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Abstract 

 

 Biodiesel is an alternative fuel to petroleum diesel that is renewable and creates less 

harmful emissions than conventional diesel thus the use of this fuel is a shift toward “sustainable 

energy”. Biodiesel can be produced from vegetable oil, animal fat, and organisms such as algae 

or cyanobacteria. Since vegetable oils are the major source for current commercial biodiesel, 

they are the focus of this thesis. 

 The main objective of this Ph.D. research is to develop processes suitable to produce 

biodiesel from various vegetable oils especially for those of non-edible oils such as used cooking 

oil, canola oil from greenseed, and mustard oil. An additional objective is to understand the 

relationship between the parent vegetable oils and the corresponding biodiesel properties.  

 Used cooking oil was the first vegetable oil investigated in this research. Initially, oil 

degradation behavior was monitored closely during frying. During 72 hours of frying, acid value 

and viscosity of the oil increased from 0.2 to 1.5 mgKOH·g-1 and from 38.2 to 50.6 cP, 

respectively. It was found that ester yield was improved by addition of canola oil to used cooking 

oil, i.e. addition of 20% canola oil to used cooking oil increased methyl ester yield and ethyl 

ester yield by 0.5% and 12.2%, respectively. At least 60% canola oil addition is needed to 

produce ASTM grade ethyl ester biodiesel. The optimum reaction conditions to produce 

biodiesel are 1% KOH loading, 6:1 alcohol to oil ratio, 600 rpm stirring speed, and either 50°C 

reaction temperature for 2 hr or 60°C reaction temperature for 1.5 hr for methanolysis and 60°C 

reaction temperature for 2 hr for ethanolysis.  

 Among non-edible vegetable oils, greenseed canola oil can be used in the most simple 

biodiesel production process. In this case, an addition of fresh vegetable oil is not required, 
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because chlorophyll contained in this oil did not play a crucial role in the reaction activity. 

Methyl ester yields derived from greenseed canola oil without and with 94.1 ppm chlorophyll 

content are 95.7% and 94.8%, respectively. In contrast, erucic acid contained in mustard oil 

created difficulties in the production process. Ester yield derived from mustard oil using the 

conditions mentioned above was only 66% due to the present of unconverted monoglyceride. To 

obtain a deeper understanding on mustard oil transesterification, its reaction kinetics was studied. 

In the kinetic study, transesterification kinetics of palm oil was also investigated to study the 

effect of fatty acid chain length and degree of saturation on the rates of the reactions. It is shown 

in this research that the rates of mustard monoglyceride transesterification (rate constant = 0.2-

0.6 L·mol-1·min-1) were slower that those of palm monoglyceride transesterification (rate 

constant = 1.2-4.2 L·mol-1·min-1) due to its lower molecular polarity resulting from the longer 

chain of erucic acid. The activation energy of the rate determining step (in this case, conversion 

of triglyceride to diglyceride reaction step) of mustard transesterification was, however, 26.8 

kJ·mol-1, which is similar to those of other vegetable oils as reported in literature. Despite the 

presence of unconverted monoglyceride, distillation can be used to obtain a high purity ester.  

 Several ester properties are determined by characteristics of the parent oil and choice of 

alcohol used in transesterification. Chlorophyll contained in greenseed canola oil, for example, 

has an adverse effect on biodiesel oxidative stability. The induction time for methyl ester derived 

from treated greenseed canola oil (pigment content = 1 ppm) was enhanced by 12 minutes 

compared to that derived from crude greenseed canola oil (pigment content = 34 ppm). The 

optimum bleaching process involves the use of 7.5 wt.% montmorillonite K10 at 60°C and 

stirring speed of 600 rpm for 30 minutes. In addition, it was found that induction time of treated 

greenseed canola ethyl ester (1.8 hr) was higher than that of methyl ester (0.7 hr), which suggests 
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a better oxidative stability of esters of higher alcohols. Furthermore, the use of higher alcohols 

instead of methanol produced materials with improved low temperature properties. For example, 

the crystallization temperatures of monounsaturated methyl, ethyl, propyl, and butyl esters 

prepared from mustard oil were -42.5°C, -51.0°C, -51.9°C, and -58.2°C, respectively. In 

contrast, the lubricity of biodiesel is mainly provided by its functional group which is COOCH3 

for methyl ester. The use of higher alcohols in transesterification results in a less polar functional 

group in the corresponding ester molecule, which leads to reduction in ester lubricity. Methyl 

ester provided the highest lubricity among all esters produced, i.e. wear reduction at 1% treat rate 

of methyl ester, ethyl ester, propyl ester, and butyl ester are 43.7%, 23.2%, 30.7% and 30.2%, 

respectively. 

 The outcomes of this research have been published in several scientific journals and 

presented at national and international conferences. The published articles and conference 

presentations are listed at the beginning of each chapter in this thesis. 
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CHAPTER 1 

 

Introduction and Research Overview 

 

1.1. Introduction 

 Biodiesel is an alternative renewable diesel fuel that has properties comparable to diesel 

obtained from petroleum processing. Since biodiesel is renewable and it creates less harmful 

exhaust emissions when combusted compared to that of petroleum diesel, the use of this fuel is a 

shift towards “sustainable energy”.  Biodiesel can be produced from vegetable oil, animal fat, 

or organisms such as algae and cyanobacteria through a chemical reaction called 

transesterification with short chain alcohols. Since vegetable oils are currently the major source 

of feedstock in commercial biodiesel production, the focus of this Ph.D. research is biodiesel 

production based on vegetable oils. In addition to alternative fuel, biodiesel is commonly viewed 

as a lubricity additive to petroleum diesel. Because biodiesel is miscible with petroleum diesel in 

all proportions, an addition of only 1 vol.% biodiesel to petroleum diesel improves the 

lubricating property of petroleum diesel [1]. Due to its various advantages especially 

environmental benefits, many governments worldwide encourage the use of this fuel in the form 

of tax incentives and mandate implementations. 

 In 2011, the Canadian government implemented a 2% federal mandate for biodiesel that 

creates demand for around 500 million litres per year of biodiesel in Canada. According to 

Canadian Renewable Fuels Association, the domestic biodiesel production capacity around 

Canada was 200 million litres per year in 2010 [2]. There is an obvious demand for domestic 
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biodiesel production boost in order to reduce dependency on imported biodiesel. Therefore, 

major growth in biodiesel industry is expected in the coming years and research and technology 

on biodiesel production processes will be of higher value than ever. Research done in this thesis 

will serve as information for researchers and biodiesel manufacturers both inside and outside 

Canada. More details on feedstock, production processes, and characteristics of biodiesel are 

extensively reviewed in Chapter 2. 

 

1.2. Research Overview 

 The objective of this research is to investigate biodiesel production from various 

vegetable oils with special emphasis on non-edible oil. In addition, the effects of different oils 

used as feedstock on reaction activity as well as the resulting biodiesel properties are also 

studied. This research is divided into 5 phases which are discussed in Chapter 3 to Chapter 7 and 

are outlined as follow. 

 In Chapter 3, properties of used cooking oil are monitored closely during frying and 

biodiesel is produced from used cooking oil. The properties of biodiesel derived from used 

cooking oil are compared with those of biodiesel prepared from canola oil and greenseed canola 

oil. In an attempt to improve properties of used cooking oil biodiesel, used cooking oil is mixed 

with canola oil and the mixed oil is used as feedstock for biodiesel production. This process is 

described in Chapter 4. The optimum mixing ratio is reported along with the optimum reaction 

conditions. Furthermore, Differential Scanning Calorimetry (DSC) is used to measure 

crystallization and melting temperature as well as heat associated with crystallization and 

melting. In this study, the effects of lipid and alcohol feedstock used in transesterification on 

crystallization and melting behaviour of biodiesel are reported. 
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 Chapter 5 is focused on biodiesel production from greenseed canola oil. The effects of 

chlorophyll and its derivatives on transesterification activity as well as biodiesel property are 

discussed with special emphasis on oxidation stability. The optimum conditions on bleaching 

and transesterification are reported. Biodiesel production from mustard oil is then investigated in 

Chapter 6. A production process to produce high quality mustard biodiesel is developed. 

Biodiesel lubricity is evaluated and compared to those of commercial petroleum diesel. Finally, 

transesterification kinetics is investigated. Mathematical model as well as MATLAB program are 

developed in order to simulate transesterification progress and kinetic parameters such as the rate 

constants and the activation energies are obtained. Transesterification kinetics of different 

vegetable oils are compared and discussed in Chapter 7.  

Since this thesis is provided in the paper-base format, each chapter has been published in 

national and international scientific journals and this is mentioned at the beginning of each 

chapter and the contribution of the Ph.D. candidate is highlighted. Abbreviations and references 

are given at the end of each chapter. 
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CHAPTER 2 

 

Literature Review 

 

A part of this chapter has been submitted for publication in Renewable & Sustainable Energy 

Reviews: 

• Issariyakul, T., and Dalai A.K. Biodiesel from vegetable oils. Renewable and Sustainable 

Energy Reviews (Submitted). 

 

Contribution of the Ph.D. Candidate 
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feedstock, production, and characteristics of biodiesel from vegetable oils. This chapter provides 

the overall direction of this Ph.D. research. 
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2.1. Abstract 

Biodiesel is gaining acceptance in the market as both fuel and lubricant. It is expected 

that the biodiesel industry will grow rapidly worldwide in the coming years and information 

regarding biodiesel feedstock, its production, and characteristics will be significant. Biodiesel 

from vegetable oil is the focus in the present review. Since vegetable oil is currently the major 

source for making commercial biodiesel, selected available vegetable oils are reviewed as 

feedstock for biodiesel production. Production technologies including the latest catalyst 

developments are discussed and biodiesel characteristics and parameters influencing the 

corresponding biodiesel properties are revealed.  

 

2.2. Introduction 

As conventional, non-renewable, fossil-based fuel resources are depleting, research and 

development on alternative renewable energy is growing. Biodiesel is a promising renewable 

energy. Recently, a 5.54 fossil energy ratio (FER) is reported [1] which means one unit of fossil 

energy input is required to produce 5.54 units of biodiesel energy output from soybean oil. This 

FER indicates a superior energy return of biodiesel that surpasses those of other alternate fuels 

[2]. The FER of biodiesel is expected to increase in the coming years, due to increased crop 

yield, adoption of energy-saving farm practices, and continuous development technologies that 

enhance energy efficiency. Biodiesel has many properties that contribute to superior performance 

when compared to petroleum diesel. For example, biodiesel produces lower exhaust emissions 

than conventional diesel and it is biodegradable, non-toxic, renewable, and essentially free of 
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sulfur [3,4,5]. Since biodiesel is renewable and environmentally beneficial, the use of this fuel is 

a shift towards sustainable energy.  

The history of biodiesel is as long as that of the diesel engine itself and the use of 

vegetable oils was investigated as early as the era when diesel engine was developed. Rudolf 

Diesel (1858-1913), the inventor of diesel engine, tested peanut oil as fuel for his engine. Dating 

from early 1920s, many vegetable oils were investigated, including palm oil, soybean oil, 

cottonseed oil, and castor oil. These early studies showed satisfactory performance of vegetable 

oil as fuel for diesel engines [6]. However, there were concerns that their higher costs as 

compared to petroleum fuel would prevent their prevalent uses. In spite of their performance in 

diesel engine, vegetable oils create engine problems when used as diesel fuel in both indirect- 

and direct-injection engines. The major drawback of vegetable oils is their high viscosity which 

causes coking, varnishing and trumpet formation on the injectors that results in poor atomization 

and ultimately leads to operational problems such as engine deposits [7].  

Possible solutions to reduce the viscosity of vegetable oil include heating, 

transesterification, pyrolysis, dilution with petroleum-based fuels, and emulsification [8]. 

Transesterification is the most common method which yields mono alkyl esters of long chain 

fatty acids or fatty acid alkyl ester (FAAE). This idea originated in 1938 when it was noted that 

glycerine has a low calorific value and is likely to cause excess carbon deposit in the engine and, 

therefore, should be eliminated from glyceride oils used as diesel fuel. During that period, it was 

proposed that the engine should run on what was referred to as “residue fatty acid” [9]. This 

residue fatty acid is known today as “biodiesel”, although ester was not yet mentioned. In fact, 

the high molecular weight of the triglyceride molecule is responsible for much of the viscosity of 

vegetable oil, whereas the fatty acids are typically 10 times less viscous than their parent 
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vegetable oil at room temperature. During the summer of 1938, an urban bus running between 

Brussels and Louvain was operated on ethyl ester produced from palm oil. The engine 

performance was satisfactory and it was noted that the viscosity of ethyl ester was less than that 

of palm oil. The term “biodiesel” made its first appearance in a paper published in 1988 and this 

term was used exponentially thereafter [10].  

Biodiesel is often defined as the mono alkyl esters of long chain fatty acids. Such esters 

may be prepared from acyl-glycerides (usually triglyceride) in vegetable oils via 

transesterification with short chain alcohols. Biodiesel is miscible in all portions with petroleum 

based diesel and, thus, can be effectively used as a neat biodiesel or blended with petroleum 

based diesel fuel [11]. The blends of biodiesel and petrodiesel are often coded to represent the 

percent volume of the blend. B20, for example, indicates the blend of 20 vol.% biodiesel and 80 

vol.% petrodiesel. The current knowledge of biodiesel feedstock chemistry (vegetable oils), 

transesterification reactions, and biodiesel properties are described in the following sections. 

 

2.3. Feedstock 

Both lipid and alcohol feedstock determine the properties and method used in biodiesel 

production. Lipid feedstocks include vegetable oils, animal fats, and, more recently, oil from 

other organisms such as micro algae and cyanobacteria [12,13]. This paper focuses on vegetable 

triglyceride oils as lipid feedstock. The vegetable oils available for biodiesel production highly 

depend on climate. Rapeseed oil is utilized in European countries and Canada, soybean oil in the 

United States of America, and palm oil in tropical countries including Indonesia and Malaysia 

while coconut oil is used for synthesis of biodiesel in coastal areas. Potential inedible oils used as 
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lipid feedstock include jatropha oil (Jatropha curcas) and karanja oil (Pongamia pinnata) [14]. 

Oilseed prices and availability are important parameters to consider as biodiesel feedstock and 

are shown in Table 2.1.  

Soybean and palm oil dominate world oilseed production while considerably less 

rapeseed oil production occurs. The oil content of rapeseed is >40%, while that of soybean is 

21%. Palm oil is an interesting source for biodiesel production due to its low price and relatively 

high oil content (40%). Oil palm also achieves a higher annual oil yield compared to soybean 

and rapeseed. 

Oilseeds store lipid in organelles called oleosomes which can be broken and extracted to 

produce vegetable oil. The major component of vegetable oils is triacylglycerol (TAG) or 

triglyceride (TG) which is a molecule composed of three esters of fatty acid chain (acyl group) 

attached to glycerol (glycerol group). When two acyl ester groups and one hydroxyl group (–

OH) are present, the molecule is called a diacylglycerol (DAG) or diglyceride (DG). Similarly, 

monoaclyglycerol (MAG) or monoglyceride (MG) has one acyl ester group and two hydroxyl 

groups. Acylglycerol is a term referred to TAG, DAG, or MAG and is depicted in Table 2.2. The 

acyl groups are typically unbranched fatty acids with between 10 to 24 carbon atoms. Saturated 

fatty acids have no double bonds between carbon atoms. When a pair of hydrogen atoms are 

removed from a fatty acid chain, one double bond is present and, therefore; it is called 

monounsaturated fatty acid. If the molecule contains two or more double bonds caused by further 

removal of hydrogen atoms, it is called polyunsaturated fatty acids. These fatty acids are 

frequently represented by a symbol such as C18:1, which indicates a fraction consisting of 18 

carbon atoms and one double bond. Typical fatty acids attached to TAG found in vegetable oils 

are presented in Table 2.3.  



 
 

 

 
 

Table 2.1 World oilseed production, average oil price and oil content of various oilseeds. 

aData in 2006/2007; bCanola oil   

Plant Oil content 

(%) 

Oilseed productiona 

(Million metric tons)

Average oilseed pricea 

(U.S.D/metric ton) 

Average oil pricea 

(U.S.D/metric ton) 

Yield 

(kg oil/hectare/yr) 

Reference 

Rapeseed >40 46.72 375 852b 600 - 1000 15,16,17 

Soybean 21 235.77 254 684 300 - 450 15,16,18 

Sunflower seed 44-51 30.15 n/a n/a 280 - 700 15,16,19 

Palm 40 10.27 n/a 655 2500 - 4000 15,16,20 

Cottonseed 18 46.02 n/a 787 n/a 15,20 

Peanut 36-56 32.36 395 1253 340 - 440 15,16,21 

Copra 65-68 5.28 537 n/a n/a 15,22 

Coconut 63 n/a n/a 812 600 - 1500 15,16,20 

9
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Table 2.2 Molecular structure of triglyceride, diglyceride, and monoglyceride. 

Triglyceride Diglyceride Monoglyceride 

 

  

   R1, R2, R3 = fatty acid chain 

 

 

Table 2.3 Structures of common fatty acids present in vegetable oils. 

System name Common name Symbol Formula Double bond 

positiona 

Saturated     

     Decanoic      Capric C10:0 C10H20O2 - 

     Dodecanoic      Lauric C12:0 C12H24O2 - 

     Tetradecanoic      Myristic C14:0 C14H28O2 - 

     Hexadecanoic      Palmitic C16:0 C16H32O2 - 

     Octadecanoic      Stearic C18:0 C18H36O2 - 

     Eicosanoic      Arachidic C20:0 C20H40O2 - 

     Docosanoic      Behenic C22:0 C22H44O2 - 

     Tetracosanoic      Lignoceric C24:0 C24H48O2 - 

Monounsaturated     

     Hexadecenoic      Palmitoleic C16:1 C16H30O2 9c 

     Octadecenoic      Petroselinic C18:1 C18H34O2 6c 
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     Octadecenoic      Oleic C18:1 C18H34O2 9c 

     Octadecenoic      Asclepic C18:1 C18H34O2 11c 

     Eicosenoic      n/aa C20:1 C20H38O2 5c 

     Eicosenoic      Gadoleic C20:1 C20H38O2 9c 

     Eicosenoic      Gondoic C20:1 C20H38O2 11c 

     Docosenoic      Erucic C22:1 C22H42O2 13c 

 

Polyunsaturated 

    

     Hexadecadienoic      n/aa C16:2 C16H28O2  

     Octadecadienoic      Linoleic C18:2 C18H32O2 9c12c 

     Octadecatrienoic      Linolenic-α C18:3 C18H30O2 9c12c15c 

     Octadecatrienoic      Linolenic-γ C18:3 C18H30O2 6c9c12c 

     Octadecatrienoic      Eleostearic C18:3 C18H30O2 9c11t13t 

     Octadecatrienoic      Calendic C18:3 C18H30O2 8t10t12c 

ac = cis formation; t = trans formation; n/a = not available 

 

 

Stereo isomers of unsaturated fatty acids can be arranged in cis and trans orientation. Most 

natural occurring fatty acids from vegetable oils have cis-double bonds whereas the unnatural 

trans-isomers usually only occur due to partial hydrogenation process. The Latin prefixed cis and 

trans describe the orientation of hydrogen atoms attached to carbon atoms at position next to a 

double bond. In cis-isomer, hydrogen atoms are attached on the same side causing a “V” shape 

of fatty acid chain.  
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The major difference between various vegetable oils is the type of fatty acids attached in 

the triglyceride molecule. Fatty acid compositions of various vegetable oils are provided in table 

2.4. Fatty acid composition determines biodiesel fuel properties, therefore, vegetable oil fatty 

acid composition is important [42]. Both the degree of saturation/unsaturation and molecular 

weight of vegetable oils determine fuel properties. The degree of saturation/unsaturation is 

proportional to the iodine value while the saponification value is inversely proportional to 

molecular weight. Iodine value and saponification value of selected vegetable oils are provided 

in Table 2.5 [43].  

 

2.3.1. Soybean Oil 

Glycine max is referred to as “Soybean” or “Soya”. This member of Papilionaceae is found only 

under cultivation. The origin of soybean is not clear, for the genus Glycine has two major gene 

centres; eastern Africa and Australia. It is believed that the genus Glycine was dispersed from 

Australia to the whole Pacific region including China via migratory birds as seed carriers. Based 

on historical and geographical evidence, north eastern China is considered to be the site of 

soybean domestication. There are a number of soy-based food products including various liquids 

prepared from soybean and soybean curd known as “tofu”. From China, soybean spread through 

nearby countries including Korea, Japan, and the Southeast Asian region. More recently, soybean 

has been cultivated around the world. Soybean was first mentioned in USA literature in 1804. 

From that time until World War II, it was exclusively used as a forage crop, after which its 

production and economic value in the USA has grown exponentially. Today, soybean is the 

world’s largest oilseed in terms of total production and international trade [44,45].  



 
 

 

Table 2.4 Fatty acid compositions of vegetable oils. 

Vegetable oils Fatty acid composition (wt.%) 
Reference 

Common Name Species 12:0 14:0 16:0 16:1 18:0 18:1 18:2 18:3 20:0 22:0 22:1 

Canola (Low 
erucic rapeseed) 
 

Brassica rapa - - 3.1 0.2 1.3 56.6 22.4 14.0 0.4 0.2 0.1 23 

Canola (Low 
erucic rapeseed) 
 

Brassica 
napus 

- - 4.3 0.3 1.7 61.0 20.8 9.3 0.6 0.3 - 23 

Black mustard Brassica 
nigra 
 

- 1.5 5.3 0.2 1.3 11.7 16.9 2.5 9.2 0.4 41.0 24 

Oriental mustard Brassica 
juncea 
 

- - 2.3 0.2 1.0 8.9 16.0 11.8 0.8 5.7 43.3 25 

Brown mustard Brassica 
juncea 
 

- - 2.2 0.2 1.2 17.4 20.5 14.1 0.7 0.5 28.1 26 

Wild mustard Sinapis 
arvensis 
 

- 0.1 2.6 0.2 0.9 7.8 14.2 13.0 0.8 1.5 45.7 27 

White mustard Sinapis alba 
 

- - 3.1 0.2 0.7 9.1 11.7 12.5 0.7 - 46.5 26 

White mustard 
 

Sinapis alba - 0.1 2.8 0.2 1.1 25.0 11.6 8.6 0.7 0.6 32.8 28 

Abyssinian 
mustard 
 

Brassica 
carinata 

- - 3.1 - 1.0 9.7 16.8 16.6 0.7 - 42.5 29 
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Soybean Glycine max - - 10.1 - 4.3 22.3 53.7 8.1 - - - 30 

Soybean Glycine max 
GMOa,b 

 

- - 3.5 0.1 2.8 22.7 60.3 9.8 0.2 0.2 - 31 

Soybean Glycine max 
GMOa,c 

 

- 0.1 10.9 0.1 5.7 27.5 51.5 3.0 0.5 0.4 - 31 

Soybean Glycine max 
GMOa,d 

 

- 0.1 23.8 0.7 3.8 15.4 44.1 11.0 0.4 0.6 - 31 

Soybean Glycine max 
GMOa,e 

 

- - 8.0 0.1 24.7 17.2 39.2 8.3 1.5 0.7 - 31 

Palm Elaeis 
guineensis 
 

0.3 1.2 44.3 - 4.3 39.3 10.0 - - - - 32 

Palm Elaeis 
oleifera 
 

- 0.2 18.7 1.6 0.9 56.1 21.1 - - - - 32 

Palm kernel Elaeis 
guineensis  
 

50.1 15.4 7.3 - 1.8 14.5 2.4 - - - - 32 

Palm kernel Elaeis 
oleifera 
 

29.3 25.7 10.1 - 1.8 26.4 4.5 - - - - 32 

Palm kernel Aiphanes 
acanthophylla 
 

41.5 20.5 10.2 - 3.4 15.8 7.4 - - - - 33 

Palm kernel Buttia 
capitata 
 

39.2 6.4 4.2 - 3.0 11.9 3.5 - - - - 33 
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Palm oleinf  0.3 1.2 40.6 0.2 4.3 41.9 11.9 0.4 0.4 - - 34 

Palm stearinf  0.3 1.5 61.1 0.1 4.8 25.8 6.5 0.4 0.5 - - 34 

Sunflower Helianthus 
annuus 
 

- - 5.2 0.1 3.7 33.7 56.5 - - - - 30 

Sunflower Helianthus 
annuus 
GMOa,g 

 

- - 3.1 0.1 1.5 91.5 2.1 - 0.2 0.7 0.1 31 

Sunflower Helianthus 
annuus 
GMOa,g 

 

- - 4.4 - 4.2 78.3 10.9 - 0.3 1.0 - 35 

Sunflower Helianthus 
annuus 
GMOa,c 

 

- 0.1 7.5 0.1 1.9 13.3 76.0 0.1 0.1 0.4 - 31 

Sufflower 
 

Carthamus 
tinctorius  
 

- 0.1 6.4 - 2.3 11.6 79.3 - 0.3 - - 36 

Groundnut Arachis 
hypogea 
 

- - 11.2 - 3.6 41.1 35.5 0.1 - - - 30 

Corn Zea mays - - 11.6 - 2.5 38.7 44.7 1.4 - - - 30 

Olive Olea 
europaea 
 

- - 13.8 1.4 2.8 71.6 9.0 1.0 - - - 30 

Cottonseed Gossypium 
hirsutum 
 

- - 23.0 - 2.3 15.6 55.6 0.3 - - - 30 
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Linseed Linum 
usitatissimum 
 

- - 5.6 - 3.2 17.7 15.7 57.8 - - - 30 

Coconut Cocos 
nucifera 
 

50.9 21.1 9.5 - 4.9 8.4 0.6 - - - - 37 

Sesame Sesamum 
indicum 
 

- - 9.6 0.2 6.7 41.1 41.2 0.7 - - - 30 

Rice bran Oryza sativa - - 22.1 - 2.0 38.9 29.4 0.9 - - - 38 

Jatropha Jatropha 
curcas 
 

- - 18.5 - 2.3 49.0 29.7 - - - - 39 

Karanjaf Pongamia 
glabra 
 

- - 5.8 - 5.7 57.9 10.1 - 3.5 - - 40 

Karanja Pongamia 
pinnata 
 

- - 11.7 - 7.5 51.6 16.5 2.7 - - - 41 

Neemf Azadirachta 
indica 
 

- - 17.8 - 16.5 51.2 11.7 - 2.4 - - 40 

Salf Shorea 
robusta 

- - 6.2 - 43.0 41.3 2.1 - 5.5 - - 40 

aGMO = genetically modified oil; blow saturate; chigh linoleic; dhigh palmitic; ehigh stearic; faverage value; ghigh oleic 
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Table 2.5 Iodine value and saponification value of vegetable oils. 

Oil Saponification value Iodine value 

Low erucic rapeseed, crude 179.0 109.9 

Soybean, crude 190.7 134.6 

Palm, crude 200.0 56.9 

Palm kernel, crude 246.4 20.7 

Sunflower, winterized 190.6 135.4 

Sufflower, linoleic-rich, crude 190.3 143.6 

Sufflower, oleic-rich, crude 189.3 93.2 

Cottonseed, crude 195.2 105.0 

Linseed, crude 189.6 188.0 

Corn, soap stock 195.9 105.3 

Rice bran, crude 180.1 103.9 

Coconut, crude 256.4 9.9 

Olive, refined 192.0 84.9 

Sesame, crude 188.0 109.2 

 

 

The oil content in soybean seed ranges from 15 to 22% depending on cultivar and environmental 

conditions during seed maturity. The major fatty acids are oleic (C18:1) and linoleic (C18:2) as 

can be seen in Table 2.4.  
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2.3.2. Rapeseed Oil, Mustard Oil, and Canola Oil 

The word “rape” originates from Latin word “rapum”, which means turnip and belongs to 

the family Brassica which includes turnip, mustard, cabbage, rutabaga, broccoli, and kale [46]. 

Rapeseed was among the first domesticated crops and was used as a source of cooking and 

illumination oil as early as 2000-1500 BC [47]. Brassica crops are among the few vegetable oil 

sources that can be cultivated in cool climates. The economically important crops in Brassica 

and Sinapis species include Sinapis alba (white mustard), Brassica nigra (black mustard), 

Brassica carinata (Abyssinian mustard), Brassica juncea (brown, oriental, and leaf mustard), 

Brassica oleracea (cabbage, kale, cauliflower, broccoli), Brassica rapa (turnip, rape), and 

Brassica napus (rape, rutabaga) [17]. Oilseeds of rapeseed have an oil content of over 40% while 

those of mustard have oil content as low as 20% such as that of Sinapis alba [48]. Oil extracted 

from these seeds majorly contains fatty acids of oleic acid (C18:1), linoleic acid (C18:2), and 

erucic acid (C22:1). When rapeseed has a erucic acid content higher than 2%, it is called high 

erucic acid rapeseed (HEAR), while rapeseed having erucic acid content less than 2% is referred 

to as low erucic acid rapeseed (LEAR) [49]. Erucic acid contained in rapeseed should be avoided 

in daily diets. It has been reported that cardiac fat infiltration occurs in experimental animals fed 

erucic acid and it was concluded that erucic acid is potentially toxic. This compound if fed in 

large quantities might result in heart lesions [46]. In spite of the adverse nutritional effects of 

erucic acid in model systems, the effects of erucic acid on humans have not been demonstrated. 

Nevertheless, the use of rapeseed oil containing a high erucic acid level as edible oil has 

continuously been objected by many organizations throughout history. The Canadian regulations 

state that for cooking oil, margarine, salad oil, simulated dairy product, shortening, or food 
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resembling margarine or shortening, the erucic and cetoleic acid may not exceed 5% of the total 

fatty acid [50].  

Erucic acid biosynthesis is through the elongation of oleic acid. In brief, erucic acid is 

formed by an addition of a two-carbon fragment to oleic acid to form eicosenoic acid (C20:1), 

followed by an addition of another two-carbon fragment to eicosenoic acid to form erucic acid 

[51]. In the case of low erucic acid rapeseed (LEAR) such as Brassica napus (Canola Oil or 

Canadian Brassica), the gene that codes for the fatty acid elongation enzyme is missing leading 

to the accumulation of the precursor fatty acid, i.e., oleic acid. The level of erucic acid can be 

selected to range from less than 1% to over 60%. The percentage of erucic acid in Canadian 

LEAR declined between 1980 and 1989 [52]. The advent of low erucic acid rapeseed (LEAR) 

lead to the accepted use of LEAR for food; however, HEAR could be used in other industries 

such as fuel, lubricating oil, oleochemicals, and biopolymer production. In 1974, the so-called 

“double-low” rapeseed, that is rapeseed low in erucic acid and glucosinolate content, has become 

commercially available in Canada. The Canola Council of Canada trademarked the name 

“canola” for LEAR since this “double low” rapeseed became the major vegetable oil used in the 

Canadian diet. Canola oil is the fully refined, bleached, and deodorized edible oil obtained from 

Brassica napus or Brassica rapa with low levels of both erucic acid and glucosinolate content. 

Under the USA code of Federal Regulation Title 21, the erucic acid content in canola oil shall 

not exceed 2% of the component fatty acids [49].  
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2.3.3. Palm Oil 

Oil palm is believed to have originated in Africa, but is cultivated most intensively in 

Southeast Asia especially Malaysia and Indonesia that together account for around 80% of the 

total world production. Palm first received its botanical name from Jacquin in 1763 as Elaeis 

guineensis [53]. The word Elaeis is derived from the Greek word elaion, meaning oil, while 

guineensis implies its origin in the Guinea coast. The genus Elaeis includes Elaeis guineensis 

originating in Africa, Elaeis oleifera originating in Central and South America, and Elaeis odora, 

previously known as Bercella odora, which is not cultivated. Elaeis guineensis is currently the 

main commercially grown species in Malaysia because it gives the highest yield per bunch while 

oil from Elaeis oleifera is more unsaturated and yields less oil. The fruit contains shell and one, 

two, or three kernels. The seed consists of layers of oily endosperm surrounded by a brown testa 

covered with a network of fibres. Palm affords the highest oil production per area per year (Table 

2.1). There are generally two types of oil derived from palm, including palm oil derived from the 

mesocarp and palm kernel oil from the kernel inside the testa [22,54]. Palm oil is more saturated 

than soybean oil and rapeseed oil because its major fatty acids include palmitic (C16:0), stearic 

(C18:0), oleic (C18:1), and linoleic (C18:2) as shown in Table 2.4. Palm kernel oil is more 

saturated than palm oil as it mainly contains lauric (C12:0), myristic (C14:0), and oleic (C18:1) 

acids. Palm oil can be fractionated at ambient temperature (25-30°C) into palm olein or oleic-

rich oil (liquid fraction) and palm stearin or stearic-rich oil (solid fraction). Due to the saturated 

fatty acids contained in this oil, it has superior oxidative stability compared to other vegetable 

oils.  

 



21 
 

2.3.4. Sunflower Oil 

The genus Helianthus annuus is the botanical name for sunflower, a member of 

Compositae, or flowering plants, grown throughout the world. The genus name stems from the 

Greek words helios, meaning sun, and anthos, meaning flower. Sunflower originated in 

Southwest United States and Mexico [45]. Sunflowers are cultivated both for ornamental and 

consumption purposes. Sunflower seeds are edible and often crushed to extract oil. The major 

fatty acids in sunflower oil are oleic (C18:1) and linoleic (C18:2). Sunflower is considered as one 

of the most ancient oilseed species as its cultivation can be traced back to 3000 B.C. Prior to the 

advent of the soybean boom after World War II, sunflower was the major source of vegetable oil.  

 

2.3.5. Rice Bran Oil 

Rice bran is obtained when brown rice is pearled to produce white rice. The bran and 

yarn removed by pearling are the main source of rice oil. Lipid droplets can be extracted from 

rich bran using an extruder, expander, and expeller to form a bran flake or pellet followed by 

solvent (usually hexane) extraction in an extraction bed. The majority of oil components is 

triacylglyceride (TAG) with palmitic (C16:0), oleic (C18:1), and linoleic (C18:2) acids as the 

major fatty acids. Diacylglyceride (DAG), monoacylglyceride (MAG), and sterols may be 

present in minor amounts. Rice bran oil is used widely in Asian countries due to its delicate 

flavour and odour. It is recently gaining interest as healthy oil since it reduces serum cholesterol 

[55].  
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2.3.6. Jatropha Oil 

Jatropha curcus is a member of the Euphorbiaceae family. It originated in America, but 

is cultivated mainly in Asia, especially India. Jatropha is well adapted to both arid and semi-arid 

conditions and sheds its leaves in order to survive during drought seasons [56]. It can be grown 

on non-cultivated degraded wasteland and is considered one of the most promising feedstock 

materials for biodiesel production [57]. Although Jatropha plants have minimal nutritional 

requirements, cultivation of Jatropha under acidic soil requires additional nutrients such as 

calcium and magnesium due to its preference for alkaline soils. Oil derived from Jatropha is non-

edible due to curcin, a toxic compound, found in the seeds. Its oil content ranges from 35-40% in 

seed and 50-60% in kernel with oleic (C18:1) and linoleic (C18:2) as its major fatty acids.  

 

2.3.7. Karanja Oil 

Karanja Pongamia pinnata is a member of Leguminaceae family. It is an oil seed bearing 

tree, native to humid and subtropical environments such as those encountered in Philippines, 

Indonesia, Malaysia, Myanmar, Australia, India, and United States. It is highly tolerant to 

salinity and can be cultivated on degraded wasteland and a variety of soil types ranging from 

clay to sandy or stony. In addition, it plays important role in improving soil quality so that the 

land exhausted of nutrients can be reused for agricultural purposes [56]. The oil droplet extracted 

from Karanja appears yellowish orange to brown and is not edible due to the presence of toxic 

flavonoids [58]. Its oil content varies from 9-46% with oleic (C18:1) and linoleic (C18:2) being 

the major fatty acids. 
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2.3.8. Used Cooking Oil 

The properties of used cooking oil depend highly on the origin and history of the oil. The 

origin of used cooking oil determines its fatty acid compositions. The history or duration that the 

oil exposed to water, heat, food, micro-organisms and oxygen during cooking determines its 

physical and chemical properties such as viscosity, water content, free fatty acid content, and the 

presence of polymerized and oxidized compounds.  

Oil degradation during cooking occurs through three main reactions: thermolytic, 

oxidative, and hydrolytic reactions. Thermolytic reactions occur in the absence of oxygen and 

saturated fatty acids, forming alkanes, fatty acids, ketones, esters, and diacylglycerides that are 

decomposed at high temperatures. In addition, dimeric compounds are major products of 

thermolytic reactions of unsaturated fatty acids. Dimerization and polymerization of unsaturated 

fatty acids take place via Diels-Alder reactions. For example, a reaction between conjugated 

diene from linoleate and oleate can take place to produce a tetra-substituted cyclohexene [59]. In 

the presence of oxygen, oxidative and nonoxidative reactions will occur simultaneously.  

Oxidative reactions occur in a series of initiation, propagation, and termination steps as 

shown in Figure 2.1. The initial step involves abstraction of hydrogen from unsaturated fatty acid 

to form a free radical (R·) followed by a reaction of the radical with molecular oxygen to form 

peroxide radicals (ROO·). The propagation phase involves intermolecular interactions, whereby 

the peroxide radical abstracts hydrogen from an adjacent molecule, which gives rise to 

hydroperoxides (ROOH) and a new free radical.  
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Initiation: 

 
+• +→ HRRH  

Propagation: 

 
•• →+ ROOOR 2  

 ROOHHROO →+ +•
 

 
•• +→ OHROROOH  

Termination: 

 ROHHRO →+ +•
 

  OHHOH 2→+ +•
 

 

Figure 2.1 Scheme for oxidative reaction mechanism. 
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Carbon-hydrogen bond dissociation energies of fatty acid are lowest at bisallylic, 

followed by allylic positions (see Figure 2.2). It is reported that lower bond energies for 

bisallylic and allylic hydrogens are 75 and 88 kcal/mol, respectively, while those of methylene 

hydrogens are 100 kcal/mol [60]. As a result, hydrogens at bisallylic and allylic locations are 

favoured sites for proton abstraction by peroxide radicals. Once formed, hydroperoxides tend to 

proceed toward further oxidation degradation, leading to secondary oxidation derivatives such as 

aldehydes, acids, and other oxygenates [59]. Hydrolytic reactions take place between the oil and 

water formed during food preparation. Formations of DAG, MAG, FFA, and glycerol are main 

derivatives from hydrolysis of TAG [61].  

 

 

 

 

 

R-CH2- CH2-CH=CH-CH2-CH =CH-R׳ 

 

 

Figure 2.2 Carbon-hydrogen bond positions in fatty acids.  
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As a result of a combination of these reactions during food preparation, various reaction 

derivatives are formed leading to an increase in polar content of the oil. It is advised that used 

cooking oil no longer be used for edible purposes when its polar content exceeds 25% [62]. 

Therefore, used cooking oils were sold commercially as animal feed. However, in 2002 the 

European Union (EU) enforced a ban on these waste oils as animal feed because various harmful 

compounds are formed in used cooking oil during food preparation. When used cooking oil is 

mixed in feeding meals for domestic animals, these harmful compounds could be returned into 

the food chain through animal meats [63]. This concern has further raised interest in utilizing 

used cooking oil as feedstock for biodiesel production. 

An obvious advantage of used cooking oil over other vegetable oils is its cheaper price. 

The prices of soybean, sunflower, yellow grease (FFA <20 wt.%), and brown grease (FFA >20 

wt.%) are 18, 20, 9, and 5 to -5 cents/lb, respectively [64]. The negative value of brown grease 

price implies the cost associated with waste treatment prior to dumping. The availability of used 

cooking oil as a feedstock for biodiesel production is highly related to area population.  Yellow 

grease generated in Canada is roughly equivalent to 4 kg production per person per year, 

meaning that approximately 124 Kilotonne of yellow grease is produced annually in Canada 

[65].  In comparison to used cooking oil, biodiesel produced from fresh vegetable oils would be 

pricier. Zhang et al. [66] reported that on average a $0.01/kg increase in canola seed cost would 

result in $0.03/kg increment in biodiesel prices and that raw material cost is responsible for 

approximately 70-95% of biodiesel production cost when fresh vegetable oil is used as 

feedstock. Therefore, the use of used cooking oil for feedstock for biodiesel production attracts 

many biodiesel producers due to its economical benefits.  
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2.4. Biodiesel Production 

Transesterification is the most common method used to reduce viscosity of vegetable oils 

and produce biodiesel [7]. In addition to transesterification of TAG, biodiesel (FAAE) can be 

produced from free fatty acid (FFA) through esterification. Since ester is characterized by the 

RCOOR group (R = alkyl group), TAG is a type of ester and the reaction that converts TAG into 

biodiesel is known as transesterification (transforming ester). In contrast, FFA is not an ester and 

therefore the reaction to produce biodiesel from FFA is called esterification (making ester). 

Transesterification is the reaction between glycerides with short chain alcohols and is comprised 

of three consecutive reactions starting from TAG to DAG to MAG to glycerol, respectively (see 

Figure 2.3). In each step, the reaction consumes one mole of alcohol and produces one mole of 

ester. In total one mole of TAG reacts with three moles of alcohols to produce three moles of 

ester (biodiesel) and one mole of glycerol. In general, the reaction performance is influenced by 

various parameters such as type of alcohol, alcohol to oil molar ratio, FFA and water content, 

reaction temperature, reaction duration, and catalyst type. These parameters will be discussed in 

the following sections. 

 

2.4.1. Effects of Free Fatty Acid and Water Content 

Free fatty acid and water content in the starting materials can significantly affect ester yield and 

glyceride conversion in alkali-catalyzed transesterification. All starting materials including lipid 

feedstock, alcohol, and catalyst should be substantially anhydrous. Prolonged contact with 

atmospheric air of alkali catalysts will reduce catalyst efficacy through the catalyst’s interaction 

with moisture and carbon dioxide in air. Also, it is critical that feedstock used in alkali-catalyzed 
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transesterification should contain free fatty acid (FFA) less than 0.5 wt.% [7]. The higher the 

acidity of oil, the lower is the conversion and yield in transesterification. If FFA is contained in 

the starting oil, extra alkali catalyst is needed to neutralize the FFA. The reaction between alkali 

catalyst and FFA would result in catalyst consumption as well as soap formation and water and is 

referred to saponification (see Figure 2.4a). Another example of saponification during 

transesterification is when water is present, it favours hydrolysis of glycerides to form soap and 

glycerol (see Figure 2.4b). In addition, water can promote hydrolysis of ester to form FFA, 

which lowers ester yield (see Figure 2.4c). Soap formed during saponification causes increased 

viscosity or gel formation, which interferes with the transesterification reaction as well as 

glycerol separation [58]. Ma et al. [67] studied the effects of FFA and water on 

transesterification of beef tallow using sodium hydroxide and sodium methoxide as a catalyst. It 

was reported that when 0.6% FFA was added, the yield of beef tallow methyl ester is minimal. 

Additional water present in the reaction mixture intensely diminished the ester yield. They 

concluded that FFA and water content should be maintained below 0.5 and 0.06 wt.%, 

respectively. Low quality feedstocks such as used cooking oil are attractive due to cheaper price. 

However, these feedstocks usually contain high amounts of FFA and water due to prolonged 

exposure of heat and contaminated moisture from food. Therefore, direct alkali-catalyzed 

transesterification of these oils is not applicable. Pre-treatment of these oils to remove FFA and 

water is usually required. Alkali refining is usually used in oil processing in order to remove 

FFA from oils [68]. In this process, 12% aqueous sodium hydroxide solution is required to 

neutralize FFA and to precipitate phosphatides. The treatment temperature and duration can be 

either 90°C for few seconds (short-mix process) or 40°C for 15 minutes (long-mix process).  
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Figure 2.3 Scheme for step-wise transesterification reaction. 
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Figure 2.4 Hydrolysis and saponification during transesterification: a) saponification of free fatty 

acid; b) saponification of triacylglyceride; c) hydrolysis of methyl ester. 
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The oil-soap mixture is then centrifuged to separate the aqueous phase containing water, soap, 

and precipitated phosphatides. The treated oil usually has FFA reduced to <0.05% and 

phosphorus to <2 ppm. The disadvantage of this process is the generation of waste water.  

FFA can also be removed from vegetable oils through distillation [69]. The distillation 

process should be performed under vacuum conditions in order to lower the operating 

temperature. If the operating temperature is too high, glycerides will degrade to generate more 

acids. The distillation temperature ranged from 100-180°C. However, this approach is less 

preferred due to the additional cost associated with the distillation step. Alternatively, a two-step 

acid-alkali esterification-transesterification process can be used [70]. In the first step, FFA is 

esterified with a short-chain alcohol with acid catalyst to produced ester. Since FFA is converted 

into ester in the first step, an alkali catalyst can be used in transesterification in the second step. 

A solid acid catalyst was also reported for simultaneous catalysis of esterification of FFA and 

transesterification of glycerides [71]. However, further research and development is required to 

improve conversion and ester yield.   

 

2.4.2. Effects of Alcohol 

Stoichiometrically, one mole of TAG requires three moles of alcohol in 

transesterification. However, due to the reversible nature of the reaction, excess alcohol is 

usually used in transesterification in order to shift the reaction to the product side. In general, 

98% conversion can be achieved at 6:1 alcohol to oil ratio for an alkali-catalyzed reaction and an 

increase in alcohol used in the reaction does not increase conversion any further [72]. However, 

an optimum alcohol to oil ratio can be different depending on oil quality and the type of 
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vegetable oil used. It was reported that a maximum of 92% conversion was achieved using 10:1 

methanol to oil ratio for biodiesel preparation from Karanja oil [73]. Leung and Guo [74] 

reported that 98% ester content can be obtained from transesterification of canola oil using 6:1 

alcohol to oil ratio while transesterification of used cooking oil requires 7:1 alcohol to oil ratio to 

obtain 94% ester content. Transesterification of Cynara cardunculus L. oil requires 12:1 ethanol 

to oil ratio as an optimum ratio while an increase in ethanol to oil ratio to 15:1 decreases ester 

content [75]. Rashid and Anwar [76] also reported that a further increase in alcohol used in 

transesterification of rapeseed oil beyond its optimum ratio (6:1 in this case) would result in 

reduced ester yield. When too much alcohol is used in transesterification, the polarlity of the 

reaction mixture is increased, thus increasing solubility of glycerol back into the ester phase and 

promoting the reverse reaction between glycerol and ester or glyceride, thereby, reducing ester 

yield. Acid catalyzed reaction requires a higher alcohol to oil molar ratio (30:1), compared to 

alkali-catalyzed reactions [77-79]. In some cases, the alcohol to oil ratio is increased to 245:1 to 

obtain 99% conversion [80]. 

The type of alcohol used in transesterification can also affect reaction performance. 

Methanol is most commonly used in transesterification, mainly because of its economical benefit 

[7]. The disadvantages of using methanol are dependency on petroleum sources and a low 

solubility of TAG in methanol. To illustrate the immiscible behaviour of TAG in methanol, it is 

reported that a minimum mixing time of 3 minutes is required to sustain methanolysis of soybean 

oil [81]. A lag time of 2-3 minutes during methanolysis of soybean oil and sunflower oil is also 

reported [77,82]. This immiscibility behaviour is often referred to as mass transfer resistance or 

mass transfer limitation which can be overcome by several methods including the use of rigorous 
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mechanical stirring [83,84], a co-solvent aid [85], the use of super critical conditions [86-88], 

and other techniques such as microwave [89,90] and ultrasonic [91,92].  

Attempts to improve the mass transfer of TAG have been made using other alcohols such 

as ethanol, propanol, and butanol [93-95]. Biodiesel produced using bio-ethanol is completely 

renewable. The main disadvantage of ethanolysis is the lower reactivity of ethoxide. When 

alcohol reacts with homogeneous base catalysts, alkoxides are the actual catalyst formed. If 

ethanol is used instead of methanol, the carbon chain length is increased which leads to a 

decrease in nucleophilicity and consequently a reduction in reactivity of ethoxide as compared to 

methoxide [96]. It was found that when waste fryer grease is transesterified with a mixture of 

methanol and ethanol at equal molar ratio, the resulting biodiesel contains 50% more FAME than 

FAEE [70], illustrating the higher reactivity of methoxide as compared to ethoxide. The lower 

polarity of ethanol has advantages and disadvantages on the transesterification process. On one 

hand, the lower polarity of ethanol alleviates the initial mass transfer resistance encountered in 

the case of methanolysis, hence, increasing the initial rate of the reaction. On another hand, it 

improves mutual miscibility of ester and glycerol, in which the catalyst resides, and promotes 

saponification. Therefore, in the case of ethanolysis, saponification occurs faster and soap 

concentration in the biodiesel phase is higher than that of methanolysis [97]. If Saponification 

occurred, it would result in reduced ester yield, as well as consumption of the catalyst. During 

ethanolysis of sunflower oil, 95% of the sodium hydroxide initially loaded in the reactor is 

converted into sodium soap within 5 minutes. Not only does soap formation lower ester yield, it 

also complicates the glycerol separation step in the biodiesel purification process. In order for 

phase separation to occur, an additional step such as ethanol evaporation [98] or glycerol 
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addition [99] is necessary. An alternative solution is to use mixtures of methanol and ethanol 

[70,100,101]. 

 

2.4.3. Effects of Catalyst Type 

Catalyst type is one of the most important parameters in the transesterification reaction. 

Selection of the catalyst is a crucial step in determining the outcome of biodiesel production and 

is greatly dependent on the type and quality of the feedstock. Most commercial processes employ 

homogeneous base catalysts due to high reaction yield, short reaction time, low reaction 

temperature requirement, and beneficial economics of the catalysts [7]. Feedstock containing 

higher amounts of FFA and water, such as used cooking oil, require the incorporation of acid 

catalysis in the production process [70]. More recently, solid catalysts are subjected to 

investigation because the use of these catalysts simplifies the biodiesel purification step, 

eliminates waste water generation, and renders a continuous biodiesel production process 

possible [70,102,103]. Because a lower catalyst activity associated with heterogeneous catalysis 

requires a longer reaction time and higher reaction temperature compared to that of 

homogeneous base catalysts, further research and development is needed. Enzymatic catalysis is 

another alternative as it neither produces soap nor waste water, but it has expensive operating 

cost and strict reaction conditions [104]. On the other hand, attempts have been made to carry out 

non-catalytic transesterification reaction under supercritical conditions [86-88]. The process does 

not require catalysts and has a short reaction time; however, because it requires extreme reaction 

temperatures and pressures, the process is susceptible to polymerization [105]. Consequently, the 
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purification step becomes difficult due to increased viscosity. Each type of catalysis is discussed 

in the following sections. 

 

2.4.3.1. Homogeneous Base Catalysis 

Homogeneous base catalysis is most commonly used in commercial biodiesel production 

processes, because the process offers high reaction yield (97% or more) in a short time (10 

minutes to 2 hours) with mild reaction temperatures (25-70°C). The reaction mechanism 

involves 3 steps as shown in Figure 2.5 [58]. The first step is the attack of alkoxide ion 

(methoxide ion in the case of methanol as reacting alcohol) to carbonyl carbon of the TAG 

molecule to form a tetrahedral intermediate. In the second step, the tetrahedral intermediate 

reacts with alcohol to regenerate alkoxide ion. The last step involves the rearrangement of the 

tetrahedral intermediate to form alkyl ester and DAG. This mechanism can be extended to the 

reaction of DAG and MAG in the same manner. 

Examples of homogeneous base catalysis for transesterification are presented in Table 

2.6. Homogeneous base catalysis in transesterification is much faster than homogeneous acid 

catalysis [77]. However, homogeneous base catalysis is limited to quality of the feedstock used, 

i.e., acid value of lipid must be lower than 1 and all starting materials must be substantially 

anhydrous. 
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Figure 2.5 Mechanism for homogeneous base catalysis in transesterification. 
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Acid catalysts are more suitable if the feedstock contains higher amounts of free fatty acid and 

water such as used cooking oil. The most common homogeneous catalysts are hydroxides and 

alkoxides of alkali metals such as NaOH, KOH, NaOCH3, and KOCH3. Ma et al. [67] found that 

hydroxide of alkali metal is more effective than alkoxide as NaOH and NaOCH3 reach their 

maximum activities at 0.3 and 0.5 wt.% with respect to beef tallow. Controversial results were 

reported by other researchers, as NaOCH3 was reported to be more effective than NaOH [72]. In 

the presence of acid, water is formed from a free OH group in NaOH or KOH, while methanol is 

formed instead of water if NaOCH3 or KOCH3 is used. When water is generated, it has several 

adverse impacts on the transesterification reaction as discussed in Section 2.4.1.  

Mahajan et al. [121] showed that when NaOCH3 was used, the acid value of the reaction 

product was significantly lower than when NaOH was used. However, alkali metal alkoxides are 

less popular than hydroxides in large-scale production due to their toxicity, higher price, and 

disposal problems. When alkaline metal alkoxides and hydroxides are used as catalysts in 

methanolysis, the active catalytic species are the same, i.e., methoxide ion (CH3O-), concluding 

that these catalysts are equally effective [93]. It was also reported that at 6:1 alcohol to oil molar 

ratio, the use of 0.5% NaOCH3 is as effective as 1% NaOH [72]. The reaction yield can also be 

increased by using two-step process by separating and removing glycerol at the end of the first 

step [122]. The increase in reaction yield, compared to the one-step process, stems from a shift in 

reaction equilibrium to the product side due to the removal of glycerol during the production 

process.  

 

 



 
 

Table 2.6 Examples of homogeneous catalysis on esterification and transesterification. 

Feedstock Catalyst Alcohol Alcohol to 

oil ratio 

Temperature 

(°C) 

Duration Conversion/yield Year Reference 

Base catalysis         

Vegetable oils NaOH 1% wt. 

CH3ONa 0.5% wt. 

methanol 6:1 60 1 h 93-99% 

conversion 

1984 72 

Beef tallow NaOH 0.3% wt. 

CH3ONa 0.5% wt. 

methanol 6:1 65 15 min 60% yield 1998 67 

Vegetable oils KOH 0.5% wt. 

CH3ONa 0.25% wt. 

C1-C4 

alcohol 

6:1 25 40 min 87-96% yield 2001 93 

Waste 

vegetable oils 

KOH methanol - 60 1 h 95% conversion 2002 106 

Vegetable oils KOH 1% wt. methanol 6:1 25 40 min 51-87% yield 2004 107 

Pongamia 

pinata 

KOH 1% wt. methanol 10:1 105 1.5 h 92% conversion 2005 73 

Canola oil NaOH 1% wt. methanol 6:1 45 15 min 98% ester 2006 74 
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content 

Used fryling 

oil 

NaOH 1.1% wt. methanol 7:1 60 20 min 94.6% ester 

content 

2006 74 

Pongamia 

pinata 

KOH 1% wt. methanol 6:1 65 2 h 97-98% yield 2006 108 

Canola oil KOH 1% wt. methanol 

ethanol 

6:1 25-70 2 h >90% yield 2007 100 

Waste fryer 

grease 

H2SO4 2% wt. 

KOH 1% wt. 

methanol 

ethanol 

6:1 50-60 5-6 h 

 

97% ester 

content 

2007 70 

Jatropha NaOH or KOH  

1% wt. 

methanol 3:1 - 2-4 h - 2007 109 

Mixed Canola 

and Used 

cooking oil 

KOH 1% wt. methanol 

ethanol 

6:1 50 2 h 98% ester 

content 

2008 99 

Rapeseed KOH 1% wt. methanol 6:1 65 2 h 95-96% yield 2008 76 

Sunflower NaOH 1% wt. methanol 6:1 60 2 h 97.1% yield 2008 110 
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Karanja H2SO4/NaOH/KOH methanol 8-9:1 45 1 h 89% yield 2008 111 

Greenseed 

Canola oil 

KOH 1%wt. methanol 

ethanol 

6:1 60 90 min 97% ester 

content 

2010 101 

Coriander seed 

oil 

Ch3ONa 0.5% wt. methanol 6:1 60 90 min 94% yield 2010 112 

 

Acid catalysis 

        

Soybean H2SO4 1% wt. butanol 30:1 117 3 h - 1986 77 

Soybean H2SO4 3% wt. methanol 30:1 60 48 h 98% conversion 1999 78 

Madhuca 

indica 

H2SO4 1% v/v methanol 0.3-0.35 

v/v 

60 1 h 98% yield 2005 113 

Rubber seed 

oil 

H2SO4 0.5%  

by volume 

methanol 6:1 45 20-30 

min 

- 2005 114 

Tobacco seed 

oil 

H2SO4 1-2% methanol 18:1 60 25 min 91% yield 2006 115 

Waste frying H2SO4 3.8:1  methanol 24.5:1 70 4 h 99% yield 2006 80 
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oil mole ratio 

Calophyllum 

inophyllum 

H2SO4 0.65%  

by volume 

methanol 6:1 65 90 min 85% yield 2007 116 

Zanthoxylum 

bungeanum 

H2SO4 2% methanol 24:1 60 80 min 98% yield 2008 117 

Tallow H2SO4 2.5% wt. methanol 30:1 60 24 h 98.28% yield 2008 79 

Canola AlCl3 methanol 24:1 110 18 h 98% conversion 2009 118 

Soybean CF3CO2H 2.0 M 

Concentration 

methanol 20:1 120 5 h 98.4% ester 

content 

2009 119 

High AV oil H2SO4 4% wt. methanol 20:1 120 5 min 

residence 

time 

99.5% yield 2010 120 
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2.4.3.2. Homogeneous Acid Catalysis 

In biodiesel production from feedstock containing high FFA and water content, acid 

catalysis is more suitable. This approach can be used to avoid saponification and FFA is directly 

converted into ester through esterification while glycerides are converted into ester through 

transesterification. Therefore, acid catalysts can be used to catalyze both esterification and 

transesterification while base catalysts only catalyze transesterification but not esterification 

[123]. The disadvantages of homogeneous acid catalysis are that it requires a high reaction 

temperature, an acid-tolerable reactor, and a longer reaction time due to a slower reaction rate. 

The reaction mechanism is shown in Figure 2.6 [58].  

The first step is protonation of the carbonyl group in the glyceride molecule, which leads 

to the carbocation. The attack of alcohol then produces a tetrahedral intermediate and the 

elimination of glycerol backbone from this intermediate leads to the formation of ester. Although 

saponification can be avoided, water is still being generated during esterification of FFA (see 

Figure 2.6). Water can then undergo hydrolysis, which is the reverse of esterification, but, unlike 

esterification, it can occur in the presence of either base or acid. The resulting carboxylate anion 

from hydrolysis shows little tendency to react with alcohol to form ester, but reacts readily with 

K+ or Na+ in the presence of base to form a stable salt. Therefore, it is essential to perform acid-

catalyzed esterification and base-catalyzed transesterification separately. 

Examples of homogeneous acid catalysts are H2SO4, H3PO4, HCl, BF3, and CF3CO2H. 

Among these catalysts, H2SO4 is the most common catalyst due to its good catalytic activity and 

simplicity in H2SO4/MeOH preparation as concentrated liquid H2SO4 can be added directly to 

methanol (see Table 2.6). The most common H2SO4 concentration used in esterification is 1-2%.  



43 
 

 

 

 

   ܴᇱᇱ ൌ for esterification and ܴᇱᇱ ݊݁݃݋ݎ݀ݕ݄ ൌ   for transesterification   
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Figure 2.6 Mechanism for homogeneous acid catalysis in esterification and transesterification. 

 

HCl/MeOH was introduced for esterification about half century ago, but is not a very popular 

choice due to complexity in preparation of the solution involving bubbling hydrogen chloride gas 

into methanol or adding acetyl chloride slowly to methanol [123], using a common concentration 

of 5%. BF3/methanol is prepared by bubbling BF3 gas into cooled methanol. BF3 has an empty 

orbital that can accept a pair of electrons making it a Lewis acid. This catalyst can catalyze 

esterification much faster than transesterification and it is reported that FAME can be prepared 

from fatty acids within a very short time (10 minutes) using 6-14% catalyst loading. Due to its 

superior activity and short reaction time, the American Oil Chemists’ Society (AOCS) has 

adopted BF3 in the official method for preparing methyl ester from fatty acids (AOCS Ce 2-66). 

However, BF3 is not used widely in literature as H2SO4 because it is expensive, toxic, and has a 

OR’ (or OH) 
OR’ (or OH) 
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limited shelf life [123]. Diazomethane (CH2N2) is not classified as an acid catalyst, but rather as 

a strong methylation reagent. Despite its inability to catalyze transesterification, diazomethane in 

ether esterifies free fatty acid at a much faster rate when compared to acid catalysts. However, its 

shortcomings such as high toxicity, short shelf life, and potentially explosive have prevented it 

from being used widely like other catalysts. 

 

2.4.3.3. Heterogeneous Base Catalysis 

Homogeneous base catalysts have gained significant attention from numerous biodiesel 

researchers because the catalyst removal process is simple and does not create waste water 

during catalyst removal step. In addition, heterogeneous catalysts can be regenerated and reused, 

rendering biodiesel production in continuous processes possible. However, the use of such 

catalyst is limited by free fatty acid usually contained in low quality feedstock such as used 

cooking oil. Nevertheless, this catalyst can be used with good quality feedstock and has several 

advantages such as catalyst reusability, simplicity in catalyst removal, low reaction temperature 

requirement, and short reaction time, enticing several researchers to investigate this area. The 

mechanism scheme of heterogeneous base catalysis using CaO as an example catalyst is shown 

in Figure 2.7. The first step involves the extraction of H+ from H2O to form surface OH- on the 

basic site of CaO (Eq. 2.1). Then H+ is extracted from methanol to form methoxide ion and water 

(Eq. 2.2). Also, methanol can adsorb dissociatively on CaO (Eq. 2.3). The next step is an attack 

of the adsorbed methoxide ion to acylglycerol molecule to form tetrahedral intermediate (Eq. 

2.4) which is protonated afterward (Eq. 2.5).  
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Figure 2.7 Mechanism for heterogeneous base catalysis in transesterification. 
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The tetrahedral intermediate can also react with methanol to generate methoxide anion (Eq. 2.6). 

In the last step, the rearrangement of the tetrahedral intermediate leads to the formation of methyl 

ester and glycerol or acylglycerol (Eq. 2.7). 

Examples of heterogeneous base catalysis are illustrated in Table 2.7. Common 

heterogeneous base catalysts are those of alkaline earth metal oxides such as MgO, CaO, SrO, 

and BaO. BaO is not suitable in methanolysis because it dissolves in methanol and creates 

leaching problems, while SrO reacts strongly with CO2 and water in the air to form SrCO3 and 

Sr(OH)2. The catalytic activity of MgO is not very high due to the low basic strength of MgO, 

leaving CaO the most attractive alkaline earth metal oxide catalyst. Alkali metals such as Li, Na, 

and K can be used to promote these catalysts. It has been shown that pure LiNO3 is inactive and 

CaO alone has low activity towards transesterification of tributyrate [125]. Proper impregnation 

of LiNO3 on CaO results in a highly dispersed monolayer Li+ on CaO that exhibits high catalytic 

activity on transesterification. However, if too much LiNO3 is added, the resulting catalyst is 

associated with the non-dissociative NO3
- ions over the CaO surface and the formation of LiNO3 

multilayers. These inactive species have proven detrimental to catalytic activity of the Li/CaO 

catalyst. In addition, Li/CaO has higher basic strength and activity as compared to Na/CaO and 

K/CaO [145]. This is because the small size of the Li+ ion makes it easier to be inserted more 

properly in the CaO framework creating oxygen gaps that contribute to the basic strength of the 

catalyst.   

 



 
 

Table 2.7 Examples of heterogeneous catalysis on esterification and transesterification. 

Feedstock Catalyst Alcohol to oil 

ratio 

Temperature 

(°C) 

Duration 

(h) 

Yield 

(%) 

Leaching Year Reference 

Base catalysis         

Rapeseed MgO 22:1 reflux 22 94 n/a 2001 124 

Rapeseed BaO 6:1 reflux 1 96 n/a 2001 124 

Gylceryl tributyrate Li/CaO n/a 60 0.5 ~100 no 2004 125 

Karanja Li/CaO 12:1 65 8 95 n/a 2006 108 

Canola K2CO3/Al2O3 11.48:1 60 2 94 yes 2007 126 

Rapeseed K/KOH/Al2O3 9:1 60 1 85 yes 2008 127 

Soybean Fe3+/Mg-Al 

HTCa  

6:1 80 1 38 yes 2008 128 

Jatropha X/Y/MgO/Al2O3 10:1 reflux 3 97 n/a 2008 129 

Rapeseed K2CO3/Al2O3 15:1 50 3 99 n/a 2010 130 

Sunflower La2O3/ZrO2 30:1 200 5 85 n/a 2010 131 
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Acid catalysis         

Babassu Amberlyst 15 300:1 60 8 74 n/a 2005 132 

Soybean WO3/ZrO2/Al2O3 40:1 250 20 90 n/a 2006 133 

Canola (20% FFA) TPA/HZb 9:1 200 10 90 no 2006 71 

Palm kernel SO4
2-/ZrO2 6:1 200 1 95 n/a 2006 134 

Cottonseed SO4
2-/TiO2 12:1 230 8 96 n/a 2007 135 

Palmitic acid SO4
2-/ZrO2/SiO2 10:1 68 6 89 n/a 2007 136 

WCOc ZSd/Si 18:1 200 10 98 no 2008 102 

WCOc (28% FFA) SO3H/starch 30:1 80 8 92 n/a 2008 137 

Cottonseed SO4
2-/TiO2-SiO2 9:1 200 6 92 n/a 2008 138 

WCOc (15% FFA) WOx/Al2O3 n/a 110 2 97 n/a 2009 139 

Palm (5% FFA) Arene-

SO3H/SBA15 

20:1 140 4 95 n/a 2010 140 

WCOc TPA/Nb2O5 18:1 200 20 92 no 2010 103 

Rapeseed Fe-Zn DMCe 16:1 160 8 98 n/a 2010 141 

Vegetable oil Fe-Zn DMCe 15:1 170 8 84-99 n/a 2010 142 
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Cottonseed SO3H/starch 20:1 80 12 97 Yes 2011 143 

Vegetable oil Fe-Zn DMCe 16:1 170 8 98 n/a 2011 144 

aHTC = Hydrotalcite; bTPA = tungstophosphoric acid, HZ = hudrous zirconia; cWCO = waste cooking oil; dZS = zinc stearate; eDMC = double metal cyanide 
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Alternatively, K2CO3 supported on Al2O3 can be used in transesterification. It is one of 

the most common catalysts in many organic chemical reactions such as isomerization, alkylation, 

and transesterification. This is because K2CO3/Al2O3 has strong basic strength and the catalytic 

activity of solid base catalysts depends greatly on basicity of the catalyst, rather than surface area 

[126]. The catalytic activity of K2CO3/Al2O3 is superior to metal promoted CaO and SrO and 

only second to alkali metal promoted BaO. Unlike alkali metal promoted BaO, the leaching of 

K2CO3/Al2O3 is negligible. 

 

2.4.3.4. Heterogeneous Acid Catalysis 

Heterogeneous acid catalysts are most promising for biodiesel production and are 

expected to dominate commercial biodiesel industries in the coming years. This is due to 

simplicity in the biodiesel purification step that eliminates waste water, reuseability that make 

continuous process possible, and the ability to handle low quality feedstock with high FFA 

content via simultaneous esterification and transesterification. The disadvantage of 

heterogeneous acid catalysts is the lower catalytic activity leading to requirements in higher 

reaction temperature (~200°C) and reaction time (8-20 hours). Catalyst leaching is another issue 

for this type of catalyst. If the catalyst leaches into biodiesel, purification will be required to 

remove the contaminated catalyst, and thereby, generating waste solvent and increasing biodiesel 

production cost. In addition, catalyst reusability or catalyst deactivation is usually studied for this 

type of catalyst. The simultaneous esterification-transesterification reaction mechanism is shown 

in Figure 2.8 [71].  

 



51 
 

 

 

 

 

 

Figure 2.8 Mechanism for heterogeneous acid catalysis in esterification and transesterification. 
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In the esterification reaction, FFA reacts with methanol to form methyl ester. The first 

step involves an adsorption of FFA on the acidic site on the catalyst surface. The interaction 

between FFA and the acidic site leads to carbocation. An attack of methanol then produces a 

tetrahedral intermediate. Finally, methyl ester is formed as a result of an elimination of water 

molecule from the tetrahedral intermediate. In transesterification, acylglycerol including tri-, di-, 

and monoglyceride reacts with methanol to form methyl ester. The reaction mechanism occurs in 

a similar manner as that described in the esterification reaction. The formation of methyl ester 

stems from an elimination of diglyceride, monoglyceride, and glycerol from the tetrahedral 

intermediate when triglyceride, diglyceride, and monoglyceride are adsorbed in the acidic sites, 

respectively. Various types of heterogeneous acid catalysts are available for esterification and 

transesterification as shown in Table 2.7 and these catalysts are discussed as follow. 

Ion-exchange resins such as Amberlyst series and Nafion silica composite solid acid 

catalysts are one of the first solid acid catalysts introduced for biodiesel production applications 

[132,146]. These resins have low catalytic activity, and therefore, require extreme reaction 

temperatures. Unfortunately, resins usually have low thermal stability (<140°C) and the reaction 

was conducted at a mild temperature of 60°C, which resulted in a low reaction conversion 

(74%). Alternatively, silica matrix of mesoporous solids can be used, but the catalytic activity is 

low. Metals such as aluminum, zirconium, titanium, or tin ions can be added to improve catalytic 

activity on esterification and transesterification. However, metal-doped materials tend to behave 

like weak acid, of which high catalytic activity is not exhibited. To improve catalytic activity of 

the catalyst, high dispersion of a strong acid species on interior surfaces of mesoporous supports 

is required. 
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The Tungsten-loaded catalyst is an interesting catalyst. WO3/ZrO2 is used as a catalyst in 

esterification of palm oil and a conversion of 98% is obtained [147]. Upon its formation, hydrous 

zirconia contains very small regions of tetragonal structure exhibiting the (101) phase that can be 

observed in XRD patterns. These tetragonal crystallites grow as the hydrous zirconia is thermally 

treated and they are transformed into the thermodynamically stable monoclinic phase during 

cooling. When an interacting species such as WO3 is presented, the phase transition is somewhat 

hindered and the tetragonal phase is maintained. However, if too much WO3 is added, the 

catalyst becomes amorphous due to excess coverage of WO3 species on ZrO2. The presence of 

the monoclinic phase of zirconia has adverse effects on catalytic activity and, therefore, the 

tetragonal phase is preferred. However, the presence of tetragonal zirconia is not the only 

criterion for good catalytic activity of the catalyst but the co-existence of amorphous WO3 is also 

required. It was found that the catalytic activity of WO3/ZrO2 catalyst is provided by interaction 

between amorphous WO3 and crystalline ZrO2. In addition to zirconia, Al2O3 has been used as 

support due to its high surface and large pore size that can accommodate TAG molecules with 

long fatty acid chains. A 98% ester yield was observed from transesterification of waste cooking 

oil using WOx/Al2O3; however, the acid value was observed at 4.7 higher than that specified in 

biodiesel standards [139]. 

The sulfated catalyst is another interesting catalyst. By using a conventional 

homogeneous acid H2SO4 as a precursor, SO4
2- on ZrO2 and TiO2 can be obtained and the 

reaction yields a 95-96% conversion [134,135]. The catalytic activity of sulfated zirconia (SZ) 

can be further increased by dispersing it onto mesoporous silica materials such as MCM-41 or 

SBA-15, thus increasing dispersion and acid sites. SBA-15 is a preferred choice in esterification 

and transesterification due to its larger pore size facilitating the long chain fatty acids. The doped 
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zirconia on SBA-15 (unsulfated ZrO2/SiO2) shows low acidity and its acidity can be enhanced by 

an addition of sulfur. It is believed that an addition of sulfur causes a formation of tetragonal 

ZrO2 and enhances the phase segregation by extracting zirconia to the surface of the mixed 

oxides and stabilizes the tetragonal phase [136]. However, if too much sulfur is added (>5%), a 

monoclinic phase of zirconia is formed in addition to the tetragonal phase, which should be 

avoided [148]. In addition, the hydrophilicity of SBA-15 surface is partially responsible to 

catalyst stability. In general, water formed during esterification is adsorbed on acid sites resulting 

in a lower concentration of acidic sites available for the reaction. However, this water can be 

readily adsorbed on the neighbouring silica surface of SBA-15 and some acidic sites can thus be 

recovered. Despite its high activity, SZ-type catalyst shows sulfate leaching problem, which is 

enhanced by hydrolysis. To counter this problem, chlorosulfonic acid is used as an alternate acid 

to sulfuric acid for SZ catalyst preparation. The catalyst was tested in esterification of acetic acid 

with p-tert-butylcyclohexanol and no leaching was observed [149]. More recently, a high 

reaction conversion (92-97%) was obtained using a sulphated starch catalyst [137,143]. An 

interesting point about starch derived catalyst is that the reaction requires a relatively low 

temperature (80°C); however, sulphate leaching has been observed.  

Heteropolyacids (HPAs) is also later on introduced as a potential solid acid catalyst for 

biodiesel production. These acids are comprised of hydrogen, oxygen, metal such as tungsten, 

molybdenum, vanadium, and a p-block element such as silica, phosphorous, or arsenic. The two 

main HPA structures are Keggin (HnXM12O40) and Dawson (HnX2M18O62), where X and M 

represent a p-block element and metal, respectively. The Keggin structure is self-assembled in 

acidic aqueous solution and is a preferred structure as it is thermally stable and has high acidity. 

In the Keggin structure, the heteroatom (X) is located at the center of the molecule, linked with 4 
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oxygen atoms to form tetrahedral, and surrounded by 12 octahedral MO6 units linked to one 

another by neighboring oxygen bridge. This structure allows hydration and dehydration to occur 

without significant changes in structure and, therefore, is thermally stable and can be used in a 

reaction under extreme temperatures (up to 400-500°C). The disadvantages of the Keggin-type 

HPA are low specific surface area and solubility in polar media, but this can be overcome by 

dispersing it on a high surface area support. Both unsupported and MCM-41 supported HPA 

have been used as acid catalyst in esterification of acetic acid at 110°C giving 95% conversion 

[150]. It was found that the supported HPA is more active than the unsupported HPA since the 

high dispersion of HPA on the MCM-41 internal surface leads to a high population of available 

acid sites. However, MCM-41 supported HPA is more vulnerable to water than unsupported 

HPA because water formed during esterification leads to HPA migration to the outer surface, 

pore blocking, and catalyst sintering. Hydrous zirconia (HZ, ZrO2·nH2O) has been used as a 

support for 12-tungstophosphoric acid (TPA, one of the Keggin-type HPAs). TPA/HZ was tested 

for its catalytic activity in esterification and transesterification of canola oil containing FFA up to 

20% at 200°C for 10 hours reaction duration, giving a 90% ester yield [71]. It was found that 

esterification was catalyzed at a faster rate than that of transesterification. This is because the 

esterification route involves a simple reaction step, while the transesterification route is 

composed of a series of reversible reaction steps. More recently, Nb2O5 was reported as an 

effective support for TPA [103]. Under the optimized conditions of 18:1 alcohol to oil ratio, 

200°C reaction temperature, 20 hours reaction duration, 92% ester yield can be obtained from 

transesterification of waste cooking oil without catalyst leaching. 

More recently, Fe-Zn double metal cyanide catalysts (DMC) have been investigated for 

transesterification of vegetable oil [141,142,144]. Cyanide is a highly toxic chemical compound 
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containing cyano group (-C≡N). They have a general formula: K4Zn4[Fe(CN)6]3·xH2O where x 

= 6-12 and the catalyst exhibits highest activity when x = 6. The Fe and Zn ions are linked 

through cyano groups. The most interesting feature of this catalyst is its hydrophobicity as it can 

tolerate water content in the feedstock oil up to 20% without significant loss in catalytic activity 

[142]. It is found that the rate of esterification is faster than that of transesterification, which is in 

line with other heterogeneous acid catalysts such as TPA/HZ. The catalyst is tested with various 

vegetable oils and shows promising catalytic activity (84-99% conversion) and can be reused 

without loss in catalytic activity and no purification is required for catalyst regeneration. 

However, when non-edible oil such as jatropha, rubber seed, and pinnai oil is used as feedstock, 

the acid value of the resulting biodiesel is higher than that specified in biodiesel standards, 

requiring further catalyst leaching investigation. Another catalyst such as zinc stearate (ZS) on 

silica (Si) was investigated. ZS (Zn(C18H35O2)2) is a zinc soap that is not soluble in polar 

solvents, but soluble in aromatic hydrocarbons when heated. When ZS/Si is tested on 

transesterification of waste cooking oil, a 98% ester yield can be obtained [102]. In addition, 

catalyst leaching is not detected and the catalyst can be reused without significant loss in its 

activity. However, the resulting biodiesel shows an acid value of 3.3, higher than those specified 

in biodiesel standards. In summary, further development in heterogeneous acid catalysis is 

required especially in terms of ester yield, acid value of the product, and catalyst leaching. 

 

2.4.4. Effects of Reaction Time, Temperature, and the Reaction Kinetics 

In general, conversion and yield increase as reaction time increases. The reaction starts 

with two phases: alcohol and oil. Once the reaction is initiated, DAG and MAG are formed as 
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the reaction intermediates and act as surfactants to enhance the mass transfer of TAG into 

methanol. At this point, the reaction mixture can be either one or two phase depending on the 

amount and type of alcohol used in the reaction, as well as reaction conditions. Then the glycerol 

is formed as the reaction by-product and separates out as an additional phase. If the reaction is 

catalyzed homogeneously, the separation of glycerol often leads to the catalyst dissolving in 

glycerol phase, which lowers catalyst concentration in the reaction mixture and, therefore, slower 

the reaction rate.  

The rates of the reaction and rate constants are often used in kinetic studies in order to 

examine how fast the reaction proceeds. These kinetic parameters are sometimes evaluated based 

on the shunt (overall) reaction mechanism in which 3 moles of TAG react with 3 moles of 

alcohol to yield 3 moles of ester and 1 mole of glycerol [151]. Although the kinetic models can 

be simplified using the shunt reaction mechanism, it is highly unlikely that three molecules of 

methanol would simultaneously attack the TAG molecule to form three molecules of methyl 

ester. The shunt mechanism is easily disproved by the formation of DAG and MAG, which is 

widely reported in the literature. Therefore, the kinetic models should be derived based on three 

consecutive reversible reaction steps and the rate constants of each reaction step are usually 

different. The values of the rate constants indicate the rates of the corresponding reaction step, as 

well as reversibility of each step. Moreover, they can be used to determine the rate determining 

step (RDS) that controls the kinetics of overall transesterification. The proposed reaction 

mechanism consists of an initial mass transfer-controlled region followed by a kinetically 

controlled region [84,152]. The mass transfer effect is referred to the period when there is no 

reaction going on and yet is recorded as “reaction time” during an experiment. This period is 

associated with the time that the triglyceride molecule spends in order to move into the methanol 
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phase and collides with the methanol molecule. This period occurs at the initial part of the 

reaction and is often referred to as the “mass transfer-controlled region”. The initial mass transfer 

region alters the observed kinetic data and, therefore, needs to be minimized by means of 

rigorous mechanical agitation [84], co-solvent aid [153], or supercritical conditions [154]. 

Results from the literature suggest that transesterification of vegetable oils with low alcohol to 

oil ratio (6:1) using homogeneous base catalysts follows second order kinetics [77,82,84,152]. 

The reaction step TAG to DAG is often found to be the rate-limiting step that controls the 

kinetics of the overall reaction. In addition, the rate constant of the reverse reaction MAG to GL 

is usually lowest, due to the phase separation of glycerol. However, this reaction can still take 

place at the glycerol-methyl ester interface rendering a small positive value of the rate constant.  

Transesterification is strongly dependent on reaction temperature and is favored at high 

temperatures. In the mass transfer controlled region, the higher temperature leads to a higher 

energy state of the reacting molecules that can be translated into faster molecular vibration and 

movement, thus the reacting molecules have more chance to collide with one another. In the 

kinetically controlled region, temperature dependency of the reaction rate is often used to 

calculate the activation energy of the reaction by plotting logarithm of the rate constant versus 

the reciprocal of the reaction temperature [155]. The equation is known as the Arrhenius 

equation (see Equation 2.8). 
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Where k is the rate constant; A is pre-exponential factor; Ea is the activation energy; R is 

the gas constant; T is reaction temperature. The activation energy is referred to the minimum 

energy required for a reaction to take place. From Equation 2.8, if the reaction temperature is 

increased, the rate constant will also increase and, therefore, the reaction will proceed at a faster 

rate.  

A homogeneous alkali-catalyzed transesterification can be performed at temperatures as 

low as room temperature. However, higher temperatures are usually employed, especially when 

an acid catalyst is used. Nevertheless, the reaction temperature should be kept below the boiling 

point of the corresponding reacting alcohol that is 65°C for methanol and 78°C for ethanol. 

However, heterogeneous acid catalysis usually requires extreme reaction temperatures (up to 

220°C). If the reaction is operated at temperatures higher than the boiling point of the 

corresponding reacting alcohol, pressure needs to be applied to the reaction mixture to maintain 

the reacting alcohol in liquid state.  

 

2.4.5. Techniques for Monitoring Transesterification 

In transesterification, TAG is converted to ester step-wise through the formation of 

intermediates DAG and MAG. The formation of each individual compound should be monitored 

closely. Various techniques have been developed to monitor the reaction and an acquisition of 

the more detailed information requires more sophisticated, expensive, and time consuming 

technique and vice versa. Chromatography techniques are most commonly used because they 

offer comprehensive perception during the transesterification progress and detailed information 

required for quality control of the product. More recently, Nuclear Magnetic Resonance (NMR) 
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spectroscopy and Infrared (IR) spectrometry have been employed for monitoring 

transesterification. The cheaper methods such as thin layer chromatography (TLC) without 

detector, viscometer, titration, and the 3/27 conversion test have also been used; however 

shortcomings of these methods involve the lack of quantitative analysis.  

 

2.4.5.1. Gas Chromatography 

Chromatography is a powerful separation technique that was invented and named by the 

Russian botanist Mikhail Tswett, who used this technique to separate plant pigments such as 

chlorophylls and xanthophylls [156]. The separated species appeared as a colored band on the 

column, which accounts for its name (Greek “chroma” meaning color and “graphein” meaning 

writing). Gas chromatography in biodiesel applications is known as gas-liquid chromatography 

(GLC) because the separation is based on the partition of the analytes between a gaseous mobile 

phase and a liquid phase immobilized on the surface of an inert solid. The mixture is separated 

mainly by means of elution, which involves washing the analytes through a column by 

continuous addition of a fresh mobile phase. An illustration of chromatographic separation of a 

mixture containing compound A and B is given in Figure 2.9. The compound that is strongly 

retained by the stationary phase (component B) has a small fraction of time it spends in the 

mobile phase and moves slowly with the flow of the mobile phase and, therefore, has longer 

retention time, i.e., appears later in a chromatogram and vice versa. In biodiesel applications, this 

component-stationary phase interaction depends mostly on the boiling point and structure 

(imparting polarity) of each compound. The gaseous mobile phase is often called carrier gas and 

must be chemically inert, such as helium, nitrogen, argon, and hydrogen.  
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Figure 2.9 Chromatographic separation of component A and B  

and their corresponding output signals. 
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The flow rate of carrier gas creates pressure inside the column that acts as a driving force in the 

mobile phase that separates the analytes from one another. This pressure must be maintained 

constant, as its changes can affect retention time and peak shape. The program temperature is 

also important as heat provided in a chromatographic run determines how strongly individual 

components will be retained by the stationary phase, thereby affecting its elution, retention time, 

and peak shape. The two most common detectors are mass spectrometric detector (MSD) and 

flame-ionization detector (FID). A gas chromatography attached with mass spectrometric 

detector is often called GC-MS. In GC-MS, a compound is converted into ionic fragments, and 

then total ion abundance can be detected and plotted versus time or a selected mass-to-charge 

(m/z) ratio. A mass spectrum of selected ions obtained during a chromatographic run is known as 

mass chromatogram. Since each compound yields a very specific fragmentation pattern, GC-MS 

is a very powerful tool for identification. An example of the use of GC-MS for identification of 

various methyl and ethyl esters can be found in the literature [70]. The flame-ionization detector 

(FID) is used most widely for quantification purposes. Since most organic compounds produce 

ions and electrons when pyrolyzed at temperature of air-hydrogen flame, their ions can be 

detected and monitored by collecting these charge carriers. When these ions and electrons are 

released and driven towards the collector by electrode located above the flame, the resulting 

current is measured. Since the measuring current is in direct proportion to the number of ions and 

electrons released and mass of the analyte, the FID is mass-sensitive, rather than concentration-

sensitive and, therefore, changes in carrier gas flow rate have only little effect on peak area. 

Since non-combustible gases such as H2O, CO, CO2, SO2, and NOx do not yield ions or 

electrons, FID is a very effective detector for organic compounds, especially those contaminated 

with water and oxides of carbon, nitrogen, and sulfur. 
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A Gas Chromatography technique has been developed to simultaneously determine 

glycerides and ester in a single run using a 10 to 15 m of capillary DB-5 column coated with 0.1 

µm film equipped with FID [84]. TAG, DAG, MAG, and methyl ester concentrations were 

measured using a GC model Agilent 7890A equipped with J&W 123-5711 DB-5HT column (15 

m x 320 µm x 0.1 µm; 400°C max temperature), cool on-column Inlet with track oven 

temperature mode, 7.6 psi, 1 µL injection volume, and FID Detector, at 380°C, 40 mL/minute H2 

flow rate, and 400 mL/minute air flow rate. The program was set to start at 50°C, ramped from 

50 to 230°C at 5°C/minute, and ramped from 230 to 380°C at 30°C/minute, and held for 18 

minutes with a total run time of one hour. Calibration curves showed sufficient linearity with a 

correlation coefficient of more than 0.99 [157]. In principle, TAG, DAG, MAG, ester, and 

glycerol can be analyzed on a highly inert column coated with apolar stationary phase without 

derivatization [58]. However, in most cases derivatization is required because diglyceride and 

monoglyceride contain free hydroxyl groups, causing these materials not to be quantified well in 

GC. Trimethylsilylation (derivatization) of DAG, MAG, and glycerol causes changes in their 

structure and polarity by eliminating the free hydroxyl groups and, therefore, improving peak 

shape and peak separation. The derivatizing agent can be either N-Methyl-N-

trimethylsilyltrifluoroacetamide (MSTFA) or N,O-bis(trimethysilyl) trifluoroacetamide (BSTFA) 

and the derivatizing procedure is given in ASTM D6584 method. Internal standards such as 

1,2,4-Butanetriol and 1,2,3-Tridecanolylglycerol (tricaprin) are usually used for two purposes: 

peak identification and quantification. In the identification step, retention time of analyte peaks 

are compared with those of internal standards and identified through relative retention time. This 

step may seem unnecessary if the corresponding standard sample is available. In quantification, 
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an internal standard is usually used to correct the loss of standard mixture during sample 

preparation and injection.  

 

2.4.5.2. Liquid Chromatography 

The main advantage of liquid chromatography (LC) over GC is its simplicity in the 

sample preparation step, as sample derivatization and internal standards are not required. Early 

LC was carried out with the gravity flow method using a glass column packed with solid 

particles (diameter more than 150 to 200 µm) coated with an adsorbed liquid as the stationary 

phase. It is well known that the column efficacies can be improved greatly by reducing the size 

of the packed particles, which gives rise to the new sophisticated technology using a column with 

packing particles having a diameter as small as 3 to 10 µm and the instrument is operated at high 

pressure. High performance liquid chromatography (HPLC) was then named to distinguish this 

new technology from the original gravity flow method. Today, all liquid chromatography is 

operated at high pressure and HPLC and LC are used interchangeably [156]. HPLC can be used 

for a wide range of chemicals and the LC mode should be selected carefully, based on solubility 

and molecular mass of the analytes. Ion exchange LC is used for water soluble ionic compounds, 

while normal phase and reverse phase LC (bonded phase LC) can be used for those soluble in 

organic solvent such as hexane and methanol, respectively. In bonded phase LC, the stationary 

liquid is not soluble in the mobile phase liquid and is kept stationary by chemical bonding 

resulting in highly stable packings. In early period, LC technique is based on a highly polar 

stationary phase and a relatively nonpolar solvent as the mobile phase and this LC mode is now 

known as normal phase chromatography. Later on, reverse phase chromatography is introduced, 



65 
 

in which the stationary phase is nonpolar and the mobile phase is a polar solvent. Bonded phase 

packing is classified as normal phase when the coating is polar and as reverse phase when the 

coating is nonpolar. In oils and fats, they are relatively nonpolar and are more soluble in hexane 

than methanol, therefore, normal phase LC finds its use more often than reverse phase. Size 

exclusive chromatography (SEC) is a separation technique based on molecular size rather than 

polarity of analytes. It is particularly applicable to high molecular mass species that are soluble 

in organic solvent such as tetrahydrofuran (THF) and, therefore, is widely used for analysis of 

biodiesel samples containing TAG, DAG, MAG, fatty acids, and esters. The column can be 

coated with hydrophilic or hydrophobic gel and is sometimes called gel permeation 

chromatography (GPC). The packing gel may be silica or polymer particles, containing a 

network of uniform pores that the solute and solvent molecules can diffuse in and that molecules 

of analytes are effectively trapped in. Compounds with molecular size larger than average pore 

size of the packing are excluded and, therefore, are the first to be eluted. Smaller molecules 

permeate throughout the pore maze and are trapped longer and, therefore, eluted later. Various 

LC are available for use with LC. The UV detector is used for absorption measurements of 

eluents from a chromatographic column at single or multiple wavelengths. The absorption 

intensity is measured and calculated for absorbance that is shown in a chromatogram as a 

function of time. Application of a UV detector is limited to compounds that can absorb UV at a 

specific wavelength, i.e., acylglycerols have weak absorbance at wavelengths higher than 220 

nm [158]. A reflective index detector (RID) continuously measures reflective index of the 

effluent and is generally used as it is reliable. Since RID is relatively insensitive, it is not affected 

by flow rate, but its application is limited to measuring analytes at higher concentration as 

compared to other detectors. In evaporative light scattering detector (ELSD), the column effluent 
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is continuously evaporated and the light scattering of the resulting aerosol is measured. ELSD is 

significantly more sensitive than RID, with a detection limit of 0.2 ng/µL, but the mobile phase 

is limited to volatile components. 

SEC equipped with RID has been used to quantify acylglycerols and esters of alcohol 

ranging from C1 to C4 [28]. A Hewlett-Packard 1100 series (HPLC-SEC) was used with two 

Phenogel 5µ 100A 300X7.80 mm 5 micron columns in series. The guard column is used to 

protect analytical columns by removing particulate matters and sample components that bind 

irreversibly to the stationary phase. The packing components are identical or similar to those of 

the analytical column, but the particle size is larger to minimize pressure drop. THF was used as 

a mobile phase at 1 mL/min for 25 min.  The operating parameters used were: injection volume 5 

µL; column temperature 24°C; and detector temperature 35°C. Analysis of glycerides, fatty 

acids, and esters was compared using HPLC equipped with various detectors, including UV 

detector, ELSD, and atmospheric pressure chemical ionization mass spectrometry (APCI-MS) 

detector [158].  The solvent systems used in this work are rather complicated and include: 1) 

mixtures of methanol (A) with 5:4 2-propanol/hexane (B) from 100% A to 50:50 A:B - a non-

aqueous reversed phase (NARP) solvent system; and 2) mixtures of water (A), acetonitrile (B), 

and 5:4 2-propanol/hexane (C) in two linear gradient steps (30:70 A:B at 0 min, 100% B in 10 

min, 50:50 B:C in 20 min, and last isocratic 50:50 B:C for 5 min). In APCI-MS and ELSD, the 

sensitivity of individual TAG decreased when the number of double bonds increased. Sensitivity 

of UV detection is also different for each individual TAG and APCI-MS was concluded to be the 

most suitable detector because it gives additional structural information of acylglycerols. Komers 

et al. [159] employed HPLC for quantification of TAG, DAG, MAG, and esters using UV 

detection at a wavelength of 205 nm. The glass column 150x3 mm with pre-column 30x3 mm, 
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both packed with C-18, particles with diameter 7 mm, and the mobile phase A (acetonitrile:water 

80:20), B (acetronitrile), C (hexane:2-propanol 40:50) with 0 to 2 min - 100% A, 2 to 12 min - 

change to 100% B, 12 to 22 min - change to 50% B and 50% C, 22 to 29 min - change to 100% 

B, 30 to 32 min - change to 100% of B, 32 to 33 min change to initial 100% A. 

 

2.4.5.3. Nuclear Magnetic Resonance Spectroscopy 

The Nuclear Magnetic Resonance (NMR) technique involves the measurement of 

absorption of electromagnetic radiation in the radio frequency (~4 to 900 MHz), in which nuclei 

of atoms rather than outer electrons are involved in the absorption process. It is necessary to 

place the analyte in an intense magnetic field in order to cause nuclei to develop an energy state 

strong enough for absorption to occur. The most commonly used NMR technique in biodiesel 

analysis is proton NMR or 1H NMR, in which the adsorption on protons is measured. Equivalent 

nuclei of proton do not interact with one another to give multiple absorption peaks, i.e., three 

protons in the methyl group give rise to one peak rather than splitting among themselves to give 

multiple peaks. Gelbard et al. [160] employed 1H NMR to measure methyl ester yield from 

rapeseed oil transesterification. The yield was calculated based on absorption area ratio of 

methoxy and methylene protons. 13C NMR was used in comparison to 1H NMR to determine 

unsaturated fatty acid composition via absorption of allyic and divinyl carbons [161]. In addition, 

1H NMR spectra was obtained at 400 MHz for monitoring two-stage transesterification of canola 

oil, where the replacement of glycerol with methanol was shown [3]. More recently, 

polyunsaturated fatty esters were identified and quantified based on 1H NMR spectra obtained at 

300 MHz [162]. It was reported that the signal due to protons of the ester group OCH3 and long 
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alkyl chain (–CH2)n are indicated at 3.65 and 1.27 ppm, respectively, while signals from methyl 

groups at 0.875, 0.90 and 0.97 ppm are due to saturated, mono- and di-unsaturated, and 

polyunsaturated fatty acids (3 double bonds), respectively. The polyunsaturated fatty ester 

percentage was calculated based on integral intensity of the PUFA region from 0.9 to 1.02 ppm 

and the average of percentage of methyl protons present in methyl esters of unsaturated fatty 

acids containing three or more double bonds such as linolenic (C18:3), EPA(C20:5), DHA 

(C22:6) etc. 

 

2.4.5.4. Infrared Spectrometry 

Infrared (IR) spectrometry employs the unique molecular vibrational characteristics of 

moieties in a molecule. Dipole moment is essential in enabling IR technique. For example, a 

charge distribution of a molecule such as hydrogen chloride is not symmetric and has a strong 

dipole moment because the chlorine has a higher electron density than the hydrogen. Thus, the 

dipole moment is determined by the magnitude of the charge difference and the distance between 

the two centers of charge. When hydrogen chloride vibrates, a fluctuation in its dipole moment 

occurs and creates a field that can interact with an electric field associated with radiation. In this 

technique, IR is radiated through the analyzing sample and the transmission associated with 

molecular absorbance is recorded. The molecular absorbance can occur only when the frequency 

of the radiation exactly matches the vibrational frequency of the molecule. Molecular vibration 

can be either stretching or bending. Stretching vibration involves continuous changes in the 

interatomic distance between two atoms, while bending vibration is a change in the angle 

between two bonds. The y-axis is commonly shown linear in transmission, but a modern 
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computer-based spectrometry can produce spectra that are linear to absorbance. Today, most IR 

instruments are that of Fourier transform (FTIR) type due to their speed, reliability, signal to 

noise advantage (isolating very weak signals from environmental noise), and convenience. IR 

regions include near IR (NIR) (wave number: 12800 to 4000 cm-1), mid IR (wave number: 4000 

to 200 cm-1), and far IR (wave number: 200 to 10 cm-1). Far IR application is limited because the 

sources of radiation are weak and require filters that prevent radiation from reaching the detector 

[156]. NIR and mid IR spectroscopy find their use in biodiesel research.  

The method for monitoring transesterification can be established by recording spectra of 

biodiesel, the feedstock oil, and intermediate samples at 25, 50, 75% conversion [163]. NIR has 

been used for monitoring transesterification of soybean oil. Absorbance at 6005 and 4428 cm-1 

gave distinguishing results of TAG and methyl ester [164]. It is found that NIR results are in 

good agreement with those obtained from 1H NMR [165]. More recently, FTIR (mid IR) has also 

been used to monitor transesterification of cyanara cardulus, cotton, sunflower, and sesame oil 

[166]. The absorption peak at 1200 cm-1 is associated with O-CH3 stretching, which is only 

presented in methyl ester and not TAG and was used primarily for quantitative purpose. 

 

2.4.5.5. Other Methods 

Since the above mentioned techniques are not always available, various cheaper methods 

have been used to monitor transesterification. Thin layer chromatography (TLC) has been used 

for separation and confirmation of various lipid classes such as glycerides, free fatty acids, and 

esters [167,168]. A droplet of sample is used on a TLC plate with the mobile phase consisting of 

a mixture of hexane, diethyl ether, and a small quantity of formic or acetic acid to ensure that 
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fatty acid migrates successfully. Complex lipid such as phospholipids and glycolipids, will 

remain at the origin point. TLC offers a simple, fast, and cheap method to confirm the formation 

of specific individual compounds during the course of the reaction, but these compounds are not 

determined quantifiably without a detection system such as flame-ionized detector (FID). With 

FID, these compounds can be quantified properly, but the method becomes more cost-intensive. 

A simpler method to estimate the progress of the reaction is a measurement of changes in 

viscosity of the reaction mixture [169]. The principle of this method is based on the differences 

in viscosity of the reactant (TAG) and the product (ester). While transesterification may be 

monitored using viscosity, acid value is commonly used as a means to determine progress in 

esterification. The so-called “3/27 conversion test” is used widely in home-made biodiesel 

industry, where cost-intensive techniques such as chromatography and spectroscopy are not 

available. This method employs the fact that methyl ester is more soluble in methanol than TAG. 

In the 3/27 conversion test, 3 mL of biodiesel is added to 27 mL of methanol at a temperature 

around 20°C and the mixture is shaken [170]. If TAG is present in the biodiesel sample, it will 

settle out of methanol phase as it is not soluble in the methanol. This method can be used to 

roughly determine TAG conversion during transesterification; however, measurement of DAG 

and MAG conversion is not applicable using this method.  

 

2.4.6. Post Reaction Treatment 

Transesterification products consist of biodiesel and glycerol that are contaminated with 

alcohol and catalyst and post-reaction purification of biodiesel is a crucial step to ensure the 

product quality meets standard specifications. Glycerol can be separated from biodiesel through 
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gravity. If a heterogeneous catalyst is used, it can be removed from biodiesel by simple filtration 

or centrifuge. However, removal of a homogeneous catalyst requires water and this step is called 

“biodiesel washing”. During the washing step, water is added to biodiesel, the mixture is shaken 

so that catalyst and alcohol are dissolved in the aqueous phase, and the water is then drained. 

This step is repeated until the pH 7 of the washing water is obtained. In many cases, warm 

distilled water is used in order to avoid emulsion. The remaining moisture and alcohol are then 

evaporated. Sodium sulfate or silica gel may also be used for removal of the remaining water. 

 

2.5. Biodiesel Quality 

The use of low-quality biodiesel due to incomplete reaction or contaminants in a diesel 

engine could result in several engine problems [7]. In order to protect consumers from 

unknowingly purchasing substandard fuel, several fuel standards have been adopted for quality 

control. Among these standards, ASTM D6751 (the American Society for Testing and Materials) 

[171] and EN 14214 (European Committee for Standardization) [172] are the most referred 

standards for pure biodiesel and are presented in Table 2.8. In addition, AOCS (American Oil 

Chemists’ Society) has established official test methods for biodiesel quality and these methods 

are also listed in Table 2.8 [173]. It is reported that FAAE can be added at a low ratio to 

protroleum diesel fuel without substantially changing fuel properties [3]. The low-temperature 

flow property of blended fuel with lower than 30% FAAE is not significantly changed from its 

parent petroleum diesel fuel. When FAAE that meets standard specifications is properly blended 

into petroleum diesel fuel and is handled according to standard techniques, the resulting fuel is of 

high quality and should perform well in a diesel engine.  



 
 

Table 2.8 Fuel standards and test methods for pure biodiesel. 

Property AOCS method ASTM method EN method ASTM Limits EN Limits 

Acid value Cd 3d-63 ASTM D664  EN14104 0.5 maxa  

(mg KOH/g)b 

0.5 max  

(mg KOH/g) 

Water and sediment Ca 2e-84 ASTM D2709 EN ISO 12937 0.05 max  

(% vol.) 

500 max  

(mg/kg) 

Ester content - - EN 14103 - 96.5 min  

(% mol) 

MAG content Cd 11b-91 

Cd 11d-96 

- EN 14105 - 0.8 max  

(% mol) 

DAG content Cd 11b-91 

Cd 11d-96 

- EN 14105 - 0.2 max  

(% mol) 

TAG content Ce 5-86 

Ce 5b-89 

- EN 14105 - 0.2 max  

(% mol) 

Free glycerol Ca 14-56 

Ca 14b-96 

ASTM EN 14105  

EN 14106 

0.02  

(% mass) 

0.02 max  

(% mol) 
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Total glycerol Ca 14-56 ASTM EN 14105 0.24  

(% mass) 

0.25 max  

(% mol) 

Methanol - - EN 14110 0.2 max  

(% vol.) 

0.2 max  

(% mol) 

Ash content Ca 11-55 ASTM D874 ISO 3987 0.02 max  

(% mass) 

0.02 max  

(% mol) 

Sulfur 

  S15 grade 

 

  S500 grade 

Ca 8a-35 

Ca 8b-35 

ASTM D5453 EN ISO 20846 

EN ISO 20884 

 

0.0015 max 

(% mass) 

0.05 max 

(% mass) 

10.0 max  

(mg/kg) 

Copper strip corrosion - ASTM D130 EN ISO 2160 No. 3 max 1.0  

(degree of 

corrosion) 

Phosphorous content Ca 12-55 

Ca 12b-92 

ASTM D4951 EN 14107 0.001 max  

(% mass) 

10.0 max  

(mg/kg) 
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Sodium and Potassium, 

combined 

Ca 15b-87 - EN 14108 

EN 14109 

5.0 max  

(ppm) 

5.0 max  

(mg/kg) 

Calcium and magnesium, 

combined 

Ca 15b-87 - EN 14538 5.0 max  

(ppm) 

5.0 mix  

(mg/kg) 

Cetane number - ASTM D613 EN ISO 5165 47.0 mina 51.0 min 

Iodine value Cd 1-25 - EN 14111 - 120 max  

(g I2/100 g) 

Linolenic acid content - - EN 14103 - 12.0 max  

(% mol) 

Polyunsatured  

(≥ 4 double bonds) FAME 

- - EN 14103 - 1.0 max  

(% mol) 

Cloud point Cc 6-25 ASTM D2500 - - - 

Cold soak filterability - ASTM D7501 - 360 max  

(s) 

 

 

- 
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Carbon residue - ASTM D4530 EN ISO 10370 0.05 max  

(% mass) 

0.3 max;  

10% distillation 

residue  

(% mol) 

Oxidative stability Cd 12b-92 - EN 14112 3.0 min  

(h) 

6.0 min  

(h) 

Flash point Cc 9b-55 ASTM D93 EN ISO 3679 93 min  

(°C) 

120 min  

(°C) 

Density, 15°C Cc 10a-25 - EN ISO 3675 

EN ISO 12185 

- 860 – 900  

(kg/m3) 

Kinematic viscosity,  

40°C 

- ASTM D445 EN ISO 3104 

ISO 3105 

1.9 – 6.0  

(mm2/s) 

3.5 – 5.0  

(mm2/s) 

Distillation temperature, 

atmospheric equivalent, 

90% recovered 

 

- ASTM D1160 - 360 max  

(°C) 

- 

75



 
 

Total contamination  - EN 12662 - 24.0 max  

(mg/kg) 

aFor all tables: max refers to maximum and min refers to minimum 
bUnits of the corresponding limits are displayed in parentheses  
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Table 2.9 Fuel standards ASTM D7467 for B6 to B20 and CAN/CGSB-3.520 for B1 to B5 blended biodiesel-petroleum diesel fuel. 

Property ASTM method ASTM Limits CGSB Limits 

Type A-LSa Type B-LSb 

Acid value ASTM D664  0.3 max  

(mg KOH/g) 

0.1 max 

(mg KOH/g) 

0.1 max 

(mg KOH/g) 

Water and sediment ASTM D2709 0.05 max  

(% vol.) 

0.05 max 

(% vol.) 

0.05 max 

(% vol.) 

Ash content ASTM D482 0.01 max  

(% mass) 

0.01 max 

(% mass) 

0.01 max 

(% mass) 

Sulfur 

  S15 grade 

 

  S500 grade 

 

ASTM D5453 

 

ASTM D2622 

 

15 max 

(µg/g) 

0.05 max 

(% mass) 

500 max 

(mg/kg) 

500 max 

(mg/kg) 

Copper corrosion, 3 h 50°C ASTM D130 No. 3 max No. 1 max No. 1 max 

Cetane number ASTM D613 40.0 min 40.0 min 40.0 min 
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One of the following must be met 

(1) Cetane index 

(2) Aromaticity 

 

ASTM D976 

ASTM D1319 

 

40.0 min 

35.0 max 

(% vol.) 

 

- 

- 

 

- 

- 

Cloud point ASTM D2500 

ASTM D4539 

ASTM D6371 

- - - 

Electrical conductivity at point, time and 

temperature of delivery to purchaser 

ASTM D2624 - 25.0 min 

(pS/m) 

25.0 min 

(pS/m) 

Carbon residue, 10% bottoms ASTM D524 0.35 max  

(% mass) 

0.10 max 

(% mass) 

0.16 max 

(% mass) 

Oxidative stability - 6.0 min  

(h) 

- - 

Flash point ASTM D93 52 min  

(°C) 

 

40 min 

(°C) 

40 min 

(°C) 
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Kinematic viscosity,  

40°C 

ASTM D445 1.9 – 4.1  

(mm2/s) 

1.3 – 3.6 

(mm2/s) 

1.7 – 4.1 

(mm2/s) 

Distillation temperature,  

atmospheric equivalent, 90% recovered 

ASTM D86 343 max  

(°C) 

290 max 

(°C) 

360 max 

(°C) 

Lubricity, HFRR 60°C ASTM D6079 520.0 max 

(µm) 

- - 

Biodiesel content ASTM D7371 6 – 20 

(% vol.) 

- - 

aType A-LS is intended for use in urban transit buses and passenger automobiles or when ambient temperatures require better low-temperature properties than 
Type B-LS 
bType B-LS is intended for use in engines in services involving relatively high loads as found in industrial and heavy mobile equipment, such as intercity trucks 
and construction equipment, and when ambient temperatures and fuel storage conditions allow use of such fuel 
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In the United States, ASTM D7467 is adopted for quality control of blended fuel containing 6% 

to 20% FAAE and is shown in Table 2.9 [174]. It is imperative that FAAE meets the standards 

for pure biodiesel prior to blending. Blends up to 5% are allowable in ASTM D957 for diesel 

fuel and ASTM D396 for heating oil provided that FAAE meets the standards for pure biodiesel. 

In 2005, the Canadian General Standard Board issued standard CAN/CGSB-3.520 for biodiesel-

petroleum diesel blends up to 5% in Canada (see Table 2.9) [175]. The Canadian standard is 

intended for quality control of Type A-LS blends used in urban transit buses and passenger 

automobiles and Type B-LS blends used in engines in services involving relatively high loads as 

found in industrial and heavy mobile equipment. The ASTM methods are adopted for testing the 

blended fuels.  

 

2.5.1. Combustion Properties 

The heating value of biodiesel and its parent oils is approximately 10% less than those of 

petroleum base diesel fuel on a mass basis [70,93,99]. However, the higher viscosity of biodiesel 

reduces the amount of fuel that leaks past the plungers in the diesel fuel injection pump. In 

addition to heat of combustion, ignition delay time is important fuel combustion characteristic. 

The ignition delay time is the time that passes between injection of fuel into the cylinder and 

onset of ignition and is characterized by cetane number (CN) [4]. The higher CN represents a 

shorter ignition delay time and vice versa. Cetane (hexadecane; C16H34) is a long straight-chain 

hydrocarbon and has been assigned a CN of 100. Most biodiesel from vegetable oils have CN 

higher than 51 and CN of specific ester such as that of stearic can be as high as 87, while the CN 

of petroleum base diesel is usually ranged at 40 to 52 [175,177]. The higher CN of biodiesel 
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stems from the fact that biodiesel is composed of linear chain molecules similar to that of cetane 

itself, while petroleum base diesel is a mixture of hydrocarbons that typically contains 8-12 

carbon atoms per molecule, which is composed of 75% saturated hydrocarbon including stretch 

chains, branched chains, cycloalkanes, and 25% aromatics. The branched chains, cycloalkanes, 

and aromatics are responsible for the lower CN in petroleum base diesel. CN is usually 

characterized by ASTM D613. Alternatively, since the CN of biodiesel increases with chain 

length and decreases with the number of double bonds, CN of FAME can be estimated with 

reasonable accuracy using its saponification and iodine values [178]. It is worthy to note that 

although CN of biodiesel increases with chain length, the use of longer chain alcohols such as 

ethanol or butanol as reacting alcohols in transesterification yields an insignificant effect on CN 

of the resulting biodiesel [176]. 

 

2.5.2. Flow Properties 

Fuel flow property is an important characteristic as it determines performance of fuel 

flow system and can be evaluated by viscosity, which measures fluid’s resistance to flow. A high 

viscous fuel could lower the performance of fuel flow system. One of the main reasons that the 

use of neat vegetable oil as diesel fuel has been considered unsatisfactory and impractical is its 

high viscosity [7]. In order to reduce its viscosity, the glycerol backbone of TAG is required to 

be stripped off, usually by the transesterification reaction. The resulting FAAE has shown a 

significant reduction in viscosity compared to its parent oils. Due to the reduction of viscosity 

during transesterification, viscosity can also be used as a means to monitor the extent of the 

transesterification reaction [169].  
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Since the viscosity of diesel fuels is a strong function of temperature and usually 

increases at lower temperatures, operating engines at the cold climate regions is often 

challenging and; therefore, the low temperature flow properties of fuel should be monitored 

closely. These properties can be examined by cloud point (CP), pour point (PP), and cold filter 

pligging point (CFPP). Cloud point is the temperature at which a cloud of wax crystals first 

appears in the oil when it is cooled and a cloudy fuel is visible to the naked eye. At temperatures 

below CP, crystals grow larger and agglomerate together to the point that they prevent the fluid 

to flow. The lowest temperature at which the fluid will pour is defined as pour point. The CFPP 

is defined as the lowest temperature at which biodiesel will flow under vacuum conditions 

through a wire mesh filter screen within 60 sec. In addition to CP, PP, and CFPP, differential 

scanning calorimeter (DSC) has been used to evaluate low temperature properties of biodiesel 

[28,99,179]. At an adequately low temperature, crystal is formed and the heat associated with 

crystallization is released and measured by DSC, and the temperature is recorded as onset 

crystallization temperature (OCT), which is the temperature at which the first crystal is formed. 

In addition to OCT, DSC is used to measure melting temperature, polymorphic transition 

temperature (temperature at which crystal changes its form), and the corresponding endothermic 

and exothermic heats.  

The low temperature property of biodiesel depends mainly on its composition. It is well 

known that unsaturated FAAE crystallized at a lower temperature than saturated FAAE, due to 

their different three-dimensional conformations. Saturated molecules are at minimum energy 

when fully extended and are well stacked, thereby strengthening intermolecular attraction force 

[180]. Unlike saturated ester, especially cis-formation, unsaturated FAAE molecules have 

weaker intermolecular interactions and, therefore, crystallize at a lower temperature. The tran-
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formation fatty acids which usually occur unnaturally have a similar molecular arrangement to 

those saturated fatty acids and therefore would crystallize at a temperature higher than that of the 

corresponding cis-formation fatty acids. Branched molecules also have weak intermolecular 

force and, therefore, crystallize at low temperatures. Based on this knowledge, there have been 

attempts to improve low-temperature flow property of biodiesel by introducing branched 

structure to the originally straight-chain FAAE either by means of transesterification with 

branched alcohols [181] or isomerization reaction [182]. Alternatively, low temperature additives 

such as glyceryl ethers produced from etherification of glycerol with isobutylene or tert-butanol 

in the presence of solid acid catalysts, such as sulfonated carbon and amberlyst-15 have been 

used to improve CP biodiesel [183-185]. In addition to fatty acid compositions, 

transesterification intermediates, such as DAG and MAG, if present in FAAE can greatly 

deteriorate low-temperature flow properties of biodiesel. The transesterification intermediates, 

especially saturated MAG, induce stronger intermolecular force due mainly to molecular 

stacking and hydroxyl moiety in their molecules and, therefore, raise biodiesel low temperature 

properties such as CP, PP, CPFF, and OCT. In addition, it was found that the presence of 

saturated MAG in biodiesel induces precipitates even at temperatures higher than CP which 

cause problems with fuel filterability [186,187]. 

 

2.5.3. Stability 

Biodiesel is susceptible to oxidation, which leads to fuel degradation; therefore oxidative 

stability of biodiesel is crucially important as it determines resistance to chemical changes 

brought about by oxidation reaction. The oxidation of biodiesel is similar to those of lipid 
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oxidations as discussed in Section 2.3.8. In addition to oxidation, polymerization occurs due to 

the presence of double bonds to form higher molecular weight products that, in turn, raises the 

biodiesel’s viscosity. Oxidative stability of biodiesel depends greatly on fatty acid compositions 

and degree of unsaturation. Saturated FAAE is more stable than those of unsaturated, while 

polyunsaturated FAAE is at least two time more reactive to auto-oxidation than monounsaturated 

FAAE [188,189]. For the same number of double bonds per molecule, FAAE with longer chain 

or higher molecular weight would be less prone to auto-oxidation, due to the lower molar 

concentration of double bond [190]. As an example of this phenomenon, ethyl ester has shown 

higher oxidative stability compared to that of methyl ester [70,101]. In addition to the degree of 

unsaturation, the position at which double bonds are located in an unsaturated molecule is also an 

important parameter to determine oxidative stability of biodiesel. It is reported that η-3 fatty 

acids autoxidize faster than η-6 fatty acids [191].  

Some metals can accelerate oxidation of biodiesel. It has been shown in the literature that 

elemental copper has strong catalytic effects on biodiesel oxidation [190] and the peroxide value 

of biodiesel increases more rapidly when a copper strip is immersed in a glass container of 

biodiesel, compared to when a steel strip is used [192]. In addition, biodiesel is prone to 

hydrolytic degradation in the presence of water. The hydrolytic reaction is strongly influenced by 

the initial acid value of biodiesel due to the catalytic effects of free fatty acid on the reaction 

[193]. Biodiesel with a high concentration of transesterification intermediates, i.e., DAG and 

MAG, has a high tendency to absorb water, therefore, promoting a hydrolytic reaction. Most 

vegetable oils contain natural anti-oxidant reagents, i.e., tocopherol or Vitamin E that hinder the 

oxidation reaction.  Once the amount of anti-oxidants is depleted, the rate of oxidation grows 

rapidly. An addition of synthesis anti-oxidants, such as tert-butyl hydroquinone (TBHQ), 3-tert-
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butyl-4-hydroxyanisole (BHA), pyrogallol (PY), and n-propyl gallate (PG) up to 1000 mg/kg 

may be required as these compounds have been shown to improve oxidative stability of 

biodiesel. The effects of another widely used anti-oxidant 2,6-di-tert-butyl-4-methyl-phenol 

(BHT) in the food industry is controversial when used to improve biodiesel stability [194,195]. 

Most biodiesel properties such as viscosity, density, CFPP, and carbon residue are not affected 

by the addition of anti-oxidants. However, an addition of high amounts of anti-oxidants can alter 

the acid value of biodiesel [196].  

Oxidative stability of biodiesel is preferably determined by the Rancimat method as per 

EN 14112 or AOCS Cd 12b-92. During the Rancimat test, the biodiesel sample is heated to 

110°C and oxygen is supplied. In the presence of oxygen at high temperatures, the oxidation 

reaction takes place and the oxidation derivatives are transferred to the measuring chamber 

containing Millipore water. The increase in conductivity of the water is detected as the oxidation 

derivatives are transferred into the water. The induction time is defined as the time required for 

the conductivity of the water to be increased rapidly and is used as an indication of biodiesel 

oxidative stability. Alternatively, oxidative stability of biodiesel can be evaluated by peroxide 

value (PV) and iodine value (IV). PV of biodiesel increases when FAAE oxidation initiates and 

propagates to form peroxides and hydroperoxides. However PV is not a very suitable parameter 

for determining oxidative stability because its value drops during further degradation of 

hydroperoxides to form secondary oxidation derivatives [192,197]. IV indicates the degree of 

unsaturation in terms of mg Iodine per 100 g sample and is often used to correlate with oxidative 

stability of the test sample. The major flaw of this method as an oxidative stability indicator is 

that it does not take into account the positions at which double bonds are located in a molecule, 

which is a proven contributing factor for autoxidation of fatty acids [191]. Pressurized 
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differential scanning calorimeter (PDSC) has also been used to determine oxidative stability of 

biodiesel. Since oxidation is an exothermic reaction, the reaction heat makes it possible to use 

DSC to monitor the biodiesel oxidation process. Operating DSC at high pressure helps to 

increase the number of mole of oxygen available for the reaction, thereby accelerating oxidation 

to take place at lower temperature [198]. The results from the DSC method are in line with those 

obtained from the Rancimat method and it requires lesser amounts of sample and shorter 

analyzing time [199]. DSC was concluded to be a reliable alternative method to determine 

oxidative stability of biodiesel. 

 

2.5.4. Lubricity 

The lubricating property of fuel is defined as the quality that prevents wear when two 

moving metal parts come into contact with each other [200]. Oxygen and nitrogen containing 

compounds are responsible for the natural lubricating property of diesel fuel [201]. In petroleum 

refineries, processes such as hydrotreating usually used to remove sulfur also destroy 

heterocyclic oxygen and nitrogen containing compounds, which are responsible to providing 

lubricity to the fuel [202]. Consequently, this typically ultra-low sulfur diesel fuel exhibits poor 

lubricity. ASTM D6079 is typically used to evaluate lubricating property of biodiesel and diesel 

fuel by the High-Frequency Reciprocating Rig (HFRR). In this method, the ball and disk are 

submerged in the test fluid and rubbed against each other for 75 minutes at 50 Hz to generate a 

wear. At the end of the test, the wear diameter is measured on the ball and the high wear 

diameter indicates poor lubricating property of the test fluid and vice versa.  It was shown that 

the blended mustard biodiesel-petrodiesel samples have superior lubricating property as 
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compared to those of commercial diesel fuels purchased from different gas stations (Esso, Shell, 

Petro-Canada, Co-op) [28]. This is explained by the presence of COOCH3 moeity in methyl 

ester, while the lower lubricating performance of esters prepared from higher alcohols is 

explained by an absence of COOCH3 moeity. It was reported that the order of oxygenated moiety 

that provides lubricity are COOH > OH > COOCH3 > C=O > C-O-C [203].  

Although biodiesel lubricating property is tested, compared with petroleum based diesel, 

and reported widely in the literature, the tribological mechanism of biodiesel is still not available. 

Nevertheless, the tribological mechanism of other model compounds such as zinc dialkyl-

dithiophosphate (ZDDP) [204] may be useful in explaining lubricity behaviour of biodiesel. 

Initially, lubrication fluids are used to generate hydrostatic and hydrodynamic pressures to 

support the load. This condition is referred to as the elastohydrodynamic lubrication (EHL) 

regime where the fluid pressure is used to provide lubrication. Further increase in contact 

pressure causes thickness of fluid film to decrease. When the average thickness of fluid film falls 

below the average surface roughness, the boundary lubrication (BL) regime is applied. Under the 

BL regime, the temperature is usually high enough to cause chemical reactions between the 

lubricant and the solid surface to take place, resulting in a chemical film that protects the surface. 

The reaction yields metallic-organo compounds that polymerize to form higher molecular weight 

products. These polymers (MW = 3000-5000) are critical in providing lubrication to the 

contacting surfaces. Petroleum diesel is a mixture of hydrocarbons that typically contains 8-12 

carbon atoms per molecule, with 75% saturated hydrocarbon and 25% aromatics. The reaction 

rate between petroleum diesel and the contacting surfaces in a diesel engine is insufficient to 

form a film quickly enough. Unlike petroleum diesel, biodiesel contains a polar functional group 

such as –COOCH3 in case of FAME in its molecule. This functional group promotes reactivity 
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between biodiesel and metal surfaces forming a chemical film quickly enough to protect the 

surfaces. However, if the reaction rate is too rapid, chemical corrosion can occur causing an 

increase in wear.  

The proposed chemical solution model of biodiesel blends in petroleum based diesel 

involves aggregation of biodiesel molecules in reverse micelle formation (polar group in the 

inside and hydrocarbon tail on the outside) if the biodiesel concentration is high enough (see 

Figure 2.10). Outside the reverse micelle of FAAE lays a free molecular region in which each 

molecular species competes freely for adsorption on the solid surface. When these free molecules 

are depleted, the reverse micelle dissociates to release more free species. This model is used to 

explain how lubricant maintains its functionality throughout its lubricating life. In addition to 

polar head, the hydrocarbon chain has great impacts on biodiesel lubricating properties. 

Hydrocarbon chain length, degree of branching, and the presence of double bonds all influence 

how the lubricant pack themselves on the solid surface resulting in the packing density. Low 

packing density film allows lubricating molecules to move about, hence providing flexibility and 

longevity of the lubricant. On the other hand, high packing density film has mechanical strength 

necessary for load-bearing ability. Increase in hydrocarbon chain length results in lower packing 

density film that improves lubricating longevity, but the load-bearing ability is decreased. In 

addition, an increase in alkyl chain length leads to a reduction in molar concentration of the 

functional group, resulting in a slower rate of the reaction between the lubricant and the solid 

surface.  
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Figure 2.10 Chemical solution model for biodiesel blends. 

 

 

However, if the chain length is insufficient, FAAE would lose its durability as a lubricant. A 

good lubricating biodiesel should compose of varieties of FAAE to provide molecular mobility 

as well as solid adhesion strength.    

 

2.5.5. Minor Components 

Minor components usually presented in vegetable oil are presented in Figure 2.11. A 

comprehensive database of lipid classification including these minor components can be found in 

the literature [205]. These components affect biodiesel characteristics differently.  
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Figure 2.11 Minor components in vegetable oils: a) chlorophyll; b) α-tocopherol or vitamin E; c) 

β-carotene; d) phospholipid; e) sterol; f) sterol glycoside (β–sitosterol-β-D-glucopyranoside);  

g) glycolipid; h) glucosinolate. 
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2.5.5.1. Pigments 

Chlorophylls and their derivatives (see Figure 2.12) have been reported for their 

detrimental effects on biodiesel stability [101] because it is an effective photoreceptor. 

Chlorophyll is responsible for green colour in plants such as canola oil. In fact, if canola oil 

contains higher amounts of chlorophylls, the oil is downgraded, has lower economic value, and 

is labelled as greenseed canola oil [206]. Chlorophyll can generally be categorized into 2 types: 

Chlorophyll A (contains –CH3 as its functional group) and Chlorophyll B (contains –CHO as its 

functional group). For plant growth, these two types of chlorophylls absorb sunlight at a slightly 

different wavelength, thereby complimenting each other [207]. In addition, chlorophyll can 

degrade into various compounds depending on the surrounding conditions (see Figure 2.12). In 

the presence of weak acids, magnesium ion is removed and chlorophyll degrades to pheophytin. 

Chlorophyllase is found mostly in plants such as ferns, mosses, and algae, and can act as a 

catalyst for the removal of phytol tail from a chlorophyll molecule to form chlorophyllide. It is 

reported that chlorophyll derivatives could be converted to compounds capable of being 

prooxidants, thus giving deleterious effect on the stability of vegetable oils [208]. In contrast, 

tocopherols such as α-tocopherol or vitamin E, are presented naturally in most vegetables and are 

reported widely for their antioxidative activity [194,195,209,210]. 

In addition to chlorophylls, carotenoids are organic pigments that naturally occur in 

plants and can be categorized into two classes, xanthophylls (contain oxygen) and carotenes 

(purely hydrocarbons and contain no oxygen). The most common carotenoid in vegetable oils 

such as palm oil is β-carotene as depicted in Figure 2.11. β-Carotene is responsible for the red-

orange colour in plants and fruits and the colour darkens at elevated temperatures.  
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Figure 2.12 Chlorophylls degradation pathways. 

 

Most carotenoids are known for their anti-oxidant activity as they are efficient free radical 

scavengers and, therefore, enhance biodiesel oxidative stability [209,211]. However, they could 

interfere the biodiesel production process especially in homogeneous base catalyzed 

transesterification as the mechanism involves the attack of alkoxide ions to the carbonyl carbon 

of the triglyceride molecule. 

 

2.5.5.2. Lecithin and Phospholipids 

Lecithin is a mixture of various phospholipids that contains hydrophilic head and 

hydrophobic tails. Figure 2.11 shows molecular structure of phospholipid possessing hydrophilic 

and hydrophobic property in its molecule. The hydrophilic head is negatively charged with a 

phosphate group and possibly another polar group, while the hydrophobic tails usually consist of 
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fatty acid chains. Because phospholipids consist of both a polar head and nonpolar tails, it acts as 

a co-solvent in transesterification, enhancing vegetable oils’ solubility in alcohols. However, 

phosphorous can be carried over from vegetable oils, i.e., phospholipid, and can poison catalysts 

used for exhaust emissions. 

 

2.5.5.3. Phytosterols 

Phytosterols refer to all sterols of plant origins. The chemical structure of sterols is 

composed of an alkyl chain attached to a sterol nucleus and is presented in Figure 2.11. Most 

phytosterols contain 28 to 30 carbon atoms and 1-2 carbon-carbon double bonds (one in the 

sterol nucleus and possibly one in the alkyl chain) in their molecule. It can be found as free 

sterol, acylated (sterol esters), alkylated (sterol alkyl ethers), sulfated (sterol sulfate), or linked to 

a glycoside moiety (sterol glycosides), and acylated sterol glycosides. During transesterification, 

acylated sterol glycosides are converted into sterol glycosides (SG) due to the alkaline catalysts. 

Therefore, SG concentration in biodiesel is usually higher than that found in the vegetable oil 

feedstock. The chemical structure of an SG is depicted in Figure 2.11. SG in biodiesel can 

accelerate precipitate formation, even above biodiesel’s cloud point, and possibly block fuel 

filters due to its polarity and limited solubility. Among several sterols, SG has been found as the 

major component in biodiesel precipitates. Either GC or HPLC may be used to detect and 

quantify the presence of SG. 
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2.5.5.4. Glycolipids 

Glycolipids are lipids with carbohydrates attached. Examples of glycolipids are sterol 

glycoside (SG) and glucosinolate, as they are lipids attached to carbohydrate. The chemical 

structure of glucosinolate is shown in Figure 2.11. Glucosinolate is the major source of sulfur 

contained in biodiesel. Sulfur, like Phosphorus, is a potential catalyst poison and it oxidizes 

during combustion to produce SO2 and SO3 that rapidly converts to sulfuric acid in the presence 

of water, which leads to acid rain. Glucosinolates can be found in rapeseed oil, while canola oil 

has low amounts of glucosinolates (see Section 2.3.2). Therefore, one can expect lesser amounts 

of sulfur content in biodiesel produced from canola oil compared to that derived rapeseed oil. 

 

2.6. Biodiesel Production in Canada 

Biodiesel production in Canada was below 50 million litres per year in 2005. In 

December 2006, the federal government announced an intention to mandate 2% renewable 

content in diesel fuel, which would create approximately 500 million litres per year of biodiesel 

demand across the country. This announcement was a major driving force for the tremendous 

growth in Canadian biodiesel industry. Canadian biodiesel production capacity increased to ~150 

million litres per year in 2008 and ~200 million litres per year in 2010 [212]. The 

implementation date of the 2% federal mandate for biodiesel was later set at July 1, 2011 [213]. 

Prior to this federal mandate, there were a number of provincial renewable fuel mandates, such 

as 2% in Alberta and Manitoba and 3% in British Columbia. The current major Canadian 

biodiesel plants using various feedstocks are listed in Table 2.10, indicating that the current total 

Canadian biodiesel production is 205.9 million litres per year [212].  



 
 

Table 2.10 Biodiesel plants in Canada. 

Plant Status Feedstock Capacity 

(million litres 

per year) 

City Province 

BioStreet Canada Proposed plant Oilseed 22 Vegreville Alberta 

Canadian Bioenergy 

Corporation – Northern 

Biodiesel Limited 

Partnership 

Proposed plant Canola 265 Lloyminster Alberta 

FAME Biorefinery Demonstration facility Canola, 

camelina & 

mustard 

1 Airdire Alberta 

Kyoto Fuels Corporation Under construction Multi-feedstock 66 Lethbridge Alberta 

Western Biodiesel Inc. Operational Multi-feedstock 19 Calgary Alberta 

City-Farm Biofuel Ltd. Operational Recycled 

oil/tallow 

10 Delta British 

Columbia 
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Consolidated Biofuels Ltd Operational Yellow Grease 10.9 Delta British 

Columbia 

Bifrost Bio-Blends Ltd. Operational Canola 3 Arborg Manitoba 

Eastman Bio-Fuels Ltd. Operational Canola 5 Beausejour Manitoba 

Speedway International 

Inc. 

Operational Canola 20 Winnipeg Manitoba 

Bioversel Sarnia Proposed plant Multi-feedstock 170 Sarnia Ontario 

BIOX Corporation Operational Multi-feedstock 66 Hamilton Ontario 

BIOX Corporation 

(Plant 2) 

Proposed plant Multi-feedstock 67 Hamilton Ontario 

Methes Energies Canada Operational Yellow Grease 5 Mississauga Ontario 

Methes Energies Canada Under construction Multi-feedstock 50 Sombra Ontario 

Noroxel Energy Ltd. Operational Yellow Grease 5 Springfield Ontario 

Biocardel Quebec Inc. Proposed plant Multi-feedstock 40 Richmond Quebec 
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Bio-Lub Canada.com Operational Yellow Grease 10 St-Alexis-des-

Monts 

Quebec 

QFI Biodiesel Inc. Operational Multi-feedstock 5 St-Jean-

d’Iberville 

Quebec 

Rothsay Biodiesel,  

A member 

of Maple Leaf Foods Inc. 

Operational Multi-feedstock 45 Sainte-Catherine Quebec 

TRT-ETGO Proposed plant Vegetable Oil 100 Bécancour Quebec 

Milligan Bio-Tech Inc. Operational Canola 1 Foam Lake Saskatchewan99
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The feedstock for biodiesel production includes animal fats and waste vegetable oils (yellow 

grease), with only a small quantity of canola oil used to produce biodiesel. A fraction of 

Canadian canola oil is shipped to the United States for production of biodiesel, which is then 

shipped back to Canada to meet the mandate. In addition, Germany imports canola oil from 

Canada for their biodiesel production process and biodiesel usage. The Canadian biodiesel 

production industry is relatively new compared to that in the United States and many European 

countries, since the first provincially mandated market was established in 2009. The new 

Canadian 2% renewable fuel standard (RFS) requirement is anticipated to drive biodiesel 

production and market growth for the sustainable future.  

 

2.7. Conclusions 

It is expected that biodiesel will be in high demand in the coming years as conventional 

diesel additives. The use of vegetable oils as feedstock will play a major role in supplying 

biodiesel to various sectors, such as agriculture and transportation. The use of different vegetable 

oil may affect production processes and costs, as well as the resulting biodiesel characteristics. 

For example, used cooking oil requires pre-treatment prior to traditional alkali-catalyzed 

transesterification. Palm oil may be selected in tropical countries due to its high oxidative 

stability, but canola oil is a preferred choice in cold-climate countries due to its resistance to 

freeze at low temperatures. Therefore, selection of vegetable oil and production technology is 

vital for the growth in biodiesel industries. In order to make an effective decision, in-depth 

information and understanding on biodiesel from vegetable oils is essential.  
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CHAPTER 3 

 

Oil Degradation during Frying and its Effect on the 

Corresponding Biodiesel Yield and Oxidative Stability 

 

A part of this chapter has been published in the following conference proceeding: 

• Issariyakul, T., and Dalai A.K. Utilization of used cooking oil, canola oil, and greenseed 

canola oil for biodiesel production. The 8th World Congress of Chemical Engineering, 

Montreal Quebec, Conference Proceeding Paper (2009). 

 

Contribution of the Ph.D. Candidate 

 Experiments were conducted by Titipong Issariyakul. The content in this chapter was 

written by Titipong Issariyakul with discussions and suggestions provided by Dr. Ajay Dalai. 

 

Contribution of this Chapter to the Overall Ph.D. Research 

Used cooking oil is one of the main focused feedstock for biodiesel production in the 

overall Ph.D. research. The aim of this chapter is to illustrate how various properties of used 

cooking oil such as acid value and viscosity change during frying process. Furthermore, yield 

and oxidative stability of biodiesel prepared from used cooking oil are measured and compared 

with those prepared from canola and greenseed canola oil.  

 



127 
 

3.1. Abstract 

Biodiesel is a fuel derived from a renewable source such as vegetable oils, and emits less 

pollutants and greenhouse gases as compared to petro-fuel. The use of this fuel is an 

environmental friendly shift towards sustainability due to its renewability and low harmful 

emissions. Due to high price of food-grade vegetable oils and the food vs. fuel concern, non-food 

grade oils have gained tremendous interests as a feedstock to produce biodiesel. Used cooking 

oil is generated in everyday-life around the world and therefore is a potential source for biodiesel 

production. Extended-life canola oil was used to fry food for duration of 72 hours to make used 

cooking oil. An increase in viscosity and acid value of the oil was observed as a result of oil 

degradation during the frying process. Used cooking oil, RBD (refined, bleached, deodorized) 

canola oil, and greenseed canola oil was transesterified to produce fatty acid methyl ester 

(FAME). The transesterification was conducted with methanol (6:1 alcohol to oil molar ratio) 

using KOH as a catalyst at 1 wt.% with respect to oil. The reaction temperature was maintained 

at 60°C for 1.5 h at the stirring speed of 600 rpm. During this study it was observed that FAME 

from RBD canola oil has higher ester percentage (97.3%) as compared to those derived from 

used cooking oil (95.1%) and greenseed canola oil (94.8%). This is because canola oil has 

negligible acid value whereas used cooking oil and greenseed canola oil have acid value of 1.5 

and 3.8 mgKOH/g, respectively.  

 

3.2. Introduction 

Biodiesel or fatty acid methyl ester (FAME) is an alternative fuel arising from concerns 

of depleting sources of fossil fuels and environmental issues. Biodiesel properties are 

comparable to those of fossil-based diesel fuel and can be produced from animal fats or 
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vegetable oils thus they are renewable. Recently, there are concerns regarding food versus fuels 

controversy of which crops for energy and food compete with each other in many ways 

(agricultural landing, skilled labour, water, fertilizers etc.) [1,2]. Moreover, the high price of 

biodiesel derived from food-grade vegetable oils makes it difficult to compete economically with 

the fossil-based diesel. A less expensive, non food-grade vegetable oil can be a potential 

feedstock for biodiesel production.  

In recent years, attempts to utilize used cooking oil (UCO) as a feedstock for biodiesel 

production have been made to overcome the economic problem [3,4]. This is because the cost of 

yellow grease (16.5 ¢/lb) is lower than that of canola oil (34 ¢/lb) [5]. Yellow grease is defined 

as used cooking oil containing free fatty acid (FFA) less than 20%. FFA, if present, could cause 

the side saponification reaction which consumes catalyst and generates soap leading to low yield 

and low quality of FAME. In the present work, extended-life canola oil was used to fry food over 

72 hours. Observations have been made and presented to demonstrate oil degradation during 

frying process. The fried oil was then transesterified to produce FAME. 

Another interesting feedstock for biodiesel production is greenseed canola oil. Greenseed 

canola is an immature canola seed of which its colour appears green. The green colour is due to 

high level of chlorophyll content in the seeds. In addition, chlorophyll is retained in canola seeds 

if the seeds are exposed to frost condition during seed development. According to Canadian 

Grain Commission (CGC), Canola seeds are divided into 3 grades. No. 1 Canola is the best 

quality canola seed which contain less than 2% greenseed, with less than 25 ppm chlorophyll 

content and can be sold at around $500 per metric ton [6]. No.2 Canola and No.3 Canola are the 

lower canola seeds as they contain 26-45 ppm and 46-100 ppm chlorophyll, respectively. The 

price of green seeds drops by around $10 to $15 per grade per metric ton [7]. As the level of 



129 
 

chlorophyll content increases, the selling value of the seed drops and cannot be used for edible 

purpose. Therefore, greenseed canola oil can be considered as a non-food grade feedstock and 

hence making it a good feedstock for biodiesel production. The objective of this work is to study 

the feasibility of used cooking oil and greenseed canola oil as feedstock for biodiesel production.  

 

3.3. Materials  

Extended-life canola oil was obtained from Dow Chemical Inc., Canada. Greenseed 

canola oil was obtained from Milligan Bio-Tech Inc., Foam Lake, Saskatchewan, Canada.  RBD 

(refined, bleached, deodorized) canola oil was purchased from a local grocery store. Anhydrous 

methanol (MeOH) (99.8%) and potassium hydroxide (KOH) were purchased from EMD 

Chemicals Inc., Darmstadt, Germany. Reference standard chemicals including methyl oleate, 

triolein, diolein, and monoolein were purchased from Sigma-Aldrich, MO, USA. F.A.M.E. mix 

rapeseed oil reference standard was obtained from SUPELCO, PA, USA. 

 

3.4. Experimental Procedures 

3.4.1. Frying Process for Extended-Life Canola Oil  

The extended-life canola oil was used for food frying for 8 h per day for 9 days 

consecutively giving a frying load of 72 h. A 2 L of oil was poured into a fryer. Before frying, 

the oil was heated to 176.67°C for 1 h then 200 g of food was fried at 176.67°C. For the first 

batch of each day, pork sausage was used for day 1, 2, 3, and 4, marinated chicken was used for 

day 5, 6, and 7, and marinated pork was used for day 8 and 9. Pre-fried potatoes (“no-name” 

brand) were fried in batch 2 to batch 8 each day. The potatoes were fried for 10 min and the 

meats were fried for 20 min. The temperature of the oil was kept constant at 176.67°C for 8 h 
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each day. At the beginning of each day except the first day, 200 mL of fresh oil was added into 

the fryer. At the end of each day 60 mL of the oil was sampled.  

 

3.4.2. Transesterification 

FAME was produced by means of KOH-catalyzed transesterification from a 100 g of 

feedstock, which are used cooking oil, greenseed canola oil, and RBD canola oil. A 1% KOH 

based on the total amount of oil was used in each case as a catalyst. In each case, the feedstock 

was initially placed in a Parr reactor and heated to 60°C. The reactor consists of a ~300 mL (6.3 

cm inside diameter and 10.2 height) stainless steel vessel equipped with a temperature and 

stirring speed control unit. A mixture of methanol (6:1 methanol to oil molar ratio) and KOH (1 

wt.% with respect to oil) was then added to the reactor. The temperature and stirring speed of the 

reaction mixture were maintained constant for 1.5 h at 60°C and 600 rpm, respectively. After the 

reaction, the transesterification product was allowed to settle in a separating funnel for glycerol 

separation. Afterward, distilled water was heated and used in the washing step to remove KOH 

remained in the FAME phase. In this step, the water was added to the ester phase and the mixture 

was shaken. The mixture was then allowed to settle in a separating funnel and the aqueous phase 

was removed. The washing was completed after around 10 times of washing when the washing 

water became clear and its pH was approximately 7. Unreacted methanol and water was then 

removed using BÜCHI rotavapor. Biodiesel was finally passed through the anhydrous sodium 

sulphate, which was previously dried in an oven at 100°C for 1 hour, to remove traces of 

moisture.  
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3.4.3. Characterization  

The ester phase collected from each experiment was analyzed for its ester content using a 

Hewlett-Packard 1100 series HPLC with refractive index detector and two Phenogel 5u 100A 

300X7.80 mm 5 micron columns in series protected with guard column, equipped with 

ChemStation for LC 3D, Agilent Technologies. THF was used as a mobile phase at 1 mL/min for 

25 min.  The operating parameters were as follows: injection volume 5 µL; column temperature 

24°C; and detector temperature 35°C.  Reference standard chemicals including methyl oleate, 

triolein, diolein, and monoolein were used for the HPLC calibration (see Appendix A). Fatty acid 

compositions of esters were determined using Agilent Technologies 6890N Network GC System 

equipped with GC ChemStation software with FID detector and RESTEK 10638 Stabilwax 

column. The injection volume was 2 µL and the program was started at 160°C, hold for 1 min, 

ramped to 240°C at 4°C/min and hold for 24 min. SUPELCO FAME Mix Rapeseed Oil standard 

was used as a reference for GC calibration (see Appendix B). The oxidative stability of biodiesel 

was measured as induction time using Metrohm 743 Rancimat instrument. Viscosity was 

measured by Brookfield DV-I Viscometer. Acid value was determined as per the method AOCS 

Te 1a-64.  

 

3.5. Results and discussions 

3.5.1. Oil Degradation during Frying 

The sampled oil was characterized every 8 h of frying to study the properties changed in 

this oil during the frying process. Acid value and viscosity of the oil with error bars are shown in 

Figures 3.1 and 3.2, respectively. A number of reactions took place during the frying process 
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including thermolytic and oxidative reactions [8,9] resulting in the formation of oxidation 

derivations composing of various acids and polymerized materials. These oxidative derivatives 

caused an increase in acid value and viscosity as shown in Figures 3.1 and 3.2.  

 

In order to determine oxidative stability of biodiesel, Rancimat instrument was used. 

During the Rancimat test, the sample was heated (110°C in this case) and the oxygen was 

supplied. In presence of oxygen at high temperature, the oxidation reaction took place and the 

oxidation derivatives were transferred to the measuring chamber containing Millipore water. The 

increase in conductivity of the water was detected as the oxidation derivatives were transferred 

into the water. 

 

 

 

Figure 3.1 Acid value of extended-life canola oil during the frying process. 
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Figure 3.2 Viscosity @40°C of extended-life canola oil during the frying process. 

 

The induction time is defined as the time required for the conductivity of the water to be 

increased rapidly and was used as an indication of oxidative stability of a sample. Table 3.1 

shows induction time and acid value of the feedstock oil. Table 3.2 shows fatty acid 

compositions of each oil. The Rancimat results indicate that the aged oil has lower stability 

(induction time = 12.2 h) as compared to the fresh oil (induction time = 20.5 h). This is because 

the oxidation reaction took place during the frying period. The aged extended-life canola oil has 

a longer induction time as compared to RBD canola oil (8.2 h) or greenseed canola oil (11.5 h) 

due to its fatty acid composition profile. Table 3.2 shows that the used extended-life canola oil 

has less degree of unsaturation (lower linolenic acid) as compared to RBD canola oil or 

greenseed canola oil, thus increasing oxidative stability. 
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Table 3.1 Induction time and acid value of the feedstock oil. 

Oil type Induction time (hr) Acid value (mg KOH/g) 

“no name” RBD canola oil 8.2 0.2 

Fresh extened-life canola oil 20.5 0.2 

Aged extended-life canola oil (72hr) 12.2 1.5 

Greenseed canola oil 11.5 3.8 

 

 

3.5.2. Transesterification and Ester Analysis 

The change in the FAME percentage during transesterification of the aged oil, greenseed 

canola oil and RBD canola oil is shown in Figure 3.3. Product compositions of biodiesel 

produced after transesterification of RBD canola, greenseed canola, and used cooking oil at 60°C 

for 1.5 h are given in Table 3.3. Ester percentage increased as transesterification proceeded 

towards the equilibrium. The higher ester percentage was achieved when the fresh RBD canola 

oil was used as compared to the aged oil (used cooking oil) or greenseed canola oil. This is due 

to possible occurrence of the saponification reaction when the aged oil or greenseed canola oil 

was used as a feedstock. This is because the acid value of the aged oil (AV = 1.5) and greenseed 

canola oil (AV = 3.8) was higher than that of the fresh oil (AV = 0.2).  

 

 

 

 

 



135 
 

Table 3.2 Fatty acid compositions of RBD canola oil methyl ester (CME), greenseed canola oil 

methyl ester (GME), and used cooking oil methyl ester (UME). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        an/a = not available 

 

 

Structure Compound name 
CME 

(%ME) 

GME 

(%ME) 

UME 

(%ME) 

C14:0 Myristic ester 0.06 0.07 0.09 

C16:0 Palmitic ester 4.36 4.60 5.73 

C16:1  Palmitoleic ester 0.16 0.26 0.02 

C16:2 n/aa 0.08 0.08 0.07 

C16:3 n/aa 0.09 0.15 0.08 

C18:0 Stearic ester 1.96 2.01 2.30 

C18:1 z9 Oleic ester 60.92 55.51 63.95 

C18:1 z11 Asclepic ester 2.89 3.59 2.41 

C18:2 Linoleic ester 18.70 20.93 20.05 

C18:3 Linolenic ester 6.79 9.41 2.16 

C20:0 Arachidic ester 0.59 0.66 0.53 

C20:1 Eicosenoic ester 1.12 1.34 1.22 

C22:0 Behenic ester 0.22 0.41 0.03 

Total saturated fatty acid 7.19 7.75 8.68 

Total monounsaturated fatty acid 65.09 60.7 67.6 

Total polyunsaturated fatty acid 25.66 30.57 22.36 
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Table 3.3 Product compositions of esters produced from RBD canola, greenseed canola,  

and used cooking oil (transesterification at 60°C for 1.5 h). 

Biodiesel 
Triglyceride 

(%) 

Diglyceride 

(%) 

Monoglyceride 

(%) 

Ester 

(%) 

UME 0.9 2.8 1.2 95.1 

GME 1.3 2.4 1.5 94.8 

CME 0.0 1.7 1.0 97.3 

 

 

 

 

 

 

Figure 3.3 Change in ester percentage during transesterification of used cooking oil, greenseed 

canola oil and RBD canola oil. 
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A Rancimat plot of canola oil methyl ester (CME) is given in Figure 3.4 as an example to 

demonstrate oxidative stability of an oil sample. In Rancimat test, conductivity of distilled water 

is measured as a function of time. When the oil sample in another container is oxidized, the 

oxidation derivatives are transferred to the distilled water causing an increase in the conductivity 

of the water. The induction time is defined as the time that the conductivity of the water begins 

to increase rapidly. The induction time of biodiesel is shown in Figure 3.5. It was reported that 

the oil stability increase with the decrease in the degree of unsaturation [10]. Figure 3.5 shows 

that UME has longer induction time (3.4 h) compared to CME (1.85 h) or GME (0.5 h). This is 

because the UME has significant lower level of the highly unstable compound, linolenic acid 

(C18:3, containing three double bonds), (2.16%) as compared to that contained in CME (6.79%) 

or GME (9.41%). The total poly unsaturated compounds in UME (22.36%) are also lower than 

those contained in CME (25.66%) or GME (30.57%). In addition, it is found that biodiesel has 

lower oxidative stability when compared to their parent oils. This is because triglyceride, in 

general, has higher viscosity than ester. The higher viscosity is believed to be hindrance factor 

preventing oxygen and oxidation derivative compounds to move freely in the oil medium, 

thereby limiting the mass transfer of these compounds and retarding oxidation reaction. 

 

Figure 3.4 Oxidative stability plot of RBD canola oil methyl ester (CME). 

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5

Time (h)

Co
nd

uc
tiv

ity
 (μ

s/
cm

)



138 
 

 

Figure 3.5 Induction time of esters produced from used cooking oil,  

greenseed canola oil, and RBD canola oil. 

 

 

3.6. Conclusions 

Oxidation derivatives such as various acids and polymerized materials are formed during 

frying. The formation of such compounds leads to an increase in viscosity and acid value of the 

frying oil. In addition, the frying process deteriorates the oil’s oxidative stability and this is 

exhibited by the lower induction time of the used oil (12.2 h) as compared to that of the fresh oil 

(20.5 h). Due to this increase in acid value, the biodiesel yield produced from used oil (95.1%) is 

lower than that of fresh RBD canola oil (97.3%). Biodiesel yield is even lower (94.8%) when a 

feedstock with higher acid value such as greenseed canola oil is used (AV = 3.8). This finding 

suggests that biodiesel yield is reciprocally related to acid value of the corresponding feedstock 

oil. Oxidative stability of biodiesel is in the order of UME > CME > GME. This is because fatty 

acid composition is found to be the major factor determining oxidative stability. The used oil has 

significantly lower level of the highly unstable compound, linolenic acid (C18:3, containing 

three double bonds), as compared to that contained in RBD canola oil or greenseed canola oil 

and therefore shows highest oxidative stability.  
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It is noteworthy that UCO from different sources have different properties such as fatty 

acid compositions and acid value that potentially cause changes in ester yield and properties. To 

illustrate this point, UCO from another source (campus cafeteria) was used as feedstock for 

biodiesel production and the results were discussed in Chapter 4.   
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Abbreviations 

AV  Acid value 

CME  Canola oil methyl ester 

FAME  Fatty acid methyl ester 

FFA  Free fatty acid 

GME  Greenseed canola oil methyl ester 

HPLC  High performance liquid chromatography 

KOH  Potassium hydroxide 

ME  Methyl ester 

MeOH  Methanol 

THF  Tetrahydrofuran 

UCO  Used cooking oil 

UME  Used cooking oil methyl ester 
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Contribution of this Chapter to the Overall Ph.D. Research 

It was found from the last chapter that biodiesel content is reduced when used cooking oil 

is employed as feedstock. In addition, biodiesel obtained from used cooking oil has inferior 

quality due to the higher glyceride content. In this chapter, attempts are made to improve 

biodiesel content and quality by means of an addition of canola oil to the used cooking oil 

feedstock. Ethanol is also used in transesterification in comparison with methanolysis. In 

addition to ester content, other important fuel characteristics such as viscosity, acid value, water 

content, heating value are evaluated with special emphasis on low temperature property of 

biodiesel. 
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4.1. Abstract 

 Used cooking oil (UCO) was mixed with canola oil at various ratios in order to make use 

of used cooking oil for production of biodiesel and also lower the cost of biodiesel production. 

Methyl and ethyl esters were prepared by means of KOH-catalyzed transesterification from the 

mixtures of both the oils. Water content, acid value and viscosity of most esters met ASTM 

standard except for ethyl esters prepared from used cooking oil. Canola oil content of at least 

60% in the used cooking oil/canola oil feedstock is required in order to produce ethyl ester 

satisfying ASTM specifications. Although ethanolysis was proved to be more challenging, ethyl 

esters showed reduced crystallization temperature (-45.0°C to -54.4°C) as compared to methyl 

esters (-35.3°C to -43.0°C). A somewhat better low-temperature property of ester was observed 

at higher used cooking oil to canola oil ratio in spite of similar fatty acid compositions of both 

oils. 

 

4.2. Introduction 

 Biodiesel is a well known alternative, renewable fuel which provides less harmful 

emissions when compared with the conventional fossil-based diesel fuel. The most common 

method to produce biodiesel is transesterification of vegetable oils or animal fats with a short-

chain alcohol [1]. High purity methyl ester can be achieved by transesterification of fresh 

vegetable oils with methanol in presence of an alkaline catalyst [2,3]. Transesterification of 

canola oil (CO) produces ester whose properties are comparable with those of conventional 

diesel fuels [3]. It has also been reported that the lubricity of diesel fuel can be enhanced by 60% 

with the addition of 1 vol.% canola-derived methyl ester [4].  
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 However, the main drawback of this fuel is the high cost of feedstock which leads to the 

high price of biodiesel. A comparison of biodiesel price with that of diesel fuel can be used to 

depict severity of economic barrier of biodiesel. According to S&T Consultants Inc. and Meyers 

Norris Penny LLP [5], in 2004, the price of biodiesel in the United States, on average, was 2.22 

US$/US gallon while diesel fuel cost at 1.21 US$/US gallon. This economical factor has been 

undermining biodiesel business for decades.  

 In more recent years, attempts to utilize used cooking oil (UCO) as a feedstock for 

biodiesel production have been made to overcome the economic problem. The cost of yellow 

grease, which is 16.5 ¢/lb, is lower than that of canola oil, which is 34 ¢/lb [6]. However, due to 

high free fatty acids (FFA) and water content in used cooking oils, they cannot be directly 

transesterified using an alkaline catalyst, which otherwise, gives low yield and low quality of 

biodiesel. This is because the side saponification reaction consumes catalyst and generates soap 

which causes problems in producing high quality biodiesel. Transesterification of used cooking 

oils with an alkaline catalyst can be done only when the FFA and water content have been 

removed through different pre-treatment processes [7,8]. Alternatively, acid catalyst may be used 

instead of base catalyst in order to prevent the emergence of this saponification [9]. However, 

this approach requires a longer reaction time, a higher operating temperature, and an acid-

resistible reactor. It is obvious that exploitation of used cooking oils requires a more 

sophisticated technology and a more complicated process, which increase the cost of biodiesel 

production process.  

 Even though several attempts have been made to produce biodiesel from various fresh 

vegetable oils and used cooking oils, the combination of these two sources as feedstock for 

biodiesel production is relatively unexplored. It was anticipated that the addition of fresh 
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vegetable oil, i.e., canola to used cooking oil would improve yield and quality of biodiesel 

produced from direct alkali-catalyzed transesterification. The purpose of this study is to optimize 

canola to used cooking oil ratio to produce high yield and quality biodiesel while maintaining a 

simple and low cost alkali-catalyzed transesterification process. This study could provide an 

alternative means to make use of UCO for a low-cost biodiesel production process. 

 

4.3. Materials  

 UCO was obtained from the campus cafeteria, University of Saskatchewan, Saskatoon, 

Canada. Commercial grade canola oil (CO) was purchased from a local grocery store. The 

characteristics of these oils are discussed in Section 4.5.1. Anhydrous methanol (MeOH) (99.8%) 

and potassium hydroxide (KOH) were purchased from EMD Chemicals Inc., Darmstadt, 

Germany. Anhydrous ethanol (EtOH) was obtained from Commercial Alcohol Inc., Brampton, 

Ontario, Canada. Sulfuric acid (H2SO4) was procured from EM Science, Darmstadt, Germany.  

Reference standard chemicals including methyl oleate, triolein, diolein, and monoolein were 

purchased from Sigma-Aldrich, MO, USA. 

 

4.4. Experimental Procedures 

4.4.1. Transesterification 

 Canola oil methyl ester (CME), canola oil ethyl ester (CEE), used cooking oil methyl 

ester (UME), and used cooking oil ethyl ester (UEE) were produced by means of KOH-catalyzed 

transesterification from a 100 g of feedstock. The same method was also used for the production 

of methyl and ethyl ester from mixed feedstock. In the present work, 80:20, 60:40, 40:60, 20:80 

ratio of UCO and CO was used to produce 80UME (methyl ester produced from 80 g of UCO 
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and 20 g of CO), 60UME (methyl ester produced from 60 g of UCO and 40 g of CO), 40UME 

(methyl ester produced from 40 g of UCO and 60 g of CO), and 20UME (methyl ester produced 

from 20 g of UCO and 80 g of CO), respectively. Ethyl esters were also produced from the same 

set of feedstock. The feedstock was initially placed in a Parr reactor (Parr Instrument Company, 

Illinois, USA) and heated to 50°C at atmospheric pressure. A mixture of alcohol (methanol or 

ethanol at 6:1 alcohol to oil molar ratio) and KOH (1 wt.% with respect to oil) was then added to 

the reactor. The temperature and stirring speed of the reaction mixture were maintained constant 

for 2 hours at 50°C and 600 rpm, respectively.  

 After the reaction, the transesterification product was allowed to stand in a separating 

funnel for glycerol separation. Due to a strong emulsion in the case of ethanolysis products, 

glycerol was not separated only by gravity. In order to separate glycerol from ethyl ester phase, 

approximately 10 g of pure glycerol was added into the transesterification product and the 

separatory funnel was shaken vigorously and the product was allowed to stand. Glycerol layer 

separated from ester layer within an hour.  

 To avoid the formation of emulsion, tannic acid solution (0.1 wt.%) was used in the 

washing step, thereby neutralizing the excess base catalyst. The pH of washing water was 

measured by pH-indicator strips from EMD Chemicals Inc., Gibbstown, N.J. throughout the 

washing process. The pH of washing water was initially very high at approximately 10 due to 

dissolved KOH. After 7-8 times of washing, the washing water became clear and its pH was 

approximately 7.7. The washing process was continued until the approximate pH of 7 was 

achieved.  

 Unreacted methanol and water was removed using BÜCHI rotavapor at ~90°C. The 

process was continued until the constant weight was observed. Biodiesel was finally passed 
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through the anhydrous sodium sulphate, which was previously dried in an oven at 100°C for 1 

hour, to remove traces of moisture.  

  

4.4.2. Characterization 

The percentage of triglyceride, diglyceride, monoglyceride, and ester were analyzed by 

Gel Permeation Chromatography (GPC) using a Hewlett-Packard 1100 series HPLC with 

refractive index detector and two Phenogel (5μ 100A 300X7.80 mm) columns in series protected 

with guard column. The data were collected by ChemStation software, Agilent Technologies. 

Tetrahydrofuran (THF) was used as a mobile phase at 1 mL/min for 25 min.  The operating 

parameters were as follows: injection volume 5 µL; column temperature 24°C; and detector 

temperature 35°C.  Reference standard chemicals including methyl oleate, triolein, diolein, and 

monoolein were used for the calibration (see Appendix A). The esters were characterized for 

their properties such as water content (AOCS Ca 2e-84), acid value (AOCS Te 1a-64), heating 

value (ASTM D240-92), density (ASTM D5002-94), viscosity (ASTM D2500), and fatty acid 

compositions (AOCS Ce 1-62). 

 Thermal analysis of biodiesel esters was performed by a Differential Scanning 

Calorimeter (DSC) from PerkinElmer, Inc., Connecticut, U.S.A. equipped with Pyris software 

thermal analysis and a cryofill filled with liquid nitrogen as a cooling device. The rate of cooling 

and heating can cause major differences in calorimetric peaks and traces in a DSC thermogram. 

This is because different shape of biodiesel crystal, thus different peak position can be formed as 

a result of different cooling rate. In the present work, a standard cooling rate of 5°C/min [4,10] 

was used. The program used for thermal analysis was set as follows: 1) hold at 30°C for 5 min; 
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2) cool from 30°C to -80°C at 5°C/min; 3) hold at -80°C for 5min; and 4) heat from -80°C to 

30°C at 5°C/min. 

 

4.5. Results and Discussions 

4.5.1. Feedstock Analysis 

 Saponification value (SV) is the mg KOH required to saponify 1 g of oil. Number of 

mole of oil was approximated from SV and average molecular weight of oil was then calculated 

from mass of oil divided by number of mole of oil. The saponification value of CO and UCO 

was 193.0 and 178.4, respectively. Based on saponification value, molecular weight of feedstock 

with 100:0, 80:20, 60:40, 40:60, 20:80, and 0:100 UCO to CO ratio were 943, 929, 915, 900, 

886, and 872 g/mol, respectively. It is believed that the higher molecular weight of UCO was due 

to the formation of polymerized compounds such as polymerized triglycerides during the frying 

process [11]. The frying process contributed to the formation of FFA, which can be demonstrated 

in terms of acid value (AV). The acid value of UCO was 2.5 mgKOH/g while that of CO was 

significantly lower (0.4 mgKOH/g). Figures 4.1a and 4.1b show HPLC chromatograms of CO 

and UCO, respectively. It can be seen that CO composed mainly of triglyceride (16.2 min) and 

trace amounts of diglyceride (16.9 min) while UCO composed of triglyceride, diglyceride, and 

monoglyceride (18.4 min). Diglyceride and monoglyceride were probably products of 

triglyceride decomposition during the frying process. In addition, a small peak at 14.7 min in 

UCO chromatogram indicates existence of molecules with higher molecular weight than that of 

triglyceride. Such compounds might be polymerized compounds. These compounds affect 

overall properties of UCO such as molecular weight and viscosity.  
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Figure 4.1 HPLC chromatograms: a) canola oil; b) used cooking oil; 

c) canola oil methyl ester; d) used cooking oil methyl ester. 

 

a 

b 

c 

d 
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The higher AV and viscosity of UCO compared to those of CO as shown in Table 4.2 suggest 

that the quality of UCO is lower than that of fresh CO. 

 

 4.5.2. Product Analysis 

 Feedstock for this study were various mixtures of UCO and CO with UCO to CO weight 

ratio of 100:0, 80:20, 60:40, 40:60, 20:80, 0:100. All feedstock were transesterified with 

methanol and ethanol. Figures 4.1c and 4.1d show HPLC chromatograms of CME and UME, 

respectively. The chromatogram of CME (see Figure 4.1c) does not show a peak of triglyceride 

at 16.1 min. The disappearance of triglyceride peak in chromatogram of CME indicates the 

complete conversion of triglyceride to an ester. However, a peak of triglyceride is present in 

UME chromatogram (see Figure 4.1d) indicating incomplete transesterification due to 

interference of saponification. The saponification occurred due to the reaction of free fatty acid 

present in feedstock with base catalyst producing soaps. These soaps interfere with the separation 

of glycerol and also induce emulsion afterward. Glycerol is not detected in biodiesel indicating 

complete glycerol separation from esters. Ester percentages in the biodiesel as analyzed by the 

HPLC are shown in Figure 4.2. The ester percentage in both methyl and ethyl ester tend to 

increase with CO percentage in feedstock mixture. These results strengthen our hypothesis that 

the addition of CO would help to improve biodiesel yield.  

 The amounts of ester collected from each experiment are shown in Figure 4.3a. 

Reproducibility of the recovery of esters is ~5%. In comparison with methyl ester yield obtained 

from pure UCO feedstock, the higher methyl ester yield was obtained with the addition of CO to 

the feedstock mixture. In the case of ethyl ester, a higher amount of CO (at least 60 wt.%) was 

required to improve ethyl ester yield. Considering UCO, the lower ester yield was observed due 
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to the fact that UCO was a compilation of various compounds such as triglyceride, diglyceride, 

and monoglyceride. Therefore, a 100 g of UCO contains less moles of triglyceride when 

compared to a 100 g of CO.  

 

 

 

 

Figure 4.2 Ester percentage as analyzed by HPLC analysis: ● methyl ester; ▲ ethyl ester 

(reaction conditions: alcohol to oil ratio 6:1, temperature 50°C). 
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Figure 4.3 Amounts of ester and glycerol collected from transesterification of 100 g 

of feedstock: a) ester recovery; b) glycerol recovery; ● methanolysis; ▲ ethanolysis 

(reaction conditions: alcohol to oil ratio 6:1, temperature 50°C). 
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Diglyceride and monoglyceride contained in UCO have higher glycerol to acyl-group 

molar ratio than triglyceride (glycerol to acyl-group molar ratio of triglyceride, diglyceride, and 

monoglyceride are 0.33, 0.5, and 1, respectively). As a result, the same amount of feedstock 

containing mainly triglyceride (CO) would have more moles of acyl-group than that containing a 

mixture of triglyceride, diglyceride and monoglyceride (UCO). Theoretically, one mole of acyl-

group gives one mole of biodiesel ester, therefore the higher yield of esters was observed at a 

lower UCO to CO ratio. Dmytryshyn et al. [2] also reported a low ester yield (approximately 50 

– 60%) when UCO was used as a feedstock.  

 Figure 4.3b displays the amount of glycerol collected at different UCO to CO ratios. 

Although less ester yield was obtained at higher UCO to CO ratio, the glycerol recovery was 

opposite to this trend. Based on the concept of glycerol to acyl-group molar ratio in feedstock, a 

100 g of UCO would have more moles of glycerol group than a 100 g of CO. Therefore, glycerol 

was collected at a larger amount when a higher UCO to CO ratio was used as a feedstock.  

 The percentage of tri-, di-, and monoglyceride in each ester are presented in Table 4.1. 

The percentage of these acylglycerols in ester phase increased as amount of UCO in feedstock 

increased. This observation is predictable as Table 4.2 shows that UCO has higher acid value 

thus higher free fatty acid content compared to CO. Alkali catalyst (KOH) was consumed by 

reacting with free fatty acid to form soap, which leads to lower conversion and consequently 

higher level of acylglycerols. The higher amount of these glycerides in ethyl esters compared to 

methyl esters indicates lower glyceride conversions in case of ethanolysis than that of 

methanolysis. This is due to the higher methanol reactivity towards transesterification as 

compared to ethanol [12].  
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Table 4.1 Triglyceride, diglyceride, and monoglyceride percentage in esters. 

Type of ester 
Triglyceride 

(wt.%) 

Diglyceride 

(wt.%) 

Monoglyceride 

(wt.%) 

Total glycerin 

(wt.%) 

UME 1.6 3.4 1.3 1.0 

80UME 1.3 3.1 1.2 0.9 

60UME 0.3 2.5 1.1 0.7 

40UME 0.0 2.5 1.1 0.7 

20UME 0.0 2.1 1.1 0.6 

CME 0.0 1.7 0.9 0.5 

UEE 8.5 11.3 9.3 5.0 

80UEE 3.9 7.1 6.5 3.1 

60UEE 2.5 5.4 5.5 2.5 

40UEE 1.3 3.9 4.6 1.9 

20UEE 0.6 2.9 3.6 1.4 

CEE 0.0 2.3 3.1 1.2 
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Table 4.2 Characteristics of esters. 

Type of ester 

Water 

content 

(% vol.) 

Heating 

value 

(MJ/kg) 

Density 

(g/cm3) 

Viscosity @40°C 

(mm2/s) 

Acid value 

(mgKOH/g) 

UME 0.03 39.1 0.86 4.9 0.5 

80UME 0.03 39.2 0.86 4.9 0.4 

60UME 0.02 39.6 0.86 4.8 0.4 

40UME 0.03 39.5 0.86 4.6 0.4 

20UME 0.04 40.0 0.86 4.6 0.4 

CME 0.05 39.1 0.86 4.4 0.5 

UEE 0.07 39.3 0.87 8.8 1.5 

80UEE 0.04 39.6 0.86 6.4 1.2 

60UEE 0.03 39.8 0.86 5.8 1.0 

40UEE 0.03 39.7 0.86 5.5 0.5 

20UEE 0.04 40.2 0.86 5.1 0.4 

CEE 0.04 40.3 0.86 4.9 0.5 

Canola oil -- 39.7 0.90 38.2 0.4 

Used cooking oil 0.02 -- 0.90 44.7 2.5 

Summer diesel fuel -- 45.5 -- -- 0.002 

ASTM 0.05 max -- -- 1.9 - 6.0 0.5 max 
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Total glycerin content (GLT) is defined as GLT = GL + 0.26(MG) + 0.15(DG) + 0.1(TG) [13]. 

GLT of the prepared esters are above the ASTM limit (0.24% max) suggesting that purification 

of these esters is required. The purification process will be discussed in Section 4.5.4. 

 

4.5.3. Characterizations of the Esters  

 The esters obtained from transesterification were characterized and their properties are 

presented in Table 4.2. Water content of all esters met ASTM standard except for ethyl ester 

prepared from UCO. The densities of all esters were considerably lower than those of their 

parent oils and were not significantly related to UCO to CO ratio. Acid value of all methyl esters 

met the ASTM standard. In contrast, acid value of UEE was very high at 1.5 mgKOH/g and did 

not meet the ASTM standard. This might be due to the un-reacted FFA in UCO. However, with 

the addition of CO up to 60% in the feedstock, the acid value of ethyl ester was reduced to 0.5 

mg KOH/g, which meets the ASTM standard. The viscosities of both CO and UCO were very 

high at 38.2 and 44.7 mm2/s, respectively. Viscosities of esters were significantly lower than 

those of their parent oils and met the ASTM standard (with an exception of some esters). 

Viscosity of esters decreased with a decrease in UCO to CO ratio as UCO itself was more 

viscous than CO. The viscosity of UEE was very high and did not meet the standard. This is due 

to lower reactivity of ethanol as compared to methanol [12] resulting in the presence of 

unconverted acylglycerols. Low ester percentage in UEE as shown in Figure 4.2 helps to 

strengthen this concept. The ester content can be improved by the addition of CO in the 

feedstock. By adding CO up to 40%, an ethyl ester with a satisfiable level of viscosity at 5.8 

mm2/s was obtained. The further reduction of viscosity can be accomplished if more CO was 

used in the feedstock. Heating values of all esters were approximately the same value, which are 
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roughly 10% lower than that of the reference diesel fuel. These results are in substantial 

agreement with those reported in the literature [3].  

 Table 4.3 shows boiling points of each biodiesel esters, their corresponding feedstock, 

and a reference diesel fuel. The boiling points at 90% off of feedstock were very high (654.2°C 

for CO and 726.9°C for UCO). The boiling points of UCO were higher than that of CO due to its 

high molecular weight constituent such as polymerized acylglycerols. When transesterification 

was carried out, it is possible for these polymerized compounds to give rise to polymerized esters 

which have a higher molecular weight and boiling point than a monomer ester. Table 4.3 also 

showed that esters derived from UCO have higher boiling point than those derived from CO. The 

boiling points of esters have a tendency to decrease when more CO was used in the feedstock. As 

expected, boiling points of ethyl esters were obtained at higher value when compared to the 

corresponding methyl ester. For example, boiling point at 90% off of CME was 365.3°C while 

the corresponding boiling point for CEE was observed at 372.8°C. This is because ethyl ester 

generally has higher molecular weight and boiling point as compared to methyl ester.  The 

unusual high boiling point of UEE is due to presence of unconverted acylglycerols as a result of 

incomplete transesterification as discussed earlier.  

 

4.5.4. Ester Purification 

 The ester percentages in ethyl esters are less than those of methyl esters as shown in 

Figure 4.2. The ethyl esters were purified by means of column chromatography as described by 

Meher et al. [14]. After purification, ethyl esters showed improvement in ester percentage with 

decrease in total glycerin content (GLT) as presented in Table 4.4.  

 



 
 

Table 4.3 Boiling point distribution (°C) of esters. 

%off 10 20 30 40 50 60 70 80 90 

UCO 610.3 617.5 625.2 635.3 648.1 664.3 683.6 704 726.9 

CO 599.7 606.3 608.8 611.8 615 619 624.8 635.2 654.2 

UME 355.7 358.2 359.9 361.2 362.3 363.2 364.2 365.9 409.3 

80UME 357.5 361.2 363.6 365.5 367.1 368.6 369.8 370.9 372.1 

60UME 357 360.7 363.2 365.1 366.8 368.2 369.5 370.6 371.8 

40UME 355.5 358 359.5 360.7 361.7 362.6 363.5 364.3 365.6 

20UME 355 357.6 359.2 360.5 361.6 362.6 363.5 364.3 365.2 

CME 354 355.7 356.7 357.6 358.4 359 359.6 360.2 365.3 

UEE 363.9 365.3 366.4 367.3 370.8 515.7 600.6 611 639.4 

80UEE 363.8 365.6 366.8 367.8 368.6 369.3 370 389 542.7 

60UEE 363.3 364.9 365.9 366.8 367.5 368.1 368.7 369.6 426.1 

40UEE 364.8 367.3 368.9 370.2 371.3 372.2 373.1 374.6 416.9 

20UEE 364.4 366.6 368.1 369.3 370.2 371.1 371.9 372.6 373.6 

CEE 364.3 366.3 367.7 368.8 369.7 370.5 371.2 371.9 372.8 

Diesel fuel 175 185 195 218 242 260 285 320 365 
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Table 4.4 Characteristics of purified ethyl esters. 

Type of ester 
Ester content 

(wt.%) 

Total glycerin 

(wt.%) 

Acid value 

(mgKOH/g) 

Viscosity 

@40°C 

(mm2/s) 

UEE (prior to purification) 70.3 5.0 1.5 8.8 

UEE 89.4 1.18 0.5 3.1 

60UEE 95.7 0.54 0.5 2.0 

40UEE 97.7 0.35 0.6 2.7 

CEE 96.5 0.47 0.5 2.5 

 

 

The acid values and viscosities of the purified esters reduced significantly. This is due to the 

improvement of the purity of ethyl esters after purification of the esters. 

 

4.5.5. Thermal Analysis by Differential Scanning Calorimetry (DSC)  

 The low-temperature flow property of biodiesel is very important for its use in a cold-

climate country. This is because when a blended diesel fuel is used at a low temperature, the 

biodiesel portion of the blend crystallizes and separates out from diesel fuel. This crystal can 

create problems to engine flow system, undermine engine operation, and eventually cause engine 

to stop running. Therefore, a satisfactory attribute of biodiesel low-temperature properties should 

be warranted prior to its commercial use. Such property is conventionally characterized by cloud 

point (CP) and pour point (PP). 

 More recently, DSC has been used to determine the low-temperature property of 

biodiesel [4]. Each fatty acid ester such as palmitic methyl ester, stearic methyl ester, oleic 
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methyl ester, etc. is miscible with each other at room temperature and therefore shows no heat 

change when mixed. However, crystallization or polymorphic transition (a change in structural 

geometry when solid) of a given ester could exhibit heat change, which is possible to monitor 

using a DSC. It is reported in the literature that enthalpy of crystallization of triglycerides can be 

measured using a DSC [15]. In addition, it has been also reported that polymorphic transition of 

triglyceride usually occurs after a melting of the first habit (a shape of crystal). Lee et al. [10] 

reported that branched-chain esters have lower crystallization temperature than that of 

conventional straight-chain esters. They reported a good correlation between crystallization 

temperature measured by a DSC and CP and PP of the biodiesel samples. 

 In this study, a typical DSC thermogram of CME is shown in Figure 4.4 and fatty acid 

compositions of CME and UME are presented in Table 4.5. The top and bottom curves in Figure 

4.4 are heating and cooling curves, respectively. Fatty acid composition in Table 4.5 is used to 

explain the DSC results, which is discussed as follows. The initial concentration of a given fatty 

acid methyl ester (palmitoleic methyl ester, oleic methyl ester, linoleic methyl ester, etc.) in 

CME was lower than its saturated concentration at 30°C, thus crystallization is not possible. 

When the sample temperature was reduced, the saturated concentration and solubility of each 

component was also reduced.  At a certain point, the saturated concentration reduced to the point 

lower than its actual concentration, thereby making crystallization of the corresponding 

component possible [16]. The major peak at -35.3°C appeared as a result of exothermic 

crystallization of monounsaturated fatty acid methyl esters. These esters were a major portion of 

CME as GC analysis showed a result of 63.2%. The small peak right after exothermic 

crystallization of monounsaturated fatty acid methyl ester at -40.7°C was probably due to its 
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polymorphic transition. It is well known that unsaturated ester crystallized at lower temperature 

than saturated ester. This is because they have different three-dimensional conformations.  

 

 

 

 

Figure 4.4 Typical DSC thermogram of canola oil methyl ester. 
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Table 4.5 Fatty acid compositions of canola oil methyl ester and used cooking oil methyl ester. 

Structure Compound name 
Percentage in canola 

oil methyl ester 

Percentage in used 

cooking oil methyl ester 

C14:0 Myristic methyl ester 0.05 0.08 

C16:0 Palmitic methyl ester 4.23 5.31 

C16:1 z7 n/aa 0.03 0.04 

C16:1 z9 Palmitoleic methyl ester 0.23 0.36 

C16:2 n/aa 0.07 0.06 

C16:3 n/aa 0.11 0.10 

C18:0 Stearic methyl ester 1.89 2.76 

C18:1 z9 Oleic methyl ester 57.75 56.94 

C18:1 z11 Asclepic methyl ester 3.58 2.17 

C18:2 Linoleic methyl ester 19.09 19.03 

C18:3 Linolenic methyl ester 8.71 6.54 

C20:0 Arachidic methyl ester 0.67 0.67 

C20:1 z5 n/aa 0.04 0.10 

C20:1 z11 Gondoic methyl ester 1.37 1.42 

C20:2 n/aa 0.14 0.16 

C22:0 Behenic methyl ester 0.36 0.36 

C24:0 Lignoceric methyl ester 0.04 0.14 

C24:1 z15 Tetracosenoic methyl ester 0.18 0.17 

C26:0 Hesacosanoic methyl ester 0.04 0 

Total saturated fatty acid 7.27 9.32 

Total monounsaturated fatty acid 63.17 61.20 

Total polyunsaturated fatty acid 19.41 19.34 
an/a = not available 
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Saturated ester molecules are in its minimum energy when fully extended and are well stacked, 

thereby strengthening intermolecular attraction force [17]. Unlike saturated ester, especially cis-

formation, unsaturated ester molecules have weaker intermolecular interactions and therefore 

crystallize at a lower temperature. This explains exothermic crystallization of polyunsaturated 

fatty acid methyl esters at lower temperature of -58.6°C. These observations are consistent with 

those reported in the literature in which crystallization temperature of saturated compounds were 

higher than that of unsaturated compounds [4]. Endothermic peaks on the heating curve at -

47.0°C and -24.6°C represent melting point of polyunsaturated and monounsaturated fatty acid 

methyl ester crystals, respectively. These crystals melted at temperature above their 

corresponding crystallization temperature. This finding conforms with those found in literature 

indicating that the melting temperature is higher than crystallization temperature of the same 

component [4,15]. After the melting of monounsaturated fatty acid methyl ester crystal, a 

different crystal shape of the same component can be formed. This behaviour is shown by 

exothermic crystallization peak at -22.6°C on the heating curve. Another endothermic peak at -

17.8°C is due to melting of the recently formed crystal of methyl ester. A similar behaviour has 

been reported in the literature [15]. 

 Figure 4.5 displays comparative cooling DSC thermograms of UME, 40UME, and CME, 

respectively. The major crystallization temperature of UME (-43°C) is lower than that of CME (-

35.3°C). As discussed earlier, these peaks represent monounsaturated fatty acid methyl ester of 

each UME and CME. The literature suggests that crystallization temperature of linear, long-

chain esters decrease with increase in the carbon chain length if number of double bond is the 

same [4]. The comparison has been made for samples with different fatty acid compositions 

(esters from canola oil and rapeseed oil) and the difference of the peak temperature was obvious 
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(>20°C). In this study, the chain length difference between monounsaturated fatty acid methyl 

ester of UME and CME is trivial and so does the peak temperature difference.  

 

 

Figure 4.5 Cooling curves of DSC thermogram: 

a) used cooking oil methyl ester; b) 40:60 UCO:CO methyl ester; c) canola oil methyl ester. 

 

Polymerized methyl ester in UME is another possible reason contributed to this difference. It is 

possible for a polymerized methyl ester to form a crystal shape such that is having a poor 

molecular stacking and poor intermolecular interactions. A detailed study is required to acquire a 

better understanding on this phenomenon. The major peak temperature of 40UME fell between 

those of UME and CME. This is because 40UME was produced from a mixture of UCO and CO.  

 Table 4.6 summarizes major peak temperature and total heat associated with melting and 

crystallization of esters. As expected, ethyl esters have lower major peak temperature than 
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methyl esters. This is a typical observation as ethyl esters are known to have a lower cloud point 

than methyl ester [3].  

 

Table 4.6 Major peak temperature and heat associated to crystallization and melting of esters. 

Ester 

Major 

crystallization 

peak 

temperature 

(°C) 

Major melting 

peak 

temperature 

(°C) 

Total heat 

associated with 

crystallization 

of ester 

(kJ/kg) 

Total heat 

associated with 

melting of ester 

(kJ/kg) 

UME -43.0 -27.8 49.6 55.0 

80 UME -41.1 -27.4 70.4 74.4 

40 UME -37.4 -26.4 71.4 77.4 

20 UME -36.8 -26.2 76.1 78.9 

CME -35.3 -24.6 84.0 88.8 

UEE -54.4 -30.0 38.1 30.6 

80 UEE -51.3 -25.8 48.1 44.6 

40 UEE -45.6 -19.5 51.3 49.0 

20 UEE -45.7 -20.6 58.5 56.1 

CEE -45.0 -19.6 60.2 58.1 
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The heat associated with crystallization of esters prepared from UCO was lower than that of 

esters prepared from CO. This might be due to polymerized esters prepared from UCO, which 

cause an increase in average molecular size of the ester, thereby affecting its total heat of 

crystallization. The heat associated with crystallization is approximately equivalent to the heat 

associated with crystal melting. The difference between heat associated with melting and 

crystallization might be because some polymorphs crystallized or melted during the period of 

time outside DSC scan. However, those polymorphs are habits of minor components as the 

calorimetric peaks of major components are presented within the range of DSC scan and the total 

heat differences were trivial. These findings show that DSC provided an accurate means of 

monitoring crystallization of biodiesel esters. 

 

4.6. Conclusions 

 Used cooking oil is an economical feedstock for the production of biodiesel. However, 

the production process using this feedstock is usually more complicated than that using fresh oil 

feedstock. Nevertheless, the utilization of used cooking oil for a single step KOH-catalyzed 

transesterification is possible with addition of a certain amount of canola oil. Methyl and ethyl 

esters were prepared at different used cooking oil to canola oil ratio and were characterized 

extensively for their properties. Methanolysis products showed satisfactory properties. In 

contrast, canola oil of at least 60% was required to achieve a high quality ethyl ester (UCO:CO 

ratio of 40:60). Based on the feedstock cost discussed in the earlier part, if the feedstock consists 

of 40% UCO instead of pure canola oil, the feedstock cost will be reduced by ~20%. Due to the 

reduction of feedstock cost and economical operating cost of a single step transesterification, 

production of biodiesel from mixture of canola and used cooking oil is a promising alternative. 
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Although ethanolysis was proved to be more challenging, ethyl ester showed a better low-

temperature property. The low-temperature property difference between esters derived from used 

cooking oil, canola oil and mixtures of both oils were trivial as fatty acid compositions of both 

oils were similar.  

Although the process optimization and ester characteristics using UCO as feedstock were 

discussed in this chapter, availability of UCO is highly depended on human population and food 

consumption habit. Therefore, availability of UCO may be fluctuated and other inedible oils may 

play important role in biodiesel industry. Hence, these inedible vegetable oils should be 

investigated as potential feedstock for biodiesel. Thus, greenseed canola oil was studied as 

feedstock for biodiesel production and the results are presented in Chapter 5.  
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Abbreviations 

AV  Acid value 

CEE  Canola oil ethyl ester 

CME  Canola oil methyl ester 

CO  Canola oil 

CP  Cloud point 

DG  Diglyceride 

DSC  Differential scanning calorimeter 

EtOH  Ethanol 

FFA  Free fatty acid 

GL  Glycerol 

GPC  Gel permeation chromatography 

HPLC  High performance liquid chromatography 

KOH  Potassium hydroxide 

MeOH  Methanol 

MG  Monoglyceride 

PP  Pour point 

TG  Triglyceride 
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THF  Tetrahydrofuran 

UCO  Used cooking oil 

UEE  Used cooking oil ethyl ester 

UME  Used cooking oil methyl ester 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



172 
 

References 

[1] Ma F, Hanna MA. Biodiesel production: a review. Bioresource Technology 70: 1-15 

(1999). 

[2] Dmytryshyn SN, Dalai AK, Chaudhari ST, Misha HK, Reaney MJ. Synthesis and 

characterization of vegetable oil derived esters: evaluation for their diesel additive 

properties. Bioresource Technology 92: 55-64 (2004). 

[3] Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB. Preparation and characterization 

of bio-diesels from various bio-oils. Bioresource Technology 80: 53-62 (2001). 

[4] Lang X, Dalai AK, Reaney MJ, Hertz PB. Biodiesel esters as lubricity additives: effects of 

process variables and evaluation of low-temperature properties. Fuels International: 207-

227 (2001). 

[5] S&T Consultants Inc. and Meyers Norris Penny LLP, Economic, financial, social analysis 

and public policies for biodiesel: A report (2004). 

[6] Chorney B. Canadian canola growers association presentation to Agri-Energy 

opportunities in Manitoba. Manitoba Canola Growers Association Web site: 

http://www.mcgacanola.org/documents/BrianChorneyCCGABiodieselpresentationApril18

2006.pdf. April 2006.  

[7] Canakci M, Gerpen JV. Biodiesel production from oils and fats with high free fatty acids. 

Transactions of ASAE 44: 1429-1436 (2001). 

[8] Cvengroš J, Cvengrošová Z. Used frying oils and fats and their utilization in the 

production of methyl esters of higher fatty acids. Biomass & Bioenergy 27: 173-181 

(2004). 



173 
 

[9] Obibuzor JU, Abigor RD, Akiy DA. Recovery of oil via acid-catalyzed transesterification. 

Journal of the American Oil Chemists' Society 80: 77-80 (2003). 

[10] Lee I, Johnson LA, Hammond EG. Use of branched-chain esters to reduce the 

crystallization temperature of biodiesel. Journal of the American Oil Chemists' Society 72: 

1155-1160 (1995). 

[11] Mittelbach M, Enzelsberger H. Transesterification of heated rapeseed oil for extending 

diesel fuel. Journal of the American Oil Chemists' Society 76: 545-550 (1999). 

[12] Sridharan R, Mathai IM. Transesterification reactions. Journal of Scientific & Industrial 

Research 33: 178-186 (1974). 

[13] Zhou W, Boocock DGB. Phase behavior of the base-catalyzed transesterification of 

soybean oil. Journal of the American Oil Chemists' Society 80: 1041–1045 (2006). 

[14] Meher LC, Kulkarni MG, Dalai AK, Naik SN. Transesterification of karanja (Pongamia 

pinnata) oil by solid basic catalysts. European Journal of Lipid Science and Technology 

108: 389–397 (2006). 

[15] Small DM. The physical chemistry of lipids: from alkanes to phospholipids. New York, 

USA, Plenum Press, 1986. 

[16] Lawler PJ, Dimick PS. Crystallization and polymorphism of fats. In Akoh CC, Min DB. 

(Eds.) Food Lipids, New York, USA, Mercel Dekker Inc., 2002. 

[17] Norris S. Trans fats: the health burden. Parliamentary information and research service 

from library of parliament. The parliament of Canada Web site: 

http://www.parl.gc.ca/information/library/PRBpubs/prb0521-e.pdf.      

Accessed February 2007. 

 



174 
 

CHAPTER 5 

 

Biodiesel Production from Greenseed Canola Oil 

 

A part of this chapter has been published in Energy & Fuels Journal: 

• Issariyakul T., and Dalai A.K. Biodiesel production from greenseed canola oil. Energy & 

Fuels 24:  4652-4658 (2010). 

 

In addition, a portion of this chapter was presented in the following conferences: 

• Issariyakul T., Jacobson K., Dalai A.K. and Bakhshi N.N. Biodiesel from Canola Oil, 

Greenseed Canola Oil, and Waste Cooking Oil. Auto21 Network Centre of Excellence, 

Highly Qualified People Poster Competition, Hamilton, Ontario, Canada (2009). 

 

Contribution of the Ph.D. Candidate 

 Experiments were conducted by Titipong Issariyakul. The content in this chapter was 

written by Titipong Issariyakul with discussions and suggestions provided by Dr. Ajay Dalai. 
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Contribution of this Chapter to the Overall Ph.D. Research 

Greenseed canola is an off-grade canola that available in Canadian market at low cost due 

to high chlorophyll content. The main objective is to make use of this low cost greenseed canola 

oil as feedstock for biodiesel production. The effects of pigments including chlorophyll and 

pheophytin on transesterification activity as well as biodiesel oxidative stability are investigated 

in this chapter. 
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5.1. Abstract 

 Greenseed canola oil is low grade oil with green colour. Due to the high level of 

chlorophyll, this oil is considered as “waste product” and cannot be used for edible purposes. In 

this research, biodiesel was produced from canola oil and greenseed canola oil via KOH-

catalyzed transesterification with methanol, ethanol and mixture of methanol and ethanol. The 

reaction was conducted at 60°C and stirring speed of 600 rpm for 90 minutes. Prior to 

transesterification, greenseed canola oil was bleached to remove pigments using various 

adsorbents at different conditions. The optimum bleaching material was found to be 

montmorillonite K10. The pigment content was reduced from 94 ppm to 0.5 ppm with using 7.5 

wt.% of this material at 60°C and stirring speed of 600 rpm for 30 minutes. Biodiesel derived 

from the treated greenseed canola oil showed an improvement in oxidative stability (induction 

time = 0.7 h) as compared to that derived from crude greenseed canola oil (induction time = 0.5 

h). These pigments, however, did not have a significant impact on transesterification activity.  

 

5.2. Introduction 

Biodiesel is an alternative fuel arising from concerns of depleting sources of fossil fuels 

and environmental issues. Biodiesel properties are comparable to those of fossil-based diesel fuel 

and it can be produced from animal fats or vegetable oils thus they are renewable. Recently, 

there are many concerns regarding the use of food crops as feedstock for fuel production. Using 

crops for energy and food compete with each other in many ways (agricultural land, skilled 

labour, water, fertilizers etc.) [1,2,3]. Moreover, the high price of biodiesel derived from food-

grade vegetable oils makes it difficult to compete economically with the fossil-based diesel. A 

less expensive, non food-grade vegetable oil is a potential feedstock for biodiesel production.  
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 The present chapter focuses on biodiesel production from greenseed canola oil. 

Greenseed canola is an immature canola seed. The green colour is present in greenseed due to 

high level of chlorophyll, which is retained in canola seeds if the seeds are exposed to frost 

during seed development. According to Canadian Grain Commission (CGC), Canola seeds are 

graded into 3 catagories. No. 1 Canola is the best quality canola seed which contains less than 

2% greenseed containing less than 25 ppm chlorophyll content, and can be sold at C$ 250 per 

ton. No.2 Canola and No.3 Canola are the lower grade seeds as they contain 26-45 ppm and 46-

100 ppm chlorophyll, respectively. The price of No. 2 and No.3 Canola are C$ 225/ton and C$ 

190/ton, respectively [4,5]. As the level of chlorophyll content increases, the selling price of the 

seed drops and it cannot be used for edible purposes. Therefore, greenseed canola oil can be 

considered as a non-food grade feedstock and can be used for biodiesel production.  

 Chlorophyll is an effective photoreceptor and can generally be categorized into 2 types: 

Chlorophyll A (contains –CH3 as its functional group) and Chlorophyll B (contains –CHO as its 

functional group). For plant growth, these two types of chlorophylls absorb sunlight at slightly 

different wavelength, thereby complimenting each other in photosynthesis [6]. It is reported that 

chlorophyll gives adverse effect on oil stability [5]. In addition, chlorophyll can degrade into 

various compounds depending on the surrounding conditions [7]. In presence of weak acids, 

magnesium ion is removed and chlorophyll degrades to pheophytin. Chlorophyllase can act as a 

catalyst for the removal of phytol tail from a chlorophyll molecule to form chlorophyllide. It is 

reported that chlorophyll derivatives could be converted to compounds that are capable of being 

prooxidants, thus giving deleterious effect on the stability of vegetable oils [8]. Ward et al. [7] 

reported that the major pigments contained in canola and greenseed canola are chlorophylls and 
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pheophytins. In order to remove these pigments, various kinds of clay and activated carbon can 

be used to adsorb chlorophylls and pheophytins [5,9,10].  

 The alcohols commonly used in transesterification are short-chain alcohols, i.e., methyl, 

ethyl, propyl, butyl alcohol. It is reported that the use of mixture of alcohols has certain 

advantages. When the mixture of methanol and ethanol was used for transesterification, the 

alcohol-oil solubility was improved by ethanol and the reaction equilibrium was improved by 

methanol [11]. Although there are several research works in the literature focused on chlorophyll 

adsorption and biodiesel production from canola oil, information on both technologies combined 

is scarce. The objectives of this work are to produce biodiesel from greenseed canola oil and to 

study the effects of pigments on transesterification activity and ester oxidative stability. 

 

5.3. Materials  

 Greenseed canola oil was provided by Milligan Bio-Tech Inc., Foam Lake, 

Saskatchewan, Canada.  Commercial grade canola oil was purchased from a local grocery store. 

Montmorillonite K10 and KSF Clay (adsorbent) were obtained from Alfa Aesar, Massachusetts, 

United States. Activated carbons (adsorbent) were prepared in our laboratory from bio-char 

obtained from Dynamotive Energy Systems Corp., Vancouver, Canada, Ensyn Corp., Delaware, 

United States, and Advanced Biorefinery Inc., Ontario, Canada and from char obtained from 

Luscar Ltd., Alberta, Canada. Anhydrous methanol (MeOH) (99.8%) and potassium hydroxide 

(KOH) were purchased from EMD Chemicals Inc., Darmstadt, Germany. Anhydrous ethanol 

(EtOH) was obtained from Commercial Alcohol Inc., Brampton, Ontario, Canada. Reference 

standard chemicals including methyl oleate, triolein, diolein, and monoolein were purchased 
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from Sigma-Aldrich, MO, USA. Fatty acid methyl esters (FAME) mix rapeseed oil reference 

standard was obtained from SUPELCO, PA, USA. 

 

5.4. Experimental Procedures 

Initially, the oil feedstock was analyzed for pigment content and acid value. Experimental 

procedure for this research includes 3 steps: bleaching of greenseed canola oil, 

transesterification, and ester characterization.  

 

5.4.1. Bleaching of Greenseed Canola Oil  

For bleaching of greenseed canola oil, greenseed canola oil was treated with 8 types of 

adsorbents. These adsorbents composed of 3 types of clay (Montmorillonite K10, 

Montmorillonite KSF, Attapulgus Clay) and 5 types of activated carbons (AC) (obtained from 

Dynamotive Energy Systems Corp., Luscar Ltd. (granular and powder), Ensyn Corp., and 

Advanced Biorefinery Inc.). In the treatment process, 100 g of greenseed canola oil was placed 

in a Parr reactor (Parr Instrument Company, Illinois, USA) and the oil was heated slowly. When 

the oil temperature reached at 60°C, the adsorbent was added to the reactor and the stirring speed 

was kept constant at 600 rpm. The parameters studied are type of adsorbents (8 kinds as 

mentioned above), treatment duration (0.5, 1, 1.5, 2 h), and adsorbent loading (1, 2.5, 5, 7.5, 10 

wt.% loading). UV-260 Shimadzu spectrometer was used to determine pigments content. The 

calculation method was described by Lichtenthaler [12]. An attempt has been made to regenerate 

Montmorillonite K10 using solvent extraction technique [13]. The solvents used in this step 

include methanol (MeOH), hexane, tetrahydrofuran (THF), and chloroform. Initially, the used 

clay was mixed with a solvent at 30:70 clay to solvent weight ratio. The mixture was then stirred 
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at 45°C, 600 rpm for 30 minutes. The liquid portion was separated from solid portion by 

filtration. These steps were repeated twice prior to drying the clay at 100°C for 24 hours. 

  

5.4.2. Transesterification  

For transesterification step, a series of methyl ester and ethyl ester were produced by 

means of KOH-catalyzed transesterification from a 100 g feedstock, which are canola oil, crude 

greenseed canola oil, treated greenseed canola oil, mixture of canola oil and treated greenseed 

canola oil (50 g of canola oil and 50 g of treated greenseed canola oil). Esters from the mixture 

of methanol and ethanol were also prepared from the same set of feedstocks. A 1% KOH based 

on the total amount of oil was used in each case as a catalyst. In case of using only one alcohol 

(methanol or ethanol), the feedstock was initially placed in a Parr reactor and heated to 60°C. 

Alcohol (6:1 alcohol to oil molar ratio) and KOH (1 wt.% with respect to oil) were then added to 

the reactor. In case of ester preparation from mixture of alcohols (methanol + ethanol), 3 moles 

of methanol and 3 moles of ethanol were used for each mole of oil in order to set 6:1 total 

alcohol to oil molar ratio. The temperature and the stirring speed of the reaction mixture were 

maintained constant for 1.5 h at 60°C and 600 rpm, respectively.  

 After the reaction, the transesterification product was allowed to settle in a separating 

funnel for glycerol separation. Due to strong emulsion in the case of ethanolysis products, 

glycerol could not be separated only by gravity. In order to separate glycerol from ethyl ester, an 

approximately 10 g of pure glycerol was added into the transesterification product and the 

separatory funnel was shaken vigorously and the product was allowed to settle. Glycerol layer 

was then separated from ester layer within an hour. Distilled water was heated and used in the 

washing step. A strong emulsion was usually formed in case of ethyl ester preparation.  To avoid 
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the formation of emulsion, tannic acid solution (0.1 wt.%) was used in the washing step, thereby 

neutralizing the excess base catalyst. Unreacted methanol and water was removed using BÜCHI 

rotavapor. Biodiesel was finally passed through the anhydrous sodium sulphate, which was 

previously dried in an oven at 100°C for 1 hour, to remove traces of moisture. All biodiesel 

produced in this step are shown in Table 5.1. 

 

Table 5.1 Biodiesel samples. 

Sample Alcohol used Feedstock 

CGMEa Methanol Crude greenseed canola oil 

TGMEa Methanol Treated greenseed canola oil 

CMEa Methanol Canola oil 

TGCMEa Methanol Treated greenseed canola oil + canola oil (50:50) 

CGEEa Ethanol Crude greenseed canola oil 

TGEEa Ethanol Treated greenseed canola oil 

CEEa Ethanol Canola oil 

TGCEEa Ethanol Treated greenseed canola oil + canola oil (50:50) 

CGMEEa MeOH+EtOH (50:50) Crude greenseed canola oil 

TGMEEa MeOH+EtOH (50:50) Treated greenseed canola oil 

CMEEa MeOH+EtOH (50:50) Canola oil 

TGCMEEa MeOH+EtOH (50:50) Treated greenseed canola oil + canola oil (50:50) 

aSee abbreviation section 
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5.4.3. Characterization  

For analysis part, the ester phase collected from each experiment was analyzed for ester 

and glycerides content using a Hewlett-Packard 1100 series HPLC with refractive index detector 

and two Phenogel 5u 100A 300X7.80 mm 5 micron columns in series protected with guard 

column, equipped with ChemStation for LC 3D, Agilent Technologies. THF was used as a 

mobile phase at 1 mL/min for 25 min.  The operating parameters used were as follows: injection 

volume 5 µL; column temperature 24°C; and detector temperature 35°C.  Reference standard 

chemicals including methyl oleate, triolein, diolein, and monoolein were used for the HPLC 

calibration (see Appendix A). Fatty acid compositions of esters were determined using Agilent 

Technologies 6890N Network GC System equipped with GC ChemStation software with FID 

detector and RESTEK 10638 Stabilwax column. The injection volume was 2 µL and the 

temperature program was started at 160°C, held for 1 min, ramped to 240°C at 4°C/min and then 

was held for 24 min. SUPELCO FAME Mix Rapeseed Oil standard was used as a reference for 

GC calibration (see Appendix B). The oxidative stability of biodiesel was measured as induction 

time using Metrohm 743 Rancimat instrument. Brookfield DV-I Viscometer was used to 

measure the viscosity of esters. Sulfur content of biodiesel was determined using Antek N/S 

Analyzer equipped with Antek model 9000NS combustion analyzer, Antek model 735 controlled 

rate sample drive, Antek model 740 multi-matrix sample inlet, and Antek model 738 robotic 

auto-sampler. Acid value and iodine value were determined as per the method AOCS Te 1a-64 

and AOCS Tg 1a-64, respectively.  
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5.5. Results and Discussions 

5.5.1. Bleaching  

 The objective of bleaching of greenseed canola oil is to remove pigments from the oil. 

The pigments present in the oil are chlorophyll A (ChA), Chlorophyll B (ChB), Pheophytin A 

(PhA), and Pheophytin B (PhB). Table 5.2 shows initial pigments content and acid value of 

canola oil and greenseed canola oil. Canola oil has negligible amounts of pigments and acid 

value while greenseed canola oil has total initial pigment content and acid value of 94 ppm and 

3.8 mg KOH/g, respectively. To remove these pigments, greenseed canola oil was bleached 

according to the process discussed in Section 5.4.1.  

 

Table 5.2 Initial pigment content and acid value in canola oil and greenseed canola oil. 

Feedstock 
ChAa 

(ppm) 

ChBa 

(ppm) 

PhAa 

(ppm) 

PhBa 

(ppm) 

Total 

(ppm) 

AVa 

(mg KOH/g) 

Canola oil 0.0 0.1 0.0 0.0 0.1 0 

CGOa 26.0 2.7 56.6 8.8 94.1 3.8 

TGOa 0.2 0.0 0.2 0.1 0.5 3.0 

aSee abbreviation section 
 

 

 Table 5.3 shows bleaching performances of various adsorbents selected in this study. 

Greenseed canola oil was treated at 60°C using 1 wt.% adsorbent loading and stirring speed of 

600 rpm for 30 minutes. The reproducibility of this experiment is within ± 3 ppm of total 

pigment content. Different materials have different pigment adsorption capability.  

 



184 
 

Table 5.3 Physical properties and performance of various adsorbents for pigment adsorptiona. 

 

Adsorbent 

ChAb 

(ppm) 

ChBb 

(ppm) 

PhAb 

(ppm) 

PhBb 

(ppm) 

Total 

(ppm) 

% 

Pigment 

adsorbed 

BET 

surface 

areac 

(m2/g) 

Average 

pore 

widthc 

(Ao) 

CGOb 26.0 2.7 56.6 8.8 94.1 0 n/a n/a 

Montmorillonite 

K10 
18.2 2.2 39.1 7.3 66.7 29.1 250.1 57.8 

Montmorillonite 

KSF 
25.8 3.0 56.5 9.1 94.3 0 1.5 57.4 

Attapulgus Clay 25.4 3.0 55.8 8.8 93.1 1.1 n/a n/a 

Dynamotive 

Energy Systems 

ACb 

21.7 3.1 48.8 6.6 80.1 14.9 454.0 23.0 

Luscar ACb 

(powder) 
18.9 3.3 43.4 5.5 71.2 24.4 312.9 17.1 

Luscar ACb 

(granular) 
24.2 2.8 53.4 8.1 88.6 5.9 n/a n/a 

Ensyn ACb 19.9 12.3 41.6 14.7 88.4 6.1 524.6 21.9 

Advanced 

Biorefinery ACb 
19.0 3.5 43.1 6.2 71.9 23.6 n/a n/a 

aTreatment condition: stirring speed 600 rpm; treatment temperature 60°C; treatment duration 30 mins; adsorbent 
loading 1% (w/w); bSee abbreviation section;  cAnalysis was conducted on the bleaching materials 
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It was found that montmorillonite K10 is the most suitable adsorbent for the bleaching of 

greenseed canola oil with 29% pigment adsorbed. This is due to the relatively high surface area 

of K10 as compared to KSF (see Table 5.4). Despite the high surface area of activated carbons 

(ACs), these materials were not suitable for the removal of pigments from greenseed canola oil 

due to the narrow pore width of ACs. 

  

Table 5.4 Properties and performance of regenerated montmorillonite K10. 

Sample 
BET Surface area 

(m2/g) 

Average pore diameter 

(A°) 

% Pigment 

adsorbed 

MeOH-treated K10 0.8 1774.9 13 

Hexane-treated K10 24.2 133.5 31 

THF-treated K10 51.3 93.9 53 

Chlorform-treated K10 0.2 14.4 12 

 

 

The effect of treatment duration on greenseed oil is shown in Table 5.5. It was found that 

the treatment duration of 30 min is sufficient for the bleaching of greenseed canola oil using 

montmorillonite K10. The increase in treatment duration shows no significant improvement in 

the bleaching of greenseed canola oil. The effect of percent adsorbent loading on the pigment 

removal from greenseed oil is shown in Table 5.6. It was found that 7.5 wt.% montmorillonite 

K10 loading is required for the maximum pigments adsorption from greenseed canola oil. The 

optimum condition for the bleaching of greenseed canola oil is the use of montmorillonite K10 at 

7.5 wt.% loading, at 60°C and stirring speed of 600 rpm and treatment time of 30 min. After the 
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treatment process, the pigment content of greenseed canola oil was reduced from 94.1 ppm to 0.5 

ppm. A minor reduction on acid value of greenseed canola oil was observed (from 3.8 to 3.0, see 

Table 5.2).  

 

Table 5.5 Performance of montmorillonite K10 at various bleaching durations 

for pigment adsorptiona. 

 

Treatment 

duration (hr) 

ChAb 

(ppm) 

ChBb 

(ppm) 

PhAb 

(ppm) 

PhBb 

(ppm) 

Total 

(ppm) 

% 

Pigment 

adsorbed 

0 26.0 2.7 56.6 8.8 94.1 0 

0.5 18.2 2.2 39.1 7.3 66.7 29.1 

1 18.2 3.8 39.1 9.1 69.5 26.1 

1.5 17.2 2.2 38.4 4.2 66.9 28.9 

2 17.7 2.5 43.3 7.8 65.7 30.1 

aTreatment condition: stirring speed 600 rpm; treatment temperature 60°C; adsorbent loading 1% (w/w);  
bSee abbreviation section 

 

 

 An attempt was made to regenerate montmorillonite K10 (K10). The spent K10 was 

regenerated based on the method discussed in Section 5.4.1. The regenerated K10 was analyzed 

for the BET surface area and average pore width using BET analysis. The regenerated K10 was 

then reused to remove pigments from greenseed oil using 7.5 wt.% loading, stirring speed of 600 

rpm, at treatment temperature of 60°C for 30 min. The performance of regenerated K10 is shown 

in Table 5.4. Due to its relatively high BET surface area, the THF-treated K10 exhibited the 

highest pigments adsorption performance (53%) among all the regenerated K10.  
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Table 5.6 Performance of montmorillonite K10 at various percent loading  

for pigment adsorptiona. 

% Adsorbent 

loading 

ChAb 

(ppm) 

ChBb 

(ppm) 

PhAb 

(ppm) 

PhBb 

(ppm) 

Total 

(ppm) 

% Pigment 

adsorbed 

0 26.0 2.7 56.6 8.8 94.1 0 

1 18.2 2.2 39.1 7.3 66.7 29.1 

2.5 7.7 1.5 14.8 5.1 29.1 69.1 

5 2.0 0.7 3.2 2.1 8.0 91.5 

7.5 0.2 0.0 0.2 0.1 0.5 99.5 

10 0.2 0.0 0.2 0.1 0.5 99.5 

aTreatment condition: stirring speed 600 rpm; treatment temperature 60°C; treatment duration 30 mins;  

bSee abbreviation section 
 

 

Although greenseed canola oil was removed from the spent K10, chlorophyll was not entirely 

removed from this bleaching material. A significant drop in pigments adsorption capability of 

these regenerated K10 is observed.  

 

5.5.2. Transesterification  

 For biodiesel production, all vegetable oils were transesterified using the method 

discussed in Section 5.4.2. Figure 5.1 shows the ester formation during transesterification 

reaction at 50 and 60°C. Each experiment was conducted twice and the solid lines represent the 

average values from observed values. It is clear that reaction at 60°C is faster than that 

performed at 50°C and the reaction duration of 90 min is sufficient to complete the reaction. The 

error bars shown in Figure 5.1 indicate that the reproducibility of this experiment is within 1%. 
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Table 5.7 shows the percentage of triglyceride, diglyceride, monoglyceride and ester as well as 

percent ester recovery. Triglyceride, diglyceride, monoglyceride and ester percentage were 

determined using HPLC and percent ester recovery was defined as the ratio of the amounts of 

ester phase recovered to the amounts of the feedstock multiply by 100.  

  

 

 

Figure 5.1 Ester formation during transesterification  

of canola oil using methanol at 50 and 60°C. 
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Table 5.7 Percent (w/w) of triglyceride, diglyceride, monoglyceride, ester, 

 and percent ester recovery. 

Biodiesel Triglyceride Diglyceride Monoglyceride Ester Ester recovery 

CGMEa 1.3 2.4 1.5 94.8 82.6 

TGMEa 0.9 2.2 1.3 95.7 84.7 

CMEa 0.0 1.7 1.0 97.3 90.0 

TGCMEa 0.0 2.0 1.2 96.8 86.0 

CGEEa 11.7 10.7 7.6 70.0 63.8 

TGEEa 7.0 9.3 9.3 74.4 65.2 

CEEa 0.4 2.4 4.1 93.1 82.8 

TGCEEa 2.8 6.1 7.6 83.4 68.8 

CGMEEa 0.0 2.5 2.4 95.1 79.2 

TGMEEa 0.0 2.2 2.2 95.6 74.0 

CMEEa 0.0 2.2 2.2 95.7 81.4 

TGCMEEa 0.0 2.3 2.5 95.3 83.5 

aSee abbreviation section 

 

Methyl esters are obtained at higher ester percentage compared to ethyl esters (see Table 

5.7), in line with that reported in the previous chapter. This is because of the relative higher 

reactivity of methoxide ion compared to ethoxide ion leading to higher amount of methyl ester 

formation [11,14]. The percent ester recovery was not reached to 100 mainly due to the loss of 

oil during washing step. This loss was higher during the production of ethyl esters as the 

emulsion was strongly formed in these cases. A comparable ester percentage was observed in 

case of methyl ester and mixed methyl-ethyl ester. This finding indicates that mixed methyl-ethyl 
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alcohol is suitable for production of biodiesel from canola oil, greenseed canola oil and the 

mixture of both oils. The low ester percentage in case of ethanolysis can be improved by 

adjusting reaction conditions or using the purification method described in the literature [15]. 

There was no distinct difference between crude greenseed canola oil ester percentage and treated 

greenseed canola oil ester percentage. This finding implies that pigments did not play a 

significant role in transesterification reaction.  

 

5.5.3. Biodiesel Properties  

 Table 5.8 shows fatty acid compositions of canola oil methyl ester (CME), crude 

greenseed canola oil methyl ester (CGME), treated greenseed canola oil methyl ester (TGME), 

canola oil ethyl ester (CEE), and treated greenseed canola oil methyl ethyl ester (TGMEE). Oleic 

acid was found to be the dominant fatty acid in all esters. The results in this table are comparable 

to those reported in the previous chapter (see table 4.5). Greenseed oil contains higher 

unsaturated compounds as compared to canola oil. The fatty acid compositions of CGME are 

similar to those of TGME. This finding indicates that the treatment process did not alter fatty 

acid compositions of greenseed canola oil. In addition, fatty acid compositions of CME are 

comparable to those of CEE. This finding suggests that fatty acid composition of ester prepared 

from the same oil remains the same regardless of the type of alcohol used in transesterification. 

A clear fatty acid composition of biodiesel prepared from mixed alcohols was not obtained due 

to the peak overlapping between methyl and ethyl esters of various fatty acids in the GC 

chromatogram. When the treated greenseed canola oil was transesterified with the mixed 

methanol/ethanol, methyl esters were formed in the higher amounts compared to ethyl esters. For 

example, the amounts of methyl oleate and ethyl oleate formed during transesterification were 
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36.20 and 19.95%, respectively. This result confirms that methanol has higher reactivity towards 

transesterification than ethanol.  

 

Table 5.8 Fatty acid compositions of selected esters. 

aSee abbreviation section; bn.a. = not available  

Structure Compound name 
CMEa 

(%MEa) 

CGMEa 

(%MEa) 

TGMEa 

(%MEa) 

CEEa 

(%EEa) 

TGMEEa 

(%MEa/%EEa) 

C14:0 Myristic ester 0.06 0.07 0.06 0.05 trace 

C16:0 Palmitic ester 4.36 4.60 4.54 4.45 3.08/n.a.b 

C16:1  Palmitoleic ester 0.16 0.26 0.24 0.26 n.a.b/0.10 

C16:2 n.a.b 0.08 0.08 0.08 0.07 trace 

C16:3 n.a.b 0.09 0.15 0.12 0.11 0.07/trace 

C18:0 Stearic ester 1.96 2.01 1.94 1.95 1.29/n.a.b 

C18:1 z9 Oleic ester 60.92 55.51 55.05 61.09 36.20/19.95 

C18:1 z11 Asclepic ester 2.89 3.59 3.47 2.98 n.a.b/1.27 

C18:2 Linoleic ester 18.70 20.93 21.16 18.82 13.45/7.60 

C18:3 Linolenic ester 6.79 9.41 9.76 6.85 6.06/3.36 

C20:0 Arachidic ester 0.59 0.66 0.73 trace 0.42/0.23 

C20:1 n.a.b 1.12 1.34 1.41 1.17 0.88/0.49 

C22:0 Behenic ester 0.22 0.41 0.43 trace 0.21/trace 

Total saturated fatty acid 7.19 7.75 7.7 6.45 n.a.b 

Total monounsaturated fatty acid 65.09 60.7 60.17 65.50 n.a.b 

Total polyunsaturated fatty acid 25.66 30.57 31.12 25.85 n.a.b 
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 The additional biodiesel properties such as acid value, iodine value, viscosity @40°C and 

sulfur content are presented in Table 5.9. The acid value of CME was 0.2 which meets the 

ASTM specification (AV < 0.5). The acid values of CGME and TGME were both 0.4 which 

reflect the higher initial acid value of greenseed canola oil (AV=3.0-3.8) as compared to that of 

canola oil (AV = 0) but still meet the ASTM specification. The acid value of methyl ester 

prepared from the mixture of both oils fell in between that of canola oil methyl ester and 

greenseed oil methyl ester. The higher acid values of esters prepared with mixed alcohol and 

especially ethanol were probably because of the tannic acid solution that was used in the washing 

step instead of pure distilled water as a result of the formation of strong emulsion in these cases.  

Iodine value of canola oil methyl ester (IV = 109.5) was lower than those of greenseed oil methyl 

esters (IV = 111.0, 111.6). This is because canola oil has less unsaturated compounds compared 

to greenseed canola oil (see Table 5.8). The equivalent iodine value of CGME and TGME is due 

to their similar fatty acid compositions as shown in Table 5.8.  Iodine value of methyl ester 

prepared from the mixture of both oils fell in between that of CME and TGME. The lower iodine 

values of ethyl esters compared to methyl esters suggested that ethyl esters have lower degree of 

unsaturation compared to methyl esters. This can be explained using the concept of molar 

concentration of double bonds as described by Knothe and Dunn [16]. If methyl and ethyl esters 

have the same number of double bonds per molecule, ethyl ester which has higher molecular 

weight would has lower molar concentration of double bonds leading to the lower degree of 

unsaturation. The iodine values of esters prepared with mixed methanol-ethanol fell in between 

those prepared with methanol and ethanol as expected. Viscosities of esters prepared from 

methanol and mixed methyl-ethyl alcohol are in the range of 4.8 – 5.2 cSt, which meet the 

ASTM specification (viscosity between 1.9 – 6.0 cSt). The high viscosities of ethyl esters were 
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due to lower triglyceride conversion. These esters contain higher amounts of glycerides, 

therefore the higher viscosities were observed. Sulfur contents of all esters were less than 1 ppm 

which meet the ASTM specification (sulfur < 15 ppm). 

 

Table 5.9 Acid value, iodine value, viscosity @40°C and sulfur content of esters. 

Biodiesel 
Acid value 

(mg KOH/g) 

Iodine value 

(mg I2/100g) 

Viscosity @40°C 

(cSt) 

Sulfur content 

(ppm) 

CGMEa 0.4 111.6 5.1 < 1 

TGMEa 0.4 111.0 4.8 < 1 

CMEa 0.2 109.5 4.8 < 1 

TGCMEa 0.3 110.9 4.9 < 1 

CGEEa 3.0 108.1 9.2 < 1 

TGEEa 5.1 107.1 9.0 < 1 

CEEa 0.4 103.0 5.3 < 1 

TGCEEa 2.3 104.7 6.9 < 1 

CGMEEa 0.6 108.5 5.1 < 1 

TGMEEa 0.5 109.0 5.2 < 1 

CMEEa 0.5 102.3 5.0 < 1 

TGCMEEa 0.5 106.7 5.0 < 1 

aSee abbreviation section 
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5.5.4. Oxidative Stability  

In order to determine oxidative stability of biodiesel, Rancimat instrument was used. 

During the Rancimat test, the sample was heated to 110°C and the oxygen was supplied. In the 

presence of oxygen at high temperature, the oxidation reaction took place and the oxidation 

derivatives were transferred to the measuring chamber containing Millipore water. The increase 

in conductivity of the water was detected as the oxidation derivatives were transferred into the 

water. The induction time is defined as the time required for the conductivity of the water to be 

increased rapidly and was used as an indication of biodiesel oxidative stability.  

 A typical Rancimat plot is shown in Figure 5.2 and the Rancimat results are presented in 

Figure 5.3. CME exhibited higher stability than those of CGME and TGME. This is because of 

the higher degree of unsaturation (poly unsaturated compounds = 31.12%; IV = 111.0) of 

greenseed oil derived methyl ester (GME) as compared with CME (poly unsaturated compounds 

= 25.66%; IV = 109.5). This finding suggests that the oil stability increases with the decrease in 

the degree of unsaturation, in line with that reported in the literature [17]. TGME showed a 

slightly higher induction time as compared to CGME. CGME and TGME are similar in both 

fatty acid compositions and iodine value but the difference in pigment content was significant as 

can be seen in Table 5.10 (34 ppm for CGME and 1 ppm for TGME). This result indicates that 

pigments have adverse effects on biodiesel stability, which is fit well with those reported in the 

literature [5,18]. It is also observed from Table 5.2 and 5.10 that pigment content was reduced 

during transesterification (from 94 ppm to 34 ppm). This result is anticipated as it is reported that 

chlorophyll can be removed during alkali-catalyzed transesterification in form of water-soluble 

chlorophyllin salt [5]. CEE showed longer induction time compared to CME, which stems from 

the lower double bond molar concentration of CEE than that of CME. The interpretation of the 
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induction time of esters prepared with mixed methanol-ethanol requires complete fatty acid 

compositional analysis of these esters. Most of the esters exhibit low oxidative stability and did 

not meet the ASTM specification (3 h induction time). Schober and Mittelbach [19] reported that 

the induction time of rapeseed oil methyl ester and distilled rapeseed oil methyl ester without an 

addition of antioxidant were 4.56 and 2.03 h, respectively. This report suggests that FAME 

prepared from rapeseed family has poor oxidative stability and an addition of antioxidant to 

FAME is required. 

 

 

Figure 5.2 A conductivity-time plot for oxidative stability determination  

of canola oil methyl ester. 
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Figure 5.3 Induction time of esters prepared from canola oil and greenseed canola oil. 

 

An attempt was made to combine the bleaching of greenseed canola oil with 

transesterification reaction into a single step. Crude greenseed canola oil was transesterified with 

methanol as per the method described in Section 5.4.2. In addition, 7.5 g of montmorillonite K10 

was added to the reactor at the beginning of the reaction. The ester formed during the reaction 

and pigment content at the end of the reaction are shown in Figure 5.4. The results suggest that 

the combination of bleaching of greenseed canola oil and transesterification leading to a lower 

transesterification activity as well as an impairment of the sorption of pigments. This can be 

explained by the sorption phenomenon of potassium in montmorillonite as described by 

Muravyov and Sakharov [20]. Montmorillonite, by nature, has high negative potential and 

suitable size of interlayer spacing for the sorption of potassium. If potassium is trapped in the 

interlayer of montmorillonite, less catalyst would be available for transesterification resulting in 
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enters the region between montmorillonite layers, it will polarize the adjacent laters, which 

prevents the sorption of other ions such as those of pigments in greenseed canola oil.  

 

Table 5.10 Pigment content of esters. 

Biodiesel 
ChAa 

(ppm) 

ChBa 

(ppm) 

PhAa 

(ppm) 

PhBa

(ppm) 

Total 

(ppm) 

CGMEa 9.1 2.3 16.8 5.9 34.0 

TGMEa 0.2 0.2 0.3 0.3 1.0 

CMEa 0.2 0.4 0.3 0.4 1.3 

TGCMEa 0.1 0.1 0.1 0.1 0.4 

CGEEa 14.4 1.5 29.2 6.0 51.1 

TGEEa 0.2 0.3 0.3 0.5 1.4 

CEEa 0.3 0.6 0.5 0.6 2.0 

TGCEEa 0.2 0.3 0.3 0.4 1.3 

CGMEEa 12.5 1.0 24.7 5.3 43.5 

TGMEEa 0.4 0.7 0.7 0.8 2.7 

CMEEa 0.8 1.3 1.3 1.4 4.7 

TGCMEEa 0.1 0.2 0.1 0.2 0.5 

 aSee abbreviation section 
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Figure 5.4 Ester formation during transesterification of greenseed canola oil  

and pigment content of ester at the end of the reaction. 

 

5.6. Conclusions 

Greenseed canola oil is a potential feedstock for biodiesel production due to its low price. 
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recommended. A combination of bleaching of greenseed canola oil and transesterification 

reaction into a single step results in a serious drop in catalytic activity as well as adsorbent 

performance and therefore is not recommended.  

In addition to greenseed canola oil, mustard oil is interesting inedible oil as feedstock for 

biodiesel production. Therefore, it was investigated for biodiesel production and the results are 

discussed in Chapter 6. 
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Abbreviations 

AC  Activated carbon 

AV  Acid value 

CEE  Canola ethyl ester 

CGEE  Crude greenseed ethyl ester 

CGME  Crude greenseed methyl ester 

CGMEE Crude greenseed methyl & ethyl ester 

CGO  Crude greenseed canola oil 

ChA  Chlorophyll A 

ChB  Chlorophyll B 

CME  Canola methyl ester 

CMEE  Canola methyl & ethyl ester 

EtOH  Ethanol 

FAME  Fatty acid methyl ester 

HPLC  High performance liquid chromatography 

IV  Iodine value 

KOH  Potassium hydroxide 

MeOH  Methanol 
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PhA  Pheophytin A 

PhB  Pheophytin B 

TGCEE Treated greenseed & canola ethyl ester 

TGCME Treated greenseed & canola methyl ester 

TGCMEE Treated greenseed & canola methyl & ethyl ester 

TGEE  Treated greenseed ethyl ester 

TGME  Treated greenseed methyl ester 

TGMEE Treated greenseed methyl & ethyl ester 

TGO  Treated greenseed canola oil 

THF  Tetrahydrofuran 
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CHAPTER 6 

 

Biodiesel Production from Mustard Oil 

 

A part of this chapter has been published in Journal of the American Oil Chemists’ Society: 

• Issariyakul, T., Dalai A.K., and Desai P. Evaluating esters derived from mustard oil 

(Sinapis alba) as potential diesel additives. Journal of the American Oil Chemists’ 

Society 88: 391-402 (2011). 

 

Contribution of the Ph.D. Candidate 

 Experiments were conducted by Titipong Issariyakul. The content in this chapter was 

written by Titipong Issariyakul with discussions and suggestions provided by Dr. Ajay Dalai and 

Mr. Pete Desai. 

 

Contribution of this Chapter to the Overall Ph.D. Research 

Mustard oil is a non-edible vegetable oil due to high level of erucic fatty acid. Chapter 6 

focuses on the use of mustard oil as feedstock for biodiesel production and evaluating mustard 

oil-derived biodiesel as a lubricity additive to petroleum based diesel. Biodiesel production 

process is developed in order to produce high quality mustard oil-based biodiesel. Extensive 

biodiesel characteristics are evaluated with special emphasis on its lubricity. 
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6.1. Abstract 

 Biodiesel was produced from mustard oil utilizing transesterification with methanol, 

ethanol, propanol, and butanol at 6:1 alcohol to oil molar ratio, using KOH as a catalyst at 1 

wt.%. The maximum ester content achieved by this method was only 66%. Distillation was then 

used to purify the ester, raising the ester content to 99.8%. Alternatively, mustard oil methyl 

ester (MME) can be mixed with esters derived from canola oil or soybean oil to achieve an 

ASTM quality biodiesel. Biodiesel derived from mustard showed great potential as lubricity 

additive for regular diesel fuel. With an addition of 1% MME, lubricity of diesel fuel was 

improved by 43.7%. It is also found that methyl ester is the best lubricity additive among all 

esters (methyl-, ethyl-, propyl-, and bytyl-ester). MME can be used at -16°C without freezing 

whereas monounsaturated compounds (oleic, eicosenoic, and erucic esters) largely present in 

esters derived from mustard oil can tolerate -42°C to -58°C.  Monounsaturated esters derived 

from higher alcohols such as butyl alcohol demonstrated a superior low temperature tolerance     

(-58°C) as compared to that derived from lower alcohol such as methyl alcohol (-42°C). 

 

6.2. Introduction 

Conventional fossil-based fuels are not renewable and are destined to exhaustion. 

Furthermore, the price of these fuels tends to rise every year, which inspires the use of alternative 

renewable fuels. Biodiesel, commonly produced from vegetable oils such as canola oil and 

soybean oil [1,2], is one of the most promising renewable fuels and use of this fuel is a shift 

towards sustainable energy. Transesterification, a series of consecutive, reversible reactions as 

shown in Figure 6.1 [3], is commonly used to produce biodiesel from vegetable oils. With arising 

concerns regarding the use of food crops as feedstock for fuel production, non-food grade oils 
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are gaining tremendous attention from researchers around the world. High erucic acid rapeseed 

(HEAR) oil or mustard oil is an interesting feedstock for biodiesel production.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 Transesterification reaction scheme. 
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 Mustard oil can be extracted from Brassica nigra (Black Mustard), Brassica carinata 

(Abyssinian Mustard), Brassica juncea (Brown, Oriental, and Leaf Mustard), Sinapis arvensis 

(Wild Mustard), and Sinapis alba (White Mustard). These seeds can have oil content over 40% 

in which the dominant fatty acids include oleic acid (C18:1), linoleic acid (C18:2), and erucic 

acid (C22:1). The erucic acid results from the addition of a two-carbon fragment to oleic acid to 

form eicosenoic acid (C20:1), followed by addition of another two-carbon fragment to 

eicosenoic acid to form erucic acid [4]. In the case of low erucic acid rapeseed (LEAR) such as 

B. napus (Canola Oil or Canadian Brassica), the genetic elongation ability of fatty acids is 

blocked, leading to the accumulation of the precursor fatty acid, i.e., oleic acid. The level of 

erucic acid can be genetically modified ranging from less than 1% to over 60%. A study showed 

a declining trend in erucic percentage in Canadian LEAR during 1980s [5]. 

 Many researchers report that cardiac fat infiltration in experimental animals is caused by 

erucic acid present in high erucic acid rapeseed (HEAR) and thus conclude erucic acid as toxic 

compound. This compound if fed in large quantities would result in heart lesions [6]. Since there 

are fewer experiments done on the effects of erucic acid on people compared to the number of 

experiments on animals, the effects of erucic acid on human health is not fully understand. 

Historically, the use of rapeseed oil with high erucic acid level as edible oil has been objected by 

many organizations. The Canadian regulations state that in cooking oil, margarine, salad oil, 

simulated dairy product, shortening or food that resembles margarine or shortening, the erucic 

and cetoleic acid may not excess 5% of the total fatty acid [7]. The advent of LEAR leads to a 

“phase out” of HEAR from the foodmarket, but HEAR can still be used in other industries such 

as fuel, lubricating oil, oleochemicals, and biopolymer production. 
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 Canadian mustard seed production has ranged from 105,000 tonnes in 2001-2002 to 

306,000 tonnes in 2004-2005. In 2006, the total world mustard exports were 315,000 tonnes, 

55% of which were Canadian mustard. In 2006-2007, Saskatchewan dominated Canadian 

mustard seed production, with 78% of total production. The area seeded for mustard in 2006 in 

Saskatchewan was 280,000 acres, which yielded 776 pounds per acre [8]. These data show that 

mustard seed is available in large quantity in Canada. Because it contains a high level of erucic 

acid, mustard oil does not meet Canadian specifications for edible purpose, but it could be a 

viable feedstock for biodiesel production. Information related to biodiesel production from 

mustard oil is necessary for pilot scale production. However, there is no literature available on 

biodiesel production from vegetable oil of Sinapis’ family. Furthermore, the properties of 

biodiesel derived from mustard oil could be different from that derived from canola oil, due to 

the difference in fatty acid compositions. In the present chapter, biodiesel was produced from 

mustard oil and the resultant fuel was evaluated as a diesel additive, using various 

characterization techniques to demonstrate its distinctive properties as compared to that derived 

from canola oil.  

 

6.3. Materials 

Commercial grade canola oil and soybean oil were purchased from a local grocery store. 

Mustard oil was provided from Mustard Capital Inc., Saskatoon, SK, Canada. Anhydrous 

methanol (MeOH) (99.8%), anhydrous ethanol (EtOH), and potassium hydroxide (KOH) were 

purchased from EMD Chemicals Inc., Darmstadt, Germany. Propanol and 1-butanol were 

purchased from Sigma-Aldrich, Canada. Diesel fuels were purchased from four gas stations 

(Esso, Shell, Petro-Canada, Co-op) in Saskatoon, SK, Canada in December 2009. Reference 
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standard chemicals including methyl oleate, triolein, diolein, and monoolein were purchased 

from Sigma-Aldrich, MO, USA. Fatty acid methyl esters (FAME) mix rapeseed oil reference 

standard was obtained from SUPELCO, PA, USA. The reference diesel fuel used in lubricity 

testing of biodiesel was that specified in ASTM D6079-04 and was purchased from Haltermann 

Products, Hamburg, Germany. 

 

6.4. Experimental Procedures 

6.4.1. Transesterification  

In the present chapter, two types of mustard oil were donated by Mustard Capital Inc. 

including S. alba (White Mustard) and B. juncea (Oriental Mustard). The fatty acid compositions 

and acid value (AV) of these mustard oils were analyzed. S. alba was chosen in this study due to 

its high erucic acid content (see Table 6.1).  

 Fatty acid methyl ester was produced from canola oil, soybean oil and mustard oil via 

transesterification reaction using KOH as a catalyst. A 100g sample of the oil was initially placed 

in a Parr reactor (Parr Instrument Company, IL, USA) and heated to 60°C. A mixture of 

methanol (6:1 alcohol to oil molar ratio) and KOH (1 wt.% with respect to oil) was added to the 

reactor. The temperature and stirring speed of the reaction mixture were maintained constant for 

1.5 hours at 60°C and 600 rpm, respectively. The same procedure was applied to the production 

of ethyl-, propyl-, and butyl-esters.  

 After the reaction, the glycerol was separated from the ester phase by gravity in a 

separatory funnel. Heated distilled water was used to remove KOH, soap, and alcohol remained 

in the ester phase. BÜCHI rotavapor was then used to remove the remaining alcohol and water in 

ester phase. To remove traces of moisture, the biodiesel was passed through the anhydrous 
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sodium sulphate, which was previously dried in an oven at 100°C for 1 hour. The biodiesel 

produced from mustard oil was mixed with the purified biodiesel produced from the canola and 

soybean oils, at various ratios, as shown in Table 6.2.  

 

Table 6.1 Fatty acid compositions and AV of S. alba and B. juncea. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
                an/a = not available 

 

Structure Compound name 
S. alba 

(wt.%) 

B. juncea 

(wt.%) 

C14:0 Myristic ester 0.05 0.06 

C16:0 Palmitic ester 2.80 3.01 

C16:1  Palmitoleic ester 0.16 0.14 

C16:2 n/aa 0.06 0.03 

C18:0 Stearic ester 1.09 1.31 

C18:1 z9 Oleic ester 24.98 16.92 

C18:1 z11 Asclepic ester 1.10 1.38 

C18:2 Linoleic ester 11.64 20.82 

C18:3 Linolenic ester 8.61 12.85 

C20:0 Arachidic ester 0.70 0.75 

C20:1 n/aa 10.44 10.70 

C22:0 Behenic ester 0.57 0.43 

C22:1 Erucic ester 32.81 25.76 

AV (mg KOH/g sample) 0.85 3.1 
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Table 6.2 Mixtures of esters produced from canola, soybean and mustard oil. 

Sample Mustard MEa 

(wt.%) 

Canola MEa 

(wt.%) 

Soybean MEa 

(wt.%) 

CMEa 0 100 0 

MIX1 0.75 99.25 0 

MIX2 1.5 98.5 0 

MIX3 3 97 0 

MIX4 6 94 0 

MIX5 12 88 0 

MMEa 100 0 0 

SMEa 0 0 100 

MIX6 0.75 0 99.25 

MIX7 1.5 0 98.5 

MIX8 3 0 97 

MIX9 6 0 94 

MIX10 12 0 88 

asee abbreviation section 
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6.4.2. Distillation of Transesterification Products 

Distillation of the transesterification products of mustard oil was performed as per ASTM 

D 1160-06. In this step, transesterification products derived from mustard oil were distilled using 

a spinning band distillation unit (Model: 24/100 A) equivalent to 80 theoretical plates from B/R 

Instrument Corp., Easton, MD, USA. For methyl-, ethyl-, and propyl-ester production, the 

heating unit was set at 14% resulting in 200°C pot temperature and 170°C head temperature. The 

reflux ratio and operating pressure were set at 50 and 667 Pa, respectively. For butyl-ester 

production, the heater, reflux ratio, and pressure were set at 17%, 50, and 67 Pa, respectively, 

resulting in 250°C pot temperature and 180°C head temperature. 

  

6.4.3. Characterization  

Table 6.3 summarizes the standard methods used in this study for fuel characterization. 

The purified methyl ester was analyzed for ester and glycerin content using a Hewlett-Packard 

1100 series HPLC with a refractive index detector and two Phenogel 5µ 100A 300X7.80 mm 5 

micron columns in series protected with a guard column and equipped with a ChemStation for 

LC 3D, Agilent Technologies. THF was used as a mobile phase at 1 mL/min for 25 min.  The 

operating parameters used were as follows: injection volume 5 µL; column temperature 24°C; 

and detector temperature 35°C.  Reference standard chemicals including methyl oleate, triolein, 

diolein, monoolein, and glycerol were used for the HPLC calibration (see Appendix A). Fatty 

acid compositions of esters were determined using Agilent Technologies 6890N Network GC 

System equipped with GC ChemStation software with an FID detector and RESTEK 10638 

Stabilwax column. The injection volume was 2 µL and the temperature program was started at 
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160°C, held for 1 min, ramped to 240°C at 4°C/min and then held for 24 min. The SUPELCO 

FAME Mix Rapeseed Oil standard was used as a reference for GC calibration (see Appendix B).  

 

Table 6.3 Analysis of transesterification products. 

Property Unit Method 

Ester and glycerides content mass% HPLC 

Fatty acid compositions mass% AOCS Ce 1-62 

Boiling point distribution °C ASTM D 6352-04 

AV mg KOH g-1 AOCS Te 1a-64 

Water content ppm ASTM D 6304-07 

Sulfur content ppm ASTM D 5453-09 

Phosporous content ppm ASTM D 4951-09 

Viscosity cSt ASTM D 445-09 

Lubricating property μm,% reduction ASTM D 6079-04 

Oxidative stability minutes EN 14112 

Low temperature property °C, J g-1 DSC 

 

 

 The lubricating properties of the biodiesel and biodiesel blends were tested as per the 

High-Frequency Reciprocating Rig (HFRR) ASTM D6079-04 method. The test sample was 

placed in a sample container onto a metal surface. The ball surface was in contact with the metal 

surface at 50 Hz for 75 minutes, and the wear scar diameter on the ball surface was then 

measured using a microscope. A Rancimat instrument was used to determine oxidative stability 
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of the biodiesel, according to the EN 14112 method (see Table 6.3). During the Rancimat test, 

the sample was heated (110°C in this case) and oxygen was supplied. In presence of oxygen at 

high temperature, the oxidation reaction took place and the oxidation derivatives transferred to a 

measuring chamber containing Millipore water. As the oxidation derivatives were transferred 

into the water, an increase in conductivity of the water was detected. The induction time is 

defined as the time required for conductivity of the water to increase rapidly, and was used as an 

indication of biodiesel oxidative stability. The low temperature properties of the fuels were 

examined by a Differential Scanning Calorimeter (DSC) from PerkinElmer, Inc., CT, USA, 

equipped with Pyris software thermal analysis and a cryofill filled with liquid nitrogen as a 

cooling device. After sample encapsulation, the sample chamber was held at 30°C for 5 min and 

then cooled from 30°C to -110°C at 5°C/min. 

 

6.5. Results and Discussions 

6.5.1. Feedstock Analysis 

Fatty acid compositions and AV of S. alba and B. juncea are shown in Table 6.1. Having 

a higher erucic acid (32.81%) compared to that of B. juncea (25.76%), S. Alba was chosen as the 

feedstock for this study. The AV of this oil was not high (0.85), hence base-catalyzed 

transesterification was a viable option.  

 The physical and chemical properties of vegetable oils were evaluated, according to the 

methods presented in Table 6.4. Both water content and AV of all three oils were low enough for 

effective KOH-catalyzed transesterification reactions (water content <500 ppm and AV <1). The 

HPLC analyses of the canola, soybean, and mustard oils suggest that these three oils contain 

mainly triglyceride and a small amount of diglyceride. In conclusion, all these vegetable oils 
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consist mainly of triglyceride, with a minor percentage of other compounds such as diglyceride, 

free fatty acid, and water. 

 

Table 6.4 AV, water content, ester and glyceride content of vegetable oils. 

Sample Canola oil Soybean oil Mustard Oil 

AVa (mg KOH g-1) 0.26 0.28 0.85 

Water content (ppm) 288 290 299 

Viscosity@40°C (cSt) 33.2 29.3 37.5 

Phosporous content (ppm) n/a n/a 29.6 

Sulfur content (ppm) 1.9 1.2 1.7 

TGa (wt.%) 96.62 99.86 97.04 

DGa (wt.%) 3.25 0 2.54 

MGa (wt.%) 0 0 0 

FFAa (wt.%) 0.13 0.14 0.42 

asee abbreviation section 

 

 

6.5.2. Transesterification products of mustard oil 

Ester obtained from transesterification of mustard oil was discussed in this section. 

Figure 6.2 shows ester formation as well as triglyceride (TG), diglyceride (DG), and 

monoglyceride (MG) percentages during transesterification of mustard oil. The KOH-catalyzed 

transesterification occurred rapidly and the major portion of ester was formed during the first 30 

minutes of the reaction. The reaction was completed within 60 minutes and only 64% of ester 

was formed. TG and DG were observed at negligible amounts; however, there was a high 
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percentage of MG contained in the transesterification products. Transesterification occurs in a 

series of consecutive, reversible reactions consisting of the conversion of TG to DG, DG to MG, 

and MG to glycerol (GL) as shown in Figure 6.1. The HPLC results implied that TG and DG 

were smoothly converted to DG and MG, respectively. On the other hand, MG was not able to 

convert to form ester and GL easily, leading to an accumulation of MG compound in the 

transesterification products. A product with a high MG percentage was not suitable for use as 

fuel and required upgrading. 

 

 

Figure 6.2 Ester and glyceride content during transesterification of mustard oil. 

 

6.5.3. Mixtures of Esters derived from Canola, Soybean and Mustard Oil 

In order to meet ASTM specifications prior to its use in a diesel engine, the mustard oil 

methyl ester (MME), was blended with canola oil methyl ester (CME) and soybean oil methyl 

ester (SME) at various ratios as shown in Table 6.2. To discriminate the effects of MME 

percentage on ester properties, the blend ratios were studied as low as 0.75% MME up to 12% 

MME. The ester and glyceride content of the mixed and pure esters derived from the canola, 
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soybean, and mustard oils are shown in Table 6.5. Unlike mustard oil, the canola and soybean 

oils can easily be transesterified to produce an ASTM-grade biodiesel. All the blended esters 

showed low values of water content and AV meeting the ASTM specifications, but the total 

glycerol content of the higher MME percent blends did not. Total glycerin content can be 

calculated from triglyceride, diglyceride, monoglyceride and glycerol content using the equation: 

total glycerin content (GLT) = GL + 0.26(MG) + 0.15(DG) + 0.1(TG) [9]. To meet the ASTM 

specification of total glycerol content, the MME content of biodiesel blend must not exceed 1.5 

wt.%. Although, MME can be blended with high purity esters derived from canola and soybean 

oils, the percentage of MME allowed in a blend was significantly low. An alternate means of 

using mustard oil as feedstock for biodiesel production has been explored and discussed in the 

following sections. 

 

6.5.4. Esters Production from Mustard Oil 

In an attempt to improve purity of ester produced from mustard oil, three hypotheses 

were made related to glycerol formation, catalyst impurity, and high activation energy.  

1. Glycerol formation - It was hypothesized that glycerol was formed during 

transesterification and the catalyst was transferred into the glycerol phase. As a result, less 

catalyst was available in alcohol phase where reaction took place, hence hindering ester yield. In 

response to this hypothesis, a two-step reaction was performed. After 60 minutes of the reaction, 

the glycerol was removed, followed by an addition of a mixture of methanol and KOH (6:1 

methanol to oil molar ratio; 1 g of KOH). Addition of methanol/KOH mixture was expected to 

compensate the catalyst loss to the glycerol phase. Moreover, it was anticipated that the removal 

of glycerol would shift the reaction to product side, thereby enhancing ester yield.  
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Table 6.5 Water content, AV, ester and glyceride content of biodiesel  

derived from canola, soybean, and mustard oil. 

Sample Water 

content 

(ppm) 

AVa %FFAa %TGa %DGa %MGa %Ester %Total 

Glycerol

CMEa 416 0.29 0.15 0 1.39 0 98.46 0.21 

MIX1b 422 0.24 0.12 0 1.41 0 98.47 0.21 

MIX2b 460 0.37 0.18 0 1.41 0 98.41 0.21 

MIX3b 486 0.40 0.20 0 1.43 2.06 96.31 0.75 

MIX4b 282 0.40 0.20 0 1.40 2.68 95.72 0.91 

MIX5b 353 0.40 0.20 0 1.41 3.84 94.56 1.21 

MMEa 369 0.60 0.30 0 1.28 33.68 64.75 8.95 

SMEa 443 0.30 0.15 0 0.41 0 99.44 0.06 

MIX6b 383 0.32 0.16 0 0.41 0 99.43 0.06 

MIX7b 448 0.36 0.18 0 0.41 0 99.41 0.06 

MIX8b 416 0.36 0.18 0 0.44 1.68 97.70 0.50 

MIX9b 460 0.32 0.16 0 0.44 2.25 97.15 0.65 

MIX10b 467 0.41 0.20 0 0.45 2.97 96.37 0.84 

ASTM D6751 500 max 0.5 max - - - - - 0.24 

asee abbreviation section; bSee Table 6.2 
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The ester formation during this two-step reaction is shown in Figure 6.3. The final ester content 

was 66% which was only 2% higher than the one step process, suggesting that the glycerol 

formation during transesterification has a minor effect on ester yield. 

 

 

Figure 6.3 Ester formation during transesterification of mustard oil using CH3ONa and KOH as a 

catalyst. 

 

2. Catalyst impurity - KOH, which was purchased from EMD chemicals Inc. and used as a 

catalyst in this study, contains approximately 15% of water. Water, if present in the reaction 

system, could hydrolyze ester to form FFA, which intensifies saponification and lowers ester 

yield. Being anhydrous, sodium methoxide (CH3ONa) was reported for its high activity towards 

transesterification of rapeseed, flaxseed, and sunflower oil [10] and was chosen as a catalyst for 

this study. CH3ONa loading selected in this study was 0.5 and 1 wt.% with respect to mustard 

oil. Ester formation during transesterification of mustard oil using CH3ONa compared to that 

using KOH as a catalyst is shown in Figure 6.3. The results suggested that the reaction occurred 

faster when higher catalyst loading was used. However, the final ester percentage in both cases 
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was 66%, which was equal to that when KOH was used as a catalyst. This finding indicated that 

the hydrolysis of ester during transesterification was insignificant and water contained in KOH 

was at an acceptable level for transesterification. 

3. Activation energy - Based on the HPLC analysis of the final transesterification products 

derived from mustard oil (see Figure 6.2), TG and DG content was negligible, but MG was 

present in large amounts (33%). It can be assumed that the first two reactions in Figure 6.1 (TG 

to DG and DG to MG) were completed, whereas the conversion of MG to GL was minimal. 

Based on the principle of activation energy, a minimum energy provided to the reaction must 

exceed the activation energy of the corresponding reaction to allow it to take place. To provide 

adequate energy overcoming the activation energy, the reaction was performed at elevated 

temperature and pressure (150°C and 3.4 MPa). The reaction was carried out for 4 hours. Figure 

6.4 shows the ester formation during elevated temperature and pressure transesterification of 

mustard oil. The ester percentage at the end of the reaction was only 63%. A high purity 

biodiesel was not achieved and an alternative means of obtaining high purity ester was required.  

 

Figure 6.4 Ester formation during transesterification of mustard oil at elevated temperature and 

pressure (150°C, 3.4 MPa). 
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Since all three hypotheses could not explain transesterification behaviour of S. alba, it 

was believed that the low ester yield obtained from transesterification of S. alba was probably 

due to steric effects of long chain erucic fatty acid hindering the reaction. Figure 6.5 shows the 

boiling point distribution of esters derived from canola and mustard oils. It was clear that MME 

has higher boiling points as compared to CME, due to the high level of heavy portion (high MW 

compounds). This heavy portion could be either MG or methyl erucate, which boil at a higher 

temperature than the typical methyl oleate found in CME. To identify the heavy portion, the 

following reason is given. If the heavy portion in Figure 6.5 was erucic ester, this ester would be 

left out from the rest of the ester portion during distillation. However, results from Table 6.6 

suggest the opposite. It was found that the major ester in MME was methyl erucate (31.57%). 

Therefore the heavy portion as shown in Figure 6.5 is more likely to be MG instead of methyl 

erucate. The data from Figure 6.5 suggest that ester and MG have distinctive range of boiling 

temperature and, therefore, can be separated from each other by means of distillation.  

 

  

Figure 6.5 Boiling point distribution of canola and mustard oil methyl ester using simulated 

distillation unit. 
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Table 6.6 Fatty acid compositions of mustard, canola, and soybean oil methyl ester. 

asee abbreviation section; bn/a = not available 

 

 

6.5.5. Distillation of Transesterification Products Derived from Mustard Oil 

Due to the difference in boiling points between ester and MG, the transesterification 

products derived from mustard oil containing mainly ester and MG were distilled, as per the 

method described in the experimental procedures section. The HPLC chromatograms of 

undistilled MME, distilled MME (DMME), and residual from distillation of mustard oil butyl 

Structure Compound name MMEa CMEa SMEa 

C14:0 Myristic ester 0 0.06 0.10 

C16:0 Palmitic ester 2.84 4.24 11.56 

C16:1  Palmitoleic ester 0.21 0.22 0.15 

C16:2 n/ab 0.04 0.07 -- 

C18:0 Stearic ester 1.11 2.00 4.32 

C18:1 z9 Oleic ester 25.30 61.36 22.82 

C18:1 z11 Asclepic ester 0.93 2.78 1.38 

C18:2 Linoleic ester 11.54 18.43 51.93 

C18:3 Linolenic ester 8.58 6.72 5.95 

C20:0 Arachidic ester 0.68 0.70 0.34 

C20:1 n/ab 10.34 1.30 0.25 

C22:0 Behenic ester 0.48 0.38 0.34 

C22:1 Erucic ester 31.57 -- -- 
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ester (MBE) are presented in Figure 6.6, and shows that undistilled MME contained mainly ester 

and MG, whereas MME after distillation contained only ester. The mustard oil ethyl ester 

(MEE), mustard oil propyl ester (MPE), and mustard oil butyl ester (MBE) were also distilled, 

using the method described in the experimental procedures section. The chromatograms of these 

esters were somewhat similar to that of MME, but the esters were completely separated from 

monoglyceride; therefore, high purity esters were achieved. Since the oil samples were exposed 

to high temperature (200°C - 250°C) for a long period of time (~ 6 hours), it was likely that 

polymerization took place during distillation process. These polymerized compounds had high 

molecular weight and were left in the residual portion during distillation (see Figure 6.6c). 

 

6.5.6. Characterization of Mustard Biodiesel  

Properties from the mustard biodiesel (methyl, ethyl, propyl and butyl ester) and its 

parent oil are summarized in Table 6.7. Fatty acid compositions of CME, SME, and MME are 

shown in Table 6.6. The results suggested that the major fatty acid in canola, soybean, and 

mustard were oleic (C18:1), linoleic (C18:2), and erucic acid (C22:1) acid, respectively, in line 

with those found in literature [3,11]. 

 The molecular weights of esters and mustard oil (MO) were calculated from fatty acid 

compositions corresponding to each sample. The AV of DMME and DMEE met the ASTM 

specifications, but was higher for butyl-ester synthesis, which was probably due to the severe 

operating conditions used in the distillation step. At high temperature, it was likely that some 

ester and monoglyceride degraded into acids resulting in the apparently higher AV.  
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Figure 6.6 HPLC chromatograms of (a) undistilled mustard oil methyl ester; (b) distilled mustard 

oil methyl ester; and (c) residual from distillation of mustard oil butyl ester. 
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Table 6.7 Properties of mustard oil and biodiesel produced from mustard oil. 

Property MOa DMMEa DMEEa DMPEa DMBEa ASTM 

D6751 

MW cal 

(g mol-1) 

947 

 

317 

 

331 

 

345 

 

359 

 

n/a 

 

AVa 

(mg KOH g-1) 

0.9 

 

0.4  

(0.1)b 

0.5  

(0)b 

0.6 

(0.1)b 

4.0 

(0.2)b 

0.5 

 

Free fatty acid 

(mass%) 

0.4 

 

0.2 

 

0.3 

 

0.3 

 

2.0 

 

n/a 

 

Triglyceride 

(mass%) 

96.9 

 

0 

 

0 

 

0 

 

0 

 

n/a 

 

Diglyceride 

(mass%) 

2.5 

 

0 

 

0 

 

0 

 

0 

 

n/a 

 

Monoglyceride 

(mass%) 

0 

 

0 

 

0 

 

0 

 

0 

 

n/a 

 

Free glycerol 

(mass%) 

0 

 

0 

 

0 

 

0 

 

0 

 

<0.02 

 

Total glycerol 

(mass%) 

10.1 

 

0 

 

0 

 

0 

 

0 

 

<0.24 

 

Ester 

(mass%) 

0 

 

99.8 

 

99.7 

 

99.7 

 

98.0 

 

n/a 

 

Water 

(ppm) 

241 

(58)b 

231  

(44)b 

62  

(45)b 

187 

(10)b 

345 

(30)b 
<500 
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Sulfur 

(ppm) 

1.7 

(0.2)b 

0  

(0)b 

14.7 

(0.7)b 

9.5  

(0)b 

10.4 

(0.3)b 

15 

 

Phosphorous 

(ppm) 

30 

 

9 

 

4 

 

10 

 

8 

 

10 

 

Density @40°C 

(g mL-1) 

0.9 

 

0.9 

 

0.9 

 

0.9 

 

0.9 

 

n/a 

 

Kinematic viscosity @40°C 

(cSt) 

37.5 

(0.3) 

4.2  

(0.2) 

4.5 

(0.1) 

5.0 

(0.2) 

5.5 

(0.2) 

1.9 – 

6.0 

Wear reduction, HFRR, 1% ester 

(%) 

n/a 

 

43.7 

(4.2) 

23.2 

(5.3) 

30.7 

(2.4) 

30.6 

(4.6) 

n/a 

 

Induction time, 110°C 

(min) 

n/a 

 

3 

 

7 

 

7 

 

9 

 

>180 

 

Onset crystallization temperature 

(°C) 

     Saturated compounds 

 

     Monounsaturated compounds 

 

     Polyunsaturated compounds 

n/a 

 

 

 

 

 

 

 

 

 

 

 

 

-16.4 

(0.8) 

-42.5 

(0.8) 

-65.4 

(0.8) 

 

 

-16.5 

(0.1) 

-51.0 

(0.2) 

-93.5 

(1.2) 

 

 

 

 

 

-12.3 

(1.6) 

-51.9 

(0.2) 

n/a 

 

 

-16.6 

(0) 

-58.2 

(0) 

n/a 

n/a 
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Heat of crystallization 

(J g-1) 

     Saturated compounds 

 

     Monounsaturated compounds 

 

     Polyunsaturated compounds 

n/a 

 

 

 

 

 

 

 

 

 

8.4 

(0.5) 

46.7 

(2.1) 

23.6 

(0.3) 

 

 

8.9 

(0.5) 

59.0 

(0.5) 

11.6 

(0.6) 

 

 

14.7 

(0.7) 

48.5 

(0.4) 

n/a 

 

 

3.6 

(0.4) 

36.8 

(0.1) 

n/a 

n/a 

 

 

 

 

 

 

 

asee abbreviation section; bThe numbers in parentheses are corresponding standard deviation values of 3-4 runs 

 

 

Since esters were separated from glycerides and polymerized compounds during distillation, the 

total glycerol content of distilled esters were null, hence rendering ultra high purity esters. In 

comparison with the data obtained from HPLC using RID, DMME was analyzed for free and 

total glycerol as per ASTM D6584. Free glycerol was not detected in the GC chromatogram; 

however, total glycerol was measured at 0.121 mass%. These data suggested that the amount of 

free and total glycerol contained in the distilled ester was trivial and the quality of DMME met 

the ASTM specification. Water, sulfur, and phosphorous content of all esters were within the 

range specified in ASTM D6751. Viscosity of esters was reduced significantly from their parent 

oil (viscosity of MO = 37.5 cSt) due to transesterification and distillation, and met ASTM 

specifications.  
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6.5.7. Lubricity 

The lubricating property of fuel is defined as the quality that prevents wear when two 

moving metal parts come into contact with each other [12]. Oxygen and nitrogen containing 

compounds are responsible for the natural lubricating property of diesel fuel [13]. In petroleum 

refineries, the processes such as hydrotreating usually utilized to remove sulfur also destroy 

heterocyclic oxygen and nitrogen containing compounds [14]. Consequently, this typically ultra-

low sulfur diesel fuel exhibits poor lubricity. ASTM D6079-04 was used to evaluate lubricating 

property of biodiesel and diesel fuel by the High-Frequency Reciprocating Rig (HFRR). In this 

method, the high wear diameter indicates poor lubricating property of the test fluid and vice 

versa. In the present chapter, biodiesel samples were blended with the reference diesel fuel and 

HFRR results were observed. Figure 6.7 shows that the lubricity of the blended fluid increased 

with an increase in biodiesel percentage. The improvement in lubricity was insignificant when 

the biodiesel percentage exceeds 1% of regular diesel, therefore, it was concluded that a 1% 

biodiesel blend was the optimum ratio.  

The biodiesel derived from canola oil was somewhat superior in lubricating property as 

compared to that obtained from mustard oil. However, the biodiesel produced from mustard oil 

showed great potential as a diesel fuel additive to improve its lubricating property. At 0.1 and 1% 

distilled mustard oil methyl ester (DMME) blended with diesel fuel, the wear scar diameter was 

reduced by 11.1 and 43.7%, respectively. The results from Table 6.7 suggest that methyl ester 

was the best lubricity additive among all esters (methyl-, ethyl-, propyl-, and butyl-ester). This is 

because the lubricity of biodiesel is provided by the polarity-imparting oxygen atoms and the 

nature of which the oxygen atom is bound in the molecule.  
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see abbreviation section 

Figure 6.7 Lubricity properties of methyl esters derived from mustard oil and canola oil blended 

with reference diesel fuel using high frequency reciprocating rig (HFRR) method. 

 

It was reported that the order of oxygenated moiety that provides lubricity are COOH > OH > 

COOCH3 > C=O > C-O-C [15]. In the case of methyl ester, the lubricity was provided mainly by 

the COOCH3 moeity. In contrast, the lubricity of ethyl, propyl, and butyl esters was possibly 

contributed by the ketone group (C=O moiety), due to the lack of COOCH3 moeity in their 

molecules. Therefore, methyl ester exhibited a better lubricating property when compared to 

ethyl, propyl, and butyl ester. In addition, four commercial diesel samples were purchased from 

different gas stations (Esso, Shell, Petro-Canada, Co-op) and tested for their lubricity. The 

viscosity at 40°C of these commercial diesel fuels were within the range of 2.2-2.4 cSt. The 

results from Figure 6.7 show that DMME/RDF blends had a lubricating property superior to that 

0

100

200

300

400

500

600

700

800

RDF
B0.1 B0.2 B0.5 B0.8 B1 B2 B5

B10
B10

0
Ess

o
She

ll

Petr
o-C

an
Co-o

p

B1 E
ss

o

B1 S
he

ll

B1 P
etr

o-C
an

B1 C
o-o

p

Test fluid

W
ea

r s
ca

r d
ia

m
et

er
 (μ

m
)

Mustard blend
Canola blend



231 
 

of the purchased commercial diesel fuels. The lubricity of these commercial diesel fuels can be 

improved by the addition of DMME (see Figure 6.7).  

 

6.5.8. Oxidative Stability 

 Oxidative stability is an important property as it determines stability of biodiesel. It was 

reported that the oil stability increases with a decrease in the degree of unsaturation [16]. In this 

study, the rancimat plot of esters derived from mustard oil is presented in Figure 6.8. The 

stability of DMBE was higher than those of DMME, DMEE, and DMPE due to its longer carbon 

chain length. The longer chain provides a lower double bond concentration per molecule, hence 

lowering degree of unsaturation and thus increasing stability.  

 

 

 

 

 

 

 

 

 

 

Figure 6.8 A conductivity-time plot for oxidative stability determination of esters  

derived from mustard oil. 
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6.5.9. Crystallization 

 Low temperature property of biodiesel determines how well biodiesel can be operated 

and stored in a cold environment and therefore is of special importance in cold climate regions. 

When temperature is reduced to a certain point, a portion of the biodiesel or biodiesel blends 

begins to crystallize, which can create problems with the engine flow system and eventually 

cause the engine to cease. Differential scanning calorimetry (DSC) is an effective means to 

determine the low temperature property of esters with good correlation to cloud point and pour 

point of biodiesel [2,17]. Figure 6.9 represents a DSC thermogram of esters derived from 

mustard oil in this study. The exothermic crystallization of saturated, monounsaturated and 

polyunsaturated esters appeared as peaks in the corresponding DSC thermogram. Crystallization 

of saturated compounds occurred at higher temperatures due to the arrangement of the 

molecules. Saturated compounds are well stacked and hence strengthening the intermolecular 

attractive forces. On the other hand, the cis-formation in unsaturated molecules causes distance 

between molecules and weakens the intermolecular attractive forces, which causes these 

compounds to crystallize at lower temperatures [2]. The onset crystallization temperatures as 

well as heats associated with crystallization of each compound are reported in Table 6.7. The 

crystallization temperature of ester tended to decrease when a higher alcohol was used in 

transesterification. For unsaturated compounds, if the number of double bonds is the same, a 

molecule with a higher carbon chain length would have poorer molecular stacking and therefore 

poorer intermolecular interactions leading to a lower crystallization temperature.  
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Figure 6.9 DSC thermogram of esters derived from mustard oil.  

 

The low temperature property of biodiesel can be improved by using higher alcohols, i.e., 

cloud point and pour point of ethyl ester were reported to be lower than those of methyl ester 

[17,18]. Based on this concept, the freezing points of polyunsaturated compounds in propyl- and 

butyl-ester would be extremely low and were outside of the DSC scan in this study. Heat from 

crystallization of monounsaturated compounds was highest as compared to that of saturated and 

polyunsaturated compounds. This was because the major fatty acids in mustard oil were erucic 

and oleic acid at 31.6 and 25.3%, respectively (see Table 6.6). Because they both contain one 

double bond per molecule, these two compounds were considered as monounsaturated. When a 

large amount of monounsaturated compounds is present in the oil sample, exothermic heat 

associated to crystallization of these compounds will be higher, as evidenced from the data in 

tables 6.6 and 6.7. DSC was also used to study petro-diesel and DMME/petro-diesel blends (1% 

biodiesel). However, crystallization peaks were not observed on any DSC thermograms in this 
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study. Therefore, it is believed that the crystallization points of these fuels are extremely low and 

are below the range of DSC scan of 30°C to -110°C. This finding suggests that the fuel can be 

used without freezing in winter conditions at the optimum biodiesel-diesel blend (1% biodiesel). 

 

6.6. Conclusions 

Mustard oil was not suitable for use in direct KOH-catalyzed transesterification. Glycerol 

formation, hydrolysis and saponification have minor effects on transesterification of mustard oil. 

Mustard oil methyl ester can be mixed with canola or soybean oil methyl esters up to 1.5 wt.% to 

obtain an ASTM quality biodiesel. Alternatively, distillation can be used to purify esters derived 

from mustard oil. The distilled esters were extremely pure in ester content. Properties of distilled 

methyl and ethyl ester satisfy the ASTM specifications. An improvement was required for a 

specific property of a specific ester such as AV of butyl ester. Esters derived from mustard oil 

showed great potential as a lubricity additive to diesel fuel. The optimum ester percentage in a 

biodiesel-diesel blend was 1% of which wear scar diameter was reduced by 43.7%. Methyl ester 

was the best lubricity additive among all the esters (methyl-, ethyl-, propyl-, and butyl-ester), and 

lubricity of the biodiesel-diesel blend was superior to that of commercial diesel fuels. Methyl 

ester derived from mustard oil did not freeze until the temperature reached -16°C. 

Monounsaturated compounds (oleic, eicosenoic, and erucic esters) which are largely present in 

esters derived from mustard oil can tolerate temperatures of -42°C to -58°C.  The freezing point 

of monounsaturated esters can be reduced by using higher alcohols like butyl alcohol as the 

reactive alcohol. The freezing point of monounsaturated butyl and methyl esters was -58°C and   

-42°C, respectively. For B1 blend, the fuel can be used at low temperature without freezing.  
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It is found that mustard MG was more difficult to be transesterified into methyl ester. The 

kinetic data would be useful to extend our understanding on this topic. Therefore, the kinetics of 

transesterification was studied and discussed in Chapter 7.  
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Abbreviations 

AV  Acid value 

BX  Biodiesel blended with petro diesel at x percent biodiesel 

CME  Canola oil methyl ester 

DG  Diglyceride 

DMBE  Distilled mustard oil butyl ester 

DMEE  Distilled mustard oil ethyl ester 

DMME Distilled mustard oil methyl ester 

DMPE  Distilled mustard oil propyl ester 

DSC  Differential scanning calorimeter 

EtOH  Ethanol 

FAME  Fatty acid methyl ester 

FFA  Free fatty acid 

GL  Glycerol 

HEAR  High erucic acid rapeseed 

HFRR  High-frequency reciprocating rig 

HPLC  High performance liquid chromatography 

KOH  Potassium hydroxide 
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LEAR  Low erucic acid rapeseed 

MBE  Mustard oil butyl ester 

ME  Methyl ester 

MEE  Mustard oil ethyl ester 

MeOH  Methanol 

MG  Monoglyceride 

MME  Mustard oil methyl ester 

MO  Mustard oil  

MPE  Mustard oil propyl ester 

RDF  Reference diesel fuel 

SME  Soybean oil methyl ester 

TG  Triglyceride 
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CHAPTER 7 

 

Transesterification Kinetics of Vegetable Oils 

 

A part of this chapter has been accepted for publication in The Canadian Journal of Chemical 

Engineering: 

• Issariyakul, T., and Dalai A.K. Comparative kinetics of transesterification for biodiesel 

production from palm oil and mustard oil. The Canadian Journal of Chemical 

Engineering (Accepted). 

 

In addition, a portion of this chapter was presented in the following conferences: 

• Issariyakul T., and Dalai A.K. Kinetics of transesterification of palm oil. The 60th 

Canadian Chemical Engineering Conference, Saskatoon, Saskatchewan, Canada (2010). 

• Issariyakul T., and Dalai A.K. Comparative kinetics of transesterification for biodiesel 

production from palm oil and mustard oil. The 61th Canadian Chemical Engineering 

Conference, London, Ontario, Canada (2011). 
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Contribution of this Chapter to the Overall Ph.D. Research 

Kinetic study of transesterification is an important part of the Ph.D. research. In order to 

study transesterification kinetics, mustard oil is selected because kinetic data of mustard oil 

transesterification is not available in the literature. Research work in this chapter is extended to a 

study of an effect of saturation/unsaturation fatty acids on transesterification kinetics. In order to 

study this effect, palm oil is also chosen due to its high saturated fatty acid (palmitic acid, C16:0) 

content. 
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7.1. Abstract 

The kinetics of palm oil and mustard oil transesterification are compared. 

Transesterification of palm oil and mustard oil using KOH as a catalyst was performed at various 

reaction temperatures ranging from 40°C to 60°C. The reaction steps are reversible and 

transesterification is favoured at elevated temperatures. The reaction step of triglyceride to 

diglyceride is the rate determining step (RDS) that controls kinetics of overall transesterification 

with activation energies of 30.2 and 26.8 kJ/mol for palm oil and mustard oil transesterification, 

respectively. It is found that percentage of saturated compounds play a vital role on 

transesterification kinetics.  

 

7.2. Introduction 

Biodiesel has drawn tremendous attentions from scientists around the world. It is 

considered as one of the most promising alternative renewable bio-fuels that can be used as 

substitutes and additives for the conventional non-renewable petroleum diesel. The use of 

biodiesel is simple yet effective as it is miscible with petroleum diesel in all proportions and it 

can be used in diesel engine with no requirement for engine modifications. Biodiesel is derived 

from lipid feedstock such as vegetable oils and animal fats. Mustard oil is selected in this chapter 

because its kinetic data is much needed in the coming years for Canadian biodiesel industry. This 

is because of the fact that the new 2% federal mandate for biodiesel in Canada in 2011 requires 

approximately 500 million litres per year of biodiesel demand across the country while the 

Canadian biodiesel production capacity is only 200 million litres per year in 2010 [1]. To fill up 

the biodiesel production capacity, the domestic mustard is anticipated to play a vital role as there 

is a bountiful supply of Canadian mustard available (306,000 tonnes per year of production 
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capacity in Canada) on top of the fact that mustard oil is non-edible [2]. Although, process 

optimization for biodiesel production from mustard oil as well as fuel properties have been 

extensively investigated in the previous chapter, kinetic data for transesterification of such oil are 

not available in the literature and are urgently needed. The kinetic data of mustard oil 

transesterification presented in this chapter will not only benefit Canadian biodiesel industry but 

also biodiesel manufacturers outside Canada employing mustard oil as feedstock. In addition to 

being one of the world’s most productive vegetable oils, palm oil is also selected in this research 

due to the uniquely high saturated content to study an effect of saturated and unsaturated content 

as well as chain length distribution on kinetic of transesterification. Furthermore, palm oil is 

reported to have more economical advantages when compared to canola and soybean oil [3].  

Biodiesel can be produced via a reversible chemical reaction called “transesterification” 

which is shown in Figure 7.1. Transesterification is the reaction between glycerides with short 

chain alcohols and it is comprised of three consecutive reactions starting from triglyceride (TG) 

to diglyceride (DG) to monoglyceride (MG) to glycerol (GL), respectively. In each step, the 

reaction consumes one mole of alcohol and produces one mole of ester. In the present chapter, 

methanol and KOH were used as a reacting alcohol and catalyst, respectively. 

The rate constants of each reaction step are usually different. The values of the rate 

constants indicate the rates of the corresponding reaction step as well as reversibility of each 

step. Moreover, they can be used to determine the rate determining step (RDS) that controls the 

kinetics of overall transesterification. Therefore, the kinetic data are of crucial importance for the 

design for process development.  
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Figure 7.1 Scheme for step-wise transesterification reaction. 

 

 

 

 

DIGLYCERIDE

H2C 

  HC 

H2C 

OH 

O 

O 

C 

C 

R2 

R3 

O= 

O= 

+  CH3OH  + 

TRIGLYCERIDE  METHANOL METHYL ESTER 

H2C 

  HC 

H2C 

O 

O 

O 

C 

C 

C 

R1 

R2 

R3 

O = 

O = 

O = 

C  CH3O  R1 
O = 

MONOGLYCERIDE

+  CH3OH  + 

DIGLYCERIDE  METHANOL METHYL ESTER 

C  CH3O  R2 
O =

H2C 

  HC 

H2C 

OH 

O 

O 

C 

C 

R2 

R3 

O =

O =

H2C 

  HC 

H2C 

OH 

OH 

O  C  R3 

O=

GLYCEROL

+  CH3OH  + 

MONOGLYCERIDE  METHANOL METHYL ESTER 

C  CH3O  R3 
O = 

H2C 

  HC 

H2C 

OH 

OH 

O  C  R3 

O =
H2C 

  HC 

H2C 

OH 

OH 

OH 



245 
 

Results from literature suggest that transesterification of vegetable oils with low alcohol to oil 

molar ratio (6:1) using homogeneous base catalysts follows second order kinetics [4-7]. The 

proposed reaction mechanism consists of an initial mass transfer-controlled region followed by 

kinetically controlled region [6,7]. The initial mass transfer region alters the observed kinetic 

data and therefore need to be minimized by means of rigorous mechanical agitation [7], co-

solvent aid [8,9], or supercritical conditions [10]. 

The kinetic models can be derived by applying rate law [11] to each reaction step shown 

in Figure 7.1. The rate constants can then be calculated using a numerical method. Computer 

programming such as MATLAB program is often used for this purpose. Although there are 

many kinetic studies on transesterification reaction reported in the literature, the details on 

computer programming are inadequately elucidated. The complicated nature of 

transesterification along with the lack of clear explanation on computer programming has 

resulted in hardship and frustration in kinetic study of this reaction system. Consequently, many 

research groups have simplified the reaction system using assumptions of shunt reaction [12] and 

irreversible reaction [13]. The shunt reaction mechanism employs the overall transesterification 

reaction as shown in Figure 7.2. Although, the kinetic models can be simplified using shunt 

reaction mechanism, it is highly unlikely that three molecules of methanol would simultaneously 

attack the triglyceride molecule to form three molecules of methyl ester (ME). The shunt 

mechanism is easily disproved by the formation of diglyceride and monoglyceride which is 

widely reported in the literature. In the case of irreversible reaction, it is assumed that the values 

of all reverse rate constants are zero. In the case when the values of all reverse rate constants are 

adequately low, the simulated results based on this assumption may seem to fit with 

experimental data. However, many studies have suggested that the values of all reverse rate 
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constants are not zero and therefore the reactions are proven reversible [4-7,14,15]. Therefore, 

the kinetic models should be derived based on three consecutive reversible reaction steps. In the 

present chapter, the kinetics of transesterification of palm oil and mustard oil with methanol 

using KOH as a catalyst are compared. This study includes preliminary analysis of lipid 

feedstock, experimental development, kinetic modelling, MATLAB programming, and kinetic 

parameters interpretation. 

 

 

 

 

 

 

Figure 7.2 Scheme for transesterification based on shunt reaction mechanism. 

 

7.3. Materials  

Food grade palm oil (Palm Olein, Oleen Brand) was purchased from a grocery store in 

Thailand. Mustard oil (Sinapis Alba) was provided from Mustard Capital Inc., Saskatoon, SK, 

Canada. Anhydrous methanol (MeOH) (99.8%) and potassium hydroxide (KOH) were purchased 

from EMD Chemicals Inc., Darmstadt, Germany. Dichloromethane, centrifuge and centrifuge 
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1) and 1,2,3-Tridecanolylglycerol (tricaprin) (internal standard 2) were purchased from Sigma-

Aldrich, ON, Canada.  

 

7.4. Experimental Procedures 

7.4.1. Feedstock Analysis 

A food-grade palm oil and mustard oil were used in this chapter. The fatty acid 

composition of palm oil and mustard oil were evaluated using the GC method described in 

Section 7.4.4. Table 7.1 summarizes fatty acid composition of palm oil and mustard oil. The data 

from this table suggest that palmitic and oleic are largely presented in palm oil at 37 and 43 

wt.%, respectively while oleic and erucic are largely present in mustard oil at 25 and 33 wt.%, 

respectively. Average values of molecular weight of palm oil and mustard oil, which were 

calculated based on fatty acid compositions, are 853 and 947 g/mol, respectively and are 

presented in Table 7.2 along with other properties. Afterward, the average molecular weight of 

palm oil and mustard oil were used to calculate an amount of methanol required for each 

experiment. TG and DG concentrations obtained via GC method are 0.97 and 0.15 mol/L for 

palm oil and 0.52 and 0.01 mol/L for mustard oil, respectively. The acid value (0.2 – 0.8 

mgKOH/g) and water content (255 - 299 ppm) of both oils are sufficiently low to neglect side 

reactions, e.g. saponification and esterification.  
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Table 7.1 Fatty acid composition (wt.%) of palm oil and mustard oil. 

Structure  Compound name Palm Mustard 

C14:0  Myristic ester 1.14 0.05 

C16:0  Palmitic ester 37.08 2.80 

C16:1  Palmitoleic ester 0.22 0.16 

C16:2  n/aa 0 0.06 

C18:0  Stearic ester 3.89 1.09 

C18:1 z9  Oleic ester 42.93 24.98 

C18:1 z11  Asclepic ester 0.72 1.10 

C18:2  Linoleic ester 12.20 11.64 

C18:3  Linolenic ester 0.52 8.61 

C20:0  Arachidic ester 0.06 0.70 

C20:1  n/aa  0.33 10.44 

C22:1 Erucic ester 0 32.81 

Saturated compounds 42.17 4.64 
             an/a = not available 
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Table 7.2 Chemical properties of palm oil and mustard oil. 

Property  Palm Mustard 

Average molecular weight (g/mol) 853 947 

Triglyceride (mol/L)  0.97 0.52 

Diglyceride (mol/L)  0.15 0.01 

Acid value (mgKOH/g)  0.2 0.8 

Water content (ppm)  255 299 

 

 

7.4.2. Transesterification  

Transesterification of palm oil and mustard oil were conducted using a stirred reactor 

equipped with temperature and stirring speed controller model 4848 from Parr Instrument 

Company, IL, USA. For each experiment, 150 grams of oil was placed in the reactor. Methanol 

(6:1 alcohol to oil molar ratio) was mixed with KOH (1 wt.% with respect to oil) in a conical 

flask. The oil was first heated to 4-5°C above the reaction temperatures. The alkaline methanol 

solution was then poured into the reactor vessel bringing the temperature down to the desired 

reaction temperature ranging from 40°C-60°C. Finally, the reactor was sealed, the mechanical 

agitation was started, and the time was marked as initial point (t=0).  

 

7.4.3. Sample Preparation 

The reaction samples (5 mL) were taken from the reactor vessel during transesterification 

at 1, 2, 4, 6, 8, 10, 20, and 30 minute. The samples were immediately mixed with 5 mL of 0.01 N 

aqueous HCl solutions. During this period, HCl reacted with the catalyst KOH to produce water 
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soluble potassium salt (KCl). The KOH catalyst was neutralized and thereby stopping the 

transesterification reaction. The mixtures were centrifuged to form a two phase mixture; oil 

phase and aqueous phase. Emulsion is formed in between these two phases and its thickness 

varies proportionally with the amount of diglyceride and monoglyceride formed in the reaction 

mixture. Since diglyceride and monoglyceride are partly trapped inside the emulsion layer, the 

sample taken directly from the oil phase at this stage is not a good representative of the reaction 

mixture at a specific time. The compounds in aqueous phase are water, HCl, and KCl none of 

which is of our interest in this study, and therefore the aqueous phase was discarded. 

Dichloromethane (DCM) was used to extract organic compounds and sodium sulfate anhydrous 

which is previously dried in an oven was used for further removal of water. The sample was then 

centrifuged, DCM was evaporated. Part of methanol was removed along with the aqueous phase 

and the remaining methanol was evaporated along with DCM.  

The samples were then directly diluted with DCM for GC injection without derivatization 

due to the following reason. In GC, the mixture is separated mainly by boiling point and 

structure (imparting polarity). In some cases, derivatization is required because diglyceride and 

monoglyceride contain free hydroxyl groups, causing these materials not to be quantified well in 

GC. Derivatization of these compounds cause a change in their structure and polarity therefore 

improving peak shape and peak separation. Therefore, an experiment was set up by derivatizing 

a sample containing TG, DG, MG, and ME using N-Methyl-N-trimethylsilyltrifluoroacetamide 

(MSTFA) as a derivatizing agent. The derivatizing procedure is followed as per that specified in 

ASTM D6584 method excepting that DCM was used as a solvent instead of n-heptane. Shifts in 

retention time were observed but not peak shape or peak separation and most importantly the 



251 
 

resulting concentration of each compound was not affected. Therefore, it is concluded that under 

analyzing conditions and column used in this research, derivatization is not required.  

 

7.4.4. Characterization  

Acid values and water content were measured by means of titrations as per AOCS Te 1a-

64 method and ASTM D 6304-07 method. Fatty acid compositions analysis was performed on a 

gas chromatography (GC) model Agilent 7890A using J&W 122-2362 DB23 column (60 m x 

250 µm x 0.25 µm; 250°C max temperature), Split-splitless Inlet at 260°C, 23.3 psi, 100:1 Split 

ratio, 1 µL injection volume, and FID Detector, at 260°C, 40 mL/minute H2 flow rate, and 400 

mL/minute air flow rate. The program was set to start at 140°C and hold for 5 minutes, then 

ramp from 140°C to 240°C at 4°C/minute and hold for 10 minutes with a total run time of 40 

minutes. In order to measure TG, DG, MG, and ME content, the organic phase was analyzed by 

a GC model Agilent 7890A equipped with auto sampler using J&W 123-5711 DB-5HT column 

(15 m x 320 µm x 0.1 µm; 400°C max temperature), cool on-column Inlet with track oven 

temperature mode, 7.6 psi, 1 µL injection volume, and FID Detector, at 380°C, 40 mL/minute H2 

flow rate, and 400 mL/minute air flow rate.  The program was set to start at 50°C, ramp from 

50°C to 230°C at 5°C/minute, and ramp from 230°C to 380°C at 30°C/minute and hold for 18 

minutes with a total run time of one hour. For calibration methods of GC, 5 standards of each 

compound (TG, DG, MG, and ME) were prepared at 5 different concentrations. Each standard 

was injected 3 times into the GC and an average value was used to generate 5-point calibration 

curves for each component. All calibration curves yield r2 of more than 0.99 (see Appendix C). 

In general, internal standards are used for 2 purposes, peak identification and quantification. For 
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identification, 1,2,4-Butanetriol and 1,2,3-Tridecanolylglycerol (tricaprin) were used as internal 

standards along with TG, DG, MG, and ME standards mentioned in Section 7.3.  

Methanol concentrations were calculated based on a concept of number of mole of 

methanol consumed equals to number of mole of methyl ester formed. Based on the concept of 

number of mole of glycerol group in the reaction mixture is constant, glycerol concentrations 

were calculated from Equation 7.1 as follow: 

 

  GLiMGiDGiiTGMG0DG0TG0 n+n+n+n =n+n+n    …(Eq.7.1) 

 

where; nTG0 is initial number of mole of triglyceride, nDG0 is initial number of mole of 

diglyceride, nMG0 is initial number of mole of monoglyceride, nTGi is number of mole of 

triglyceride at time = i, nDGi is number of mole of diglyceride at time = i, nT=MGi is number of 

mole of monoglyceride at time = i, and nGLi is number of mole of glycerol at time = i. 

 

7.4.5. The Kinetic Model  

 The sequential reaction scheme shown in Figure 7.1 can be divided into six irreversible 

reactions. 

MEDGMeOHTG k +⎯→⎯+ 1         …(r1) 

MeOHTGMEDG k +⎯→⎯+ 2         …(r2) 

MEMGMeOHDG k +⎯→⎯+ 3         …(r3) 

MeOHDGMEMG k +⎯→⎯+ 4         …(r4) 

MEGLMeOHMG k +⎯→⎯+ 5         …(r5) 

MeOHMGMEGL k +⎯→⎯+ 6         …(r6) 
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Where;  TG is triglycerides, DG is diglycerides, MG is monoglycerides, GL is glycerol, MeOH is 

methanol, and ME is methyl ester. 

 

Upon applying rate law to these reactions, six differential equations can be written as 

]][[]][[ 21 MEDGkMeOHTGk
dt

dTG
+−=        …(Eq. 7.2) 

]][[]][[]][[]][[ 4321 MEMGkMeOHDGkMEDGkMeOHTGk
dt

dDG
+−−=    …(Eq. 7.3) 

]][[]][[]][[]][[ 6543 GLMEkMeOHMGkMEMGkMeOHDGk
dt

dMG
+−−=    …(Eq. 7.4) 

]][[]][[]][[]][[]][[]][[ 654321 GLMEkMeOHMGkMEMGkMeOHDGkMEDGkMeOHTGk
dt

dME
−+−+−=  …(Eq. 7.5) 

]][[]][[ 65 GLMEkMeOHMGk
dt

dGL
−=   …(Eq. 7.6) 

]][[]][[]][[]][[]][[]][[ 654321 GLMEkMeOHMGkMEMGkMeOHDGkMEDGkMeOHTGk
dt

dMeOH
+−+−+−=  …(Eq. 7.7) 

 

In addition; incatici k+Ck=k         …(Eq. 7.8) 

Here, i = 1, 2, 3, 4, 5, 6 and k1, k3, k5 are forward rate constants and k2, k4, k6 are reverse 

rate constants. In addition, the rate constants are influenced from catalyzed and non-catalyzed 

reactions, thus ki represents effective rate constants, kic represents rate constants for catalyzed 

reactions, kin represents rate constants for non-catalyzed reactions, and Ccat is the catalyst 

concentration. In this study, the reactions were performed at mild temperature (40-60°C), hence 

it is assumed that the rate constants for non-catalyzed reactions are insignificant and can be 

neglected. In addition, the catalyst concentration used in this study is considered as a constant (1 

wt.%), thus the effective rate constants can be directly estimated from Equations 7.2 to 7.7. It is 

noted that both primary and secondary DG can be formed from TG. However, the formation of 
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secondary DG is sterically hindered and, therefore, it is assumed that primary DG is the major 

DG formed in this study. Hence, all DG mentioned in this chapter is referred to primary DG. 

 

7.4.6. The MATLAB Program  

In order to estimate the values of the rate constants, a computer program was developed 

by incorporating regression and differential equation solvers using MATLAB version 7.7.0.471. 

The backgrounds in MATLAB programming can be found in MATLAB textbooks [16,17]. The 

program consists of 5 functions which are “inputvalue” for entering experimental data, 

“KinODE” for storing differential equations, “err” for defining error function, “main” for 

executing the program, and “plotgraph” for generating graph. These functions are written in 

MATLAB program as shown in Appendix D. 

Initially, the experimental data were inserted in the “inputvalue” function. C was then 

defined as concentrations of each species at various times in time and species dimension matrix. 

Equations 7.2 to 7.7 were stored in the function “KinODE”. These differential equations were 

solved using a built-in MATLAB command “ode45” which employs 4th and 5th order Runge-

Kutta formular. The Cerror metrix was defined as the differences between experimental values 

and calculated values. 

 

  |C-C| =C expcalerror        …(Eq. 7.9) 

 

Where Ccal and Cexp are matrices that store output elements from calculation and 

experimental value elements, respectively. The error function output “err” was then defined as a 

summation of all elements in Cerror matrix. This error function output was then minimized 
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using another built-in MATLAB command “fminsearch” which employs the Nelder-Meade 

simplex algorithm [18]. The “fminsearch” command accepted input vector KI, i.e. initial guess 

values of k1 to k6, and returned scalar err and minimized it. The “fminsearch” command is not a 

preferred choice for solving problems of sum of squares; therefore the error function was defined 

based on sum of absolute values in the matrix Cerror instead of squares of each species in vector 

form (see Equation 7.9). The initial guess values are crucially important as improper guess 

values lead to a stiff problem. When the problem is stiff, the returned C values change rapidly 

between each step size, therefore the program must take a smaller step to obtain satisfactory 

results which leads to a change in dimension of metrix Ccal, rendering Cerror undefined. The 

most effective way to avoid this problem is to choose initial guess values appropriately. 

Alternatively, “fminunc” which uses a different algorithm based on quasi-Newton or interior-

reflective Newton method may be used to find the minimum value of the error function.  

  The rate constants of each reaction step varied with reaction temperature. The Arrhenius 

equation (Equation 7.10) shows temperature dependency of the rate constant. 

 

 
)

RT
-E

( a

Ae=k          …(Eq. 7.10) 

 

Where k is the rate constant; A is pre-exponential factor; Ea is the activation energy; R is 

the gas constant; T is reaction temperature. From this equation, the activation energy can be 

calculated by plotting logarithm of the rate constant versus the reciprocal of the reaction 

temperature [11].  
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7.5. Results and Discussions 

7.5.1. The Mass Transfer Effect 

The observed rate, also known as “apparent rate”, obtained from experimental data is 

influenced by mass transfer effect. In a kinetic study, the experiment should be conducted in 

such a way that the observed rate is representative of the kinetic rate, which is achieved when the 

mass transfer effect is minimal. The mass transfer effect is the period that there is no reaction 

going on and yet is recorded as “reaction time” during an experiment. This period is associated 

with the time that triglyceride molecule spends in order to move into methanol phase and 

collides with methanol molecule. This period occurs at the initial part of the reaction and is often 

referred to as “mass transfer-controlled region”. In some cases, the effect of mass transfer is 

visible as shown in Figure 7.3a. When an experiment was conducted at agitation speed of 200 

rpm, triglyceride takes long time to move into methanol phase and to collide with methanol 

molecule. During this period, there is little to no reaction taking place and the mass transfer 

effect is shown in terms of low TG conversion. In contrast, when the reaction was performed at 

agitation speed of 600 rpm, the TG conversion increased immediately indicating that the mass 

transfer effect was reduced. Figure 7.3b shows the effect of agitation speed (200, 400, 600, 800 

rpm) on TG conversion. An increase in stirring speed helps with mass transfer in the reaction 

mixture but it is not associated with kinetics of the reaction. Therefore, if the reaction is mass 

transfer controlled, an increasing in stirring speed would cause an increase in TG conversion. 

However, if the reaction is kinetically controlled, stirring speed will have no effect on the 

observed TG conversion.   
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Figure 7.3 Effect of stirring speed during palm oil transesterification at 60°C on  

a) TG conversion using 200 and 600 rpm;  

b) TG conversion at 1 minute using 200, 400, 600, and 800 rpm. 
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The results in Figure 7.3b indicate that mass transfer is minimized at 600 rpm and any increase in 

agitating speed beyond 600 rpm causes no change in TG conversion. Therefore, it is concluded 

in this work that a stirring speed at 600 rpm is sufficient to neglect the effects of mass transfer 

and for calculating kinetics of the reaction.  

The use of solvent is another approach to reduce the mass transfer effect. However, it was 

not included in the present chapter due to the following reason. An addition of solvent causes 

change in concentrations of each component, and “apparent rate of the reaction” is altered. As a 

result, the apparent rate obtained from a study using solvent is not relevant to processes without 

using solvent that currently employed in this research and by many biodiesel manufacturers. An 

addition of solvent helps to improve mass transfer usually occurred only during the first few 

minutes of the reaction. The added costs of using solvent seem unnecessary when the reaction 

gets close to equilibrium within less than 10 minutes without solvent as shown in this chapter. In 

addition, although the reaction mixture is rendered single phase via addition of solvent, 

triglyceride molecules still need time to move and collide with methoxide prior to reaction and 

therefore the mass transfer effect is not eliminated, consequently the observed rate is still 

“apparent rate”. Therefore, an addition of solvent is believed to be an unnecessary complication 

and not being used in this chapter and by many kinetic studies [4-7,19]. 

 

7.5.2. Repeatability 

Repeatability is one of the most important factors in this experiment. Each reaction was 

conducted three times at the same condition and the average values were used in the kinetic 

models. Figure 7.4 shows actual and average data for a typical transesterification run, which 

illustrates that the experimental errors for each experiment are trivial. The concentrations of the 
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reaction mixture during palm oil and mustard oil transesterification are shown in Figure 7.5. It is 

observed that the initial changes during the first 10 minutes of the reaction are most vital whereas 

the concentration changes after 10 minutes of the reaction are relatively insignificant. This 

observation is expected due to the nature of the rapid rate of KOH-catalyzed transesterification. 

 

7.5.3. The Rate Constants and Activation Energies 

Figure 7.6 shows experimental versus simulated data obtained from the MATLAB 

programs during reaction at 60°C. It is observed that the simulated curves adequately fit with the 

experimental data. The pearson’s correlation coefficients are calculated based on an equation 

reported in literature [20] and found to be more than 0.9. An increasing trend in the rate of 

methyl ester formation with reaction temperature found in Figure 7.7 confirms that the reaction 

is favoured at higher temperatures, in line with those reported in literatures [6,7,9,10,21].  

The main difference between palm and mustard oil that has most influence on kinetics of 

transesterification is their fatty acid compositions (see Table 7.1). The two main differences in 

fatty acid compositions between palm and mustard oil are amount of saturated compound and 

chain length distribution. The rates of each reaction steps are affected differently by these 

properties, i.e., TG to DG reaction step is affected by the amount of saturated compound while 

MG to GL reaction step is more influenced by the chain length distribution. Palm oil has more 

saturated compounds (42.2%) compared to mustard oil (4.6%) making it more stable due to 

structural arrangement and molecular stacking, which is resulted in stronger intermolecular 

forces and therefore more difficult to transesterify. Consequently, for each reaction temperature, 

the rate constants of TG to DG reaction step (k1) in palm oil transesterification are lower than 

those in mustard oil transesterification as shown in Table 7.3.  
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Figure 7.4 Concentrations change during palm oil transesterification at 60°C and 600 rpm: 

a) triglyceride concentration; b) diglyceride concentration;  

c) monoglyceride concentration; d) methyl ester concentration. 
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Figure 7.5 Concentrations of the reaction mixture during  

a) palm oil; b) mustard oil transesterification at 60°C and 600 rpm. 
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Figure 7.6 Experimental and simulated data during palm oil transesterification at 60°C:  

a) triglyceride concentration; b) diglyceride concentration; c) monoglyceride concentration;  

d) methyl ester concentration; e) glycerol concentration; f) methanol concentration. 
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Figure 7.7 Experimental and simulated methyl ester concentrations during                                      

a) palm oil; b) mustard oil transesterification. 
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Table 7.3 The rate constants of each reaction step during transesterification. 

Reaction Direction 
Rate 

constant 

Palm oil Mustard oil 

40°C 50°C 60°C 40°C 50°C 60°C 

TG ↔ DG Forward k1 0.07 0.12 0.14 0.11 0.14 0.21 

Reverse k2 0.10 0.17 0.06 0.10 0.11 0.02 

DG ↔ MG Forward k3 0.31 0.61 0.60 0.55 0.63 1.04 

Reverse k4 0.64 1.52 1.24 0 0 0 

MG ↔ GL Forward k5 1.15 2.56 4.18 0.19 0.26 0.64 

Reverse k6 0.02 0.01 0.02 0 0.04 0.01 

 

 

In contrast, mustard oil has unique fatty acid composition containing erucic acid as the main fatty 

acid (see Table 7.1). This specific fatty acid has untypically long carbon chain, thus rendering 

lower molecular polarity compared to palm oil. Due to the lower molecular polarity, MG of 

mustard oil has lower tendency to attract methoxide for reaction to form ME and GL. This 

phenomenon is exhibited in terms of lower rate constants of MG to GL reaction step (k5) of 

mustard oil transesterification compared to those of palm oil (see Table 7.3).  

Although it is well know that transesterification is a reversible reaction, further 

understanding on this regard can be obtained from a kinetic study. Each reverse rate constant 

gives information to reversibility of the corresponding reaction step. It is observed that the values 

of reverse rate constants are not zero (except k4 in mustard oil transesterification) which indicates 

that the reaction steps of TG to DG, DG to MG, and MG to GL are reversible. The exceptionally 

low values of k6 indicate that the reaction step of MG to GL is less reversible. This observation is 
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due to phase separation of glycerol from oil phase; however the reverse reaction can still take 

place at the glycerol-methyl ester interface rendering a small positive value of k6. The rate 

constants k5 of mustard oil transesterification are significantly lower than those of palm oil 

transesterification due to the effect of chain length distribution discussed above. Once formed, 

MG has a better chance to proceed with the forward reaction step by reacting with methanol to 

form GL rather than to reverse the reaction step by reacting with ME to form DG. Therefore, the 

reverse rate constants are lower than the forward rate constants. Since the forward reaction step 

is very slow (low value of k5), the reverse rate constants (k4) are unnoticeable (see Table 7.3). In 

addition, it is found that the rate constant k1 is the lowest among forward rate constants 

indicating that the reaction step involving TG to DG is the rate determining step (RDS) that 

controls the kinetic of overall transesterification of palm oil and mustard oil. Moreover, when the 

reaction temperature is increased, the rate constant of RDS is also increased. This finding 

indicates that the reaction is favoured at higher reaction temperatures. 

Activation energies (Ea) of the rate determining step were calculated from Arrhenius 

plots (see Figure 7.8) and are presented in Table 7.4. The activation energy is the minimum 

energy required for a reaction to take place. The activation energies of TG to DG reaction step 

for palm oil transesterification are reported at various values ranging from 27.3 to 61.5 kJ/mol 

[22,23]. In the present chapter, the activation energy of RDS of plam oil transesterification is 

found to be 30.2 kJ/mol, which is within the range reported in the literature and is also 

comparable to that reported for sunflower oil transesterification (31.6 kJ/mol) [7]. The lower 

activation energy of RDS of mustard oil transesterification is observed at 26.8 kJ/mol. The two 

main factors that affect kinetics of transesterification are amount of saturation compounds 

affecting TG to DG reaction step and chain length distribution affecting MG to GL reaction step.  
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Figure 7.8 Arrhenius plots of the rate determining step:                                                          

a) palm oil transesterification; b) mustard oil transesterification. 
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Table 7.4 Activation energy of the rate determining step of transesterification. 

Feedstock 
Activation energy 

(kJ/mol) 

Palm oil 30.2 

Mustard oil 26.8 

Sunflower oil [7] 31.6 

 

 

It is found in this chapter that percentage of saturation compounds is more important in 

transesterification kinetics because of TG to DG reaction step being RDS. Therefore, palm oil 

which has higher percentage of saturated compounds is more difficult to transesterify as 

compared to mustard oil and this is shown in terms of the higher Ea of palm oil 

transesterification.  

 

7.6. Conclusions 

The transesterification kinetics depends greatly on fatty acid composition of vegetable 

oils that affects percentage of saturated compounds and chain length distribution. Although both 

parameters play a vital role in transesterification kinetics and affect each reaction step 

differently, percentage of saturated compounds is concluded to be more important factor in this 

work. This is because the TG to DG reaction step that was found to be RDS of the reaction is 

mostly affected by the percentage of saturated compounds rather than chain length distribution. 

This finding is manifested in terms of the higher activation energy of TG to DG reaction step in 

palm oil transesterification (30.2 kJ/mol) that has higher percentage of saturated compounds 
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compared to that of mustard oil transesterification (26.8 kJ/mol). In addition, it was found that 

the reaction steps are reversible and transesterification is favored at elevated temperature. Also, 

the mass transfer effect is minimized and the reaction is kinetically controlled when an agitation 

speed of 600 rpm is used for around 185 g of the reaction mixture.  
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Abbreviations 

DCM  Dichloromethane 

DG  Diglyceride 

Ea  Activation energy 

FAME  Fatty acid methyl ester 

GC  Gas chromatography 

GL  Glycerol 

HPLC  High performance liquid chromatography 

KCl  Potassium chloride 

ki  Rate constant of the reaction step i in Section 7.4.5. 

KOH  Potassium hydroxide 

ME  Methyl ester 

MeOH  Methanol 

MG  Monoglyceride 

MSTFA N-Methyl-N-trimethylsilyltrifluoroacetamide 

RDS  Rate limiting step 

TG  Triglyceride 
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CHAPTER 8 

 

Conclusions and Recommendations 

 

8.1. Conclusions 

It is found that a high quality biodiesel can be obtained from non-edible oils. Used 

cooking oil (UCO) is one of the most attractive feedstock to both researchers and commercial 

manufacturers. The properties such as acid value (AV) and viscosity of used cooking oil change 

constantly during the course of cooking. This property change depends on cooking environment 

such as type of food, cooking temperature and cooking duration. In addition, used cooking oil 

with different origin can exhibit different properties. It is shown in this thesis that fatty acid 

composition of used cooking oil originated from extended life canola oil is different than that of 

used cooking oil originated from canola oil, i.e., used cooking oil originated from extended life 

canola oil has lower degree of unsaturation than that originated from canola oil. Not only fatty 

acid compositions, but AV of each oil is different, i.e., AV of UCO are 1.5 and 2.5 mgKOH·g-1, 

respectively. All properties such as fatty acid compositions, AV, water content, and minor 

components contained in the oil are required to be taken into account when used as biodiesel 

production feedstock as they affect the reaction conversion as well as biodiesel properties. It is 

found that the optimum condition for biodiesel production are 1% KOH loading, 6:1 alcohol to 

oil ratio, 600 rpm stirring speed, and either 50°C for 2 h or 60°C for 1.5 h for methanolysis and 

60°C for 2 h for ethanolysis. Under the optimum condition, methyl ester yield derived from UCO 

were 92-95%. The effects of these inferior properties such as higher acid value of used cooking 
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oil on reaction conversion can be reduced by mixing it with edible oil such as canola oil. It is 

found in this thesis that addition of 20% canola oil to used cooking oil increased methyl ester 

yield and ethyl ester yield by 0.5% and 12.2%, respectively. At least 60% canola oil addition is 

needed to produce ASTM grade ethyl ester biodiesel. 

Greenseed canola oil does not have high acid value problem but it has high chlorophyll 

content. Bleaching of greenseed canola oil prior to transesterification is found to help improve 

oxidative stability of biodiesel. It is found that a 12 minutes enhancement in induction time was 

observed from methyl ester derived from treated greenseed canola oil (pigment content = 0.5 

ppm) as compared to that derived from crude greenseed canola oil (pigment content = 94.1 ppm). 

The optimum bleaching process involves the use of 7.5 wt.% montmorillonite K10 at 60°C and 

stirring speed of 600 rpm for 30 minutes. In addition, it was found that induction time of treated 

greenseed canola ethyl ester (1.8 h) was higher than that of methyl ester (0.7 h), which suggests a 

better oxidative stability of esters of higher alcohols. However, bleaching and transesterification 

cannot be combined into a single step due to sorption of the KOH catalyst on the bleaching clay. 

Due to high erucic acid content in mustard oil, it is considered as non-edible oil. It was 

more difficult to transesterify monoglyceride of this oil compared to that of edible oil such as 

canola oil and soybean oil. The ester yield was only 66% and unconverted monoglyceride was 

around 30%. Distillation was used in order to achieve a high quality mustard biodiesel and no 

trace of unconverted monoglyceride can be seen in HPLC chromatogram of mustard biodiesel 

after distillation. The resulting biodiesel exhibits great potential as lubricating additive especially 

mustard oil methyl ester. Wear reduction at 1% treat rate of methyl ester, ethyl ester, propyl 

ester, and butyl ester are 43.7%, 23.2%, 30.7% and 30.2%, respectively.  
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From the kinetic study, it is generally concluded that different vegetable oils with 

different fatty acid compositions can be transesterified at different reaction rate and difficulty. 

More specifically, mustard monoglyceride is found to be transesterified at a slower rate (rate 

constant = 0.2-0.6 L·mol-1·min-1) when compared to palm monoglyceride (rate constant = 1.2-4.2 

L·mol-1·min-1) due to its molecular arrangement and lower molecular polarity resulting from the 

longer chain of erucic acid. However, the triglyceride counterpart which controls the kinetics of 

the overall reaction suggests differently, i.e., the activation energies of palm oil and mustard oil 

transesterification are 30.2 and 26.8 kJ/mol, respectively, due to the higher degree of saturation 

of palm oil.  
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8.2. Recommendations 

1. Since various non-edible oils require different production processes, an economical 

analysis of these processes can be greatly valuable. 

2. A study on energy balance of each process should serve as vital information for biodiesel 

consumers, manufacturers, and policy makers. 

3. In Chapter 5, the effect of chlorophyll on oxidative stability is reported. It is 

recommended that effects of antioxidant addition are investigated. In addition, greenseed 

canola oil can be mixed with highly stable oil such as palm oil to improve biodiesel 

oxidative stability. 

4. Profound understanding on biodiesel lubricity requires further research such as a study on 

the rate of biodiesel-metal surface reaction and micelle formation/deformation during 

lubricating duration. Scanning electron microscope (SEM) may be used to look at 

transfer films and surface wear of the HFRR sample to extract more information on the 

lubricating property of biodiesel. 

5. Effects of alcohol used on transesterification kinetics can be useful. For example, 

competitive kinetics of methanolysis and ethanolysis in mixed methanol-ethanol can be 

investigated. 

6. Heterogeneous catalysis has strong tendency to dominate biodiesel industry and therefore 

a development of novel heterogeneous catalysts is recommended. 

7. Epoxidation of ester may be investigated to enhance low temperature properties of 

biodiesel.  
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APPENDIX A 

 

HPLC Calibration 

 

 

 

Figure A1 Chromatogram of a triolein standard. 
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Figure A2 Chromatogram of a diolein standard. 

 

 

 

Figure A3 Chromatogram of a monoolein standard. 
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Figure A4 Chromatogram of a methyl oleate standard. 

 

 

 

Figure A5 Chromatogram of a standard mixture. 
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Figure A6 Chromatogram of a standard mixture with glycerol. 

 

 

 

 

Figure A7 Triglyceride calibration curve. 
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Figure A8 Diglyceride calibration curve. 

 

 

 

 

 

Figure A9 Monoglyceride calibration curve. 
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Figure A10 Ester calibration curve. 

 

 



 
 

APPENDIX B 

FAME Standard for GC Analysis 

 

Figure B1 Chromatogram of FAME standard (10 mg/mL FAME in methylene chloride). 
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APPENDIX C 

 

GC Calibration 

 

 

 

Figure C1 Triglyceride calibration curve. 
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Figure C2 Diglyceride calibration curve. 

 

 

 

 

Figure C3 Monoglyceride calibration curve. 
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Figure C4 Ester calibration curve. 
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APPENDIX D 

 

MATLAB Program for Transesterification Kinetics 

 
 
 
 

MATLAB Function for Inserting Experimental Data 

Function Name – inputvalue 

 

% ************ Reaction Time; Unit – Minutes ************** 

texp=[0 1 2 4 6 8 10 20 30]; 

 

% ************ Concentrations; Unit – mol/L ************** 

TG=[0.97482 0.56344 0.168453333 0.084426667 0.075804 0.051533333 0.036813333 
0.030453333 0.0142]; 

DG=[0.155 0.0925 0.043333333 0.042533333 0.0278 0.025 0.023433333 0.0078 0.006833333]; 

MG=[0 0.01988 0.013346667 0.008653333 0.004786667 0.003693333 0.003826667 0.0026 
0.00276]; 

ME=[0 1.33926 2.629086667 2.88746 2.946661333 3.026166667 3.073326667 3.1249 
3.175433333]; 

GL=[0 0.454 0.904686667 0.994206667 1.021429333 1.049593333 1.065746667 2.72402 
2.673486667]; 

MeOH=[5.84892 4.50966 3.219833333 2.96146 2.902258667 2.822753333 2.775593333 
1.088966667 1.106026667]; 
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MATLAB Function for Ordinary Differential Equations 

Function Name – KinODE 

 

function dCdt=KinODE(t,Cinput,K) 

global k1 k2 k3 k4 k5 k6; 

 

% ************ Define Concentration and Rate Constant Parameters ************** 

C1 = Cinput(1); 

C2 = Cinput(2); 

C3 = Cinput(3); 

C4 = Cinput(4); 

C5 = Cinput(5); 

C6 = Cinput(6); 

k1 = K(1); 

k2 = K(2); 

k3 = K(3); 

k4 = K(4); 

k5 = K(5); 

k6 = K(6); 

 

% ************ Ordinary Differential Equations ************** 

dCdt = [-k1*C1*C6+k2*C2*C4;... 

    k1*C1*C6-k2*C2*C4-k3*C2*C6+k4*C3*C4;... 

    k3*C2*C6-k4*C3*C4-k5*C3*C6+k6*C4*C5;... 

    k1*C1*C6-k2*C2*C4+k3*C2*C6-k4*C3*C4+k5*C3*C6-k6*C4*C5;... 

    k5*C3*C6-k6*C4*C5;... 

    -k1*C1*C6+k2*C2*C4-k3*C2*C6+k4*C3*C4-k5*C3*C6+k6*C4*C5]; 
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MATLAB Function for Error Function 

Function Name – err 

 

 

function error=err(KI) 

run inputvalue 

 

% ************ Define Concentration and Step Time ************** 

CExp = [TG; DG; MG; ME; GL; MeOH]; 

Cini = CExp(:,1); 

tspan = (0:1:30); 

 

% ************ Solving Ordinary Differential Equations ************** 

[t,C] = ode45(@KinODE,tspan,Cini,[],KI); 

disp(C); 

 

TGc=C(:,1)'; 

DGc=C(:,2)'; 

MGc=C(:,3)'; 

MEc=C(:,4)'; 

GLc=C(:,5)'; 

MeOHc=C(:,6)'; 

 

TGcal=[TGc(t==0),TGc(t==1),TGc(t==2),TGc(t==4),TGc(t==6),TGc(t==8),TGc(t==10),TGc(t
==20),TGc(t==30)]; 

DGcal=[DGc(t==0),DGc(t==1),DGc(t==2),DGc(t==4),DGc(t==6),DGc(t==8),DGc(t==10),DGc
(t==20),DGc(t==30)]; 
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MGcal=[MGc(t==0),MGc(t==1),MGc(t==2),MGc(t==4),MGc(t==6),MGc(t==8),MGc(t==10),
MGc(t==20),MGc(t==30)]; 

MEcal=[MEc(t==0),MEc(t==1),MEc(t==2),MEc(t==4),MEc(t==6),MEc(t==8),MEc(t==10),ME
c(t==20),MEc(t==30)]; 

GLcal=[GLc(t==0),GLc(t==1),GLc(t==2),GLc(t==4),GLc(t==6),GLc(t==8),GLc(t==10),GLc(t
==20),GLc(t==30)]; 

MeOHcal=[MeOHc(t==0),MeOHc(t==1),MeOHc(t==2),MeOHc(t==4),MeOHc(t==6),MeOHc(t
==8),MeOHc(t==10),MeOHc(t==20),MeOHc(t==30)]; 

Ccal = [TGcal; DGcal; MGcal; MEcal; GLcal; MeOHcal]; 

 

% ************ Define Error Parameter ************** 

CError = abs(Ccal-CExp); 

n=1; 

error = sum(sum(CError))/n; 
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MATLAB Function for Main Function 

Function Name – main 

 

clear 

run inputvalue 

 

% ************ Initial Guess for Rate Constants ************** 

KI = [0.4 0.02 0.8 2 4 0.005]; 

 

% ************ Regression ************** 

[k,fval] = fminsearch(@err,KI); 

 

% ************ Optional Regression Command ************** 

%[k,fval] = fminunc(@err,KI); 

 

 

% ************ Define Concentration and Step Time ************** 

CExp = [TG; DG; MG; ME; GL; MeOH]; 

Cini = CExp(:,1); 

tspan = (0:1:30); 

 

% ************ Solving Ordinary Differential Equations ************** 

[t,C]=ode45(@KinODE,tspan,Cini,[],k); 

TGc=C(:,1)'; 

DGc=C(:,2)'; 

MGc=C(:,3)'; 

MEc=C(:,4)'; 
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GLc=C(:,5)'; 

MeOHc=C(:,6)'; 

TGcal=[TGc(t==0),TGc(t==1),TGc(t==2),TGc(t==4),TGc(t==6),TGc(t==8),TGc(t==10),TGc(t
==20),TGc(t==30)]; 

DGcal=[DGc(t==0),DGc(t==1),DGc(t==2),DGc(t==4),DGc(t==6),DGc(t==8),DGc(t==10),DGc
(t==20),DGc(t==30)]; 

MGcal=[MGc(t==0),MGc(t==1),MGc(t==2),MGc(t==4),MGc(t==6),MGc(t==8),MGc(t==10),
MGc(t==20),MGc(t==30)]; 

MEcal=[MEc(t==0),MEc(t==1),MEc(t==2),MEc(t==4),MEc(t==6),MEc(t==8),MEc(t==10),ME
c(t==20),MEc(t==30)]; 

GLcal=[GLc(t==0),GLc(t==1),GLc(t==2),GLc(t==4),GLc(t==6),GLc(t==8),GLc(t==10),GLc(t
==20),GLc(t==30)]; 

MeOHcal=[MeOHc(t==0),MeOHc(t==1),MeOHc(t==2),MeOHc(t==4),MeOHc(t==6),MeOHc(t
==8),MeOHc(t==10),MeOHc(t==20),MeOHc(t==30)]; 

Ccal = [TGcal; DGcal; MGcal; MEcal; GLcal; MeOHcal]; 

 

% ************ Number of Data Point for each Species ************** 

N = 9;  

 

% ************ Pearson Correlation Coefficient ************** 

for i = 1:6 

r(i) = (N*sum(CExp(i,:).*Ccal(i,:))-sum(CExp(i,:))*sum(Ccal(i,:)))/sqrt((N*sum(CExp(i,:).^2)-
(sum(CExp(i,:)))^2)*(N*sum(Ccal(i,:).^2)-(sum(Ccal(i,:)))^2)); 

end 
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% ************ Display Simulation Results ************** 

run plotgraph 

disp(C); 

disp('Rate constants: k1, k2, k3, k4, k5, k6'); 

disp(k); 

disp('Pearson correlation coefficient: TG, DG, MG, ME, GL, MeOH'); 

disp(r); 
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MATLAB Function for Graphical Display 

Function Name – plotgraph 

 

% ************ Example for Plotting TG Concentrations ************** 

plot(texp,CExp(1,:),'ro',texp,TGcal,'bo',t,C(:,1),'b-'); 
 
legend('experimental values','simulated values'); 
xlabel('time(min)'); 
ylabel('concentration(mol/L)'); 
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APPENDIX E 

 

Preliminary Economic Analysis 

 

 

It was found from this thesis that an ASTM grade biodiesel can be produced from various 

feedstocks including canola oil, used cooking oil, greenseed canola oil, mustard oil, and soybean 

oil. It can be assumed that ASTM grade biodiesel may be sold at the same price regardless of 

feedstock used in the production processes; therefore, the feedstock cost is the major factor 

determining economic feasibility of biodiesel. The cost of feedstocks used in this research is 

presented in Table E1. Based on the data presented in Table E1, used cooking oil (UCO) seems 

to have an economical advantage over other vegetable oils. Economical analysis of biodiesel 

production from fresh vegetable oil and UCO has been reported in literature [1]. It is shown that 

the production process of biodiesel derived from UCO has higher fixed capital cost due to the 

added cost of acid-pretreatment unit. However, the production cost of biodiesel derived from 

fresh vegetable oil (palm oil in this study) was much higher than that derived from UCO, i.e., 

7491 Euros/day for palm oil vs 3822 Euros/day for UCO. This is because the price of palm oil, 

which was 7054 Euros/day, is accounted for more than 90% of the total production cost while 

the price of UCO was only 3037 Euros/day. The payback investment period of biodiesel 

production process from palm oil and UCO was 12 and 10 years, respectively. Therefore, it was 

concluded that UCO has an economical advantage as feedstock for biodiesel production.  
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As part of life cycle analysis (LCA), global warming potential (GWP) analysis shows that 

for the production of 1 ton of biodiesel from UCO, the pretreatment of UCO and 

transesterification of UCO created 75 and 225 kg CO2 equivalent, respectively, while the 

collection and delivery of UCO did not contribute to the GWP [2]. Moreover, LCA shows that 

the biodiesel production process using UCO as feedstock has lower environmental impact than 

those using fresh vegetable oil as feedstock [1].  

Despite the seemingly economical and environmental attraction of UCO, its price and 

availability can be fluctuated and the cheapest and lowest quality UCO may not always be 

available in large quantity. Therefore, utilization of other inedible oils will also play a vital role 

in biodiesel industry. 

 

 

Table E1 Prices of feedstocks for biodiesel production. 

Feedstock Price (CDN $/Tonne) Reference

Rapeseed oil 1314a 3 

Soybean oil 1222a 4 

Greenseed canola oil n/ab - 

Mustard oil 550a 5 

Used cooking oilc -110 to 110 6 

aData in 2011. 
bThe price of greenseed canola oil is not available because greenseed canola oil is usually converted into canola oil 
prior to distribution, however the canola greenseed price may be dropped by up to $30 per tonne [7] when compared 
to canola seed due to an increased oil-refining cost.  
cThis is referred to brown grease that have FFA >20%. 
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