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Abstract

A stereo vision system is a robust method to sense the distance information in a

scene. This research explores the stereo vision system from the fundamentals of

stereo vision and the computer stereo vision algorithm to the final implementation

of the system on a FPGA chip. In a stereo vision system, images are captured by

a pair of stereo image sensors. The distance information can be derived from the

disparities between the stereo image pair, based on the theory of binocular geometry.

With the increasing focus on 3D vision, stereo vision is becoming a hot topic in the

areas of computer games, robot vision and medical applications. Particularly, most

stereo vision systems are expected to be used in real-time applications.

In this thesis, several stereo correspondence algorithms that determine the dis-

parities between stereo image pair are examined. The algorithms can be categorized

into global stereo algorithms and local stereo algorithms depending on the opti-

mization techniques. The global algorithms examined are the Dynamic Time Warp

(DTW) algorithm and the DTW with quantization algorithm, while the local al-

gorithms examined are the window based Sum of Squared Differences (SSD), Sum

of Absolute Differences (SAD) and Census transform correlation algorithms. With

analysis among them, the window based SAD correlation algorithm is proposed for

implementation on a FPGA platform.

The proposed algorithm is implemented onto an Altera DE2 board featuring

an Altera Cyclone R© II 2C35 FPGA. The implemented module of the algorithm is

simulated using ModelSim-Altera to verify the correctness of its functionality. Along

with a pair of stere image sensors and a LCD monitor, a stereo vision system is built.

The entire system realizes a real-time video frame rate of 16.83 frames per second

with an image resolution of 640 × 480 and produces disparity maps in which the

objects are clearly distinguished by their relative distance information.
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Chapter 1

Introduction

1.1 Motivation of Stereo Vision Based Distance

Sensing

In the recent years the needs for 3D technology result in a dramatic development

in the modeling and understanding of computer stereo vision. In computer stereo

vision, multiple views are realized using two or more cameras mounted at different

angles and position to capture a scene. The images captured from these cameras are

called stereo images, from which the depth information can be derived so that the 3D

reconstruction of a scene is possible. Specifically, a disparity map which represents

the depth information can be derived from a set of stereo images. In general, stereo

vision provides a precision approach to grab the depth information.

Stereo vision produces the depth information by determining the correspondences

among a set of stereo images. With the fundamentals of multiple-view geometry, it

has been proved that the precise orthogonal distance from an object point to the

baseline of multiple views can be derived from at least two projective points of the

object point among the views if enough parameters about the view points are given

[9]. Given that multiple views of a scene are available, in a stereo vision problem,

the first step to measure the distance of an object point is to find out its projec-

tive points in all views. The process to find out the projective points is called the

search for stereo correspondences. For the depth information of an entire scene, the

distance of every object point is computed by this way. In a digital image, a scene

is represented by discrete pixels, so the correspondences of objective points becomes

the correspondences of pixels. Once all pixel correspondences are determined, the

disparity for every pixel is computed and finally a dense disparity map is produced

1



by all disparities for the entire scene.

Motivated by the effectiveness of stereo vision approach, a stereo vision based

distance sensing system is built in our research. For extracting dense and reliable

depth information from a scene, the stereo vision approach is usually computation-

ally expensive. Meanwhile, modern applications such as robot navigation and vehicle

surveillance require real-time processing. The challenge is the tradeoff between pre-

cision and processing time. Aiming to tackle this challenging task, the objective of

our work is to produce the dense disparity maps in real time as video.

1.2 Common Strategies for Stereo Vision Systems

To build a stereo vision system, different strategies can be applied with regard to

both stereo correspondence algorithms and implementation platforms.

Since all stereo correspondence algorithms are processing based on raster scan-

lines, the stereo correspondence algorithms can only be effective under an assumption

that all scanlines from one stereo image must correspond to the scanlines from any

other stereo image. In order to realize this assumption, there are two ways. One

way is to project all pixels in the stereo images onto a new set of coordinates so that

scanlines of the two images correspond to each other. The process of this projection

method is called rectification. The other way is to mount the stereo cameras with

their lens axes in parallel and their projective planes being coplanar so that the

scanlines from any stereo image are corresponded.

Stereo correspondence algorithms are commonly categorized into global algo-

rithms and local algorithms depending on the optimization technique used within the

algorithms [21]. Typical global algorithms include dynamic programming [7][16][20][2],

graph cuts [3] and belief propagation [22], while most local algorithms are window-

based correlation algorithms [11][15][14][13].

With regard to the implementation platforms, most stereo vision systems were re-

alized by plain software and operated by CPU in a PC. However, with the increasing

demands for large image resolution and fast processing time, high-performance GPU

is introduced to implement stereo vision system. Meanwhile, hardware implementa-

tions on FPGA and ASIC are also developed to meet these demands. Compared to
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software implementations, hardware implementations are advantageous to speed up

the processing with the parallelism.

1.3 Current State of Related Technologies

In order to explore the stereo vision systems in our research work, some available

stereo vision systems are reviewed. The descriptions of the systems focus on several

aspects, including the system platform, the basic stereo correspondence strategy, the

image size, the number of evaluated disparity levels and the frame rate achieved.

Forstmann et al. [7] introduce a stereo system based on dynamic programming.

The system applies a two-step dynamic programming based method, and it is imple-

mented on an AMD AthlonXP 2800+ CPU. The system uses several techniques for

speed optimization, such as the reduction of the matrix size in dynamic programming

algorithm, implementing the main part of the stereo algorithm using the assembly

language by integrating the Multimedia Extension commands (MMX), applying a

coarse to fine strategy, and the compiler optimizations. The system can reach a

frame rate of 12.3 fps at a VGA resolution with 50 disparity levels, and 58.5 fps at

320× 240 with 32 disparity levels. The system is evaluated with various numbers

of disparity levels, of which the maximum is 100 levels. As the number of disparity

levels increases, the frame rate gets lower.

The DeepSea G2 stereo vision system is developed by Woodfill et al [28]. The

system is implemented on a customized ASIC, an FPGA, a DSP/coprocessor, a

Power PC running Linux and an Ethernet connection. The system decomposites the

computational work into smaller tasks, which are then assigned to specific hardware

devices. A Census transform based correlation algorithm is applied in this system.

The stereo correspondence module of this system can reach 200 fps at 512×480 res-

olution with 52 disparity levels. And it is mentioned that the overall system runs at

30 fps for an example application in the authors’ paper.

A multiple camera stereo system is developed by Kanade et al [14]. The system

contains two subsystems: a Laplacian of Gaussian (LoG) subsystem and a SSAD

subsystem. The input stereo image pairs are filtered by a LoG mask in order to

extract the edge features before the stereo correspondence algorithm, which is based

3



on the Sum of SAD (SSAD) with a window-based correlation algorithm. The system

is implemented on a Texas Instruments C40 DSP array, and has stereo head with

up to five cameras. It performs at 30 fps for a 200×200 image size with 32 disparity

levels.

Humenberger et al. [11] introduce a stereo system using the Census transform

based correlation algorithm. The algorithm uses a sparse Census transform mask

instead of the conventional dense mask, which improves the probability of correct

matches. The system is implemented on various platforms, including implementa-

tion on PC with Intel Core Duo 2.14 GHz CPU, a TI TMS320C6461 1GHz DSP,

and a NVIDIA GeForce GTX 280 GPU. The implementation on GPU provides the

best performance, an estimated 573.7 fps at a 320×240 resolution.

Diaz et al. [5] introduce a novel technique for stereo correspondence based on

phase measurement. The system is implemented on a Xilinx Virtex-II FPGA and

can run at 52 fps for a 1280×960 resolution.

Point Grey Research Inc. [17] develops a PC-based stereo system, which is im-

plemented on a 2.8 GHz Intel Pentium 4 CPU. It can reach 83 fps at a 320×240

image size with 32 disparity levels, and 4.4 fps at 640×480 with 96 disparity levels.

Videre Design [27] produces a stereo system called Stereo on a Chip (STOC),

which uses a window-based SAD stereo algorithm. It is interfaced by IEEE 1394,

and it can reach 30 fps at VGA size with 64 disparity levels.

In review of the available stereo systems, we can notice that most stereo sys-

tems are based on high-speed platforms such as FPGA, GPU and DSP, because of

the massive demands for real-time stereo vision applications nowadays. Meanwhile,

correlation algorithms are the most common methods for fast processing.

1.4 Target Methods Studied in This Thesis

This research focuses on two-view stereo vision. At the first stage, a couple of stereo

correspondence algorithms are explored and analyzed. Specifically, global algorithms

that are analyzed include the dynamic time warp (DTW) algorithm and its extension,

DTW with quantization algorithm [25][18]. Meanwhile, local algorithms are several

window-based correlation algorithms such as Sum of Squared Differences (SSD), Sum
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of Absolute Differences (SAD) and Census transform correlations. The performances

of these algorithms are analyzed and compared by varying their parameters.

The target platform to implement this stereo vision system is an Altera DE2

board featuring an Altera Cyclone R© II 2C35 FPGA [1]. By this means, the stereo

vision system is modeled using Verilog hardware description language (HDL) and

realized by logic elements. Two Terasic TRDB-DC2 image sensors [26] are mounted

to build a pair of stereo cameras and a LCD monitor is used to display the produced

disparity maps.

1.5 Outline of the Thesis

Chapter 1 introduces the motivation of this research work, common strategies for

stereo vision systems, current state of related technologies as well as the objective

of this research work. Chapter 2 introduces the multiple view geometry on which

the 3D reconstruction is based, and also some reviews on the fundamentals of stereo

correspondence algorithms. In Chapter 3, several common stereo correspondence

algorithms are discussed in more details. Chapter 4 analyzes the performances of

selected stereo correspondence algorithms by varying their parameters. Chapter

5 demonstrates the FPGA implementation of the stereo vision system using the

proposed stereo algorithm. Chapter 6 presents a functional simulation of the imple-

mented stereo system using the simulation tool ModelSim-Altera simulator. Every

single disparity map produced by the simulation is used to evaluate the capability

of the system to produce good-quality disparity maps. Also, an evaluation of the

run-time performance of the implemented stereo vision system is given. Chapter 7

concludes this thesis and discusses our future work.
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Chapter 2

Backgrounds

2.1 Stereo Vision Geometry

Multiple view geometry is the theoretical fundamental of the reconstruction of a 3D

scene structure. Our research focuses on a two camera configuration. Hence, only

the relevant two-view geometry is introduced and discussed in detail here.

epipolar plane
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e
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Figure 2.1: Point correspondence geometry. Left: A 3D point X forms
an epipolar plane Π with the projective points x and x′, the epipoles e
and e′, the optical centers C and C ′. Right: Given a projective point
x, its corresponding point x′ lies on the epipolar line l′.

In the two-view geometry, the intrinsic projective between the two views is called

epipolar geometry [9]. The epipolar geometry is independent of scene structure, and

only depends on the cameras’ internal parameters and their relative position.

Algebraically, this geometry is represented by the fundamental matrix F . The

fundamental matrix is a 3× 3 matrix of rank 2. With the projective points of a 3D

point X on the image plane of each camera, x, x′, the fundamental matrix F satisfies

the relation

x′>Fx = 0. (2.1)
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The epipolar geometry has the property that benefits the searching for corre-

sponding points in stereo correspondence. Thus, we start from introducing the

epipolar geometry. As shown in Figure 2.1, X is a 3D point in space, and x and x′ are

epipolar plane
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'
ll

baselineC

e
'
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X

X

Figure 2.2: Epipolar plane. Left: An epipolar plane Π with epipoles e
and e′, epipolar lines l and l′. Right: The epipolar planes rotate about
the baseline as the position of point X varies.

the projective points of X on each image plane respectively. c and c′ are the camera

centers. The line connecting the two camera centers is defined as the baseline. It

is evident that the space point X, the projective points x and x′, and the camera

centers c and c′, are coplanar. Denote this plane as π. It also shows that the rays

back-projected from x and x′ intersect at X, and they are coplanar in π as well.

Suppose that we only know the image point x, the stereo correspondence algo-

rithm is to search for the image point x′ in the second image. As we can see, the

plane π can be determined by the baseline and the ray defined by x and C. We also

know that the point x′ should lie in the plane π as well. Hence, the image point x′

lies on a line l′, which is the intersection line of the plane π and the second image

plane. From a different point of view, this line l′ is also the projection of the ray

back-projected from x in the second image plane. Thus, this is a map from a point

in the first image to its corresponding line in the second image. In terms of stereo

correspondence, to search for the point corresponding to x need not cover the entire

second image but can be restricted to the line l′.

There are some terminologies in the epipolar geometry [9]. Firstly, the epipole is

the point of intersection of the baseline with the image plane. We can see that the

epipole is the projection of one camera center on the other image plane. Also, it is

the vanishing point of the baseline direction. Point e and e′ are the epipoles shown in

Figure 2.2. An epipolar plane contains the baseline and the 3D point X. It is shown

as the plane π in Figure 2.2. As the position of the point X varies, the epipolar
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planes ”rotate” about the baseline. The intersection line of an epipolar plane with

the image plane is an epipolar line. All epipolar lines intersect at the epipole.

Once a set of image point correspondences xi ↔ x′i is determined, the reconstruc-

tion of the scene structure can be started. Since our current research focuses on the

stereo correspondence algorithms rather than the actual reconstruction of the 3D

points, only a brief conceptual approach to reconstruction is described here.

Suppose that only the image point correspondences are known, but cameras’

internal parameters and their relative position are not known. The reconstruction

task is to find the camera matrices P and P ′, and then the 3D points Xi, which

satisfy

xi = PXi (2.2)

x′i = P ′Xi (2.3)

for all i.

Given the image point correspondences xi ↔ x′i, the fundamental matrix F is

computed at first, with the condition x′iFxi = 0 for all i. Next, a pair of camera

matrix P and P ′ can be computed with their corresponding fundamental matrix F .

Based on triangulation, the two rays back-projected from the image corresponding

points x and x′ lie in a common epipolar plane, so the two rays will intersect in

some point X, and it satisfy x = PX, x′ = P ′X. However, the 3D points on the

baseline cannot be determined by this approach, since the two back-projected rays

are collinear and intersect along their whole length.

With the epipolar constraint, the search for point correspondences over the entire

image is restricted to the search on matching epipolar lines. Moreover, the calcu-

lations associated with stereo matching algorithms are considerably simplified when

the pairs of stereo images are rectified. Rectified stereo images share a common

image plane parallel to the baseline joining the two optical centers [8]. In this case,

the rectified epipolar lines are scanlines of the images with an appropriate choice

of coordinate system. To realize the rectification, a general way is to project the

original images onto a new image plane. This is shown in Figure 2.3. Rectification

is a crucial pre-processing to simplify the search for point correspondences. In this

thesis, all discussions on stereo matching algorithms in the following chapters are
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with the assumption of rectified stereo images. When the two stereo cameras are
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Figure 2.3: Rectification. Two image planes are projected onto a
common plane. The projective points x and x′ are re-projected to
point x̄ and x̄′.

mounted with their image planes being coplanar and their focal lens axes in parallel,

the stereo images are rectified. Suppose there is no rotation with either of the image

plane, the computation of the distance information can be simplified in this case.

Figure 2.4 illustrates the geometry for this case. Figure 2.4 only shows the geom-

LI RI
d

v
'

v
r

f fx
'

x

u '
uX

Figure 2.4: Rectified epipolar geometry. The orthogonal distance v
of a point X to the focal lens is computed using the focal length f ,
baseline distance d and the disparity |IL − IR|.

etry in horizontal directions. Denote that the focal length of both cameras’ lenses

is f , and the length of the baseline is d. A 3D point X lies in the 3D space at the

horizontal position (u, v) with respect to the coordinates of the left camera, and at

the horizontal position (u′, v′) with respect to the coordinates of the right camera.
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X is projected onto the left image plane at point x, and projected onto the right

image plane at point x′. The disparity for the pair of corresponding points x and x′

is defined as |IR − IL|, where IL is the displacement of x to the v axis on the left

image plane, and IR is the displacement of x′ to the v′ axis on the right image plane.

Based on the trigonometry, it is simple to get

−IL

−f
=

u

v
(2.4)

IR

−f
=
−u′

v′
(2.5)

u + (−u′) = d. (2.6)

Thus, v is computed as

v = f × d

|IR − IL| . (2.7)

Hence, with the information about the cameras’ relative position and their focal

length, the distance v with respect to the left image coordinates can be computed.

It is evident that the distance v is inversely relative to the disparity |IR − IL|.

2.2 Related Work in Stereo Matching Algorithms

In computer vision, the projection of the scene in the image plane is represented

by pixel values. In terms of a grayscale image, each pixel is valued by a single

component usually called the intensity. Areas with the continuous intensities are

considered as the object surfaces, while edges or corners of an object are those areas

with intensity discontinuities. This is based on the assumption of the Lambertian

reflection, with which the appearance of the object surface to an observer does not

vary with viewpoints. Similarly, color image is represented by pixel values consisting

of multiple component rather than one. For example, a pixel value is determined by

luminance and chrominance components in the YUV format, and for RGB format,

there are red, green and blue components. In terms of the stereo correspondence

algorithms, the intensity or the color components of each pixel are used to search for

the best matches between the stereo images.

Generally, a stereo correspondence algorithm searches for the best matched pixels

between the input stereo images. In a two-view case, the input of an algorithm are a
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pair of stereo images captured from two digital cameras mounted on a stereo camera

rig. For a stereo pair, one image is regarded as the primary image, and the other

is regarded as the secondary image. A reference image is necessary. It could be

one of the stereo images or a cyclopian view between the stereo pair. In our case,

we will refer to the primary image as the reference image. Thus, given a pixel in

the primary image, its corresponding pixel is searched in the secondary image. For

the output of the stereo correspondence algorithms, most of the algorithms produce

a univalued disparity function d(x, y) with respect to the reference image, where x

and y are the coordinates of pixels in the reference image. The function forms a

disparity map which has the same image size as the reference image. There are also

algorithms that produce multi-valued disparity functions, but we only focus on those

with univalued disparity functions in our work. Algorithms with multiple camera

inputs basically extend from the algorithms with two-camera inputs, and can be

generalized to arbitrary camera configurations.

Recall the case where two image planes of the two stereo cameras are coplanar.

In this case, the epipolar lines on the image plane are in parallel. With epipolar

lines in parallel, the stereo images are regarded as the rectified stereo images. When

the stereo images have been rectified, the calculations associated with the stereo

algorithms are often considerably simplified. In the rectified images, the epipolar

lines are the scanlines of the image, and they are also parallel to the baseline, with

an appropriate choice of coordinate system. Therefore, in a stereo algorithm, the

search for the corresponding pixel of a pixel in the primary image can be restricted to

its corresponding scanline in the secondary image. Image rectification can be realized

by projecting the original image onto a new image plane. But with the special case

discussed previously, the stereo images are already rectified. This is illustrated in

Figure 2.5.

In the case of rectified stereo images and an appropriate coordinate system, the

correspondence between a pixel (x, y) in the primary image and its corresponding

pixel (x′, y′) can be described as

x′ = x + d(x, y) (2.8)

y′ = y (2.9)
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Figure 2.5: A pair of rectified stereo images. Rectified stereo images
share a common plane and the epipolar lines are scanlines of the images.

where d(x, y) is the disparity value with respect to the primary image. A space

(x, y, d) is defined as the disparity space. The disparity space can be used for a

function that represents the confidence or log likelihood of a particular match implied

by d(x, y).

Stereo correspondence algorithms can be categorized by different characteristics.

According to the number of pixels processed, the algorithms can be divided into

two types: feature-based and area-based algorithms [11]. Feature-based algorithms

firstly extract the feature pixels in the images, such as the object edges or corners,

and then it searches for correspondence between these feature pixels. Since it only

finds the disparities of the feature pixels, it results in a sparse disparity map, and the

disparities of other non-feature pixels need to be determined by some other ways.

On the other hand, area-based algorithms search for correspondence for every pixel

in the images. Thus, they compute disparities for all pixels and generate a dense

disparity map.

A more common categorization is based on the optimization methods used in the

stereo correspondence algorithms. The algorithms are then divided into global and

local algorithms [21]. A global algorithm applies a global optimization strategy. Such

algorithm uses all pixels in the images to construct a global cost function and mini-

mizes it to find out the best matches. Common global algorithms include dynamic

programming, graph cut, belief propagation, etc. In contrast, a local algorithm uses

local pixel features to determine the correspondences. The disparity computation

for a given pixel only depends on pixels within a finite window around it. Usually
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the correlation between these windows of pixels is used as the cost function. The

window-based correlation algorithm is a typical local algorithm.

In general, a stereo correspondence algorithm contains several steps. Firstly, a

pre-processing step is usually applied to eliminate the noises in the images. Sec-

ond, the matching costs for each pixel at each disparity level are computed. The

matching cost function indicates the likelihood of a correct match. Some common

matching cost computation methods for a pixel (x, y) are shown below. They are the

Sum of Absolute Difference, the Sum of Squared Differences, the Normalized Cross

Correlation and the Zero Mean Sum of Absolute Differences.

SAD =
∑
i=n

∑
j=m

|I1(x + i, y + j)− I2(x + d + i, y + j)| (2.10)

SSD =
∑
i=n

∑
j=m

(I1(x + i, y + j)− I2(x + d + i, y + j))2 (2.11)

NCC =

∑
i=n

∑
j=m

I1(x + i, y + j)I2(x + d + i, y + j)

√∑
i=n

∑
j=m

I1(x + i, y + j)2
∑
i=n

∑
j=m

I2(x + d + i, y + j)2
(2.12)

ZSAD =
∑
i=n

∑
j=m

|(I1(x + i, y + j)− Ī1)− (I2(x + d + i, y + j)− Ī2)|, (2.13)

where

Ī =
1

nm

∑
i=n

∑
j=m

I(x + i, y + j). (2.14)

I1 is the primary image and I2 is the secondary image. The matching cost for pixel

(x, y) is calculated within a n×m block surrounding it, and d is the disparity levels.

Finally, the best match for each pixel is determined by an optimization method,

which can be a global or local strategy.
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Chapter 3

Stereo Matching Algorithms

In an image-based distance sensing system, a key part of it is to find the best

matched pixels between the pairs of stereo images. This is achieved by a stereo

matching algorithm. Different stereo matching algorithms result in different cor-

rectness of matches, computational complexities, etc. In this chapter, we examine

a couple of different stereo matching algorithms and find out their advantages and

disadvantages when used in a computer stereo vision system. Commonly, the stereo

matching algorithms can be categorized into two types: global and local algorithms,

depending on whether a global or local optimization technique is used in the algo-

rithm.

3.1 Global Algorithms

A global stereo matching algorithm applies a global optimization technique, which

constructs a global cost function. The cost function is then minimized so as to

determine the best matches with minimum costs. Common global algorithms include

dynamic programming, graph cuts and belief propagation.

Dynamic programming [7][16] is a method that finds an optimal path through

all possible matches on a scanline basis. In a recursive manner, the path with the

lowest matching cost is chosen and finally the recursion leads to an optimal solution

to the pixel correspondences.

Another global optimization approach is called graph cuts [3]. Similar to the

dynamic programming approach that finds an optimal path for the corresponding

scanlines, it builds up a weighted graph and seeks for the optimal flow of the graph.

The difference from dynamic programming is that the graph cuts method considers

the consistencies in both horizontal and vertical directions rather than the only
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horizontal direction in dynamic programming. However, the computation of the

optimal flow in graph cuts is massive. Therefore, it is not appropriate for fast

computing.

A third global matching algorithm is the belief propagation [22]. It is an iterative

strategy that uses Markov random fields (MRFs) to determine the best matches.

Fundamentally, the stereo matching is modeled by three coupled Markov random

fields: a smooth disparity field, a spatial line process representing the presence or

absence of depth discontinuities, and a spatial binary process indicating occlusion

regions. The stereo model is then built in mathematics and the optimal solution to

the model is to be found. The solution is computed using a Markov network which

is an undirected graph. In the graph, a node is defined to a disparity level and holds

its matching cost. Also, a belief value of a node is defined as the sum of its matching

cost and the received belief values from other nodes. At every iteration, each node

sends its belief value to its connecting nodes and the belief value of each node is

updated. Finally, the best match is determined by the lowest belief value.

In review of other researchers’ work, it is concluded that dynamic programming

is a more efficient global algorithm for fast processing. In the following sections, we

will examine dynamic programming in more details.

3.1.1 Dynamic Programming

Dynamic programming is a computer algorithm that is usually used in optimization

problems. It solves the problems by combining the solutions to subproblems in a

recursive manner [4]. In dynamic programming, the solutions to subproblems are

stored in a table once computed, and will be never recomputed again when the same

subproblem is encountered. When computing the solution to the problem, the solu-

tions to subproblems just need to be looked up in the table. This technique reduces

the computational complexity by avoiding the work of recomputation of the same

subproblem.

A problem that is applicable to be solved by dynamic programming must have

two characteristics: optimal substructure and overlapping subproblems.

Firstly, the structure of an optimal solution to the problem needs to be examined.

If an optimal solution to the problem contains within it optimal solutions to subprob-
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lems, the problem itself exhibits optimal substructure. In dynamic programming, an

optimal solution to the problem is built from the optimal solutions to subproblems.

That is, we first find the optimal solutions to subproblems and, having solved the

subproblems, we find an optimal solution to the problem. When finding an optimal

solution to the problem, the algorithm needs to make a choice among subproblems

as to which we will use to solve the problem. The cost of the problem is usually the

costs of the subproblems plus a cost of the choice itself.

Secondly, the structures of the subproblems need to be the same. In another word,

the dynamic programming algorithm recursively solves the same type of subproblems

over and over for the problem, rather than always generating new subproblems. In

this situation, we say that the optimization problem has overlapping subproblems.

Since the dynamic programming solves the same subproblem by the same way, and

solve each subproblem only once, the computation takes polynomial time.

In general, the dynamic programming algorithm contains four steps. Step 1 is to

characterize the structure of an optimal solution. In Step 2, the value of an optimal

solution is defined recursively. Step 3 computes the value of an optimal solution in

a bottom-up fashion so that the final optimal solution to the problem can be de-

termined by recursively computed values of optimal solutions to subproblems. And

finally, Step 4 constructs an optimal solution from computed information obtained

in Step 3. Usually, we store which choice we made in each subproblem in a table

so that we can reconstruct the solution by the table. A mathematical explanation

of dynamic programming in practice is given with an example of the scanline-based

correspondence problem in our research in Section 3.1.2.

Dynamic programming is suitable to solve problems such as the sequence align-

ment problems. One of the examples is the automatic speech recognition problem.

The objective is to seek, among a number of audio sequences, an audio sequence that

is the most similar to a standard audio sequence predefined in a audio library. More

generally, the dynamic programming algorithm can be used to compute the similarity

between two audio sequences, and finds the best match. Other problems that dy-

namic programming is applicable to solve include the determination of optimal play

in chess endgames, the optimal order for performing chain matrix multiplication, the

longest common subsequence problem, the matching of gene sequences, etc.
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3.1.2 Dynamic Time Warp

Dynamic time warp (DTW) algorithm [6][23] is a technique included in the gen-

eral dynamic programming algorithm. It is used to determine the correspondences

between two sequences, particularly the corresponding elements of two sequences.

The dynamic time warp algorithm has been widely used for temporal alignment of

audio sequences in speech recognition problems. Similarly, the algorithm can also be

applied to the alignment of two scanlines in a stereo correspondence problem.

Recall that the scanlines are corresponded when the pair of stereo images are rec-

tified aforementioned. The space to search for a corresponding pixel to a given pixel

is limited to only two corresponding scanlines. The dynamic time warp algorithm

works appropriately for this pixel correspondences problem.

The dynamic time warp algorithm follows the general procedure of the dynamic

programming approach.

Step 1. Characterizing the structure of the problem.

The objective of our problem is to find the pixel correspondences. The criteria

for the correspondences is the similarity between one pixel in the left scanline and

another pixel in the right scanline. Consider that there are N pixels in the left

scanline and M pixels in the right scanline. Here, the similarity value between two

pixels is defined as

s(n,m) =

L−1
2∑

k=−L−1
2

|Il(n + k)− Ir(m + k)|, (3.1)

where n represents the nth pixel in the left scanline, m represents the mth pixel in

the right scanline, with 1 6 n 6 N and 1 6 m 6 M . L is the length of a 1D window

that contains the given pixel and its neighboring pixels. Commonly the length of

L is set to odd number so that the given pixel lies at the center of the window.

By Equation (3.1), the similarity between two given pixels is the sum of absolute

differences (SAD) between two windows of pixels surrounding the two given pixels.

Step 2. Defining and computing the value of an optimal solution recursively.

A cost value for each pair of pixels is defined and computed recursively by using

the similarity values computed previously. Denote the left scanline up to the nth
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Figure 3.1: Computation of similarity value. With a window length of
L, the similarity value between pixels Il(i, n) and Ir(i,m) is computed
using the two windows of pixels surrounding the two given pixels.

pixel and the right scanline up to the mth pixel as

X1...n = {Il(1), Il(2), ..., Il(n)} (3.2)

Y1...m = {Ir(1), Ir(2), ..., Ir(m)}. (3.3)

Then the cost value can be computed recursively as

C(n,m) = C(X1...n, Y1...m) (3.4)

= s(n,m) + MIN [C(X1...n−1, Y1...m−1), C(X1...n−1, Y1...m), C(X1...n, Y1...m−1)].

(3.5)

The definition and computation of the cost value C(n,m) can be explained as the

following. For each computation in the recursion, the value C(n,m) is resulted from

the optimum of the three optimal solutions to its subproblems C(n − 1,m − 1),

C(n − 1,m) and C(n,m − 1), plus its own cost s(n,m). Thus, from the start of

the scanlines to the end, the overall cost values are computed in a recursive manner,

and stored in a table (or a matrix equivalently). Finally, the optimal solution to

the correspondence problem is resulted from every optimal solution to each of the

correspondence subproblems.

Step 3. Reconstructing the optimal solution.

Since the values C(n,m) are already stored in a table in the previous step, it

is simple to reconstruct the optimal solution by looking up the values in the table.

Starting from the end of the recursion, which has the optimal cost value to our

correspondence problem C(N,M) stored in the location (N,M) in the table, the

reconstruction traces backward to reach the optimal solutions to the subproblems,

which are stored at location (n− 1,m− 1), (n− 1,m) and (n,m− 1), for a current
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location (n,m). An optimal solution to the subproblems has the optimal value among

C(n− 1,m− 1), C(n− 1,m) and C(n,m− 1). When the trace reaches the location

(1, 1), the reconstruction finishes as every correspondence with the minimum cost is

found. In the end, a disparity map is generated when the correspondences between

each pair of scanlines are determined.
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(a) Similarity matrix (b) Cost matrix

Figure 3.2: An example of similarity matrix and cost matrix. (a)
A similarity matrix is built using the similarity values. (b) A cost
matrix is built from the similarity matrix. The backward trace is shown,
indicating the best matches.

The algorithm is demonstrated in the pseudo code shown in Algorithm 1. A

table b(n,m) is used to record the choice we made to the optimal solutions to sub-

problems in every recursion. With the choices recorded, it is simple to reconstruct

the optimal solution without recomputing the cost values. Once C and b are ob-

tained, the reconstruction can be easily achieved by the table b. That is, the pixel

correspondences are determined.

When using dynamic time warp algorithm to determine the stereo correspon-

dences, an ordering constraint of the scanlines needs to be satisfied [8]. The ordering

constraint describes a situation where the order of all projective points on one scan-

line needs to be in the same order as those projective points on the corresponding

scanline. However, the ordering constraint may not be satisfied by real scenes, in

particular when small solids occlude parts of larger ones. The ordering constraint is

illustrated in Figure 3.3.

For the case shown in Figure 3.3(a), the ordering constraint is satisfied. On both
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Algorithm 1 Recursive computation of the optimal cost values to subproblems.

N ← length[Il]

M ← length[Ir]

s(1, 1) ← SAD[Il(1), Ir(1)]

C(1, 1) ← s(1, 1)

for m ← 2 to M

do s(1,m) ← SAD[Il(1), Ir(m)]

C(1,m) ← s(1,m) + C(1,m− 1)

b(1,m) ← “ ← ”

for n ← 2 to N

do for m ← 1 to M

do s(n,m) ← SAD[Il(n), Ir(m)]

if m == 1

then C(n,m) ← s(n,m) + C(n− 1,m)

b(n,m) ← “ ↑ ”

else if MIN [C(n− 1,m− 1), C(n− 1,m), C(n,m− 1)] == C(n− 1,m− 1)

then C(n,m) ← s(n,m) + C(n− 1,m− 1)

b(n,m) ← “ ↖ ”

else if MIN [C(n− 1,m− 1), C(n− 1,m), C(n,m− 1)] == C(n− 1,m)

then C(n,m) ← s(n,m) + C(n− 1,m)

b(n,m) ← “ ↑ ”

else if MIN [C(n− 1,m− 1), C(n− 1,m), C(n,m− 1)] == C(n,m− 1)

then C(n,m) ← s(n,m) + C(n,m− 1)

b(n,m) ← “ ← ”

return C and b
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Figure 3.3: Ordering constraint. (a) Ordering constraint is satisfied.
The projective points of A, B and C on both of the image plane are in
the same order. (b) Ordering constraint is not satisfied. Point A and C
are partly occluded and the projective points on the two image planes
are in different orders.

of the image planes, the projective points of points A, B and C are in the same

order from left to right. Therefore, it is appropriate to apply the dynamic time

warp algorithm to seek pixel correspondences for this case. In Figure 3.3(b) where

a small solid object is in front, the situation is quite different. We can see that the

projective points of B and D have different orders on the image planes. Moreover,

the points A and C are occluded by the small object in front. It leads to a partial

occluded situation where the point can be seen in one camera but cannot be seen in

the other camera. When the dynamic time warp algorithm is used for this case, it

will result in errors on the search of correspondences. Since the dynamic time warp

Figure 3.4: The Tsukuba stereo images.

algorithm is a scanline-based approach in searching for the pixel correspondences,

it does not take into account the relation between neighboring scanlines. Therefore,
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Figure 3.5: An example of scanline profiles. The upper plot shows
the profile of the 107th scanline from Tsukuba left image. The lower
plot shows the profile of the same scanline from Tsukuba right image.
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Figure 3.6: Similarity matrix and cost matrix for the 107th scanlines.
The red line shows the backward trace.

it leads to the problem of inter-scanline inconsistency and results in a horizontal

streaks phenomena in the output disparity map.

Here is an example showing that the dynamic time warp algorithm is used to seek

the pixel correspondences for the Tsukuba stereo pair. Figure 3.4 show the Tsukuba

stereo pair. In this example, the Tsukuba stereo images in use are grayscale images

with the grayscale values ranging from 0 to 255 (equivalently, the width of the

grayscale value is 8 bits). The resolution of the images is 384× 288.

We take the 107th lines of the stereo pair as an example to illustrate the scanline-

based dynamic time warp algorithm. The scanline profiles are shown in Figure 3.5.

As is seen, the scanline profile of the Line 107 contains most of the eligible grayscale

values in the range of 0 and 255. And it has a couple of steep ascents and descents
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Figure 3.7: Computed disparity map of Tsukuba stereo images. The
disparity map is computed using the dynamic time warp algorithm with
a window length of 5. Disparity values are scaled by a factor of 8.

which indicate the object boundaries. Moreover, it is evident that the left and right

scanline profiles are quite similar, except for some lateral shifts. Those lateral shifts

determine the disparities according to the theory mentioned previously.

The similarity value for each pixel in the scanlines is computed using the Equation

(3.1). The length of the local window is set to 5 in this example. Figure 3.6(a) shows

the similarity matrix with respect to the 107th left and right scanlines. Since there

are 384 pixels in each scanline, the size of the similarity matrix is 384 × 384. The

cost values can then be computed using the similarity values. The cost matrix for

the 107th scanlines is shown in Figure 3.6(b). Its size is the same as the similarity

matrix. The backward trace starts at the lower right corner of the cost matrix once

the matrix is constructed. For cost value stored at location (n,m), the backward

trace follows the rule that it traces towards the location with the minimum value

among those stored in locations (n− 1,m− 1), (n− 1,m) and (n,m− 1). The trace

is highlighted by the red line in Figure 3.6.

Figure 3.7 shows the computed dense disparity map. The size of the disparity

map is the same as that of the input stereo image. The disparities are directly

conveyed by the value of each pixel in the disparity map. Brighter areas indicate

larger disparity levels, while darker areas indicate smaller disparity levels. For the

purpose of better displaying, the disparity values are scaled to a certain range so that

the objects can be distinguishably displayed in the disparity map shown in Figure

3.7.

Compared to the input stereo image, the computed disparity map indicates the

distance information on different objects. For example, the lamp is in front of the
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statue, and the desk is further behind. It can be seen that part-occlusion exists in

the Tsukuba stereo images. Part of the books behind the lamp, for example, is seen

in the left image but not in the right image. For these regions with part-occlusion,

correspondence errors occur and lead to multiple matches in the backward trace step.

As a result, the boundary of the lamp is distorted in the computed disparity map.

A common way to deal with pixels in the occluded regions is to set their disparity

values to 0 by default. Also, the horizontal streaks phenomena can be noticed in the

disparity map because of the nature of the scanline-based algorithm.

3.1.3 Dynamic Time Warp with Coarse Quantization

An extension to the conventional dynamic time warp algorithm is a method called

the dynamic time warp with quantization method [25][18][24]. As is described in

the preceding sections, the size of the similarity matrix and cost matrix depends on

the number of pixels in each scanline. The number of computations to construct

a similarity matrix and a cost matrix is determined by the number of pixels in a

scanline when computing the correspondences for a pair of scanlines. Since there are

a large amount of iterations involved, the computational expense can be enormous

when the resolution of the input stereo images is large. In order to realize fast

correspondence processing, a solution to reducing the number of computations needs

to be found. Quantization can be an effective way to reduce the computational

burden. Specifically, the input grayscale stereo images are firstly quantized into

several quantization levels rather than being sent to the dynamic time warp algorithm

directly. By the use of quantization, the number of computations on the quantized

stereo images can be dramatically reduced in comparison to the computations on

the original stereo images.

The dynamic time warp with quantization method follows the general procedure

of the DTW algorithm. In addition, it applies a quantization step before the DTW

algorithm.

Step 1. Quantization of the input stereo images.

Linear quantization on pixel values is applied to both of the input stereo images.

The quantization enforces the input images to become more patchy and segmented

images. Since an object surface is usually represented by pixels with similar grayscale
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values, which are quite different from values of other object surfaces, the input images

are segmented by objects and the boundaries of each object are extracted after the

quantization step. Those pixels on the boundaries of objects are regarded as feature

pixels.

Step 2. Dynamic Time Warp algorithm on feature pixels.

The feature pixels extracted at Step 1 are sent to the DTW algorithm instead of

all pixels in the stereo images. The procedure of the DTW algorithm at this step

is the same as that described in the preceding section. Firstly, the similarity value

between two pixels is computed as

s(n,m) =

L−1
2∑

k=−L−1
2

|Il(n + k)− Ir(m + k)|+ α(|n−m|) (3.6)

where n represents the nth pixel in the left scanline, m represents the mth pixel in

the right scanline, with 1 6 n 6 N and 1 6 m 6 M . The term α(|n−m|) is included

here in order to increase the penalty if the nth pixel and the mth pixel are too far

apart. α is the weight. Since the images are quantized and only feature pixels are

used in this method, two feature pixels that are further apart would probably have

a smaller similarity value than the similarity value between two closer feature pixels,

if computed using the Equation (3.1). Under the ordering constraint, however, the

matches are probably incorrect if the two pixels are too far apart. Therefore, the

term α(|n−m|) is necessary here.

Once the similarity values are computed, the cost matrix can be constructed using

Equation (3.4). Note that the cost matrix may not be a square matrix because the

corresponding left and right scanlines could have different numbers of feature pixels

after the quantization step. The backward trace starts at the lower right corner of

the cost matrix and it traces every optimal value based on the rule in Algorithm

1.

Step 3. Reconstructing the non-featured pixels.

For those non-featured pixels, the rule to assign them disparity values is simple.

The run length of each segment of pixels is stored at first. After the disparity values

of all feature pixels are determined, non-featured pixels at each segment would be

assigned the same disparity value as that of the feature pixel in the same segment.

Here, the DTW with coarse quantization method is applied to the Tsukuba stereo

25



pair as an example.
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Figure 3.8: An example of quantized scanline profiles. The pixel
intensity values are linearly quantized to 8 levels. The upper plot shows
the 107th scanline from Tsukuba left image. The lower plot shows the
same scanline from Tsukuba right image.
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(a) Similarity matrix (b) Cost matrix

Figure 3.9: Similarity matrix and cost matrix for the quantized 107th
scanlines. The red line shows the backward trace..

The 107th scanlines of the stereo pair are again used to illustrate the dynamic

time warp with coarse quantization method. In this example, an 8-level linear quan-

tization is applied to each scanline. The quantized scanline profiles of the left and

right images are shown in Figure 3.8. It is evident that the scanlines are segmented

by their pixel values and those feature pixels are extracted.

The similarity values for each feature pixel are computed using Equation (3.6).

The length of the local window is set to 5 here. Figure 3.9(a) shows the similarity

matrix with respect to the quantized 107th left and right scanlines. The size of this
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Figure 3.10: Computed disparity map of Tsukuba stereo images.
The disparity map is computed using the dynamic time warp with 3-
bit quantization algorithm. The window length used is 5. Disparity
values are scaled by a factor of 8.

matrix is 78× 88, which indicates that there are 88 feature pixels in the left scanline

and 78 feature pixels in the right scanline. Notice that, since the numbers of feature

pixels in the left and right scanlines are different, it is inevitable that there would

be multiple matches occurring in the backward trace. The cost matrix is shown in

Figure 3.9(b) and the red line in the figure indicates the backward trace.

The computed disparity map is depicted in Figure 3.10. As is seen, the disparity

map is much more segmented than that computed by the DTW algorithm. An

analysis on the dynamic time warp algorithm and its quantization method will be

given in Chapter 4.

3.2 Local Algorithms

A local stereo matching algorithm applies a local optimization technique to determine

the correspondences. In a local algorithm, the correlations between pixels from the

pair of stereo images are computed as the cost values. The cost values are directly

used as the measurement to determine the best matches. For this reason, the local

algorithms are often regarded as the correlation algorithms. In a local algorithm, it

is common to use a winner-takes-all strategy for optimization. The winner-takes-all

strategy simply chooses the pixel with the lowest cost value as the best match. There

are also some drawbacks with local algorithms. Since local algorithms use finite

windows of pixels to determine the correspondences, the window size directly affects

the performance of the algorithms. Large windows are necessary for textureless
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regions in the image, while small windows work well at boundaries. Therefore,

trade-off must be made on the window size.

Local algorithms are typically window based correlation algorithms. Most com-

monly, the correlations are computed using the Sum of Squared Differences (SSD)

or the Sum of Absolute Differences. Other approaches to compute the correlations

include a local transform to the pixel values, such as the Census transform [30], etc.

3.2.1 Window Based Correlation Algorithms

The window based correlation algorithm is a method that uses the correlation among

finite windows of pixels as the cost function [14]. In this algorithm, the cost value

between any two windows of pixels is computed using the Sum of Squared Differences

(SSD) or the Sum of Absolute Differences (SAD). Recall that the SSD and SAD over
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Figure 3.11: An example of SSD function. The plot shows the com-
puted SSD values for a pixel at the 107th scanline and the 200th column,
with a disparity searching range of 120. Within the range of 120, a local
minimum exists at disparity level 8, which implies the best match.

two windows of pixels are computed as

SSD(x, y, d) =

K−1
2∑

i=−K−1
2

L−1
2∑

j=−L−1
2

(Il(x + i, y + j)− Ir(x + d + i, y + j))2 (3.7)

SAD(x, y, d) =

K−1
2∑

i=−K−1
2

L−1
2∑

j=−L−1
2

|Il(x + i, y + j)− Ir(x + d + i, y + j)| (3.8)

where the windows are centered at pixel (x, y) in the left image and pixel (x+d,y)

in the right image, respectively. With the assumption that the stereo images are

rectified, there is only horizontal disparity d along the x axis. K and L are the

window width and height, which are usually odd numbers so that the computed

pixels lie at the centers of the windows.
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(a) SSD (b) SAD

Figure 3.12: Computed disparity maps for Tsukuba images. The
disparity maps are computed using window based SSD and SAD cor-
relation algorithms. The window size is 3× 3 and the searching range
is 30. Disparity values are scaled by a factor of 8.

In Equation 3.7, for a given pixel (x, y) in one image of a stereo pair, its cost value

computed using SSD or SAD is the function of the disparity level d. Usually, the

disparity level d is set within a certain searching range. When the searching range is

properly chosen, the true matched pixel with the minimum cost value would likely

be found. Figure 3.11 shows an example where SSD values are computed within a

searching range of 120 for a given pixel in the left image. Once the cost values are

computed, a winner-takes-all strategy is used to find the pixel with the minimum

cost value as the best match. The window based correlation algorithm is summarized

below.

Step 1. Computing the cost values.

The Sum of Squared Differences (SSD) or the Sum of Absolute Differences (SAD)

is used to computed the cost values for a given pixel.

Step 2. Finding the optimum.

A winner-takes-all strategy is used for the optimization. The pixel with the

minimum cost value in the secondary image is selected as the best match. A tie-

break rule is needed when there are multiple pixels with the same minimum cost

value.

Step 3. Constructing the dense disparity map.

Once the best match for every pixel in the primary image is determined by Step

1 and Step 2, a dense disparity map can then be constructed.

The emphasis of the window based correlation algorithm is on the matching
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cost computation, which makes a direct effect on the performance of the algorithm.

There are two factors: the window size and the disparity searching range. In a

window based algorithm, pixels within a window are assumed to have the same

characteristic. Therefore, a large window is required for a textureless region like a

smooth surface in the image. On the other hand, a small window is preferred at

object boundaries. For this reason, the window size needs to be chosen properly so

as to solve this conflict. The disparity searching range is the other key part. As is

seen in Figure 3.11, an inappropriate choice of the searching range would probably

result in finding an incorrect local minimum.

Here, an example demonstrates the window based correlation algorithm applied

to the Tsukuba stereo pair. In this example, the window size is set to 3 × 3 and

the disparity searching range is 30 levels. As seen in Figure 3.12, the disparity map

computed by SSD is visually very similar to the disparity map computed by SAD.

3.2.2 Census Transform Based Correlation Algorithm

The strategy of the Census transform correlation algorithm is to apply a Census

transform to the images before the computation of the cost values. The Census

Transform is introduced by Zabih and Woodfill [30]. The transform is based on local

pixel value relations between a given pixel and its neighboring pixels within a certain

window. This relation is given as

ξ(p1, p2) =





0, p1 6 p2

1, p1 > p2

(3.9)

where p1 is the value of the central pixel and p2 represents the value of any other

neighboring pixel within that window. If the value of a neighboring pixel is greater

than or equal to the value of the central pixel, its value is replaced by 0. Otherwise,

its value is replaced by 1. For the central pixel, its value is by default replaced by

0. After the transform is executed, a bit string with respect to the central pixel is

produced, containing all binary values computed from the transform. An example

of the Census Transform is shown below.
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52 53 53

50 51 53

45 48 51

Given a 3× 3 square window of pixels. The pixel of interest is the central pixel with

a value of 51. With Census transformation, the pixel values are replaced by binary

values computed by Equation 3.9, which results as

0 0 0

1 0 0

1 1 0.

This matrix is then rearrange into a bit string. In a row-wise manner, for example,

the bit string is [0 0 0 1 0 0 1 1 0].

This example shows a dense window for the Census Transform. Other than the

dense window, a sparse window can also used for the transform; for example, using

only every other pixel in the window.

Since the Census transform converts the actual pixel values into the relative bi-

nary values between pairs of pixels, the Census transform based correlation algorithm

is insensitive to camera bias and gain differences. However, by the use of relative

binary values instead of the actual pixel values, this algorithm reduces the accuracy

in computing the cost values, which may lead to a higher chance of incorrect stereo

correspondences. The algorithm follows the procedure as follows.

Step 1. Applying the Census Transform.

A Census transform is executed with either a dense or a sparse window. The

transform is applied to a given pixel in the primary image and pixels within the

disparity searching range in the secondary image.

Step 2. Computing the cost values.

Once a set of bit strings are produced by the Census transform, the cost value be-

tween two bit strings is computed using Hamming distance. The Hamming distance

is the number of bits in the bit strings where bits in the same position differ. In

another word, the Hamming distance can be represented by the bit-wise Exclusive-

OR of the two bit strings. With less ones in the resulted bit string, the Hamming

distance is smaller. The pixel windows with similar pixel values relative to the given
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pixel will produce similar bit strings, which results in smaller Hamming distance.

Step 3. Finding the optimum.

A winner-takes-all strategy is simply used for the optimization. The bit string

with the smallest Hamming distance is selected as the best match. If multiple

matches occur, a tie-break rule must be made.

Step 4. Constructing the dense disparity map.

Repeat Step 1 to Step 3 to determine the best match for every pixel in the

primary image. With all matches found, a dense disparity map can be constructed.

An example on the Tsukuba stereo pair shows the performance of the Census

Transform based correlation algorithm. The Census transform window size is set to

11×11 in this example and the disparity searching range is 30 levels. The computed

disparity map is depicted in Figure 3.13. It is evident that the disparity map is

contaminated by noises.

Figure 3.13: Disparity map for Tsukuba images computed using win-
dow based Census transform correlation algorithm. The window size is
11× 11 and the searching range is 30. Disparity values are scaled by a
factor of 8.
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Chapter 4

Analysis of the Stereo Matching Algo-

rithms

In this Chapter, the parameters for the global and local algorithms described

in Chapter 3 are analyzed in detail. The objective is to draw a comparison among

these algorithms by varying their parameters and pick the best choice for our imple-

mentation afterwards. The methodology used for the analysis is described and the

experimental evaluations are presented in this chapter.

4.1 Analysis Methodology

To evaluate the performance of a stereo correspondence algorithm or the effects

of varying some of its parameters, the strategy is to quantitatively compare the

computed disparity map from a stereo image pair to its ground truth data [21].

In our experiments, there are two quality measures computed based on known

ground truth data.

1. Root-Mean-Squared (RMS) error between the computed disparity map dC(x, y)

and the ground truth disparity map dT (x, y),

R = (
1

N

∑

(x,y)

|dC(x, y)− dT (x, y)|2) 1
2 , (4.1)

where N is the total number of pixels in one stereo image.

2. Percentage of bad matching pixels, formula

B =
1

N

∑

(x,y)

M(x, y), (4.2)

where

M(x, y) =





= 1, |dC(x, y)− dT (x, y)| > δd

= 0, others
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N is the total number of pixels and δd is a disparity error tolerance.

The RMS error reflects the absolute error from the computed disparity map. A

large error from one pixel would make a significant contribution to the overall error.

On the other hand, the percentage of bad matching pixels provides a statistical mea-

sure on the matching error. It reflects the overall matching quality of the computed

disparity map.

In addition, the elapsed time of the Matlab program to generate a disparity map

for each stereo algorithm is measured. Although the actual running time depends

on the platform where the algorithm is implemented in practice, the elapsed time

measured here can still reflect the relative efficiency of each algorithm in terms of

running time.

With reference to Daniel Scharstein and Richard Szeliski’s previous work [21]

on the Middlebury Stereo Vision web page [10], four sets of stereo image pairs are

selected as samples to evaluate the performances of different stereo algorithms. These

four image sets are the Tsukuba, Teddy, Cones and Venus, shown in Figure 4.1.

Figure 4.1: Test stereo images. Upper row are the stereo left im-
ages: Tsukuba, Teddy, Cones and Venus. Lower row are their disparity
ground truth images. Disparity values for Tsukuba and Venus images
are scaled by a factor of 8; disparity values for Teddy and Cones image
are scaled by a factor of 4.

These stereo image pairs are available on the Middlebury Stereo Vision web

page. They are captured by a high-resolution digital camera and each set of stereo

images are captured at pure horizontal translation. Therefore, each pair of stereo

images is noise-free and rectified images. All sets of stereo images are made up

of piecewise planar objects, which conforms to our pre-condition on planar stereo

correspondences.
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4.2 Analysis of the Global Algorithms

In this section, an experiment is to analyze two global stereo algorithms: dynamic

time warp (DTW) algorithm and dynamic time warp with quantization algorithm.

4.2.1 Objective

The objective of this experiment is to analyze two parameters: the window length

and the number of quantization bits, in both DTW and DTW with quantization

algorithms. As described in Chapter 3, a similarity value for a given pixel is com-

puted using a local 1D window of pixels centered at it. Here, the window length

parameter is the length of the local 1D window. Regarding the quantization bits,

different numbers of quantization bits are used in the DTW with quantization al-

gorithm, compared to the conventional dynamic time warp algorithm. During this

experiment, the performance of the global algorithms is examined by varying these

two parameters.

In this experiment, the 1D window length is set to 3, 5, 7, 9 and 11. Since the

original input images are represented by 8 bits per pixel, the dynamic time warp

algorithm uses 8 bits and the numbers of bits used for the DTW with quantization

algorithm are 3, 4, 5, 6 and 7.

4.2.2 Results

Figure 4.2 plots the measurements of this experiment.

From the plots we can see that the window length does not affect the performance

of the global algorithms very much. Although there are small improvements in

terms of the RMS errors and bad matching percentages from length 3 to length 5,

the window lengths greater than 5 do not result in a much better performance in

terms of either RMS errors or bad matching percentage. The elapsed time slightly

increases as the window length increases. Overall, a window length of 5 or 7 yields

better results.

For the quantization bits, it is evident that the conventional DTW algorithm

with 8 bits outperforms the DTW with different quantization bits in term of both
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Figure 4.2: Measured values of the global algorithms. The measure-
ments are RMS error, percentage of bad matching pixels and elapsed
time.
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Figure 4.3: Computed disparity maps for Tsukuba, Teddy, Cones and
Venus images. The disparity maps are computed using dynamic time
warp (DTW) algorithm and dynamic time warp with quantization al-
gorithm. First row: DTW. Second row: DTW with 7-bit quantization.
Third row: DTW with 6-bit quantization. Fourth row: DTW with
3-bit quantization. Disparity values for Tsukuba and Venus images are
scaled by a factor of 8; disparity values for Teddy and Cones image are
scaled by a factor of 4.

RMS errors and bad matching percentage. For example, in all four sets of images,

the RMS errors and bad matching percentage with 8 bits are approximately half of

those values with 7 bits. However, the advantage of the DTW with quantization

algorithm is evident. The elapsed time with quantization is much lower than the

time spent with the conventional DTW algorithm. With 7 bits, the elapsed time is

approximately one third less than the time with 8 bits. In this case where only one

bit is reduced, the reduction of time is enormous. Therefore, a trade off between

the time and accuracy is needed in order to retain an acceptable image quality in an

application where time is critical.

Figure 4.3 shows some computed disparity maps for these four sets of stereo im-

ages. For the disparity maps shown in Figure 4.3, the window length is set to 5 and

the results are generated by the DTW algorithm with original 8 bits, as well as the
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quantization algorithm with quantization bits 7, 6 and 3. For the DTW algorithm,

the inter-scanline streaks in the computed disparity maps can be easily seen. This is

because the DTW is a scanline based algorithm and it is unable to retain the inter-

scanline continuities. In the region of object boundaries, there is little distortion to

the object boundaries. In the regions with little textures, the DTW algorithm works

well for the Tsukuba and the Cones images. But for the Teddy and the Venus images

which have large textureless regions, the DTW algorithm produces errors in those

textureless regions.

For the DTW with quantization algorithm, it is evident that more noise is in-

cluded in the disparity maps. In addition to the inter-scanline streaks, there are lots

of black spots. In most of the cases, the black spots are due to the incorrect matches

during searching for the correspondences. When an incorrect match is encountered

for a pixel, that pixel is assigned a disparity value of zero, which is pure black. In

the quantization algorithm, these regions of black spots are expanded because the

pixel values are quantized into fewer levels so that the images become more patchy.

One advantage of the quantization process is that it has a denoising effect to the

input images so that it enables viewing global objects without being affected by the

details inside the global objects. This is shown in the Teddy image as an example.

With this patchy effect, the DTW with quantization algorithm still works well in

the discontinuous regions such as object boundaries. However, it fails in some of the

textureless regions. For example, in the Teddy image, errors occur at the surface of

the big box where the algorithm is unable to yield correct disparity values. Also, it

is more noisy in the textureless regions due to the black spots. Overall, the quanti-

zation algorithm with 7 bits or 6 bits can still generate a disparity map of acceptable

quality. With 7 or 6 bits, the objects are distinguishable and the computed disparity

maps are visually close to the ground truth image. The black spots noise can be

effectively removed by some common denoising technique so that the quality of the

results can be improved. On the other hand, the performance of the DTW quan-

tization algorithm is poor when it uses too less quantization bits. When 3 bits are

used, for example, the noise is enormous and the objects are hardly distinguished in

the disparity map.
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4.2.3 Conclusion

The DTW algorithm provides excellent results of disparity maps in terms of RMS

error, bad matching percentage and visual quality. In Figure 4.2, it is seen that dif-

ferent window lengths do not noticeably affect the quality of the computed disparity

maps. The drawback of the DTW algorithm is that it is time-consuming due to

the iterations as well as the forward and backward computations. The DTW with

quantization algorithm consumes much less time to produce a disparity map, com-

pared to the DTW algorithm. When 7 or 6 bits are used for the quantization, the

algorithm produces acceptable results of disparity maps in terms of visual quality.

However, the quality of disparity map can be poor with too less quantization bits

used.

4.3 Analysis of the Local Algorithms

In this section, the experiment examines the local stereo algorithms including the

window based SSD correlation, SAD correlation and Census transform algorithms.

4.3.1 Objective

The objective of this experiment is to analyze two parameters, the window size and

the disparity searching range, in all three window based local stereo algorithms.

Recall the local algorithms introduced in Chapter 3, the window size parameter

is the size of the local window of pixels used to compute the correlations. The

disparity searching range defines the maximum searching distance with which the

correspondences are searched. During this experiment, the performance of the three

window based algorithms is examined by varying these two parameters.

In this experiment, a square window is used and the window size is set to the odd

values from 3× 3 and 37× 37. The searching range is set to 30 and 60 respectively.

4.3.2 Results

Figure 4.4 plots the measurements of this experiment.
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Figure 4.4: Measured values of the local algorithms. The measure-
ments are RMS error, percentage of bad matching pixels and elapsed
time.
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From the plots in Figure 4.4, it can be clearly seen that the performance of a

window based correlation algorithm is noticeably affected by the window size param-

eter. As discussed in Chapter 3, a small window size works well in the discontinuous

regions such as object boundaries in the image, while a large window size works well

in the textureless regions. For an image with lots of small details, e.g. the Teddy

image, a excessively large window size is unable to retain the discontinuities in the

object boundary regions so that the object boundaries are distorted. On the other

hand, for an image with large textureless regions, e.g. the Venus image, a small win-

dow size fails to search for correct matches in the textureless regions. This is because

the small window is not large enough to include the pixel information of the entire

textureless region. Therefore, it is reasonable to expect that a moderate window size

would probably produce better results overall. The plots in Figure 4.4 prove this

expectation as the best results are produced with window sizes between 7 × 7 and

15 × 15, especially by the SAD and SSD correlation algorithms in terms of RMS

errors and the bad matching percentage. In terms of elapsed time, the algorithms

cost more time as the window size increases.

With respect to the different window based correlation algorithms, the SSD and

SAD algorithms perform similarly. The Census transform algorithm produces more

errors as expected and it needs a much larger window size to reduce the errors to the

same extent as the SSD and SAD algorithms have. The Census transform algorithm

is also more time-consuming than the SSD and SAD algorithms when the window

size is large.

The searching range parameter defines the maximum distance which the search

reaches. The window based correlation algorithms usually use this parameter so that

the search does not necessarily reach the end of each scanline. As illustrated in Figure

4.4, the best searching range selected differs from image patterns. A searching range

of 30 works better for the Tsukuba image, while a searching range of 60 outperforms

the searching range of 30 for the Teddy and the Cones images. And the two search

range values produce similar results for the Venus image. As expected, a searching

range of 30 is more efficient in time.

Figure 4.5 shows some computed disparity maps for these four sets of images. As

illustrated in the plots in Figure 4.5, both the SAD and the SSD algorithms produce
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Figure 4.5: Computed disparity maps for Tsukuba, Teddy, Cones
and Venus images. The disparity maps are computed using window
based correlation algorithms. Tsukuba and Venus images from top to
bottom: SAD with size 3 × 3 and searching range 30, SAD with size
7×7 and searching range 30, SAD with size 35×35 and searching range
30, SAD with size 7 × 7 and searching range 60, SSD with size 7 × 7
and searching range 30, Census with size 7× 7 and searching range 30.
Teddy and Cones images from top to bottom: SAD with size 3 × 3
and searching range 60, SAD with size 7 × 7 and searching range 60,
SAD with size 35×35 and searching range 60, SAD with size 7×7 and
searching range 30, SSD with size 7×7 and searching range 60, Census
with size 7 × 7 and searching range 60. Disparity values for Tsukuba
and Venus images are scaled by a factor of 8; disparity values for Teddy
and Cones image are scaled by a factor of 4.
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excellent results but the SAD algorithm is more efficient than the SSD algorithm in

terms of computational complexity. Hence, some typical disparity maps computed

by the SAD algorithm are selected to illustrate the performances. Also, one disparity

map by the SSD algorithm and two disparity maps by Census transform algorithm

are used for comparison.

For a 3 × 3 window, the disparity maps contain lots of noise, especially in the

textureless regions. The noise is noticeably reduced as the window size is increased

up to 7 × 7. When the window size is excessively large, the object boundaries are

enormously distorted, which can be seen in the disparity maps with a 35×35 window

size. For an image having many large textureless regions, e.g. the Venus image, a

large window size is able to produce better results. As seen in the Venus image of

Figure 4.5, the disparity map with a 7 × 7 window still contains lots of noise in

the textureless regions. A window size larger than 7 × 7 is expected to performs

better. In the disparity map with a 35 × 35 window, the noise is removed and the

disparity map is close to the ground truth image, except that the object boundaries

are deformed. In comparison, a window size of 7× 7 performs well for the Tsukuba

image and the Cones image, since there is no large textureless regions in both images.

For the disparity searching range parameter, the optimal choice of its values

depends on the image patterns. For example, the SAD algorithm performs better

with searching range of 30 for the Tsukuba image, while it produces a better result

with searching range of 60 for the Cones image.

With respect to the three window based algorithms, the SAD and SSD algorithms

performs similarly and both of them result in low-noise disparity maps with a small

window size. On the other hand, the Census transform algorithm requires a larger

window size to produce the disparity maps with the same visual quality. Overall,

these observations conform to the numerical evaluations plotted in Figure 4.4.

4.3.3 Conclusion

The SAD algorithm provides the best performance among the three window based

algorithms, in terms of both numerical evaluations and visual quality. With respect

to the two parameters, a window size between 7 × 7 and 15 × 15 yields excellent

results without consuming too much time in general. The disparity searching range
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depends on the image patterns. Usually, it is reasonable to set the searching range

as one tenth of the image width in practice.

4.4 Overall Comparison

In this section, an experiment compares the DTW algorithms with the window based

SAD correlation algorithm.

4.4.1 Objective

The objective of this experiment is to draw a comparison between the global algo-

rithms and the local algorithms. From the observations in the previous sections,

three algorithms are chosen for the comparison in this experiment. The algorithms

are the DTW algorithm with a window length of 5, the DTW algorithm with 6-bit

quantization and a window length of 5, and the window based SAD correlation algo-

rithm with a window size of 7× 7 and searching range of 60. This experiment aims

to find out the optimal algorithm among them.

4.4.2 Results

Figure 4.6 plots the measures of this experiment. As illustrated in Figure 4.6, the
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Figure 4.6: Analysis measurements of the overall comparison. The
measurements are RMS error, percentage of bad matching pixels and
elapsed time. The algorithms are DTW algorithm with a window length
5, DTW with 6-bit quantization algorithm with a window length 5, and
window based SAD correlation algorithm with window size 7 × 7 and
searching range 60.

DTW algorithm has lower RMS errors than the SAD algorithm for the Tsukuba and
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the Venus images. But for the Teddy and the Cones images, the RMS erros of the

DTW algorithm is very close to the RMS errors of the SAD algorithm. In terms of the

bad matching percentage, these two algorithms have nearly the same performance

for the four sets of images. The DTW with 6-bit quantization algorithm, however,

performs the worst in both RMS errors and the bad matching percentage. When

the elapsed time is considered, the SAD algorithm clearly outperforms the DTW

algorithm, as the time consumed by the SAD algorithm is approximately one third

of the time by the DTW algorithm. The DTW with 6-bit quantization algorithm

also cost more time than the SAD algorithm but much less than the DTW algorithm.

Figure 4.7 shows the computed disparity maps produced by these algorithms. As seen

Figure 4.7: Computed disparity maps for Tsukuba, Teddy, Cones and
Venus images. The algorithms used from top row to bottom row are
DTW algorithm with a window length 5, DTW with 6-bit quantization
algorithm with a window length 5, and window based SAD correlation
algorithm with window size 7×7 and searching range 60. Disparity val-
ues for Tsukuba and Venus images are scaled by a factor of 8; disparity
values for Teddy and Cones image are scaled by a factor of 4.

in Figure 4.7, the disparity maps by the SAD algorithm is slightly noisier than the

disparity maps by the DTW algorithm. But the DTW with quantization algorithm

introduces the most noise. The SAD algorithm performs well in the textureless

regions for the Tsukuba and the Cones images, but it results in noise for the Teddy

and the Venus images. On the other side, the DTW algorithm works well in the

textureless regions but the streaks phenomenon is noticeable.
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4.4.3 Conclusion

Both the DTW algorithm and the SAD algorithm provide better results than the

DTW with quantization algorithm in terms of quality. However, the SAD algorithm

is much more efficient when time is considered. Overall, the SAD algorithm is the

optimal algorithm among them in practice as time processing time is critical.
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Chapter 5

FPGA Implementation

5.1 Overall Strategy of the Stereo Algorithm

A digital logic architecture of the window based SAD correlation algorithm is de-

signed so that the algorithm can be built using hardware device. The design is

described using Verilog hardware description language (Verilog HDL). As mentioned

in previous chapters, there are some parameters to specify in the window based SAD

correlation algorithm, such as the image width, image height, window size and the

disparity searching range. In our current design, the image width, window size and

the disparity searching range are fixed once the architecture of the design is built.

The data flow of the design is shown in Figure 5.1. The architecture fully utilizes

the parallelism and pipelining techniques in hardware design. As seen in Figure 5.1,

the design is a straight-forward streaming architecture, which achieves to process

one pixel data per clock cycle. Therefore, the processing speed only depends on the

clock frequency, aside from the image size.

Figure 5.1 shows the data flow of the design with a 3×3 window size. The Camera

0 and Camera 1 need to be synchronized. That is, both of the cameras deliver the

same pixel coordinates at the same time and their pixel clocks are synchronized. In

this example, Camera 0 acts as the primary camera and Camera 1 is the secondary

camera.

The pixel data from two cameras (image sensors) are firstly read into two sets of

line buffers respectively. The length of each line buffer is equal to the image width

and the number of line buffers for a camera is the height of a processing window.

In this example, there are 3 line buffers for each camera, since the height of the

processing window is 3. It is inevitable that the line buffer architecture introduces

some initial delays which are proportional to the total length of all line buffers for
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one camera. However, this architecture makes it possible to process the streaming

data in multiple adjacent scanlines simultaneously so that a 2D window of processing

pixel data is always available for a window based algorithm. The line buffers hold

the 2D arrays of pixel data for subsequent processing.

The SAD module computes the Sum of Absolute Differences (SAD) values be-

tween a given window of pixels from Camera 0 and a set of windows of pixels with

different disparity levels from Camera 1. The number of the SAD module instantia-

tions is equal to the number of disparity levels. In another word, it is the disparity

searching range plus one. Therefore, SAD values at all disparity levels are computed

simultaneously in parallel.

A minimum selector searches for the minimum of the computed SAD values. The

window with the minimum from Camera 1 corresponds to the given window from

Camera 0. With this correspondence, the disparity for the given pixel from Camera

0 is determined.
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Figure 5.1: Data flow of the window based SAD correlation algorithm
implementation.
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5.2 Introduction to Hardware Devices

5.2.1 Altera DE2 Development and Education Board

The Altera DE2 Development and Education Board [1] features an Altera Cyclone R©
II 2C35 FPGA device, along with onboard clock inputs, memory chips, various ports,

input buttons and switches, LEDs, etc. The hardware features on the Altera DE2

board used in our project are the following.

Altera Cyclone II 2C35 FPGA device.

As one of the FPGA devices in Altera’s low-cost Cyclone R© II FPGA family,

the Cyclone R© II 2C35 FPGA is build by high-density architecture with 33,216 logic

elements (LEs) and 105 M4K RAM blocks with 483,840 total RAM bits [1]. It fea-

tures 35 18- × 18-bit embedded multipliers to support high-performance arithmetics,

4 phase-lock loops (PLLs) for system clock management, and high-speed external

memory interface support for SRAM and DRAM devices.

Clocks.

On-board 27MHz and 50MHz oscillators.

SDRAM.

On-board 8Mbyte Single Data Rate Synchronous Dynamic RAM memory chip,

organized as 1M × 16bits× 4banks.

40-pin Expansion Header.

Two 40-pin expansion headers consist of 72 Cyclone II I/O pins, as well as 8 power

and ground lines. They are designed to accept a standard 40-pin ribbon cable.

VGA Output.

The VGA output port uses the ADV7123 240MHz triple 10-bit high-speed video

digital-to-analog converter (DAC), with a 15-pin high-density D-sub connector. It

supports up to 1600× 1200 resolution at 100Hz refresh rate.

5.2.2 Terasic TRDB-DC2 CMOS Camera

The Terasic TRDB-DC2 CMOS image sensor [26] features a Micron 1/3-inch megapixel

CMOS active-pixel digital image sensor with an active imaging pixel array of 1280H×
1024V [26]. It incorporates sophisticated camera functions such as windowing, col-
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Figure 5.2: Block diagram of FPGA implementation modules.

umn and row skip mode, and snapshot mode. It is programmable through a two-wire

serial interface. An on-chip analog-to-digital converter (ADC) provides 10 bits per

pixel. Internal signals FRAME VALID and LINE VALID are connected to output

ports on dedicated pins. A 25MHz pixel clock is synchronous with valid data.

5.3 Overall Implementation

In this project, the system is a synchronous design by clock signals CCD PIXCLK

and VGA CTRL CLK. The general configuration of the entire system is shown in

Figure 5.2. The introduction to each module of the system is in the following sections.

5.3.1 Module: I2C CMOS Sensor Configuration

This module configures the features of the TRDB-DC2 CMOS image sensor. The

configuration signals are transferred according to the I2C Protocol. Specifically,

there are two serial buses, which are clock line and data line. This module is a serial

master/slave interface. Registers of the image sensor are written and read through

this two-wire serial interface bus. The configuration data are transferred in and out

of the image sensor through the serial data line, which is synchronized to a master

clock signal generated inside this module.
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Figure 5.3: I2C CMOS configuration Verilog code.

The two-wire serial interface defines several different transmission codes, such as

a start bit, the slave device 8-bit address, an acknowledge bit (or a no acknowledge

bit), an 8-bit message and a stop bit. Also, there are several different interface write

and read sequences. In this project, the only one used is an 8-bit write sequence.

The code shown in Figure 5.3 is from the file I2C CCD Config.v. The registers

for mirror rows and columns (set rows and columns in opposite orders respectively,

compared to the input orders), exposure, green gain, blue gain, red gain, horizontal

blanking and vertical blanking are written with new values. The other registers

remain the default values.

5.3.2 Module: CMOS Sensor Data Capture

The image data are read out in a progressive scan. Valid image data are surrounded

by horizontal blanking and vertical blanking. The amount of horizontal blanking

and vertical blanking are both programmable through registers. There are other

two signals, which are FRAME VALID and LINE VALID, to indicate whether the

frame or scanline is valid. A spatial illustration of image readout is shown in Figure
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5.4. Figure 5.5 demonstrates the Bayer color pattern which is the sensor output data

format. As shown in Figure 5.5, the even-numbered rows contain green and red color

pixels, and odd-numbered rows contain blue and green color pixels. Even-numbered

columns contain green and blue color pixels, and odd-numbered columns contain red

and green color pixels. Therefore, in any block of four pixel data, there are two green

pixels along with one red pixel and one blue pixel.

The CMOS image sensor is controlled by a sensor master clock of 25MHz and the

pixel data are output into CMOS sensor data capture module synchronized to the

sensor pixel clock PIXCLK of 25MHz. When LINE VALID signal is high, one 10-bit

pixel datum is output every PIXCLK period. The PIXCLK signal is normally the

inverted of the master clock, allowing PIXCLK to be used as a clock to latch the data.

PIXCLK is continuously enabled, even during the blanking period. An example of

image sensor output data timing is shown in Figure 5.6. With the FRAME VALID

and LINE VALID signals, the total number of valid pixels in each scanline X Cont

and the total number of valid scanlines in each frame Y Cont are counted.

Figure 5:  Spatial Illustration of Image Readout
P0,0 P0,1 P0,2.....................................P0,n-1 P0,n

P1,0 P1,1 P1,2.....................................P1,n-1 P1,n

00 00 00 .................. 00 00 00

00 00 00 .................. 00 00 00

Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n

Pm,0 Pm,1.....................................Pm,n-1 Pm,n

00 00 00 .................. 00 00 00

00 00 00 .................. 00 00 00

00 00 00 .................. 00 00 00

00 00 00 .................. 00 00 00

00 00 00 .................. 00 00 00

00 00 00 .................. 00 00 00

00 00 00 ..................................... 00 00 00

00 00 00 ..................................... 00 00 00

00 00 00 ..................................... 00 00 00

00 00 00 ..................................... 00 00 00

VALID IMAGE
HORIZONTAL

BLANKING 

VERTICAL BLANKING
VERTICAL/HORIZONTAL

BLANKING 

Figure 5.4: Spatial readout of a frame from TRDB-DC2 CMOS image
sensor. Valid image data is surrounded by horizontal blanking and
vertical blanking [26].
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5.3.3 Module: Bayer Color Pattern Data to 30-bit RGB

As the captured data are in the Bayer color pattern, a conversion from Bayer pattern

to conventional RGB format is necessary before the image data are further processed.

In the Bayer color pattern, each pixel is presented by a single color, which is red,

green or blue. The conversion is to combine each block of four pixel data so that each

pixel can be represented by the combination of all red, green and blue components,

as the way in which the conventional RGB format presents. By this conversion, the

size of the frame with RGB format is half of the frame with Bayer color pattern.

For example, a frame of size 1280H × 1024V in Bayer color pattern is converted to

a frame of resolution 640H × 512V in RGB format.

Pixel
(26, 8)

black pixels

column readout direction

...

...
row

readout
direction
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B
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B
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G

B

G
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B

Figure 5.5: The Bayer color pattern. Valid image data starts at
Pixel(26,8) as the first 26 columns and the first 8 rows of pixels are
optically black [26].

P A  Q A  Q A P

. . .

. . .

. . .

Number of master clocks

FRAME_VALID

LINE_VALID

Figure 5.6: Timing example of pixel data. Parameter P is the frame
start/end blanking. Parameter A is the active data time. Parameter Q
is the horizontal blanking [26].
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5.3.4 Module: Conversion from RGB to Grayscale

One of the accepted formula for RGB to grayscale conversion [12] is

Grayscale = 0.299×R + 0.587×G + 0.114×B. (5.1)

However, this formula is too complicated for hardware to implement because of

its floating-point computation. According to this formula, G component takes far

more weight than R and B. Therefore, for the sake of simplicity, the grayscale can

be approximately represented by G component. It is much easier for hardware to

implement by this way. The output data only contain G component with a width of

10 bits and then stored in SDRAM at a later stage.

5.3.5 Module: Multi-port SDRAM Controller

By the multi-port SDRAM controller module, the 8Mbyte SDRAM is configured as

two banks with two read ports and two write ports. Each bank is 2M × 16 bits.

With this configuration, the 10-bit grayscale pixel data from each image sensor can be

stored into each of the two banks respectively. The SDRAM operates with a 100MHz

clock signal, while two read ports both run at 25MHz VGA control clock and two

write ports both run at 25MHz image sensor pixel clock PIXCLK. Figure 5.7 shows

the SDRAM controller configuration code. And Figure 5.8 depicts the two-bank

SDRAM configuration. The two write ports and two read ports are constructed by

FIFOs in order that the pixel data can be transferred between different clock signals.

The codes from top module DE2 CCD.v shows how the 4 ports write and read the

SDRAM.

5.3.6 Module: VGA Controller

The VGA controller module controls and transfers pixel to the VGA port according

to the VGA timing table, with VGA parameters such as horizontal start position

X Start, vertical start position Y Start, horizontal synchronization H Sync and verti-

cal synchronization V Sync. The module operates with a 25MHz VGA control clock

VGA CTRL CLK.
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Figure 5.7: SDRAM controller configuration Verilog code.
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Read Port 1 Read Port 2

Write Port 1 Write Port 2

Bank 1

2M x 16bits

Bank 2

2M x 16bits

Figure 5.8: The two-bank SDRAM configuration.

5.3.7 Module: Window Based SAD Correlation Stereo Al-

gorithm

The window based SAD correlation algorithm is implemented in the main processing

module. Since this module is connected to the read side of the SDRAM, it is synchro-

nized to the 25MHz VGA control clock VGA CTRL CLK. As shown in Figure 5.1,

the stereo algorithm module contains line buffers, register arrays, SAD computations

and a minimum selector.

�

�

�

� �

� �

Register Arrays 
Input 

� � �

� � �

� � �

SAD Logic 

SAD Logic 

SAD Logic 

Line Buffers 

Line Buffers 

Register Arrays 

Register Arrays 

Line Buffers 

Figure 5.9: Line buffer structure for the primary camera. Line buffers
and register arrays hold pixel values so that pixels from multiple scan-
lines can be processed at the same time.

The line buffers are built by the built-in Intellectual Property (IP) core called
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Figure 5.10: Line buffer structure for the secondary camera. Line
buffers and register arrays hold pixel values so that pixels from multiple
scanlines can be processed at the same time. Larger register arrays hold
previous pixel values of the same scanline for the disparity search.

Altera Megafunction, using the on-chip M4K memory block. The length of each line

buffer is equal to the image width. The architectures of the line buffers and the

register arrays are depicted in Figure 5.9 and Figure 5.10. For a 3× 3 window size,

there are 3 line buffers and the register arrays are 3× 3 with respect to the primary

camera (Camera 0). For the secondary camera (Camera 1), the architecture is the

same as the primary camera, except that the register arrays are much larger so that

pixel data of different disparity levels can be retained for searching the minimum SAD

value. For example, the size of the register array is 63×3 when the disparity searching

range is 60. Notice that we only consider positive disparities in this implementation

as the cameras are positioned to keep the lens axes in parallel. In this architecture,

the left camera is the primary camera and the positive disparities are searched from

the right camera as the secondary camera. If the right camera is the primary camera,

our implementation is not intended to search for negative disparities from the left

camera. Hence, in the case of right camera as primary camera, it is unable to search

for the correct correspondences in our current implementation. Figure 5.11 illustrates

the timing waveform of the line buffer architecture.

The SAD computation module is built by a set of parallel adders in a pipeline

structure. There is one SAD module instantiation for each disparity searching level

in order that the SAD computations for all disparity levels are able to operate at the

same time. The minimum selector is constructed by multiple stages of comparators
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Figure 5.11: Timing waveform of the line buffer architecture. Serial
data are shifted in via input port shiftin at every rising edge of clock.
After 9 clocks, values 1, 4 and 7 appear at the outputs of the line buffers
at the same time.

so as to locate the minimum SAD value. When the disparity searching level ranges

from 0 to D, the number of stages of the comparators is the smallest integer that is

not less than log2(D + 1).

5.3.8 Frame Rate of the Image Sensor

The frame rate of the image sensor is programmable by setting the registers. It

is also affected by the pixel clock frequency. The frame time can be calculated as

follows

FrameTime = (RowWidth + V BLANKReg)×
(ColumnWidth + HBLANKReg)× PIXCLKPeriod (5.2)

In our project, row width is set with the value of 1024, while column width is

set with the value of 1280. Meanwhile, VBLANK Reg and HBLANK Reg are 25

and 136 respectively. The pixel clock frequency is 25 MHz. Therefore, the frame

rate is approximately 16.83 frames per second (fps) at 25 MHz, with the number of

integration rows (which is controlled by setting the exposure time) less than or equal

to (1024 + 25).
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Chapter 6

Evaluation

This chapter gives a detailed evaluation of the proposed algorithm implementa-

tion in terms of results, quality, processing time and resource utilization. Firstly,

a simulation of the implementation is described and the simulation results are dis-

cussed. Secondly, the Middlebury stereo evaluation platform [10] developed by Mid-

dlebury College is introduced and our implementation is evaluated using the standard

stereo images on this platform. Lastly, the performance of our implementation as

well as the processing time and resource utilization are analyzed.

6.1 Simulation of the Algorithm Implementation

In this evaluation, the simulation is a logic level simulation of the algorithm imple-

mentation. It contains three steps. First, color stereo images are converted into

grayscale images and then the grayscale images are written into text files in Matlab.

Second, the data in the text files are read and transferred to the Verilog module of the

stereo matching algorithm as the input data in the simulation tool ModelSim-Altera.

The functional simulation of the stereo algorithm is executed in ModelSim-Altera

and the output data of the simulation are written into new text files. Finally, the

output text files are read in Matlab and analyzed. The procedure is shown in Figure

6.1. In this simulation six sets of standard stereo images are used, which are the

Tsukuba, Teddy, Cones, Venus, Bigtruck and Barn. They are typical stereo images

since they represent different views of stereo vision in general. The grayscale levels

of these stereo images range from 0 to 255. Hence, the grayscale level is represented

by 8 bits in digital logic circuits.

Recall that there are two parameters in the window based SAD correlation algo-

rithm: the window size and the disparity searching range. Considering the limited
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Matlab

Matlab

ModelSim

Input Stereo Images

Simulated Disparity Maps

Figure 6.1: Simulation procedure.

Figure 6.2: Simulated disparity maps for the Bigtruck and Barn im-
ages. Columns from left to right: Original stereo left image; disparity
map by SAD correlation algorithm with window size 3× 3 and search-
ing range 30; disparity map by SAD correlation algorithm with window
size 5×5 and searching range 30; disparity map by SAD correlation al-
gorithm with window size 3× 3 and searching range 60; disparity map
by SAD correlation algorithm with window size 5 × 5 and searching
range 60. Disparity values are scaled for better display.

logic resources available in the Altera Cyclone R© II FPGA on the DE2 board, the

parameters are set as the window sizes of 3 × 3 and 5 × 5 respectively, and the

searching ranges of 30 and 60 levels respectively in the logic level simulation. Figure

6.2 illustrates the simulated disparity maps for the Bigtruck image and the Barn

image. As seen in the simulated disparity maps, the window based SAD correlation

algorithm using a 5×5 window performs better with less noise for either a searching

range of 30 or 60. However, the relative distance information of different objects can

still be indicated in the disparity maps with a 3 × 3 window, although the dispar-

ity maps are noisier. The disparity searching range defines the maximum disparity

level. Therefore, for a computed disparity map, the range of pixel values with a

larger searching range spreads to a larger extent. For this reason, the brightness of
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Figure 6.3: Numerical evaluation of the simulated disparity maps for
Tsukuba, Teddy, Cones and Venus images. Measurements are RMS
error and percentage of bad matching pixels. The simulations of the
SAD correlation algorithm use window size 3× 3 with searching range
30, window size 5× 5 with searching range 30, window size 3× 3 with
searching range 60 and window size 5 × 5 with searching range 60,
respectively.

the computed disparity maps differs with searching ranges, especially in the regions

of error correspondences. In the disparity maps for the Bigtruck image, errors occur

noticeably in the blue sky area of the background. This is due to the sky area with

little texture taking up the entire width of the image and no feature points available

for correspondences. Therefore, it is unable to search for the correct correspondences

in this area.

6.2 Analysis of the Simulation Results

In this section, the simulated disparity maps are analyzed and discussed. In accor-

dance to our previous analysis, the same standard stereo image pairs are used in

this simulation. These stereo image pairs include the Tsukuba, Teddy, Cones and

Venus. Also, the percentage of bad matching pixels and the RMS errors are used to

evaluate the quality of the simulated disparity maps. Meanwhile, the visual quality

of the disparity maps is discussed. Figure 6.3 depicts the numerical measurements

of all simulated disparity maps.

In the simulation, the algorithm uses the window sizes of 3 × 3 and 5 × 5. The

disparity searching ranges are 30 and 60. As illustrated in Figure 6.3, the algorithm

with a 5×5 window outperforms the algorithm with a 3×3 window for all four pairs of

stere images, in terms of the percentage of bad matching pixels and the RMS errors.
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Figure 6.4: Simulated disparity maps for Tsukuba, Teddy, Cones and
Venus images. Disparity maps simulated using the SAD correlation
algorithm use window size 3 × 3 with searching range 60 and window
size 5 × 5 with searching range 60, from left to right, respectively.
Disparity values are scaled for better display.

On the other side, the searching range of 60 has a better or equal performance to the

searching range of 30 for these stereo images. This can be explained by the actual

maximum disparity values of these stereo pairs. In the ground truth images, the

maximum disparity value of the Tsukuba images is 14; the Teddy 53, the Cones 55

and the Venus 20. For a searching range of 30, the actual maximum disparity values

of the Teddy and Cones images is out of the searching range, so a good quality is

not expected. Compared to the measurements in Chapter 4, the simulation results

here confirm that the Verilog design of the window based SAD correlation algorithm

is working in functionality as expected.

Some of the simulated disparity maps are shown in Figure 6.4. Figure 6.4 only

demonstrates the disparity maps with the searching range of 60. It can be clearly seen

that the disparity maps with a 3× 3 window contain more noise than the disparity

maps with a 5 × 5 window. From these observations, the simulated disparity maps

are visually very close to the computed disparity maps discussed in Chapter 4. For

the Venus images, because the window size in the simulation is not large enough for

the textureless regions, noise occurs in these regions.

When the Verilog design is synthesized, the utilization of logic resources needs

to be taken into account. Figure 6.5 shows the logic resource utilizations when the

Verilog designs with different parameters are synthesized to the Altera Cyclone R© II

2C35 FPGA.

It is noticed that the number of total logic elements is approximately doubled
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Figure 6.5: Resource utilizations. Measurements are the total logic
elements used and the total memory bits used. The simulations of the
SAD correlation algorithm use window size 3× 3 with searching range
30, window size 5× 5 with searching range 30, window size 3× 3 with
searching range 60 and window size 5 × 5 with searching range 60,
respectively.

when the searching range is increased from 30 to 60. Similarly, the total logic ele-

ments by a 5× 5 window is slightly more than twice as the total logic elements by a

3×3 window. This explains that the on-chip logic elements are used to construct the

register arrays and the pipeline registers by the synthesizer. On the other side, the

on-chip memory bits are primarily used to build the line buffers. The 5-line buffers

use approximately twice memory bits as the 3-line buffers do. It is also noticed

that the implementation with a 5 × 5 window and the searching range of 60 uses

61257 logic elements which exceed the total number of logic elements available in

the Cyclone R© II 2C35 FPGA.

On the Middlebury Stereo Vision webpage [10], a tool is provided to evaluate the

performances of stereo matching algorithms. The methodology used by this eval-

uation tool is to compute the percentage of bad matching pixels for the produced

disparity map based on known ground truth image. The stereo images used for the

measurements in this tool are the Tsukuba, Teddy, Cones and Venus images. The

produced disparity maps of these four image pairs are sent to the Middlebury evalu-

ation tool and the tool returns a numerical evaluation as show in Table 6.1. Notice

that this tool computes the percentage over three kinds of regions in the images,

which are the entire image, the non-occluded regions and the regions with object

boundaries. Non-occluded regions are those regions that can be seen in both left
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Table 6.1: Middlebury evaluation results showing the percentage of
bad matching pixels.

Algorithm 3× 3, 30 3× 3, 60 5× 5, 30 5× 5, 60

Tsukuba

nonocc 27.2 27.8 16.4 17.1

all 28.9 29.4 18.1 18.8

disc 33.4 29.5 25.8 26.9

Venus

nonocc 39.2 41.1 26.8 27.8

all 40.2 42.1 28.0 29.0

disc 34.4 35.5 29.5 30.3

Teddy

nonocc 64.6 42.9 57.1 30.9

all 68.3 48.6 61.6 37.8

disc 78.8 43.7 76.8 38.0

Cones

nonocc 69.5 40.3 64.2 26.1

all 72.7 46.8 67.7 34.0

disc 62.8 42.2 57.8 32.7

Average 52.5 41.7 43.9 29.9

Note: nonocc: only non-occluded regions;

all: the entire image;

disc: only regions with discontinuities;

average: the average of four sets of entire images.

and right images. Regions with discontinuities are regions with object boundaries.

Table 6.1 shows the measured percentages of bad matching pixels for the four

pairs of stereo images by Middlebury evaluation tool, with respect to three kinds

of regions. The threshold value for computing the percentages is set to 1 in this

measurement. The percentages over the entire images in Table 6.1 agrees with our

preceding measures in this section. Moreover, the qualities of the disparity maps over

the non-occluded and discontinuous regions can be examined in detail here. It is seen

that a 5× 5 window always performs better in both non-occluded and discontinuous

regions. For the searching range, a searching range of 60 never loses to a searching

range of 30. There is no measurement for the occluded regions, since correct corre-

spondences can hardly be found in occluded regions. Errors are highly expected to
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occur when no particular strategy is used to determine the correspondences in the

occluded regions.

The Middlebury evaluation tool is an effective way to evaluate the qualities of

disparity maps numerically. However, it is not a comprehensive way to evaluate the

performance of a stereo matching algorithm. The reason is that the tool only focuses

on the produced disparity maps rather than the process of an algorithm. Thus, it is

not intended to measure the efficiency of an algorithm, such as the processing time,

by this tool.

6.3 Performance of the Stereo Vision System

This section demonstrates the performance of the implemented stereo system on

the Altera DE2 board. Firstly, the overall setup of the system is given. Then, the

run-time performance of the system is discussed.

6.3.1 Overall Setup of the Stereo Vision System

The stereo system consists of three main parts: the image sensors, the Altera DE2

board and the LCD monitor. It is shown in Figure 6.6.

Figure 6.6: Stereo vision system.

Most parameters of the stereo system are pre-determined and fixed once the

Verilog design is synthesized and downloaded into the FPGA chip. The processing

window size and the disparity searching range, which are the two key parameters in
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Table 6.2: Pre-determined parameters.

Stereo algorithm SAD correlation

Window size 3× 3

Searching range 60

Input image resolution 1280× 1024

Output image resolution 640× 480
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Figure 6.7: Layout of the Altera DE2 board [1].

the window based SAD correlation algorithm, are also pre-determined and unchanged

by the Verilog design. Such pre-determined parameters are shown in Table 6.2.

Note that the resolution of the image sensor is 1280×1024 in Bayer color pattern.

After the conversion into RGB format, the effective resolution is 640 × 480 in fact.

Due to the limitation of logic resources in the Altera Cyclone R© II 2C35 FPGA, a

SAD correlation algorithm with window size of 3 × 3 and searching range of 60 is

implemented here.

With the switches and buttons available on the Altera DE2 board, several features

of the stereo system such as free run, snapshot and shutter time can be controlled

by the operator. Figure 6.7 demonstrates the layout of the Altera DE2 board.

As shown in Figure 6.7, there are 18 switches SW0 to SW17 and 4 press buttons
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KEY0 to KEY3. SW15 to SW0 are used to set the shutter time of the image sensors,

which controls the exposure. Specifically, the shutter time is represented by a 16-bit

digit. Each bit of the digit is set to 0 or 1 by a switch on the board, where SW15 is

the most significant bit and SW0 is the least significant bit. SW17 selects the video

stream that is displayed on the LCD monitor. When SW17 is set to 1, the monitor

displays the stream of disparity maps. When SW17 is set to 0, the monitor displays

the stream of left grayscale images. SW16 has no operation in this system so far.

KEY0 is the reset button. KEY3 sets the system into free-run mode while KEY2

sets it to take a snapshot and freeze the frame. By pressing KEY1, the shutter time

set by the switches is sent to configure the image sensors.

Since the images captured by the pair of image sensors are assumed to be rectified,

the two image sensors have to be mounted with their projective planes being coplanar

and their lens axes in parallel. The alignment of the image sensors is the key to the

performance of this stereo system. Once the image sensors are mounted, the distance

between the two sensors are 6.15cm in our current setting. With a searching range of

60 disparity levels, the system works best to indicate the relative positions of objects

when the objects are, by our observation, at approximately 0.5 to 1.5 meters away

from the image sensors.

6.3.2 Run-Time Performance of the Stereo Vision System

The stereo system runs with two 25MHz clock signals. On the image sensor side,

the Altera DE2 board communicates with the image sensors by a 25MHz CCD pixel

clock. On the monitor side, the Altera DE2 board communicates with the LCD

monitor by a 25MHz VGA control clock. The system is of a fully pipelined streaming

structure with no operation that halts the processing of each frame. Therefore, the

frame rate of the system is the same as the frame rate of the image sensors. From the

discussion in Chapter 5, the frame rate of the image sensors is approximately 16.83

frames per second (fps). Hence, the frame rate of the system is also 16.83 frames

per second. Given that the human visual system retains each individual image for

one-fifteenth of a second [19], a frame rate of 16 frames per second is sufficiently

close to produce an sensation of visual continuity.

For viewing the visual quality of the produced disparity maps, some snapshots
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Figure 6.8: Snapshots of the disparity maps produced by the run-time
stereo vision system.

from the real-world scene are taken from the LCD monitor. These are shown in

Figure 6.8. As is seen in Figure 6.8, the foreground and background can be clearly

distinguished by the disparity values. The stereo system provides excellent stream of

disparity maps to convey the information on relative distances of persons or objects

in the scene. These snapshots were taken with a different Altera DE2 board running

the same FPGA design from our previous work [25]. Some AVI movie clips were

captured and recorded.

In regard to the logic resources utilization of the system, it is shown in Table

6.3. With the fact that the logic resources is not rich in this FPGA chip, the system

takes up most of the logic resources built in the chip.

Table 6.3: Resource utilization and frame rate of the system.

Stereo algorithm SAD, 3× 3, 60

Output image resolution 640× 480

Total logic elements 27091 / 33216 (82%)

Total combinational functions 20193 / 33216 (61%)

Dedicated logic registers 25972 / 33216 (78%)

Total memory bits 128824 / 483840 (27%)

Frame rate (fps) 16.83
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

A stereo vision system is implemented on a FPGA platform, using the window based

SAD correlation stereo correspondence algorithm proposed in this thesis. The stereo

vision system uses two Terasic TRDB-DC2 CMOS image sensors to capture pairs of

stereo images. The produced disparity maps are displayed via a VGA port onto an

LCD monitor. The main part of the system is implemented on an Altera DE2 board

featuring an Altera Cyclone R© II 2C35 FPGA. In the current system, the resolution

of input images from the image sensors is 640 × 480, while the resolution of the

output disparity maps is also 640 × 480. The system runs at a frame rate of 16.83

frames per second (fps).

At the beginning chapters in this thesis, several stereo matching algorithms are

analyzed, including global stereo algorithms and local stereo algorithms. Two global

stereo algorithms are examined: dynamic time warp (DTW) algorithm and DTW

with coarse quantization algorithm. On the other hand, three window based local

stereo algorithms, which are the SAD correlation, the SSD correlation and the Census

transform correlation algorithms, are analyzed. The performance of each algorithm

is evaluated by varying its parameters. For the global algorithms, dynamic time

warp algorithm produces disparity maps with high-quality in terms of RMS errors

and percentage of bad matching pixels. However, the considerable complexity of the

DTW algorithm requires massive computations, which make it difficult to meet the

requirements of fast processing. The DTW with quantization algorithm solves the

issue of slow processing time by a linear quantization step, which reduces the number

of computations, but it loses the accuracy of the produced disparity maps in terms

of RMS errors and percentage of bad matching pixels. For the local algorithms, the
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window size parameter and the disparity searching range parameter play the key

roles in the performance of the algorithms. The window size parameter defines the

size of the 2D processing window. A small window size works well at object bound-

aries in the image while a large window size performs well at textureless regions. As

the window size increases, the processing time increases accordingly. Therefore, a

moderate window size is a compromise between the quality of disparity maps and

the processing time. The disparity searching range parameter defines the maximum

disparity levels for which the algorithm searches. The optimal choice of this param-

eter depends on image patterns but a larger searching range is more likely to avoid

incorrect correspondences for most of the cases. Regarding the computation of cor-

relations, the SSD and SAD correlations perform similarly and better than Census

transform correlation when the same combination of parameters is used. From the

analysis results, the SAD correlation algorithm is proposed for the implementation,

considering that it has a streaming structure that is suitable for hardware implemen-

tation and it produces decent disparity maps in terms of RMS errors, percentage of

bad matching pixels and visual quality.

The window based SAD correlation algorithm is implemented using Verilog hard-

ware description language (HDL). The Verilog design of the algorithm is simulated

using ModelSim-Altera simulator with regard to its functionality. In the simulation,

the input stereo images are transferred into the algorithm design module on a scan-

line basis. The simulation results are computed disparity maps which are output

to Matlab for display. With our targeted FPGA chip, only four combinations of

parameters are implemented and simulated. The parameters are the window size of

3× 3 and 5× 5 as well as the searching range of 30 and 60. The simulation results

conform to the preceding analysis.

In the last step, an implementation of the algorithm is realized in an Altera

Cyclone R© II 2C35 FPGA on the Altera DE2 board. Along with two image sensors

and an LCD monitor, the Altera DE2 board composes a stereo vision system that

is able to sense the depth information in a scene. The stereo vision system success-

fully implements a window based SAD correlation algorithm into a single FPGA

chip. The system runs at a video rate of 16.83 frames per second (fps) and is able

to be used in real-time stereo vision applications. When only the stereo algorithm
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implementation is considered, the maximum clock frequency is analyzed to reach

approximately 202MHz by Altera Quartus II Classic Timing Analyzer. This max-

imum clock frequency is among the highest maximum clock frequencies mentioned

in other researchers’ implementations on FPGA. The architecture where one pixel

data is processed in one clock cycle makes our system possible to run at a much

higher frame rate when high-speed cameras are used. Different from the DSP imple-

mentation using a serial approach, the FPGA implementation fully utilizes parallel

processing in hardware so as to accelerate the processing. Our system establishes a

good starting point to explore the stereo vision system on a FPGA platform.

Although the real-time stereo vision system is successfully designed and imple-

mented, there are still limitations with the current system. Due to the limited logic

resources available in the current Altera Cyclone R© II 2C35 FPGA, the window

based SAD correlation algorithm with the optimal parameters is unable to fit into

the FPGA chip. Therefore, it reduces the quality of the produced disparity maps. A

more advanced FPGA chip and its development board could be a better choice for a

stereo vision system with greater flexibility in terms of image dimensions, disparity

ranges and frame rates.

7.2 Future Work

In our current research, several common stereo correspondence algorithms are ana-

lyzed and a proposed window based SAD correlation algorithm is implemented on

a FPGA platform to build a stereo vision system. Our future work would focus on

two phases. One is the improvements of the algorithm and the other is the imple-

mentation strategy.

In the algorithm phase, a sub-pixel disparity estimate can be added to the pro-

duced disparity maps in order to improve the visual quality [23][29]. So far, the

disparities computed by the proposed algorithm are all integers. The sub-pixel esti-

mate provides fractional disparities by fitting a curve to the matching costs at discrete

disparity levels. It is an effective way to increase the resolution of a disparity map.

In the implementation phase, an integration of hardware and software implemen-

tations will be explored. The software solution provides flexibility of the system while
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the hardware solution provides acceleration of the processing speed. Altera NIOS

II R© processor is a programmable embedded processor that can be built in the Altera

FPGA using the on-chip logic resources. With the Altera NIOS II processor, the

stereo matching algorithm can be implemented in a software approach and speeded

up by hardware accelerators. For a better performance, some state-of-the-art FPGA

chips are embedded with a hard processor. For example, the Altera Cyclone R© V SoC

FPGA integrates a Single- or Dual-Core ARM Cortex-A9 Processor which provides

more design flexibility.
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