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Abstract

The desire for low cost electronics has led to a huge increase in research focused

on organic materials. These materials are appealing due to their unique electrical

and material-processing properties and are rapidly being adopted in old and new

electronic applications. To create practical devices requires a further understanding

of the charge transport properties of the unique anisotropic molecular crystal struc-

tures. This work looks at how doping with the transition-metal element manganese

can alter the electronic structure of the organic material pentacene. It has been

found that using manganese as a dopant provides novel physical characteristics pre-

viously not encountered in organic field effect transistors based on pentacene. These

organic thin films were characterized using X-ray absorption spectroscopy and the

results compared to computational density functional theory analysis.
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Chapter 1

Introduction

Spin-electronics (spintronics) is a burgeoning research field in condensed matter

physics that is attempting to create functional electronic devices based on the elec-

tron’s spin degree of freedom, in addition to its charge. The basic ingredients needed

to create a functioning device are the ability to create, sustain, control, and detect

a current of spin polarized carriers [1]. The technological impact of this emerging

field will have a large effect on the future of the electronics industry [2]. There

are many practical devices and applications that scientists and engineers are en-

visioning based on spintronics research. Some of the areas being focussed on are:

magnetic random access memory (MRAM), spin-based transistors, mass-storage de-

vices, ultra-fast switches, and multifunctional chips that could provide computation,

storage, and communication on a single chip [3].

The one breakthrough that could lead to a revolution in everyday life — in

the same vein as the transistor did 60 years ago — would be the development of

a quantum computer. Quantum computation based on qubits (quantum bits), uses

the principle of superposition to store information in a way that allows computations

to be performed in parallel as opposed to sequentially. Using ingenious quantum

algorithms, it allows one to perform 2n computations for every n qubits, essentially

scaling computations exponentially [4]. Possible applications would include modeling

a realistic system of many self-interacting electrons [5].

Research in spintronics has reached the level where there are several different

avenues that material scientists are focusing on to reach these goals. One avenue

involves finding new applications for ferromagnetic metallic alloys — this field also

goes by the heading of magnetoelectronics. One recent shining example of success in
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this area was the development of spin valves which use the giant magnetoresistance

(GMR) effect [6–8]. These GMR read-heads are used in almost all current computer

hard drives and have led to the enormous increase in hard drive areal densities in

the past decade. MRAM is also nearing completion for commercial applications and

products could begin appearing within the year [9, 10].

Another route is to develop traditional semiconducting materials that can gen-

erate and carry the necessary spin-polarized currents. These materials are generally

labelled as diluted magnetic semiconductors (DMS). The discovery of ferromagnetic

(III,Mn)V semiconductors around 15 years ago has led to concerted research in try-

ing to find a DMS possessing a sufficiently high Curie temperature (Tc) for practical

applications [11, 12]. Since a huge microelectronic infrastructure is in place utilizing

traditional semiconducting materials (i.e. silicon, gallium arsenide, etc.), commercial

devices could be developed in a very short time-frame [13].

Another broad category of materials being investigated are organic semiconduc-

tors. The monetary drive for using organic materials is that they possess key eco-

nomic advantages over traditional semiconducting materials, such as: ease of pro-

cessing, structural flexibility, the possibility for large surface-area applications, and a

reduction in manufacturing costs [14]. Another benefit would be helping to eliminate

the use of harmful heavy elements and chemicals used in computers. One sometimes

overlooked result, but possibly also the most important in terms of the health of

the planet, is that spintronic devices would consume drastically less electric power

[3, 15–17]. Current CMOS based logic and memory chips are now reaching the point

where the increase in power required for nanoscale designs are hampering further de-

velopments in the field [18]. The fundamental physical properties that make organic

molecular materials attractive are the weak spin-orbit and hyperfine interactions.

This allows for increased spin-coherence times for the polarized electrons [19].

One of the as-yet unrealized applications envisioned for spintronics is the devel-

opment of a spin-based transistor which would enable quaternary operation and the

possible development of a robust room-temperature (RT) quantum computer [20].

There are several competing methods that would enable the realization of this spin-
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transistor. One method uses a quantum pumping effect to create separation of pure

spin currents [21]. Another method is to develop RT ferromagnetic semiconducting

heterostructures [12]. The latter method is the general approach taken in this re-

search, albeit using molecular materials to create an organic field effect transistor

(OFET).

Figure 1.1: Chemical structure of pentacene showing the carbon (dark
grey) and hydrogen (blue) atoms.

One method to create the desired properties for the spin-transistor is to dope

the semiconductor with transition metals, such as manganese (Mn) or cobalt (Co)

[12]. We have done this with pentacene and used synchrotron-based X-ray absorption

(XAS) and X-ray emission spectroscopy (XES) to study how these impurities change

the magnetic and electrical properties of the material. Figure 1.1 shows the atomic

representation of pentacene.

XAS and XES are element and site specific techniques which enable us to de-

termine where in the organic material the dopants reside, and to what molecular

orbitals the dopants are bonding with [22]. In aiding this process, density func-

tional theory (DFT) calculations are performed that allow us to assign values to the

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital

(LUMO) states [19]. The energy gap between the HOMO and LUMO levels serves as

an indication of the excitability of the material — in essence determining how suit-

able the material is for practical applications. The specific goal of this research is to

determine how the magnetic dopants affect the HOMO-LUMO gap in the material.
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By answering this question — through mapping out the electronic structure — it

becomes possible to provide a concrete physical explanation to the unique and novel

transistor properties observed in the doped pentacene heterostructures examined.

Chapter 2 takes a look at the underpinnings of spintronic research with some

background information on organic materials with specific attention placed on pen-

tacene. The specific research goals are given in chapter 3. The focus then shifts

to the experimental and theoretical techniques used in mapping out the electronic

structure in chapter 4. The results are presented in chapter 5, with conclusions and

recommendations presented in chapter 6.
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Chapter 2

Pentacene in Device Applications

2.1 Organic Electronics

With the discovery in 1963 of conducting polypyrroles by chemically doping the

organic material, it took another 15 years before much interest was generated in these

materials [23]. In 1977, doped polyacetylene was shown to be a conducting polymer

[24]. This result in contrast generated considerably more interest and resulted in the

people involved receiving the Nobel Prize in Chemistry in 2000 — not withstanding

some controversy [25]. Since then, research in organic materials has undergone an

enormous growth that continues unabated to this day.

Organic materials have been used extensively in the fabrication of everyday elec-

tronics for many years. Traditionally they have only been used in the processing

steps of the long-established semiconducting materials as photoresists or as passive

insulators [26]. They have, for the most part, taken a back seat as active components

in functioning electronic devices. That has changed drastically in the past several

years with the development of organic light emitting diodes (OLED) used in display

applications. Currently, organic materials are being used in applications requiring

conduction of current, and emission of visible light [26]. OFETs are also tantalizingly

close to being used in commercial applications [27].

Organic molecular materials are also interesting in that they possess inherently

unique electronic properties not found in other materials. For organic materials the

band structure is derived from molecular orbitals (MO) using approximations based

on the linear combination of atomic orbitals (LCAO) approach. Pentacene is part of

the oligoacene family of polycyclic aromatic hydrocarbons, which are composed of
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conjugated molecules — meaning they have alternating single and double bonds. In

pentacene (C22H14), the carbon atoms are each joined to three others, which results

in one delocalized electron occupying a pz-orbital. These π-MOs overlap with neigh-

bouring orbitals creating π-bonds. These overlapping π-bonds give rise to delocalized

electrons which are free to move within the molecule and are largely responsible for

the intramolecular conduction. Figure 2.1 visualizes these ideas. Typically this ef-

Figure 2.1: The construction of pentacene’s carbon-MOs: (a) the sp2

and pz orbitals for a C atom, (b) the creation of a π-bond between two
C atoms, (c) energy level diagram showing the formation of π and σ
bonds in carbon. Figure adapted from ref. [28].

fect is anisotropic as the overlapping MOs usually occur in the plane of the molecule.

This result is highly desirable as it gives rise to weak spin-orbit and hyperfine inter-

actions within the organic molecules. Combining this with the weak van der Waals

interaction between adjacent molecules, one can get spin coherence times that are

much greater than in DMS systems. This leads to greater transport distances for

the spin-polarized carriers [19]. One negative aspect of organic materials is that the

spin carrier density is usually comprised of holes versus electrons. Holes typically

have much shorter spin coherence lifetimes than electrons do. This detriment can

be overcome by various doping methods to create n-doped organic semiconductors

[29].

Pentacene has become somewhat of the de facto standard in organic molecular

conductors as it has so far consistently demonstrated the highest hole mobilities for

organic molecular crystals [30]. Mobility (µ) is defined in terms of the drift velocity
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(vd) of electrons (or holes) per unit electric field (E). Typically it takes the form

shown in equation (2.1.1) given below:

vd = µE (2.1.1)

Increased mobilities directly translate into higher switching speeds for transistors

based on complementary metal-oxide semiconductor (CMOS) logic [31]. If organic

materials want to compete with amorphous silicon in display applications the mo-

bility should approach ∼ 1 cm2/V · s with switching speeds of ∼ 108 Hz. Pentacene

has satisfied both these criteria [32] while also demonstrating higher mobilities ap-

proaching 1000 cm2/V · s exhibited for conduction through a single molecule [30].

So far the most promising results for developing a functioning spintronic device have

come from heterostructures based on Mn-doped pentacene.

2.2 OFET Device Operation

An organic field effect transistor works similarly to a normal metal-oxide-semiconductor

FET (MOSFET) [33]. It is a three terminal device with contacts labelled gate, drain,

and source. See figure 2.2 for the details. The current-flow through the device occurs

Figure 2.2: OFET structure is shown on the left where W is the
width and L is the length of the conducting channel. The graph on the
right is a typical I-V curve showing the linear and saturation regions
for increasing gate voltages (VGi). Figure adapted from ref. [34].

at the organic semiconductor-insulator interface and is controlled by the voltage ap-

plied to the gate terminal. Essentially it works like a capacitor with the gate voltage

determining the density of charge carriers accumulating at the interface, which in
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turn leads to a conducting channel between the source and drain [35, 36]. For low

drain voltages VD — which occur within the linear regime indicated in figure 2.2 —

the drain current can be given by:

ID =
W

L
µCi(VG − VT )VD (2.2.1)

Where W and L are the channel width and length, µ is the mobility, Ci is the

capacitance of the insulator, VG is the gate voltage, and VT is the threshold voltage

at which the transistor turns on. This is only valid for VD � VG [35, 37]. For higher

VD voltages the drain current is independent of the drain voltage — the so-called

saturation regime — and the drain current is given by:

ID =
W

2L
µCi(VG − VT )2 (2.2.2)

From these equations values for the mobility can be determined. The real-life oper-

ation of OFETs depend to a large degree on the quality of the interface between the

organic semiconductor and the dielectric [38, 39]. This is due to the fact that almost

all of the charge accumulates in the first layer of the device [35]. Much research

has gone into determining how to enhance the physical properties at this interface.

Another factor limiting the performance of OFETs is the charge injection difficulties

encountered with the metal contacts and the organic material [40–42]. It is found

that charge traps occur at this interface and interface dipoles are created due to the

mismatch between the Fermi levels of the metal and semiconductor [43–45]. Elec-

trons have a higher energy barrier to overcome for charge injection (versus holes),

therefore the majority of OFETs operate as p-type transistors [34, 44, 46].

2.3 Conduction Mechanisms in Small Organic Ma-

terials

In talking about possible conduction paths in pentacene, it is important to clarify

what physical form the pentacene takes that one is studying. Some of the various

forms of pentacene that researchers have studied are: amorphous, single crystals,
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and isolated single molecules [47, 48]. There are several different isomorphs of pen-

tacene single crystals, and at times material scientists have not been aware of these

differences and how they affect the results found [49]. Most polymers grow as an

amorphous phase during thin film fabrication. Pentacene in contrast quite readily

forms pure single crystals during thin film growth [49]. This simplifies modelling of

the material and helps in determining the intrinsic transport properties as one can

now make use of the various symmetries present. In many cases, the transport prop-

erties that one measures are significantly affected by the way in which the crystalline

pentacene interfaces with the materials joining it. This can result in charge traps,

defects, and localized gap states that can reduce the mobility of the device up to a

factor of ten [50].

Even though conducting organic materials have been researched for over 25 years,

there still remain large gaps in understanding concerning how charge transport occurs

in these materials [51]. Organic materials can vary in size from large strands of DNA,

to polymers, to “small” molecules. “Small” molecular compounds are generally

considered to be ones that have a specific molecular weight and can form well-

defined crystal structures - of which pentacene is a member. The bonding between

individual molecules in the organic crystal occurs through weak van der Waals forces

that decrease as 1/R6 — versus the 1/R2 dependence found in covalently bonded

inorganic semiconductors (with R being the intermolecular spacing) [52]. This causes

many of the electronic properties (essentially the HOMO and LUMO gap) of the

material to primarily stem from the electronic structure of each individual molecule.

This simplifies DFT calculations as one can subsequently use an isolated molecule

instead of scaling up to the complete crystal structure. The negative consequence

of the weak van der Waals bonding is that it creates narrower electron bands and

stronger electron-phonon coupling [53]. As a result the charge carriers are believed

to be polaronic in nature [54].

A polaron is an electron in the conduction band (or a hole in the valence band)

that either polarizes or distorts the surrounding lattice such that as it moves through

the crystal it brings along with it an accompanying “phonon cloud” [55]. In small
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organic molecules, the polaron strongly influences nearby local geometry (as opposed

to a long range effect) and can be classified as a “small polaron.” These polarons

interact strongly with local defects and create difficulties in determining the intrinsic

electron mobility [56]. At room temperatures the thermal excitations present can be

comparable to the width of the narrow conduction band of the material [51]. This

can lead to a change in the charge transport mechanism from a band description

involving polarons to incoherent hopping between localized states [57]. Essentially

the electrons cannot “hop” from their quasi-bound states unless they get additional

energy from surrounding phonons. Since this process is temperature dependent,

the mobility does scale with increasing temperature. The cross-over from band-like

transport to hopping conduction is also an area requiring more research.

The crux of the matter is that accounting for electron-electron correlation is

difficult enough without having the added challenge of including electron-phonon

interactions as well. In spite of these challenges, some progress has been made

recently — both experimentally and theoretically. The development of pure samples

has led to some intrinsic charge measurements for surface conduction in organic field

effect transistors (OFET) [54]. On the theoretical side, a model for phonon-assisted

charge-carrier transport has been developed — based on work done by Holstein and

Peierls [53].

2.4 Modified Pentacene OFETs

Pentacene, used as the semiconducting layer in OFETs, has so far exhibited the

highest hole mobilities to date for organic materials — with the most recent result

(2007) achieving between 15−40 cm2/V ·s [33]. This result was found in a functional

OFET design, and is significant, as the previous record for mobility (∼ 35 cm2/V ·s)

was for conduction through a single molecular crystal of pentacene [33]. Electron

mobilities in pentacene OFETs are considerable smaller and much research is aimed

at finding ways to increase these values [58]. The goal is to create n-type conduction

comparable to the mobilities for p-type conduction. This would enable ambipolar
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transistors to be made allowing for the creation of complementary integrated circuits.

This could allow one to fabricate a fully organic computational device [37, 59].

Pentacene exhibits stable amphoteric doping — given the right conditions — and

to date dopants that have been used are: Li, Na, K, Ca, Rb, I, and Cs [60–73]. Most

of the dopants are alkaline metals and are used as they have high electronegativities.

Another method used is to chemically modify the pentacene structure using various

additive groups [58, 74–76]. Fluorine and cyanide are two examples of chemicals

that have been used in this capacity [58, 75, 76]. Figure 2.3 shows the end result

of the fluorination process used to create perfluoropentacene. As with doping, this

Figure 2.3: The hydrogen atoms have been substituted with fluorine
atoms (yellow) to create perfluoropentacene.

technique attempts to tune the frontier energy levels by substituting in electron-

withdrawing groups [37]. Other techniques that have been used to create n-type

behaviour are: using ultraviolet light to modify the dielectric interface [59, 77],

plasma-enhanced deposition [78], creating heterostructures using separate materials

for the hole and electron conduction channels [79–81], and modifying the metal

contacts with organic materials [82]. So far ambipolar operation has been limited

to only a handful of situations — not necessarily due to an intrinsic limit with

organic semiconductors but most likely due to a result of the trapping of electrons

in the commonly used SiO2 gate oxide [46].Only very recently have devices been

demonstrated that exhibit both the n- and p-type behaviour desired [37, 83, 84].

To date, there have been no known attempts to create ambipolar transistors using
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transition-metal atoms as dopants.

2.5 Organic Spintronics

Research in spintronics has undergone considerable growth in the past ten years.

The majority of the research so far has focused on using traditional semiconducting

materials. Recently though, with organic electronic devices being used in commercial

applications, more consideration has been given to these materials to see what addi-

tional benefits, or novel functionalities, they may provide over the more entrenched

electronic materials. There are two main areas that molecular materials hold key

advantages over inorganic ones. One is due to the intrinsic properties of organic

materials that allow for longer spin coherence times due to both the weak spin-orbit

and hyperfine coupling mechanisms present. The other is the unique configurations

possible when coupling the organic materials to magnetic metals [85].

There are many possible devices envisioned that make use of the spin property

of the electron. Some of the more common ones are the spin-FET, magnetic bipolar

transistor, spin qubits, spin diode, spin filter, and spin LED. For a good overview

of these devices and for an in-depth discussion of spintronic fundamentals see refer-

ences [1, 86]. This section will focus on the properties of organic materials that are

advantageous for some of these devices.

Spin-orbit Interaction

The relativistic spin-orbit (SO) interaction couples the spin S with the orbital an-

gular momentum L. The result is a new total angular momentum J given by:

J = L+ S (2.5.1)

This interaction creates orbital magnetism and couples the spin system to the ex-

tended structure allowing energy and angular momentum exchange [87]. The SO

Hamiltonian is written in the following form:

HSO = ξnl(r)L · S (2.5.2)
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Where ξnl(r) is defined to be:

ξnl(r) = − e~2

2m2
ec

2

1

r

dφ(r)

dr
(2.5.3)

with φ(r) being the electrostatic potential, me the mass of the electron, and c the

speed of light. If one takes φ(r) to be due to the nuclear charges (+Ze), then ξnl(r)

becomes:

ξnl(r) =
Ze2~2

8πε0m2
ec

2r3
(2.5.4)

The expectation value 〈ξnl(r)〉 of equation (2.5.3) is labelled the spin-orbit parameter

ζnl and has dimensions of energy.

The SO interaction is quite small in comparison to the exchange interaction,

but it is responsible for much of the loss in spin-coherence as it gives rise to spin

precession. The magnitude of the SO effect depends on Z and as a consequence it is

small for organic materials which consist primarily of carbon. Table 2.1 compares the

SO parameter ζnl for several semiconductors in comparison to carbon (in diamond

form). As can be seen ζnl for carbon is less than one third of the value for silicon

Table 2.1: Spin-orbit valence band splitting for select semiconductors.
Values obtained from ref. [85].

Semiconductor ζnl (meV )

C 13

Si 44

GaP 80

InP 111

Ge 290

GaAs 340

InAs 380

GaSb 750

InSb 980

and results in a considerable increase in spin lifetime.
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Hyperfine Interaction

The hyperfine interaction which is due to the coupling of the electron and nuclear

spins also plays a role in the decoherence of electrons. If the nucleus undergoes a

random spin flip, it can also cause the electron to change its spin direction. The

hyperfine Hamiltonian is given below:

Hhyp =
N∑
i

AiS
NUC

i · S (2.5.5)

where Ai is the coupling strength between the spin operator SNUC
i for nucleus i, and

the spin operator S for the electron. Carbon has a minimal hyperfine interaction as

the main isotope (98.93% 12C) has a nuclear spin of zero (i.e. SNUC = 0). Therefore,

since the delocalized π-MOs associated with the carbon atoms are responsible for

much of the charge (and spin) transport in organic molecules the hyperfine interac-

tion is considerably reduced. This is especially true for conjugated molecules because

the π-MOs are composed of C pz orbitals which have their nodal plane coincident

with the molecular plane [86].

Spin Relaxation Time and Length

The spin lifetime τs is a transport parameter that allows one to define the scale of

coherence for the electrons in spintronic devices [88]. The equation below shows its

constituent parts [86].

1

τs
=

1

τ↑↓
+

1

τ↓↑
(2.5.6)

The τ↑↓ is the average spin-flip time for an up-spin to change to a down-spin, and τ↓↑

is the reverse of this. This spin relaxation time also sets the length scale for coherent

spin transport. Equation 2.5.7 below, which is applicable for semiconductors that

can be approximated by a degenerate Fermi gas, shows this relationship:

ls =

√
τs

4e2ρ(EF )γ
(2.5.7)
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where ρ(EF ) is the density of states at the Fermi level EF , and γ is the resistivity

of the non-magnetic material. For the non-degenerate case ls is given by,

ls =

√
kBTτs
2ne2γ

(2.5.8)

Where kB is Boltzmann’s constant, T is temperature, and n is the number of carriers.

For more detail regarding the derivation of equations (2.5.7) and (2.5.8) see references

[89, 90].

Semiconductors exhibit lifetimes much longer than in metals and organic materi-

als are even better in that regard. For silicon a lower bound on the spin lifetime has

been found to be ∼1 ns with potentially much larger values close to 7 ns [1, 88]. For

n-GaAs it has been found that spin lifetimes can approach ∼100 ns for n-doped sam-

ples. Considering the reduction of the SO and hyperfine effects the values obtained

for the spin lifetime in organic materials can be much higher than in semiconductors.

In pentacene, τs is estimated to be between 10−6 and 10−5 seconds [91, 92].

Mn-doped Pentacene

Our work has focused on creating spin polarization of carriers in manganese doped

pentacene. The Mn dopant atoms are used to modify pentacene’s electronic struc-

ture, with the goal of creating a room-temperature magnetic semiconductor.

The reason for using Mn is that it has partially filled 3d electronic orbitals, which

create ligands (shared electrons through covalent bonding) with the organic molecule.

These ligands modify the HOMO and LUMO states of the molecule and cause split-

ting of the five degenerate d-orbitals (dz2 , dx2−y2 , dxy, dxz, and dyz) into orbitals of

high and low energy, depending on the coordination environment surrounding the

metal ion. This modification of the d-orbitals can create local magnetic moments in

the material. This can give rise to magnetism through Mn-Mn interactions or the

creation of carrier mediated ferromagnetism through optical or electrical means —

for example by means of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction

[47, 93].
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Chapter 3

Research Hypothesis

3.1 Research Questions

The question posed by this research is to see how the Mn dopant atoms affect the

HOMO and LUMO energy levels of the pentacene OFETs. The hypothesis is that

the Mn atoms will contribute to the DOS of both the HOMO and LUMO levels of

the pentacene molecule. This will result in some form of hybridization (i.e. charge

transfer) between these MOs, and the band gap of the OFET should decrease, re-

sulting in more metallic behaviour. Measuring these OFETs using XAS and XES

is one method that can be used to answer this question. By doing further XA and

DOS calculations using DFT, it may be possible to develop and verify an underlying

model.

3.2 Justification for this Research

Pentacene exhibits the highest hole mobilities (up to 15 − 40 cm2/V · s) in OFET

devices [33]. Therefore if it were possible to increase the n-type conduction up

to p-type levels, complementary semiconducting circuits could be fabricated. This

would essentially create functioning organic computational devices. Most of the

research involving doped pentacene has focused on using alkali elements, and to

date transition metal elements have been ignored. The reason for this is due to

the challenge of introducing metal dopants into organic materials without modifying

the structural properties of the material significantly [37, 94]. As will be seen in the

results section, the addition of the Mn atoms has a minimal impact on the pentacene
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crystal structure. This result provides a way to investigate new doping materials and

strategies.

3.3 Goals of this Research

The primary goal of this research is to determine in what capacity the Mn atoms

affect the transport properties of the OFETs. By using Mn-dopants to modify the

HOMO/LUMO energy gap it becomes possible to tailor specific properties of a device

for a designed purpose. If it can be determined with reasonable accuracy how these

properties are modified by the dopants, it will be possible to create complementary

organic semiconducting circuits. This is a requirement for the development of fully

organic computational devices based on CMOS logic. The comparison of experiment

with theory (computations) will also allow a deeper understanding of the usefulness

of various MO models and their applicability for predicting device properties and

tailoring performance characteristics.
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Chapter 4

Soft X-ray Spectroscopies

4.1 Theory of Soft X-ray Spectroscopies

In characterizing magnetically doped organic semiconductors it is useful to determine

the HOMO and LUMO states as it gives an indication of how the dopant atoms af-

fect the electronic structure of the material and thereby its useful semiconducting

properties. The HOMO and LUMO states are analogous to the valence and conduc-

tion bands in traditional semiconductors. Determining the HOMO/LUMO gap can

be used as an indicator of the photon-excitability of the molecule.

XAS and XES are ideally suited for directly mapping out these HOMO and

LUMO states [95]. XAS directly probes the local partial density of unoccupied

states while XES probes the local partial density of occupied states [96]. These

complementary techniques provide a practical means of detailing the local electronic

structure of the material - which can change significantly due to the presence of any

magnetic impurities [52].

4.1.1 X-ray Absorption Spectroscopy

X-ray Absorption Techniques

X-ray absorption (XA) occurs when a photon is absorbed by a core level electron, and

the electron is then excited to either a higher unoccupied state or the continuum. An

XAS spectrum records the XA intensity versus the incoming photon energy. Figure

4.1 shows a model XA spectrum. Labels in the figure show the three different energy

ranges which are focused on depending on what one is investigating. X-ray absorption
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Figure 4.1: Normalized XA spectrum showing regions of interest.
Figure adapted from ref. [97].

near-edge structure (XANES) is measured around 30 eV of the binding energy of the

atomic site of interest. It provides information about the site symmetry and valency

of the atom probed. Near-edge X-ray absorption fine structure (NEXAFS) is loosely

classified to be between 10 and 70 eV above the absorption edge. It is usually

used in studying chemisorbed molecules on surfaces as it provides information about

the intramolecular bond lengths and orientations of the molecule [22]. Extended

X-ray absorption fine structure (EXAFS) goes from around 50 to 1000 eV above

the absorption edge. The electrons in this region have high kinetic energy and

therefore are usually scattered by nearest neighbour atoms. The technique therefore

provides local structural information concerning the excited atom, and conversely

when measuring free atoms (noble or monatomic gases) one will not see the fine

structure oscillations present in the spectra. In summary, the items of interest that

one can determine using XAS are the following: element specific DOS, molecular
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orientation, local atomic structure, lattice parameters, and the length, orientation,

and nature of chemical bonds [98]. For our work the techniques that provide us with

the most pertinent information are XANES and NEXAFS.

X-ray Absorption Physics

Figure 4.2: Schematic of the core-hole creation process showing the
initial state |i〉 and final state |f〉. Adapted from ref. [99].

The XA and XE transition probabilities are calculated by considering a time-

dependent perturbation of the material by the incoming X-rays. The incoming pho-

tons induce transitions between the initial state |i〉 and the final excited state |f〉

— as shown in figure 4.2. XA is a first-order process, so the transition from |i〉 to

|f〉 occurs in one step with no intermediate states. XA occurs on an attosecond

timescale for ionization events ∼10 eV above the ionization potential, allowing the

so-called sudden approximation to hold. The sudden approximation allows one to

assume that the electronic transition possesses a single-electron character and occurs

rapidly in relation to the relaxation times of the other “passive” electrons. The tran-

sition probability per unit time (up to first order) for an absorption event is given
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below:

Tif =
2π

~
|〈f |Ĥint|i〉|2ρ(εf ) (4.1.1)

where |i〉 and |f〉 are the wavefunctions of the combined photon plus atom system,

and ρ(εf ) is the density of final states [87]. Ĥint is the interaction Hamiltonian given

by the product of the momentum operator p̂ and the vector potential operator Â

according to the equation below:

Ĥint =
e

me

p̂ · Â (4.1.2)

The core shell of any atom being probed is strongly localized. The element specificity

comes directly from the characteristic binding energies of the elements, and partly

from the localization of the XA event. One can view the XA process as a way to

decompose the molecular orbitals into their respective atomic orbitals.

Dipole Approximation

The wavelength of the incoming radiation for soft X-rays (λ ≥ 1.2 nm) is much

larger than the atomic dimensions (r ' 0.01 nm for the 2p core shell), this allows

one to make a dipole approximation for the incoming radiation [87]. Essentially it

assumes that the perturbing electric field is constant over the volume of the atom

that is undergoing excitation. The X-ray absorption cross-section, in the dipole

approximation, is given below,

σabs = 4π2α~ω|〈fel|ε · r̂|iel〉|2ρ(Ef ) (4.1.3)

where α is the fine structure constant, r̂ is the dipole operator, ε is the unit photon

polarization vector, and ρ(Ef ) is the density of final states per unit energy which

depends on the normalization of the electronic wavefunctions |fel〉 and |iel〉. The

absorption cross-section measures the number of electrons excited per unit time,

divided by the number of incoming photons per unit area, per unit time. It has

dimensions of cm2 or given in units of “barns”, where 1 barn = 10−24 cm2.
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Selection Rules

The validity of the dipole approximation gives rise to several electric dipole selection

rules for transitions between the initial and final states in the XA and XE process.

These selection rules are based on the ones obtained for a one-electron atom having

azimuthal (l), magnetic (m), spin (s), and total angular momentum (j) quantum

numbers. The list below shows the possible values allowed for radiative (dipole)

transitions,

∆l = ±1

∆m = 0,±1

∆s = 0

∆j = 0,±1

(4.1.4)

where ∆ is defined as the difference between the initial and final quantum states.

Broadening Factors

There are several broadening factors one has to consider when analyzing X-ray spec-

tra. The main ones being instrumental, core-hole lifetime, and final-state (excited

electron) lifetime broadening factors. These all have an impact on the sharpness of

spectral features. Instrumental broadening is due to the measuring conditions of the

experimental set-up. Contributing factors to this effect can come from the optical

resolution of the beamline, the mechanical resolution of monochromator components,

and the duration of measurements. All of these effects are combined together into

a single broadening factor called the instrumental resolving power (E/∆E). It is

a systematic instrumental effect and depends on the incoming energy of the pho-

tons. To incorporate the effect into calculated spectra it is modeled with a Gaussian

function with the standard deviation derived from the resolving power [100].

During X-ray absorption the molecule undergoes a transformation from the initial

state to a resonant final state. The full width of the resonance Γ is determined

according to Heisenberg’s uncertainty principle,

Γ ' ~
τ

(4.1.5)
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where τ is the lifetime of the final state. Equation (4.1.5) can be further reduced by

separating τ into two contributions [22]:

1

τ
=

1

τe
+

1

τh
(4.1.6)

where τe is the excited electron lifetime, and τh is the core-hole lifetime. The core-hole

lifetime for carbon has a width of Γ ' 0.1 eV which translates into a characteristic

lifetime in the range of 10−15 − 10−14 seconds [22]. The resonantly trapped electron

has a much larger width of Γ ' 10 eV corresponding to a shorter lifetime in 10−17−

10−16 second range. As a result the core-hole will have an effect on the trapped

electron. These lifetime broadening effects are modeled with Lorentzian functions in

calculated spectra [101, 102].

4.1.2 X-ray Emission Spectroscopy

XES is a photon-in/photon-out process that occurs when the core hole created in an

X-ray absorption event is “refilled” by a higher energy electron — usually coming

from the valence band. The difference in energy between the valence electron and

the core hole is transferred to the emission of a photon of that energy. This photon is

then detected and analysed with a spectrometer. XES therefore results in a spectrum

showing the emission intensity as a function of the emission energy. Since the core

hole created during XA is localized it results in a detailed snapshot of the local

electronic structure around the element specific atomic site of interest. In other

words it probes the local partial density of occupied states [103]. Figure 4.3 shows

a schematic of this non-resonant process. The transition probability for this process

is given in equation (4.1.7) below — where the dipole approximation has been used

to simplify the expression.

Tif =
2π

~
|〈f |ε · r̂|i〉|2ρ(εf ) (4.1.7)

As for XA, |i〉 and |f〉 are the initial and final wavefunctions of the system and ρ(εf )

is the density of final states.
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Figure 4.3: Schematic of the XE process showing the initial |i〉 and
final |f〉 states. The final state in non-resonant XE is a valence ionized
atom or molecule. Adapted from ref. [104].

4.2 Experimentation Techniques

4.2.1 Synchrotron Sources

A synchrotron is an experimental facility which makes use of photons to measure

various properties of materials. Currently synchrotrons are in their “third genera-

tion” and are designed for high radiation output by using insertion devices such as

undulators, wigglers, and bending magnets. When electrons are accelerated close to

the speed of light they emit radiation in the form of highly energetic (GeV ) pho-

tons. To maintain the acceleration of the electrons and the subsequent emission of

photons, the electrons are confined to a circular path using magnetic fields gener-

ated from insertion devices around the storage ring for the electrons. These photons

can be tuned to a very narrow energy window creating a highly focussed and nearly

monochromatic source with exceptional spectral brightness - also sometimes called

brilliance. Spectral brightness is defined as the photon flux impinging on the sample

per unit area, per unit solid angle, per unit relative energy bandwidth. Equation
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(4.2.1) below clarifies this:

B∆ω/ω =
∆P

∆A · ∆Ω · ∆ω/ω
(4.2.1)

∆P is the power radiated from an area ∆A into a solid angle ∆Ω within a relative

spectral bandwidth ∆ω/ω [105]. The brilliance obtained allows experiments to have

three principal advantages over smaller laboratory set-ups: higher spatial resolution,

higher coherence, and higher spectral resolution [106]. All of the spectra presented

in this thesis were performed at the Advanced Light Source (ALS) at the Lawrence

Berkeley National Laboratory in the USA. Use was made of the Soft X-Ray Fluo-

rescence (SXF) spectrometer located on beamline 8.0.1 [107]. The electronic charge

density distribution of a material directly determines the size and shape of a molecule

and its proclivity toward bonding. In essence, it determines nearly all of the physical

and chemical properties of the material. Since this negative charge occurs in real

space it is something which can be both directly and indirectly measured using vari-

ous techniques. Some of the experimental methods used currently in condensed mat-

ter research that use synchrotrons are X-ray absorption and emission spectroscopy

(XAS and XES), X-ray excited optical luminescence (XEOL), photoemission electron

microscopy (PEEM), angle-resolved photoelectron spectroscopy (ARPES), and X-ray

magnetic circular dichroism (XMCD), among many others.

4.2.2 Beamline Setup

Beamline 8.0.1 uses an undulator to create photons possessing small angular diver-

gence and a narrow spectral width. The undulator has 89 poles with a period of

5.0 cm, with the first, third, and fifth, harmonics being useful. The first harmonic

covers an energy range from 70 − 250 eV , with higher harmonics covering energies

up to 1200 eV by adjusting the undulator gap. Figure 4.4 shows the schematic lay-

out of the beamline. The radiation coming from the undulator is focused onto the

entrance slit by a water-cooled SiC vertical condensing mirror. The interchangeable

and rotatable spherical gratings monochromatize the incoming light depending on

the selected energy range from the undulator. These water-cooled, holographically
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Figure 4.4: Layout of Beamline 8.0.1. showing the movable entrance
and exit slits. Figure adapted from [107].

ruled, spherical gratings have rulings of 150, 380, and 925 lines/mm. By satisfying

Rowland geometry with the movement of the entrance and exit slits the optimal fo-

cusing conditions are met. The horizontal refocusing mirror narrows the spot size for

the SXF endstation. The resultant spot size of 100 µm × 100 µm, has an estimated

photon flux of 1013 photons per second, giving a resolving power of 10000 [108].

4.2.3 X-ray Absorption Measurements

Beamline 8.0.1 is equipped to measure XAS using three different experimental meth-

ods: total electron yield (TEY) partial fluorescence yield (PFY) and total fluores-

cence yield (TFY). Each method has strengths and weaknesses that depend primarily

on the type of sample one is measuring and the energy resolution desired. Since all

three methods yield results which are proportional to the X-ray absorption coeffi-

cient, it becomes necessary to understand the situations where each method excels.

All three methods have different sample-to-background (or signal-to-noise) ratios

that also play a part in the suitability of which method to use. For our samples the

TEY method was the most suitable, and the results presented use TEY exclusively.

26



Total Electron Yield

During an X-ray absorption process the incoming photon creates a core hole. This

empty core hole will either be refilled by a non-radiative process, such as Auger

decay, or a radiative process, such as X-ray fluorescence. These are two of the com-

peting methods for the soft X-ray energy range of interest. The two routes have

different time-scales creating different relative yields, which in turn are a function of

the atomic number Z. For low-Z materials like carbon, and also for L-shell excita-

tion of atoms with Z < 90 the Auger decay channel dominates. This makes TEY a

good method as the signal-to-noise ratio is generally better than for fluorescent yield

methods. Figure 4.5 shows these two processes. Total electron yield measures the

Figure 4.5: Diagram of an absorption process showing two of the
competing methods for measuring X-ray absorption spectra. The left
hand side of the figure shows the radiative decay process. The core hole
is filled with an electron from either the L- or M -shell, with radiation
(Kα or Kβ) being emitted. The right side shows the Auger decay
process, where the electron escapes into the continuum. Figure from
ref. [109].

total number of electrons that leave the sample, either through primary excitation

processes (photoelectrons) or secondary processes, such as Auger decay. The sample

holder is connected to ground and the current flowing through the wire to neutralize

the ionized sample is measured with an ammeter. This is the only electrical con-
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nection to the sample holder. Therefore the measured current is proportional to

the absorption coefficient. In comparison to hard X-rays, the soft X-ray penetration

depth is considerably shorter. For carbon the penetration depth varies between 5–

100 nm (depending on the incidence angle) for λ ≈ 0.4 nm [22, 105] . Even so, this

is considerably greater than the escape depth of the excited electrons, as they expe-

rience electron-electron, electron-plasmon, and electron-phonon interactions which

all limit the electron scattering length [22]. As the photoelectrons scatter through

the material it creates an electron cascade effect. Only some of these electrons will

have sufficient energy to overcome the work function of the material and contribute

to the electron yield signal. Any excited electrons created below a certain depth

L will have insufficient energy to overcome the potential energy barrier of the sur-

face. Figure 4.6 shows this effect schematically. This results in the electron yield

Figure 4.6: The incoming photon (hν) is absorbed by the material,
giving rise to an electron cascade. Only excited electrons within a
certain depth L escape the material and contribute to the electron
yield signal. Figure adapted from ref. [22].

signal being somewhat surface sensitive in comparison to fluorescent yield signals as

photons have an order of magnitude greater escape depth.
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Normalization and Energy Calibration

The experimental set-up has a fine gold mesh that is placed along the beamline

close to the sample holder such that after the beam passes through it, its next stop

becomes the sample holder. As the beam passes through this highly transparent gold

mesh a current is generated that is measured with a picoammeter. The absorption

signal is then normalized by dividing the measured signal by the gold mesh current.

Normalization allows one to account for any fluctuations that may be present in the

incident beam current. It also ensures that the measured spectrum is independent

of absorption that may occur with beamline components that precede the sample —

such as the various monochromator gratings and mirrors.

Energy calibration for X-ray spectroscopy measurements are essential, as the

beamline is a mechanical and optical device with moving components. This intro-

duces slight errors in the energy positions of the measured spectra. To account for

these variations it is necessary to always measure a reference sample that possesses

well-established values for the prominent peaks in its spectrum. This reference sam-

ple’s spectrum is linearly shifted up or down in energy to match the known energy

values. This energy offset is then subsequently applied to all other measured spectra

done at the same excitation energy.

4.2.4 X-ray Emission Measurements

The SXF endstation consists of a grating emission spectrometer utilizing a photon

counting multi-channel plate (MCP) area detector. The MCP is mounted on a

XY-θ motion table. This is located perpendicular to the incident beam with a fixed

entrance slit located near the sample holder manipulator (see Figure 4.7). The ultra-

high vacuum (UHV) sample chamber has XYZ-θ motion with provisions for cryogenic

and elevated temperature use. To cover the energy ranges of interest (40–1000 eV ),

the spectrometer utilizes four interchangeable gratings, this ensures that the entire

emission spectrum can be recorded without needing to scan the MCP detector. XAS

and XES measurements can be performed immediately after each other without the
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Figure 4.7: Schematic of the SXF spectrometer endstation showing
the entrance slit, gratings, and detector all lying along the Rowland
circle geometry. Figure from ref. [108].

need to take the sample out of vacuum. For further details see references [107] and

[108]. As XES is a photon-in/photon-out process it ensures that the sample is free of

any charging effects which can occur with some of the XA measurement techniques.

This allows one to use the technique on a large range of samples — both conducting

and insulating — and can probe the bulk material due to the larger escape depth

for photons.

4.2.5 Sample Fabrication

The pentacene and Mn-doped pentacene samples were prepared in South Korea using

chemical vapour deposition. The pentacene organic layer was thermally evaporated

onto a doped silicon substrate with a 100 nm thick SiO2 gate-oxide layer. The Mn-

doped samples were prepared under similar conditions with Mn thermally evaporated

concurrently with the pentacene. The evaporation temperature was set at 160 ◦C.

The thickness of the deposited organic layer was controlled using a calibrated quartz-

crystal monitor, and set to 40 nm. After depositing the pentacene layer, a 10 nm

thick gold capping layer was applied to prevent any oxygen uptake by pentacene. The

doping concentration for Mn (4 or 8% by volume) is determined using a combination

of the evaporation rate (0.1Å/s) and the quartz-crystal monitor.
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4.3 Theoretical Methods

4.3.1 Density Functional Theory

The Schrödinger Equation

Much of the work presented here, such as: determining ground state energies; sim-

ulating X-ray spectra; performing geometry optimizations; all require the use of

methods based on quantum mechanics. All of the theoretical methods stem from us-

ing forms of the Schrödinger equation (SE), which is given below in its most general

form [110].

Ĥ(t)|Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉 (4.3.1)

Where Ĥ(t) is the time-dependent Hamiltonian, |Ψ(t)〉 is the state vector at time

t, and ~ is the reduced Planck’s constant. The time-independent Hamiltonian for

a system of interacting electrons and atomic nuclei can be given by the following

general equation [111].

Ĥ =−
P∑
I=1

1

2MI

∇2
I −

N∑
i=1

1

2m
∇2
i +

1

2

P∑
I=1

P∑
J 6=I

ZIZJ
|RI −RJ|

+
1

2

N∑
i=1

N∑
j 6=i

1

|ri − rj|
−

P∑
I=1

N∑
i=1

ZI
|RI − ri|

(4.3.2)

Where P are the nuclear coordinates given by the set R = {RI, I = 1, . . . , P},

and N are the electronic coordinates given by r = {ri, i = 1, . . . , N}, ZI are the

nuclear charges and MI are the masses. The equation is given in atomic units

with ~ = e = 1
4πε0

= 1. This Hamiltonian operator breaks down the total energy

contributions of the extended system into components associated with the electrons

and nuclei, and their interactions with each other. The first two terms are due to

kinetic energy of the nuclei and electrons, and the last three terms deal with potential

energy contributions. Applying this Hamiltonian to the time-independent SE (4.3.3)

allows one to determine many of the physical properties of a material.

ĤΨn(R, r) = EnΨn(R, r) (4.3.3)
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Solving (4.3.3) gives the energy of the system, where En are the energy eigenvalues,

and the wavefunctions (or eigenstates) are given by Ψn. Using various other operators

in place of the Hamiltonian will give you any other physical property you might be

interested in. The disadvantage with this approach is that the SE cannot easily

be decoupled into a set of independent equations and therefore one is left with

attempting to solve an equation involving 3(P+N) coupled degrees of freedom [111].

For a realistic solid-state system there will be on the order of 1023−1026 particles —

resulting in a many-body wavefunction that quickly becomes intractable. To solve

this many-body problem it becomes necessary to resort to approximations that can

deal with the enormous number of particles involved. This led to the development

of the classical nuclei approximation — also called the Born-Oppenheimer (BO)

approximation, and subsequently to density functional theory (DFT).

The Born-Oppenheimer Approximation

This approximation treats the nuclei as classical particles allowing one to separate

the electronic and nuclear degrees of freedom. The BO approximation is valid for

many realistic situations as the electron to nuclear mass ratio (m/M) is always

smaller than the nucleus by at least 2×104. Essentially the electrons move almost

instantaneously in relation to the thermally vibrating nuclei, making it reasonable to

assume that the electrons remain in their ground state [112]. Equation (4.3.4) below

condenses (4.3.2) and enables us to show more clearly which terms are affected by

the BO approximation.

Ĥ = T̂n + T̂e + V̂nn + V̂ee + V̂ne (4.3.4)

The T̂ -terms are kinetic energy, V̂-terms are potential energy, and n and e are indices

for the nuclei and electrons respectively. So in the BO approximation the T̂n term

can be neglected as the nuclei are assumed to be stationary in regards to electronic

motion. The nuclear repulsion V̂nn term is treated as a constant for a given geometry.

And the correlation in the attractive nuclear-electron potential term (V̂ne) is removed.

The end result being that one is left with a Hamiltonian that is only dependent on
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the electronic degrees of freedom (i.e. coordinates), with the nuclear coordinates

entering the equation as parameters. This formulation does not necessarily help the

situation much on its own, as one still has similar scaling issues when increasing the

number of atoms. But what it does allow is the application of DFT to the problem

as it satisfies the constraints that are inherent with DFT.

Density Functional Theory

Hohenberg and Kohn’s approach was to develop DFT as an exact theory of a many-

body system that applies to any system of interacting particles in an external poten-

tial [113]. For solid state systems the external potential is taken to be the nuclear

potential (Vnn), and the interacting particles are the electrons — although the the-

orems have been generalized by Levy and Lieb to apply to a wider range of systems

and conditions [114]. DFT is based on two simple theorems which are stated below

[113]:

1. In any system of interacting particles in an external potential vext(r), the

potential vext(r) is determined uniquely, except for an additive constant,

by the ground state electron density ρo(r).

2. The ground state energy of the interacting electron gas is a unique func-

tional of ρo(r) for any external potential vext(r).

Thereom 1 in essence says that it is possible using only the electron’s ground-state

density
(
ρo(r)

)
, to determine all of the physical properties of the system. This leads

to an enormous simplification as now the electron density is the basic variable —

which only depends (in three dimensions) on a scalar field of three variables [115].

Theorem 2 says that the functional E[ρ] is sufficient to determine the exact ground

state energy Eo. The problem is that this exact functional has so far not been

determined. The usefulness of the theorem is the fact that there is a variational

principle for finding the charge density. The next step in the process is to make use

of these theorems, which Kohn and Sham did in 1965.
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Kohn-Sham Equations

Kohn and Sham proposed to simplify the Hamiltonian operator by assuming that

one had a system of non-interacting particles. This would allow one to express

the Hamiltonian as a sum of single-particle operators. Now the problem of finding

the ground state electron charge density simplifies to solving a set of single-particle

eigenvalue equations. The so-called Kohn-Sham (KS) equations are given below:(
− 1

2m
∇2 + Veff(r)

)
ψi(r) = εKSi ψi(r), εKS1 ≤ εKS2 ≤ · · · , (4.3.5)

Veff(r) = Vext(r) + VH(r) + VXC(r) (4.3.6)

The {ψi} are called KS-eigenstates and the Veff(r) is the effective potential felt by

each independent electron. The εKSi are the corresponding KS-energies. In equation

(4.3.6) the Vext(r) is the external potential due to any applied electric field and also

includes the nuclear potential term. VH(r) is called the Hartree potential and is due

to the electrostatic potential generated from the electronic charge density ρ(r) given

by solving Poisson’s equation:

−∇2VH(r) = ρ(r) (4.3.7)

to get,

VH(r) =

∫
ρ(r′)

|r− r′|
dr′ (4.3.8)

The VXC(r) term is the exchange-correlation potential and equals the functional

derivative of the exchange correlation energy EXC [ρ(r)]:

VXC(r) =
δEXC [ρ(r)]

δρ(r)
(4.3.9)

The charge density is calculated from the occupied KS-states according to:

ρ(r) =
∑

i occupied

|ψi(r)|2 (4.3.10)

with the condition that,

〈ψi|ψi〉 = 1 (4.3.11)
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Finally the ground state energy Eo can be found from the solution of equation (4.3.5)

Eo =
N∑
i=1

εi +
1

2

∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + EXC [ρ(r)]−

∫
ρ(r)VXC(r)dr (4.3.12)

The exact form of the exchange-correlation energy is not known, so the usefulness

of DFT depends on finding approximations for the functional EXC [ρ(r)] that are

simple and accurate [110]. This has led to various forms of the EXC [ρ(r)] functional

with two of the most popular being the local density approximation (LDA) and the

generalized gradient approximation (GGA).

LDA and GGA

The LDA is an exchange-correlation functional that depends only on the local elec-

tron density. It assumes the electrons have a local density that is the same as the

density for a uniform electron gas. This allows the EXC [ρ(r)] functional to be ap-

proximated as;

ELDA

XC [ρ(r)] ≈
∫
εXC[ρ(r)]ρ(r)dr (4.3.13)

Neglecting correlation gives us a simple form for the exchange energy,

εX[ρ(r)] ≈ −3e2

2π

(
3π2ρ(r)

) 1
3ρ(r) (4.3.14)

which is clearly only dependent on the local electronic density.

The GGA goes one step further than the LDA by taking into account the gradient

of the density in the functional dependence of the energy operator, as the equation

below shows:

EGGA

XC [ρ(r)] =

∫
f
(
ρ(r),∇ρ(r)

)
dr (4.3.15)

With f being a universal function of the electronic densities and their gradients.

There are several versions of the GGA, all of which are parametrized somewhat

differently. The specific form of the GGA used in the work presented in this thesis

will be covered in the next section concerning STOBE — the DFT computer program

used to model the molecules studied.
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4.3.2 STOBE

STOBE (Stockholm-Berlin — named after where the principle authors reside) is a

DFT based program that is particularly suited for comparison with spectroscopic

techniques such as NEXAFS and XES. The program was initially based on the deMon

(Density of Montréal) code written by D.R. Salahub at the University of Montréal

[116]. STOBE uses an iterative self-consistent field (SCF) approach to the solution

of the previously mentioned KS-equations. It does this using a linear combination

of atomic orbitals (LCAO), specifically using Gaussian type orbitals (GTO) as the

basis sets used to form the KS-orbitals.

The program outputs results in Hartree atomic units (a.u.). In this natural unit

system the following physical constants are normalized to unity:

e = ~ = me =
1

4πε0
= 1 (4.3.16)

where e is the charge of an electron, ~ is the reduced Planck’s constant, me is the

mass of an electron, and ε0 is the permittivity of free space. It follows that a0 (the

Bohr radius) also becomes unity. The conversion factor between S.I. units and atomic

units is given below:

1 a.u. =
e2

4πε0a0

=
α~c
a0

≈ 27.211 eV ≈ 4.3597× 10−18 J (4.3.17)

where c is the speed of light in vacuum, and α is the fine structure constant given

by:

α =
e2

4πε0~c
(4.3.18)

Basis Sets

Equation (4.3.19) below shows how the KS-states (or orbitals) from equation (4.3.5)

are built-up using these GTO basis functions.

ψi =
N∑
j=1

ajχj (4.3.19)

The aj are the coefficients for the orbital basis functions χj, and the number N

determines the size of the so-called basis set which is used. The aj are the varying
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parameters during the iterative DFT calculations while the functions are kept static.

The χj are derived from using an integral representation for the exponential functions

that occur in wavefunctions for the atomic orbitals. As an example, the equation

below shows a hydrogen-like 1s function expanded in a Gaussian basis:

e−ξr =
ξ

2
√
π

∞∫
0

s
3
2 e−

ξ2

4s
−sr2ds (4.3.20)

The limits are subsequently reduced to s1 and s2 (from 0→∞) through minimizing

the cut-off errors to an acceptable value [117]. The next step involves transforming

the integral into a sum over a regular grid allowing for easier use of computation

algorithms.

The basis sets are generally defined by the number of s-, p-, and d-type functions

used to approximate the “real” s, p, and d AOs. The general notation (ns/np/nd) is

used for this purpose. To account for polarization effects the element in question will

have additional angular functions added. For example, hydrogen will have p-type

functions included, and not simply be based on s-type functions. All of the GTO

basis sets used in STOBE are commonly used basis sets developed by Sigeru Huzinaga

in 1965 [118], with refined numerical parameters from ref. [119].

The molecules are also represented by auxiliary basis sets which are used to fit

the electron density, and the exchange and correlation terms [119]. The notation

STOBE uses for these basis sets is similar to the GTO notation. The general form

is (kCs , l
C
s,p,d;m

xc
s , n

xc
s,p,d), where kCs is the number of s-type functions, and lCs,p,d de-

termines the number of s-, p-, and d-type functions sharing the same exponents in

the Gaussian basis “expansion” for the Coulomb potential. mxc
s and nxcs,p,d constitute

the exchange/correlation set with the numbers taking the same meaning as for the

charge density basis set [120]. All the calculations used an A5 auxiliary basis set

based on the so-called triple-ζ valence plus polarization (TZVP) orbital basis set.

The triple-ζ stands for the number of radial functions used, with more than three

functions (i.e. quadruple-ζ) not changing results appreciably for molecular systems

[119]. The only exception to this are the hydrogen basis sets, which used three con-

tracted s-functions with one augmented p-function — resulting in a double-ζ valence
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Table 4.1: Basis sets for the atoms used in STOBE calculations

Element GTO Basis Auxiliary Basis

Hydrogen (311/1) (3,1;3,1)

Carbon (7111/411/1) (5,2;5,2)

Cobalt (63321/531/311) (5,5;5,5)

Manganese (63321/531/311) (5,5;5,5)

plus polarization (DZVP) basis set. Table 4.1 is a summary of the different basis

sets used for the elements in this project.

In addition, STOBE uses augmented basis sets to improve the results when calcu-

lating excited states. This is the so-called even-tempered basis set technique. These

basis sets have an atom-centered basis augmented with atomic-like wave functions

surrounding the spherical regions of the nuclei [111]. This allows flexible basis func-

tions giving rise to a greater level of accuracy. The downside is that they require

more resources and are technically more complicated as any redundancies in the fi-

nal basis set need to be checked for and removed. In STOBE the augmented basis is

placed on the atom being excited, with the large diffuse basis set consisting of over

one hundred s-, p-, and d-type functions [121]. In addition to this large diffuse basis

the excited atom is also initially modeled with a good molecular basis set to obtain

the bound molecular orbitals. In STOBE this is done with the IGLO-III basis set by

Kutzelnigg, which allows for better modeling of the relaxation effects in the inner

orbitals [117, 121].

Oscillator Strengths

The oscillator strength f is the energy integral of the XA cross-section (equation

(4.1.3)) and accounts for the intensity of the resonances observed in the measured

spectra. f is defined below:

f = 4π2α~ω|〈f |ε · r̂|i〉|2 (4.3.21)
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where |f〉 and |i〉 are volume normalized to unity. The total oscillator strengths for

both discrete and continuum transitions satisfy the Thomas-Reiche-Kuhn sum rule.

Simply put, it states that for an electron in an atom or molecule the sum of all the

oscillator strengths for all transitions is unity [22]. It follows that the total oscillator

strength for a transition is equal to the total number of electrons N in the molecule

— as shown below: ∑
n

fn +

∫ ∞
IP

df(E)

dE
dE = N (4.3.22)

The first term in equation (4.3.22) accounts for the discrete resonances below the

ionization potential (IP), and the second term accounts for the intensity above the

IP. The sum rule enables one to relate the calculated oscillator strengths with the

experimental peak area, as the area under the curve of a df(E)/dE versus E plot is

proportional to the number of electrons in an atomic or molecular system.

Theoretical X-ray Spectra

STOBE’s main advantage over other ab initio DFT programs are the specific im-

plementations done to model inner-shell spectroscopies. It can determine energy

differences between the core to both valence and unoccupied states, by using the

calculated dipole transition probabilities. With the use of these values it becomes

possible to produce theoretical X-ray spectra. The theory is based on the transition

state (TS) method, which uses a half-occupied core hole on the excited atom. This

approach was originally developed by Slater for the multiple scattering Xα method

[122, 123], but has shown good results for NEXAFS and XES of small molecules

[121, 124]. One of the benefits of the TS method is that it includes a large part of

the relaxation energy (up to second order), which is generally accurate enough for

the majority of core ionization/excitation problems [121].

As there are 22 carbon atoms in pentacene the core orbitals tend toward delocal-

ization in the calculations. This can cause convergence issues when determining the

correct energy values for these atoms. To account for this, so-called effective core po-

tentials (ECP), or pseudopotentials, are used for all equivalent atoms not undergoing

excitation. This keeps the core orbital localized on the specific atom being excited
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[125]. An ECP allows one to account for the core electrons in the DFT calculation

by replacing the nuclear charge of the atom, with an effective charge that includes

the core electrons. That is,

Zeff = Z − Zcore (4.3.23)

where Zcore is the charge associated with the core electrons. For carbon Zcore = 2,

resulting in Zeff = 4. This allows one to reduce the number of electrons that are

treated explicitly and decreases the computation time considerably. The downside

is that using the ECP approximation can introduce an error up to 0.2 eV (for the

binding energy), but for carbon atoms it is well below 0.05 eV [125].

In STOBE the oscillator strengths are calculated for each transition and then

summed. These oscillator strengths are determined from the x-, y-, and z-components

of the dipole transition moment, as shown for the cartesian x-component below [116]:

fx = 〈ψf |x|ψcore〉 (4.3.24)

where ψf and ψcore are the final and core KS-orbitals. The total oscillator strength

is then computed with the following equation [116, 124],

ftotal =
2

3
Eexc(f

2
x + f 2

y + f 2
z ) (4.3.25)

where Eexc is the excitation energy (in Hartree units) and fx, fy, fz are the cartesian

dipole transition moments, with the result given in atomic units. One can now take

these oscillators strengths for each atom, sum them, and apply broadening values

that mimic experimental conditions. This results in a final spectrum that can be

compared with the experimental XA or XE spectra.

Implementation

As the DFT algorithms scale on the order of N3 — there is an artificial limit to

the number of atoms, N , one can model. Trying to model more than ∼200 atoms

in STOBE results in prohibitive computational time with current hardware. StoBe

has default limits set to 140 atoms, 3800 primitive/1900 contracted Gaussians for

orbitals, and 3800 primitive Gaussians for the auxiliary functions. It was necessary
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to change these limits in the program, by doing some minor code modifications to

allow some of the results presented here to work.

All of the calculations performed used the gradient corrected exchange functional

by Becke [126] given in the equation below (in atomic units):

EGGA

X [ρσ(r)] = ELDA

X − β
∑
σ

∫
ρ4/3
σ

x2
σ

(1 + 6βxσ sinh−1 xσ)
d3r (4.3.26)

where β is a constant, ρσ is the spin density, and xσ is a dimensionless ratio given

by,

xσ =
|∇ρσ|
ρ

4/3
σ

(4.3.27)

A correlation-energy functional by Perdew was used for all the calculations and is

given below [127].

EC[ρ(r)] = ELSD

C +

∫
e−ΦC(ρ)|∇ρ|2

Dρ4/3
d3r (4.3.28)

where D equals,

D = 21/2

[(
1 + ζ

2

)5/3

+

(
1− ζ

2

)5/3
]1/2

(4.3.29)

with,

ζ =
ρ↑ − ρ↓
ρ↑ + ρ↓

(4.3.30)

Φ is given by,

Φ = 1.745f̃

[
C(∞)

C(ρ)

]
|∇ρ|
ρ7/6

(4.3.31)

where f̃ is a constant and C(ρ) is,

C(ρ) = 0.001667 +
(0.002568 + αrs + βr2

s)

(1 + γrs + δr2
s + 104βr3

s)
(4.3.32)

where α, β, δ, and γ are constants, and rs is the Wigner-Seitz radius [128],

rs =

(
3

4πρ

)1/3

(4.3.33)

And finally ELSD
C is the local spin density approximation given by,

ELSD
C [ρσ(r)] =

∫
ρσεc(ρσ)d3r (4.3.34)
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where εc(ρσ) is the correlation energy per particle in the uniform electron gas. This

value is determined by a parametrization procedure [127].

It is possible to specify several convergence parameters in the program. Conver-

gence generally will depend on the difference between successive iterations of both

the electron density and the total energy. In STOBE convergence is achieved when

three successive iterations all meet the specified criteria. For all calculations the

convergence threshold for the energy difference was set to 1× 10−6, and the density

convergence was set to 2× 10−6 — with a couple of calculations requiring this value

to be relaxed to 2×10−5 to achieve convergence. The order in which the calculations

are done, and the steps that are involved are:

1. The pentacene molecule and the location(s) of the Mn atom(s) are first

drawn using a free software tool from Accelrys called DS VISUALIZER 1.7.

A pdb (Protein Data Bank) structure file is saved as output and the

xyz coordinates used as input for STOBE. The xyz coordinates for all the

pentacene structures used are given in Appendix A with a listing of the

input files for STOBE.

2. The first step in STOBE is to perform a geometry optimization on the

molecule.

3. Next a DOS calculation is done. From the output one can determine

the KS-orbital that the half-filled core hole will be assigned to for the

subsequent XAS calculation.

4. For an XAS calculation the fractional occupation will need to be assigned

to every non-equivalent atom in the molecule. For pentacene this trans-

lates into 22 calculations that need to be done to account for the 22

carbon atoms.

5. The final step is to broaden the oscillator strengths of each of the 22

carbon transitions and sum them together, average and then plot the

resulting spectrum.
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To compare the calculated spectra with experiments two further steps are needed.

Since relativistic effects for the IP are not accounted for, shifting the carbon spectra

by 0.2 eV is needed to generate absolute energies [129]. For all the spectra presented

here, it was also necessary to shift the energy scale by approximately −2 eV to

account for the discrepancy between comparing “gas-phase” calculations with the

thin-film phase of pentacene. The prominent π* (unoccupied π orbital) peak found

in the experimental carbon spectra was used as the alignment point of the calculated

spectra. For the display of XA spectra the oscillator strengths are convoluted with

gaussian functions with varying FWHM values. For all the XA spectra of carbon the

broadening was set to 0.7 eV for the energy range of 282–293 eV (to approximately

match the IP). To account for the increase in lifetime broadening above the IP, the

FWHM value is then linearly increased to 4.5 eV between the range of 293–300, and

stays at a constant 4.5 eV FWHM from 300–330 eV . This broadening scheme is

arbitrary, and is used to more closely match experimental spectra [130].
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Chapter 5

Results

5.1 Bond Lengths

The first step toward comparison of theory and experiment involves looking at the

correspondence between the experimentally determined structure — using X-ray

measurements [131, 132] — and computed geometry optimizations using DFT. The

STOBE geometry optimization for the pentacene molecule gives the results shown in

figure 5.1 below.

Figure 5.1: STOBE optimized isolated pentacene molecule. Corre-
sponding bond lengths are given in table 5.1 according to the labels
in the figure. The missing labels follow from the D2h symmetry of the
molecule [133].

Table 5.1 shows two STOBE results in comparison to other computational and

experimental results. The X-ray diffraction (XRD) results of Campbell et al. used

Cu Kα radiation and recorded on Weissenberg film [131]. These results are for

molecular crystals of pentacene in comparison to a single isolated molecule, but the

values are quite close due to the weak intermolecular forces in the crystal. The results
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Table 5.1: Calculated bond lengths (Å) in comparison with experi-
ment.

X-ray DFT

Bond Campbell [131] Endres [134] Lee [135] STOBE 1 STOBE 2

C1 1.439 1.41 1.393 1.413 1.408

C2 1.380 1.42 1.398 1.423 1.418

C3 1.358 1.40 1.385 1.401 1.396

C4 1.440 1.43 1.412 1.442 1.437

C5 1.357 1.38 1.364 1.378 1.373

C6 1.382 1.43 1.415 1.440 1.434

C7 1.424 1.46 1.436 1.467 1.461

C8 1.433 1.46 1.442 1.469 1.464

H1 N/A 1.10 1.088 1.095 1.095

H2 “ 1.10 1.089 1.096 1.095

H3 “ 1.10 1.089 1.094 1.095

H4 “ 1.10 1.087 1.094 1.094

given by Endres et al.[134], and Lee et al.[135], were obtained using alternative DFT-

based programs.

The STOBE geometry optimization procedure works by moving atoms in the di-

rection of forces until one reaches the convergence thresholds specified. Essentially

it makes use of the Hellman-Feynman theorem as given in the equation below:

dE

dr
=

〈
ψ(r)

∣∣∣∣dHdr
∣∣∣∣ψ(r)

〉
(5.1.1)

Equation (5.1.1) shows the relationship between the derivative of the total energy

with respect to the external potential generated from the electrons. Appendix A

provides a reference of the atomic co-ordinates used for all the STOBE calculations

done.
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The default energy gradient threshold for STOBE is 1.0× 10−4 a.u., which is the

value used for the STOBE #1 column (where 1 a.u. for energy density is equal to

1 Hartree/Bohr3 or 183.633252 eV /Å3). The STOBE #2 geometry optimization

used stricter convergence thresholds (energy gradient set to 1.0 × 10−5 a.u.) and

also used the Versluis correction to account for the error introduced by numerically

determining the exchange-correlation contribution to the energy gradient [136]. This

method is useful for organic systems and gives slightly more accurate results at

the expense of computation time [116]. The z-coordinates for all the atoms in the

optimized molecule were essentially at z = 0 — in agreement with experimental

findings of oligoacenes being planar molecules [132]. The alternating long and short

C bond lengths seen in table 5.1 show agreement with pentacene being labelled as a

conjugated molecule.

The XRD data from our collaborators in Korea indicate that the Mn dopants do

not degrade the molecular crystal structure of pentacene. Figure 5.2 shows this XRD

data and the crystallinity of the samples is clearly seen by the sharp diffraction peaks

in the doped samples. The top graph shows a linear intensity scale, while the bottom

graph shows the same data on a logarithmic scale, allowing for a more detailed

comparison of the samples. It is reasonable to expect that the crystal structure is

kept intact as there is a low dopant concentration — 4% Mn translates to ∼1.1 Mn

atoms per pentacene molecule and 8% Mn results in ∼1.4 Mn atoms per molecule.

This expectation is based on having the Mn atoms occupy interstitial sites in the

pentacene crystal structure. The measured D-spacing for the thin film was 15.48

Å for pure pentacene and 15.50 Å for the manganese doped samples.

One of the ongoing challenges with organic semiconductors is finding ways of

doping the material without degrading its structural properties [94]. If a material has

promising electrical characteristics but is structurally unstable after doping (which is

needed to fine-tune the properties), then its suitability for applications is significantly

reduced. Our results introducing transition-metal atoms into pentacene, and having

the material maintain its original crystal structure, is key for further development of

practical uses of this material combination.
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Figure 5.2: X-ray diffraction results showing the same D-spacing for
Mn-doped pentacene thin-films as for un-doped pentacene samples.

STOBE calculations which included Mn dopants could be done in two ways. The

pentacene molecule and the Mn atoms could be subjected to an overall geometry

optimization allowing all atoms to move around, or the alternative way would be to

only let the Mn atoms move. Both methods were used depending on the situation as

some calculations would not converge to reasonable values unless certain constraints

were relaxed. The calculations only allowing the Mn atoms to move used the relaxed

(geometry optimized) pentacene structure (STOBE #2) defined in table 5.1.
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5.2 Density of States

5.2.1 Pentacene DOS

Calculating the density of electronic states (DOS) is useful in interpreting results

from XAS measurements and calculations. It can provide an overview of the relative

energy levels of the molecular orbitals pictorially through plotting charge density

isosurfaces. STOBE was also used to calculate these values, with the isosurface pic-

tures generated from the STOBE output using the MOLEKEL molecular visualization

program [137].

DOS energy levels have the benefit of not being affected by a core hole (as there

is not one present in the calculations) and the subsequent difficulties that result in

trying to model the core hole. The calculations and results are considerably quicker

to perform and analyse without a core hole being present. The DOS results presented

are shown on a binding energy scale, with 0 eV taken to be the ionization potential.

The charge density isosurfaces are plotted using an isosurface value of 0.02 e/a.u.3

The electron density plots show the results of squaring the wavefunction ψi. The

two different colours in the plots (blue and olive) correspond to positive and negative

values that are input into the wavefunction before it is squared, and have no intrinsic

physical meaning. They are used simply to aid in visualization of the orbitals.

The total DOS (TDOS) along with the partial or projected DOS (PDOS) is able

to clarify what atoms or MOs are involved with the HOMO and LUMO states of

the molecule. Figure 5.3 shows the TDOS for an isolated pentacene molecule.

Also shown in the figure, below the TDOS, is the px, py, and pz PDOS for all 22

carbon atoms in the molecule. One can clearly see that the pz orbitals are the main

contributors to the HOMO-LUMO levels due to their delocalized nature. Figure 5.4

shows the PDOS for each carbon atom in the molecule. A vertical offset was added

to each spectrum for clarity.

It is easy to see from the site-resolved PDOS that the outer carbon atoms are re-

sponsible for the HOMO and LUMO levels as they possess extra electrons occupying
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Figure 5.3: Total DOS of pentacene, and the corresponding px, py,
and pz partial DOS for the carbon atoms in pentacene.

the pz orbitals. We can see that if the Mn atoms hybridize with these particular car-

bon MOs that it will affect the HOMO-LUMO gap and subsequently the electronic

properties of the OFETs. To investigate this possibility figure 5.5 shows locations

that Mn atoms were placed to see how the transition metal atom might affect the

HOMO-LUMO gap of the isolated pentacene molecule. The positions shown are the

result of calculations that converged. The geometry optimization runs for positions

A, B, and C resulted in a final geometry very similar to the positions already shown

in figure 5.5. Position D was an energetically unstable configuration and the Mn

atom ended up close to position C after the geometry optimization. The results pre-

sented here will be with the Mn atom in position C as it provided the best agreement

with experimental results.
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Figure 5.4: Partial DOS of symmetric carbon atoms in pentacene.

Figure 5.5: Location of Mn atoms used in DFT calculations
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5.2.2 HOMO-LUMO Energy Gap

Our calculated energy gap (∆E) between the HOMO and LUMO level is 1.18 eV

for an isolated pentacene molecule. This is about 80% less than the experimental

values found for measurements done on the gas phase — which give ∆E=5.22 eV

[138, 139]. This is a well known deficiency with DFT-based approaches, and is partly

due to the fact that the exchange-correlation functional (as a function of electron

density) has a discontinuity that is not accounted for, and also possesses the wrong

asymptotic behaviour at large distances [140, 141]. This value however is consistent

with other values found using DFT. Lee et al. found ∆E=1.08 eV [135], and Potera

et al. ∆E=1.13 eV [133]. For pentacene molecular crystals the computed values

for the band-gaps have been found to be 0.97 eV and 0.98 eV [142], 0.58 eV [143],

and 0.95 eV [134], all taken at the Γ point for the crystal. Computed values are

consistently lower than experimental values [142]. The experimental value has been

determined to be 1.82 eV [144].

5.2.3 DOS of Mn-doped Pentacene

The TDOS and PDOS of pentacene is shown in figure 5.6, with the corresponding

TDOS and PDOS of the manganese doped sample compared beside it. It is easy

to see from figure 5.6 that the Mn atom has a strong contribution to the DOS

around the HOMO/LUMO levels of the system. The HOMO shift that results from

the addition of manganese is +0.7 eV , and the LUMO shift becomes −0.2 eV . This

changes the energy spacing between the HOMO and LUMO for the Mn-doped sample

to 0.25 eV , versus the much larger 1.15 eV for pentacene. The small gap between

the HOMO and LUMO levels indicates that the Mn atom hybridizes with the carbon

atoms in this energy range, promoting the material to a semi-metallic state [145].

This result combined with the greater PDOS of Mn present in the LUMO versus

the HOMO, indicates that the Mn dopants will act as donor impurities, versus the

more commonly found acceptor impurities in organic materials. This hypothesis

was confirmed by performing current versus voltage measurements of the Mn-doped
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Figure 5.6: The TDOS and PDOS of pentacene and Mn-doped pen-
tacene compared.

OFETs and comparing them to undoped samples. These measurements were done

by our collaborators at Yonsei University, in Seoul, South Korea.

Figure 5.7 shows a pictorial view of the previous result showing the extent that

the HOMO and LUMO orbitals of pentacene change with the addition of manganese.

This pictorial view shows more clearly the hybridization occurring between the Mn

atom and the carbon atoms. These DOS results further the idea that the Mn dopants

are actively involved in the charge transfer occurring in the organic devices. To verify

this idea, experimental XAS findings are compared with theoretical STOBE results

in the next section.
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Figure 5.7: The charge density isosurfaces for pentacene are shown
on the top and for Mn-doped pentacene on the bottom.
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5.3 X-ray Absorption Spectroscopy

All of the X-ray absorption spectra shown have been aligned to a reference sample

with a known energy value. For the carbon 1s edge, highly oriented pyrolytic graphite

(HOPG) was used, with the LUMO peak occurring at 285.5 eV . The resolving power

(E/∆E) of the beamline at the ALS for carbon XAS is approximately 5000. All

absorption measurements presented were done in TEY mode.

One of the key difficulties in modeling materials with DFT techniques is the in-

herent limit in the number of atoms that can be modeled. This creates the challenge,

that is present in this work, of comparing calculations that are based on an isolated

pentacene molecule, with experimental measurements that are done on the crys-

talline phase of the material. There have been comparisons made with experimental

measurements of the gas-phase of pentacene with DFT calculations. This will be

looked at below as it provides an overview of the issues involved with comparing

DFT calculations with XAS measurements.

��� ��� ��� ��� ���

��
�	�����������
�

��
��

�
�
��


���
���

����
���

�	�
���

���
��

����

�����
���������
����	�

�����������
������

π����
��� σ����
���

�����
������������
�

Figure 5.8: XA spectrum for the carbon K-edge for the thin-film
phase of pentacene compared with the STOBE calculated result.
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Figure 5.8 shows the calculated STOBE XA spectrum for an isolated pentacene

molecule compared with the experimental spectrum for the solid thin-film phase

of pentacene. The spectra are vertically offset for clarity, a linear background is

subtracted, and the intensity normalized at 285.5 eV . The π* and σ* regions corre-

spond to unoccupied MOs that possess π- and σ-like symmetry. The star symbol (*)

is used to represent an excited orbital, or one that is unoccupied in the ground state.

The calculated values have been shifted with respect to the calibrated experimental

spectrum by −1.8 eV . A small energy shift is common with DFT-based approaches

to modelling experimental spectra and can be attributed to deficiencies with the

exchange and correlation functionals used [146]. The agreement between the exper-

imental and theoretical spectra is acceptable, with the main peaks appearing at the

correct locations. The agreement between the intensity ratios could be improved by

varying the broadening and weighting of each individual carbon atom. The focus of

this research is on the modification of the HOMO and LUMO levels of pentacene

and therefore improving the agreement between the higher excited orbitals is not

needed.

Figure 5.9 is from a paper that performed NEXAFS measurements on the gas-

phase of pentacene [147]. The “C 1s edge” label in the above figure is very close to

Figure 5.9: XA spectrum of the gas-phase of pentacene. Fig. from
ref. [147].

the ionization potential (IP) found in our calculations, as shown in figure 5.8. The IP
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for the experimental gas-phase is ∼ 0.5 eV lower than our value for the experimental

thin-film phase. This can be attributed to the difference in phases of the two systems.

On a qualitative level the fine structure seen in figure 5.9, more closely resembles the

theoretical spectra computed with STOBE. This is to be expected as the calculations

are modelling an isolated molecule.

The peaks below the IP in figure 5.8 can be further resolved into various MOs.

Figure 5.10 shows the breakdown of the pentacene XA spectrum into the contribu-
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Figure 5.10: Atom-resolved breakdown of the pentacene XA spec-
trum. The DOS isosurface is shown for the LUMO on the right hand
side.

tions arising from the inequivalent carbon atoms. The different colours in the figure

correspond to groups of atoms possessing the same symmetry in the molecule. Also

56



labelled in the figure are the tentative assignments of the LUMO (L), LUMO+1

(L+1), and LUMO+2 (L+2) molecular orbitals.

From figure 5.10 it can be seen again that the outer carbon atoms are respon-

sible for the LUMO level, with the inner atoms contributing little to it. The DOS

isosurface for the LUMO is also shown on the right side of the figure. It can be seen

that the LUMO isosurface agrees qualitatively with the XA LUMO peak. The XA

spectrum shows almost all carbon atoms contributing — except atoms 8, 10, 12, and

13 — which are also the partially exposed atoms seen in the middle of the LUMO

DOS isosurface of pentacene.

The measured XA spectra for the Mn-doped pentacene samples are shown in

figure 5.11. The pentacene samples were doped with both four and eight percent

manganese, although the difference between the two doping concentrations is not

particularly noticeable in the XA spectra. The key point to take from the figure is
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Figure 5.11: The experimental XA spectra showing the decrease in
the π* peak (LUMO) due to the Mn dopant atoms.
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that the π* LUMO peak decreases with the addition of Mn dopants. The hypothesis

is that by adding metal dopant atoms the HOMO/LUMO levels of pentacene are

modified. The Mn dopants have energetically similar orbitals with pentacene allow-

ing for hybridization of the π-MOs of carbon with the pz-orbitals of Mn. This can

be attributed to charge transfer from the metal atoms to the organic semiconductor,

which can be seen in the charge density isosurfaces of the Mn-doped sample (Fig.

5.7) [148].

Figure 5.12 shows the STOBE calculated XA spectra for plain pentacene, and

Mn-doped pentacene. It also clearly shows a decrease in the LUMO peak with the

��� ��� ��� ���

�

�����
��������	�

��
��

�
�
��


���
���

����
���

�	�
���

���
��

����

�����
����������������

���
���
����
���
���
��������������	

��

Figure 5.12: The STOBE XA spectra also shows a corresponding de-
crease in the π* peak. The peak labelled “P1” is the phantom peak
that is removed in calculating the final spectrum.

addition of the Mn atom. DFT is known to have problems when modelling open

spin systems. This is the exact situation that occurs when adding one Mn atom to

pentacene, as the atomic number for Mn is 25. This results in an unpaired valence
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electron for the Mn atom in the doped pentacene system. There are no special

computational routines in STOBE to account for this issue [116]. As a result, the raw

XA spectrum will have a peak (labelled “P1”), at a lower energy than the LUMO,

that arises from having an unoccupied beta orbital in the ground state. The two

black lines are the raw calculated values for the alpha and beta orbitals. Once the P1

peak has been subtracted out, and the alpha and beta orbital contributions averaged,

one is left with the orange line shown. In a closed spin system, the STOBE calculated

values for alpha and beta orbitals are equivalent, and it suffices to only use the alpha

orbital values. It is clear from these figures that both experimental and theoretical

results show a decrease in the LUMO peak when Mn is present.

Figure 5.13 extracts the Mn-doped data from the two previous figures (5.11 and

5.12) and compares the experimental results with the STOBE calculated spectrum.

For the two experimental peaks (red and blue), the feature at ∼ 289 eV contrasts
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Figure 5.13: The experimental XA spectra measured at the ALS
compared to the calculated XA spectrum done with STOBE.
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with the STOBE calculated result (orange). The possible reasons for this are unclear.

The feature is similar in shape and energy to a carbon/oxygen double bond. This

would only arise if there was contamination in the samples, as oxygen is not part of

the molecular structure of pentacene. If oxygen was present in the samples it would

have affected the quality of the XRD results, but that was not seen to be the case.

Another possibility is that the samples are exhibiting Rydberg states; although this

also is unlikely, as Rydberg states are traditionally only seen in gas samples and are

generally suppressed in the condensed phase [149]. The final possibility is that the

exchange and correlation potentials that were used are not sufficiently accurate to

deal with these higher excited states. Since we are primarily concerned with the

HOMO and LUMO levels, it is still possible to have confidence in the qualitative

agreement of the LUMO peak in the experimental and theoretical spectra — as the

feature at 289 eV is ∼ 5 eV higher in energy than the LUMO at 284 eV .

The decrease in the LUMO peak can be attributed to the Mn atoms taking part

in the conduction mechanism of pentacene. In this model the excited electron moves

from a delocalized π orbital of carbon to an intermediate Mn orbital, and then on

to the next pentacene molecule. In essence this is a hopping conduction mechanism

with the Mn atoms taking part in transferring the electrons along the pentacene

molecules. This is where the possibility for spintronic applications comes in. If one

is able to manipulate the Mn atoms, either through magnetic or electrical means,

into a specific spin orientation, it would be possible to inhibit the flow of electrons

possessing the wrong spin orientation.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The conclusions drawn from this research are summarized below.

1. The geometry optimization of the pentacene molecule, performed using

the DFT program STOBE, is consistent with other research that used both

different computational programs and theoretical methods.

2. Both the experimental and STOBE XAS results agree, as far as having

the LUMO peak height decrease in Mn-doped pentacene, in comparison

with plain pentacene.

3. The DOS results indicate that the Mn dopants act as electron donors.

This result is consistent with the device characteristics found by our

collaborators at Yonsei University in Seoul, South Korea.

The end goal of this research is to find unique structural materials (i.e. organics) that

could be used to bring about spintronic applications and/or create computational

devices. This research was able to develop and verify a basic model for the con-

duction mechanism in Mn-doped pentacene OFETs. The premise is that Mn atoms

act as electron donors in the organic heterostructure, thereby hybridizing with the

delocalized pz-orbitals of carbon. These hybridized molecular orbitals create a “con-

duit” for electrons to travel on as they move from pentacene molecule to pentacene

molecule in the crystal. The evidence for this model is based on the results from the

X-ray absorption measurements and the corresponding DFT calculations.
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If this initial research for Mn-doped pentacene holds true, then it may be possible

to develop unique organic devices that are able to carry out computational tasks,

and also be used as non-volatile storage — concurrently. It depends on whether a

suitable method can be found to control the spin orientation of the Mn atoms. If

that is successful then these and other applications can also be envisioned, such as

organic spin valves (i.e. GMR read heads).

6.2 Recommendations

It is possible to perform theoretical calculations that take into account the crystal

structure of pentacene. Two common programs that have been used for molecular

crystals are WIEN2k [150] and VASP [151]. The following references have used

these programs on pentacene (and other organic materials) to determine primarily

energy bandgaps and bandwidths [60, 62, 142, 152–158]. The benefit of doing such

calculations would be to determine the extent of the intermolecular interactions due

to the Mn dopant atoms. Being able to elucidate how the Mn atoms interact with one

another would enable the tailoring of the carrier mobilities. This would be beneficial

as organic semiconductors exhibit highly anisotropic charge transport due to this

intermolecular interaction [94].

Further calculations could also be done with STOBE to see if other transition

metals have a similar effect on the XAS and DOS results. Additional experimental

and theoretical work with other similar organic materials, such as anthracene, could

also prove enlightening.
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Appendix A

Atomic Structures

All of the atomic coordinates for the molecules used in the STOBE calculations
are given in the tables below. The values are in units of angstrom (Å), and are taken
after the geometry optimization run was performed.

Table A.1: xyz coordinates for pentacene

Element x-coordinate (Å) y-coordinate (Å) z-coordinate (Å)
C1 1.634 5.653 0.000
C2 2.312 6.851 -0.001
C3 3.733 4.396 0.002
C4 3.756 6.893 0.000
C5 2.355 4.407 0.001
C6 4.491 5.623 0.002
C7 4.472 8.097 -0.001
C8 5.896 8.128 0.001
C9 6.624 9.339 0.000
C10 6.632 6.857 0.004
C11 5.892 5.641 0.004
C12 8.038 9.364 0.002
C13 8.773 8.092 0.007
C14 8.045 6.882 0.007
C15 10.197 8.123 0.011
C16 10.913 9.327 0.010
C17 12.357 9.368 0.014
C18 10.179 10.596 0.004
C19 10.938 11.824 0.003
C20 8.778 10.580 0.001
C21 13.036 10.566 0.013
C22 12.315 11.812 0.007
H1 1.764 7.798 -0.001
H2 0.540 5.638 -0.001
H3 1.796 3.467 0.000
H4 4.280 3.448 0.003
H5 6.440 4.692 0.006
H6 3.925 9.045 -0.002
H7 6.077 10.287 -0.003
H8 8.230 11.528 -0.003
H9 10.391 12.772 -0.001
H10 12.875 12.751 0.006
H11 14.130 10.580 0.016
H12 12.905 8.421 0.018
H13 10.743 7.174 0.015
H14 8.592 5.933 0.011
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Table A.2: xyz coordinates for Mn-doped pentacene

Element x-coordinate (Å) y-coordinate (Å) z-coordinate (Å)
Mn 2.978 5.565 1.377
C1 1.467 5.582 -0.057
C2 2.191 6.821 -0.094
C3 3.613 4.331 -0.183
C4 3.634 6.841 -0.209
C5 2.181 4.334 -0.110
C6 4.364 5.569 -0.247
C7 4.387 8.055 -0.106
C8 5.795 8.077 -0.100
C9 6.534 9.276 -0.042
C10 6.526 6.800 -0.138
C11 5.794 5.600 -0.183
C12 7.957 9.304 -0.029
C13 8.682 8.035 -0.064
C14 7.936 6.828 -0.113
C15 10.086 8.055 -0.041
C16 10.826 9.264 0.016
C17 12.250 9.287 0.045
C18 10.108 10.520 0.049
C19 10.856 11.728 0.107
C20 8.688 10.499 0.024
C21 12.947 10.485 0.105
C22 12.244 11.714 0.135
H1 1.652 7.766 0.000
H2 0.382 5.588 0.052
H3 1.637 3.390 -0.034
H4 4.155 3.382 -0.158
H5 6.336 4.648 -0.183
H6 3.840 9.003 -0.047
H7 5.992 10.228 -0.009
H8 8.147 11.453 0.048
H9 10.315 12.681 0.131
H10 12.799 12.656 0.181
H11 14.041 10.483 0.128
H12 12.791 8.335 0.021
H13 10.631 7.104 -0.067
H14 8.482 5.877 -0.134
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Appendix B

STOBE Input Files

Given below is an example input file used for STOBE. It gives a list of the xyz-
coordinates used for all the atoms and a breakdown of the basis sets used. The
auxiliary basis sets are listed first, followed by the orbital basis sets. For XAS
calculations the pseudopotentials are then listed, and finally the augmented basis
set for the excited state is given. This example shows the input file for an XAS
calculation where the alpha orbital (orbital #6) for the first carbon atom (C1) is
being excited.

#!/bin/csh -f

ln -s ../../../Basis/baslib.new7 fort.3

ln -s ../../../Basis/symbasis.new fort.4

cat >help.inp <</.

TITLE

Mn doped Pentacene C XAS: atom C1 alpha - excited orbital: 6

NOSY

CARTESIAN angstrom

## Element x-Coord. y-Coord. z-Coord. At.# ##

C1 1.46720403 5.58192079 -0.05679830 6.0

C2 2.19062983 6.82090705 -0.09424891 4.0

C3 3.61336144 4.33114582 -0.18317411 4.0

C4 3.63404126 6.84127495 -0.20918599 4.0

C5 2.18081722 4.33361709 -0.10979751 4.0

C6 4.36355665 5.56914896 -0.24729356 4.0

C7 4.38681544 8.05509299 -0.10603308 4.0

C8 5.79492310 8.07705816 -0.09955240 4.0

C9 6.53417495 9.27564648 -0.04171578 4.0

C10 6.52556989 6.80049744 -0.13815350 4.0

C11 5.79441451 5.60017396 -0.18318107 4.0

C12 7.95660336 9.30427630 -0.02881917 4.0

C13 8.68224940 8.03541218 -0.06410795 4.0

C14 7.93607579 6.82794482 -0.11272253 4.0

C15 10.08561521 8.05516365 -0.04148785 4.0

C16 10.82634003 9.26354589 0.01587426 4.0

C17 12.24964783 9.28732700 0.04450062 4.0

C18 10.10819679 10.51996030 0.04870974 4.0

C19 10.85585807 11.72803045 0.10715064 4.0

C20 8.68797467 10.49932404 0.02422800 4.0

C21 12.94733266 10.48515001 0.10454006 4.0

C22 12.24392099 11.71433147 0.13537732 4.0
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Mn 2.97795300 5.56520860 1.37724088 25.0

H1 1.65158103 7.76635643 -0.00024757 1.0

H2 0.38157147 5.58814824 0.05177295 1.0

H3 1.63746228 3.39045426 -0.03417220 1.0

H4 4.15485569 3.38243529 -0.15816116 1.0

H5 6.33583614 4.64762591 -0.18264257 1.0

H6 3.83988781 9.00256028 -0.04701978 1.0

H7 5.99241234 10.22816386 -0.00929944 1.0

H8 8.14702242 11.45282672 0.04777457 1.0

H9 10.31504453 12.68060665 0.13089200 1.0

H10 12.79877745 12.65578740 0.18127974 1.0

H11 14.04067846 10.48303874 0.12833551 1.0

H12 12.79062473 8.33530619 0.02058111 1.0

H13 10.63061731 7.10408918 -0.06690215 1.0

H14 8.48185225 5.87744241 -0.13444083 1.0

END

RUNTYPE startup

SCFTYPE direct

POTENTIAL nonlocal be88 pd86

GRID fine

MULTIPLICITY 2

VIRT all

CHARGE 0

MAXCYCLES 2000

ECONVERGENCE 0.000001

DCONVERGENCE 0.000001

DMIXING mdens 0.10

DIIS off

ORBI 5d

FSYM scfocc excited

ALFA 65

BETA 64

SYM 1

ALFA 0 1 6 0.5

BETA 0 0

END

XRAY xas

REMTHRESHOLD 1.D-6

END

DOSOUTPUT mulliken

END

### Auxiliary basis sets ###

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)
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A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-CARBON (5,2;5,2)

A-MANGANESE (5,5;5,5)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

A-HYDROGEN (3,1;3,1)

### Orbital basis sets ###

O-CARBON iii_iglo

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)
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O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-CARBON(+4) (311/211/1)

O-MANGANESE (63321/531/311)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

O-HYDROGEN (311/1)

### Augmented basis sets ###

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)
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P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

P-CARBON(+4) (3,1:8,0)

X-FIRST

END

/.

../../../Source/StoBe.x <help.inp >& XAS_C01a.out

mv fort.2 XAS_C01a.res

mv fort.11 XAS_C01a.xas

mv fort.96 XAS_C01a.mtx

mv XAS_C01a.* strucfin.pdb ../XAS_alpha/XAS_C01/

rm help.inp nohup.out strucfin.plt
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