only approximately instead of point-wise. 

 

Through discretisation, equations (3.48) and (3.49) lead to the matrix form 

 ⎥
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where M is the interpolation matrix for the pressures and is related to the bulk modulus. 

As incompressibility is approached, M approaches zero and (3.50) is equivalent to 

(3.35).   
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In Bonet & Wood [1997], the formulation given by (3.46) is described as a “penalty” 

approach (with Bonet and Wood placing the quotation marks) where  

 Vp d
2

2

∫−=
κ

ℵ  (3.51) 

is the penalty term and κ is the penalty parameter.  The quantity ℵ, however, does not 

satisfy the conditions for a true penalty term [Stoeker, 1980] as it is not positive semi-

definite and therefore does not actually penalise the minimisation of functional Π. 

 

In the literature, selection of the penalty parameter seems to be somewhat arbitrary.  The 

quantity κ  is not viewed as having a specific value for a particular material, but rather as 

a parameter which is given a value large enough to approximate full incompressibility 

yet small enough to avoid mathematical singularity.  This deviates substantially from the 

perspective taken in this thesis where real materials may be viewed as nearly 

incompressible, and 50.=ν   is regarded as the theoretical upper limit of 

incompressibility. 

 

 

3.5 Issues Regarding Incompressibility 

Both prototypical methods presented in the previous section resolve the problem of 

indeterminacy in the constitutive law by circumventing point-wise enforcement of the 

volumetric constraint in favour of an averaged, approximate form.  However, it has long 

been recognised that these approaches may still encounter serious problems during 

implementation.  In this section, the pertinent issues are discussed leading to a review in 

subsequent sections of the more advanced finite element methods for incompressibility.  
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These methods are then assessed in terms of their suitability for the chiropractic 

problem. 

 

The first consideration which affects performance is the choice of element.  This is 

defined by the number of nodes per element and the degree of integration for the 

displacements and hydrostatic pressures.  For compatibility, the displacements must be 

continuous across the element boundaries.  The pressures may be either continuous or 

discontinuous.  However, the combination of interpolations for the displacements and 

pressures is not arbitrary [Hughes, 1987; Huang et al, 2004].  Many elements are 

considered unsuitable for analysis of incompressible materials and may be subject to 

displacement locking and pressure modes.   

 

Displacement locking occurs when the final displacements are calculated to be 

artificially small for a given problem.  The combination of restricted motion which is 

implied by the finite element discretisation and the constraint on the displacements due 

to the constant volume condition creates a mesh which is unable to distort as it should 

[Armero, 2000].  In other words, discretisation of a deformable body (with an infinite 

number of kinematic degrees of freedom) leads to a model with a finite number of 

degrees-of-freedom.  This can, in some cases, result in a finite element model which has 

insufficient flexibility to simultaneously respond to applied loads and satisfy the 

constant volume requirement of incompressibility.  The same phenomenon occurs for 

both full incompressibility and near incompressibility [Belytschko, 1986]. 
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A pressure mode is a mathematical manifestation of the non-uniqueness of the pressure 

solution in an incompressible problem.  A pressure mode distribution, as an additive part 

of a particular solution to the governing equations, creates an incorrect pressure field.  

However, the governing equations are still satisfied.  If the indeterminacy is encountered 

in solving the original partial differential equations of equilibrium, then a “physical 

mode” exists.    If the indeterminacy is encountered in solving the matrix equations of 

the finite element model, this may be due to a discrete version of the physical mode, or 

“spurious modes” introduced by the details of the discretisation process, or both.   

 

Since the pressures for an incompressible analysis are unknown degrees of freedom, 

they must be determined with reliance on force or stress traction boundary conditions.  If 

insufficient force boundary condition information is available, the indeterminacy of the 

hydrostatic component of stress will manifest itself as pressure modes.    According to 

Dvorkin [2001], pressure modes exist when, from either equation (3.35) or (3.50) 

 . (3.52) 0=pGT

They may also by predicted by the existence of zero eigenvalues in the matrix equation 

(3.35) [Zienkiewicz et al., 1997].  In the 4-node, bilinear displacement, discontinuous 

constant pressure element, the spurious mode is in the form of a checkerboard pressure 

distribution [Zienkiewicz et al., 1997; Dvorkin, 2001].  The calculated solution consists 

of a linear combination of the actual expected pressure plus the constant hydrostatic 

pressure mode and the checkerboard spurious pressure mode.  It may be questioned, 

then, whether any of the unknown quantities in the problem can be obtained.  Malkus in 

Appendix 4.II of Hughes [1987] offers a theorem and proof that unique solutions for the 
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displacements exist despite the existence of pressure modes.  Part of this proof is 

reworked here as the author feels that it may be more accessible to some readers than the 

one offered by Malkus.  It begins with two Lemmas (3.1 and 3.2) which are based on 

results from classical linear algebra in terms of the fundamental subspaces of a matrix 

(see Appendix A for review).  It is then followed by a theorem stating conditions under 

which solutions exist. 

 

Consider the system given by equation (3.35).  This system may be rewritten as  

 bKx = , (3.53) 

or 

 , (3.54) 1
T bpGAu =+

and 

 2bGu = . (3.55) 

Lemma 3.1:  A solution to the system (3.55) exists if and only if for every pressure 

mode vector, q, in the nullspace of , . TG 0T
2 =qb

Proof:  Assume that Gu = b2 has at least one solution.  Then, b2 is in C(G), the column 

space of G [Strang, 1976].  Equivalently, b2 is in ( )TGR , the row space of .  Every 

member of 

TG

( )TG  R is orthogonal to every member of ( )TGN  nullspace of TG .  Th , 

for q ∈ 

, the us

( )TGN = 0 (by the definition of orthogonality). Now, conversely, assume 

that for every q ∈ 

, b2
Tq 

( )TGN  th  = 0, then b2 ∈ at b2
Tq ( )TGR  (since ( )TG  andN  ( )TGR  are 

onal complements) or equivalently, b2 ∈ C(G).  Thus, Gui=ib2 has a solution.  ■ 

 

orthog
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Lemma 3.2:  If vR ∈ R(G) and A is a positive-definite matrix, then  if and 

-1 is positive-definite, it is non singular and  if and only if 

0=R
-1vGA

only if 0=Rv . 

Proof.  Since A 0=R
-1vA

.  Since 0=Rv .  Now, assume that R
-1vA is entirely in the nullspace of G Rv is entirely in 

 space of G,  the row ( ) 0−1T
R vv A .  This, however, is a contradiction sin or positive-

definite A-1, >− vv 1T A  Thus R
-1vA  is not entirely in the nullspace of G and 

=R

r all v .

ce f

0  fo  

( ) 0=R
-1vAG  if 0=-1vA ; i.e.,  only if 0 if and only R  if and =Rv .    ■ 

 

heorem 3.1:  Given (3.53) with A positive-definite, the system has solutions if and 

 

T

only if for every qi∈ ( )TGN , b2
Tq = 0. 

Proof:  From Lemma 3.1, u = b2 has G solutions if and only if b2
Tq = 0.  These solutions 

may be written as 

 0p uuu += , (3.56) 

here up is a particular solution and  is in w  0u ( )G .  Therefore, N

 p bu 2G =  (3.57) 

nd a

0=0Gu . (3.58) 

ubstituting equation (3.56) into (3.54), S

 ( ) 1
T bpG =+0p uuA + , (3.59) 

nd a
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1
T

0p bpGAuAu =++ . (3.60) 

o prove that the system (3.53) has solutions, therefo

, (3.61) 

nd this becomes 

. (3.62) 

remultiplying (3.62) by G,  

. (3.63) 

ubstituting (3.57) and (3.58) into (3.63), 

, (3.64) 

nd rearranging, 

T re, it must be shown that for every 

u given by (3.56) (which already satisfies the constraint equations), there is at least one p 

for which the equilibrium equations (3.60) are also satisfied.  Since A is positive-

definite, A-1 exists and premultiplying (3.60) by A-1 gives, 

 1T1
0

1
p

1 bApGAAuAAuA −−−− =++ 1

a

 1
1T1

0p bApGAuu −− =++

P

 Gu 1
1T1

0p bGApGGAGu −− =++

S

 1
2 GGAb −+ 1

1T bGAp −=

a

( ) ( )21
1T1 bbGApGGA −= −− . (3.65) 

ow, the objective has become one of showing that theN re exists at least one solution to 

(3.65).  Applying Lemma 3.1, (3.65) has solutions if and only if the vector  21
1 bbGA −−  

is orthogonal to ( )( )TT1GGA−N .  Noting that A and therefore, A-1 are 

( ) 1TT1 GGAGGA −− = T1G  is itself symmetric).  Now, assume that there is a 

symmetric, 

T  (i.e. GA−

vector, v  ∈ ( )T .  Then, by definition, 0=− vT1GGA .  Since vTG  gives a linear 

combination of the rows of G,  Lemma 3.2 s =− vT1GA f and only if 

0=vTG ; that is 

1G−GAN

tates that G 0  i

( ) ( )T1T GGAG −= NN .  Therefore, (3.65)  if and only if has solutions
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2b  is or1
1bGA −− thogonal to ( )TGN  where, by definition, q ∈ ( )TGN .  The test for 

y involves the inner ct of q and 21
1 bbGA −− , or 

 

orthogonalit  produ

( ) 2
T

1
1 bqb −T

21
1T GAqbbGAq =− −− . (3.66)   

( )TGN , 0=qGT  or, equivalently, 0=GT .  ThSince q is in q erefore, 

 ( ) 2
Tbq−

■ 

e disp

r dealing with pressure m

21
1T bbGAq =−− . (3.67)   

as solutions if and . 

 continues in a coro ove that th lacement solution is unique.  

inder of the chapte tegies fo des, as well as 

and  (3.65) h

alkus then

 the rema

 only if 

llary to pr

r, stra

02
T =bq

 

M

Therefore, he has proved that solutions exist to (3.35) if b2 is orthogonal to the pressure 

modes.  Also, when the system is solvable, the displacement part of the solution is 

unique and the pressure part may consist of the actual pressure plus a pressure mode.  (A 

more complete description of pressure modes may be found in [Sani et al., 1981, Part 1; 

Sani et al., 1981, Part 2].)   

 

In o

displacement locking, are reviewed.  These issues are related to element selection and 

therefore the next section establishes the conditions under which elements are 

considered suitable for incompressibility. 
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3.6 Assessing Finite Element Suitability for Incompressibility 

pressibility, simple 

.6.1 Count Conditions 

 used as a simple method for predicting problems related to 

ughes’ constraint counting method states that the optimal ratio of equilibrium 

To assess whether an element’s interpolations are suitable for incom

count conditions, the patch test, or the more mathematical inf-sup condition may be used 

[Zienkiewicz et al., 1986].  These conditions determine whether a mixed finite element 

discretisation is stable and will lead to a physically meaningful solution.  Elements that 

fail these conditions may be subject to the issues discussed above, displacement locking 

or pressure modes.  Other criteria also exist that more simply relate constraints and 

degrees of freedom to predict convergence and accuracy of finite element solutions. 

 

3

Count conditions may be

specific finite element formulations.  To check their finite element meshes for plasticity 

applications, Nagtegaal et al. [1974] found that “convergence will only occur if the total 

number of degrees of freedom increases faster than the total number of constraints”.  In 

other words, the ratio of displacement degrees of freedom to the number of constraints 

as a finite element mesh is refined should be greater than one.  Hughes [1987] opts for 

an alternate constraint counting method to determine the ability of an element to perform 

well in incompressible and nearly incompressible applications.  Although he admits that 

it is not a “precise mathematical method” for assessing the suitability of elements, it is 

able to predict locking.   

 

H

equations (the top half of the system in equation (3.35)) to the linearly independent 

constraint equations (the bottom half) is generally assumed to be 2 in two dimensions.  
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This is related to the original continuous boundary value problem in which the ratio of 

equilibrium equations to constraint equations is two, i.e. the equilibrium of forces in the 

x- and y-directions to the constant volume of the body [Hughes, 1987].  If the ratio is 

less than two, the element will tend to lock since there are more constraints on the 

displacements than there are displacement degrees of freedom.  If the ratio is greater 

than two, not enough incompressibility conditions exist to approximate 

incompressibility satisfactorily.   

 

3.6.2 The Patch Test 

ied that an arbitrary patch of elements would behave exactly 

he stability requirement is tested by a count condition.  The count condition of 

p (3.68) 

The original patch test verif

like an elastic solid material subjected to boundary displacements consistent with 

constant straining [Taylor et al., 1986].  Taylor et al. extended the original patch test so 

that it would not only be a necessary condition for finite element convergence but also a 

sufficient condition.  Zienkiewicz et al. [1986] applied the patch test to mixed 

formulations and showed that the same necessary and sufficient convergence conditions 

were still upheld by testing for consistency and stability.  The consistency requirement 

ensures that the finite element approximation will exactly represent the differential 

equations of equilibrium and compatibility as the size of the elements approaches zero 

[Zienkiewicz & Taylor, 1989].   

 

T

Zienkiewicz and Taylor [1997] is such that  

 nu ≥ n

 55



where nu is the number of parameters defining the displacement field and np is the 

number of parameters defining the pressure field of a patch of elements in which all the 

displacements on the boundary and one pressure is prescribed.  This is a necessary 

condition for the solution to be unique.  In addition to this count condition, the 

coefficient matrix A from (3.35) must be non singular for all patches if stable solutions 

are to exist [Zienkiewicz & Taylor, 1997].   

 

3.6.3 The Inf-Sup Condition 

Satisfaction of the inf-sup condition, also known as the Babuška-Brezzi condition (B-B 

condition), is equivalent to the satisfaction of the patch test as given by Zienkiewicz and 

Taylor [1997].  This condition is the mathematical criterion that determines whether a 

finite element formulation is stable and convergent [Zienkiewicz et al., 1986].  

Satisfaction of this criterion guarantees that the finite element grid will not lock and will 

be free of spurious pressure modes.  However, even if an element satisfies the B-B 

condition, a grid subjected to complete displacement boundary conditions will still result 

in the physical (constant) pressure mode.  A mathematical derivation of the B-B 

condition may be found in various sources [Babuška & Narasimhan, 1997; Chapelle & 

Bathe, 1993].  One perspective that is within the context of the results to be shown in 

this dissertation is the relationship between the B-B condition and the condition number 

of the stiffness matrix for a particular grid.  

 

Following the form of the mixed finite element method given in (3.35), one statement of 

the B-B condition is [Strang, 2007]:  for every p there must be a u so that  

 56



 ppAuupGu TTTT β≥  (3.69) 

for a fixed .  The following lemma is a variation of material found in [Strang, 

2007] and it leads to a theorem relating the B-B condition to the condition number of the 

stiffness matrix given in (3.35).  First, consider the matrix equations given by (3.35), i.e., 

(3.54) and (3.55).  Since A is positive definite, its inverse exists.  Therefore, if (3.54) is 

rearranged and solved for u, the result is 

0>β

  . (3.70) pGAbAu T1
1

1 −− −=

Substituting (3.70) into (3.55) and rearranging gives 

  . (3.71) 21
1T1 bbGApGGA −= −−

This may be rewritten as  

 3bpA =~ , (3.72) 

where  and .  Since (3.72) represents (3.35), the condition 

number of 

T1GGAA −=~
21

1
3 bbGAb −= −

A~  is the important parameter where the stability of (3.35) is concerned.   If

A~  has a zero eigenvalue, it will have a nontrivial nullspace and therefore pressure 

modes can occur. 
 

Lemma 3.3:  If the B-B condition is satisfied, then the eigenvalues of A~ are all positive 

and  

 2
1 1

β
≤−A~ . (3.73) 

Proof:  Let 

 uAw 2
1

= . (3.74) 

Then 
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 wAu 2
1−= . (3.75) 

Using definition (3.75), the terms of the B-B condition may be rewritten as follows,  

 
wAAAw

wAAwAAuu

2
1T

2
1T

2
1T

2
1T

−−

−−

⎟
⎠
⎞⎜

⎝
⎛=

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛=

. (3.76) 

Since A is symmetric, then AA =T  and (3.76) becomes 

 
.ww

wAAAwAuu
T

2
1

2
1TT

=

= −−

 (3.77) 

The norm of a vector, as defined by Strang [1976], is www T= and therefore 

www T2 = .  Now, (3.77) becomes 

 2T wAuu = . (3.78) 

Similarly,  

 ppp T= . (3.79) 

Also, 

 
.pGAw

pGwApGu

T2
1-T

T
T

2
1-TT

=

⎟
⎠
⎞⎜

⎝
⎛=

  (3.80) 

  
By substituting (3.78), (3.79) and (3.80) into (3.69), the B-B condition becomes 

 pwpGAw ⋅≥− βT2
1T . (3.81) 

Dividing both sides by w  gives a more useful form of the B-B condition to prove the 

lemma and (3.81) becomes 
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 p
w

pGAw β≥
− T2

1T

. (3.82) 

Let pGAz T2
1−= , then (3.82) becomes 

 p
w

zw β≥
T

. (3.83) 

Since wTz is the inner product between w and z, (3.83) may be rewritten as 

 p
w
zw

β
θ

≥
⋅ cos

, (3.84) 

where θ  is the angle between w and z.  The w  terms on the left hand side of (3.84) may 

be cancelled leaving the term θcosz .  Since the range of cosθ is -1 to 1, the largest 

value of θcosz  is z .  Therefore, 

 pGAz
w

zw T2
1T

max −
== . (3.85) 

So another form of the B-B condition is 

 ppGA β≥− T2
1

, (3.86) 

or when both sides are squared, 

 22
2

T2
1

ppGA β≥
− . (3.87) 

Expanding the norms by the definition given above, (3.87) becomes 

 pppGAAGp T2T2
1T

2
1T β≥⎟

⎠
⎞⎜

⎝
⎛ −− . (3.88) 

Since A is symmetric, ⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛ −− 2

1T
2

1
AA ,  
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 , (3.89) pppGGAp T2T1T β≥−

and, using the definition of A~ , 

 , (3.90) pppAp T2T β≥~

or 

 pppAp 2TT β≥~ . (3.91) 

In the set of all p vectors, let p̂  be those that are also eigenvectors of A~ .  Then 

 ppA ˆˆ~
Eλ= , (3.92) 

where Eλ  are the eigenvalues of A~ .  Equation (3.91) can be written for the eigenvalues 

and eigenvectors of A~ , as in (3.92), and rearranged as 

 ( ) 02
E

T ≥− ppp ˆˆˆ βλ . (3.93) 

When  is distributed, this equation becomes Tp̂

  (3.94) 0T2T
E ≥− pppp ˆˆˆˆ βλ

or 

 ( ) 022
E ≥− p̂βλ . (3.95) 

Therefore, 

 , (3.96) 2
E βλ ≥

where by definition .  So, if the form of the B-B condition given by (3.87) is to be 

satisfied for all p’s including eigenvectors of 

0>β

A~ , then the eigenvalues of A~  must satisfy 

(3.96) and are all positive.  Furthermore, if all the eigenvalues are greater than or equal 

to , then 2β
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 , (3.97) 2
min βλ ≥

where minλ is the smallest eigenvalue of A~ .  Taking the reciprocal, (3.97) becomes 

 2
min

11
βλ

≤ . (3.98) 

The norm of a symmetric matrix with positive eigenvalues is defined as the maximum 

eigenvalue [Strang, 1976].  Therefore, if  

 maxλ=A~ , (3.99) 

then, it follows that 

 
min

1 1
λ

=−A~ , (3.100) 

and 

 2
1 1

β
≤−A~ .  ■ (3.101) 

 

Theorem 3.2:  If the B-B condition is satisfied, then the condition number (CN) of A~  is 

bounded. 

Proof:  The condition number of a matrix is defined as [Strang, 1976] 

 ( ) 1−⋅= AAA ~~~CN . (3.102) 

Since A~  is positive definite, 

 maxλ=A~  (3.103) 

where ∞<maxλ ; i.e. maxλ  is bounded.  Now, substituting (3.103) into (3.102)  

 ( ) 1
max

−= AA ~~CN λ , (3.104) 

 61



and by Lemma 3.3, 

 ( ) 2
max

β
λ

≤A~CN . (3.105) 

for a fixed β > 0.  Therefore, if the B-B condition is satisfied, it follows that CN ( A~ ) is 

bounded and the finite element solution will be free of pressure modes.  ■ 

   

Ideally, all finite element formulations would be free of pressure modes and 

displacement locking.  The B-B condition, patch test, and/or count conditions can be 

used to identify the expected performance of a given formulation, but the actual design 

of stable methods to satisfy these criteria has required considerable research over the 

past thirty years.  The major methods currently available are reviewed in the following 

section. 

 

 

3.7 Methods for Addressing the Issues Associated with Incompressibility 

3.7.1 Element Selection 

The choice of element can determine whether displacement locking or pressure modes 

occur.  Whether Hughes’ count condition [Hughes, 1987], the patch test [Zienkiewicz et 

al., 1986; Zienkiewicz & Taylor, 1997] or the B-B condition [Bathe, 1996] is applied, 

the consensus is that the continuous biquadratic displacement, discontinuous linear 

pressure element (i.e. 9-node quadrilateral element with 3 internal pressure interpolation 

nodes or Q9P3) shown in Figure 3.2 is the optimal quadrilateral for incompressible 

analysis.  Although this is the ‘best’ element, other elements may still be used and are 

found in practice.  For example, the bilinear displacement, constant pressure element 
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(Q4P1), shown in Figure 3.3, is widely used even though it does not pass the B-B 

condition [Simo, et al. 1993], but it passes the patch test [Zienkiewicz & Taylor, 1997] 

and Hughes’ count condition in some configurations [Hughes, 1987].  As a result, much 

research has been performed to make this element more robust for various applications 

and leads to other methods for addressing incompressibility issues. 

Figure 3.2:  Biquadratic displacement, linear pressure element (■ represents 
displacement node, ○ represents pressure interpolation node). 

 

 

 

Figure 3.3: Bilinear displacement, constant pressure element (■ represents 
displacement node, ○ represents pressure interpolation node). 
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3.7.2 Reduced/Selective Integration 

The reduced integration method was an early approach for addressing the issues of 

incompressibility [Yu, 1991].  It may be applied to near incompressibility and standard 

elements with only displacement unknowns to address the issue of displacement locking 

that is often exhibited by these elements.  To accomplish this, the material properties 

matrix (i.e., D in equation (3.23)) is divided into a μ (shear modulus) part and a λL 

(volumetric) part where μ and λL are the Lamé parameters.  Then, either both parts are 

treated with a reduced order of numerical quadrature (uniform reduced integration) or 

only the volumetric part is under-integrated (selective reduced integration).  For 

example, in a four-node quadrilateral element where ‘exact’ integration uses a 2×2 

quadrature, a 1-point quadrature would be used instead.  In doing this, the effects of 

incompressibility are relaxed.  This method is similar to the mixed formulation where 

the stiffness matrix is separated into deviatoric and volumetric parts.  In fact, the mixed 

formulation and reduced integration have been shown to be equivalent [Malkus & 

Hughes, 1978], however, only for plane strain and three-dimensional analyses, not 

axisymmetry [Yu, 1991].   

 

Reduced integration, whether uniform or selective, may have the effect of producing 

spurious zero-energy displacement modes, also called mechanisms or hourglass modes 

[Reese et al., 2000].  An hourglass mode occurs when a numerically valid displacement 

field manifests in the solution but has no associated strain energy.  In other words, there 

is no change in the energy associated with a particular part of the displacement solution.  

Hourglass modes are so named due to the shape that an element may take (see Figure 
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3.4).  To suppress these modes, other elements may be used or methods may be used to 

counteract their effects; i.e., use of a stabilisation matrix [Belytschko & Bachrach, 

1986].  Armero [2000] presents an extensive account of hourglassing in a four-node 

element subjected to plane strain using insight from a spectral analysis. 

 

Figure 3.4:   Hourglass or zero energy modes (dotted lines represent possible 
distorted shape). 

 

Another problem with reduced integration is that the incompressibility is satisfied only 

at a limited number of integration points.  This means that the calculated stress field is 

accurate at the integration points but in error on the remainder of the element [Yu & 

Netherton, 2000].  

 

The B-bar approach is an extension of selective reduced integration which was 

developed to be effective for more general geometries [Belytschko & Bachrach, 1986].  

Instead of changing the material properties matrix, this method works on the strain-

displacement matrix in the displacement finite element method by dividing the B matrix 

(relating strains to displacements) into deviatoric and dilatational components 
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[Belytschko et al., 1986].  The dilational part is then “improved” by using reduced 

quadrature.   

 

3.7.3 Variational Principles 

A number of researchers have addressed displacement locking and spurious pressure 

modes by developing alternative variational formulations to replace the prototypical 

methods presented in Section 3.4.  The two most well-known variational principles are 

the Hellinger-Reissner and the Hu-Washizu methods.  The Hu-Washizu functional is 

defined in terms of three types of independent variables; displacement, stress, and strain 

[Weissman & Taylor, 1992 (b)].  The Hellinger-Reissner method is a special case of the 

Hu-Washizu method in which only the displacements and stresses are independent 

variables and may be recovered from the Hu-Washizu principle by enforcing the 

constitutive equations point-wise [Weissman & Taylor, 1992(a)].   

 

The approach that was introduced in Section 3.4.2 for developing the prototypical 

formulation of near incompressibility has the added advantage that it can be used to 

describe other variational methods [Reissner, 1950] in applied mechanics.  It is used 

here to develop the Hu-Washizu three-field form and provide a basis for explaining how 

the Hu-Washizu principle alleviates the effects of displacement locking and spurious 

pressure modes.  The specific form of this presentation provides an alternative from that 

normally found in the literature [Lee et al., 1998].    Starting with equation (3.42), 

 
κ2

2pW~ =  , (3.106) 

and using the relation ep κ=  gives 
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2

2eW~ κ
=  . (3.107) 

Through judicious manipulation of (3.107), the volumetric component of the strain 

energy density may be written as 

 pepeeW~ +−=
2

2κ  . (3.108) 

The key to obtaining the Hu-Washizu three-field form is to introduce another 

independent unknown e  which approximates the point-wise volumetric strain e in an 

average sense over each element.  Equation (3.108) can be approximated as 

 peepeW~ +−=
2

2κ  , (3.109) 

and from equation (3.38),  
  

 ΩΠ ++= ∫ VW~Û d  (3.110) 

or ( ) += Ûe,p,uiΠ ∫ +Ve d
2κ

2 ∫ ( ) Ω+− Veep d  , (3.111) 

which is the Hu-Washizu functional.  Minimising Π  with respect to ui, p, and e  gives 

 pU
u

ˆ

u ii ∂∂
+

∂
==

∂ 0Π ∫ iFVe
−

iu∂
∂ d  , (3.112) 

 

 ( ) Vee
p

d0 ∫ −==
∂
∂Π  , (3.113) 

 

and ( )∫ −==
∂
∂ Vpe

e
d0 κΠ  . (3.114) 
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Equation (3.112) is the same potential energy minimisation that was obtained for the 

two-field (u-p) formulations developed earlier in the chapter.  Equation (3.113) defines 

mathematically the relationship between e  and e, while (3.114) provides a relaxed 

expression of the hydrostatic component of the constitutive law in terms of e .  The 

purpose of this relaxation is to mitigate the effects of displacement locking and spurious 

modes at a fundamental level.   

 

3.7.4 Incompatible Modes/Enhanced Strain Methods 

Another approach to relaxing the severity of the incompressibility constraint and its 

tendency towards locking is to approximate the displacement field with an assumed 

form which includes additional terms that are discontinuous between elements [Bathe, 

1996].  Any inaccuracy introduced by the consequent violation of compatibility is 

usually outweighed by the increase in numerical flexibility in arriving at solutions which 

can approximately satisfy both the constant volume requirement and equilibrium.  

Kouhia and Stenberg [1995] have applied this method to linear triangles in which the 

conforming part of the displacement field has the usual degrees of freedom at the 

element nodes, and in the nonconforming part the continuity is relaxed at the nodes but 

maintained midside.  Although incompatible modes are used successfully for linear 

analysis, they are not as successfully applied to nonlinear analyses due to the additional 

shape functions and static condensation necessary [Hughes, 1987].  

 

The method of incompatible modes was a precursor to the enhanced strain technique 

[Reese & Wriggers, 2000].  Whereas in the incompatible modes method part of the 

displacement field is nonconforming, in the enhanced strain technique the strain field is 
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divided into a compatible part and a local enhancement.  The concept of strain 

enhancement which is local and nonconforming may be explained with the following 

simple but illustrative example.  Consider two adjacent one-dimensional finite elements, 

each with two nodes.  See Figure 3.5.   

divided into a compatible part and a local enhancement.  The concept of strain 

enhancement which is local and nonconforming may be explained with the following 

simple but illustrative example.  Consider two adjacent one-dimensional finite elements, 

each with two nodes.  See Figure 3.5.   

  

Let the displacement distribution in each element be given by  Let the displacement distribution in each element be given by  

  ( )( ) ( )( ) ( )( ) 2
1

21
1

1
1 uxNuxNxu +=  (3.115) 

 ( )( ) ( )( ) ( )( ) 3
2

32
2

2
2 uxNuxNxu +=  (3.116) 

where u(i)(x) is the displacement field in element (i), Nj
(i) is the traditional linear shape 

function corresponding to node j and element (i), and uj is the displacement 

corresponding to node j.  By using this conventional definition, the displacement field is  

 

 

 

 

 
(1) (2) (2) (1) 

Figure 3.5:  (a) Traditional continuous displacement functions, (b) corresponding 
strains.

(a) (b) 

1 2 3 1 2 3 3 
 

 

continuous at interelement boundaries as shown in Figure 3.5(a).  By virtue of the 

classical strain-displacement relations, the elemental strains, εx
(i), are given by  
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 ( )
( ) ( ) ( )

2

1
2

1

1
1

1
1 u

x
Nu

x
N

x
u

x ∂
∂

+
∂

∂
=

∂
∂

=ε  (3.117)  

and ( )
( ) ( ) ( )

3

2
3

2

2
2

2
2 u

x
Nu

x
N

x
u

x ∂
∂

+
∂

∂
=

∂
∂

=ε  . (3.118) 

While the strain field is not continuous between elements (Figure 3.5(b)), there is still a 

connection between the elemental strains; as can be seen in equations (3.117) and        

(3.118), they are related by u2.  The expressions for εx
(1) and εx

(2) can now be ‘enhanced’ 

by incorporating additional terms to give 
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where ck, k  = 1 to 4, are generalised displacements.  Since ck are independent, the 

enhancement for each element is local and unrelated to adjacent elements.  Furthermore, 

the displacements that would result from integrating the enhanced part of the strain field 

would be, in general, discontinuous (nonconforming) between elements.  A number of 

researchers have applied this concept to incompressible finite element analysis with 

marked success [Simo & Rifai, 1990; Simo & Armero, 1992; Pantuso & Bathe, 1995; 

Simo, et al, 1993; Wriggers & Reese, 1996; Reese & Wriggers, 2000; Auricchio et al, 

2004; Lovadina & Auricchio, 2003; Armero, 2000].  The method has encountered some 

difficulties however, when applied to nonlinear problems and, in particular, fields with a 

significant compressive component [Lovadina & Auricchio, 2003]. 
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3.7.5 Pressure Smoothing 

The methods mentioned previously in this section alter the finite element formulation to 

address the issues of incompressibility.  For example, in the selective reduced 

integration method, the constitutive model is changed; in the B-Bar method, the strain-

displacement relation is changed; etc.  Pressure smoothing is a method that is applied to 

‘smooth’ the pressure oscillations that occur due to the spurious pressure modes [Chen et 

al., 1995].  In one approach, the smoothed pressure distribution is written in terms of 

nodal pressures and the displacement shape functions, and the difference between the 

smoothed field and the original calculated pressures is minimised in a least squares sense 

[Lee et al., 1979].  In general, smoothing is performed as a post-processing procedure 

[Sani et al., 1981, Part 1; Sani et al., 1981, Part 2] and, as it is applied only to the 

pressure oscillations, has no effect on the constant/physical pressure mode.  One 

example of removing the checkerboard mode (pressure oscillation) applies a procedure 

similar to the stabilisation matrix for hourglass modes of Belytschko and Bachrach 

[1986].  In this approach, the checkerboard pressures are filtered without affecting the 

non-checkerboarding pressure and then a pressure recovery procedure is employed after 

the fact [Chen et al., 1995].  This method also leaves the constant pressure mode, if it 

exists, unaffected. 

 

3.7.6 Other Methods 

The literature related to the analysis of incompressible materials is fairly extensive.  This 

subsection will describe some other methods that do not fall under the broad categories 

discussed previously in this chapter, but generally make use of more than one of the 

categories.  See, for example, Reese et al. [2000].     
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An approach by Wu et al. [1999] combines a different variational formulation with 

incompatible modes to eliminate the pressures at the elemental level.  The new 

variational principle includes the distortional part of the complementary energy.  They 

also include a strategy for eliminating zero energy modes (hourglass modes). 

 

In the analysis of incompressible materials, the shear stresses and difference of normal 

stresses can be determined but the sum of the normal stresses cannot be computed 

directly.  Szabó et al. [1989] use an indirect method of solving Laplace’s equation to 

determine the sum of normal stresses and thereby find the entire stress field. 

 

Boroomand and Khalilian [2004] replace the original incompressible problem with the 

sum of two compressible problems each having the same shear modulus as the original.  

One of the sub-problems has fictitious boundary conditions which are determined 

iteratively so that the volume changes of the two sub-problems cancel, thereby enforcing 

incompressibility. 

 

Rong and Liu [2001] have an interesting approach for finding the pressures which uses 

l’Hôpital’s rule from calculus.  To address the rank deficiency leading to the 

checkerboard mode they begin with the dilatational component of the constitutive law 

 ep κ=  (3.121) 

or ( )eEp
ν213 −

=   (3.122) 
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and then interpret the right hand side as a 
0
0  indeterminate form.  L’Hôpital’s rule can 

therefore be invoked to give an expression for the hydrostatic pressure, namely 

 
νν d

d
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lim
50

eEp
.

⎟
⎠
⎞

⎜
⎝
⎛−=

→
. (3.123) 

Other techniques include:  formulations with special purpose shape functions designed 

specifically for axisymmetric problems [Yu & Netherton, 2000]; time-marching 

schemes [Zienkiewicz & Wu, 1991]; and techniques employing macroelements which 

relax the constant volume restriction [Needleman & Shih, 1978; Nascimbene & Venini, 

2002]. 

 

Most recently, Oñate et al. [2003; 2004] have developed a very promising finite calculus 

approach where the separation of deviatoric and dilatational effects occurs at the 

fundamental level of the governing differential equations.  A major advantage of this 

method is circumvention of numerical instabilities and locking from the onset of the 

formulation.  However, it does constitute a new formulation and would not be simply a 

modification to existing techniques.   

 

Another recent method which also endeavours to resolve the problem at a fundamental 

level is that proposed by Chiumenti et al. [2002].  In this work, the full space of 

continuous functions is decomposed into the finite element space and an additional 

complementary subspace.  The complementary subspace contains the portion of the 

pressure function whose omission in the conventional finite element analysis results in 

rank deficiency.  To implement this approach, the variational principle is replaced by the 
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minimisation of two functionals; one in the finite element space and one in the 

complementary subspace. 

 

 

3.8 Assessment of FEM and the Chiropractic Problem  

As outlined at the end of Chapter 2, a finite element model of the vertebral artery 

subjected to chiropractic manipulation must incorporate near-incompressibility, 

geometric nonlinearity, displacement boundary conditions, and the associated 

uncertainty in the displacements determined from imaging.  By exploring the pertinent 

technical aspects of the finite element method and the relevant literature, it is clear that 

the standard finite element technique experiences difficulties under these conditions.  In 

this chapter, the techniques specifically designed to alleviate the problems of 

displacement locking and spurious pressure modes associated with incompressible 

materials are examined.   The question to be answered in this section is whether any of 

these methods are suitable for the specific conditions of the chiropractic problem 

described above.  

 

Rather than considering each method individually, this question can be answered by 

addressing fundamental concepts that are common to all.  For example, displacement 

locking is a potential problem for all of the methods designed for incompressible 

materials.  However, for the case where the boundary conditions are restricted to 

displacements, as is the case in the chiropractic problem, locking is not an issue since it 

refers to artificially small displacements in response to given applied force boundary 
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conditions.  The other fundamental problem is the ability of the methods to treat pressure 

modes. 

 

The Babuška-Brezzi condition, patch test and the count condition are used to predict 

whether an element will be subject to pressure modes. The modes are then “treated” by 

avoiding the elements that are susceptible.  Other methods use different techniques to 

relax the volumetric constraint and stabilise the pressure modes.  The Hu-Washizu and 

other variational principles are applied at the formulation stage of the variational 

principle.  Reduced integration methods underintegrate specific parts of the stress-strain 

relations.  Enhanced strain targets the strain field description.  In the incompatible mode 

methods, the displacement field is affected.  Finally, the pressure smoothing technique 

filters the pressures after solutions have already been reached.   While all of these 

methods can lessen the effect of spurious modes with varying degrees of success, the 

key challenge identified in this section is that under the conditions of the chiropractic 

problem, the nonuniqueness of solution due to the physical mode is not eliminated by 

any of these methods.  This may be proven with respect to both the governing partial 

differential equations and the discrete finite element equations. 

 

To prove the nonuniqueness of solution in the governing partial differential equations 

due to the physical mode, the goal is to show that under displacement boundary 

conditions an arbitrary hydrostatic pressure p can be added to the normal stresses 

without violating the equations of equilibrium or the displacements on the boundary.  

The equilibrium equations are given by 
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where Bx, By, and Bz are the body forces in the x, y, and z directions.  For the physical 

mode, the same p is added to every normal stress at every point.  Since p is constant 

throughout the field, when it is differentiated with respect to x, y and z the result is zero 

and the equilibrium equations are still satisfied.  Also, a hydrostatic pressure, by 

definition, can only affect a volume change.  For an incompressible material, the volume 

is constant, and therefore a hydrostatic pressure has no effect on the displacements. 

 

For the discrete finite element equations, nonuniqueness of solution may be proven by 

showing that, in cases where all boundary conditions are measured displacements, a 

vector  with p a constant, will give .  Before boundary 

conditions are imposed, the discrete finite element equations are 

[ T
c ppp K=p ] 0=c

T pG

  (3.127) fpGAu =+ T

and  0=Gu , (3.128) 

where f is the force vector.  Each equation in (3.128) defines the change in volume of a 

particular element.  After imposing the displacement boundary conditions, the right hand 

sides of (3.127) and (3.128) become b1 and b2, respectively.  Since all of the 

displacements on the boundary have been specified, the left hand side of each equation 

of  gives the change in volume of an element due to internal displacements only.  2bGu =
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The individual components of G, Gij, refer to the change in volume of element i per unit 

displacement j.   In the case of matrix , each row of the matrix corresponds to the 

elemental volume changes due to a particular internal displacement.  If  premultiplies 

pc, the jth row is given by 

TG

TG

 ( )pGGGGpGpG mjjjmjjj p = ++++++ LL 2121 . (3.129) 

The quantity mjjj GGG +++ L21  gives the total volume change due to displacement j.  

Since displacement j can only affect the cluster of elements surrounding its 

corresponding node, the quantity mjj GG jG ++ L1 +2  is the volume change of the cluster 

due to displacement j.  As shown in the example of Figure 3.6, displacement of an 

internal degree of freedom changes the volume of individual elements but not the cluster 

as a whole.  Therefore, by adding a constant value of p to a solution of the finite element 

equations, the result is still a solution. 

 

 

 

 

 

 

 
Figure 3.6: Distortion of an element cluster due to displacement of an internal degree 

of freedom. 
 

After this proof was developed by the author, a closer examination of the literature 

revealed that a number of researchers have alluded to the physical mode issue without 
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addressing it in detail [Strang 2007; Bathe, 2006; Zienkiewicz et al., 1991].  Most 

practical problems in stress analysis have mixed boundary conditions (i.e., 

displacements and forces) and therefore the physical mode does not exist.  This is not 

the case in the chiropractic problem and the methods discussed previously are not 

designed to eliminate the physical mode.  As an illustration, methods reviewed in this 

chapter were applied to the simple test case introduced in Section 3.2, with 49990.=ν .  

Like the patch test, satisfactory performance for this test case may be viewed as a 

necessary condition for accepting a method as suitable for analysing the chiropractic 

problem.  These illustrations were performed using ANSYS®. 

 

The methods considered are:  use of a higher order element, selective reduced 

integration, and enhanced strain.  Tables 3.4, 3.5 and 3.6 show the maximum and 

minimum values of σx, σy and σz obtained over the entire grid.  To simulate uncertainty 

in the boundary displacement data, a random error distribution with a maximum value of 

1% was applied to the data.  In each case, two runs were performed, each with a 

different set of random errors applied to the data.  

 

The stress values clearly show that despite using methods that are more advanced than 

the standard finite element method, an instability still exists.  Signs of ill-conditioning 

are evident; a relatively small error in the data (1% maximum) results in a much larger 

error in the calculated values (up to 1000% in σx for the 8-node element and 850% for 
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Table 3.4:  Comparison of Theoretical and Finite Element Values for σx. 

Method Data Set 
Theoretical 

Value 
(MPa) 

Maximum 
FEM Value 

(MPa) 

Minimum 
FEM Value 

(MPa) 

8-node Element 1 -100 838 -599 

8-node Element 2 -100 929 743 

Selective Reduced 
Integration 1 -100 -354 -918 

Selective Reduced 
Integration 2 -100 747 460 

Enhanced Strain 1 -100 -353 -921 

Enhanced Strain 2 -100 748 460 

 

 

 

Table 3.5:  Comparison of Theoretical and Finite Element Values for σy. 

 

Method Data Set 
Theoretical 

Value 
(MPa) 

Maximum 
FEM Value 

(MPa) 

Minimum 
FEM Value 

(MPa) 

8-node Element 1 0 939 -497 

8-node Element 2 0 1027 847 

Selective Reduced 
Integration 1 0 -256 -818 

Selective Reduced 
Integration 2 0 846 560 

Enhanced Strain 1 0 -255 -820 

Enhanced Strain 2 0 847 560 
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Table 3.6:  Comparison of Theoretical and Finite Element Values for σz. 

Method Data Set 
Theoretical 

Value 
(MPa) 

Maximum 
FEM Value 

(MPa) 

Minimum 
FEM Value 

(MPa) 

8-node Element 1 -49.99 888 -545 

8-node Element 2 -49.99 977 794 

Selective Reduced 
Integration 1 -49.99 -305 -868 

Selective Reduced 
Integration 2 -49.99 796 510 

Enhanced Strain 1 -49.99 -304 -870 

Enhanced Strain 2 -49.99 797 510 

 

 

the other methods).  Perhaps more significant is the variation from positive to negative 

extremes.  In an iterative solution process, this can lead to fatal run-time errors.  It is 

interesting to note that for the same data set, both selective reduced integration and 

enhanced strain give comparable values.  This suggests that although the two methods 

address incompressibility differently, the outcome in response to a given data set is 

similar.  To demonstrate that the instability is caused by the pressure modes, the von 

Mises stresses were calculated from the stresses given in Tables 3.4 to 3.6.  The von 

Mises stress is defined as 

 ( ) ( ) ( ) ( )[ ] 2
1

222222
vM 6

2
1

zxyzxyxzzyyx τττσσσσσσσ +++−+−+−= , (3.130) 

and is significant in this case because it is obtained only from distortional stress 

components (i.e. normal stress differences and shear stresses) and is independent of the 

hydrostatic pressure.   
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The calculated ANSYS values and exact solution are given in Table 3.7.  Also included 

in this table are values for the von Mises stresses from the original illustration of Section 

3.2. 

 
Table 3.7:  Comparison of Theoretical and Finite Element Values for σvM. 

Method Data Set 
Theoretical 

Value 
(MPa) 

Maximum 
FEM Value 

(MPa) 

Minimum 
FEM Value 

(MPa) 

8-node Element 1 86.6 88.8 83.2 

8-node Element 2 86.6 90.3 84.4 

Selective Reduced 
Integration 1 86.6 87.9 85.1 

Selective Reduced 
Integration 2 86.6 87.6 86.1 

Enhanced Strain 1 86.6 88.7 84.1 

Enhanced Strain 2 86.6 87.9 85.6 

Standard FEM 1 86.6 88.6 84.6 

 

 

In all cases (including the standard finite element method demonstration of Section 3.2), 

the calculated von Mises stress is within 4.3% of the exact solution.  This is consistent 

with the result of Malkus [Hughes, 1987] and Theorem 3.1 of this thesis which state that 

unique displacement solutions exist despite the existence of pressure modes.  Since the 

distortional stresses are directly related in a point-wise fashion to the displacements, the 

solution for von Mises stress should be unique if pressure modes are the only source of 

instability.  As Table 3.7 shows, this is clearly the case.  It is also important to note that 

σvM is one of the most commonly used measures for failure theories in stress analysis. 
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This leads to the central realisation of this dissertation:  although the evidence shows 

that it is impractical and numerically unstable to determine the complete stress state 

under the conditions of the chiropractic problem, a very useful stress measure, namely 

the von Mises stress, could be determined as long as the destabilising effects of both the 

physical and spurious modes are eliminated from the solution process so that fatal run-

time errors are avoided. 

 

This realisation by the author gave rise to a master’s thesis by V.K. Nagarkal [2006] in 

which an extensive set of numerical tests verified that the von Mises stress is accurate 

under a wide range of both linear and nonlinear conditions associated with the 

chiropractic problem.  In this master’s thesis, results demonstrated that fatal run-time 

errors can occur in the case of iterative solution of nonlinear problems. 

 

The remainder of this thesis is devoted to developing algorithms that are designed to 

remove the pressures, thus eliminating the possibility of either a spurious or physical 

pressure mode.  The result will be a robust solution process for calculating distributions 

of von Mises stress. 

 



Chapter 4 

Decomposition Methods for Stable Finite Element Analysis 

 

4.1 General Approach 

In Chapter 3, it was established that a physical pressure mode, with its associated 

numerical instability, is inevitable when only displacements are specified on the 

boundary of an incompressible material.  It was also established that a very useful 

quantity, the von Mises stress, can be accurately determined provided the numerical 

instability due to pressure modes is alleviated.  The general strategy proposed here is to 

develop algorithms for solving the mixed finite element equations in such a way that the 

nodal displacements are obtained without calculating the pressure degrees of freedom.  

The von Mises stress can then be obtained from the strain-displacement and distortional 

constitutive relations. 

 

All of the proposed algorithms have common features:    

(1) The material is modelled as fully incompressible.  Real tissue would have some 

degree of compressibility and a Poisson’s ratio close to 0.5.  Mathematically, this 

corresponds to systems of equations with coefficient matrices that are ill-

conditioned but not strictly singular.  By assuming the material has Poisson’s ratio 

precisely equal to 0.5, the ill-conditioned matrices become singular (within round-

off error) and sources of numerical instability are more easily identified and 
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eliminated.  For example, small numerical values that theoretically approach zero 

in the incompressible limit can be identified with confidence.  Adopting this 

approach introduces a small error in accuracy of the calculated displacements and 

von Mises stresses, but it will be shown that the cost of this approximation is small 

when compared to the benefit of stabilising the calculations.   

(2) Each algorithm is designed for the specific structure of the mixed finite element 

equations (3.35).  Numerous methods, including most notably the singular value 

decomposition (SVD), can be used to manipulate and analyse singular matrices.  

Special purpose methods, however, have the potential for greater efficiency in that 

they may require fewer operations during implementation. 

(3) All of the algorithms rely upon fundamental approaches in linear algebra and 

produce nonsingular subsystems with nodal displacements as their only unknowns.   

 

The first method, based on LU decomposition, is presented in the following section. 

 

 

4.2 Modified LU Decomposition  

4.2.1 Description of Method 

One approach to calculating the nodal displacements while filtering out calculation of 

the hydrostatic pressures is to use a variation of LU decomposition (which writes a 

matrix as the product of a lower triangular matrix L and an upper triangular matrix U 

[Strang, 1976]).  The proposed method begins with equation (3.35), which may be 

rewritten as 

  FKx =  (4.1) 
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Adding to the discussion of Chapter 3, the matrix K is mixed-determined in an inverse 

problem sense [Gladwell, 1980]; the indeterminacy is related only to the hydrostatic 

pressures p, while the nodal displacements u are exactly determined by the system of 

equations (4.1).  A simple but effective method for avoiding the hydrostatic pressure 

values is to order the solution process so that the displacement unknowns are calculated 

first, and the process stops after u has been determined.  The steps in the proposed 

procedure are as follows: 

(i) The columns of matrix K and rows of vector x are placed in reverse order, 

producing K̂  and , respectively.  This reverses the order of unknowns in the 

system of equations and is necessary so that the unknown nodal displacements are 

calculated first, subsequent to LU decomposition.  Unfortunately, this also has the 

effect of producing a matrix for which pivoting is problematic. 

x̂

(ii) A least squares system is used to ensure nonzero diagonal entries.  That is, the 

system   

 FxK =ˆˆ   (4.5) 

 is replaced with  
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  . (4.6) FKxKK TT ˆˆˆˆ =

(iii) The matrix KK ˆˆ T  is decomposed using LU decomposition, so that 

   (4.7) ULKK ˆˆˆˆ T =

 and equation (4.6) becomes  

   (4.8) FKxUL Tˆˆˆˆ =

 or,  

   (4.9) FKyL Tˆˆ =

 where  

 yxU =ˆˆ  . (4.10) 

 

(iv) Equation (4.9) is solved for y.   

 

(v) Let m be the number of elements in the finite element mesh and therefore the 

number of unknown hydrostatic pressures.  The system given by equation (4.10) is 

then reduced by eliminating the first m rows and m columns of matrix U  to 

produce the reduced matrix 

ˆ

rÛ , and also by eliminating the first m elements of 

both x̂  and y to produce û  and yr , respectively.  This gives the system 

  rr yuU =ˆˆ  (4.11) 

 which can be solved for u , a vector consisting only of nodal displacements. ˆ
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4.2.2 Computer Code Implementation 

To perform numerical examples demonstrating the modified LU method as well as other 

stabilising algorithms, a series of finite element codes were written by the author.  Each 

code was written assuming a linear elastic, isotropic material model subjected to plane 

strain conditions.  Plane strain was chosen since two-dimensional analysis of an arterial 

cross section would be more accurately modelled as plane strain, rather than plane stress.  

In addition, three-dimensional analyses would encounter ill-conditioning of the same 

type as that exhibited by plane strain.  This may be shown by considering 3-D 

generalised Hooke’s law in the form 

 ( )( ) ( ) ( )[ ]zyxx
E εενεν

νν
σ ++−

−+
= 1

211
, (4.12) 

 ( )( ) ( ) ( )[ ]xzyy
E εενεν

νν
σ ++−

−+
= 1

211
, (4.13) 

 ( )( ) ( ) ( )[ ]yxzz
E εενεν

νν
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−+
= 1

211
. (4.14) 

As ν approaches 0.5, the same numerical instability is apparent whether 0=zε , or not.    

In contrast, the equations for plane stress have a different form completely, are not 

unstable in the neighbourhood of 50.=ν , and may be easily derived from the         

three-dimensional relations as 

 ( )yxx
E νεε
ν

σ +
−

= 21
, (4.15) 

and ( )xyy
E νεε
ν

σ +
−

= 21
. (4.16) 
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As a starting point and reference, a code using a classical finite element formulation with 

four node quadrilateral elements and isoparametric shape functions was developed 

[Budynas, 1999].  For this preliminary code, any value of Poisson’s ratio could be 

specified.   

 

Subsequent codes were based on the mixed formulation described in Chapter 3 leading 

to systems of the form given by equation (4.1).  In this case, the four node bilinear 

displacement, constant pressure (Q4P1) element was chosen.  This element does not 

pass the patch test or the B-B condition for mixed formulations [Zienkiewicz et al, 1986; 

Zienkiewicz & Taylor, 1997; Bathe, 1996].  However, it is still widely used [Chen et al, 

1995; Kouhia & Stenberg, 1995] and intensively researched [Pantuso & Bathe, 1995] 

due to its “simplicity, reliability and good performance in the prediction of the 

displacement (velocity) field” [Dvorkin, 2001].  It is also easily extended to non-linear 

analyses [Malkus in Hughes, 1987].  Its use is further justified by the statement of Simo 

et al. [1993] referring to the “lack of robustness exhibited by high order elements in non-

linear Lagrangian calculations”.   

 

The finite element formulation for the Q4P1 code is given in Appendix B and is similar 

in many respects to that for the standard quadrilateral element; i.e., they share the same 

displacement shape functions, implementation method for boundary conditions, and 

general assembly procedures for producing the global system from elemental systems.  

The Q4P1 codes developed for this thesis, however, are designed for full 

incompressibility and only the distortional component of the constitutive relation is 

enforced pointwise.  As a result, generalised Hooke’s law is replaced with a relationship 
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involving only the normal stress differences, normal strain differences, shear stress, and 

shear strain.  By subtracting (4.13) from (4.12), and (4.14) from (4.13),  

 ( )yxyx
E εε
ν

σσ −
+

=−
1

 (4.17) 

and 

 ( )zyzy
E εε
ν

σσ −
+

=−
1

, (4.18) 

respectively.  For plane strain, εz = 0 and in matrix form the distortional component of 

Hooke’s law becomes 
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or  

 , (4.20) εDσ ˆˆˆ =

where the fourth line of (4.19) expresses the classical linear elastic relationship between 

shear stress and shear strain. 

 

As a result of the non-standard stress-strain relation, the strain-displacement relation 

must also be modified.  It must now be written in terms of the deviatoric normal strains 

and shear strain, as 

 uBε ˆˆ =  (4.21) 

where B̂  is given by  
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and  are individual components of the standard strain-displacement matrix B.  (See 

Appendix B.) 

ijB

 

As discussed in Chapter 3, the volumetric constraint is enforced in an average sense over 

each element.  For plane strain, this relation is defined as  

 ( ) 0d =+∫ Vyx εε  (4.23) 

over each element where  

 428326224122417315213111 vvvv BBBBuBuBuBB uyx +++++++=+εε  (4.24) 

or 

 Bu ~T
yx =ε+ε  (4.25) 

where  

 [ ]T 
2817261524132211 BBBBBBBB~ =B . (4.26) 

 

The expression for stationary potential energy, as developed in equation (3.26), is given 

by 

 ( ) VpÛ yx d∫ +++= εεΩΠ , (4.27) 

or 
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 ( ) VdpdVˆˆ
12

1 T

∫∫ ε+ε+Ω+=Π σσ , (4.28) yxG

and, as detailed in Appendix B, the final finite element formulation may be obtained by 

into (4.28) and minimising to give  substituting (4.20), (4.21) and (4.25) 

∫∫ =+−⎥⎦
⎤

⎢⎣
⎡ 0dV~pVdˆˆˆ
6
1 2T BFuBDB
G

  (4.29) 

and 

 ∫ = 0dT V~Bu . (4.30) 

These integrals are performed using Gauss-Legendre quadrature where the Gauss points 

follow a 2×2 quadrature rule for exact integration [Zienkiewicz & Taylor, 1989].  This 

erformed for each element in the finite element grid and then the equations 

sembled into the global stiffness matrix which takes the form given in equation 

ethod can be used to 

s of linear equations which may be solved to obtain accurate 

The proposed strategy for material incompressibility was applied to the elementary 

example considered in Section 3.2.  As a measure of numerical instability, the condition 

number (CN) of matrices K and 

process is p

are as

(4.1). 

 

Once the equations are assembled, the system may be solved using the modified LU 

method, or a different approach, to eliminate the degrees of freedom.  In the next 

section, three examples are employed to demonstrate that the LU m

produce stable subsystem

values for nodal displacements and the von Mises stress.   

 

4.2.3 Numerical Example 1 - Rectangular Block in Compression 

rÛ  from equations (4.1) and (4.11) were calculated 
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according to the singular value decomposition (SVD), as reviewed in Appendix A.  The 

SVD was used (instead of eigenvalue decomposition) to determine the condition numbers 

since K is not positive definite.  Before applying the SVD, as is common practice, the 

matrices were scaled by dividing each row by its largest element in absolute value. The 

condition number was defined as the ratio of the largest to smallest singular value for the 

matrix, a method that has been used by other researchers for assessing numerical stability 

in the context of incompressible analysis [Canga & Becker, 1999].  The value of CN(K) 

was calculated to confirm that the original unfiltered system in this example is singular, as 

expected.  The calculated values are given in Table 4.1. 

Table 4.1: Condition numbers for matrices used in calculating the 
displacements k in u mpression.  

 

Matrix Condition er 

 

 in a bloc niform plane strain co

Numb

K 6.0 17 1×10

 rÛ  6.80 

 

 

Recall that in the modified approach, the unk wn nodal displacements are calculated 

using rÛ , which is constructed from matrix Û  by eliminating the rows and columns 

corresponding to the hydrostatic pressures.  Theoretically, the condition number for 

singular matrix K would approach infinity, and the calculated value in Table 4.1 is 

consistent with this, within the limitations of machine precision.  The reduction to rU

no

ˆ  

achieves a dramatic decrease in the condition number, and therefore a significant 

increase in numerical stability.  To confirm the von Mises stresses calculated with the 

modified LU method, the author’s code was applied to three displacement data sets, each 
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with a different random error distribution of maximum of 1%.  The calculated values are 

given in Table 4.2. 

 

Table 4.2:  Comparison of Theoretical and Finite Element Values for σvM Calculated 
Using the Modified LU Method. 

 
 

Data Set 
Theoretical 

Value (MPa) 
ν = 0.49 

Theoretical 
Value (MPa) 
ν = 0.4999 

Maximum 
FEM Value 

(MPa) 

Minimum 
FEM Value 

(MPa) 

1 86.608 86.602 87.541 85.802 

2 86.608 86.602 87.546 86.490 

3 86.608 86.602 87.367 85.610 

 
 

The values in Table 4.2 clearly suggest that a nearly incompressible material with 

Poisson’s ratio as low as 0.49 could be modeled as having ν = 0.5 with little effect on 

σvM.  That is, ν = 0.5 can be used in the stabilisation process with little cost in accuracy. 

 

4.2.4  Numerical Example 2 - Rectangular Block in Simple Shear 

Consider the same block as in Section 4.2.3, however subjected to a simple shear as 

shown in Figure 4.1.  The dimensions, Young’s modulus and Poisson’s ratio remain the 

same and the maximum displacement umax at the top of the block is 1 mm.  The analytical 

solution for this example is 

 y
h

uu max= , (4.31) 

 v = 0 (4.32) 

and τσ 3vM = , (4.33) 
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where u and v are the x- and y-displacements, respectively and 

 ( ) h
uE max

12 ν
τ

+
= . (4.34) 

Equations (4.31) and (4.32) were used to create the displacement boundary conditions that 

are a result of applying the simple shear 0τ  to the block.  For linear elasticity, the 

maximum displacement umax , the shear strain γxy , and the rigid body rotation Θxy , must be 

small.  To ensure this condition exists, tan γxy ≈  γxy.  For umax = 1 mm, linear elasticity is 

maintained. 

 

umax  
0τ

 

b

h 

(a) (b)

xyγ 

 

 

 

 

 

Figure 4.1: Rectangular block in simple shear (a) with boundary conditions, before 
deformation; (b) after deformation 

 

 

Condition numbers for a regular grid of 10 × 10 elements are presented in Table 4.3 for K, 

and rÛ .  Again, the calculated values indicate a dramatic change from the original ill-

conditioned system to one that is numerically stable.  
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Table 4.3: Condition numbers for matrices used in calculating the 
displacements in a rectangular block in simple shear.  

 

Matrix Condition Number 

K 2.79×1017 

  rÛ 54.6 

 

 

4.2.5 Numerical Example 3 - Thick-walled Cylindrical Pressure Vessel 

As a final example to demonstrate the modified LU approach, consider a thick-walled 

cylindrical pressure vessel of inner radius, ri, outer radius, ro, and subjected to internal 

pressure, pi, and external pressure, po, shown in Figure 4.2.  This is the classical Lamé 

problem [Budynas, 1999; Cook and Young, 1985].  If the cylinder is axially restrained 

(i.e., in plane strain) and is made of a linearly elastic, incompressible material, the 

analytical solution for displacements in the x- and y- directions is given by 

 ( ) ( )
( ) θcos

2
3

22

2

io

oioi

rrrE
pprru

−
−

=  (4.35) 

and  

 ( ) ( )
( ) θsin

2
3

22

2

io

oioi

rrrE
pprr

−
−

=v  (4.36) 

where r and θ are the polar coordinates of a point, easily written as x- and y- coordinates.  

The von Mises stress is given by 

 ( ) ( )
( )222

2

vM
3

oi

oioi

rrr
pprr

−
−

=σ . (4.37) 
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x

   y
ri

ro

 

 

 

 

 

Figure 4.2:  A plane within a thick-walled cylinder of inner radius ri and outer radius ro.  
The inner and outer radii are subjected to pressures pi and po, respectively.    
A sample finite element grid is shown. 

 

For the arbitrarily selected values of ri = 100 mm, ro = 200 mm, pi*=*0.2*kN/mm2 and   

po = 0.1 kN/mm2, equations. (4.35) and (4.36) were used to produce displacement 

boundary conditions in recasting the problem as a Dirichlet boundary value problem.  

Taking advantage of symmetry, one-quarter of the cylinder was modelled and results 

were produced for three grids (given as number of elements in the radial direction × the 

number of elements in the circumferential direction):  10×10, 15×15, and 20×20.  The 

average (maximum) percent difference between the von Mises stress at the natural 

centres of the elements calculated using equation (4.37) and the values obtained using 

the finite element code for these grids are 0.491%(0.550%), 0.219%(0.245%), and 

0.123%(0.138%), respectively.  This verifies that the finite element model is providing a 

reasonable approximation to the field.  The condition numbers for each of the grids is 

given in Table 4.4. 
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Table 4.4:  Condition numbers for matrices used in calculating the displacements 
in a thick-walled cylinder for different FEM grids. 

 

Matrix 10×10 Grid 15×15 Grid 20×20 Grid 

K 2.44×1015 9.86×1015 1.42×1016 

rÛ  59.4 171 336 

 

 

Again, the condition number of  is significantly smaller than CN(K) for all grids.  All 

of the condition numbers increase with the grid size.  This is expected, however, when 

going from a 10×10 grid to a 20×20, since the size of the stiffness matrix K increases 

from 262×262 to 1122×1122. 

rÛ

 

For all three of the examples in this chapter, the widely criticised but frequently used 

[Zienkiewicz & Taylor, 1997] bilinear displacement, constant pressure element has been 

employed.  The results have demonstrated that by selectively eliminating those 

unknowns which are indeterminate, a reduced, non singular system of equations in terms 

of the unknown nodal displacements is produced.  So, a stable subsystem does exist 

within the original mixed-determined system of equations. 

 

Although the final reduced systems are nonsingular and stable, the intermediate 

calculations involved in decomposing a matrix into upper and lower triangular matrices 

(L and U) includes division by a pivot (i.e., division by element Kii, for each row i).  The 

LU decomposition, therefore, may involve steps such as division by a small number, 

which could affect the numerical stability of the overall solution process.  The extent of 
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this instability would depend on the specific nature of the matrix K and led to further 

study by the author.  An alternative approach which avoids division by pivots and is 

based on a modification of QR decomposition is outlined in the following section.   

 

 

4.3 Multi-level QR Solution Method 

4.3.1 A Review of QR Decomposition 

The QR method decomposes a matrix K into the product of an orthogonal matrix Q and 

an upper triangular matrix R such that 

 QRK = . (4.38) 

One method that may be used to decompose K is through a Gram-Schmidt process;  

however this process is known to be numerically unstable [Strang, 1976].  A more 

numerically stable process is through the use of Householder matrices.  Householder 

matrices are used because they have properties that make them ideally suited for 

converting a full matrix into one that is upper triangular.  These properties can be 

verified mathematically with proofs given in Strang [1976] but are listed here without 

proof.  A Householder matrix, H, is orthogonal and symmetric so that 

 . (4.39) T1 HHH == −

 

Also, it has the form [Strang, 1976] 

 2

T

2
v

vv
−= IH  (4.40) 

where vector  may be defined as  v
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 zxx +=v , (4.41) 

with x an arbitrary vector, and  

 [ ]T0001 L=z . (4.42) 

 

Using these definitions, 

 zxHx −= , (4.43) 

or, if a=x , then 

 . (4.44) 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡−

=

0

0
0

M

a

Hx

 

A series of Householder matrices H can be applied to a matrix K in a step-wise process 

that transforms K, one column at a time, into an upper triangular matrix.  Consider an 

example where K has 3 row and 3 columns.  The first vector x1 is the first column of K 

and the first Householder matrix, H1, is found from Equation (4.40).  When this matrix 

is multiplied by K, the result is of the form 

 . (4.45) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

**
**
***

0
01KH

The next vector, x2, is the second column of H1K from the pivot down and the process is 

repeated, with a 2×2 Householder matrix applied to the 2×2 submatrix defined by 
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ignoring the first row and first column of H1K.  Therefore, the second step in the 

transformation requires a matrix of the form  

 , (4.46) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

**
**~

0
0

001

2H

where the 2×2 Householder matrix is represented with asterisks.  When 2H~  is 

multiplied by H1K, the result is 

 . (4.47) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

*
**
***

~

00
01KHH2

This is the desired upper triangular matrix.  Therefore, with the definition 11 HH ≡~ , 

 R =  (4.48) KHH 12
~~

and, comparing (4.48) and (4.47), the orthogonal matrix Q is  

 Q = , (4.49) 21HH ~~

where the symmetric orthogonal property of Householder matrices has been used in 

obtaining (4.49).  If the original system of equations was 

 bKx = , (4.50) 

then by applying QR decomposition with Householder transformations, the new system 

of equations to be solved is  

  . (4.51) bQRx T=

This decomposition may be applied to any arbitrarily sized m × n matrix and the number 

of iterations of the Householder transformation process required to arrive at an upper 

triangular matrix is the smaller of either m – 1 or n. 
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4.3.2 Multilevel QR Formulation 

In this section, the method of QR decomposition is adapted by the author to produce an 

algorithm for stabilising the finite element equations for incompressible materials. As 

with the LU method presented in Section 4.2, the aim of the formulation developed here 

is to filter out the pressures, leaving only the displacements as unknowns.  QR 

decomposition is applied to the system of equations given by (3.35) (and repeated here 

for convenience to the reader) 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

2

1
T

b
b

p
u

G
GA
0

. (4.52) 

The steps for this procedure are as follows: 

(i) The column blocks of the matrix, K, are reversed so that the new system of 

equations is 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

2

1
T

b
b

u
p

G
AG

0
. (4.53) 

(ii) QR decomposition is applied to each column block of the matrix separately; that is, 

QR decomposition is applied to 
⎢
⎢
⎣

⎡

0

TG
 and ⎥

⎦

⎤
G
A

, separately.  Column pivoting 

within each column block is applied to ensure that the norm of each remaining 

column from the pivot down, during the Householder transformation process, is as 

large as possible.  This ensures that the process is numerically stable and will clearly 

identify the rank of each block.  A permutation matrix is therefore required to 

properly order the displacement degrees of freedom after solution.  
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(iii) In the first column block, QR decomposition is terminated when the norm of a 

column from the pivot down is smaller than some tolerance ϕ (e.g., 00010.=ϕ ).  

QR decomposition is then resumed in the second column block and proceeds once 

again until the norm is too small, thereby completing the QR decomposition. 

 

Numerical experiments by the author, using the code described in Section 4.2.2 and 

involving this procedure of reordering the unknowns followed by block-restricted 

column pivoting, led to the discovery that this process isolates a nonsingular submatrix 

that corresponds to a system of equations with the nodal displacements as the only 

unknowns.  This submatrix is located in the second column block beginning at the row 

where QR decomposition is terminated in the first column block and extending for the 

same number of rows as displacement degrees of freedom.  For an illustration of this, 

consider an arbitrary 4×4 matrix of the same form as equation (4.53) after QR 

decomposition has been performed, shown in Figure  4.3.  This result is proven in the 

following theorem and corresponding proof. 

 

  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0000
**00
**00
****

Row where QR 
decomposition stopped 

Nonsingular 
submatrix 

 
1st column 

block 
2nd column 

block  

 
Figure 4.3:  Illustration of location of non singular submatrix 

Theorem 4.1:  Given an n × n system of equations 

 bKx = , (4.54) 

 102



where x1, x2, ..., xp are underdetermined by k and xp+1, x p+2, ..., xn are exactly determined,  

if K is partitioned into 2 column blocks of size p and n–p respectively, and is then 

decomposed by QR factorisation (via Householder matrices) with column pivoting 

restricted within each block, then the submatrix, K~ , consisting of rows p + 1 – k  to  n – k 

within block 2 is nonsingular. 

 

Proof:  Since the variables x1, x2, ..., xp are underdetermined by k, QR factorisation 

within the first block of p columns will result in p – k nonzero upper-triangular rows 

within that block.  Thus, rows 1 to p – k of matrix K are linearly independent.  Also, since 

variables xp+1, xp+2, ..., xn are exactly determined, the rank of K equals n – k and QR 

factorisation will lead to all zeros in rows n – k  + 1, ..., n of matrix K.  Since the rank of K 

is n – k, and the first p – k  rows are linearly independent, and the last k rows are zero, 

rows p – k  + 1 to n – k must be linearly independent.  ■ 

 

From the theorem, the author has shown that through this particular multi-level QR 

factorisation process, the first p elements in rows p – k  + 1 to n – k are zero.  Therefore,  

 bxK ~~~ =  (4.55) 

gives a nonsingular system of equations, where vector x~  consists only of displacement 

unknowns xp+1, xp+2, ..., xn (in permuted order), and b~  consists of elements 1+− kp  to 

 of .  Assuming that this submatrix is not only nonsingular but well-

conditioned, the subsystem (4.55) produced by the multi-level QR process can be solved 

using an efficient conventional algorithm such as LU decomposition or the conjugate 

kn − bQT
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gradient method, depending on the application.  In a sense, then, the multi-level QR 

decomposition proposed here may be viewed as a type of preconditioning process.  

 

4.3.3 Numerical Examples  

To demonstrate that the multi-level QR approach is effective in producing a well-

conditioned reduced system of equations, the method is applied in this section to the 

examples described in Section 4.2.  The condition numbers for K and the final reduced 

matrix K~  are given in Table 4.5.  The von Mises stresses for the block in compression, 

as calculated using the multilevel QR approach, are given in Table 4.6.  The three 

displacement data sets are the same as those used for testing the modified LU method.   

 

Table 4.5:  Condition numbers for numerical examples.  

Matrix Block in 
Compression 

Block in 
Simple Shear

10 × 10 
Cylinder 

15 × 15 
Cylinder 

20 × 20 
Cylinder 

K 6.01×1017 2.79×1017 2.44×1015 9.86×1015 1.26×1016 

K~  4.82 14.9 16.9 27.5 37.1 

 

 

It is interesting to note that values of vMσ  calculated using the multilevel QR technique 

(Table 4.6) are identical, within round off error, to those obtained using the modified LU 

method (Table 4.2).  This may be explained by considering the similarities between the 

two approaches:  both involve a reordering of the unknown variables and a reduction of 
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Table 4.6:  Comparison of Theoretical and Finite Element Values for σvM Calculated 
 the  Met

 
Data Set 

Theoretical 
Value (MPa) 

T
Value (MPa) 
ν  

Maximum 
FEM Value 

Minimum 
FEM Value 

Using Multilevel-QR
 

hod. 

ν = 0.49 

heoretical 

 = 0.4999 (MPa) (MPa) 

1 86.608 86.602 87.541 85.802 

2 86.608 86.602 87.546 86.490 

3 86.608 86.602 87.367 85.610 

 

ent manner.  In the next chapter, a method for accomplishing this goal is 

resented. 

 

 

the original system of equations to a smaller subsystem where nodal displacements are 

the only unknowns.  Although the condition numbers in Table 4.5 show a dramatic 

improvement in numerical stability, the multilevel QR process is clearly inefficient from 

a computational standpoint as the QR decomposition itself is known to be slow [Woolfe 

et al., 2008] and in this case must be followed by an additional equation solving step.  

This raises the question of whether the QR decomposition could be adapted to 

simultaneously achieve numerical stability and solve for the displacement unknowns in a 

more effici

p

 

 



Chapter 5 

A Priori Incorporation of Constraints 

 

5.1 Introduction to the Method 

In this chapter, the author proposes an approach for achieving numerical stability with 

greater efficiency.  The method incorporates the constraints before the final system of 

equations is generated, i.e. early in the formulation, so that unlike the LU and QR 

methods which must eliminate the pressure field after the u-p equations have been 

assembled, the system of equations has no pressure unknowns in the first place.  This 

can be better understood by recalling the fundamentals of constrained optimisation in 

calculus.  

 

Given a function, , such that Π̂

 ( ) ΩΠ += Ûˆ u  (5.1) 

to be minimised with respect to u subject to constraints (on u) of the form 

 ∫ = 0dVe  (5.2) 

where ,  the Lagrange multiplier method, described in Chapter 3, may be used 

so that the new function  

( )uee =

 ( ) ∫++= VepÛp, dΩΠ u  (5.3) 

 is minimised where p is the Lagrange multiplier. 
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However, another fundamental approach from calculus is to substitute the constraints  

(5.2) into the function (5.1); i.e., each constraint is used to write one of the unknowns in 

u in terms of the remaining unknowns, thus eliminating that unknown from directly 

appearing in the function to be minimised and at the same time satisfying the constraints.  

This has the advantage that Lagrange multipliers (or in the present case, pressure 

degrees of freedom) are not introduced into the formulation.  This approach of a priori 

incorporation of constraints (AIC) forms the basis for the method introduced in this 

chapter. 

 

 

5.2 Initial Approach for Incorporating the Constraints 

This approach begins by considering the constant volume constraint equations 

 0=Gu . (5.4) 

This differs from Chapter 3 as the right hand side of the system (5.4) is zero since no 

boundary conditions have been applied at this point.  From the vector u, “some” of the 

displacement degrees of freedom are “selected” to be eliminated; i.e., to be written in 

terms of the other unknowns.  The words “some” and “selected” are placed in quotes 

since they identify key issues that arose in developing this initial method for eliminating 

variables.  Originally, it was assumed that one displacement unknown could be 

eliminated for each constraint equation.  As a hypothetical example for the purpose of 

describing the associated mathematics, consider a set of two constraint equations of the 

form 

 0515414313212111 =++++ uGuGuGuGuG  (5.5) 
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 0525424323222121 =++++ uGuGuGuGuG . (5.6) 

One might expect that if equations (5.5) and (5.6) were independent, two of the 

unknowns, for example u2 and u5, could be eliminated.  Using this naive approach, (5.5) 

and (5.6) could be rewritten to give 

 414313111515212 uGuGuGuGuG −−−=+  (5.7) 

 424323121525222 uGuGuGuGuG −−−=+  (5.8) 

or 

 freefreeelimelim uSuS =  (5.9) 

where for this illustrative example 

 , (5.10) ⎥
⎦

⎤
⎢
⎣

⎡
=

2522

1512
elim GG

GG
S

 , (5.11) ⎥
⎦

⎤
⎢
⎣

⎡
−−−
−−−

=
242321

141311
free GGG

GGG
S

  (5.12) ⎥
⎦

⎤
⎢
⎣

⎡
=

5

2
elim u

u
u

and 

 . (5.13) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

4

3

1

free

u
u
u

u

IF Selim, which in this approach would always be square, is full rank, then exists, 1
elim
−S

  (5.14) freefree
1

elimelim uSSu −=
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and (5.14) may be substituted into the function Π̂  (equation (5.1)) which is then 

minimised with respect to only ufree variables (a process to be described later in this 

chapter). 

 

As discovered in the course of this research, this approach has fundamental flaws which 

frequently lead to a singular Selim matrix but which can, fortunately, be remedied.   

 

The flaws are twofold.  The first flaw is allowing displacements which are boundary 

conditions to be selected as eliminated displacements.  Essential boundary conditions 

which ensure only admissible configurations so that the model is physically realistic 

must not be altered.  This comes directly from the fundamentals of energy methods and, 

in particular, the Rayleigh-Ritz method [Cook & Young, 1985] on which the finite 

element method is based.  The second flaw is assuming that the constraint equations are 

linearly independent.  The rank of Selim does not depend on the rank of G and, in general, 

is not equal to the number of equations and, in turn, the number of elements. 

 

Chronologically, the development of this method began before producing the methods of 

Chapter 4, however due to the flaws mentioned above the approach was temporarily 

abandoned.  Refining and correcting the AIC resulted largely from the experience gained 

in establishing the LU and QR methods.  After developing the Multilevel-QR approach, 

with its considerations of rank and nullspace, the author explored other ways of applying 

QR decomposition to stabilise the u-p formulation.  The result was a QR-Nullspace 

approach where QR decomposition was used to determine the nullspace vectors of the 
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constraint submatrix G in (3.35), and the nullspace vectors were then used to eliminate 

the pressure unknowns in the equilibrium equations .  A subsequent 

search of the literature revealed an equivalent method by James [1992] in the context of 

applied mathematics and a similar method by Robey & Schreyer [1988] in the context of 

a mixed formulation where stresses are the primary unknowns.  The nullspace concept 

was then extended to the AIC philosophy, and the resulting technique is presented in the 

following section.  It is an improvement over the nullspace method of James [1992] in 

that the u-p equations are not required a priori, and therefore a more efficient algorithm 

is provided.    

1
T bpGAu =+

 

 

5.3 Final Approach for Incorporating the Constraints 

Recognising that displacement boundary conditions, uBC, cannot be eliminated, the 

method begins by designating uBC as degrees of freedom, thus reducing u to . 

Rearranging equation (5.4) then gives 

*
elimu

  (5.15) ****
freefreeelimelim uSuS =

where  = uBC and consists of all displacement degrees of freedom except uBC. 

 and  are the corresponding matrices.  To determine what nodal displacements, 

in addition to , can be assigned as degrees of freedom in the final function to be 

minimised,  is analysed to determine its rank and a set of free variables within .  

That is, QR decomposition with Householder matrices and column pivoting is applied to 

 to determine its nullspace so that 

*
freeu

S

*
limeu

*
elimS

*
elimS

*
free

*
elimS

*
freeu

*
elimu
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  (5.16) PSQR *
elim=

where P is the permutation matrix associated with the column pivoting.  Now, (5.16) 

becomes 

  (5.17) 1
elim

−= QRPS*

and from (5.15)  

  (5.18) ***
freefreeelim

1 uSuQRP =−

or 

  (5.19) ***
freefree

T
perm uSQRu =

where 

 . (5.20) *
perm

*
lime Puu =

 

Matrix R will be upper triangular.  The number of variables in the final  will be 

equal to the number of independent rows.  Let nz be the number of zero rows, and m be 

the total number of rows (also equal to the number of constraint equations and therefore 

the number of elements).  Then, the number of independent rows is equal to m – nz.  If  

is an m × n matrix, then the corresponding number of additional degrees of freedom 

required to supplement  is 

*
elimu

*
elimS

*
BC freeuu =

 q = n – (m – nz), (5.21) 

where q is also the dimension of the nullspace of .   *
elimS
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D *
permu  will be free variables and the ue to the column pivoting, the last q entries in 

associated terms on the left hand side of (5.19) are taken to the right hand side to give 

 freefreeelimelim uSuS =  (5.22) 

where the zero rows are removed and ufree consists of uBC and q additional free variables.  

With this process, Selim will be of size (m – nz) × (n  – q), but from (5.21) n – q = m – nz.  So, 

elim is (m – nz) × (m – nz), full rank and upper triangular.  Therefore, uelim may now be 

y an algorithm which sorts and assembles t

S

determined as in equation (5.14) where Selim is inverted by back substitution. 

 

B he displacement field, globally, the 

displacement field may be written as 

 freeglobglob uTu =  (5.23) 

where uglob is the vector of all nodal displacements and Tglob is the matrix relating all of 

the nodal displacements to the free va ufree.  Tglob will contain rows of zeroes with 

a ‘one’ in the appropriate position when ufree corresponds to uglob, oth

riables 

erwise it contains 

e appropriate row of the matrix  th  Similarly, the displacement degrees of free
1

elimSS − .

freedom for an element can be written in terms of the free variables as 

 freeTuu =  (5.24) 

here u is the vector of all displacement degrees of freedom for an element and T 

lates those displacements to the free variables.  It contains the required rows of Tglob. 

w

re
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5.4 Completion of Formulation 

By virtue of the approach detailed in Section 5.3, the constraint equations (5.4) take the 

rm of (5.24) for each element.  Thus, referrifo ng to equation (3.36), the fundamental 

variational principle for developing the finite element formulation becomes, as follows:  

minimise 

 ΩΠ += Ûˆ  (5.25) 

ubject to equation (5.24).  Initially, Π̂  s in (5.25) i

freedom u.  To, in effect, “substitute” (5.24) into (5.25), the quantities leading to 

expressions for 

s a function of all element degrees of 

Û  and Ω  are written in terms of ufr .  Referring to equation (4.21), ee

freeTuBuBε ˆˆˆ ==  (5.26) 

and from Equation (4.20), 

 . (5.27) 

 

freeTuBDεDσ ˆˆˆˆˆ ==

Also,  

=≡ ∫ Vˆˆ
G

Û d
12

1 T
σσ Vˆˆˆˆ

G
d

12
1 TTT uBDDBu∫  (5.28) 

and  

 . (5.29) 

Now, (5.25) becomes 

 

FTuFu TT
free

T −=−=Ω

FTuTuBDDBTu TT
freefree

TTTT
free d

12
1

−= ∫ Vˆˆˆˆ
G

Π̂ . (5.30) 

Minimising this with respect to the free variables in ufree gives 

  (5.31) 

where 

FTuK T
freefree =
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 ( ) ( )∫= Vˆˆˆˆ d1 T
TBDTBDK . (5.32) 

G6free

After ufree is found from solving (5.31), the complete displacement vector is given by 

 

the literature for related methods.  Other researchers have considered this idea of a priori 

incorporation of constraints, however their approaches differ from the one in this 

 

Needleman & Shih [1978] used a macroelement; i.e., a quadrilateral element composed 

these other methods, the AIC has some distinct advantages.  The macroelement method 

of Needleman & Shih is less general than AIC and uses triangular elements which are 

numerical instability at an earlier stage of the formulation as compared to the Weissman 

Finally, the AIC technique of applying QR decomposition directly to constraint 

equations (5.4) has the added benefit of, in a sense, smoothing the noise in measured 

approximation of modelling the material as fully incompressible, the measured boundary 

domain.  This, by itself, would have the potential to create an inconsistency in the 

system of equations, possibly resulting in failure of an iterative solution process.  As part 

Equation (5.23). 

After developing the AIC formulation leading to (5.31) and (5.32), the author searched 

chapter.  Weissman & Taylor [1992 (a)] combine this concept with incompatible modes. 

of four triangles, and imposed the incompressibility constraints directly.  Compared with 

known to be excessively stiff in finite element modelling.  Also, the AIC addresses the 

& Taylor approach and therefore has the potential to be more general and efficient.  

displacements.  Due to the uncertainty in the displacement data, as well the 

values will not conform exactly to the constant volume constraint over the entire 

of the AIC, the QR decomposition clearly identifies deviations from constant volume as 
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degradation of the rows of “zeroes” produced in (5.19) as part of the process.  These 

deviations occur only on the right hand side of (5.19) and can be replaced with zero 

values, thus providing an additional stabilisation to that achieved by circumventing the 

use of Lagrange multipliers; i.e., hydrostatic pressures.  In addition, the magnitude of the 

eviations from zero provide information in themselves as they are a measure of the data 

ethod for analysing displacement data in the chiropractic problem.  In the 

ext section it is applied to the sample problems that have been used in previous 

hapters. 

e rectangular block in 

d

uncertainty. 

 

Of the algorithms presented in this thesis, the AIC has the potential of being the most 

efficient m

n

c

 

 

5.5 Numerical Examples 

In the previous chapters, condition numbers have been given for the final matrix used in 

calculating the nodal displacements for each of the examples.  A major difference with 

the AIC, however, is that the final system of equations is formed without including the 

hydrostatic pressures as unknowns, whereas the methods of Chapter 4 have both the 

nodal displacements and hydrostatic pressures as unknowns originally and then the 

hydrostatic pressures are removed prior to the solution phase.  The AIC, therefore, 

circumvents assembly of the u-p equations and may be preferable to the LU and QR 

methods, providing the condition numbers are reasonable.  Table 5.1 gives the AIC 

condition numbers for the rectangular block in compression, th
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simple shear, a the condition 

numbers for the LU and QR me lso g e table

 

Table 5.1:  Condition numbers for numerical ex s.  

Method Block in 
Compression 

Block in 
Simple 
Shear 

10 × 10 
Cylinder 

15 × 15 
Cylinder 

20 × 20 
Cylinder 

nd the thick walled cylinder tests.  For comparison,  

thods are a iven in th . 

ample

Modified  
LU  6.80 54.6 59.4 171 336 

Multilevel  4.82 14.9 16.9 27.5 37.1 QR 

AIC 10.7 237 207 1130 5590 

 

In assessing the calculated values, it is important to emphasise that all three methods 

have removed the source of indeterminacy; i.e., the calculation of hydrostatic pressures 

p.  Therefore, the condition numbers provide an indication of relative differences in 

numerical stability between methods which involve nonsingular systems of equations.  

The multilevel QR appears to be the most robust in terms of dealing with data 

uncertainty, but this is at the cost of first assembling the u-p equations, determining the 

stable subsystem, and then applying an appropriate equation solver.  In practice, the final 

choice between methods would depend on the noise level present in the displacement 

data and the computational expense already associated with iteratively solving 

geometrically nonlinear equations arising from large deformation in the vertebral artery.  

It should also be noted that mathematical techniques beyond the scope of finite elements 

could potentially be applied to the problem addressed in this thesis.  For example, the 

nature of constrained optimisation for incompressible materials is mathematically 

similar to that arising in both quadratic programming [e.g. Gould, 1991; Li et al., 2008] 
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lation is amenable to analysis by the theory of generalised 

inverses [e.g. Wang et al., 2009; Toutounian et al.].  Existing knowledge in these as well 

as other disciplines might be adopted and modified for use in the analysis of 

incompressible materials. 

and the dynamics of multibody systems with holonomic contraints [e.g., Andersen et al., 

2009].  From another perspective, the indeterminate nature of the coefficient matrix 

produced in the u-p formu



Chapter 6 

An Additional Result – the qo Theorem 

 

 

6.1 The Theorem 

The majority of this thesis has concentrated on establishing a path from the chiropractic 

problem and leading to the three techniques for stable finite element analysis; i.e., 

modified LU, multilevel QR, and AIC.  In the process of developing the latter two 

methods for circumventing the hydrostatic pressures, the primary focus was the 

nullspace N(G) of the constraint submatrix G.  Through this focus, the author discovered 

a second result related to N(G), which pertains to displacement locking under an applied 

concentrated force on the boundary.  Although this result is not directly connected to the 

chiropractic problem as defined in this thesis, it may find future use in addressing the 

inverse problem of property determination in the context of other biomechanical 

applications [Seshaiyer and Humphrey, 2003].  One approach to measuring the elastic 

modulus of tissue, for example, is to apply a concentrated load with a force transducer 

and measure the resulting displacements.  While a finite element model for 

incompressible material will not encounter displacement locking if all boundary 

conditions are specified as displacements, the special case of a single applied load is 

perhaps the most susceptible to severe locking behaviour.  In the result that follows, a 

method will be outlined to determine when an applied force will have an effect on a 
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finite element model.  In essence, a method based on the nullspace of the constraint 

matrix, G, will determine when displacement locking will or will not occur. 

 

Theorem 6.1:  Given a finite element model, let the final system of equations be 

represented by 

  (6.1) 1
T bpGAu =+

and 2bGu =  , (6.2) 

where A is an n  positive definite matrix, G is a nn× n m×  matr T
nu , 

]T
mp .  Let q be the dimension of the nullspace of G for the case where 

displacements are prescribed on the boundary with the exception of one degree-of-

freedom for which a force is specified.  Further, let qo be the dimension of the nullspace 

of G for the case where only displacements are prescribed on the entire boundary.  If 

, then the solution u will be independent of the prescribed force.  If ,  then 

the prescribed force will have an effect. 

ix,

and 

 [ ]21 uu L=u

oqq >

[ 21 pp=p

oq

L

q =

 

Proof:  For the case with a single force boundary condition, let r be the rank of G,  N(G) 

be the nullspace of G,  n be the number of rows of vector u, F* be the specified force, 

and  be the unknown displacement corresponding to F*.  Also, define matrix 

, where  form a basis for N(G).  For the Dirichlet case, let r0 

be the rank of G, and no be the number of rows of u.  By definition, .  Thus, if 

, then  and the kth component of N(G) is zero.  Premultiplying equation 

(6.1) by , we obtain  

ku

[ 1 vv

oq

]2 qvL=V

q = =r

TV

qvvv ,,, 21 L

1o += nn

10 +r
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  (6.3) 1
TT bVAuV =

Also, from (6.2),  

 Vβuu += p  (6.4) 

where  is a particular solution of (6.2), and β  is a vector of coefficients in the linear 

combination of nullspace vectors.  From (6.3) and (6.4),  

pu

 ( ) ( )p
T

1
TT AuVbVβAVV −=  (6.5) 

where, for positive definite A,   is non singular.  Together, equations (6.4) and 

(6.5) give a unique solution for u.  From the theory of finite elements, F* is only in the 

kth component of b1.  It is, therefore, annihilated.  Conversely, if  , the kth 

component of N(G) will be nonzero, and F* will not be annihilated.  ■ 

AVV T

oqq >

 

For further explanation as to why oqq =  leads to the annihilation of F*, consider the 

following simple example.  Let the general solution of (6.2), for a given problem, be 

2211p vv ββ ++= uu , where  is a particular solution, vectors  and  form a basis 

for the nullspace of G, and 

pu

i

1v 2v

β  are coefficients in the linear combination of nullspace 

vectors, so that   

 . (6.6) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

0
1
0

0
0
1

21

3p

2p

1p

3

2

1

ββ
u
u
u

u
u
u

Referring to nullspace vectors  and  on the right hand side of (6.6), the nullspace 

component corresponding to  is zero.  Rewriting (6.6) as 

1v

3

2v

u
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 11p1 β+= uu  (6.7) 

 22p2 β+= uu  (6.8) 

 3p3 uu = , (6.9) 

it can be seen that  is uniquely determined as having particular value .  The order 

of the forces in  matches the order of the unknown displacements.  Thus, in the 

products  in (6.3), the zero nullspace component in will annihilate the force F* 

in .  That is, F* is eliminated and has no effect, regardless of its magnitude.   

3u

1b

3pu

1
Tbiv iv

1b

 

This result will be illustrated by the previously used example, plane strain compression 

of a rectangular block, and a series of finite element solutions.  The specifics of the 

model will remain the same except at two nodes, labelled “a” and “b” in Figure 6.1, 

where forces instead of displacements will be applied. 

b 

a 

Figure 6.1:  Finite element grid (a and b represent nodes for force application). 
 

For case 1, the case of displacements on the entire boundary, the dimension of N(G), 

.  This was determined using the author’s finite element code and MATLAB®.  4qo =
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For case 2, a force of 5 kN is applied to node “a” from Figure 6.1 and .  That force 

value is energy equivalent to the displacement applied in case 1 and therefore no 

difference in the results is expected.  For case 3, the force at “a” is changed to 20 kN and 

, once again.  By the theorem, displacement locking should occur since the 

dimension of the nullspace did not change and the results shown in Figure 6.2 confirm 

this.  Figure 6.2 compares the results between cases 2 and 3 using ANSYS® plots for the 

von Mises stress field.  The von Mises stress field for case 1 is constant at 86.7 MPa.  

For case 2, although the colours in the plot suggest a large difference, the numerical 

values show that the stresses have changed only approximately 0.3% from minimum to 

maximum.  For case 3, the force has increased by four times, however the stresses have 

only slightly changed.  Therefore, displacement locking is confirmed. 

4=q

4=q

 

86.2 MPa 86.6 MPa 

86.8 MPa 

a a

87.7 MPa 

 
 

(a) (b) 
Figure 6.2:  ANSYS® plots of the von Mises stress field for (a) case 2 and (b) case 3 

 showing maximum and minimum von Mises stresses for each case. 

 
For the next set of test cases, the displacement in the x-direction on node “b” in Figure 

6.1 is changed to a zero force in the y-direction.  By the model, as described, this is the 
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correct force for that node.  When there is a force specified at node “b” as well as at 

node “a”,  and, by the theorem, the forces should now have an effect on the model.  

Cases 4 and 5 have the same forces at node “a” as cases 2 and 3, respectively.  They also 

have the zero force as described above on node “b”.  The results for case 4 are identical 

to those of case 2.  That is to be expected since the force applied at node “a” is the 

correct force for the model.  The results for case 5 (shown in Figure.6.3), however, show 

a drastic change from case 3.  In case 3, the stress field was almost constant; it now goes 

from a minimum of 40.2 MPa to a maximum of 256 MPa.  Clearly, as predicted, the 

finite element grid is no longer subject to displacement locking.   

5=q

 

 

 

40.2 MPa 

256 MPa

a

 

 

 

 

 

 b

Figure 6.3:  ANSYS® plot for case 5:  20 kN x-force at node “a” and zero y-force at 
 node “b”. 

 

 

 

This demonstration suggests that the qo theorem may be used as a basis for identifying 

models that would be insensitive to a single applied force.  Potentially, this could be 
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useful in designing robust finite element procedures for obtaining tissue properties from 

measured displacements produced by a load transducer.  The accuracy of the specific 

values presented here may be in dispute as no analytical solution exists for this type of 

loading.  Also, with the amount of displacement that can be seen at nodes “a” and “b”, 

the solution may have gone beyond the linear elasticity range.  However, the degree of 

freedom results for nodes “a” and “b” using both the author’s code and ANSYS® are 

within 2% of each other, suggesting that the solutions may not be totally inaccurate.  

 

 

 

 

 

 

 

 



Chapter 7 

Concluding Remarks 

 

The research described in this thesis began with a single long-term objective: modeling 

of the vertebral artery during chiropractic manipulation of the cervical spine. Although 

chiropractic treatment has become prevalent, the possible correlation between neck 

manipulation and subsequent stroke in patients has been the subject of debate without 

resolution.   In Chapter 2, the review and assessment of pertinent biomedical research 

confirmed the need for quantitative analysis, and identified the challenges posed by 

complexity of the anatomy and nonlinearities associated with material properties and 

geometry of the problem.  A major outcome of this review was a perspective towards 

successful quantitative analysis of the vertebral artery.  This perspective depended on 

reliable stress analysis within a robust method for in vivo image data.  Numerous 

research projects would be required to attain this goal.  However, a necessary first step 

would be to establish a finite element algorithm for overcoming the modelling issues 

inherent in the analysis of soft tissue.  It is well known in the finite element community 

that incompressibility can lead to severe numerical instabilities.  These instabilities are 

exacerbated by the specifics of the chiropractic problem:  the nonlinear analysis of 

measured displacements.  In Chapter 3, a mathematical review of finite element 

procedures revealed that none of the existing methods were suited to this specific 
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problem.  This led to the development of three techniques for stable finite element 

analysis.  To aid in the process, Q4P1 codes were written for testing new concepts.   

 

The process of development followed a path from a simple LU approach to the more 

robust multilevel QR and then the more fundamental AIC formulation.  Each method 

has its own merits.  The LU is fast and easily applied to existing mixed formulations, but 

may be subject to numerical instabilities during intermediate steps.  The multilevel QR 

may be the most stable, as shown through numerical examples,  and might also be the 

preferred method for augmenting an existing finite element package.  In contrast, the 

AIC reformulates the problem to enforce incompressibility directly, and therefore would 

be best implemented as a special purpose code.  The primary contributions for both the 

multilevel QR and AIC methods are in the form of mathematical results.  For the QR, a 

theorem establishes the nonsingularity of the final submatrix, and for the AIC which is 

based on a non-standard formulation, the mathematical representation of the final system 

of equations is derived in detail. 

 

Successful implementation of the QR and AIC methods relied upon establishing a key 

concept:  the importance of ( )GN , the nullspace of the constraint matrix.  This led to a 

result addressing an important but different issue associated with incompressibility:  

displacement locking.  The qo theorem may be useful in future studies where material 

properties are to be determined from solving the inverse problem.  It identifies severe 

displacement locking under the application of a single applied force. 
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This thesis is meant to provide the impetus for future research.  The challenge of 

combining nonlinear mechanics with high resolution imaging is forthcoming.  It will be 

necessary to implement a stable solution technique such as the multilevel QR or AIC 

within a finite element code incorporating geometric nonlinearity, viscous effects, high-

impact loading, and three-dimensional analysis.  This would be followed by a series of 

experiments to validate the code.  The first set of experiments would involve numerical 

simulations where mixed boundary conditions are used to produce reference 

displacement fields for a variety of axisymmetric and nonaxisymmetric cases 

representing deformation of the vertebral artery.  The reference displacement fields 

would then be used to artificially generate displacement boundary conditions with 

measurement uncertainty to test the code’s ability to determine the reference von Mises 

stress distributions.  These simulations would include mesh refinement studies to 

establish convergence properties. 

 

Once tested by computer simulations, the code would then be further validated by 

physical experiments with image data.  This could begin with ultrasound imaging and 

then continue with MRI or synchrotron light.  A physical model representing the spine 

and vertebral artery could be constructed within a frame instrumented with load 

transducers to apply known forces to the physical model.  In addition, strain gauges 

could be used to provide a second measure of deformation to compare with the 

information acquired through applying the finite element code to the measured 

displacement data.  This stage of the research would necessarily involve a collaborative 

effort beween experimentalists and theoreticians.  A significant component from this 

point forward would be research in data collection and image processing.  Experiments 
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with physical models would eventually lead to testing on animal subjects, and then 

finally a methodology for human patients could be developed. 
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Appendix A 
 

Linear Algebra Review 

 

In this appendix, some pertinent linear algebra concepts are reviewed [Strang, 1976]. 

The concepts are presented in the order in which they appear in the thesis.  

 
 
Orthogonal Matrix 

For an orthogonal matrix A, its inverse is equal to its transpose; i.e., T1 AA =− . 
 
 
Positive Definite Matrix   

A positive definite matrix A has the following characteristics: 

- Real and symmetric. 

- All eigenvalues of A are positive. 

-  for x ≠ 0. 0T >Axx

- Nonsingular and therefore invertible. 

-  where Q is the matrix of orthogonal eigenvectors of A and Λ is the 
diagonal matrix of eigenvalues. 

TQQA Λ=

 
 
Row Space of a Matrix A, R(A)  

For A∈ ℜm×n, where ri are the rows of A, 
 

( ) { }TT
22

T
11 mmaaaR rrrA +++== Lvv . 

 
The row space of a matrix is all vectors which can be written as a linear combination of 

the rows of A. 

 
The dimension of the row space is equal to the number of linearly independent rows of 
A. 
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Column Space of Matrix A,  C(A)   

For A∈ ℜm×n, where ci are the columns of A, 
 

( ) { }nnaaaC cccA +++== L2211vv . 
 
The column space of a matrix is all vectors which can be written as a linear combination 

of the columns of A. 

 
The dimension of the column space is equal to the number of linearly independent 

columns of A and the dimension of the row space. 

 
 
 
Given a consistent system of equations with a unique solution 
 

bAx = ; 
 

A is a mapping from the row space to the column space. 

x is in the row space of A. 

b is in the column space of A. 

 
 
 
Nullspace of a Matrix A,  N(A)   

For A∈ ℜm×n,  
( ) { }0=ℜ∈= × vv AA 1nN . 

 
The row space and the null space are orthogonal complements. 
 
 
 
Rank of a matrix A,  r(A)   

For A∈ ℜm×n, the rank of a matrix is equal to the dimension of the row space. 

( ) ( ) nNR =+ AA dimdim , where dim = dimension. 
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Norm of a Vector w  

In this thesis, the norm of a vector is www T= and therefore www T2 = . 
 
 
 
Norm of a Matrix A  

The norm of a matrix is the number 
x

Ax
A

x 0
max

≠
= . 

 
 
 
Condition Number of a Matrix A,  CN(A)   

For the system of equations bAx = , 
 

( ) 1−= AAACN . 
 

The condition number gives the upper bound of the error magnification from data b to 

solution x. 

 
 
 
Singular Value Decomposition: 

Applying singular value decomposition to a square matrix K gives  

TVSUK =  

where U and V are orthogonal matrices and S is a diagonal matrix.  The diagonal terms 

of S are called singular values. 

 



Appendix B 
 

Finite Element Formulation for Q4P1 Code 

 

For this research, a series of finite element codes were written for both compressible and 

fully incompressible analyses.  In all cases, the formulations applied to linear elastic, 

isotropic material subjected to plane strain conditions, and the geometry and 

displacements were defined using the standard four-node quadrilateral shown in Figure 

B.1.  The governing equations may be found in any book on the finite element method.  

In particular, Chapter 9 of Budynas was followed as a guide to creating the codes for 

compressible materials (ν < 0.5) [Budynas, 1999].  In developing the Q4P1 codes for 

incompressible materials, the formulation was as follows.   

 

The quadrilateral element chosen uses isoparametric shape functions meaning that the 

same shape functions are used to map the physical coordinates into natural coordinates 

as are used to define the displacement field.  The physical coordinates may be mapped 

into the natural coordinates using  

 ),(Nx),(Nxx ηξηξ 4411 ++= L  (B.1) 

 ),(Ny),(Nyy ηξηξ 4411 ++= L  (B.2) 

and the displacement field can be expressed as 

 ),(Nu),(Nuu ηξηξ 4411 ++= L  (B.3) 
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),(N),(N ηξηξ 4411 vvv ++= L 

 

x

y 

1

23 

4 
1 

2 3

4

ξ 

η 

(a) (b) 

(1, -1) 

(1, 1) (-1, 1)

(-1, -1)
(x1, y1)

(x2 ,y2)(x3, y3) 

(x4, y4) 

 (B.4) 

 

 

 

 

 

 

 

 

 

 

Figure B.1:  Quadrilateral element in (a) physical coordinates and (b) mapped in natural     
coordinates. 

 
 

where u and v express the displacement in x- and y-directions, ξ and η are the natural 

coordinates,  are the nodal displacements, and Ni are the isoparametric shape 

functions for nodes i, defined as 

 

iu , iv

( )( ηξ −+= 11
4
1

1N )  (B.5) 

 ( )( )ηξ ++= 11
4
1

2N  (B.6) 

 ( )( ηξ +−= 11
4
1

3N )  (B.7) 

 ( )( ηξ −−= 11
4
1

4N ). (B.8) 
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The strains are found by taking derivatives of the displacements with respect to x and y 

and in turn with respect to ξ and η as x and y are functions of ξ and η.  In matrix form, 

 derivatives of u are the

⎪
⎪
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⎪⎪ ⎬  
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⎪
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⎨

⎧

∂
∂
∂
∂
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x
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y

yxu

ηη
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ξ (B.9) 

nd similarly for v, 

⎢
⎢

∂
∂=⎪⎪

⎬ x
ξ

u
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⎪
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⎭

 ⎪⎪
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⎪
⎪
⎩

⎧

∂

∂
∂
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x
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yx

v

vv

η

ξξ

η

ξ (B.10) 

here the 2×2 matrix is the Jacobian matrix, J.  Its components are determined by 

e shape functions, equ .5) to (B.8).  Therefore,  

 

⎪⎪
⎨ =

⎪
⎬∂v

η

w

finding the derivatives of (B.1) and (B.2).  This also involves finding the derivatives of 

ations (Bth

ξξ ∂
∂

++
∂
∂

= 41 NxNxJ L  (B.11) 4111

 
ξξ ∂

∂
++

∂
∂

= 4
4

1
112

NyNyJ L  (B.12) 

 
ηη ∂

∂
++

∂
∂

= 4
4

1
121

NxNxJ L  (B.13) 

 
ηη ∂

∂
++

∂
∂

= 4
4

1
122

NyNyJ L , (B.14) 

where 

 ( )η
ξ

−=
∂
∂ 1

4
11N  (B.15) 
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 ( )η+=
ξ∂

∂ 112N  (B.16)

 

4
 

( )η
ξ

+−=
∂
∂ 1

4
13N  (B.17) 

( )η
ξ

−−=
∂

∂ 1
4
14N  (B.18) 

 ( )ξ
η

+−=
∂
∂ 1

4
11N  (B.19) 

 ( )ξ
η

+=
∂
∂ 1

4
12N  (B.20) 

 ( )ξ
η

−=
∂
∂ 1

4
13N  (B.21) 

 ( )ξ
η∂

−−=
∂ 14 . (B.22) 

hysical coordinates into the 

of the Jacobian matrix is re

is given by 

4
1N

Since the Jacobian matrix transforms derivatives in the p

natural coordinates, the inverse quired to find the strains.  It 

⎥
⎦

⎤
⎢
⎣

⎡
−

−
=−

1121

12221 1
JJ
JJ

J
J . (B.23) 

o, in matrix form, the strains for a plane strain analysis

 

S  become 

⎪
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−
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JJJJ
JJ

JJ
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12221121

1121

1222

00
00

1
J

, (B.24) 

r, this may be rewritten as 

ξ

ξ
v

o
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'ˆuJ=ε . (B.25) 

To relate the strains to the displacements, the u′ vector is related to u, the displacement 

ector, as 

 

v

uNu ′=′ , (B.26) 

where 
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isplacement relation is now 

. (B.29) 

 

 

To this point, the development of this formulation is similar to that found in Budynas 

[1999].  From here on, the development diverges from the norm to accommodate 

incompressibility.  Generalised Hooke’s law can be written in the form  

 

⎥
⎤

∂
∂

ξ
4 00 N

⎥
⎥

∂∂
∂η

NN  (B.27) 

and 

 { }T
44332211 vvvv uuuu=u . (B.28) 

The strain-d

BuuNJ =′= ˆε 

( )( ) ( ) ( )[ ]zyxx
E εενεν

νν
σ ++−

−+
= 1

211
, (B.30) 

 ( )( ) ( ) ( )[ ]xzyy
E εενεν

νν
σ ++−

−+
= 1

211
, (B.31) 
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 ( )( ) ( ) ( )[ ]E εενενσ ++−= 1 . (B.32) yxzz νν −+ 211

 (B.30), and (B.32) fromBy subtracting (B.31) from  (B.31),  

( )yxyx
E εε

ν
σσ −

+
=−

1
  (B.33) 

and ( )zyzy
E εε

ν
σσ −

+
=−

1
, (B.34) 

spectively.  For plane strain analysis, εz = 0 and in matrix form, 

component of Hooke’s law becomes 

re the distortional 
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ε
εε

ν
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σσ
σσ

650000
0100
0010
0001

1
6

  (B.35) 

 

here the fourth line of (B.35) expresses the classical linear elastic relationship between 

hear stress and shear strain. 

rmal strains and 

hear strain, as 

 

or  

 (B.36) εDσ ˆˆˆ = ,

w

s

 

As a result of the nonstandard stress-strain relation, the strain-displacement relation must 

also be modified.  It must now be written in terms of the deviatoric no

s

uBε ˆˆ =  (B.37) 

B̂  is given by  where 
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⎥
⎥
⎥−−− 181716 BBB

B ⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

−−−−−

−−

=

3837363534333231

1514131211

2827262524232221

28182717

66666666 BBBBBBBB
BBBBB

BBBBBBBB
BBBB

ˆ  

The volumetric constraint is enforced in an average sense over each element.  For plane 

train, this relation is defined as  

 

⎡ −−−−−− 261625152414231322122111 BBBBBBBBBBBB

  (B.38) 

and ijB  are individual components of the standard strain-displacement matrix B. 

 

s

( ) 0d =+∫ Vyx εε  (B.39) 

r each element where  ove

 428326224122 vvvv BBBB +417315213111 uBuBuBB uyx  (B.40) +++=+ εε +++

or 

 Bu ~T
yx =+ εε  (B.41) 

here  w

 [ ]T 
2817261524132211 BBBBBBBB~ =B . (B.42) 

 

The expression for stationary potential energy is given by  

 ( ) VpÛ yx d∫ +++= εεΩΠ , (B.43) 

and the distortional strain energy, Û , is defined as [Cook and Young, 1985] 

 Vˆˆ
G

Û d
12

1 T
σσ∫= , (B.44) 

where G is the shear modulus.  Using (B.36) and (B.37), equation (B.44) becomes 
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 VˆˆˆˆÛ d1 TTT uBDDBu∫= , 
G12

(B.45) 

and substituting (B.41) and (B.45) into equation (B.43) gives  

∫∫=
G12

BuΠ +− V~pVˆˆˆˆ dd1 TTTTT BuFuuBDD . (B.46) 

inimising this with respect to the nodal displacem

 

M ents, iu , and p gives 

∫∫ =+−⎥⎦
⎤

⎢⎣
⎡ 1 0dV~pVˆˆˆ

G
BFuBDB d

6
2T  (B.47) 

and 

 ∫ = 0T dV~Bu . (B.48) 

The integrals in (B.47) and (B.48) are performed using Gauss-Legendre quadrature 

where the Gauss points follow a 2×2 quadrature rule for exact integration [Zienkiewicz 

& Taylor, 1989]. 

ent grid and then the 

quations are assembled into the global stiffness matrix w

 

This process is performed for each element in the finite elem

e hich takes the form 

⎥
⎦

⎤⎡
=

⎤⎡⎤⎡ 1
T buGA , (B.49)  ⎢

⎣
⎥
⎦

⎢
⎣

⎥
⎦

⎢
⎣ 2bpG 0

Once the equations are assembled, the system may be solved.   
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