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Abstract 

Introduction: Bone fragility in children and youth with Type 1 Diabetes (DM1) may relate to 

weaker bones and muscles, but the evidence is limited. The objectives of my thesis were (1) to 

compare bone and muscle properties and strength between children with and without DM1, and 

(2) to explore if muscle outcomes are mediators explaining the bone differences between 

children with and without DM1. 

Methods: I included 25 children with DM1 and 168 typically developing children and youth 

(age 6-15yrs) in my thesis. Their bone properties and muscle size were measured using 

peripheral quantitative computed tomography (pQCT). Muscle force was assessed using 

neuromuscular performance measures, including maximal grip force, push-up, countermovement 

and long jump tests. I compared bone and muscle properties and strength between children with 

and without DM1 using MANCOVA followed by pairwise comparisons (1st objective). I added 

muscle size and force into regression models as possible mediators to assess if muscle outcomes 

are mediators helping explain the potential bone difference between children with and without 

DM1 (2nd objective). 

Results: There were group differences in bone and muscle properties and strength (p<.05). 

Cortical area was 7% and 10% lower and density was 8% higher and 5% higher at radius and 

tibia shafts, respectively, in children with DM1. Children with DM1 also had 6% lower cortical 

content at tibia shaft. There was no difference at the distal radius or tibia bone properties and 

strength between groups. Children with DM1 had 12% higher maximal push-up force. Lower leg 

muscle area was a mediator for tibia shaft cortical bone content and area difference between 

children with and without DM1. 
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Conclusion: Children with DM1 had smaller cortical area but higher density at the radius and 

tibia shafts. Lower leg muscle area was a mediator explaining the lower tibia shaft cortical bone 

content and area difference between groups.   
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1. Introduction 

Type 1 diabetes (DM1), a life-long disease with insulin deficiency, is predominantly 

diagnosed in childhood 1,2. Individuals with DM1 have higher fracture risk throughout their life 

2–4, which is potentially associated with lower bone strength 5. Fracture, especially hip fracture in 

older age, can seriously affect the life quality and increase the risk of dying 6,7. Recent research 

has reported children with DM1 have 14-40% higher fracture risk than their typically developing 

peers 2, which suggests the increased fracture risk begins at childhood and may relate to poor 

bone development in children with DM1. Therefore, understanding bone properties and strength 

is crucial to characterize bone development in children with DM1 8,9.   

Peripheral quantitative computed tomography (pQCT), a commonly used 

musculoskeletal imaging tool for reliable assessment of bone geometry and estimation of bone 

strength in children 10. Previous studies reported various findings comparing bone properties and 

strength in children with and without DM1 characterized by pQCT. At radius, there have been 

studies reporting children with DM1 had lower trabecular bone mineral density 11 at the distal 

site. There were also publications indicating lower total bone area 12, cortical bone area and 

density 12,13, and bone strength 12 at radius shaft site. For tibia, there was lower total bone area 

and content 12, trabecular bone area, density and content 14–17 reported in children with DM1 at 

distal site. There was lower total bone content 12, cortical bone area, density and content 12,14,17, 

and bone strength 15,17 reported at tibia shaft. However, interestingly, there was one study 

reporting higher cortical bone mineral density at tibia shaft 17. Also, the findings at the same 

measurement site were not consistent across different studies 13,15–17. Besides pQCT, different 

imaging tools, dual x-ray absorptiometry (DXA) and magnetic resonance imaging (MRI), have 

been used to measure bone in children with DM1 in previous studies 12,14,16–21. Recent research 
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with MRI reported lower trabecular bone micro-structure parameters at proximal tibia 18. The 

results from DXA studies seemed conflicting, while some studies reported normal total body and 

lumbar spine bone mineral content, area and density 17,20,22–25, and others reported lower lumbar 

spine bone mineral content and density 12,26. A metacarpal study using digitized x-ray reported 

smaller and weaker bone in children with DM1 27. 

Optimal muscle development is essential for bone growth in children with DM1 due to 

the strong relationship and interaction between muscle contraction force and bone strength 8,9. 

The force produced by muscle contraction is one of the primary sources of stimulus for bone 

strength development 28,29, and the maximal muscle power is an indicator of bone strength in 

children 30. Thereby maximal muscle voluntary contraction assessed by neuromuscular 

performance is especially meaningful to be measured. Fricke et al. reported children with DM1 

had lower grip force 31, but Bechtold et al. reported participants with DM1 had higher grip 

strength than typically developing children reference data 13. Lukacs et al. reported only younger 

boys (8-12yrs) with DM1 shew lower grip force 32. For jumps, Maratova et al. reported 

adolescents with DM1 had normal maximal muscle force and power but significantly lower 

maximal relative leg muscle force (maximal force/body mass) and power (maximal power/body 

mass) during countermovement jump comparing to reference data 15. On the other side, muscle 

cross-sectional area (MuA), referred to muscle size, obtained from bone imaging tools is a good 

surrogate of muscle force 13,28,33,34. Only few previous studies measured MuA in children with 

DM1. Moyer-Mileur et al. reported higher MuA in adolescents with DM1 than typically 

developing reference at baseline using pQCT measures 17. Bechtold et al. only reported lower 

MuA in pre-pubertal children with DM1 but not in adolescents 13.  

However, to my knowledge, there is no previous study exploring the role of muscle size 
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or force in the relationship of DM1 and bone outcomes. In particular, the role of muscle 

outcomes as potential mediators in the relationship between DM1 and bone outcomes has not 

been explored. Previous research focused more on the interaction between muscle and bone 

during growth in children with DM1, which the muscle contraction can provide stimulus to bone 

adaptation and improve bone strength 35. The findings from previous studies reported diversely 

on the potential difference of muscle-bone interaction between children with and without DM1. 

Moyer-Mileur et al. reported DM1 adolescents to have significantly lower total bone content to 

MuA ratio than typically developing reference (age 12-18yrs) 17. Bechtold et al. reported a 

significant correlation between lower MuA and total and cortical area at radius shaft in young 

DM1 children (mean age 9.7yrs), suggesting that children with DM1 have smaller muscle and 

bone, which can be explained by muscle-bone interaction 13. On the other side, Maratova et al. 

did not report any difference in terms of muscle-bone relationship when comparing to Czech 

national reference data 15. However, it is still not well understood the role of muscle in the 

relationship between DM1 status and possibly differed bone outcomes.  
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1.0 Background Literature 

The scope of this literature review is to understand the musculoskeletal properties, 

strength, and development in children. 

 

1.1 Bone Physiology 

Bone is a dynamic living tissue which is composed of organic and inorganic materials 

and has several vital functions in our body 36,37. The first one is to support and connect with 

skeletal muscle to achieve physical movement 36. As a dynamic tissue, bone will respond to 

external forces like muscle contraction and mechanical loading and signaling from, for instance, 

hormones and growth factor 36. In addition, bone is a rigid tissue that can protect the organs. 

Furthermore, bone can serve as a storage of calcium and phosphate for serum homeostasis 36. 

Long bone is wider at two ends (epiphyses) and cylindrical shaped in the middle with a 

medullary cavity at the center (midshaft or diaphysis) 36. There is also a transition zone in 

between the epiphysis and diaphysis, which is called metaphysis 36. There are two types of bone 

in long bone structure, cortical and trabecular bone, characterized by density and porosity. 

Cortical bone is denser and more calcified (80-90%) comparing to trabecular bone which is more 

porous and less calcified (15-25%) 36. Cortical bone has two surfaces, an outer surface 

(periosteal) and an inner surface (endosteal) 36.  

From the biological view, there are three types of bone cells, osteoblasts, osteoclasts and 

osteocytes. Osteoblasts and osteocytes work together for bone formation, and osteoclasts are for 

bone resorption. Osteoblasts will produce the unmineralized bone, osteoid, which will develop 

into mature bone eventually. Osteocytes are inactive osteoblast cells and able to help with 

maintaining the tissue produced by osteoblasts. Another main function of osteocytes is to sense 
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where and how much mechanical strain the bone is experiencing 36–38.  

 

1.1.1 Bone Growth, Modeling and Remodeling 

Long bone increases its lengths by endochondral ossification that occurs at the growth 

plate between the epiphysis and metaphysis 39. At the growth plate, resting chondrocytes, also 

known as stem cells, align toward the direction of bone growth and ultimately develop into 

trabeculae and form trabecular bone 39. As long as new material is adding into the zone of the 

growth plate, the bone will calcify and gain length 39. Along with growth, the metaphysis will get 

farther from the growth plate. Consequently, the trabecular bone at the center of bone at 

metaphysis will become thinner and eventually be resorbed. Contradictorily, the trabecular bone 

at outer metaphysis will thicken and finally build to a cortical cortex 39. This process is called 

metaphyseal inwaisting, in which the original metaphysis becomes smaller in size until it attains 

the size of the diaphysis. In this way, bone grows longer 39,40. 

Besides increasing length, bone also needs to expand in width; otherwise, bone is likely 

to be unstable and prone to fracture 39. Bone modeling is the process bone enlarged in diameter, 

and remodeling is the process of bone turnover, in which old bone tissue is removed and 

replaced by new bone tissue 41,42. Both modeling and remodeling involve bone cells osteoblast 

and osteoclast 37,42. Modeling is a combination of work from osteoblast and osteoclast cells on 

opposite sides of bone 42. During growth, osteoclasts resorb bone tissue from the endosteal 

surface of a bone, and osteoblasts form more bone tissue on the periosteal surface. Thus, there 

will be more bone formed comparing to the bone removed, by which both the size of the bone 

and marrow cavity will expand 42. 

Bone remodeling formats with continuous bone formation and resorption cycling on the 
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same bone surface 42. During remodeling, osteoblasts and osteoclasts work together, which 

osteoclasts take off some bone tissue which is then later replaced by osteoblasts with a reversal 

phase in between 42. The osteoblast and osteoclast cells in this process collectively are called the 

“basic multicellular unit”, and the osteoblasts and osteoclasts working together during the 

remodeling process are referred to as “coupling” 42. There is a balance for the “coupling” 41,42. 

Remodeling is followed by the “Activation-Resorption-Reversal-Formation” process performed 

by the “basic multicellular unit” 36. The osteoclasts are activated first before the resorption 

process which then is terminated by reversal phase 36. Afterward, osteoblasts take place to start 

the formation phase (Figure 1) 36. During growth, there is more bone formation going on 

comparing to bone resorption; thereby more bone is gained. On the other hand, during aging, 

more resorption takes in place, which explains bone loss 42. For young adults, the remodeling 

“coupling” is balanced so that the amount of bone is maintained 42. 

 

Figure 1: Diagram showing “Activation-Resorption-Reversal-Formation” process of bone 
remodeling. Adapted from Moreira et al. (2000) 36 
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1.1.2 “Mechanostat” and “Mechanotransduction” 

“Mechanostat” is a hypothesis that human can maintain bone health from adapting daily 

load bearing by balancing a combination of modeling and remodeling and their thresholds, bone 

marrow mediator, signaling mechanisms 43. Other factors, like hormone, would serve as 

modulator in the “Mechanostat” model and help carry out this process 43. If mechanical loading 

would add more strain to the bone, the modulator will send the signal that extra bone strength is 

needed to adapt to the higher strain. Then this will trigger the bone modeling and remodeling 

process to put on more bone tissue to achieve the targeted bone strength (Figure 2) 43. The lowest 

strain required to activate bone remodeling, modeling and repair processes is called minimal 

effective strain (MES) 44. If the strain that bone experiences does not reach the remodeling MES, 

there would be no response 44. If the strain reaches the remodeling MES, the remodeling process 

would likely take in place, and the net bone mass would be maintained 44. If the strain exceeds 

the modeling MES but not repair MES, there would be more bone formed and potentially 

increase the bone mass and strength 44. However, if the strain is over repair MES, it would not be 

beneficial and is likely to cause some microdamage or even fracture to the bone 44. The bone 

adaptation responding to mechanical loading is coordinated based on the theory of 

“Mechanotransduction”, which is a process that bone would turn mechanical stimuli toward bone 

into biochemical response 45,46. The steps involve mechanical coupling, biochemical coupling, 

cell-to-cell signaling and cell response 45.  
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Figure 2: Sample diagram showing with increasing the bone strain to reaching specific MES, 
bone will go under remodeling, modelling and repair which will either maintain or gain bone 
mass. With reaching the physiologic zone, remodeling will help keep the overall bone mass and 
no new bone was gained. After reaching the overload region, modeling will take in place and 
more bone will be formed. Diagram adapted Forwood & Turner (1995) 
 

1.1.3 Other Biological Factors Influencing Bone Growth 

There are also other biological factors associated with muscle and bone development in 

general children, like sex, age and maturity, anthropometry, physical activity, nutrition intake. 

Sex is an essential factor to consider because boys and girls are underline different 

growth patterns and will develop into different body stature during and after puberty. Boys 

experience higher bone turnover rate, longer growth duration, and higher peak height velocity 

than girls 47; therefore, it is necessary to identify the influence of sex differences in bone and 

muscle on children. 

Age and Maturity are also crucial factors assessing bone in children. However, since the 

timing of maturation is different in boys and girls, chronological age is not able to fully represent 

sex-specific maturity 48. Besides, maturity has been previously indicated as a predictor of bone 

geometry and strength 49–52. Thereby, maturity is preferred compared with age when controlling 

timing in growth and development. During maturation, the maximal linear growth speed is 

referred to peak height velocity 47. Instead of using the Tanner stage to characterize secondary 
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sex maturation, maturity offset (MO), the years from the age at peak height velocity, is more 

appropriate assessing somatic maturation, or skeletal growth, in children 53. Moreover, since 

boys and girls are not underline the same tempo and timing on both sexual and somatic 

maturation, it is tough to align the sex maturation in boys and girls to somatic maturation 53. 

Also, since the Tanner stage is characterized by stages, not continuous number, even children 

under the same stage of maturity may still be slightly different in maturation progress. MO is a 

continuous measure and calculated by sex-specific formulae built from regression models based 

on longitudinal growth data in children 48. Hence, MO is easier to align with growth and somatic 

maturity compared to categorical measure Tanner stage. Therefore, MO is preferable when 

characterizing somatic maturity in children. 

Anthropometry, height and body mass specifically, is positively correlated to bone 

status in children 54–56. Limb length, a determinant of bone strength, is proportional to body 

height 57,58, but it is still questionable for the reliability of limb length assessment due to the 

palpation or measurement errors using a sliding caliper. In addition, heavier children tend to have 

stronger bones, especially the tibia, and muscles to support their body weight and daily 

movement 59. 

Physical Activity is a critical component during growth and development 60 and 

associated with bone strength 60,61. Canadian Physical Activity Guidelines for children and youth 

(5-17yrs) recommend 60mins moderate-to-vigorous physical activity per day, and at least three 

times of vigorous physical activity and muscle and bone-strengthening exercise per week 62. 

High impact physical activities, like jumps, can provide loading to the bone and help improve the 

bone strength 60,63.  

Nutrition Intake of calcium, Vitamin D and protein also influences bone growth in 
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children 64–67. Calcium is associated with areal bone mineral density across different skeletal sites 

in both boys and girls 64, and is also a determinant of bone strength at the tibia in children 28. 

Vitamin D, usually characterized by 25-hydroxyvitamin D (25(OH)D) status, may help to reduce 

the HbA1c level, the indicator of glycemic control, in children with DM1 68–70. However, 

insufficient (25(OH)D = 50-75nmol/mL) and deficient Vitamin D (25(OH)D < 50nmol/mL) 

intake will increase the risk of developing osteoporosis and fracture in both children and older 

adults 65,71,72. Severe deficiency in Vitamin D (25(OH)D < 10nmol/mL) could develop into 

ricket, which will cause inadequate bone mineralization and impair bone growth in children 66. 

Protein is another factor influencing bone and muscle growth in children. Protein intake is 

positively associated with bone properties and strength, like bone mineral content, density and 

area 67,73, and also influences bone development via hormones 74. However, overtaking of protein 

may also elevate bone resorption 73. Accordingly, calcium, Vitamin D, and protein intake can be 

factor influencing bone growth in both children with and without DM1. 

 

1.1.4 Type 1 Diabetes (DM1)   

Type 1 diabetes (DM1), a life-long disease with insulin deficiency, is predominantly 

diagnosed in childhood 1,2. This disease can be caused by multiple risk factors, especially genetic 

and environmental 75. Worldwide, there are about 0.02% children (0-14yrs) with DM1, and the 

reported increase of incidence rate is 2-5% per year 76,77. Canada has one of the highest increases 

in the rate of pediatric DM1 incidence around the world 76–78, which should draw more attention 

to the potential effect of DM1 on growth and development in children with DM1.  
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1.1.4.1 Glycemic Control and Musculoskeletal Growth in Children with DM1 

Glycemic control may influence bone development in children with DM1. Glycemic 

control, i.e., how well DM1 is managed, is usually monitored by glycated hemoglobin 

(Hemoglobin A1c [HbA1c]) test. Typically HbA1c is tested approximately every three months, 

and the average HbA1c is assessed by the average of the tests across the year 21. According to 

American Diabetes Association guidelines, HbA1c under 58 mmol/mol or 7.5% will be 

considered under good glycemic control, and HbA1c equal or above 58 mmol/mol or 7.5% will 

be considered under poor glycemic control 14,21. The previous studies reported with poor 

glycemic control, children with DM1 may have or develop into lower bone mineral density 

compared to children with good glycemic control in both cross-sectional and longitudinal studies 

14,21,79–81. Poor glycemic control also potentially increases the risk of fracture and the 

development of osteoporosis later in lives 80.  

 

1.1.4.2 Bone Assessment in Children with DM1: Bone Biomarkers 

Bone biomarkers, including bone formation and resorption and regulators of bone 

turnover released during growth, are commonly used to monitor bone remodeling or turnover, 

which provides information about skeletal growth and development in children. The common 

biomarkers for bone formation are alkaline phosphatase (ALP), osteocalcin (OC), procollagen 

type 1 N-terminal propeptide (P1NP), and procollagen type 1 C-terminal propeptide (P1CP). The 

popular biomarkers for bone resorption are parathyroid hormone (PTH), 25-OH-vitamin D (25-

OH-D), (urinary) deoxypyridinoline (DPD), carboxy-terminal crosslinked telopeptide of type 1 

collagen (CTX-1) and receptor activator of NF-kB ligand (RANKL). Regulators of bone 
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turnovers include dickkopf-1 (DDK-1) and sclerostin. Other than bone turnover markers, 

calcium, phosphorus, growth hormone and insulin-like growth factor 1 (IGF-1), can also indicate 

bone growth in children.  

The emerging evidence has suggested altered bone turnover in children with DM1 from 

biomarkers 18,19,27,82–84. However, the findings are not very consistent in terms of higher 27 or 

lower biomarkers 18,19,83,84. The potential reason underneath the altered bone turnover rate in 

children with DM1 may link to the reduced osteoblastic activity and osteoclast signaling 

associated with DM1 itself 83. 

 

1.2 Bone and Muscle Imaging Tools  

There are six types of imaging tools commonly used to measure bone and muscle in 

children and youth. Below is a brief introduction of each imaging technique previously used in 

research as well as their corresponding bone and muscle related findings in children or 

adolescents with DM1. 

 

1.2.1 Dual-Energy X-Ray Absorptiometry (DXA) 

DXA is the most widely used two-dimensional bone imaging technique for both clinical 

and research purposes (Figure 3) 85,86. Clinically, it is a valid tool to diagnose osteoporosis and 

estimate fracture risk with good measurement precision (CV% = 1-2%), low radiation dose, 

relatively low cost and short scan time 85,87. For research, it can measure bone mineral content 

(BMC, g), areal bone mineral density (aBMD, g/cm2), and bone area (BA, cm2) for total body as 

well as clinically relevant sites like the lumbar spine and proximal femur 85. Not only for bones, 

DXA can also assess body composition and calculate muscle and fat mass 85. However, the 
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limitations of DXA are unneglectable owing to the two-dimensional projection on three-

dimensional bone structure 85. Firstly, it is not possible to detect bone geometry and separate 

cortical and trabecular bone properties 85. Secondly, the X-ray attenuation is influenced by bone 

marrow and soft tissue (like subcutaneous fat and muscle) surrounding bone 85. Especially in 

children under rapid growth, x-ray penetration might be different if monitoring longitudinally, by 

which their body composition may change greatly, and potentially affect the consistency and 

accuracy of measurement results 88. 

DXA findings are varible in children with DM1. Children with DM1 have been shown 

with lower total-body BMC, aBMD and BA 16–18, lumbar spine BMC, aBMD and BA 17,18, 

femoral neck and head aBMD 12,14,16, great trochanter BMC 12. However, there were also studies 

which did not report difference on any of DXA bone parameters comparing children with DM1 

to controls or reference 19–21. 

 
 
Figure 3: Sample DXA images of total body (left) and lumbar spine 1-4 (right) obtained from 6-
year-old child. Adapted from Di lorgi et al. (2018) 86 
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1.2.2 Quantitative Computed Tomography (QCT) 

QCT is a bone imaging technology combining computed tomography (CT) and a 

calibration standard to obtain bone size, density and content 86. It can scan regions of interest 

from total body and measure the “true” volumetric bone mineral density (BMD, g/cm3) with 

good accuracy and reproducibility (CV% < 3%) 86. It can also measure bone structure and 

geometry, like bone mineral content (g) and cross-sectional area (cm2), and separate trabecular 

and cortical bone, and the common scanning sites are the lumbar spine (Figure 4) and femoral 

midshaft 86. However, QCT (0.8µSV per central area scan in 10yrs old child) has a relatively 

higher radiation dose and cost compared to DXA (0.02µSV per spine scan in 10yrs old child) 86.  

There was one study related to children with DM1, which reported lower cortical bone 

mineral density at the lumbar spine but not trabecular density 89. 

 

Figure 4: Sample QCT image for lumbar spine 1-3. The red lines in the lower images locate at 
midplane of each vertebra viewed from sagittal plane. The red oval regions in the upper images 
are located at the midplane characterized from the lower images, and the circled area is used to 
calculate the bone mineral density. Adapted from Adams (2016) 87 
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1.2.3 Peripheral Quantitative Computed Tomography (pQCT)  

Peripheral quantitative computed tomography (pQCT) is a commonly used peripheral CT 

scanner in pediatric measurement. It is a portable device designed to image the peripheral 

skeleton, particularly the upper and lower limbs, like radial and tibial bone structure and 

geometry as well as the surrounding muscle, with relatively low radiation (lower than 0.1µSV per 

scan including scout view) 10,86,90. The precision error of pQCT has been determined in bone 

properties and strength measures in children 10. The main bone parameters measured by pQCT 

are total, cortical and trabecular bone area, content and density from different sites on the radius 

and tibia in children. Cortical and trabecular bone is separated by density thresholds and 

algorithms 10. Bone area and geometry (material distribution over the cross-section of bone) are 

crucial when estimating bone strength at a long bone 10,91. The formulae for bone strength 

estimation have been validated at the distal and shaft sites of the radius and tibia 10,91. At the 

distal site, the bone strength is estimated against compressive loading, which is calculated by 

multiplying total bone area and squared total bone density. At shaft site, bone strength is 

represented by polar sectional modulus against torsional loading 10. The precision errors of bone 

properties range from 2-19% for distal sites, and 2-8% for shaft sites 10. pQCT is also able to 

measure muscle cross-sectional area (MuA), a surrogate measure of muscle force 92. It can 

separate the muscle from bone and subcutaneous tissue by density threshold and algorithm as 

well 10,93,94. The precision errors of MuA from our lab range from 3-4%.  

However, there is a limitation, partial volume effect, related to all CT scans, since the CT 

images are constructed by pixels 85. There are always some pixels which are not fully filled or 

filled by tissues with different densities, which may underestimate averaged bone density 85. For 
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instance, a “red low-density ring” at the periosteal surface of the cortical cortex (Figure 5), which 

is a combination of cortical bone and muscle tissue in the pixels when calculating total bone 

density, might result in some underestimation in bone density assessment 85. 

 

Figure 5: Sample pediatric pQCT images of distal radius (left) and radius shaft (right) at 4% and 
65% of ulna length, respectively. The white/blue color structure is with higher density, and red 
color structure is with lower density. Yellow arrows point at the “red lower-density ring” caused 
by partial volume effect where pixels contain both cortical bone and muscle tissue.  
 

Previous studies reported various findings comparing bone properties and strength in 

children with and without DM1 obtained by pQCT. Saha et al. measured dominant radius and 

right tibia in DM1 adolescents 12. They reported lower total bone mineral content and area at the 

distal tibia, and lower total bone mineral content and cortical bone area at the radius and tibia 

shaft when compared to their typically developing peers. Their findings also suggested lower 

bone strength (density-weighed polar section modulus, SSIp) at the radial and tibial shaft, but not 

for distal sites (cortical to total bone area ratio) (Table 1) 12. SSIp is the ability of bone to resist 

torsional loading, which is related to bone geometry, bone size, bone tissue distribution, and 

material property and stiffness at the diaphysis 91. Bechtold et al. measured the non-dominant 

radius using pQCT from DM1 children with different maturation status 13. They reported lower 

trabecular bone density at distal sites in girls, and total and cortical bone area at the shaft in both 

sexes comparing to typically developing reference. However, the largest difference was detected 



 17 

in pre-pubertal DM1 participants, not in adolescents (Table 1) 13. Maratova et al. measured the 

non-dominant tibia in DM1 adolescents and reported lower trabecular bone density at the distal 

site and bone strength (SSIp) at the shaft (Table 1) 15. Moyer-Mileur et al. scanned non-dominant 

tibia in DM1 children 17. They reported lower distal-site trabecular bone and shaft-site cortical 

bone content,  density and area except cortical bone mineral density and shaft bone strength 

(SSIp) at baseline (Table 1) 17. Another study from the same lab reported lower trabecular bone 

density at the distal tibia (Table 1) 16. Weber et al. reported lower distal tibia trabecular bone 

density and tibia shaft cortical bone density in children who were diagnosed with DM1 within 

one month at baseline, but only detected lower distal tibia trabecular density at 12-month follow-

up. However, they did not report any differences on the non-dominant radius bone properties 

between children with and without DM1 (Table 1) 14

 

1.2.4 High Resolution Peripheral Quantitative Computed Tomography (HR-pQCT) 

HR-pQCT is an upgrade version of pQCT, and can measure the three-dimensional bone 

micro-structure from distal radius and tibia with relatively low radiation dose (<4µSV per scan) 

and precision errors smaller than 7% in children 95,96. It can separate cortical cortex from the 

trabecular bone at the distal radius and tibia. HR-pQCT takes 110 slices over a 9.02mm region, 

which allows 3D visualization of distal radius and tibia (Figure 6) 97. The trabecular bone 

outcomes are trabecular number (Tb.N), thickness (Tb.Th) and separation (Tb.Sp) 96. The 

common cortical bone outcomes are thickness (Ct.Th), porosity (Ct.Po), bone volume/total 

volume (BV/TV) 96. Finite-element models can also be built from the scan images to assess bone 

biomechanical strength noninvasively, like failure load, which estimates how much force bone 

can undertake before fracture 81,86. It can also measure the parameters that pQCT measures, 
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which are total, cortical and trabecular bone area, and cortical and trabecular bone density at the 

distal ends of radius and tibia 96. However, although there is a protocol using HR-pQCT in the 

pediatric population, the software was initially developed for adults.  

There were no previous studies assessing bone micro-structure with HR-pQCT in 

children with DM1. The adult study reported lower total and cortical bone mineral density, and 

cortical bone thickness in DM1 group comparing to the control group (mean age 46yrs in both 

groups) 98. 

 

Figure 6: Sample pediatric distal tibia scan from our lab with 3D visualization (left) and 
separated cortical shell and trabecular bone (right). The outer blue cortex is the cortical cortex 
with intracortical pores labelled in brown. Trabecular bone is inside the cortical cortex with 
green color.  
 

1.2.5 Quantitative Ultrasound (QUS) 

QUS is a radiation-free and portable device to assess the bone mineral status and stiffness 

at a low cost 54. Similar to DXA, QUS is also not able to separate cortical and trabecular bone. 

The most common scanning site is the heel, but it can also measure fingers, radius and tibia. The 

bone parameters obtained from QUS scan are speed of sound (m/s) and broadband ultrasound 

attenuation (dB/MHz) with precision error up to 6% 86,99,100. Like DXA, one downside of this 

technique is the measurement results can be interfered by soft tissue thickness 86, since the 
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ultrasound wave can be scattered and absorbed by not only bone tissue but also bone marrow and 

the soft tissue surrounding bone 96. Therefore, the ultrasound is often used at heels since there is 

less soft tissue. In addition, QUS does not provide a direct conversion to bone density, and the 

correlation between QUS parameters and densitometry measures from other devices, DXA for 

instance, remains questionable 100,101. 

 

1.2.6 Magnetic Resonance Imaging (MRI) 

To form an image, MRI detects the excitation of hydrogen protons in a high magnetic 

field 86. It is a non-invasive technology with no radiation. It can assess the micro-structure for 

soft tissues and both the trabecular and cortical bone, like HR-pQCT, with good short-term 

precision errors (CV% = 1-3%) in adults and children 86. MRI is also able to measure various 

sites of the body, including both central part of the body and peripheral bones (Figure 7) 86. 

However, MRI scanning is costly and noisy, and the accessibility is limited since most MRI 

devices are for clinical use 86. The setting of MRI scanning environment is not ideal for children, 

since parents are not allowed to stay during the scan 86,96. 

The recent study in children with DM1 with MR1 reported lower bone volume to total 

volume, trabecular number and separation at the proximal tibia, which suggests a deficiency in 

trabecular bone in children with DM1 (Table 1) 18. 

 



 20 

Figure 7: Sample pediatric lower leg MRI scan. Adapted from Whitney et al. (2017) 102
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Table 1: Summary of previous studies assessing bone and muscle with imaging tools on children or adolescents with DM1 
 

Author Year Study Design Participant Imaging Tools Findings 
Roe et al. 1991 Cross-

sectional 
48 children with DM1 
and 48 controls (mean 
age 12.8yrs)  
 

QCT Lower cortical but not trabecular bone mineral 
density at lumbar spine 

Lettgen et 
al. 

1994 Cross-
sectional 

21 children with DM1 
(mean age 12.6yrs) and 
sex- and age-matched 
controls (mean age 
12.8yrs) 
 

pQCT Lower trabecular bone mineral density at distal 
radius 

Gunczler et 
al. 

2001 Cross-
sectional 

23 children with DM1 
and 17 age, height, and 
pubertal status matched 
controls (mean age 
9.5yrs)  
 

DXA Lower total-body areal bone mineral density Z-
score in children with DM1 comparing to 
controls 

Heap et al. 2004 Cross-
sectional 

55 children with DM1 
and 95 reference (mean 
age 15yrs) 

pQCT/DXA Lower distal tibia trabecular bone density 
 
Lower femoral neck areal bone mineral density, 
and total-body areal bone mineral content and 
density  
 

Moyer-
Mileur et al. 

2004 Longitudinal, 
12-month 
follow-up 

42 children with DM1 
(mean age 14-15yrs) 
and 203 reference 
(mean age 15yrs) 

pQCT/DXA Lower tibia bone properties and strength, except 
higher tibia shaft cortical bone density in 
children with DM1 and lower increase on 
cortical bone mineral density at 12-month 
follow-up 
 
Lower total-body bone area and area bone 
mineral content, lumbar spine area, and areal 
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bone mineral content and density in children 
with DM1; lower increase on total-body bone 
area, and higher increase on lumbar spine bone 
area and areal bone mineral density at 12-month 
follow-up 
 
Higher muscle cross-sectional area at tibia shaft 
site at baseline, and higher increase at 12-month 
follow-up in children with DM1 
 

Bechtold et 
al. 

2007 Cross-
sectional 

88 children and 
adolescents with DM1 
(mean age 11.7yrs) 
 

pQCT Lower total and cortical bone area at radius shaft 
in children with DM1 
 
Lower muscle cross-sectional area at radius shaft 
in children with DM1 
 

Saha et al. 2009 Cross-
sectional 

48 adolescents with 
DM1 (mean age 15yrs) 
and sex, age, height, 
weight and pubertal 
maturity matched 
control group (mean 
age 16yes) 

pQCT/DXA Lower distal tibia total bone mineral content and 
area, radius and tibia shaft total bone mineral 
content, cortical density and bone strength in 
participants with DM1 
 
Lower femoral neck and great trochanter areal 
bone mineral content in participants with DM1 
 

Maggio et 
al. 

2010 Cross-
sectional 

27 children with DM1 
and 32 controls (mean 
age 10.5yrs) 

DXA No difference on total-body, lumbar spine, 
femoral neck and greater trochanter areal bone 
mineral density between children with and 
without DM1  
 

Maggio et 
al. 

2012 RCT with 
physical 
activity 
intervention  

27 children with DM1 
and 32 controls (mean 
age 10.5yrs) 

DXA No difference on total-body, lumbar spine, 
femoral neck and greater trochanter areal bone 
mineral density between children with and 
without DM1 at baseline 
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Roggen et 
al. 

2013 Cross-
sectional 

54 adolescents and 
young adults with DM1 
(mean age 18yrs) and 
47 controls (mean age 
19yrs) 
 

pQCT Lower total bone area at distal radius in females 
with DM1 only 

Francesci et 
al. 

2018 Cross-
sectional 

95 children with DM1 
(mean age 10.5yrs) and 
40 controls (mean age 
11.9yrs) 
 

Digitalized X-
rays 

Lower outer diameter, inner diameter, cortical 
area and medullary area at 2nd metacarpal in 
children with DM1 

Maratova et 
al. 

2018 Cross-
sectional 

95 adolescents with 
DM1 (mean age 
16.6yrs) 

pQCT Lower trabecular bone mineral density at distal 
tibia, lower bone strength (SSIp) and cortical 
thickness at tibia shaft 
 

Chen et al. 2019 Cross-
sectional 

32 children with DM1 
and 27 controls (median 
age 14yrs) 

MRI/DXA Lower apparent bone volume to total volume, 
trabecular number and separation at proximal 
tibia in children with DM1 
 
Lower total and lumbar spine areal bone mineral 
density in children with DM1 
 

Fuusager et 
al. 

2019 Cross-
sectional 

85 children and 
adolescents with DM1 
(median age 13.2yrs) 
 

DXA Normal total body areal bone mineral density 
based on Z-score in adolescents with DM1 

Weber et al. 2019 Longitudinal, 
12-month 
follow-up 

32 children with DM1 
(mean age 14.2yrs) at 
baseline 

pQCT/DXA Lower trabecular and cortical bone mineral 
density at distal and shaft site tibia at baseline, 
respectively in children with DM1; lower 
trabecular bone mineral density at 12-month 
follow-up as well 
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Lower total body less head areal bone mineral 
content and femoral head areal bone mineral 
density at baseline and follow-up in children 
with DM1; lower increase on femoral head areal 
bone mineral density over 12 months as well 
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1.3 Neuromuscular Performance 

Childhood muscle and bone growth and development are closely related to each other 

94,103,104. Muscle force is a surrogate of bone strength in children 105,106. However, maximal 

intrinsic muscle force cannot be assessed in live human 106. Previous studies have involved 

isokinetic maximal voluntary contraction tests, providing information like peak torque, as an 

indicator of maximal muscle force 106. Still, these movements cannot represent natural 

movements in daily life 107. Neuromuscular performance, often referred to as muscle function 

assessment, including multiple explosive movements, is not merely a muscle strength test. It 

provides information about not only the estimation of maximal muscle force but also motor 

performance and body coordination 108. I will introduce four different explosive movement 

complexes commonly used to test neuromuscular performance, including maximal push-up, grip 

force, and countermovement and long jump, to evaluate both upper and lower body muscle 

extremities. The maximal push-up is an upper body version of countermovement jump 108, and 

grip force measured by hand dynamometer is a widely used test for upper extremity 109,110. Jump 

is frequently used to assess children’s physical fitness at field settings, and its ground reaction 

force is also a predictor for tibia bone strength in children 111.  

 

1.3.1 Upper Extremities: Maximal Push-up and Grip Force 

The maximal push-up (MaxPU) is an explosive movement and also the upper body 

alternative of countermovement jump 108. Comparing to isometric contraction test, like grip 

force, push-up is a more complicated functional movement. The pushing action in push-up is 

related to daily life activities, like a horizontal version of pushing a box. Comparing to repetitive 

push-up to reach the upper body endurance limits, the maximal push-up is more focus on 
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maximal and explosive push-off force, represented by vertical ground reaction force, that 

participants can produce mainly from their upper body. There has been no study tested maximal 

push-up in children with DM1, but it was tested on youth athletes showing the push-off force is 

reliable in 10-15yrs old boys 112. Therefore, ground reaction force, the direct measure from the 

force platform, is used to characterize maximal push-up in children. 

Grip force (GF), measured by hand dynamometer, is a widely used isometric test to 

assess the upper extremity. Hand dynamometer measures hand grip in kilogram, which is later be 

converted into newtons to represent grip force. The hand dynamometer used in this study, Jamar 

dynamometer, has been reported with good reliability in children 113. Although handgrip is a 

simple isometric test, its force is an indicator of upper body muscle strength and distal radius 

bone strength in children 105,114. Overall, the grip force measure is a commonly-used and reliable 

upper extremity measure indicating both muscle and bone strength in children. Previous research 

provided various findings comparing grip strength in children with and without DM1. Fricke et 

al. suggested children with DM1 tended to develop lower grip force comparing to typically 

developing children 31, but Bechtold et al. reported participants with DM1 had higher grip 

strength comparing with reference data (Table 2) 13. Lukacs et al. reported only younger boys (8-

12yrs) with DM1 showed lower grip force (Table 2) 32.  

 

1.3.2 Lower Extremities: Jumps 

Jump mechanography, using the force platform to assess muscle function from dynamic 

movement, is a relatively new way to assess lower-body muscle extremity with better  

reproducibility and accuracy when compared to isokinetic maximal voluntary muscle contraction 

tests 106,109,115. Although grip force is a widely used and inexpensive test to estimate muscle 
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force, it can only evaluate maximal isometric contraction of upper body 109,110. 

Countermovement jump (CMJ) maximal take-off ground reaction force and power have been 

shown with good reproducibility in typically developing children 109. Also, countermovement 

jump force and power are indicators of lower leg muscle size and tibia bone strength in children 

and adults 30,106. Standing long jump (LJ) is a common school-based fitness test in children to 

measure musculoskeletal fitness 116, especially for jump length due to little equipment required. 

Jump length has been measured with good reliability in school-age children 116,117. However, 

although standing long jump is widely tested in children, force and related output, power and 

impulse, have been barely studied in standing long jump.  

There were only two studies comparing jump force in children with DM1. Both Fricke et 

al. and Maratova et al. reported adolescents with DM1 had normal maximal jump force and 

power comparing to reference data, but Maratova et al. also reported significantly lower maximal 

relative leg muscle force (maximal force/body mass) and power (maximal power/body mass) 

during countermovement jump (Table 2) 15,31. In addition, there was one study testing long jump 

length in children with DM1 (8-18yrs) but it did not report difference compared to controls 

(Table 2) 32. 
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Table 2: Summary of previous studies assessing neuromuscular performance on children or adolescents with DM1 

Author Year Study Design Participant Measurement Findings 
Bechtold et 
al. 

2007 Cross-sectional 88 children and 
adolescents with 
DM1 (mean age 
11.7yrs) 
 

Grip force Lower grip force comparing to reference 
data 

Fricke et al. 2008 Cross-sectional 40 children with 
DM1 (mean age 
13.0yrs) 

Grip Force, 
Countermovement 
jump ground reaction 
force and power 
 

Lower grip force, but no difference on 
countermovement jump force and power in 
children with DM1 comparing to reference 
data 
 

Lukacs et al. 2012 Cross-sectional 106 children and 
adolescent with 
DM1 and 130 
controls (8-18yrs) 
 

Grip force, 
Long jump length 

No difference on grip force and long jump 
length between children with and without 
DM1 

Maratova et 
al. 

2018 Cross-sectional 95 adolescents with 
DM1 (mean age 
16.6yrs) 

Countermovement 
jump ground reaction 
force and power 

No difference on countermovement jump 
force and power comparing to reference 
data, but lower relative force and power 
after divided by body mass or weight 
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1.4 Muscle-Bone Interaction 

The theory of muscle-bone interaction between muscle loading and bone strength was 

derived from the “Mechanostat” model since muscle contraction would provide the largest load 

to the bones 43. Voluntary muscle contraction can produce up to 10 times of external loading on 

bones due to the short moment arm, which potentially helps stimulate bone adaptation 9,103,118. 

Especially in childhood, muscle and bone growth and development are closely related to each 

other 94,103,104. With increased loading from muscle or other external sources, bone has to 

withstand more strain, and, consequently, will become stronger to adapt to the strain 39,43,119.  

In terms of muscle-bone interaction between children with and without DM1, there is 

limited literature with discrepant findings assessing the relationship between muscle and bone 

outcomes in DM1 children. Moyer-Mileur et al. reported that adolescents with DM1 had higher 

muscle area but lower bone mineral content, as well as lower ToC/MuA ratio, which suggested 

bone properties might not adapt to muscle size (surrogate of muscle force/stimulus) as much as 

in typically developing children 17. On the other hand, Maratova did not report differences in 

muscle-bone interaction between DM1 adolescents and reference data 15.  

However, the role of muscle plays in bone outcomes is challenging to identify by just 

ratio or correlation. It is important to assess if muscle outcomes have a mediating role which 

explains possible bone difference in children and youth with and without DM1. This potentially 

supports future intervention aiming to improve muscle size and strength to optimize bone 

development in children with DM1.  

 

1.5 Summary and Research Gap 

The literature has reported that children with DM1 have higher fracture risk 2, but the 
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findings regarding bone and muscle in children with DM1 were disparate across studies. There 

are various tools that can image bone and muscle in children, but pQCT is a reasonable choice as 

it can measure bone geometry and density, and muscle size, as well as estimate bone strength at 

various sites of the radius and tibia 10,86. Neuromuscular performance, including maximal push-

up, grip force and jumps, are maximal and explosive tests that can assess upper and lower body 

muscle extremities 108–110. pQCT scans and neuromuscular performance can provide the 

opportunity to look into the potential difference in bone and muscle properties and strength for 

both upper and lower body limbs between children with and without DM1. 

One downside of previous studies involving pQCT was that they only measured one 

aspect over another (e.g., either bone or muscle, or either radius or tibia). This study would 

measure both bone and muscle properties and strength for both upper and lower body limbs 

using pQCT and neuromuscular performance in children with and without DM1. Additionally, 

the measurement of muscle also allows the exploration of the role of muscle size and force in the 

possible bone differences between DM1 and typically developing children, while previous 

studies only provided information on the relationship between bone and muscle characteristics in 

children with DM1. 
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2. Research Objectives, Questions and Hypotheses 

In order to explore the research gap, my thesis focused on the following two research 

objectives: 

 

2.1 Research Objective 1 

My first research objective is to assess the bone and muscle properties and strength 

difference between children with and without DM1.  

In order to address the first research objective, I asked the following research question: 

Do bone and muscle properties and strength differ between children with DM1 and typically 

develop children?  

I hypothesized bone and muscle properties and strength would differ between children 

with DM1 and typically developing children. 

 

2.2 Research Objective 2 

My second research objective is to explore the potential mediating role of muscle size 

and neuromuscular performance in explaining the differences in bone outcomes between 

children with and without DM1.  

In order to address the second research objective, I asked the following research question: 

Are muscle area and neuromuscular performance mediators explaining the differences in bone 

outcomes between children with and without DM1?  

I hypothesized muscle outcomes would be mediators explaining the bone differences 

between children with and without DM1. 
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3. Methods 

3.1 Study Design and Participant Recruitment 

We recruited 38 children with DM1 from the local community, Saskatchewan diabetes 

camp (summer activity camp mainly for children with diabetes (age 6-15yrs) in Saskatchewan) 

and diabetes-related events for this cross-sectional investigation. A database of 170 typically 

developing children and youth, recruited from local schools and community programs,  served as 

controls 95. In my thesis analyses, I included 25 children with DM1 as the DM1 group and 168 

typically developing children as the control group. Participants included two groups were with 

valid peripheral quantitative computed tomography (pQCT) and neuromuscular performance test 

data (Figure 8). The age range for both groups was 6-15 years old, but participants in the DM1 

group were 1 years older and more mature, and 18% less physically active on average when 

compared to participants in the control group (Table 3).  

This study has been approved by University of Saskatchewan Biomedical Research 

Ethics Board. Parental consent and child assent were obtained prior to testing. 

 

Figure 8: Flowchart of DM1 and control group participants recruited and included in this study  

Total Recruitment 
N=208 (109 girls, 99 boys) 

Total recruitment for DM1 group
N=38 (21 girls, 17 boys)

25 scanned with pQCT  and force data tested in lab setting (BBAM)
(15 girls, 10 boys)

pQCT
24 distal radius scans
25 radius shaft scans
25 distal tibia scans
25 tibia shaft scans

1 distal radius 
scan excluded 
due to quality 
issue

Force
25 grip force measured
24 maximal push-up measured
25 countermovement jump measured
25 long jump measured

1 participant opt 
out maximal 
push-up

Total recruitment for control group 
N=170 (88 girls, 82 boys)

168 scanned with pQCT  and force data tested in lab setting (BBAM)
(88 girls, 82 boys)

pQCT
168 distal radius scans
161 radius shaft scans
169 distal tibia scans
165 tibia shaft scans

2 distal radius scans
9 radius shaft scans
1 distal tibia scans
5 tibia shaft scans
excluded due to 
quality issue

Force
168 grip force measured
163 maximal push-up measured
168 countermovement jump measured
168 long jump measured

1 participant opt out push-up only
1 participant opt out push-up and 
jump tests due to broken foot
5 maximal push-up force, 1 
countermovement and long jump 
force excluded due to force 
plate/processing error
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Table 3: Mean, standard deviation (SD) and difference of background characteristics in DM1 
and control groups. The significance of groups differences was set at p<.05. The significantly 
differed characteristics between groups were bolded. 
 

*Significance between groups tested with Mann-Whitney U test. The rest characteristics was 
tested with independent t-test 
 

3.2 Measurement Procedure 

3.2.1 Questionnaires 

There were three questionnaires in this study, “Physical Activity Questionnaire for 

Children”, “Limb Dominance, Medical History and Health Questionnaire” and “Food Frequency 

Questionnaire”. Participants and their parents/guardians had the choice to complete them before, 

during, or after the measurement session.  

Physical Activity Questionnaire for Children (PAQ-C) (Appendix 1) is a 7-day self-

reported recall of physical activity level for children. The questions include what sports 

participants play, physical activity at different time in a day, and potential barriers for physical 

activity. The focus of this questionnaire is the frequency and types of activity instead of 

intensity. PAQ-C has good validity and internal consistency reported in previous studies 120,121. 

The PAQ-C score is based on a 1 (low activity level) to 5 scale (high activity level) and was 

 DM1 Control  

Number 25 168  
 Mean SD Mean SD p-value 
Chronological Age (yrs) 12.3 2.2 10.8 1.8 0.001* 
Maturity Offset (yrs) -0.4 1.9 -1.5 1.6 0.002* 
Height (cm) 150.9 13.9 146.2 12.0 0.079 
Body Mass (kg) 48.0 17.7 40.7 12.7 0.042* 
PAQ-C 2.5 0.6 3.0 0.6 <0.001 
Protein (g) 75.0 36.5 66.0 34.9 0.100* 
Calcium (mg) 908.5 339.8 916.0 440.2 0.684* 
Vitamin D (IU) 135.6 98.3 191.7 162.1 0.174* 
Years after diagnosis 5.2 2.4    

HbA1c (%) 7.8 0.8    
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considered as a potential covariate in statistical analysis. 

Limb Dominance, Medical History and Health Questionnaire (Appendix 2) helped 

determine which limb/side to measure in pQCT and to analyze in neuromuscular performance 

testing. We typically measured the dominant limb; however, if children had previous fracture on 

their dominant limbs, their non-dominant limbs were measured instead. Medical history and 

health condition helped with the determination of participant eligibility. If there were any 

medication and diseases besides DM1 that participant had, which would influence bone and 

muscle health and growth, this child would be excluded from our study. This questionnaire also 

asked for DM1 durations, which is a confounding factor potentially influencing musculoskeletal 

growth and reported in background characteristic table 122.  

Food Frequency Questionnaire (Appendix 3) is a validated self-report dietary 

questionnaire to assess nutrition intake over past six months (NutritionQuest, 1998 BDDS) 123,124. 

It requires recall for a variety of food, including fruit, diary, cereal, vegetable, meat and fish, 

carbohydrates, as well as beverage and supplements. The finished questionnaires were then sent 

to NutritionQuest for dietary analysis to provide detailed information on calories and nutrient 

intake per day. 

 

3.2.2 Anthropometry Measurement  

Body height was measured in centimeters (cm) by a stadiometer on the wall (Holtain 

Limited, Crymych, UK), which can be accurate to the millimeter. When measuring height, 

participants stood straightly against the wall with shoes off and feet together. To measure seated 

height, participants sat on a box with back against stadiometer on the wall. The measurement 

was in centimeter scale and was then accurate to the millimeter. I subtracted the readings to box 
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height for seated height. Both body height and seated height were measured three times, and the 

median value was taken. Body mass was measured in kilogram (kg) by weight scale (Toledo 

Scale Company of Canada Ltd, Windsor, ON, Model 2830) to the nearest 0.5kg.  

 

3.2.3 Maturation Assessment 

The maturity status of participants was assessed by maturity offset (MO), which was the 

number of years at the measurement date away from the age of peak height velocity (aPHV). 

aPHV marks the age children will experience the highest rate of stature growth 125,126. MO is the 

estimated maturity in years calculated from sex-specific formulae considering both children’s 

chronological age and height or seated height 48, and the formulae are shown below (Equations 

3.1 & 3.2): 

Maturity	Offset	for	Boys = −8.128741 + 0.0070346	 × 	age	 × 	seated	height…………..(3.1) 

Maturity	Offset	for	Girls = −7.709133 + 0.0042232	 × 	age	 × 	height…………………..(3.2) 

Where the “age” is the participant’s chronological age (yrs). 

 

3.2.4 Medical Record Review 

I also reviewed the medical record to obtain the background characteristics of long-term 

blood glucose level and disease duration. Long-term blood glucose level was assessed by mean 

annual hemoglobin level (HbA1c, %). Disease duration in years was calculated by subtracting 

testing date and date of diagnosis. 

 

3.2.5 Bone and Muscle Properties Assessment  

Bone and muscle properties were measured from participant’s dominant forearm and 
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lower leg using the peripheral quantitative computed tomography (pQCT) (Stratec XCT 2000) 

with a slice thickness of 2.4mm and pixel size of 0.4mm*0.4mm 127. Previous studies reported 

the precision error of pQCT on children’s bone properties and strength measures (2-19%) 10 and 

adult muscle cross-sectional area (MuA) (1-4%) 128,129. Prior to testing, the participant’s forearm 

and lower leg length were measured. The forearm length was based on ulna length. During the 

measurement, participants were required to put their elbows on the table and to flex their elbows 

to make their dominant (or non-fractured) forearms perpendicular to the table. We took the 

measurement from the bottom of the elbow (olecranon process) to the most distal and lateral 

point of the styloid process of the radius using an anthropometric sliding caliper 10. The lower leg 

length was based on tibia length. Children sat on a chair with their ankle of the dominant (or 

non-fractured) leg on their thigh. Then, we measured the length from proximal border of the 

medial epicondyle to the most distal point of medial malleolus as lower leg length 10. The limb 

dominancy was determined by preferred writing hand and ball kicking foot for dominant arm and 

leg, respectively 10. After measuring limb length, we pre-scaned participants for scout view to 

determine the distal end of the ulna and tibia as a reference line, which was placed above the 

growth plate and distal to the proximal edge of epiphysis (Figure 9). pQCT took the scans at 4% 

and 65% sites of ulna from the most distal edge of the styloid process of ulna and 4% and 66% 

sites of the tibia from the most distal edge of the medial malleolus (Figure 10 & 11) 10. At distal 

sites, the threshold was set at 480mg/cm3 to separate cortical and trabecular bone, and 

200mg/cm3 to classify bone tissue. At shaft sites, the threshold was set at 480 mg/cm3 to separate 

cortical and trabecular bone, 280mg/cm3 to separate bones and soft tissues, and 40mg/cm3 to 

separate muscle and subcutaneous fat 10,93,94. At distal sites, total bone properties (content (ToC, 

mg/mm) density (ToD, mg/cm3) and area (ToA, mm2)) and trabecular bone properties (content 
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(TrC, mg/mm), density (TrD, mg/cm3) and area (TrA, mm2),) were measured. At shaft sites, total 

bone properties (content (ToC) density (ToD) and area (ToA)) and cortical bone properties 

(content (CoC, mg/mm), density (CoD, mg/cm3) and area (CoA, mm2)) were measured. The 

precision errors of bone properties range from 2-19% for distal sites, and 2-8% for shaft sites in 

our lab 10. Participants were required to keep still during the whole scan to achieve the best 

quality of the scan images. Unlike bone properties, muscle property, and muscle cross-sectional 

area (MuA, cm2) was only measured at shaft sites. The unpublished precision errors of MuA 

from our lab range from 3-4%.  
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Figure 9: Sample reference line placement for radius (a,b) and tibia (c,d) from scout view scans 
during pQCT scan. Adapted from Duff et al. (2017) 10 
 

 

Figure 10: One participant was receiving arm (left) and leg (right) scans with pQCT  

 

Figure 11: Sample lower leg (left) and forearm (right) scans at distal and shaft sites with pQCT 

 

3.2.6 Bone Strength Estimation 

Bone strength was determined by bone strength index for compression (BSIc, mg2/cm4) at 

distal sites and density-weighed section modulus (SSIp, mm3) at shaft sites. BSIc and SSIp were 

calculated by the following equations (Equations 3.3 & 3.4) 28,91: 

BSID = ToA	 ×	ToDH…………………………………………………………………………(3.3) 

SSII = ∑
(LM×NM

O)(QRS
TS

)

NUVW
X ………...………………………………………………………………(3.4) 
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Where a represents the cross-section area of one voxel (mm2), d is the distance from the voxel to 

center of gravity (mm), and dYLZ is the distance from the farthest voxel to the center of gravity 

(mm). CoD is the cortical bone density (mg/mm3) at the shaft, and ND is the normal 

physiological density (mg/mm3) 28.  

The bone strength index for compression (BSIc) is able to explain 85% of the variance in 

bone failure load at the distal site based on validation study, and had a precision error of 8% in 

children from our lab 10,91. Density-weighed polar sectional modulus (SSIp) considers not only 

the bone density but also the bone size and material distribution to assess the ability that bone 

resists torsional loading at the radial and tibial shaft 91. The precision error for SSIp is 6% in 

children from our lab 10. Therefore, BSIc and SSIp were used to represent bone strength in this 

study. 

 

3.2.7 Neuromuscular Performance  

Maximal Push-up (MaxPU) is an upper-body explosive test, which requires participants 

to push themselves off from the ground as high as possible without bending elbows after hands 

leaving the ground until reaching the top of the movement 108. Before performing MaxPU, 

participants were required to place their hands shoulder-width apart on two force platforms 

(Figure 12 A). During the test, participants started from a full plank position and elbow fully 

extended. Then they lowered down their bodies by bending the elbows. After the elbows ware 

bent at least 90 degrees or reached their limit, participants pushed their bodies up as fast as they 

could. The highest ground reaction force during push-off phase was selected based on kinematic 

data collected by an eight-camera motion capture system (Vicon Nexus, Vicon Motion Systems, 

CO) and then processed by Matlab code (R2006b). Reflective tracking markers were placed on 
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participants’ two shoulder joints (acromioclavicular joints) and on the top of their backs 

(centered between superior scapulae) prior to the testing. These three markers could help capture 

vertical movement of upper body. The maximal push-off ground reaction force was selected 

during the “upward” phase of the push-up. Three trials were performed, and the largest push-off 

ground reaction force (Newton, N) from the dominant arm among all three trials was used for 

statistical analysis. The unpublished precision error of MaxPU force is 9% in our lab. 

Maximal Grip Force (GF) is a common test to assess children’s hand and wrist strength, 

which was measured by JAMAR 200 hand dynamometer (Sammon Preston Inc., Boldingbrook, 

IL) (Figure 12 B) in kilogram and then converted into Newton. While lab technician was saying 

“Squeeze as hard as you can. Squeeze. Squeeze. Squeeze”, participants squeezed the hand 

dynamometer as hard as they could with elbow flexing 90 degrees and arm away from the body 

113. Participants performed this test three times on each hand with alternating hands to eliminate 

the potential muscle fatigue. Only the maximal force (N) from the dominant hand, one 

representation of upper body muscle force, was recorded for further analysis. The unpublished 

precision error of GF is 14% in our lab. 

Countermovement Jump (CMJ) is an explosive jumping test to assess children’s lower 

body muscle extremity. Participants started by standing upright on one force platform, then 

performed a countermovement by jumping as high as they could (Figure 12 C). Arm swing was 

allowed during the movement. Knee angles during countermovement and jumping were not 

specifically controlled. This test involved three trials. The maximal vertical ground reaction force 

(N), power (Watts, W) and impulse (Newton second, Ns) during take-off phase were measured 

for each trial to represent lower body muscle force. Only the data from the trial with the highest 

impulse was used for further statistical analysis. The unpublished precision errors of CMJ 



 41 

outcomes range from 11-23% in children in our lab. 

Long Jump (LJ) is the other explosive jumping test to assess children’s lower extremity. 

Participants started from standing on one force platform behind a marked take-off line, then 

jumped as far as they could (Figure 12 D,E). The LJ length was measured from the take-off line 

to the back of the participants’ heel closest to the take-off line. Arm swing was allowed during 

the movement. Knee angle before and during the jump was not specifically controlled, either. 

This test was performed three times. The maximal vertical and horizontal ground reaction force, 

power and impulse and jumping length (cm) were measured for each trial during take-off phase 

to represent lower body muscle force, but only values from the trial with the longest jumping 

length was used for further statistical analysis. The unpublished precision errors of LJ outcomes 

range from 6-25% in children in our lab. 

 

Figure 12: Neuromuscular performance tests in biomechanics lab: A) Maximal Pushup force 
was measured based on two force platforms. B) Maximal grip strength was measured by a 
handgrip dynamometer. C) Maximal countermovement jump force was measured on the single 
force platform. D,E) Maximal Long jump horizontal and vertical force was measured based on 
the single force platform.  
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3.3 Statistical Analysis 

I separated measurement into two sets of outcomes, bone and muscle outcomes. I 

analyzed radius, tibia, upper body, and lower body muscle outcomes separately. Upper-body 

muscle outcomes included forearm muscle area, grip force and maximal push-up force. Lower 

body muscle outcomes included lower leg muscle area and countermovement and long jump 

outcomes. Both sexes were combined in the analyses.  

 

3.3.1 MANCOVA Assumptions  

Bone Outcomes: I checked (1) the normality of all pQCT outcomes in both DM1 and 

control groups by visual inspection with normal Q-Q plots, (2) independence of observation with 

Durbin-Watson test, which all values were close to 2, (3) outliers with boxplots, and there were 

two outliers for distal radius total bone density (ToD) and one for tibia shaft cortical content 

(CoC) in control group. However, I retained the outliers in statistical analysis since exclusion did 

not influence my results. I also checked (4) homogeneity of variance and covariance matrices by 

Levene’s test (p<.05) and Box’s test (p<.001), respectively. Homogeneity of regression 

coefficients was checked by scatter plots. There was significance on the homogeneity of variance 

on distal radius total bone content (ToC), trabecular content (TrC), and radius shaft cortical 

content (CoC), tibia shaft total bone area (ToA). Also, there was violation on homogeneity of 

covariance in both radius and tibia. I checked (5) linearity between all pairs of dependent 

variables (DVs, bone outcomes) and independent variable (IV, diabetes status), and DVs and 

covariates using scatter plots. (6) Multicollinearity and singularity in between DVs and IV were 

checked by VIF (<10) or tolerance (>0.1) values and bivariate correlation (r < 0.9), respectively.  
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Muscle Outcomes: I checked (1) the normality of all force and related outputs in both 

DM1 and control groups by visual inspection with normal Q-Q plots, (2) independence of 

observation with Durbin-Watson test, which all values were close to 2, (3) outliers with boxplots. 

There were two outliers for forearm muscle area (MuA) and one for lower leg MuA, one for 

countermovement jump vertical impulse and one for long jump horizontal impulse in the control 

group. However, I retained the outliers in statistical analysis since exclusion did not influence my 

results. I also checked (4) homogeneity of variance and covariance matrices by Levene’s test 

(p<.05) and Box’s test (p<.001), respectively. Homogeneity of regression coefficients was 

checked by scatter plots. There was significance on homogeneity of variance on maximal push-

up ground reaction force and countermovement jump vertical power and long jump vertical 

force. Also, there was violation on the homogeneity of covariance in upper body muscle 

outcomes. I checked (5) linearity between all pairs of dependent variables (DVs, muscle 

outcomes) and independent variable (IV, diabetes status), and DVs and covariates using scatter 

plots. (6) Multicollinearity and singularity in between DVs and IV were checked by VIF (<10) or 

tolerance (>0.1) values and bivariate correlation (r < 0.9), respectively. 

In the case of assumption violation, I transformed all bone and muscle outcomes, height, 

body mass, PAQ-C score and nutrition intake, based on lg10 algorithm, and then ran the 

transformed variables in MANCOVA again for the same models. The same covariates stayed for 

each MANCOVA model but in the transformed form, except for maturity offset. I included the 

results after data transformation Appendices 4 and 5 (Table 6 & 7). However, I still reported the 

results and discussed the findings based on the data before transformation, since they are easier 

for interpretation and the results are comparable before and after transformation. 
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3.3.2 Covariate Determination 

The potential covariates were sex, maturity offset, height, body mass, PAQ-C score and 

nutrition factors (calcium, vitamin D and protein) for bone and muscle outcomes 47,49–52,54–56,61,64–

67. I first determined if any of the potential covariates differed between the groups using either 

independent t-test or Mann-Whitney U test depending on the normality of distribution for each 

factor in both control and DM1 groups (p<.05). The sex difference between groups was tested 

using chi-square (p<.05). Maturity offset, body mass and PAQ-C score differed between groups; 

hence they were applied into MANCOVA model. However, PAQ-C score only contributed to 

the model for lower body muscle outcomes, determined by the significance of multivariate 

significance (p<.05) in the model (p<.05). Therefore, for radius and tibia bone outcomes and 

upper body muscle outcomes, the covariates I selected were maturity offset and body mass for 

the MANCOVA models to test hypothesis 1. For lower body muscle outcomes, the covariates 

were maturity offset, body mass and PAQ-C score.  

 

3.3.3 Mediation 

Mediation is a hypothesis that one factor could intermediate during the process which one 

variable affects another variable, which the factor is usually labeled in “M” as mediator (Figure 

13) 130. The independent variable is labeled as “X”, and the dependent variable is labeled as “Y” 

(Figure 13) 130. The amount of mediation is referred to “indirect effect” 130. Pathway c in Figure 

13 is “total effect” and c’ is “direct effect”, which total effect is the sum of direct and indirect 

effect 130. Pathway a and b are both “direct effect” from X to M and M to Y, respectively (Figure 

13) 130. The “indirect effect” can be calculated by c subtracting c’ 130. The “effects” are 

characterized by the unstandardized beta coefficient in each regression model 130. 
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Figure 13: Diagram showing total effect (c) between an independent variable (X) and dependent 
variable (Y) (upper figure), and direct effect (a, b, c’) from X to M, M to Y and X to Y without 
M, respectively 
 

The analysis of mediation is usually based on regression analysis with a four-step 

analysis 131. The first step is to test the relationship between X and Y as pathway c, followed by 

testing the relationship between X and M, as pathway a, and M and Y, as pathway b, by bivariate 

regression 131. The last step is to run a multiple regression including both X and M predicting Y 

as pathway c’ 131. The popular method to evaluate mediation is by using bootstrap 130, since 

bootstrap does not require the assumption of normality and works for small to large sample sizes  

130,132,133. The independent variable (X), DM1 and control groups, in this study was binary and 

not continuous. Therefore, bootstrapping is an ideal choice when exploring mediation in this 

study. Bootstrapping assumes a non-parametric way relying on random resampling with 

replacement for a large number of times, like 5000 times 130. Bootstrapping provides a 

confidence interval for calculating indirect effect; a confidence interval without crossing zero 

implies the significance of mediation, or indirect effect 130.  
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3.3.3 Hypothesis Testing: Research Objective 1 and 2 

Objective 1: I used multiple analysis of covariance (MANCOVA) to determine if there 

was a significant difference in bone outcomes, including radius and tibia properties and strength, 

and upper and lower body muscle outcomes between groups (p<.05). The corresponding 

covariates I adjusted in MANCOVA models were maturity and body mass for radius, tibia and 

upper body muscle outcomes, and maturity, body mass and PAQ-C score for lower body muscle 

outcomes. I reported the omnibus effect in each bone or muscle MANCOVA model. I also 

reported the mean and standard deviations of each outcome for both groups, as well as between-

group adjusted mean differences and % difference with 95% confidence interval. 

Objective 2: I tested mediation using macro code for SPSS (PROCESS, Hayes, 2018) by 

adding MuA or neuromuscular performance outcomes as a possible mediator one by one into the 

regression models. In the models, I included groups as X and differed bone outcomes between 

groups determined in Objective 1 as Y as well as the same covariates, maturity and body mass. 

Significance of mediation was determined by 95% confidence interval of indirect effect 

calculated with bootstrap (5000 bootstrap samples). 
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4. Results 

4.1 Research Objective 1: Bone and Muscle Outcomes 

4.1.1 Radius 

There was a significant group difference (omnibus effect) in radius bone outcomes, 

F(12,168) = 4.705, p<.001. At the distal radius, there were no significant differences in bone 

properties and strength between DM1 and control groups (Table 4). At radius shaft sites, there 

were 8% higher cortical bone density (CoD) and 7% lower cortical bone area (CoA) in DM1 

group (Figure 14, Table 4). None of the other radius shaft bone properties nor strength 

parameters differed between groups (Table 4). 

 
 
Figure 14: Bar graph showing adjusted mean % difference of radius properties and strength with 
95% confidence intervals comparing DM1 group with the control group 
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4.1.2 Tibia 

There was a significant group difference (omnibus effect) in tibia bone outcomes, 

F(12,173) = 3.881, p<.001. At distal tibia, there was no significant difference between DM1 and 

control groups on bone properties and strength (Table 4). At the tibia shaft, children with DM1 

had 6% lower cortical bone area content (CoC), 5% higher cortical bone density (CoD) and 10% 

lower cortical bone area (CoA) (Figure 15, Table 4). The rest of tibia shaft bone properties and 

strength parameters did not have significant difference between groups (Table 4). 

 

Figure 15: Bar graph showing adjusted mean % difference of tibia properties and strength with 
95% confidence intervals comparing DM1 group with the control group 
 

Table 4: Mean, standard deviation (SD), adjusted mean difference and % difference of bone 
properties and strength between DM1 and control groups. The significance of groups differences 
was set at p<.05. The significant different bone outcomes between groups were bolded. 
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4.1.3 Muscle Area and Neuromuscular Performance 

There were significant group differences (omnibus effect) in upper (F(3,172) = 3.111, p= 

.028) and lower body (F(11,125) = 2.100, p=.025) muscle outcomes. Participants in DM1 group 

had higher maximal push-up group reaction force (12%) compared to control group (Figure 16 & 

 DM1 Control    

 Mean SD Mean SD p-value Difference % Difference 
Distal Radius        
  ToC (mg/mm) 76.0 14.4 73.7 14.0 0.470 2.3 3.1 
  ToD (mg/cm3) 285.2 36.3 288.6 35.3 0.668 -3.4 -1.2 
  ToA (mm2) 262.8 45.0 256.9 43.7 0.555 5.9 2.3 
  TrC (mg/mm) 59.8 14.7 58.9 14.3 0.784 0.9 1.5 
  TrD (mg/cm3) 248.3 26.1 253.5 25.4 0.366 -5.2 -2.1 
  TrA (mm2) 236.3 49.7 232.3 48.3 0.712 4.0 1.7 
  BSIc (mg2/mm4) 22.2 6.1 21.5 5.9 0.596 0.7 3.3 
Radius Shaft        
  ToA (mm2) 121.9 23.4 127.6 22.7 0.268 -5.7 -4.5 
  CoC (mg/mm) 68.2 10.1 67.2 9.8 0.664 1.0 1.4 
  CoD (mg/cm3) 903.8 70.5 836.5 68.6 <0.001 67.3 8.1 
  CoA (mm2) 74.5 10.7 80.2 10.4 0.016 -5.7 -7.1 
  SSIp (mm3) 211.6 42.5 198.3 41.4 0.156 13.3 6.7 
Distal Tibia        
  ToC (mg/mm) 211.7 35.2 218.4 34.4 0.375 -6.7 -3.1 
  ToD (mg/cm3) 284.0 31.5 288.9 30.9 0.473 -4.9 -1.7 
  ToA (mm2) 741.8 120.0 759.2 117.3 0.503 -17.3 -2.3 
  TrC (mg/mm) 164.8 36.6 171.7 35.8 0.381 -6.9 -4.0 
  TrD (mg/cm3) 245.6 23.6 249.8 23.1 0.411 -4.2 -1.7 
  TrA (mm2) 669.5 130.9 685.4 128.1 0.572 -16.0 -2.3 
  BSIc (mg2/mm4) 61.1 14.6 63.6 14.3 0.427 -2.5 -4.0 
Tibia Shaft        
  ToA (mm2) 476.4 73.9 497.3 72.3 0.191 -20.9 -4.2 
  CoC (mg/mm) 224.3 30.0 238.2 29.3 0.033 -13.9 -5.8 
  CoD (mg/cm3) 932.9 49.9 892.3 48.8 <0.001 40.6 4.6 
  CoA (mm2) 238.8 33.6 266.2 32.9 <0.001 -27.4 -10.3 
  SSIp (mm3) 1466.1 265.8 1503.6 260.1 0.513 -37.6 -2.5 
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17, Table 5). There were no differences between the groups in forearm and lower leg muscle 

cross-sectional area, grip force and all jump outcomes (Table 5).  

 

Figure 16: Bar graph showing adjusted mean % difference of upper body muscle outcomes with 
95% confidence intervals comparing DM1 group to the control group 
 

 

Figure 17: Bar graph showing adjusted mean % difference of lower body muscle outcomes with 
95% confidence intervals comparing DM1 group to control group
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Table 5: Mean, standard deviation (SD), adjusted mean difference and % difference of muscle area and neuromuscular performance 
outcomes between DM1 and control groups. The significance of groups differences was set at p<.05. The significant different muscle 
outcomes between groups were bolded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 DM1 Control    
 Mean SD Mean SD p-value Difference % Difference 

Upper Body        
Forearm MuA (cm2) 22.6 3.0 22.1 2.9 0.462 0.5 2.2 
Maximal Grip Force (N) 201.2 39.3 188.0 38.6 0.128 13.2 7.1 
Maximal Push-up Force (N) 203.2 32.3 182.2 31.7 0.004 20.9 11.5 
Lower Body        
Lower Leg MuA (cm2) 41.6 5.7 43.3 5.3 0.227 -1.7 -3.9 
Countermovement Jump        
  Vertical Force (N) 831.4 110.3 880.5 103.6 0.071 -49.1 -5.6 
  Vertical Power (W) 1626.6 385.4 1772.1 362.0 0.125 -145.5 -8.2 
  Vertical Impulse (Ns) 90.8 16.1 92.9 15.1 0.591 -2.1 -2.3 
Long Jump        
  Vertical Force (N) 846.4 101.9 832.5 95.7 0.577 13.9 1.7 
  Horizontal Force (N) 308.7 56.7 287.2 53.2 0.122 21.6 7.5 
  Vertical Power (W) 993.4 246.8 1054.3 231.9 0.314 -60.9 -5.8 
  Horizontal Power (W) 564.4 183.0 522.3 171.9 0.348 42.1 8.1 
  Vertical Impulse (Ns) 55.8 12.6 57.7 11.9 0.535 -1.9 -3.3 
  Horizontal Impulse (Ns) 90.6 13.4 85.9 12.6 0.154 4.7 5.5 
  Length (cm) 137.9 23.4 134.5 22.0 0.549 3.4 2.6 
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4.2 Research Objective 2: Mediation of Muscle Outcomes on Bone Outcomes 

Lower leg muscle area was a mediator in predicting the tibia shaft cortical bone content 

(indirect effect = -5.1, 95%CI = -10.76, -0.03) and area (indirect effect = -5.5, 95%CI = -11.82, -

0.00) differences between DM1 and control groups (Figure 18 & 19), as the 95% confidence 

interval (CI) of indirect effect does not cross zero. Other muscle outcomes did not have 

significant indirect effect due to the 95% CI across zero.  

 

Figure 18: Pathway diagram showing group (X) predicting tibia shaft CoC (Y) without 
considering possible mediator (M) lower leg MuA (pathway c), and with considering lower leg 
MuA as mediator (pathway c’). Pathway a represents the group (X) predicting mediator, lower 
leg MuA (M). Pathway b represents the mediator, lower leg MuA (M), predicting tibia shaft CoC 
(Y). Unstandardized beta (!) and significance of prediction of individual pathway and covariates 
(p<.05), as well as the indirect effect of the mediator, lower leg MuA, and its 95% confidence 
interval (CI).  
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Figure 19: Pathway diagram showing group (X) predicting tibia shaft CoA (Y) without 
considering possible mediator (M) lower leg MuA (pathway c), and with considering lower leg 
MuA as mediator (pathway c’). Pathway a represents the group (X) predicting mediator, lower 
leg MuA (M). Pathway b represents the mediator, lower leg MuA (M), predicting tibia shaft CoA 
(Y). Unstandardized beta (!) and significance of prediction of individual pathway and covariates 
(p<.05), as well as the indirect effect of the mediator, lower leg MuA, and its 95% confidence 
interval (CI). 
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5. Discussion  

My findings suggested group difference in bone and muscle outcomes between children 

with DM1 and their typically developing peers. Children in DM1 group had 7% lower cortical 

bone mineral area, and 8% higher density at the radius shaft. My thesis findings added evidence 

to previous literature measuring radius with pQCT, in which children with DM1 had lower shaft-

site cortical bone area 12,13. I did not detect between-group difference in radius shaft SSIp while 

Saha et al. reported 5-9% lower radius shaft SSIp in children with DM1 12. However, there was 

no difference at the distal radius between the DM1 and control groups, which agreed with two 

previous studies with radius measurement 12,13.  

For tibia, we observed 6% and 10% lower shaft-site cortical bone content and area, 

respectively, and 5% higher cortical bone density, which supported previous findings 17. 

However, we did not find any difference at distal tibia outcomes and tibia shaft bone strength 

(SSIp), which contrasted with the previous literature reporting 5-10% lower trabecular bone 

outcomes 15,17 and 9-12% lower SSIp 12,15. Our findings on the tibia were similar to the radius, 

both suggesting lower cortical bone area and higher density at both upper and lower body limbs. 

Furthermore, although there was no difference found at distal sites of the radius and tibia, it did 

not represent there was no difference if looking into bone micro-structure.  

For muscle size, there was no difference in muscle cross-sectional area between groups in 

our study. In terms of previous literature, Bechtold et al. reported 0.2-0.3 standard deviation 

below the mean of German reference population on forearm muscle cross-sectional area 13, and 

Moyer-Mileur reported 1% higher at lower leg muscle area comparing to their non-diabetic 

control group 17. The findings on muscle size seemed inconsistent. However, muscle area did not 

appear to have big difference between children with and without DM1 even if the difference was 
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significant, since the observed change was smaller than the unpublished precision error of pQCT 

measured muscle area (3-4%) from our lab.  

The children with DM1 had an average HbA1c of 7.8% , which suggested a good 

glycemic control when compared to previous literature with values ranging from 8.2 to 9.2% 

12,15,17. Our findings on cortical bone area and distal radius were comparable one previous paper 

with similar average HbA1c level (7.7%), but they also reported lower total bone area and 

muscle cross-sectional area at radius shaft as well as higher grip strength 13. There was a study 

comparing the pQCT results between children with good (<7.5%) and poor (≥7.5%) glycemic 

control, and reported the gains in distal tibia trabecular bone density and tibia shaft total and 

cortical bone area were less in children with poor glycemic control when compared to those 

children with good glycemic control 14. However, even if the growth differed after 12 months, 

they did not report differences in tibia shaft total and cortical bone area between children with 

good and poor glycemic control and between children with DM1 and reference 14. Therefore, the 

glycemic control may play a role on bone outcomes, but more evidence is needed before 

determining the exact role of glycemic control in bone and muscle development.  

For nutrition intake, only Moyer-Mileur et al. reported calcium intake in children with 

DM1 17. Participants in their study appeared to have higher daily calcium intake in both DM1 

and reference groups comparing to ours, and there was no group difference in calcium intake 17. 

Their findings at tibia shaft matched with our findings, but they also reported lower trabecular 

bone area, density and content at distal tibia and lower leg muscle area 17. However, the disparate 

findings on distal-site bone outcomes and muscle area between their and our studies cannot be 

explained by calcium intake, since calcium intake did not differ between groups in these two 

studies.  
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In terms of neuromuscular performance, maximal push-up force was 12% greater in 

children with DM1. The potential explanation for higher MaxPU force in children with DM1 

was the greater relative number of children (data not shown) participating in sports including 

upper body training,  like gymnastics and taekwondo 134,135. We did not observe differences in 

grip force which agreed with a previous study 31 but disagrees with others 12,27. We did not 

observe differences in jump force and power, and long jump length between the groups, which 

agreed with previous literature suggesting normal jump take-off force and power in children with 

DM1 when compared to reference values based on z-scores 15,31.  

In terms of the mediation role of muscle, our findings suggested lower leg muscle area as 

a mediator in between the relationship of DM1 status and tibia shaft cortical bone area and 

content. The calculated “indirect effect” implied that the between-group difference in cortical 

area and content might be lower by increasing muscle size at the lower leg in children with DM1. 

There was no previous literature assessing the role of muscle in bone outcomes in DM1 children. 

Other muscle outcomes, like neuromuscular performance, were not significant when testing for 

mediation. However, some of them might still be mediators with a larger sample size as the 

boundaries of 95% CI of some neuromuscular performance outcomes were close to zero. Also, 

neuromuscular performance testing appeared to have larger precision errors (6-25%) than muscle 

area (3-4%) based on unpublished precision error from our lab. As a result, a larger sample size 

might be required to detect its role as a possible mediator.   

 

5.1 Clinical relevance  

These findings provided evidence that children with DM1 had lower bone cortical bone 

area but higher density at both radius and tibia shaft, and lower cortical bone content at tibia 
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shaft compared to typically developing children. Although the bone strength did not differ 

between groups, the smaller but denser cortical bone at shaft sites may suggest a lower bone 

turnover rate in children with DM1 during growth 18,19,83. During growth, the bone grows in 

length, and the trabeculae close to the periosteal surface will thicken and develop into cortical 

bone 136. The cortical bone formation cannot match the speed of resorption during rapid growth, 

which is likely to leave more pores inside the cortical bone and reduces the cortical bone density 

136. However, when the bone turnover rate or bone formation is lower, the cortical bone may not 

form as much as in typically developing children, and there would not be as much porosity as 

well 136. Therefore, the potential lower bone turnover might be the reason underlying both the 

higher cortical bone density and smaller cortical bone area. This is clinically important because it 

may relate to the development of weaker skeleton in the future, and contribute to the reported 

higher fracture risk in individuals with DM1 2,106.  

Our findings also suggest if children with DM1 have larger lower leg muscle size, the 

difference in tibia shaft cortical area and content between children with and without DM1 might 

be smaller. An intervention focusing on enlarging lower body muscle size might be beneficial for 

developing larger size cortical bone at tibia shaft in children with DM1. High impact exercise, 

like jumps, might be an ideal choice of exercise improving muscle size, and also jumps can help 

improve bone strength in children 20,63. 

 

5.2 Strengths and Limitations 

This study had a few strengths and limitations that warranted discussion. The first 

strength related to the bone imaging tool, pQCT, which facilitated the investigation of bone and 

muscle in children with and without DM1. pQCT allowed me to separate cortical and trabecular 
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bone and to measure their size and “true” volumetric bone mineral density. Furthermore, the 

study design involved an actual control group instead of comparing to reference data like some 

of the previous studies 13–15. The control group data was also collected from our lab with the 

same measurement tools and procedures within the same lab space with known measurement 

precision errors. In addition, we also evaluated muscle size and force produced in neuromuscular 

performance to assess how strong the muscle is. Muscle cross-sectional area was a relatively 

precise way and good surrogate of muscle strength 92. Neuromuscular performance had a focus 

on maximizing muscle force output in a more direct way, and was measured from movements 

involving motor performance and body coordination 108. Previous studies usually only focused 

on one way or another. In this way, we were able to assess the role of both muscle size and force 

in bone properties and strength in children with and without DM1.  

There are also some limitations in this study. Firstly, there was a relatively small sample 

size in DM1 group and the uneven sample size between two groups; if there would be more 

participants in DM1 group, the power of analysis would be stronger 137. Secondly, we were not 

able to obtain PAQ-C score (133 in control group, 20 in DM1 group) and nutrition data (103 in 

control group, 23 in DM1 group) from all participants, which reduced our sample size in both 

groups and the power during analysis when including PAQ-C score as a covariate. Thirdly, there 

were limitations related to the voluntary muscle contraction during the neuromuscular 

performance test, which could be influenced by skill level as well as motivation, like how hard 

they wanted to push themselves, at the testing day 109,138. The skill level was not controlled since 

most of these tests were commonly used in general children 110,139. Although the practice trials 

were provided and checked by researchers, the skill level nor motivation was not recorded and 

thus not addressed in the analyses. As a result, neuromuscular performance appeared to be higher 
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in precision error and had more variability during testing comparing to muscle area obtained 

from pQCT scans. 

 

5.3 Future Directions 

A larger sample of children with DM1 is required for the future for a sex-specific 

analysis. Matching sex, maturity, height and body mass between the DM1 and control groups 

would be ideal for identifying disease influence on bone and muscle. Another direction could be 

exploring growth in children with DM1, by one-year or longitudinal follow-up, and then 

comparing bone and muscle growth with typically developing children. Follow-up study will be 

meaningful to see if bone growth and development in children with DM1 differs from children 

without DM1, owning to suspicion of the altered bone turnover rate in children with DM1 

19,27,84,140. Also, there is no previous study linking bone formation and resorption biomarkers to 

long bone growth in geometry, properties and strength in children with DM1, which makes it a 

meaningful direction to be explored. Bone formation and resorption biomarkers could be 

measured along with bone scans in a longitudinal study to monitor the long-term change in bone 

turnover, which would help build a potential linkage between biomarkers and bone strength. In 

addition, future research could include subgroup analysis taking disease duration into 

consideration when analyzing bone properties and strength in children with DM1, since a 

previous study suggested an early manifestation could alter bone growth 13.  

In this study, we suggested muscle area could mediate and explain the cortical bone 

content and area difference between groups. A future study could look into the relationship 

between muscle and bone in children with DM1 in a clinical way through a “functional muscle-

bone unit”. This is an analysis of bone properties with consideration of muscle function, which 
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was developed for clinical assessment of the bone deficits for individual children 33,35. It could be 

valuable to look into the type of potential bone deficit in children with DM1 from a clinical 

perspective.  

 

5.4 Conclusion 

There was group difference (omnibus effect) in bone and muscle outcomes between 

children with and without DM1. Children with DM1 had 7-10% lower cortical bone area and 5-

8% higher density at the radial and tibial shaft, and 6% lower cortical bone content at the tibial 

shaft compared to typically developing children. Children with DM1 also produced 12% higher 

maximal push-up force when comparing to their typically developing peers. Lower leg muscle 

area was a mediator explaining the tibia shaft cortical bone area and content difference between 

children with and without DM1. 
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Appendix 1 Physical Activity Questionnaire for Children (PAQ-C) 

 

 Physical Activity Questionnaire  
For Bone Strength Study 

 
Name__________________        Age________ 
 
Sex  M______   F______         
 
 
We are trying to find out about your level of physical activity from the last 7 days (in the last week). This 
includes sports or dance that make you sweat or make your legs feel tired, or games that make you breathe hard, 
like tag, skipping, running, climbing, and others.  
  
Remember:  
There are no right and wrong answers — this is not a test.  
Please answer all the questions as honestly and accurately as you can — this is very important.  
 

1. Physical activity in your spare time: Have you done any of the following activities in the past 7 days 
(last week)?  If yes, how many times? (Mark only one circle per row.)  
 
 
 
Skipping ............................................. 
Rowing/canoeing ................................      
In-line skating .....................................      
Tag ......................................................      
Walking for exercise ...........................       
Bicycling .............................................      
Jogging or running ...............................      
Aerobics ..............................................       
Swimming ............................................      
Baseball, softball .................................      
Dance ..................................................       
Football ...............................................       
Badminton ...........................................      
Skateboarding ......................................      
Soccer ....................................………..       
Street hockey .......................................      
Volleyball ............................................      
Floor hockey .......................................       
Basketball ............................................      
Ice skating ............................................       
Cross-country skiing ............................       
Ice hockey/ringette ..............................      
Gymnastics.......................................... 
Martial Arts.......................................... 
Wrestling.............................................. 
Other:  _________________________ 

_________________________      
  

 

   No      1-2      3-4      5-6      7 or  
   more times 

o . 
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o . 
o . 
o . 
o . 
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2. In the last 7 days, during your physical education (PE) classes, how often were you very active 
(playing hard, running, jumping, throwing)? (Check one only.)  

I don’t do PE .....................................................…... 
Hardly ever ..............................................................   
Sometimes ...............................................................  
Quite often ............................................................... 
Always .....................................................................   

   
3. In the last 7 days, when you were active, how often did you use your hands for pushing, climbing, 
or throwing? (Check only one.) 
  I only use my legs ................................................... 

Hardly ever................... ............................................   
Sometimes ................................................................  
Quite often ................................................................ 
Always .....................................................................   

 
4. In the last 7 days, what did you normally do at lunch (besides eating lunch)? (Check one only.)  
  

Sat down (talking, reading, doing schoolwork).….... 
Stood around or walked around ...............................   
Ran or played a little bit ..........................................   
Ran around and played quite a bit ...........................   
Ran and played hard most of the time .....................   

   
5. In the last 7 days, on how many days right after school, did you do sports, dance, or play games in 
which you were very active? (Check one only.)  

None .................................................................…. 
1 time last week .....................................................  
2 or 3 times last week ............................................  
4 times last week ...................................................   
5 times last week .................................................... 

  
6. In the last 7 days, on how many evenings did you do sports, dance, or play games in which you were 
very active? (Check one only.)  
   None ........................................................................   

1 time last week .......................................................   
2 or 3 times last week ..............................................   
4 or 5 last week ........................................................   
6 or 7 times last week ..............................................   

  
7. On the last weekend, how many times did you do sports, dance, or play games in which you were 
very active? (Check one only.)  

None ........................................................................   
1 time .......................................................................   
2 — 3 times .............................................................   
4 — 5 times .............................................................   
6 or more times ........................................................   

 

o . 
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8. Which one of the following describes you best for the last 7 days?  Read all five statements before 
deciding on the one answer that describes you.  
  

F. All or most of my free time was spent doing things that involve little  
physical effort  

  
G. I sometimes (1 — 2 times last week) did physical things in my free time 

(e.g. played sports, went running, swimming, bike riding, did aerobics)  
  

H. I often (3 — 4 times last week) did physical things in my free time 
  

I. I quite often (5 — 6 times last week) did physical things in my free time 
  

J. I very often (7 or more times last week) did physical things in my free time 
   
  
9. Mark how often you did physical activity (like playing sports, games, doing dance, or any other 
physical activity) for each day last week.  
 

Monday ..........................        
Tuesday .........................        
Wednesday ....................        
Thursday ........................        
Friday .............................        
Saturday .........................        
Sunday ...........................        

  
10. Were you sick last week, or did anything prevent you from doing your normal physical activities? 
(Check one.)  

Yes ...................................................……  
No ............................................................   

  
 
If Yes, what prevented you? __________________________________  
  
 
  

None        Little Bit Medium Often         Very Often 
o . 
o . 
o . 
o . 
o . 
o . 
o  

o . 
o . 
o . 
o . 
o . 
o . 
o  

o . 
o . 
o . 
o . 
o . 
o . 
o  

o . 
o . 
o . 
o . 
o . 
o . 
o  

o . 
o . 
o . 
o . 
o . 
o . 
o  

o . 
o . 
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11. Please list any sports or physical activities that involve using your hands or arms you have 
participated in regularly. Please tick the boxes to indicate how old you were for each sport/activity and 
how many years you participated for. 
 
 

 
 
 
12. Please list any sports or physical activities that involve using your hands or arms you have 
participated in regularly during the last 12 months and indicate the average frequency of the activity 
(sessions/week). 
 
 
Activity:          Sessions/week:   
 
Activity:          Sessions/week:   
 
Activity:          Sessions/week:   
 
Activity:          Sessions/week:   
 
Activity:          Sessions/week:   
 
Activity:          Sessions/week:   
     
Activity:          Sessions/week:   
 

Age:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Activities:
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Appendix 2 Limb Dominance Questionnaire, Medical History and Health Questionnaire 
 
 

 

Name: _______________________                                Date: ____/____/_____ (DD/MM/YY) 

__________________________________________________________________________ 

Limb Dominance, Medication, and Health Questionnaire 

Please answer the following questions to the best of your ability. You may also choose not to 
answer any of these questions.  

1. Which is your dominant hand (e.g., which hand do you write with)?  
Right 
Left 
I can write with both hands 
I don’t know 
 

2. Which is your dominant leg (e.g., which leg do you use to kick a ball)? 
Right 
Left 
I can kick a ball with both legs  
I don’t know  
 

3. Have you been diagnosed with type 1 diabetes? 
Yes 
No 
Not Sure 

 
If yes, at what age you were diagnosed with type 1 diabetes? ______________ 
 
If yes, what format of insulin and how many units do you take daily? 

Format ______________ _______________ Units/day_________________ 

Format ______________ _______________ Units/day_________________ 

Format ______________ _______________ Units/day_________________ 
 

4. Are you taking any prescription medications (other than insulin)? 
  Yes 
  No 
  Not Sure  

If yes, how many prescription medications are you taking? _______ 
Name: ____________                  Name: ____________                    Name: ____________ 
Dosage: ___________                 Dosage: ___________                    Dosage: ___________ 
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Appendix 3 Food Frequency Questionnaire 
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Appendix 5 Transformed Bone Outcomes 
 
Table 6: Mean, standard deviation (SD) of transformed bone properties and strength of DM1 and 
control groups. The significance of groups differences was set at p<.05.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 DM1 Control  
 Mean SD Mean SD p-value 
Distal Radius      
  ToC 1.861 0.08 1.856 0.08 0.791 
  ToD 2.454 0.06 2.457 0.05 0.775 
  ToA 2.407 0.08 2.399 0.08 0.629 
  TrC 1.753 0.12 1.754 0.11 0.979 
  TrD 2.393 0.05 2.402 0.04 0.358 
  TrA 2.36 0.10 2.352 0.09 0.693 
  BSIc 1.314 0.12 1.313 0.11 0.956 
Radius Shaft      
  ToA 2.074 0.08 2.094 0.08 0.239 
  CoC 1.819 0.07 1.815 0.06 0.778 
  CoD 2.955 0.04 2.921 0.04 <0.001 
  CoA 1.864 0.06 1.894 0.05 0.015 
  SSIp 2.293 0.09 2.273 0.09 0.310 
Distal Tibia      
  ToC 2.317 0.07 2.326 0.06 0.530 
  ToD 2.452 0.04 2.458 0.05 0.563 
  ToA 2.864 0.06 2.868 0.06 0.803 
  TrC 2.209 0.09 2.216 0.09 0.728 
  TrD 2.39 0.04 2.396 0.04 0.506 
  TrA 2.82 0.08 2.821 0.08 0.954 
  BSIc 1.769 0.10 1.784 0.10 0.471 
Tibia Shaft      
  ToA 2.662 0.06 2.687 0.06 0.065 
  CoC 2.34 0.05 2.365 0.05 0.035 
  CoD 2.969 0.02 2.95 0.03 <0.001 
  CoA 2.371 0.05 2.415 0.05 <0.001 
  SSIp 3.133 0.07 3.156 0.08 0.148 
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Appendix 5 Transformed Muscle Outcomes 

Table 7: Mean, standard deviation (SD) of transformed muscle area and neuromuscular 
performance outcomes of DM1 and control groups. The significance of groups differences was 
set at p<.05.  
 

 
 
 

 DM1 Control  

 Mean SD Mean SD p-value 
Upper Body      
Forearm MuA 1.34 0.05 1.33 0.05 0.450 
Maximal Grip Force 2.27 0.11 2.25 0.10 0.420 
Maximal Push-up Force 2.28 0.09 2.24 0.09 0.045 
Lower Body      
Lower Leg MuA 1.60 0.06 1.62 0.05 0.314 
Countermovement Jump      
  Vertical Force 2.89 0.05 2.92 0.05 0.038 
  Vertical Power 3.16 0.08 3.21 0.08 0.015 
  Vertical Impulse 1.91 0.07 1.94 0.05 0.169 
Long Jump      
  Vertical Force 2.89 0.05 2.90 0.05 0.603 
  Horizontal Force 2.45 0.08 2.43 0.08 0.392 
  Vertical Power 2.95 0.10 2.99 0.09 0.146 
  Horizontal Power 2.68 0.13 2.67 0.12 0.790 
  Vertical Impulse 1.71 0.09 1.73 0.09 0.505 
  Horizontal Impulse 1.92 0.06 1.91 0.05 0.374 
  Length 2.13 0.08 2.12 0.08 0.800 


