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Abstract 

Presented here is a study of the electronic properties and molecular stacking structure of 

four novel X-shaped anthracene based organic semiconductors utilizing near-edge X-ray 

absorption fine structure (NEXAFS) spectroscopy and density functional theory (DFT) 

calculations.  These materials have been found to exhibit high charge carrier mobility 

when used in organic thin film transistors without an annealing step. Angle resolved 

NEXAFS show local molecular order through polarization dependence in C 1s → π* 

transitions, and that the plane of the anthracene core is oriented nearly normal to the 

plane of the substrate.  DFT calculations were used examine electronic structure and the 

effects of molecular geometry, showing that the highest occupied molecular orbital 

(HOMO) conjugation extends to the thiophene end groups. The type of attachment of the 

thiophene end group is determined to modify intermolecular interaction, resulting in 

either a cofacial or herringbone structure. With the understanding of how these materials 

form an ordered crystal structure, future fabrication of new materials may be directed 

towards a preference for crystallization without annealing.  

A study with applications for organic photovoltaic devices was also undertaken to 

examine the thin film stacking structure of [6,6]-phenyl-C61-butyric acid methyl ester 

(PCBM). NEXAFS measurements show that the side chain lifts the energy degeneracy of 

the C60 molecular orbitals around the chain attachment.  This breaks the spatial π -orbital 

symmetry of the lowest unoccupied molecular orbital (LUMO) of the C60 backbone 

which is observed through polarization dependence of π* transitions. The intensity 

dependence is further analyzed to determine the bulk crystal structure of PCBM.  
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1. Introduction  

The primary focus of this manuscript is the study of organic molecular systems using X-

ray spectroscopy techniques to investigate both the electronic structure and thin film 

stacking structure.  Two systems are discussed in this study, the first is a set of four 

novel, recently fabricated 9,10-Bis(phenylethynyl)anthracene (BPEA)-based p-type 

semiconductors for use in organic thin film transistor (OTFT) devices, which 

uncommonly crystallize with a highly ordered structure in solution-processed thin films 

without the need for additional annealing.  This is a remarkable property rarely found in 

organic materials, which generally form polycrystalline or completely amorphous films 

without the use of annealing or other exotic processing techniques.  Such materials are of 

high interest to the organic materials community, as low cost solution processing that can 

yield high efficiency devices could revolutionize the semiconductor industry and open 

the door for a host of new devices produced at a fraction of the cost compared to their 

predecessors. These materials are very similar structurally, but display non-trivial 

variation in electrical and structural characteristics between them. This study seeks to 

elucidate the origin of self-organization in these materials, as well as characterize the 

electronic structure of these molecules in the context of the minor structural differences 

they present.  To this end, X-ray spectroscopic techniques and density functional theory 

(DFT) calculations are used to examine the properties of these materials, and the thin film 

structure of each is proposed as well as the origins of self-organization.  

The second is the material [6,6]-phenyl-C61-butyric acid methyl ester PCBM, an n-type 

semiconductor material heavily used in organic photovoltaic (OPV) devices. 

Construction of solar cell devices from organic materials is highly desirable as the 
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comparative cost of solution processing large area semiconductor films is a fraction of 

that required for the presently available high efficiency silicon-based cells. One of the 

primary limitations in organic solar cells is the variability of molecular structure in the 

active layer which harvests solar energy through exciton production.  The diffusion of 

free charge carriers through the semiconductor layer, and consequently the energy 

conversion efficiency of the device, is highly affected by molecular stacking structure 

and electronic structure of the materials in the active layer.  The effect of the functional 

chain attachment on bulk stacking and electronic structure for PCBM is examined using a 

combination of spectroscopic techniques and DFT calculations.  The results are used to 

determine the possible crystal structures of PCBM in thin films, as well as the effect of 

the functional chain on the distribution of molecular orbitals across the molecule. With 

knowledge of the distribution of molecular states as well as the preferred self-organizing 

stacking structure, the behavior of PCBM when blended with other materials may be 

better predicted.  Additionally, these results may be generalized as a starting point for the 

study of the thin film structure of other functionalized fullerenes (C60).  

Following this introduction, a general background is given describing the differences 

between organic semiconductors and conventional inorganic semiconductors such as 

silicon. An overview of basic molecular orbital theory and the DFT calculation methods 

used in this work is then described, followed by a discussion of synchrotron light sources 

and how they are used to generate light for spectroscopy experiments.  A brief outline of 

the software used to calculate electronic structure is also provided, with a description of 

the individual calculations that are required to simulate the electronic structure of 

materials. Next the sample preparation method used to produce thin films is described, as 
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well as the X-ray spectroscopy techniques that were used to study the properties of the 

thin films.  The specific usage of each technique is discussed as well as some practical 

considerations for experimental measurements such as radiation damage.    

 

2. Background  

In the past decade, organic materials have become increasingly popular for use in 

fabrication of semiconductor devices.  Recent progress in the development of organic 

semiconductor materials for electronic devices has been successful for p-type organic 

semiconductors such as pentacene, rubrene, and thiophene containing polymers which 

have been used to produce OTFTs showing typical hole mobilities of 1 cm
2
/Vs [1].  More 

recently, similar results have been achieved for n-type materials with electron mobility in 

poly{[N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-

5,5’-(2,2’-bithiophene)} (P(NDI2OD-T2) up to 0.85 cm
2
/Vs [2]. In the context of the 

possible achievable charge carrier mobility, this is much lower than that of crystalline 

silicon which has realized a thin film transistor (TFT) mobility two orders of magnitude 

larger, at 130 cm
2
/Vs [3]. The performance of organic electronics is however comparable 

to amorphous silicon which can obtain mobility of 1.05 cm
2
/Vs in highly optimized TFT 

devices [4].  For this reason, organic materials are not expected to compete with the high 

mobility and switching speeds of crystalline silicon based devices used for example in 

computer processors, but rather in applications that take advantage of the unique plastic-

like properties of organic materials and do not require high mobility.  This includes solar 

cells, organic light emitting diodes (OLED) or novel light emitting transistors (OLET) 

[5], which can all be mounted on flexible, transparent substrates.  In such applications, 
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organic electronics have the advantage of the processing methods that do not require 

extreme temperature or atmosphere conditions. In order to produce a high performance 

silicon based device, the semiconductor layer must be either grown or deposited using a 

vapor deposition process which requires extensive vacuum equipment and high 

processing temperatures. By contrast, most organic semiconductors are soluble in 

common organic solvents - allowing for low cost solution processing which is easily 

extendable to large area deposition - and also have generally low vaporization 

temperatures in the range of 200 ~ 400 °C at ambient pressure or lower for high vacuum 

pressure (10
-6

 torr). Solution processing does not require extreme temperatures or vacuum 

chambers and has been used with great success to produce functioning devices [6].  A 

lower processing temperature also immediately allows for a wide variety of transparent or 

flexible substrates to be used which would not be possible for silicon, which requires 

high temperature processing.  

These are then the advantages of using organic materials in novel applications that would 

not be possible otherwise, but achievement of these goals comes with a large set of 

challenges.  Organic semiconductors by nature are small molecule or polymer materials 

that do typically exist in polycrystalline or completely disordered form.  In a solid or thin 

film, the molecules are bonded and organized through Van der Waals forces and 

molecular dipoles, in a structure that is greatly dependent on the fabrication process used. 

This is in contrast to non-molecular materials that often form ordered, highly 

reproducible, strongly covalently bonded crystal structures.   

The differences in crystal structure between conventional inorganic and organic materials 

also give rise to very different electronic structures, and consequently different charge 
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transport properties.  Due to this, the theory of band transport which describes the 

movement of free charge carriers in covalently bonded solids is not applicable to 

disordered or polycrystalline organics.  This has triggered the development of entirely 

different transport models where charge carriers move by hopping between localized 

states, but the complete picture of carrier transport remains elusive [7]. Therefore, it is a 

difficult challenge to explain and optimize the performance of organic materials when the 

accepted theories of crystallization and charge transport have not been fully investigated, 

leaving many unknowns in the course of any study.  

To date, the main body of research into organic materials has been to examine the 

properties of individual materials and tailor device fabrication recipes to achieve the 

highest performance possible. In general, the study centers on three main areas to attempt 

to achieve high performance devices in the context of high mobility in OTFTs, or high 

power conversion efficiency in OPVs. These areas are the discovery and synthesis of new 

organic materials, optimization of structural and morphological characteristics of existing 

materials, and design of device architectures including peripheral components, such as 

electrode and dielectric materials in the case of OTFTs [8]. However, with the potentially 

infinite number of materials that could be synthesized, it is clear that the study of organic 

electronics that has been achieved thus far is indeed just the tip of the iceberg.  Much 

more work remains to be done to develop complete theories of transport in disordered 

materials, as well as a clearer understanding of how the various thin film fabrication 

methods affect device performance.   
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3. Theory  

In the current study, the electronic and structural properties of materials are probed using 

spectroscopic techniques which measure the effects of electron excitation due to external 

energy input.  In this case, bound electrons are excited by absorption of synchrotron-

generated X-rays in the soft energy region.  It is generally the subsequent reaction of the 

system to the excitation as it returns to a ground state that is measured in an attempt to 

gain information about the electronic properties of the system. In order to interpret the 

measurement, one first requires an understanding of the environment in which the 

excitations take place. Many theories exist which approximate the behavior of electrons 

in excited systems, and therefore make possible useful interpretation of experimental 

data.  With the advent of accessible computation power, many numerical calculation 

programs have been developed for the purpose of simulating the electronic structure of 

molecular systems, in complement to spectroscopic measurements. The following 

sections introduce the basic theoretical framework required to understand both the 

electronic structure of molecular systems, as well as the numerical calculation methods 

used in this work.   

 

3.1. Molecular Orbital Theory 

In molecular systems, the description of electronic structure is necessarily more 

complicated than that of individual atoms. In order to study and work with such systems, 

an approximation is required known as molecular orbital (MO) theory. This 

approximation implicitly assumes that a general molecular wave function may exist for a 

given system, developed through a superposition of the atomic wave functions of the 

components that make up the system.  The molecular wave function is constructed by the 
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linear combination of atomic orbitals (LCAO) method which is governed by several 

assumptions that define the behavior of the system. Namely, that atomic orbitals overlap 

to form MOs when in sufficient proximity, orbitals only interact strongly if they are of 

nearly the same energy, and two interacting orbitals combine to form opposing bonding 

(occupied) and antibonding (unoccupied) states.   

For low-Z molecules which are the focus of this manuscript, the most useful way to 

describe MOs is by their symmetry, specifically by either σ or π character.  To illustrate 

the formation of σ and π bonding and antibonding orbitals, take the example of the simple 

molecule ethylene (C2H4). The electron configuration of carbon in notation using the 

primary quantum number (n) and the angular momentum quantum number (l) is 

1s
2
2s

2
2p

2
.  This configuration possesses orbitals of both s and p symmetry, the general 

shapes of which are shown in Fig. 3.1.  

 

 

Figure 3.1. Shapes of s and p type orbital wave functions and the form of the 

ethylene molecule 

 

p-type orbitals (as well as d and f) possess lobes with different phases which allow for 

interference in a constructive or destructive way to form bonding or antibonding orbitals 

of either π or σ type. Orbitals of each type are given labels according to their relative 

orientation to the bond axis connecting them.  π-bonds are described as those that are 
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antisymmetric in phase with respect to C2 rotation along the bond axis, and also contain a 

node along the bond axis.  To form an ethylene molecule, a double bond occurs between 

the two carbon atoms, and single bonds with the peripheral hydrogens.  The 2s and two of 

the 2p orbitals combine or hybridize to form three sp
2
 orbitals oriented along a plane, 

with one p orbital remaining untouched and oriented orthogonal to the plane of the sp
2
 

orbitals. A π-bond with both bonding and antibonding states (Fig. 3.2) is formed by the 

untouched pz orbitals projecting orthogonal to the bond axis which make up one of the 

two C-C covalent bonds. 

 

Figure 3.2 Example of π-bonding where constructive and destructive interference 

create bonding and antibonding orbitals.   

 

The second covalent bond is generated by the sp
2
 orbital lying directly along the bond 

axis, with the other two sp
2
 orbitals bonding to the hydrogens.  This type of direct 
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bonding is designated as a σ-bond which describes the electron distribution along the 

bond axis (Fig 3.3).    

 

 

Figure 3.3 Example of σ-bonding through sp
2
-type orbitals 

 

For the case of ethylene, the C-C covalent bonds originate from sp
2
 orbitals generated 

from hybridization of 2s and 2p orbitals, with the 1s orbitals remaining localized on the 

atomic centers and not participating in bonding.  This type of hybridized bonding is 

commonly seen in organics where the C-C interaction generally takes the form of such 

hybridized bonds containing both s and p components, with one p orbital left untouched 

to form a π bond.  However, the nomenclature remains the same as the naming of the 

bond type is a product of orientation relative to the bond axis only, and not the orbitals 

that contribute to it.  Therefore, hybridized bonding in the context of MO theory will not 

be discussed further, and all bonds will be referred to as either σ or π with associated 

bonding (σ,π) or antibonding (σ*,π*) states in the following discussions.      
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3.2. Density Functional theory  

In general, the electronic structure of matter is extraordinarily complex and consequently 

impossible to directly calculate for all but the simplest of systems.  Density functional 

theory is one of the common methods that have been employed to successfully 

approximate the electronic properties of an arbitrarily complicated system.   Conceptually 

simplified, DFT models condensed matter systems as a cloud of electrons which is 

subject to a potential created by the nuclei. The cloud of electrons is modeled as a density 

function that describes the distribution of electrons in space.  The principle of DFT is 

then that all properties of the system may be derived from the character of the density 

function. The end goal of DFT calculations is to find the form of this density function and 

analyze it to extract the desired electronic properties of the system. 

Throughout this work, DFT calculations are used to simulate X-ray spectroscopy 

measurements and to compute the distribution of molecular orbitals. However, an in 

depth understanding of the underlying theory of DFT is not a requirement for performing 

calculations.  In the following sections, the basic formulation of DFT is summarized in 

the context of how electronic properties may be calculated using this theory. This is 

followed by a short section referencing basis sets which are the starting point for all 

simulations.  Section 3.3 then discusses how calculations were practically performed with 

the software packages used in this work.  

 

3.2.1 The Hohenberg-Kohn Theorems and Kohn–Sham Equations 

The basis of density functional theory began in 1964 with the work of Hohenberg and 

Kohn [9].  In their report, they bring to light two important proofs which describe the 

nature of the density function. The first shows unequivocally that the there exists a 
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unique density function for each unique external potential. This means that two systems 

with differing electronic structure and therefore a different external potential cannot have 

identical density functions. This therefore indicates that the electron wave functions 

which make up the density function are also unique for a given potential.  

The second proof was more of a development of the method that one would use to find 

the density function for a given system.  The method is the Hohenberg-Kohn Variational 

Theorem which begins by selecting a candidate density function, with associated electron 

wave function. Then, it is noted that the energy of a given system must be greater than 

the ground state energy unless it is in fact the ground state energy.  Since there will be 

only one unique electron wave function associated with the ground state, there is 

therefore one density functional. Thus, the ground state density may be found by 

variation of the density function until the system is in the lowest possible energy state.   

These proofs provide the theoretical framework for the use of DFT to calculate electronic 

structure, but do not give any practical insight into how one would actually compute the 

density functional. This issue was resolved one year later in 1965 by Kohn and Sham 

who developed the self-consistent field (SCF) method for computing the ground state 

density [10]. The SCF procedure is in essence an iterative method which allows for 

calculation of the density functional given an initial set of parameters.  The issue with the 

Hohenberg-Kohn theorems as stated is that the exchange and correlation terms could not 

be properly modeled, stopping the computation before it had begun.  The breakthrough of 

Kohn and Sham was to treat the electron gas as a system on non-interacting particles with 

the same ground state density as its fully interacting counterpart. This definition provided 

an enormous simplification, allowing a set of equations to be derived which describe the 
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density function (1), which is a superposition of the orbital wave functions of the non-

interacting particles, the effective potential of the nuclei in the system (2), and a single-

particle Schrödinger equation (3).  Note in equation (2), the term        is the exchange 

correlation functional, defined as the derivative of the exchange-correlation energy with 

respect to the density function.          is the external potential due to the positively 

charged nuclei.  

         

           (1) 

 

         (2) 

 

 

                 (3) 

    

 

These equations make up the so-called Kohn-Sham equations, where a self-consistent 

solution to them provides a model of the electronic structure of the system that can be 

solved for iteratively. A starting model of the density functional provides a value for the 

effective potential, which can then be used to solve the Schrödinger equation, with the 

resulting eigenfunctions used to generate a new density functional.  The iterative process 

is simply repeated until the changes in the density and interaction energies are less than 

predefined convergence criteria, at which time the ground state has been found.   
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3.2.2. Basis Sets and Exchange-Correlation Functionals 

As with any iterative procedure, DFT calculations require an initial input on which to 

base the density function.  For this purpose, basis sets exist which consist of a set of 

functions that approximate the orbitals of a particular element. These functions 

approximate the s, p, d or f character of actual orbitals using combinations of Gaussian 

type functions to mimic the character of real orbitals as much as possible.  Practically, 

when choosing basis sets for a given system, there is a tradeoff between the relative 

complexity of the sets used, and therefore increased calculation time, and the accuracy of 

the results.   

In addition to basis sets which give the starting orbitals for the SCF procedure, models of 

the exchange-correlation functional are required.  These functionals model the interaction 

between electrons in the system (exchange) and the electron interaction with the 

electronic structure of the surrounding system (correlation). This is particularly important 

for calculations involving an excitation where a core hole is present which can severely 

modify the electronic structure. This presents a large difficulty as exchange-correlation 

interactions are only calculable for a free electron gas, where models for other systems 

must be derived through simplifications or approximations.   

 

3.3. Electronic Structure Calculations 

Throughout this study, numerical calculation programs utilizing DFT were employed to 

simulate electronic structure. The programs used were StoBe, the Stockholm-Berlin 

version of deMon [11] and Gaussian03 [12].  These programs are used to simulate 

electronic structure, as well as X-ray spectroscopy measurements for comparison with 

experimental results.  Gaussian is primarily used for computation of the dipole moments 
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as well as generation of MO isosurfaces for presentation, such as those shown in section 

5.1.4.  In the following sections, basic details of how calculations were performed using 

these programs are included.  Since plenty of documentation is available for new users, 

these sections are intended to lend a basic understanding of what is involved in setting up 

an electronic structure calculation and interpreting the results. 

To begin, all calculations require the basic structure or assumed structure of the molecule 

or lattice to be simulated.  In all cases, the first step is to perform a geometry optimization 

which attempts to find the lowest energy configuration of the structure in question.  This 

step is essential as in nature all stable materials will by default be is the lowest energy 

state – otherwise their structure shift until such a state is reached.  Once an optimization 

step is complete, all further calculations of properties are done using the lowest-energy 

configuration. 

 

3.3.1. Simulating NEXAFS spectra with StoBe 

X-ray absorption by definition must involve the creation of a core hole, and simulations 

must take this into account. To model the effect of a screened core hole, the Slater 

transition state method is used where the excitation step is treated by replacing the core 

hole by a half core hole, and leaving the unoccupied states empty [13].  This method has 

been found to more accurately model NEXAFS electronic structure, but it does not 

provide an accurate absolute energy scale, with simulated spectra requiring additional 

calibration.   

For this work, specific basis sets and exchange-correlation functionals were used which 

have been found by experience to give accurate results without extreme calculation times. 

NEXAFS simulations were performed using the StoBe package which implements DFT 
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with both auxiliary and orbital basis sets based on the Huzinaga basis sets originally 

developed for Hartree-Fock calculations [14]. The auxiliary sets used for geometry 

optimization - and X-ray excitation where applicable – were triple-ζ plus valence 

polarization (TZVP) sets [15].  Orbital basis sets derived from the TZVP sets were also 

used in the calculation. For calculation of absorption spectra, the atomic site undergoing 

excitation is characterized using the iii_iglo orbital basis to obtain a more accurate 

representation of the relaxation of atomic orbitals during excitation. This basis set is 

much larger, containing additional terms that provide a better approximation then the sets 

typically used.  Ideally, such a basis set could be applied to all atoms in the system, but 

the expense in calculation time would become prohibitive. The exchange-correlation 

functional used in StoBe is based on the generalized gradient approximation, developed 

by Perdew [16], with the exchange functional by Becke [17].  A listing of the specific 

basis sets used is shown in the Appendix.  

The core-hole is modeled by altering the charge in a specific orbital specified by its 

energy, and without this modification the core-hole may move to C sites other than the 

one specified during the calculation.  This occurs due to multiple degenerate orbitals 

present at similar C sites. To alleviate this, equivalent core orbitals of non-excited C 

atoms were replaced with modified TZVP effective core-hole potentials in order to 

specify the site of the core hole unambiguously, and thus obtain results from a specific C 

site with a fixed core-hole. Effective core hole potentials are special basis sets which 

modify the core level of all non-excited atoms, such that the core hole is fixed at the 

desired site. Using this method, the oscillator strengths for core level excitations to 

unoccupied states were computed for each C atom individually, and summed to produce 
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the total spectrum. For comparison with measurements, the simulated spectra were 

broadened by convolution with Gaussian functions with line width (FWHM) of 0.5 eV up 

to 290 eV, and then linearly increasing up to 5 eV over the next 10 eV.    

 

3.3.2. Energy Calibration 

As mentioned previously, the transition state method provides the most accurate 

description of NEXAFS spectral features, but is deficient in providing a consistent 

absolute energy scale.  A solution to this issue is provided by the StoBe authors [18] such 

that a correct absolute energy scale may be calculated.  The procedure centers around the 

fact that the transition state contains a half filled core hole and empty unoccupied states.  

This does not reflect the true state of an absorption process where the core level contains 

a full core hole, with an electron promoted to unoccupied states.  To account for this, two 

additional calculations must be performed for each atomic site; a ground state calculation 

where no excitation occurs, and a fully excited state containing a true core hole.  The total 

energy of the fully excited state is then the energy of the lowest energy transition.  Then, 

with the total energy of the ground state, the true energy of the lowest transition may be 

computed by the difference between ground and excited states.  The energy scale of the 

transition state spectrum may then be simply shifted such that the lowest energy 

transition occurs at the appropriate energy.   This procedure must be applied to the 

calculation for each separate site such that when the individual spectra are summed, they 

are all calibrated to the same absolute energy scale.   
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3.3.3 Calculating Electronic Structure with GAUSSIAN03  

Gaussian03 also employs DFT as a method for calculation, but also offers the ability to 

use other methods such as Hartree-Fock for the calculation of electronic structure. For 

this work only the DFT method was used with specific basis sets which have been found 

to well approximate measured spectra [19,20].  Gaussian uses basis sets and exchange 

correlation models similar to those used by StoBe.  Here the 6-311G basis set developed 

my McLean and Chandler [21] was used, with the B3LYP exchange-correlation 

functional which uses Becke’s exchange functional [17] and the correlation functional of 

Lee, Yang, and Parr [22]. 

The unique property of this program is given by its name, where all basis sets and 

exchange-correlation functionals are constructed from Gaussian-type functions.  This has 

the advantage of reduced calculation time as compared to StoBe, but at the expense of 

differing results.  Gaussian is also somewhat more user friendly then StoBe, with a 

graphical interface provided called GaussView.  This interface allows for the creation of 

molecules in any geometry, and includes a large database of common organic molecules, 

proteins, and other structures.  Calculations may be performed with only the interface by 

simply filling out a series of check lists and boxes which select the various basis sets and 

parameters, making it very user friendly. In principle, Gaussian has similar functionality 

to that of StoBe, but the interface does not contain many options by default, such as the 

calculation of all virtual (unoccupied) states.  For this reason, any in depth study does 

require a working knowledge of various additional key words which may also be input 

into this interface.   

Although this program has potentially large functionality, due to the limitations of the 

interface it is not well suited to simulation of spectroscopy measurements. As a result, it 
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has only been used in this work to calculate dipole moments and MO isosurfaces, where 

the details of these calculations are trivial and will not be included here.  All 

measurement simulations shown in this manuscript were computed using StoBe 

exclusively.  

 

 

3.4. Synchrotrons and X-ray Radiation 

The experiments involving synchrotron light undertaken for this manuscript were 

performed at the Canadian Light Source (CLS) at the University of Saskatchewan, and 

the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory.  The beam 

lines used at these facilities were the Spherical Grating Monochromator (SGM) [23] 

beam line with the soft X-ray Absorption endstation at the CLS, and the Soft X-ray 

fluorescence (SXF) endstation at Beam line 8.0.1. at the ALS [24]. Both facilities are 

active 3
rd

 generation light sources that offer a variety of spectroscopy, scattering, and 

imaging techniques to a large body of research users.   

In order to successfully undertake X-ray spectroscopy experiments at these facilities, an 

understanding of the operation and function of synchrotron light sources is required.  For 

the purposes of this study however, the focus is on determining electronic and structural 

properties of organic semiconductor systems, where synchrotrons and X-ray 

measurement techniques are the tools used to probe such characteristics.  Therefore, a 

highly detailed account of the operation of synchrotron facilities and the production of X-

ray light is not included.  The following sections detail the basic operation of synchrotron 

sources and the theory of the measurement techniques used in this manuscript.  
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3.4.1. Synchrotron Light and Beamlines 

In recent years, the construction of 3
rd

 generation synchrotron light sources has made 

high intensity light of tunable energy readily available for research use.  Such light 

sources produce light by simply accelerating electrons travelling at relativistic speeds 

around a circular path, or by use of specialized insertion devices which accomplish a 

similar task. Referring to Fig. 3.4 below, the electron beam is generated by a linear 

accelerator which in general consists of a metal cathode which emits electrons that are 

then accelerated through a large potential difference. The electrons gain additional energy 

and form into bunches through bombardment by radio frequency (RF) radiation at 

specific intervals. Following acceleration in the linear accelerator, the electron bunches 

are released into the booster ring which further accelerates them in a circular path using 

additional RF radiation.  The booster ring is a functional requirement of such a facility as 

accelerating particles to GeV energies using only a linear stage is not economical.   Once 

the electron bunches are accelerated to a predefined target energy dependent on the 

facility (1.9 GeV at the CLS, and 2.9 GeV at the ALS), they enter the storage ring where 

they may circulate for several hours, emitting light by manipulation of the beam path.  

This emitted light is then available for experimentation at beam line hutches containing 

optical and experimental detection equipment.  
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Figure 3.4. General schematic of a synchrotron facility, showing (a) Linear 

Accelerator Stage, (b) Booster Ring, and (c) Storage Ring with beam line hutches 

attached. [25] 

 

Manipulation of the electron beam may be accomplished using bending magnets or 

insertion devices such as wigglers or undulators.  Bending magnets serve to simply direct 

the beam in a circular path, but also provide broad spectrum of lower intensity light 

which may be directed to experimental endstations. The energy spectrum of available 

radiation from bend magnets is dependent on the magnetic field they produce - some such 

as superbend magnets with fields as high as 5 T. Insertion devices are specially designed 

to produce light of high brightness or with specific properties such as elliptical 

polarization [26], and are placed on straight portions of the storage ring and are not 

responsible for directing the electron beam. Two common types of insertion devices are 

wigglers and undulators which generally consist of arrays of magnets which produce 

large, spatially periodic magnetic fields perpendicular to the beam path.   
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Figure 3.5. Schematic representation of the electron beam path and resulting 

radiation from an insertion device [27].  

 

The periodic fields cause transverse acceleration of the electrons resulting in a sinusoidal 

beam path through the device with light emitted at each bend in the path.  The light is 

emitted in directions tangent to beam path, and travels in a tight cone along the mean 

direction of the unperturbed beam. Both undulators and wigglers produce intense quasi-

monochromatic light of variable energy depending on the device parameters. For the case 

of wigglers, emitted light from each sinusoid period also may be allowed to 

constructively interfere due to the geometry of the device, creating much higher intensity 

light which may also be of a specific energy range determined by the strength of the 

applied magnetic fields.  

Once light of a desired energy range is produced, it must be further conditioned by being 

collimated, monochromatized, and focused before being used for experimentation. These 

functions are performed by optics contained between the insertion device and the 

measurement endstation. As an example, below is a schematic of the optics used at Beam 

line 8.0.1 at the ALS, which employs an undulator as an insertion device to produce soft 
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X-ray radiation.  As shown in the schematic, the beam is conditioned and focused with a 

series of slits, mirrors and spherical diffraction gratings.  The spherical gratings shown 

below make up the monochromator, which is the central optical component to an X-ray 

beam line.  This device effectively selects the desired X-ray energy and rejects all other 

energies outside of a narrow bandwidth by controlled diffraction of the incoming 

radiation.   

 
Figure 3.6. Schematic of Beam line 8.0.1, located at the Advanced Light Source, 

Berkeley, CA [28]. 

 

Once the light has been conditioned and an appropriate energy is selected, it enters the 

experimental endstation. Since the systems studied in this work consist primarily of low-

Z elements, only soft X-ray beam lines produce light of the appropriate energy range for 

measurements (~200 – 2000 eV).  Soft X-rays are strongly absorbed by most materials 

including air, which necessitates that all of the beam line optics and endstation 

components be situated in high vacuum chambers.   The endstation itself typically 

consists of an apparatus which allows samples to be loaded and maneuvered into the 

beam path, as well as various measurement devices depending on the function of the 

beam line. The specific equipment may vary, but for the spectroscopy measurements 
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reported here four main components are required – a nearly transparent gold mesh or 

photodiode, a specially designed sample plate, a Channeltron detector, and a 

spectrometer.  The detail of specific instrumentation required for the various 

measurements in this study is further discussed in the following section.  

 

 

3.4.2. X-ray Spectroscopy Techniques 

The primary techniques used in this research to study properties of materials are soft X-

ray spectroscopy techniques which employ synchrotron radiation to probe the partial 

density of states (DOS) of a system. Specifically, they directly measure the energy levels 

of a system and the probabilities of transitions between those levels to study the 

underlying electronic structure. The methods used are X-ray Absorption Spectroscopy 

(XAS) and X-ray Emission Spectroscopy (XES) which are complementary techniques 

used to examine the unoccupied (antibonding) and occupied (bonding) states of a system, 

respectively.  A specialized form of XAS - angle resolved XAS where the incident angle 

of the incoming radiation is varied - is also heavily used in this study and is discussed in 

section 4.3. Both techniques involve absorption of an X-ray photon by a core level 

electron, but have differing final states dependent on the energy of that photon.  

In a simple one-electron picture, if the incoming photon has an energy nearly equal to the 

binding energy of a core level electron, it may be promoted to unoccupied bound states 

within the system.  Conversely, if the photon energy is much greater than the binding 

energy, the electron will be promoted to unbound continuum states, and becomes a free 

particle.  Although certain transitions may have higher probability, any electron in a 

system may be excited provided that the photon driving the excitation has sufficient 

energy to complete the transition.   
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X-ray spectroscopy techniques are enormously valuable for studying complex materials 

because they are element, site, and symmetry selective, which is made possible for two 

reasons. First, a material undergoing measurement is illuminated by X-ray light of a very 

narrow energy bandwidth, meaning that only transitions requiring nearly exactly that 

amount of energy will be possible. Second, the specific binding energies associated with 

the energy levels of a given element in a material are unique to that element. This means 

that excitation at the core threshold of one element will occur for a specific energy that is 

uniquely different from the core threshold of every other element in the sample, and thus 

a given measurement will not be contaminated with spectral weight from other elements. 

Although X-ray spectroscopies are highly selective in this manner, they unfortunately do 

not give a complete picture of the DOS for a given element.  Due to conservation of 

momentum, not all transitions for which sufficient energy is available are likely or even 

probable of occurring.  The requirement for conservation of momentum is quantified by a 

set of selection rules that determine which states an electron may be excited into or decay 

into based on the characteristics of the transition.  In general, there are six possible types 

of transitions that may occur - electric and magnetic dipole, quadrupole, and octupole - 

but in the interest of brevity only electric dipole transitions will be discussed in detail. 

Each transition type is defined by the change in momentum associated with that 

transition, and each has a different probability of occurring with electric dipole transitions 

by far the most probable.  The selection rules themselves are quantified by constraints 

applied to the changes in quantum numbers between the initial and final states of a 

transition. Table 3.1 shows the allowed changes in quantum numbers n, the principal 
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quantum number, l, angular momentum, S, total spin, J, total angular momentum and mj, 

the projection of total angular momentum for a dipole allowed transition.   

Table 3.1. Selection rules for electric dipole allowed transitions. 

Quantum Number Selection Rule for allowed transition 

Δn (no constraints) 

Δl ±1 

ΔS 0 

ΔJ 0, ±1 

Δmj 0, ±1 ; 0 is forbidden if ΔJ=0 

 

It should be noted here that although a transition may be forbidden by electric dipole 

selection rules, it may still occur at a much lower rate with a lower probability through 

other types of transitions.    

These rules have the effect that for a given system, spectroscopy techniques give 

information only about certain allowed transitions, as opposed to a complete picture of 

the entire DOS.  In the context of this research where organic materials are primarily 

composed of carbon, XAS spectra will be excitations originating from the carbon 1s core 

level, where an s orbital possesses an angular momentum of l = 0. Selection rules then 

dictate that an excited 1s electron may be excited through an electric dipole allowed 

transition into a p-orbital which has angular momentum of l = 1, satisfying the constraint 

for the transition of Δl = +1. Therefore, in the case of carbon, this electron will be excited 

to unoccupied 2p states within the system.  This means that C 1s XAS measurements 

probe the nature of 2p unoccupied states. Although not discussed here, in principle other 

transitions into d or f states through electric quadrupole or octupole transitions are 

possible, but these would have both extremely low probability and are unbound 

continuum states in carbon.   
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3.4.3. XAS and XES 

As described above, absorption and emission measurements provide information about 

the structure of unoccupied and occupied states respectively.  Shown below is a graphical 

representation of the physical process occurring in these two cases.  

 
Figure 3.7. Graphical representation of the XAS and XES processes 

 

 

X-ray absorption functions by first absorption of a photon by a core level electron which 

causes a transition to unoccupied states, and therefore probes the distribution of bound 

unoccupied states. The excitation creates a core hole which then must be filled according 

to selection rules by electrons from either occupied valence states or unoccupied states 

containing electrons that have been excited. This de-excitation of an electron to fill the 

core hole can have several possible outcomes, each with a specific probability depending 

on the element being excited. One possible path is fluorescent photon emission where the 

electron decay releases a high energy photon which may either leave the sample entirely 
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or be absorbed by a valence electron, infusing it with a large amount of energy.  An 

electron which absorbs this secondary photon now has sufficient energy to easily 

overcome the work function of the sample and may escape if near the surface, leaving the 

sample an Auger electron. The second path involves non-radiative energy transfer 

between electrons through collisions.  During the decay to fill the core hole, the electron 

may transfer energy to other valence electrons through collisions as opposed to emitting a 

photon, depositing enough energy such that they may also escape as Auger electrons.  

These two processes give rise to two possible measurement methods: measurement of the 

ejected photons from radiative decays, or collection of the Auger electrons. Depending on 

the system in question, one decay path may occur preferentially and will therefore be 

more suitable for measurements.  In the case of carbon, it exhibits a relatively low 

fluorescence yield which is typical for low-Z elements [29], meaning that collection of 

Auger electrons will give a much better representation of the DOS with a better signal-to-

noise ratio. The decay products can be simply counted by instruments and cross 

referenced with incident excitation energy to obtain the energy locations of available 

unoccupied states, as well as the relative probability of transitions to those states 

occurring.  

 

X-ray Emission measurements are photon in/photon out measurements that commonly 

occur in two main flavours, non-resonant X-ray emission (NXES), and resonant inelastic 

X-ray scattering (RIXS).  RIXS measurements were not performed for the materials in 

this study, and this technique will not be discussed further.  All other references to ‘XES’ 

therefore are referring to the non-resonant case.   XES is similar to absorption in that the 

initial step is absorption of an X-ray photon by a core level electron, but in this case the 
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X-ray energy is much greater than that required for transitions to bound states, and the 

electron is excited as a photoelectron to unbound continuum states.  The core hole may be 

filled by any other electron which obeys the required selection rules, but the decay of 

interest is that of a valence electron. In the case of carbon, since the core 1s level is to be 

filled, only 2p electrons may decay.  This decay produces a photon of energy equivalent 

to the energy separation between the valence and core level states, making this 

measurement a probe of the occupied states within a system. The resultant photons may 

then be counted similarly to the XAS case, but here a spectrometer is used to collect only 

those photons within a fixed energy range that originate from valence state decay.  

However, as mentioned in the previous section, the probability of fluorescence photon 

emission is considerably lower than that of Auger electron emission, meaning that XES 

suffers from the same low yield deficiency as XAS fluorescence detection. This is 

avoided in the case of XES by illuminating the sample with a much higher photon flux 

such that many more core holes are created then otherwise. This is accomplished by 

simply widening the exit slit on the monochromator which allows photons to enter the 

sample chamber. By creating many more core holes, the probability of fluorescence 

decay is greatly enhanced, but at the cost of lower energy resolution due to the widened 

exit slits.  Therefore, XES measurements are plagued by much lower resolution then 

XAS, and in the energy range to excite the core level of carbon, can often cause a 

smearing of fine spectral features which then cannot be identified without the aid of 

calculations.    

As a short note on nomenclature used for XES spectra, which historically uses X-ray 

notation, defining the transition in question by the core level from which the excitation 
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occurs.  This notation uses a capital letter to indicate the principle quantum number, and a 

subscript indicating the total angular momentum of that level. Notation for all transitions 

is not relevant for this study, but excitation from the 1s core level corresponds to the 

capital letter K. In the case of emission measurements, an additional identifier is added 

which defines where the electron that fills the core hole originates from.  For a 1s core 

hole in carbon, the core hole must be filled by a 2p electron, with the notation ‘Kαx’ 

where ‘x’ is either 1 or 2 denoting a transition from either the 2p1/2 or 2p3/2 levels, 

respectively. In the context of this manuscript, only excitations from the C 1s level have 

been measured, meaning all spectra are due to K-shell excitations, with all emission 

measurements therefore denoted Kα. 

 

4. Experimental 

In the following sections, the relevant sample preparation and measurement techniques 

used in this study are discussed. This includes thin film sample preparation using spin 

coating, X-ray spectroscopy techniques, and some additional practical considerations for 

X-ray spectroscopy measurements.  Throughout this manuscript X-ray spectroscopy 

collectively refers to the two complementary techniques of XAS and XES which probe 

the local partial DOS of a material. Additionally, angle resolved NEXAFS was used, 

which is a special sub-category of XAS measurement with specific application to probing 

molecular film structure. Although XAS and NEXAFS refer to the same type of 

excitation, to avoid confusion ‘NEXAFS’ will only be used when exclusively discussing 

angle resolved measurements. The theoretical aspects of these techniques have been 

discussed above, and this section deals with the practical aspects of the measurements 

themselves that must be considered in order to collect meaningful data.   
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4.1. Sample Preparation 

To produce samples for this study, a spin coater (Fig. 4.1) was used to produce uniform 

thin films suitable for spectroscopy measurements. Spin coating is one of the most cost 

effective ways to quickly and easily create thin film samples of organic materials, 

provided they are soluble. This requires only the spin coater apparatus, solvents, and 

suitable materials to be deposited as thin films.  

 

Figure 4.1. Image of spin coater equipment with nitrogen source attached. 

 

This spin coater system is a single wafer spin processor which operates simply by 

securing a small substrate to a rotating stage using a vacuum, and then rotating the stage 

at a high speed while simultaneously depositing an organic material in solution directly 

onto the substrate.  The substrate is held in place as it is spun by a vacuum generated by 

either an external vacuum source, or as in this case using a compressed gas such as 

nitrogen and a venturi-action vacuum generator. The solution must first be premixed at 

the desired concentration using a suitable solvent and deposited carefully using a syringe.  
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This method produces a uniform film of a thickness which can vary from 10 nm to 1 µm 

depending on the rotation speed used, measured in revolutions per minute, and the 

concentration of the solution. Spin coating allows the dissolved material to take a self-

organized crystal structure, the morphology of which is dependent on the processing 

parameters such as substrate symmetry, rotation speed, solvent, substrate temperature, 

solution temperature, rotation time and drying time, and drying atmosphere.  Spin coated 

films are also highly reproducible provided the same processing parameters are used for 

successive samples.   

For the two material systems included in this study, all thin film samples were produced 

using the spin coater, but with a higher solution concentration then is typical which is 

more suitable for spectroscopy measurements as opposed to actual device fabrication.  In 

the case of device fabrication, one must be very careful to finely control the spin coating 

parameters to produce an optimum film, which is in itself an in depth study for each 

material.  Additional procedures may also be implemented to optimize thin film structure 

such as spin coating under inert or solvent saturated atmosphere [30], annealing, or other 

esoteric drying methods [31].     

For spectroscopic measurements, powder PCBM was purchased from Sigma-Aldrich and 

was measured by pressing the powder into freshly scraped indium foil. The spin-coated 

films of PCBM were fabricated on clean SiO2(100) substrates using approximately 1 mL 

of solution per film of 0.5 % by weight of PCBM (Sigma-Aldrich) with chloroform 

solvent.  The samples were spun at 1200 rpm for 30 seconds.  Immediately following the 

spin casting process, the films were capped with a 5 nm layer of Au by vapor deposition 

to prevent film degradation due to extended air exposure. This effectively created a 
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buried layer of PCBM which would not be subject to atmospheric contamination from air 

or water vapor prior to measurement.  

Powder samples of the four anthracene-based organic semiconductors were obtained 

from collaborators at the Department of Chemistry at Korea University, South Korea. 

Spin-coated films were fabricated similarly on SiO2(100) substrates using approximately 

1 mL of solution of 1 % by weight of material with chloroform.  The samples were spun 

at 2000 rpm for 30 seconds, and no further annealing or post processing was performed.   

 

4.2. TEY and TFY 

As mentioned previously, when performing XAS measurements two different decay 

products are commonly detected – either fluorescence photons or Auger electrons. The 

method which collects the ejected electrons is termed Total Electron Yield (TEY).  This 

requires a sample mount equipped with an ammeter capable of nA measurement through 

a connection to ground. When Auger electrons are ejected from the sample, they carry 

away a net negative charge, leaving a net positive charge on the sample.  Charge then 

flows through the ground connection to neutralize the sample, and the ammeter simply 

measures the total current that flows over a given amount of time. This technique is best 

suited for low-Z elements which have a comparatively high electron yield, and was 

therefore the primary XAS technique used in this study. TEY is also preferentially suited 

for those samples that are quite thin (~50nm), such as organic thin films.  This is because 

TEY is inherently highly surface sensitive due to the short mean free path of electrons in 

solids.  In order to be counted, an excited electron must be able to escape the sample, 

making TEY measurements a description of the partial DOS of only the top 2-10 nm of 

the sample [32]. 
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One may also measure the Total Fluorescence Yield (TFY) which uses a Channeltron 

fluorescence detector to count escaped photons.  The Channeltron detects photons by the 

electron cascade method, and is also equipped with a mesh exhibiting a strong positive 

bias voltage to prevent escaping electrons from entering the counter.   This method is 

more bulk sensitive then TEY due to the longer mean free path of photons in solids, and 

probes the electronic structure up to a sample depth of ~100 nm when using soft X-rays 

[32].  For transition elements and higher-Z elements, production of fluorescence photons 

is much more probable compared to Auger yield, and this technique is used to great effect 

in this case, and is particularly well suited for probing trace elements in dilute samples.  

 

4.3. Angle Resolved NEXAFS 

Angle-resolved measurements are a particular class of XAS measurements which take 

advantage of the polarized nature of synchrotron light. These measurements can be used 

to determine the average orientation of complicated molecules on surfaces. This has been 

shown to be successful in many published works for organic semiconductors such as 

pentacene and poly(3-hexylthiophene) (P3HT) [33], or the liquid crystal poly(biphenyl 

dianhydride-p-phenlenediamine) (BPDA-PDA) [34].  

The resonances observed in molecular XAS spectra arise from dipole allowed transitions 

between 1s core orbitals and their antibonding * or * states. * resonances are lower in 

energy and comprise the sharp edge features below the ionization potential (IP), 

representing transitions to bound states. * resonances are broad, higher energy features 

above the IP representing transitions to unbound states in the continuum [35].  Both * 
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and * states arise from covalent bonds between atoms in a molecule, and have a fixed 

spatial orientation relative to the substrate in the case of a thin film.  

This is most easily visualized by example using a benzene ring consisting of six carbon 

atoms aromatically bonded in a ring (Fig. 4.2). Aromatic carbon structures are common 

in organic molecules, and present distinct sharp * features in X-ray spectra, making 

them ideal for this application.  The *-antibonding states result from two C 2p orbitals 

which project orthogonal to the plane of the ring in the same orientation as the -bonds 

themselves. The * states result from a hybridization of the 1s and 2p orbitals, and are 

localized in the plane of the ring along the bond axis between each pair of carbon atoms. 

 

 

Figure 4.2. Schematic representation of the directionality of π* and σ* states for a 

benzene ring 

 

When such a structure is resonantly excited, the observed absorption cross section is 

dependent on the projection of the X-ray polarization vector onto the final state orbitals 
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involved in the transition [36]. The mathematical description of this relationship is 

rigorously shown by Stӧhr [35,36], and only a general description of the function of the 

technique is presented here. Practically, this means that linearly polarized radiation 

incident parallel to the plane of the ring (from the 90° direction in Fig. 4.2) will 

preferentially excite core electrons into * states, resulting in a sharp, high intensity * 

features in the absorption spectra.  Conversely, if the angle of incidence is perfectly 

orthogonal to the plane of the ring (0°), the * states will be preferentially excited, and 

the * absorption cross section is minimized.  Due to this phenomenon, the relative 

orientation of -bonds with respect to the substrate may be determined by examining the 

changes in intensity of * features with changing angles of incidence.  This angular 

dependence is also visible in * features, but these are often more difficult to analyze for 

large molecules because these broad features tend to be a convolution of resonances from 

different molecular constituents that cannot easily be separated.   The use of this method 

to determine molecular structure is illustrated below in Fig. 4.3 which shows angle 

resolved measurements for highly ordered pyrolytic graphite (HOPG).  From the 

measurements, it is clear that at 0° incidence the * feature is almost completely 

suppressed, which immediately confirms qualitatively that the plane of the graphite 

sheets is nearly parallel to the plane of the substrate.   

In the context of organic semiconductors as discussed earlier, charge transport properties 

of these materials highly depend on their structural orientation and degree of -orbital 

overlap.  Using angle-resolved NEXAFS, the orientation of  and  bonds and therefore 

the orientation of the molecules with respect to each other can in principle be determined. 

It should also be noted here that this technique is made possible in organic materials 
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because in an absorption event, the final state orbitals of the transition must be 2p states 

due to selection rules.  Therefore, all observed resonances in a C 1s XAS spectrum are 

subject to incident angle orientation dependence.   
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Figure 4.3. Angle-resolved NEXAFS measurements of HOPG for normal and near 

grazing incidence.   
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4.4. Energy Calibration and Normalization 

Due to the complexity of synchrotron facilities, many factors are at work during a 

spectroscopic measurement which can affect or disrupt the results in an unknown way.  

One source of error that is present for every measurement at an experimental beam line is 

the absolute energy calibration of the monochromator.  One of the main strengths of 

synchrotron sources is the fine tunability of the X-ray energy, but in practice the actual 

energy of the photons that enter the monochromator cannot be determined directly, 

introducing unavoidable uncertainty.  The X-ray energy is determined mathematically 

through the relationships between various parameters of the optical components - such as 

the positions of the diffraction gratings in the monochromator - which themselves have 

some inherent uncertainty.  In principle, if the exact location of all optical and beam line 

components was precisely known, there would be no need for any post processing 

calibration.  However this is not the case and throughout the course of an experiment the 

calculated energy of the photons entering the sample chamber departs from the actual 

value – from ~0.5 eV to as much as 50 eV depending on the beam line and energy range 

in question.   

This is accounted for through the use of calibration samples with highly repeatable 

spectra and well-defined resonance peaks with accepted energy locations. An absolute 

calibration is performed by first simply measuring the calibration sample to observe the 

energy shift of its resonances relative to the accepted values.  For this study, the standard 

calibration sample for C 1s measurements, HOPG, was used with the sharp * feature 

located at 285.5 eV used for calibration. For C Kα XES measurements, HOPG is also 

used, with the sharp emission feature located at 277 eV.  All other spectra taken in the 
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same experimental run are simply hard shifted into agreement with accepted values. It 

should be noted that this procedure assumes that the movement of the monochromator 

and beam line optics is reproducible over a small energy range, meaning that it is only 

valid provided that all of the spectra to be calibrated were measured over the same energy 

range, and without scanning the energy over a different range in between measurements. 

This method of hard shifting also requires that the shift is relatively small (~1 eV) and 

that the energy range of the entire measurement is not excessively long.  Due to the 

complexity of beam line optics, the relationship between photon energy and 

instrumentation parameters is highly non-linear.  This means that if large shifts over long 

energy ranges are required, shifting each data point linearly by the same amount is 

unreasonable, as different points require slightly different shifts. To obtain a correct 

calibration in this case, a mathematical procedure should be applied to compute the 

required shift for each data point separately.   

Apart from energy calibration, all XAS spectra are inherently subject to variations in 

intensity of the incoming X-rays, which arise from electron beam instabilities in the 

storage ring or variations in the beam line optics.  Such instabilities have the effect of 

generating artifacts in experimental spectra which can be mistaken for or wash out true 

spectral features.  This problem is accounted for at the both the SGM and SXF beam lines 

through the use of a nearly transparent gold mesh which is placed just before the sample 

chamber.  Gold is used for this purpose in soft X-ray beam lines as it possesses very low 

absorption coefficients in this energy range. When illuminated with synchrotron light, the 

photocurrent produced in the mesh as a function of incident photon energy provides a 

measurement of the relative intensity of photons entering the sample chamber.  In this 
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way, a simultaneous measurement of the beam current, given the symbol Io, is taken 

during every measurement to quantify any fluctuations in photon intensity.  Any artifacts 

produced by such fluctuations are then removed from the measurements during post 

processing by simply dividing the measured spectra by Io.  

For the case of carbon, however, the situation is somewhat more complex.  Although the 

gold mesh is situated in high vacuum, it is the beam line component that is closest to the 

sample chamber.  Of all beam line components, the sample chamber is most susceptible 

to contamination as it has direct contact with the samples to be measured. During a 

measurement, samples are illuminated with an intense beam of X-rays which deposits 

large amounts of energy in the sample.  This can cause radiation damage which is 

discussed below, as well as flash heating of the sample which can cause outgassing. Due 

to the proximity of the gold mesh to the sample chamber, it may be easily contaminated 

with trace elements which may have absorption resonances within the energy range of 

interest. If this is the case, then the mesh itself may absorb some of the incoming photon 

flux, causing artifacts in the Io signal, and potentially erroneous normalization.   This has 

proven to be a problem for carbon in particular as this element is ubiquitous in our 

environment and impossible to keep out of the vacuum chambers and off of the mesh. 

The practical result is that some of the X-rays incident on the Au mesh will be absorbed 

by the carbon contaminant adsorbed onto the mesh.  Therefore, the beam current 

measured by the mesh is not an accurate representation of the photon intensity actually 

reaching the sample, and is inappropriate for normalization. At the SGM beam line where 

NEXAFS measurements used in this study were taken, the beam line personnel have 

implemented a solution to this problem for carbon XAS.  This solution makes use of a 
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photodiode which is situated behind the sample plate within the sample chamber, in the 

beam path.  Due to this geometry, the photodiode directly measures the photon intensity 

that actually enters the chamber and would strike the sample.  The only downfall of this 

arrangement is that a photodiode measurement may not be taken simultaneously with the 

measurement, and therefore it does not directly account for any beam instabilities that 

may occur during the measurement itself.  

Although this drawback exists, through experience it is clear that the photodiode method 

provides much better results even with the risk of introducing artifacts that would 

otherwise not be present.  This is illustrated in Fig. 4.4 which presents a C 1s XAS 

measurement of the n-type organic semiconductor N,N-1H,1Herfluorobutyl 

dicyanoperylenediimide (PDIF-CN2) taken at the SGM beam line.  This material is a 

complex polymer and displays rich electronic structure with many small features that can 

be easily distorted by instability artifacts. The center panel shows the TEY spectrum 

normalized using the Io signal collected simultaneously.   It is clear from the figure that 

this normalization severely distorts the spectrum with unwanted artifacts, making it 

completely unusable.  In contrast, the bottom panel shows the same spectrum normalized 

using the photodiode measured beam current, with a correctly normalized spectrum as the 

result.  
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Figure 4.4. (a) The raw TEY signal of PDIF-CN2 with the simultaneously measured 

Io signal in the insert.  (b) The Io normalized TEY signal.  Note the severe distortions 

to the spectrum with the resonances barely recognizable. (c) The same spectrum 

normalized with the photodiode beam current, with the photodiode beam current 

shown in the inset.  
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4.5. Radiation Damage 

Apart from energy calibration and normalization procedures, the other main concern 

particularly relevant for organic materials is radiation damage during any type of 

spectroscopy measurement that illuminates a sample with high energy light.  Severe 

radiation damage in organic materials is a well-known challenge when using soft X-ray 

radiation, and has been studied for various materials in thin films [37-39].  When a 

sample is irradiated during a measurement, electron excitations occur throughout the 

material, and also a large heat load is deposited on the sample.  The increased heat load 

can have the effect of violent outgassing of a powder or film sample depending on the 

material, which will disrupt film structure and break chemical bonds in the material, as 

well as contaminate the vacuum chamber.  Due to this, cryo-cooling is often implemented 

to cool the sample to liquid nitrogen or helium temperatures in order to reduce damage, 

but this is not always available or appropriate for every sample. Beyond excessive heat, 

the primary source of damage is the ionization of atoms or constituents in a molecule, 

which is particularly prevalent in organics due to the low ionization potential of ~290 eV 

for most materials. Such ionization can cause broken bonds and separation of functional 

groups from the main molecule, causing new bond formations or generation of entirely 

new chemical species [39]. Also, the radiation dose that a given material can sustain 

without significant damage varies greatly, and is very difficult to predict.   

From a spectroscopy point of view, radiation damage results in a change in spectral 

features during the course of an experiment, or even during the course of a single 

measurement.   This can greatly affect results when multiple measurements are taken of 

the same sample, such as in the case of NEXAFS. To examine the effect of radiation 

damage, each new material should be tested for radiation damage at the start of an 
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experimental run by several repeated absorption measurements of the near-edge region 

on the same sample spot. If significant radiation damage occurs, successive 

measurements will reveal changes in spectral features such as variations in intensity or 

changes in the number or location of features.  As a general precaution, successive 

measurements taken of the same sample are always taken at different physical locations 

on the sample to minimize the damage as much as possible.   

At the CLS, the SGM beam line has recently implemented a new system which allows 

the entire energy range of a measurement (typically 20 – 30 eV for carbon) to be scanned 

over in 10 – 20 seconds.  This fast scanning method is preferable to the typical form of 

measurement where the sample is illuminated at each energy step for a dwell time of 1 s.  

For a typical measurement range of 20 eV at 0.l eV steps, a sample would undergo ~200 

s of constant high energy X-ray bombardment.  Clearly, this type of system is ideal for 

organic materials to reduce radiation damage without the need for cooling to cryogenic 

temperatures.   

 

 

 

 

 

 

 

 

 

 

 

 



 

 

44 

 

 

5. Results and Discussion 

5.1. Anthracene-based Organic Semiconductors 

As discussed earlier, small molecule p-type organic semiconductors have been used to 

produce OTFTs showing typical hole mobilities as high as 1 cm
2
/Vs [1].  However, the 

achievement of this performance requires complex fabrication procedures involving 

vapor deposition in vacuum or inert atmosphere similar to conventional inorganic 

materials, which severely limits the application to low cost, large scale processing.  In 

answer to these difficulties, organic semiconductors soluble in common organic solvents 

may be used with solution processing techniques such as spin coating or drop casting.  

These methods are better suited to large scale processing, but the quality of films they 

produce is typically inferior, displaying disordered molecular arrangements with 

insufficient crystallization.  This can be alleviated somewhat through the use of post 

processing techniques such as annealing, but this requirement further increases the 

complexity and somewhat nullifies the low cost advantage of solution based approaches.  

Due to these difficulties, much work has focused on design of new materials which 

intrinsically possess desirable properties such as a propensity to crystallize in thin films.  

To this end, a class of novel anthracene based materials has been recently synthesized 

that display good film forming properties and high charge carrier mobility (0.240 cm
2
/Vs 

for OTFT) when spin cast without the need for any post processing [8,40].  A set of four 

such anthracene-based materials are the subject of this study, and are shown in Fig. 5.1.  

All four of these materials are very similar in structure, differing only in the specific 

geometry of the thiophene groups and additional alkyl chains on two of the four.  As a 

short note on the naming convention used, these molecules are given short names where 
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the prefix ‘HB’ indicates attached alkyl chains, and the suffix ‘THT’ refers to an ethynyl 

bridge between the thiophene and anthracene, with ‘HT’ being a simple single bond.   

 
Figure 5.1. Schematic representations of the four anthracene-based materials, (a) B-

ant-HT, (b) B-ant-THT, (c) HB-ant-HT, and (d) HB-ant-THT.  Note the structural 

similarities between them.   

 

 

Shortly following their fabrication, thin films of these materials were created using SiO2 

substrates, but also with the inclusion of octadecyltrichlorosilane (OTS) as a self-

assembled monolayer (SAM) coating on the substrate. SAM materials are often used as a 

substrate treatment in an attempt to enhance the crystalline structure and performance of 

semiconductors deposited on top of them [41].  The resulting thin films were 

characterized using X-ray Diffraction (XRD), cyclic voltammetry (CV), UV-Vis 

spectroscopy, and Atomic Force microscopy (AFM), and also used to fabricate OTFT 

devices where the I-V characteristic was measured.   

XRD results showed clear diffraction peaks indicating the presence of structural ordering.  

In particular for B-ant-THT and HB-ant-THT, a clear (100) diffraction peak indicates two 

dimensional structure with most of the crystallites oriented along the (100) axis in plane 

[40].  Similar results were found for B-ant-HT and HB-ant-HT, with the latter displaying 

a much more ordered structure, shown in Fig. 5.2.   
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Figure 5.2. XRD measurements of B-ant-HT and HB-ant-HT thin films fabricated 

at room temperature without additional annealing. HB-ant-HT shows only one 

sharp (100) peak, indicating a high degree of structural order. Measurements taken 

by collaborators at the 8C1 and 3C2 beamlines, Pohang Accelerator Laboratory, 

South Korea. 

 

From these results, the vertical d-spacing is found, and the general orientation of the 

plane of the anthracene core is determined to be nearly normal to the substrate with a 

slight tilt angle.  Similar upright structures have been observed for related acene 

derivatives [42-44], and in general such materials tend to form herringbone or slipped 

stack type crystal structures (Fig 5.3) [45-47].  Such other materials also display 

relatively high charge carrier mobility, but in all cases good performance is only obtained 

for measurements performed in vacuum or with additional post-processing.  
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Figure 5.3. Common stacking structures exhibited by functionalized acenes [46].  

 

For the remainder of this section, the results of previous studies are used in conjunction 

with new measurements to determine the thin film stacking structure of these materials.  

The following section is a short discussion about the effect of molecular stacking 

structure on charge carrier mobility. From there, the molecular stacking structure of these 

materials in spin coated films is probed using angle resolved NEXAFS. The UV-Vis and 

CV measurements were used to determine the HOMO and LUMO levels of these 

materials, and compute the energy gap.  The gap may also be determined using C 1s XAS 

and C Kα XES measurements, which is detailed in section 5.1.5 with the literature results 

compared to those found in this work.  DFT calculations were performed to simulate 

NEXAFS measurements in order to de-convolute the spectra and identify which 

resonances originate from each molecular constituent, as well as identify the physical 

locations of the HOMO and LUMO on each molecule.   



 

 

48 

 

 

 

5.1.1. Thin Film Structure and Charge Carrier Mobility 

The present research focuses on optimization of characteristics of existing materials by 

studying electronic structure and thin film structure. The thin film structure in particular 

heavily affects charge carrier transport in organic materials. This is because organic 

materials are typically polycrystalline or completely disordered, lacking a highly ordered 

structure as is typical of inorganic semiconductors where charge carriers move via band 

transport.  In organic materials, conduction methods are still not well understood, with 

several different models existing that apply more or less accurately depending on the 

material structure in question. Generally, charge carrier conduction occurs not through 

classical band transport but through hopping between molecular orbitals which can in 

some cases be approximated as bands when they are sufficiently energy degenerate and 

delocalized throughout a molecular solid [7]. The molecular orbitals of any given 

molecule that govern the carrier transport are the HOMO and the LUMO, which are 

usually localized on a specific portion of a large molecule in the form of bonding  and 

antibonding * states, respectively, originating from -type C 2p bonds. In order for band 

like transport to occur, the crystal structure of an organic material must be organized such 

that HOMO/LUMO states of neighbouring molecules overlap (conjugate) sufficiently to 

create a band-like delocalization of orbitals across the solid. It should be noted here that 

due to this requirement, inter- and intra-molecular mobility generally vary greatly, and 

good conduction usually only occurs along certain paths where delocalization and 

conjugation are maximized. This means that materials with the highest observed mobility 

are typically those with ordered crystal structures, exhibiting high - interaction 
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between molecules. However, as pointed out by Brédas et. al. [48], MO overlap between 

neighbouring molecules does not necessarily indicate that those orbitals are sufficiently 

coupled to allow charge hopping.  In order to properly quantify the interaction, both the 

degree of overlap and the phase relationship of the orbitals must be considered.  

Therefore, an understanding of the precise nature of - interaction, and not merely the 

presence of overlap, must be considered in the study of materials for high mobility 

applications.   

In addition to the requirement for -interaction and charge transfer between molecules, 

charge carriers in a device must be transferred across a disordered polycrystalline 

landscape. Presently, two families of transport models exist to describe such conduction, 

variable range hopping (VRH) and multiple trapping and release (MTR) [33].  VRH type 

models have been found to be more appropriate for disordered systems, and do not well 

model polycrystalline or crystalline materials. In this model charge transport occurs 

through hopping between localized states, and probability of such a hopping event is 

determined by the energy difference and physical proximity of the states involved in the 

transition.  The MTR model treats polycrystalline materials by dividing the DOS into 

mobile and trap states [49].  Trap states are generated by impurities such as grain 

boundaries between areas of different crystal structure, and charge carriers that enter 

these states are bound in the local area, immobile. Mobile states are then those that are 

sufficiently delocalized across the material to allow charge carriers to flow. When free 

charge carriers are present in the material, they will fill the low lying immobile trap states 

first, creating a threshold of charge carrier density termed the mobility edge [33].  Until 
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the density of free charge carriers reaches the mobility edge where mobile states begin to 

fill, no conduction will occur across the material.  

It is clear that in order to achieve a complete picture of the charge transport properties of 

a given material, many factors must be considered; from the fine structural properties of 

the molecules themselves, up to the morphology of bulk thin films. For this work, the 

focus is on the fine structure of the molecules themselves, and how this allows for orbital 

overlap and charge conduction. A complete study of film morphology and grain character 

would be required to further explore the structure, using additional characterization 

measurements such as surface science techniques which have not been performed.   

 

5.1.2. Angle Resolved C 1s NEXAFS 

Fig. 5.4 displays angle resolved NEXAFS measurements of thin films of the four 

anthracene-based materials.  Of the four, only two show evidence of high molecular 

order.  Both HB-ant-HT and HB-ant-THT show clear polarization dependence in π* 

resonances centered around 285 eV, with the intensity showing a general decrease with 

increasing angle of incidence.  The other two materials, B-ant-HT and B-ant-THT, show 

only minor variations in π* intensity as the incident angle is varied, indicating that the 

local structure is largely amorphous.  This is in contradiction to the XRD results 

mentioned previously which indicated an ordered structure for all materials, but this is 

presumed to be due to the use of OTS as a SAM which increased molecular ordering in 

those samples.  No such SAM was used in this case as the film forming properties of the 

molecules themselves was of interest without external aids.   
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The two materials which display evidence of ordered structure are those with additional 

alkyl chains.  This directly indicates that the attachment of this group induces order in the 

films.  Looking more closely, the precise nature of the polarization dependence is 

different for the two molecules, with HB-ant-THT showing a consist loss of intensity 

with increasing angle, but HB-ant-HT displays a minimum at 60°.  Additional 

polarization dependence is observed in the sharp peak located at 288.5 eV, which follows 

the opposite trend as the lower lying π* states, increasing in intensity for decreasing 

incident angle.  The difference between HB-ant-HT and its structurally similar partner, 

HB-ant-THT, is the attachment of the thiophene groups to the anthracene core.  This 

slight geometry modification is then the source of the different film structures these 

materials exhibit.   

Without further analysis, some qualitative insight may still be gained about the nature of 

the stacking structure these materials exhibit. The π* feature at 285 eV is due to a 

convolution of resonances originating from the anthracene, benzene, and thiophene 

groups (shown in the following section) which are all aromatic structures typically 

possessing unoccupied states in this energy range.  From DFT geometry optimization, the 

anthracene core and thiophene groups are roughly planar, meaning that their π* states 

project out along nearly the same vector.  The attached benzene rings are oriented with 

the ring planes at a slight angle relative to the plane of the anthracene core.  Given their 

comparative size, the majority of the intensity in the 285 eV feature will originate from 

the thiophene and anthracene core, making the intensity variation in this feature a good 

approximation of the orientation of this molecular plane.  The general trend of decreasing 

intensity for increasing angle of incidence then qualitatively confirms the XRD results of 
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a nearly upright anthracene core relative to the substrate.  Therefore, since HB-ant-HT 

exhibits an intensity minimum at 60° as opposed to 75°, it must display a slightly greater 

tilt angle relative to the substrate normal then HB-ant-THT.   

Table 5.1 shows the measured charge carrier mobility for each of these materials when 

fabricated into OTFT devices.  These values were calculated by collaborators from the I-

V characteristic of bottom gate, top contact devices fabricated under ambient conditions 

without additional annealing [8,40].   Interestingly, the materials with the highest and 

lowest mobilities of the four are those that show evidence of crystalline order, HB-ant-

HT and HB-ant-THT.  This suggests that the differences in mobility are due to subtle 

structural differences which may not be immediately apparent from the NEXAFS 

measurements, such as the specific degree of tilt or a cofacial versus herringbone style 

structure.     

 

Table 5.1: Measured Hole mobilities calculated from I-V characteristic 

 Hole Mobility (cm
2
/Vs)  

*B-ant-HT 0.014  

†
B-ant-THT 0.040 

*HB-ant-HT 0.010 

†
HB-ant-THT 0.240 

 

†
: Ref. 8. 

*: Ref. 40. 

In the following sections, the nature of the stacking and electronic structure of these 

molecules is discussed further, with the aid of DFT calculations. 
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Figure 5.4.  Angle resolved NEXAFS of the four anthracene-based molecules.  Clear 

evidence of local structure is observed through polarization dependence for those 

molecules with additional alkyl chains.   
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5.1.3. DFT calculations 

Shown in figures 5.5 and 5.6 are DFT simulations of the XAS measurements for HB-ant-

HT and B-ant-THT. Similar calculations were performed for B-ant-HT and HB-ant-THT, 

but no new information was gained as the calculated spectrum from each constituent was 

identical to those that are already shown here. In the top panel of Fig. 5.5, NEXAFS of 

HB-ant-HT at normal incidence is compared to a DFT simulation and the XAS of 

anthracene powder.  In this case, since these materials are p-type, the nature of the 

unoccupied states does not directly give insight into the charge conduction properties of 

these molecules. However, when comparing the spectra from all four molecules, changes 

in spectral features observed in the unoccupied states can indicate which molecular 

constituents have modified MOs due to changes in geometry.      

From the top panel of Fig. 5.5, comparison with the anthracene powder immediately 

assigns the LUMO to have a large density on the anthracene core of the anthracene based 

molecules, with reduced contribution from the other molecular groups.  Additionally, the 

sharp peak at 288.5 eV seen in the NEXAFS is shown to have a contribution from higher 

energy anthracene C=C π* states.  The DFT calculation is a total XAS calculation 

containing no orientation information, and was computed as an average signal over all 

possible orientations.  The calculated spectrum does not appear to match the lineshape of 

the measurement exactly, but this is a function of the broadening which is arbitrarily 

applied.  Certainly better agreement could be obtained with more imaginative 

broadening, but no increased understanding would be gained from such an endeavor.   

The true strength of the DFT simulations is shown in the lower panel. Here, the 

resonances from each constituent on the molecule are shown individually such that the  
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Figure 5.5. Comparison of HB-ant-HT NEXAFS to Anthracene powder and DFT 

XAS simulation (top panel). The bottom panel shows the contribution to calculated 

spectrum from each molecular constituent.   
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peaks in the measurement may be assigned unambiguously.  The ethynyl group 

contribution is not shown individually, but is included with that of the benzene or 

thiophene when it is present.  The low lying π* peak centered at 285 eV is determined 

from calculation to be a convolution of C 1s → π* (C=C) resonances from the 

anthracene, thiophene, and benzene groups.  Also shown by calculation is a contribution 

from C 1s → σ* (C-S) excitations in the thiophene groups to the peak at 288.5 eV, 

commonly seen in thiophene containing materials [33]. The alkyl chains, containing no 

C=C bonds, do not possess any π * states and contribute only higher energy σ* orbitals 

above the IP which is located at ~290 eV. 

Shown in Fig 5.6 is a similar analysis for B-ant-THT.  Interestingly, both the anthracene 

and thiophene signatures are modified in this case.  This material differs from HB-ant-HT 

in that it is lacking additional alkyl chains, and has thiophene groups with an ethynyl 

bridge attachment. From the DFT, we see an enhancement in the C 1s → σ* (C-S) 

resonance in the thiophene, as well as an apparent lowering in energy of anthracene 

LUMO states.  This variation is not expected to be due to the additional alkyl chains, as 

they are situated relatively far away from the core, and also do not contribute any π* 

states. Clearly, the attachment of the thiophene has a large effect on the distribution of 

unoccupied states for these molecules.  This suggests that they will display remarkably 

different bonding character, and hence take different stacking structures in thin films. 
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Figure 5.6. Comparison of B-ant-THT NEXAFS to DFT simulation (top panel). The 

bottom panel shows the contribution to calculated spectrum from each molecular 

constituent.  Note the differences in anthracene and thiophene resonances.  
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5.1.4. HOMO-LUMO gap and Organic Semiconductors 

 

The HOMO-LUMO gap describes the mean separation between these MOs in an organic 

material. This is roughly analogous to a bandgap in inorganic semiconductors, where the 

size of the gap classifies the material as an insulator, metal, or semiconductor.  The 

HOMO-LUMO gap itself is of importance for transistor applications as it represents the 

amount of energy required for an electron in occupied valence states to be promoted to 

unoccupied conduction states.  This is related to turn on voltage in transistors, which is 

one parameter that should be minimized as much as possible for energy efficient devices. 

In addition to the gap itself, the energies of the HOMO and LUMO relative to the 

vacuum level are also of interest as good matching between those of the semiconductor 

and the attached electrodes is required for efficient charge injection.  However, using X-

ray spectroscopy, only the energy value of the gap is obtainable through the use of second 

derivatives.   

The use of XAS and XES to determine the HOMO-LUMO gap is not in fact a true 

representation of the gap in a material, as both these states involve the creation of a core 

hole which modifies the distribution of MOs and acts to relax outlying orbitals towards 

the nucleus.   The true gap is that of the ground state which cannot be probed with X-ray 

spectroscopy, or indeed any other excited-state measurement.  However, for the case of 

carbon, the relaxation effects are minimal as compared to a transition metal system 

containing occupied d states.  In such a metal, the p and d states are highly coupled, and a 

core hole in p states will greatly modify the energy of outlying d states.  In the case of 

carbon, only s and p states are present, and when a core hole is created, the 2p states are 

screened by the tightly bound 2s states, minimizing relaxation effects. Therefore, 
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although XAS and XES cannot probe the true HOMO-LUMO gap, they can give a good 

approximation for elements without strong core hole effects.   

XAS and XES are used to find the HOMO-LUMO gap by using second derivatives of the 

measured spectra.  In molecular XAS spectra, the various unoccupied states are often 

well defined when taken at a high resolution beam line such as the SGM, where each 

peak below the IP represents a specific unoccupied bound state which may be occupied 

by excited electrons.  Therefore, it is typically a simple matter to locate the LUMO level 

as the first prominent low energy peak.  The location of the HOMO is by contrast often 

far more unclear due to the relative lack of features in C Kα XES spectra, and often 

presents as a barely discernible shoulder.  The use of second derivatives serves to locate 

these hidden shoulders since it is a representation of the curvature of a line.  Once second 

derivatives are computed, one need only locate the first trough – which corresponds to 

the first peak or shoulder – in the derivative spectra as measured from the center of the 

gap.  This is illustrated below in Fig. 5.7 for HB-ant-THT.  In this case the selection of 

derivative features is somewhat ambiguous as the peak located at 285 eV would be the 

natural choice for the LUMO.  However, given the previous DFT calculations which 

show the first anthracene resonance lower than the main resonance at 285 eV, the small 

shoulder at 284.25 eV is selected. This combined with the XES result yields a HOMO-

LUMO gap of 2.01 eV. 
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Figure 5.7. HB-ant-THT XAS and XES measurements.  Second derivatives are used 

to find the C 1s LUMO and HOMO  C 1s transitions, with a resulting gap of 

2.01 eV.      

 

 

The HOMO-LUMO gap results for the other three molecules are summarized in Table 

5.2 below, and are also compared to values determined by UV-Vis spectroscopy in the 

literature.  The values determined by XAS/XES fall within ~0.1 eV of the UV-Vis 

results, in good agreement.  Referring to the observed energies of the HOMO and LUMO 

transitions, no trend is observed in the values that would correspond to the structure, and 

all HOMO and LUMO levels are within ~0.15 eV of each other.  This indicates that the 
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HOMO-LUMO gap of these materials is not greatly affected by the specific structure of 

the films, and is more so an intrinsic property of the materials themselves.    

 

Table 5.2: HOMO-LUMO gaps determined from XAS/XES compared to UV-Vis. 

 C 1s LUMO and 

HOMO  C 1s 

transition energies (eV) 

This Work *Ref. [8]  
†
Ref. [40] 

Material HOMO LUMO Thin Film (eV) UV-Vis Eg
opt

 (eV) 

B-ant-HT 282.10 284.37 2.27 
†
2.19

a
, 2.21

b
           

B-ant-THT 281.85 284.00 2.15 *2.20
a
, 2.16

b 

HB-ant-HT 281.85 284.05 2.20 
†
2.17

a
, 2.15

b 

HB-ant-THT 282.24 284.25 2.01 *2.15
a
, 2.14

b 

 
a
: before annealing 

b
: after annealing 

 

5.1.5. C Kα XES and the HOMO 

As stated previously, the four anthracene molecules are p-type semiconductors, meaning 

that the most efficient charge conduction occurs through hole transfer. A hole is 

generated when an electron in the HOMO is excited to unoccupied LUMO states.  Once 

separated, both the electron and hole may migrate through the material, subject to the 

specific environment of the MOs that they now occupy.  In the case of p-type materials, 

holes are transmitted much more easily, which is primarily due to a favorable distribution 

of HOMO states as opposed to LUMO.  In order to probe the occupied hole conduction 

states, XES measurements were performed for these materials at Beamline 8.0.1, which 

are summarized in Fig. 5.7.  Unfortunately, the spectra show very little structure, with  
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Figure 5.8. XES measurements of the anthracene based materials. Few spectral 

features are evident, with all measurements appearing very similar.   
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only one high energy shoulder clearly visible.  From these measurements there is also no 

clear change in the HOMO level, and only a minor energy shift was discernible through 

the use of second derivatives.  A lack of features is common for organic materials where 

the occupied C states tend to be very energy degenerate, preventing the appearance of 

any meaningful structure.  From the DFT calculations shown previously, it was clear 

from which parts of the molecule each unoccupied resonance arose from, and a similar 

analysis is performed here using Gaussian03 for occupied states, shown in Fig 5.9. 

This figure presents calculated HOMO isosurfaces for all four molecules.  The 

isosurfaces show the distribution of MOs across each of the molecules, and are a useful 

presentation tool for identifying the physical location of certain MOs.  From the results, 

there is very little change between the molecules, with the HOMO in each case relegated 

to the anthracene, thiophene, and ethynyl groups, with only a small contribution from the 

benzene. This result was not unexpected given the structural similarities between the 

molecules, and implies that observed differences in electrical performance between these 

molecules are the result of differing thin film structure as opposed to a variation in 

molecule electronic structure.  From comparison with the values shown in Table 5.1, the 

additional HOMO conjugation provided by the ethynyl groups appears to increase the 

mobility by increasing the area of possible HOMO overlap between neighbouring 

molecules, providing additional conduction pathways. However, these factors are not 

sufficient to explain the order of magnitude increase in mobility for HB-ant-THT, further 

suggesting that a variation in molecular stacking structure is the root of differing charge 

transport properties.  
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Figure 5.9. HOMO isosurfaces.  This MO is extremely similar between all four 

molecules, and is located primarily on the anthracene, thiophene, and ethynyl 

groups.  

.  
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5.1.6. Molecular orientation  

In principle, the polarization dependence on π* features in NEXFS spectra can be used to 

quantitatively determine the tilt angle of the π* vector for a given resonance relative to 

the substrate, and therefore determine the local orientation of the molecules.  Such an 

analysis was first described by Stöhr and Outka [35], and has been used to great effect in 

finding molecular orientation of organic materials such as P3HT and pentacene [33].  

However, in this case, the only prominent features appear as a convolution of excitations 

from all parts of the molecule.  In order to successfully quantify the orientation of each 

constituent, the resonances need to be separated and the intensity change of each 

analyzed individually.  In this case however, this is not possible, and such an analysis 

cannot be performed.   

From the polarization dependence, it is still possible to estimate the orientation.  As stated 

previously, NEXAFS indicates a nearly upright structure for HB-ant-HT and HB-ant-

THT, with a slightly greater tilt angle indicated for HB-ant-HT.  From comparison with 

the other two materials, it is clearly the additional alkyl chains which induce the 

structural ordering.  The tilt variation is then the result of the ethynyl bridge thiophene 

attachment between these materials, but as mentioned previously this slight difference is 

not sufficient to explain the order of magnitude difference in charge carrier mobility.  To 

explain this, such a large disparity in mobility must be due to a similar large variation in 

structure that is not detectable with XRD or NEXAFS.  In the case of HB-ant-THT, the 

structure may be a variation of a cofacial π-stack, such as slipped stack (Fig. 5.3), which 

allows for favourable HOMO overlap between neighbouring molecules and the observed 

high mobility.  The difference in thiophene attachment for HB-ant-HT is then predicted 

to not only increase the tilt, but also precipitate a herringbone structure.  This 



 

 

66 

 

configuration would present very similar XRD and NEXAFS results as a cofacial 

structure, as these techniques probe the lattice spacing and molecular tilt, but not 

intrinsically the rotation of the molecules relative to each other. Such a herringbone 

structure would explain the much lower mobility of HB-ant-HT because in this 

configuration the HOMO of one molecule would overlap with only the alkyl chain MOs 

of a neighbouring molecule.  The length of the chains will then simply separate the 

molecules to such an extent that favourable HOMO coupling could not possibly occur.  

Although orbital overlap does not always guarantee increased mobility, materials that do 

not present it very rarely display good performance. In those rare cases, the material is 

made of small molecules such as pentacene, without large endgroups such as the alkyl 

chains in this case, and therefore favorable overlap can still occur in a herringbone 

structure.     

 

5.1.7. Conclusions 

NEXAFS of these materials clearly shows the presence of local structure for two of the 

four, with a polarization dependence indicating that the molecules are stacked nearly 

upright with a slight tilt, in agreement with XRD results. The electronic structure of both 

occupied and unoccupied states has been further analyzed using the combination of 

NEXAFS, XES and DFT calculations. It is clear that molecules with an anthracene core 

and thiophene functional groups provide a well conjugated HOMO which is ideal for p-

type conduction.  The efficiency of transfer between neighbouring molecules is then 

nearly entirely dependent on the molecular stacking.   The addition of alkyl chains has 

been shown to produce an ordered structure, but the nature of the stacking, be it 

herringbone or cofacial, is also influenced by the nature of the other functional groups.  
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In this case, the ethynyl attachment of the thiophene is concluded to result in a large 

variation in stacking, in correlation with mobility measurements. Knowledge that a slight 

variation in thiophene attachment can have such a large effect on film stacking structure 

is of great importance for fabrication of new materials. In particular, work may be 

continued with structures related to these to potentially produce a whole family of acene-

based materials with ordered structure achieved without the need for annealing.  

 

5.2. PCBM 

Among the currently commercially available organic semiconductor materials, the 

fullerene (C60) and its derivatives are some of the most common and efficient n-type 

organic semiconductors. In particular, PCBM has been shown to have high solubility in 

common solvents [50]. It is actively used in fabrication of OPVs as an electron acceptor 

and OTFTs, usually in the form of films blended with p-type conjugated polymers such 

as P3HT [51-54].   

The control of film crystallinity and knowledge of electronic structure have been shown 

to be a requirement for improved device performance, particularly for blended devices 

[54,55].  In the case of PCBM, crystallization depends strongly on the deposition process 

used.  When PCBM is deposited on Au(111) with film thicknesses of a few monolayers, 

a well ordered structure of PCBM dimers is formed that is governed by hydrogen 

bonding between side chains and the substrate surface [56,57].  With greater coverage, 

however, the high order is reduced and a nearly amorphous structure results with 

unknown side chain effects.  Bulk crystal structure calculations of PCBM have been 

performed [58], and indicate that the side chain may act to produce several possible 
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homogeneous structures, each with different electronic properties and morphologies.  

Films fabricated by spin coating, as reported by Yang et al. [59], indicate such bulk 

homogeneity with varying morphologies depending on the deposition parameters.  From 

these results, side chain and substrate bonding appear to almost completely determine 

crystal structure in monolayers, but it is not clear what effect the side chain has on bulk 

structure beyond inducing homogeneity.  In addition to influence on crystallization, the 

side chain has been shown to modify PCBM’s electronic properties [58,60-62].  Akaike 

et al.
 
[61] reported a lifting of the degeneracy of the LUMO of C60, which has also been 

found for C60 functionalized with 11-amino-1-undecane thiol (11-AUT) self-assembled 

monolayer
 
[62]. The side chain is also reported to contribute to higher energy MOs, and 

is thought not to be directly involved in conduction [58,60,61].   

The study undertaken here analyzes the effects of the side chain on both crystal and 

electronic structure of PCBM using a combination of C 1s NEXAFS, C Kα XES, and 

DFT calculations. The analysis and results are presented in the following sections. 

 

5.2.2. NEXAFS Measurements 

Fig. 5.10 presents angle-resolved C 1s NEXAFS measurements of the PCBM spin coated 

film measured in TFY mode. These measurements probe the bulk structure of the buried 

PCBM layer without surface contribution due to the gold capping layer. The spectra show 

a decrease in absorption intensity with increasing incident angle measured from normal to 

the substrate for the first three lowest energy π* peaks (284.5 eV, 285.8 eV, 286.3 eV). 

The pronounced angular dependence of the intensity of C60-derived π* peaks is 

unexpected due to the high symmetry of this structure. This polarization dependence 
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observed in C60-derived π* absorption peaks indicates that the side chain reduces the high 

symmetry of the C60 π* network from icosahedral (Ih) to C1. Specifically, the LUMO is 

no longer evenly distributed and now possesses a π* vector that points radially outward 

from the C60 asymmetrically. This has been observed experimentally for other 

functionalized fullerenes [62], but is not indicated by orbital density calculations [60,61]. 

The reduced orbital symmetry further allows for determination of crystal structure, with 

the pattern of polarization dependence in the π* excitations indicating a MO vector that 

points preferentially parallel to the substrate plane.    
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Figure 5.10. Angle-resolved C 1s XAS measurements of PCBM thin film measured 

in TFY mode.  α represents the angle of incidence of X-ray radiation measured from 

the substrate normal. 
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Fig. 5.11 shows by calculation a phenyl contribution to the 285.8 eV π* peak which is 

discussed below, and this is further verified by the pattern of intensity loss NEXAFS 

measurements, tabulated in Table 5.3.  

Table 5.3. Tabulated peak intensities for PCBM Angle Resolved NEXAFS 

Peak Energy (eV) 284.5 285.8 286.3 

Incident Angle α (°)  Normalized Absorption Intensity (arb. units)* 

10 1.054 0.954 0.907 

25 1.120 0.931 0.896 

45 0.836 0.829 0.803 

60 0.676 0.708 0.718 

*Intensities are recorded from spectra normalized to a uniform background at 315 eV. 

 

At near normal incidence the 285.8 eV peak shows greater intensity then the nearby 

286.3 eV peak. At 60° incidence it has decreased to a lower intensity than its neighbor, 

and the double peak begins to resemble that of the C60 powder. The spectral change is 

due to a contribution from π-orbitals projecting perpendicular to the plane of the ring with 

a reduced cross section for grazing incidence indicating the plane of the ring is 

preferentially perpendicular to the substrate plane. Similarly, the broad σ* resonance 

above the IP (not shown) shows an angular dependence consistent with σ -bonds along 

the length of the polyethylene chain oriented preferentially parallel to the plane of the 

substrate. The change in σ* resonance is not considered to originate from the C60 because 

these excitations arise from C-C bonds which should show no variation due to symmetry.  

Although orientation information may be obtained from the measurements about the C60 

π* MOs, the exact orbital configuration is unclear. Given that the orbitals around the 

attachment point are shifted in energy, it is reasonable that the remaining π* MOs are 
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distributed across the rest of the C60 surface and point radially outward.  In this 

configuration, the highest density of coplanar MO vectors is a ring around the center of 

the C60.  

 

5.2.3. DFT calculations 

Fig. 5.11 presents the C 1s NEXAFS spectra of a PCBM thin film and C60 powder 

reference compared to the simulated PCBM spectrum (a) and the calculated spectral 

contributions to absorption features from C60 backbone and side chain (b). Comparison of 

the PCBM and C60 NEXAFS spectra assigns most of the resonance intensities of peaks at 

284.5 eV (LUMO), 285.8 eV, 286.3 eV, and 288.4 eV, as contributions from the C60 

backbone. This result is expected because due to its comparative size, the C60 must 

provide most of the unoccupied states in PCBM.  Given that the C 1s IP of C60 is located 

at approximately 289.6 eV [63], the first four low energy peaks represent π* resonances 

and those above the IP constitute σ* resonances
 
[36,64,65]. The simulations shown in 

Fig. 5.11(b) can be used to assign the absorption peaks as originating from specific 

excitations within the molecule (see labels on Fig. 5.10).  
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Figure 5.11. (a) Comparison of C 1s XAS spectra of PCBM spin-coated film 

measured in TFY mode with simulated PCBM spectrum and the measured 

reference spectrum of C60 powder and (b) the calculated XAS spectra for individual 

groups within PCBM molecule and the inset shows the molecular groups coloured to 

match the corresponding line colour of simulated spectra. 
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The π* resonances at 284.5 eV, 285.8 eV and 286.3 eV arise from C 1s → π* (C=C) 

excitations [54,63], in the C60, but also with a contribution from the aromatic phenyl ring 

in the first of the double peaks at 285.8 eV, shown by calculation. This is consistent with 

the measurements as it accounts for the notably larger intensity of the first peak in the 

PCBM measurement when compared to the C60.  It has been shown by Kondo et. al. [64] 

for C60 films that this peak represents a highly dispersive MO which contributes to 

intermolecular interaction in the bulk phase. This suggests that the phenyl ring may 

influence bulk intermolecular interaction by providing additional dispersed MOs. The 

peak at 288.4 eV is as a combination of C 1s → π* (C=C) excitations in the C60 and 

transitions to σ* (C-H) and molecular Rydberg orbitals (R*) arising from the 

polyethylene chain [36,55,66]. The higher energy σ* peaks are a combination of C 1s → 

σ* (C-C) transitions from all parts of the molecule [54,66]. The new feature not present 

for C60 is the after-edge shoulder occurring at 285.1 eV (labeled A). This is associated 

with the C atoms around the side chain attachment point.  The attachment of the side 

chain breaks Ih orbital symmetry of the C60, causing a shift in MO energy near the 

attachment point [61,62].  A shift to higher excitation energy corresponds to a shift to 

lower ionization energy, which indicates a donation of electrons from the side chain to 

the C60 near the attachment. This is also manifested in a slight shift of the PCBM 

unoccupied states (0.05 eV) to higher energy.   
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5.2.4. Thin Film Stacking Structure 

Given the above orientation information derived from NEXAFS, the possible bulk 

stacking structure motifs may be determined for this PCBM film.  Additional calculations 

were also performed using the GAUSSIAN03 to determine if the attached side chain 

introduces a molecular dipole to the C60 structure due to its asymmetry.  To determine 

this, a DFT total energy calculation using a previously optimized structure was 

performed. It was found that the side chain induces a dipole moment which points along 

the length of the polyethylene chain with a magnitude of 3.83 D. This will have the effect 

of aligning the molecules in such an arrangement that accommodates the dipole. In the 

absence of a substrate to influence orientation, the induced dipole will act with Van der 

Waals forces to self-organize the bulk structure. Given the orientation of the molecular 

constituents and the presence of a dipole, there are several crystal structures that agree 

with the measurements. Fig. 5.12 (a) places the molecules all oriented the same direction, 

in agreement with the NEXAFS results and molecular dipole. Structures (b) and (c) are 

produced by rotations about the horizontal axis (polyethylene chain) of the upper left and 

bottom right molecules by 180° in (b) and 90° in (c). Fig. 5.12 (d) is produced by a 180° 

rotation about the vertical axis (plane of the phenyl ring) of the two left side molecules. 

These four structures allow for formation of hydrogen bonds between side chains which 

have been shown to highly influence PCBM structure on surfaces [56,57]. In particular, 

structure (d) supports stronger hydrogen bonding between functional chains. This type of 

bonding will compete with the effect of the dipole to ultimately determine bulk structure. 

Furthermore, since the exact distribution of π * states on the C60 is unclear, any structure 

similar to those in Fig. 5.12  where the molecules are allowed to rotate around a reference 

axis running along the length of the polyethylene and through  
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Figure 5.12. Four possible stacking structures that are supported by the angular 

dependence seen in the NEXAFS measurements.  (d) shows an arrangement which 

allows for stronger hydrogen bonding between functional chains 
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the plane of the phenyl is supported by the measurements (blue rotation axis, Fig. 5.12  

(a)).  The true bulk material is therefore a combination of such allowed structures. 

 

5.2.5. HOMO-LUMO Gap 

NEXAFS and XES probe the unoccupied and occupied MO states, respectively, and so 

the band-gap energy of PCBM may be determined by superposing C K-edge NEXAFS 

and XES spectra. Fig. 5.13 shows non-resonant C Kα XES and C 1s NEXAFS 

measurements for powder PCBM.  In the lower panel, the second derivatives of 

NEXAFS and XES spectra were used to place the HOMO at 282.63 eV and the LUMO at 

284.50 eV with a resulting energy gap of 1.87 eV for powder PCBM.  This is in 

agreement with recently reported values of 1.8 – 1.9 eV [67,68]. In this case, the second 

derivative of the XES spectrum is performed on a fitted line for clarity with the same 

result obtained otherwise.  
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Figure 5.13. PCBM XES and XAS powder spectra, with smoothing applied to the 

XES.  Second derivatives of the smoothed XES and measured XAS spectra are used 

to determine the energies of the HOMO and LUMO, and a resulting gap of 1.87 eV. 
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5.2.6. Conclusions 

The PCBM side chain has been shown to influence both MO distribution and bulk crystal 

structure.  NEXAFS clearly shows the presence of a partially lifted LUMO degeneracy 

around the attachment point. Pronounced angular dependence of π* features known to 

originate from the C60 suggests an asymmetrical MO distribution and is clear evidence of 

crystalline structure. NEXAFS polarization dependence has also been observed for C60 

functionalized with 11-AUT [62], where the presence of the SAM is expected to induce 

order.  In the case of PCBM, the side chain behaves similar to 11-AUT to influence order 

by way of hydrogen bonding and molecular dipole moment. With the LUMO of PCBM 

arising exclusively from its C60 character, n-type conduction will occur most readily 

between C60 backbones where MOs overlap. Since the C60 LUMO MOs are predicted to 

have a ring like distribution around the center of the structure, an ordered crystal structure 

that allows for such overlap is required for efficient conduction.  The correlation between 

these results and those in the literature shows that any functionalized C60 derivative 

should display a similar asymmetrical MO distribution, as well as structure influenced by 

the nature of the functionalizing group. This fact should be taken into account when 

optimizing the crystal structure of thin films containing C60 derivatives for best 

performance. 
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6. Summary and Future Research 

The following section provides a summary of the material properties determined for the 

systems reported here, as well as other systems currently under study and directions for 

future research.  The main focus of future studies is the expansion of research interests 

from the pure study of material properties, to the application of those studies in actual 

device fabrication.  To that end, new equipment has recently become available that 

includes a physical vapor deposition (PVD) system and a solar simulator.   

 

 

6.1. Properties of Materials Studied  

NEXAFS measurements were used to probe the local molecular structure of the four 

anthracene based materials, identifying two of them as possessing an ordered structure.  

From the polarization dependence, it is determined that these molecules have a nearly 

upright orientation, with the plane of the anthracene core oriented nearly normal to the 

substrate with a slight tilt.  The electronic structure of both occupied and unoccupied 

states was further examined, with very little variation observed between the molecules 

concerning energy locations of the HOMO and LUMO.  Using DFT calculations, XAS 

simulations were performed which identify origin of π* resonances, showing that both 

the HOMO and LUMO are located primarily on the anthracene, thiophene, and ethynyl 

groups.  These findings are correlated to mobility values collected from OTFT devices of 

these materials, and due to the absence of electronic structure differences, the mobility 

variation is concluded to be a result of differing film structure.  Specifically, HB-ant-THT 

exhibits a variation of cofacial stacking, where HB-ant-HT is herringbone which accounts 

for its much lower charge carrier mobility.   
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The solar cell material PCBM was examined with spectroscopy techniques to probe the 

effects of the functional chain on electronic and stacking structure.  Angle resolved 

NEXAFS in TFY mode was used to probe the bulk of a thin film, showing a polarization 

dependence in the LUMO states.  This indicates that the functional groups modify the 

distribution of LUMO states on the C60 backbone, removing its high symmetry.  The 

polarization dependence was further used with the help of DFT simulations to project the 

possible stacking structures that bulk PCBM takes in spin coated films.  This information  

is applicable to other functionalized fullerenes as well, and will help in the understanding 

of carrier transport in blended thin films.   

 

 

6.2. Future small molecule systems 

For the purpose of device fabrication, many different organic materials can be considered 

to be good candidates for new devices.  Presently, the anthracene-based molecules are 

under study, and following a publication regarding them, larger samples of them will be 

acquired from collaborators and used to fabricate OTFTs.  Although the I-V 

characteristic has already been studied, the optimized recipe for a high performance 

device has not yet been determined.   

New systems that were not discussed here but are currently under study include 

pentacene and two derivatives, its n-type counterpart perfluoropentacene (PFP), and a 

soluble variety, 6,13-bis(Triisopropylsilylethynyl) (TIPS) Pentacene.  Pentacene and PFP 

are not soluble, and thin film samples were originally acquired from collaborators.  These 

molecules are candidates for solar cell devices, and blended samples deposited on 

different substrates are of interest to study the thin film structure and morphology. For 
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this both X-ray spectroscopy techniques as well as XRD will be used to study the 

stacking and electronic structure.  Surface science techniques such as AFM and scanning 

tunneling microscopy (STM) will also be used to examine the morphology and probe the 

surface DOS.   

TIPS-pentacene is a soluble pentacene derivative that was created to allow spin coating 

of this high mobility material for OTFTs [47].  Currently an XRD study is underway on 

this material to study the effect of different substrates and solvents on thin film structure, 

headed by Jay Forrest, a graduate student at the University of Saskatchewan.  One future 

study on this material would be to exfoliate a thin film from a substrate, and measure the 

buried interface. This would give insight into the ~50 nm of film next to the dielectric 

where charge conduction occurs in transistors.   

Several other systems are under study for the use in thin film transistors and solar cells, 

including PDIF-CN2 and two other related materials that are high mobility n-type organic 

semiconductors.  For solar cells, blends of materials such as PC[70]BM, a version of 

PCBM based on a C70 molecules, and Poly(2-methoxy-5-(3’-7’-dimethyloctyloxy)-1,4-

phenylenevinylene) (MDMO-PPV). Insight into the characteristics of these materials will 

aid in the optimization of thin film recipes and the development of new device 

architectures.  

 

 

6.3. Physical Vapor Deposition and Solar Simulation 

In order to fabricate solar cell and transistor devices out of diverse materials, fabrications 

methods beyond spin coating are required.  Physical vapor deposition is a technique 

which can be used to deposit thin layers of most materials onto any substrate.  This is 

accomplished by direct heating of a crucible under high vacuum by specially designed 
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furnaces capable of reaching temperatures in excess of 2000 ºC, with the desired material 

within.  Once hot enough, the material will be vaporized, and deposited on a rotating 

substrate stage directly above it.   This or a similar vaporization method is required for 

the deposition of metals, such as for electrodes, which are not soluble and cannot be spin 

coated.  In the coming year, this equipment will be commissioned for use, and ultimately 

used to fabricate transistors and solar cell devices.  Plans are also in place to add a 

vacuum transfer arm and glove box, and possibly a vacuum sample stage, so that air 

sensitive materials may be used in fabrication and measured under vacuum.   

In addition to expanding fabrication equipment, characterization equipment for both solar 

cells and transistors has been purchased.  A solar simulator is a device used to simulate 

the light spectrum that comes from the sun.  In order to measure the power conversion 

efficiency of solar cells, they are illuminated with the solar simulator, while 

simultaneously measuring their I-V characteristic.  The I-V measurement is accomplished 

with a sample stage equipped with probes attached to a source meter, and is appropriate 

for both solar cells and transistors.  With this new equipment, a variety of new materials 

may be used to fabricate and test actual devices.  
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APPENDIX:  StoBe Input Files 

In this appendix, run files required to perform a complete XAS simulation following a 

geometry optimization are listed.  The keywords which define the occupation of 

molecular orbitals are discussed following the atomic coordinates.  The file shown is 

identical in structure to those input to StoBe, which runs on a computer cluster owned by 

the Beam Team Research Group headed by Dr. Alex Moewes at the University of 

Saskatchewan. 

 

a) Slater Transition State XAS run file 

 

This file places the core hole at site C1, and performs a calculation of the total XAS 

spectrum resulting from excitation of this single atom. Similar files are required for each 

atom being excited. The keyword lines shown below define the alfa and beta orbital 

occupations, with a half core hole placed in the alfa core level of C1. Note that all atoms 

not being excited have a modified nuclear charge of +4, and corresponding effective core 

potential basis sets are used at the end of the file.  Also, the atomic coordinates used in 

this calculation are those that resulted from a previous geometry optimization.  

alfa 108 

beta 108 

sym 1 

alfa 108 1 3 0.5 

beta 108 0 

end 

 

#!/bin/csh -f 

ln -s /opt/StoBe/Basis/baslib.new7 fort.3 

ln -s /opt/StoBe/Basis/symbasis.new fort.4 

cat >help.inp <</. 

title 

BHT no ethynyl C1 XAS 

nosy 

cartesian angstrom 
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S1 -1.08801283 -5.03949978 -2.00067200 16.0000 

S2  3.59107099  6.61373137  1.52312322 16.0000 

C1 -1.67919269 -8.53345556 -1.75205337 6.0000 

C2  3.57805697  3.44552495  1.14748832 4.0000 

C3  3.65947037  2.13738314  0.74113340 4.0000 

C4  2.31126085  4.11055470  1.27585076 4.0000 

C5  1.16285531  3.39190894  0.97090291 4.0000 

C6  2.48873448  1.37013345  0.43100065 4.0000 

C7  1.19877345  2.02349220  0.56536265 4.0000 

C8 -1.32259118  1.97365721  0.40265665 4.0000 

C9  0.34570045 -4.19886024 -1.40348774 4.0000 

C10  3.90444091 -0.64536117 -0.12075436 4.0000 

C11 -3.21250057  3.12362063 -0.63186293 4.0000 

C12 -1.93382814  2.15501335  1.65678249 4.0000 

C13  3.51815156 10.03300908  0.97290778 4.0000 

C14  1.43271188 -5.05550569 -1.45543514 4.0000 

C15  4.62342251 -0.59538054 -1.32931229 4.0000 

C16 -0.19841310 -6.52105385 -2.30096479 4.0000 

C17  1.12627153 -6.35017990 -1.95667233 4.0000 

C18  6.41273841 -1.92072284 -0.36118976 4.0000 

C19  5.86735126 -1.22873482 -1.44933702 4.0000 

C20 -3.80560643  3.30437902  0.62290263 4.0000 

C21 -3.16438071  2.81415165  1.76710827 4.0000 

C22 -0.88788041 -7.75457543 -2.82105022 4.0000 

C23  2.23023720  5.50656576  1.72224170 4.0000 

C24  1.16967672  6.17930456  2.30204581 4.0000 

C25  2.70304787  7.95879513  2.22060116 4.0000 

C26  1.43650380  7.54953910  2.57664684 4.0000 

C27  3.30604811  9.33400998  2.32868711 4.0000 

C28  0.01219295  1.29683935  0.28122312 4.0000 

C29  2.56602003  0.02276874  0.01170470 4.0000 

C30  1.38070680 -0.70445615 -0.27115669 4.0000 

C31  0.08987365 -0.05523448 -0.12359970 4.0000 

C32 -1.08042408 -0.84065059 -0.38709751 4.0000 

C33  1.42225211 -2.06372998 -0.70456525 4.0000 

C34 -0.99470220 -2.15217025 -0.78049257 4.0000 

C35  0.27444397 -2.80169274 -0.96282613 4.0000 

C36 -1.98292970  2.46283937 -0.73994290 4.0000 

C37  5.70954343 -1.97385899  0.84822834 4.0000 

C38  4.46598592 -1.34065987  0.96592021 4.0000 

H1 6.41349977 -1.17710415 -2.39539212 1.0000 

H2 4.19975701 -0.05493090 -2.18016465 1.0000 

H3 6.12846608 -2.50962671  1.70433343 1.0000 

H4 3.91708296 -1.38280921  1.91095017 1.0000 

H5 2.62807434  9.93902260  2.95343279 1.0000 

H6 4.26516549  9.28971898  2.87417276 1.0000 
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H7 0.19194034  3.88281628  1.02550839 1.0000 

H8 4.49127859  3.99057781  1.39901649 1.0000 

H9 4.63457490  1.65505707  0.65780359 1.0000 

H10 -2.05963520 -0.37564493 -0.26143054 1.0000 

H11  2.40233397 -2.51976291 -0.84264945 1.0000 

H12 -1.91290193 -2.71962820 -0.95425238 1.0000 

H13 -3.62279442  2.94230210  2.75175763 1.0000 

H14 -3.70716809  3.49951199 -1.53194090 1.0000 

H15 -1.52048841  2.32932705 -1.72173332 1.0000 

H16 -1.56520807 -7.48471944 -3.64916851 1.0000 

H17 -0.11520692 -8.40699954 -3.25933469 1.0000 

H18 -2.45563139 -7.90233359 -1.29370508 1.0000 

H19 -1.01719820 -8.88685341 -0.94713756 1.0000 

H20 -1.43535529  1.77491302  2.55270116 1.0000 

H21  0.22461898  5.69281903  2.54705882 1.0000 

H22  0.71084877  8.22452922  3.03667339 1.0000 

H23  2.43156438 -4.76603000 -1.12420659 1.0000 

H24  1.86687821 -7.14575764 -2.06163658 1.0000 

H25  7.38304503 -2.41607731 -0.45445956 1.0000 

H26 -4.76471740  3.82340833  0.70771603 1.0000 

H27  2.56913193 10.11862264  0.42302480 1.0000 

H28  4.22191207  9.47248080  0.33840688 1.0000 

H29  3.92671302 11.04570553  1.11560578 1.0000 

H30 -2.17681196 -9.40959330 -2.19789618 1.0000 

end 

runtype startup 

scftype direct 

potential nonlocal be88 pd86 

grid fine 

multiplicity 1 

virt all 

charge 0 

maxcycles 1000 

econvergence 0.000001 

dconvergence 0.000001 

dmixing mdens 0.1 

diis new 7 

orbi 5d 

fsym scfocc excited 

alfa 108 

beta 108 

sym 1 

alfa 108 1 3 0.5 

beta 108 0 

end 

mulliken on 
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xray xas 

remthreshold  1.D-6 

end 

ctrl 

end 

A-SULFUR (5,4;5,4) 

A-SULFUR (5,4;5,4) 

A-CARBON (5,2;5,2) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-CARBON(+4) (3,3;3,3) 

A-HYDROGEN (3,1;3,1) 
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A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

A-HYDROGEN (3,1;3,1) 

O-SULFUR (73111/6111/1) 

O-SULFUR (73111/6111/1) 

O-CARBON iii_iglo 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 
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O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-CARBON(+4) (311/211) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 
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O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

O-HYDROGEN (41/1*) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

P-CARBON(+4) (5:6) 

X-DUMMY 

X-DUMMY 
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X-FIRST 

end 

/. 

/opt/StoBe/bin/StoBe.x <help.inp >& BHTC1xas.out 

mv fort.11 BHTC1xas.xas 

 

 

In order to compute the ground state and full core hole calculations, only those keywords 

shown in italics need to be modified to redefine the core hole.  In the case of the ground 

state, the entire set of excitation keywords are removed, and the system is allowed to 

populate by the aufbau principle. Note that the XAS spectrum itself is generated by the 

Slater transition file, with only the total energy is recorded from the other two 

calculations for calibration. 

 

b) Ground State 

 

These keywords are removed entirely: 

 

fsym scfocc excited 

alfa 108 

beta 108 

sym 1 

alfa 108 1 3 0.5 

beta 108 0 

end 

mulliken on 

xray xas 

remthreshold  1.D-6 

end 

  

Then they are simply replaced with: 

 

fsym aufbau 
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c) Full core hole 

 

A full core hole is added by increasing the total alpha occupation by one electron, and 

placing a core hole at the site of excitation.  

 

alfa 109 

beta 108 

sym 1 

alfa 109 1 3 0.0 

beta 108 0 

end 

 

d) Broadening 

 

In addition to calculating the XAS, broadening is often desired for the purpose of 

presentation.  Initially the output file simply contains oscillator strengths which may be 

broadened using Gaussian type broadening in an attempt to mimic the lineshape of the 

measurement.  Shown below is a typical broadening file for C1, which uses a broadening 

with a Gaussian of 0.6 eV FWHM up to 288 eV, with an additional broadening that 

increases linearly up to 7 eV FWHM at 300 eV.   

#!/bin/csh -f 

ln -s BHTC1xas.xas fort.1 

cat >help.inp <</. 

title 

BHT C1 1s Xray absorption spectrum 

print 

range 280 309.9 

points 300 

width 0.6 7 288 300 

xray xas 

total 1 

end 

/. 

/opt/StoBe/bin/xrayspec.x < help.inp > /home/paul/BHT/Out/BHTC1ver.out 

mv XrayT001.out /home/paul/BHT/Out/BHTC1xasB.out 

rm help.inp fort.* 


