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ABSTRACT 

Disinfestation of insect pests in stored grains is a crucial unit operation to save the quality of the 

grains during the storage. Several methods of disinfestation are available including chemical and 

non-chemical methods. However, the use of the chemical method is avoided because of its adverse 

effects on the environment and studies show that chemical methods have failed frequently in recent 

years. So, this research focus on investigation of the usage of radio waves, which is a non-chemical 

method to disinfest insects in stored grains. A pilot-scale 50-ohm radio frequency (RF) heating 

system was used to disinfest adult red flour beetles (Tribolium castaneum) in bulk canola seeds 

(Brassica napus L.) of 9 % moisture content (MC) in a tubular applicator with parallel 

electrodes. The heating characteristics of the bulk canola seeds was studied using the 50-ohm RF 

system and non-uniformity of the temperature distribution of bulk canola was observed. The 

hottest spot was observed at the front side of the tubular cavity of the applicator adjacent to the hot 

electrode. The RF heating rate depends on the distribution of the electromagnetic (EM) field, 

geometry, and position of the sample in the RF applicator, thermal, physical, and electrical 

properties of the sample. The average temperature (Tavg) and uniformity index (θ) of the bulk 

canola during RF heating were also observed. The thermal mortalities of adult red flour beetles 

infesting canola seeds at 9% moisture content (MC) were determined treated using a 50-ohm radio 

frequency (RF) heating system. The infested seeds were treated between 297 K and 338 K at RF 

heating power of 3 kW, 5 kW, and 7 kW. The survival rate of the adult T. castaneum infesting the 

canola seeds at 9% MC decreased with an increase in temperature (297 K to 338 K) and increase 

in RF power levels (3 kW to 7 kW). Desirable selective heating effect on mortality was more 

predominant at higher RF powers. An inverse simulation was used to estimate kinetic parameters 

of the thermal death of the adult T. castaneum. 4th order Runge-Kutta method was used to solve 
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the ordinary differential equation (ODE) based kinetic model which has an Arrhenius temperature-

dependent reaction rate constant. The thermal death kinetics of the adult T. castaneum followed 

first order reaction with an activation energy of 97.50 kJ/mol. Satisfactory agreements were 

observed between the mortalities predicted using the kinetic model and the experiments. Also, the 

physicochemical properties of canola seeds were affected by the RF heating at various end 

temperatures and power levels although the changes were not very significant and were in an 

acceptable range. Thus, the research was a successful in disinfesting adult red flour beetles in bulk 

canola seeds of 9% MC using a pilot-scale 50-ohm RF heating system with a tubular applicator 

with parallel electrodes. 
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GENERAL INTRODUCTION 

Radio frequency (RF) heating relies on change in orientation of polar molecules and ions when 

induced by high frequency electromagnetic (EM) waves. Also, RF heating depends on the features 

of EM energy, and the electrical, thermal, as well as physical properties of the sample. The United 

States Federal Communications Commission (FCC), permits the use of 13.56 MHz, 27.12 MHz, 

and 40.68 MHz for RF heating applications for industrial, scientific, and medical (ISM) purposes, 

to avoid interference in communication (Wang et al. 2011). Thus, 27.12 MHz was used in this 

research. One major benefit of RF heating is selective heating, so, commodities with higher 

dielectric loss factor heat up at much faster rate than ones with lesser dielectric loss factor (Shrestha 

and Baik 2013; Yu et al. 2015). Generally in food processing industries several types of RF heating 

systems are used and the systems are differentiated based on how the radio waves are generated 

and transmitted through the material being processed; two of the common RF heating systems are 

the free running oscillator system and the 50-ohm system (Marra et al. 2009). This research uses 

the 50-ohm system which comprises of an RF generator (RFG) which generates the RF energy 

which is transferred to a matching network through a 50-ohm cable. The matching network is 

connected to the electrodes through which the radio waves are generated and transferred to the 

materials being processed. The 50-ohm RF system produces stable frequency and power as the 

matching network automatically adjusts to maintain the load impedance, thus, 50-ohm systems 

have become popular in the food industry (Jones and Rowley 1996). Literature shows that RF 

heating systems have non-uniformity in distribution of temperature in the sample, so, appropriate 

design of RF heating systems is crucial (Yu et al. 2016). The design of the RF applicator is 

determined by the electric field pattern being generated in between the electrodes, some common 
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types of RF applicator designs are through field type, fringe filed type, and staggered through field 

type (Jones and Rowley 1996). The through field type applicator was used in this research, the 

applicator is comprised of parallel plates electrodes (anode and ground) and the samples were 

introduced between the electrodes to complete the parallel capacitor circuit. This applicator design 

was chosen as a through field type applicator is ideal for heating larger bulk materials. As described 

by Huang et al. (2018), the mechanism of the parallel plate type applicator is based on high voltage 

being introduced in the anode electrode and completing the circuit in the ground electrode while 

forming circulation of EM waves in between the electrode and triggering selective heating in the 

sample (Huang et al. 2018).  

Canola is an important global oilseed crop. The chief producers of canola seed include China, 

India, Canada, and the European Union. World production in 2018-2019 was 72.80 million metric 

tons and according to USDA (2019) is expected to be 74.80 million metric tons in 2019-2020 

(USDA Foreign Agricultural Service 2019). About 90 % of the total production of canola in 

Canada is exported around the world, and Canadian economy faces a crucial challenge, 8% to 10% 

in annual crop yield is lost due to insect pests (Canola Watch 2015). Thus, a quick and effective 

disinfestation process and RF heating has the potential to solve the problem. Along with economic 

losses, insect pest infestation is a considerable barrier to export and constitutes a significant 

concern in the production, storage, and the process of all food products (Gao et al. 2010). The trade 

regulations of domestic and international markets have required postharvest treatments of all food 

products to ensure quarantine security from insect pests (Birla et al. 2008; Jiao et al. 2011). Thus, 

development of an effective technique that can handle larger sample sizes in quick time for 

disinfestation of insects from canola seeds is critical. 
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The objective of this study is to develop a disinfestation protocol to disinfest adult Tribolium 

castaneum in stored canola seeds using 50-ohm RF heating system with through field parallel plate 

type electrodes. Thus, to achieve the main objective the study was divided into sub-objectives 

which are as described below:  

1. Critical review on different types of disinfestation techniques available in the grain processing 

industries.  

2. Temperature distribution in a packed bed of canola seeds during 50-ohm RF heating at various 

power levels using a 50-ohm RF heating with parallel plate type applicator.  

3. Immediate mortality of adult Tribolium castaneum in stored canola, at 9% MCs and end 

temperatures of the host grains during RF heating at 3 kW, 5 kW, and 7 kW at 27.12 MHz. 

4. Physicochemical properties of canola seeds before and after the RF treatment that resulted in 

100% mortality of insect pests, which include MC, germination rate, colour, and oil quality 

before and after the RF treatment. 

Outline of the Thesis  

The thesis is journal paper based and each individual paper represents a thesis chapter. The first 

chapter is based on critical review on different types of disinfestation techniques used in 

disinfestation of stored grains especially using non-chemical methods. This chapter was submitted 

to Trends in Food Science and Technology, a research journal and is under revision as suggested 

by the chief editor of the journal. The second chapter is methods for determination of heating 

characteristics during 50-ohm RF heating of bulk canola seeds (Brassica napus. L) in a tubular 

type applicator with parallel plate electrodes and examination of physiochemical properties of 

Brassica napus (L.) before and after the RF treatment. This chapter was submitted to the Innovative 

Food Science and Emerging Technologies research journal. The third chapter discusses about the 
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thermal death kinetics of red flour beetle (Tribolium castaneum) in stored Brassica napus (L.) 

seeds using the pilot-scale 50-ohm RF heating system to understand desirable selective heating 

effect on mortality at different RF power levels. This chapter was submitted to the Food and 

Bioproducts Processing research journal. The fourth chapter discusses the general application of 

the general finding in the 50-ohm RF heating with parallel plate type applicator for disinfestation 

of Tribolium castaneum in stored Brassica napus (L.) seeds, and recommendation for future 

studies. 
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CHAPTER 1 

Disinfestation of stored grains using non-

chemical technologies – A review 

Contribution of this chapter to overall study  

This thesis is based on disinfection stored food grains from insect pests and the knowledge of 

different types of disinfestation techniques used in food grain storage is crucial. This chapter serves 

as a review of literature of the overall study, detailing the popular techniques using non-chemical 

methods to eliminate insect pests in stored grains. The basic principles, advantages, and 

disadvantages of some of the popular techniques such as ionizing radiation, modified atmosphere, 

and dielectric heating used for disinfestation of stored grains are discussed in this chapter. Also, 

this chapter includes the scope and opportunities of dielectric heating (microwave, and radio 

frequency) in grain processing industries for disinfestation of insect pests in stored grains. The 

review and the journal paper manuscript were drafted by me. 

1.1 Abstract  

Disinfestation of insect pests is a crucial unit operation to preserve the quality of food grains during 

the storage. Several approaches for disinfestation are available including chemical and non-

chemical methods. However, the use of the chemicals is often avoided because of potential adverse 

effects on the environment and studies that show chemical methods have failed. This chapter 

reviews recent applications of ionizing radiation, modified atmosphere, and dielectric heating for 
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disinfestation of stored grains. It is noted that the technologies mentioned have numerous 

advantages, however, these also can cause adverse effects to the grains being treated. To maximize 

treatment efficiency, the systematic integration of multiple non-chemical disinfestation methods 

with other unit operations is recommended. 

1.2 Nomenclature   

∆T/∆t  rate of change of temperature  

137Cs  Cesium-137 

60Co  Cobalt-60 

c speed of light in free space (3×108 m s-1)  

Cp specific heat (J kg–1C–1) 

E electric field strength (V m–1) 

EM electromagnetic wave 

f frequency (Hz) 

IPM international pest management  

IR infrared 

LT lethal time (s) 

MA  modified atmosphere  

MC moisture content (%) 

MW microwave 
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Pavg  average power density (W m-3) 

Pd penetration depth 

PEI polyetherimide 

RF radio frequency 

RH relative humidity (%) 

USDA  United States Department of Agriculture  

UV ultraviolet 

w.b. wet basis (%) 

WHO  World Health Organisation 

ε permittivity 

ε’ dielectric constant 

ε” dielectric loss factor 

ε° vacuum permittivity (8.85 × 10−12 F m−1) 

εd″ dipole rotation loss   

εσ″ ionic conduction loss 

ρ bulk density (kg m−3) 

θ  uniformity index 

λ wavelength (m) 
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1.3 Introduction 

Disinfestation of insects in grains is an important unit operation during storage and handling of 

grains. Insect attacks are accountable for calculable loss of one-third of total grain production 

(Government of Western Australia, 2018). Since the 1950s, chemical disinfectants have been a 

popular choice for disinfestation, for example, global expenditure on chemical disinfestation 

processes was over 30 billion US dollars during the year 1990 to 2000 (Gannage, 2000). Some 

common chemical disinfectants are C10H19O6PS2, C7H7C13NO3PS, and C22H19Br2NO3 which are 

considered as contact pesticides and MeBr and PH3 which are considered as fumigants (Sinha and 

Watters, 1985; Bond, 1985). However, use of certain chemical disinfectants such as MeBr is 

banned since 2005 in developed countries, and since 2015 in developing countries due to adverse 

effects on human health and the environment (Leesch, 2000; UNEP, 1997). Similarly, PH3, 

C10H19O6PS2, and fumigants are shown to be ineffective by several researchers, as insects develop 

immunity against the chemical disinfectants, and these chemicals did not harm the insect eggs 

especially the ones hidden within grain kernels (Sinha and Watters, 1985). Thus, the replacement 

of chemical disinfectants is necessary with other non-chemical disinfestation processes which are 

more efficient and have a less negative impact on the physicochemical properties of grains being 

treated, human health, and the environment. Some popular non-chemical disinfestation processes, 

which are popular and have immense potential to make a positive impact in grain storage and 

handling processes, applying ionizing radiation, modified atmosphere (MA), and dielectric 

heating.  

Irradiation is used against stored-product pests by direct treatment of the commodities, providing 

a residue-free process of pest control and by genetically controlling male insects. Generally, the 

most common apparatus for an MA treatment involves treatment of the grains in a controlled 
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chamber facility. MA disinfestation process involves altering the environmental conditions of the 

infested stored grains by modifying the gases (O2, N2, and CO2) concentration, relative humidity 

(RH), and atmospheric pressure. Combination of all the parameters involved in MA disinfestation 

process is altered in such a manner that the respiration rate of insects is affected, which leads to 

deaths of insects with minimum deterioration of physicochemical properties of the grains 

(Navarro, 2012). Disinfestation using irradiation process is based on dominant lethal mutation of 

sperm of the male insects and infecundity in all female ones, thereby controlling the population of 

insects infesting stored grains (Klaseen, 2005).  Dielectric heating is an emerging technology for 

disinfestation of insects in stored grains. Dielectric heating is based on electromagnetic (EM) 

radiation which relies on the dielectric properties, physical properties, specific heat, and bulk 

density of the sample. The dielectric properties, physical properties, specific heat, and bulk density 

of the insects and the grains are different, and the power dissipation boosts a higher temperature 

increment rate in insects relating to that of the grains (Shrestha et al., 2013). Therefore, dielectric 

heating is predicted to kill insect pests without hampering the physiochemical properties of the 

grains significantly (Shrestha et al., 2013). Volumetric and selective heating are the major 

advantages of dielectric heating. Some other nonchemical treatments to control insect pests include 

convective heating by hot air and cold storage, however these techniques require a longer treatment 

time and a substantial capital investment and may sometimes leave live insect pests after the 

treatments (Heather and Hallman, 2008). 

The insect pests found in stored grains are usually classified as primary and secondary pests. 

Primary insect pests are either found as a group of a particular species or as a group of different 

species, they feed upon the embryo of grains which is a vital part of any grain and has all the vital 

nutrients (Government of Western Australia, 2018; USDA, 2015). Secondary insects, on the other 
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hand, coexist with the primary insects and feed upon the leftovers damaged grains mainly caused 

by the primary insects and during the handling and storage of the grains. Secondary insects can be 

effectively removed during the cleaning process along with the broken and damaged grains before 

storing the grains (USDA, 2015). Thus, any disinfestation process is dedicated to eliminating 

primary insects in stored grains. However, the classification of primary and secondary insects may 

differ based on the topography and the types of grains grown in that zone (Government of Western 

Australia, 2018; USDA, 2015; Canadian Grain Commission, 2020). Table 1.1 shows the list of 

primary insects classified by the Canadian Grain Commission, United States Department of 

Agriculture, and Government of Western Australia. Figure 1.1 shows the pictures of the common 

primary insects in all the three departments (Government of Western Australia, 2018; USDA, 

2015; Canadian Grain Commission, 2020).  

Apart from irradiation, MA, and dielectric heating there are several other non-chemical processing 

methods for disinfestation of agricultural products other than food grains from primary insect 

pests, such as cold plasma processing, electron beam technology, and soft electron (low-energy 

electrons). Although these technologies have potential in being implemented to successfully 

disinfest food grains, literature does not show enough evidence to analyze the major advantages 

and disadvantages compared to the ones mentioned in this chapter. Thus, this chapter focuses on 

the working principles, advantages, and disadvantages of the popular techniques of non-chemical 

disinfestation of stored food grains which include ionizing radiation, MA, and dielectric heating.  
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Table 1.1: List of primary insects classified by Canadian Grain Commission, United States 

Department of Agriculture, and Government of Western Australia. 

Serial no. Department Primary insects  

1 Canadian Grain Commission P. truncatus (Horn) 

R. dominica (Fauvel) 

A. obtectus (Say) 

B. pisorum (Linnaeus) 

C. chinensis (Linnaeus) 

S. granarius (Linnaeus) 

S. oryzae (Linnaeus)

S. zeamais Motschulsky

T. granarium Everts

C. ferrugineus (Stephens)

C. pusillus (Schönherr) 

C. turcicus (Grouvelle) 

O. mercator (Fauvel) 

O. surinamensis (Linnaeus) 

L. oryzae Waterhouse

T. castaneum (Herbst)

T. confusum (Jaquelin du Val)

T. destructor Uyttenboogaart

T. mauritanicus (Linnaeus)

S. cerealella (Olivier)

2 United States Department of Agriculture S. granarius (Linnaeus) 

S. oryzae (Linnaeus) 

S. zeamaise (Motschulsky) 

R. dominica (Fabricius) 

S. cerealella (Olivier) 

3 Government of Western Australia R. dominica

S. oryzae 

S. granarius 

S. cerealella 
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gure 1.1: Images of insects considered as primary insects by Government of Western Australia, USDA, 

d Canadian Grain Commission 1(a) dorsal, 1(b) ventral, and 1(c) lateral view of R. dominica, 2(a) 

rsal, 2(b) ventral, and 2(c) lateral view of S. oryzae, 3(a) dorsal, 3(b) ventral, and 3(c) lateral view of S. 

anarius, 4(a) adult S. cerealella infested grains, 4(b) larve of an S. cerealella on infested grains, 4(c) 

rsal view of  adult S. cerealella. Adapted from Canadian Grain Commissions (2020) and Clemson 

niv./USDA CES Bugwood.org.  
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1.4 Non-chemical disinfestation methods 

The working principles, literature review, and the concluding remarks of some popular non-

chemical methods use in disinfestation of insect pests in stored grains are listed below. The non-

chemical methods for disinfestation include ionizing radiation, MA, and dielectric heating. 

1.4.1.1 Ionizing radiation  

Irradiation doses define the degree of distruction of spermatogonia in male insects and oogonia or 

trophocytes for egg formation (Klaseen, 2005). During irradiation breakage of chromosome 

induced in the germ cells causes dominant lethal mutation of sperm of the male insects (Klaseen, 

2005). Along with irradiation doses, the effects of irradiation on insects are defined by species 

type, life stages, age, and physiological state of the insect (Tilton and Brower, 1983). Ionizing 

radiations are produced by displacing the electrons from the atoms, and molecules of the material, 

and converting them to electrically charged ions (Riganakos, 2010). There are several methods to 

generate ionizing radiations, however, the approved radiation doses to eradicate infestations of 

pests by the Food and Drug Administration in the USA are gamma-rays of  60Co (1.17 and 1.33 

MeV), 137Cs (0.662 MeV), x-rays (< 5 MeV), and electron beams (<10 MeV) with a radiation dose 

of 1000 Gy (Codex Alimentarius Commission, 2003). The radiation dose absorbed is relevant to 

the absorbed energy per unit mass of material, thus, the amount of radiation exposure determines 

the effectiveness of the process (Cleland, 2013). The SI unit of ionizing radiation is gray (Gy) and 

1 Gy = 1 J/kg. Also, another common unit of ionizing radiation is rad (1 Gy = 100 rad), the use of 

rad is found in industries and pieces of literature. 
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A general food irradiation facility consists of several features as shown in Figure 1.2, and some of 

the crucial features include radiation generator, irradiation chamber, shielding around the 

irradiation chamber to eliminate any potential harm to the workers due to the radiation exposure, 

a transport system to get the food materials to the irradiation chamber, air evacuation system, and 

safety system to ensure all the unit operations in the irradiation system is safe to the workers to 

avoid any consequences (Fiszer, 1988). 

Figure 1.2: Pallet-type commercial 60Co irradiation facility (courtesy of Nordion 

International Inc., Ontario, Canada). Adapted from Fiszer (1988).

The term irradiation is used to represents all non-ionizing energy-based systems which include 

radar, infrared (IR), ultraviolet (UV), x-rays, and gamma-rays in this chapter.  

1.4.1.2 Ionizing radiation application in disinfestation 

Table 1.2 shows approximate irradiation doses for different life stages of primary insect pests to 

inhibit development of immatures. The recommendations on irradiation doses shown in Table 1.2 

are based on confirmatory studies done on large number of test insect species infesting stored food 
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grains published by several researchers (IAEA, 2004; Ahmed, 1990). Adult insects of S. cerealella 

and O. surinamensis are more resistant to irradiation compared to other stages in the developmental 

sequence, requiring up to 0.25±0.40 kGy for complete elimination (Hasan and Khan, 1998). S. 

zeamais and C. maculatus in maize and cowpea can be successfully disinfested using 60Co gamma 

cells, with irradiation doses ranging from 0.2 kGy to 0.5 kGy, with no significant effect in 

germination rate of the grains (Enu and Enu, 2014). 60Co cells can penetrate up to 50 cm into bulk 

grains, effectively killing insect pests of all life stages of S. zeamais, C. maculatus, C. chinensis 

(L), S. zeamais, and S. oryzae without effecting the odor, taste, and appearances of grains (Enu and 

Enu, 2014; Bhuiya et al., 1991). Bhuiya et al. (1991) and Hasan et al. (1998) reviewed effects of 

acute doses of ionizing radiation against adult insects and summarized as: very high doses are 

required for immediate death (˃ 1kGy). The authors also added that many days' delay may occur 

before the first signs of mortality; death is then usually quite sudden, and any survivors may then 

live longer than the controlled ones. Bhuiya et al. (1991) and Hasan et al. (1998) also added that 

adult becomes more susceptible with advancing age and young adults are comparable with late 

pupae in susceptibility to radiation sterilisation. Deformity is overserved to be related to irradiation 

dose and survival time of adults with severe deformity was shorter than adults with slight deformity 

(Bhuiya et al., 1991; Hasan et al., 1998). Hassan and Khan (1998) also concluded the following: 

 larvae are more resistant to radiation than eggs 

 variation in the susceptibility between larval stages 

 irradiation causes prolonged larval development and delayed pupation 



 greater mortality can be achieved by irradiating larvae that are about to moult or pupate 
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 1.2: Approximate irradiation doses for different life stages of primary insect pests 

ibit development of immatures.
 species Stages Doses (kGy)
ectus Eggs, larvae, pupae, and adults 0.30 
nensis Eggs, larvae, pupae, and adults 0.10
rcator Eggs, larvae, pupae, and adults 0.20
inamensis Eggs, larvae, pupae, and adults 0.70
catus Eggs, larvae, pupae, and adults 0.12 
inica Eggs, larvae, pupae, and adults 0.12 
alella Eggs, larvae, pupae, and adults 0.60

narius Eggs, larvae, pupae, and adults 0.08 
zae Eggs, larvae, pupae, and adults 0.08 
mais Eggs, larvae, pupae, and adults 0.16
taneum Eggs, larvae, pupae, and adults 0.12
fusum Eggs, larvae, pupae, and adults 0.20
tructor Eggs, larvae, pupae, and adults 0.20
narium Eggs, larvae, pupae, and adults 0.25
ote: Adapted from IAEA (2004) and Ahmed (1990).
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ion is found to be successful in disinfesting insect pests in stored grains although literature 

ows negative impacts on irradiated stored grains. So, important factors that must be 

red in an effective irradiation insect pests control programme are the application costs and 

erse effects on grains. Germination of barley and wheat decreases when the irradiation 

re higher than 6.25 krad and 25 krad respectively, however, shows no negative impact on 

nal value of whole wheat grains and wheat flour (FDA, 1981). �-rays irradiation using 60Co 

h positive and negative impacts on the nutritional components of wheat grains. Different �-

adiation doses (0.01 kGy, 0.03 kGy, 0.05 kGy, and 0.10 kGy) using 60Co increase the N2, 

protein, carotenoid, and nucleic acid contents but decreases the P, Fe, Zn, Mn and starch 

 in wheat grains (Singh and Datta, 2010). Although consideration of adverse effects of 

ion on the nutritional content of grains is curial in designing an effective irradiation 
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disinfestation protocol, irradiation also adversely effects the anti-nutritional properties of the 

grains. Anti-nutrient components (protease inhibitors, lectin, phytic acid, non-starch 

polysaccharides, and oligosaccharides) in grains can be effectively deactivated by exposing the 

grains to irradiation levels of up to 10 kGy without any undesirable post-treatment quality changes 

to the grains (Sindhuraju et al., 2002).  

1.4.1.3 Remarks on disinfestation using ionizing radiation 

Irradiation processes with doses below 1 kGy do not affect genetic and biochemical properties of 

grains and effective irradiation dose range for disinfestation of insects in grains is 0.2 kGy to 0.8 

kGy (Farkas and Farkas, 2011). When doses are above 10 kGy toxicological analyses become 

critical to understand the effectiveness of irradiation process in disabling anti-nutrients and other 

consequences on nutritional quality of stored grains (Sindhuraju et al., 2002). 

So, physio-chemical properties in grains are affected by irradiation depending on irradiation doses 

and variety of grains. Understanding the balance between usefulness and adverse effects of 

irradiation is important. According to WHO, “food irradiation is a thoroughly tested technique, 

that it has not been shown to have any deleterious effects when performed in accordance with good 

manufacturing practice and that it can help to ensure a safer and more plentiful food supply by 

extending shelf-life, eradicating pests, and inactivating pathogens” (WHO, 1994). The use of 

irradiation technology in disinfestation of grains is safe and some countries use this technology 

commercially. It has been recorded that most countries use radiation facilities for preservation of 

fruits, vegetables, packed meat, animal feed, spices, marine products, and food grains (Das et al, 

2013). In recent years, there has been a tremendous development in irradiation research, and it is 

hoped that newer technologies will be discovered in integration with irradiation (Das et al., 2013). 
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This will help in minimizing the cost of a treatment facility and reduce the adverse effects of such 

ionizing radiation on food when treated.  

1.4.2.1 Modified atmosphere  

MA improves shelf life of grains by altering the surrounding atmospheric condition. Alternations 

in atmospheric conditions heavily rely on the composition of gases present, which affects the 

respiration rate of grains and insect pests. Generally, the most common set up for an MA treatment 

involves treatment of grains in a controlled chamber facility where O2 present is regulated to be 

lower in quantity and CO2 content is enhanced, to a situation where the biological processes of 

insects and grains are interrupted. In this chapter, MA refers to all the processes that involve 

alteration in the composition of atmospheric gases and partial pressures to create ideal conditions 

for disinfestation of insect pests in stored grains. 

1.4.2.2 Modified atmosphere application in disinfestation 

Attacking the respiration rates of insects by controlling and modifying different components of the 

atmosphere is the key principle behind MA disinfestation process. Disinfestation of insects in 

stored grains using MA involves treatment of samples in a controlled chamber. Since O2 plays an 

important parameter in insect lives. Increasing CO2 and decreasing O2 in the controlled chamber 

is one of the simplest and effective way of controlling all the life stages insects like T. 

glabrum (Herbst), S. oryzae (L.), P. interpunctella (Hübner), and Sitophilus spp. in stored grains 

(Marzke et al., 1970; Annis, 1987; De Carli et al., 2010). High CO2 levels open the spiracles of 

insects causing water loss resulting in insect death, particularly when CO2 concentration is above 

10%, spiracles tend to stay permanently open (Navarro, 2012). CO2 also damages the nervous 

system of insect and acidify the hemolymph leading to membrane failure in tissues and some initial 



symptoms may include narcotic effect leading to immobilization of insects (Navarro, 2012). Thus, 

exposure of insects in higher CO2 levels for extended periods disturb the proper growth and 

reproduction on insect population and when CO2 content in the MA environment is beyond 60% 

death of insects increase rapidly (Navarro, 2012). Similar results can be seen in Table 1.3, the 

number of days to achieve 95% mortality of some primary insect species at different life stages 

decreases as the CO2 content in the air mixture increases. Also, Table 1.3 shows that the number 

of days to achieve 95% mortality of some primary insect species at different life stages increases 

as O2 content in the air mixture increases. 
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able 1.3: Approximate days to achieve 95% mortality of some primary insect species at different life

ages using various concentrations of O2 and mixtures of CO2 and air (temperature range 20℃-29°C).
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sect species Stages % O2 % CO2

0.0 1.0 2.0 3.0 20.0 40.0 60.0 80.0
 ferrungineus Eggs - - - 4.0 - - <4.0 <4.0
 ferrungineus Larvae - - - 4.0 - - <4.0 <4.0
 ferrungineus Pupae - - - 4.0 - - <4.0 <4.0
 ferrungineus Adult ˂2.0 - - 4.0 - <13.0 <4.0 <3.0
 cautella Egg 1.5 1.5 - - - - - -
 cautella Larvae 1.0 0.5 - 4.0 4.0 - <5.0 -
 cautella Pupae ˂2.0 1.0 - - - - <3.0 -
 cautella Adult 0.5 0.5 - - - - <2.0 -
 surinamenis Egg - - - 4.0 - - <4.0 <4.0
 surinamenis Larvae - - - 4.0 - - <4.0 <4.0
 surinamenis Pupae - - - 4.0 - - <4.0 <4.0
 surinamenis Adult ˂1.0 - - 4.0 14.0 <14.0 <3.0 <3.0
 interpunctella Eggs 1.5 3.0 3.0 >4.5 2.5 3.0 - -
 interpunctella Larvae 1.5 ˃4.0 ˃4.0 >4.0 2.0 >1.5 - -
 interpunctella Pupae 3.0 3.0 6.0 >7.0 - <3.0 <3.0 <3.0
 interpunctella Adults 1.0 ˂7.0 12.5 >14.0 - <7.0 <7.0 <7.0
 dominica Eggs - ˃4.0 - - 4.0 - - -
 dominica Larvae - - - 4.0 - - <4.0 <4.0
 dominica Pupae - - - 4.0 - - <4.0 <4.0
 dominica Adults 2.0 ˃4.0 ˃4.0 >4.0 7.0 4.0 1.5 <1.5
granaries Adults 5.0 16.0 17.0 >17.0 20.0 6.5 6.5 2.5
oryzae Eggs 9.0 ˂7.0 ˂7.0 14.0 15.5 4.5 3.5 3.5
oryzae Larvae - - - - ˃14.0 >7.0 3.0 2.0
oryzae Pupae 20.0 ˂14.0 ˃14.0 >14.0 ˃14.0 8.5 6.0 8.5 



S. oryzae Adult 4.5 8.5 ˃21.0 >21.0 7.0 3.0 1.5 1.0
S. zeamais Adult 2.0 - 11.5 14.0 ˂14.0 14.0 - -
T. castaneum Eggs 2.5 1.5 3.0 4.0 ˃4.0 2.0 <2.0 <2.0
T. castaneum Larvae 1.5 6.5 ˃14.0 >14.0 >16.5 16.5 <7.0 <7.0
T. castaneum Pupae 4.0 ˃3.0 - - - - 3.0 <5.0
T. castaneum Adults 1.5 6.0 ˃14.0 <14.0 >5.0 >14.0 1.5 3.0 

T. confusum Eggs - - - <4.0 - - <4.0 <4.0
T. confusum Larvae - - - <4.0 - - <4.0 <4.0
T. confusum Pupae - - - <4.0 - - <4.0 <4.0
T. confusum Adults 4.5 ˃7.0 ˃7.0 <7.0 9.0 3.0 3.5 2.0
T. glabrum Adults - ˂3.5 ˂3.5 <3.5 <3.0 <3.0 <3.0 <3.0
T. glabrum Larvae - ˂3.5 ˂3.5 <3.5 <3.0 <3.0 <3.0 <3.0 

T. granarium Larvae and diapause 12.0 - - - >25.0 >25.0 >25.0 >25.0 
T. granarium Pupae 4.0 - - - - - 5.0

N  

re  

(1
ote: “<” and “>” represents the shortest time and longest time with observation of mortality greater than 95%

spectively. “-” represents no reliable data available. Adapted from Riudavets (2009) and Banks and Annis

990).
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Lowering the pressure of the environment also has a positive impact on disinfestation of insect 

pests in stored grains. Generally, increasing the pressure reduces the exposure time and higher the 

temperature, faster mortality is achieved under a given atmosphere. However, literature shows that 

lowering of pressure increased the mortality of the insects. Different life stages of the insects react 

differently, and the adult insects tend to be the most vulnerable to low pressure treatments 

(Finkelman et al., 2006; Mbata et al., 2005). Likewise, pupae and eggs of insects are more tolerant 

to low pressure environment as compared to adult insects, thus requiring either increase in 

exposure time, temperature, or both to effectively eliminate all different life stages of insects from 

stored grains (Finkelman et al., 2006; Mbata et al., 2005). Along with use of different 

concentrations of different gases, lower RH also helps the disinfestation process using MA (Jay et 

al., 1971).

The application of MA in insect disinfestation is proven successful, however, there are reports 

which state otherwise. Insects in stored grains may have genetic potential to adapt and grow in 
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MA environment for example Bond and Buckland (1979) discovered that populations of S. 

granarius increased after an MA treatment. This finding can be considered as one of the major 

disadvantages of using MA for disinfestation. Apart from this, change in physio-chemical 

properties of the stored grains should also be considered, for example, changes in properties like 

germination of maize stored as reported by Njoroge et al. (2014). Prasntha et al. (2014) also found 

decrease in sensory values, as well as thiamine, and niacin contents of rice. So, contradiction of 

the above studies suggests that the effect of pressure in MA on disinfestation of stored grains insect 

pests depends on type of target insect, their life stage, and grain type. 

1.4.2.3 Remarks on disinfestation using modified atmosphere 

Concentration of O2, CO2, and N2 are very important parameters as they contribute to alteration of 

pressure in the system producing desirable effects in insect pests’ disinfestation process. Lowering 

RH enhances disinfestation of pest insects in stored grains. However, in a practical scenario 

infested harvested bulk grains and insect pests are difficult to distinguish, so an instantaneous and 

a diverse technology is preferred. Moreover, MA technology is very much target specific, so 

designing different systems for treatment of only one grain is an expensive procedure. Therefore, 

a combination of different other technologies along with MA can help optimize disinfestation 

process.

1.4.3.1 Dielectric heating 

Dielectric heating process is based on change in orientation of polar molecules and ions (shown in 

Figure 1.4) when high frequency electromagnetic (EM) waves are introduced and relies on the 

properties of the EM energy along with the electrical, thermal, and physical properties of the 

sample (Tang, 2000; Wang et al., 2001a, 2001b). Radio waves and microwaves (MW) have the 
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required wavelength and frequency to show the characteristic of dielectric heating in a sample. 

However, the United States Federal Communications Commission (FCC), permits the use of 13.56 

MHz, 27.12 MHz, and 40.68 MHz for RF heating applications and 915 MHz, 2450 MHz, 5800 

MHz, and 24125 MHz for MW heating in industrial, scientific, and medical (ISM) segments, to 

eliminate interference in communication (Wang et al., 2011). Comparing the wavelengths (λ) of 

RF heating frequencies to MW heating frequencies (shown in Figure 1.3), RF λ is greater than that 

of MW, thus RF waves can penetrate through larger sample sizes.  

Figure 1.3: The electromagnetic spectrum. Adapted from My NASA Data (2018).
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Figure 1.4: Heat conversion due to (a) dipole rotation and (b) ionic conductivity. (Adapted 

from Yam & Lai, 2004).

The permittivity (ε) of a dielectric material is defined as (Choi and Konrad, 1991):  

� = �� + �"…………………………………. (1.1)  

Where, ε’ is the dielectric constant of the material which defines the polarization of a material or 

the ability of a material to store electrical energy or charges within the applied EM field. ε″ is the 

heat dissipation quantity of a material by conductive loss of dipolar (εd″), ionic charges (εσ″), or 

the ability of a material to dissipate electrical energy into heat energy compared to vacuum. In 

addition, ε″ is the sum of εd″ and εσ″  

�" = ��
" + ��

" …………………………………. (1.2) 
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The penetration depth (Pd) of an EM wave within a dielectric material is determined by the 

frequency and the dielectric properties of the material in free space (Von Hippel, 1954). The 

equation to estimate Pd (Stratton, 2007) is as followed: 

�� =
�

�ᴨ�

�

√�ɛ�[���(ɛ"�ɛ�)���]
……………………………… (1.3) 

The ratio of temperature increment rate of insect to that grain seed can be estimated by following 

the procedure described by Von Hippel (1954). The average power generated inside a material can 

be calculated as shown in Equation (1.4) (Choi and Konrad, 1991): 

���� = 2ᴨɛ°���ɛ" = ���
��

��
 ………………………… (1.4) 

From equation 1.4, the commodities with higher ε" will generate higher power compared to the 

ones with lower ε" at identical EM wave exposure. Power dissipated encourages a superior rate of 

temperature increment in insects compared the host grain as physical properties, specific heat, and 

bulk density are different. ε" of insects is higher than that of the stored grains, thus dielectric 

heating is predicted to kill insect pests with a lesser increase in temperature of stored grains 

(Shrestha et al., 2013). Bulk density of the grain is an important parameter in dielectric heating 

due to existence of void fraction and its effect on dielectric properties. As grains are stored in bulk, 

the dielectric properties of bulk grain samples are correlated with the bulk density of the samples 

rather than with true density (Macana and Baik, 2017). Bulk density of dried grains has linear 

relation to the ε’ and ε” (Nelson and Trabelsi, 2012).  

During dielectric heating alternating electromagnetic field increases the kinetic energy of the 

molecules present in samples. These molecules vibrate rapidly, which generate heat causing 

protein molecules and nucleic acids (DNA and RNA) to denature in the insect bodies and rapid 



loss in moisture along with disruption of cell membranes causing the cells to lose its 

microenvironment required for its metabolism, thus the cells die eventually (Bowler and Fuller, 

1987). Disinfestation process using dielectric heating largely depends on kinetics of thermal 

reactions of the vital components in insect pests considering heat tolerance of different insects 

differ significantly (Wang et al. 2007b). The lethal time (LT) and lethal temperature are dependent 

on the insect species, development stage, MW or RF power, and moisture content (MC) of grains. 

Thus, determination of optimum time and temperature combination to kill all life stages of insect 

pests is important in designing an effective dielectric heating disinfestation protocol (Fakude, 

2007). Apart from volumetric heating, different other heating mechanisms are involved during the 

dielectric heating assisted disinfestation such as conduction between insect bodies and grain 

particles and convective heat transfer from water vapor generated from wet grains and insect 

bodies. Therefore, time and temperature combination to kill insects in stored grains differs with 

insect species and type of grains.  

1.4.3.2 Microwave heating application in disinfestation 

MW heating is capable of rapidly heating the insects in stored grains with less impact in the 

environment (Baykal, 2002; Das et al., 2013; Halverson et al., 1998; Ikediala et al., 1999; Nelson, 

1996; Karabulut, 2002; Wang and Tang, 2001). Table 1.4 shows some of the combinations of time, 

temperature, and MW power to obtain 100% mortality of some primary insects at different life 

stages infesting common stored grains.  

Ins

T

d

able 1.4: Microwave treatment required to achieve 100% mortality of various insects infesting grains at 

ifferent moisture contents. 
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ect species Stage Infesting 
Grain 

Grain 
moisture 

Time 
(s) 

Final 
temperature 

Micro
wave 

Microw
ave 
frequen

Reference 



content (% 
wet basis) 

of grains 
(℃) 

power 
(W) 

cy 
(GHz) 

S. zeamais Larvae 
and 
adults

Corn 14, 16, and 
18 

28 63, 62, and 
63 

500 2.45 Vadivambal et al 2010 

S. zeamais Larvae 
and 
adults

Corn 14, 16, and 
18 

14 55, 52, and 
54 

600  2.45 Vadivambal et al 2010 

T. castaneum Larvae 
and 
adults

Corn 14, 16, and 
18 

28 63, 62, and 
63 

500  2.45 Vadivambal et al 2010 

T. castaneum Larvae 
and 
adults

Corn 14, 16, and 
18 

14 55, 52, and 
54 

600 2.45 Vadivambal et al 2010 

P. interpunctella Larvae Corn 14 and 16 28 55 and 56 400  2.45 Vadivambal et al 2010 

P. interpunctella Larvae Corn 14, 16 and 
18 

28 63, 62, and 
63 

500  2.45 Vadivambal et al 2010 

P. interpunctella Larvae Corn 16 and 18 14 48 and 49 500  2.45 Vadivambal et al 2010 

P. interpunctella Larvae Corn 14, 16 and 
18 

14 55, 52, and 
54 

600  2.45 Vadivambal et al 2010 

P. interpunctella Adult Corn 14 28 56 400  2.45 Vadivambal et al 2010 

P. interpunctella Adult Corn 14, 16, and 
18 

14 49, 48, and 
49 

500  2.45 Vadivambal et al 2010 

C. ferrugineus Adult Wheat 14, 16, and 
18

56 80 to 86 400 2.45 Vadivambal et al 2007 

C. ferrugineus Adult Wheat 14, 16, and 
18

28 80 to 86 500 2.45 Vadivambal et al 2007 

S. granarius Adult Wheat 14, 16, and 
18

56 - 300 2.45 Vadivambal et al 2007 

S. granarius Adult Wheat 14, 16, and 
18

28 80 to 86 500 2.45 Vadivambal et al 2007 

N

re
ote: Values in the Grain moisture content column corresponds to the Final grain temperature column. “-” 

presents no reliable data available. 
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MW heating can effectively eliminate insects of all life stages (egg, young larva, old larva, pupa, 

and adult) from stored grains at the optimum MW power and LT (Vadivambal et al., 2008; Purohit 

et al., 2013). MW heating disinfestation is also effective when combined with cold storage. An 

MW system with a frequency of 2.45 GHz at different power levels (100 W to 500 W) with a 

combination of cold storage at under 6°C for different periods (24 h, 48 h, and 72 h) can effectively 
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eliminate different life stages of O. surinamensis, L. serricorne, P. interpunctella, T. castaneum 

H., and S. oryzae L. from stored food grains (Gasemzadeh et al., 2010; Valizadegan et al., 2011; 

Nasab et al., 2009). 

Although MW heating has potential for disinfestation applications in grain industry, MW also has 

some adverse effects on various quality parameters. Major drawback of MW heating is non-

uniform temperature distribution in bulk sample which generate “hot-spot”, where the temperature 

in certain spots is significantly higher than the average temperature in the sample. Hotspots 

generated during MW heating cause thermal degradation in grains such as reduction in germination 

rates (Manickavasagan et al., 2007; Das et al., 2013). Also, germination rates of grains decrease 

with increase in MW (Purohit et al., 2013; Vadivambal et al., 2008). Non-uniformity in 

temperature distribution is dependent on product composition, where higher fat content improves 

the temperature distribution uniformity and protein content has the opposite effect (Fakhouri and 

Ramaswamy, 1993). Geometry, volume, and MC of sample influence the heating pattern along 

with the MW power, treatment time, and MW system (continuous or intermediate) 

(Manickavasagan et al., 2006; Oliveira and Franca, 2002). MW heating also degrades bread-

making quality of wheat and maize flour (El-Naggar and Mikhaiel, 2011). MW heating also 

change starch and protein structures, moreover, as treatment time increases viscosity of the flour 

(Naggar and Mikhaiel, 2011). However, MW heating does not change the quality of fat, fibre, 

carbohydrates, and ash content of the grains nor the flour yield and loaf volume of sample (Naggar 

and Mikhaiel, 2011). Thus, analysis and consideration of several effects of MW heating on the 

physiochemical properties of grains along with the calculation of minimal LT, MW power, and 

lethal temperature of target insect are crucial in designing an optimum MW disinfestation protocol 

(Manickavasagan et al., 2006). Also, MW fails to penetrate sample thickness greater than 10.16 
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cm, so treatment of a huge sample volume is a major challenge in MW heating (Vadivambal, 

2009). Thus, MW heating is not advisable to be used alone rather integrate with other unit 

operations especially to improve uniformity in the temperature distribution throughout the sample, 

and to increase the efficiency of the disinfestation process (Doty and Baker, 1977; El-Naggar et 

al., 2011; Velu et al., 2006; Walde et al., 2002). 

1.4.3.3 Radio frequency heating application in disinfestation  

RF heating also follows the dielectric heating principle except for the fact that RF has higher 

wavelengths than MW (Figure 1.3), thus large volume samples can be treated. Also, heating rates 

of insect bodies are significantly higher than that of grains during RF (27.12 MHz) heating 

compared to MW heating (Shrestha and Baik, 2013). So, lethal temperature of target insects 

reaches in much shorter time while keeping the grains at relatively lower temperature during RF 

heating, thus minimizing any adverse effects on physicochemical properties of the grains (Shrestha 

and Baik, 2013). Frequency of RF waves plays as a crucial factor while designing an RF heating 

disinfestation protocol. Frequency range from 10 MHz to 100 MHz is ideal for selectively heating 

of insects, as ε” of the insects (S. oryzae (L.), T. aestivum (L.)) are 5 times higher than that of the 

stored grains (wheat) (Nelson, 2005). However, due to allowance by the United States Federal 

Communications Commission (FCC), application of RF frequencies beyond 13.56 MHz, 27.12 

MHz, and 40.68 MHz are not common in bioprocessing industries. At lower frequencies of RF 

energy complete mortality of insects is achieved at lower temperature of host grains as compared 

to that of higher frequency RF energy (Nelson, 2005). Table 1.5 shows some of the combinations 



of time, temperature, and RF power to obtain 100% mortality of some common insects at different 

life stages infesting common stored grains. 
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nsect 
pecies 

Stage Infesting 
Grain 

Grain 
moisture 
content 
(% wet 
basis)

Time 
(s) 

Final 
temperatur
e of grains 
(℃) 

Radio-
frequency 
power 
(W) 

Radio 
wave 
Frequenc
y (MHz) 

Reference 

. 
errungine
s 

Adults Wheat 
(Sample 
weight = 
27 kg) 

12, 15, 
and 18 

354, 
326, 
and 276 

70 to 80 7000 27.17 Maccana 
(2019) 

. 
astaneum 

Adults Rapeseed 
(Sample 
volume = 
196.3 
cm3

5, 7, 9, 
and 11 

1080, 
720, 
390, 
and 140 

80 1500 27.12 Yu et al. 
(2016) 

. 
astaneum 

Adults Rapeseed 
(sample 
volume = 
1766 
cm3)

5, 7, 9, 
and 11 

677, 
539, 
333, 
and 218 

60 1500 27.12 Yu et al. 
(2016) 

. 
aculatus 
. 

Adults Lentils 
(sample 
weight = 
6.4 kg)

6.9 600 60 6000 27 Jiao et al. 
(2012) 

. 
aculatus 
. 

Adults Chickpea, 
green 
peas, and 
lentils

7 300 60 6000 27 Wang et al. 
(2010) 

. 
erealella 

Adults Rough 
rice 
(sample 
weight > 
4 kg

11 and 
13.5 

300 60 2500 27.17 Lagunas- 
Solar et al. 
(2007) 

. 
ominica 

Adults Rough 
rice 
(sample 
weight > 
4 kg

11 and 
13.5 

1800 60 2500 27.17 Lagunas- 
Solar et al. 
(2007) 

. Oryzae 
L.), 

Mixed 
immatures

Wheat - - 56 - 27 Anglade at al. 
(1979) 

. 
ranarious

Larvae Wheat - - 58 - 27 Anglade at al. 
(1979) 



S. 
granarious

Pupae Wheat - - 61 - 27 Anglade at al. 
(1979) 

S. 
granarious

Adults Wheat - - 55 - 27 Anglade at al. 
(1979) 

N

co
Mortality of insects during RF heating is also dependent on volume, MC, and life stages of the 

ote: “-” represents no reliable data available. Grain moisture content column corresponds to the Time 

lumn. 
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insects. Higher MC (5, 7, 9, and 11% w.b.) of the grains, the higher end temperature (80°C) is 

required to completely kill adult insects (T. castaneum) in stored grains (Yu et al., 2016). Also, 

larger grain sample volume (small-196.3 cm3 and large-1766 cm3) is ideal for disinfestation adult 

insects using RF heating as end temperature (60°C) of host grain is relatively lower than that of 

smaller volume (80°C) irrespective of  grain MC (Yu et al., 2016). However, volume and MC of 

grains do not have significant effect on killing larvae (Yu et al., 2016). Disinfestation of different 

life stages of T. castaneum in stored rapeseeds at different MC (5, 7, 9, and 11% w.b.) using an 

RF heating system (1.5 kW and 27.12 MHz) was proven successful with acceptable thermal 

degradation of physicochemical qualities seeds when end temperature of the rapeseed was limited 

to 60°C (Yu et al., 2016). Also, Macana (2019) have shown that bulk sample of C. ferrungineus

infested wheats of 27 kg can be effectively disinfested using a 50-ohm RF system at once. RF 

heating is also proven to be efficient in disinfesting different agricultural commodities similar to 

food grains such as stored nuts, dried fruits and coffee beans from several insect pest species such 

as C. pomonella (L.), A. transitella, A. ludens, H. hampei, and C. elephas (Hau et al., 2014; Pan et 

al., 2012; Wang et al., 2001a, 2001b, 2007b) 

One of the major advantages of RF heating over MW heating is the ability of RF waves to penetrate 

larger sample volumes with higher efficiency in selective heating compared to MW to effectively 
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kill insects in large quantities of stored grains (Shrestha and Baik, 2013). However, RF heating 

suffers from non-uniformity in heat distribution throughout the sample, causing generation of 

hotspots. Temperature distribution in bulk samples during RF heating is associated with 

geometries, physicochemical properties of the sample, the type of RF heating system, and the type 

of applicator used (Huang et al., 2018; Yu et al., 2016; Jiao et al., 2015). EM wave distribution 

during an RF heating process plays an important role in temperature distribution in the sample. 

Thus, it is important to develop an effective RF heating system that generates uniform EM wave 

distribution throughout the sample (Huang et al., 2018; Yu et al., 2016; Wang et al., 2008). The 

uniformity in EM wave distribution during RF heating process of agricultural commodities can be 

improved by integrating different unit operations along with RF heating. Pieces of literature show 

that many researchers have used hot air, stirring, tumbling, different angles for the electrodes, and 

PEI blocks combined with RF heating to improve uniformity index (θ) (Wang et al., 2007a, 2007b; 

Wang et al., 2010; Jiao et al., 2015). RF heating system equipped with properly designed electrodes  

with other unit operations such hot air force convection heating, conveyor belt movement, and 

mixing can successfully kill different life stages of C. maculatus (F.), and S. oryzae (L.) in stored 

grains (Jioa et al., 2012; Zhou and Wang, 2016). RF heating treatment can change the geometry 

along with MC of stored grain, due to the expansion of carbohydrates and proteins present in the 

grain (Yu et al., 2016). Also, radio frequency heating decreases germination of grains (Yu et al., 

2016). However, properly designed RF disinfestation protocol does not cause any significant 

change protein, water activity, starch content, free fatty acid, ash, fat, starch, hardness, and color 

of food grains (Zhou and Wang, 2016).  

1.4.3.4 Remarks on disinfestation using dielectric heating   
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Dielectric heating has numerous advantages over other disinfestation processes discussed in this 

chapter. Disinfestation of insect pests in stored grains using dielectric heating is rapid that and can 

process large volume samples, especially RF heating. Dielectric heating, however, comes with a 

challenge of generating hotspots during the process, which causes thermal degradation to the 

grains. Hot spots can be eliminated by making sure that the EM waves are uniformly distributed 

throughout the sample during the dielectric heating process. The distribution of EM waves is 

dependent on several parameters such as geometry and physicochemical properties of the grains, 

the type of dielectric heating system, and the electrodes being used. Also, the integration of other 

unit operations improves the uniformity index of EM wave distribution during the dielectric 

heating process. Thus, with the proper design of a dielectric heating system, it can be used 

effectively in disinfestation of insect pests in stored grains.  

1.5 Conclusions 

Non-chemical processes such as ionizing radiation, controlled atmosphere, and dielectric heating 

are effective in disinfesting insect pests in stored grains. However, they come with specific 

challenges, that include changes to the physicochemical properties of the grains being treated. 

These problems can be solved by effectively integrating other unit operations such as forced 

convection, mixing, and movement. Also, proper designing of crucial components present in 

disinfestation process is crucial to improve the efficiency of disinfestation process. Non-chemical 

methods have immense potential in substituting popular chemical processes in disinfestation of 

insect pests in stored grains.  
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CHAPTER 2 

Characterization of 50-ohm radio frequency 

heating and the effect of heating on the 

quality of bulk Brassica napus. L seeds 

Contribution of this chapter on overall study 

Characterization of 50-ohm radio frequency heating of bulk canola seeds in a tubular applicator 

with parallel electrodes plays an important role in this research. This chapter describes the 

temperature distribution of bulk canola during the RF heating process at different power level. The 

generation of hot, and cold spots during the RF heating process helped to record the temperature 

histories at various points in the bulk canola seeds. These temperature histories were then used to 

design various time, and temperature based linear regression models, which were used in 

developing death kinetics model of the adult red flour beetles infesting the canola seeds. Also, the 

post-treatment qualities of the canola seeds were analysed, which helped determined the lethal 

temperatures to kill the insects without altering the physicochemical properties of the canola seeds.  

2.1 Abstract 

A pilot-scale 50-ohm radio frequency (RF) heating system was used to determine the temperature 

distribution of bulk canola seeds (Brassica napus L.), 9% moisture content (MC) wet-basis (w.b.) 

in a tubular applicator with parallel electrodes. Non-uniformity of the temperature distribution of 
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bulk canola was observed during the RF heating process of the seeds. The hottest spot was 

observed at the front side of the tubular cavity of the applicator adjacent to the hot electrode. The 

average temperature (Tavg) of the canola seeds was 38.00±0.62℃, 42.20±0.28℃, and 

40.00±0.35℃ at 3 kW, 5 kW, and 7 kW respectively. Temperature distribution was relatively 

uniform in the back zone (0.287, 0.433, and 0.278 for 3 kW, 5 kW, and 7 kW respectively). The 

physicochemical properties of canola seeds changed significantly after 50-ohm RF heating at 

various end temperatures and power levels.  

2.2 Industrial relevance text 

Radio frequency heating is an emerging technology and has immense potential in food grains, 

pulses, and oilseeds processing. The radio frequency heating can be used for disinfestation of 

insects, drying, and removal of anti-nutritional compounds in stored food grains, pulses, and 

oilseeds. Radio frequency heating is based on dielectric heating principle thus allowing selective 

and volumetric heating. The radio frequency waves have wavelengths ranging from 1 mm to about 

100 km with a frequency of 3 kHz to about 300 GHz, the penetration depth is comparatively higher 

than microwaves, which has wavelengths ranging from 1mm to about 1 m with frequencies 

between 300 MHz and 300 GHz. Thus, radio waves penetrate larger volume objects compared to 

microwaves. This research investigated a 50-ohm radio frequency heating system with a through 

field parallel plate type applicator to observe the temperature distribution throughout the bulk 

canola at different power levels. Understanding the characteristics of 50-ohm radio frequency 

heating of bulk canola seeds at different power levels can help design effective heating processes 

involved in canola seeds storage and handling.  

2.3 Nomenclature 
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ANOVA  analysis of variance 

AV  p-anisidine value 

EM  electromagnetic  

FCC  Federal Communications Commission  

h height (m)   

l length (m) 

MC  moisture content (%) 

MW  microwave  

PV  peroxide value 

RF  radio frequency  

RFG  radio frequency generator  

RH  relative humidity (%)  

T temperature (°C) 

t time (s) 

Tavg  average temperature (°C) 

TOTOX  total oxidation 

w.b.  wet basis 

θ  uniformity index 
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λ  wavelengths (m) 

2.4 Introduction 

Radio frequency (RF) heating is based on the interactions between high frequency electromagnetic 

(EM) waves and commodities containing polar molecules and ions. Radio waves range from 1 mm 

to about 100 km with frequency of 3 kHz to about 300 GHz (NASA, 2020), however, United States 

Federal Communications Commission (FCC) allows the use of only 13.56 MHz, 27.12 MHz, and 

40.68 MHz for RF heating applications in industrial, scientific, and medical (ISM) sectors, to avoid 

disturbances in communication system (Wang et al., 2011). RF heating is governed by the 

characteristics of EM energy, and by the electrical, thermal, and physical properties of the material. 

A substantial advantage of RF heating is selective heating, materials with higher dielectric loss 

factor heat up at a much faster rate than those with lower dielectric loss factor (Shrestha and Baik, 

2013a; Yu et al., 2015). In recent times, the use of RH heating has become a popular choice in 

agricultural products and food processing, e.g. disinfestation of insect pests in stored grains and 

oilseeds, meat thawing, drying of agricultural commodities. There are two types of RF systems, 

through which the radio waves are generated and transmitted to the material being processed; free-

running oscillator type or the conventional type and 50-ohm type (Marra et al., 2009). The free 

oscillator type RF system consists of an RF generator (RFG) through which oscillating EM waves 

and transmitted to the material through the electrodes (anode and ground electrode). The 50-ohm 

system comprises of an RFG that generates the RF energy and the RF energy is transferred to a 

matching network through a 50-ohm cable. The matching network is connected to the electrodes 

through which the radio waves are generated and transferred to the materials being processed. The 

50 ohm RF system is relatively new comparing to the conventional one, although, the conventional 

RF system is the popular one in the industries, the 50 ohm RF system is capable of producing 
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constant frequency, and power as the matching network automatically adjusts to maintain the load 

impedance (Jones, and Rowley, 1996). The RFG is connected to the matching network with a 

standard 50-ohm cable, and the RFG can be located remotely, giving the advantage of flexibility 

in the design of the RF heating system.  

One of the major drawbacks of an RF heating system is a non-uniform distribution of temperature 

in the sample and the non-uniformity in the temperature distribution is unique in every RF system 

(Yu et al., 2016a). Thus, the characterization of the heating pattern of any sample in an RF heating 

system is crucial to design appropriate sample handling mechanisms (applicator) to improve 

uniformity in heating substances. The design of the RF applicator is defined by the RF application, 

thus, the shape and size of the applicator widely vary from one another, and an RF applicator can 

be classified as: through field type, fringe field type, and staggered through field type (Jones and 

Rowley, 1996). Amongst the three types of RF applicators, the through field type is the most 

popular one with the simplest construction, the applicator consists of parallel plates electrodes 

(anode and ground), in between the electrodes the sample is introduced to form a parallel capacitor. 

This type of applicator can heat up larger bulk materials, thus, making it an ideal candidate for 

large volume sample treatment. The RF heating mechanism in parallel plate type applicator 

includes introduction of high voltage in the anode electrode while the other electrode is grounded 

thus forming propagation of EM waves in between the electrode and causing dielectric heating 

characteristics in the sample (Huang et al., 2018). Due to the dielectric heating characteristics, RF 

heating is expected to have a more uniform heating pattern compared to the other heating methods 

including MW heating. Luechapattanaporn et al. (2004) concluded that, the difference in 

wavelengths makes RF heating more suitable in heating a sample filled in a polymeric tray (245 × 

235 × 45 mm), by providing more uniformity in temperature distribution. Explaining that radio 
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waves wavelengths (λ) are greater than that of MW, thus providing higher penetration depth in RF 

heating (Luechapattanaporn et al. 2004).  

Literature shows non-uniformity in temperature distribution in various agricultural commodities 

such as fresh apples, canola seeds, and chestnuts during RF heating (Birla et al. 2008b; Yu et al., 

2016a; Hou et al., 2014). Temperature uniformity (θ) in RF heating is affected by several 

parameters including thermal, physical, and electrical properties of the sample, along with the size, 

shape, and location of the sample in the RF applicator (Yu et al., 2016a). Romano and Marra 

(2008) simulated the temperature distribution in meat and the effect of different shapes of samples 

(cube, cylinder, and sphere) on the temperature distribution and found that meat cut in cubical 

shapes had less temperature variation than meat cut in the other shapes. Tiwari, Wang, Tang, and 

Birla (2011a) simulated the heating pattern in wheat flour samples in three differently shaped 

containers (cuboid, ellipsoid, and cylinder). They reported that the higher power densities were 

found in the center parts of the ellipsoid and at the edges of the other shapes.  

Several researchers used gel samples of different shapes and sizes and exposed to RF heating and 

studied the temperature distribution in chemically and structurally homogenous objects and found 

out that temperature distribution was mainly dependent of the electric field distribution inside the 

objects (Yang and Gunasekaran 2001; Birla et al. 2008a; Yu et al. 2016a). Yu et al. (2016a) studied 

the temperature distribution during RF heating (1.5 kW and 27.12 MHz) of a packed bed of canola 

seeds at different MCs and volumes. Their sample container was infinite cylindrical, of which the 

bottom surface sits on the ground electrode of two parallel electrodes. They encountered edge 

effect during heating packed-bed canola seeds at different MCs and volumes. The concentration 

of electric field at outer edges of the material due to the deflection of electric fields at the edge and 

the corners of the material's container caused the edge effect. They further suggested their work 
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lay a foundation for designing and simulating an RF heating system/process that can achieve more 

uniform heating of bulk canola seeds.  

Canola happens to be one of the most important oilseed crops in the world of agriculture. China, 

India, Canada, and European Union are the top producers of the crop, total world production in 

2018 - 2019 was 72.80 million metric tons and in 2019-2020 is expected to be 74.80 million metric 

tons (USDA Foreign Agricultural Service, 2019). Canada exports over 90% of the canola produced 

around the world. Such an essential crop in the economy of Canada, canola does face some 

significant challenges in production, around 8 to 10% in annual crop yield is lost due to insect pest 

causing hundreds of millions of dollars lost in the Canadian economy (Canola Watch 2015). Thus, 

proving the importance of the development of quick and effective disinfestation process and RF 

heating has the potential to solve the problem. Thus, the focus of this chapter is to examine 

temperature distribution in a packed bed of canola seeds (Brassica napus L.) during 50-ohm RF 

heating at various power levels. By doing so, the heating characteristics of bulk canola seeds using 

a 50-ohm RF heating with parallel plate type applicator can be understood, thus helping in effective 

utilization of RF heating for the disinfestation of insects in stored canola. As, along with economic 

losses, insect pest infestation is a considerable barrier to export and constitutes a significant 

concern in the production, storage, and the process of all food products (Gao et al., 2010). The 

trade regulations of domestic and international markets have required postharvest treatments of all 

food products to ensure quarantine security from insect pests (Birla et al. 2008; Jiao et al. 2011).  

The Engineering Shop at the University of Saskatchewan fabricated the tubular applicator with 

parallel plate electrodes where the applicator was connected to a matching network and 15 kW 

27.12 MHz RFG which is relatively a new RF heating system configuration. Literature shows 

limited application of 50-ohm RF heating of oilseeds, thus, the characterization of the heating 
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pattern of the bulked canola seeds using the RF heating system plays an important role to 

understand the heating characteristics considering affecting parameters. Doing so will show 

several drawbacks in the design and considerations in manufacturing the 50-ohm RF heating 

system. Thus, to improve the design of the sample handling mechanisms (applicator) to improve 

uniformity in heating substances, this chapter focuses on examining temperature distribution in a 

packed-bed of canola seeds in a tubular cavity between two parallel electrodes during 50-ohm RF 

heating at various power levels. This applicator design was to house auger screws and very rare in 

RF heating applications. Along with the heating distribution, we have also examined θ of canola 

seeds using a 50-ohm RF system at 3 kW, 5 kW, and 7 kW. Also, this chapter shows the 

comparison of physicochemical properties of canola seeds before and after the RF treatment that 

resulted in 100% mortality of insect pests, which include MC, germination rate, colour, and oil 

quality before and after the RF treatment. 

2.5 Materials and methods  

2.5.1 The radio frequency system 

The Engineering Shop at the University of Saskatchewan fabricated the tubular applicator with 

parallel plate electrodes based on our design, and the applicator was connected to a matching 

network and 15 kW 27.12 MHz RFG manufactured by Coaxial Power System Ltd (Figure 2.1).  
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quency generator 

oaxial Power System Ltd., the RFG was designed to drive a specific characteristic 

-ohm. As described by Coaxial Power System Ltd. (2016), the characteristic 

e output cable allows the RFG to deliver full power at maximum efficiency. If the 

ce varied from 50-ohm the protection circuits in the RFG reduce the output power 

tect the RFG from overload. Except for dummy loads and some types of antenna 

d loads differed substantially from 50-ohm and the system needs a device to 

utput of the RFG to the actual load impedance. It was sometimes possible to use a 

ound transformer, but most often the matching device was made up of a network 



of series and parallel impedances that combine to perform the transformation, i.e. a 'Matching 

Network’. 
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nting radio frequency impedances 

ce of an application is rarely pure resistance; often, it consists of a combination of 

 capacitance. An 'equivalent circuit' can be considered to consist of a resistor and a 

o forms of circuit exist, series and parallel, neither form is correct or incorrect, both 

 nor it is possible to represent the output in whichever form is most convenient. The 

represents a load as a resistor and a capacitor in parallel. The resistor would typically 

ue and convenient when considering the 'PI' network, as the tuning capacitor adds to 

quivalent capacitance. The Series form represented a load like a resistor and a 

eries. The resistor would typically be low in value, convenient when considering the 

 the tuning capacitor appears in series with the series equivalent capacitance. In the 



case of the 'T' the inductor, leaving just enough inductance to allow it to tune in, resonates network 

the series capacitance out. 

2.5.4 Matching network 

Coaxial Power Systems Ltd manufactures two styles of impedance matching network to link the 

load to the RFG. The matching network adjusts the input impedance of the load to 50-ohms to 
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imum power from the RFG, whose output impedance is 50-ohms, to the load. The 

 installed as close as possible to the load. The best possible position, in our RF heating 

for example, the network was mounted directly on the heating applicator with a direct 

o the electrode.  

ator 

tor used in this research was a parallel plate type electrodes (hot and ground). The 

e electrodes are connected to the matching network in the back end of the setup as 

ure 2.1. The connection was made with the assumption that the electric field strengths 

 from beginning to the end of the electrode. In between the two electrodes was the 

nel, made of polypropylene composite; diameter of 30 cm and length of 70 cm. The 



gap size between the two electrodes was 36 cm as shown in Figure 2.4. The samples consisting of 

insects and canola grains were loaded in the channel which acted as an insulator during the RF 

heating process, where, the insects were killed and the canola grains being heated. This study used 

an applicator with parallel plate electrodes because of its uniform electric field strengths from 

beginning to end of the electrode. The layout of the RF system is shown in Figure 2.4.

2.5.6 C

F  
igure 2.4: 50-ohm radio frequency applicator (hot electrode and cold electrode).
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anola seeds 
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9% MC (w.b.) canola samples from various MC levels (6, 7, and 9%) bulk canola were prepared 

from seed samples provided by Viterra Inc. The seeds were cleaned using a grain cleaning system 

and transported in polypropylene containers and are stored in cold storage for a maximum period 

of 6 months at 4°C before using them.  To determine the MC of the canola samples 10 g of canola 

seeds were dried for 24 h at 103°C in three replicates a hot air oven (Despatch, Despatch Industries, 

MN, USA) (ASAE, 2002; Brusewitz, 1975). 9% MC canola seeds were prepared by spraying a 

pre-calculated amount of distilled water on the known mass of the seeds at initial MC contained 

in a polypropylene container. The polypropylene containers were agitated by continuously shaking 

and rotating while spraying distilled water. The containers were left at room temperature (24°C) 

for three days with periodic shaking, after three days the MC was measured, and the process was 

repeated to achieve an equilibrium MC of 9% MC, then it was followed by storing them at the 

cold storage (4°C) until used. A digital scale with an accuracy of ±0.01 g (Symmetry, PR4200, 

Cole-Parmer Instrument Co., IL, USA) was used for all weighing and left the samples at room 

temperature for 24 hours and measured the final MC of samples before using them for experiments 

(allowing ±0.2% error). 

2.5.7 Experimental setup of heating distribution in bulk canola bed using radio frequency 

heating 



27 kg of canola seeds were packed tightly in 7 polypropylene bags to fill a tubular cavity of  70 

cm in length and 30 cm in diameter (Figure 2.5). In the process, it was made sure that the bags are 

packed tightly and uniformly by dividing the weight equally. 

Three optic fibre tempera

2nd location 30 cm from 1

2.6.  

Fi  
gure 2.5: Canola seeds in polypropylene bags.
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ture sensors were inserted in each bag; 1st location 5 cm from the end, 

st location and 3rd location 30 cm from 2nd location as shown in Figure 



The locations were nu

 1, 2 and 3 in b

 4, 5 and 6 in b

 7, 8 and 9 in b
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mbered as followed: 

ag 1 (B1) 

ag 2 (B2) 

ag 3 (B3) 

c) (
)

d  
)
gure 2.6: (a) Bag numbers (b) Cross sectional view of canola bags setup in the applicator 

ong with location number at front zone (c) Cross sectional view of canola bags setup in 

e applicator along with location number at middle zone (d) Cross sectional view of 

nola bags setup in the applicator along with location number at back zone.
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 10, 11 and 12 in bag 4 (B4) 

 13, 14 and 15 in bag 5 (B5) 

 16, 17 and 18 in bag 6 (B6) 

 19, 20 and 21 in bag 7 (B7) 

A ReflexTM signal conditioner and the fiber optic temperature sensors with an accuracy of ±0.8°C 

(Neoptix, Québec City, Québec, Canada) were used to measure and monitor the temperatures of 

samples. The temperature probes were inserted exactly 5 cm low; we recorded the temperatures 

histories at 3 kW, 5 kW, and 7 kW. The temperature probes had a response time of 0.25 s (stagnant 

air) which requires to reach 63% of the actual value (Neoptix, Québec City, Québec, Canada). A 

LabVIEW (2010v.10) program was developed to interface with the data acquisition device 

connected to the temperature sensors. The temperatures of the sample were displayed and recorded 

every 2 s. All the experiments were triplicated and the average of three repetitions are reported.   

2.5.8 Uniformity index of canola seeds 

The horizontal and vertical uniformity index (θ) of the bulk canola seeds with 50-ohm RF heating 

were estimated. Equation (2.1) and (2.2) (Neter, Kutner, Wasserman, & Nachtsheim, 1996) 

describe variation in the mean and standard deviation of the sample: 

∆� = �� + �� … … … … … … … … … … … … … . . (2.1)

∆� = �(��
� − ��

�) … … … … … … … … … … … … … (2.2)

Where, μ and σ represent the temperatures' mean and standard deviation respectively, and ∆ is the 

increment. The subscripts 0 and t denote the temperatures at initial heating and after t seconds of 

RF heating respectively.  



64 

The θ can then be obtained by combining Equation (2.1) and (2.2), and shown in Equation (2.3) 

(Gao, Tang, Wang, Powers, & Wang, 2010): 

� =
∆�

∆�
… … … … … … … … … … … … … … … . . (2.3)

A small value θ is necessary for a well-designed RF heating system and slow increments in the 

standard deviation of the temperature as the mean temperature rises. 

2.5.9 Seed quality analysis 

Seed quality analysis included a comparison of MC, germination rate, colour change and oil 

quality of canola seeds before and after RF heating at various end temperatures and various power 

levels. For the canola seed quality analysis, the seeds from the hottest spot of the bulk seeds were 

considered. The seeds at the hottest spot (Location 1) were heated to end temperatures of 50°C, 

55°C, 60°C, and 65°C from 24°C. After the seed temperature reaches 50°C, 55°C, 60°C, and 65°C 

from 24°C, the RF heating was stopped instantly as soon as the temperature at location 1 reaches 

the end temperature. The temperature was monitored in real-time using a ReflexTM signal 

conditioner and a fiber optic temperature sensor (Neoptix, Québec City, Québec, Canada). The 

fiber optic temperature was inserted vertically 5 cm deep from the horizontal upper surface of the 

canola bag at Location 1. The RF treated canola seeds were collected from the surrounding of 

Location 1 (B1), all the samples from 0 cm to 10 cm in the front zone of B1 were collected. The 

samples were quickly cooled down to room temperature (22°C) and sealed in Ziploc® bags and 

stored in cold storage at 4°C, and the seed qualities were analyzed the following day. This set of 

temperatures was chosen because thermal degradation of canola seeds using RF heating starts at 

around 60°C (Yu et al. 2016b).  
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2.5.9.1 Moisture content  

The MC of the canola seeds were measured using ASAE (2000), 10 g of canola seeds samples 

were measured using a weighing balance, TS200S Ohaus Corporation, USA (maximum load 

capacity = 200 g, and readability = 0.001 g) and poured onto an aluminum moisture dish (10 mm 

diameter), the aluminum moisture dishes were placed in a hot air oven (Despatch, Despatch 

Industries, MN, USA) for 24 h at 103°C. The MC of the canola seeds were then determined based 

on the change of weight of the seeds before and after the oven drying process. 

2.5.9.2 Germination test  

A total of 10 RF treated canola seeds were placed on one Whatman # 3 filter papers with 5 ml of 

distilled water in a 90 mm-diameter plastic petri dish. The seed samples were kept in a Ziploc® 

bag to prevent moisture loss. It was then subjected to germination in a temperature and humidity 

chamber at 25°C and 75% relative humidity (RH). The seeds sample were classified into 

germinated and dead seeds by naked eyes each day according to whether sprout came out or not. 

Then, the germinated seeds were counted every day for up to 7 days. The average of three 

replicates is considered.

2.5.9.3 Colour test  
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igure 2.7: Spectrophotometer CM-700d (Folio Instruments Inc., Konica Minolta, Inc. 
Japan).
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ctrophotometer CM-700d, as shown in Figure 2.7 (Folio Instruments Inc., Konica Minolta, Inc. 

n) was used to measure the surface colour of the canola seeds by pouring the seeds on a petri 

 and then placed on the stage of the spectrophotometer. Spectrophotometer CM-700d is 

mmended by Folio Instruments Inc. to be operated at temperature and humidity range of 5°C 

0°C and RH of 80% or less (at 35°C) with no condensation, and the measurement time was 

oximately 1 s. The CIELAB (CIE L*a*b*) colour space was used to record the colour of 

la seeds. CIELAB expresses colour as a combination of three values, where, L* represents the 

tness from black (0) to white (100), a* represents the space between green (-) to red (+), and 

epresents the space between blue (-) to yellow (+). 

9.4 Oil quality analysis 

allowed the RF treated samples to cool down to room temperature (22°C) sealed in Ziploc® 

 and stored in cold storage at 4°C. We extracted the canola the oil extraction using Komet Oil 

s CA59G, as shown in Figure 2.8 and filtered through a Whatman # 1 filter paper. We used 

filtrated oil to evaluate the oxidative stability, the peroxide value (PV) and the p-Anisidine 



value (AV) following the American Oil Chemists' Society (AOCS) Official Methods Cd 8-53 and 

Cd 18-90 (AOCS, 1993) respectively. Then we calculated the overall oxidative stability as the 

total oxidation (TOTOX) value; 

TOTOX value = 2PV+AV……………………………………… (2.4) 

Low TOTOX values indicate a better quality of the oil. 

2.5.10 Data analysi

We triplicated all th

Tukey HSD test to d

quality analysis. M

significance at 5% p

2.6 Results and dis
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Bags containing 9%
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Fi .
gure 2.8: Oil extraction using Komet Oil Press CA59G
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s 

e experiments and processed and analyzed data using SPSS. We have used 

etermine the statistical differences of the temperatures, power level, and seed 

eans of the triplicates for each treatment combination were compared for 

robability level using Tukey HSD test. 

cussions 

ldest spot in the bulk canola 

 MC (w.b.) canola seeds were heated from an initial temperature of 24°C to 

e of 75°C. The canola seeds were at room temperature (22℃) but for the 



temperature history presentation, the initial temperature was reported from 24℃ to maintain a 

consistent start temperature, as the room temperature was slightly variable. Temperatures histories 

were recorded at 21 different locations for 9% MC (w.b.) using a 50-ohm RF heating system at 3 

kW, 5 kW, and 7 kW. There was non-uniformity in the heating rates at all the locations. Table 2.1 

shows the temperature histories and the heating rates for 9% MC (w.b.) canola seeds at 21 different 

locations during 3 kW, 5 kW, and 7 kW RF heating along with the temperature histories. Location 

1 heated significantly (Table 2.1) faster than other Locations at all the power levels reaching 75℃ 

from 24℃ in 530 s, 300 s, and 200 s at 3 kW, 5 kW, and 7 kW respectively. Thus, generating 

faster heating rates (3 kW-1 0.095°C/s, 5 kW-0.170°C/s, and 7 kW-0.254°C/s) in all the conditions. 

Also, the heating rate at Location 1 increased significantly (Table 2.1) as the RF power levels 

increased which agrees the statement that the electric field intensity (E) is directly proportional to 

the heating rate, so, the higher the power dissipation on the material, the higher the increase in 

temperature (Shrestha et al., 2013b; Shrestha and Baik, 2013). Location 1 was found to the hottest 

spot and the temperature was much higher than the adjacent positions (Location 10, Location 4, 

and Location 13) in the same zone. However, reliable speculation on the phenomenon could not 

be established relying only on literature. Detailed computer simulations are required to understand 

the physics behind the heating pattern in the 50-ohm RF heating system. 

Lo

1 
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T

at

he
able 2.1. Temperature histories and heating rates for 9% moisture content (wet basis) canola seeds 

 21 different locations in during 3 kW (n = 21), 5 kW (n = 21), and 7 kW (n = 21) radio frequency 

ating. 
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cations Temperature (°C) Heating rate (∆T/∆t) (°C/s) 

3 kW 5 kW 7 kW 3 kW 5 kW 7 kW 

m74.8±0.3a
q75.0±0.2a

h74.8±1.2a
l0.095±0.000a

q0.170±0.000b
g0.254±0.006c

l56.4±0.5a
p71.8±0.2b

g57.2±1.7a
k0.061±0.000a

p0.159±0.000b
f0.166±0.008b
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3 kl56.0±0.2a
o59.7±0.3b

ef46.3±0.2b
jk0.060±0.000a

o0.119±0.001b
de0.111±0.025b

4 j50.9±0.2c
m46.1±0.2b

cde43.0±0.4a
i0.050±0.000a

m0.073±0.000b
cd0.095±0.002c

5 k55.0±0.2c
m46.5±0.4b

bcde42.1±1.38a
j0.058±0.000a

m0.075±0.001b
bcd0.090±0.006c

6 hi45.7±0.3b
ghi41.7±0.3ab

abc38.03±3.6a
h0.041±0.000a

ghi0.059±0.001a
abc0.070±0.018b

7 h45.8±0.2c
jk42.8±0.2b

a36.3±1.0a
h0.041±0.000a

jk0.062±0.000b
a0.061±0.005b

8 fg41.9±0.2c
gh41.3±0.2b

abcd39.0±0.05a
f0.033±0.000a

gh0.057±0.000b
abc0.075±0.000c

9 bc38.8±0.3a
d38.0±0.2a

a35.9±2.7a
bcd0.028±0.000a

d0.046±0.000ab
a0.059±0.013b

10 hi44.6±0.3a
k43.6±0.4a

ef47.6±1.9b
h0.039±0.000a

k0.065±0.001b
de0.118±0.009c

11 fg41.8±0.2a
ij42.5±0.3a

cde42.7±0.4a
fg0.033±0.000a

ijk0.062±0.001b
cd0.093±0.002c

12 g42.5±0.4a
ef49.9±0.2a

abcd40.0±2.6a
g0.035±0.000a

ef0.053±0.000b
abc0.080±0.011c

13 j50.9±0.2b
n48.2±0.4a

f50.9±0.5b
i0.050±0.000a

n0.080±0.001b
e0.134±0.002c

14 fg41.8±0.2a
hij42.0±0.2a

abcd40.3±1.3a
fg0.033±0.000a

hij0.060±0.000b
abc0.081±0.006c

15 hi45.7±0.3c
fg40.9±0.2b

ab36.7±0.9a
h0.041±0.000a

fg0.056±0.000b
ab0.063±0.004c

16 a37.8±0.3c
a33.9±0.2a

a36.2±0.7b
ab0.026±0.000a

a0.029±0.000a
a0.061±0.003b

17 bc38.5±0.4a
e39.6±0.4a

acb38.2±1.4a
bcd0.027±0.000a

e0.052±0.001b
abc0.071±0.007c

18 ef40.8±0.3b
c36.5±0.4a

a35.6±0.5a
ef0.030±0.000a

c0.041±0.001b
a0.058±0.002c

19 a37±0.5b
b34.9±0.2a

ab36.9±0.3b
a0.024±0.001a

b0.036±0.000b
ab0.064±0.001c

20 cd39.4±0.5a
de38.9±0.2a

abcd39.7±0.0a
cde0.029±0.000a

de0.049±0.000b
abc0.078±0.000c

21 de40.3±0.5a
d38.5±0.4a

a34.8±0.9a
de0.030±0.001a

d0.048±0.001b
a0.054±0.004b

Average 
temperature 

i46.0±0.6c
l44.8±0.2b

de44.5±0.3a
h0.041±0.000a

l0.069±0.000b
cd0.092±0.001c
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gure 2.9: Final temperature at hottest spots, coldest spots and average final 

mperature of the bulk canola after RF heating time of 530 s, 300 s, and 200 s for 3 kW 

 = 21), 5 kW (n = 21), and 7 kW (n = 21), respectively. 
ote: Each mean represents the average of three replicates and represented as mean ± σ. Mean in column with

fferent subcripted alphabets are under Temperature column and Heating rate colums are significantly (p < 0.05)

fferent. Mean in rows with different supercripted alphabets are under Temperature column are significantly (p

0.05) different. Mean in rows with different supercripted alphabets are under Heating rate column are

gnificantly (p < 0.05) different. Significance test: Tukey HSD test. 
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ation 1 was consistently the hottest spot in all the conditions, which was in the front zone of 

electrode just adjacent (8 cm) to the hot electrode. The lowest heating rates were found in 

ation 19 (0.0245°C/s, the upper left corner in the front zone of the applicator), Location 16 

303°C/s, the upper right corner in the front zone of the applicator), and Location 21 

543°C/s, the upper left corner in the back zone of the applicator) for 3 kW, 5 kW and 7 kW 

heating, respectively. Figure 2.9 shows the difference in final temperature at the hottest spot 
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 (n = 21), and 7 kW (n = 21) respectively.
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 coldest spots after RF heating time of 530 s, 300 s and 200 s for 3 kW, 5 kW, and 7 kW 

ectively.  Interestingly, although the hottest spot is observed consistently at Location 1 in all 

conditions, the cold spots are scattered to Location 19, Location 16 and Location 21 for 3 kW, 

 and 7 kW respectively. So, looking into these locations in 3 kW, 5 kW, and 7 kW RF heating, 

temperatures at these locations are relatively like one another. Figure 2.10 shows the final 

peratures of bulk canola at Location 16, Location 19 and Location 21. 

se observations imply that the location of the hottest spot and coldest spots are on the edges.  

eneral, the final temperatures of bulk canola samples adjacent to the cold electrode were lower 

 that of bulk samples adjacent to the hot electrode. Several interacting factors influence 

perature distribution in RF heating, distribution of the electromagnetic field during RF heating 
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of the samples is however considered to be a major factor (Huang et al. 2016a, 2016b; Wang et al. 

2007). Temperature distribution in RF heating is also affected but also by the size, shape, and 

position of the sample in the RF applicator along with the thermal, physical, and electrical 

properties of the sample (Yu et al. 2016a). 

According to Huang et al. (2018), the electric field strength is uniform in parallel plate electrodes, 

when there is no sample present. However, introducing samples at the bottom electrode with an 

air gap at the top electrode, the electric field strength was not uniform. They explained this 

phenomenon as charged particles from the top electrode (hot electrode) attracted the opposite 

charges from the bottom electrode, causing the electric field. Since the sample was not present, the 

electric field was free to go to the less resistance region (conductor). The presence of two different 

components present in between the electrodes, one being the sample and the other being air could 

be the cause of non-uniformity in the electric field when the samples were present at the bottom 

electrode with an air gap. As air serves as an insulator and it has more resistance and fewer charges 

present. The electric field avoids the air and prefers to travel through the dielectric materials or to 

a conductor electrode. The electric field coming from the corners and edges of the electrodes 

moves to the closer materials with more charges (dielectric or conductive materials). Huang et al. 

(2018) also observed that when the electrode size and sample size were similar heating was 

uniform, comparing to the ones where the sample size is smaller than that of electrodes. Also, 

when the electrode was larger than the sample, Llave et al. (2015) reported that the electric field 

intensity was higher in the corner of the sample closest to the electrodes. Also, they observed the 

irregular distribution of temperature when electrodes were smaller than the sample. However, 

when the electrodes were of the same size as the sample material, there was an edge effect, 

resulting in an intensification of the electric field there and non-uniform heating occurred. 
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Similarly, other research has also suggested that temperature variation occurs during RF heating, 

and non-uniform heating rate distribution occurs irrespective of the MCs and sample volumes (Yu 

et al. 2016a, Jiao et al. 2015, Alfaifi et al. 2014, Gao et al., 2010). The applicator had a 

polypropylene composite component, which was hollow (cylindrical) at the center to hold the 

samples, at higher frequency (> 3 kHz) polymer composites (Polyethylene/polypropylene) tends 

to exhibit ionic polarization (Dabbak et al. 2018), this property of the materials also might have 

interfered with the electric field causing disturbance in the heating mechanism. Figure 11 shows 

the concentration of the electric field at the edges along with the deflection of the electric field 

through the outer and inner conductors in a typical 50-ohm RF heating system with parallel plate 

electrodes. Llave et al. (2015) observed the importance of electrode size and sample size, they 

found that the electric field intensity to be higher in the corner of the sample closest to the 

electrodes. When electrodes smaller than the sample were considered, irregular temperature 

distribution was observed.  However, when the electrodes were of the same size as the sample 

material, there was edge effect, which is faster heating rates at the corners of the sample, resulting 

in an intensification of the electric field there causing non-uniform heating rate distribution (Llave 

et al. 2015). Similar observations were recorded, as in this study the length of the electrode was 

identical to the length of the canola bags and the hottest spot was recorded on the tubular wall of 

the applicator (Location 1). Also, the air present in between the particles of the bulk canola must 

have influenced the heating pattern, since, the air has different dielectric properties to the canola 

grains causing uneven distribution in the heating rates throughout the sample load. However, since 



RF field distribution relies on several parameters, computer simulations are necessary to obtain 

the exact RF field distribution in a 50-ohm RF heating system. 
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equency electric field (E). Adapted from Ferdous (2015).
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.2 Temperature distribution of the canola seeds  

.2.1 Temperature distribution in each of the polypropylene bags containing bulk canola 

ples 

rt from dielectric heating, heat transfer also occurs by conduction, transferring heat from the 

ter canola seeds to the colder canola seeds due to the difference in temperature between them. 

o, during heating of the canola seeds vapor is released from the hottest spot at higher 

perature which encourages the convection heat transfer. Due to the presence of polypropylene 

rs (bags) the movement of vapor could have been restricted, thus, it was important to 
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understand the role of vapor generation and its influence in temperature distribution in each bag 

which was given by the θ of each bag. Also, each canola bag weas located at different heights from 

the hot electrode, so, the comparison of the average temperature (Tavg) of each canola bag was 

essential to understand the temperature distribution in the bulk canola for the distance from the hot 

electrode. The temperature histories of each bag at three different locations were considered. Table 

1.2 shows the θ and average temperature (Tavg) of bulk canola in different polypropylene bags and 

placed throughout the applicator. B1 which is located closest to the hot electrode shows the highest 

Tavg of 62.6°C, 69.06°C, and 59.4°C at 3 kW, 5 kW, and 7 kW. The Tavg at 7 kW was significantly 

lower than that of 3 kW and 5 kW, as at 7 kW the heating time was much lesser in relation to 3 

kW and 5 kW, the time for conductive heat loss from hotter canola seeds to colder ones are shorter, 

which increased the efficiency of selective heating at higher RF power. There were larger 

differences in the change of temperature in the hottest spot and colder ones in B1 at 7 kW compared 

to 3 kW and 5 kW, thus, the Tavg of B1 is the lowest in 7 kW. Regarding the θ of B1 5 kW showed 

the least value of 0.17 and the highest value of 0.40 at 7 kW. The central axis of the B4 cylindrical 

canola bag is located at a height of 10 cm from the hot (bottom) electrode showed the least θ value 

of 0.07 with Tavg of 43.16℃ when subjected to 3 kW RF heating; similarly, B4 showed the least θ 

value of 0.10 with Tavg of 42.16℃ when subjected to 5 kW RF heating. At 7 kW the location 

changes to cylindrical bag B6, where the central axis of the cylinder is located 20 cm from the hot 

(bottom) electrode, with θ value of 0.10 and Tavg of 36.71℃. However, the θ values of the canola 

bags were not significantly different from one another, nor the increase in RF power level changed 

the θ value significantly (Table 2.2). Thus, the Tavg decreases with the increase of height, the bags 

near the hot (bottom) electrode heated relatively faster than those near the cold (upper) electrode.

Each canola cylindrical bag had θ values less than 0.3 in all the bags in 5 kW, in 3 kW and the 5 



kW accept at B1 θ values of all the other bags were less than 0.3. Although the θ value at B1 in 3 

kW and 7 kW were not significantly different from the other canola bags, thus, suggesting each 

bag had uniform temperature distribution. By subdividing the bulk canola samples into seven 

different polypropylene bags; the migration of vapor from the hotter region near the hot electrode 

to the inner colder region of the sample did not happen. Thus, causing the non-uniform distribution 

of temperature throughout the heating chamber. Tavg and θ with respect to the height from the hot 

(bottom) electrode do not explain the complete picture, so it is necessary to study the characteristics 

of Tavg and θ with respect to the distance from the front zone of the applicator. 
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able 2.2:  Uniformity index and average temperature of bulk canola in different polypropylene bags and 

ifferent zones placed throughout the applicator. 
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Bag 
umber 

or zone 

Length 
or 

height 
(cm) 

Average temperature Uniformity index 

3 kW (time 
= 530 s) 

5 kW (time 
= 300 s) 

7 kW (time = 
200 s) 

3 kW 5 kW 7 kW 

ag = 1 h=8 b62.6±10.7a
b69.06±8.0a

b59.4±14.3a
a0.312±0.151a

a0.195±0.063a
a0.307±0.140a

ag = 4 h=13 a43.16±1.4a
a42.16±1.9a

ab43.46±3.8a
a0.086±0.015a

a0.186±0.094a
a0.148±0.099a

ag = 5 h=13 a46.4±4.6a
a43.89±3.9a

ab42.66±7.3a
a0.253±0.095a

a0.198±0.127a
a0.268±0.112a

ag = 2 h=18 ab50.83±4.6b
a44.93±2.6ab

a41.05±2.6a
a0.112±0.074a

a0.186±0.048a
a0.185±0.055a

ag = 6 h=23 a39.2±1.5a
a36.46±3.5a

a36.71±1.4a
a0.158±0.091a

a0.158±0.117a
a0.182±0.085a

ag = 7 h=23 a38.9±1.7a
a37.59±2.2a

a37.16±2.4a
a0.146±0.027a

a0.172±0.059a
a0.149±0.025a

ag = 3 h=28 a42.43±3.1a
a40.93±2.4a

a37.11±1.6a
a0.152±0.036a

a0.189±0.056a
a0.157±0.037a

one = 
ter

l=5 a49.04±0.30a
a46.42±0.20a

a46.55±0.10a
a0.511±0.008a

c0.624±0.009a
b0.611±0.019a

one = 
iddle

l=35 a45.0±0.30a
a46.12±0.25a

a42.7±0.31a
b0.354±0.006a

b0.524±0.004a
a0.352±0.048a

one = 
ck

l=65 a44.42±0.30a
a42.33±0.31a

a38.22±0.92a
b0.288±0.009a

a0.436±0.007a
a0.303±0.151a



N

sa

H
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th

H

ote: Each mean represents the average of three replicates and represented as mean ± σ. Mean of each Bag in the 

me row with different supercripted alphabets under Tavg are significantly (p < 0.05) different according to Tukey 

SD analysis. Mean of each Bag in the same row with different supercripted alphabets under θ are significantly (p 

0.05) different according to Tukey HSD analysis. Mean of each Zone in the same row with different supercripted 

phabets under Tavg are significantly (p < 0.05) different according to Tukey HSD analysis. Mean of each Zone in 

e same row with different supercripted alphabets under θ are significantly (p < 0.05) different according to Tukey 

SD analysis. 
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2.6.2.2 Temperature distribution of bulk canola samples in different zones 

The bulk canola in the applicator was divided into three zones; front zone, middle zone, and back 

zone. The front zone was located 5 cm from the mouth of the applicator, the middle zone was 

located 35 cm from the mouth of the applicator and the back zone was located 65 cm from the 

mouth of the applicator (Figure 2.6). Table 2.2 shows the θ and Tavg of bulk canola at different 

locations situated in different zones throughout the applicator. θ of bulk canola at the front zone 

were 0.509, 0.62, and 0.61 for 3 kW, 5 kW, and 7 kW respectively suggesting temperature 

distribution to be more uniform at 3 kW comparing to 5 kW, and 7 kW. Whereas Tavg of bulk 

canola of the front zone at 3 kW was higher than that of 5 kW, and 7 kW. Unlike the front zone, θ 

of bulk canola at the middle zone were 0.415, 0.521, and 0.35 for 3 kW, 5 kW, and 7 kW 

respectively suggesting the temperature distribution to be more uniform at 7 kW compared to 3 

kW, and 5 kW. Whereas, Tavg of bulk canola in the middle zone was higher at 5 kW comparing to 

3 kW and 7 kW. Also, the θ of bulk canola at back zone were 0.287, 0.433, and 0.278 for 3 kW, 5 

kW, and 7 kW respectively suggesting the temperature distribution to be more uniform at 7 kW 

comparing to 3 kW and 5 kW, and the Tavg of bulk canola at inner zone was higher at 3 kW 
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comparing to 5 kW and 7 kW. Generally, Tavg decreases with an increase in distance from the 

mouth of the applicator and the difference in Tavg between the hottest zone (front) and coldest zone 

(back) was the highest at 7 kW (Table 2.2). 

2.6.2.3 Temperature distribution on the left and right sides of bulk canola in the applicator 

Canola bags B4, B5, B6, and B7 were considered to study the symmetrical behavior of θ and Tavg

of the bags and different zones. The location B4 and B6 were on the left side of the applicator; 

likewise, B5 and B7 on the right side in the applicator. The height of the central axis of cylinders 

of B4 and B5 were identical, 13 cm from the hot (bottom) electrode. Likewise, the central axis of 

cylinders of B6 and B7 were located identical heights, 23 cm from the hot (bottom) electrode. 

Regarding the zones, the front zone was located 5 cm from the mouth of the applicator and 

consisted the following Locations: 1, 4, 7, 10, 13, 16, and 19; middle zone was located 35 cm from 

the mouth of the applicator and consisted the following Locations: 2, 5, 8, 11, 14, 17, and 20; and 

back zone was located 65 cm from the mouth of the applicator consisted the following Locations: 

3, 6, 9, 12, 15, 18, and 21. Since bags B4 and B6 were symmetrically aligned to bags B5and B7 

on left and right side of the central axis of the tubular applicator respectively, it was critical to 

study the symmetrical heating rate characteristics at these points. Figure 2.12 shows the difference 

of average ∆T of the identical locations situated at the left and right sides of bulk canola in the 

applicator. At the height of 13 cm from the hot (bottom) electrode, the left side (B4) heated 

significantly faster than that of the right side (B5), at 3 kW (p = 0.008) and 5 kW (p = 0.044), but 

the difference in heating rates of B5 and B4 were not significant at 7 kW (p = 0.516). At the height 

of 23 cm from the hot (bottom) electrode, the right side (B7) heated significantly faster the left 

side (B6), at 5 kW (p = 0.030), however, no significant difference in the heating rates of B6 and 

B7 were observed at 3 kW (p = 0.392) and 7 kW (p = 0.329). 
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Considering the different zones, the front zone was located at 5 cm from the mouth of the tubular 

applicator (Figure 2.6), the locations considered were 10 and 19 on the left side of the central axis 

of the applicator and locations 13 and 16 on the right. The middle zone was located at 35 cm from 

the mouth of the tubular applicator (Figure 2.6), the locations considered were 11 and 20 on the 

left side of the central axis of the applicator and locations 14 and 17 on the right. Back zone was 

located at 65 cm from the mouth of the tubular applicator (Figure 2.6), the locations considered 

were 12 and 21 on the left side of the central axis of the applicator and locations 15 and 18 on the 

right. In the front zone the right side heated up at significantly faster rate than the left side at 3 kW 

(p = 0.027) but the heating rates were not significantly different at 5 kW (p = 0.425) and 7 kW (p 

= 0.272). In the middle zone the left side heated up at significantly faster rate than the right side at 

7 kW (p = 0.021), but the heating rates at 3 kW (p = 0.075) and 5 kW (p = 0.577) were not 

significantly different from the left to the right side. In the back zone the left side heated up at 

significantly faster rate than the right side at 7 kW (p = 0.028), but at 3 kW (p = 0.018) the right 

side heated at a significantly faster rate than the left side. However, at 5 kW (p = 0.490) the heating 

rates were not significantly different from the left to the right side. So, the heating pattern is not 

symmetric as there are differences in final temperatures on the left and right sides of bulk canola 

in the applicator.  
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2.6.3 Seed quality 

Different parameters that de

germination rate, colour and

temperatures and various pow

to the grains heated to 50°C,

changes are subjected to rea
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gure 2.12: Comparison of final temperature of different locations located in left and 

ght side of bulk canola in the applicator at 3 kW, 5 kW, and 7 kW 50 ohm RF heating 

) Location 10 and Location 13 (b) Location 16 and Location 19 (c) Location 11 and 

ocation 14 (d) Location 17 and Location 20 (e) Location 12 and Location 15 (f) Location 

 and Location 21. Note: Error bars represent the standard mean errors.
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fined the quality of canola seeds including the compa

 oil quality of canola seeds before and after RF heating a

er levels were considered. The seed quality analysis wa

 55°C, 60°C, and 65°C from the hottest spot (Location 1

ction kinetics and the important parameters are time and

n in all the RF power levels, which consistently produc
rison of MC, 

t various end 

s carried only 

). The quality 

 temperature. 

ed the fastest 



2.6.3.1 Moisture content  

Table 2.3 shows the change of moisture MC from 9% MC (w.b) to the final MC at various final 

temperatures. The change is the highest at 65°C which are 2.70, 2.63, and 2.65% at 3 kW, 5 kW, 

and 7 kW respectively and lowest at 50°C which are 2.28, 2.27, and 2.34% at 3 kW, 5 kW, and 7 

kW. The change in MC from initial MC to final MC gradually increases with the increase of 

temperature; however, with the increase in power, the difference in MC remains relatively similar.  

Power (kW) Temperature 
(°C) 

Initial moisture 
content (% wet 
basis) 

Final moisture 
content (% wet 
basis) 

Initial moisture 
content - Final 
moisture content (% 
wet basis) 

No treatment 4 a9.00±0.00b
d9.00±0.00b

a0.00±0.00a

3 50 a9.04±0.01c
c6.76±0.01b

b2.28±0.03a

3 55 a9.02±0.02c
c6.79±0.05bb

b2.25±0.06a

3 60 a9.05±0.03c
cb6.74±0.08b

b2.30±0.05a

3 65 a9.04±0.03c
a6.34±0.29b

d2.70±0.28a

5 50 a9.04±0.01c
c6.77±0.11b

b2.27±0.02a

5 55 a9.03±0.02c
c6.77±0.01b

b2.26±0.04a

5 60 a9.06±0.03c
c6.77±0.07b

b2.28±0.07a

5 65 a9.01±0.01c
a6.38±0.07b

c2.63±0.08a

7 50 a9.00±0.00c
b6.66±0.06b

b2.34±0.06a

7 55 a9.00±0.00c
c6.77±0.12b

b2.23±0.12a

7 60 a9.00±0.00c
cb6.73±0.30b

b2.27±0.30a

7 65 a9.00±0.00c
a6.35±0.25b

cd2.65±0.25a

N  

in  

al

T

va
ote: Each mean represents the average of three replicates and represented as mean ± σ. Different subscripted alphabets

 the same column indicate statistically significant (p < 0.05) according to Tukey HSD test. Different superscripted

phabets in the same rows indicate statistically significant (p < 0.05) according to Tukey HSD test. 
2.6
able 2.3. Change in moisture content of canola seeds at various final temperatures at 

rious power levels using 50-ohm radio frequency heating. 
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.3.2 Germination rate 



Table 2.4 shows the germination rate of the non-treated and RF heated canola seeds at various 

final temperatures. There was a significant increment in germination rate at 60°C in all the power 

levels with average values of 10, 9.6, and 10.0 at 3 kW, 5 kW, and 7 kW, respectively (Table 2.4). 

Similarly, Yu et al. (2016) stated, no substantial loss of germination of canola seeds at different 

MC, occurred at temperature up to 60°C using RF heating. However, the lowest average numbers 

of germinated seeds were 9.0, 8.6, and 8.6 at 3 kW, 5 kW, and 7 kW, respectively at 65°C, which 

were significantly different from non-RF treated canola seeds (Table 2.4). Also, the increment of 

power level significantly reduced the germination rates as the lowest average number of 

germinated seeds at 65°C. The RF heating might have changed the physiochemical quality of 

canola seeds affecting germination once the temperature of seeds exceeds including some degree 

of heat damage at over specific temperatures (Shrestha et al., 2013b). 

Po

No

3 

3 

3 

3 

5 

5 

5 

5 

7 

7 

7 

7 

T

5 
able 2.4: Germination of canola seeds heated to various final temperatures using 3 kW, 

kW, and 7 kW 50-ohm radio frequency heating. 
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wer (kW) Final temperature (°C) Initial number of 
canola seeds  

Number of germinated 
seeds after 7 days 

 treatment 4 (Stored, no treatment) a10.0±0.0a
d9.6±0.5a

50 a10.0±0.0b
c9.3±0.5a

55 a10.0±0.0b
c9.3±0.5a

60 a10.0±0.0a
e10.0±0.0a

65 a10.0±0.0b
b9.0±0.0a

50 a10.0±0.0b
c9.3±0.5a

55 a10.0±0.0b
c9.3±0.5a

60 a10.0±0.0b
d9.6±0.5a

65 a10.0±0.0b
a8.6±0.5a

50 a10.0±0.0b
c9.3±0.5a

55 a10.0±0.0b
c9.3±0.5a

60 a10.0±0.0a
e10.0±0.0a

65 a10.0±0.0b
a8.6±0.5a
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po
ote: Each mean represents the average of three replicates and represented as mean ± σ. 

ifferent subscripted alphabets in the same column indicate statistically significant (p < 0.05) 

cording to Tukey HSD test. Different superscripted alphabets in the same rows (only Initial 

mber of canola seeds and Number of germinated seeds after 7 days) indicate statistically 

gnificant (p < 0.05) according to Tukey HSD test. 
.3.3 Colour test 

le 2.5 shows L*, a* and b* values of stored and RF heated canola seeds up to various final 

peratures(50°C, 55°C, 60°C, and 65°C) and cooling them down to the room temperature, at 

erent power levels (3 kW, 5 kW, and 7 kW) using 50 ohm RF heating. The L* value which 

resents lightness reduced significantly with the increase in RF treatment temperature in all the 

er levels. The a* value which represents red vs green scale seems to reduce significantly with 

increase in RF treatment temperature in all power levels except at 65°C at 5 kW and 7 kW. 

 b* value, which represents yellow vs blue scale, the scale also reduced significantly with the 

ease in treatment RF temperature. Thus, proving that RF heating has a significant influence on 

colour of the canola seeds and further investigation for the actual reason for the changes is 

mmended. 

 
able 2.5: L*, a*, b*, ∆L*, ∆a* and ∆b* values of canola seeds at various final temperatures and various

wer levels 50-ohm radio frequency heating. 
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W) Temperature 
(°C) 

L* a* b* ∆L* ∆a* ∆b* 

22 h26.86±0.02 i3.68±0.00 l2.05±0.00 

50 i26.90±0.01 b2.45±0.01 d0.67±0.01 c0.04±0.01 i1.23±0.01 i1.38±0.01 

55 f26.43±0.01 f3.26±0.01 e0.80±0.01 f0.43±0.01 e0.42±0.01 h1.25±0.01 

60 f26.51±0.01 c2.59±0.00 b0.33±0.01 e0.35±0.01 h1.09±0.00 k1.72±0.01 

65 d26.33±0.01 a1.91±0.01 a-0.19±0.01 g0.53±0.01 j1.77±0.01 l2.24±0.01 



5 kW 50 hi26.87±0.01 d2.91±0.00 c0.53±0.00 a0.01±0.01 g0.77±0.00 j1.52±0.00 

55 d26.07±0.01 g3.40±0.01 i1.18±0.03 i0.79±0.01 d0.28±0.01 d0.87±0.03 

60 g26.67±0.01 g3.38±0.01 j1.26±0.01 d0.19±0.01 d0.30±0.01 c0.79±0.01 

65 b25.76±0.01 j3.71±0.01 j1.28±0.01 j1.10±0.01 b-0.03±0.01 b0.77±0.01 

7 kW 50 e26.31±0.01 e3.18±0.01 f0.83±0.00 h0.55±0.01 f0.50±0.01 g1.22±0.00 

55 d26.07±0.01 g3.39±0.01 g1.00±0.00 i0.79±0.01 d0.29±0.01 f1.05±0.00 

60 c25.83±0.01 h3.61±0.00 h1.06±0.01 b0.03±0.01 c0.07±0.00 e0.99±0.01 

65 a25.48±0.00 k3.94±0.02 k1.37±0.00 k1.38±0.02 a-0.26±0.02 a0.68±0.00 

N  

th
ote: Each mean represents the average of three replicates and represented as mean ± σ. Different subscripted alphabets in

e same column indicate statistically significant (p < 0.05) according to Tukey HSD test. 
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2.6.3.4 Oil quality analysis 

Table 2.6 shows the PV, AV, and TOTOX value of canola oil at various final temperatures using 

3 kW, 5 kW, and 7 kW 50-ohm RF heating. The PV, AV, and TOTOX values varied between 1.19 

meq O2 kg-1 and 1.80 meq O2 kg-1, 0.33 and 0.38, and 3.69 and 5.11 respectively. With the increase 

in treatment temperature and RF power levels the PV, AV, and TOTOX values increased 

significantly (Table 2.6). The measured values of PV, AV, and TOTOX values are in good 

agreement with those reported by Mohammadi et al. (2013) and Tynek et al. (2012), but slightly 

higher than the values reported by Yu et al. (2016b). When the canola seeds were RF heated to 65 

°C at 7 kW, the highest PV value was 1.8 meq O2 kg-1. The values seem to be a little higher than 

those published by Yu et al. (2016). Regarding the AV value, the results published by Yu et al. 

(2016) and Tynek et al. (2012) were lower than the ones shown in this chapter, which could be 

caused by the presence of prooxidants such as iron and copper (Tynek et al. 2012). The highest 

AV was 1.51 meq O2 kg-1 and the lowest 1.313 meq O2 kg-1 at a final temperature of 65°C at 5 kW 

and 50°C at 3 kW, respectively. The PV and AV equally influenced the level of TOTOX value, 

showing levels of both primary and secondary oxidation of canola oil. Both PV, AV, and TOTOX 

values increased significantly with temperature and power (Table 2.6). Therefore, the qualities of 



the oil extracted from the RF treated canola seeds gradually degrade as temperature and power 

level increases.  

Power (kW) Temperature (°C) Peroxide value p-anisidine 
value 

Total 
oxidation 
value  

No treatment  4 (stored, no treatment) a1.19±0.47 a1.31±0.38 a3.69±0.42 

3 50 c1.37±0.02 b1.36±0.04 c4.12±0.02 

3 55 d1.51±0.10 de1.41±0.03 e4.44±0.17 

3 60 e1.62±0.02 de1.41±0.03 h4.66±0.05 

3 65 f1.79±0.02 f1.49±0.05 i5.09±0.09 

5 50 b1.31±0.01 c1.38±0.07 b4.02±0.07 

5 55 d1.50±0.05 e1.42±0.01 e4.43±0.04 

5 60 e1.58±0.06 e1.42±0.00 g4.59±0.11 

5 65 f1.80±0.02 e1.51±0.03 i5.11±0.07 

7 50 c1.39±0.02 cd1.39±0.19 d4.17±0.10 

7 55 d1.52±0.29 e1.43±0.10 f4.47±0.19 

7 60 e1.60±0.48 e1.43±0.11 g4.58±0.29 

7 65 f1.80±0.24 f1.50±0.49 i5.1±0.36 

2.7
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va
ote: Each mean represents the average of three replicates and represented as mean ± σ. Different 

bscripted alphabets in the same column indicate statistically significant (p < 0.05) according to Tukey 

SD test. 
able 2.6: Peroxide value, p-anisidine value and total oxidation value of canola oil at 

rious final temperatures using 3 kW, 5 kW, and 7 kW 50-ohm radio frequency heating. 
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 Conclusions

 50-ohm RF heating system used in this research caused non-uniform temperature distribution 

ing the treatment of bulk canola seeds of identical MC were treated. The hottest and the coldest 

ts were found adjacent to the hot electrode and the cold electrode respectively at every RF 

er levels. Thus, proving that non-uniform temperature distribution is consistently observed 

ing the 50-ohm RF treatment of identical canola seeds samples irrespective of the power level. 

omparable heating pattern might be observed while heating other biological samples with 
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similar or identical physicochemical properties to that of the canola seeds used in this research 

using a 50-ohm RF heating system/applicator. Thus, it is strongly recommended to extensively 

study the heating characteristics of an RF heating system before implementing it in the grain 

processing industries, so supplementary technologies can be developed to avoid the non-uniform 

temperature distribution during the RF heating process. Also, quality parameters of the canola 

seeds were affected by the RF treatment, significant changes in MC, germination rate, colour, and 

oil quality (oxidation) of the canola seeds were observed after the RF treatment. Application of RF 

heating is promising in agriculturally based unit operations such as disinfestation and drying of 

grains, meat thawing, and any heating applications in food and agricultural industries. As RF 

heating provides selective and volumetric heating and faster heating rates compared to other 

commercially available technologies, however the physicochemical properties of the agricultural 

commodities are affected under intensive heating conditions. Therefore, RF power level, treatment 

temperature, and supplementary technologies to avoid non-uniform temperature distribution 

should be considered in implementing a 50-ohm RF heating system in oilseeds or grains industries 

where the physicochemical properties of the commodity play a crucial role. 
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CHAPTER 3

Thermal death kinetics of Tribolium 

castaneum in stored Brassica napus L. seeds 

using a pilot-scale 50-ohm radio frequency 

heating system 

Contribution of this chapter on overall study 

The determination of thermal death kinetics of red flour beetle in stored canola seeds using a pilot-

scale 50-ohm radio frequency heating system is important to know the selectivity of the dielectric 

heating system. In this chapter the mortality of the adult insects was determined experimentally at 

various temperatures and power levels. The mortality of the insects was used to determine the 

thermal death kinetics parameters by reverse simulation method. These parameters are critical for 

designing an effective radio frequency heating protocol for disinfestation of insect pests in stored 

grains. All the experiments in this chapter were conducted and the journal paper manuscript was 

drafted by me. 

3.1. Abstract 

Adult red flour beetles (Tribolium castaneum) infesting canola seeds (Brassica napus L.) at 9% 

moisture content (MC) were treated using a 50-ohm radio frequency (RF) heating system and 
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thermal mortalities of the insect pests were determined. The infested seeds were treated between 

297 K and 338 K at RF heating power of 3 kW, 5 kW, and 7 kW. At 7 kW 100% of the insects 

were killed at the end temperature of 338 K, at 5 kW more than 95% of the insects, and at 3 kW 

more than 80% of the insects were killed. The RF exposure times to achieve end temperature from 

297 K to 338 K were, 334 to 448 s, 172 to 242 s and 122 s to 170 s for the samples, treated at 3 

kW, 5 kW, and 7 kW respectively. The survival rate of the adult T. castaneum decreased with an 

increase in temperature (297 K to 338 K) and increase in RF power levels (3 kW to 7 kW). 

Desirable selective heating effect on mortality was more predominant at higher RF powers. An 

inverse simulation was used to estimate kinetic parameters of the thermal death of the adult T. 

castaneum. 4th order Runge-Kutta method was used to solve the ordinary differential equation 

(ODE) based kinetic model which has an Arrhenius temperature-dependent reaction rate constant. 

The thermal death kinetics of the adult T. castaneum followed 1st order reaction with the activation 

energy of 97.50 kJ/mol. Satisfactory agreements were observed between the mortalities predicted 

using the kinetic model and the experiments. 

3.2 Nomenclature 

MC moisture content (%) 

RF radio frequency 

RFG radio frequency generator 

AMN automatic matching network 

t  heating time (s) 

N number of live insects at a given time
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N0 initial number of the insects 

k  reaction rate constant (1/s) 

n order of the reaction  

k0 frequency factor 

Ea activation energy (J/mol) 

R universal gas constant (8.314 J/mol·K) 

T temperature of the bulk canola seeds (K) 

df degree of freedom 

RMSE root mean square error 

LT lethal time (s) 

3.3 Introduction  

Total production of canola seeds in 2018 - 2019 was 72.80 million metric tons and in 2019-2020 

is expected to be 74.80 million metric tons where, some of the major canola producing countries 

include China, India, Canada, and European Union (USDA Foreign Agricultural Service, 2019). 

Over 90% of the canola produced in Canada is exported to markets around the world. In 2017, 

according to the Canola Council of Canada, Canadian grown canola contributed $26.7 billion to 

the Canadian economy each year, including more than 250,000 Canadian jobs and $11.2 billion in 

wages. (Canola Council of Canada, 2017). In Canada, the losses of oilseed production average out 

8 to 10% in annual crop yield due to insect pests causing over multimillion dollars loss in the 

Canadian economy (Canola Watch, 2015). Along with economic losses, insect pest infestations 
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are a huge barrier to exportation of the grains (Gao et al., 2010). The trade regulations of domestic 

and international markets have made postharvest treatments of all kinds of food products 

mandatory to ensure quarantine security from insect pests (Birla et al., 2008; Jiao et al., 2011).  

According to Sinha and Watters (1985), T. castaneum is commonly found in stored grains and 

oilseeds all over the world. In addition, according to Canola Watch, the primary insects in stored 

canola include C. ferrugineus (Stephens), T. castaneum and O. surinamensis are found in stored 

canola if cereal grain or weed seeds are mixed in with the canola (Canola Watch, 2019). 

Disinfestation through fumigation using MBr has been widely used and was rather a convenient 

method for disinfestation of stored agricultural commodities (Sinha and Watters, 1985). 

Nevertheless, the use of MBr was prohibited since Montreal Protocol because of the health hazards 

caused by excessive insecticide residues and the damaging effect on the ozone layer (Birla et al., 

2008; Griffin, 1988; Wang et al., 2004). Apart from the chemical disinfestation processes, thermal 

disinfestation processes are effective, so the knowledge of the thermal death kinetics of insect pests 

is crucial to develop an efficient thermal disinfestation protocol for agricultural commodities 

(Wang et al., 2007). 

Radio Frequency (RF) heating happens to be an emerging technology in the field of disinfestation 

in stored grains. RF heating is centered on electromagnetic radiation, so RF heating follows the 

dielectric heating pattern. Volumetric and selective heating happens to be major advantages of 

dielectric heating. Although the physical properties, specific heat, and bulk density of the insects 

and the grains are different, the power dissipation boosts a higher temperature increment rate in 

insects relating to that of the grains (Shrestha et al., 2013b). Therefore, RF heating is predicted to 

kill insect pests without hampering the physiochemical properties of the grains significantly (Tang 

et al., 2000). Some, other nonchemical treatments to control insect pests include ionizing radiation, 
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hot air, and cold storage, however, these techniques require a longer treatment time and a 

substantial capital investment and may sometimes leave live insect pests after the treatments 

(Heather and Hallman 2008; Want et al., 2004). 

Lagunas-Solar et al., (2007) reported the mortalities of S. cerealella (Olivier) and R. dominica 

(Fabricius) in rice using RF heating. A mortality of 99% of S. cerealella was achieved at 55℃ to 

60°C for 5 min of heating, and 100% mortality of R. dominica at 60°C for 1 h of heating. There 

were no significant changes in moisture level and milling quality of the rice. Shrestha et al. (2013a) 

have achieved 100% mortality for all the life stages of C. ferrugineus (Stephens) in stored wheat 

at 60°C with RF heating (1.5 kW, 27.12 MHz) without significant degradation of the wheat 

qualities. Since, this research is based on thermal treatment of T. castaneum in stored canola using 

RF heating, understanding the thermal kinetic model for the mortality of T. castaneum is crucial. 

Literature shows numerous kinetic models intended for the mortalities of insect pests using thermal 

processing. Tang et al. (2000) validated a possibility of applying high temperature and short time 

thermal treatments to control larvae of C. pomenella (Linnaeus) with a minimal thermal impact on 

fruit quality using the thermal death kinetics of the insect. Wang et al., (2002a) reported thermal 

death kinetic parameters for the fifth-instar C. pomenella, which were heated to four temperatures 

(46℃, 48℃, 50℃, and 52°C) using a heating block system. The thermal death kinetics of the 

insects followed a 0.5th order reaction with an activation energy of 472 kJ/mol at a heating rate of 

18°C/min. Johnson et al., (2003) estimated the lethal exposure times for the fifth-instar larvae of 

Indian meal moth, P. interpunctella (Hubner) at 44℃ to 52°C during RF heating using a 0.5th order 

kinetics model. They obtained the RF heating time of less than 5 min to achieve 95% mortalities 

at 50℃ and 52°C. A thermal death kinetic model of T. castaneum at larvae stage (the most heat - 

tolerant life stage of the insect) with 0.5th order reaction was developed to estimate lethal exposure 
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times at 48℃, 50℃, and 52°C during RF heating (Johnson et al., 2004). They reported the lethal 

times (LTs) to achieve 99% mortalities were 1.6min, 9.1min, and 76.8 min at the holding 

temperatures of 52℃, 50℃, and 48°C, respectively. Similarly, Yu et al.,  (2017) studied, thermal 

mortalities of adult T. castaneum infesting canola seeds using various MCs, volumes, and 

temperature using a lab scale (1.5 kW) conventional, 27.12 MHz RF system and found that the 

thermal death kinetics followed 1st order reaction with the activation energy of 100 kJ / mol. 

Literature shows limited evidences of the application of high power 50-ohm RF heating system in 

agricultural products processing. Since the heating characteristics of RF heating supports the 

process of disinfestation of insects in stored agricultural commodities (selective heating). Thus, 

the study was carried out to understand the selective heating efficiency of a 50-ohm RF heating 

system with a tubular type housing and parallel plate electrodes at different power levels during 

disinfestation of T. castaneum in stored canola seeds. 

The objective of this chapter is to determine kinetic parameters for the thermal death of adult T. 

castaneum in stored canola during 50-ohm RF disinfestation based on the temperature history of 

the stored canola. This involved the investigation of the immediate mortality of adult T. castaneum

in stored canola, at 9% MCs and end temperatures of the host grains during RF heating at 3 kW, 5 

kW, and 7 kW at 27.12 MHz. Thermal death kinetics of the adult T. castaneum based on the 

immediately determined mortalities and temperature histories of the host material (canola seeds) 

will be helpful. The determined kinetic parameters and model can predict mortalities at specific 

RF heating times without knowing insect body temperatures. They can be also used to determine 

proper RF heating conditions for disinfestation of the adult T. castaneum. Therefore, in this study, 

the thermal death kinetics of the adult T. castaneum infesting canola seeds at a constant MC of 
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seeds at various power levels were characterized based on dynamic temperature changes of the 

canola seeds and the experimental data of insect mortalities during RF heating. 

3.4 Materials and methods 

3.4.1 The radio frequency system  

The RF system consists of the 15 kW 27.12 MHz RF generator (Coaxial Power Systems Ltd. RFG 

15K-27) and matching network (Coaxial Power Systems Ltd. AMN15KR) both manufactured by 

Coaxial Power System Ltd. which is then connected to an applicator which was designed and 

fabrication process by Engineering Shop, College of Engineering, University of Saskatchewan. 

The 15 kW 27.12 MHz radio frequency generator (RFG) (Figure 3.1): According to Coaxial Power 

System Ltd. the RFG was designed to drive a specific characteristic impedance, 50-ohms. The 

characteristic impedance of the output cable and allowed the generator to deliver full power at 

maximum efficiency. If the output impedance varied from 50 ohm the protection circuits in the 

RFG reduce the output power in order to protect the RFG from overload. Except for dummy loads 

and some types of antenna most real-world loads differed substantially from 50-ohm and a device 

was needed to transform the output of the RFG to the actual load impedance of the system being 

driven. It was sometimes possible to use a conventional wound transformer, but most often the 

matching device was made up of a network of series and parallel impedances that combine to 

perform the transformation, i.e. a 'matching network'.  
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Figure 3.1: Radio frequency generator (Manufactured by Coaxial Power Systems Ltd., UK) 

RF Impedances: The impedance of an application was rarely pure resistance, often it consisted of 

a combination of resistance and capacitance. That can be considered as an 'equivalent circuit' 

consisting of a resistor and capacitor. Two forms of circuit exist, series and parallel. It was 

important to realize that neither form is correct or incorrect, both have validity, nor it is possible 

to represent the output in whichever form is most convenient. The parallel form represents a load 

as a resistor and capacitor in parallel. The series form represented a load like a resistor and 

capacitor in series. The resistor would typically be low in value.  

Matching network: Coaxial Power Systems Ltd manufactures two styles of impedance matching 

network to link the load to the RF generator. The purpose of the network was to adjust the input 

impedance of the load to 50-ohms so that maximum power was transferred from the generator, 

whose output impedance is 50-ohms, to the load. The network was installed as close as possible 

to the load. The best possible position, in a plasma application, for example, would be to mount 

the network directly on the vacuum chamber with a direct connection to the electrode or 
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magnetron. Coaxial Power Systems Ltd. manufactures two types of network - manual and 

automatic.  

Figure 3.2: Automatic matching network (Coaxial Power Systems Ltd.) 

The automatic matching network (AMN) was like the manual version except that servomotors 

drive the capacitors. At the input of the network, a phase and magnitude detector determine the 

position of the capacitors. This information was transferred to the separate controller. The 

controller then drives the servomotors to the positions, which gave zero, or minimum reflected 

power. The controller is ½ rack, 4U high and is usually fitted in the same enclosure as the 

generator. Alternatively, the controller may be fitted within a generator - the readouts and controls 

on the generator front panel. The position of each variable capacitor was shown on a 31/2-digit 

LED meter. Automatic or manual mode switch was selectable - in manual mode, the servomotors 

are controlled by spring-loaded switches. The start position of the capacitors can be individually 

adjusted. When RF power is detected, the capacitors automatically adjust for minimum reflected 

power. When the RF is turned off, the motors drive the capacitors back to the original position. 

The start positions are adjusted using potentiometers accessible via the controller front panel. 

(Coaxial Power System Ltd. 2018).
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3.4.2 Applicator 

The applicator had parallel plate electrodes (hot and ground) which were used in this study because 

of its uniform electric field strengths from beginning to end of the electrode. In between the two 

electrodes was the tubular channel, made of polypropylene; diameter of 30 cm and length of 70 

cm. The gap size between the two electrodes was 36 cm as shown in Figure 3.3. The samples 

consisting of insects and canola grains were loaded in the channel which acted as an insulator 

during the RF heating process, where, the insects were killed, and the canola grains being heated.  

Figure 3.3: Applicator designed and fabricated by Engineering Shop, College of Engineering, 

and University of Saskatchewan. 

3.4.3 Canola seed samples 

The samples were provided by Viterra Inc., Saskatoon, Canada at various moisture levels (6%, 

7%, and 9%) from which 9% MC (w.b) was prepared from canola seeds. The seeds were cleaned 

and stored in polypropylene boxes at 4°C for maximum of six months before using them. The MC 
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of the seeds was calculated from the difference in water loss by drying 10 g of canola seeds in a 

hot air oven (Despatch, Despatch Industries, MN, USA) for 24 h at 103°C (ASAE, 2002; 

Brusewitz, 1975). Based on the MC of the canola seeds, 9% MC samples were prepared by mixing 

the required amount of distilled water. The required amount of distilled water was calculated based 

on the mass and the MC of the canola samples. During the addition of distilled water, the seeds 

contained in the boxes were continuously shaken to ensure even distribution of water. The boxes 

were kept at room temperature (24°C) for 3 days, and during that period the boxes were shaken 

periodically. After 3 days the MC was measured and the process was repeated until equilibrium 

MC of 9% MC (±0.2%) was achieved, then was followed by storage in a 4°C cold storage chamber 

until used. The samples for experiments were taken out from the cold storage chamber and could 

raise their temperature to room temperature.  

3.4.4 Insect culture  

The insects were cultured using the process described by Shrestha et al., (2013a) and Yu et al. 

(2016). The adult red flour beetles (T. castaneum) were acquired from Agriculture and Agri-Food 

Canada at the University of Manitoba, Canada. The insects were reared in a mixture of wheat 

kernels (14% MC) and wheat germs in a proportion of 70% to 30% by weight. 200 total adult 

insects were divided into 2 glass jars (2 L), 100 insects in each jar and mixed with 1.5 kg of the 

rearing mixture in each jar. The jars were ventilated by using a lid with fabric. The cultures could 

grow in a temperature and humidity chamber maintained at 25°C and 70% RH. These cultures 

were used to prepare another batch of new cultures after 10 weeks. The insects with the rearing 

mixture were separated using the Canadian standard sieve #40 assembled with the bottom tray. 

Then insects were sucked through a suction pipe into a glass vial which was closed with a # 5 

rubber cap with two holes, one connected to the suction pipe, and the other to the vacuum device 
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with the rubber tube. The hole connecting to the vacuum was covered with a fine wire net on an 

inner side of the collecting vial to stop the insects sucking away from the vial.  

3.4.5 Radio frequency exposure time of the canola seeds 

A ReflexTM signal conditioner and the fiber optic temperature sensors with an accuracy of ±0.8°C 

(Neoptix, Québec City, Québec, Canada) were used to measure and monitor the temperatures of 

samples. A dedicated LabVIEW (2010v.10) program was developed to interface with the data 

acquisition device connected to the temperature sensors. The temperatures of the sample were 

displayed and recorded every 2 s. RF exposure times (s) of the canola seeds were determined when 

the temperature of the hottest spot of the bulk seeds reached up to each desired temperature (338 

K) from 297 K (initial temperature) for 9% MC of the seeds (Figure 3.5). 27 kg of canola seeds 

were measured and packed tightly in 7 polypropylene bags with dimension of 70 cm in length and 

30 cm in diameter (Figure 3.4). In the process, it was made sure that the bags are packed tightly 

and uniform by dividing the weight equally. The temperature histories of the canola seeds at 9% 

MC were measured at three different power levels (3 kW, 5 kW, and 7 kW), then, regression 

models were developed for the temperature (K) of the seeds as a function of RF exposure time (s) 

for input data in the kinetic model used in this study. During the temperature measurement, the 

sensor was placed at the hottest spot of the canola samples. It does not matter whether the hottest 

or coldest spot was used as we just needed different sets of temperature vs time and corresponding 

experimental mortalities to determine kinetic parameters using inverse simulation. The 

determination of the hottest spot was done through heating distribution experiments. From the 

heating distribution experiment, it was found that the front bottom side of the applicator generated 

the hottest spot. The identification of the hottest spot was done by studying the temperature 

distribution in the bulk canola seeds in the tubular applicator at different RF power levels, which 



is not elaborated in this chapter.  So, from the study insects were in the hottest spot in a 

polypropylene bag mixed well with the canola grains. The average of triplicate measurements was 

used for the RF exposure time (s) of the seeds. 

3.4.6 Insect mortality 

The insect mortalities were determined by introducing the adult insects in a polypropylene bag (5 
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mortalities. The immediate mortalities of the adult T. castaneum at each desired temperature were 

tested in triplicate and then averaged for each MC of the seeds. 

3.4.7 Kinetic modeling   

The thermal death rate of the adult T. castaneum was modeled using the following kinetic model. 
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Where, t is the heating time (s), N and N0 are respectively the numbers of live insects at a time and 

the initial number of the insects, k is the reaction rate constant (s-1), and n is the order of the 

reaction. The temperature-dependent reaction rate constant can be expressed using the Arrhenius 

relationship as follows: 
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Where, k0 is the frequency factor, Ea is the activation energy (J/mol), R is the universal gas constant 

(8.314 J/molK), and T is the temperature of the bulk canola seeds (K). k0 and Ea for adult T. 

castaneum were estimated by inverse simulation which is based on experimental mortality data 

and transient temperature history, which is a combination of temperature-dependent reaction rate 

(variable coefficient) and 1st order reaction kinetics (ordinary differential equation). Thus, it should 

be solved numerically. In an ideal condition, to obtain kinetic responses of insects to heat 

treatment, maintaining temperature of insect body constant at different levels during the heating is 

necessary to use a conventional estimation method (ln k  1/T) (Wang et al. 2007). By doing so, 

the cofounded effects of thermal lags during the heating of insect bodies (thermal disinfestation) 

are omitted. That means, in a practical situation temperature history of the insect bodies during 

any thermal process significantly differs from the ideal step-function temperatures assigned in the 
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conventional estimation method (Wang et al. 2007). Thus, the method used in this chapter covers 

that transient period as well, which is more sophisticated than the conventional methods. Also, the 

thermal heating process used in this cahpter is based on high power RF fields. Because of selective 

heating in RF heating, the insect body temperature should be higher than the grain temperature 

(Shrestha and Baik, 2013b). This chapter also studies the efficiency of selective heating during 

disinfestation of canola seeds from adult T. castaneum using a 50-ohm RF system at different 

power levels and compares with other published works based on a similar estimation method under 

different dielectric heating conditions. Even, generation of constant holding temperatures of insect 

body with the RF heating is not possible.  

The correlation between grain temperatures with kinetic parameters is crucial for practical 

purposes and comparison, as it is extremely difficult to measure insect body temperatures during 

the RF heating process due to their tiny size (3 - 4 mm) and mobility. Thus, transient temperature 

histories of the canola seeds during RF heating were used instead of those of the insects. This 

makes the activation energy and frequency factor as apparent or effective values. It is, however, 

assumed that the canola seeds had similar heating patterns as those of the insects even if their 

heating speed was slower. Using the temperature of the canola seeds instead of the insect-body 

temperature was the limitation of this study, however, at the same time, this approach would be 

more practical for real-world applications. Only limited mobility of the insects in the seed sample 

during the RF heating was observed due to the natural compactness of the tiny seeds (The diameter 

of the seed is approximately 1.8 mm). 

Substitution of the value of k from Equation 3.2 into Equation 3.1 results in the thermal death rate 

of the adult T. castaneum as shown in Equation 3.3. 
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The ordinary differential equation, Equation 3.3 was solved using ODE 45 solver based on the 4th 

order Runge-Kutta method in MATLAB R2019a (The MathWorks Inc., Natick, MA, USA). The 

optimum values of k0, Ea, and n were determined by minimizing the root mean square error 

(RMSE) between the values predicted from the kinetic model and the experimental data as depicted 

in Equation 3.4. 
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where, m is the population of the data, xi is the experimental value, and ��′ is the value predicted 

using the kinetic model, Equation 3.3. The unknown parameters, k0, Ea, and n were determined by 

trial and error from 3 different sets of time-temperature data (4 points per each set) depending on 

RF heating rates. The value of n was estimated to be from 1±0.01 to 2±0.01 with an interval of 

0.2±0.01, we set the order of kinetics (n) as 1, 1.2, 1.4, 1.6, 1.8 and 2 for all the estimation. So, 

along with the value of n only the other two unknown parameters k0, and Ea were estimated. The 

kinetic model was also used to estimate LTs to achieve 90% (LT90) and 99% (LT99) mortalities of 

the insects infesting the canola seeds at different power levels. 

3.4.8 Statistical analysis 

All experiments were done in triplicate. Excel (MSO 2016) was used to process and analyze data. 

The Analysis of Variance (ANOVA) was used to determine the statistical differences of the 

temperatures, power level, and immediate mortalities at 95% confidence interval (p -value< 0.05) 

3.5 Results and discussion   



3.5.1 Temperature histories of the canola seeds samples  

Figure 3.5 shows the temperature histories of the 9% MC canola seed samples at 3 kW, 5 kW, and 

7 kW during RF heating.  
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Figure 3.5: The temperature histories of 9% moisture content (wet basis) canola samples at 

various power levels during the radio frequency heating (a) temperature history at 3 kW (b) 

temperature history at 5 kW (c) temperature history at 7 kW. (Note: The experimental data 

points relate to simple straight lines for visual presentation). 

The rate of the temperature increment of the seeds was apparently proportional to the power levels 

of the RF heating. Similarly, the heating rate increased with power level while heating agricultural 

commodities, which include corn, barley, canola and wheat using microwaves. (Shivhare et al. 

1992; Soysal 2004; Manickavasagan et al. 2006). Microwave heating pattern can be considered in 

this research as the principle of heating in both microwave and RF are based on electromagnetic 

(dielectric) heating principle. The RF exposure times to reach the end temperatures of canola 

samples at different power levels are presented in Table 3.1. 

Table 3.1: The radio frequency average exposure times to reach the different end 

temperatures (338 K, 333 K, 328 K, 323 K) of 9% moisture content (wet basis) canola samples 

at different power levels.  

Power (kW) Time (s) 

338 K 333 K 328 K 323 K 

3 448±6  402±4  354±4  304±4 

5 242±2  220±4  194±4  172±6 

7 170±2  156±4  138±6  122±8 

The

exp

in T

N
ote: Each mean represents the average of three replicates and represented as mean ± σ.  
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 regression models for the temperatures (K) of the canola seeds as a function of the RF 

osure time (s) at the interested MCs for both the small and the large volume samples are listed 

able 3.2. 
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The regression models for the temperature of the canola grains as a function of RF heating time at 

different RF power levels: 3 kW in equation (3.5), 5 kW in equation (3.6), and 7 kW in equation 

(3.7), at 9% MC in Table 3.2.  

Table 3.2: Regression models for the temperature of the canola seeds as a function of the 

radio frequency exposure time (s) at different power levels during the radio frequency 

heating.  

Equation 
number 

Moisture 
content 
(% wet 
basis) 

Power 
(kW) 

Regression model Degree of 
freedom 

Correlation 
coefficient 

3.5 9 3  T= 0.00004t2+ 0.073t + 297.116 3 0.999 

3.6 9 5  T= 0.0002t2+ 0.121t + 296.883 3 0.971 

3.7 9 7  T= 0.0003t2+ 0.156t + 296.989 3 0.992 

The developed regression models were used as input data in Equation 3.3 to estimate kinetic 

parameters of the thermal death of the adult T. castaneum. 

3.5.2 Thermal mortality of the insects   

Table 3.3 shows the measured survival rates of the adult T. castaneum in 9% MC samples during 

RF heating at 3 kW, 5 kW, and 7 kW from 297 K to 338 K. Highest end temperature of 338 K was 

chosen, as Yu et al. (2016) reported that 100% mortality of T. castaneum infesting the canola seeds 

at MCs of 5%, 7%, 9%, and 11% could be achieved without significant degradation of the seed 

quality at 333 K with proper design of RF heating applicators. 

Table 3.3: Number of survived adult T. castaneum in 9% moisture content (wet basis) canola 

samples at different end temperatures (338 K, 333 K, 328 K, and 323 K) using radio 

frequency heating at different power levels (3 kW, 5 kW, and 7kW). 



Power (kW) Initial number of 
live insects 

Time (s) Number of alive insects 

3 20 0±0 0.0±0.0 

304±4 14.6±0.6 

354±4 9.0±0.0 

402±4 7.0±0.0 

448±6 4.0±0.0 

5 0±0 0.0±0.0 

172±6 15.0±0.0 

194±4 7.0±0.0 

220±4 4.0±0.0 

242±2  1.0±0.0 

7 0±0 0.0±0.0 

122±8 10.6±0.6 

138±6  4.3±0.6 

156±4 2.0±0.0 

170±2 0.0±0.0 

Usu

tem

leve

mo

at h

tem

gra

hea

dep

by 

tem

N
ote: Each mean represents the average of three replicates and represented as mean ± σ.  
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ally, higher temperature leads to greater mortality percentage of insects. At any end 

peratures of the seeds, the survival rate of the insect was inversely proportional to the power 

l. The insects mixed with the canola seeds were exposed to the evaporated steam from the 

isture present in the seeds during RF heating. The survival rate of the insects in the seed samples 

igh power (7 kW) was lower than that at low power (3 kW) at the same end RF heating 

perature. The dielectric loss factor of adult insects is higher than dielectric loss factor of the 

ins (Shrestha, and Baik 2013b; Yu et al. 2015), thus the insect body temperature during RF 

ting should be much higher than that of canola seeds as heating rate of an object is largely 

endent on its dielectric loss factor during dielectric heating. However, fast heat transfer occurs 

conduction from hotter insect body to surrounded colder canola seeds due to the large 

perature gradient. This will reduce the effect of selective heating due to dielectric loss 
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difference between insect body and canola seed. When the heating power increases, heating time 

to reach the same temperature decreases as shown in Table 3.3. Inferring, that the time for 

conductive heat loss from insect bodies to canola seeds is shorter, which proves that the efficiency 

of selective heating increases with the increase in RF power. In addition, proper mixing of adult 

T. castaneum and the canola samples was crucial as to distribute T. castaneum uniformly 

throughout the canola sample, to achieve unbiased results.   

At 7 kW, 100% mortality of the insects was achieved at 338 K, over 95% mortalities of the insects 

were achieved at 338 K for the samples at 5 kW and over 80% mortalities of the insects were 

achieved at 338 K at 3 kW. The RF exposure times to achieve temperature from 297 K to 338 K 

were, 304 s to 448 s, 172 s to 242 s and 122 s to 170 s for the samples, treated at 3 kW, 5 kW, and 

7 kW respectively. The thermal effect on the insect mortality was attributed to the thermal 

degradation of carbohydrates, proteins, DNA, RNA, and lipids of the insects (Hallman and 

Denlinger 1998).  

3.5.3 Thermal death kinetics 

To determine Ea for the thermal death kinetics of T. castaneum different values of k0, Ea, and n 

were fitted in equation 3.3; the value of Ea, was chosen from 94 kJ/mol to 105 kJ/mol with an 

interval of 0.50 kJ/mol and the value, this range was considered as Ea, of adult T. castaneum was 

reported to 100.00 kJ/mol (Yu et al. 2017). For the value of n literature shows that the kinetics 

followed the 1st order reaction, for adult T. castaneum  (Yu et al. 2017) also, Ben- Ialli et al. (2009) 

found that the 1st order model to be most desirable to ellaborate the thermal death kinetics of E. 

kuehniella (Zeller) eggs, comparing to the 0.5th order of reaction of the thermal death kinetics of 

the insect pests used by Wang et al. (2002a) and Johnson et al. (2003, 2004) and 0th order reaction 

of the thermal kinetics of the pest used by Yan et al. (2014). So, along with n=1 we also wanted to 
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investigate the behavior of the kinetics at various values, slightly higher than n=1, therefore, in our 

case by increasing the value of n at an interval of 0.2 till the value of n is 2 and the behavior of the 

thermal kinetics were observed at each point. Along with the value of Ea and n, k0 was chosen from 

1.00×10��s-1 to 9.50×10�� s-1 with an interval of 0.50×10�� s-1. However, it should be noted that 

the kinetic parameters estimated were based on temperature histories of canola samples 

temperatures not on insects’ temperatures. 

Certain observations were recorded while trying to fit the simulated survival rates to the 

experimental survival rates: k0 is proportional to Ea, n is also proportional to k0 and Ea as shown in 

Table 3.4, therefore, to reduce and fit the value Ea within the range 94.00 kJ/mol to 105.00 kJ/mol 

the values of k0 were reduced as the value of n increased. However, the performance of the kinetic 

model (Equation 3.3) in predicting the mortalities of the adult T. castaneum during the RF heating 

seems to be following 1st order or 1.2nd order, as the value of n increased the RMSE also increased, 

except in the case of 7 kW.  

Table 3.4: Performance of the kinetic model (Equation 3.5) in predicting the mortalities of 

the adult T. castaneum during the radio frequency heating. 

Power (kW) Activation 

energy ( �� ���⁄ ) 

Frequency factor 

(� �⁄ ) 

Order of reaction 

(n) 

Root mean 

square error 

3 97.50 6.50×10�� 1.0 1.55 

3 98.50 6.00×10�� 1.2 1.58 

3 99.00 5.00×10�� 1.4 1.93 

3 100.00 4.50×10�� 1.6 1.89 

3 100.00 3.00×10�� 1.8 2.07 

3 100.50 2.50×10�� 2.0 2.28 

5 97.50 6.50×10�� 1.0 1.95 

5 98.50 6.00×10�� 1.2 2.32 

5 99.00 5.00×10�� 1.4 2.64 

5 100.00 4.50×10�� 1.6 2.79 

5 100.00 3.00×10�� 1.8 3.11 
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5 100.50 2.50×10�� 2.0 3.47 

7 97.50 6.50×10�� 1.0 6.60 

7 98.50 6.00×10�� 1.2 6.19 

7 99.00 5.00×10�� 1.4 5.37 

7 100.00 4.50×10�� 1.6 5.23 

7 100.00 3.00×10�� 1.8 4.77 

7 100.50 2.50×10�� 2.0 5.25 

The best fitted kinetic model of thermal death of the adult T. castaneum in the canola seeds during 

RF heating was as follows. 

�(� ��)⁄

��
= − 6.5 × 10��. ��� �

9.750 × 10��

��
� (

�

��
)� … … … … … … … (3.8)

�(� ��)⁄

��
= − 6 × 10��. ��� �

9.850 × 10��

��
� (

�

��
)�.� … … … … … … … (3.9)

The performance of the model in predicting the mortalities for both the small and the large volume 

samples is summarized in Table 3.4.The mortalities determined from the kinetic model agreed 

reasonably well with the experimental values resulting in RMSE of 7.95, 1.90, and 1.14 at 3 kW, 

5 kW, and 7 kW, respectively. The kinetic parameters should be independent of MC and volume 

of samples if the effect of steam release is not reflected in the thermal death kinetics. Figure 3.6 



compares the survival rates of insects determined from the kinetic model with those from the 

experiments for canola samples at 3 kW, 5 kW, and 7 kW during the RF heating.
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for the thermal death kinetics of T. castaneum at 1st order is lower than 1.2nd order and the model 

also performed better at 1st order compared to 1.2nd order (refer Table 3.3), so, we considered 1st

order to be the best fit. 

However, it should be noted again that the kinetic parameters estimated were based on temperature 

histories of canola samples not on insect samples temperatures. The values are slightly lower than 

the adult T. castaneum, 100.00 kJ/mol (Yu et al. 2017), implying that our T. castaneum was more 

susceptible to RF energy than those used by Yu et al. (2017). This may be due to the type of 

applicator and the RF system used in both the cases considering both studies used grain 

temperature histories instead of insect body temperature histories for estimation of the kinetic 

parameters. Yu et al. (2017) used 1.5 kW, 27.12 MHz lab-scale RF system (Strayfield Fastran, 

Berkshire, England) with a conventional RF generator and a parallel electrodes applicator whereas, 

the RF system used in this research was 50-ohm technology-based pilot scale RF heating system 

that includes RFG (max. 15 kW and 27.12 MHz) with AMN, 50-ohm coaxial cable, and the 

custom-made RF applicator. The power generated was constantly maintained at a certain level 

throughout the operation in our research with the AMN and the 50-ohm coaxial cable, unlike 

fluctuating power levels in the conventional RF system which depends highly on the load applied. 

Also, the applicator used in this study was a tubular type with parallel plate electrodes with 30 cm 

between the plates. Likewise, the sample load was much greater than that used by Yu et al. (2017). 

Along with the difference in the types of RF systems used in both the cases the power levels (3 

kW, 5 kW, and 7 kW) in our case were much higher compared to Yu et al. (2017). However, the 

difference was small, despite the difference in RF heating system, sample load size and power 

levels. Similarly, with the study of Ben-Ialli et al. (2009) on survival kinetics of E. kuehniella

during 46°C -75°C heat treatment, the activation energy was 102.00 kJ/mol. In contrast with the 
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other insect pests, the activation energy was higher such as the A. transitella (Walker) (510.00 

kJ/mol to 520.00 kJ/mol) by Wang et al. (2002b); P. interpunctella (506.30 kJ/mol) by Johnson et 

al. (2003); and C. pomonella (472.00 kJ/mol) by Wang et al. (2002a); D. armand (430.00 kJ/mol) 

by Zhao et al. (2018); A. ludens (560.70 kJ/mol) by Hallman et al. (2005); and  S. 

oryzae (505.00 kJ/mol)  by Yan et al. (2014). 

3.5.4 Lethal time 

The developed kinetics model was reversibly used to estimate the lethal time (LT95) and the LT99 

at each power level. Table 3.5 shows the experimental LT required to kill 100% of the insect as 

well as the LT95 and the LT99 determined from the kinetics model. 

Table 3.5: The radio frequency exposure times (s) to achieve 100% mortality and the lethal 

times determined from the numerically simulated data for the adult T. castaneum at the 

indicated radio frequency power levels. 

Power (kW) Numerically simulated RF exposure times (s) 

Radio frequency exposure times 

for 100% mortality 

LT99 LT95 LT90 

3  448  354  312  288  

5  314  268  248  236  

7  258  220  204  194  

The thermal death kinetics model was used to predict the RF exposure LT for the insect pests. 

Table 3.5 shows the numerically simulated heating time for the insect pests to achieve 100%, LT99, 

LT95, and LT90 at three RF power levels (3 kW, 5 kW, and 7 kW) of T. castaneum during RF 

heating. The predicted lethal time for 100% mortality rate at the entire power level ranged from 

258 s to 448 s. Whereas, for LT99, 220 s to 354; LT95, 204 s to 312 s; and for LT90, 190 s to 288 s. 
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Shorter RF exposure time was achieved at a higher RF power level at all mortality rates of the 

insect pests. This was attributed to the slow heating rate in the lower RF power level. LT95 and 

LT99 at 5 kW and 7 kW of mortalities of T. castaneum were much lower than the ones observed 

by Yu et al., (2017) at 9% MC canola samples. This means disinfestation of the insect by RF could 

be done more effectively at higher RF power levels due to shorter RF heating time and steam 

release effect to achieve the specific mortalities compared to seeds at lower MC. 

3.6 Conclusions  

The survival rate of the adult T. castaneum infesting the canola seeds at 9% MC decreased with 

an increase in temperature (297 K to 338 K) and increase in RF power levels (3 kW to 7 kW)

during RF heating. The kinetic parameters of the thermal death of the adult T. castaneum were 

estimated using an inverse simulation. The kinetics followed first-order reaction with the activation 

energy of 97.50 kJ/mol and it produced the insect mortalities that were comparable to the 

experiments. The determined LTs from the experiments and the kinetic model were in good 

agreement. The thermal death kinetic model developed in this research would be useful in 

designing post-harvest RF thermal processes to control T. castaneum and similar insects in stored 

canola seeds and other commodities. 
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CHAPTER 4 

General discussions 

This chapter presents the integration of all the important results and observations from all the three 

chapters. Also, this chapter highlights the important contributions of this research for development 

of knowledge on implementation of RF heating system in disinfestation of insects in stored grains. 

In addition, important suggestions and recommendations to improve the efficiency of a 50-ohm 

RF system with a parallel plate through field type applicator are also discussed.  

4.1 Temperature distribution of bulk canola seeds (9% MC) in the 50-ohm RF heating system 

with a parallel plate through field type applicator 

The 50-ohm RF heating system with a parallel plate through field type applicator suffered non-

uniformity in heating distribution when heating the canola seeds at 9% MC. The spot with the 

highest heating rate was found adjacent to the hot electrode, whereas, the spot with the lowest 

heating rate was found adjacent to the cold electrode. Uniform distribution of EM field in the RF 

heating of the samples is crucial for uniform temperature distribution throughout the sample 

(Huang et al. 2016; Wang et al. 2007). Also, the thermal properties, physical properties, electrical 

properties, size, shape, and position of the sample in the RF applicator affect the temperature 

distribution in the RF heating system (Yu et al. 2016). The electric field in a parallel plate through 

type applicator generally has a uniform field strength distribution, as stated by Huang et al. (2018). 

Also, the electric field strength distribution is affected by the presence of the sample, the sample 

size, and position of the sample in between the electrodes (Huang et al. 2018; Llave et al. 2015). 
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Likewise, literature shows that variation in temperature distribution during RF heating of 

agricultural commodities is a major challenge in implementing RF heating systems (Yu et al. 2016; 

Jiao et al. 2015; Alfaifi et al. 2014; Gao et al. 2010). Since, the applicator structure was made with 

polypropylene composite component, Dabbak et al. (2018) showed that at higher frequencies 

higher than 3 kHz polymer composites exhibits ionic polarization, this might have interfered with 

the electric field causing disturbance in the heating mechanism along with the air present in 

between the particles of the bulk canola. Also, since the canola seeds were packed in polypropylene 

bags the evaporated steam could not travel throughout the sample load, thus causing raise in 

temperature in local spots rather than the whole system.  

4.2 Disinfestation of adult red flour beetles infesting canola seeds using 50-ohm radio 

frequency (RF) heating system 

The mortality of adult red flour beetles infesting the canola seeds at 9% MC was directly 

proportional to the temperature (297 K to 338 K), and the RF power levels (3 kW to 7 kW) during 

RF treatment process. As the dielectric loss factor of adult insects is higher than that of the canola 

(Shrestha and Baik, 2013; Yu et al. 2015), the insect body temperature raised at much higher rate 

than the canola seeds during the RF heating, proving the effectiveness of selective heating. 

However, fast heat transfer happened by conduction, transferring heat from the hotter insect bodies 

to the colder canola seeds due to the large difference in temperature between them, thus reducing 

the effect of selective heating. However, at higher power since the heating time to reach the same 

lethal temperature decreased in relation to the lower RF power, the time for conductive heat loss 

from insect bodies to canola seeds was shorter, which increased the efficiency of selective heating 

at higher RF power.  
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The thermal kinetics adult red flour beetles best fitted the 1st order reaction with an activation 

energy of 97.50 kJ /mol, the determined LTs from the experiments and the kinetic model were in 

good agreement as shown in literature (Yu et al. 2017; Ben-Ialli et al. 2009; Wang et al. 2002b; 

Johnson et al. 2003; Wang et al. 2002a; Zhao et al. 2018; Hallman et al. 2005; Yan et al. 2014).

4.3 Post-treatment quality of canola seeds after 50-ohm RF heating treatment at different 

power levels.  

Different quality parameters of canola seeds including MC, germination rate, colour and oil quality 

of canola seeds before and after RF heating at various end temperatures (50°C, 55°C, 60°C, and 

65°C) and various power levels (3 kW, 5 kW, and 7 kW) were considered. The MC decreased with 

the increase of temperature; however, with the increase in power, the difference in MC remains 

relatively similar. Colour of the canola seeds changed after the RF treatment. However, there no 

major changes in germination rates of the canola seeds after RF treatment and the quality of the 

oil after the RF heating operation. 

4.4 Contribution to academic knowledge development 

The idea of this research relied on principles and heating characteristics of EM waves, which 

exhibits a dielectric heating pattern. So, one of the crucial parameters involved the dielectric 

properties of the canola seeds and red flour beetles infesting the stored canola seeds. Literature 

shows that dielectric loss factor of the two subjects (canola seeds, and red flour beetles) vary 

drastically especially when the stored seeds are at lower MC, where, the canola seeds have lower 

dielectric loss factor compared to the red flour beetles (Shrestha and Baik 2013; Yu et al. 2015). 

Due to the difference in the dielectric loss factor the insect body temperature raised at a much 

higher rate than the canola seeds during the RF heating, proving the effectiveness of selective 
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heating. Also, as the power increased, the conductive heat transfer between the insect bodies and 

the canola seeds decrease as the heating time to reach the same lethal temperature decreased in 

relation to the lower RF power, which increased the efficiency of selective heating at higher RF 

power. Thus, the disinfestation of red flour beetle from stored canola was a successful process 

using the 50-ohm RF heating system with a parallel plate through field type applicator. This 

observation is crucial, as it opens up the opportunity to learn the heating characteristics of different 

biological commodities with different dielectric properties at different power levels, to enhance 

the use of 50-ohm RF heating system with a parallel plate through field type applicator. As, 50-

ohm RF system can maintain constant frequency and power load through a matching network, and 

the electric field in a parallel plate through type applicator generally has a uniform field strength 

distribution, as stated by Huang et al. (2018). The opportunities for use of a 50-ohm RF heating 

system with a parallel plate through field type applicator in the processing of biological 

commodities may include all the heat treatments involved in the process. Although the process of 

disinfestation was a success, the use of RF heating does come with some major challenge which 

is generation of spots with different heating rates as seen in this study and several other researchers 

have also shown similar results (Yu et al. 2016; Jiao et al. 2015; Alfaifi et al. 2014; Gao et al., 

2010). The uniformity in heating rates in different spots of the sample relies on the distribution of 

EM field in the RF heating of the samples (Huang et al. 2016; Wang et al. 2007). The uniformity 

in EM field distribution that depends on thermal properties, physical properties, electrical 

properties, size, shape, and the position of the sample in the RF applicator affects the temperature 

distribution in the RF heating system (Yu et al. 2016). Thus, a thorough understanding of all the 

parameters involved in RF heating operation is very important and understanding of all the 

parameters is a huge challenge and opportunity to improve any RF heating operation. Some 
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recommendations and suggestions to improve the efficiency of the 50-ohm RF heating system with 

a parallel plate through field type applicator are given below in the following section. 

4.5 Recommendations for future studies  

Along with this study, several other researchers have also shown that the electric field strength in 

parallel plate electrodes is dependent on the geometry, volume, size, physicochemical properties, 

electrical properties, and orientation of the sample (Huang et al. 2018; Huang et al. 2016; Llave et 

al. 2015; Wang et al. 2007; Yu et al. 2016). Thus, it is crucial to study the characteristic effects of 

all the parameters involved in RF heating to better design an optimum RF heating system. The 50-

ohm RF heating system used in this research consisted of a parallel plate through field type 

applicator with a tubular channel, horizontally oriented, and constructed using polypropylene 

composite; 30 cm (diameter), and 70 cm (length) and gap of 36 cm in between the two electrodes. 

The electrodes were connected to the matching network at the inner zone of the applicator. The 

construction was done with the assumption of uniform distribution electric field in between the 

parallel plate electrodes, and the tubular channel was constructed with polypropylene composite 

assuming that electric fields can be transferred to the sample without disturbance as polypropylene 

is considered dielectric transparent material. However, the construction and orientation of the 

applicator suffered non-unifromity in the heating rates at different spots throughout the applicator 

considering the results and observations from Chapter 2. 

So, studying the heating characteristics of agricultural commodities by changing the dimensions 

and orientation of the applicator can help explore new heights in developing a better and efficient 

RF heating system for agricultural commodities. With this thought, the Department of Chemical, 

and Biological Engineering, University of Saskatchewan in association with Prairie Agricultural 

Machinery Institute (PAMI), Humbolt, and Engineering Shop, University of Saskatchewan have 
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developed a new applicator. The newer version of the applicator is vertically oriented to use the 

gravitational force to the advantage, also the dimensions have been updated to a smaller one by 

reducing the gap between the electrode to 10 cm and the polypropylene composite has been 

replaced by Teflon which is expected to better at being an RF transparent material (Figure 4.1), 

also an inline process can be devolved for a continues process by introducing auger system (Figure 

4.2).  Preliminary results using different agricultural commodities including chickpeas, and red 

lentils have shown promising results. Thus, the 50-ohm RF heating system has immense potential 

in any heat treatment processed involved in agricultural product industries. In addition, a coaxial 

structure of electrodes can be also considered for future studies. 
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Figure 4.1: Vertically oriented parallel plate through field type applicator with an electrode 

gap of 10 cm and teflon composite tubular channel. 

Figure 4.1: Vertically oriented parallel plate through field type applicator and teflon 

composite augur system. 
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