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ABSTRACT 
The porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense 

single-stranded RNA virus of the arteriviridae family and is one of the most 

economically devastating pathogens in the swine industry today. The PRRSV was 

discovered in the early 1990s in Europe and the United States, with strains being divided 

into Type 1 and Type 2 genotypes, respectively. Disease outcomes range from being 

asymptomatic to upwards of 100% mortality in herds, being attributable to the 

pathogenicity of the PRRSV strain, to co-infections with opportunistic pathogens, and to 

the age and breed of the pig. Animals subject to infection with PRRSV exhibit an array of 

clinical symptoms, including but not limited to, respiratory difficulty and pneumonia, 

weight loss, immune suppression leading to secondary bacterial infections, and 

spontaneous abortions/fetal mummification, from which the majority of the economic 

losses stem. Immunization with modified live vaccines are the most popular intervention 

to control disease, and although they are effective in improving health status of animals, 

the currently distributed vaccines pose a risk of reversion to virulence and afford limited 

cross protection amongst circulating strains of the virus. Thus, there is a high demand for 

a safe and effective vaccine. 

The goal of this study was to investigate the role of specific antigen-presenting cell 

(APC) subsets during the pathogenesis of PRRSV and to further understand the 

progression to T cell immunity in response to PRRSV. To accomplish this, we chose to 

investigate the susceptibility of bone marrow-derived dendritic cells (BMDCs), 

monocyte-derived dendritic cells (MoDCs), and monocyte-derived macrophages 

(MoMΦs). After successfully differentiating and characterizing BMDCs from 

hematopoietic stem cells isolated from the sternum of animals, we demonstrated that 

PRRSV infection is restricted only to APCs that express CD163. Furthermore, we 

showed that PRRSV replicates more quickly in MoMΦ cell cultures than in CD163+ 

BMDC cultures and potentially in MoDCs. We continued to investigate PRRSV infection 

of APCs and discovered that in non-infected MoDCs, the cellular protein gamma actin 1 

associates closely with MHCII. When MoDCs were infected with PRRSV, gamma actin 

1 was no longer associated with MHCII. We hypothesize that PRRSV could be 
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manipulating the actin cytoskeleton, potentially interfering with MHCII peptide 

presentation. 

Ultimately, we were interested in the interaction of APCs with T cells. In order to study 

this interaction, we developed an assay utilizing a mixed leukocyte reaction (MLR). Our 

hypothesis was confirmed in the MLR that showed M1 MoMΦs (IFN-γ stimulated) are 

more potent inducers of cytotoxic lymphocyte (CTLs) and CD4α+ T cell proliferation 

than M2 MoMΦs (IL-4 stimulated) or M0 MoMΦs (non-stimulated). In addition, our 

results indicated that gamma delta (γδ) T cells did not participate in the MLR. Next we 

proceeded with an animal trial investigating the interaction of APCs with T cells in a 

PRRSV-antigen specific manner. 

The objective of the trial was to investigate the progression to T cell immunity during a 

PRRSV infection. We used a commercial swine-influenza vaccine as a positive control 

antigen, and as a comparative measure for the T cell immune response to PRRSV. Our 

results indicated that PRRSV infection of APCs does not interfere with the ability of 

APCs to promote T cell proliferation. We detected IFN-γ secreting cells in PBMCs two 

weeks post infection, and T cell proliferation was evident in all lymphoproliferative cell 

cultures two weeks post infection. A comparison between MoMΦ-T cell co-cultures and 

MoDC-T cell co-cultures indicated that MoDCs may be more potent stimulators of 

central memory Th cell proliferation. Lastly, PRRSV infected animals showed a higher 

capacity to promote the proliferation of T cells specific for swine-influenza A virus, 

potentially signifying that the general monocyte population from PRRSV infected 

animals acquired an activated state as a result of the infection.  

 

Overall, the work in this thesis allowed us to formulate a theory regarding the 

dysregulated immune response to PRRSV. A characteristic adaptive immune response to 

PRRSV includes the early appearance of non-neutralizing antibodies (within a week), a 

delayed induction of T cell immunity (2-3 weeks post infection), with neutralizing 

antibodies becoming detectable roughly 4 weeks post infection, correlating to the 

resolution of illness. We believe that specific subsets of DCs are responsible for the 

induction of T cell immunity, and the rarity of this DC population(s) causes a delay in the 

induction of the T cell immune response. Furthermore, the delayed induction of T cell 
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immunity would affect the humoral immune response. In the absence of CD4+ follicular 

T helper cells, B cells would not be able to undergo proper somatic hypermutation and 

the result would be a state of hypergammaglobulinemia, similar to what is observed early 

during a PRRSV infection with non-neutralizing antibodies and auto-antibodies. The 

results herein support our theory, and contribute to the general knowledge surrounding 

the immunopathogenesis of PRRSV. Future work investigating the mechanisms by which 

PRRSV hinders the progression to adaptive immunity could prove to be fundamental in 

the development of a novel vaccine. 
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Chapter 1  LITERATURE REVIEW 
 

1.1  Introduction: 
 
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-

stranded, enveloped RNA virus that causes disease in swine worldwide. The virus is 

classified under the order Nidovirales from the Arteriviridae family and was first 

identified in the early 1990s (Shi et al., 2010). Today, PRRSV is the most significant 

pathogen in the swine industry causing yearly losses upwards of $650 million dollars in 

the United States alone (Butler et al., 2014; Holtkamp, 2012). Outcomes of disease 

include respiratory difficulty, spontaneous abortions and fetus mummification in sows, 

weight loss, and death under certain circumstances (Butler et al., 2014; Reeth, 1997; 

Tong et al., 2007). The demand for an efficacious vaccine and the development of 

strategies for disease control are top priorities for producers and consumers alike (Nan et 

al., 2017). 

 

1.1.1  PRRSV Structure and genomic organization 

Two main species of PRRSV exist, the North American (Type 1) and the European (Type 

2) between which a roughly 63% nucleotide identity is shared (Allende et al., 1999; 

Nelsen et al., 1999; Stadejek et al., 2013). The genome consists of 15.1-15.5 kb and can 

be divided into 9 open reading frames (ORF). The entire viral RNA transcript codes for 

ORF1a and ORF1b, which are translated into separate polyproteins. The polyproteins 

translate into 14 non-structural proteins (nsp) possessing protease (nsp1α, nsp1β, nsp2, 

nsp4), endonuclease (nsp11), helicase (nsp10), and RNA-dependent RNA polymerase 

(nsp9) activities. The structural proteins are encoded in ORFs 2-7. The glycosylated 

membrane proteins (GP2-GP5) are translated from ORFs 2-5, a small non-glycosylated 

protein (E) is resolved from ORF2b within ORF2, the membrane protein (M) is coded for 

in ORF6, and ORF7 codes for the nucleocapsid protein (N) (Dokland, 2010). High 

genetic variability, due to spontaneous mechanisms of mutation and recombination 
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between strains, has been observed in the Type 1 and Type 2 genotypes. As a result, 

numerous strains have been identified conferring variable levels of pathogenicity 

(Murtaugh et al., 2010; Wang et al., 2007). 

 

1.2  Transmission and pathogenesis 

1.2.1   Tropism 

The tropism of PRRSV is thought to be restricted to cells that express the 

hemoglobin/haptoglobin scavenger molecule CD163, which was identified as a necessary 

cellular receptor for viral entry into the cytoplasm (Calvert et al., 2007). In addition to 

CD163, sioladhesin 1 (CD169) and heparan sulfate residues have been identified as 

attachment factors for PRRSV (Van Breedam et al., 2010; Van Gorp et al., 2008). 

Although it has been widely accepted that porcine alveolar macrophages (PAMs) are the 

main target cells for PRRSV infection and replication, it has been proposed that certain 

dendritic cell (DC) subsets, and likely monocyte-derived macrophages, may also be prone 

to infection (Calzada-Nova et al., 2010; Calzada-Nova et al., 2011; Chang et al., 2008; 

Chaung et al., 2010; Peng et al., 2009; Rodriguez-Gomez et al., 2012; Rodriguez-Gomez 

et al., 2015; Silva-Campa et al., 2009). It is also possible that DC susceptibility to 

infection is strain dependent (Bordet et al., 2018). Thus, it remains unclear which cells 

are involved in spreading PRRSV throughout the blood and into peripheral lymphoid 

organs. Because DCs are the professional APC of the immune system, the modulation of 

their antigen-presenting ability, or their being targets of PRRSV replication, would have 

major implications on the transition from innate to adaptive immunity (Mildner and Jung, 

2014; Randolph et al., 2005). Whether or not DCs are susceptible to infection is under 

debate and must be resolved.  

 

1.2.2  Transmission and Pathogenesis 

PRRSV is highly communicable and is transmitted via aerosols, on fomites, through 

direct contact, and in seminal fluids (Kristensen et al., 2004; Pitkin et al., 2009; Swenson 

et al., 1994; Wills et al., 1997). Different stages of illness have been described in pigs; 

acute with resolution of viremia, viremia and persistence in lymphoid organs, or a 
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resolution of viremia with a rebound and re-established viremic state as a result of viral 

persistence in peripheral lymphoid organs (Chen et al., 2016; Petry et al., 2007). The 

course of disease is likely dependent on the pathogenicity of the virus in addition to the 

immune status, age, and genetics of the pig. Age seems to be a significant contributor to 

the outcome of an infection as older animals seem to fare better than younger animals 

potentially being attributable to a more developed immune response in adults (Butler et 

al., 2014). In the field, the most likely routes of a PRRSV infection would be intranasally, 

via direct contact and from respiratory droplets, or through semen during intercourse. The 

initial targets of PRRSV infection are likely PAMs, which reside in the alveolar space in 

the lungs. After replicating in PAMs, PRRSV becomes viremic roughly 6-12 hours post 

infection, allowing it to spread to peripheral lymphoid organs, infecting and replicating in 

macrophages and potentially dendritic cells (DCs). The immunosuppressive qualities of 

the PRRSV and compromisation of the macrophage population render animals 

susceptible to secondary bacterial and viral infections (porcine circovirus, swine-

influenza A virus (swIAV), S. suis, H. parasuis, Actinobacillus suis), which lead to an 

exacerbation of the disease resulting in the porcine respiratory disease complex. 

Pathology associated with disease includes pneumonia, respiratory difficulty, and weight 

loss (Brockmeier et al., 2017b; Lunney et al., 2016). Additionally, PRRSV infection of 

tissue macrophages in peripheral lymphoid organs and the thymus leads to the apoptosis 

of bystander lymphocyte populations. It’s possible that the apoptosis and atrophy that has 

been documented in these peripheral lymphoid organs could lead to an overall depletion 

of the lymphocyte population, resulting in a delayed induction of immunity (Gomez-

Laguna et al., 2013a; He et al., 2012).  

The majority of economic losses associated with PRRSV stem from the complications 

that arise during gestation. Rowland showed that late during gestation (70-90 days), if a 

sow becomes infected, PRRSV is able to cross the maternal/fetal barrier and productively 

infect the fetus (Rowland et al., 2003). Viral replication primarily occurs in the thymus, 

but virus is also detectable in the heart, lungs, kidney, spleen, and liver. Furthermore, it 

appeared that the fetus was able to launch an independent immune response, in which 

elevated pro-inflammatory cytokines (IFN-γ and TNFα) were detected in the placenta 

(Rowland, 2010). Until recently, the mechanism by which PRRSV crossed the maternal-
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fetal interface was unknown. Karniychuk et al. hypothesized that infection of the fetus 

being restricted to late gestation is attributable to the level of CD163+/Sn+ cells 

(endometrial macrophages) during late gestation, otherwise present in lower numbers 

throughout earlier periods. This led to their theory that PRRSV most likely enters the 

placenta via infected endometrial macrophages, which are able to traverse the 

maternal/fetal interface. Although replication occurred in the fetus, there was a lack of 

lesions surrounding internal organs, leading the authors to believe that pathological 

effects are of maternal origin. Overall, it seems that maternal CD8β+ and NK T cell 

mediated immunity at the endometrium, in addition to PRRSV replication within the 

placenta and fetal mesenchyme, which would result in apoptosis of surrounding cells, 

lead to the detachment of the trophoblast layer and ultimately the degradation of the 

placenta (Nauwynk, 2013). There have been few investigations surrounding the PRRSV 

infection of the fetus. Focusing future research efforts on both the fetal and the maternal 

response to infection in the placenta could prove to be beneficial in developing a vaccine. 

 

1.3  PRRSV pathogenicity characteristics 
 
The outcome of a PRRSV infection is largely dependent on the pathogenicity of the 

causative strain. Strains of Type 2 PRRSV can be categorized as being 

avirulent/moderately virulent, North American highly pathogenic (NA-HP), or Chinese 

HP (Ch-HP). Observations under lab conditions are subject to variation and are 

dependent on, but not limited to, route of inoculation, dosage, age, strain and sex of the 

pig. But for the most part, the syndromes of the animals subjected to RPRSV infection 

under controlled conditions correlate to those in the field.  

 

1.3.1  Low virulent strains 

Two of the first isolated strains of PRRSV became the prototypes for the Type 1 and 

Type 2 genotype designation, they were VR-2332 and Lelystad (LV), respectively 

(Murtaugh et al., 2010). Although significant genetic variation exists between the two 

strains (40%), the clinical signs and outcome of infection are fairly similar (Guo et al., 
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2013; Hanada et al., 2005; Weesendorp et al., 2013). Generally, pigs are asymptomatic in 

response to infection with either strain. Fever development and weight loss are minimal, 

if they occur at all, and symptoms occur later during infection in comparison to virulent 

strains. Mortality in response to infection with either strain is attributable to secondary 

co-infections (Guo et al., 2013; Weesendorp et al., 2013).  

 

1.3.2  High virulent strains 

Highly virulent strains of PRRSV have arisen in North America and Europe causing rates 

of mortality ranging from 50-100% in herds (Zhou and Yang, 2010). Clinical symptoms 

in pigs are more pronounced and occur early during infections with the virulent strains 

upon comparison to the Type 1 and Type 2 prototypes. Classical symptoms indicating 

PRRSV infection such as blue ears, respiratory difficulty, and weight loss have been 

observed amongst the experimentally infected pigs. Strains typically studied include Type 

1 VR-2385, MN184, SDSU73, VFL-12, SD-23983, SD01-08 and Type 2 Lena. (Guo et 

al., 2013; Karniychuk et al., 2010; Miguel et al., 2010; Weesendorp et al., 2013). The 

previously listed strains have been placed into the NA-HP category. Lastly, we are left 

with the highly pathogenic Chinese strains, which have been documented to cause 

upwards of 100% mortality in herds as well as under laboratory conditions. Infected 

animals have similar symptoms to the NA-HP challenged pigs except more acute and 

pronounced (Guo et al., 2013; Tong et al., 2007). 
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Table 1.1: Strains of PRRSV according to pathogenicity. 

Strain Virulence Genotype 

VR2332 Avirulent Type 2 

LV Avirulent Type 1 

01NP1 Avirulent Type 2 

BS/AL2011 Avirulent Type 2 

HF6-2 Moderate Type 2 

NVSL-97-7895 Moderate Type 2 

SD-23983 Moderate Type 2  

VR2385 High Type 2 

HuN4 High Type 2 

MN184 High Type 2 

Lena High Type 1 

vFL12 High  Type 2 

SD01-08 High Type2 

rJXwn06 Ch High Type 2 

CH-1a Ch High Type 2 

07HBEZ  Ch High Type 2 

WUH3 Ch High Type 2 

SY0608 Ch High Type 2 
 

List of the various strains mentioned in the review according to their genotype and 

pathogenicity. 

 

1.4  Innate immunity 

1.4.1  Innate Immune Response 

The innate immune response is critical for not only host defense, but also in providing a 

foundation for and influencing the adaptive immune response. In regards to PRRSV, the 

RNA genome is recognized by endosome bound TLR-3, TLR-7, and TLR-8 and by RIG-

I/MDA-5 in the cytoplasm (Calzada-Nova et al., 2010; Chaung et al., 2010; Miguel et al., 
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2010; Miller et al., 2009; Sang et al., 2011). Detection of the viral genome leads to the 

stimulation of type 1 interferons (IFN-α, IFN-β) and other pro-inflammatory cytokines 

(TNFα, IL-6, IL-8, IL-1β, etc) resulting in the establishment of an anti-viral state in 

neighboring cells, in addition to recruiting other immune cells to the site of infection. One 

of the more important cells recruited are DCs, the professional antigen-presenting cells 

(APC) of the immune system (Akira et al., 2006). It comes as no surprise that PRRSV is 

able to regulate the expression of the innate cytokines, and may also play a role in 

altering the activity of DCs, which would have dramatic implications on the progression 

of the adaptive response (Yoo et al., 2010). There has not been any clear correlation 

attributing increased pathogenicity to differential levels/mechanisms of immune 

regulation. 

 

1.4.1.1  Cytokines associated with PRRSV infection 

The activation of pro-inflammatory cytokine expression and type 1 IFNs occurs as a 

result of the recognition of pathogen associated molecular patterns (PAMPs). In regards 

to PRRSV, viral RNA would trigger a response. As a result, levels of type 1 IFNs and 

TLR expression have been analyzed in PAMs upon challenge with different strains of 

PRRSV. Miller et al. analyzed the induction of IFN-α in porcine alveolar macrophages 

(PAMs) infected with VR2332 upon stimulation with poly IC. Their results indicated that 

the low virulent PRRSV strain was able to inhibit the synthesis of IFN-α over the 48 hour 

time period. Although IFN-α was detected 20 and 48 hours post stimulation, the 

concentration was negligible (Miller et al., 2009). In a later study, PRRSV VR-2332 

infected pigs were shown to suppress pro-inflammatory cytokines in both the lungs and 

the serum (Guo et al., 2013). Chaung et al. infected AMs with a moderately virulent 

PRRSV strain (HF6-2) and assessed the level of TLR expression 6 and 24 hours post 

infection, and in response to poly IC (a TLR3 agonist) 24 hours post infection (PI). Their 

results indicate that TLR4 and TLR7 were downregulated upon poly IC stimulation while 

TLR3 expression was upregulated. In non-stimulated cells, TLR3 and TLR7 were 

consistently downregulated at 6 and 24 hours PI, on the other hand TLR8 was 

downregulated at 6 hours PI but returned to normal after 24 hours. No difference was 

observed in TLR2, TLR3, TLR4, or TLR9 (Chaung et al., 2010). Miguel et al. were 
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interested in TLR and cytokine expression in response to the high virulent VR2385 strain. 

Interestingly, they found that TLR3, TLR4, and TLR7 expression were downregulated in 

the lungs of infected pigs, which coincided with suppressed IL-1β, TNFα, and IL-6. But 

the opposite was observed in the tracheobronchial lymph nodes, in which all of the TLRs 

and pro-inflammatory cytokines were induced (Miguel et al., 2010). Guo et al. pigs 

infected with an Ch-HP strain showed high levels of IFN-α, TNFα, IL-6, IL-8, IL-2, IL-

12, IL-10, and IFN-γ in both the lungs and serum, which seems to indicate that a cytokine 

storm could potentially provide an explanation for the HP-PRRSV increased mortality 

rates (Guo et al., 2013). Overall, there appears to be a correlation between increased 

pathogenicity and the induction of pro-inflammatory cytokines. Lastly, although PRRSV 

seems to inhibit type 1 IFN synthesis, it has been shown that administration of IFN-α 

inhibits PRRSV replication in vivo, lending to the potential therapeutic applications of 

administered IFN-α as a resolution for PRRSV infection (Brockmeier et al., 2017a). For 

the most part, mechanisms by which PRRSV modulates the innate immune response have 

been elucidated. 

 

1.4.1.2  PRRSV mechanisms of innate immune regulation 

Non-structural protein 1 (nsp1) is a polyprotein that possesses a papain-like cysteine 

protease domain, which is responsible for its resolution into its two separate components, 

nsp1α and nsp1β. In addition to participating in viral replication, nsp1 is responsible for a 

significant portion of type 1 IFN inhibition. Song et al. investigated the properties of 

nsp1α, derived from VR-2332, in HeLa cells. They observed that nsp1α was able to 

localize to both the nucleus and the cytoplasm. Upon further analysis, they determined 

that nsp1α acted by suppressing IkB phosphorylation, inhibiting NF-κB translocation to 

the nucleus (Song et al., 2010). Conflicting results were obtained later that year by Kim et 

al. when they were unable to replicate the inhibition of IRF3 phosphorylation. This may 

have been attributable to their using MARC-145 and HeLa cells or that nsp1 was derived 

from VR-2332. They concluded that nsp1β was able to translocate into the nucleus and 

stimulate the poly-ubiquitination of CBP, which prevents the stabilization and transport 

of IRF3 to the IFN-β promoter (Kim et al., 2010). Nsp1β has been shown to possess 

multiple mechanisms by which it regulates both the expression of type 1 IFNs and IFN 
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regulatory factors (IRFs). Beura et al. observed that IRF3 phosphorylation was inhibited 

in HEK293-TLR3 cells that were transfected with PRRSV nsp1β (vFL-12) and 

subsequently challenged with dsRNA. Inhibition of IRF3 phosphorylation would prevent 

its nuclear translocation, thus inhibiting the activation of IFN-β (Beura et al., 2010). Patel 

et al. continued to research the activity of nsp1β in which they observed a completely 

different mechanism. Patel et al. observed the inhibition of STAT1 transportation to the 

nucleus in HEK293 and HeLa cells, but were unable to deduce the exact mechanism by 

which its translocation is inhibited (although they proved that it was not due to 

suppressed phosphorylation). Unlike the previous two studies, they went on to 

demonstrate STAT1 translocation inhibition in primary PAMs by infecting cells with 

VR-2385 and the MLV. Interestingly, the MLV was not able to suppress STAT1 

translocation (Patel et al., 2010). Although conflicting results exist, it is apparent that 

nsp1β plays a role in type 1 IFN regulation. Once again, it seems that the activity is strain 

dependent. In addition to nsp1β inhibition of type 1 IFN expression, nsp2 has also been 

implicated in its inhibition. 

Highly pathogenic strains of PRRSV that have arisen in China all have a similar 90 base 

pair deletion in nsp2, which is a unique feature not observed in North American or 

European strains. Nsp2 is the largest viral protein and possesses a papain like cysteine 

protease domain, typically associated with deubiquitinase activity (Dokland, 2010). Sun 

et al. were able to demonstrate that the cysteine protease domain of nsp2 from the 

avirulent SD01-08 strain is able to prevent the polyubiquitination of IκBα, which in turn 

prevents the translocation of NF-κB to the nucleus. The end result is an inhibition of type 

1 IFN stimulated genes (ISGs), pro-inflammatory cytokines, and may also play a role in 

the inhibition of apoptosis (Sun et al., 2010). In addition to preventing IRF3 and NF-κB 

translocation, nsp2 has been shown to antagonize IFN stimulated gene 15 (ISG15) 

activity. ISG15 is an important innate antiviral response protein and its activity is referred 

to posses “ISGylation” activity. Although its exact mechanism is being investigated, the 

conjugation of ISG15 to viral proteins has been hypothesized to either target viral 

proteins for degradation or disrupt protein activity (Durfee and Huibregtse, 2010). It has 

been theorized that the 30 amino acid deletion present in the HP-PRRSV strains does not 

contribute to virulence (Zhou et al., 2009). Zhi Sun et al. demonstrated that PRRSV strain 



	 10	

SD01-08 inhibits ISGylation in PAMs and more specifically, nsp2 inhibition of 

ISGylation in HeLa cells (Sun et al., 2012). Another study found that nsp2 (Ch-HP) was 

also able to inhibit the translocation of IRF3 across the nucleus, preventing the 

transcription of ISGs. Whether this inhibition is due to deubiqutinase activity or not 

remains to be determined (Li et al., 2010). Ying Fang et al. observed that the nsp2 from 

Ch-HP strains induces the degradation of IκBα in HeLa cells, thus activating the NF-κB 

pathway. They were able to determine that the hypervariable region in nsp2 is responsible 

for the NF-κB translocation and that the 30-amino acid deletion has no influence on 

activity (Fang et al., 2012). Recently, nsp2 was identified as being a structural component 

of the PRRSV virion, likely integrating into the viral envelope. This provides a potential 

explanation for high antibody titres against nsp2 in vivo. Furthermore, the study 

highlights the potential significance that nsp2 variation amongst strains could be playing 

a further role in immune evasion than what had been considered in the past (Kappes et 

al., 2013). Overall, past studies indicate that more than one domain exists in nsp2, 

resulting in multiple immunoregulatory properties such as interfering with 

proinflammatory cytokine synthesis, preventing IFN stimulated gene expression, and 

potentially having a structural role.  Although nsp2 mechanisms have only been 

demonstrated in continuous cells lines, it’s possible that nsp2 could play a significant role 

in determining virulence. In addition to the a-fore mentioned nsps, the nucleocapsid 

protein (N), nsp4, and nsp11 appear to participate in modifying the innate response as 

well. 

PRRSV nsp11 contains an endoribonuclease (NendoU) domain, which is also found in 

other Nidoviruses (Ulferts and Ziebuhr, 2011). Xibao Shi et al. investigated the properties 

of nsp11 and compared its NendoU domain sequence to those of SARS-CoV and EAV. 

The amino acids essential for the NendoU activity (His-129, His-144, Lys-173) were 

subjected to mutagenesis to elucidate the properties of the domain. They found that nsp11 

was able to inhibit the phosphorylation of IRF3 in MARC-145 cells, preventing its 

nuclear translocation. This resulted in the suppression of IFN-β induction. Knocking out 

the amino acids listed previously dramatically decreased the IRF3 suppression (Shi et al., 

2011). Zhitao Ma et al. were able to demonstrate in both MARC-145 cells and PAMs, 

that nsp4 is able to induce apoptosis, which is highly dependent on its serine protease 
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activity. Previously, GP5 had been associated with the potential induction of apoptosis, 

but this activity was not observed during their study (Ma et al., 2013). In regards to the N 

protein, its translocation to the nucleus and nucleolus during infection has been 

documented (Rowland et al., 1999; Rowland and Yoo, 2003). Rui Luo et al. investigated 

the potential activity of the N protein and discovered that it activated the NF-κB pathway. 

Their study was performed in MARC-145 cells and they observed that the DNA binding 

activity of NF-κB increased in a dose dependent manner (Luo et al., 2011). Overall 

PRRSV has multiple mechanisms by which it suppresses type 1 IFNs and ISGs and is 

able to suppress or activate the induction NF-κB associated genes. 

 

 

 
Figure 1-1: Mechanisms of innate immune regulation by PRRSV. The strains have been 
color coordinated according to their virulence. Stars with numbers = steps of PRRSV 
entry into the cell. Red = Highly Pathogenic.  Green = Avirulent.  Purple = Chine Highly 
Pathogenic. Red X = inhibition. Green arrow = activation. 
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There appears to be a significant amount of information indicating that mechanisms of 

innate immune regulation act in either a synergistic or antagonistic manner (Figure 1-2). 

The activities of specific viral proteins are highly dependent on individual strain 

pathogenicity. A prime example of this can be seen in studies performed on nsp2. Nsp2 

derived from a low virulent strain (SD01-08) was observed to deubiquitinate IκBα, 

preventing NF-κB activation, whereas nsp2 from a HP-PRRSV strain activates the 

translocation of NF-κB. The question then arises as to whether the former activity of nsp2 

is abolished or whether there is a secondary interaction with a different PRRSV protein 

that causes the phenomenon to occur.  

 

1.5  Dendritic cells 

1.5.1  PRRSV and dendritic cells 

Dendritic cells are the professional APCs of the immune system, providing a direct link 

between innate and adaptive immunity. They are responsible for transporting antigen to 

peripheral lymphoid organs to directly stimulate naïve T cells to mount a specific 

response. Cytokines produced during this process influence the type of response 

subsequently raised (Bousso, 2008). In 2007, Wang et al. were one of the first groups to 

demonstrate DC infection in vitro. Their results indicated that a moderately virulent strain 

of PRRSV (SD-23983) targeted monocyte-derived DCs (MoDCs) specifically and the 

rates at which PRRSV replication was detected was similar to those observed in MARC-

145 cells. They went on to demonstrate that SD-23983 kills DCs by both necrosis and 

apoptosis. More importantly, they observed a decrease in antigen-presenting ability in the 

infected DC population. Lastly, infected MoDCs did not produce Th1 cytokines or IL-10 

but low levels of TNFα were present (Wang et al., 2007). Later, Zhang et al. infected 

MoDCs with the moderately virulent strain SD-23983. Their results indicate that PRRSV 

is able to induce the transcription of IFN-α via the phosphoiositide 3-Kinase (PI3K) 

pathway. But, levels of IFN-α in the supernatant were negligible upon ELISA analysis. 

They concluded that PRRSV possesses a post-transcriptional method of IFN-α inhibition 

that is replication dependent, as heat inactivated virus did not possess the same 

immunomodulatory capability (Zhang et al., 2012). Mendoza et al. obtained different 
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results upon analyzing the infection of mature MoDCs (mDCs) with a NA virulent strain 

of PRRSV (vFL12). Similar to the previous study, PRRSV was able to infect and achieve 

similar rates of replication in the mDCs as those in observed in PAMs. Apoptosis was 

detected in the cells 24 hours PI and a downregulation of MHCII occurred. On the other 

hand, they observed a major upregulation of IL-10 and little IFN-α (Flores-Mendoza et 

al., 2008). In 2011, Subramaniam et al. published a paper utilizing the same viral strain as 

Mendoza that showed levels of IL-10 were not up-regulated in DCs. A potential 

explanation for the difference to Mendoza’s past results could be attributable to LPS 

treatment (stimulating DC maturation) inducing high levels of IL-10 production in 

MoDCs before infecting the DCs (Subramaniam et al., 2011). PRRSV strain HF6-2 was 

utilized to infect GM-CSF/IL-4 derived BMDCs. The results were consistent in 

demonstrating decreased levels of MHC-I and CD80/86 expression in infected cells and 

apoptosis in cell cultures. Interestingly, bystander, uninfected cells showed an 

upregulation of CD80/86. There appeared to be a significant induction of IL-1, IL-6, IL-

8, and more importantly IL-10. Levels of TNFα and IL-12 were negligible (Chang et al., 

2008; Peng et al., 2009). More recently, Rodriguez-Gomez et al. found that MoDCs 

infected with either Type 1 or Type 2 PRRSV showed an upregulation of SLA-DR and 

CD80/86. They investigated whether IL-10 secretion resulted in the induction of 

regulatory T cells and determined that PRRSV infection of MoDCs did not result in the 

stimulation of regulatory T cells (Rodriguez-Gomez et al., 2015). The variable results 

obtained from different studies could be attributable to the strain of virus used, the MOI 

of the infection, and the breed or age of the pigs. 

 

1.5.2    Plasmacytoid dendritic cells 

Plasmacytoid DCs (pDCs) have been identified in humans to be a specific subset of DCs 

responsible for the majority of the IFN-α production observed in vivo. Calzada-Nova et 

al. were able to isolate and characterize a pDC population from pigs based on their 

CD4αhiCD172alo cell surface morphology utilizing cell sorting (Calzada-Nova et al., 

2010). They went on to investigate whether pDCs were susceptible to PRRSV infection 

in vitro. Plasmacytoid DCs were treated with PRRSV 4468 and subsequently challenged 

with ODN D19 (TLR9 agonist) or transmissible gastroenteritis virus (TGEV), which on 
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their own induce IFN-α, TNFα, IL-8, IL-6, and IL-2. The cells were found to be non-

permissive to PRRSV infection, but only moderate levels of IL-2 were detected. Upon 

closer examination, they found that PRRSV (live or inactivated) suppressed levels of 

IRF7 upon challenge with ODN D19 or TGEV. Similarly, they observed a decrease in 

STAT1 translocation to the nucleus. Although the exact mechanism by which PRRSV 

acts to modulate the response in pDCs was not determined, the authors hypothesize that 

the immune suppression is occurring as a result of an extracellular interaction of a viral 

protein with a pDC cell surface receptor (Calzada-Nova et al., 2011). Results obtained by 

Zhang et al. demonstrated a lack of IFN-α production in MoDCs after Poly I:C 

stimulation, which could be attributed to pDCs not being present in MoDC populations. 

Later, Baumann et al. investigated the IFN-α response of pDCs upon challenge with 

various strains of PRRSV. They found that all PRRSV isolates, both type 1 and 2, were 

able to induce IFN-α, but the levels of IFN-α were considered negligible. Furthermore, 

there appeared to be a strain dependent variation as the Ch-HP strain (SY0608) 

suppressed 51% of IFN-α compared to VR2332’s 31% suppression upon stimulation with 

CpG (Baumann et al., 2013). During early stages of infection, IFN-α has been detected 

systemically in PRRSV infected animals (Guo et al., 2013). A group investigated the 

source of IFN-α in pigs infected with Lena virus and found that pDCs were responsible 

for the secretion of IFN-α. Their results indicate that pDCs detected PRRSV virions in 

association with infected macrophages, and PRRSV virion on its own was unable to 

induce IFN-α (Garcia-Nicolas et al., 2016). Overall, it doesn’t seem that pDCs are targets 

of PRRSV replication, but pDCs play a prominent role in the synthesis of IFN-α. 

Furthermore, past investigations would suggest that the induction levels of IFN-α appear 

to be dependent of the viral strain, which could provide some insight into the 

pathogenesis of PRRSV. 

  

1.5.3   Antigen processing and presentation 

The recognition of a peptide sequence in association with an MHC molecule by an αβ T 

cell receptor (TCR) is arguably the most important step towards stimulating a cell 

mediated immune response against the antigen from which the peptide sequence was 

derived. Although every nucleated cell in vivo is capable of presenting antigen on MHCI 
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molecules, antigen presentation is typically associated with those cell that express MHCII 

in addition to MHCI, which are MΦs, B cells, and DCs (and thymic epithelial cells). The 

pathways by which antigen is processed can be divided into the endogenous or the 

exogenous pathway (Klein et al., 2014; Vyas et al., 2008b). Antigens being processed and 

presented by APCs are not always foreign, as the majority are likely self-derived peptide 

sequences. Surveying self-derived peptide sequences aids in maintaining tolerance in 

addition to providing a means to survey for potentially oncolytic cells expressing 

abnormal proteins. As its name implies, the endogenous pathway involves the processing 

of antigen found within the cytoplasm of a cell. Essentially, this pathway provides a 

means by which cells are able to recycle amino acids from mis-folded proteins that have 

been polyubiquitinated and targeted for degradation into short peptide sequences (8-10 

amino acids in length) by the proteasome (Blum et al., 2013). In regards to pathogens, the 

endogenous pathway provides a means by which intracellular pathogen’s proteins can be 

presented on MHCI molecules for recognition by CD8β+ T cells. On the other hand, the 

exogenous pathway involves the processing of antigen that has been encountered 

extracellularly. Of note is the premise of cross-presentation, which is essentially antigen 

processed via the exogenous pathway that results in peptide sequences being loaded onto 

MHCI molecules in the endoplasmic reticulum. Cross-presentation explains how the 

stimulation of naïve CD8β+ T cells occurs when the APC is not susceptible to infection 

by an intracellular pathogen, therefore the pathogen’s antigens would need to be 

processed exogenously (Embgenbroich and Burgdorf, 2018). 

Antigens acquired from the external environment of an APC are processed through the 

exogenous pathway. In brief: antigen is phagocytosed and the phagosome eventually 

fuses with a lysosome (forming the phagolysosome), which results in the degradation of 

the antigen into short peptide sequences. After MHCII has undergone post-translational 

modification, it is transported to the phagolysosome where peptide sequences are loaded 

in the binding groove of MHCII so that it can be transported to the cell surface for 

antigen presentation to CD4α+ T cells (Vyas et al., 2008a). Unlike its MHCI counterpart, 

the length of peptide sequences bound the groove of MHCII can range from 10-51 amino 

acids in length. Furthermore, it has been shown that some of these longer peptide 

sequences may possess higher immunogenicity than some of the shorter peptides 
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(Niebling and Pierce, 1993). Variations in the length of peptide sequences bound to 

MHCII, in regards to immunogenicity, are likely antigen specific. Given that 10-12 

amino acids may be bound to the groove of MHCII at one time, any peptides longer than 

this would have interactions outside the groove of MHCII which would alter the 

interaction of the MHC molecule with a TCR. Before the MHCII molecule binds to a 

peptide sequence, it must go through a series of steps during its translation to ensure that 

it acquires a peptide sequence efficiently. Shortly after translation in the endoplasmic 

reticulum, the MHCII binding groove is occupied by the invariant chain (Iip31). The 

invariant chain serves to prevent self peptide sequences from occupying the binding 

groove before the MHCII molecule has been transported to a phagolysosome (Sercarz 

and Maverakis, 2003). Non-cysteine proteases are responsible for the initial trimming of 

the invariant chain before the MHCII-Iip31 complex is transported to the endosomal 

compartments. A crucial step in the maturation of the invariant chain is the processing of 

Iip31 into the class II-associated invariant chain peptide (CLIP). After being processed 

into CLIP, the accessory proteins HLA-DM/HLA-DO are able to exchange CLIP for a 

nascent peptide sequence within the endosome/phagolysosome. Cysteine proteases have 

been shown to be indispensible to the maturation of the invariant chain, particularly 

Cathepsin S. In mice, studies have demonstrated that Cathepsin S is responsible for the 

final processing of the Iip31 into CLIP. Furthermore, inhibition of Cathepsin S in DCs 

essentially eliminates their ability to present antigen to CD4α+ T cells and may even have 

an effect on germinal center development (Riese et al., 1998; Shi et al., 1999). Other 

cysteine proteases of interest, when considering the maturation of Iip31, are Cathepsin F 

and Cathepsin L. Considering there are multiple antigen-presenting cells, it doesn’t 

surprise that cysteine protease expression varies within specific cell types. Cathepsin F 

activity in MΦs has been shown to be higher than in B cells and DCs, and Cathepsin L 

activity seems to be indispensable for thymic epithelial cells antigen presentation during 

positive and negative selection process of thymocytes (Shi et al., 2000); (Turk et al., 

2012). Currently there is no information regarding the expression or role of cysteine 

proteases in pigs, nor has there been any research on the maturation of the invariant chain 

in pigs. Considering the variation in cysteine protease expression amongst APC 

populations in mice, it would seem plausible that this variation could have an effect on 
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the peptide sequences being presented within those specific APC populations. It has been 

demonstrated that PRRSV may be forming a replication complex in association with 

endoplasmic reticulum derived double membrane vesicles in infected cells (Kappes and 

Faaberg, 2015). If this is the case, PRRSV could be interfering with antigen processing.  

 

1.6  Humoral immunity 

1.6.1  Humoral immune response to PRRSV 

Humoral immunity involves antigen recognition by specific B cell receptors (BCRs) on 

the surface of B cells, which have been germline encoded. B cell activation can occur 

independently of T cell help, or with the aid of helper T cells. Upon antigen recognition, 

the BCR undergoes affinity maturation via isotype switching and somatic hypermutation 

within germinal centers. In the case of a viral infection, the primary mechanisms by 

which antibodies (ab) act would be through virus neutralization and opsonization 

(Hangartner et al., 2006). Regarding PRRSV, a robust ab response is detectable in serum 

7 days post infection, although they are non-neutralizing antibodies (non-NA) and do not 

aid in the subversion of the infection. Roughly 4 weeks post infection, the appearance of 

NA in serum and in mucosal secretions becomes apparent eventually leading to the 

resolution of viremia (Loving et al., 2015). Furthermore, the passive transfer of serum 

containing NA to naïve pigs protected them from infection when challenged with a 

homologous strain of PRRSV. Thus, it’s safe to conclude that NA provide sufficient 

protection from infection, although the role that cell mediated immunity plays in 

protection, in addition to influencing the humoral response, should not be dismissed 

(Osorio et al., 2002). In the past, research areas focused predominantly on identifying 

neutralizing epitopes within glycoprotein 5 (GP5) and the membrane (M) protein of 

PRRSV, but recently the GP2-GP3-GP4 trimer have gained increasing attention. The 

ideal vaccine candidate will stimulate a NA response within 2 weeks of immunization 

and have broad cross-protection across different strains of PRRSV. Difficulty in 

achieving NA induction stem mainly from the masking of neutralizing epitopes on the 

surface of virions by glycan shields, and the unusually high mutation rates seen in 

PRRSV make it difficult to identify conserved epitope motifs (Lopez and Osorio, 2004; 
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Loving et al., 2015; Lunney et al., 2016). Multiple questions arise when considering the 

humoral response to PRRSV, which include the following: What antibody isotypes 

correlate to the highest level of protection and how do they function? What is the role of 

non-NA and how do they influence disease progression? And lastly, why is there a delay 

in the appearance of NA?  

A kinetic of the ab response to PRRSV has indicated that immuglobulins are detectable in 

oral fluids of infected animals as early as 3 days post infection. Secreted IgM (sIgM) was 

detected from days 3-10, sIgG from days 7-10, and sIgA from days 8-14. 

Immunogloblins in serum are detected on similar days with (IgM>IgG>IgA 

concentrations), increasing until day 21 at the end of the trial (Kittawornrat et al., 2013). 

Classically, IgM is associated with a primary B cell response in humans and mice. 

However, the fetal pig does not rely on its mother for passive immunity in utero. Instead, 

the immune status of the pig begins to develop in utero. As such, it has been shown that 

isotype switching in pigs occurs during gestation. Additionally, it has been shown that 

isotype switching is able to occur in the absence of encountering antigen specific for its 

specific B cell receptor. This may be advantageous as it could speed up the process of 

developing an antibody repertoire conferring higher affinity for antigen by skipping the 

isotype switch process seen in humans and mice (Butler et al., 2001). But, somatic 

hypermutation will only occur in the presence of antigen, so the overall period of time of 

B cell affinity maturation may not be impacted that significantly (Butler et al., 2002). 

Regarding PRRSV, ab isotypes involved in protection include IgM, IgG, and IgA. Early 

during infection, B cells encounter their antigen inducing the secretion of IgM and 

proliferation of plasma cells. IgM is the first line of ab defense, in that is has a lower 

affinity for specific epitopes, but has 10 potential binding regions conferring a high 

avidity. Three main mechanisms by which IgM can function include: a) opsonization of 

antigen resulting in the recruitment of the C1 complex from complement; b) opsonization 

of antigen leading to increased uptake by APCs; and c) antigen neutralization. It is 

generally found in serum, but can also be detected in oral fluids (Burton, 2002), 

(Hangartner et al., 2006). IgG is found mainly in serum and tissues and possesses similar 

mechanisms to IgM. Primary mechanisms include virus neutralization and opsonization. 

Binding of IgG to viral antigen can prevent attachment of the virus to cells or inhibit viral 
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membrane fusion, preventing entry of the viral genome into the cell’s cytosol. 

Opsonization of the virus results in the recruitment of macrophages, dendritic cells, and 

neutrophils, mediating phagocytosis via an interaction with the Fc portion of the ab with 

the FcγR on the surface of the cells. Furthermore, a potential mechanism would be the 

binding of ab to viral antigen on the plasma membrane of an infected cell. This would in 

turn activate antibody-dependent cell-mediated cytotoxicity by NK cells, ultimately 

leading to the death of the cell (Hangartner et al., 2006). Although, this mechanism may 

not be as prevalent during PRRSV infection as viral proteins typically localize to the 

endoplasmic reticulum, and budding occurs at the golgi, not the plasma membrane. Viral 

particles are transported out of the cell via exocytosis, making it unlikely for PRRSV 

proteins to associate with the plasma membrane of cells (Veit et al., 2014). Lastly, IgA is 

commonly found as a secreted form in the mucosa, although it is also detectable in serum. 

The primary role of secreted IgA (sIgA) is neutralization of toxins or in the prevention of 

pathogen attachment to their target cells. Thus, an ideal vaccine candidate will elicit a 

strong IgA response in mucosal tissues in order to prevent the infection from breaching 

the mucosal epithelium, halting the establishment of a potential infection (Burton, 2002; 

Hangartner et al., 2006). The major hurdle that exists in the immune response to PRRSV 

is the robust non-NA response and the delay in NA induction, which is discussed below.  

 

1.6.2  Antibody mediated enhanced uptake 

As mentioned previously, NAs don’t appear until 4 weeks post infection. This could be 

attributable to immune evasion and the immune dysregulation in both the innate and 

adaptive branches of immunity. As such, the non-NAs have shown specificity for GP5, 

M, N, and multiple non-structural proteins (nsps). This begs the question as to what role 

non-NAs play during infection. It has been hypothesized that antibody dependent 

enhanced uptake (ADE) exists, which would result in a heightened rate of infection with 

potentially severe clinical outcomes if an animal were to be infected with a heterologous 

strain of PRRSV. But the evidence surrounding ADE has been sketchy, and likely is not 

occurring (Loving et al., 2015). Taking into consideration how quickly PRRSV 

disseminates to multiple organs throughout the body, it seems plausible that non-NA 

could be enhancing the rate of dissemination. The mechanism of dissemination would be 
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comparable to ADE, in that opsonization of viral particles with serum immunoglobulins 

(via interactions with FcRγ on the surface of APCs and the recruitment of C1 from 

complement) would result in increased uptake into APCs, particularly macrophages 

(MΦs). In addition to the early viremic state associated with PRRSV infection, enhanced 

uptake by APCs, and their subsequent infection, would provide a potential explanation 

for the rapid spread of virus throughout the body. The difficulty in demonstrating ADE 

upon challenging pigs with a heterologous strain of PRRSV could be attributed to ADE 

occurring in a primary challenge in naïve animals. Essentially, the mutation rates are so 

high within non-neutralizing epitopes of PRRSV that upon encountering a heterologous 

strain of PRRSV, the immune system would be unable to recognize it as being related to 

the primary strain. But this doesn’t mean that non-NA don’t enhance the rate of infection 

and dissemination. If anything it’s the opposite, in that a state of ADE occurs during 

every PRRSV infection, excluding challenges with homologous strains in the presence of 

NAs. Thus, a potential role for non-NA in PRRSV infection could be the enhancement of 

dissemination through the body via opsonization of viral particles, leading to enhanced 

uptake by APCs (the targets of viral replication). In terms of usefulness, non-NAs are not 

entirely useless as they can be utilized for diagnostic purposes. It is also possible that 

non-NA could play a role in virus neutralization, as discussed in the following paragraph.  

 

1.6.3  Targets for antibody intervention 

Antigenic epitopes associated with neutralization are buried beneath glycan shields and 

potentially within quartenary protein structures (the GP2-GP3-GP4 trimer) on the surface 

of the PRRSV virion. Furthermore, the principal neutralizing epitopes (NE) are flanked 

by non-neutralizing decoy epitopes (Loving et al., 2015; Lunney et al., 2016). It begs the 

question as to how NAs are able to circumvent the glycan shields (as glycan shields have 

been shown to be indispensable for PRRSV replication, they can’t be deleted or 

modified) to gain access to the NEs that are buried and hidden. It’s plausible that upon 

binding to their antigenic epitopes, non-NA could alter the conformation of adjacent viral 

proteins. Alterations in the conformation of proteins surrounding NEs could theoretically 

expose the NE. This could potentially explain how NAs are able to gain access to the 

hidden and buried NE, in addition to the NAs undergoing rigorous somatic hypermutation 
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(Burton, 2002; Hangartner et al., 2006). It’s clear that NAs are a necessary component in 

overcoming infection. Thus, the main issue that exists is the delay in the induction of NA 

and the preferential synthesis of non-NA during the viremic period of infection.  

 

1.6.4  Hypergammaglobulinemia 

The robust non-NA response seen early during infection with PRRSV may be attributable 

to hypergammaglobulinemia. Butler et al. were able to demonstrate that the amount of 

immunoglobulin present in bronchoalveolar lavages (BAL) during a PRRSV infection 

was increased more than 10 fold in comparison to pigs infected with swine-influenza 

virus (swIAV) and porcine circovirus-2 (PCV-2). They essentially showed that the 

majority of the B cells, during the viremic state of a PRRSV infection, express different 

isotypes (IgM, IgG, IgA) but nearly identical sequences in their 3rd complimentarity 

determining region (HCDR3) of the antibody heavy chain. In other words, the authors 

showed that the non-NA response to PRRSV originated from similar B cell clones that 

had not undergone somatic hypermutation. Furthermore they argued that the amino acids 

within the HCDR3 region (the central binding domain of the hypervariable region) were 

of hydrophobic nature, resembling a non-specific, polyvalent repertoire of antibodies 

characteristics of a naïve ab repertoire in infants (Schroeder et al., 1998). The authors 

hypothesized there is a PRRSV antigen that acts similar to a superantigen, stimulating the 

proliferation of a population of B cells derived from a nearly identical clone. There has 

been no evidence of a super antigen that PRRSV secretes. But it’s plausible that early 

during PRRSV infection B cells are activated independently of T cell help. In this case, 

ab-ag complexes could interact with B cells in peripheral lymphoid organs and stimulate 

a robust antibody response. Without the aid of T helper cells, somatic hypermutation 

would be delayed resulting in an ab repertoire with relatively low affinity for PRRSV 

antigens, and potentially even auto-reactive abs (Butler et al., 2008). Taking into 

consideration the timeline of the adaptive immune response to PRRSV, it seems that IFN-

γ cells appear in the periphery before NAs. Therefore, it is plausible that B cells 

proliferate independently of T cell help early during infection. Then once T cells have 

been activated, they interact with B cells driving somatic hypermutation, eventually 

resulting in NA synthesis. Overall, it seems likely that in order for B cells to undergo 
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somatic hypermutation, leading to the synthesis of NA, they must communicate with CD 

follicular T helper cells. Unfortunately, the cell-mediated immune response to PRRSV 

seems to be suppressed or dysregulated in some way. Knowledge surrounding the cell-

mediated immune response to PRRSV is lacking, and the information that does exist is 

relatively conflicting. Particularly whether regulatory T cells are being induced to 

suppress the progression to an effective T cell response must be addressed. In order to 

discover answers regarding the immune dysregulation that occurs during PRRSV 

infection, both cell-mediated immunity and humoral immunity warrant further attention.  

 

1.7  Cell-mediated immunity 

1.7.1  CD4+ T helper cells 

The initial stages of T lymphocyte development occur in the thymus, in which T cells 

undergo a process of positive and negative selection. During positive selection, 

CD4α/CD8β double positive thymocytes migrate to the thymic cortex and interact with 

thymic epithelial cells. If the double positive thymocytes interact more strongly with 

MHCII they become CD4α+ and if they interact more with MHCI they acquire a CD8β+ 

lineage. If the thymocyte has undergone a poor rearrangement of its T cell receptor 

(TCR) and does not interact with either MHCI or MHCII, that thymocyte undergoes 

apoptosis and is eliminated from the T cell repertoire. The negative selection of T cells 

eliminates those lymphocytes that have acquired a T cell receptor (TCR) that is reactive 

against self-MHC molecules in association with its peptide complex. Those T cells that 

are self reactive, for the most part, undergo apoptosis and are eliminated from the 

repertoire, in turn preventing self-reactivity and auto-immunity (Colf et al., 2007; Singer 

et al., 2008). Once a thymocyte has acquired markers towards a specific lineage (CD4α+, 

CD8β+, or γδ+) it then migrates to secondary lymphoid organs for further development 

(Klein et al., 2014). 

CD4+ T helper (Th) cells can be described as the directors of the adaptive immune 

response. As their name implies, the primary role of CD4+ Th cells is to aid in the 

development of both the cell-mediated and the humoral arms of immunity (Bevan, 2004; 

Crotty, 2015). A naïve CD4+ Th cell resides within peripheral lymphoid organs awaiting 
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its encounter with the antigen for which its αβ TCR has been rearranged to recognize. 

Upon acquiring antigen, APCs migrate towards the draining lymph node to stimulate T 

lymphocyte maturation. This step of T cell maturation is dependent on multiple factors 

during antigen presentation that include the following: First, the successful recognition 

and interaction of the TCR with the MHCII peptide bound molecule. Secondly, the 

induction of CD80/86 expression on the APC and its interaction with CD28 on the T cell. 

And lastly, the cytokines expressed by the APC to which the T cell is directed towards 

differentiating into a specific lineage (Pennock et al., 2013). In regards to PRRSV, the 

most effective lineage to combat the viral infection would be a Th1 type immune 

response. In order for this to occur, APCs presenting antigen to T cells would be 

expressing IL-12 and potentially IFN-α. The cytokines delivered by the APC stimulate 

the expression of different transcription factors that influence the type immune response 

the Th cell will be geared towards. In the case of a Th1 type immune response, the 

transcription factor T-bet would be activated in the lymphocyte (Luckheeram et al., 

2012a). Whether or not this is occurring during PRRSV infection is unknown. Multiple 

subsets of CD4+ Th cells exist and they will be discussed in the following paragraphs. For 

simplicity’s sake, this review will focus primarily on Th1 differentiated CD4+ Th cells as 

they are the major effectors when considering viral infections. CD4+ Th cells can thus be 

characterized as having an effector or a memory phenotype. 

Upon stimulation, a naïve CD4+ Th cell clone differentiates towards a specific lineage 

(eg: Th1) from which it undergoes cell division into effector T cells. The effector T cells 

acquire homing receptors that enable their migration towards sites of inflammation, 

resulting in their activity to clear the antigen to which they have been stimulated. Once 

antigen has been cleared, roughly 90% of the effector population dies leaving the residual 

population to undergo memory cell differentiation. T cells acquiring a memory phenotype 

can be categorized as central memory T cells (TCM) or effector memory T cells (TEM). 

The purpose of the memory cell population confers the ability to mount a secondary 

response to a previously encountered antigen. Although the mechanisms by which a 

CD4+ Th cell undergoes memory differentiation are not completely understood, marked 

differences between TCM and TEM cells are known. Central memory T cells reside within 

peripheral lymphoid organs, expressing the homing receptor CCR7 that permits their 
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migration between secondary lymphoid organs, surveying and sampling for their 

particular antigen. Furthermore, the TCM population seems to have a lower expression of 

the lineage committed transcription factors (eg T-bet) in comparison to their TEM 

counterparts. It’s likely that T effector clones arise from the TCM populations. The TEM 

population have higher expression of their lineage committed transcription factors and 

reside within specific organs or tissues, likely associated with their original homing 

destination (where the antigen was encountered at its highest concentration). Thus, the 

TEM population lends the ability to mount a quick and effective an immune response at 

the site of infection (Pepper and Jenkins, 2011a).  

As mentioned previously, the major role of CD4α T cells is to direct the immune 

response, given their “helper” T cell designation. Once stimulated, Th cells differentiate 

into different subsets. One important subset of CD4+ Th cells is the follicular T helper 

(TFH) cells. As their name implies, TFH are CD4+ Th cells that up-regulate the expression 

of CXCR5, which enables their migration to germinal centres. Within germinal centres 

TFH, in conjunction with follicular DCs, direct somatic hypermutation and isotype 

switching. They have been shown to be crucial in generating long lasting neutralizing 

antibody responses to certain viruses. In addition to aiding the activation of B cells, CD4+ 

Th cells also play a role in the stimulation of naïve CD8β+ CTLs. The activation of 

CD8β+ can be accomplished via stimulation and antigen presentation by APCs, but CD4+ 

Th cells seem to be crucial in forming a memory CD8β+ T cell response. An interaction 

of co-stimulatory molecules between CD4+ Th cells and CD8β T cells, particularly 

CD40-CD40L, results in a downregulation of TNF-related apoptosis inducing-ligand 

(TRAIL) within CD8β+ T cells, conferring long lived memory cells via inhibition of 

apoptosis (Swain et al., 2012b). In addition to helping, CD4+ T cells possess effector 

mechanisms that directly combat infection by influencing the cytokine environment at the 

sites of immune activation and infection.  

As mentioned previously, the activation of a CD4+ T cell clone results in its division into 

lymphoblast CD4+ effector T cells. These effector T cells migrate towards sights of 

inflammation in order to aid in clearing antigen to which they have been primed. 

Arguably, the major contribution of CD4+ effector T cells when combatting a viral 

infection is via the secretion of IFN-γ. The secretion of IFN-γ aids in the establishment of 
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an anti-viral response amongst cells surrounding the area in which the CD4+ effector T 

cell is located (eg: activation of MΦs to an M1 phenotype). Additionally, some CD4α+ 

effector T cells may possess some cytolytic activity, either through perforin secretion of 

FasL induced apoptosis of target cells (Swain et al., 2012a). After the resolution of an 

infection, T lymphocyte numbers return to base levels with the help of CD4+ regulatory T 

cells (TReg). Regarding a viral infection, it’s likely that regulatory T cells are induced in 

an antigen specific manner. A hallmark for regulatory T cell identification in pigs is the 

expression of Forkhead box P3 (FOXP3) and CD25, in addition to CD4α (Kaser et al., 

2015). Regulatory T cells possess potent anti-inflammatory mechanisms, mainly through 

secretion of IL-10 and tissue-growth factor β (TGF-β). These cytokines are also able to 

induce apoptosis in effector T lymphocytes that are no longer needed, in the case of 

antigen clearance. Regulatory T cells may also possess some cytolytic activity, through 

the secretion of granzyme A/B and perforin, which would also aid in the induction of 

apoptosis in lymphocytes that are no longer needed. Whether or not these inducible TRegs 

acquire a memory phenotype is unknown, but it’s possible that some of the natural TRegs 

that are more involved in self-tolerance and tissue homeostasis could be found to acquire 

a memory phenotype (Vignali et al., 2008). 

 

1.7.2  CD8β+ cytotoxic T cells 

The endogenous pathway of antigen presentation has been discussed previously. To 

recap, cytoplasmic antigen is processed via proteasomal degradation and presented as 

peptide sequences bound to MHCI molecules on the surface of cells. This provides the 

immune system with a mechanism to combat intracellular pathogens through the 

activation of CD8β+ CTLs. As such, an optimal Th1 type immune response mounted 

against a virus will involve the induction of CD8β CTLs (Rosendahl Huber et al., 2014). 

Similar to CD4+ Th cells, CTLs can acquire memory of effector phenotypes. The memory 

cell phenotype of CTLs follows similar principles to CD4+ induction, thus only effector 

mechanisms of CTLs will be discussed here. Viral infected cell recognition by CTLs 

results in their targeted apoptosis through multiple mechanisms. The main effector 

mechanism of CTLs would be through secretion of perforin, which punches holes in the 

membranes of cells, and the delivery of granzyme A/B to induce apoptosis. In addition to 
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perforin/granzyme secretion, CTLs can induce apoptosis via Fas-FasL interactions on cell 

surfaces. And lastly, similar to CD4+ effector T cells, CTLs are capable of influencing the 

immune environment through the secretion of inflammatory cytokines such as IFN-γ and 

TNFα (Barry and Bleackley, 2002).  

 

1.7.3  Porcine T lymphocytes 

Taking into consideration the porcine immune system, a study was performed to identify 

cell surface markers associated with T memory cell (TMem) differentiation and variation in 

T cell subsets over the first 6 months of a pig’s life. A portion of porcine CD4α+ Th cells 

are found to express CD8α, which seems to correlate with age. The authors went on to 

theorize that CD8α expression was associated with antigen-experienced memory Th cells. 

As a result, they noted an absence of CD4α+ CD8α+ T cells that were CD27-, early in life. 

Over time, as pigs would encounter antigen and begin to develop a memory Th cell pool, 

the CD4α+ Th cells began to express CD8α and were CD27+. Therefore, in pigs, it seems 

that CD4α+CD8α+CD27+ Th cells are an indicator of a memory cell phenotype and 

CD4α+CD8α-CD27- would account for the naïve CD4α+ Th cell population. The CD8β 

cytotoxic lymphocytes (CTL) seemed to follow a similar path of maturation as the CD4α 

Th cells. Essentially, the authors found that the expression of CD27 correlated with a 

naïve CTL phenotype. In the first week after birth, perforin expression was limited to NK 

cells. Perforin expressing CD8β T cells occurred in conjuction with the gradual loss of 

CD27 expression. The authors theorized that during the early stages of activation, 

effector CTLs begin to lose CD27 expression while up-regulating perforin. Therefore, the 

memory CTL pool can be described as CD3+CD8β+CD27+. Lastly, it should be 

mentioned that a major constituent to the T cell pool in pigs is the γδ T cell population 

(Talker et al., 2013).  

 

I.7.4  Gamma delta-T cells and natural killer cells 

Gamma delta-T cells (γδ T cells) are a CD3+ lymphocyte population that share properties 

characteristic of both the innate and adaptive arms of immunity. Found both in tissue and 

peripheral blood, multiple subsets possessing different qualities have been identified. 
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Their recognition of antigen occurs via interactions between the γδ TCR and CD1d 

molecule on APCs and T cells, which presents the antigen. Whether or not γδ Tcells can 

acquire a memory phenotype, being specific for a particular antigen, is still under 

investigation (Lalor and McLoughlin, 2016). It appears that this may be pathogen specific 

and it is also possible that different subsets of γδ T cells exist in which some may be more 

innate and others more adaptive. The innate aspect of γδ T cells has received more 

attention and the mechanisms of γδ antigen recognition have been identified. 

Phosphoantigens, which are host-derived and presented on CD1d molecules, have been 

shown to possess γδ T cell stimulatory capacity. Additionally, certain pathogen-

associated proteins can be recognized by γδ T cells to activate their anti-viral 

mechanisms. And lastly, γδ T cells have been shown to be sensitive to TLR stimulation, 

lending another method for activation in response to an infection (Vantourout and 

Hayday, 2013).  Regarding their mechanisms to combat pathogens, γδ T cells exhibit 

similar cytotoxic qualities to NK cells and CTLs. Being capable of perforin and 

granzyme B secretion, in addition to utilizing the Fas-FasL pathway, γδ T cells are potent 

inducers of apoptosis in target cells. Furthermore, γδ T cell secretion of pro-inflammatory 

cytokines play an important role early during infections to promote the recruitment of 

leukocytes and the activation of phagocytes, in addition to influencing APC maturation. 

Lastly, in mice it has been shown that γδ T cells may act in the stimulation of αβ T cells 

through antigen presentation, as studies have demonstrated their expression of MHCII in 

addition to CD80/86. Their function as APCs warrants further investigation. Overall, γδ T 

cells possess numerous functions to influence the outcome of an infection, resulting in 

their classification within the innate and adaptive branches of immunity (Zheng et al., 

2013). 

Natural killer cells (NK) are a branch of the innate immune system and were originally 

identified based on their anti-tumor properties. The recognition of stress or damage 

associated molecules on the surface of a cell is one mechanism that initiates NK cell 

cytotoxicity. In addition to this, tumor cells, and sometimes virally infected cells, often 

have down-regulated expression of MHCI molecules, which is also a primary mechanism 

utilized by NK cells for targeted apoptosis (Topham & Hewitt, 2009). Similar to CTLs, 

NK cells induce apoptosis via perforin/granzyme B secretion and the Fas-FasL pathway. 
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The expression of CD16 on NK cells confers the capability of inducing antibody 

dependent cell cytotoxicity (ADCC). Essentially, a virally infected cell could have viral 

proteins incorporated into its cell membrane that would be recognized by antibodies. The 

opsonization of the virally infected cell could then be recognized by CD16, through 

binding to the Fc portion of the antibody, which would in turn mediate the apoptosis of 

the infected cell. Lastly, NK cells are capable of secreting pro-inflammatory cytokines, 

such as IFN-γ and TNFα. Secretion of cytokines could lead to the activation of 

phagocytes, aid in the recruitment of leukocytes to the site of infection, and potentially 

influencing the adaptive arm of immunity. Their capabilities of cell cytotoxicity and their 

influence on the cytokine environment mirror those of CTLs, albeit in a primarily non-

antigen specific manner (Vivier et al., 2008). 

As mentioned previously, a large proportion of CD3+ T cells in the peripheral blood of 

pigs consist of γδ T cells. It was found that the amount of γδ T cells increased as a result 

of age, reaching upwards of 50% of the entire CD3+ T cell population. Furthermore, 

CD8α was expressed on the majority of the γδ T cell population, indicating their 

likelihood in thymic development. In addition to CD8α, the expression of CD27 on the 

surface of γδ T cells seems to decrease with age, potentially indicating antigen encounter. 

If this is the case, CD27 on γδ T cells could be utilized to address maturation stages for γδ 

T cells. In addition to γδ T cells, the study investigated proportions of NK cells. Of note, 

NK cells can be identified as CD8α+ and CD3- and the expression of perforin seems to be 

prominent immediately after birth, which is unlike other species. Proportions of NK cells 

seemed to vary and there was not a clear course in which their constitution to the T cell 

population could be identified (Talker et al., 2013). Further investigation into the roles of 

the γδ and the NK cell populations of pigs is warranted.  

 

1.7.5  Cell-mediated immunity to PRRSV 

It appears to be widely accepted that both cell-mediated and humoral immunity are 

necessary components in overcoming PRRSV infection. Yet, evidence regarding the type 

of immune response conferring resistance has not been clearly defined. The research 

surrounding cell-mediated immunity in particular has been quite confusing. Variability in 

results are attributable, but not limited, to the routes/dosage of inoculation, viral strains 
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utilized, controlled vs. field conditions, and the breed/age/sex of the pigs. Fortunately, 

there appears to be a trend near the end of the viremic stage in pigs when IFN-γ 

expression is highly up-regulated. Unfortunately, the period of viremia varies not only in 

a strain specific manner, but also according to breed, and SLA haplotype of individual 

pigs. Additionally, a subject of continuing debate is the role that regulatory T 

lymphocytes (Tregs) play in PRRSV pathogenesis, if they are induced at all. The 

following section hopes to resolve some of the conflicting research surrounding cell-

mediated immunity and PRRSV. 

A major hurdle for controlling PRRSV is identifying the stage of infection a herd is 

currently in, albeit acute or chronic. In 2008, Molina et al. inoculated pigs via the 

intramuscular route (IM) with the avirulent VR2332 strain and observed infected animals 

over the course of 193 days in a controlled environment. Overall, pigs became 

moderately ill showing non-specific symptoms. In order to assess cell-mediated 

immunity, IFN-γ was detected in serum over the course of the trial. At day 42 post 

infection (PI) the levels of IFN-γ spiked and slowly declined thereafter. It should be noted 

that the point at which IFN-γ was highest occurred in correlation with a decline in 

viremia, which led to half of the pigs resolving the infection (Molina et al., 2008). 

Overall, their results seemed to support that both cell-mediated immunity and humoral 

immunity were important for viral clearance. Similarly, Weesendorp et al. investigated 

the response of 5-week old pigs to Lelystad virus (LV) and found that IFN-γ also played 

an essential role in viral clearance. Furthermore, they observed an increase in NK cells 

and CTLs 26-33 days post infection (Weesendorp et al., 2013). Overall, it seems likely 

that CTLs and potentially NK cells are playing an important role in resolving the viremic 

state in response to avirulent strains of PRRSV. On the other hand, highly virulent strains 

have been able to suppress these activities, which could provide an explanation for 

increased virulence. However, these results were obtained is experimental trials and may 

need to be confirmed in trials mimicking field conditions. For example, Dotti et al. 

performed a trial under field conditions with a moderately virulent NA clinical isolate 

(BS/AL2011). Briefly, their results indicate that the levels of IFN-γ observed under 

controlled conditions did not occur in the field. The levels of IFN-γ they detected in the 

sera were comparable to the controls stimulated with PBS. This seems to indicate that 
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observing PRRSV immunopathogenesis in a controlled environment may not be 

applicable to what is occurring naturally (Dotti et al., 2013). 

As mentioned previously, confusion regarding PRRSV immunology could be due to 

strain specific virulence. Wang et al. was interested in the response of 1-month old 

piglets to NA highly pathogenic HuN4. In addition, they tested the efficacy of the 

currently available CH-1R vaccine. Piglets were inoculated intranasally (i.n.) with HuN4 

on day 28. The vaccinated group was immunized on day 0, boosted on day 14, and 

infected on day 28. Sera was collected over the 56 day trial for cytokine analysis. On day 

33 levels of IL-10 and IFN-γ increased significantly in the non-vaccinated group, peaked 

around day 38, and declined to normal levels by day 49. The vaccinated group had stable 

levels of IL-10 and IFN-γ in comparison to mock-infected pigs throughout the 

experiment. Of particular note, the vaccinated piglets had increased serum levels of IL-4 

at day 33 P.I., decreasing gradually by day 42. This occurred in conjunction with 

decreased levels, and eventual loss, of viremia. Unsurprisingly, IL-4 was not detected in 

the non-vaccinated group which remained viremic until day 56. Overall, it seems that 

high levels of IL-10 and low levels of IL-4 aided in the establishment of the persistence 

of the virus. The authors believed that the vaccine induction of IL-4 resulted in 

prevention of disease, although the virus was still detectable in peripheral lymphoid 

organs (Wang et al., 2011).  Yet, the levels of IFN-γ in the non-vaccinated group did not 

correlate with clearance of virus, which seems strange. In this case, it appears that 

humoral immunity could be playing a more important role than cell-mediated immunity. 

But, the delayed protection from infection could have occurred as a result of partial cell-

mediated immunity, exhibiting the inefficiency of the vaccine. It can therefore be 

assumed that the most effective and safe vaccine will evoke both cellular and humoral 

immune responses. 

Manickam et al. performed a thorough analysis of infection by NA highly virulent 

MN184. One month-old pigs were inoculated i.n. and the response in the blood, mucosal 

tissues, and lymphoid organs was assessed over 63 days. The cytokine profile showed an 

upregulation of IL-12 early during infection, a peak of IL-6 at day 42 until day 57, and 

high levels of IFN-γ at day 35, gradually decreasing by day 49. Resolution of infection 

appeared to coincide with increased expression of IL-6 and IFN-γ. Similar to Molina et 
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al., IFN-γ secreting cells were low in PBMCs, the lungs, and TBLN until day 30 at which 

point they increased significantly, but levels returned to normal at day 60. Levels of 

memory T cells and T helper (Th) cells increased in response to the infection in the lungs 

and lymphoid tissue. Levels of CD8β+ T cells only increased in the lungs. Interestingly, 

γδ T cells increased in lymphoid tissue and in the lungs throughout the infection. Two 

unique phenomena were observed during the trial. The first of which was the 

upregulation of of TGFβ but low levels of IL-10 (although slightly increased). As a 

result, Treg cell proliferation was detected in PBMCs, lung tissue, and peripheral 

lymphoid organs until day 60. The second occurrence was a decrease in the proportion of 

natural killer (NK) cells. Further analysis of the NK cell population indicated that their 

cytotoxic activity had decreased by 50% in the blood and the lungs. Overall the authors 

wanted to demonstrate that a new vaccine is needed. Viral titres were still high in the 

lungs at day 60 days PI but had decreased in lymph nodes, although PRRSV was still 

detectable (Manickam et al., 2013). In comparison to the Lena virus (Eu high virulent), 

the results are surprisingly different. Overall, Th cell levels decreased, there was a very 

weak IFN-γ response, γδ T cells didn’t increase, CD8β+ T cells remained the same, and 

the NK cell population increased (Weesendorp et al., 2013). The Lena virus is often 

compared to NA highly virulent strains, but it seems that their immunomodulatory 

capabilities are significantly different.  

More recently, a group developed an assay to measure cytotoxicity of PRRSV infected 

target cells from animals that had been exposed to PRRSV and subsequently recovered 

from the infection. Their results indicate that CD4α+ CD8α+ double positive T cells were 

capable of killing PRRSV infected macrophages 3-6 hours post infection. Furthermore, 

they found that CD4α+ CD8α- T cells possessed cytotoxic properties, killing infected 

macrophages 16-24 hours post infection. Interestingly, they noted that CD4α- CD8α+ T 

cells did not contribute to cytotoxicity. In addition, the authors noted that neutralizing 

antibodies were not detected in the infected animals. These results indicate the 

importance of cytotoxic T cells in the resolution of a PRRSV infection (Chung et al., 

2018). An investigation into the T cell response to a Type 1 PRRSV infection indicated 

that there is a delayed induction of memory T cells as CD4α+ CD8α+ and CD4α- CD8α+ 

CD8β+ detected roughly three weeks post infection in PBMCs. The kinetics of the T cell 
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response seem to indicate that regulatory T cells decrease upon infection in PBMCs as do 

CD21+ B cells, until roughly three weeks post infection at which point the levels of both 

regulatory T cells and CD21+ B cells begin to increase. Lastly, roughly one-week post 

infection there was a marked increase in the levels of natural killer T cells (NKT) and 

gamma delta (γδ) T cells (Ferrari et al., 2018). This may be an indication of the potential 

importance of γδ T cells and NKT early during a PRRSV infection. 

 

1.7.5.1  Natural killer cells and PRRSV 

Research surrounding the role of natural killer (NK) cells in PRRSV 

immunopathogenesis is in the early stages. Recently Cao et al. performed analysis 

utilizing the avirulent Lelystad virus to assess the immunomodulation of NK cells. 

Essentially, NK cells were enriched and cultured in the presence of IL-2 to spurn the 

population into an activated state. Using K652 cells (NK cell targets) and Pseudorabies 

virus (PrV) as positive controls to demonstrate NK cell lysis, the group infected PAMs 

with PRRSV and co-cultured them with the activated NK cells. Their results demonstrate 

that PRRSV infected PAMs were able to suppress the NK cell activity. Upon comparison 

to the mock-infected PAMs, NK cell activity in PRRSV infected PAMs was still lower. 

They hypothesized that PRRSV is able to modulate a receptor molecule on the surface of 

PAMs that is able to suppress the degranulation process in NK cells, which would inhibit 

perforin and granzyme secretion (Cao et al., 2013). Results obtained previously seemed 

to indicate that this was only occurring in highly virulent strains of PRRSV. Furthermore, 

the result obtained by Weesendorp are contradictory considering he saw a proliferation of 

NK cell activity. Further investigation into NK cell modulation by PRRSV is warranted. 

 

1.7.5.2  Regulatory T cells and PRRSV 

Shortly afterwards, Wongyanin et al. performed a similar analysis using an avirulent 

strain (01NP1) in vitro. They found that after 48 hours in co-culture with infected 

MoDCs, a similar Treg population had proliferated, which they characterized as being 

FoxP3+CD4α+CD25high which are similar to those in humans and mice. They continued to 

perform an in vivo analysis by which they infected pigs and harvested blood on day 0, 5, 
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and 10. Observations confirmed the in vitro results as a FoxP3+CD4α+CD25high 

population had proliferated. Lastly, they too agreed that TGFβ and not IL-10 was 

responsible for the proliferation, although it was mentioned that IL-10 could contribute to 

proliferation (Wongyanin et al., 2010). Regulatory T cell induction by PRRSV is under 

debate. Silva-Campa et al. (2009) was the first group to demonstrate Treg induction by 

PRRSV strains NVSL 97-7895 and CIAD008. Essentially, they infected MoDCs with the 

PRRSV strains and co-cultured them with PBMCs over a 5-day period. Their results 

indicate that Foxp3+CD25+ Tregs proliferated significantly in response to infection. 

Furthermore, upon treatment with IFN-α (either during MoDC infection or during co-

culture) Treg proliferation was inhibited. Upon closer analysis, they found that IL-10 

expression did not play a role as it was not up-regulated. They found that TGFβ was 

solely responsible for the differentiation. They defined the population as Th3 Tregs, and 

concluded that proliferation was occurring as a direct result of PRRSV infection (Silva-

Campa et al., 2009). More recently in 2012, Wongyanin published results that are 

conflicting to those obtained previously. Briefly, the N protein from PRRSV 01NP1 was 

transfected into PAMs, which resulted in the induction of IL-10. It should be noted, that 

Hou et al. had previously demonstrated that the GP5 protein was able to induce IL-10 

synthesis in transfected PAMs (Hou et al., 2012). Transfected PAMs were then co-

cultured with PBMCs, but no Treg induction occurred. Interestingly, when MoDCs were 

transfected and then co-cultured with PBMCs, Treg proliferation was prominent. Upon 

the addition of IL-10 antibody, the proliferation was suppressed. The authors concluded 

that IL-10 was responsible for Treg induction and failed to mention TGFβ (Wongyanin et 

al., 2012). Recently, a group demonstrated that Tregs were detected in the 

tracheobronchial lymph nodes and lung tissue of PRRSV infected animals. Furthermore, 

the authors demonstrated that mononuclear cells infected with PRRSV induced Treg 

differentiation from PRRSV negative animals, which is contradictory to what Rodriguez-

Gomez published previously (Rodriguez-Gomez et al., 2015). Lastly, the authors 

concluded that the induction of Tregs was likely attributable to the increased levels IL-10 

secretion (Nedumpun et al., 2018). The pathogen load of PRRSV, the breed and age of 

the animal, in addition to the strain of PRRSV are all potential contributors in the 

induction of Tregs and T cell immunity in general. The debate as to whether Tregs are 
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induced during a PRRSV infection and the potential role that Tregs have in the delayed 

induction of the cytotoxic T cell response, ultimately leading to the resolution of an 

infection, continues. 

 

1.8  Discussion 
 
Developing a vaccine for PRRSV has proven to be extremely difficult.  The major issues 

encountered thus far stem mainly from unusually high mutation rates, which has resulted 

in the divergence of PRRSV into countless variants between the Type 1 and Type 2 

PRRSV genotypes (Brar et al., 2015; Lu et al., 2017). Although multiple strategies have 

been employed, efforts have been met with limited success, as the induction of cross-

reactive neutralizing antibodies seems to be nearly impossible. Shedding light upon 

unknown aspects of PRRSV immunology and viral pathogenesis, particularly those 

surrounding the regulation of cell mediated immunity and humoral immunity, will aid in 

future vaccine development strategies.  

Based on current research, it is likely that both cytotoxic T cell mediated immunity and 

the induction of neutralizing antibodies are necessary components to provide protection 

and overcome a PRRSV infection. Currently distributed live attenuated vaccines for 

PRRSV are relatively efficacious, conferring cross protection and improving the overall 

health status of immunized animals in comparison to non-immunized animals (Canelli et 

al., 2018; Haiwick et al., 2018). A recent study demonstrates that MLV variants improve 

the health of challenged animals and provide differential protection, depending on the 

strain that animals were challenged with (Huang et al., 2019). A major challenge will be 

the development of a universal PRRSV vaccine for both Type 1 and Type 2 strains. 

Another recent study showed that immunization of gilts with a Type 2 MLV conferred 

increased overall health and a significant decrease in stillborn piglets when late-term 

pregnant gilts were challenged with a Type 1 PRRSV strain. The authors noted that T cell 

mediated immunity was the likely contributor to improved health status and decreased 

viremia in the challenged gilts, as neutralizing antibody titres were low (Jeong et al., 

2018). In contrast, a recent study demonstrated that pigs infected with a Type 2 PRRSV 

strain possessed cross-reactive IFN-γ secreting T cells to other Type 2 strains, but not 
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with a Type 1 PRRSV strain. Additionally, the authors noted that neutralizing antibodies 

were not cross-reactive amongst any of the challenge strains (Correas et al., 2017). The 

discrepancy between the studies could be attributable to methods utilized in the assay. It 

would be surprising if a Type 2 PRRSV immunization offered cross-protection against a 

Type 1 PRRSV strain. Although the currently available MLVs are beneficial towards 

improving health status amongst PRRSV challenged animals, immunization with a live 

virus is not without risk. Major issues associated with the currently available MLVs 

include the risk of reversion to virulence and the immunosuppressive attributes associated 

with PRRSV itself, resulting in animal susceptibility to opportunistic pathogens (Liu et 

al., 2018; Niederwerder et al., 2015). Therefore, given the high mutation rates observed 

amongst strains of PRRSV, the ideal vaccine candidate would not be attenuated. Utilizing 

inactivated, vector delivered, DNA, or conjugate vaccine platforms are potential options 

for future vaccine formulations. In order for one of the previously listed strategies to be 

effective, viral epitopes leading to the induction of both cytotoxic T cells and neutralizing 

antibodies must be determined. Based on previous studies, it seems that T cell epitopes 

are relatively well conserved, as demonstrated by cross-reactive IFN-γ secreting T cells 

within the Type 2 genus (Correas et al., 2017). Theoretically, supplementing a peptide 

vaccine with an appropriate adjuvant platform will elicit a T cell mediated response. 

Therefore, shedding light upon the delayed induction of neutralizing antibodies to 

PRRSV, and identifying epitopes associated with PRRSV neutralization, will be crucial 

for future vaccine development efforts. 
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Chapter 2  HYPOTHESIS AND OBJECTIVES 

2.1 Rationale  

 
The tropism of PRRSV has been shown to be restricted to cells that express CD163. The 

majority of these cells are of myeloid origin and are responsible for the stimulation of 

both naïve and memory T cell responses. There is a delayed adaptive immune response to 

PRRSV and the cause(s) surrounding the delay are unknown. Thus, we chose to 

investigate the influence that PRRSV infection has on specific antigen-presenting cell 

(APC) subsets. Furthermore, we chose to investigate the stimulatory capacity of PRRSV 

infected APCs when co-cultured with T cells, in order to assay the progression to T cell 

immunity over the course of a PRRSV infection. We hypothesize that a specific subset of 

DCs is critical for the induction of T cell mediated immunity. The delayed induction of T 

cell immunity could be attributable to the relative rarity of this specific DC population 

and the dysregulated humoral immune response can be attributable to a lack of follicular 

T helper cell directing somatic hypermutation. 

 

2.2 Objectives and hypotheses  

2.2.1 Objective 1: Characterization of Flt3L derived bone marrow dendritic cells 

Dendritic cells are the professional APCs of the immune system, directly linking the 

innate and adaptive immune response. They are responsible for antigen presentation to 

naïve T cells and the cytokines that DCs secrete play a significant role in directing T cell 

lineage (Th1, Th2, Th17, Th22, Treg). Multiple DC subsets exist in vivo, but their rarity 

makes it difficult to obtain the different subsets for in vitro assays. As such, we chose to 

differentiate DCs from bone marrow hematopoietic stem cells in order to obtain a 

population of DCs consisting of multiple subsets. We characterized the successful 

differentiation of our bone marrow DC populations using flow cytometry. 
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2.2.2 Objective 2: Comparison of antigen-presenting cell susceptibility to PRRSV 

infection 

Antigen presentation to naïve T cells is not restricted to DCs, as macrophages (MΦs) and 

potentially B cells are also capable of presenting antigen to stimulate a naïve T cell. 

Because PRRSV infects MΦs and DCs, we were interested in susceptibility of different 

APCs to infection and how they responded to the infection. We hypothesized that 

PRRSV replicates more efficiently in MΦs than in DCs, making DCs more properly 

equipped to stimulate naïve T cell activation. 

 

2.2.3 Objective 3: Investigate the maturation of the invariant chain 

The maturation of the invariant chain is a critical step during antigen processing that 

ensures an antigen-derived peptide sequence is loaded into the binding groove of an 

MHCII molecule. This process of maturation occurs within endosomes.  Coincidentally, 

it has been demonstrated that PRRSV forms a double membrane vesicle replication 

complex, reminiscent of endosomes. Given the importance that invariant chain 

maturation has during antigen processing and presentation, we hypothesized that PRRSV 

infection interferes with the maturation of the invariant chain. By immunoprecipitating 

MHCII from infected and non-infected APCs, we aimed to demonstrate that PRRSV 

infection prevents maturation of the invariant chain. This could provide a potential 

explanation for the delayed induction of cell-mediated immunity to PRRSV. 

 

2.2.4 Objective 4: Investigate the T cell response to PRRSV infection 

Studying the susceptibility of APCs to PRRSV infection, and their subsequent response, 

does not provide information regarding the effect that infection has on the interaction of 

APCs with T cells. In order to study the interaction of APCs with T cells, we established 

an APC-T cell co-culture assay using a mixed leukocyte reaction (MLR). The MLR 

confirmed our hypothesis that specific APC populations possess differential 

immunostimulatory capacities to promote T cell proliferation. This allowed us to perform 

an animal trial analyzing the progression of the T cell response over the course of a 

PRRSV infection, comparing the antigen-presenting capability of either monocyte-
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derived MΦs or monocyte-derived DCs. We hypothesized that DCs were more potent 

stimulators of CD4+ T helper cells, contributing directly to the initiation of the T cell 

immune response, whereas MΦs, still possessing the capability to stimulate T cells, are 

more involved during the recall of cytotoxic lymphocyte responses during the resolution 

of an infection.  
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Chapter 3   ANTIGEN-PRESENTING CELL 

SUSCEPTIBILITY TO PORCINE REPRODUCTIVE AND 

RESPIRATORY SYNDROME VIRUS INFECTION 
Joseph Darbellay, Jill Van Kessel, Volker Gerdts 

 

3.1 Abstract 
Porcine reproductive and respiratory syndrome virus (PRRSV) has a worldwide 

distribution and is the most economically devastating virus in the swine industry today.  

The tropism of PRRSV has been shown to be restricted to antigen-presenting cells (APC) 

that express CD163. Furthermore, a characteristic of PRRSV disease is the delayed 

induction of T cell immunity. Given their roles in the stimulation of both naïve and 

memory T cell responses, we chose to investigate the rates of viral replication within 

APC populations using flow cytometry (FCM) and rt-qPCR. The susceptibility of 

monocyte-derived macrophages (MoMϕs), monocyte-derived DCs (MoDCs), and Flt3L-

derived bone-marrow DCs (BMDCs) to PRRSV infection were compared in vitro. 

Intracellular detection of PRRSV was comparable and prominent 24 hours post infection 

in MoDCs and Mϕs. Furthermore, using rt-qPCR we found that viral copies in the 

supernatants of Mϕs increased at a higher rate than the DC populations. In comparison to 

the Mϕs, the rate of PRRSV replication in CD163+ BMDCs was much lower. 

Additionally, we investigated the expression of cell surface molecules associated with 

antigen presentation in PRRSV infected APCs with FCM. The levels of MHCI and 

MHCII expression on the surface of infected non-stimulated Mϕs were both down-

regulated. Although it is difficult to conclude why DCs are less susceptible to infection, 

our study allows for speculation on the potential role that DCs may have in the induction 

of T cell immunity. 

 

3.2 Introduction 
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-

stranded, enveloped RNA virus that causes disease in swine worldwide. The virus was 
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first identified in the early 1990s and is thought to have emerged during the early-mid 

1980s (Shi et al., 2010). Today, PRRSV is the most significant pathogen in the swine 

industry causing losses upwards of $650 million dollars in the United States alone 

(Holtkamp, 2012). Outcomes of disease include respiratory difficulty, spontaneous 

abortions and fetus mummification in sows, weight loss, and death under certain 

circumstances (Reeth, 1997; Tong et al., 2007). The demand for an efficacious vaccine 

and the development of strategies for disease control are top priorities (Kimman et al., 

2009). 

Two main species of PRRSV exist, the North American (Type 1) and the European (Type 

2) in which a roughly 40% nucleotide identity is shared (Shi et al., 2010). It is classed 

under the order Nidovirales from the Arteriviridae family. The tropism of PRRSV is 

restricted to cells that express the hemoglobin/haptoglobin scavenger molecule CD163, 

which was identified as the main cellular receptor for viral entry into the cytoplasm 

(Calvert et al., 2007). Although it has been widely accepted that porcine alveolar 

macrophages (PAMs) are the main target cells for PRRSV infection and replication, it 

has been proposed that dendritic cell (DC) are also targets of infection (Calzada-Nova et 

al., 2010; Calzada-Nova et al., 2011; Chang et al., 2008; Chaung et al., 2010; Peng et al., 

2009; Rodriguez-Gomez et al., 2012; Silva-Campa et al., 2009). Because DCs are the 

professional antigen-presenting cell (APC) of the immune system, the modulation of their 

antigen-presenting ability, or their being targets of PRRSV replication, would have major 

implications on the transition from innate to adaptive immunity (Randolph et al., 2005).  

A major interest in the field of PRRSV virology and immunology is the transition to 

adaptive immunity. PRRSV specific antibodies can be detected in animals within days of 

being exposed to the virus, although the antibodies are non-neutralizing. The virus 

continues to spread unchecked, as non-neutralizing antibody titres increase steadily, until 

4+ weeks post infection when neutralizing antibodies become apparent in serum (Loving 

et al., 2015). Although numerous investigations have been undertaken to understand why 

there is a delayed induction of neutralizing antibodies, there has not yet been a concrete 

explanation.  On the other side of adaptive immunity, very little is known about the T cell 

response to PRRSV. It seems that there is a similar delay in the induction of T cell 

immunity as is seen with the neutralizing antibodies. The majority of what is known 
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about T cell immunity has been collected through analyses using IFN-γ ELISpots, which 

have essentially indicated that IFN-γ secreting cells in PBMCs of infected animals 

become apparent around the same time as neutralizing antibodies (Loving et al., 2015). 

Future investigations into the induction of T cell immunity by PRRSV may contain long 

sought after answers. In this study, we focus on antigen-presenting cell susceptibility to 

PRRSV in order to obtain information regarding the first step towards inducing T cell 

immunity. 

 

We feel the confusion surrounding DC susceptibility to PRRSV has arisen as a result of 

utilizing DC models subject to monocyte/macrophage contamination. Studies carried out 

thus far have been performed with GM-CSF bone marrow-derived DC (BMDC) or 

monocyte-derived DC (MoDC) populations. These populations are often subject to 

macrophage contamination, making them inaccurate for elucidating the DC response to 

PRRSV. We have thus chosen to utilize FMS-like tyrosine kinase 3 ligand (Flt3L) 

BMDCs to study PRRSV infection of DCs in vitro. We hypothesize that specific subsets 

of DCs, and not the entire population, are susceptible to PRRSV. Furthermore, we hope 

to demonstrate that immune modulation in this DC subset occurs in a strain specific 

manner according to pathogenicity of the particular strain being investigated. Overall, we 

aim to shed light upon the immunopathogenesis of PRRSV and the evasion strategies it 

possesses. Understanding its mechanisms of immune evasion will be crucial for 

developing new methods of control in addition to establishing strategies for 

immunization.  

 

3.3 Materials and methods 
 
Animals: 

Six-eight week old Dutch Landrace pigs were purchased from the pathogen free herd at 

the Prairie Swine Centre (Saskatchewan). A group of 8 pigs was immunized with the 

Fostera® PRRS modified live virus (MLV) intramuscularly to measure T lymphocyte 

proliferation in a co-culture assay. All experiments were conducted in accordance with 
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the ethical guidelines of the University of Saskatchewan and Canadian Council of Animal 

Care. 

 

Cells and viruses: 

Flt3L bone marrow-derived dendritic cells (BMDCs) were prepared as described 

previously (Guzylack-Piriou et al., 2010). Briefly, the sternums were removed from 6-8 

week old Dutch Landrace pigs. Bone marrow was flushed from the sternum with PBS 

(supplemented with 0.7% EDTA, 1% Antibiotic/antimycotic (Gibco®-BRL), and 0.5% 

Gentamycin (Gibco®-BRL)) using an 18-gauge syringe. Hematopoietic stem cells 

(HSCs) were removed from a buffy coat, using a FICOLL-PAQUE® Plus gradient (GE 

Healthcare, Uppsala Sweden) centrifuging at 1000 x g, 40 minutes. Cells were cultured in 

6 well, non-tissue culture treated plates, at a concentration of 5.0x105 cells/mL in RPMI-

1640 complete (Gibco®-BRL) (1% Antibiotic/antimycotic, 0.5 mM β-mercaptoethanol, 

1% MEM non-essential amino acids (Gibco®-BRL), 1% HEPES (Gibco®-BRL), and 

10% FBS) supplemented with 20 ng/mL huFlt3L (R&D Systems). Every third day, 1.0 

mL of media was removed and replaced with fresh media. Cells were harvested on day 7 

for analysis. Monocytes were isolated from whole blood as previously described (Auray 

et al., 2013). Briefly, PBMCs were isolated on a FICOLL-PAQUE® Plus gradient (GE 

Healthcare, Uppsala Sweden). Monocytes were labeled with anti-human CD14 beads and 

selected for on LS columns using a magnetic isolated cell sorter (Miltenyi Biotec, 

Auburn, CA). To obtain MoMΦs, monocytes were plated at 1.0x10^6 cells/mL in RPMI 

complete supplemented with rpGM-CSF (20 ng/ml - Biosource, Camarillo, CA) for 3 

days at 37 °C with 5% carbon dioxide. To obtain MoDCs, monocytes were plated at 

1.0x10^6 cells/mL in RPMI complete with recombinant porcine (rp) IL-4 (100 ng/mL – 

R&D 654-P4) and rpGM-CSF (20 ng/mL – R&D 711-PG) for 6 days at 37 °C with 5% 

carbon dioxide, and media was changed every 3rd day as shown previously (Facci et al., 

2010).  PRRSV strains VR2332 and VR2385 (ATCC, Manassas, VA, USA) were used in 

the study. Virus was grown up on MARC-145 cells and titers were calculated as the 

TCID50/mL (Reed and Muench, 1938).  
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BMDC Characterization: 

BMDCs were harvested on day 6 and resuspended in cold 1 x PBS (pH 7.2, 0.2% gelatin, 

0.03% Na Azide at 1.0x10^6 cells/mL). BMDCs were characterized by staining with 

each antibody for 20 min at 4° C, washed three times (1 x PBS), and fixed with 2% 

paraformaldehyde. Cells (>10,000 events) were analyzed using FACScalibur™, Becton 

Dickinson, BD Biosciences and CELLQUEST™ software. The following antibodies 

were used for BMDC characterization: CD172a (BL1H7, Bio-Rad), CD90 (F15-42-1, 

Bio-Rad), CD3 (PPT3, Southern Biotech), CD14 (MIL-2, Bio-Rad), CD163 (2A10/11, 

Bio-Rad), CD16 (G7, Bio-Rad), CD21 (BB6-11C9.6, Southern Biotech), Swc9 (PM18-7, 

Bio-Rad), MHC II (K274.3G8, Bio-Rad), and MHC I (JM1E3, Bio-Rad). FITC anti-

mouse immunoglobulins IgG1 (1072-07) and IgG2b (1092-02, Southern Biotech) were 

used as secondary antibodies.  

 

Microscopy: 

Cells were fixed, permeabilized and stained with the FITC-SR30 ab as indicated 

previously at 1.0x106 cells/mL. Cells were pipetted (10 µL) onto glass slides, air dried, 

and 1 drop of ProLong® Gold antifade reagent with DAPI (Life Technologies) was 

applied to sample according to the manufacturer’s instructions. Immunofluorescence was 

visualized with the Zeiss Axiovert 200m Inverted microscope (Carl Zeiss Light 

Microscopy, Germany) under 20x magnification. Images were captured with the 

Axiocam (Zeiss, 1069-414) and analyzed using AxioVision Rel. 4.6 (Carl Zeiss Light 

Microscopy). 

 

Antigen presenting cell infections: 

Antigen presenting cells were infected with PRRSV strain VR-2385 at a 0.1 MOI for 3 

hours at 37°, 5% CO2. Cells were centrifuged at 350 g, resuspended in fresh media, and 

seeded on 12 well plates. Cells and supernatant were harvested at 8, 24, 48, and 72 hours 

post infection for flow cytometry analysis and rt-qPCR. Monocyte-derived macrophages 

were either non-stimulated (M0), or stimulated with IL-4 (100 ng/mL) or with 

recombinant porcine IFN-γ (20 ng/mL, R&D 985-PI) for 24 hours to mimic an M2 or M1 

phenotype, respectively before being infected with the PRRSV as previously. 
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Flow cytometry: 

At 24 or 48 hours post infection, DCs and MoMΦs were harvested and resuspended in 1× 

phosphate buffered saline (PBS) pH 7.3 containing sodium azide (0.03%) and gelatin 

(0.02%) (staining media) and stained to assess cell surface marker expression by flow 

cytometry. Briefly, cells were incubated 20 min at 4°C with primary antibodies, then 

washed twice before incubation with their respective secondary antibody. The primary 

antibodies utilized are as follows: CD163 (2A10/11, Bio-Rad), MHC II (K274.3G8, Bio-

Rad), and MHC I (JM1E3, Bio-Rad). Cells were incubated for 20 min at 4°C with a goat-

anti mouse IgG1-APC secondary antibody (Southern Biotech 1070-11s). For PRRSV 

nucleocapsid staining, cells were fixed and permeabilized with the 

Fixation/Permeabilization Kit (eBioscience) according to the manufacturer’s instructions. 

At least 10000 events were collected on a FACSCALIBUR™ (BD Biosciences, 

Mountain View, CA) using the CELLQUEST™ software. Changes in mean fluorescence 

intensity (MFI) were calculated by subtracting the MFI from the infected cells by the 

MFI of the non-infected cells.  

 

Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR): 

To measure PRRSV replication, 180 µl of supernatant was collected from infected cell 

cultures and stored at -80. RNA was extracted using a QIAmp Viral RNA Mini Kit 

(Qiagen) according to the manufacturer’s instructions. A 2-step reverse transcription PCR 

was performed to determine levels of PRRSV in the supernatant. Complementary DNA 

was synthesized (High Capacity cDNA Reverse Transcription Kit, Invitrogen) and then 

quantitative-PCR was performed using 2 µL of each cDNA reaction with the KAPA 

SYBR® Fast qPCR kit according to the manufacturer’s instructions (Kapa Biosystems). 

Analysis was performed using a Bio-Rad iCycler iQ 5 (Bio-Rad, Hercules, CA). Primers 

were selected based on previous publication ( S-GGCCAGCCAGTCAATC; AS-

CACACGGTCGCCCTAATTG) (Calzada-Nova et al., 2011).  

 

Interferon-gamma ELISpots: 

A group of 8 animals was immunized with the Fostera® PRRS modified live virus 

(MLV). Peripheral blood mononuclear cells (PBMCs) were isolated on day 0 and day 16 
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for IFN-γ ELISpots. ELISpots were performed as demonstrated previously (Dar et al., 

2012). Briefly, nitrocellulose microtiter plates (UNIFILTER® 350, Whatmann, Florham 

Park, NJ, USA) were coated with 0.5 µg/100 µl of anti-porcine IFN-γ monoclonal 

antibodies solution (Thermo Fisher Scientific, Inc., Nepean, ON, Canada). 

5.0x10^5 PBMC were added to each well and cells were stimulated with PRRSV or 

inactivated PRRSV (VR-2385, MOI 1.0). After 24 hr incubation at 37 °C, rabbit anti-

porcine IFN-γ antibody solution (0.2 µg/100 µl in phosphate buffer saline with 0.05% 

tween® 20) was added and plates were incubated for 4 hours at room temperature. Biotin-

conjugated goat ant-rabbit IgG (Invitrogen-Zymed, Burlington, ON, Canada) was added 

(1/5000 dilution) for 2 hours at room temp before the addition of 1/5000 diluted 

streptavidin alkaline phosphatase solution for 1.5 hours at room temp. Lastly, spots were 

developed with NBT/BCIP (Sigma-Aldrich, St. Louis, MO, USA). Spots were counted 

with an AID ELISpot Reader Classic.  
 

Monocyte-derived macrophage – T cell co-cultures and lymphocyte proliferation assay: 

Monocyte-derived macrophages and T cells were co-cultured to investigate the 

stimulatory capacity of PRRSV infected M0 MoMΦs, to promote T lymphocyte 

proliferation. Animals were immunized with the MLV and 14 days post immunization, 

monocytes were isolated from PBMCs of MLV immunized animals. After 3 days in 

culture monocytes had differentiated into MoMΦs. On the same day, T cells were 

isolated from PBMCs of the MLV immunized animals. To isolate T cells, PBMCs were 

stained with anti-CD172a and anti-CD21 for 15 minutes at 4o C, then washed twice. Cells 

were then incubated with IgG1 MACS beads for 15 minutes at 4o C before passing the 

cells through LS columns (Miltenyi Biotec). The enriched T cell population was stained 

with CFSE according to the manufacturer’s protocol (Cell Trace CFSE, Thermo Fisher) 

to monitor proliferation, before being plated at 3.0x10^5 cells/well on a 96 well U bottom 

plate. The M0 MoMΦs were infected with PRRSV VR-2385 for 3 hours, or mock-

infected, before being washed and plated with T cells at a ratio of 1:10. After the addition 

of M0 MoMΦs, the MoMΦ-T cell co-culture was incubated at 37o C, 5% CO2 for 4 days 

before assessing proliferation with FCM. 
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Statistical Analysis: 

All data points on graphs are representative of genetically unrelated individual animals. 

All the data were statistically analysed using GRAPHPAD PRISM™ 7 software 

(GraphPad Software, Inc., La Jolla, CA). Differences between groups were assessed 

using the Mann-Whitney U test for non-paired, non-Gaussian data. When P≤0.05, 

differences were considered significant. 

 

3.4 Results 
 
Characterization of bone marrow-derived dendritic cells: 

Flow cytometry (FCM) was carried out on day 7 of culture to demonstrate successful 

differentiation of HSC precursors into BMDCs. The relative purity of DCs in the culture 

can be seen by the lack of macrophages (Swc9), lymphocytes (CD3/CD21), and 

fibroblasts (CD90). Furthermore, the BMDCs were consistently CD172ahigh and 

MHCIImid/high (Supplementary Figure 3-10 and 3-11). Supplementary Figure 3-12 

demonstrates the clustered arrangement of DCs in culture after they have differentiated. 

Cells were non-adherent, further indicating purity of DCs in the cultures. Based on 

previously published data, we are confident in confirming successful differentiation of 

the BMDC populations (Guzylack-Piriou et al., 2010), (Facci et al., 2010). 

 

Susceptibility of BMDCs to PRRSV: 

A preliminary investigation was launched in order to determine the susceptibility of 

BMDCs to PRRSV infection using VR-2385. Figure 3-1 demonstrates that over a 72-

hour period of time, cells became gradually infected with PRRSV, as the level of staining 

against the viral nucleocapsid protein increased (FCM schematic shown in supplementary 

Figure 3-13). Lastly, RT-qPCR for PRRSV transcripts in the supernatant indicated a 

roughly 400-fold increase after 72 hours (Supplementary Figure 3-14). 	
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Figure 3-1: BMDC infection with VR-2385 over 72 hours. BMDCs were infected at an 
moi of 0.1 and harvested at the indicated time points. Cells were subsequently fixed, 
permeabilized, and stained with the SR30-FITC to detect the PRRSV N protein. Data 
points are representative of genetically unrelated animals, performed as single samples. 
The figure demonstrates flow cytometry (FCM) data showing individual pigs (dots) and 
the percentage of infected cells (bars); Cx = non-infected cells. P<0.05 = *; P<0.005 = 
**; P<0.0005 = ***. 

 
CD163+ and CD163- BMDC susceptibility to PRRSV: 

BMDCs were sorted using a fluorescence activated cell sorter (MoFlo XDP Cell Sorter, 

Beckman Coulter) according to CD163 expression (Supplementary Figure 3-15). The 

BMDC populations were exposed to the PRRSV and stained intracellularly for the viral 

N protein (Supplementary Figure 3-16). Based on the FCM results, CD163+ BMDCs are 

susceptible to infection and CD163- BMDCs are not susceptible to infection (Figure 3-2). 
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Figure 3-2: Sorted BMDC (CD163+ and CD163-) susceptibility to PRRSV. BMDCs were 
sorted into two populations (A - CD163+ or B - CD163-). Cells were infected with two 
strains of PRRSV and stained as previously indicated against the PRRSV N protein at the 
indicated time points. Data points were collected from unrelated animals, performed as 
single replicates.  
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Antigen presenting cell susceptibility to PRRSV: 

MoMΦs were stimulated with IL-4 or IFN-γ for 24 hours to mimic and M2 or M1 

phenotype respectively. M1 and M2 MoMΦs and MoDCs were infected with two strains 

of PRRSV (VR-2385 and VR-2332). The susceptibility of the MoMΦs and MoDCs was 

compared to that of the BMDCs (Figure 3-3). There was no difference amongst the 

susceptibility of MoMΦs, regardless of stimulation and the MoDCs seem share a 

similarity in susceptibility to MoMΦs. The CD163+ BMDCs were not as susceptible to 

infection in comparison to the other APC populations. 

As shown in Figure 3-4, upon comparing forward scatter (FSC) / Side scatter profiles 

(SSC) of the infected APCs, it became apparent that MoDCs (Supplementary Figure 3-

17) and MoMΦs were no longer viable 48 hours post infection, in comparison to the 

BMDCs which still appear to be healthy. The assessment of cell viability is based on the 

relative diameter of the cell (FSC). As cells begin to die they appear lower on the FSC 

axis where debris is normally located on FSC/SSC dot plots. 
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Figure 3-3: APC cell susceptibility to PRRSV infection. MoMΦs, MoDCs, and BMDCs 
were infected with two different strains of PRRSV (3a: VR-2332; 3b: VR-2385). Cells 
were fixed, permeabilized, and stained with SR30-FITC at 24 hours post infection. Data 
points were collected from unrelated animals, performed as single replicates. Statistical 
significance was determined comparing the groups to the BMDC infected population. 
P<0.05 = *; P<0.005 = **. 
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Figure 3-4: Antigen-presenting cell viability post infection. Forward scatter (FSC), side 
scatter (SSC) dot plots demonstrating cell viability of infected MoMΦs and infected 
BMDCs 24 hr and 48 hr post infection. Non-infected control (Crl) cells are on the left and 
the VR-2332 infected cells are shown on the right (PI-post infection). 
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Real time quantitative-PCR of PRRSV copies in supernatant of infected APCs: 

Viral RNA was isolated from the supernatants of APC cell cultures infected with PRRSV 

VR-2385 at 8 hours, 24 hours, and 48 hours post infection (PI). In order to quantify viral 

copies, a PRRSV stock of known TCID50 was used to develop a standard curve 

(Supplementary figure 3-18). The results indicate that viral copies are detected earlier and 

at a higher concentration in the infected MoMΦs, and potentially MoDCs, in comparison 

to infected BMDCs (Figure 3-5).  

 

 
Figure 3-5: Real time quantitative PCR of PRRSV copies in the supernatant of infected 
cells. MoMΦs, MoDCs, and CD163+ BMDCs were infected with PRRSV VR-2385 
(MOI 0.1) and supernatants were collected 8hr, 24hr, and 48hr post infection (PI). Data 
points were collected from unrelated animals, performed as single replicates. Reverse 
transcription reactions were performed in duplicate. A standard curve developed using 
known TCID50 viral stock in order to quantify viral copies present in the supernatant of 
the infected cell cultures. P = 0.0159. 

 
Expression of cell surface markers associated with antigen presentation: 

The cell surface marker expression of MHCII (Figure 3-6) and MHCI (Figure 3-7) were 

analyzed in APCs infected with PRRSV using FCM. Change in expression was 

determined by calculating the difference between the mean fluorescence intensity (MFI) 
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MΦs and both DC populations have increased MHCI and MHCII expression when 

exposed to PRRSV, but there was no statistical difference amongst the treatments. (FCM 

staining example in Supplementary Figure 3-19. Additional time points for the CD163- 

BMDCs and CD163+ BMDCs can be seen in supplementary Figures 3-20 and 3-21). 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 3-6: MHCII Cell surface expression on APCs infected with PRRSV. APCs were 
infected with VR-2332 (A) or VR-2385 (B). Change in cell surface expression of MHCII 
were determined by calculating the difference between the mean fluorescent intensity of 
the infected cells and their respective controls. The data was collected from non-related 
animals, performed as single replicates, and was determined to show no statistical 
significance. 
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Figure 3-7: MHCI Cell surface expression on APCs infected with PRRSV. APCs were 
infected with VR-2332 (A) or VR-2385 (B). Changes in cell surface MHCI expression 
were determined by calculating the difference between the mean fluorescent intensity of 
the infected cells and their respective controls. The data was collected from non-related 
animals, performed as single replicates, and was determined to show no statistical 
significance. 

 
Non-stimulated macrophage (M0) cell surface marker expression: 

The MHCI and MHCII cell surface markers on non-stimulated MoMΦs infected with 

PRRSV VR-2385 and VR-2332 were assessed as previously performed in the other APC 
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populations. As Figure 3-8 indicates, there is a clear downregulation in the expression of 

both MHCI and MHCII on the surface of M0 MoMΦs infected with PRRSV. 

 

 
 
 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 

Figure 3-8: Cell surface expression of MHCII (A) and MHCI (B) on M0 MoMΦs infected 
with PRRSV VR-2332 and VR-2385. Changes in cell surface expression of MHC were 
determined by calculating the difference between the mean fluorescent intensity of the 
infected cells and their respective controls. Data points represent non-related animals, 
performed as single replicates, with VR-2332 and VR-2385 infections from non-related 
animals. P < 0.05 = *; P< 0.005 = ** 
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T cell recall response from immunized animals in a macrophage-T cell co-culture: 

We were interested in how the expression of MHC molecules might influence T cell 

proliferation. Therefore, M0 MoMΦs were either: infected, treated with inactivated 

PRRSV, or mock-infected with media for 3 hours before being washed, and then cultured 

with T cells. The T cells were isolated from animals immunized with the PRRSV MLV 

and cultured with macrophages from syngeneic animals. As the results indicate in Figure 

3-9, although there was a downregulation of MHC expression in MoMΦs infected with 

PRRSV (Figure 3.8), it did not abrogate their stimulatory capacity to promote 

lymphocyte proliferation. Lastly, inactivated PRRSV treatment of PBMCs promoted 

IFN-γ secretion in ELISpots. Which unlike the MoMΦ-T cell co-culture in which the 

inactivated virus treatment was applied, there was no lymphocyte proliferation potentially 

indicating a lack of stimulation (Supplementary Figure 3-23). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-9: T cell recall-response from immunized animals via macrophage- T cell co-
culture. Non-stimulated MoMΦs (M0) from immunized animals were infected with 
PRRSV VR-2385, and subsequently co-cultured with CFSE stained T cells from 
autologous animals to assay for lymphocyte proliferation. After 4 days in culture, 
proliferation was assessed with flow cytometry. Statistical significance was determined 
by comparing the treatments to the media alone treatment. P < 0.05 = *; P< 0.005 = **. 
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3.5 Discussion 
 
The tropism of PRRSV is restricted to cells that express the hemoglobin/haptoglobin 

scavenger molecule CD163, which was identified as a necessary cellular receptor for 

viral entry into the cytoplasm (Calvert et al., 2007). In addition to CD163, sioladhesin 1 

(CD169) and heparin-sulfate residues have been identified as attachment factors for 

PRRSV (Van Breedam et al., 2010; Van Gorp et al., 2008). Although it has been widely 

accepted that porcine alveolar macrophages (PAMs) are the primary target for PRRSV 

infection, dendritic cell (DC) susceptibility has been a subject of continuing debate. We 

feel that confusion surrounding DC permissibility to PRRSV exists as a result of utilizing 

inappropriate DC cultures to study the virus. The majority of DC research has been 

carried out in monocyte-derived DC (MoDC) cultures or granulocyte macrophage 

colony-stimulating factor (GM-CSF) bone marrow-derived DC (BMDC) cultures, which 

are both subject to MΦ and/or monocyte contaminants (Calzada-Nova et al., 2011; Chang 

et al., 2008; Flores-Mendoza et al., 2008; Peng et al., 2009; Silva-Campa et al., 2009; 

Subramaniam et al., 2011; Wang et al., 2007; Wongyanin et al., 2012; Wongyanin et al., 

2010; Zhang et al., 2012). Because PRRSV is able to infect MΦs, the analysis of the DC 

innate response in these models may not be entirely accurate.  

The in vivo differentiation of DCs from hematopoetic progenitor cells has been 

demonstrated to occur in response to FMS-related tyrosine kinase 3 ligand (Flt3L). 

Although GM-CSF and M-CSF have also been shown to play a role in DC 

differentiation, Flt3L knock out mice have shown markedly reduced levels of DCs. 

Furthermore, DCs obtained through in vitro differentiation utilizing Flt3L have been 

shown to contain multiple DC subsets, one of which is the plasmacytoid DCs (pDCs) 

(Belz and Nutt, 2012). Unfortunately, one of the major issues that exist in studying 

porcine DC immunology is obtaining cell surface markers that are specific for DCs. 

Unlike in mice and humans, porcine DCs cannot be identified based on the expression of 

CD11c. Furthermore, GM-CSF and MoDC cultures contain a specific subset of DCs, 

which is not representative of in vivo populations. As is demonstrated in supplementary 

Figure 3-11, the staining pattern of our BMDC populations appeared to correlate to those 

obtained in previous studies as being MHCIImid/high, CD172ahigh, and consisting of a 
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mixed population of CD163- or CD163+ cells (Guzylack-Piriou et al., 2010). We feel 

confident in assuming the successful differentiation of our HSC precursors into DCs.  

The results obtained from the preliminary investigation with the highly virulent strain of 

PRRSV (VR-2385) indicate that BMDCs are infected by PRRSV (Figure 3-1). 

Furthermore, it was apparent that not every cell in the culture was infected, as the 

majority of the population (>80%) was negative for PRRSV 72 hours post-infection. It 

seemed logical to assume that the population being infected consisted of DCs expressing 

CD163. Additionally, we were interested in determining whether an avirulent strain (VR-

2332) was also able to infect the CD163+ DCs. A major strategy that viruses have 

developed for immune evasion has been an interference with antigen presentation and 

maturation in DCs (Kruse et al., 2000; Mahanty et al., 2003; Wang et al., 2007). Thus, we 

isolated our BMDC population based on CD163 expression (Supplementary Figure 3-15). 

As expected, the CD163+ BMDCs were susceptible to infection and the CD163- BMDCs 

were not susceptible (Figure 3-2). Considering there are multiple APC populations in 

pigs, we continued our investigation by comparing the susceptibility of CD163+ BMDCs 

to MoMΦs and MoDCs infected with PRRSV. Our results, as indicated in Figure 3-3 and 

Figure 3-5, show that PRRSV seems to infect MΦs more efficiently than the CD163+ 

BMDCs and potentially MoDCs. As mentioned previously, MoDC cultures are subject to 

MoMΦ contamination, which could explain the non-statistically significant difference in 

PRRSV transcripts between MoDCs and BMDCs or MoMΦs. At this time, it is difficult 

to conclude why there is a difference in APC susceptibility to PRRSV. Lastly, when 

comparing the forward scatter/side scatter profiles of the PRRSV infected APCS (Figure 

3-4), it could be assumed that the CD163+ BMDCs remained healthy 48 hours post 

infection, whereas the MoDCs and MoMΦs were essentially dead after 48 hours. This 

difference in APC viability may be attributable to a less severe rate of infection, but it 

could also be an indication of a defense mechanism the CD163+ BMDCs possess not seen 

in the MoMΦs or MoDCs. An aspect of major interest in our lab is the progression to T 

cell immunity during PRRSV infection. Thus, we investigated the expression of cell 

surface markers associated with antigen presentation in the APC populations after 

PRRSV infection. 
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Antigen presenting cells utilize MHCI and MHCII to present peptide sequences derived 

from antigen to CD8β+ and CD4α+ T cells respectively. When comparing the levels of 

MHCI and MHCII expression on the APC populations (Figure 3-6 and Figure 3-7) there 

was no significant change in the expression of the molecules in PRRSV infected APCs. 

Furthermore, we were unable to detect any changes in CD80/86 expression (results not 

shown). On the other hand, non-stimulated MoMΦs (M0) showed clear downregulations 

in both MHCI and MHCII cell surface expression when PRRSV infected (Figures 3-8). 

Ultimately, these results tell us little of what effect the changes in MHC expression have 

during antigen presentation to T cells. Thus, we chose to utilize M0 MoMΦs to 

investigate whether PRRSV induced downregulation of MHC molecules had an effect of 

their capacity to stimulate T cell proliferation. Our results demonstrated that even though 

there is a downregulation of MHC molecules on the surface of MoMΦs infected with 

PRRSV, it did not abrogate their stimulatory capacity, as the M0 MoMΦs clearly retained 

their capacity to stimulate a recall response in T cells from immunized animals (Figure 3-

9). Interestingly, the inactivated virus treatment in our IFN-γ ELISpot assay was able to 

stimulate IFN-γ secretion (Supplementary Figure 3-23) but we did not observe T cell 

proliferation in the M0 MoMΦs treated with inactivated PRRSV in the T cell co-cultures. 

We speculate that this could be attributable to DCs not being present in our co-culture 

when they are present in the PBMC ELISpot assays. Overall, we can conclude that 

alteration of MHC expression on APCs does not necessarily correlate to their antigen-

presenting ability, nor their T cell stimulatory capacity. This did not come as a surprise, 

as the MHC expression on the MoMΦs was only down-regulated and not completely 

abrogated. 
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3.6 Supplementary figures 

 
Figure 3-10: Bone marrow dendritic cell (BMDC) characterization. Flow cytometry 
demonstrating the cell surface markers of the stained BMDC population. 
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Figure 3-11: Summary of flow cytometry staining to characterize BMDC derived 
population. Each dot is representative of a different pig and the bars are representative of 
the mean staining for each marker. The mean % gated for each marker are as follows: 
MHCI (93.57% ), MHCII (61.28%), CD172a (73.37%), CD163 (23.24%), and CD14 
(47.89%). The cell population was devoid of macrophages (Swc9), T cells (CD3), B cells 
(CD21), and fibroblasts (CD90). Data points are from non-related animals. 
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Figure 3-12: Light microscopy of BMDCs from 1 pig on day 7 of culture (6 well plates, 
5.0x10^5 cells/mL). 

 

 
Figure 3-13: BMDC infection with VR-2385 over 72 hours. BMDCs were infected at an 
moi of 0.1 and harvested at the indicated time points. Flow cytometry of cells stained 
with the SR30-FITC ab against the PRRSV N protein. Yellow represents control cells 
stained with the SR30 ab; purple overlay represent infected cells stained with the SR30 
ab 
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Figure 3-14: PRRSV replication in the supernatant. A 1 step reverse transcription was 
used to determine levels of PRRSV in the supernatant using the SuperScript® III 
Platinum® One-Step qRT-PCR Kit (Invitrogen) according to the manufacturer’s 
instructions. Fold expression was determined by comparing Ct values at indicated time 
points to their respective controls (non-infected cell supernatants). (Cx = non-infected, 
control cells). Data points are representative of BMDCs from non-related animals. 

 

 
Figure 3-15: Fluorescence activated cell-sorting images to show gating strategy for the 
CD163+ sort of the BMDC population. 
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Figure 3-16: BMDCs sorted for CD163 expression were infected with PRRSV and 
stained intracellularly for PRRSV N protein. (Infected cells-Green; Non-infected cells-
purple). Both populations were stained with SR30-FITC. 

 

 
Figure 3-17: MoDC forward scatter/side scatter plots demonstrating cell viability 24 and 
hours post infection with PRRSV VR-2332. Non-infected cells are on the left side and the 
infected cells are on the right side. 
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Figure 3-18: Standard curve utilized to demonstrate primer efficiency and quantification 
of PRRSV transcripts. Y  = -2.704ln(x) + 62.863. R² = 0.99971 

 
 

 
Figure 3-19: Representation of the flow cytometry staining of antigen-presenting cells for 
cell surface marker expression. Above, macrophages infected with PRRSV VR-2385 or 
VR-2332 were stained with anti-MHCI or anti-MHCII antibodies. Numbers a 
representative of the mean fluorescence intensity. 
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Figure 3-20: Flow cytometry demonstrating MFI of MHCI and MHCII expression on 
CD163- BMDCs treated with PRRSV. (Cx= non-infected control). Changes in the MFI of 
MHCI and MHCII cell surface expression was determined as previously indicated. The 
data was collected from non-related animals, performed as single replicates, and was 
determined to show no statistical significance. 
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Figure 3-21: Flow cytometry data demonstrating MHCI and MHCII expression from the 
48 hour time points of PRRSV infected CD163+ BMDCs. The data was collected from 
non-related animals, performed as single replicates, and was determined to show no 
statistical significance. (Cx= non-infected control) 

 

 
Figure 3-22: Interferon-gamma ELISpots from PRRSV immunized animals on day 0. 
Peripheral blood mononuclear cells (PBMCs) were plated at 5.0x10^5 cells per well and 
stimulated with either live or inactivated PRRSV VR-2385 for 24 hours before IFN-γ 
ELISpot plates were developed.  
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Figure 3-23: Interferon-gamma ELISpots from PRRSV immunized animals on day 16 
post immunization. Peripheral blood mononuclear cells (PBMCs) were plated at 5.0x10^5 
cells per well and stimulated with either live or inactivated PRRSV VR-2385 for 24 hours 
before IFN-γ ELISpot plates were developed. 

 
Contributions: JD and JVK isolated PBMCs and monocytes. JD isolated hematopoietic 
stem cells. JD performed cell macrophage and MoDC cell differentiation cultures. JD 
performed the flow cytometry. JD isolated viral RNA and performed rt-qPCR. JD 
performed microscopy. JD did statistical analysis. JD and VG designed experiments. 
 
 
 
 

3.7 Conclusion 
Bone marrow-derived DCs were successfully differentiated and characterized using 

Flt3L. Antigen presenting cell susceptibility to PRRSV is restricted to cells that express 

CD163. The PRRSV replicates more efficiently in MoMΦs than in CD163+ BMDCs, and 

potentially MoDCs. Lastly, the downregulation of surface MHCII in PRRSV infected M0 

MoMΦs did not abrogate their immunostimulatory capacity to induce CD4α+ Th cell 

proliferation, when co-cultured with T cells from MLV immunized animals. To further 

investigate PRRSV’s influence on antigen presentation, in Chapter 4 we investigated the 

maturation of the invariant chain in MoDCs and PAMs infected with PRRSV. 
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Chapter 4  PRRSV INFECTION ALTERS THE 

ASSOCIATION OF GAMMA ACTIN 1 WITH MHCII IN 

MONOCYTE-DERIVED DENDRITIC CELLS 
 

4.1 Abstract 
 
Trafficking of peptide loaded MHCII molecules to the plasma membrane is an integral 

step during antigen presentation, driving the progression to CD4+ Th cell mediated 

immunity. The mechanism by which peptide loaded MHCII molecules are trafficked to 

the plasma membrane is unresolved, although the utilization of the actin cytoskeleton is 

likely. Additionally, it is relatively common for enveloped RNA viruses to hijack the 

actin cytoskeleton to mediate their entry, replication, and assembly within susceptible 

cells. Very little is known regarding the role of the actin cytoskeleton during infection 

with the porcine reproductive and respiratory syndrome virus (PRRSV) and an 

explanation for the delayed induction of T cell immunity to PRRSV is unknown. Porcine 

alveolar macrophages (PAMs) and monocyte-derived dendritic cells (MoDCs) were 

infected with PRRSV and MHCII was immunoprecipitated to determine whether PRRSV 

had an effect on antigen processing/presentation. Shotgun mass spectrophotometry 

indicated that the infection of porcine MoDCs by PRRSV alters the association of gamma 

actin 1 with MHCII. Furthermore, PRRSV did not alter the expression of gamma actin 1 

in PAMs. PRRSV interference of antigen processing and presentation in MoDCs could 

influence the progression to T cell immunity. 

 

4.2 Introduction 
 
The eukaryotic cytoskeleton has both structural and functional roles. Structurally, within 

antigen-presenting cells (APCs), the actin cytoskeleton localizes just below the plasma 

membrane and is a major factor in podosome formation (Skruber et al., 2018). 

Podosomes, a characteristic of immature dendritic cells (DCs), play a crucial role in 

cellular attachment, motility, and in sampling the external environment. Upon maturation, 
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the actin cytoskeleton is rearranged and DC podosomes are no longer apparent. 

Additional hallmarks of DC maturation include loss of phagocytic capacity, upregulation 

of co-stimulatory molecules, increased MHCII expression on the surfaces of cells, and 

halting the synthesis of new MHCII molecules, as the DCs prepare for antigen 

presentation (Kleijmeer et al., 2001; West et al., 2004). Functionally within eukaryotic 

cells, the actin cytoskeleton is utilized to traffic proteins and molecules throughout the 

cytoplasm. Concerning APCs, it has been shown that inhibition of the actin cytoskeleton 

prevented the maturation of the invariant chain in B cells, but this may not be the case 

with DCs (Barois et al., 1998). An additional role of the actin cytoskeleton in APC is 

during the formation of the immunological synapse between DCs and T cells, by 

sequestering co-stimulatory molecules and adhesion molecules to the site of antigen 

presentation (Comrie et al., 2015; Girard et al., 2012). 

Viral infections are often associated with rearrangements of the actin cytoskeleton. It has 

been demonstrated that viruses, like respiratory syncytial virus (RSV), adenoviruses, 

reoviruses, and picornaviruses, utilize the actin cytoskeleton for entry, migration, 

replication, and egress. In particular, it has been shown that viral entry via clathrin-coated 

pits utilizes the actin cytoskeleton for trafficking (Jans et al., 2016; Wang et al., 2018). 

The role of the actin cytoskeleton during a PRRSV infection has gone largely unstudied. 

Manipulation of the rearrangement of the actin cytoskeleton in APCs by the PRRSV 

could influence multiple factors, including the following: cellular locomotion (migration 

of APCs to the draining lymph node); antigen processing (influencing the peptide 

repertoire being presented); antigen presentation (interfering with peptide loaded MHCII 

(pMHCII) trafficking to the plasma membrane). Although multiple theories have been 

postulated for the delayed induction of T cell immunity to PRRSV, like the necrosis and 

apoptosis in the thymus and lymph nodes leading to an overall lymphocyte depletion or 

the potential suppression of immunity by regulatory T cells early during infection, there 

has not yet been a definitive explanation (Manickam et al., 2013; Silva-Campa et al., 

2009; Weesendorp et al., 2013; Wongyanin et al., 2010). Given that PRRSV is able to 

infect APCs, it may be plausible that the virus could be interfering with the processing 

and/or presentation of antigenic peptide sequences to T cells. Interrupting antigen 
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presentation in APCs could potentially offer an explanation for the delayed induction of T 

cell mediated immunity to the PRRSV. 

Here, we sought to investigate the maturation of the invariant chain in response to 

PRRSV infection. MoDCs and porcine alveolar macrophages (PAMS) were infected with 

PRRSV (VR-2385) and cells were lysed 24 hours post infection. MHCII was 

immunoprecipitated from whole cell lysates and separated on a polyacrylamide gel. 

Bands on the gel were identified using shotgun mass spectrometry. Our results indicate 

that PRRSV does not have an influence on the maturation of the invariant chain. Mass 

spectrometry analysis indicated that PRRSV infection influences the association of 

gamma actin 1 with MHCII in MoDCs. Lastly, we show that the expression levels of 

proteins associated with MHCII in PAMs and MoDCs are different, potentially 

highlighting the professional antigen-presenting capability associated with DCs.   

 

4.3 Materials and methods 
 
Animals: 

Six to eight-week old Dutch Landrace pigs were purchased from the pathogen free herd 

at the Prairie Swine Centre (Saskatchewan). All experiments were conducted in 

accordance with the ethical guidelines of the University of Saskatchewan and Canadian 

Council of Animal Care.  

 

Cells and viruses: 

Monocytes were isolated from whole blood as previously described (Auray et al., 2013). 

Briefly, PBMCs were isolated on a FICOLL-PAQUE® Plus gradient (GE Healthcare, 

Uppsala Sweden). Monocytes were labeled with anti-human CD14 beads and selected for 

on LS columns using a magnetic isolated cell sorter (Miltenyi Biotec, Auburn, CA). To 

obtain MoDCs, monocytes were plated at 1.0x10^6 cells/mL in RPMI complete with 

recombinant porcine (rp) IL-4 (100 ng/mL – R&D 654-P4) and rpGM-CSF (20 ng/mL – 

R&D 711-PG) for 6 days at 37 °C with 5% carbon dioxide, and media was changed every 

3rd day as performed previously (Facci et al., 2010). Dendritic cells are susceptible to 

PRRSV infection and are often referred to as the professional APCs of the immune 
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system, thus we chose to investigate PRRSV effect on antigen presentation in MoDCs. 

Porcine alveolar macrophages (PAMs) are easily accessible and readily infected by 

PRRSV. PAMs were isolated via bronchoalveolar lavage, as described previously (Zhang 

et al., 2009). Briefly, lungs were removed from animals and 500 ml of PBS, at 4°C 

supplemented with 10% fetal bovine serum + gentamycin (100 µg/ml, Gibco) and 2x 

Antibiotic/Antimycotic (Sigma Aldrich), was poured into the lung using an endotracheal 

tube. The lung was massaged and cells were poured into a collection vessel. The effluent 

from the lung collection was filtered through 40 µm filters (Falcon) to remove debris. 

Cells were then pelleted (400xg) and washed twice before culturing in Dulbecco’s 

Modified Eagle’s Medium (Sigma Aldrich) + 2% FBS, 14 mM HEPES (Gibco), 0.1 mM 

non-essential amino acids (Gibco), 100 µg/ml Gentamycin (Gibco), 1x 

Antibiotic/Antimycotic (Gibco).  PRRSV strain VR2385 (ATCC, Manassas, VA, USA) 

was used in the study.  

 

Antigen presenting cell infections and sample preparation: 

Briefly, ten million antigen-presenting cells were infected with PRRSV (MOI 0.1), or 

cells were non-infected for 3 hours at 37°, 5% CO2 . Cells were pelleted at 350 g, 

resuspended in fresh media, and seeded on 12 well plates. Cells were harvested 24 hours 

post infection, cells were then pelleted and washed before lysing in RIPA lysis buffer + 

0.1mM PMSF protease inhibitor. Cells were incubated for 20 minutes at 4oC with 

shaking and sonicated for 2 minutes. Cellular debris was removed by centrifuging 

samples at 10,000xg for 5 minutes (twice) and the supernatant was placed into a new 

microcentrifuge tube. Protein concentration was determined using a Pierce BCA Protein 

Assay Kit (Thermo Fisher) and concentrations were normalized across samples.  

 

MHCII Immunoprecipitation: 

Dynabeads Magnetic Beads, Protein A, were utilized to immunoprecipitate MHCII 

according to the manufacturer’s instructions. We identified an appropriate antibody to 

immunoprecipitate MHCII and silver stained a polyacrylamide gel. Briefly, fifty 

microliters of Dynabeads Protein A were incubated with 20.0 µg of MHCII (MSA3, King 

Fisher) for 20 minutes at room temperature with rotation. The dynabead-MHCII complex 
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was washed utilizing the magnet and washing buffer supplied by the manufacturer, before 

combining MHCII-dynabeads with the cellular lysates prepared previously. The lysates 

were left to immunoprecipitate overnight at 4oC with shaking, before following the 

manufacturer’s instructions in completing the immunoprecipitation.  

 

Polyacrylamide Gel Electrophoresis: 

Samples were loaded into wells of a 12.5% polyacrylamide gel with a stack. The 

ProteoSilverTM Silver Stain Kit (SIGMA) was used according to the manufacturer’s 

instructions. A band appeared at 40-45 kDa in the non-infected control cell sample but 

not in the PRRSV infected MoDC sample lane. The band was extracted with a razor 

blade, stored in ultra distilled water, and sent for shotgun mass spectrometry sequencing 

at the Proteomics Platform of the CHU de Québec Research Center (Quebec, Qc, 

Canada). 

 

Tryptic digest: 

Bands of interest were extracted from gels and placed in 96-well plates and then washed 

with water. Tryptic digestion was performed on a liquid handling robot (MultiProbe, 

Perkin Elmer) according to the manufacturer’s specifications. Briefly, proteins were 

reduced with 10mM DTT and alkylated with 55mM iodoacetamide. Trypsin digestion 

was performed using 126nM of modified porcine trypsin (Sequencing grade, Promega, 

Madison, WI) at 37°C for 18h. Digestion products were extracted using 1% formic acid, 

2% acetonitrile followed by 1% formic acid, 50% acetonitrile. The recovered extracts 

were pooled, vacuum centrifuge dried and then resuspended into 12 µl of 0.1% formic 

acid and 5 µl were analyzed by mass spectrometry.  

 

Mass spectrometry: 

Peptide samples were injected and separated by online reversed-phase (RP) nanoscale 

capillary liquid chromatography (nanoLC) and analyzed by electrospray mass 

spectrometry (ESI MS/MS). The experiments were performed with a Dionex UltiMate 

3000 nanoRSLC chromatography system (Thermo Fisher Scientific / Dionex Softron 

GmbH, Germering, Germany) connected to an Orbitrap Fusion mass spectrometer 
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(Thermo Fisher Scientific, San Jose, CA,USA) driving with Orbitrap Fusion Tune 

Application 2.0 and equipped with a nanoelectrospray ion source. Peptides were trapped 

at 20 µl/min in loading solvent (2% acetonitrile, 0.05% TFA) on a 5mm x 300 µm C18 

pepmap cartridge pre-column (Thermo Fisher Scientific / Dionex Softron GmbH, 

Germering, Germany) during 5 minutes. Then, the pre-column was switched online with 

a self-made 50 cm x 75µm internal diameter separation column packed with ReproSil-

Pur C18-AQ 3-µm resin (Dr. Maisch HPLC GmbH, Ammerbuch-Entringen, Germany) 

and the peptides were eluted with a linear gradient from 5-40% solvent B (A: 0,1% 

formic acid, B: 80% acetonitrile, 0.1% formic acid) in 30 minutes at 300 nL/min. Mass 

spectra were acquired using a data dependent acquisition mode using Thermo XCalibur 

software version 3.0.63. Full scan mass spectra (350 to 1800m/z) were acquired in the 

orbitrap using an AGC target of 4e5, a maximum injection time of 50 ms and a resolution 

of 120 000. Internal calibration using lock mass on the m/z 445.12003 siloxane ion was 

used. Each MS scan was followed by acquisition of fragmentation MSMS spectra of the 

most intense ions for a total cycle time of 3 seconds (top speed mode). The selected ions 

were isolated using the quadrupole analyzer in a window of 1.6 m/z and fragmented by 

Higher energy Collision-induced Dissociation (HCD) with 35% of collision energy. The 

resulting fragments were detected by the linear ion trap in rapid scan rate with an AGC 

target of 1e4 and a maximum injection time of 50ms.  Dynamic exclusion of previously 

fragmented peptides was set for a period of 20 sec and a tolerance of 10 ppm. 

Database searching: 

 All MS/MS peak lists (MGF files) were generated using Thermo Proteome Discoverer 

software (Thermo Fisher Scientific Inc., version 2.1.0). MGF sample files were then 

analyzed using Mascot (Matrix Science, London, UK; version 2.5.1). Mascot was set up 

to search the contaminants_thegpm_20170713.fasta; 

AX_Desulfovibrio_CI_194924_20160714 database (unknown version, 104802 entries) 

assuming the digestion enzyme trypsin. Mascot was searched with a fragment ion mass 

tolerance of 0,60 Da and a parent ion tolerance of 10,0 PPM. Carbamidomethyl of 

cysteine was specified in Mascot as a fixed modification. Deamidated of asparagine and 

glutamine and oxidation of methionine were specified in Mascot as variable 

modifications. Two missed cleavages were allowed. 
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Criteria for protein identification: 

Scaffold (version Scaffold_4.7.5, Proteome Software Inc., Portland, OR) was used to 

validate MS/MS based peptide and protein identifications. Peptide identifications were 

accepted if they could be established at greater than 95.0% probability by the Peptide 

Prophet algorithm (Keller et al., 2002) with Scaffold delta-mass correction. Protein 

identifications were accepted if they could be established at greater than 95.0% 

probability and contained at least 2 identified peptides. Protein probabilities were 

assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contain 

similar peptides and could not be differentiated based on MS/MS analysis alone were 

grouped to satisfy the principles of parsimony.        

 

4.4 Results 
 
PRRSV infection alters protein association with immunoprecipitated MHCII: 

Twenty-four hours post infection with PRRSV, PAMs and MoDCs were lysed and whole 

cell fractions were analyzed by immunoprecipitation of MHCII. Protein concentrations 

were normalized and equal amounts of protein were loaded into separate wells on a 

PAGE-gel before silver staining. Non-infected MoDCs had a band of 40-50 kDa in size 

that was prominent in comparison to PRRSV infected MoDCs (Band “A”). The band was 

faint in PAMs, and PRRSV infection did not alter the prominence of the band. The 

indicated bands (A- 42-45 kDa; B- 30-35 kDa; C – 28-30 kDa; Figure 4-1) were 

extracted for identification via mass spectrometry sequencing. 
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Figure 4-1: Silver stained SDS-PAGE-Gel of immunoprecipitated MHCII samples from 
PRRSV infected and non-infected APCs. MoDCs and PAMs were either infected or non-
infected for 24 hours before immunoprecipitating MHCII. Protein concentrations were 
normalized before samples were loaded into their respective wells. Lane 2: Non-infected 
MoDCs; Lane 3: VR-2385 infected MoDCs; Lane 4: Non-infected PAMS; Lane 5: VR-
2385 infected PAMs. Bands A, B, and C were extracted from Lane 2 and sent for mass 
spec sequencing. The experiment was repeated three times from non-related animals. The 
immunoprecipitation of MHCII from PAMs and MoDCs in the above image (isolated 
from the same animal) was performed simultaneously. 

 
 

PRRSV infection alters the association of gamma actin 1 with MHCII: 

The mass spectrometry data indicated that the missing band in the PRRSV infected 

MoDCs was gamma actin 1. Beyond gamma actin 1, there wasn’t as remarkable of a 

difference in the expression pattern of the other protein bands amongst the other APC 

populations that were infected with PRRSV versus those that were not infected. The 

identification of the bands sent for mass spec sequencing were as follows: Band A - Actin 

gamma 1; Band B – SLA-DRA1; Band C – SLA-DRB1. 
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Table 4.1: Mass spectrometry identified proteins from the MHCII immunoprecipitation. 

 
 
Extracted bands from the silver stained SDS-PAGE-Gel were identified using shotgun 
mass spectrophotometry as explained previously. Ten proteins, of 115, were identified as 
being relevant to the immunoprecipitation of MHCII using Scaffold 4 software. 
Quantitative value, total spectrum count, exclusive unique spectrum count, and protein 
identification probability indicate that the missing band is gamma actin 1. Bands B and C 
were identified as HLA-DRA1 and SLA-DRB1 respectively, confirming the successful 
immunoprecipitation of MHCII. A, B, C letter designations correspond to the extracted 
bands. 

 

4.5 Discussion 
 
Dendritic cells (DCs) are often referred to as the professional APCs of the immune 

system. This being attributable to their capability of processing antigens into peptide 

sequences for presentation on MHC molecules to stimulate naïve T cells, driving the 

adaptive immune response in a particular direction. Although macrophages are capable of 

stimulating T cell responses, the repertoire of peptide sequences being presented by DCs 

is likely more diverse. Studies have shown macrophages have higher proteolytic activity 

and a lower pH within late endosomes than DCs, theoretically resulting in increased 

Identified	Proteins Accession	Number MW	(kDa) A B C A B C
Actin	gamma	1 I3LVD5_PIG 42 119 10 5 107 6 6

Sus	scrofa	SLA-DRB1 A0A287ARX3_PIG 30 2 15 23 2 9 26

Sus	scrofa	HLA-DRA1 A0A287AYL4_PIG 25 0 41 6 0 24 7

Cathepsin	B A0A287F94_PIG 41 0 0 7 0 0 8

Cathepsin	Z A5GFX7_PIG 34 0 0 7 0 0 8

Sus	scrofa	SLA-3 A0A287AJS8_PIG 40 8 0 0 7 0 0

SLA	class	II,	DQ	

haplotype	C	beta	chain HB2C_PIG 30 0 0 5 0 6

Actin,	beta	like	2 A0A287A4R1_PIG 42 40 0 0 36 0 0

Sus	scrofa	CD74 A0A287B7S0_PIG 31 0 0 3 0 0 3

SLA	class	II,	DQ	

haplotype	C	alpha	chain HA2C_PIG 28 0 5 0 0 3 0

Identified	Proteins Accession	Number A B C A B C
Actin	gamma	1 I3LVD5_PIG 49 6 6 100% 100% 100%

Sus	scrofa	SLA-DRB1 A0A287ARX3_PIG 2 7 10 100% 100% 100%

Sus	scrofa	SLA-DRA1 A0A287AYL4_PIG 0 9 5 0% 100% 100%

Cathepsin	B A0A287F94_PIG 0 0 8 0% 0% 100%

Cathepsin	Z A5GFX7_PIG 0 0 7 0% 0% 100%

Sus	scrofa	SLA-3 A0A287AJ58_PIG 7 0 0 100% 0% 0%

SLA	class	II,	DQ	

haplotype	C	beta	chain HB2C_PIG 0 0 5 0% 0% 100%

Actin,	beta	like	2 A0A287A4R1_PIG 2 0 0 100% 0% 0%

Sus	scrofa	CD74 A0A287B750_PIG 0 0 3 0% 0% 100%

SLA	class	II,	DQ	

haplotype	C	alpha	chain HA2C_PIG 0 3 0 0% 100% 0%

Quantitative	Value	(Normalized	Spectra) Total	Spectrum	Count

Exclusive	Unique	Spectrum	Count Protein	Identification	Probability
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levels of proteolysis, which would in turn deplete the peptide repertoire for presentation 

(Delamarre et al., 2005]. When considering the immune response to a pathogen, a high 

degree of peptide diversity is favorable. The pathway in which MHCII is synthesized and 

loaded with peptide has been largely deduced, but the trafficking of peptide loaded 

MHCII to the plasma membrane in APCs has not been completely resolved (Blum et al., 

2013; ten Broeke et al., 2013).  

Originally we sought to investigate whether PRRSV has an influence on the maturation 

of the invariant chain. Referring to Figure 4.2 on the following page, shortly after 

translation, MHCII is trafficked to the endoplasmic reticulum (ER) for further 

modification. Within the ER, an invariant chain trimer acts as a scaffold to which three 

MHCII alpha chains and three MHCII beta chains bind. The MHCII nonamer is then 

trafficked through the trans-golgi network or to the plasma membrane, after which the 

MHCII-Invariant chain (I chain) complex can be found within early and late endosomes. 

Internalization of MHCII at the plasma membrane has been hypothesized to occur in 

response to poly-ubiquitination of a lysine residue on the cytoplasmic tail of the MHCII 

beta chain. This ubiqutination process has been showed to occur more readily in 

immature DCs than mature DCs, and may even be utilized as a differentiation marker of 

maturation. Within these endosomes, acidic conditions, in addition to cysteine proteases 

(Cathepsins S, F, and L), lead to the processing of the invariant chain into CLIP. CLIP 

occupies the binding groove of MHCII to prevent autonomic peptides from occupying the 

groove. An MHCII homologue, HLA-DM, is responsible for removing CLIP from the 

binding groove, thus facilitating the loading of a peptide sequence for antigen 

presentation. The peptide loaded MHCII heterodimer is then ready to be trafficked to the 

plasma membrane, where it localizes to lipid rafts for peptide presentation to CD4+ Th 

cells (Blum et al., 2013; Mellins and Stern, 2014). To determine whether PRRSV 

influences maturation of the invariant chain, we infected cells and immunoprecipitated 

MHCII. 
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Figure 4-2: Schematic summarizing the replication and assembly of PRRSV, and the 
potential association of PRRSV with the maturation of the invariant chain and MHCII 
antigen processing and presentation. The schematic demonstrates the potential that 
PRRSV may interfere with the maturation of the invariant chain and/or with MHCII 
associated antigen processing/presentation. Arrows and numbers in green indicate the 
pathway of PRRSV replication and assembly. Arrows and numbers in red indicate the 
pathway of invariant chain maturation and MHCII peptide presentation; pMHCII = 
peptide loaded MHCII; CatS = Cathepsin S; CatF = Cathepsin F; CatL = Cathepsin L. 
Triangles = PRRSV proteins. 
 

Our results coincide with what has been shown in the literature, as the alpha chain (HLA-

DRA1) we identified was 33-35 kDa and the beta chain (SLA-DRB1) was 28-30 kDa 

(Schafer et al., 1998). Ultimately we observed one major discernable difference in the 

levels of MHCII associated molecules amongst the infected and non-infected cell 

populations. The size of the band did not correspond to that of the processed invariant 

chain (CD74 = 10 kDa) on the silver stained gel (Pierre and Mellman, 1998). At this time 

it is difficult to conclude whether PRRSV influences the maturation of the invariant 

chain, as there is no antibody available to detect the invariant chain in pigs. Considering 
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we have demonstrated that PRRSV infected macrophages and MoDCs were capable of 

stimulating antigen specific T cell proliferation (Chapter 6), we believe that PRRSV may 

not be suppressing invariant chain maturation. Interestingly a band within the PRRSV 

infected MoDCs was practically diminished, which was identified to be gamma actin 1. 

Upon maturation, DCs undergo several changes including but not limited to the 

following: a) increased MHCII on the plasma membrane; b) upregulation of co-

stimulatory molecules; c) diminished phagocytic capacity; d) abrogation of new MHCII 

molecule synthesis; e) loss of podosomes as a result of cytoskeletal rearrangement 

(Kleijmeer et al., 2001; ten Broeke et al., 2013; West et al., 2004). As mentioned 

previously, little is known as to how pMHCII is trafficked to the plasma membrane, it has 

been shown that microtubules are utilized in transport, but it’s also plausible that 

transport utilizes the cytoskeleton (Rocha and Neefjes, 2008).  

Filamentous actin can be found underneath the plasma membranes of cells, providing a 

structural base in addition to aiding in cellular motility (Wang et al., 2018). Actin 

filaments accumulate at podosomes in APCs, enabling movement and sampling of the 

environment, and potentially playing a role in cellular migration. Upon activation, the 

actin filaments at podosomes are rearranged to favour endocytosis and phagocytosis of 

antigen, ultimately leading to the loss of podosomes in activated APCs (Burns et al., 

2001). Gamma actin 1 and beta actin (twice as prominent in cells) are the predominant 

forms of actin that contribute to the actin cytoskeleton. Characterizing the roles of beta 

actin and gamma actin has proven to be challenging, owing to difficulty in purifying the 

actin filaments separately. It has been shown that beta-actin knockout mice do not survive 

embryogenesis, whereas gamma-actin knockouts survived into adulthood, although they 

struggled with morbidity throughout, suggesting gamma-actin’s potential role in 

immunity (Skruber et al., 2018). Additionally it has been shown that the inhibition of the 

actin cytoskeleton prevents IFN-γ secretion in RSV infected cells (Jans et al., 2016). 

Furthermore, considering the localization of gamma actin has been to the cytoplasm it’s 

plausible gamma actin could play a role in trafficking molecules to the plasma 

membrane, whereas beta actin filaments accumulate more so at lamellipodia, making beta 

actin more likely to serve as a structural component for cells. 
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Transport of MHCII to the plasma membrane potentially relies on the reorganization of 

the cytoskeleton. Late MHCII compartments (MIICs) have been shown to fuse together, 

by way of microtubules. It’s plausible that vesicular bodies, budding from the MIICs, are 

responsible for carrying the peptide loaded MHCII molecules to the plasma membranes, 

by way of microtubules and cytoskeletal filaments. Microtubules extend from the MIICs, 

which have released vesicular bodies containing the peptide loaded MHCII molecules, to 

the plasma membrane (Chow et al., 2002; Kleijmeer et al., 2001; van Nispen tot 

Pannerden et al., 2010). It has been shown that microtubule formation can occur 

independently of antigen exposure, as a stimulus is the only necessary component. That 

being the case, stimulation of DCs by a TLR agonist into a mature phenotype will 

theoretically induce microtubule formation. Although, it seems that these microtubules 

appear to utilize kinesins and dyneins for movement, there was no association with actin 

filaments (Vyas et al., 2007). On the other hand, it has been shown that transport of 

MHCII in B cells occurs in association with the actin cytoskeleton. Trafficking of 

lysosomal vesicles containing either antigen or MHCII molecules within B cells appeared 

to be dependent on the activity of Myosin II in association with actin microfilaments 

(Vascotto et al., 2007). But these authors did not investigate the transport of MHCII to 

the plasma membrane. It’s possible that MHCII transport to the plasma membrane could 

differ within APC populations and potentially differ between species. Overall, it seems 

that the rearrangement of the cytoskeleton is a characteristic of APC maturation and 

likely plays a role in trafficking of pMHCII to the plasma membrane. Trafficking of 

molecules within cells is highly dependent on utilizing the actin cytoskeleton, thus it 

comes as no surprise that viruses often rearrange the actin cytoskeleton for their own 

benefit. 

Viral infections are often associated with rearrangements of the actin cytoskeleton. It has 

been demonstrated that viruses utilize the actin cytoskeleton for entry, migration, 

replication, and egress (Wang et al., 2018). Similar to actin cytoskeleton rearrangements, 

certain viruses utilize microtubules for entry or egress. It has been shown that successful 

entry, via endocytosis at clathrin-coated pits, of the respiratory syncytial virus in human 

monocytes is dependent on the actin cytoskeleton (Jans et al., 2016). Referring again to 

Figure 4.2, considering PRRSV entry via clathrin-coated pits, it’s likely that PRRSV is 
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utilizing the actin cytoskeleton during viral entry. In the context of a PRRSV infection, 

the virus would be internalized via clathrin-coated pits into endosomes. Early endosomes 

mature into late endosomes, through acidification, eventually forming an MHCII class 

compartment (MIIC). The environment, specifically the low pH, within these late 

endosomes is relatively harsh, resulting in the proteolysis of antigen to generate peptide 

sequences, which are then loaded into the binding groove of MHCII, being under the 

regulation of HLA-DM. The pH of the late endosomes in DCs is much higher than that of 

macrophages, which theoretically would result in a more diverse repertoire of peptide 

sequences given the lower activity of proteolysis associated with a less harsh endocytic 

environment (Blum et al., 2013; Delamarre et al., 2005). 

The role of the cytoskeleton during a PRRSV infection has gone largely unstudied. Our 

results seem to indicate that the association of gamma actin 1 with MHCII is present in 

MoDCs but not alveolar macrophages. Furthermore, the gamma actin 1 association with 

MHCII was largely diminished when MoDCs were infected with the PRRSV. We are 

thus left questioning why gamma actin 1 was immunoprecipitated with MHCII, and why 

gamma actin 1 was not as pronounced in the PRRSV infected MoDCs. Additionally, we 

are left questioning why the alveolar macrophages did not have gamma actin 1 in similar 

levels as the MoDCs. Our results seem to indicate that gamma actin 1 could play a 

prominent role during antigen presentation, although this is based on speculation. 

Overall, there are a few potential explanations for the association of gamma actin 1 with 

MHCII in response to a PRRSV infection. They include but are not limited to the 

following: a) PRRSV induces rearrangement of the actin cytoskeleton to favor its 

replication, assembly, and/or egress; b) maturation of MoDCs induces rearrangement of 

the actin cytoskeleton for cellular locomotion (migration of APCs to the draining lymph 

node); c) trafficking of pMHCII to the plasma membrane is dependent on gamma actin 

filament reorganization; d) PRRSV influences the rearrangement of gamma actin 1 in 

MoDCs, potentially interfering with antigen presentation. If PRRSV does interfere with 

antigen processing and presentation, it could have drastic implications on the stimulation 

of naïve T helper cells and the progression to T cell immunity. In conclusion, the role of 

the actin cytoskeleton during a PRRSV infection and the potential role of gamma actin 1 

during antigen presentation warrant further attention. 



	 81	

Contribution: JD isolated PBMCs and monocytes. JD performed MoDC differentiation 
cultures. JD isolated PAMs. JD performed MHCII immunoprecipitation. JD ran SDS-
PAGE gels. The Proteomics Platform of the CHU de Québec Research Center (Quebec, 
Qc, Canada) ran the mass spec. JD and VG designed experiments. 
 

 
 

4.6 Conclusion 
Gamma actin 1 association with MHCII is more pronounced in MoDCs than in PAMs. 

Furthermore, PRRSV infection of MoDCs alters the association of actin gamma 1 with 

MHCII. The role of the actin cytoskeleton during a PRRSV infection, in addition to the 

role of the actin cytoskeleton in the trafficking of peptide loaded MHCII to the plasma 

membrane, should be investigated further. To investigate the interaction of APCs with T 

cells, in Chapter 5 we established an assay using a mixed leukocyte reaction (MLR) so 

that the MLR could be modified to assess antigen specific T cell responses to the 

PRRSV. 
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Chapter 5   PORCINE M1 MACROPHAGES ARE MORE 

POTENT INDUCERS OF LYMPHOCYTE 

PROLIFERATION THAN M2 OR M0 MACROPHAGES 
 

5.1 Abstract 
 
Antigen presenting cells (APCs) are responsible for the activation of naïve T 

lymphocytes in addition to playing a significant role in stimulating the proliferation of 

central memory and effector memory T cells. Dendritic cells are the professional APCs of 

the immune system, but monocytes, macrophages and B cells also possess the capacity to 

process and present antigen to T lymphocytes.  It is not uncommon for macrophages to be 

characterized into an M1 (inflammatory) or M2 (non-inflammatory) phenotype. Thus, we 

were interested in the differential stimulatory capacity of phenotypically distinct 

macrophages in a mixed leukocyte reaction. Here we show a method to measure the 

differentiation of porcine macrophages into an M1 or M2 phenotype, and their 

differential ability to stimulate T cells in a mixed leukocyte reaction (MLR).  

 

5.2  Introduction: 

 
The mixed leukocyte reaction (MLR) is an immunological assay representative of a graft 

versus host disease response. Essentially, the MLR is exemplary in demonstrating 

alloreactivity of T lymphocytes. During the development of the T cell repertoire in the 

thymus, T cells undergo a process of positive and negative selection. During positive 

selection, CD4α/CD8β double-positive thymocytes migrate to the thymic cortex and 

interact with thymic epithelial cells. If the double positive thymocytes interact more 

strongly with MHCII they become CD4α+ and if they interact more with MHCI they 

acquire a CD8 lineage. If the thymocyte has undergone a poor rearrangement of its T cell 

receptor (TCR) and does not interact with either MHCI or MHCII, that thymocyte 

undergoes apoptosis and is eliminated from the T cell repertoire. The negative selection 

of T cells eliminates those lymphocytes that have acquired a T cell receptor (TCR) that is 



	 83	

reactive against self-MHC molecules in association with a self-peptide sequence. Those T 

cells that are self reactive, for the most part, undergo apoptosis and are eliminated from 

the repertoire, in turn preventing self-reactivity and auto-immunity. Alloreactivity can 

therefore be defined as T cells that recognize foreign MHC molecules, as they are non-

self. This phenomenon becomes highly relevant when considering host rejection of graft 

tissue transplants (Colf et al., 2007; Nagy, 2012).  

MLRs are typically performed using entire leukocyte populations from whole blood 

mixed with the leukocytes from the whole blood of another individual. Here, we have 

modified the traditional MLR to evaluate the capacity of macrophages to stimulate 

lymphocyte proliferation by culturing APCs with a T lymphocyte enriched population, 

with the intent of promoting increased levels of lymphocyte proliferation. Pigs are 

becoming an increasingly popular animal model to study human diseases, due to the 

similarity in anatomy, physiology, and genetics with humans (Bassols et al., 2014; 

Meurens et al., 2012; Summerfield et al., 2015). Additionally, pork is a primary protein 

source globally and limiting disease in pigs enhances food security. Taking this into 

consideration, investigating APC function and APC interactions with T cells will provide 

insight towards the induction of T cell immunity to pathogens.  

Several different macrophage populations exist in vivo (Varol et al., 2015). For the most 

part, a resting macrophage can be characterized as having an M2 phenotype 

(homeostatic). When an M2 macrophage becomes activated, usually via cytokine 

stimulation or pattern recognition receptor activation, it acquires an M1 phenotype. The 

M1 macrophages have a lower endosomal pH, are more sensitive to stimulation via 

pattern recognition receptors, and respond with higher levels of inflammatory cytokine 

secretion in comparison to their M2 counterparts (Martinez and Gordon, 2014; Mills and 

Ley, 2014). Given the activation status of M1 macrophages, we hypothesized that M1 

macrophages would possess a higher capacity to stimulate T cell proliferation in 

comparison to M2 macrophages. We were interested in determining whether the 

metabolic state of MΦs correlates to an APC’s capability to stimulate lymphocyte 

proliferation in a MLR. 
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5.3 Materials and methods 

 
Animals: 

Six to eight week old Dutch Landrace pigs were purchased from the pathogen free herd at 

the Prairie Swine Centre (Saskatchewan). All experiments were conducted in accordance 

with the ethical guidelines of the University of Saskatchewan and Canadian Council of 

Animal Care.  

 

Cell isolation and differentiation: 

Monocytes were isolated from whole blood as previously described (Auray et al., 2013). 

Briefly, PBMCs were isolated on a FICOLL-PAQUE® Plus gradient (GE Healthcare, 

Uppsala Sweden). Monocytes were labeled with anti-human CD14 (TUK4) directly 

conjugated to magnetic beads, and selected using LS columns with magnetic activated  

cell sorter (MACS; Miltenyi Biotec, Auburn, CA). To derive macrophages, monocytes 

were plated at 1.0x10^6 cells/mL, in 3 ml per well, of RPMI-1640 complete (Gibco®-

BRL) (1% Antibiotic/antimycotic, 0.5 mM β-mercaptoethanol, 1% MEM non-essential 

amino acids (Gibco®-BRL), 1% HEPES (Gibco®-BRL), and 10% FBS) supplemented 

with rpGM-CSF (20 ng/ml - Biosource, Camarillo, CA) for 3 days at 37 °C with 5% CO2. 

After the 3rd day in culture with rpGM-CSF, to derive an M1 phenotype, macrophages were 

cultured in RPMI supplemented with 20 ng/mL of rpIFN-γ (Ceiba Geigy) for 24 hours. To 

derive an M2 phenotype, macrophages were cultured in RPMI supplemented with 100 

ng/mL of rpIL-4 (GibcoTM ThermoFisher) for 24 hours. The M0 macrophages were 

cultured without the addition of any cytokines. Macrophages were chosen to perform the 

MLRs because the differentiation time is only 3 days as opposed to 6 days with MoDCs. 

T-lymphocytes were enriched from PBMCs using a MACS sorter. Briefly, 3.0x10^7 

PBMCs were incubated with 300 µg of anti-CD172a antibody (BL1H7, BioRad) and 300 

µg of anti-CD21 antibody (BB6-11C9.6, Southern Biotech) in 300 µl of PBS+2% FBS 

for 15 minutes at 4o C with shaking. Cells were washed twice, and anti-IgG1 bead 

conjugated antibody (Miltenyi Biotec) was added to the CD172a/CD21 labeled PBMCs 

according to manufacturer’s recommendations. Cells were washed and resuspended in 1 

ml of MACS buffer (Miltenyi Biotec), before capturing non-T cells on a MACS LS 
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column to obtain a T-lymphocyte enriched population. The enriched T cells were labeled 

with carboxyfluorescein succinimidyl ester (CFSE) according to the manufacturer’s 

protocol (CFSE, Thermo Fisher), enumerated, and seeded at 3.0x10^5 cells/well on a 96 

well U-bottom plate. 

 

Macrophage – T cell mixed leukocyte reaction: 

Monocyte-derived macrophages (MoMΦ) and T cells were co-cultured to investigate the 

stimulatory capacity of M1 and M2 MoMΦs, to promote T lymphocyte proliferation. 

After 3 days in culture and 24 hours after the addition of IL-4 or IFN-γ, 3.0x10^4 

macrophages were co-cultured with 3.0x10^5 T cells from the same or from genetically 

non-related pigs. The macrophage-T cell co-cultures were incubated at 37o C, 5% CO2 for 

4 days before assessing proliferation with flow cytometry as described below. Concavalin 

A (5 µg/mL) stimulated lymphocytes served as a positive control. 

 
Figure 5-1: Figure demonstrating the plating schematic utilized in co-culturing APCs 
with an enriched T cell population for the MLRs.  

 

Flow cytometry: 

Briefly, recovered cells were incubated 20 min at 4°C with primary antibodies, then 

washed twice before incubation with their respective secondary antibody. The primary 

and secondary antibodies utilized were as follows: mouse anti-pig CD4α (MIL17, 

BioRad); mouse anti-pig CD8β  (PG164a, Kingfisher Biotech); mouse anti-pig γδ  

(PGBL31A, Kingfisher Biotech); Goat anti-mouse IgG1-PE (Southern Biotech, 1072-

09); Goat anti-mouse IgG2a-Al647 (Southern Biotech, 1080-31); Goat anti-mouse 
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IgG2b-biotin (Southern Biotech, 1091-08); Streptavidin-PerCP-Cyanine 5.5 

(eBioscience, 45-4317-80) 

At least 50,000 events were collected on a FACSCALIBUR™ (BD Biosciences, 

Mountain View, CA) using the CELLQUEST™ software. Data were analyzed using 

FlowJo X (treestar) software. Populations were defined as follows: a) CTL: γδ- CD4α- 

CD8β+; b) CD4α+ Th cells: γδ- CD4α+ CD8β-; c) gamma delta: γδ+ CD4α- CD8β-. 

 

Statistical Analysis: 

All data points on graphs are representative of genetically unrelated individual animals. 

All the data were statistically analysed using GRAPHPAD PRISM™ 7 software 

(GraphPad Software, Inc., La Jolla, CA). Multiple comparisons between >2 groups were 

assessed using the Kruskal-Wallis test for non-paired, non-Gaussian data. For 

comparissons between 2 groups, the Mann-Whitney test for non-paired, non-Gaussian 

data was used. When P≤0.05, differences were considered significant. 

 

5.4 Results 
 
An enriched population of T lymphocytes (Supplementary Figure 5-7) was stained with 

CFSE in order to monitor proliferation in a mixed leukocyte reaction (MLR). After 

deriving macrophages from blood monocytes, cells were either non-stimulated (M0) with 

RPMI complete, IFN-γ stimulated (M1), or IL-4 stimulated (M2) for 24 hours before 

were culturing with T cells at a ratio of 1:10, either from the same animal (autologous) or 

from different animals (allogenic). 

Our results indicate that the M1 MoMΦs possess the highest capacity to stimulate T 

lymphocyte proliferation in a MLR. As shown in Figure 5-5, the CD4α T cell population 

co-cultured with the M1 MoMΦs had a mean proliferation of 46.2% in comparison to the 

M0 MoMΦs which had 14.2% or M2 MoMΦs which had 18.4% CD4α mean 

proliferation. Similarly, as demonstrated in Figure 5-6, the CD8β population in the M1 

MLR had 34.1% mean proliferation while the M0 and M2 MLRs had 9.8% and 10.2% 

mean proliferation levels respectively. We did not record any significant difference in the 

proliferation levels of the gamma delta T cell populations. 
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Figure 5-2: M0 mixed leukocyte reaction T cell proliferation. Non-stimulated MoMΦs 
(M0) were cultured with CFSE-labeled T lymphocytes, either autologous or allogenic, 
and stained for specific T lymphocyte subsets to monitor proliferation after 4 days in 
culture. Statistical analysis performed using Mann-Whitney test comparing the 
autologous versus allogenic T cell proliferations within each T cell subset. Data points 
are single replicates, from non-related animals (N=4). 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

Figure 5-3: M2 mixed leukocyte reaction T cell proliferation. Interleukin-4 stimulated 
MoMΦs (M2) were cultured with CFSE-labeled T lymphocytes, either autologous or 
allogenic, and stained for specific T lymphocyte subsets to monitor proliferation after 4 
days in culture. Statistical analysis performed using Mann-Whitney test comparing the 
autologous versus allogenic T cell proliferations within each T cell subset. Data points 
are from non-related animals performed as single replicates (N=3). 
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Figure 5-4: M1 mixed leukocyte reaction T cell proliferation. Interferon-gamma 
stimulated MoMΦs (M1) were cultured with CFSE-labeled T lymphocytes, either 
autologous or allogenic and stained for specific T lymphocyte subsets to monitor 
proliferation after 4 days in culture. Statistical analysis performed using Mann-Whitney 
test comparing the autologous versus allogenic T cell proliferations within each T cell 
subset. Data points are from non-related animals performed as single replicates (N=3). 

 
Figure 5-5: CD4α T cell proliferation. Comparison of the level of CD4α T cell 
proliferation amongst the M0, M2, and M1 MoMΦ mixed leukocyte reactions. Statistical 
analysis performed using Kruskal-Wallis test of multiple comparisons. P<0.05=*; 
P<0.005=**; P<0.0005=***. Data points are from non-related animals performed as 
single replicates (N=3), with M1 and M2 MoMΦs from the same animals. 
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Figure 5-6: CD8β T cell proliferation. Comparison of the level of CD8β T cell 
proliferation amongst the M0, M2, and M1 MoMΦ mixed leukocyte reactions. Statistical 
analysis performed using Kruskal-Wallis test of multiple comparisons. P<0.05=*; 
P<0.005=**; P<0.0005=***. Data points are from non-related animals performed as 
single replicates (N=3), with M1 and M2 MoMΦs from the same animals. 
 

5.5 Discussion 
 
Macrophages have an indispensable role during tissue development, in the regulation of 

homeostasis, and in providing a first line of defense against invading pathogens (Varol et 

al., 2015). Multiple organs have tissue resident macrophages that are seeded during 

gestation. The origin of tissue resident macrophages has been traced to progenitor cells 

arising mainly from the fetal liver or yolk sac (Perdiguero and Geissmann, 2016). 

Interestingly, resident macrophage populations, such as Kupfer cells in the liver, are self-

replenishing throughout adulthood and do not arise from blood monocytes (Krenkel and 

Tacke, 2017). The complexity associated with different stimuli and the diverse 

microenvironments that macrophages may encounter within specific tissues makes it 

difficult to characterize the numerous subsets that exist, particularly when considering the 

phenotypic state of the macrophage (Hoeffel and Ginhoux, 2015). Furthermore, 

mimicking diverse tissue microenvironments in vitro is nearly impossible. During an 

infection, blood monocytes are recruited to sites of inflammation where they differentiate 
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into MoDCs or MoMΦs (Epelman et al., 2014; Lutz et al., 2017). Thus, deriving 

macrophages from blood monocytes in vitro provides insight as to how MoMΦs may be 

functioning in vivo. In addition, discrepancies exist when comparing in vitro mouse 

studies of macrophages to humans, making pig monocyte/macrophages potentially more 

comparable in studying human APC population dynamics (Murray et al., 2014). Thus, for 

the purpose of simplicity, in this study we have chosen to analyze macrophages derived 

from blood monocytes in two classical states, those being the M1 or M2 phenotype.  

As mentioned in the introduction, M2 macrophages exhibit a steady-state phenotype, 

being most prominent in the absence of a pathogen or inflammatory state. They are non-

inflammatory, have high phagocytic capacity, and play a role in tissue regeneration and 

tissue maintenance. Macrophages display plasticity, switching from an M2 to M1 

phenotype, and vice versa (Mantovani et al., 2013). Immune stimulation, such as IFN-γ 

or lipopolysaccharide, can drive an M2 macrophage into an M1 phenotype. The M1 

macrophages are inflammatory, more sensitive to pattern recognition receptor 

stimulation, and have lower pH in their endosomes making M1 macrophages ideal to kill 

invading pathogens. Once an infection has been resolved, M1 macrophages are fully 

capable of returning to their original resting state (M2) via cytokine stimulation (IL-4, IL-

13, or IL-10) (Martinez and Gordon, 2014). We utilized non-stimulated MoMΦs as a 

comparison to the M1 and M2 phenotypes to determine whether non-stimulated MoMΦs 

were more similar to resting M2 MΦs or to the inflammatory M1 MΦs. Given the 

phenotypic differences between M1 and M2 macrophages, we hypothesized that IFN-γ 

stimulated (M1) MoMΦs would stimulate increased T lymphocyte proliferation when 

compared non-stimulated (M0) or IL-4 stimulated (M2) MoMΦs. Using an MLR, our 

results confirmed that M1 MoMΦs were more proficient in promoting T lymphocyte 

proliferation in both CD4α and CD8β T cell populations. The macrophages and T cells 

being from pigs becomes relevant when considering the increased utilization of pigs to 

study human pathologies and human infectious diseases, as responses in pigs are more 

similar to humans than what has been seen in mice (Fairbairn et al., 2011; Meurens et al., 

2012). We did not see any difference in the proliferation of gamma delta (γδ) T cells in 

the MLRs, but γδ T cells proliferated in response to ConA stimulation (Supplementary 

Figure 5-9). The role of γδ T cells during graft rejection has not been entirely elucidated. 
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It has been hypothesized that γδ T cells play a secondary role during tissue rejection, 

being dependent on the alloreactivity of CD4α+ Th cells (Tsuji et al., 1996). Furthermore, 

it has been hypothesized that γδ T cells have immunosuppressive qualities during host vs 

graft tissue rejection, benefiting the host (Nagai et al., 1998). Another possible 

explanation for the lack of γδ T cell proliferation may be attributable to a secreted 

inhibitory molecule by monocytes, or potentially through the proliferative suppression 

exhibited by IL-2 on γδ T cells (Okragly et al., 1995). We feel that because alloreactivity 

seems to be dependent on αβ TCR recognition, and γδ T cells do not interact directly with 

MHCI or MHCII, it could explain why we did not observe proliferation in the γδ T cell 

population. 

In conclusion, we have demonstrated that M1 macrophages possess a greater capacity to 

promote T lymphocyte proliferation than M0 or M2 macrophages derived from blood 

monocytes. Furthermore, we have demonstrated that γδ T cells do not directly participate 

in the mixed leukocyte reaction. Lastly, we conclude that the stimulation of APCs 

towards specific phenotypes has clear implications on both the magnitude of T cell 

proliferation and type of T cell effectors induced to proliferate. 
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5.6 Supplementary Figures 

 
Figure 5-7: FlowJo schematic demonstrating the purity of the enriched T cell population. 
CD21+ B cells and CD172a+ APCs were depleted from the PBMC population to obtain 
an enriched CD3+ T cell population for the APC-T cell co-culture assays.  
 
 

 
 
Figure 5-8: Schematic representing the gating strategy for analysis of T cell proliferation 
in the MLR co-culture assay. 
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Figure 5-9: Schematic demonstrating T cell proliferation in response to ConA 
stimulation in the MLR. All three of the T cell subsets (CD4α+, CTL, gamma delta T 
cells) proliferated in response to the ConA positive control. 
 
 
 
Contributions: JD and JVK isolated PBMCs and monocytes. JD performed macrophage 
and MoDC cell differentiation cultures. JD performed the flow cytometry and analysis. 
JD established the MLR. JD did statistical analysis. JD and VG designed experiments. 
 
 
 
 

5.7 Conclusion 
Interferon-gamma stimulated (M1) monocyte-derived macrophages (MoMΦs) possess a 

higher capacity to stimulate lymphocyte proliferation than non-stimulated (M0) or IL-4 

stimulated (M2) MoMΦs, as evidence in the increased proliferation of CTLs and CD4α+ 

T cells. Gamma-delta T cells (γδ) do not proliferate in the MLR, likely being attributable 

to a lack of γδ T cell receptor interaction with MHCI or MHCII molecules. To investigate 

the antigen-specific T cell response to PRRSV, in Chapter 6 we modified the MLR and 

co-cultured MoDCs and MoMΦs over the course of a PRRSV infection with T cells from 

PRRSV infected animals.  
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Chapter 6  T-CELL IMMUNE RESPONSE TO PRRSV 

INFECTION 
 

6.1 Abstract 

The T cell adaptive immune response to the porcine reproductive and respiratory 

syndrome virus (PRRSV) is delayed. Previous studies indicate that IFN-γ secreting cells 

in peripheral blood, detected 2 weeks post infection, and neutralizing antibodies, detected 

4 weeks post infection, are correlates of protection. Research surrounding immune 

regulation by the PRRSV has generally focused on identifying viral mechanisms of 

innate immune regulation. Little is known regarding the T cell immune response to 

PRRSV and the delayed induction of T cell immunity. Considering the tropism of 

PRRSV is restricted to antigen-presenting cells (APCs) of the porcine immune, it’s 

plausible that PRRSV could be regulating antigen processing/presentation in APCs. Thus, 

we chose to investigate the T cell immune response to PRRSV in animals over the course 

of an infection, utilizing a commercial, swine-influenza A virus vaccine (FluSure XP) as 

a comparison. Here, we show that the infection of monocyte-derived dendritic cells 

(MoDCs) and monocyte-derived macrophages (MoMΦ) by PRRSV does not abrogate 

their immunostimulatory capacity to induce T cell proliferation, the T cell immune 

response to PRRSV is geared towards Th1 type immunity, PRRSV infection may 

increase the T cell immune response to the FluSure XP vaccine, and lastly we highlight 

potential differences in the T cell immunostimulatory capacity of MoMΦs and MoDCs, 

specifically showing that MoDCs may be more potent inducers of central memory T 

helper cell proliferation. 

 

6.2  Introduction: 
 

The porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, 

single-stranded, enveloped RNA virus that causes disease in swine worldwide. The virus 

is classed under the order Nidovirales from the Arteriviridae family and was first 
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identified in the early 1990s (Shi et al., 2010). Today, the PRRSV is the most significant 

pathogen in the swine industry causing losses upwards of $650 million dollars in the 

United States alone (Holtkamp, 2012). Outcomes of disease include respiratory difficulty, 

spontaneous abortions and fetus mummification in sows, weight loss, and death under 

certain circumstances (Reeth, 1997; Tong et al., 2007). The demand for an efficacious 

vaccine and the development of strategies for disease control are top priorities for 

producers and consumers alike. 

PRRSV infects both MΦs and DCs, with its viral tropism being restricted to cells that 

express the hemoglobin/haptoglobin scavenger molecule CD163 (Calvert et al., 2007). 

The PRRSV spreads rapidly after an infection, being detectable in peripheral lymphoid 

organs within the first few days of infection. Hallmarks of a PRRSV infection include a 

general immune suppression of innate cytokine secretion (Type 1 IFNs and pro-

inflammatory cytokines), although this appears to be strain specific as some of the highly 

pathogenic Chinese strains seem to induce a cytokine storm, resulting in increased rates 

of mortality in herds (Yoo et al., 2010) (Guo et al., 2013). The adaptive immune response 

to PRRSV can be characterized by an early appearance of non-neutralizing antibodies 

(within 9 days) and a delayed induction of IFN-γ secreting cells (2 weeks post infection) 

in peripheral blood mononuclear cells (PBMCs). Shortly after the appearance of IFN-γ 

secreting cells in PBMCs, neutralizing antibodies become prominent, correlating with the 

resolution of the infection, although PRRSV persists in the tonsils of pigs for up to year 

(Loving et al., 2015). There has not yet been an explanation for the delayed appearance of 

neutralizing antibodies, and even less is known regarding the delayed induction of T cell 

immunity. A subject of continuing debate is whether the delayed induction of immunity 

is attributable to PRRSV specific regulatory T cells (Tregs) (Nedumpun et al., 2018; 

Rodriguez-Gomez et al., 2015; Silva-Campa et al., 2009; Wongyanin et al., 2012; 

Wongyanin et al., 2010). Another potential explanation for the delayed induction of 

immunity could be attributable to the atrophy and apoptosis of lymphocytes in the thymus 

and peripheral lymphoid organs of infected animals (Gomez-Laguna et al., 2013a; He et 

al., 2012). Considering PRRSV infects APCs, we believe this could also have a 

detrimental impact on the progression to T cell immunity, potentially having an effect on 

the skewed humoral immune response. 
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Our previous investigation indicated that the susceptibility of MoDCs and MoMΦs are 

comparable. Furthermore, results indicated that the cell surface expression of MHCI and 

MHCII on non-stimulated MoMΦs is downregulated in response to a PRRSV infection, 

while a potential slight upregulation on the surface of MoDCs was observed. Here, we 

chose to compare the immunostimulatory capacity of MoDCs and MoMΦs to induce T 

cell proliferation in response to a PRRSV infection in animals. A previous study 

investigating the pathogenesis of swIAV in the pig lung found that there was a marked 

increase in the migration of MoDCs into the parenchyma surrounding the lungs after pigs 

were infected with swIAV. Additionally, the authors demonstrated that MoDCs 

possessed a high capacity to induce the proliferation of CD4α+ and CD4α- CD8α+ T cells 

(Maisonnasse et al., 2016). Thus we chose to immunize animals with a swIAV, and 

induce a T cell recall response with live-swIAV (H1N1) as a positive control in our 

study. In total 24 animals were separated into three groups of 8 and were either infected 

with PRRSV, immunized with FluSure XP and infected with PRRSV, or housed 

separately and immunized with the FluSure XP vaccine as a control. Over the course of a 

month we utilized an APC-T cell co-culture assay to monitor PRRSV-antigen specific 

and swIAV-antigen specific T cell recall responses. We accomplished this by isolating 

monocytes from animals using a Multi-MACS sorter and, after differentiating monocytes 

into MoMΦ or MoDCs, on the appropriate days T cells were isolated from the same 

animals and the differentiated APCs were co-cultured with T cells from autologous 

animals. This allowed us to monitor the progression to T cell immunity over the course of 

an infection to PRRSV while comparing the immune response to animals that were either 

immunized with FluSure XP or animals that received the FluSure XP vaccine in addition 

to being infected with PRRSV. Lastly, using 6-colour flow cyomtery we compared the 

immunostimulatory capacity of MoMΦs and MoDCs to induce specific T cell subsets in 

response to either PRRSV or swIAV. 
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6.3 Materials and methods 
 

Animals: 

Twenty-four, 3-week old Dutch Landrace pigs were purchased from the high health herd 

at the Last Mountain Lake (Saskatchewan). Animals were confirmed to be free of Swine 

Influenza and PRRSV via serum samples (IDEXX Influenza A ab; IDEXX PRRS X3 ab 

Test). All experiments were conducted in accordance with the ethical guidelines of the 

University of Saskatchewan and Canadian Council of Animal Care.  

 

Trial Design: 

Animals were separated into three groups and acclimatized for a week. Immunizations 

were delivered intramuscularly (2.0 ml). Group A received the FluSure XP vaccine 

(Zoetis) and was housed separately from Group B and Group C. Group B received the 

FluSure vaccine, and Group C received a PBS mock immunization. Animals received a 

boost immunization two weeks later. The FluSure XP vaccine was prepared according to 

the manufacturer’s instructions and adjuvanted with Emulsigen D (20:80 ratio of ED to 

total volume). On the same day as the boost (animals at 6 weeks of age), Groups B and C 

were infected with PRRSV VR-2385 intranasally (1 ml in each nostril, 5.0x10^5 

TCID50/mL) and Group A received a PBS mock infection intranasally. Three weeks after the 

PRRSV infection, Groups A and B received an additional FluSure XP booster 

immunization. Antigen presenting cells and T cells were co-cultured to investigate the 

stimulatory capacity of PRRSV infected MoMΦs and MoDCs, to promote T lymphocyte 

proliferation. As a comparison, PBMCs from each animal were treated in the same 

manner as the APC-T cell co-cultures. Monocytes were isolated from animals and 

cultured into MoMΦs or MoDCs. The enriched T cell population was isolated either 3 

days later (MoMΦ co-culture) or 6 days later (MoDC co-culture).  

 

Serum ELISAs: 

Serum was collected from animals to confirm seroconversion in response to the influenza 

immunization and the PRRSV infection. The IDEXX Porcine Reproductive and 

Respiratory Syndrome Virus Antibody X3 Test Kit (IDEXX Laboratories) was utilized to 
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assess serconversion to PRRSV infection and the IDEXX Swine Influenza Antibody Test 

Kit (IDEXX Laboratories) was utilized to assess seroconversion to swIAV. Briefly, 

serum from animals of each group were collected and diluted according to 

manufacturer’s protocol. Serum ELISAs were performed in triplicate according to the 

manufacturer’s instructions. The absorption spectrums were measured at A650, and after 

fulfilling the validity criteria, the average of the triplicate samples were interpreted as 

positive or negative according to the manufacturer’s instructions. To further interpret the 

data, test samples were compared to the negative control, as the baseline of 1.0, in order 

to obtain a “titre” index. 

 

Cells and viruses: 

Peripheral blood mononuclear cells (PBMCs) were isolated from 50 ml of fresh pig blood 

using SepmateTM tubes and LymphoprepTM according to the manufacturer’s instructions 

(StemCell Technologies). Prior to monocyte isolation, 1.5x10^7 PBMCs were removed 

for the PBMC proliferation assay and for the IFN-γ ELISpots. PBMCs intended for the 

cell proliferation assay were labeled with Cell Trace Violet (Cell Trace Violet, Thermo 

Fisher) according to the manufacturer’s protocol prior to infection with PRRSV or 

swIAV. The remaining PBMCs were labeled with anti-human CD14 beads (Miltenyi 

Biotec) and selected for on LS columns using a Multi-MACS (Miltenyi Biotec, Auburn, 

CA). To obtain MoMΦs, monocytes were plated at 1.0x10^6 cells/mL in RPMI complete 

supplemented with rpGM-CSF (20 ng/ml - Invitrogen) for 3 days at 37 °C with 5% 

carbon dioxide. To obtain MoDCs, monocytes were plated at 1.0x10^6 cells/mL in RPMI 

complete with recombinant porcine (rp) IL-4 (100 ng/mL – GibcoTM ThermoFisher) and 

rpGM-CSF (20 ng/mL – R&D 711-PG) for 6 days at 37 °C with 5% carbon dioxide, and 

media was changed every 3rd day as shown previously (Facci et al., 2010). Enriched 

populations of CD3+ T cells were isolated from PBMCs using a Multi-MACS sorter. 

Briefly, 3.0x10^7 PBMCs were isolated as previously from 20 ml of fresh blood. PBMCs 

incubated with 300 µg of anti-CD172a antibody (BL1H7, BioRad) and 300 µg of anti-

CD21 antibody (BB6-11C9.6, Southern Biotech) in 300 µl of PBS+2% FBS for 15 

minutes at 4o C with shaking. Cells were washed twice, and anti-IgG1 MACS beads 

(Miltenyi Biotec) were added to the CD172a/CD21 labeled PBMCs according to the 
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manufacturer’s protocol. Cells were washed and resuspended in 1.0 ml of MACS buffer 

(Miltenyi Biotec), before sorting on a Multi-MACS block to obtain a T-lymphocyte 

enriched population. The enriched T cell population was stained with Cell Trace Violet 

according to the manufacturer’s protocol (Cell Trace Violet, Thermo Fisher) before being 

plated at 2.0x10^5 cells/well on a 96 well U bottom plate. After the addition of APCs 

(1:10 ratio to T cells), the APC-T cell co-culture was incubated at 37o C, 5% CO2 for 4 

days before assessing proliferation with FCM. 

PRRSV strain VR2385 (ATCC, Manassas, VA, USA) was used in the study. Virus was 

grown up on MARC-145 cells and titers were calculated as the TCID50/mL (Reed and 

Muench, 1938). Swine influenza, strain A/SW/SK 02 H1N1, was propagated on MDCK 

cells and titres were calculated as plaque forming units/mL (Dulbecco et al 1953).  

 

PBMC, APC infection, and T cell proliferation assay: 

Cell Trace Violet labeled PBMCs were infected with PRRSV strain VR-2385 at a 1.0 

MOI for 3 hours at 37°, 5% CO2. Similarly, cells were treated with swIAV (H1N1) at an 

MOI of 10.0. PBMCs were left in culture to proliferate for 4 days and Concavalin A (5 

µg/mL) was administered to cell cultures as a positive control. MoMΦs, and MoDCs 

were infected with PRRSV strain VR-2385 at a 1.0 MOI for 3 hours at 37°, 5% CO2. 

Similarly, cells were treated with swIAV (H1N1) at an MOI of 10.0. After 3 hours, APCs 

were washed and pelleted at 350 g, resuspended in fresh media, and plated with their 

respective autologous population of enriched T cells at a ratio of 1-APC: 10-T cells. Prior 

to culture, T cells were labeled with Cell Trace Violet according to the manufacturer’s 

protocol as indicated previously. Cells were left to proliferate in culture for 4 days 

(PBMCs), (MoDCs and MoMΦs with T cells). Cell proliferation was measured as the 

percent of Cell Trace Violet labeled cells that proliferated in response to each treatment. 

Comparisons of percent proliferation were performed within groups, according to each 

treatment relative to the control (media alone treated cells). Supernatants were removed 

from cell cultures on the 4th day for cytokine ELISAs and the cells were pooled for flow 

cytometry staining. 

 

 



	 100	

Flow cytometry: 

After 4 days in culture, the PBMC cell cultures and APC-T cell co-cultures were pooled 

from 8 wells into one well and stained to assess cell surface marker expression by flow 

cytometry. Briefly, cells were stained with the LIVE/DEADTM Fixable Near-IR Dead 

Cell Stain Kit (Thermo Fisher) according to the manufacturer’s instructions. After 

live/dead staining, cells were incubated for 8 minutes at room temperature with primary 

antibodies, then washed twice (PBS + 2% FBS) before incubation with their respective 

secondary antibody. At least 100,000 events within the gated population (lymphocytes) 

were collected on a CyanADP (BD Biosciences, Mountain View, CA) and data was 

analyzed using FlowJo X software. To normalize the data, the percentage of cells within 

the proliferating cell subset was cross-multiplied with the total percentage of proliferating 

CD3+ cells. Thus, the frequencies of cell subsets presented in the results below are 

representative of the total amount of cells that proliferated in within the entire CD3+ T 

cell population. 

 

Table 6.1: Table indicating the primary and secondary antibodies, including their clone 
numbers and suppliers, utilized for the multicolour flow cytometry staining. 

Antibody Clone/Cat # Working dilution Fluorochrome Manufacturer 

Anti-pig CD27 (g1) B307 1/33 APC BD 

Anti-pig CD3  PPT3 1/10 FITC Abcam 

Anti-pig CD4a 74-12-04 1/20 PerCP-Cy5.5 BD 

Anti-pig CD8a 76-2-11 1/80 PE Southern Biotech 

Anti-g1 APC 1070-11s 1/400 Anti-g1 APC Southern Biotech 
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Figure 6-1: Schematic demonstrating the gating strategy applied for the analysis of 
CD4α+ CD8α+ T cells (red), CD4α+ CD8α- T cells (blue), and CD4α- CD8α+ T cells 
(orange) (6-1A) from a PBMC cell culture treated with PRRSV. The gating schematic 
shown was from PBMCs of pig 343 (Group B) that were stimulated with PRRSV. 
Briefly, a gate was established around singlets before drawing a gate surrounding 
lymphocytes. A gate was then drawn on live cells, before gating on CD3+ T cells and 
then gates were established for the T cell subsets (Figure 6-1A). After establishing 
appropriate gates for the subsets, we then drew a gate surrounding the proliferating cell 
population and the previously established gates for T cell subsets were used to assess 
proliferation of the specific T cell subsets (Fig 6-1B). Gating strategies for CD4α+ CD8α+ 
CD27+/CD27- T cells can be found in the supplemental figures. The percentage of cells 
within the proliferating cell subset is representative of the total percentage of proliferating 
CD3+ T cells, within the entire CD3+ T cell population. 
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Interferon-gamma ELISpots: 

Peripheral blood mononuclear cells (PBMCs) were isolated using Sepmate tubes and 

lymphoprep according to the manufacturer’s instructions. ELISpots were performed as 

demonstrated previously (Dar et al., 2012). Briefly, nitrocellulose microtiter plates 

(UNIFILTER® 350, Whatmann, Florham Park, NJ, USA) were coated with 0.5 µg/100 µl 

of anti-porcine IFN-γ monoclonal antibodies solution (Thermo Fisher Scientific, Inc., 

Nepean, ON, Canada). 5.0x10^5 PBMC were added to each well and cells were 

stimulated with PRRSV (VR-2385, MOI 1.0) or H1N1 influenza virus (MOI 1.0). After 

24 hr incubation at 37 °C, rabbit anti-porcine IFN-γ antibody solution (0.2 µg/100 µl in 

phosphate buffer saline with 0.05% tween® 20) was added and plates were incubated for 

4 hours at room temperature. Biotin-conjugated goat ant-rabbit IgG (Invitrogen-Zymed, 

Burlington, ON, Canada) was added (1/5000 dilution) for 2 hours at room temp before 

the addition of 1/5000 diluted streptavidin alkaline phosphatase solution for 1.5 hours at 

room temp. Lastly, spots were developed with NBT/BCIP (Sigma-Aldrich, St. Louis, 

MO, USA). Spots were counted with an AID ELISpot Reader Classic.  

 

Multiplex fluorescent microsphere immunoassay (FMIA): 

To measure cytokine secretion, supernatant samples were collected on the 4th day of the 

lymphocyte proliferation cell culture assays. A six-plex assay was developed as 

previously described (Laidnig 2014). Briefly, capture antibodies (Table 2) were coupled 

to magnetic beads (Biorad, Mississauga ON, Canada). All reactions took palce at room 

temperature. Beads (1200 beads/µl) were diluted 1:50 in PBSA + 1% New Zealand Pig 

Serum (Sigma P3484) + 0.05% Na Azide and 50 µl of diluted beads was added to each 

well on a Grenier Bio-One Fluotrac 200 96F black plate (VWR catalogue #82050-754). 

Beads were washed with PBST in BioPlex plate washer before adding samples and 

standards. Fifty microliters of standard and cell supernatants (diluted 1:2) were added to 

their respective wells and incubated in the dark for 1 hour, shaking at 800 rpm. The plates 

were washed 3x as previously before adding 50 µL of the appropriately diluted secondary 

antibodies coupled to biotin. Plates were incubated for 40 minutes with shaking before 

washing as previously. Fifty µL of prozyme Streptavidin RPE (Cedarlane cat # PJRS20), 

diluted to 5 µg/mL in PBS-NZ, was added to each well and incubated for 30 minutes with 
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shaking. Plates were washed as previously in PBST and 100 µl of TE buffer was added to 

each well and placed on a shaker for 5 minutes before reading. Cytokine samples were 

analyzed on a Bio-Plex® 200 system and subsequently analyzed with the Bio-Plex 

Manager software version 6.1 (Biorad, Mississauga, ON, Canada). 

 

Table 6.2: Table indicating the primary and secondary antibodies, including their 
concentrations and suppliers, utilized in the FMIA. 

Protein Supplier Concentration Biotin Supplier Concentration 

rPorc IFN- 

alpha 

GeneTex 

GTX11408 
200 pg/mL Porc IFN- 

alpha 

PBL 1/5000 

rPorc IFN- 

gamma 

Fisher 

PIMP700 
2000 pg/mL Porc IFN- 

gamma 

Fisher 

(Endogen) 

1/400 

rPorc IL-10 Invitrogen 

ASC0104 
5000 pg/mL Porc IL-10 Invitrogen 0.5 µg/ml 

rPorc IL-12 Kingfisher 

MA0413S 
5000 pg/mL Porc IL-12 R&D 0.5 µg/ml 

rPorc IL-13 Kingfisher 

PB0094S-100 
5000 pg/mL Porc IL-13 Kingfisher 0.5 µg/ml 

rPorc IL-

17A 

Kingfisher 

KP0498S-100 
500 pg/mL Porc IL-

17A 

Kingfisher 0.1 µg/ml 

 
 
Table 6.3: Table indicating the standards utilized in the FMIA along with the suppliers. 

Standard Supplier Standard Supplier 

rPorc IFN-alpha Genetech 
 

rPorc IL-12 R&D 912PL025  

rPorc IFN-gamma Ceiba Geigy 
 

rPorc IL-13 Kingfisher RP0007S-005  

rPorc IL-10 Invitrogen PSC0104  
 

rPorc IL-17A Kingfisher RP0128S-005  

 

Statistical Analysis: 

All data points on graphs are representative of genetically unrelated individual animals. 

All the data were statistically analysed using GRAPHPAD PRISM™ 7 software 
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(GraphPad Software, Inc., La Jolla, CA). Differences between groups were assessed 

using the Mann-Whitney U test for non-paired, non-Gaussian data unless otherwise 

indicated. When P≤0.05, differences were considered significant 

6.4 Results: 

 

Animal trial design: 

The animals in all three of the groups did not exhibit any clinical symptoms to the 

PRRSV infection. There was no remarkable difference in recorded body temperatures or 

behavior. Additionally, there was no adverse reaction to the FluSure-XP immunization. 

Animals from Group A were housed separately from animals of Groups B and C, which 

were housed together, to prevent passive exposure to PRRSV. The trial design is 

demonstrated in the table below: 

 

Table 6.4: Table indicating the groups and their immunization with the FluSure-XP 
vaccine of exposure to PRRSV strain VR-2385 
Group FluSure XP immunization VR-2385 PRRSV 

Group A Three doses PBS inoculation (1x) 

Group B Three doses 5.0x10^5 TCID50 per nostril (1x) 

Group C PBS inoculation (3x) 5.0x10^5 TCID50 per nostril (1x) 

Animals from Groups A and B received 2 ml immunizations according to the 
manufacturer’s instructions of the FluSure-XP vaccine (Zoetis). Animals from Groups B 
and C were infected with PRRSV VR-2385 via nasal inoculation with 5.0x10^5 TCID50 in 
1 ml per nostril for a total of 1.0x10^6 TCID50. 

 
Sero-conversion in response to swIAV immunization and PRRSV infection: 

Serum ELISAs were utilized to demonstrate that the animals underwent seroconversion 

in response to the swIAV immunization and the PRRSV infection. Serum was collected 

on days 9, 18, and 32 post PRRSV challenge. Figure 6-2a demonstrates that antibodies to 

PRRSV were present 9 days post challenge and continued to increase over the course of 

the trial. The antibody response to the influenza immunizations followed a similar trend, 

increasing as the trial progressed. Of note, on day 32 post-PRRSV infection the swIAV 
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titres increased in response to the booster immunization (Figure 6-2b). The increase could 

be attributable to animals receiving a double dosage of the vaccine (2 ml in each side of 

the neck) with the intention of increasing the T cell response in the lymphocyte 

proliferation cell culture assays.  

 

 
 
Figure 6-2: Serum ELISAs measured utilizing the commercial IDEXX ELISA kits for 
PRRSV (Fig 2a) or swIAV (Fig 2b) to demonstrate seroconversion and compare the 
humoral immune response amongst the treatments. The IDEXX ELISA kits for both 
PRRSV and swIAV give a read out of seroconversion as positive or negative. Serum 
indice calculations are described previously. Statistical significance was determined in 
the PRRSV ELISAs by comparing Groups B and C to Group A. And similarly in the 
swIAV ELISAs, Groups A and B were compared to Group C. Group A – swIAV 
immunized & non-PRRSV infected. Group B – swIAV immunized & PRRSV infected. 
Group C – non-swIAV immunized & PRRSV infected. ELISAs were performed in 
duplicate and the average was used to calculate the absorbance value. Values were 
reported with statistical significance if P < 0.05 = *; P < 0.005 = **; P < 0.0005 = ***.  
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Interferon-gamma secreting cells in PBMCs: 

The IFN-γ secreting cells were measured in PBMCs on the days indicated below (Figure 

6-3).  Briefly, 5.0x10^5 PBMCs were plated per well and swIAV (MOI 10) or PRRSV 

(MOI 1.0) was subsequently added. After 20 hours in culture, the ELISPOTs were 

developed to assay for IFN-γ secretion. As shown in the graphs below, IFN-γ secretion to 

PRRSV became apparent in Group B and Group C 14 days post challenge and increased 

as the trial progressed. This indicates a successful conversion to T cell immunity. We 

detected IFN-γ secreting cells in response to the swIAV treatment on Day 0 PRRSV 

challenge in Groups A and B, and IFN-γ secreting cells to swIAV remained detectable 

throughout the trial, although it was much less prominent than the IFN-γ response to 

PRRSV (Figure 6-3). 

 

 
Figure 6-3: Peripheral blood mononuclear cell (PBMC) interferon-gamma ELISPOTs 
from the different treatment groups over the course of the trial. Briefly, 5.0x10^5 PBMCs 
were isolated on the respective dates listed. Cells were treated with PRRSV (MOI 1.0) or 
swIAV (MOI 10.0) and the IFN-γ ELISpot plates were developed 20 hours post 
treatment. ELISpots were performed in triplicate, from which the average number of 
spots was calculated. Statistical significance was determined by comparing the swIAV or 
PRRSV treated samples to the negative control (non-stimulated cells). Values were 
reported with statistical significance if P < 0.05 = *; P < 0.005 = **; P < 0.0005 = ***.  
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Total lymphocyte proliferation: 

We were interested in comparing the immunostimulatory capacity of MoMΦs and 

MoDCs to determine whether a difference existed in their ability to induce T cell 

proliferation. In order to perform this comparison, monocytes were isolated from the 

PBMCs of the animals and subsequently derived into MoMΦs or MoDCs (as described in 

the materials and methods section), after which they were co-cultured with an enriched T 

cell population from autologous animals. The co-culture assays were compared to the T 

cell proliferation in PBMCs.  

First, we measured the overall level of lymphocyte proliferation in the PBMC and the 

antigen-presenting cell–T cell (APC-T cell) co-culture assays. On day 0 of the PRRSV 

challenge, there was no proliferation in PBMCs in response to any treatments. Therefore, 

we increased the MOI of swIAV to 10.0. Similarly, we did not detect proliferation in the 

APC-T cell co-culture assays during the first week of PRRSV infection. During the 

second week of infection, lymphocyte proliferation was prominent in response to both the 

PRRSV and swIAV treatments. The highest level of lymphocyte proliferation to PRRSV 

was seen in the PBMC cultures (Group C – 27.44%) while the highest level of 

proliferation to the swIAV treatment was observed in the MoMΦ-T cell co-culture 

(Group B – 16.83%) (Figure 6-5a, and Supplementary Table 6.6).  These results were 

reflected at a later time point with the highest level of lymphocyte proliferation to 

PRRSV in the PBMCs of Group C (44.30%) and the highest level of lymphocyte 

proliferation to swIAV in Group B of the MoMΦ-T cell co-culture (16.60%) (Figure 6-

5b, and Supplementary Table 6.6). Lastly, lymphocyte proliferation was detected in the 

media alone treatments in the MoMΦ and MoDC-T cell co-culture assays during the 

second week of infection (Figure 6-5a) of Groups B and C, but not Group A. During the 

third week of infection, we did not detect lymphocyte proliferation in the media alone 

treatments within Groups A, B, or C (Figure 6-5b). Data showing the proliferation of 

lymphocytes in response to swIAV or PRRSV, within respective Groups and different 

cell culture proliferation assays, can be found in Supplementary Table 6.6 . 
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Figure 6-4: The level of total lymphocyte proliferation in PBMC cell culture assays in 
response to PRRSV (MOI 1.0), swIAV (MOI 1.0), or co-infected treatments on day 0 from 
their respective animal groups. PBMCs were stained with Cell Trace Violet prior to 
treatment. After treatment, PBMCs were left in culture for 4 days before measuring cell 
proliferation using flow cytometry. Proliferation of lymphocytes was based on the entire 
population of Cell Trace Violet labeled cells, acquired as single replicates (n=6-8). 
(gating previously on singlets and dead cell exclusion).  
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Figure 6-5: The percentages of total lymphocyte proliferation from PBMC, MoMΦ-T cell 
co-cultures, and MoDC-T cell co-cultures in response to PRRSV (MOI 1.0), swIAV (MOI 
10.0), or co-infected treatments from their respective groups on the indicated days post 
PRRSV challenge. After treatment, lymphocytes were left in culture for 4 days before 
measuring proliferation using flow cytometry. Proliferation of lymphocytes was based on 
the entire population of Cell Trace Violet labeled cells (gating previously on singlets and 
dead cell exclusion), acquired as single replicates (n=6-8). Statistical significance was 
determined by comparing the co-infected, swIAV, or PRRSV treated samples to the 
negative control (non-stimulated cells). Values were reported with statistical significance 
if P < 0.05 = *; P < 0.005 = **; P < 0.0005 = ***. *MoMΦs were added at a 1:5 ratio to 
T cells on day 17. 
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6a demonstrates that we detected T cell proliferation in response to the swIAV 
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Groups B (PBMCs – 4.83%; MoMΦs – 10.88%; MoDCs – 10.69%) during the second 

week post PRRSV infection. The percent of CD3+ T cell proliferation data reflects those 
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results observed in the lymphocyte proliferation assay with the highest level of 

proliferation to PRRSV being in the PBMC culture in Group C  (20.16%, 14 DPI and 

27.23%, 24 DPI) and to swIAV in the MoMΦ-T cell co-cultures in Group B (10.88%, 17 

DPI and 13.76%, 27 DPI). The mean proliferation percent between the MoDC and 

MoMΦ-T cell co-cultures were comparable (Supplementary Table 6.7). 
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Figure 6-6: The percentages of CD3+ T cell proliferation from PBMC, MoMΦ-T cell co-
cultures, and MoDC-T cell co-cultures in response to PRRSV (MOI 1.0), swIAV (MOI 
10.0), or co-infected treatments from their respective groups on the indicated days post 
PRRSV challenge. After treatment, lymphocytes were left in culture for 4 days before 
measuring proliferation using flow cytometry, acquired as single replicates (n=6-8). 
Statistical significance was determined by comparing the co-infected, swIAV, or PRRSV 
treated samples to the negative control (non-stimulated cells) within each group. Values 
were reported with statistical significance if P < 0.05 = *; P < 0.005 = **; P < 0.0005 = 
***. *MoMΦs were added at a 1:5 ratio to T cells on day 17. 
 

Naïve T cell proliferation: 

The indicated percentage of proliferation in the T cell subsets was determined by cross-

multiplying the level of proliferation of the entire CD3+ T cell population with the 

percentage of proliferation from the specific subset. Thus, the percentages indicated in 

the following figures are an indication of the percent of T cell subset proliferation within 

the entire CD3+ T cell population. We were interested in comparing the 

immunostimulatory capacity of MoMΦs and MoDCs to induce the proliferation of 

different T cell populations. Here we show the proliferation of naïve T cells (defined as 
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CD4α+ CD8α-) in response to different treatments (Figure 6-7). There was no comparable 

difference in the level of proliferation between the APC-T cell co-culture assays. A slight 

proliferation of naïve T cells was observed in the PBMC cultures over the course of the 

trial (Figure 6-7a and 6-7b; Supplementary Table 6.8). It’s plausible that the proliferating 

naïve T cells are CD8α low/dim T cells trending towards becoming activated, as it would 

be unexpected to see antigen specific recall proliferation in a naïve T cell.  
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Figure 6-7: The percentages of total CD4α+ CD8α- T cell (naïve) proliferation from 
PBMC, MoMΦ-T cell co-cultures, and MoDC-T cell co-cultures in response to PRRSV 
(MOI 1.0), swIAV (MOI 10.0), or co-infected treatments from their respective groups on 
the indicated days post PRRSV challenge. After treatment, cell cultures were left to 
proliferate for 4 days before measuring proliferation using flow cytometry, acquired as 
single replicates (n=6-8). Statistical significance was determined by comparing the co-
infected, swIAV, or PRRSV treated samples to the negative control (non-stimulated cells) 
within each group. Values were reported with statistical significance if P < 0.05 = *; P < 
0.005 = **; P < 0.0005 = ***. *MoMΦs were added at a 1:5 ratio to T cells on day 17. 
 
Activated T helper cell proliferation: 

To measure the levels of activated, antigen specific, T helper cell (Th cell) proliferation, 

cells were gated on CD4α+ CD8α+ expression (Figure 6-1). There was in increase in Th 

cell proliferation as the trial progressed in all of the cell culture assays (Figure 6-8a vs 6-

8b). At 24 days post PRRSV challenge, the highest mean proliferation of actiavted Th 

cells in response to PRRSV treatment was detected in the PBMC cultures in Group C 

(6.720%). The mean proliferation of activated Th cells in the APC-T cell co-cultures to 

PRRSV treatment was higher in MoDCs (Group C – 4.947%) than in MoMΦs (3.116%) 
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as indicated in Supplementary Table 6.9. Lastly, the mean percent of activated Th cell 

proliferation in response to swIAV treatment was higher in Groups B than in Groups A in 

the PBMC cell cultures (Group A – 1.746%; Group B – 1.948%) and in the APC-T cell 

co-cultures (MoMΦs: Group A-1.14%; Group B - 2.36%. MoDCs: Group A – 2.27%; 

Group B – 3.60%,) as indicated in Supplementary Table 6.9. The mean proliferation of 

activated Th cells was highest in the MoDC-T cell co-culture assay. 
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Figure 6-8: The percentages of total CD4α+ CD8α+ T cell (activated) proliferation from 
PBMC, MoMΦ-T cell co-cultures, and MoDC-T cell co-cultures in response to PRRSV 
(MOI 1.0), swIAV (MOI 10.0), or co-infected treatments from their respective groups on 
the indicated days post PRRSV challenge. After treatment, lymphocytes were left in 
culture for 4 days before measuring proliferation using flow cytometry, acquired as single 
replicates (n=6-8). Statistical significance was determined by comparing the co-infected, 
swIAV, or PRRSV treated samples to the negative control (non-stimulated cells) within 
each group. Values were reported with statistical significance if P < 0.05 = *; P < 0.005 = 
**; P < 0.0005 = ***. *MoMΦs were added at a 1:5 ratio to T cells on day 17. 
 

Cytotoxic lymphocyte proliferation: 

To measure the proliferation of cyototoxic lymphocytes (CTLs), cells were gated as 

CD3+ CD4α- CD8α+ (Figure 6-1). Proliferation of CTLs in response to PRRSV was 

evident in the media alone treatment in Groups B and C, from the APC-T cell co-culture 

assays, during the second week post PRRSV challenge (Figure 6-9a). At the later time 

point during the trial, CTL proliferation was not detected in the media alone treatments of 

the APC-T cell co-culture assays (Figure 6-9b). The highest level of CTL proliferation 

was observed in response to PRRSV treatment, 24 days post-PRRSV infection, in the 
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PBMC culture in Group C (11.59%). The mean percent of CTL proliferation to PRRSV 

treatment in the APC-T cell co-cultures was highest in Group C as well. The level of CTL 

proliferation was higher in the MoMΦ-T cell co-culture (6.44%) than in the MoDC-T cell 

co-culture (4.89%) as indicated in Supplementary Table 6.10. The mean proliferation of 

CTLs in response to swIAV treatment was comparable amongst the PBMC and APC-T 

cell co-culture assays. The highest level of CTL proliferation in response to swIAV 

treatment during the later time point of the trial was observed in the MoMΦ-T cell co-

culture, in Group B (5.72%), followed by the PBMCs in Group A (4.46%), and lastly the 

MoDC-T cell co-culture in Group A (3.391%). The overall highest level of CTL 

proliferation amongst the cultures was observed in the MoMΦs 17 days post infection 

(6.82% in response to PRRSV treatment in Group C) as indicated in Supplementary 

Table 6.10.  
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Figure 6-9: The percentages of total CD3+ CD4α- CD8α+ T cell (CTL) proliferation from 
PBMC, MoMΦ-T cell co-cultures, and MoDC-T cell co-cultures in response to PRRSV 
(MOI 1.0), swIAV (MOI 10.0), or co-infected treatments from their respective Groups, on 
the indicated days post-PRRSV infection. After treatment, lymphocytes were left to 
proliferate in cell cultures for 4 days before measuring proliferation using flow 
cytometry, performed as single replicates (n=6-8). Statistical significance was determined 
by comparing the co-infected, swIAV, or PRRSV treated samples to the negative control 
(non-stimulated cells) within each group. Values were reported with statistical 
significance if P < 0.05 = *; P < 0.005 = **; P < 0.0005 = ***. *MoMΦs were added at a 
1:5 ratio to T cells on day 17. 
 
 
Central memory T helper (Th) cell proliferation: 

Central memory Th cells were defined as being CD3+ CD4α+ CD8α+ and CD27+. Central 

memory Th cells were detectable as early as 14 days post infection in the PBMC and 

APC-T cell co-culture assays in response to the PRRSV treatment (Figure 11a). The 

highest level of central memory Th cell proliferation over the course of the animal trial, 

in response to PRRSV treatment, was detected in Groups C. During the earlier time point 

of the trial, the highest levels of central memory Th cell proliferation were observed in 
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the MoMΦ-T cell co-cultures (2.26%), then the MoDC-T cell co-cultures (1.30%), 

followed by the PBMC cultures (0.79%) as indicated in Supplementary Table 6.12.  

During the later time point, the highest level of central memory Th cell proliferation to 

PRRSV was recorded in the PBMC cultures (3.60%) compared to the MoDC-T cell co-

culture (2.96%) or to the MoMΦ T-cell co-culture (1.60%) as shown in Supplementary 

Table 6.12. In response to the swIAV treatment, the highest mean proliferation of central 

memory Th cells was observed in the MoDC-T cell co-cultures, at both the early and later 

time points during the animal trial, although the difference was more pronounced in the 

later time point (Figure 6-11). The mean percent proliferation of Group B (MoDCs – 

1.06%; MoMΦs – 0.738%) in response to swIAV in the APC-T cell co-cultures was 

higher than that of Group A (MoDCs - 0.86%; MoMΦs - 0.36%. The percent 

proliferation of central memory Th cells in the PBMCs was similar to the MoMΦ–T cell 

co-culture (Group A – 0.425%; Group B – 0.502%) as indicated in Supplementary Table 

6.12.  

 

 

Med
ia

Co-in
fec

ted

PRRSV
SIV

0

2

4

6

8

10

Treatment

Pe
rc

en
t T

ot
al

 P
ro

lif
er

at
io

n

Group A Central Memory Th cells

Med
ia

Co-in
fec

ted

PRRSV
SIV

0

2

4

6

8

10

Treatment

Pe
rc

en
t T

ot
al

 P
ro

lif
er

at
io

n

Group B Central Memory Th cells

Med
ia

Co-in
fec

ted

PRRSV
SIV

0

2

4

6

8

10

Treatment

Pe
rc

en
t T

ot
al

 P
ro

lif
er

at
io

n

Group C Central Memory Th cells

Med
ia

Co-in
fec

ted

PRRSV
SIV

0

2

4

6

8

10

Treatment

Pe
rc

en
t T

ot
al

 P
ro

lif
er

at
io

n

Group A Central Memory Th Cells

** *

Med
ia

Co-in
fec

ted

PRRSV
SIV

0

2

4

6

8

10

Treatment

Pe
rc

en
t T

ot
al

 P
ro

lif
er

at
io

n

Group B Central Memory Th Cells

***

Med
ia

Co-in
fec

ted

PRRSV
SIV

0

2

4

6

8

10

Treatment

Pe
rc

en
t T

ot
al

 P
ro

lif
er

at
io

n

Group C Central Memory Th Cells

Med
ia

Co-in
fec

ted

PRRSV
SIV

0

2

4

6

8

10

Treatment

Pe
rc

en
t T

ot
al

 P
ro

lif
er

at
io

n

Group A Central Memory Th cells

* ***

Med
ia

Co-in
fec

ted

PRRSV
SIV

0

2

4

6

8

10

Treatment

Pe
rc

en
t T

ot
al

 P
ro

lif
er

at
io

n

Group B Central Memory Th cells

*** *** **

Med
ia

Co-in
fec

ted

PRRSV
SIV

0

2

4

6

8

10

Treatment

Pe
rc

en
t T

ot
al

 P
ro

lif
er

at
io

n

Group C Central Memory Th cells

*** ***PBMC	14	DPI	

Macros	17	DPI	

MoDCs	20	DPI	

A	



	 121	

 

Figure 6-10: The percentages of CD4α+ CD8α+ CD27+ Th cell (central memory T helper 
cell) proliferation from PBMC, MoMΦ-T cell co-cultures, and MoDC-T cell co-cultures 
in response to PRRSV (MOI 1.0), swIAV (MOI 10.0), or co-infected treatments from their 
respective groups at the indicated time points post-PRRSV infection. After treatment, 
lymphocytes were left to proliferate in culture for 4 days before measuring proliferation 
using flow cytometry, performed as single replicates (n=6-8). Statistical significance was 
determined by comparing the co-infected, swIAV, or PRRSV treated samples to the 
negative control (non-stimulated cells) within each group. Values were reported with 
statistical significance if P < 0.05 = *; P < 0.005 = **; P < 0.0005 = ***. *MoMΦs were 
added at a 1:5 ratio to T cells on day 17. 
 

Effector T helper cell proliferation: 

Effector Th cells were defined as being CD3+ CD4α+ CD8α+ CD27-. The results are 

similar to the other T cell proliferation profiles measured previously. Effector Th cells 

were detected as early as 14 days post infection in the PBMC cultures and APC-T cell co-

cultures. During the earlier time point of the animal trial, the highest mean percentages of 

effector Th cell proliferation was recorded in the MoMΦ-T cell co-culture to both 

PRRSV and swIAV (Figure 6-12a and Supplementary Table 6.13). During the later time 
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point, the highest level of effector Th cell proliferation in response to PRRSV treatment 

was observed in Group C for the PBMC culture (3.12%), followed by the MoDC-T cell 

co-culture (1.99%), and the least in the MoMΦ-T cell co-culture (1.410%) as indicated in 

Supplementary Table 6.13 and show in Figure 12b. In response to the swIAV treatment, 

during the early time point of the trial, the mean percent proliferation reflects those 

recorded for the PRRSV treatment with the highest level of proliferation being recorded 

in the MoMΦ-T cell co-culture (1.16%), followed by the MoDC-T cell co-culture 

(0.67%), and finally the PBMC culture (0.06%). During the later time point of the trial, 

higher levels of effector Th cell proliferation to swIAV were seen in Groups B (MoDC – 

2.54%; MoMΦ – 1.67%; PBMC – 1.45%) than in Groups A (MoDC – 1.41%; MoMΦ – 

0.77%; PBMC – 1.32 %) as shown in Supplementary Table 6.13, and the highest level of 

proliferation were recorded in the MoDC-T cell co-cultures.  
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Figure 6-11: The percentages of CD4α+ CD8α+ CD27- T cell (effector memory T helper 
cell) proliferation from PBMC, MoMΦ-T cell co-cultures, and MoDC-T cell co-cultures 
in response to PRRSV (MOI 1.0), swIAV (MOI 10.0), or co-infected treatments from their 
respective groups at the indicated time points post PRRSV-challenge. After treatment, 
lymphocytes were left to proliferate in culture for 4 days before measuring proliferation 
using flow cytometry, performed as single replicates (n=6-8). Statistical significance was 
determined by comparing the co-infected, swIAV, or PRRSV treated samples to the 
negative control (non-stimulated cells) within each group. Values were reported with 
statistical significance if P < 0.05 = *; P < 0.005 = **; P < 0.0005 = ***. *MoMΦs were 
added at a 1:5 ratio to T cells on day 17. 
 

Proliferation of an uncharacterized lymphocyte population:  

During the analysis of the lymphocyte and CD3+ T cell proliferation levels, we noticed a 

difference in the percentage of cells that were CD3+ within the proliferating populations 

depending on the administered treatment (Figure 14a, 14b, 14c). We chose to show 

results from Group B, from the later time point of the infection, in order to have a 

comparison to the level of proliferation to both swIAV and PRRSV within the same 

group. Levels of CD3+ T cell proliferation in the cell culture assays are indicated in Table 
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5 below. The results indicate that over 50% of the proliferating lymphocyte population in 

Group B (from the PBMC culture) in response to the PRRSV treatment, were not CD3+ T 

cells. Similarly, in the swIAV+PRRSV co-infected treated PBMCs, nearly 47% of the 

proliferating lymphocyte population was not CD3+, as indicated in Table 6.5. On the 

other hand, in the swIAV treated PBMCs less than 20% of the proliferating population 

was not CD3+. These results, although not as statistically significant as those in the 

PBMC cell culture, were reflected in the MoMΦ-T cell and MoDC-T cell co-cultures 

(Table 6.5). 
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Figure 6-12: The percentages of CD3+ T cells (right y-axis) that proliferated within the 
total lymphocyte population (left y-axis) of the PBMC (Figure 14A), MoMΦ-T cell co-
culture (Figure 14B), and MoDC-T cell co-culture (Figure 14C), from Group B, in 
response to either media, ConA, Co-infected, PRRSV, or swIAV treatments. The percent 
proliferation of CD3+ T cells is represented as red “X”s while the percent proliferation of 
the entire lymphocyte population is represented as black triangles. The Shapiro-Wilk 
normality test confirmed Gaussian distribution and an ordinary one-way ANOVA of 
multiple comparisons was utilized to describe statistical significance. Data was acquired 
as single replicates (n=8). Values were reported with statistical significance as P = 0.0453 
= *; P < 0.0001 = ****; ns = not significant. 
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Table 6.5: The mean percentage of CD3+ lymphocytes that proliferated in response to the 
indicated administered treatments in the PBMC or APC-T cell co-culture assays from 
Group B animals.  

 PBMCs (CD3) MoMΦs (CD3) MoDCs (CD3) 
ConA 98.5% 94.4% 96.1% 
Co-infected 53.7% 64.1% 63.4% 
PRRSV 49.3% 57.0% 59.0% 
swIAV 79.6% 77.7% 75.4% 
 

6.4 Discussion: 
 

The adaptive immune response to PRRSV can be characterized by the early appearance 

of non-neutralizing antibodies (within a week), a delayed appearance of IFN-γ secreting 

cells in PBMCs (2 weeks), which is likely associated with a delayed induction of T cell 

immunity, and a delayed appearance of neutralizing antibodies (3-4 weeks) (Loving et al., 

2015). The resolution of an infection is attributable to both IFN-γ secreting cells and the 

induction of neutralizing antibodies, although PRRSV persists in the tonsils of pigs for up 

to a year. As of late, the T cell response to PRRSV has garnered more attention, with 

studies indicating T cell epitope cross-reactivity amongst strains, and it seems to be 

generally accepted that the T cell response is being geared towards Th1 type immunity  

(Correas et al., 2017; Rahe and Murtaugh, 2017). But, there has not yet been an 

explanation for the delayed induction of T cell immunity. A potential explanation for the 

delayed induction of T cell immunity has been proposed to be associated with the 

induction of PRRSV specific regulatory T cells (Silva-Campa et al., 2009; Wongyanin et 

al., 2012; Wongyanin et al., 2010), but this is under debate (Rodriguez-Gomez et al., 

2015). In addition to atrophy and apoptosis in observed in peripheral lymphoid organs, 

and the thymus, of PRRSV infected animals, another potential explanation for the 

delayed induction of T cell immunity could be associated with the manipulation of 

antigen processing and presentation in the target cells of PRRSV infection, CD163+ 

myeloid derived APCs (Calvert et al., 2007) (Gomez-Laguna et al., 2013b). Therefore, 

we chose to investigate the induction of T cell immunity over the course of an infection 

to PRRSV, comparing the immune response to animals immunized with a commercially 

distributed swine-influenza A vaccine (FluSure XP), in addition to comparing the 
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immunostimulatory capacity of MoDCs and MoMΦs to induce the proliferation of 

specific T cell subsets in response to PRRSV infection or swIAV (H1N1) stimulation. 

 

Humoral response and IFN-γ secreting cells: 

To confirm the immunization with FluSure XP and the infection with PRRSV of the 

animals, we first tested for antibodies in the serum of the animals. As expected, PRRSV 

antibodies were detectable 9 days post challenge and increased over the course of the trial 

(Figure 6-2a). The antibody response to swIAV immunization was apparent throughout 

the course of the trial. Of note, in order to increase the level of T lymphocyte 

proliferation to swIAV, animals received a booster (double dose) of the FluSure vaccine 

21 days post-PRRSV infection. On day 32 post-PRRSV infection the levels of antibodies 

against swIAV increased drastically (Figure 6-2b). Additionally, it’s possible that 

PRRSV infection may have an effect on the antibody response to swIAV, as the antibody 

titres in Group A to swIAV are slightly higher than in Group B, although these 

differences were not found to be statistically significant. Lastly, Group A may have been 

exposed to PRRSV later during the trial, as antibody titres to PRRSV became detectable 

32 days post-PRRSV infection. In addition to serum ELISAs to measure antibody 

secretion, we utilized IFN-γ ELISpots to detect IFN-γ secreting cells in PBMCs. 

Our results indicate that IFN-γ secreting cells to PRRSV are detectable 14 days post 

infection and the amount of IFN-γ secreting cells in PBMCs increased at 28 days post-

PRRSV infection (Figure 6-3). The detection of IFN-γ secreting cells to PRRSV 2 weeks 

post infection reflects results from a recent study (Correas et al., 2017). Although IFN-γ 

secretion to swIAV was detectable over the course of the trial, the amount of IFN-γ 

secreting cells was not as prominent as that PRRSV. The lower IFN-γ response to the 

swIAV immunization could be an efficacy issue associated the vaccine formulation, 

being attributable to a weak T cell stimulation. It doesn’t seem that PRRSV infection 

influenced the level of IFN-γ secretion to swIAV in the immunized animals (Group A vs 

Group B, Figure 6-3). Similarly, the swIAV immunization did not have an effect on the 

IFN-γ response to PRRSV (Group B vs Group C, Figure 6-3). Overall, based on these 

results, the T cell response to PRRSV is functional and there may be a slight delay in the 

induction of T cell immunity.  
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Lymphocyte and CD3+ T cells: 

We first measured the overall levels of lymphocyte proliferation in response to either 

swIAV, PRRSV, or a combination of both PRRSV and swIAV within PBMCs or 

MoMΦs or MoDCs co-cultured with an enriched population of T cells. During the first 

week of infection, we were unable to detect any T cell or lymphocyte proliferation in 

PBMCs in response to any of the viral treatments administered to the cell cultures (Figure 

6-4). As a result, we decided to increase the MOI of swIAV from 1.0 to 10.0 in the 

PBMC cell cultures, and in the APC treatments prior to co-culturing with the enriched T 

cells. As Figure 6-5a demonstrates, we were able to induce lymphocyte proliferation in 

response to the swIAV, PRRSV, and co-infection treatments in the lymphoproliferation 

assay cell cultures during the second week of PRRSV infection. Overall, there wasn’t a 

noteworthy difference in the level of lymphocyte proliferation between the MoMΦ-T cell 

or MoDC-T cell co-cultures. The highest percentage of lymphocyte proliferation was 

recorded in the PBMC cell culture, while the MoDC-T cell co-culture had the lowest 

percentage of lymphocyte proliferation (Figure 6-5a, Supplementary Table 6.6). These 

results were reflected later in the animal trial, as the percentage of lymphocyte 

proliferation to PRRSV was higher in the PBMCs than in the APC-T cell co-cultures, 

with an overall increase as the trial continued (Figure 6-5a vs 6-5b). A recent study 

indicates that plasmacytoid DCs (pDCs) may have a role in up-regulating the expression 

of co-stimulatory molecules on DC subsets, including MoDCs  (in response to TLR-7 and 

TLR-9 stimulation) (Auray et al., 2016). This could potentially explain the higher level of 

lymphocyte proliferation in our PBMC proliferation cultures in comparison to the APC-T 

cell co-cultures. The percentage of CD3+ T cell proliferation, in response to the viral 

treatments, reflects the proliferation profiles recorded in the previous total lymphocyte 

proliferation figures (Figures 6-6a and 6-6b). During the earlier time point of the animal 

trial, we observed lymphocyte and T cell proliferation in response to the media alone 

treatments in Groups B and C in the APC-T cell co-cultures, but not in the PBMCs. 

During the later time point of the animal trial, we did not record any proliferation in the 

media alone treatments in the APC-T cell co-cultures (Figure 6-6b). 
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Monocytes are potentially infected in vivo: 

To address the lymphocyte proliferation in the APC-T cell co-culture assays, in Groups B 

and C, in the media alone treatments, we hypothesize that the animals were viremic 

during the first few weeks of infection. If that were the case, a portion of monocytes that 

we isolated from whole blood of the PRRSV infected pigs may have been infected with 

PRRSV. As a result, while the monocytes were differentiating into MoMΦs or MoDCs, 

PRRSV would have been replicating within the cell cultures. This could have had an 

impact on the differentiation of monocytes into MoDCs and MoMΦs during the viremic 

stage of infection. In order to confirm whether or not monocytes are infected in vivo, 

future experiments are needed. A recent study indicates that the monocyte population in 

the peripheral blood of pigs infected with PRRSV decreases, potentially indicating the 

susceptibility of monocytes to infection (Ferrari et al., 2018). Based on our results, it is 

possible that monocytes are infected by PRRSV, lending an explanation to the 

proficiency by which PRRSV is able to migrate to peripheral lymphoid organs and to the 

uterus.  

 

Naïve and activated CD4α+ Th cells: 

The purpose of the trial was to compare the immunostimulatory capacity of MoMΦs and 

MoDCs. In particular, we aimed to determine whether MoMΦs or MoDCs preferentially 

induced the proliferation of specific T lymphocyte subsets. The profiles of proliferation 

amongst the subsets reflect those results from the CD3+ T cell proliferation assays. We 

detected naïve Th cell proliferation mostly in the PBMC cell cultures, but it’s likely that 

these cells had a low/dim expression of CD8α and could have been transitioning towards 

an “activated” state, as we would not anticipate observing antigen specific proliferation 

within a naïve population of T cells (Figures 6-7a and 6-7b). The percentages of CD4α+ 

CD8α+ activated Th cell proliferation reflected previous results. Essentially, the PBMCs 

had a higher percentage of proliferation than the APC-T cell co-cultures and the amounts 

of Th cell proliferation increased over the course of the trial. The highest level of 

proliferation to PRRSV was observed in the Group C lymphocyte proliferation assays. 

And the highest level of activated Th cell proliferation to swIAV was observed in Group 

B from all three of the lymphocyte proliferation assays. Lastly, the MoDC-T cell co-
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cultures had higher levels of activated Th cell proliferation in response to both PRRSV 

and swIAV treatments than in the MoMΦ-T cell co-cultures. This may be attributable to 

MoDCs presenting a greater diversity of MHCII associate peptide sequences to T cells 

than MoMΦ as a result of the lower pH and higher protease activity in the endosomes of 

macrophages during antigen processing (Blum et al., 2013; Delamarre et al., 2005). This 

could explain the higher capacity of MoDCs to stimulate CD4+ Th cell proliferation. 

When comparing the level of Th cell proliferation to swIAV in Group A vs Group B 

(Figure 6-8), the level of Th cell proliferation was higher in the animals infected with 

PRRSV. Furthermore, we saw similar results in the gamma delta T cells (Figure 6-9b), in 

the central memory Th cells (6-11b) and the effector Th cells (6-12b). It’s possible that 

the PRRSV infection could be “training” monocytes to acquire an M1 phenotype 

(Bordon, 2014; Saeed et al., 2014).  

 

CD4α- CD8α+ T cells (CTL) response: 

The induction of CTL mediated immunity to a virus is highly important towards 

overcoming an infection (Elemans et al., 2014). Overall, the CTL proliferation profiles 

follow a similar trend as the other T cell subsets, in that CTL proliferation was recorded 

as early as 14 days post infection in the cell culture assays and continued to increase as 

the trial progressed (Figures 6-9a and 6-9b). The highest levels of CTL proliferation were 

observed in the PBMC cell cultures, and Group C had the highest mean percent CTL 

proliferation to PRRSV treatment, while Group B had the highest mean percent CTL 

proliferation to swIAV treatment. Upon further analysis, the differences between the 

treatments within the MoDC and MoMΦ- T cell co-cultures were not shown to be 

statistically significant. Overall, the induction of CTL proliferation seems to indicate that 

immunity to the PRRSV and the FluSure immunization are being directed towards a Th1 

type immune response. 

 

Central memory CD4α+ Th cells and effector CD4α+ Th cells: 

Central memory Th cells (CD4α+ CD8α+ CD27+) were detectable 14 days post PRRSV 

challenge in PBMCs, and in the APC-T cell co-cultures on days 17 and 20 (Figure 6-

11a). This was somewhat surprising, as we did not anticipate seeing central memory Th 
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cells until later during the infection (MacLeod et al., 2010; Pepper and Jenkins, 2011b). 

But, these results are relatively similar to those obtained in a recent study in which 

memory Th cells began to increase 17 days post infection (Ferrari et al., 2018). The 

highest level of central memory Th cell proliferation in response to PRRSV was recorded 

in Group C from the cell culture assays. Furthermore, the highest of level central memory 

Th cell proliferation to PRRSV was in the PBMC cell culture assay. In addition, higher 

levels of central memory Th cell proliferation were observed in the MoDC-T cell co-

culture assays compared to the MoMΦ-T cell co-cultures (Supplementary Table 6.12). 

These results indicate that MoDCs may possess a higher capacity to stimulate central 

memory Th cell proliferation than MoMΦs. This was also reflected in the proliferation 

profiles of the swIAV treatments, in which the highest level of central memory Th cell 

proliferation was again recorded in Group B for the cell culture assays (Supplementary 

Table 6.12). Statistically significant results indicating that MoDCs possessed a higher 

capacity than MoMΦs to stimulate central memory Th cell proliferation was found in 

Group C, in response to the PRRSV treatment (Supplementary Figure 6-33). The mean 

percent proliferation profiles of the effector Th cell responses to PRRSV and swIAV 

were very similar to that observed for the central memory Th cell proliferation profiles. 

The highest level of effector Th cell proliferation to PRRSV was recorded in the PBMC 

cultures, followed by the MoDC-T cell co-culture, and then the MoMΦ-T cell co-culture, 

all in Group C. And the highest proliferations in the effector Th cell population to swIAV 

were recorded in Groups B, with the MoDC-T cell co-cultures having higher levels of 

proliferation than both the PBMC and MoMΦ-T cell cultures (Supplementary Table 

6.13), although this was not found to be statistically significant. 

Comparing the mean percentage of lymphocyte proliferation amongst the T cell subsets, 

it becomes apparent that MoDCs may be more potent inducers of central memory Th 

cells. It’s plausible that this difference in immunostimulatory preference between MoDCs 

and MoMΦs highlights their attributes. Dendritic cells are often considered the 

professional APCs of the immune system, for many reasons including migration to the 

lymph node for antigen presentation to naïve T cells, and having a more diverse 

repertoire of peptide sequences than macrophages. In this case, DCs could play a crucial 

role in the induction of CD4α+ Th cells, aiding in the progression of the entire T cell 
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immune response and directly influencing the humoral immune response (Luckheeram et 

al., 2012b); (Swain, McKinstry, & Strutt, 2012a). In comparison, macrophages are often 

considered to be the sentinels of the immune system, being involved in the maintenance 

of homeostasis and tissue regeneration under non-pathogenic conditions, or playing 

significant roles in search and destroy phagocytosis when encountering a pathogen (Mills 

and Ley, 2014) (Varol et al., 2015). In the case of PRRSV, the induction of CTLs would 

be critical in overcoming an infectious state (Barry and Bleackley, 2002). The evidence 

thus far implies that the T cell response is being geared towards Th1 type immunity. To 

further support this, we assayed cell culture supernatants after the 4th day in culture for 

various cytokines. 

 

Cytokine response: 

We assayed for cytokine expression after 4 days and for the most part we were unable to 

detect cytokines in the majority of the supernatants from the cell cultures, reflecting 

results obtained previously (Reutner et al., 2013). Taking into consideration a viral 

infection and Th1 type immunity, we were particularly interested in type 1-interferons 

(IFN-α, IFN-β), IL-12, and IFN-γ. Our results indicate that both swIAV and to a lesser 

extent PRRSV stimulated IFN-α secretion (Supplementary Figures 6-19 and 6-20), 

although IFN-α was detected in some of the media alone treatments as well. More 

importantly, IFN-γ was detected in the cell cultures in response to swIAV, PRRSV, and 

the co-infection treatments. There wasn’t a notable difference amongst the treatments or 

the groups (Supplementary Figures 6-21 and 6-22). Lastly, there was an inconsistency in 

the detection of IL-12, IL-10, IL-13, and IL-17α amongst the various treatments and the 

different groups making it difficult to form any definitive conclusions regarding the afore 

mentioned cytokines expressions (Supplementary Figures 6-23 to 6-29). Overall, the 

detection of IFN-γ in the cell culture supernatants in response to both swIAV and 

PRRSV, in addition to the induced CTL proliferation, we feel that a protective immune 

response to PRRSV is associated with Th1 type immunity. 
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Unidentified lymphocyte population: 

Lastly, we noticed that the percentages of T cells within the total population of 

proliferating lymphocytes differed, depending on the treatment administered. 

Specifically, there was an unidentified population of lymphocytes that proliferated in 

response to the PRRSV treatment in all three of the cell culture assays, being most 

pronounced in the PBMC population (Figure 6-14). Furthermore, this was not the case in 

the ConA stimulated positive control treatment and to a much lesser extent in the swIAV 

treated lymphocyte proliferative cell culture assays. Today there is no anti-pig anti-CD19 

antibody available, as such we could only enrich the T cell population for our co-culture 

assays by depleting B cells that express CD21. Thus, we hypothesize that the unidentified 

lymphocyte population are CD19+ B cells in the APC-T cell co-cultures, and a mix of 

CD21+ and CD19+ B cells in the PBMC cell cultures. There is a robust non-NA response 

seen early during infection with PRRSV (within 3 days antibodies are detectable), and 

this may be attributable to hypergammaglobulinemia. It has been shown that the amount 

of immunoglobulin present in bronchoalveolar lavages (BAL) during a PRRSV infection 

was increased more than 10 fold in comparison to pigs infected with swIAV and porcine 

circovirus-2 (PCV-2). The study showed that the majority of the B cells, during the 

viremic stage of a PRRSV infection, express different isotypes (IgM, IgG, IgA) but 

nearly identical sequences in their 3rd complimentarity-determining region (HCDR3) of 

the antibody heavy chain. In other words, the authors showed that the non-NA response 

to PRRSV originated from similar B cell clones that had not undergone somatic 

hypermutation (Schroeder et al., 1998). If this is the case, it supports our hypothesis as to 

the portion of the lymphocytes proliferating in response to PRRSV in the PBMC cultures 

(Figure 6-14) being B cells. Further experiments are needed to identify the proliferating 

population of unidentified cells. 

 

6.5 Conclusion: 
 

In conclusion, there does not seem to be an overly remarkable difference between the 

immunostimulatory capacity of MoMΦs and MoDCs to induce CD3+ T cell proliferation. 

That being stated, our results indicate that MoDCs may be more potent stimulators of 
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central memory Th cell proliferation in response to both PRRSV. A major question in 

PRRSV immunology, considering the delayed induction of T cell immunity and skewed 

humoral response, has been what effect PRRSV has on the antigen-presenting/processing 

capability of APCs. Our results indicate that even though MoMΦs and MoDCs are being 

infected by PRRSV, they are able to present antigen to induce a robust T cell response. 

This response was markedly stronger than that to the swIAV treatment, which was 

administered at 10x the dose in comparison to PRRSV. And lastly, we have shown that it 

is plausible that PRRSV infects monocytes in vivo providing some clarity regarding the 

pathogenesis of the virus. Furthermore, the lymphoproliferative T cell response to swIAV 

in the animals infected with PRRSV was consistently stronger than the response to 

swIAV in the animals not exposed to PRRSV, hinting that PRRSV infection increased 

the immunostimulatory capacity of the monocyte population within those PRRSV 

infected animals. Our results indicate that there might be a slight delay in the induction of 

T cell immunity to PRRSV. Reasons for the delay could be attributable to PRRSV 

interfering with antigen processing/presentation in DCs or MΦs, atrophy and apoptosis of 

lymphoid populations in the lymph nodes, the induction of PRRSV specific Tregs, or 

potentially a combination of the three explanations. A recent study indicated that PRRSV 

specific Tregs are most prominent in peripheral lymphoid organs and tissue surrounding 

the lung (Nedumpun et al., 2018). Based on our results, CTLs and effector T cells are 

induced 14 days post-PRRSV infection. It’s plausible that these tissue specific Tregs 

could suppress T cell function at sites of infection, and once the T cell response breaches 

a threshold, the CTLs and effector T cells would be able to overcome the immune 

suppression by the Tregs. Overall we can conclude that the T cell immune response to 

PRRSV is functional, it is even more robust than the T cell response to the FluSure XP 

immunization, and it is being geared towards Th1 type immunity. 
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6.6 Supplementary Figures: 

 
 
Figure 6-13: Figure representing the peripheral blood mononuclear cell (PBMC) 
interferon-gamma ELISPOTs from the different treatment groups in the fifth week of 
PRRSV infection. Briefly, 5.0x10^5 PBMCs were isolated on the respective dates listed. 
Cells were treated with PRRSV (MOI 1.0) or swIAV (MOI 10.0) and the IFN-γ ELISpot 
plates were developed 20 hours post treatment. Statistical significance was determined by 
comparing the swIAV or PRRSV treated samples to the negative control (non-stimulated 
cells). Values were reported with statistical significance if P < 0.05 = *; P < 0.005 = **; 
P < 0.0005 = ***.  
 
 
Table 6.6: Mean percentage of lymphocyte proliferation in the indicated treatments, 
groups, cell cultures, on specific days post infection (DPI). 
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PBMCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 1.40 7.78 3.11 5.33 6.54 19.88 12.76 16.00
Group	B 1.31 17.74 20.76 5.30 3.64 28.11 42.40 13.79
Group	C 2.80 19.34 27.44 1.83 3.63 28.94 44.30 3.35

14	DPI 24	DPI

Macrophages
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 5.81 13.07 5.99 12.37 3.69 5.56 1.59 7.28
Group	B 20.19 24.16 26.50 16.83 9.12 22.80 23.60 16.60
Group	C 23.54 25.78 26.09 14.95 11.37 9.99 20.31 2.05

17	DPI 27	DPI

MoDCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 2.39 4.54 2.17 4.11 2.16 11.08 5.12 10.48
Group	B 7.89 17.13 13.35 11.91 2.27 17.68 17.95 13.15
Group	C 8.63 16.71 11.88 9.35 5.20 11.66 23.90 9.27

20	DPI 30	DPI
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Table 6.7: Mean percentage of CD3+ T cell proliferation in the indicated treatments, 
groups, cell cultures, on specific days post infection (DPI). 

 

 

 

 
 

 

Table 6.8: Mean percentage of naïve (CD3+ CD4α+ CD8α-) T cell proliferation in the 
indicated treatments, groups, cell cultures, on specific days post infection (DPI). 

 

 

 

 
 

 

 

PBMCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 1.39 7.58 3.00 5.51 2.66 15.40 9.08 12.46
Group	B 0.83 13.38 14.21 4.83 1.90 15.68 24.63 11.27
Group	C 2.58 14.92 20.16 1.63 1.61 16.84 27.23 1.26

14	DPI 24	DPI

Macrophages
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 4.10 11.30 4.19 10.72 3.09 5.05 1.14 6.95
Group	B 13.22 14.34 13.99 10.88 7.32 16.28 15.36 13.76
Group	C 15.65 15.76 15.20 8.89 10.35 6.43 14.79 1.44

17	DPI 27	DPI

MoDCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 1.69 3.44 1.56 3.33 0.92 7.66 2.42 7.32
Group	B 7.30 15.62 12.14 10.69 1.02 11.57 10.02 9.88
Group	C 8.10 15.62 11.09 8.75 4.06 7.18 12.73 5.72

20	DPI 30	DPI

PBMCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.226 1.265 0.437 0.898 0.350 1.016 0.917 0.806
Group	B 0.178 4.385 5.973 0.989 0.149 1.011 2.234 0.819
Group	C 0.300 5.075 7.347 0.206 0.107 1.227 2.080 0.124

14	DPI 24	DPI

Macrophages
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.254 0.249 0.169 0.307 0.551 0.445 0.292 0.565
Group	B 0.895 0.543 0.656 0.740 0.650 0.957 1.206 0.942
Group	C 0.702 0.597 0.444 0.435 1.172 0.597 1.078 0.324

17	DPI 27	DPI

MoDCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.259 0.282 0.255 0.304 0.044 0.261 0.145 0.311
Group	B 0.589 0.723 0.647 0.684 0.073 0.741 0.774 0.668
Group	C 0.477 0.632 0.532 0.501 0.141 0.469 0.797 0.394

20	DPI 30	DPI



	 138	

 

Table 6.9: Mean percentage of activated (CD3+ CD4α+ CD8α+) T helper cell 
proliferation in the indicated treatments, groups, cell cultures, on specific days post 
infection (DPI). 

 

 

 

 
 
 
Table 6.10: Mean percentage of cytotoxic lymphocyte (CD3+ CD4α- CD8α+) 
proliferation in the indicated treatments, groups, cell cultures, on specific days post 
infection (DPI). 

 

 

 

 
 
 
 

PBMCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.010 0.171 0.081 0.130 0.079 2.570 0.997 1.746
Group	B 0.007 0.871 1.022 0.096 0.075 3.052 5.417 1.948
Group	C 0.015 1.124 1.755 0.020 0.064 3.561 6.720 0.138

14	DPI 24	DPI

Macrophages
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.516 1.178 0.315 1.208 0.534 0.897 0.210 1.135
Group	B 3.405 3.231 3.737 1.824 1.144 3.355 2.848 2.360
Group	C 4.488 3.819 3.754 2.017 2.384 1.456 3.116 0.250

17	DPI 27	DPI

MoDCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.129 0.388 0.139 0.394 0.142 2.341 0.613 2.274
Group	B 0.838 1.800 1.356 1.422 0.235 4.670 3.138 3.598
Group	C 0.947 1.857 1.301 1.192 1.550 2.893 4.947 2.492

20	DPI 30	DPI

PBMCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.171 1.234 0.465 0.933 0.357 5.759 2.925 4.460
Group	B 0.068 1.826 2.071 0.492 0.691 5.658 9.355 3.965
Group	C 0.215 2.764 3.182 0.133 0.627 7.053 11.598 0.548

14	DPI 24	DPI

Macrophages
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 2.162 6.606 2.217 6.162 1.040 1.532 0.307 2.352
Group	B 5.877 6.155 6.277 5.069 2.850 6.286 6.527 5.715
Group	C 6.137 6.152 6.821 4.942 4.628 2.377 6.435 0.450

17	DPI 27	DPI

MoDCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.301 0.600 0.306 0.713 0.298 3.740 1.317 3.391
Group	B 1.850 3.181 3.165 2.646 0.289 3.728 4.538 3.126
Group	C 1.924 3.475 3.062 2.377 0.985 1.802 4.895 1.173

20	DPI 30	DPI
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Table 6.11: Mean percentage of gamma delta T cell (CD3+ γδ+) proliferation in the 
indicated treatments, groups, cell cultures, on specific days post infection (DPI). 

 

 

 

 
 
 

Table 6.12: Mean percentage of central memory T helper cell (CD3+ CD4α+ CD8α+ 
CD27+) proliferation in the indicated treatments, groups, cell cultures, on specific days 
post infection (DPI). 

 

 

 

 
 
 
 
 
 

PBMCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.420 2.629 0.764 1.800 0.183 1.745 0.945 1.147
Group	B 0.242 3.485 2.217 1.586 0.169 1.642 2.231 1.187
Group	C 0.511 1.942 1.723 0.462 0.094 1.473 2.165 0.091

14	DPI 24	DPI

Macrophages
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 2.797 9.386 3.415 8.755 0.145 0.243 0.076 0.579
Group	B 7.345 8.899 7.797 7.406 0.575 0.947 0.804 1.129
Group	C 6.980 8.276 7.868 6.720 0.919 0.334 0.571 0.118

17	DPI 27	DPI

MoDCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.266 0.248 0.127 0.333 0.203 0.860 0.233 0.837
Group	B 2.032 3.130 3.402 2.503 0.232 1.266 1.039 1.289
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Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.008 0.088 0.049 0.073 0.050 0.612 0.348 0.425
Group	B 0.005 0.267 0.440 0.039 0.044 1.369 2.850 0.502
Group	C 0.011 0.452 0.797 0.011 0.038 2.153 3.597 0.081
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Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.251 0.315 0.112 0.468 0.225 0.170 0.071 0.361
Group	B 2.029 1.611 2.319 0.763 0.673 1.209 1.570 0.738
Group	C 2.863 1.896 2.259 0.973 1.618 0.820 1.603 0.157

17	DPI 27	DPI

MoDCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.080 0.208 0.094 0.191 0.116 0.828 0.438 0.863
Group	B 0.329 0.878 0.716 0.753 0.118 1.704 1.958 1.057
Group	C 1.082 2.122 1.301 1.192 0.957 1.524 2.960 1.360
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Table 6.13: Mean percentage of effector T helper cell (CD3+ CD4α+ CD8α+ CD27-) 
proliferation in the indicated treatments, groups, cell cultures, on specific days post 
infection (DPI). 

 
 

 
 

 
 
 

 
 
Figure 6-14: Figure indicating the percentage of CD3+ T cells that proliferated within 
the total lymphocyte population of the PBMC cultures from all of the groups over the 
course of the trial. 

PBMCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.002 0.082 0.033 0.058 0.029 1.957 0.649 1.322
Group	B 0.003 0.604 0.582 0.057 0.031 1.684 2.568 1.446
Group	C 0.004 0.673 0.958 0.010 0.026 1.407 3.123 0.057

14	DPI 24	DPI

Macrophages
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.285 0.839 0.212 0.740 0.309 0.727 0.139 0.774
Group	B 1.198 1.730 1.414 1.024 0.487 2.190 1.164 1.687
Group	C 1.518 1.791 1.416 1.159 0.870 0.653 1.410 0.096

17	DPI 27	DPI

MoDCs
Media Co-infected PRRSV SIV Media Co-infected PRRSV SIV

Group	A 0.048 0.235 0.045 0.203 0.026 1.513 0.175 1.411
Group	B 0.509 1.053 0.640 0.669 0.117 2.966 1.180 2.541
Group	C 0.452 0.896 0.546 0.554 0.593 1.369 1.987 1.132

20	DPI 30	DPI
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Figure 6-15: Figure indicating the percentage of CD3+ T cells that proliferated within 
the total lymphocyte population of the MoMΦ-T cell co-cultures from all of the groups 
over the course of the trial. 
 

 
 
Figure 6-16: Figure indicating the percentage of CD3+ T cells that proliferated within 
the total lymphocyte population of the MoDC-T cell co-cultures from all of the groups 
over the course of the trial. 
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Figure 6-17: Figure indicating the level of CD3+ T cell proliferation from PBMC 
cultures in response to PRRSV (MOI 1.0), swIAV (MOI 10.0), or co-infected treatments 
from their respective groups during the fifth week of infection. After treatment, 
lymphocytes were left in culture for 4 days before measuring proliferation using flow 
cytometry. Statistical significance was determined by comparing the co-infected, swIAV, 
or PRRSV treated samples to the negative control (non-stimulated cells). Values were 
reported with statistical significance if P < 0.05 = *; P < 0.005 = **; P < 0.0005 = ***.  
 
 

 
 
Figure 6-18: Representation of the FMIA cytokine ELISAs measuring IFN-α during the 
2nd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-19: Representation of the FMIA cytokine ELISAs measuring IFN-α during the 
3rd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-20: Representation of the FMIA cytokine ELISAs measuring IFN-γ during the 
2nd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-21: Representation of the FMIA cytokine ELISAs measuring IFN-γ during the 
3rd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-22: Representation of the FMIA cytokine ELISAs measuring IL-10 during the 
2nd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-23: Representation of the FMIA cytokine ELISAs measuring IL-10 during the 
3rd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
 
 

 
 
Figure 6-24: Representation of the FMIA cytokine ELISAs measuring IL-12 during the 
2nd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-25: Representation of the FMIA cytokine ELISAs measuring IL-13 during the 
2nd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-26: Representation of the FMIA cytokine ELISAs measuring IL-13 during the 
3rd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-27: Representation of the FMIA cytokine ELISAs measuring IL-17α during the 
2nd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-28: Representation of the FMIA cytokine ELISAs measuring IL-17α during the 
3rd week post-PRRSV infection. Supernatants from the cell culture assays were removed 
after 4 days in culture to measure cytokine secretion in response to the administered 
treatments indicated in the graphs. Samples were analyzed in duplicate. 
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Figure 6-29: Schematic demonstrating the gating strategy utilized for CD4α+ CD8α+ 
CD27+ T cells from a PRRSV treated PBMC cell culture (pig 343). Briefly, a gate was 
established around singlets before drawing a gate surrounding lymphocytes. A gate was 
then drawn on live cells, before gating on CD3+ T cell expression. After gating on the 
proliferating cell population, a gate established for the CD4α+ CD8α+ T cell subset, before 
gating on CD27- (Effector Th cells, in blue) and CD27+ (Central memory Th cells, in red) 
to measure Th cell subset proliferation. 
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Figure 6-30: Comparison between the immunostimulatory capacity of MoDCs and 
MoMΦs to stimulate central memory Th cell proliferation during the later time point of 
the animal trial to the specific treatments within their respective groups. The mean 
percent proliferation of the indicated treatment was subtracted from the mean 
proliferation of the media alone treatment, according to each separate animal. The percent 
proliferation was then compared between MoMΦs and MoDCs according to each 
treatment. Statistical analysis was based on non-Gaussian distribution and the Kruskal-
Wallis test of multiple comparisons was used to test for significance. P < 0.05 = *; P < 
0.005 = **; P < 0.0005 = ***. 
 
 
 
Contributions: JD, Stacy Strom, and JVK isolated PBMCs, monocytes, and T cells. JVK 
and JD cell trace violet stained the T cells. Stacy Strom, JVK, and JD performed the 
ELISpot assays. JD performed serum ELISAs. JD and Donna Dent performed FMIA 
ELISAs. JD performed macrophage and MoDC cell differentiation cultures. JD 
performed the flow cytometry. JD, JVK, and Stacy Strom co-cultured APCs with T cells. 
JD did statistical analysis. JD and VG designed experiments. 
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Chapter 7  GENERAL DISCUSSION 
 

The PRRSV is an enveloped, positive sense, single stranded, RNA virus that infects 

APCs of the porcine immune system. Cell susceptibility is restricted to cells that express 

the hemoglobin/haptoglobin scavenger molecule CD163 (Calvert et al., 2007). Animals 

infected with PRRSV are subject to an array of clinical syndromes such as respiratory 

difficulty and pneumonia, weight loss, and the infection of the fetus leading to 

spontaneous abortions and fetal mummification, accounting for the majority of the 

economic losses (Butler et al., 2014). Outcomes of disease range from being 

asymptomatic to upwards of 100% mortality in pig herds, being largely attributable to the 

pathogenicity of the PRRSV strain, secondary co-infections with opportunistic pathogens, 

in addition to the age, sex, and breed of the pig. The initial site of PRRSV replication is 

within PAMs in the alveolar space (Chen, Trible, Kerrigan, Tian, & Rowland, 2016). 

Shortly after which PRRSV becomes viremic spreading to peripheral lymphoid organs 

and establishing a persistent state in the tonsils (Lunney et al., 2016). The innate immune 

system is subject to regulation by PRRSV in a strain specific manner, according to 

pathogenicity. The highly virulent Chinese strains of PRRSV seem to induce a cytokine 

storm, whereas the less virulent strains suppress the expression of innate immune 

cytokines. Innate immune suppression and a depletion of the myeoloid phagocyte 

population lead to an immunocompromised state, leaving animals susceptible to 

secondary infections. Regarding the adaptive immune response, antibodies to the PRRSV 

are detected within a week of infection, although the antibodies are non-neutralizing. 

There is a delayed induction of T cell immunity to the PRRSV and roughly 4 weeks post 

infection, neutralizing antibodies become detectable leading to the resolution of the 

infection (Loving et al., 2015). There is a high demand for novel vaccines as the currently 

live attenuated vaccines are limited in cross-protectiveness and pose a risk of reverting to 

virulence. Understanding the delayed induction of T cell immunity and the dysregulated 

humoral immune response will be critical in the development of novel vaccine platforms. 

The aim of this thesis was to understand the role that APCs play during the pathogenesis 

of the virus and to shed light upon the interaction of PRRSV infected APCs with T cells. 
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We hypothesized that specific subsets of DCs were susceptible to PRRSV. We decided to 

utilize FMS-related tyrosine kinase 3 ligand (Flt3L) to differentiate DCs from 

hematopoetic progenitor cells, isolated from the bone marrow. In chapter 3, we 

successfully differentiated BMDCs and we showed that CD163+ BMDCs were 

susceptible to PRRSV infection and that the CD163- BMDCs were not susceptible. We 

continued our investigation by comparing the susceptibility of CD163+ BMDCs to MΦs 

and MoDCs infected with PRRSV. Our results indicated that PRRSV infects MoDCs and 

MoMΦs more efficiently than CD163+ BMDCs. Lastly, our results indicated that the 

CD163+ BMDCs remained healthy 48 hours post infection, whereas the MoMΦs and 

MoDCs were essentially dead after 48 hours. This difference in APC viability may be 

attributable to a less severe rate of infection, but it could also be an indication of a 

defense mechanism that CD163+ BMDCs possess not seen in the myeloid derived MΦs 

or MoDCs.  

An aspect of major interest in our lab is the progression to T cell immunity during a 

PRRSV infection, and a major strategy that viruses have developed for immune evasion 

has been the compromisation of antigen presentation and maturation of DCs (Kruse et al., 

2000; Mahanty et al., 2003; Wang et al., 2007). Thus, in chapter 3 we investigated the 

expression of cell surface markers associated with antigen presentation in the APC 

populations. When comparing the levels of MHCI and MHCII expression on the APC 

populations, PRRSV infected, non-stimulated MoMΦs showed clear downregulations in 

both MHCI and MHCII cell surface expression. Our results demonstrated that even 

though there is a downregulation of MHC molecules on the surface of MoMΦs infected 

with PRRSV, it did not abrogate their stimulatory capacity, as the MoMΦs clearly 

retained their capacity to stimulate a recall response in T cells from PRRSV immunized 

animals. Ultimately, we were left questioning why there was a delayed induction of T cell 

immunity to PRRSV. To further address the delayed induction of T cell immunity after 

PRRSV infection, we decided to investigate the maturation of the invariant chain in 

MoDCs and PAMs. 

Dendritic cells (DCs) are often referred to as the professional APCs of the immune 

system, being largely attributable to their capacity to stimulate naïve T cells, driving the 

adaptive immune response in a particular direction. The pathway in which MHCII is 
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synthesized and loaded with peptide has been largely deduced, but the trafficking of 

peptide loaded MHCII to the plasma membrane in APCs is not completely resolved 

(Blum et al., 2013; ten Broeke et al., 2013). Originally we sought to investigate whether 

PRRSV has an influence on the maturation of the invariant chain. Theoretically, if 

PRRSV were to interfere with the maturation of the invariant chain, it would result in the 

occupation of the MHCII binding groove with CLIP. This in turn would prevent the 

loading of a PRRSV peptide sequences into the MHCII binding groove for antigen 

presentation (Blum et al., 2013; Mellins and Stern, 2014). To determine whether PRRSV 

influences the maturation of the invariant chain, in chapter 4 we infected cells and 

immunoprecipitated MHCII. 

We successfully immunoprecipitated MHCII from infected and non-infected MoDCs and 

PAMs, as we identified the alpha chain (SLA-DRA1) and the beta chain (SLA-DRB1) of 

MHCII. There was one major discernable difference in the levels of MHCII associated 

molecules amongst the infected and non-infected cell populations, and it was not 

associated with the invariant chain. At this time, it is difficult to conclude whether 

PRRSV infection alters the maturation of the invariant chain, as we could not identify an 

antibody for its identification in pigs. Interestingly the band of interest within the infected 

cell population was practically diminished, which we identified to be gamma actin 1. The 

role of the cytoskeleton during a PRRSV infection has gone largely unstudied. Our 

results seem to indicate that the association of gamma actin 1 with MHCII is present in 

MoDCs and to a much lesser extent in PAMs. Furthermore, the gamma actin 1 

association with MHCII was largely diminished when MoDCs were infected with 

PRRSV. We are thus left questioning why gamma actin 1 was immunoprecipitaed with 

MHCII, and why gamma actin 1 was not as pronounced in the PRRSV infected MoDCs 

or the PAMs, regardless of infection status. It’s plausible that gamma actin 1 could play a 

prominent role during antigen presentation, potentially in the transport of peptide loaded 

MHCII molecules (pMHCII) to the cell surface, or possibly in sequestering pMHCII to 

lipid rafts at immunological synaptic junctions during T cell stimulation. Further studies 

investigating the role of the actin cytoskeleton during a PRRSV infection, and during 

antigen presentation in MoDCs, could be beneficial towards understanding the 

pathogenesis of PRRSV. To draw any sort of conclusions regarding the relationship of 
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APCs with T cells during a PRRSV infection, it was essential to develop a method to 

culture the APCs with T cells, so we established an assay by modifying the mixed 

leukocyte reaction (MLR) in chapter 5. 

We hypothesized that IFN-γ stimulated (M1) macrophages would possess a greater 

capacity to stimulate T lymphocyte proliferation than non-stimulated (M0) or IL-4 

stimulated (M2) macrophages. Using an MLR, we demonstrated that M1 macrophages 

possessed a greater capability to promote T lymphocyte proliferation than M0 or M2 

macrophages derived from blood monocytes. Furthermore, we modified the MLR in 

Chapter 6 to assess antigen specific T cell responses. Overall, the stimulation of APCs 

towards specific phenotypes had clear implications on both the robustness of the T cell 

response and type of T cell immunity that will be induced. The results obtained from the 

MLR gave us the confidence to study the stimulation of antigen specific T lymphocyte 

populations in vitro isolated from PRRSV infected animals.  

The purpose of the animal trial in Chapter 6 was to investigate and characterize the T cell 

response to PRRSV infection, and to compare the immunostimulatory capacity of 

MoMΦs and MoDCs to promote the proliferation of specific T cell subsets. We utilized 

the FluSure XP vaccine to swine-influenza as a positive control and a comparative 

measure of immunity to PRRSV infection. We detected IFN-γ secreting cells in PBMCs 

from PRRSV infected animals 2 weeks post infection, in addition to T cell proliferation 

in both the PBMC and APC-T cell co-cultures in all of the Groups to both PRRSV and 

swIAV treatments. For the most part, the highest level of T lymphocyte proliferation to 

both PRRSV infection and swIAV treatment was detected in the PBMC 

lymphoproliferation cell cultures. Overall, our main findings included the following: A) 

PRRSV infection of animals in Group B may have enhanced the T cell response to 

swIAV immunization in the MoMΦ-T cell co-culture and MoDC-T cell co-culture, being 

potentially attributable to monocyte training in PRRSV infected animals. B) The 

stimulatory capacity between MoMΦs and MoDCs to induce overall lymphocyte 

proliferation did not differ significantly. Although MoDCs may be more potent inducers 

of central memory Th cells as exhibited in response to both PRRSV and swIAV 

treatments. C) During the second week of infection, we observed proliferation in the 

media alone treatments in the APC-T cell co-cultures from the animal groups that were 
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infected with PRRSV. We hypothesize that the monocytes that we isolated for the 

MoMΦ and MoDC differentiation were infected with PRRSV. D) Lastly, more than 50% 

the population of cells that proliferated in response to PRRSV which were not CD3+ T 

cells in the PBMC culture. We hypothesize that the unidentified population of cells could 

be CD19+/CD21+ B cells. If the population consists of B cells it lends support to our 

overall theory regarding PRRSV induction of hypergammaglobulinemia, which will be 

discussed in more detail below. 

In conclusion, we have shown that the susceptibility of APCs is restricted to those cells 

that express CD163. Furthermore, the rate of replication of PRRSV is slower in CD163+ 

BMDCs, and potentially in MoDCs, than in MOMϕs. The infection of APCs by PRRSV 

does not abrogate their antigen-presenting and immunostimulatory capacity to promote T 

lymphocyte proliferation. Furthermore PRRSV infection appears to be altering the 

association of gamma actin 1 with MHCII. We are unable to draw a definitive conclusion 

as to whether the lack of gamma actin 1 association is attributable to the maturation of 

DCs and the transport of peptide loaded MHCII to the plasma membrane, or is occurring 

as a result of PRRSV hijacking the actin cytoskeleton for its own replication and 

assembly. Regarding the induction of T cell immunity to PRRSV, although the induction 

of T cell immunity may be delayed, the T cell response is functional. We demonstrated 

that both MoMϕs and MoDCs were capable of stimulating Th cell and CTL proliferation 

in an antigen specific manner to PRRSV and swIAV. Lastly, a distinguishing feature of 

MoDCs in comparison to MoMΦs could be an increased potency to induce central 

memory Th cell proliferation.  

 

Theory regarding the delayed induction of T cell immunity to PRRSV: 

This thesis in its entirety allowed us to propose a theory regarding the delayed induction 

of T cell immunity and the dysregulated humoral immune response (being the induction 

of non-neutralizing antibodies and delayed appearance of neutralizing antibodies). We 

believe that a specific subset of DCs, those being derived from hematopoietic progenitor 

cells with Flt3L, is responsible for the initiation of the CD4α+ T cell response to PRRSV. 

Our results indicate that the pathogenesis of the virus or the rate of replication within 

MoMΦs and DCs is different. The virus replicates more quickly in MoMΦs than CD163+ 
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BMDCs, and the virus seems to kill the MoMΦs and MoDCs more quickly than it does 

the CD163+ BMDCs. Theoretically, APCs would need around 24 hours to stimulate a 

naïve T cell to become activated for its particular antigen (Jelley-Gibbs et al., 2000). We 

feel that macrophages and MoDCs may simply not have enough time to present antigen 

to the T cell specific for its specific derived viral peptide sequence. Given the likelihood 

that the BMDC population isn’t as prominent as MoDCs and MoMΦs in vivo, the 

CD163+ BMDCs could be the APC population responsible for driving T cell immunity. 

Thus, the delayed induction of T cell immunity could be attributable to the rarity of this 

specific DC population in addition to time constraint of that DC population reaching the 

lymph node for antigen presentation to naïve T cells. The delayed induction of CD4α+ Th 

cells would also result in a lack of follicular Th cell induction. A recent report indicates 

that γδ T cells play a significant role during the differentiation of follicular Th cells 

(Rezende et al., 2018). Therefore the induction of γδ T cells could be relevant when 

considering the induction of follicular Th cells. Overall, in the absence of follicular Th 

cells, B cells would not be able to undergo proper somatic hypermutation. Additionally, 

B cells would enter a state of hypergammaglobulinemia in which they would proliferate 

and plasma cell synthesis of antibodies would go undirected, as discussed in the humoral 

immunity section of the literature review. Thus, once follicular Th cells are active (likely 

2 weeks post infection when IFN-γ secreting cells become detectable in PBMCs and γδ T 

cell proliferation is at its highest point) the B cells would undergo somatic hypermutation 

(roughly a week’s time) and the synthesis of neutralizing antibodies would follow (4 

weeks post infection), which is what we see in vivo (Loving et al., 2015).  
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7.1 Future work 
There are several directions that the work from this thesis can take. Investigating the 

pathogenesis of PRRSV within Flt3L-derived CD163+ BMDCs could provide useful 

information into the mechanisms surrounding the decreased susceptibility to PRRSV of 

the CD163+ BMDCs. Additionally, investigating the peptide sequences being presented 

in association with MHCII by the CD163+ BMDC population, if our theory is correct, has 

the potential to aid in the development of a novel vaccine. Continuing, the mechanisms 

surrounding the transport of peptide loaded MHCII to the plasma membrane are not 

completely understood. Understanding the role of the cytoskeleton during MHCII 

trafficking to the plasma membrane would contribute to the general knowledge 

surrounding antigen presentation and processing for the field of immunology. 

Furthermore, investigating the role of the actin cytoskeleton during a PRRSV infection, 

and whether PRRSV manipulates the cytoskeleton, could provide a deeper understanding 

of the pathogenesis of virus and would contribute to the general knowledge for the field 

of virology. Lastly, explanations for the delayed induction of T cell immunity and the 

delayed induction of neutralizing antibodies do no exist. Although it would be difficult to 

investigate, determining the point in time that follicular T helper cells migrate into 

germinal centers could provide insight into the process of somatic hyptermutation in B 

cells during a PRRSV infection. Ultimately, this could provide an answer as to whether 

or not the delayed induction of neutralizing antibodies is attributable to a lack of 

follicular Th cells coordinating somatic hypermutation.  

 

 

 

 

 



	 161	

REFERENCES 
 
Akira, S., Uematsu, S., Takeuchi, O., 2006. Pathogen Recognition and Innate Immunity. 

Cell 124, 783-801. 
Allende, R., Lewis, T.L., Lu, Z., Rock, D.L., Kutish, G.F., Ali, A., Doster, A.R., Osorio, 

F.A., 1999. North American and European porcine reproductive and respiratory 
syndrome viruses differ in non-structural protein coding regions. The Journal of 
general virology 80 ( Pt 2), 307-315. 

Auray, G., Keller, I., Python, S., Gerber, M., Bruggmann, R., Ruggli, N., Summerfield, 
A., 2016. Characterization and Transcriptomic Analysis of Porcine Blood 
Conventional and Plasmacytoid Dendritic Cells Reveals Striking Species-Specific 
Differences. Journal of immunology 197, 4791-4806. 

Banchereau, J., Steinman, R.M., 1998. Dendritic cells and the control of immunity. 
Nature 392, 245-252. 

Barois, N., Forquet, F., Davoust, J., 1998. Actin microfilaments control the MHC class II 
antigen presentation pathway in B cells. Journal of cell science 111 ( Pt 13), 1791-
1800. 

Barry, M., Bleackley, R.C., 2002. Cytotoxic T lymphocytes: all roads lead to death. 
Nature reviews. Immunology 2, 401-409. 

Bassols, A., Costa, C., Eckersall, P.D., Osada, J., Sabria, J., Tibau, J., 2014. The pig as an 
animal model for human pathologies: A proteomics perspective. Proteomics. 
Clinical applications 8, 715-731. 

Baumann, A., Mateu, E., Murtaugh, M.P., Summerfield, A., 2013. Impact of genotype 1 
and 2 of porcine reproductive and respiratory syndrome viruses on interferon-
alpha responses by plasmacytoid dendritic cells. Veterinary research 44, 33. 

Belz, G.T., Nutt, S.L., 2012. Transcriptional programming of the dendritic cell network. 
Nat Rev Immunol 12, 101-113. 

Beura, L.K., Sarkar, S.N., Kwon, B., Subramaniam, S., Jones, C., Pattnaik, A.K., Osorio, 
F.A., 2010. Porcine reproductive and respiratory syndrome virus nonstructural 
protein 1beta modulates host innate immune response by antagonizing IRF3 
activation. Journal of virology 84, 1574-1584. 

Bevan, M.J., 2004. Helping the CD8(+) T-cell response. Nature reviews. Immunology 4, 
595-602. 

Blum, J.S., Wearsch, P.A., Cresswell, P., 2013. Pathways of antigen processing. Annual 
review of immunology 31, 443-473. 

Bordet, E., Blanc, F., Tiret, M., Crisci, E., Bouguyon, E., Renson, P., Maisonnasse, P., 
Bourge, M., Leplat, J.J., Giuffra, E., Jouneau, L., Schwartz-Cornil, I., Bourry, O., 
Bertho, N., 2018. Porcine Reproductive and Respiratory Syndrome Virus Type 
1.3 Lena Triggers Conventional Dendritic Cells 1 Activation and T Helper 1 
Immune Response Without Infecting Dendritic Cells. Frontiers in immunology 9, 
2299. 

Bordon, Y., 2014. Macrophages: innate memory training. Nature reviews. Immunology 
14, 713. 

Bousso, P., 2008. T-cell activation by dendritic cells in the lymph node: lessons from the 
movies. Nature reviews. Immunology 8, 675-684. 



	 162	

Brar, M.S., Shi, M., Murtaugh, M.P., Leung, F.C., 2015. Evolutionary diversification of 
type 2 porcine reproductive and respiratory syndrome virus. The Journal of 
general virology 96, 1570-1580. 

Brockmeier, S.L., Loving, C.L., Eberle, K.C., Hau, S.J., Buckley, A., Van Geelen, A., 
Montiel, N.A., Nicholson, T., Lager, K.M., 2017a. Interferon alpha inhibits 
replication of a live-attenuated porcine reproductive and respiratory syndrome 
virus vaccine preventing development of an adaptive immune response in swine. 
Veterinary microbiology 212, 48-51. 

Brockmeier, S.L., Loving, C.L., Palmer, M.V., Spear, A., Nicholson, T.L., Faaberg, K.S., 
Lager, K.M., 2017b. Comparison of Asian porcine high fever disease isolates of 
porcine reproductive and respiratory syndrome virus to United States isolates for 
their ability to cause disease and secondary bacterial infection in swine. 
Veterinary microbiology 203, 6-17. 

Burns, S., Thrasher, A.J., Blundell, M.P., Machesky, L., Jones, G.E., 2001. Configuration 
of human dendritic cell cytoskeleton by Rho GTPases, the WAS protein, and 
differentiation. Blood 98, 1142-1149. 

Burton, D.R., 2002. Antibodies, viruses and vaccines. Nature reviews. Immunology 2, 
706-713. 

Butler, J.E., Lager, K.M., Golde, W., Faaberg, K.S., Sinkora, M., Loving, C., Zhang, Y.I., 
2014. Porcine reproductive and respiratory syndrome (PRRS): an immune 
dysregulatory pandemic. Immunologic research 59, 81-108. 

Butler, J.E., Sun, J., Weber, P., Ford, S.P., Rehakova, Z., Sinkora, J., Lager, K., 2001. 
Antibody repertoire development in fetal and neonatal piglets. IV. Switch 
recombination, primarily in fetal thymus, occurs independent of environmental 
antigen and is only weakly associated with repertoire diversification. Journal of 
immunology 167, 3239-3249. 

Butler, J.E., Weber, P., Sinkora, M., Baker, D., Schoenherr, A., Mayer, B., Francis, D., 
2002. Antibody repertoire development in fetal and neonatal piglets. VIII. 
Colonization is required for newborn piglets to make serum antibodies to T-
dependent and type 2 T-independent antigens. Journal of immunology 169, 6822-
6830. 

Butler, J.E., Wertz, N., Weber, P., Lager, K.M., 2008. Porcine reproductive and 
respiratory syndrome virus subverts repertoire development by proliferation of 
germline-encoded B cells of all isotypes bearing hydrophobic heavy chain CDR3. 
Journal of immunology 180, 2347-2356. 

Calvert, J.G., Slade, D.E., Shields, S.L., Jolie, R., Mannan, R.M., Ankenbauer, R.G., 
Welch, S.K., 2007. CD163 expression confers susceptibility to porcine 
reproductive and respiratory syndrome viruses. Journal of virology 81, 7371-
7379. 

Calzada-Nova, G., Schnitzlein, W., Husmann, R., Zuckermann, F.A., 2010. 
Characterization of the cytokine and maturation responses of pure populations of 
porcine plasmacytoid dendritic cells to porcine viruses and toll-like receptor 
agonists. Vet Immunol Immunopathol 135, 20-33. 

Calzada-Nova, G., Schnitzlein, W.M., Husmann, R.J., Zuckermann, F.A., 2011. North 
American porcine reproductive and respiratory syndrome viruses inhibit type I 



	 163	

interferon production by plasmacytoid dendritic cells. Journal of virology 85, 
2703-2713. 

Canelli, E., Catella, A., Borghetti, P., Ferrari, L., Ogno, G., De Angelis, E., Bonilauri, P., 
Guazzetti, S., Nardini, R., Martelli, P., 2018. Efficacy of a modified-live virus 
vaccine in pigs experimentally infected with a highly pathogenic porcine 
reproductive and respiratory syndrome virus type 1 (HP-PRRSV-1). Veterinary 
microbiology 226, 89-96. 

Cao, J., Grauwet, K., Vermeulen, B., Devriendt, B., Jiang, P., Favoreel, H., Nauwynck, 
H., 2013. Suppression of NK cell-mediated cytotoxicity against PRRSV-infected 
porcine alveolar macrophages in vitro. Veterinary microbiology 164, 261-269. 

Chang, H.C., Peng, Y.T., Chang, H.L., Chaung, H.C., Chung, W.B., 2008. Phenotypic 
and functional modulation of bone marrow-derived dendritic cells by porcine 
reproductive and respiratory syndrome virus. Vet Microbiol 129, 281-293. 

Chaung, H.C., Chen, C.W., Hsieh, B.L., Chung, W.B., 2010. Toll-Like Receptor 
expressions in porcine alveolar macrophages and Dendritic Cells in responding to 
poly IC stimulation and porcine reproductive and respiratory syndrome virus 
(PRRSV) infection. Comparative immunology, microbiology and infectious 
diseases 33, 197-213. 

Chen, N., Trible, B.R., Kerrigan, M.A., Tian, K., Rowland, R.R.R., 2016. ORF5 of 
porcine reproductive and respiratory syndrome virus (PRRSV) is a target of 
diversifying selection as infection progresses from acute infection to virus 
rebound. Infection, genetics and evolution : journal of molecular epidemiology 
and evolutionary genetics in infectious diseases 40, 167-175. 

Chow, A., Toomre, D., Garrett, W., Mellman, I., 2002. Dendritic cell maturation triggers 
retrograde MHC class II transport from lysosomes to the plasma membrane. 
Nature 418, 988-994. 

Chung, C.J., Cha, S.H., Grimm, A.L., Ajithdoss, D., Rzepka, J., Chung, G., Yu, J., Davis, 
W.C., Ho, C.S., 2018. Pigs that recover from porcine reproduction and respiratory 
syndrome virus infection develop cytotoxic CD4+CD8+ and CD4+CD8- T-cells 
that kill virus infected cells. PloS one 13, e0203482. 

Colf, L.A., Bankovich, A.J., Hanick, N.A., Bowerman, N.A., Jones, L.L., Kranz, D.M., 
Garcia, K.C., 2007. How a single T cell receptor recognizes both self and foreign 
MHC. Cell 129, 135-146. 

Comrie, W.A., Li, S., Boyle, S., Burkhardt, J.K., 2015. The dendritic cell cytoskeleton 
promotes T cell adhesion and activation by constraining ICAM-1 mobility. The 
Journal of cell biology 208, 457-473. 

Correas, I., Osorio, F.A., Steffen, D., Pattnaik, A.K., Vu, H.L.X., 2017. Cross reactivity 
of immune responses to porcine reproductive and respiratory syndrome virus 
infection. Vaccine 35, 782-788. 

Crotty, S., 2015. A brief history of T cell help to B cells. Nature reviews. Immunology 
15, 185-189. 

Dar, A., Lai, K., Dent, D., Potter, A., Gerdts, V., Babiuk, L.A., Mutwiri, G.K., 2012. 
Administration of poly[di(sodium carboxylatoethylphenoxy)]phosphazene 
(PCEP) as adjuvant activated mixed Th1/Th2 immune responses in pigs. 
Veterinary immunology and immunopathology 146, 289-295. 



	 164	

Delamarre, L., Pack, M., Chang, H., Mellman, I., Trombetta, E.S., 2005. Differential 
lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 
307, 1630-1634. 

Dokland, T., 2010. The structural biology of PRRSV. Virus research 154, 86-97. 
Dotti, S., Guadagnini, G., Salvini, F., Razzuoli, E., Ferrari, M., Alborali, G.L., Amadori, 

M., 2013. Time-course of antibody and cell-mediated immune responses to 
Porcine Reproductive and Respiratory Syndrome virus under field conditions. 
Research in veterinary science 94, 510-517. 

Durfee, L.A., Huibregtse, J.M., 2010. Identification and Validation of ISG15 Target 
Proteins. Sub-cellular biochemistry 54, 228-237. 

Elemans, M., Florins, A., Willems, L., Asquith, B., 2014. Rates of CTL killing in 
persistent viral infection in vivo. PLoS computational biology 10, e1003534. 

Embgenbroich, M., Burgdorf, S., 2018. Current Concepts of Antigen Cross-Presentation. 
Frontiers in immunology 9, 1643. 

Epelman, S., Lavine, K.J., Randolph, G.J., 2014. Origin and functions of tissue 
macrophages. Immunity 41, 21-35. 

Facci, M.R., Auray, G., Buchanan, R., van Kessel, J., Thompson, D.R., Mackenzie-Dyck, 
S., Babiuk, L.A., Gerdts, V., 2010. A comparison between isolated blood 
dendritic cells and monocyte-derived dendritic cells in pigs. Immunology 129, 
396-405. 

Fairbairn, L., Kapetanovic, R., Sester, D.P., Hume, D.A., 2011. The mononuclear 
phagocyte system of the pig as a model for understanding human innate immunity 
and disease. Journal of leukocyte biology 89, 855-871. 

Fang, Y., Fang, L., Wang, Y., Lei, Y., Luo, R., Wang, D., Chen, H., Xiao, S., 2012. 
Porcine reproductive and respiratory syndrome virus nonstructural protein 2 
contributes to NF-kappaB activation. Virology Journal 9, 83. 

Ferrari, L., Canelli, E., De Angelis, E., Catella, A., Ferrarini, G., Ogno, G., Bonati, L., 
Nardini, R., Borghetti, P., Martelli, P., 2018. A highly pathogenic porcine 
reproductive and respiratory syndrome virus type 1 (PRRSV-1) strongly 
modulates cellular innate and adaptive immune subsets upon experimental 
infection. Veterinary microbiology 216, 85-92. 

Flores-Mendoza, L., Silva-Campa, E., Resendiz, M., Osorio, F.A., Hernandez, J., 2008. 
Porcine reproductive and respiratory syndrome virus infects mature porcine 
dendritic cells and up-regulates interleukin-10 production. Clin Vaccine Immunol 
15, 720-725. 

Garcia-Nicolas, O., Auray, G., Sautter, C.A., Rappe, J.C., McCullough, K.C., Ruggli, N., 
Summerfield, A., 2016. Sensing of Porcine Reproductive and Respiratory 
Syndrome Virus-Infected Macrophages by Plasmacytoid Dendritic Cells. 
Frontiers in microbiology 7, 771. 

Girard, T., El-Far, M., Gaucher, D., Acuto, O., Beaule, G., Michel, F., Mourad, W., 
Sekaly, R.P., 2012. A conserved polylysine motif in CD86 cytoplasmic tail is 
necessary for cytoskeletal association and effective co-stimulation. Biochemical 
and biophysical research communications 423, 301-307. 

Gomez-Laguna, J., Salguero, F.J., Fernandez de Marco, M., Barranco, I., Rodriguez-
Gomez, I.M., Quezada, M., Carrasco, L., 2013a. Type 2 Porcine Reproductive 
and Respiratory Syndrome Virus infection mediated apoptosis in B- and T-cell 



	 165	

areas in lymphoid organs of experimentally infected pigs. Transboundary and 
emerging diseases 60, 273-278. 

Gomez-Laguna, J., Salguero, F.J., Pallares, F.J., Carrasco, L., 2013b. 
Immunopathogenesis of porcine reproductive and respiratory syndrome in the 
respiratory tract of pigs. Veterinary journal 195, 148-155. 

Guo, B., Lager, K.M., Henningson, J.N., Miller, L.C., Schlink, S.N., Kappes, M.A., 
Kehrli, M.E., Jr., Brockmeier, S.L., Nicholson, T.L., Yang, H.C., Faaberg, K.S., 
2013. Experimental infection of United States swine with a Chinese highly 
pathogenic strain of porcine reproductive and respiratory syndrome virus. 
Virology 435, 372-384. 

Guzylack-Piriou, L., Alves, M.P., McCullough, K.C., Summerfield, A., 2010. Porcine 
Flt3 ligand and its receptor: generation of dendritic cells and identification of a 
new marker for porcine dendritic cells. Developmental and comparative 
immunology 34, 455-464. 

Haiwick, G., Hermann, J., Roof, M., Fergen, B., Philips, R., Patterson, A., 2018. 
Examination of viraemia and clinical signs after challenge with a heterologous 
PRRSV strain in PRRS Type 2 MLV vaccinated pigs: A challenge-dose study. 
PloS one 13, e0209784. 

Hanada, K., Suzuki, Y., Nakane, T., Hirose, O., Gojobori, T., 2005. The origin and 
evolution of porcine reproductive and respiratory syndrome viruses. Mol Biol 
Evol 22, 1024-1031. 

Hangartner, L., Zinkernagel, R.M., Hengartner, H., 2006. Antiviral antibody responses: 
the two extremes of a wide spectrum. Nature reviews. Immunology 6, 231-243. 

He, Y., Wang, G., Liu, Y., Shi, W., Han, Z., Wu, J., Jiang, C., Wang, S., Hu, S., Wen, H., 
Dong, J., Liu, H., Cai, X., 2012. Characterization of thymus atrophy in piglets 
infected with highly pathogenic porcine reproductive and respiratory syndrome 
virus. Veterinary microbiology 160, 455-462. 

Hoeffel, G., Ginhoux, F., 2015. Ontogeny of Tissue-Resident Macrophages. Frontiers in 
immunology 6, 486. 

Holtkamp, D.J.K., James B.; Zimmerman, Jeffrey J.; Neumann, Eric; Rotto, Hans; Yoder, 
Tiffany K.; Wang, Chong; Yeske, Paul; Mowrer, Christine L.; and Haley, Charles 
2012. Economic Impact of Porcine Reproductive and Respiratory Syndrome 
Virus on U.S. Pork Producers. In Animal Industry Report (Iowa State University, 
AS 658, ASL R2671.). 

Hou, J., Wang, L., Quan, R., Fu, Y., Zhang, H., Feng, W.H., 2012. Induction of 
interleukin-10 is dependent on p38 mitogen-activated protein kinase pathway in 
macrophages infected with porcine reproductive and respiratory syndrome virus. 
Virol J 9, 165. 

Huang, Y., Li, Z., Li, J., Yibo, K., Yang, L., Mah, C.K., Liu, G., Yu, B., Wang, K., 2019. 
Efficacy evaluation of three modified-live PRRS vaccines against a local strain of 
highly pathogenic porcine reproductive and respiratory syndrome virus. 
Veterinary microbiology 229, 117-123. 

Hume, D.A., 2008. Macrophages as APC and the dendritic cell myth. Journal of 
immunology 181, 5829-5835. 

Jans, J., elMoussaoui, H., de Groot, R., de Jonge, M.I., Ferwerda, G., 2016. Actin- and 
clathrin-dependent mechanisms regulate interferon gamma release after 



	 166	

stimulation of human immune cells with respiratory syncytial virus. Virology 
journal 13, 52. 

Jelley-Gibbs, D.M., Lepak, N.M., Yen, M., Swain, S.L., 2000. Two distinct stages in the 
transition from naive CD4 T cells to effectors, early antigen-dependent and late 
cytokine-driven expansion and differentiation. Journal of immunology 165, 5017-
5026. 

Jeong, J., Park, C., Oh, T., Park, K.H., Yang, S., Kang, I., Park, S.J., Chae, C., 2018. 
Cross-protection of a modified-live porcine reproductive and respiratory 
syndrome virus (PRRSV)-2 vaccine against a heterologous PRRSV-1 challenge in 
late-term pregnancy gilts. Veterinary microbiology 223, 119-125. 

Kappes, M.A., Faaberg, K.S., 2015. PRRSV structure, replication and recombination: 
Origin of phenotype and genotype diversity. Virology 479-480, 475-486. 

Kappes, M.A., Miller, C.L., Faaberg, K.S., 2013. Highly divergent strains of porcine 
reproductive and respiratory syndrome virus incorporate multiple isoforms of 
nonstructural protein 2 into virions. Journal of virology 87, 13456-13465. 

Karniychuk, U., Geldhof, M., Vanhee, M., Van Doorsselaere, J., Saveleva, T., 
Nauwynck, H., 2010. Pathogenesis and antigenic characterization of a new East 
European subtype 3 porcine reproductive and respiratory syndrome virus isolate. 
BMC Veterinary Research 6, 30. 

Kaser, T., Mair, K.H., Hammer, S.E., Gerner, W., Saalmuller, A., 2015. Natural and 
inducible Tregs in swine: Helios expression and functional properties. 
Developmental and comparative immunology 49, 323-331. 

Keller, A., Nesvizhskii, A.I., Kolker, E., Aebersold, R., 2002. Empirical statistical model 
to estimate the accuracy of peptide identifications made by MS/MS and database 
search. Analytical chemistry 74, 5383-5392. 

Kim, O., Sun, Y., Lai, F.W., Song, C., Yoo, D., 2010. Modulation of type I interferon 
induction by porcine reproductive and respiratory syndrome virus and degradation 
of CREB-binding protein by non-structural protein 1 in MARC-145 and HeLa 
cells. Virology 402, 315-326. 

Kimman, T.G., Cornelissen, L.A., Moormann, R.J., Rebel, J.M., Stockhofe-Zurwieden, 
N., 2009. Challenges for porcine reproductive and respiratory syndrome virus 
(PRRSV) vaccinology. Vaccine 27, 3704-3718. 

Kittawornrat, A., Engle, M., Panyasing, Y., Olsen, C., Schwartz, K., Rice, A., Lizano, S., 
Wang, C., Zimmerman, J., 2013. Kinetics of the porcine reproductive and 
respiratory syndrome virus (PRRSV) humoral immune response in swine serum 
and oral fluids collected from individual boars. BMC veterinary research 9, 61. 

Kleijmeer, M., Ramm, G., Schuurhuis, D., Griffith, J., Rescigno, M., Ricciardi-
Castagnoli, P., Rudensky, A.Y., Ossendorp, F., Melief, C.J., Stoorvogel, W., 
Geuze, H.J., 2001. Reorganization of multivesicular bodies regulates MHC class 
II antigen presentation by dendritic cells. The Journal of cell biology 155, 53-63. 

Klein, L., Kyewski, B., Allen, P.M., Hogquist, K.A., 2014. Positive and negative 
selection of the T cell repertoire: what thymocytes see (and don't see). Nature 
reviews. Immunology 14, 377-391. 

Krenkel, O., Tacke, F., 2017. Liver macrophages in tissue homeostasis and disease. 
Nature reviews. Immunology 17, 306-321. 



	 167	

Kristensen, C.S., Bøtner, A., Takai, H., Nielsen, J.P., Jorsal, S.E., 2004. Experimental 
airborne transmission of PRRS virus. Veterinary Microbiology 99, 197-202. 

Kruse, M., Rosorius, O., Kratzer, F., Stelz, G., Kuhnt, C., Schuler, G., Hauber, J., 
Steinkasserer, A., 2000. Mature dendritic cells infected with herpes simplex virus 
type 1 exhibit inhibited T-cell stimulatory capacity. J Virol 74, 7127-7136. 

Lalor, S.J., McLoughlin, R.M., 2016. Memory gammadelta T Cells-Newly Appreciated 
Protagonists in Infection and Immunity. Trends in immunology 37, 690-702. 

Li, H., Zheng, Z., Zhou, P., Zhang, B., Shi, Z., Hu, Q., Wang, H., 2010. The cysteine 
protease domain of porcine reproductive and respiratory syndrome virus non-
structural protein 2 antagonizes interferon regulatory factor 3 activation. The 
Journal of general virology 91, 2947-2958. 

Liu, P., Bai, Y., Jiang, X., Zhou, L., Yuan, S., Yao, H., Yang, H., Sun, Z., 2018. High 
reversion potential of a cell-adapted vaccine candidate against highly pathogenic 
porcine reproductive and respiratory syndrome. Veterinary microbiology 227, 
133-142. 

Lopez, O.J., Osorio, F.A., 2004. Role of neutralizing antibodies in PRRSV protective 
immunity. Veterinary immunology and immunopathology 102, 155-163. 

Loving, C.L., Osorio, F.A., Murtaugh, M.P., Zuckermann, F.A., 2015. Innate and 
adaptive immunity against Porcine Reproductive and Respiratory Syndrome 
Virus. Veterinary immunology and immunopathology 167, 1-14. 

Lu, Z.H., Wang, X., Wilson, A.D., Dorey-Robinson, D.L.W., Archibald, A.L., Ait-Ali, 
T., Frossard, J.P., 2017. Quasispecies evolution of the prototypical genotype 1 
porcine reproductive and respiratory syndrome virus early during in vivo infection 
is rapid and tissue specific. Archives of virology 162, 2203-2210. 

Luckheeram, R.V., Zhou, R., Verma, A.D., Xia, B., 2012a. CD4(+)T Cells: 
Differentiation and Functions. Clin Dev Immunol. 

Luckheeram, R.V., Zhou, R., Verma, A.D., Xia, B., 2012b. CD4(+)T cells: differentiation 
and functions. Clinical & developmental immunology 2012, 925135. 

Lunney, J.K., Fang, Y., Ladinig, A., Chen, N., Li, Y., Rowland, B., Renukaradhya, G.J., 
2016. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): 
Pathogenesis and Interaction with the Immune System. Annual review of animal 
biosciences 4, 129-154. 

Luo, R., Fang, L., Jiang, Y., Jin, H., Wang, Y., Wang, D., Chen, H., Xiao, S., 2011. 
Activation of NF-κB by nucleocapsid protein of the porcine reproductive and 
respiratory syndrome virus. Virus Genes 42, 76-81. 

Lutz, M.B., Strobl, H., Schuler, G., Romani, N., 2017. GM-CSF Monocyte-Derived Cells 
and Langerhans Cells As Part of the Dendritic Cell Family. Frontiers in 
immunology 8, 1388. 

Ma, Z.T., Wang, Y.L., Zhao, H.Y., Xu, A.T., Wang, Y.Q., Tang, J., Feng, W.H., 2013. 
Porcine Reproductive and Respiratory Syndrome Virus Nonstructural Protein 4 
Induces Apoptosis Dependent on Its 3C-Like Serine Protease Activity. PloS one 
8. 

MacLeod, M.K., Kappler, J.W., Marrack, P., 2010. Memory CD4 T cells: generation, 
reactivation and re-assignment. Immunology 130, 10-15. 



	 168	

Mahanty, S., Hutchinson, K., Agarwal, S., McRae, M., Rollin, P.E., Pulendran, B., 2003. 
Cutting edge: impairment of dendritic cells and adaptive immunity by Ebola and 
Lassa viruses. J Immunol 170, 2797-2801. 

Maisonnasse, P., Bouguyon, E., Piton, G., Ezquerra, A., Urien, C., Deloizy, C., Bourge, 
M., Leplat, J.J., Simon, G., Chevalier, C., Vincent-Naulleau, S., Crisci, E., 
Montoya, M., Schwartz-Cornil, I., Bertho, N., 2016. The respiratory 
DC/macrophage network at steady-state and upon influenza infection in the swine 
biomedical model. Mucosal immunology 9, 835-849. 

Manickam, C., Dwivedi, V., Patterson, R., Papenfuss, T., Renukaradhya, G.J., 2013. 
Porcine reproductive and respiratory syndrome virus induces pronounced immune 
modulatory responses at mucosal tissues in the parental vaccine strain VR2332 
infected pigs. Vet Microbiol 162, 68-77. 

Mantovani, A., Biswas, S.K., Galdiero, M.R., Sica, A., Locati, M., 2013. Macrophage 
plasticity and polarization in tissue repair and remodelling. The Journal of 
pathology 229, 176-185. 

Martinez, F.O., Gordon, S., 2014. The M1 and M2 paradigm of macrophage activation: 
time for reassessment. F1000prime reports 6, 13. 

Mellins, E.D., Stern, L.J., 2014. HLA-DM and HLA-DO, key regulators of MHC-II 
processing and presentation. Current opinion in immunology 26, 115-122. 

Meurens, F., Summerfield, A., Nauwynck, H., Saif, L., Gerdts, V., 2012. The pig: a 
model for human infectious diseases. Trends in microbiology 20, 50-57. 

Miguel, J.C., Chen, J., Van Alstine, W.G., Johnson, R.W., 2010. Expression of 
inflammatory cytokines and Toll-like receptors in the brain and respiratory tract 
of pigs infected with porcine reproductive and respiratory syndrome virus. 
Veterinary immunology and immunopathology 135, 314-319. 

Mildner, A., Jung, S., 2014. Development and function of dendritic cell subsets. 
Immunity 40, 642-656. 

Miller, L.C., Lager, K.M., Kehrli, M.E., Jr., 2009. Role of Toll-like receptors in 
activation of porcine alveolar macrophages by porcine reproductive and 
respiratory syndrome virus. Clin Vaccine Immunol 16, 360-365. 

Mills, C.D., Ley, K., 2014. M1 and M2 macrophages: the chicken and the egg of 
immunity. Journal of innate immunity 6, 716-726. 

Molina, R.M., Cha, S.H., Chittick, W., Lawson, S., Murtaugh, M.P., Nelson, E.A., 
Christopher-Hennings, J., Yoon, K.J., Evans, R., Rowland, R.R., Wu, W., 
Zimmerman, J.J., 2008. Immune response against porcine reproductive and 
respiratory syndrome virus during acute and chronic infection. Veterinary 
immunology and immunopathology 126, 283-292. 

Murray, P.J., Allen, J.E., Biswas, S.K., Fisher, E.A., Gilroy, D.W., Goerdt, S., Gordon, 
S., Hamilton, J.A., Ivashkiv, L.B., Lawrence, T., Locati, M., Mantovani, A., 
Martinez, F.O., Mege, J.L., Mosser, D.M., Natoli, G., Saeij, J.P., Schultze, J.L., 
Shirey, K.A., Sica, A., Suttles, J., Udalova, I., van Ginderachter, J.A., Vogel, 
S.N., Wynn, T.A., 2014. Macrophage activation and polarization: nomenclature 
and experimental guidelines. Immunity 41, 14-20. 

Murtaugh, M.P., Stadejek, T., Abrahante, J.E., Lam, T.T., Leung, F.C., 2010. The ever-
expanding diversity of porcine reproductive and respiratory syndrome virus. Virus 
research 154, 18-30. 



	 169	

Nagai, M., Azuma, E., Qi, J., Kumamoto, T., Hiratake, S., Hirayama, M., Umemoto, M., 
Komada, Y., Sakurai, M., 1998. Suppression of alloreactivity with gamma delta 
T-cells: relevance to increased gamma delta T-cells following bone marrow 
transplantation. Biomedicine & pharmacotherapy = Biomedecine & 
pharmacotherapie 52, 137-142. 

Nagy, Z.A., 2012. Alloreactivity: an old puzzle revisited. Scandinavian journal of 
immunology 75, 463-470. 

Nan, Y., Wu, C., Gu, G., Sun, W., Zhang, Y.J., Zhou, E.M., 2017. Improved Vaccine 
against PRRSV: Current Progress and Future Perspective. Frontiers in 
microbiology 8, 1635. 

Nauwynk, U.U.K.a.H.J., 2013. Pathogenesis and prevention of placental and 
transplacental porcine reproductive and respiratory syndrome virus infection. Vet 
Research 44. 

Nedumpun, T., Sirisereewan, C., Thanmuan, C., Techapongtada, P., Puntarotairung, R., 
Naraprasertkul, S., Thanawongnuwech, R., Suradhat, S., 2018. Induction of 
porcine reproductive and respiratory syndrome virus (PRRSV)-specific regulatory 
T lymphocytes (Treg) in the lungs and tracheobronchial lymph nodes of PRRSV-
infected pigs. Veterinary microbiology 216, 13-19. 

Nelsen, C.J., Murtaugh, M.P., Faaberg, K.S., 1999. Porcine reproductive and respiratory 
syndrome virus comparison: divergent evolution on two continents. J Virol 73, 
270-280. 

Nesvizhskii, A.I., Keller, A., Kolker, E., Aebersold, R., 2003. A statistical model for 
identifying proteins by tandem mass spectrometry. Analytical chemistry 75, 4646-
4658. 

Niebling, W.L., Pierce, S.K., 1993. Antigen Entry into Early Endosomes Is Insufficient 
for Mhc Class-Ii Processing. Journal of immunology 150, 2687-2697. 

Niederwerder, M.C., Bawa, B., Serao, N.V., Trible, B.R., Kerrigan, M.A., Lunney, J.K., 
Dekkers, J.C., Rowland, R.R., 2015. Vaccination with a Porcine Reproductive and 
Respiratory Syndrome (PRRS) Modified Live Virus Vaccine Followed by 
Challenge with PRRS Virus and Porcine Circovirus Type 2 (PCV2) Protects 
against PRRS but Enhances PCV2 Replication and Pathogenesis Compared to 
Results for Nonvaccinated Cochallenged Controls. Clinical and vaccine 
immunology : CVI 22, 1244-1254. 

Okragly, A.J., Hanby-Flarida, M., Baldwin, C.L., 1995. Monocytes control gamma/delta 
T-cell responses by a secreted product. Immunology 86, 599-605. 

Osorio, F.A., Galeota, J.A., Nelson, E., Brodersen, B., Doster, A., Wills, R., Zuckermann, 
F., Laegreid, W.W., 2002. Passive transfer of virus-specific antibodies confers 
protection against reproductive failure induced by a virulent strain of porcine 
reproductive and respiratory syndrome virus and establishes sterilizing immunity. 
Virology 302, 9-20. 

Patel, D., Nan, Y., Shen, M., Ritthipichai, K., Zhu, X., Zhang, Y.J., 2010. Porcine 
reproductive and respiratory syndrome virus inhibits type I interferon signaling by 
blocking STAT1/STAT2 nuclear translocation. Journal of virology 84, 11045-
11055. 

Peng, Y.T., Chaung, H.C., Chang, H.L., Chang, H.C., Chung, W.B., 2009. Modulations 
of phenotype and cytokine expression of porcine bone marrow-derived dendritic 



	 170	

cells by porcine reproductive and respiratory syndrome virus. Vet Microbiol 136, 
359-365. 

Pennock, N.D., White, J.T., Cross, E.W., Cheney, E.E., Tamburini, B.A., Kedl, R.M., 
2013. T cell responses: naive to memory and everything in between. Advances in 
physiology education 37, 273-283. 

Pepper, M., Jenkins, M.K., 2011a. Origins of CD4(+) effector and central memory T 
cells. Nature immunology 12, 467-471. 

Pepper, M., Jenkins, M.K., 2011b. Origins of CD4(+) effector and central memory T 
cells. Nature immunology 12, 467-471. 

Perdiguero, E.G., Geissmann, F., 2016. The development and maintenance of resident 
macrophages. Nature immunology 17, 2-8. 

Petry, D.B., Lunney, J., Boyd, P., Kuhar, D., Blankenship, E., Johnson, R.K., 2007. 
Differential immunity in pigs with high and low responses to porcine reproductive 
and respiratory syndrome virus infection. J Anim Sci 85, 2075-2092. 

Pierre, P., Mellman, I., 1998. Developmental regulation of invariant chain proteolysis 
controls MHC class II trafficking in mouse dendritic cells. Cell 93, 1135-1145. 

Pitkin, A., Deen, J., Dee, S., 2009. Further assessment of fomites and personnel as 
vehicles for the mechanical transport and transmission of porcine reproductive 
and respiratory syndrome virus. Can J Vet Res 73, 298-302. 

Rahe, M.C., Murtaugh, M.P., 2017. Mechanisms of Adaptive Immunity to Porcine 
Reproductive and Respiratory Syndrome Virus. Viruses 9. 

Randolph, G.J., Angeli, V., Swartz, M.A., 2005. Dendritic-cell trafficking to lymph nodes 
through lymphatic vessels. Nat Rev Immunol 5, 617-628. 

Reeth, K.V., 1997. Pathogenesis and clinical aspects of a respiratory porcine reproductive 
and respiratory syndrome virus infection. Veterinary Microbiology 55, 223-230. 

Reutner, K., Leitner, J., Mullebner, A., Ladinig, A., Essler, S.E., Duvigneau, J.C., 
Ritzmann, M., Steinberger, P., Saalmuller, A., Gerner, W., 2013. CD27 
expression discriminates porcine T helper cells with functionally distinct 
properties. Veterinary research 44, 18. 

Rezende, R.M., Lanser, A.J., Rubino, S., Kuhn, C., Skillin, N., Moreira, T.G., Liu, S., 
Gabriely, G., David, B.A., Menezes, G.B., Weiner, H.L., 2018. gammadelta T 
cells control humoral immune response by inducing T follicular helper cell 
differentiation. Nature communications 9, 3151. 

Riese, R.J., Mitchell, R.N., Villadangos, J.A., Shi, G.P., Palmer, J.T., Karp, E.R., De 
Sanctis, G.T., Ploegh, H.L., Chapman, H.A., 1998. Cathepsin S activity regulates 
antigen presentation and immunity. Journal of Clinical Investigation 101, 2351-
2363. 

Rocha, N., Neefjes, J., 2008. MHC class II molecules on the move for successful antigen 
presentation. The EMBO journal 27, 1-5. 

Rodriguez-Gomez, I.M., Gomez-Laguna, J., Barranco, I., Pallares, F.J., Ramis, G., 
Salguero, F.J., Carrasco, L., 2012. Downregulation of Antigen-Presenting Cells in 
Tonsil and Lymph Nodes of Porcine Reproductive and Respiratory Syndrome 
Virus-Infected Pigs. Transboundary and emerging diseases. 

Rodriguez-Gomez, I.M., Kaser, T., Gomez-Laguna, J., Lamp, B., Sinn, L., Rumenapf, T., 
Carrasco, L., Saalmuller, A., Gerner, W., 2015. PRRSV-infected monocyte-
derived dendritic cells express high levels of SLA-DR and CD80/86 but do not 



	 171	

stimulate PRRSV-naive regulatory T cells to proliferate. Veterinary research 46, 
54. 

Rosendahl Huber, S., van Beek, J., de Jonge, J., Luytjes, W., van Baarle, D., 2014. T cell 
responses to viral infections - opportunities for Peptide vaccination. Frontiers in 
immunology 5, 171. 

Rowland, R.R., 2010. The interaction between PRRSV and the late gestation pig fetus. 
Virus research 154, 114-122. 

Rowland, R.R., Kervin, R., Kuckleburg, C., Sperlich, A., Benfield, D.A., 1999. The 
localization of porcine reproductive and respiratory syndrome virus nucleocapsid 
protein to the nucleolus of infected cells and identification of a potential nucleolar 
localization signal sequence. Virus research 64, 1-12. 

Rowland, R.R., Lawson, S., Rossow, K., Benfield, D.A., 2003. Lymphoid tissue tropism 
of porcine reproductive and respiratory syndrome virus replication during 
persistent infection of pigs originally exposed to virus in utero. Veterinary 
microbiology 96, 219-235. 

Rowland, R.R., Yoo, D., 2003. Nucleolar-cytoplasmic shuttling of PRRSV nucleocapsid 
protein: a simple case of molecular mimicry or the complex regulation by nuclear 
import, nucleolar localization and nuclear export signal sequences. Virus research 
95, 23-33. 

Saeed, S., Quintin, J., Kerstens, H.H., Rao, N.A., Aghajanirefah, A., Matarese, F., Cheng, 
S.C., Ratter, J., Berentsen, K., van der Ent, M.A., Sharifi, N., Janssen-Megens, 
E.M., Ter Huurne, M., Mandoli, A., van Schaik, T., Ng, A., Burden, F., Downes, 
K., Frontini, M., Kumar, V., Giamarellos-Bourboulis, E.J., Ouwehand, W.H., van 
der Meer, J.W., Joosten, L.A., Wijmenga, C., Martens, J.H., Xavier, R.J., Logie, 
C., Netea, M.G., Stunnenberg, H.G., 2014. Epigenetic programming of monocyte-
to-macrophage differentiation and trained innate immunity. Science 345, 
1251086. 

Sang, Y., Rowland, R.R., Blecha, F., 2011. Interaction between innate immunity and 
porcine reproductive and respiratory syndrome virus. Anim Health Res Rev 12, 
149-167. 

Schafer, P.H., Malapati, S., Hanfelt, K.K., Pierce, S.K., 1998. The assembly and stability 
of MHC class II-(alpha beta)2 superdimers. Journal of immunology 161, 2307-
2316. 

Schroeder, H.W., Jr., Ippolito, G.C., Shiokawa, S., 1998. Regulation of the antibody 
repertoire through control of HCDR3 diversity. Vaccine 16, 1383-1390. 

Sercarz, E.E., Maverakis, E., 2003. MHC-guided processing: Binding of large antigen 
fragments. Nature Reviews Immunology 3, 621-629. 

Shi, G.P., Bryant, R.A.R., Riese, R., Verhelst, S., Driessen, C., Li, Z.Q., Bromme, D., 
Ploegh, H.L., Chapman, H.A., 2000. Role for cathepsin F in invariant chain 
processing and major histocompatibility complex class II peptide loading by 
macrophages. Journal of Experimental Medicine 191, 1177-1185. 

Shi, G.P., Villadangos, J.A., Dranoff, G., Small, C., Gu, L.J., Haley, K.J., Riese, R., 
Ploegh, H.L., Chapman, H.A., 1999. Cathepsin S required for normal MHC class 
II peptide loading and germinal center development. Immunity 10, 197-206. 



	 172	

Shi, M., Lam, T.T.-Y., Hon, C.-C., Hui, R.K.-H., Faaberg, K.S., Wennblom, T., 
Murtaugh, M.P., Stadejek, T., Leung, F.C.-C., 2010. Molecular epidemiology of 
PRRSV: A phylogenetic perspective. Virus research 154, 7-17. 

Shi, X., Wang, L., Li, X., Zhang, G., Guo, J., Zhao, D., Chai, S., Deng, R., 2011. 
Endoribonuclease activities of porcine reproductive and respiratory syndrome 
virus nsp11 was essential for nsp11 to inhibit IFN-beta induction. Molecular 
immunology 48, 1568-1572. 

Silva-Campa, E., Flores-Mendoza, L., Resendiz, M., Pinelli-Saavedra, A., Mata-Haro, V., 
Mwangi, W., Hernandez, J., 2009. Induction of T helper 3 regulatory cells by 
dendritic cells infected with porcine reproductive and respiratory syndrome virus. 
Virology 387, 373-379. 

Singer, A., Adoro, S., Park, J.H., 2008. Lineage fate and intense debate: myths, models 
and mechanisms of CD4- versus CD8-lineage choice. Nature reviews. 
Immunology 8, 788-801. 

Skruber, K., Read, T.A., Vitriol, E.A., 2018. Reconsidering an active role for G-actin in 
cytoskeletal regulation. Journal of cell science 131. 

Song, C., Krell, P., Yoo, D., 2010. Nonstructural protein 1α subunit-based inhibition of 
NF-κB activation and suppression of interferon-β production by porcine 
reproductive and respiratory syndrome virus. Virology 407, 268-280. 

Stadejek, T., Stankevicius, A., Murtaugh, M.P., Oleksiewicz, M.B., 2013. Molecular 
evolution of PRRSV in Europe: current state of play. Veterinary microbiology 
165, 21-28. 

Subramaniam, S., Sur, J.H., Kwon, B., Pattnaik, A.K., Osorio, F.A., 2011. A virulent 
strain of porcine reproductive and respiratory syndrome virus does not up-regulate 
interleukin-10 levels in vitro or in vivo. Virus research 155, 415-422. 

Summerfield, A., Meurens, F., Ricklin, M.E., 2015. The immunology of the porcine skin 
and its value as a model for human skin. Molecular immunology 66, 14-21. 

Sun, Z., Chen, Z., Lawson, S.R., Fang, Y., 2010. The cysteine protease domain of porcine 
reproductive and respiratory syndrome virus nonstructural protein 2 possesses 
deubiquitinating and interferon antagonism functions. Journal of virology 84, 
7832-7846. 

Sun, Z., Li, Y., Ransburgh, R., Snijder, E.J., Fang, Y., 2012. Nonstructural protein 2 of 
porcine reproductive and respiratory syndrome virus inhibits the antiviral function 
of interferon-stimulated gene 15. Journal of virology 86, 3839-3850. 

Swain, S.L., McKinstry, K.K., Strutt, T.M., 2012a. Expanding roles for CD4(+) T cells in 
immunity to viruses. Nature Reviews Immunology 12, 136-148. 

Swain, S.L., McKinstry, K.K., Strutt, T.M., 2012b. Expanding roles for CD4(+) T cells in 
immunity to viruses. Nature reviews. Immunology 12, 136-148. 

Swenson, S.L., Hill, H.T., Zimmerman, J.J., Evans, L.E., Landgraf, J.G., Wills, R.W., 
Sanderson, T.P., McGinley, M.J., Brevik, A.K., Ciszewski, D.K., et al., 1994. 
Excretion of porcine reproductive and respiratory syndrome virus in semen after 
experimentally induced infection in boars. J Am Vet Med Assoc 204, 1943-1948. 

Takamatsu, H.H., Denyer, M.S., Stirling, C., Cox, S., Aggarwal, N., Dash, P., Wileman, 
T.E., Barnett, P.V., 2006. Porcine gammadelta T cells: possible roles on the innate 
and adaptive immune responses following virus infection. Veterinary 
immunology and immunopathology 112, 49-61. 



	 173	

Talker, S.C., Kaser, T., Reutner, K., Sedlak, C., Mair, K.H., Koinig, H., Graage, R., 
Viehmann, M., Klingler, E., Ladinig, A., Ritzmann, M., Saalmuller, A., Gerner, 
W., 2013. Phenotypic maturation of porcine NK- and T-cell subsets. 
Developmental and comparative immunology 40, 51-68. 

ten Broeke, T., Wubbolts, R., Stoorvogel, W., 2013. MHC class II antigen presentation 
by dendritic cells regulated through endosomal sorting. Cold Spring Harbor 
perspectives in biology 5, a016873. 

Tong, G.Z., Zhou, Y.J., Hao, X.F., Tian, Z.J., An, T.Q., Qiu, H.J., 2007. Highly 
pathogenic porcine reproductive and respiratory syndrome, China. Emerging 
infectious diseases 13, 1434-1436. 

Tsuji, S., Char, D., Bucy, R.P., Simonsen, M., Chen, C.H., Cooper, M.D., 1996. Gamma 
delta T cells are secondary participants in acute graft-versus-host reactions 
initiated by CD4+ alpha beta T cells. European journal of immunology 26, 420-
427. 

Turk, V., Stoka, V., Vasiljeva, O., Renko, M., Sun, T., Turk, B., Turk, D., 2012. Cysteine 
cathepsins: From structure, function and regulation to new frontiers. Bba-Proteins 
Proteom 1824, 68-88. 

Ulferts, R., Ziebuhr, J., 2011. Nidovirus ribonucleases: Structures and functions in viral 
replication. RNA biology 8, 295-304. 

Van Breedam, W., Delputte, P.L., Van Gorp, H., Misinzo, G., Vanderheijden, N., Duan, 
X., Nauwynck, H.J., 2010. Porcine reproductive and respiratory syndrome virus 
entry into the porcine macrophage. The Journal of general virology 91, 1659-
1667. 

Van Gorp, H., Van Breedam, W., Delputte, P.L., Nauwynck, H.J., 2008. Sialoadhesin and 
CD163 join forces during entry of the porcine reproductive and respiratory 
syndrome virus. The Journal of general virology 89, 2943-2953. 

van Nispen tot Pannerden, H.E., Geerts, W.J., Kleijmeer, M.J., Heijnen, H.F., 2010. 
Spatial organization of the transforming MHC class II compartment. Biology of 
the cell 102, 581-591. 

Vantourout, P., Hayday, A., 2013. Six-of-the-best: unique contributions of gammadelta T 
cells to immunology. Nature reviews. Immunology 13, 88-100. 

Varol, C., Mildner, A., Jung, S., 2015. Macrophages: Development and Tissue 
Specialization. Annual review of immunology 33, 643-675. 

Vascotto, F., Lankar, D., Faure-Andre, G., Vargas, P., Diaz, J., Le Roux, D., Yuseff, 
M.I., Sibarita, J.B., Boes, M., Raposo, G., Mougneau, E., Glaichenhaus, N., 
Bonnerot, C., Manoury, B., Lennon-Dumenil, A.M., 2007. The actin-based motor 
protein myosin II regulates MHC class II trafficking and BCR-driven antigen 
presentation. The Journal of cell biology 176, 1007-1019. 

Veit, M., Matczuk, A.K., Sinhadri, B.C., Krause, E., Thaa, B., 2014. Membrane proteins 
of arterivirus particles: structure, topology, processing and function. Virus 
research 194, 16-36. 

Vignali, D.A., Collison, L.W., Workman, C.J., 2008. How regulatory T cells work. 
Nature reviews. Immunology 8, 523-532. 

Vivier, E., Tomasello, E., Baratin, M., Walzer, T., Ugolini, S., 2008. Functions of natural 
killer cells. Nature immunology 9, 503-510. 



	 174	

Vyas, J.M., Kim, Y.M., Artavanis-Tsakonas, K., Love, J.C., Van der Veen, A.G., Ploegh, 
H.L., 2007. Tubulation of class II MHC compartments is microtubule dependent 
and involves multiple endolysosomal membrane proteins in primary dendritic 
cells. Journal of immunology 178, 7199-7210. 

Vyas, J.M., Van der Veen, A.G., Ploegh, H.L., 2008a. The known unknowns of antigen 
processing and presentation. Nature Reviews Immunology 8, 607-618. 

Vyas, J.M., Van der Veen, A.G., Ploegh, H.L., 2008b. The known unknowns of antigen 
processing and presentation. Nature reviews. Immunology 8, 607-618. 

Wang, G., Song, T., Yu, Y., Liu, Y., Shi, W., Wang, S., Rong, F., Dong, J., Liu, H., Cai, 
X., Zhou, E.M., 2011. Immune responses in piglets infected with highly 
pathogenic porcine reproductive and respiratory syndrome virus. Veterinary 
immunology and immunopathology 142, 170-178. 

Wang, I.H., Burckhardt, C.J., Yakimovich, A., Greber, U.F., 2018. Imaging, Tracking 
and Computational Analyses of Virus Entry and Egress with the Cytoskeleton. 
Viruses 10. 

Wang, X., Eaton, M., Mayer, M., Li, H., He, D., Nelson, E., Christopher-Hennings, J., 
2007. Porcine reproductive and respiratory syndrome virus productively infects 
monocyte-derived dendritic cells and compromises their antigen-presenting 
ability. Archives of virology 152, 289-303. 

Weesendorp, E., Morgan, S., Stockhofe-Zurwieden, N., Popma-De Graaf, D.J., Graham, 
S.P., Rebel, J.M., 2013. Comparative analysis of immune responses following 
experimental infection of pigs with European porcine reproductive and respiratory 
syndrome virus strains of differing virulence. Veterinary microbiology 163, 1-12. 

Wen, K., Bui, T., Li, G., Liu, F., Li, Y., Kocher, J., Yuan, L., 2012. Characterization of 
immune modulating functions of gammadelta T cell subsets in a gnotobiotic pig 
model of human rotavirus infection. Comparative immunology, microbiology and 
infectious diseases 35, 289-301. 

West, M.A., Wallin, R.P., Matthews, S.P., Svensson, H.G., Zaru, R., Ljunggren, H.G., 
Prescott, A.R., Watts, C., 2004. Enhanced dendritic cell antigen capture via toll-
like receptor-induced actin remodeling. Science 305, 1153-1157. 

Wills, R.W., Zimmerman, J.J., Yoon, K.J., Swenson, S.L., Hoffman, L.J., McGinley, 
M.J., Hill, H.T., Platt, K.B., 1997. Porcine reproductive and respiratory syndrome 
virus: routes of excretion. Vet Microbiol 57, 69-81. 

Wongyanin, P., Buranapraditkul, S., Yoo, D., Thanawongnuwech, R., Roth, J.A., 
Suradhat, S., 2012. Role of porcine reproductive and respiratory syndrome virus 
nucleocapsid protein in induction of interleukin-10 and regulatory T-lymphocytes 
(Treg). J Gen Virol 93, 1236-1246. 

Wongyanin, P., Buranapraditkun, S., Chokeshai-Usaha, K., Thanawonguwech, R., 
Suradhat, S., 2010. Induction of inducible CD4+CD25+Foxp3+ regulatory T 
lymphocytes by porcine reproductive and respiratory syndrome virus (PRRSV). 
Vet Immunol Immunopathol 133, 170-182. 

Yoo, D., Song, C., Sun, Y., Du, Y., Kim, O., Liu, H.C., 2010. Modulation of host cell 
responses and evasion strategies for porcine reproductive and respiratory 
syndrome virus. Virus research 154, 48-60. 

Zhang, H., Guo, X., Ge, X., Chen, Y., Sun, Q., Yang, H., 2009. Changes in the cellular 
proteins of pulmonary alveolar macrophage infected with porcine reproductive 



	 175	

and respiratory syndrome virus by proteomics analysis. Journal of proteome 
research 8, 3091-3097. 

Zhang, H., Guo, X., Nelson, E., Christopher-Hennings, J., Wang, X., 2012. Porcine 
reproductive and respiratory syndrome virus activates the transcription of 
interferon alpha/beta (IFN-α/β) in monocyte-derived dendritic cells (Mo-DC). 
Veterinary Microbiology 159, 494-498. 

Zheng, J., Liu, Y., Lau, Y.L., Tu, W., 2013. gammadelta-T cells: an unpolished sword in 
human anti-infection immunity. Cellular & molecular immunology 10, 50-57. 

Zhou, L., Yang, H., 2010. Porcine reproductive and respiratory syndrome in China. Virus 
research 154, 31-37. 

Zhou, L., Zhang, J., Zeng, J., Yin, S., Li, Y., Zheng, L., Guo, X., Ge, X., Yang, H., 2009. 
The 30-amino-acid deletion in the Nsp2 of highly pathogenic porcine 
reproductive and respiratory syndrome virus emerging in China is not related to 
its virulence. Journal of virology 83, 5156-5167. 

 
 


