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Abstract

JMAGE FEATURE EXTRACTIONBYMULTIRESOLUTION ANALYSIS WITH
WAVELET TRANSFORM

by Zhiqiang Li

This thesis is a study of the 2D-image signal feature extraction byMulti-Resolution
Analysis (MRA) with.Wavelet Transforms (WT).

The Wavelet. Transform is the most significant signal analysis tool developed. in last
decade and it is extensively used in several fields such as signal processing,' image
processing, and communication. This thesis is devoted to the development of a novel
feature extraction scheme for image analysis withWT. The goal is to utilize the merits of
WT in feature extraction for stereo image matching, given that the image features involved
are notwell pre-defined.

The concept of Multi-Resolution Analysis, which is inherited naturally in WT, is
employed in the decomposition of an image. The image properties at each resolution
level are represented by the scalars of a wavelet and its translations at that level; in tum
the feature space is formed by the wavelet at each decomposition level, precisely, by the
wavelet and its dilations.

A novel WT algorithm, the Anchored Wavelet Transform (AWT), for MRA is

introduced, and the usefulness of the new algorithm for feature extraction is
. demonstrated with examples. With the feature extraction scheme proposed, a stereo

image matching algorithm is coded which could be a general pre-process step in 3D­

object parameter estimation. Other usage could be found easily in image or texture

pattern classification, surface segmentation and object tracking in an image sequence.

n



Acknowledgments

I am honored to express my gratitude to Dr. Wood, my supervisor, for his invaluable

guidance, support, encouragement and financial assistance through all the phases of

graduate study and the preparation of this thesis.

Finally, I also would like to thank my family and numerous friends who have

supported me technically and spiritually. Without their help and encouragement, I would

not have been able to work out the difficulties I encountered and finish this thesis

successfully.
.

iii



Table ofContents

PERMISSION TO USE I

ABSTRACT ...............•.....................................................................................................11

ACKN'OWLEDGMENTS .....................................................................................•......DI

TABLE OF CONTENTS �•...........•............ IV

LIST OF TABLES VII

LIST OF FIGURES VIII

LIST OF ABBREVIATIONS .............................................................................•..........X

CHAPTER 1 INTRODUCTION ........................•.......................................................1

1.1 Feature Extraction inMachine/Computer Vision ; 1

1.2 Introduction to wage Feature Extraction ....................•...........................................6

1.3 Wavelet Transform can be used in Image Feature Extraction l0

1.4 Object ofThis Thesis 14

1.5 Organization ofThis Thesis 14

CHAPTER 2 LITERATURE REVIEW 16

2.1 Wavelet Analysis in wage Processing 16

2.1.1 Feature Extraction byWT 16

2.1.2 wage Registration � .....•........... 19

1V



2.1.3 Segmentation 19

2.2 Features from Wavelet MRA .............................................................•...................20

2.2.1 Coarse-to-Fine Strategy 20

2.2.2 Coarse-back-to-Fine: ByReconstruction 21

2.3 Special Topics on Feature Extraction byWT 22

2.3.1 Globalize the Local Features fromWT 22

2.3.2 Hardware implementation ofWT for feature extraction ..............•.................23

2.4 Algorithm Developed in This Thesis ..................................................•..................24

CHAPTER 3 MULTI-RESOLUTION ANALYSIS ANDWAVELET

TRAN'SFORM .........•........••...•........•...•.............••...•.....�.....•..........•....................•....••.••...26

3.1 Vector Approximation -Intuitive Introduction toMRA .............................•.........26

3.2MRA, Scaling Function andWavelet 31

3.2.1 Formal definition ofanMRA 31

3.2.2 Construction of the OrthogonalMRA from Scaling Function 34

3.2.3 Wavelet : 36

3.3 General WT Algorithm .. � 38

CHAPTER 4 FEATURE EXTRACTION BY ANCHORED WAVELET

TRAN'SFORM .................................•..........•........................................�......•...�.....•..•......41

4.1 A Close Look at the CommonWT Algorithm 42

4.2 AWT-Extension toWT Algorithm 48

4.3 Interpretation of the Features Extracted byAWT ; 55

v



CHAPTER 5 EXPERIMENTS OF AWT FEATURE EXTRACTION FOR

POINT TRA.CKING IN AN IMAGE SEQUENCE 59

5.1 2D AWT arid Used Wavelets 59

5.2 Examples ofApplyingWT andAWT on an Image 62

5.3 Algorithms for Selecting the Feature-Rich Points and Tracking Points 65

5.4 Experiments Result and Discussion n 67

CHAPTER 6 CONCLUSIONS ..............•.......� 78

:�

6.1 Summary ;.: � 78

6.2 Conclusions 79

6.3 Research Contributions � 80

6.4 Suggestions for FutureWork 80

REFERENCES 82

APPENDIX A: IMPLEMENTATION OF EXPERlMENTS 87

A.l Data description � 87

A.2 Algorithm implementations 88

A.2.1 User interface � 89

A.2.2 WT � 90

A.2.3 AWT 91·

A.2.4 PointTracking ; 92

A.3 Algorithm implementation summary 94

vi



List ofTables

TABLE 5.1 SCALING FUNCTION COEFFICIENTS •...•••.••..•..•.•.••••.•..••.•......••••••••••••••..••••••••••.••61

TABLE 5.2 SUMMARYOF THE MATCHING RESliLTUSING DAUBECHIES-4 WAVELET IN THE

AWT � 73

TABLE 5.3 SUMMARY OF THE MATCHING RESULT USINGHAARWAVELET IN THEAWT 74

TABLE 5.4 SUMMARY OFTHEMATCHING RESULT USING DAUBECHIES-6 WAVELET IN THE

AWT 74

/

vii



List ofFigures

FIGURE 3.1 A GEOMETRIC ANALOGY FOR FINDING THE BEST APPROXIMATING VECTOR TO X

IN THE VECTOR SPACE ...•••.••••..•.•••.••••.••.•••••••••..•.••••.•.••.....••.•••••.••.•.•••••••••••••.••••••••••••28

FIGURE4.1 WAVELETDECOMPOSmoN ••••••••••.•••.•••...••••••••......••.••••••••••.•••••••.•••••.••••••••••••42

FIGURE 4.2 ILLUSTRATION FOR DOWN-SAMPLING 44

FIGURE 4.3 RECONSTR.UCTION OF INmAL SAMPLES 47

FIGURE 4.4 RECONSTR.UCTION FROM INDIVIDUAL LEVEL 47

FIGURE 4.5 AWT ALGORITIIM ILLUSTRATION 54

FIGURE 4.6 FREQUENCY BANDS FORAWT ANALYSIS 57

FIGURE 5.1 Two LEVELS OFAWT ON 2D IMAGE 61

FIGURE 5.2 ORIGINAL IMAGE AND ONE LEVELWT RESULT 62

FIGURE 5.3 LEVEL 1 AWT RESULT 63

FIGURE 5.4 LEVEL 2 AWT RESULT 63

FIGURE 5.5 LEVEL 3 AWT RESULT ; 64

FIGURE 5.6 LEVEL 5 AWT RESULT ; 64

FIGURE 5.7 ORIGINAL IMAGE SEQUENCE 67

FIGURE 5.8 FEATURE-RICH POINTS TRACKING RESULT USING DAUBECHIES-4 WAVELET IN

THEAWT FEATURE EXTRACTION 71

FIGURE 5.9 MATCHING POINTS IN FRAME 1 TO FRAME 11 76

FIGURE A.lIMAGE FILE FORMAT ; 88

FIGURE A.2: THE DIALOG WINDOW 89

FIGUREA.3 FLOW CHART FORWT( ) FUNCTION � 91

Vlll



FIGURE A.4 FLow CHART FOR FUNCTION AWT( ••• ) ANDAWTCONV( .•. )� ••••••••••..•••••••..• 92

FIGUREA.S FLow CHART FOR POINl'TRACKING( ••• ) FUNCTION .........•••.•••••••.•••••••••.••••••••93

ix



List ofAbbreviations

2D Two Dimensional

3D Three Dimensional

ASIC Application-Specific Integrated Circuit

AWT AnchoredWavelet Transform

CCD Charge-Coupled Device

DFT Discrete Fourier Transform

. DWT Discrete Wavelet Transform

FT Fourier Transform

GLCM Gray-Level Co-occurrenceMatrix

HH Highpass and Highpass

HL Highpass and Lowpass

IR Inftared
.

JTC Joint Transform Correlator

LH Lowpass and Highpass

LL Lowpass and Lowpass

MRA Multiresolution Analysis

OCR Optical CharacterRecognition

x



SVD SingularValue Decomposition

UAV Unmanned Aerial Vehicle

VLSI Very Large Scale Integration

WFf WindowedFourier Transform

WP Wavelet Packet

WT Wavelet Transform

xi



Chapter 1 Introduction

Image feature extraction is an important step in many applications of

machine/computer vision. In this chapter, the applications and compositions of

machine/computer vision systems are briefly introduced first, to illustrate the basic

functionalities of image feature extraction in the system; then an overview of feature

extraction in image signal processing is made, and the feature extraction method with

Wavelet transform developed in this thesis work is introduced.

1.1 Feature Extraction in Machine/Computer Vision

During the last three decades, machine/computer vision has been an area of active

research and development Machines with vision and computing capabilities offer viable

solutions to a wide range of important practical tasks, such as controlling, inspecting,

measuring, grading, sorting, guiding, counting and identifying.

The reason for this wide-spread contribution ofmachine/computer vision to a varietyof
.

industries is that optical sensing and digital data processing provides a way to equip

machines to substitute for the human in many situations where human beings cannot work

quickly and safely, cannot gain physical access, cannot concentrate for long periods, or are

simply too unreliable or expensive to employ on a regular basis.' For example, mobile

robots have been recognized as a good substitution for human beings in a wide variety of

constrained environments such as walking under the deep sea, working underground, and

repairing the space station. The vision systems formobile robots are used to help recognize
.
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and track goal objects or locations, plan paths to the goal, avoid obstacles along the chosen

path, compute motion parameters, etc. Another example of machine/computer vision

systems adopted by the industry is to automate highway toll collection. The important
.

technology that enables this process is the automatic recognizing and reading of the license

plate number of a car passing through a toll gate with camera(s). This automatic process

eliminates the manual intervention and traffic congestion at the gate and saves people from

tedious tasks. Beside the two examples mentioned above, there are still countless

machine/computer vision applications that improve our life and work; they allow us to

':\

convert the paper text to digital text without typing with Optical Character Recognition

(OCR) program installed in many computers, they allow automated industrial inspection by

camera for machined parts in factories to screen out defective units, and they allow motion

perception in video streams from surveillance system which bring more chance of fast

response from guards, etc.

In many of these applications ofmachine/computer vision, image feature extraction is

an essential part of the vision process. A feature is the quantified description of the

primitives in the image, and feature extraction is used to generate the description from the

image signal. InVirginio Cantoni (1994) [1] edited proceedings, with the theme of"Human

and Machine Vision: Analogies and Divergences", vision functionalities are categorized

into seven groups when comparing human andmachine vision:

1) Retina,

2) Visual Primitives,

3) Camera and Eye Control System,

4) Motion Perception and Interpretation,
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5) Visual Representation,

6) Visual Reasoning,

7) Imagination and Learning.

In the following paragraphs, considering the seven sections briefly, it is clear that the

quantified description for objects in a vision target is explicitly or implicitly used in almost

every section ofthe vision process.

The retina consists of 120 million photoreceptors with a decreasing distribution density

going from the fovea (close to the visual axis) towards the periphery, and has two

functions: collect light signals and control the focus of the collection on the determined

location. The image sensors (CCD device, sonic sensor, variety of films, etc.) in

Machine/Computer Vision system act as the retina in collecting the image signal (when the

signal is analog signal, it has to be converted to digital when the signal processing units are

digital processors). To direct the image sensor to switch "attention" to relevant area of the

scene, more intelligent parts must be involved to define and justify the properties associated

with the area in the scene that will validate the area as relevant.

In the Visual Primitives section, the primitives are detected from the visual signals. The

visual cortex examines the information from the retina for various parameters of the visual

signal, such as orientation, color and velocity. The interacting cells of visual cortex detect

fields of various sizes, selectively sensitive to the orientation ofprimitives such as lines or

edges or even surfaces with texture. Correspondingly, much work has been done in

machine/computer vision to detect those primitives by comparing their characteristics or

features including photometric, geometric, statistic, etc., measures, against predefined

criteria or ones generated by higher level modules. The characteristics and features must all

3



be quantified descriptions for the target primitives. The criteria must be quantified rules for

detection, and themachine or computermust be able to understand them.

The eye control system is a sophisticated one composed of different control agents that

will stabilize the image of the environment on the retina, visually scan a wide field ofview,

set and reset gaze orientation quickly, and pursue the selected targets. This control system

has an hierarchical structure where there are different activity subsystems interacting with

each other to fulfill the given tasks. For example, the target tracking control is

accomplished through the combination ofmovements of body, head and eyes. Similarly,

the camera control system contains control loops to do the diffused scanning, attention

focusing, target tracking, trajectory detection and collision prediction. This system forms

the visual front-end, guided by a high level reasoning system which defines and selects

windowed fields or objects to observe.

Motion is one of the dominant primitives in that the visual perception in humans can

.

recover the spatial 3D structure from a dynamic view of the environment which is superior

to that obtained from the static primitives from static frames of view. Motion Perception

and Interpretation can be achieved by Machine/Computer Vision system in two ways. One

way is that a set of recognized objects are tracked along the frame sequence to get the

correspondence scheme, and then the motion parameters are estimated by the object

displacements in different frames. In another way, the 2D field of instantaneous pixel

velocities, called the optical flow, is calculated without aligning on any corresponding

objects.

Visual Representation, Visual Reasoning, and Imagination and Learning are at high

levels of the vision system. Visual Representation is about how to remember what has been
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seen and about the formalisms of representation of visual information for reasoning and

learning; Visual Reasoning is about how to understand what has been seen based on

represented visual information, taught knowledge and learned experience; Imagination and

Learning is about how to use the understood visual information to construct a new format

for visual information representation or new logic for reasoning. Correspondingly, in these

levels, a machine or computer has to organize the descriptions of the primitives to form an

internal view ofthe world, based on which a spatial layoutwill be constructed for relational

.
reasoning. After reasoning, the results can be used bymachine control systems to command

the action of related parts of the machine, including the camera control sub-system. The

artificial reasoning systems are used to find inferences and relations between objects

(constructed by.representation, could be refined by reasoning) according to predefined

logic or one built from learning.

From the above outline of vision systems architecture, it is clear that the detection of

primitives is the fundamental operation inmachine/computer vision. It is the only place that

the raw image signal is processed, and the higher-level process will rely on the result of the

detection ofprimitives. Feature extraction is used to generate the quantified description to

identify the primitives, therefore feature extraction is the essential part of primitive

detection and machine/computer vision systems. Two factors have to be considered in

selecting or constructing feature extraction methods for vision systems. One is the

performance of feature extraction. Because feature extraction happens in the very

beginning of the vision process pipeline and it deals with high-density raw image data, it .

has an important impact on the performance of the whole vision system. Another one is the

flexibility of feature extraction. It should be flexible enough to accommodate to different
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image resolutions resulting from the camera control of scanning and gazing. For example, a

mobile robot on the way to a work site at high speed may get low quality images input to

the vision system, and a rough description to the objects in the images may be enough for it

to avoid collision. On the other hand, when it arrives at the work site to pick up a target

object, more detailed description to the objects in the imagemay be needed.

1.2 Introduction to Image Feature Extraction

In this thesis work, the term 'feature' refers to quantified information describing and

identifying the visual primitive in a vision systems framework described above; 'feature

extraction' is concerned with extracting those quantified pieces of information directly

from image signals to feed higher level function modules to make intelligent decisions. In

Machine/Computer Vision, visual primitives defined by so called features are the smallest

image subsets with specific geometrical and/or structure properties, so the feature is the

basic level of description, in a hierarchical description of patterns in the image with

increasing complexity.

In terms of pattern recognition, a pattern (primitive is a pattern, the basic pattern in

image) is characterized by a set of features and a feature vector is assumed to represent the

pattern to be recognized. The elements of a feature vector should be able to characterize a

pattern so that it can be attributed to a specific class.

Because feature extraction is used to build the feature vector representing an image

primitive, many extraction methods are devised to calculate the parameters of points, line

segments, and contours, and treat these parameters as the feature ofprimitives. Sonka et al.

[34] summarized the edge and contour feature extraction and optical flow analysis methods
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developed in the past. The steps normally involved in these methods are image pre-

processing and primitive description. The pre-processing is done to detect image

primitives, and the primitive description is done to find characteristics of primitives to be

used in higher-level processes in the vision system.

Edge is a very important primitive used in many vision applications. Edges represent

small areas of high local contrast in correspondence with discontinuities in intensity.

Therefore the pre-processing for edge feature extraction is to detect these discontinuities,

which is called edge detection. The calculus is used to describe the change of continuous

intensity functions using derivatives; an image function depends on two variables of the

coordinates in image plane surface, and so edge-detecting operators describing edges are

expressed by partial derivatives. The operators, such as the Roberts operator, the Laplace

operator, and the Prewitt operator, approximate derivatives of image functions using

differences computed from one or more convolution masks. For example, the Roberts

[1 0] [0 1] ..
operator consists of two masks: and . When this operator convolves

o -1· -1 0

with intensities of four pixels in a 2x2 window in an image, the edge could be found with

large. absolute results of the convolution. The reason is the operator calculates the intensity

differences between adjacent pixels. The actual operators can be designed to be very

complex with noise reduction functions and using second derivatives. However, no matter

how complex the detector is, the detected edge is far from an ideal edge because of noise

and is sometimes incomplete and degraded. Therefore symbolic data combined with

detection results are used to represent the edge. The symbol may contain the degree of

contrast, position and orientation of the edge segments from the detector. All these pieces
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of information including symbols and detection result may assist the next stage process to

determine what should be the complete and accurate edge.

Image segmentation is another primitive detection step leading to determining the

contour of a region in the image; its main goal is to divide an image into parts that have a

strong correlation with objects or areas of the real world contained in the image. The

methods include edge-based, thresholding-based, region-based and matching-based
.

segmentation. Edge based segmentation relies on edges found in an image by edge

detecting operators and on strategies leading to link edge pieces together to form a

reasonable contour construction. The pixel intensity thresholding method is used to find

thresholds through intensity histogram analysis on the target image and to compare each

pixel intensity to thresholds to determine to which region the pixel belongs, given that

many image regions are characterized by constant intensity and thresholds can be

established as criteria to separate these regions. Thresholding is computationally

inexpensive and fast; although it is the oldest segmentationmethod, it is still widely used in

simple applications. The region-based segmentation techniques are generally better in noisy

images, where borders are extremely difficult to detect. Homogeneity is an important

property of regions and is used as the main criterion in segmentation, and the basic idea is

to divide an image into zones of maximum homogeneity. The simplest homogeneity

criterion uses an average intensity of the region. The segmentation algorithm is used to

grow the region of interest from an individual pixel to relatively larger regions by gradually

merging and splitting the region repeatedly based on hoinogeneity calculated after each

such operation. Matching is another basic approach to segmentation that is used to locate

known objects in an image, to search for specific patterns. Matching is often' based on
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directly comparing intensity properties of image sub-regions, though some other methods

such as derived features of sub-primitives (smaller primitives) and higher-level image

presentations are also used.

After primitives are detected, the identifications or the characteristics, called features,

of the found primitives will be extracted to complete the image feature extraction. The

direct geometric properties, such as location in the. image and length of the line segments,

can be taken as features. Anyhow, more efforts are normally necessary to extract more

sophisticated primitive characteristics as features, such. as curvature measurement

parameters, signatures (contour distance function coefficients), chord length and angle, etc.

Mathematical transforms, such as Fourier Transforms, Hough transforms, B-spline

representation, etc., can also be used to process primitives, and the coefficients of the

transform result are the extracted features. For example, if z{t) is the approximate function

to a line segment (such as an edge) in an image, the Fourier representation of z{t) is

. z(t) =L T"eiDt , then T" series is an eligible representation of the original line segment.
n

Optical flow reflects the image changes due to motion during a time interval dt, and

the optical flow field is the velocity field that represents the three-dimensional motion of

points across a series of two-dimensional images. Pre-processing is the optical flow

computation based on two assumptions: the intensity of any point in the series is constant

over time and nearby points move in a similar manner. After the optical flow computation,

the velocity field is established, from which the points of interest can be found, such as

those most active ones or those in a group with similar activities. Then the mutual velocity
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between observer and interested point, the trend of point and depth information can be

extracted to describe the point.

All the feature extraction methods described above are fairly mature technologies for

which a researcher in this area can easily find algorithms or even program libraries to

implement them for the machine/computer vision task at hand. However, these methods are

not flexible because they can only extract. primitive features that stick to the default

resolution of the image to be processed. In other word, these methods cannot be used for

multi-resolution feature extraction, since they are not flexible and sometimes are not

reliable. For example, when the Roberts operat�r is used to detect an edge by correlating

the 2x2 adjacent pixel intensities, if the image is with high resolution, the operatormay find

two edges from a real edge of a box, because that edge may be one pixel wide in low

resolution and three pixels wide in high resolution. So, in the past few years, some

researchers began using Wavelet Transforms, which is a multi-resolution analysis method,

to extract features in image signals. In the next section, the usage ofWavelet Transform in

feature extraction will be introduced. In Chapter 2, some efforts in this particular area will

be reviewed. A new feature extraction method implementing a novel Anchored.Wavelet

Transform, which is fast because of its parallel computation and flexible because of its

multi-resolution solution, will be introduced in the following chapters.

1.3 Wavelet Transform can be used in Image Feature Extraction

As mentioned before, image feature extraction is an important step in many research

and applications ofmachine/computer vision. These applications use feature extraction for

object classification/recognition, image registration and presentation, and for image

10



compression and communication. Further, feature extraction is a critical step in processing

image signals because it is in the very beginning of the image processing hierarchy and the

higher-level process will rely on the result from it. However, it is difficult to find reliable

and robust features. According to William S. Meisel (1972) [32], one has to consider the

following four general requirements in allocating the feature space:

• LowDimensionality

The features defining the pattern space must be relatively few in number. This is

necessary tomake the algorithms bothmeaningful and computationally feasible.

• Sufficient Information

The features used must retain sufficient information to allow the desired operation in

subsequent processing. This is application dependent.

• Geometrical Consistency

The features must make different patterns distinguishable. On the other hand,

differences that are irrelevant to the quality to be recognized need not be reflected in the

feature space.

• Consistency ofFeatures Throughout the Samples

A feature is intended to allow comparison of one unique aspect of different patterns,

andmust be suited to this purpose.

From the following paragraphs it is shown that the basis wavelet functions for Multi­

Resolution Analysis satisfy all the requirements to form the feature space in image analysis.

11



The main concept in WT analysis is the representation of a function as a superposition

ofwavelet basis functions. From a single finite duration mother wavelet, V/(x) , a family of

orthonormal basis functions can be obtained through dilations and translations.

1.1

Where m and n are integers. By variation of the integer n, the translation process

transforms the mother function into a separate vector space with distinctive spatial

orientation. Similarly, by changing m, the dilation process amounts to a transformation of

the original mother function into another vector space possessing a different resolution.

Naming the vector spaces by Vm 's with m as resolution-level; we have the multi-resolution

representations ofthe wavelet decomposition:

1.2

and

1.3

A function then can be decomposed as:

1.4
n n

where ... , {cm,n}' {cm+1,n} ..• are the wavelet coefficient sets at each resolution level.

The requirements for feature extraction are satisfied when we use these coefficients as

the features ofthe image.

Since the basis functions are orthonormal, any set of coefficients selected as a feature

would help to discriminate the image patterns, so 'Geometrical Consistency' is sustained.

12



The basis functions are dilated and/or translated from the single mother wavelet

function, .so it is very safe to say 'Consistency of Features throughout the Samples' is

satisfied for selected features.

Wavelet decomposition reduces the resolution as well as the size of the image, so the

dimensionality is reduced. Furthermore, the wavelet transform is localized, so the features

could be localized. This means that when we analyze an image property at a particular

position, we can use only a fewWT coefficients to represent the property concerned. 'Low

Dimensionality' can be the case ifwe useWT properly as a feature extraction tool.

As for 'Sufficient Information', because we can decompose or reconstruct an image to

any resolution level that does not exceed the original level, any image analysis application

can find the sufficient level ofWT thatwill give sufficient information.

For image signals with sharp edges and other discontinuities, one problem with Fourier

transforms and Fourier synthesis is that in order to accommodate a discontinuity, high

frequency terms appear and are not localized, but are added everywhere. WT offers the .

advantage of viewing the images with global as well as with local perspectives in different

scales. Global effects such as illumination and the coarse shapes of the objects can be

viewed more clearly in lower scales, while local effects such as edges appear only at higher

resolutions. So wavelets and wavelet transforms are a natural advance from classic Fourier

techniques in image processing, filtering and reconstruction, and they hold promise in

shape and light interpretation.

13



1.4 Object of This Thesis

As described in Section 1.3, wavelet decomposition is a feasible tool to extract features

for image analysis. This thesis seeks to develop a generalized scheme to incorporate the

WT into the image property interpretation at each pixel location. The goal of the scheme is

to develop a novelWT algorithm for this subject.

There has already been a great amount of effort devoted into this area by researchers

with different interests. While other WT applications reduce the resolution of the original

signal when undertaking the wavelet decomposition, this thesis searches for an algorithm,

the Anchored Wavelet Transform (AWT), for wavelet decomposition that will keep the

decomposition resolution unchanged for a particular region of interest. Each pixel in the

image would have wavelet representations in any desired decomposition level in this

wavelet algorithm. Other wavelet algorithms.will inevitably shift the focus position by

(2m -1,2m -1) after m levels of decomposition, which makes it very difficult to introduce

contextual information into the analysis, while AWT should. be a non-shift wavelet

decomposition algorithm which will keep focus on the point of interest. The pixel

contextual informationwould be readily available right in theWT coefficient set.

An image feature extraction method is to be designed based on this new algorithm,

which will be implemented to track dominant features in stereo images or in image

sequences.

1.5 Organization ofThis Thesis

Research reports and applications on feature extraction by wavelet transform methods

in image analysis are discussed in Chapter Two. Chapter Three briefly describes the theory

14



of Multi-Resolution Analysis and Wavelet Transforms. Chapter Four introduces the

concept ofAnchored Wavelet Transform based on the theory introduced in Chapter Three.

Chapter Five presents examples ofAWT in feature extraction. A points-tracking approach

is also presented in this chapter. Chapter Six gives the conclusion of this research and

suggestions for future work in this area.
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Chapter 2 Literature Review

There are two main directions in modern wavelet research: one is to find a set of basis

functions and transforms that will give an informative, efficient, and useful description ofa

function or signal and provide an efficient features localization in both spatial and

frequency or scale domains. Another one is multiresolution analysis where the

decomposition of a signal is in terms of the resolution of details. This chapter gives an

overview ofwavelet applications in feature extraction for image processing, which covers

the developments in both directions. Section 2.1 introduces the wavelet analysis method

involved in a variety of image processing areas, including pattern classification/recognition,

image indexing, image registration and segmentation. Section 2.2 focuses on the existing

research achievements of WT Multiresolution Analysis in image feature extraction. WT

MRA is also the emphasis of this thesis work in the following chapters. Section 2.3 briefly

introduces the developments ofWT in hardware implementation. In Section 2.4, the core

concept of this thesiswork is presented.

2.1 Wavelet Analysis in Image Processing

2.1.1 Feature Extraction byWT

Compared to other classical signalprocessing method, Such as Fourier representation,

Windowed Fourier Transform (WFf), etc., WT is superior in image feature extraction.

Different feature extraction methods were studied by Huynh et al. (1998) [22] for the

classification of underwater mammals. Support for the usefulness of the wavelet
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representation is provided by comparison with the performance of a Windowed Fourier

Transform (WFT) and Fourier representation. The result shows that, although WFT

representatien is much more appropriate for the signal used by the authors, attributed as a

cocktail sound, including biological sounds, mixed With environmental sound and man­

made sounds, than a Fourier representation, the wavelet representation has amost profound

effect on the classification. Tian et al. (1999) [3] studied and benchmarked the performance

of Singular Value Decomposition (SVD), Wavelet Packet (WP) and Gray-Level Co­

occurrence Matrix (GLCM) based features for a cloud classification system. The SVD and

WP achieved similar performance, while GLCM fell slightly behind.

Lehr and Lii (1996) [18] tried to unify the process of noise reduction, segmentation,

. feature extraction and classification to develop a general pattern recognition technique

using only WT. The research result shows that the WT tec�que has the advantage. of

being computationally efficient even though it might not be optimal.

Beside the most widespread application of the wavelet transform in data compression,

wavelet analysis techniques in feature extraction is another important area that has been

extensively researched for signal and image processing because of its possible advantage

over other feature extraction methods.

Solka (1998) [16] detailed the use of low-level features in a particular pattern detection

problem, to identify the man-made regions in Unmanned Aerial Vehicle (UAV) imagery.

WT was used to extract region boundaries. Deschenes et al. (1998) [301 presented an

approach for recognizing 3D vehicles from the 2D IR images at different angles. For the

classification, edge detection was used to eliminate the misleading information related to

the temperature variations due to vehicle operation. Then edge tracking produced the. 1
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pixel thick closed contour for each image. The invariant Fourier descriptor vectors were

used to describe the contour, and were the inputs to a neural network classifier. The

emphasis of the paper is put mainly on the wavelet edge detection which is based on the

extraction of local maxima of the wavelet decompositions. Fernandez and Huntsberger

(1998) [10] produced a multiresolution edge representation also based on local maxima of

the wavelet transform to detect polygons.

Espinal et al, (1998) [9] introduced a novel texture metric that can be used for texture

classification, image segmentation or target recognition based on the fractal dimension and

the 2D WT. The texture metric is called the fractal signature of the texture, which is the

coarseness change in measured area. The authors used either 16x16 or 32x32 windows to

screen through the image, and get the first 3 levels ofWT decomposition to calculate 9

signatures for the section under the window. The algorithm gives better segmentation and

computational efficiency compared to those ofGabor filters.

Mammography is the most reliable method for the early detection for breast cancer.

The problem is that the number of mammograms produced and then examined by the

radiologists is increasing dramatically. Automaticcomputer pre-screening programs are a

most attractive solution to the problem. Chen and Lee (1997) [6] and Yu and Guan (1999)

[29] both introduced WT feature. extraction methods to detect the clustered

microca1cifications in digitized mammograms. Strickland and Zoucha (1998) [27]

developed a similar detection method by subband decomposition.

There is growing interest in applying wavelet features for image indexing as well. Kuo

and Liang (1997) [17] introduced a wavelet-based image indexing system for image

storage and retrieval over the network. Wavelet domain features used include subband
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· significance, decomposition structure, luminance and chrominance histograms, and the

significancemap of the lowest frequency channel.

2.1.2 Image Registration

In many image analysis applications, 'similar' images are compared with one another

to detect certain properties of the involved objects. To accomplish this, a proper alignment

of the images is required, that is, the transformation to relate pointsof one image to

corresponding points of another image must be found based on some similarity

measurement.

Li and Zhou (1996) [14] presented a wavelet-based point feature extraction algorithm

to select distinct and consistent landmark features across images to register visual and IR

imagery. Because visual and IR data have very different grayscale characteristics, the edge­

based point feature extraction was then used to boost landmark-detection performance. The

algorithm employs a wavelet-based edge detector to locate contours and select Point

features from the contour based on local statistical information of intensity.

Olive (1995) [15] and Pan (1996) [13] also presented algorithms for image matching

usingwavelet analysis.

2.1.3 Segmentation

Segmentation is an important low-level task for image processing, which is to group

pixels in an image according to some arbitrary criterion. Rao and Prasad (1995) [24]

proposed an image segmentation algorithm based on pixel intensity histograms in different

resolution through wavelet analysis. Chen and Lee (1997) [6] employed the multiresolution

wavelet and Gaussian Markov Random Field feature extraction scheme as pre-processing

before fuzzy-c-means clustering operation..
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Most techniques mentioned above tend to focus on a particular level of wavelet

decomposition, and to use partial functionality of the WT, either for noise reduction, edge

detection, or automatic correlation.

A greater advantage of WT lies in MRA, which addresses the relation between

decomposition levels. The full function of WT could be applied in. extracting image

properties through adequately designed WT MRA. In next section some MRA

presentationswill be reviewed again inmore detail.

2.2 Features fromWavelet MRA

The last three or four years have seen an explosion of MRA techniques in image

processing research. Strickland and Zoucha (1998) [27], Hajj et al. (1996) [12] and Zhang

et al. (1999) [33] employed filter. banks in subband decomposition MRA. WT MRA
.

inherits all filter bankMRA benefits and offers an efficient framework for extracting object

or primitive features from images at various scales, which naturally incorporates most

advantages ofwavelet analysis.

2.2.1 Coarse-to-Fine Strategy

Olive (1995) [15] developed a framework that automatically delivers such a

transformation for each pair of 'similar' images. This method uses the multiresolution

structure given by the 2D wavelet transform. The method described applies the techniques

derived from a block-matching algorithm, which is to seek minimum distance among

nearby blocks in the image pair. The distance is measured by the difference ofWT details

between the image pair. The accomplishment of this presentation is to measure

displacement over a large range in low resolution with low accuracy, whilst to measure
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displacements over a short range in high resolution with higher accuracy. This coarse-to­

fine strategy effectively avoids the risk ofgetting trapped into a localminimum inmatching

the 'similar' blocks between images. Pan (1996) [13] presented a complete algorithm for

top-down image matching using a complex wavelet pyramid to solve the general stereo

image matching problem. The algorithm iterates the propagation from the match result at

coarser level to finer level by interpolation. Both image matching works by Olive and Pan

use the multiresolution approach to guide the similarity search from coarse to fine. To

reflect the coarser level result into the finer level, interpolation has to be used in both cases

because of the decimation in the WT decomposition process. The interpolation can be a

great computational burden in the match iteration.

Rao and Prasad (1995) [24] proposed an image segmentation scheme based on

multiresolution, and successive approximations of the image histogram.. The algorithm

involves the selection of a threshold from the image histogram of the statistical distribution

of intensity levels in the image. The paper deals with a multiresolution technique for

analyzing histogram data rather than image data itself. ByWT MRA, the algorithm begins

with a coarse, initial segmentation of the image, which is obtained by selecting thresholds

from a coarse sampling of a low-pass filtered image histogram. This segmentation is

refined by selecting thresholds from increasingly better approximations to the histogram, .

with finer resolution.

2.2.2 Coarse-back-to-Fine: By Reconstruction

Yu et al. (1998) [29] presented an image processing procedure for the automatic

detection of clustered microcalcifications in digitized mammograms. The proposed method

uses wavelet features and gray level statistical features to identify potential
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microcalcification pixels before a formal analysis procedure is carried out based on

structure features describing individual microcalcifications. The wavelet features are

generated by a four-level wavelet decomposition and reconstruction operation. The

reconstruction is done for each level by setting the transform values of other levels to zero.
.

After the operation, there are 4 same size images representing different frequency band

distributions of the original image. The gray level statistical features, median contrast and

normalized gray level value at each pixel, are .also used. The four filter-banded image .

values at each pixel and two statistical features ofeach pixel form the feature space. A feed

. forward neural network is used to produce the likelihood map of calcification

corresponding to the originalmammogram.

The wavelet decomposition and reconstruction operation utilizing the WT result is a

new and effective pixel-feature-extraction scheme proposed by the paper.

2.3 Special Topics on Feature Extraction byWT

Even though the two topics introduced in this section are not closely related with the

development of this thesis, they are two important branches in which the WT feature

extraction methodwill develop in the future.

2.3.1 Globalize the Local Features fromWT

With the wavelet analysis method, the features can be locally detected. On the other

hand, to use these features globally, some special techniqueswill be needed.

Boles and Boashash (1998) [31] presented a new polar coordinate representation for

wavelet analysis to globalize the features for recognizing humans from images of the iris of

the eyes. Sakalli and Yan (1998) [20] presented a method for feature-based coding of
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human facial images. The proposed face-coding scheme is cascaded in three stages: face

content objects location, wavelet decomposition and vector quantization. The initial stage

focuses on analyzing the image content in terms of objects, including eyes, nose, mouth,

and their spatial relations. This paper gives an exceptional point of view on utilizing

wavelet decomposition in image processing. The object localization in the first stage of the

proposed scheme compensates for the inevitable weakness of wavelet analysis on the

image signal. The wavelet analysis can only capture local features of the image by itself.

2.3.2 Hardware implementation ofWT for feature extraction

There are an increasing number of implementations of wavelet feature filters using

optical systems. Both Tripathi and Singh (1998) [25] and Soon et al. (1998) [4]

demonstrated the use of the Joint Transform Correlator (JTC) by wavelet filters to

recognize pre-defined targets. In the VLSI design ofWT, several architectures have been

proposed for the 20 discrete wavelet transform. The presentation from Yu and Chen (1998)

[7] introduced a VLSI implementation for separable two-dimensional Discrete Wavelet

Transform (DWT) decomposition. The performance of the proposed architecture can reach

N x N clock cycles to compute an N x N 20 OWT. With filter length of L, the resource

requirement is only of2*N*L-2*N, 3Lmultipliers and 3(L-l) adders.

Obviously, more hardware designs forWT will be expected in the future because it will

facilitate the real time application ofwavelet analysis.

From the literature survey we can see that wavelet transforms have been widely used to

extract features for image analysis. Some research has been done for MRA by wavelet

transform. However, only those methods with indirect reference to multilayer information

were found in the literature, such as using interpolation functions and wavelet

23



reconstruction methods or employing coarse-to-fine or coarse-back-to-fine strategies. The

more effective feature representation by direct combination of number of levels of WT

information has not been studied. There is a need to continue and extend the current

research on WT MRA in order to extract and present multi-layer features efficiently for

image processing.

2.4 Algorithm Developed in This Thesis

In this thesis the method of feature extraction by wavelet multiresolution analysis is

studied. The goal is to develop a new algorithm to form the feature space by combining the

wavelet decompositions in different levels or resolutions. The new algorithm will be

implemented for stereo image matching, given that the image features involved are notwell
.

pre-defined.

Wavelet multiresolution analysis is the subband decomposition that offers the

advantage of viewing the image with global as well as with local perspectives in different

scales. Global effects Such as illumination and the. coarse shapes of the objects can be

viewedmore clearly in lower scales, while local effects appear at higher resolutions.

By wavelet transform, the algorithm developed here will extract features for each point

in the 2D image. Each feature is the correlation result between a surrounding window of

the point and a dilation of a base wavelet. In lower scales, the windows and the dilation for

base wavelet are bigger; in higher scales, the windows and the dilation for base wavelet are

smaller. The combination of the wavelet correlation results from different scales;

representing the coarse-to-fine looking of the interested point, forms the feature space. The

new algorithm, AWT, will generate wavelet analysis results from multiple resolution layer
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in only one pass of decomposition, where interpolation or wavelet reconstruction are not

necessary any more. In tum, the feature extraction method using AWT will inherit all the

advantages of the coarse-to-fine and coarse-back-to-fine MRA methods, but with the form

of direct merging of different levels of information. The feature space formed will include

dimensions or measures from different resolutions of the original image, which will be

readily used by any pattern recognition/classification, image segmentation or registration

application.
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Chapter 3 Multi-ResolutionAnalysis andWavelet Transform

This chapter presents the background theory ofMultiresolution Analysis and Wavelet

Transform, onwhich the feature extraction algorithm developed in this thesis is based.

Because both the mathematics and the practical introduction to wavelets are best served

by using the concept of resolution that is employed to define the effects of changing scale

in signal details, the presentation here goes fromMRA toWT.

This chapter thus starts with an intuitive interpretation of the MRA· by sequential

approximation of a vector, which gives a clear view of the process of MRA. Then the

conditions and formulations for approximation of functions in terms of the MRA used in

the thesis are deduced and formalized in detail. The scaling function, wavelet and general

algorithm inWT are finally introduced.

3.1 Vector Approximation - Intuitive Introduction toMRA

Consider the N-dimensional, real-valued vector space in which the vector can be

expressed in the form of x = [Xl' X2 , ... , XN]. This vector space is N-dimensional linear so

that there exist N linearly independent (not necessarily orthogonal) basis vectors

81,81,...,8N , and any vector x in the space can be represented by a linear combination of

these basis vectors. In other words, there is a unique set of scalars ai' a1 , ..., aN so that

x = al81 +a182 + ... +aN8N • Let us name this N-dimentional vector space VN'
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To approximate vectors in this N-dimensional space by vectors in a subspace with one

lower dimension, onlyN-l of the N basis vectors, say at, a1 , ... , aN_I' are used to generate

all linear combinations. The set of all such linear combinations is also a vector space with

the dimension of N-l and every vector in it also belongs to VN. This vector space of

dimension N-l is thus one of the vector subspaces of VN' and can be written as VN-I • By

continuing to drop one basis vector at each step, sub spaces VN-2 , ••• , VI with dimensionN-

2, ... ,1 can be similarly constructed respectively. The subspace VI only has the single

vector al as its basis. These vector spaces, VN,VN_P •• 'VI' form a nested sequence of

vector space and subspaces,

3.1

In case a vector x in VN is going to be approximated by a vector in VN-t' the best

approximation in the sense ofminimum mean-squared error ismade by choosing the vector .

(say xN_I ) in VN-l forwhich the length ofthe error vector

3.2

is minimized. The approximation vector xN-t can thus be obtained by solving equations for

eN_1 in

3.3

Where k = 1,2, ... ,N-1. In a geometric analogy, XN_I is the vector obtainedby dropping a

. perpendicular base vector from x to VN-I as illustrated in Figure 3.1.
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. Figure 3.1 A geometric analogyforfinding the best approximating vector to x in the

vector space .

The vector xN-t is thus called the orthogonal projection of x on VN_I • The error vector

eN-I is orthogonal to every vector in VN-I' including the basis vector of VN-I. By

continuing the process ofprojecting xN-I on VN-2 to yield xN-2' and so on, throughout the

entire sequence of subspaces, a sequence of othogonal projections of x in the subspaces

VN-t' VN-2' ••• ' Vt is obtained. The projections are XN_I' XN-2'••• , xt repectively. Note that

an approximating vector Xi is the orthogonal projection of not only Xi+1 but also of the

3.4

for k=l, ... ,N-l, denote the error between the projections on successive subspaces. The sub­

sequential projections from x are approximations to the original vector and the quality of

these approximations either stay the same or get worse going from approximation vector

XN_I to XI. Another way of looking at this sequential approximation is that the subspace

. VN-I contains the finest approximations to vectors in VN whereas VI contains the coarsest

approximations.
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The error vector eN-I can be interpreted as the amount of "detail" of x that is lost in

projecting to its approximation xN-I because of

x - eN-I = XN_I 3.5

The detail vector eN_I belongs to a vector subspace of VN' and all vectors in this subspace

are orthogonal to VN-I • Let us call this vector subspace WN-I. The dimension ofWN-I is

one in the current situation, and VN_I and WN-I are orthogonal to each other. Furthermore,

since any vector in VN can be expressed as the combination of a vector in VN-I plus a

vector in WN-I' subspaces of VN-I and WN-I are the orthogonal complements of each

other in VN. Similar relations can be deduced between VN-2 and WN-2' and so on. In

general, the error vector between any successive levels can be seen as the detail that is lost

in approximatirig a vector in a finer level with a vector in a coarser level. On the other

hand, the error vector can be seen as the detail that can be added to the vector

approximation in a coarser level to make up the vector being approximated in the finer

level as well.

The vectors eN-I ,eN-2 , ••• ,el .x, form an orthogonal vector set, that is, the inner

product of any pair of these vectors is zero. They come from the one-dimensional

subspaces WN-I ,
WN-2 , ••• ,WI and VI respectively. Moreover,

x = eN-I + eN-2 + ... + el + Xl • 3.6

Thus the original vector can be reconstructed from the coarsest approximation vector

Xl from VI and the vectors from the various detail levels. Each of these detail vectors is an
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orthogonal projection of x on the corresponding one-dimensional subspace Wi where i =

1, ... ,N-l. Then the vector space VN is said to be the direct sum of these subspaces

WN-1'WN-2'···'W1 and VI'which is written as:

3.7

or in another form as:

From the development shown above, it is also clear that any vector in Wk, including

basis vectors of Wk, and any vector in Vk, including basis vectors of Vk can be expressed

as a linear combination ofbasis vectors of Vk+1 :

3.9

3.10

where k=N-l, ...,I, �,a2,... ,ak+l and PI,P2,,,.,Pk+l are unique scalars sets.

The nesting of vector spaces represented by Formula 3.1, the act of breaking down a

vector into an hierarchy of approximations by Equations 3.8 and 3.9, and the relations

between details and approximations expressed be Equation 3.9 and 3.10, form the core of

theMRA used in this thesis.

It is attractive to claim the details filtered out from MRA as features of the vector, In

other words, WN-1 E9 WN-2 E9 ...Wk forms the feature space to classify the vector in VN .

as long as k is small enough so that enough features ofthe sample vectors are taken in order

to separate the vector clusters. The following sections will demonstrate that the wavelet

30



transform generates a natural setting for similar MRA in approximating functions with

finite-energy, such as image signals. The function features in various levels will be

screened out asMRA going to the coarse level.

-3.2 MRA, Scaling Function and Wavelet

In Section 3.1, an N-dimensional, real-valued vector space is used to intuitively

illustrate the vector orthogonal approximation and reconstruction, which are the central

ideas of MRA. In this section, an MRA that involves approximation of functions in a

sequence of nested linear vector spaces will be formally defined and constructed. The goal

is to construct the nested linear vector space to which any function with finite energy can

be projected; the error vectors, or the details during the projection, form thefeatures of the

function.

3.2.1 Formal definition of ail MRA

Not every sequence of nested vector spaces yields an MRA arena. In addition to the

nesting property, the vector spaces need to satisfy other conditions and relations stated in

Section 3.1. The formal definition of the MRA used in this thesis is the following (Burrus

et al. 1998 [8]): An MRA consists of the nested linear vector spaces ",V_I C Vo C V+1 ...

such that

1. The union of these subspaces is dense in the space ofsquare integrable functions,

L2(R)

2. The intersection of these subspaces is a singleton set containing a zero function

or zero vector
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3. If f(l) e Vk then f(21) e Vk_l, and vice versa

4. There exists a function (called a scaling function) ;(t) such that {;(I - k): k

integer} is a basis for Vo.

The first requirement mentions one set of space being dense in another space. A simple

. explanation to the concept of denseness is to consider the relationship of two sets of real

number A and B, where A c B. The set A is said to be dense in B if for every element b e

B an element in A can be found that is as close to b as needed. One straightforward

example for the explanation is to take the set of rational numbers as A and the set of real

numbers as B. The set A is dense in B since for every real number x in set B, it is possible

to find a rational number in set A that is as close to x as desired. Stated another way with

the sense of multi-resolution, it is possible to find a sequence of rational numbers ql'

q2 ,···,qll' such that as n -+ 00 we have qll -+ x and qll is a finer approximation to x than

qll-l. A classic instance of this example is provided in the definition of e, the base of the

natural logarithm, as e = lim(l + !)" , where the limit is taken as n steps through positive
lI....ao n

integer values. The fact that A is dense in B lets us make approximations to irrational

numbers with rational numbers in practical situations, such as numeric computation. Thus

the first requirement of the MRA definition implies that the union of the nested linear

vector spaces yields a space, V-<0' that is not necessarily the same as the space of signals

with finite energy, L2 (R), but is dense in it. In other words, for every signal f(t) e L2 (R) ,

there is a signal in V-<0
that is as close to f(t) as needed.
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The second requirement states that the only signal common to all the vector spaces is

the all-zero signal or the zero vector. This requirement combined with that of being dense

in Il (R), gives an extended formula ofthe nested linear vector spaces:

3.11

In feature extraction, the formula 3.11 guarantees that there are enough projections or

approximations that can be made so that the desired classification is ensured. In other

words, according to the development in Section 3.1, the formula 3.11 promises that a·

proper k can be found for WN-l ewN-2 EB ",Wk to be a valid feature space..Anyway, in

image processing, Vo is the start point of the sequential projection, where the resolution is

decided by the image sampling resolution. The value ofk is also confined by the size of the

image.

The third requirement brings in dilation and states that a factor-of-two dilation of a
.

vector belonging to a subspace at a certain level yields a vector in the next coarser

subspace. Conversely, dilating a factor of one half yields a function in the next finer

subspace.

The final requirement requires that there be a scaling function ;(t) in the basis

functions such that the set {;(t - n):n integer} is linearly independent, and any function

10 (t) E Vo is expressible as:

+co

/o(t)= Ia(O,n}p(t-n} , 3.12

for a sequence ofscalars a(O,n) where n = O,±l,±2, ....
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In general, this section defines the MRA as

• Consisting of nested linear vector spaces to which
.

f(t) e L2 (R) can be

projected sequentially

• Function going to next coarser level by a factor-of-two dilation

• There is one basis function in Vo.

3.2.2 Construction of the OrthogonalMRA from Scaling Function.

Let ;(t) be a function that satisfies the following:

1. It integrates to one:

[ ;(t)dt=1 . 3.13

2. It has unit energy:

2

II;(tf = [I;(t) dt = 1. 3.14

3. The set consisting of ;(t) and its integer translates is orthogonal:
.

(;(t),;(t-n»)=o(n) . 3.15

4. There is a sequence ofscalars h(n) where n = O,±I,±2, ..., such that

co

;(t)= Lh(n}fi;(2t - n) . 3.16
11=-<0

The function ;(t) defined here is called the Scaling Function. The J2 term in Equation

3.16 maintains the unity norm ofthe scaling function.
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The set {;(t - k) :k integer} consists of linearly independent vectors because the

scaling function and its translations is orthogonal. Therefore, it serves as a basis for a linear

vector space, Vo. Substituting 21 t for t inEquation 3.15, we then have

3.17

Equation 3.17 indicates that the set {;(2kt-/):1 integer} is also an orthogonal set for a

given integer k, which in turn is the basis for the linear vector space, Vk• That is, the

subspaces ...VI' Vo, V_1 ,••• and so on, satisfy /(t) e Vk � /(2t) e Vk_t• Because the basis

vector set for Vk_t, {;(2k-1 t -/):1 integer} can be reconstructed by linear combinations

from the basis vector set for Vk, {;(2k t -1):1 integer}, Vk_t C Vk is obtained, which is

equivalent to a nesting of all the subspaces involved. k = O,±1,±2,... , and so on, so the

union of the subspaces is
.

dense in L2 (R). The notation for the basis set of Vk,

{ ;(2k t -1):1 integer}, can be simplified as ;kJ (t), where k = O,±1,±2, ..., represents the

dilation and 1 = O,±1,±2,... , represents the translation.

Now the MRA is complete because all four properties listed above are satisfied, given .

the definition of the scaling function. That is, the initial scaling function ;(1) and its

dilation equation are sufficient to form an MRA. To finish the MRA process similar to that

described in Section 3.1, the detail (denoted by e in Section 3.1) lost when /(t}e Vk is

projected into a coarser level in Vk-1 needs to be found, because e is the feature of the

vector sought according to Section 3.1. The wavelet serves tomeasure e.
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3.2.3 Wavelet

Wavelets are the set of functions, {<p(2kt-I):k,linteger} or f'kit}, dilated and

translated from the mother wavelet f'(t} or noted as <Po.o (t). This set of wavelets is

expected to be dense to the space of differences between spaces based on various scales of

the scaling function. In tum, Since the set resides in the space spanned by the next narrower

scaling function, Wo e Vt, they can be represented by linear combination of the scaling

function set ;(2t) (Burrus et al. 1998 [8]):

<p(t) = L�(n)J2;(2t-n�n eZ. 3.18
II

The 'span' used in the last statement means that if a set of vectors is the basis of a

space, then the set spans the space. Therefore, Theorem 17 in (Burrus·et al. 1998 [8]) is

quoted to declare the necessary and sufficient conditions for the existence ofsuch wavelets:

If the scaling coefficients h(n) in 3.16 satisfy the conditions for existence and

orthogonality ofthe scalingfunction and the wavelet is defined by equation 3.18, then the

integer translates ofthis wavelet span Wo' the orthogonal complement of Vo' both being

in Vt, i.e., the wavelet is orthogonal to the scalingfunction at the same scale,

J;(t - n ).p(t - m}dt = 0, 3.19

ifand only if the coefficients � (n) are given by

ht(n) = ±(-IY' h(N -n), 3.20

whereN is an arbitrary odd integer chosen to convenientlyposition h; (n).
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Because VI can be any space in the nested space list as long as it is the initial space

from which the projection is started, in other words, any space can be deemed as VI' the

properties of function projection stated in the above theorem can be generalized as:

3.21

3.22

given the relation between scaling function coefficients and wavelet coefficients as in

Equation 3.23, and the scaling function defined in Section 3.2.2. In practice, these two

assumptions are the starting points to design the wavelet transform (which is not included

in this thesis), and the orthogonal wavelets used in this thesis are all designed.satisfying

these assumptions. Another important propertyoforthogonal wavelets is:

3.23

Now, a function projection or approximation scheme that is similar to that described in

Section 3.1 is obtained:

ek(t) = Lak,iPk,ll(t), e.,(t)eWk '

n

3.24

3.25
n

3.26

Vo = W_t EB W_2EB, •..,EBW_M EB V_M
=> lo(t) = e_t(t)+e_2(t)+ ... + e_M(t)+ I-M-l(t) , 3.27

where k and n are integer, and - M s k s -1 .
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If the scaling function is well-behaved, then at a high scale, the scaling is similar to a

Dirac delta function and the initial projection is just to sample the function. In other

words, at high enough resolution, samples of the signal are very close to the scaling

coefficients, Po,n' In practice one is only given the samples of a function 10 (t), so Vo in

the above formulas represents the highest resolution space .

.

If W-1'W-2 ,••• ,W-M ,V-M form the complete function space that contains 10 (t),

then the basis of that subspace, t/J-MJ (t) and (/JkJ (t): - M s k s; -1 , form the perfect feature

space to describe 10 (t). The scalar sets a,P are extracted feature measurements along with

the 10 (t) approximated by the coarser and coarser lie (t) . For example, the PlcJ feature

measurement for 10 (t) on the (/JIcJ (t) base, can be said to be in the direction of the vector

(/JkJ(t). These statements are the theoretical basis for the feature extraction algorithm

developed in this thesis.

3.3 General WT Algorithm

In the function projection process, the scaling functions and wavelets are not dealt with

directly, only the coefficients a,P need to be considered, because they are the function

features wanted. Indeed, mostWT applications concentrate only on a,P .

In order to work directly with the WT coefficients, the relationships between the

function approximation coefficients at a lower scale level in terms of those at higher scale

will be derived.
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Substituting 2Jt-k for t in Equations 3.16 and 3.21, ;J,k(t) and lpJ,k(t) can be

obtained by:

II=-«> 3.28.

= ih(n }fitp(2J+J t - 2k - n)
11=-00

3.29

Changing variables 2k + n to m , Equations 3.28 and 3.29 become:

;j,k (t) = ;(2jt - k)= fh(m - 2k}fi;(2J+J t - m) , ·3.30
111=-00

111-

According to Equations 3.24, 3.25 and 3.27, function projection on the j+ 1 scale level can

be expressed as:

fj+J (t) = i PJ+J,k;(?_J+J t - k)
k--oo

3.32

Because ;j,k(t) are orthogonal to each other according to Equation 3.17, and ;j,k(t) are

orthogonal to lpj,k(t) as well according to Equation 3.22, Pj,k and aj,k can be found by

taking the inner product: .
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3.33

3.34

By using Equation 3.30 to Equations 3.33, and 3.31 to 3.34, and interchanging the sum

and integral, 3.33 and 3.34 become:

PJ.k = ih(m-2k)J2 IfJ+l(t}P(2J+1t-m}lt= }2h(m-2k)J2PJ+l,k , 3.35
M� m=�

Equations 3.35 and 3.36 are the general wavelet transform algorithm used in most

applications including those for feature extraction introduced in the literature review. By

Equations 3.35 and 3.36, the original sampled function is decomposed into serial detail

functions and a coarsest approximation function.

This chapter briefly described the MRA and WT bywhich a finite-energy function can

be projected into the space with a different scale level or resolution. The wavelet

coefficients are the features extracted for the function at the corresponding level. . The

general WT algorithm implementing the projection is used to calculate scale coefficients

PJ.k and wavelet coefficients aJ.k in the coarser level from the next finer level scale

coefficients PhU' The content ofthis chapter forms the theoretical basis of this thesis.
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Chapter 4 Feature Extraction by AnchoredWavelet Transform

In Chapter 3, the feature extraction system based on Multiresolution Analysis and

Wavelet Transform is described. The scalar sets a,p are extracted feature measurements

while the function /(t) is projected to the coarser and coarser level. The widely used WT

algorithm is used to calculate scale coefficients p},k and wavelet coefficients a},k in

coarser scaling levels from the previous finer level scale coefficients p}+I,k' and the

projection process starts from the sampled version of /(t), which is the starting point in all

applications ofdigital signal processing.

This chapter focuses on developing a novel algorithm within the framework described

in Chapter 3, to extract features at, or more precisely, at and around, each Specific sample

point, 10 (P), of the function, where p is the index to the initial samples that the algorithm

starts with. Section 4.1 will show that the generalWT algorithm is not sufficient to extract .

features at and around each sample point, while Section 4.2 will develop an Anchored WT

algorithm which is capable to do so. Section 4.3 will interpret the features extracted by the

AWT physically.
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4.1 A Close Look at the CommonWTAlgorithm

According to Equations 3.35 and 3.36 in Chapter 3, the commonWT algorithm is used

to calculate the scaling coefficients and wavelet coefficients from scaling coefficients at a

previous finer scaling level:

00

Pj-I.t = Ih(m -2k)Pj.np 4.1
.",=-00

00

aj-I.t
= L hi (m - 2k )pj.m • 4.2

m--<o

The implementation ofEquation 4.1 and 4.2 is illustrated in Figure 4.1 where the down-

pointing arrows denote a decimation or down-sampling by two and the other boxes

denote a convolution by h(-n) or �(-n).· In Figure 4.1, the scaling coefficients Pj-U

and wavelet coefficients aj-U at the coarser level are obtained from finer level scaling

coefficients Pj,m' and the even coarser level Pj-2,k and aj-2,k are obtained from Pj-I,m'

Repeating this decomposition process, the coarsest level can be reached, when all the

function feature measurements a are extracted.

Figure 4.1 WaveletDecomposition.

.
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The decimation or down-sampling means that the sample number of Pi-I,! in the coarser

level is halfof the number of Pi",,' and the same rate holds for ai-I,!' This is because the

convolution between h{-n) (or h1{-n» and Pi,,,, starts from every other sample

position in the Pi"" series with a two-sample interval. For example, assuming the initial

fun
.

}' tarts fb
'.

d h( \ (..o:-1S11S1 d h (\f..o·-lSIISl th fun
.

ction samp mg s s 110m m ex one, n }\"&'1I<-10111>1 an 1 n}\:&.II<-I01Il>I' e ction

projection on (/Ji-l,t (t) at level j-l is done by the convolution starting from Pj,l at level j,

which yields aj-l,t' then function projection on (/Ji-l,2 (t) is done by the convolution

starting from Pi,3 to yield ai-1,2' This example is illustrated in Figure 4.2 for better

understanding.
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xh.(-l)

Pi,4
Xh.(O)

E9 �ai-I,2

xh.(l)
p··ss-

x�(-l) :t

Pi,6. X�(O)
E9 ---. ai-I,3

/

ScaJing coefficients
atj1evel

Wavelet coefficients at j-llevel

Figure 4.2 Illustration for down-sampling.

Clearly, the common WT algorithm is not SUfficient to extract features at and around

each sample point, because the down-sampling reduces the feature numbers at the coarser

level by half. After two decompositions of a function, the function approximation can be

expressed'as

Lt2 Lt4 Lt4

= l:a_1•nqJ(2-lt-n)+ La_2,nqJ(r2t-n)+ LP_2.n¢(r2t-n)
n-I n=1 11=1

4.3
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where fo (t) is the approximation to the function f{i) that is sampled by a delta function,

and L is assumed to be the length of the initial sample space, which is an integermultiple

offour. If the coefficients are indexed by initial indexing, we have

The coefficient sets obtained are

Level 0: PO.I' PO.2' POol' PO,4' Po.s, PO.6' PO,7' Po.s' •••
Levell: a_I•2 a_1,4 . a_1,6 a_I•B •••

Level 2:
a-2,4

.

a-2,B •••

P-2,4: P-2,Bl •••

. In the above illustration, even though the function features can be found at initial sample

k = 1,2,3,5,6,7... are not available because of the decimation.

There are two general solutions that can be found in current research efforts of others

who intend to extract point features of the function byWT. One is to interpolate the error

function at the coarser level; the other one is to reconstruct the initial sample from each

level ofwavelet coefficients.

According to Equation 3.2.3.7, the error function at scaling level j can be expressed as

ej{t) = Laj,n2j12tpj,n(t), ej{t}eWj'
n

4.5

The approximation error of the original function (not the initial sampling to the function)

at the initial sampling time spot T for the jth projection is
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ej,T = ej(T) = Laj,n2jl2tp�jT-n).
n

4.6

This is the interpolation to the function approximation error at the j level from the

wavelet coefficients. The interpolation to the coarsest projection can be done in the same

way. Then after interpolating to each projection error and the coarsest projection, the

following series can be obtained: e_2,O,e-2,l,···,e_2,L ;
.

... ,

!-M,O'!-M,l'""'!-M,L' where !-M,k are the interpolation results from the coarsest

approximation by Equation 3.2.3.8. The features
.

extracted for location T are

not be available in that the wavelet design focus is normally on h(-n) and �(-n), and

even though ;V) and tp(t) are available, the complexity of the interpolation is

overwhelming, so the interpolation solution is not a good choice.

Another general solution is to reconstruct initial samples from wavelet coefficients at

.

an individual coarser level and from the scaling coefficients at the coarsest level.

Reconstruction is. the reverse process to decomposition, which is to recover the scaling

coefficients at a finer level from scaling coefficients and wavelet coefficients at the next

coarser level. The reconstruction can be expressed by:

4.7

h*(n) is h(n) used in decomposition and h1*(n) is h1(n), in the case of the orthogonal

wavelet. The reason for this relation can be found in any wavelet text, which is out of the

scope of this thesis.
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Figure 4.3 illustrates the reconstruction process that recovers the initial samples from

which the decomposition is started.

Figure 4.3 Reconstruction ofinitial samples

In order to extract point features of the function, one can repeat the reconstruction that

only includes coefficients at one level by setting all others to zero, as implemented in

Figure 4.4.

/{a-t}/ .

'_{O} ._
.

/{O}
L{O}

Figure 4.4Reconstruction from individual level

{/J;} reflects the effects of kth level wavelet coefficients on the original samples., where

the subscript '0' stands for the reconstruction targeted at the original sample level, and

the superscript 'k' indicates that the reconstruction is from level k wavelet coefficients

only. After the repetition of this reconstruction, the following series can be obtained:

P-l p-l p-l p-2 p-2 p-2 p-M p-M p-M F th0,0, 0,1, ••• , O,L; 0,0, 0,1, ••• , O,L; ••• ; 0,0, 0,1,•••, O,L. rom ese

series, the point features of the function are extracted: {p-lO,T , p-20,T , ... , p-M O,T }, where
"

T is the point location.

"Besides these two general solutions for extracting point features of the function byWT,

which use indirect methods, interpolation and reconstruction, to calculate function
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approximation at each original sampling time spot in each scaling level, a novel direct point

feature extraction algorithm, AWT, will be deduced in the next section.

4.2 AWT-Extension toWT Algorithm

In order to make up the decimation of the scaling and wavelet coefficients, the new

relationships between the function approximation coefficients at a lower scale level in

terms of those at a higher scale have to be derived. Before the derivation is started, the

description of 'index' needs to be clarified. The index is called 'levelj index' ifit is dilated

by 2j along the time axis. For example, let ;j,k = ;(2i t - k)= ;(2i (t � 2-1k)), then k is

called the r level indexbecause k is the dilation result of 21 from the initial index rJk

along the time axis, where j is the scaling level. On the other hand, let ;j,1 = ;(2i (t -I)),
then 1 is called the initial sample level index, because 1 is the location measurement along

the time axis without any dilation.

In the following sections, all the indices are the initial sample level index without

dilation, except as declared separately.

According to Equation 3.16, and Equation 3.18, ifwe assume the Starting level is the

initial sampling level, Vo' then the scaling function and wavelet function at the coarser

level next to it are:
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where k is level -1 index (even though 1 is level -1 index as well, but 21 is level zero

index). If the initial samples can be deemed as the scaling coefficients for the function

projection to the function space of the finest level, Vo, then the function approximations

at this level and the next coarser level can be expressed as:

>

GO

Io(t)= L:Po,m20/2;(2°t-m)
m=-<e 4.10

Because ;-1,2/(t) are orthogonal to each other according to Equation 3.17� ;-l.2/(t) are

orthogonal to lI'-J,2,(t) as well according to Equation 3.19, and lI'_I.21(t) are orthogonal to

each other according to Equation 3.23� P-I.21 and a_I,21 can be found by taking the inner

product:

P-I,21 = (Io(t1;-1,21 (t») = JIo(t)2-112;�-I(t - 2/}}tt � 4.13

a_I,21 = (fo(t1l1'-I,2/(t») = llo(t)2-112l1'�-I(t - 2/)}tt . 4.14

By using Equation 4.8 to Equation 4.13, and 4.9 to 4.14� and interchanging the sum and

integral, 4.13 and 4.14 become:

P-1,21 = fh(n)jfo(t)p(2°(t-21-2°n)}it= fh(n)PO,2/+20", 4.15
n-� m·�

n=-aG

Now by shifting the time axis by one unit of the initial sampling> interval, the scaling

function and wavelet function at the next coarser level can be expressed as the following:
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· � .....ations at level zero and function decomposition at the next coarser
The function appro"l.lUAW

level are:

= fp_l,21+1rl12;(2-1«t -1)- 21»)+ ia_l.21+12-1/2q>(rl«t -1)- 21)) .

1=-00 l=-co

4.19

Then, by taking inner product, and substituting ;-1.21+1 (t) and q>-1.21+1 (t) according to

Equations 4.17 and 4.18 :

P-l�l+l = (/o(t1;-1.2/+1 (t)) == lfo(t)2-112 ;(2-1«(t -1)- 2/»)it
GO

== Lh(n)pO.(21+1)+2011 '

11=-00

4.20

4.21
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The sets ¢_I,2/{t) and ¢-I,2/+1{t), are the basis of V_1, onto which the 10 is projected. The

sets rp-1,21 (t) and rp-1,21+1 (t) are then the basis of the space W_1 which covers the error of

the projection.

By combining Equations 4.15 and 4.20, 4.16 and 4.21, we can see, the numberof {P-I}

.and the number of {a_I} are same as the number of {Po} :

·00

P-1,,,, = �){n )Po,m+20n 4.24

00

a_1,m = Lhl (n)Po,m+20n
n_

4.25

In the next level projection, four sets of scaling function and wavelet function for V_2

and W_2 can be obtained by shifting the time axis using i = 0;1,2,3 :

'-I,r l+i (t) = ¢1..2-2 ({t - i) - 221))= fh{n}r'lI!i..2-1 ({{t - i) - 221)- 2+1n)), 4.26
n=-oo

(/J-I,22/+i (t)= lfJ(2-2({t - i)�221»)= fh. (n}r'll!i..2-1({(t - i)-221)- 2+ln»). 4.27
n=-«J

The function approximations at V_1 (and decomposition at V_2) are:
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= IP-1�/+12-2/21...2-2 ({t -1) - 22[»)+ :ta_1,�/+12-2/2�2-2 ({t -1) - 22[»)
1=-00

•

1=-dI
.

4.29

= IP-l.�1+32-2121...2-2 ({t - 3) - 221))+ ta_l.�1+3
2-2/2�2-2 ({t - 3) - 221») .

1=-«1 1=4>

Then the following relation can be obtained bY applying the same transformation to

Equations 4.26 - 4.29:

. 00 00_

P-2.fl+i = "LI(n)p-l/..'1?-I+i)+in =>P-2,n = "LI(n)p-1,mi-in , 4.30

00 00

a_2,'1?-I+i = "L�{n}x-l/..'1?-I+i)+in =>a_2,n == "L�{n)p-l,»H-2In . 4.31

where i = 0,1,2,3 .

The function decomposition on leve12 is

4.32

Now, let us generalize the new algorithm to calculate the scaling and wavelet coefficients

and function decomposition from Equations 4.24, 4.25, 4.30, 4.31, 4.23 and 4.32:

00

A,m = "L1I...n)�+I,m+-rj-ln ,

�

4.33

00

«; = "L� {n)�+l,m+-rj-ln ,

�

4.34
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2/_1 QO

�+I(t)=L (I2jPj,2J/+i2j/2tP(2j(t-i)-2-jZ))
i=O 1=-00

+ i)jaj'�/+i2j12�2j(t-i)-2-jz)h
1=-00

4.35

where j S -1 is integer.

This algorithm is called Anchored Wavelet Transform (AWT), in that the algorithm

uses only the initial sample level index during the transformation, and coefficients at each

level are available for any location. In Figure 4.3, AWT is applied to the example declared

in Section 4.1 for interpretation of the word 'anchored' and the difference between the

AWT algorithm and the commonWT.

From Equations 4.33 and 4.34, we can see that the decimation effect disappears so that

the function projections on each {;j} and {q>j} can be obtained, which form the feature

space for the function.
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•

/�• •

/ ,If• / /
•

PO.T-S a-I•T-S P-I.T-S a-2•T-:-S

PO.T-4 P-I.T-4a-I•T-4 a-2•T-4
•••••

PO.T-3 a-I•T-3 P-I.T-3 a-2•T-3

PO.T-i P-I.T-2a-I•T-2 a-2•T-2

PO.T-I P-I.T-Ia-I,T-I a-2•T-I
--------------,

PO.T a-loT P-I,T a_2•T
••••• Features for Location T I

--------------

PO,T+I . a-I•T+I P-I.T+I a-2•T+I

PO.T+2 P-I.T+2a-I,T+2 a-2,T+2

PO,T+3 P-I.T+3a-I,T+3 a-2•T+3
•••••

PO,T+4 P-l.T+4a-1•T+4 a-2•T+4

• • • Legend:
• • • ----..

: xhl(-l)
----.. : xhl(O)• • •

- ..... : xhl(+I)

Figure 4.5 AWTalgorithm illustration

The feature extraction method developed is to repeatedly apply Equations 4.33 and 4.34

.

on series {/Jj}' where the initial value ofj is -I, standing for the first decomposition from

initial samples. The feature measurements extracted for any location T are the wavelet

coefficients at each scaling level and the scaling coefficient at the coarsest level:

4.36

where M is the number of repetitions ofAWT.
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4.3 Interpretation of the Features Extracted by AWT

There are two interpretations to the features extracted by AWT: the features measure

the frequency component amplitudes in different frequency bands of the function spectrum,

and measure the degree of correlation between the shape of the function and the shape of

the wavelet.

In the discipline of digital signal processing, the 'filtering' of a sequence of numbers is

achieved by convolving the sequence with a sequence of numbers called the filter impulse

response. Equations 4.33 and 4.34 show.that the scaling and wavelet coefficients at

different levels of scale can be obtained by convolving the previous finer level scaling

coefficients by the time-reversed recursion sequence h(-n) and hi (- n) with a dilated

time interval. In other words, the coefficients at one level are obtained by filtering scaling

coefficients at the previous finer scaling level. The filter implemented by h(- n) is a

lowpass filter, the one implemented by h. (- n) is a highpass filter and the two filters are

mirror filters with the same stop frequency (Burrus et. al. 1998 [8]), under the assumption

that orthogonal wavelet and scaling functions are used in the transfonn.

Assume h(- n) starts with the - P element, ends with the M element, and has stop

frequency of €VI :

M

IH(ml�= Lh(--n)eitD,n .

n=-P

4.37

Let us look at how the filters are applied at each scaling level from Equations 4.33 and

4.34:
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• Projection to scaling level -1: the sequence applied in convolution is

h-J(-n)= {h(-plh(-p+ 11...,h(M)}, its stop frequency is {OJ;

• Projection to scaling level -2: the sequence applied in convolution is

Its stop frequency is (OI /2 , because

4.38
n=-2P m=-P

• In general, in projecting to scaling level j � -I , the sequence applied in

convolution is hi(-n)= {h(- plO,.. ,o,h(-p+ 11 ...,h(M -11o, ...,O,h(M)},

the number of zeros between adjacent h(-m) members is 2- j-I -I, and the

stop frequency is tvl /2-i-1 , because of

rJ-1M M

HJ(m)= Lhj(�n)eilllll = Lh(_m)ei2-J-1tDm; 4.39
n=_2-J-1 P m=-P

• The sequence hl-J (_; n) has the same stop frequency as that of h
- J(- n) .

From the above analysis we can see that, the spectrum of initial samples Po"" is divided

into a lowpass and highpass band in the first projection, resulting in the scaling and wavelet .

coefficients at lower level, P_I"" and a-t,m' As the projections proceed, thelowpass bands

at each lower level are further equally divided. Figure 4.6 shows this frequency band

dividing process. W_k is the function approximation error space at level k,. which is

described in Section 3.2.
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From Figure 4.6, we can see that the features aj,m extracted by AWT are the frequency

component measurements for the initial samples, in different frequency bands.

nv W_3 W_2 W_J-3

� I , , I,

j \ j, , ...

r

o WI wJ
4 2

Figure 4.6FrequencyBandsforAWTanalysis

Another interpretation to the features extracted is that they measure the degree of

correlation between the shape of the function and the shape of the wavelet. This can be

explained by looking at Equation 4.35. When approximating function from scaling level

j + 1 to level j, if the function shape change at location T is very similar to the shape of

(/Jts » then the feature measurement aj,T will be relatively large. This is similar to Fl', The

Fl' result shows the level of resemblance between a particular periodical waveform and the

target signal, while wavelet coefficient shows the resemblance between a wavelet and the

target signal change. For AWT, taking into account the scaling effect, we can also obtain

the shape information of the function in a different range from the features extracted.

In this chapter, the widely used WT algorithm is shown to be not sufficient to directly

extract features at any location of a function because of the decimation, while the AWT

algorithm is proposed to do so. The feature extraction method developed is to repeatedly

apply Equations 4.33 and 4.34 on series {ftj}. The feature measurements extracted for any
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location T are the wavelet coefficients at each scaling level and scaling coefficients at the

coarsest level: {a-l,Pa-2.T, ... ,a-M.T,p-M.T}, where M is the number of repetitions of

AWT. There are two interpretations to the features extracted: the features measure the

frequency componentamplitudes in different frequency bands of the function spectrum,

and measure the degree of correlation between the shape of the function and the shape of

the wavelet.
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Chapter 5 Experiments ofAwr Feature Extraction for Point

Tracking in an Image Sequence

In Chapter 4, the AWT algorithm was developed to extract one dimensional function

features at specified points. The feature measurements extracted for any location T are the

wavelet coefficients at each scaling level and scaling coefficients at the coarsest level:

two interpretations to the features extracted: the features measure the frequency component

amplitudes in different frequency bands of the function spectrum, and measure the degree

ofcorrelation between the shape of the function and the shape of the wavelet.

In order to demonstrate the effectiveness of the wavelet features extraction in image

analysis, the AWT algorithmwill be used to extract image point features, and track points

in an image sequence.

5.1 2D AWT and Used Wavelets

To process a 2D digital signal, such as an image, Equations 4.33 and 4.34 are first

applied on each row of the image, and then applied to each column. Equations 4.33 and

4.34 are written as:

00

�", = ·2.li..n)�+1,m+rj-ln ,

n=-oo

5.1
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00

aj,m = L�(n)�+l,m+-rj-In .

n:-oo

5.2

As introduced in Chapter 4, h(n) is a low-pass filter and h; (n) is a mirror high-pass

filter. In each decomposition level, Equations 5.1 and 5.2 are applied to each row of the

low-pass image from the last level, and two images are generated: low-passed image.

pL j.(m.i) (n) and high-passed image a" j.(m,i) (n), where j is the decomposition level and

(m,i) is the 2D coordinate. These two images both have the same size as the original

image. Then after Equations 5.1 and 5.2 are applied to. each column of a" j.(m.i)(n) and

pL j.(m.i)(n), four same size images are generated: aNN j.(m,i)(n), aHL j,(m.i)(n), aLH j,(m,i)(n)

and pu j.(m,l) (n). Figure 5.1 illustrates two level decomposition of an image signal. The

features extracted for point (X,Y) are

{HH HL LH
a -l.(X.y),a -l.(X,Y) ,a -l,(X.Y),

HH HL LH
a -l.(X.Y),a -l.(X.Y),a -2.(X.Y), •••

aHH_M+l.(x.y),aHL_M+l.(X.y),aLH_M+l.(X.Y),pu -M.(X.Y)},

5.3

whereM is the number of the decomposition level.
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�gend: I

aRH.
-1.(m,l)

-----1� IAWT on row I
---� IAWT on colunn

Figure 5.1 Two levels ofAWT on 2D image.

The orthogonal wavelets used in this thesis are Haar, Daubechies-4 and Daubechies-6,

which are presented in Burrus et al, 1998 [8]. The scaling function coefficients of these

wavelet systems, h(n), are listed in Table 5.1.. Because Haar, Daubechies-4 and

Daubechies-e wavelets are orthogonal wavelets, the wavelet function coefficients, � (n),

can be obtained from h(n) by Equation 3.20.

Table 5.1 Scalingfunction coefficients

n Haath(n) Daubechies-4 Daubechies-S
0 0.5 0.3415063 0.2352336

1 0.5 0.5915063 0.5705585

2 0.1584937 0.3251825

3 -0.0915063 -0.0954672

4 -0.0604161

5 0.0249088
!
,
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5.2 Examples ofApplyingWT and AWT on an Image

Figures 5.2, 5.3, 5.4, 5.5 and 5.6 show the result of applying the WT and the AWT

algorithm to a sample image. The wavelet used is Daubechies-4. The right side of Figure

5.2 shows the result of applying the general WT algorithm. The size of the transformed

images shrinks to one fourth of the original one, so the values in these images cannot be

used as point features directly because of the decimation. Details of the image and the

experiment are given in Appendix A.

Original image Wave1et Transform level one

Figure 5.2 Original image and one level WT result

In Figure 5.3 - 5.6, the symbol LL means that the low pass filter h(n) has been applied

to both horizontal and vertical directions. HH means that the high pass filter II. (n) has been

applied to both directions, HL means the high pass has been applied to the horizontal and

low pass to the vertical, and LH vice versa.
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....;:.

Levell AWT -- U. Levell AWT -- LH

Levell AWT -- HI.. Levell AWT-HH

Figure 5.3 Levell AWTresult

Level2Awr -IL
......

--Level 2 Awr - LH

Level 2 Awr - HI.. Level2Awr - HH

Figure 5.4 Level 2AWTresult
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Level3AWT -HI.. Level3'AWT -- HH

Figure 5.5 Level 3 AWT result

LevelS AWT -- HI.. LevelS AWT -- HH

Figure 5.6 Level 5 AWT result
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On the other hand, the AWT algorithm transforms an image into same size images

containing different image information, which are suitable to be features,

From Figures 5.3, 5.4; 5.5, and 5.6 we can see that:

• LL parts tend to be blurrier when the transformation goes deeper. In level 5 of

the AWT transform, the LL image is almost segmented into several unique-

intensity regions, the unique-intensity represents the 'average' pixel intensity

in the corresponding region;

• LH parts mainly containthe horizontal lines, with 4ifferent width in different
. �

levels;

• HL parts mainly contain the vertical lines, with different width in different

levels;

• HH parts contain the intersections ofthe lines.

5.3 Algorithms for Selecting the Feature-Rich Points and Tracking

Points

Based on the observations in Section 5.2 and the interpretations to AWT presented in

Chapter 4, the rule for selecting feature-rich points is obtained:

( (( )2 ( )2 ( )2 JJ
M aHH aHL aLB

U L }.(x.,,)
+ }.(x.,,) +

}.(x.,,)

x� }=1 P;:'(x.,,). P;:'(x.,,) P;:'(x.,,)
. 5.4

where M is the AWT level, and (x, y) is the point coordinate in the image. The Formula

5.4 states that, if the image has maximum overall relative energy (biggest shape

variances) in all scales at point (x, y), then point (x, y) is selected as a feature-rich point.

This point will then be tracked as described in the next section. Whenmultiple points are
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desired, Formula 5.4 can be repeated to find them, but excluding the previously selected

points in each search. Another way of selecting multiple points is to separate the whole

image into sections and seek a maximum in each section, In this thesis, the image was

divided into 25 evenly distributed sections with the same size, to get 25 local maxima

Then nine pointswith the largest energy were finally selected.

Tracking a point requires us to find the matching points in an image sequence. After

selecting. the feature-rich points in the l" frame in the image sequence, the points tracking

algorithmwill select themost similar point in the 2nd frame for each selected point in the 1st

frame, select most similar point in the 3rd frame for each selected point in 2nd frame, ... , and

so on, until the end frame in the image sequence is reached.

The similarity is measured by the Euclidean distance D between two points in feature

space which is W_1 UW_2 , •••,UW_M, where M is the total number ofAWT levels. D can

be expressed as:

where (xl, yl) is the point coordinate in one image, (x2, y2) is the point in another image.

The points match decision rule is: Point (X2, Y2) in image B is the similar point to point

(Xl, YI) in image A, if the Euclidean distance between (Xl, Yl) and (X2, Y2) in feature

space is theminimum, among distances between (Xl, Yl) and any point in image B:

Min( D )= D .

(Xl,Yl),(x2.y2)eB (Xl.Y1),(X2.Y2)·
5.6
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5.4 Experiments Result and Discussion

This section gives the results of experiments tested to demonstrate the effectiveness of

the AWT algorithms to identify specific feature rich points in an image, and to track those

points from image to image in a video sequence. The detailed description of the

experimental implementation is given in Appendix A.

Figure 5.8 shows the points tracking result, where the points tracking algorithms

developed in Section 5.3 are used in tracking 9 points within an image sequence. The

wavelet used is Daubechies-4, and the number of the AWT decomposition levels M is 6.

Figure 5.7 lists the original images zoomed to 57% ofactual size.

Frame 1 Frame 2 Frame 3 Frame 4

FrameS Frame 6 Frame 7 FrameS

Frame 9 Frame 10 Frame 11

Figure 5.7 Original image sequence.

.
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The points, which are marked in the image of 'Frame 1 Points Selected' in Figure 5.8,

are selected by the feature-rich points selecting algorithm expressed by Formula 5.4. The

marked points in the other images in Figure 5.8 are the match results to the points in the

previous image with the same mark index. The actual matching process is going forward,

from frame 1 to frame 11, and then going backward, from frame 11 to frame 1:

1-+2 -+3 -+4-+5 -+6-+7 -+8 -+9 -+10-+11-+10-+9 -+8 -+7 -+6-+5 -+4 -+3 -+2 -+1,

where the numbers are the image frame numbers, and the arrow means to find similar

points in current image corresponding to the marked points in the previous image.

Therefore there are two column images in Figure 5.8; the left side column images are the

forward matching images while the right column images are the result of backward

matching. The exact location of the point marked is at the upper-left comer of the .

background rectangle of the index marker..
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Frame 1 Points Selected Frame 1 Backward Match

Frame 2 Forward Match Frame 2 Backward Match

Frame 3 Forward Match Frame 3 Backward Match

Frame 4 Forward Match Frame 4 Backward Match
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Frame 5 Forward Match Frame 5 Backward Match

Frame 6 Forward Match Frame 6 Backward Match

Frame 7 Forward Match
.

Frame 7 Backward Match

Frame 8 Forward Match Frame 8 Backward Match
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Frame 9 ForwardMatch Frame 9 Backward Match

Frame 10 Forward Match Frame 10 Backward Match

Frame 11 Forward Match

Figure 5.8 Feature-rich points tracking result using Daubechies-e wavelet in the

AWTfeature extraction.
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From the marked positions in the image of 'Frame 1 Points Selected', we can see that

the points selected by the feature-rich points selecting algorithm are all located in a region

with significant underlying shape variance. As expected, these points are either near the

lines that separate regions with large intensity contrast, or near the intersection of such

lines. There are 9 points selected with index zero to eight. What should be noticed is that

markers '2' and/or '5' occlude the marker ofpoint '0'. This happens in all images in Figure

5.8.

The matching result, determined by visually comparing similar points with those

chosen by the algorithm, is summarized in Table 5.2. From Table 5.2 we can see that the

mismatch rate is only 8%. This demonstrates the high effectiveness of the matching

. algorithm, considering that the quality of the image sequence is not high. Furthennore,

because the matching algorithm is fairly simple, its effectiveness comes mainly from the

success of the AWT feature extraction algorithm.

Tables 5.3 and 5.4 summarize the match result ofusing Haar and Daubechies-6 wavelet

in the AWT feature extraction algorithm. The initial feature-rich points tracked are

manually set at the same locations as in the previous experiment, and the image sequence is

the same as well. The results show that Daubechies-6 has similar performance to that of

Daubechies-4; they all have a better performance than Haar wavelets. All these three

wavelets can track more than halfof the points from frame I to frame 11.
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Table 5.2 Summary ofthe matching result usingDaubechies-4 wavelet in the AWT

Forward Matching Total Points Number ofMismatched Index for Mismatched
Points

Framel to Frame2 9 1 No.8

Frame2 to Frame3 9 0 N/A
Frame3 to Frame4 9 2 No.8, No.7
Frame4 to FrameS 9 1 No.8

FrameS to Frame6 9 0 N/A
Frame6 to Frame7 9 1 No.8

Frame7 to Frame8 9 1 No.8

Frame8 to Frame9 9 1 No.8

Frame9 to Framel0 9 1 No.5

Framel0 to Framell ·9 0 N/A

Backward Matching Total Points Number of Mismatched Index for Mismatched
Points

Framel1 to Framel0 9 1 N/A
Framel0 to Frame9 9 0 N/A
Frame9 to Frame8 9 0 No.5

Frame8 to Frame7 9 0 N/A
Frame7 to Frame6 9 2 No.5

Frame6 to FrameS 9 0 No.5

FrameS to Frame4 9 0 N/A
Frame4 to Frame3 9 1 No.5

Frame3 to Frame2 9 1 No.5

Frame2 to Framel 9 0 No.S,NoA

Total: 180 15

Mismatch Rate: 8%
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Table 5.3 Summary ofthe matching result usingHaar wavelet in theAWT

Using Haar wavelet in the AWT feature extraction

Forward Matching Total Points Number ofMismatched Index for Mismatched
Points

Frame1 to Frame2 9 2 No.8,No.S
Frame2 to Frame3 9 0 N/A
Frame3 to Frame4 . 9 2 No.8, No.7
Frame4 to FrameS 9 3 No.8, No.7, No.5
FrameS to Frame6 9 1 No.8

Frame6 to Frame7 9 2 No.8, No.5
Frame7 to Frame8 9 3 No.7, No.6, No.5
Frame8 to Frame9 9 3 No.7, No.6, No.5
Frame9 to Frame10 9 2 No.7, No.6
Frame10 to Framell 9 1 No.8

Total: 90 19

Mismatch Rate: 21%

Table 5.4 Summary ofthe matching result usingDaubechies-S wavelet in theAWT

Using Daubechies-6 wavelet in the AWT feature extraction

ForwardMatching Total Points Number ofMismatched Index for Mismatched!
Points

Frame1 to Frame2 9 2 No.8, No.7
Frame2 to Frame3 9 1 No.8

Frame3 to Frame4 9 0 N/A
Frame4 to FrameS 9 0 N/A
FrameS to Frame6 9 1 No.7

Frame6 to Frame7 9 1 No.4

Frame7 to Frame8 9 0 N/A
Frame8 to Frame9 9 1 No.4

Frame9 to Frame10 9 1 . No.7

Frame10 to Framell 9 0 N/A
Total: 90 7

Mismatch Rate: 8%

However, when images 'Frame I Point Selected' and 'Frame 11 Forward Match' (see

Figure 5.8) are compared, points No.4, No.S, No.7 and No.8 are all mismatched. It seems

74



the propagation ofmatching error can degrade the reliability of the points tracking in the

sequence. Now let us scrutinize the cause for mismatch. The image sequence captures the

scene of the water rushing out under the bridge,. where there is a pillar and rock at the

riverbank. As introduced in Section 5.3, initial feature-rich points are selected according to

the degree of underlying shape change. From image 'Frame 1 Point Selected' we can see

that

c the point No.4 is selected at the intersection of a gray color region and a

white region,

c the point No.5 is selected at the intersection of bright water and a dark rock;

the selection depends on the shape of the rock aswell as the water,

c the point No.7 is selected at the intersection of bright water, gray riverbank

and a halfbright and halfdark round shape pillar,

c
.

the point No.8 is selected on the water with strap pattern; near the vertical

gray shade on the pillar.

The first mismatching for the point No.8 is in 1�2 (forward match, from frame 1 to

frame 2), where the water shape changed around the original No. 8 position, whereas the

nearest pattern match goes to a location on the bridge. There is also a strap pattern under

the new matched location, near a stick shaped object. We can see from the images that the

causes of the first mismatching for point No.7 and No.5 are similar to No.8: the water

shape changed. The only mismatch for the point No.4 happens when similar texture

appeared under the point. After the first mismatch, points No.5 and No.8 are totally lost

because they never go to any feature-rich location again, while point No.7 sticks on a new

location. It is clear that the cause of mismatch is the change of the shape underlying the

75



tracked points, because the features extracted for point tracking are the shape

measurements in different scales (in different frequency band).

It is a natural solution to discard the points that are not located on relatively static image

objects, to get robust points for the tracking method. The method showed above is to track
.

the points forward and backward, and discard mismatched points in the same image. Such

as in image 'Frame 1 Points Selected' and 'Frame 1 Backward Match', it is quite

reasonable to discard point No.4, No.5, No.7 and No.8 to get reliable tracking results.

Even though Figure 5.8 shows the points tracking frame by frame in the sequence to

describe the. tracking process, it is not necessary to do so in practice. The algorithms

developed are based on the MRA concept, so that they can tolerate relatively larger

viewport movement to the scene. Figure 5.9 shows matching points in frame 1 to frame 11

directly, using Daubechies-4 wavelet in the AWT. It is obvious that the result is acceptable

compared to those in Figure 5.8: except point No.8, which is unfortunately selected in the

fast changingwater, other points arewellmatched.

Frame 1: Selected points Frame 11: Matched points

Figure 5.9Matchingpoints in Frame 1 to Frame 11.
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In this chapter, the simple feature-rich points selecting and matching algorithms are

developed using the AWT feature extraction algorithm, and experiments of tracking points

in a real world image sequence with poor quality are done. To get more reliable point

tracking results, the forward and backward matching method is suggested. The

experimental results show that the AWT algorithm is effective in extracting point features

that can be applied in 2D digital signal analysis.
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Chapter 6 Conclusions

6.1 Summary

In this research, feature extraction in image analysis was studied. It was shown in

Chapter one that wavelet decomposition is a feasible tool to extract features for image

analysis. A literature survey of feature extraction using wavelet transforms in image

analysis applications was given in Chapter two, where wavelet MRA is recognized as an

effective tool for image feature extraction. In Chapter three, the concept of feature

extraction by Multiresolution Analysis and its implementation in the fonn of wavelet

decomposition was introduced. The Anchored Wavelet Transform was designed in Chapter

four to improve theWT algorithm introduced in Chapter three for applications in image

analysis such as feature identification and tracking. Through image feature-rich point

allocating and tracking examples in Chapter five, we can see that the resulting AWT

algorithm exhibits great effectiveness in directly extracting features at any location in the

target image. In addition, results in this chapter also indicate that features extraction by

AWT algorithm provides a tool not only for points tracking in. image sequence, but also

possibly for other image analysis application, such as object classification/recognition,
.

surface segmentation and image registration.
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6.2 Conclusions

With the AWT feature extraction algorithm, many benefits can be expected in image

analysis applications. First of all, the features extracted represent the frequency component

amplitudes in different frequency bands of the function spectrum, so that the noise in the

image is isolated and can be depressed. Secondly, the features extracted measure the

degree of correlation between the shape of the target function and the shape of the wavelets

automatically in different scales. This is ofprofound benefit to image analysis because the

relative information for a group of points in different sized windows of the image is
:�.

quantified for any location in the image. At the finer scaling level, smaller windows are

applied to the image to quantify the relative information among the points in the window

under the location of interest, while at the coarser level, larger windows are applied to

quantify the relation amongst more points under the location ofinterest. Finally the features

extracted are obtained directly in a one-pass process with the AWT algorithm. Compared

with a conventional WT feature extraction algorithm where reconstruction or interpolation

is necessary in a decomposition-construction process, the AWT algorithm simplifies the

feature extraction.

Although the AWT algorithm is only applied to image feature-rich point allocating and

points tracking in this thesis, the algorithm was developed not only for this purpose. It is

suitable for broader areas of signal processing. We do not foresee any difficulties in doing

so.

The AWT algorithm does not employ sample decimation in the decomposition process

and a set of features will be extracted for each image location. These algorithms impose

relatively large demand on the power of a processing unit, and the size of the memory in a
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conventional computer based computing platform. This constrains some on-line image

processing application implementing the AWT algorithm.

In addition, there is a great need for an efficient algorithm to select the proper wavelet

for each application, which is not addressed in this thesis. Therefore, although our research

has shown promise for practical use, more effort is needed to bring the AWT approach

from theoretical study to practical industrial applications.

6.3 Research Contributions

In this research the application ofMRA and WT in image feature extraction is studied.

A novel AWT is introduced into the process of feature extraction. As the core of the AWT,

a non-shift wavelet decomposition model is developed with the objective to properly

represent image properties with WT coefficients. AWT is an extension to ordinary WT

methods; it inherits the flexibilities ofWT and is a useful tool for feature extraction with its

multiresolution analysis capability.

6.4 Suggestions for FutureWork

Even though proved effective and promising by examples, the AWT feature extraction

algorithm developed in this research is the first attempt in applying wavelet MRA directly

in signal analysis, and. implemented in a PC. The following research could improve the

performance and practicability ofthe algorithm.

c An imperative task is to study the way of selecting the proper wavelets among the

existing wavelets system, or designing custom wavelets for a particular application.

The reason ofdoing so lies in the physical interpretation of the features extracted by
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the AWT, which measure the shape of the target function according to the shape of

the wavelet itself. When there is a particularly shaped object in the signal needing to

be emphasized, a similar shaped wavelet could be used to optimally extract

information of interest. In this thesis, different wavelets used in the AWT to extract

features for points tracking give different results. This result also indicates that it is

necessary to study the wavelet selection algorithm further.

CJ Concerning the implementation of the AWT in image processing, the computational

load will grow with the increase of the size of the image signal. The feature

extraction program running on a PC can only process relatively small-sized images

due to the limited memory size and single CPU speed. A fully parallel computing

model with large memory is necessary to merge the AWT into on-line image

processing or into a portable facility. The ideal candidate for this is the

implementation of the AWT into ASIC. Theoretically, the computation speed of

parallel hardware is much faster than that of serial executed software. Hardware

implementation of the wavelet decomposition will make the real time AWT feature

extraction possible. Therefore, research work should continue in AWT microchip

.design�
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Appendix A: Implementation ofExperiments

In Chapter 5, two experiments were described to visually show the difference between

applyingWT and AWT on images, and to track points within image frames grabbed from a

video clip.

In this Appendix, the implementations ofthese experimentswill be described.

A�l Data description

The data used for Section 5.2 is an image file DibSample.dib saved in the attached CD.

DibSample.dib is aDevice Independent Bitmap (Om) with the following properties:

o 24 Bit Per Pixel (Bpp) RGB (Red Green Blue) bitmap. R, G and B component are

all unsigned 8 bit integers,

o Width of the bitmap is 283 pixels,

o Height ofthe bitmap is 212 pixels,

o No compression applied on this image file.

The data used for Section 5.3 is an image sequence grabbed from an uncompressed

video clip Nino83b.avi, which is also saved in the attached CD. The utility used to grab

·images from the video clip is AviEdit.exe. This executable is built from Microsoft Visual

CtC++ 5.0 code, specifically, the sample project AviEdit. The AviEdit project and source

code are also saved in the attached CD under the \AviEdit directory. The images grabbed

from Nino83b.avi have the following properties:

o 24 Bpp RGB bitmap. R, G and B component are all unsigned 8 bit integers;
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o Width of the bitmap is 240 pixels;

o Height of the bitmap is 180 pixels;

o No compression applied on this image file.

DIB is inWindows image format with the following data structure:

File baded address: �

....

File IniO Header

Bitmap Ini> Header
.

Palette

Bitmap Bits

FigureA.l Imagefileformat.

Because the images used in the experiments are all 24Bpp, there is no palette used

(palette is only used for 1I4/8Bpp images.). After the headers are stripped out, the address

for the image bits is available.

A.2 Algorithm implementations

The algorithm implementations are inMicrosoft Visual C/C++ project AWTa that were

created during this project and saved in the attached CD with source code.

The implementations are composed of three entry functions:' WT, AWT and

PointTracking. As described in Section A.l, the input data element is an 8 bit unsigned

integer. The transformed output is also 24Bpp images with 8 bit unsigned integer

components. The interim data during calculation is of float data type, implicitly or.

explicitly.

88



A.2.t User interface

To make the application easy to use, a very simple dialog based User interface was

programmed through which the algorithm functions can be executed. The following

procedures are used to execute the image processing.

FigureA.2: The dialogwindow. ,

o FILE PATHINAME: Input the full path and name ofan image file to be processed

into this edit box before pressing the WTIAWT button. Input full path, where a

sequence of image files reside, into this edit box before pressing the Point

Tracking button.

o TOTAL FRAMES: Input the number of frames to which the points tracking

algorithm will be applied.

o
.

WT: Pressing this button will transform the image using the standard WT

algorithm. A new image file will be generated with 'WT' suffixed to its file name.

For example, if the file name in FILE PATHINAME is 'c:\thesis\DibSample.dib',

then the new file generated will be named 'c:\thesis\DibSampleWT.dib' and the

file will be saved in the same directory as the input image file.
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o AWT: Pressing this button will transform the image using the AWT algorithm.

Four new image files will be generated with 'LL', 'HL', 'LH' and 'HH' suffixed .

to their file names. The newly generated files will be in the same directory as the

input image file.

o Point Tracking: Pressing this button will do the points tracking experiment

described in Chapter 5. The input files must have a name using a digit starting

from '0' and with the extension of '.dib'. For example, if FILE PATHINAME is

'c:\thesis' and TOTAL FRAMES is 4, then the four files O.dib, l.dib, 2.dib and

3.dib will be used by this application. The same number of files will be generated

in the same directory as the input files, with 'r' suffixed to each file name, such

as Or.dib, Ir.dib, 2r.dib and 3r.dib. The output files are the same image files as

input, but with point number tags drawn in the image to show where the

interesting points are, and their id numbers. Figure 5.8 gives an example of a

point tag.

A.2.2WT

WT(...) is the function implementing the standard WT algorithm to transfonn the

image data. FigureA3 is the flow chart oftheWT( ...) function.
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Open input
image file in
UI dialog

SelectWT
filter

Allocate image
data buffer pFO,

pF1

Load input
image data to

pFO

Transform data
in pFO

Apply low pass
filters to each row 0

pFO, result to pF1

l
Apply high pass

filters to each row 0

pFO, result to pF1

!
Apply filters to eac�
column of pF1,
result to pFO

FigureA.3 Flow chart/or WT(...)function.

A.2.3AWT

AWT( ...) is the function implementing AWT algorithm to transform the image data.

FigureAl.4 is the flow chartof the AWT( ...) and AWTConv( ...) functions .
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Open input
image file in
UI dialog

SelectWT
filter

Allocate image data
buffer pFO.

pFL,pFH,pFLl,pFHL,
pFLH.pHH

load input
image data to

pFO

Call AWTConv(
to do AWT on

pFO

FigureA.4 Flow chartforfunction AWT(...) andAWTConv(...).

A.2.4 PointTracking

Apply low pass
filters to each row a

pFO, result to pFl

Apply high pass
filters to each row 0

pFO. result to pFH

Apply low/high
filters to each
column of pFl.

results to

pFHl.pFll

PointTracking( ...) is the function implementing the points tracking experiment. Figure

A.5 is the flow chart of the PointTracking( ...) function. AWTConv( ...) is used in this

Apply lowlhigh
filters to each
column of pFH.

results to

pFlH,pFHH

function to calculate the scale and wavelet coefficients which are used as point features.
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PointTracking()
function entry

SelectWT
filter

Allocate image data buffer
pFO, pFL,pFH,

pFLL[O:4],pFHL[O:4],
pFLH[O:4],pHH[O:4]

Open image file
and load input
image data to

pFO··.

Call AWTConvO
to do 5 level
AWTfrom pFO

Is the first

image in

sequence?

Select 9 feature rich points by
scan through

pFLL[O:4],pFHL[O:4],
pFLH[O:4],pHH[O:4] according to

Equation 5.4

Match 9 points by scan through
pFLL[O:4],pFHL[O:4],

FLH[O:4],pHH[O:4] according to
Equation 5.5

Yes

FigureA.5F/ow chartforPoint'Ir. cking(...)junction.
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As shown in Figure A.5, after the feature-rich points are selected in the first image or .

matched points are found in subsequent images, a small rectangle id tag is drawn in the

original image at the location associated with the tag. The marked images are saved to disk

and can be opened by any image editing software. application for viewing. For example,

point (20,20) is selected in the first image and is marked with tag. '0', then its matched

point (x, y) in next image is also marked with tag '0'. The viewer can then make a

subjective judgment whether two points with the same tag in two consecutive images are

truematched points.

A.3 Algorithm implementation summary

The experiments conducted for this thesis are implemented in the form of a software

application programmed in Microsoft Visual C/C++. To run the application, double click

onAWTaexe.

The code presented here is for the experiments described in Chapter 5. Other.

applications could utilize these algorithms' source code withoutmuch change. Extra coding

and debugging effortsmay be needed to apply those algorithms to other kind of images.

Following is the list of source files:

Algorithm.cpp,
Algorithm.h,

AWTa.cpp,
AWTah,

AWTa.rc,

AWTaDlg.cpp,

AWTaDlg.h

Dib.cpp,
Resource.h,
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ShowDib.h,

StdAfx.cpp,
StdAfx.h.

,
,

I
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