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ABSTRACT 
 
A series of relatively recent bridge failures due to pier scour, as reported in literature, 

has rekindled interest in furthering our understanding of the scour process and for 

developing improved ways of protecting bridges against scour. Moreover, increased 

attention is being given to the state of Canada�s infrastructure, a major aspect of which 

is the transportation network.  In part, there is concern about both the impact of a failure 

on the handling of traffic flow while the failure is being remedied and on the cost of 

replacing the failed system component.  As such, attention is being given to the scour 

design of new bridges and to the inspection, maintenance and management of existing 

bridge structures.  The two major countermeasure techniques employed for preventing 

or minimising local scour at bridge piers are increased scour resistance and flow 

alteration.  In the former case, the objective is to combat the erosive action of the scour-

inducing mechanisms using hard engineering materials or physical barriers such as rock 

riprap.  In the latter case, the objective is to either inhibit the formation of the scour-

inducing mechanisms or to cause the scour to be shifted away from the immediate 

vicinity of the pier.  This research focuses on a particular application of the latter 

technique. 

 
In this study, the use of collars for reducing the effects of local scour at a bridge pier is 

presented together with the time aspect of the scour development.  The adoption of a 

collar is based on the concept that its existence will sufficiently inhibit and/or deflect the 

local scour mechanisms so as to reduce the local scour immediately adjacent to the pier.  

The overall objective of the research is to study the temporal development of the scour 

for a pier fitted with a collar and a pier without a collar.  More specifically, the 

objectives are: i) to evaluate the effectiveness of a pier collar for mitigating the depth of 

scour that would otherwise occur at a bridge pier; and ii) to assess the occurrence of an 

equilibrium scour condition, if achieved, or of the implications of not achieving such a 

condition in respect of interpreting the results obtained from a physical hydraulic model 

study.   
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The study was conducted using a physical hydraulic model operated under clear-water 

conditions in cohesionless bed material.  Tests were conducted using two different pier 

diameters so as to determine the effect of pier diameter on the temporal development of 

scour for a plain pier.  Also investigated was the effect of collar size on the time 

development of scour and its efficacy at preventing scour at a bridge pier.  The time 

development of the scour hole around the model pier with and without a collar installed 

was compared with similar studies on bridge piers. Several equations for the temporal 

development of scour depth and those for the prediction of the equilibrium scour depth 

were tested as part of this study. 

 
The results of the model study indicated that the maximum depth of scour is highly 

dependent on the experimental duration.  The depth of the scour hole increases as the 

duration of the increased flow that initiates the scour increases.  The extent of scour 

observed at the pier also increases as the duration of the tests increases.  It was found 

that the temporal development of the scour hole at the pier was dependent on whether or 

not the pier was fitted with a collar placed at the bed level.  The pathway to an 

equilibrium scour depth is different depending on whether the pier is fitted with a collar 

or not. With a collar in place, the development of the scour hole is considerably delayed.  

A truly equilibrium scour condition is not readily attainable and was not achieved in the 

work reported herein.  It was demonstrated that wrong conclusions may be reached if a 

test is stopped short of an equilibrium state. As regards the temporal development of 

scour depth and for the tests in which no collar was fitted to the pier, it was noted that 

the form of equation that fits the experimental data well was the one given by Franzetti 

et al. (1982).  Furthermore, it is possible to reach a variety of conclusions about the 

efficacy of using collars as a pier scour countermeasure technique, depending on which 

definition of time to equilibrium scour is adopted. 
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NOMENCLATURE 

                Units 

A Area           m2 

B Pier width for non circular pier      mm 

B Constant in Franzetti et al. (1982) equation       - 

C Constant in Franzetti et al. (1982) equation       - 

D Diameter of pier        mm 

d16 Grain size for which 16% by weight of the sediment is finer   mm 

d50 Median size of the sediment particle       mm 

d84 Grain size for which 84% by weight of the sediment is finer   mm 

ds Depth of scour below the original bed level at abutments    mm 

F Coefficient in the adjusted Sumer et al. (1993) equation     - 

Fr Froude number          - 

Fd Densimetric Froude number         - 

g  Acceleration due to gravity        m/s2 

g` Relative gravitational acceleration       m/s2 

G Coefficient in the adjusted Sumer et al. (1993) equation     - 

h Height below the channel bed        mm 

K Constant            - 

ks  Grain roughness         mm 

n Manning�s n           - 

ρs Sediment density               kg/m3 

ρ  Water density                kg/m3 

R Hydraulic radius          m 

Rb Reynolds number           - 

t Time           hrs 

So Total energy slope         m/m 

T• Water temperature         oC 

T, T1 Dimensionless time scale         - 

te Time to equilibrium scour depth       hrs 
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τ* Dimensionless stress          - 

τc Critical shear stress         N/m2 

τa Actual shear stress         N/m2 

u* Shear velocity         m/s 

u*c Critical shear velocity        m/s 

u Mean approach flow velocity       m/s 

uc Critical velocity         m/s 

ν Kinematic viscosity         m2/s 

W Width of collar         mm 

Y Vertical position        mm 

yc Collar position above the initial channel bed      mm 

yo Flow depth          mm 

ys Depth of scour below the original bed level at bridge pier    mm 

yse Equilibrium scour depth        mm 

γ Specific weight of  water                  kN/m3 

γs Specific weight of the sediment material                kN/m3 

Zc The elevation of the collar with respect to the channel bed at abutments  mm 

σg Geometric standard deviation of the sand size       - 

ŵ Fall velocity of sediment particle       m/s 
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CHAPTER 1 

INTRODUCTION  

1.1 Background 

Scour is defined as the erosion of streambed sediment around an obstruction in a flow 

field (Chang 1988).  The mechanism has the potential to threaten the structural integrity 

of bridges and hydraulic structures, ultimately causing failure when the foundation of 

the structures is undermined.  A series of relatively recent bridge failures due to pier 

scour, as reported in the literature (e.g., Wardhana and Hadipriono (2003)), has 

rekindled interest in furthering the understanding of the pier scour process and for 

developing improved ways of protecting bridges against the ravages of scour.  In this 

regard, it is interesting to note the statement by Lagasse and Richardson (2001) that, in 

the United States, �hydraulic factors such as stream instability, long-term streambed 

aggradation or degradation, general scour, local scour, and lateral migration are blamed 

for 60% of all U.S. highway bridge failures.�  Hoffmans and Verheij (1997) have also 

noted that local scour around bridge piers and foundations, as a result of flood flows, is 

considered to be the major cause of bridge failure.   

Scour was found to be the main cause of the 1987 Scholarie Creek Bridge failure in 

New York in which 10 people were killed (Ting et al. 2001; Wardhana and Hadipriono 

2003).  The 1989 catastrophic collapse of a U.S. 51 bridge over the Hatchie River in 

Tennessee resulted in the death of eight people (Lagasse and Richardson 2001).  In 

another example by Lagasse and Richardson (2001), �the southbound and northbound 

bridges on Interstate 5 over Arroyo Pasajero (Los Gatos Creek) in California collapsed 

during a large flood; four vehicles plunged into the creek, resulting in seven deaths.�  

Chiew and Lim (2003) and Chiew (2004) reported the case of the August 2000 failure of 

Kaoping Bridge in Southern Taiwan.  Dey and Barbhuiya (2004) made reference to the 

collapse of Bulls Bridge over the Rangitikei River, New Zealand.   
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Besides their human toll, bridge failures cost millions of dollars each year in direct 

expenditure for replacement and restoration in addition to the indirect expenditure 

related to the disruption of transportation facilities (Lagasse and Richardson 2001).  In 

an intensive study of bridge failure in the United States, Cheremisinoff et al. (1987) 

reported that the Federal Highways Administration in 1978 claimed that damage to 

bridges and highways from major regional floods in 1964 and 1972 amounted to about 

$100 million per event.  Citing a survey by Macky (1990), Melville and Coleman (2000) 

stated that, in New Zealand, scour caused by rivers results in the expenditure of NZ$36 

million per year.  Indeed, the failure of bridges due to scour is a common occurrence and 

large sums of money are spent each year on the repair or reconstruction of bridges 

whose piers have been destroyed by scour (Dey 1997).  

The potential losses accruable from bridge failures and the need to guard against same 

have prompted for better understanding of the scour process and for better scour 

prediction methods and equations.  Under-prediction of pier scour depth can lead to 

bridge failure while over-prediction leads to excess expenditure of resources in terms of 

construction costs (Ting et al. 2001).  Numerous experimental and numerical studies 

have been carried out by researchers in an attempt to quantify the equilibrium depth of 

scour in various types of soil material.  Moreover, while a lot of work has been done to 

develop equations for predicting the depth of scour, researchers have also worked 

extensively to understand the mechanism of scour.  Raudkivi and Ettema (1983), Ahmed 

and Rajaratnam (1998), Chiew and Melville (1987) and Breusers et al. (1977), among 

others, are some of the researchers that have worked on pier scour.  Local scour around 

bridge piers was studied by Shen and Schneider (1969) while Breusers et al. (1977) gave 

a �state of the art� review on local scour around circular piers.  Posey (1974) provided 

guidance on how bridge piers in erodible material can be protected from under-scour by 

means of an inverted filter extending out a distance of 1.5 to 2.5 pier diameters in all 

directions from the face of the pier.   

Current research areas include understanding the scour processes, temporal development 

of scour, predicting scour in cohesive soils, parametric studies of local scour, and 

prediction of scour depth at various types of hydraulic structures.  For example, Ansari 
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et al. (2002) studied the influence of cohesion on scour around bridge piers.  Ahmed and 

Rajaratnam (1998) investigated the flow around bridge piers in their laboratory study on 

flow past cylindrical piers placed on smooth, rough and mobile beds.  Jia et al. (2002) 

reported the findings of a numerical modeling study for simulating the time-dependent 

scour hole development around a cylindrical pier founded on a loose bed in an open 

channel.  Lim and Chiew (2001) presented a parametric study on riprap protection and 

failure around a cylindrical bridge pier with uniform bed sediments.  Link and Zanke 

(2004) studied the time-dependent scour-hole volume evolution at a circular pier in 

uniform coarse sand and developed a mathematical correlation between the scour 

volume and the maximum scour depth for water depth to pier diameter ratios between 

one and two.  

In spite of the significant amount of research into scour processes, some aspects of scour 

are yet to be resolved as shown by the various contradictions reported in the literature.  

Raudkivi and Ettema (1983) stressed that the scientific basis for the structural design of 

bridges is well established whereas, in contrast, there is no unifying theory at present 

which would enable the designer to estimate, with confidence, the depth of scour at 

bridge piers.  Cheremisinoff et al. (1987) and Hoffmans and Verheij (1997) supported 

the claims of Raudkivi and Ettema.  According to the various authors, this is not only 

due to the extreme complexity of the problem but also due to the fact that stream 

characteristics, bridge constriction geometry and soil and water interaction are different 

for each bridge as well as for each flood.  Although it has been the subject of theoretical 

and experimental studies for many years, Federico et al. (2003) have also indicated that 

a reliable assessment of the general and local erosion of pier foundation soil cannot be 

safely calculated by means of the empirical correlations available in the technical 

literature.  

Hoffmans and Verheij (1997) indicated that scour analysis should form an integral part 

of the design of a new bridge substructure in order to ensure that the bridge can 

withstand the effects of high flows during flood events. The authors were of the opinion 

that the currently available formulas for calculating the expected depth of scour have 

limited usage and cannot be relied on.  Therefore, it was concluded that considerable 
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engineering judgment must be used when estimating the depth of scour in order to 

achieve a satisfactory and also a cost-effective design.  With all of these comments 

about the �state of the art� on pier scour, coupled with the spate of bridge failures 

recorded within the last few decades, a means of protecting new and existing bridges 

against local scour is therefore necessary.  

Local scour at a bridge pier principally results from the downflow along the upstream 

face of the pier and the resulting horseshoe vortex which forms at the base of the pier 

aids the phenomenon (Kumar et al. 1999).  One way of reducing pier scour is to combat 

the erosive action of the horseshoe vortex by armouring the riverbed using hard 

engineering materials such as stone riprap.  Another approach is to weaken and possibly 

inhibit the formation of the downflow and thus the formation of the horseshoe vortex 

using a flow-altering device (Chiew and Lim 2003; Melville and Coleman 2000).  Flow-

altering devices that have been used to protect piers against local scour include 

sacrificial piles placed upstream of the pier, Iowa vanes, a slot through the pier, and a 

flow deflector attached to the pier, such as a collar.  The use of collars has been studied 

by several researchers, including Chabert and Engeldinger (1956), Laursen and Toch 

(1956), Thomas (1967), Tanaka and Yano (1967), Kumar et al. (1999), Chiew (1992), 

Zarrati et al. (2006) and Fotherby and Jones (1993).  In general, the results from collar 

studies have shown that they can be very effective in reducing the scour depth at a 

bridge pier. 

Since a collar acts to reduce the scour depth at a bridge pier, the parameter of interest, 

therefore, is the scour depth.  However, just as the scour depth is important in scour 

studies, the time taken to reach a particular scour depth is also very significant as scour 

holes take some time to form.  For this reason, it becomes necessary to understand the 

development of the local scour hole with time.  Also, in clear-water scour conditions, 

the depth of a scour hole approaches an equilibrium condition asymptotically with time 

(Breusser 1977).  Consequently, time is an important factor in undertaking scour studies.  

The temporal development of scour has been studied by many researchers (e.g. Melville 

and Chiew 1999; Yanmaz and Altinbilek 1991).  Moreover, the rate of local scour 

around a bridge pier is a significant factor in scheduling scour mitigation measures and 
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is also essential in understanding scour under time-varying flows (Gosselin and 

Sheppard 1995).  For adequate representation of the temporal development of scour and 

also the efficacy of using a collar as a countermeasure in a bridge pier in model studies, 

the definition of time to equilibrium adopted is very vital as this determines the test 

duration. 

Many different definitions of equilibrium scour depth are given in the literature.  

Nevertheless, most equations for local scour yield the equilibrium depth and are, 

therefore, conservative regarding temporal effects (Melville and Coleman 2000).  Peak 

flood flows may last for only a few hours or days in the field.  For short duration floods, 

the peak flow duration may be insufficient for achieving an equilibrium scour depth.  In 

such instances, the actual scour depth may only be a small percentage of the equilibrium 

scour depth, which could take weeks to fully develop. 

As pointed out above, the use of a shield or collar is one strategy that has been studied 

as a potential mitigation strategy for pier scour.  When a collar is installed on a pier, the 

direct impact of the downflow to the riverbed is prevented (Mashair et al. 2004), which 

serves to reduce the depth of scour that can take place.  In addition to reducing the depth 

of maximum scour, the rate of scouring is also reduced considerably.  In this regard, 

Mashair et al. (2004) observed that reducing the rate of scouring limits the risk of pier 

failure when short duration floods occur.  On the matter of time development of 

maximum scour depth, Zarrati et al. (2004) observed that the time to reach an 

equilibrium condition depends on whether the pier is protected with a collar or not.  This 

difference in the time development of local scour has significant implications for those 

researchers choosing to stop their tests after a fixed length of time.  While the ultimate 

or equilibrium scour for two situations may be the same, the temporal development of 

the scour hole may vary.  There is, therefore, the need for a critical review of some 

results in literature relating to excessively short testing times. 

 

1.2 Objectives  
The principal objective of this study is to carry out a much longer duration test than is 

currently reported in the literature with a view to evaluating the time development of the 
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local scour at a bridge pier that has been fitted with a protective collar for the purpose of 

mitigating the scour. Also to be assessed are some of the common equations in the 

literature that describe the temporal development of pier scour. A modification is to be 

made to any of the equations where necessary and possible.  Subsidiary objectives also 

include: 

• Evaluation of the effectiveness of a pier collar for mitigating the depth of scour 

that would otherwise occur at a bridge pier; and 

• Assessment of the occurrence of an equilibrium scour condition, if achieved, or 

of the implications of not achieving such a condition in respect of interpreting 

the results obtained from a physical hydraulic model study related to pier-collar 

experiments.  Also to be assessed as part of this study are some of the 

equilibrium scour depth prediction equations as well as some definitions of 

equilibrium scour depth found in the literature. 

 

1.3 Scope 
The study reported herein is based on experiments carried out in the Hydrotechnical 

Laboratory at the University of Saskatchewan using a physical hydraulic model.  The 

study was confined to uniform cohesionless material and clear-water flow conditions. 

 
 

1.4 Synopsis of thesis 

In Chapter 2, the background and current state of knowledge of scour, temporal 

development of scour and literature related to the use of a collar for pier scour 

mitigation are covered.  Chapter 3 gives a description of the experimental apparatus, 

models and procedures.  Results and discussion of results are presented in Chapter 4.  

Finally, the principal conclusions drawn from the results of the study and 

recommendations for future studies are presented in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

A large amount of literature has been published on the local scour of cohesionless bed 

sediment around a bridge pier.  This chapter attempts to summarise the present state of 

understanding of local scour in cohesionless soil, the temporal development of scour as 

well as mitigation strategies for minimising the local scour at a bridge pier. The chapter 

is included to familiarise the reader with terminologies germane to local scour at a 

bridge pier as well as to facilitate the understanding of scour. The use of collars as a 

countermeasure for local scour is also reviewed. 

 

2.1.1 What is scour?  

Breusers et al. (1977) defined scour as a natural phenomenon caused by the flow of 

water in rivers and streams.  It is the consequence of the erosive action of flowing water, 

which removes and erodes material from the bed and banks of streams and also from the 

vicinity of bridge piers and abutments.  Cheremisinoff et al. (1987) defined scour as the 

lowering of the level of the river bed by water erosion such that there is a tendency to 

expose the foundations of riverine structures such as bridges.  As noted by the authors, 

scour can either be caused by the normal flow or flood events.  Normal flow can lower 

the channel bed but scouring is most assisted during a peak flow in which the flow 

velocity is higher.  In other words, scour can occur under any flow condition that makes 

the bed mobile within the vicinity of the obstruction but the rate of scouring is much 

higher with larger flow events.  The amount of the reduction below an assumed natural 

level (generally the level of the river bed prior to the commencement of the scour) is 

termed the scour depth.  A scour hole is defined as the void or depression left behind 

when sediment is washed away from a stream or river bed. 
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2.1.2 Types of scour 

Scouring has long been acknowledged as a severe hazard to the performance of bridge 

piers.  The total scour at a river crossing consists of three components that, in general, 

can be added together (Richardson and Davies 1995).  They include general scour, 

contraction scour, and local scour.  Cheremisinoff et al. (1987) on the other hand 

divided scour into two major types, namely general scour and localised scour.  Some 

other sub-divisions of scour are as shown in Figure 2.1. 

 

Figure 2.1. An organogram showing various types of scour  
         (Modified from Cheremisinoff et al. 1987) 

 

General scour � This type of scour deals with the changes in river bed elevation due to 

natural/human-induced causes with the effect of causing an overall lowering of the 

longitudinal profile of the river channel.  It occurs through a change in the river regime 

resulting in general degradation of the bed level.  General scour develops irrespective of 

the existence of a bridge.  General scour can further be divided into long-term and short-

term scour, with the two types being differentiated by the temporal development of the 

scour (Cheremisinoff et al. 1987).  Short-term general scour occurs in response to a 

single or several closely spaced floods whereas long-term general scour develops over a 

significantly longer time period, usually of the order of several years, and includes 

progressive degradation and lateral bank erosion. 

Total scour

General scour Localised scour 

Long-term 
General scour 

Short-term 
General scour

Contraction 
scour

Local scour

Clear-water 
scour

Live-bed 
scour
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Localised scour � In contrast to general scour, localised scour is directly attributable to 

the existence of a bridge or other riverine structures.  Localised scour can further be 

divided into contraction and local scour. 

Contraction scour � This type of scour occurs as a result of the constriction of a channel 

or waterway, either due to a natural means or human alteration of the floodplain.  The 

effect of such a constriction is a decrease in the flow area and an increase in the average 

flow velocity, which consequently causes an increase in the erosive forces exerted on 

the channel bed.  The overall effect of this phenomenon is the lowering of the channel 

bed.  A bridge with approaches or abutments encroaching onto the floodplain of a river 

is a common example of contraction scour. 

Local scour � This type of scour refers to the removal of sediment from the immediate 

vicinity of bridge piers or abutments.  It occurs as a result of the interference with the 

flow by piers or abutments, which result in an acceleration of the flow, creating vortices 

that remove the sediment material in the surroundings of the bridge piers or abutments.  

Scour occurring as a result of spur dykes and other river training works is also an 

example of local scour.  Figure 2.2 shows the typical appearance of local scour around 

bridge piers.  As it is related to the main thrust of this study, local scour is discussed in 

much more detail in the following sections. 

 

Figure 2.2. Photograph of local scour at rectangular piers  
                      (With permission from: www.pepevasquez.com) 
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2.2 Local scour mechanisms 

It has long been established that the basic mechanism causing local scour at piers is the 

down-flow at the upstream face of the pier and formation of vortices at the base 

(Heidarpour et al. 2003; Muzzammil et al. 2004).  The flow decelerates as it approaches 

the pier coming to rest at the face of the pier.  The approach flow velocity, therefore, at 

the stagnation point on the upstream side of the pier is reduced to zero, which results in 

a pressure increase at the pier face.  The associated stagnation pressures are highest near 

the surface, where the deceleration is greatest, and decrease downwards (Melville and 

Raudkivi 1977).  In other words, as the velocity is decreasing from the surface to the 

bed, the stagnation pressure on the face of the pier also decreases accordingly i.e. a 

downward pressure gradient.  The pressure gradient arising from the decreased pressure 

forces the flow down the face of the pier, resembling that of a vertical jet.  The resulting 

down-flow impinges on the streambed and creates a hole in the vicinity of the pier base.  

The strength of the down-flow reaches a maximum just below the bed level.  The down-

flow impinging on the bed is the main scouring agent (Melville and Raudkivi 1977).   

Figure 2.3 shows the flow and scour pattern at a circular pier.  As illustrated in the 

figure, the strong vortex motion caused by the existence of the pier entrains bed 

sediments within the vicinity of the pier base (Lauchlan and Melville 2001).  The down-

flow rolls up as it continues to create a hole and, through interaction with the oncoming 

flow, develops into a complex vortex system.  The vortex then extends downstream 

along the sides of the pier.  This vortex is often referred to as horseshoe vortex because 

of its great similarity to a horseshoe (Breusers et al. 1977).  Thus the horseshoe vortex 

developed as a result of separation of flow at the upstream face of the scour hole 

excavated by the down-flow.  �The horseshoe vortex itself is a lee eddy similar to the 

eddy or ground roller downstream of a dune crest� (Breusers and Raudkivi 1991).  The 

horseshow vortex is very effective at transporting the dislodged particles away past the 

pier.   The horseshoe vortex is as a result of scour but is not the cause of scour (Breusers 

and Raudkivi 1991).  As the scour depth increases, the horseshoe vortex strength 

diminishes, which automatically leads to a reduction in the sediment transport rate from 

the base of the pier (Lagasse et al. 2001).  
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As shown in Figure 2.3, besides the horseshoe vortex in the vicinity of the pier base, 

there are also the vertical vortices downstream of the pier referred to as wake vortices 

(Dargahi 1990).  The separation of the flow at the sides of the pier produces the so-

called wake vortices. These wake vortices are not stable and shed alternately from one 

side of the pier and then the other.  It should be noted, however, that both the horseshoe 

and wake vortices erode material from the base region of the pier.  The intensity of the 

wake vortices is drastically reduced with distance downstream, such that sediment 

deposition is common immediately downstream of the pier (Richardson and Davies 

1995). 

 

Figure 2.3. Illustration of the flow and scour pattern at a circular pier (Melville & 
Coleman 2000) 

 
2.3 Incipient motion of sediment particles 

Knowledge of the hydraulic conditions at which motion of sediment particles of a given 

size is initiated is of considerable significance in scour-related studies.  This condition is 

referred to as incipient motion or threshold of motion.  The maximum scour depth is 
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achieved at the condition of incipient sediment motion (Breusers and Raudkivi 1991).  It 

is customary to characterise the types of local scour depending on whether the bed 

sediment upstream of a bridge pier is at rest or not.  The threshold of motion condition 

plays an important role in this regard.  This section discusses how the hydraulic flow 

conditions of incipient motion can be determined using the critical tractive force 

approach.   

Critical tractive force method:  In this method, the tractive force applied by the flowing 

water on the channel bed in the flow direction is adjudged the cause of the movement of 

the sedimentary particles.  When the shear stress on the bed is equal to the critical shear 

stress for a given size of a bed material, individual particles on the bed are said to start 

moving.  The critical tractive force method is the most widely used and, besides, it is 

also taken to be more rational and reliable than the other approaches (Garde and Ranga-

Raju 1985)   The critical tractive method is, therefore, described in more detail below. 

The major variables that affect the incipient motion of sediment particles on a level bed 

include: the sediment density (ρs), water temperature (T•), water density (ρ), acceleration 

due to gravity (g), water viscosity (ν), depth averaged velocity (u), flow depth (yo), grain 

roughness (ks) and the critical shear stress (τc) (Chang 1988).  When the shear stress on 

the bed is equal to the critical shear stress for a given size of a bed material, individual 

particles on the bed start moving.  To find the critical shear stress, the non-dimensional 

critical shear stress ratio can be obtained from the Shields diagram for the observed 

condition of temperature, specific gravity and the median size of the sediment material.  

Shield�s diagram is one of the methods for finding the critical shear stress.  However, 

since the Shields diagram has the critical shear stress as an implicit variable that cannot 

be deduced directly, a parameter in the ASCE Sedimentation Manual (1975) written as 
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can be employed. The parameter appears as a family of parallel lines on the Shields 

diagram (Chang 1988).  From the value of this parameter, the dimensionless stress, τ*, 
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can be read directly at the intersection of the line with the Shields curve.  The critical 

shear stress, τc, can be calculated using the value of τ* obtained, viz. 

[2.1]   ( ) 50s*c dγ−γτ=τ  

where d50 is the median size of the sediment particle, and γs and γ are the specific weight 

of the sediment material and water, respectively.  

The critical friction velocity, u*c, can be calculated using  

[2.2]   
2/1

c
c*u 








ρ
τ=  

Alternatively, u*c can be determined for the d50 size for quartz sand in water at 20ºC 

using the formulae provided in Melville and Coleman (2000), viz. 

[2.3a]   4.1
50c* d0125.00115.0u +=   0.1 mm < d50 < 1 mm 

[2.3b]   1
50

5.0
50c* d0065.0d0305.0u −+=   1 mm < d50 < 100 mm 

The corresponding critical velocity, uc, which is dependent on the flow depth, can be 

determined using the semi-logarithmic average velocity equation for a rough bed given 

by Chiew and Lim (2000) and Chang (1988) as  

[2.4]   6
k
ylog75.5

u
u

s

o

c*

c +=       

The shear velocity ratio, u*/ u*c or u/uc, also known as the flow intensity, demarcates the 

onset of sediment transport. The symbol, u*, is the shear velocity in this case while u is 

the mean approach flow velocity.  The grain roughness, ks is taken as equal to 2d50.  
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2.4 Classification of local scour  

Chabert and Engeldinger (1956) identified two main classifications of local scour at 

piers based on the mode of sediment transport by the approaching stream, namely clear-

water scour and live bed scour.  These classifications depend on the ability of the flow 

approaching the bridge to transport bed material (Chiew and Melville 1987).  Clear-

water scour is defined as the case where the bed sediment is not moved by the approach 

flow, or rather where sediment material is removed from the scour hole but not refilled 

by the approach flow (Melville 1984).  Similarly, Raudkivi and Ettema (1983) defined 

clear-water scour as occurring when the bed material at the upstream side of the pier is 

not in motion.  Live-bed scour, on the other hand, occurs when there is general 

transportation of the bed material by the flow.  Live-bed scour occurs when the scour 

hole is continually replenished with sediment by the approach flow (Dey 1999).  

In clear-water scour, the maximum scour depth is reached when the flow can no longer 

remove particles from the scour hole (Breusers et al. 1977).  In live-bed scour, an 

equilibrium scour depth is reached when, over a period of time, the quantity of material 

eroded from the scour hole by the flow equals the quantity of material supplied to the 

scour hole from upstream (Melville 1984).  The temporal development of the maximum 

scour depth under clear-water and live-bed scour conditions is illustrated in Figure 2.4. 

In coarse-grained materials (sands and gravels), an equilibrium local scour condition is 

rapidly attained with time in live-bed conditions (and then oscillates in response to the 

passage of bed forms). On the other hand, an equilibrium condition is achieved rather 

more slowly and asymptotically in clear-water conditions (Raudkivi and Ettema 1983).   

Clear-water scour occurs for mean flow velocities up to the threshold velocity for bed 

sediment entrainment, i.e., u ≤ uc (or u/uc ≤ 1) (Melville and Chiew 1999).  In contrast, 

live-bed scour occurs when u > uc (or u/uc > 1).  The maximum scour depth, however, 

occurs at u = uc.  Clear-water scour depth reaches its maximum over a longer period of 

time than would occur for live-bed condition.  Furthermore, local clear-water scour may 

not reach the maximum depth until after several floods (Richardson and Davies 2001).  

According to Richardson and Davies, the maximum clear-water pier scour depth is 



 15

about 10 percent greater than the equilibrium depth for live-bed pier scour.  The time 

taken for equilibrium scour depth to develop increases rapidly with flow velocity in 

clear-water conditions but decreases rapidly for live-bed scour (Melville and Chiew 

1999).  Since an equilibrium clear-water scour depth is reached asymptotically with 

time, it can take a very long time for the equilibrium scour hole to form. 

 
Figure 2.4. Clear-water and live-bed scour conditions (Raudkivi and Ettema 1983) 

 

Richardson and Davies (2001) mentioned that typical clear-water scour situations can be 

found in (a) coarse-bed material streams, (b) flat gradient streams during low flow, (c) 

local deposits of larger bed materials that are larger than the biggest fraction being 

transported by the flow (rock riprap is a special case of this situation), (d) armoured 

streambeds where the only locations that tractive forces are adequate to penetrate the 

armour layer are at piers and/or abutments, and (e) vegetated channels or overbank 

areas. 
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2.5 Classification of scour parameters 

Factors which affect the magnitude of the local scour depth at piers as given by 

Richardson and Davies (1995), Raudkivi and Ettema (1983) and Lagasse et al. (2001) 

are (1) approach flow velocity, (2) flow depth, (3) pier width, (4) gravitational 

acceleration, (5) pier length if skewed to the main flow direction, (6) size and gradation 

of the bed material, (7) angle of attack of the approach flow to the pier, (8) pier shape, 

(9) bed configuration, and (10) ice or debris jams.  

According to Breusers et al. (1977) and Ansari et al. (2002) the parameters listed above 

can be grouped into four major headings, viz. 

• Approaching stream flow parameters: Flow intensity, flow depth, shear velocity, 

mean velocity, velocity distribution and bed roughness.  

• Pier parameters: Size, geometry, spacing, number and orientation of the pier 

with respect to the main flow direction (i.e., angle of attack). 

• Bed sediment parameters: Grain size distribution, mass density, particle shape, 

angle of repose and cohesiveness of the soil.  

• Fluid parameters: Mass density, acceleration due to gravity and kinematic 

viscosity. 

Dey (1997) also included the time of scouring as an additional parameter.  Also, Oliveto 

and Hager (2002) and Oliveto and Hager (2005) found that the principal parameter 

influencing the scour process is the densimetric particle Froude number.  The definition 

of densimetric Froude number as given by Oliveto and Hager (2002) is 

 

[2.5a]  
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where g` is the relative gravitational acceleration, ρs is the sediment density, ρ is the 

fluid density (water in this case), u is the approach flow velocity, d50 is the median grain 

size and Fd is  densimetric Froude number.  A brief summary of the above parameters 

and their effects is discussed below. 

 

2.5.1 Flow intensity 

Flow intensity is defined as the ratio of the shear velocity (u*) to the critical shear 

velocity (u*c) or the ratio of the approach mean velocity to the critical mean velocity 

(Melville and Chiew 1999).  Under clear-water conditions, the local scour depth in 

uniformly-graded sediment increases almost linearly with velocity to a maximum at the 

threshold velocity (Melville and Coleman 2000).  The maximum scour depth is reached 

when the ratio u*/u*c = 1 and the corresponding maximum scour depth is called the 

threshold peak.  As the velocity exceeds the threshold velocity, the local scour depth in 

uniform sediment first decreases and then increases again to a second peak, but the 

threshold peak is not exceeded provided the sediment is uniform.  The same trend was 

observed by Chabert and Engeldinger (1956), Ettema (1980), Raudkivi and Ettema 

(1983), Laursen and Toch (1956), Breusers et al. (1977) and Chiew (1984).   The 

general conclusion was that the maximum local scour depth in uniform sediments occurs 

at the threshold condition for clear-water scour conditions.  

 

2.5.2 Flow depth 

The influence of flow depth on the scour depth has been discussed by many authors (e.g. 

Chabert and Engeldinger 1956; Laursen and Toch 1956; Dey 1977; Breusers et al. 1977; 

Breusers and Raudkivi 1991; Hoffmans and Verheij 1997; Ettema 1980; Melville and 

Coleman 2000).  The presence of the pier in the channel causes a surface roller around 

the pier and a horseshoe vortex at the base of the pier.  Flow depth affects local scour 

depth when the horseshoe vortex is affected by the formation of the surface roller (or 

bow wave) that forms at the leading edge of the pier.  The two rollers, (i.e., the bow 

wave and the horseshoe vortex) rotate in opposite directions.  In principle, as long as 
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there is no interference between the two rollers, the local scour depth does not depend 

on the flow depth but depends only on the pier diameter.  In such an instance, often 

called deep flow, the local scour is said to occur at narrow piers.  As the flow depth 

decreases, the surface roller becomes relatively more dominant and causes the horseshoe 

vortex to be less capable of entraining sediment.  Therefore, for shallower flows, the 

local scour depth is reduced.  Subsequently, in a very shallow flow, the local scour is 

dependent on the flow depth and the local scour is said to occur at a wide pier.  Melville 

and Chiew (1999) claimed that these trends are evident in the laboratory data of many 

researchers, including Chabert and Engeldinger (1956), Laursen and Toch (1956), 

Breusers et al. (1977) and Ettema (1980).  

The flow shallowness, D/ yo, (where D and yo are the pier diameter and flow depth, 

respectively) can be used to classify the influence of the flow depth in relation to the 

width of the pier (Melville and Coleman 2000).  Table 2.1, as adapted from Melville and 

Coleman, shows a classification of local scour processes at bridge pier foundations. 

 

Table 2.1.  Classification of local scour processes at bridge pier foundations 
 

Class D/yo Local scour dependence 
Narrow D/yo < 0.7 ys α D 
Intermediate width 0.7 < D/yo <5 ys α (Dyo)0.5 
Wide D/yo > 5 ys α yo 

 

In summary, observations showed that at shallow flow depths the local scour at piers 

increases with flow depth, but for larger water depth (i.e., deep flow), the scour depth 

becomes independent of flow depth but depends on the pier diameter.   

 

2.5.3 Pier size 

Experiments have clearly shown that it is possible to relate the scour depth to the size of 

the pier (Breusers et al. 1977).  This observation, can be explained physically by the fact 

that scouring is due to the horseshoe vortex system whose dimension is a function of the 
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diameter of the pier.  It has also been observed by Shen et al. (1969) that, the horseshoe 

vortex, being one of the main scouring agents, is proportional to the pier Reynolds 

number (Rb), ( υ= /uDR b ), which in turn is a function of the pier diameter.  For the 

same value of mean approach flow velocity, therefore, the scour depth is proportional to 

the pier width.  The influence of pier size on the local scour depth is of interest when 

data from the laboratory are interpreted for field use (Breusers and Raudkivi 1991).  

Under clear-water conditions, pier size influences the time taken to reach the ultimate 

scour depth but not its relative magnitude ys/D, if the influence of relative depth, yo/D, 

and relative grain size D/d50 on the local scour depth are excluded (Breusers and 

Raudkivi 1991).  They also concluded that the volume of the local scour hole formed 

around the upstream half of the perimeter of the pier is proportional to the cube of the 

pier diameter (or the projected width of the pier).  The larger the pier the larger the scour 

hole volume and also the longer is the time taken for the development of the scour hole 

for a given shear stress ratio.   

 

2.5.4 Pier shape 

Bridge piers are constructed of various shape. The most common shapes used are 

circular, rectangular, square, rectangular with chamfered end, oblong, lenticular and 

Joukowski.  Figure 2.5 shows a schematic illustration of some pier shapes.  The effect of 

pier shape has been reported by many researchers (e.g. Laursen and Toch 1956, Dey 

1997, Breusers 1977, Breusers and Raudkivi 1991, Melville and Coleman 2000).  The 

blunter the pier, the deeper the local scour has been the general conclusion.  The shape 

of the downstream end of the pier is concluded to be of little significance on the 

maximum scour depth.  The pier shape is often accounted for by using a shape factor.  

Melville and Chiew (2000) cited the work of Mostafa (1994) in which shape factors for 

uniform piers, that is piers having constant section throughout their depth, was 

proposed.  Mostafa measured the local scour depths for variety of different pier shapes 

all having the same projected width (140 mm).  From his results, a circular pier 

produced the least scour while a rectangular pier having blunt ends produced the most 

scour.   In practice, shape factors are only significant if axial flow can be maintained 
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because even a small angle of attack will eliminate any benefit from a streamlined shape 

(Melville and Chiew 2000).  Non-uniform piers include piers with piled foundations, 

caissons, slab footings and tapered piers.  For piers tapered on the upstream and 

downstream faces, the slope, in elevation, of the leading edge of the pier affects the local 

scour depth.  Downward-tapered piers induce deeper scour than does a circular pier of 

the same width.   

 
Figure 2.5. Schematic illustration of some common pier shapes 

 

2.5.5 Alignment or angle of attack 

The effect of alignment, also referred to as the influence of the angle of flow attack, is 

the effect of the angle between the direction of the bridge pier and the direction of the 

flow (Hoffmans and Verhejj 1997).  The depth of local scour for all shapes of pier is 

highly dependent on the alignment or orientation of the pier to the flow.  However, the 

exception to this is a circular pier.  As the angle of attack increases, the scour depth 

increases due to the increase in the effective frontal width of the pier (Melville and 

Coleman 2000).  The effect of the pier length is insignificant if the pier is aligned with 
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the flow.  If the pier is skewed to the flow, the pier length has a substantial effect on the 

scour experienced.  For example, Melville and Coleman (2000) demonstrated that the 

local scour depth at a rectangular pier of an aspect ratio of eight is nearly tripled at an 

angle of attack of 30o when compared to the same pier aligned with the flow.   

The depth of scour has been shown to be functionally related to the projected width of 

the pier (Breusers and Raudkivi 1991).  Here, the projected width of the pier is the width 

normal to the flow direction.  Therefore, the projected width of the pier, which increases 

with the angle of attack of the flow, is related to the scour depth.  As the angle of attack 

increases, the point of maximum scour depth moves along the exposed side of the pier 

towards the rear, and the scour depth at the rear becomes greater than at the front face of 

the pier.  Multiplying factors for angle of attack for different pier length-width ratios 

proposed by Laursen and Toch (1956) are commonly used.  In general, angle of attacks 

greater than 5-10o are to be avoided (Breusers and Raudkivi 1991).  In practice, the 

angle of attack at bridge crossings may change significantly during floods for braided 

channels, and it may change progressively over a period of time for meandering 

channels (Melville and Coleman 2000). 

 
 

2.5.6 Contraction ratio 

The equilibrium depth of local scour at a pier is affected by the contraction ratio.  For 

the purpose of experimental investigations, the width of an experimental flume should 

be at least eight times the pier size for clear-water scour conditions so that blockage 

effects are minimized (Shen et al. 1969).  For live-bed scour, the flume width should be 

at least 10 times the pier size for scour depths not to be reduced due to bed features 

being modified as they propagate through the constriction.   

 

2.5.7 Sediment coarseness and gradation 

The sediment coarseness as defined by Melville and Coleman (2000) is the ratio of the 

pier width (D) to the mean grain size of the sediment material (d50) (i.e. D/d50). 
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According to the authors, the local scour is affected by the sediment size as long as the 

sediment coarseness ratio D/d50 < 50.  For D/d50 > 50, the local scour is not influenced 

by the sediment coarseness.  For pier scour, Ettema (1980) explained that, for smaller 

values of the sediment coarseness ratio, individual grains are large relatively to the 

groove excavated by the down-flow and erosion is impeded because the porous bed 

dissipates some of the energy of the down-flow.  For D/d50  <  8, the individual grains 

are so large relative to the pier that scour is mainly due to entrainment at the flanks of 

the pier (Melville and Coleman, 2000). 

Sediment gradation is usually characterized using the geometric standard deviation of 

the sand size, σg = (d84/d16)1/2.  For natural river sand, σg is about 1.8 while for uniform 

sand σg is about 1.3 (Hoffmans and Verhejj 1997).  Ettema (1980) studied the effect of 

sediment gradation on the local scour depth at a circular pier under clear-water scour 

conditions.  He conducted his experiments at the threshold of motion condition for the 

median size of the sediment material used.  The conclusion reached was that the rate of 

scour hole development and the equilibrium scour depth decreases as the standard 

deviation of the particle size distribution increases.  For a non-uniform sediment 

material (i.e. at a higher value of σg), armouring occurs on the approach flow bed and at 

the base of the scour hole around the threshold condition, u*/u*c≈1.  The armouring at 

the base of the scour hole leads to a considerable reduction of the local scour depth.  

However, sediment non-uniformity has only a small effect on the scour depth at a high 

value of u*/u*c, where the flow is capable of entraining most grain sizes within the non-

uniform sediment. 

 

2.5.8 Sediment size 

The effects of the grain size and the density of the sediment material are often expressed 

as a function of the critical flow velocity for the initiation of sediment motion.  Breusers 

and Raudkivi (1991) reported on the work of Raudkivi and Ettema (1977a,b) in which 

the effect of sediment size on local depth of scour at a bridge pier was studied.  The 

experiments were conducted under clear-water conditions and using a pier of diameter 
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102 mm and a flume 1.5 m in width.  It was observed that a sediment size of 

d50 ≤ 0.7 mm leads to a formation of ripples, whereas sediment size of d50 ≥ 0.7 mm do 

not cause ripples.  It was further stated that the results for grain sizes which lead to the 

formation of ripples (d50 ≤ 0.7 mm) were different from those for larger grain sizes for 

which ripples do not form (d50 ≥ 0.7 mm).  According to Raudkivi and Ettema, for non-

ripple-forming sediments (d50 ≥ 0.7 mm), experiments can be run successfully with a 

flow condition, u* ~ 0.95u*c, without the upstream bed being disturbed by the approach 

flow, whereas with finer sands (d50 < 0.7 mm) a flat bed cannot be maintained for the 

same flow condition.  Therefore, if the sediment is uniform sand with grain size 

d50  < 0.7 mm, a flat bed cannot be maintained near the threshold shear stress condition 

because ripples will develop, with a small amount of general sediment transport taking 

place so as to replenish some of the sand scoured at the pier.  Thus, true clear-water 

scour conditions cannot be maintained for this case.   

It was concluded by Breusers and Raudkivi (1991) that ripples usually developed at 

shear velocities u* above 0.6u*c for sediment of size, d50 < 0.7 mm.  Thus, clear-water 

conditions are not maintained long enough for the finer sands to reach the same 

maximum scour depth that occurs for coarser non-ripple-forming sediments because of 

the development of live-bed scour after the commencement of the experiment.  

However, an exception occurs if the geometric standard deviation of the sand size, 

σg ~ 1.3 � 1.5.  In this range of geometric standard deviation, the sediments are not 

uniform and the coarser grains armour the channel surface but are not large enough to 

armour the scour hole where the agitation is higher.  Then, clear-water scour depths of 

the same order as observed with non-ripple-forming sediments can be reached. 

 

2.6 Development of maximum scour depth with time 

Chabert and Engeldinger (1956) described the behavioral pattern of scour at a 

cylindrical pier with respect to the variation of scour depth with time.  In clear-water 

scour, equilibrium scour depth is approached asymptotically with time, while in live-bed 

scour the scour develops rapidly and then fluctuates in response to the passage of bed 
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forms.  According to Shen et al. (1969), the equilibrium scour depth in live-bed scour is 

less than in clear-water scour by 10% (Figure 2.4). 

 

2.6.1 Equilibrium scour depth and some definitions of time to equilibrium 

Equilibrium scour is said to occur when the scour depth does not change appreciably 

with time. Equilibrium can also be defined as the asymptotic state of scour reached as 

the scouring rate becomes very small or insignificant.  An equilibrium between the 

erosive capability of the flow and the resistance to motion of the bed materials is 

progressively attained through erosion of the flow boundary.  The concept of an 

equilibrium scour condition is widely reported in the literature.  Franzetti et al. (1982) 

made reference to the work of both Baker and Qadar in which the existence of an 

equilibrium scour condition was confirmed.  In this context, Franzetti et al. refer to 

equilibrium as the state of scour development where no further change occurs with time.   

The occurrence of a non-equilibrium condition, however, has also been reported by 

many researchers.  Because an equilibrium clear-water scour condition is approached 

asymptotically with time, Melville and Chiew (1999) opined that it can take an infinite 

amount of time for the equilibrium scour hole to develop.  They observed that an 

apparent equilibrium scour hole may continue to deepen at a relatively slow rate long 

after ��equilibrium conditions� were thought to exist.  For an equilibrium scour 

condition to be achieved in small-scale laboratory experiments of clear-water scour, 

tests must be run for several days (Melville and Coleman 2000).  Melville and Coleman 

also pointed out that experiments carried out for a shorter period of time, say 10 to 12 

hours, can result in a scour depth less than one-half of the equilibrium scour depth.  

The definition of time to scour equilibrium adopted for a given test plays an important 

role in the results obtained and also in the conclusions reached (Franzetti et al. 1982).  

They also observed that, if care is not taken, the definition of time to equilibrium scour 

depth can affect the results such that the same experiment carried out under the same 

experimental conditions but for a different timeframe can yield a different conclusion.  

Several researchers have come up with different definitions of time to equilibrium scour 
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depth (e.g. Heidarpour et al. 2003; Zarrati et al. 2004; Mia and Nago 2003; Sheppard et 

al. 2004).  Because it takes a very long time for an equilibrium condition to be attained, 

it is time demanding to carry out experiments of such long duration.  In view of this, the 

maximum duration of the experiments performed by Bozkus and Osman (2004) was 

limited to two hours.  Although the ultimate equilibrium scour depth was not achieved 

within two hours, they observed that the rate of increase in the depth of the scour hole 

was substantially reduced after two hours.  Ettema (1980) defined the time to 

equilibrium scour as the time at which no more than 1 mm of incremental scour was 

realised within a timeframe of four hours.  Sheppard et al. (2004) and Melville and 

Chiew (1999) stopped their experiments when the change in the scour depth did not 

exceed 5% of the pier diameter during a 24-hour period.  A uniform period of 24 hours 

was used for all of the tests carried out by Lauchlan (1999).  Jones and Sheppard (2000) 

noted that the duration for many of the experiments reported in the literature was 

insufficient for the scour depth to have reached an equilibrium condition and, as such, 

much of the data reported therein may not be useful.  They also found that the lack of 

complete reporting of experimental conditions rendered some data unusable.  It may be 

concluded, therefore, that the whole concept of an experimental equilibrium scour 

condition warrants further investigation. 

 

2.6.2 Temporal development of scour 

The process of local scour in the vicinity of bridge piers is time dependent.  Time 

development of scour is the level of maximum scour depth attained in a given time.  It is 

often represented in graphical form by plotting the maximum scour depth against the 

time. Because of the complexity of the scour process, the majority of the literature is on 

the determination of the maximum equilibrium scour depth for a given flow and 

sediment condition and pier geometry.  The time development of scour has attracted the 

attention of many researchers (e.g. Melville and Chiew 1999; Mashair et al. 2004).  Dey 

(1999) was also of the view that time is an important factor in scour studies. The 

temporal development of scour is dependent on the condition of flow, geometry and 

sediment parameters (Melville and Chiew 1999).  
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Melville and Chiew (1999) studied the temporal development of local scour at bridge 

piers and developed equations for estimating the local scour depth under clear-water 

flow conditions.  Their research was motivated by the fact that a number of 

investigations in the literature were reporting equilibrium scour depths and drawing 

conclusions from these values on tests that clearly did not last long enough to reach an 

equilibrium state.  In some cases, the tests were as short as four hours.  In an attempt to 

standardise the criteria for reaching an equilibrium state, Chiew and Melville (1999) 

collected data from about 35 experiments that covered a wide range of pier diameter, 

flow depths, and approach flow velocities.  Two different sediment diameters in the 

coarse range were employed.  The tests were allowed to run until equilibrium was 

reached.  The authors defined the time to equilibrium as the time when the rate of scour 

was reduced to five percent of the pier diameter in a 24 hour period.  This criterion 

yielded values of time to equilibrium as high as three days for some cases.  The data 

indicated that, for a given approach flow depth and velocity ratio, the time to 

equilibrium increases with increasing pier diameter.  This result is expected since the 

size of the scour hole is related to the pier width and a larger hole requires a longer scour 

time to stabilise.  The data also showed that, all other things being equal, the time to an 

equilibrium scour condition increases with an increase in the velocity ratio.    

For bridge piers experiencing clear-water conditions, the equilibrium time scale 

increases rapidly with flow intensity, reaching a maximum at the threshold condition 

(Melville and Coleman 2000; Melville and Chiew 1999).  The authors observed that 

there is interdependence between the time required to reach equilibrium scour and the 

depth of scour at equilibrium.  Melville and Chiew (1999) concluded that both the time 

required to reach equilibrium scour and the depth of scour at equilibrium are influenced 

similarly by the same set of flow and sediment parameters.   

As shown in Figure 2.6, Ettema (1980) noted that, when the depth of scour was plotted 

versus the logarithm of time, there were three distinct phases of the scour process.  He 

referred to the three phases as the initial phase, the erosion phase, and the equilibrium 

phase.   As shown in the figure, in the initial phase (i.e., region 1), rapid scouring occurs 

due to the downflow at the pier face impinging on the planar bed.  This phase is 
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characterised by a steep on the graph.  The second phase, which is known as the 

principal eroding phase, starts when the horseshoe vortex starts to dominate the scouring 

process. The main erosion occurs at the front of the pier.  During the erosion phase (i.e., 

region 2 in Figure 2.6), the scour hole develops as the horseshoe vortex grows in both 

size and strength.  The slope of the line in this phase is considerably less than in the 

previous phase.  In the final stage, called the equilibrium phase (i.e., region 3 in 

Figure 2.6), the equilibrium depth has been reached and hence no further scour occurs as 

the horseshoe vortex  ceases to excavate further.  At this point, the slope of the line is 

zero.   

 
Figure 2.6. Schematic illustration of the three distinct phases of the scour process  

(Modified from Ettema 1982) 
 

 

2.6.3 Some formulas for describing temporal development of scour depth 

Franzetti et al. (1982) studied the influence of test duration on the ultimate scour depth 

at a circular pier and suggested an exponential function of the form 
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their own data for which d50 = 2.13 mm (synthetic cohesionless soil), the approach flow 

velocity ranged from 0.13 � 0.19 m/s, the pier diameter ranged from 26.7 � 48.0 mm, 

and the critical flow velocity was 0.19 m/s.  Franzetti et al. also made use of the data 

from Chabert and Engeldinger (1956) in which d50 value ranged between  0.26 � 0.52 

mm, the approach flow velocity ranged from 0.18 � 0.37 m/s, the pier diameter ranged 

from 50 � 150 mm and the critical flow velocity ranged between 0.21 � 0.38 m/s.   

Applying the least squares method to the experimental values of each of the tests 

considered, Franzetti et al. found that the variability of C is small, such that C can be 

approximated with an average value of 1/3 (i.e. C = 1/3).  It was also found that the 

values of the constant B varied from test to test (0.021 < B < 0.042).   Franzetti et al. 

adopted the average value of B = 0.028.  The Franzetti et al. equation now becomes 

 
[2.8]  ( )( )3/1

ses T028.0exp1yy −−=  
 

The concept of an equilibrium scour condition is widely reported in the literature.  

While an enticing concept, researchers have found it difficult to determine the 

equilibrium scour condition experimentally.  These difficulties have led to the proposal 

of such expressions that do not include equilibrium scour by some researchers such as 

Cunha (1975) and Oliveto and Hager (2002).  Cunha (1975) gave an expression of the 

form ys = KTC, where K has the unit of length, C is a dimensionless constant and T is the 

dimensionless time.   

It was shown by Simarro-Grande and Martin-Vide (2005) that, for a short duration test, 

no equilibrium scour can be predicted by using the Franzetti et al. (1982) expression.  It 

was also mentioned by Simarro-Grande and Martin-Vide that recourse can be made to 

the Cunha (1975) expression in such a situation.  By comparing the Cunha (1975) 

expression with that of  Franzetti et al. (1982), Simarro-Grande and Martin-Vide found 

that the value of K can be approximated as K = yseB and also observed that the value of 

C is approximately equal for each equation.  The symbols B and C are as defined in 

[2.6]. 
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In order to clarify the effect of time on the development of scour at a bridge pier under 

clear-water conditions, Melville and Chiew (1999) conducted several series of 

experiments in which the depth of scour was monitored as the scour hole developed.  

They combined their data with some data from other researchers and developed an 

equation for predicting the time to reach the clear-water equilibrium scour depth.  The 

combined data were well represented by the following equations: 
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where T* is the dimensionless equilibrium time scale and te represents the time to the 

equilibrium scour condition.  The critical velocity, uc, which is dependent on the flow 

depth, was determined using the semi-logarithmic average velocity equation for a rough 

bed given in [2.4].   

On the time development of maximum scour depth, Barkdoll (2000) on the other hand 

obtained more additional data and compared them with [2.9].  Although the data for 

circular piers from Barkdoll showed close agreement with that of  Melville and Chiew 

(1999), Barkdoll opined that [2.9] seemed to overpredict the scour depth at a given time.  

Barkdoll also carried out further experiments on scour using noncircular piers and 

observed that, while there is some scatter in the data, there is no significant difference in 

the normalised scour development with time (i.e., ys/yse vs. t/te).  Barkdoll, therefore, 

produced a modified form of [2.9] based on a curve fitting to the experimental data.  The 

resulting new equation [2.13] according to Barkdoll fits better to his data when 

compared with [2.9].   
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In his work, Ettema (1980) described the temporal development of local scour around a 

circular pier with a logarithmic formula given as 
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where D = pier diameter; t = time; ys = scour depth at time t; u* = shear velocity; υ  = 

kinematic viscosity; and K1 and K2 = coefficients.  Ettema obtained the values of K1 and 

K2 for different values of d50/D and for values of flow intensity, u*/u*c equal to 0.90 and 

0.95.  The general form of [2.14] can be written as  
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where X = non-dimensional parameter that conveys the influence of time on ys. 

Sumer et al. (1993) studied the influence of cross-section on wave scour around piles.  

The equilibrium scour depth and the time scale of the scour process were also 

investigated.  According to Sumer et al., the time variation of the scour depth can be 

represented approximately in a functional form as 
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where T1 is the time scale.  The quantity T1 represents the time period during which the 

scour depth develops substantially.  Sumer et al. stated that the time scale T1 can be 

predicted from a plot of scour depth vs. time by estimating the slope of the tangent line 

to the ys(t) curve at t = 0 as shown in Figure 2.7. 
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Figure 2.7. Schematic illustration of how to estimate time scale T1 (Sumer et al. 1993) 

 

2.7 Equilibrium scour depth prediction equations 

Estimation of the depth of scour in the vicinity of bridge piers has been the main 

concern of engineers for years. While underestimation of the scour depth leads to the 

design of too shallow a bridge foundation, on the one hand, overestimation leads to 

uneconomical design on the other (Ting et al. 2001).  Therefore, knowledge of the 

anticipated maximum depth of scour for a given discharge is a significant criterion for 

the proper design of a bridge pier foundation. 

In current practice, the design scour depth is chosen to be the maximum equilibrium 

scour depth achieved for steady flow under the design flow conditions (Gosselin and 

Sheppard 1995).   A number of studies have been performed with a view to determining 

the equilibrium scour depth for clear-water scour conditions (e.g. Raudkivi and Ettema 

1983).  In these studies, the maximum scour depth under steady flow conditions is 

related to the hydrodynamic and sediment parameters, pier shape, and flow intensity, 

among others.  Empirical equations based on the results of such studies are used in the 

design of bridge pier by way of computing the expected maximum scour depth for a 

particular flow condition.   

Some of the most common equilibrium scour depth predicting equations are shown in 

Table 2.2. For a riverine system, the use of equilibrium scour depths is reasonable since, 



 32

in many cases, even though the flow is unsteady during storm events, high velocities can 

persist for long periods of time (Gosselin and Sheppard 1995).  �The idea of bed 

protection and prevention of scour at a pier has attracted a good deal of attention.  

Reduction of scour depth would mean shallower foundations and reduced cost� 

(Breusers and Raudkivi 1991).   

Table 2.2. Some equilibrium scour depth prediction equations  

Investigator(s) Equation Source 
Breusers et al. 
(1977) [Based on 
Laursen & Toch 
(1956) data] 
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where yse = equilibrium scour 
depth, Ki = 1.0 for circular pier,  
b = pier width, yo = flow depth 
 

Hoffmans &  
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University (CSU) 
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where Ki = 1.1 for a circular pier 
with clear-water scour,  
Fr = Froude number 
 

 Hoffmans &  
      Verheij (1997); 

 
         HEC-18 

Raudkivi &  
Ettema (1983) 

σ= bK3.2yse  
where K  = f(σg) = 1 for uniform 
sediment, σg = geometric 
standard deviation of the grain 
size distribution 
 

Dey (1997) 

Shen et al. (1969) 619.0
bse R000223.0y =  

where Rb = pier Reynolds 
number 

Dey (1997) 

 
 
 
2.8 Local scour countermeasures 

The purpose of this section of the literature review is to briefly shed light on the various 

methods available for preventing local scour at a bridge pier.  Lagasse et al. (2001) 

defined countermeasures as �measures incorporated into a highway-stream crossing 

system to monitor, control, inhibit, change, delay, or minimise stream instability and 
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bridge scour problems�.  They further stated that an action plan for monitoring 

structures during or after flood events can also be considered a countermeasure.  

Mitigation measures for local scour at bridge piers can be grouped into armouring 

techniques and flow alteration devices (Johnson et al. 2001 and Melville and Hadfield 

1999). 

Armouring techniques are where piers are protected to withstand shear stresses during 

high flow events while the flow altering device aims to disrupt the flow field around the 

pier and thereby decrease the erosive strength of the down-flow and horseshoe vortex 

systems by way of breaking up vortices and reducing the velocity in the vicinity of the 

piers (Lauchlan 1999).   Armoring technique for piers and abutments include riprap, 

precast concrete units, grout-filled bags, foundation extensions, concrete aprons, and 

gabions.  Armoring devices protect the river bed within the vicinity of the pier against 

erosive forces.  When installed to prevent local scour around a pier, riprap prevents the 

down-flow and horseshoe vortex systems created by the presence of the pier from 

removing sediment from the pier face.  The use of riprap to deal with pier scour 

problems is very common in civil engineering practice (Lauchlan 1999).   

Flow altering devices at piers include the use of sheet piles and sacrificial piles placed 

upstream of the pier or circular shields or collars constructed around the piers.  Johnson 

and Niezgoda (2004) identified basically two types of flow altering devices. The first 

category is used to break up vortices and reduce the high flow velocities, particularly 

upstream of a pier. Sacrificial piles, such as sill, sheet or cylindrical piles, are common 

examples of the first category.  The second category realigns the flow to prevent local 

and contraction scour together with bank widening and lateral migration.  The common 

examples of the second category of flow altering devices include vanes and guidebanks.  

Melville and Hadfield (1999) described sacrificial piles as piles placed upstream of a 

bridge pier for the purpose of protecting it from local scour.  The piles, which 

themselves may be subject to substantial scour, protect the pier from scour by deflecting 

the high-velocity flow and creating a wake region behind them.  Like sacrificial piles, 

circular shields or collars placed around the base of the pier can serve the same purpose 

of breaking up the upstream vortices.  Heidarpour et al. (2003) studied the control and 
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reduction of local scour at bridge pier groups using a slot.  In another study, Abdel et al. 

(2003) were able to reduce scour around bridge piers using internal openings (i.e., slots) 

through the pier.  

In the opinion of Johnson and Niezgoda (2004), �feasibility of and confidence in each of 

the various countermeasures is a function of many variables which include 

effectiveness, cost, maintenance, and the ability to detect failure.�  Therefore, the type of 

protection that is applicable at a bridge pier depends on the nature of the problem. 

Lagasse et al. (2001) supplied the design specifications for many of the scour 

countermeasure techniques.  

 
 
2.9 Application of collars as a countermeasure for local scour at bridge piers 

The preceding sections of the chapter have briefly explained the essential terminologies, 

types of scour and processes germane to the study of local scour at bridge piers and 

which are also crucial elements needed for greater understanding of the application of 

collars at bridge piers.  This section provides a detailed review of the application of 

collars for reducing local scour at bridge piers. 

 

2.9.1 What are collars? 

Melville and Coleman (2000) defined collars as devices attached to the pier at some 

level usually close to the bed.  A collar is in the form of a thin protective disc.  A 

protective disc is a surface which has a negligible thickness, and which is incapable of 

promoting scour development (Fotherby and Jones 1993).  A collar must not be so thick 

that it causes an obstruction to the flow and advances scour (Whitehouse 1998).  A 

collar extends around the outside edge of the pier with the main objective of protecting 

the bed from the scouring effect of the down-flow at the pier and the associated vortex 

action around the base of the pier.   

An example of a typical collar and its arrangement for both a rectangular and a circular 

pier are shown in Figure 2.8.  The concept behind a collar as a countermeasure is that 

the presence of the device will sufficiently inhibit and deflect the local scour 
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mechanisms so that the scour is reduced.  A collar goes by many different names in the 

literature.  A few of the names are a flat plate, horizontal shield and a protective disc.   

   

Figure 2.8. Collars positioned around rectangular and circular pier 
 (Mashahir et al. 2004) 

 

2.9.2 Earlier work done and findings on the use of collars 

Laursen and Toch (1956) were some of the earlier investigators who worked on the 

possibility of using a collar-like device for preventing scour at a pier.  From their work, 

it was concluded that such devices may be useful for scour mitigation.  However, there 

was no indication from the author as to the practicability of using collars in the field. 

Chabert and Engeldinger (1956) found that a single circular plate placed 0.4D below the 

original bed elevation and having a diameter of 3D, where D is the pier diameter, could 

reduce the depth of scour by 60%.  No appreciable reduction in scour depth was noticed 

when an increased number of such plates were tested for various elevations. 

Thomas (1967) worked on preventing local scour at a bridge pier and observed that the 

depth of scour could be reduced by placing a horizontal shield on the pier.  The effect of 

a horizontal shield, which Thomas named �anti-scour�, on the depth and extent of the 

scour at a pier was described.  Experiments were conducted using a 50 mm diameter 

circular pier on which had been fitted a horizontal shield.  Two different sizes of shield 

with W = 100 mm and 150 mm were used.  The relative heights of the shield above the 

channel bed were yc/yo = 0.0, 0.18, 0.317, 0.45 and 0.73.  The symbol yc is the distance 

above the channel bed, while yo is the flow depth.  The shield prevented the vertical flow 
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at the pier face from reaching the channel bottom.  The most effective diameter of the 

plate recommended by Thomas is three times the pier diameter positioned very close to 

the channel bed. This result is similar to the observation made by Chabert and 

Engeldinger (1956). 

Tanaka and Yano (1967) also studied the use of a collar to prevent scouring.   In their 

experiment, a fine river sand of median size 0.4 mm, a flow depth of 100 mm and a 

circular pier of diameter 30 mm were used.  A thin circular plate was fitted on the 

circular pier. The diameters of the plate were, W = 90 mm, 120 mm, 150 mm and 

180 mm, and its position on the pier was systematically changed.  It was reported that a 

decrease in the size of the plate led to a decrease in the effect of the plate at reducing the 

scour depth and vice versa.  An increase in the plate elevation with respect to the bed 

surface also resulted in an increased scour depth.  Tanaka and Yano�s results are similar 

to the observations made by Thomas (1967). 

Ettema (1980) conducted a series of experiments to ascertain the possibility of using a 

thin collar to mitigate against local scour at a circular bridge pier.  Collars were installed 

on a circular pier at various elevations on, above and below the channel bed.  The 

parameters of interest were the depth of flow, yo, the collar width, W, the collar 

elevation relative to the channel bed, yc, and the pier diameter, D.  The experiments 

were conducted in a 0.46 m wide flume using a 45 mm diameter pier.  In order for 

ripples not to form on the flume bed, 1.90 mm diameter coarse sand sediment was used 

for the experiment.  The flow depth was set at 0.20 m while the ratio of u*/u*c was 0.90.  

A 0.4 mm thick, circular, brass collar of width two times the pier diameter was installed 

on the circular pier at four different locations, viz. yc/D = 0.5, 0, -0.5 and -0.1.  The 

minus sign denotes that the collar was positioned below the channel bed.   

It was observed that, when a collar of width twice the size of the pier diameter was 

installed at an elevation of half the diameter (yc/D = 0.5) above the channel bed, the 

collar was not effective at reducing the scour depth.  However, the effectiveness of a 

collar at reducing scour became noticeable when the collar was installed at the channel 

bed.  No scour developed below the collar when the collar was installed at yc/D = -0.1.  
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Ettema�s (1980) results compared favourably with the results obtained by Tanaka and 

Yano (1967) and Thomas (1967).  The general conclusion was that the influence of the 

width of the collar on scour increased as the elevation of the collar is decreased. 

Dargahi (1990) carried out research on the mechanisms of local scour and how a collar 

may influence the horseshoe vortex system and ultimately reduce the amount of scour.  

The experiments were conducted using a uniformly-graded fine sand of median 

diameter, d50 = 0.36 mm.  A circular pier of diameter 0.15 m was used for each test.  

The mean flow velocity was 0.26 m/s.  The ratio of u*/u*c was 0.85 while the flow depth 

was maintained at 0.2 m.  In order to study the effect of collar shape on performance, 

two separate collar shapes were tested: One shape was a thin circular collar of diameter 

0.28 m (with W/D = 1.86) and the other was a collar with a Joukowski profile.  The 

shape of a Joukowski profile is shown in Figure 2.5.  The Joukowski profile has an 

airfoil shape that resembles the cross section of an airplane wing.    It has a rounded 

leading edge and a trailing edge that ends in a cusp.  A cusp as used here is a point at 

which two branches of a curve meet such that the tangents of each branch are equal.  

The Joukowski collar was attached to the circular pier such that its blunt nose faced 

upstream.  The collar was positioned at elevations yc/yo = 0.25, 0.05, -0.015, and -0.05 

relative to the initial channel bed.  The total test duration for each experiment was 12 

hours.  At the end of the test, the scour profiles were measured along the line of 

symmetry for each collar position.   

It was observed that the collar was not effective at hindering the horseshoe vortex 

formation.  It was reported that, irrespective of the collar position and shape, the scour 

mechanism was similar to the case of a circular pier unprotected with a collar.  The 

maximum reduction in scour depth as a result of the collar occurred at a collar position 

of yc/yo = -0.015.  At yc/yo = -0.015, it was found that the maximum reduction of scour 

depth was 50% and 75% at the upstream and downstream region of the pier, 

respectively.  The collar position yc/yo = 0.25 did not significantly influence the amount 

of scour.  Similar results were obtained for the two collar shapes tested.  It was also 

reported that, when the ratio of the collar thickness to the pier diameter becomes large, 

an increase in the effective diameter of the pier resulted, which subsequently caused an 
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increase in the scour depth.  Dargahi, however, cautioned that further research is needed 

before a practical application of a collar is recommended. 

Chiew (1992) experimentally studied the effect of a collar, a slot and a combination of 

the two in reducing the local scour in the vicinity of a pier.  A slot is a hole through the 

pier to allow the passage of flowing water.  The objective of the study was to review 

existing mitigation approaches and to propose alternative or new devices for mitigating 

scour in the vicinity of bridge piers.  The experiment was conducted using a 32 mm 

diameter pier and a median particle size of 0.33 mm.  The flow intensity, (i.e., u*/u*c) 

was maintained at 0.9 and the depth of flow was 180 mm.  The collar consisted of a 

1 mm thick stainless steel plate.  Experiments with 2D and 3D wide collars were tested 

alone and in combination with a pier slot while the positions of the collars were 

systematically varied.  Equilibrium scour depth was defined as the depth attained when 

there was less than 1 mm change in scour depth in eight hours.  Using this criterion, the 

tests were run for approximately 72 hrs.   

The collar alone was found to reduce the scour depth by as much as 20% while no scour 

occurred when a D/4 slot was used in conjunction with a collar.  Similar results were 

obtained for the two collar diameters tested.  When designed and applied with care, 

Chiew concluded that a combination of collar and slot can be a suitable substitute for the 

use of riprap as a countermeasure for local scour at bridge piers.  These results 

compared favourably with the results of Ettema (1980) and Tanaka and Yano (1967). 

Vittal et al. (1993) studied and compared the scour reduction efficacies of a circular 

collar on a pier group that was made up of three individual smaller piers.  Similar 

experiment was also performed on a single solid pier.  Figure 2.9 shows the schematic 

illustration of the pier arrangement of their experiments.  In the study, a collar fitted to a 

group of three cylindrical piers angularly spaced at 120º was studied as a scour-

reduction device.  The particular arrangement of the cylinders is such that any one of 

them can just pass through the gap between the other two.  The sediments used in their 

experiment were cohesionless natural riverbed sands, with a relative density of 2.65 and 

geometric mean sizes of 0.775 mm, 1.183 mm, 1.543 mm and 1.844 mm.  The flow 
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intensity ranged between 0.88 and 0.90.  In the experiment, the diameter of the solid pier 

and that of the circumscribing circle of the pier group was 112.5 mm, while the width of 

the collar was 2.0D.  The diameter of the individual three smaller piers that made up the 

pier group was 34 mm each.  The collar was positioned at a height of 15 mm above the 

channel bed.  The full pier group was tested at an orientation of θ = 0º, 15º, 30º, 45º and 

60º with respect to the approach flow direction.  The duration of each test was six hours.  

The scour due to the pier group was compared with that of a solid circular pier.   

 
Figure 2.9. Schematic illustration of Vittal et al. experiment (Vittal et al. 1993) 

Regarding scour reduction, the full pier group alone without the collar was found to be 

more effective than a solid cylinder having a full slot of width equal to half the cylinder 

diameter and as effective as a solid cylinder fitted with a collar of width 3.5 times its 

diameter.  They observed that a collar of 2.0D on a full pier group is equivalent to a 

collar of more than 6.0D on solid pier.  Vittal et al. (1993) concluded that a collar fitted 

to a pier group is much more effective than the one fitted on a solid pier as far as scour 

mitigation is concerned.   

Fotherby and Jones (1993) studied how effective collars are at reducing scour. The 

authors recognised the potential usage of both a collar and a footing at reducing scour.  

According to Fotherby and Jones, footings are seldom considered as countermeasures 

but they can provide the same type of protection as a collar by interrupting the 

downflow at the face of the pier.  Two different types of footing were identified and 

112.5 mm
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34.0 mm for each smaller 
pier 

Flow 112.5 mm 

Circumference of the three 
smaller piers  

Solid pier 
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they included a shallow footing and a deep footing.  Deep footings and shallow footings 

both have substantial thickness, but shallow footings are by definition undercut by 

scour, whereas deep footings extend below the computed maximum depth of scour.  

Data from earlier studies by Chiew (1992), Schneibe (1951), Tanaka and Yano (1967), 

and Thomas (1967) were combined and the possible relationships between them were 

identified.  The relationships established were in agreement with the work of other 

researchers.  According to Fotherby and Jones, the parameters influencing the scour 

mechanism for footings and collars are their height above the channel bed, the width and 

the thickness.  It was concluded that the larger the collar the more its effectiveness at 

reducing scour and that collar effectiveness reduces when the collar is placed at a greater 

elevation above the channel bed.  Fotherby and Jones pointed out that a collar has been 

recognised as a conceptual scour countermeasure technique but has not been used in 

practice. 

Kumar et al. (1999) also worked on the use of collars around a cylindrical pier to reduce 

the scour depth.  For the experiment on collar efficacy, five different collar sizes of 

thickness 3 mm were used (i.e., W = 1.5D, 2.0D, 2.5D, 3.0D and 4.0D).  Figure 2.10 

shows the collar-pier arrangement used by Kumar et al. in their experiment.  It was 

observed that the width of the collars as well as the relative position of the collars to the 

bed affected both the depth and location of the maximum scour location.  It was also 

observed that small collars resulted in large scour holes at the upstream pier face, while 

scour depth was greatest in the wake regions for the larger collars.   

 

 
 

Figure 2.10. Collar installation on the pier above the channel bed (Kumar et al. 1999) 
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Generally, Kumar et al. (1999) concluded that a large collar placed at a low elevation 

relative to the bed was most effective at reducing scour.  Kumar et al. also worked on 

the possible combination of collars and slot and found the combination to be very 

effective at reducing scour.  They cautioned, however, that a slot is practically 

ineffective if the approach flow has a high angle of attack with respect to the slot.  

Singh et al. (2001) worked on a collar as a scour protection device around a circular 

pier.  The authors believed that the growth of a vortex can be arrested by retaining the 

vortex on a rigid surface such as a collar plate. Experiments were conducted in a flume 

containing fine sediment, d50 = 0.285 mm and σg = 2.51.  The piers tested were of 

diameters 25 mm and 62 mm and the duration of the test was kept at 300 minutes.  It 

was observed that the efficacy of a collar in preventing scour is a function of its width 

and its vertical location with respect to the channel bed.  It was observed that, as the size 

of a collar plate increases, the scour decreases.  Collar plates of sizes W = 1.5D, 2.0D 

and 2.5D placed on the channel bed resulted in a reduction of scour by 50%, 68% and 

100%, respectively, of an unprotected pier.  Collar plates of size W = 2.0D when placed 

at 0.1D below the bed gave a maximum reduction in scour depth of 91%.  However, 

when the same collar plate was located at 0.5D above the bed, a 25% reduction in scour 

depth resulted. 

Most previous studies on collars have been on circular piers.  Recently, however, Zarrati 

et al. (2004) worked on the application of a collar to control the scouring around 

rectangular bridge piers having a rounded nose.  It was found that collar effectiveness 

improves as the collar becomes wider and as the level at which it is positioned on the 

pier becomes lower.  They also found that the effectiveness of a collar is reduced as the 

pier skewness with respect to the flow is increased.  On the time of development of the 

maximum scour depth, Mashahir and Zarrati (2002) and Zarrati et al. (2004) concluded 

that the time to reach an equilibrium condition is different depending on whether or not 

the pier is protected with a collar.  According to them, it took 20 hrs to reach an 

equilibrium condition when the pier was unprotected with a collar as compared to 50 

hours that was required to reach an equilibrium condition for the pier protected with a 

collar.  Mashahir et al. (2004) also studied the temporal development of scour depth at a 
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bridge pier.   In their experiment, a collar size of three times the pier diameter was used. 

The sediment material had a median size of 0.95 mm and a geometric standard deviation 

which was less than 1.2 (i.e., very uniform).  While the diameter of the circular pier used 

in the study was 400 mm, the ratio of the shear velocity to the critical shear velocity was 

calculated to be 0.92 based on the Shields� criterion.  Using a definition of time to 

equilibrium scour depth for which the change in scour depth was less than 2% of the 

pier diameter in eight hours, the duration of each experiment was limited to 44 hours.  

Figure 2.11 shows the temporal development of the scour depth.   

As concluded in the study by Mashahir et al. (2004), placing the collar below the 

channel bed level did not lead to an appreciable increase in the efficacy of the collar.  

This was so because the depth of the sand sediments above the collar will itself become 

part of the scour hole as this is swept away very fast by the erosive action of the flow.  

Comparison of the results for rectangular piers aligned with the flow and the previous 

experiments on circular piers by Zarrati et al. (2004) and Mashahir et al. showed that a 

collar of W/D = 3 is more effective at reducing the depth of the scour hole for 

rectangular piers than for circular piers.   

 

 

 
Figure 2.11. Time variation of scour depth at the upstream face of the circular pier with 

and without a collar (Mashahir et al. 2004) 
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For a possible application of two collars at the same time, it was reported by Zarrati et 

al. (2004) that installation of a second collar at an elevation above the channel bed 

increases the effectiveness of collars.  Mashahir et al. (2004) reported that collars not 

only reduce scour depth but also reduce the scouring rate considerably.   

The temporal development of the scour depth for different collar sizes is shown in 

Figure 2.12.  As depicted in the figure, Mashahir et al. (2004) also compared their 

results with that of Ettema (1980) and concluded that a collar placed on the channel bed 

and with a width three times the pier diameter or width is more effective than a collar 

with a size of two times the pier diameter. 

 

Figure 2.12. Time development of scour for different collars sizes (Mashahir et al. 2004) 

 

Figure 2.13 shows the rate of scour in a pier protected with a collar compared with a pier 

having a wide foundation.  Mashahir et al. (2004) observed that a collar has a better 

efficiency at reducing the rate of scour than a pier foundation of the same width installed 

on the same level.  When a collar is installed on the pier, the direct impact of the down-

flow to the riverbed is prevented. In addition to a reduction of the maximum scour 

depth, the rate of scouring is also reduced considerably.  Reduction in the rate of 

scouring can reduce the risk of pier failure when the duration of floods is short (Melville 

and Raudkivi, 1996; Melville and Chiew, 1999).  
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Figure 2.13. Rate of scour in a pier protected with collar compared with a pier with a 
wide foundation (Mashahir et al. 2004) 

 

Kayaturk et al. (2004) studied the effect of a collar on the temporal development of 

scour around bridge abutments.  The experiments were conducted in a 1.5 m wide flume 

having a bottom slope of 0.0001.  With a flow intensity of 0.90, all of the tests were run 

under clear-water scour conditions.  Operating at a flow depth of 100 mm and a 

discharge of 0.05 m3/s, each experiment was limited to a duration of six hours.  The soil 

material had a d
50 

= 1.48 mm and geometric standard deviation, σ
g 

= 1.28.  In this study, 

the time development of the local scour around the abutment fitted with and without 

collar plates was studied.  The effects of various sizes of collars fitted at different 

elevations on the temporal development of scour depth at the abutment were also 

studied.   

Four different collar widths, W = 0.025 m, 0.050 m, 0.075 m and 0.10 m, were tested.  

Since the effectiveness of the collar on the development of the scour hole is also a 

function of its vertical location on the abutment, all collar types were tested at various 

elevations, including at the bed level, 0.025 m and 0.050 m above the bed level, and 

0.025 m and 0.050 m below the bed level.  Figure 2.14 shows the temporal development 

of the scour at abutments from the work of Kayaturk et al.  The symbol ds in the figure 

is the same as ys while Zc is the elevation of the collar with respect to the channel bed at 

the abutment. 
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As shown by the results in Figure 2.14, the depth of the scour hole reduced because of 

the collar irrespective of the collar size and vertical position.  The experimental results 

signified that not only did the presence of a collar reduce the scour depth, the rate of 

temporal development of the scour hole was also reduced.  It is also shown that the 

efficacy of the collar at reducing the scour depth reduces as the vertical distance 

between the collar plate and the bed level, Zc, increases.  However, installation of the 

collar at elevations below the bed level gave a better result.  According to Kayaturk et 

al. (2004), a 67% reduction in the scour depth was achieved when the collar was 

positioned at an elevation of 50 mm below the channel bed.  

The results of Kayaturk et al. (2004) are in agreement with the other researchers that, as 

the collar width increases, the scour depth decreases for a given time. They concluded 

that application of collars at abutments is very effective at reducing the development of 

scour depth.  

 

Figure 2.14. Time development of scouring around abutments without and with collar of 
width 100 mm installed at various elevations Zc (Kayaturk et al. 2004) 

 
 

Zarrati et al. (2006) studied the use of independent and continuous pier collars in 

combination with riprap for reducing local scour around bridge pier groups. Their 

results showed that with two piers in line, a combination of continuous collars and 

riprap led to a scour reduction of about 50% and 60% for the front and rear piers, 

respectively.   
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In another experiment with two piers in line, independent collars showed better 

efficiency than a continuous collar around both the pier.  It was also observed that the 

efficiency of collars is more on a rectangular pier aligned to the flow than two piers in 

line. 

Lauchlan (1999), Dey (1997), Whitehouse (1998), Hoffmans and Verheij (1997), and 

Melville and Coleman (2000) also gave a brief review of the application of a protective 

collar as a countermeasure for local scour at bridge pier.  The general agreement is that a 

collar can be used to reduce scour depth as well as to reduce the scouring rate. 

In summary, based on a variety of experimental studies that have been undertaken using 

collar techniques, the general agreement appears to be that a reasonably large collar 

placed at or slightly below the bed level can provide significant scour protection.  It 

should be noted, however, that all of the above studies on collars have been done for 

clear-water conditions.  

 
 
 
2.10 Conclusions  

As a precursor to this research study, an extensive literature review has been undertaken. 

The outcome of the review revealed that further work is needed on various aspects of 

scour, especially in the area of temporal development of scour and the evaluation of the 

efficacy of a collar as a countermeasure for local scour at a bridge pier. The additional 

work is needed before a practical application of a collar can be confirmed.  The 

philosophy upon which devices such as collars is based is that their existence will 

sufficiently prevent and deflect the mechanisms of local scour with the overall effect of 

reducing the scour depth.  Based on the findings reported herein, the use of collars is an 

effective method for reducing local scour at a bridge pier.   

On the basis of model studies, collars are not only very effective at reducing scour but 

are also much more economical when compared to countermeasure techniques like 

riprap.  It has been concluded that the larger the collar the greater the scour reduction 

level, and for maximum performance the collar should be placed at or below the channel 



 47

bed level.  All previous studies on the use of a collar as a countermeasure for local scour 

at a bridge pier are based on experiments carried out using a physical hydraulic model 

and as such the practicality of using a collar on the field through a prototype study has 

not yet been done. 
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CHAPTER 3 

EXPERIMENTAL SETUP AND METHODOLOGY 

3.1 Introduction 

In this chapter, the experimental arrangements, hydraulic models, data acquisition 

system and variables measured in the model study are described. All of the experiments 

were conducted in the Hydrotechnical Laboratory at the University of Saskatchewan, 

Saskatoon, Canada.  

 
 
3.2 Flume 

The experiment reported herein was conducted in a recirculating flume, 20 m long, 

1.22 m wide and 0.61 m deep.  The flume has a working section in the form of a recess 

that is filled with sediment to a uniform thickness of 0.16 m.  The sand bed recess is 

12.43 m long and is located 5.64 m downstream from the flume inlet section.  The 

working section of the flume is made up of an aluminum bottom and Plexiglas sidewalls 

along one side for most of its length to facilitate visual observations.  The outlet and 

inlet of the sand bed contain raised sloping ends.  The recirculating flow system is 

served by a 30 hp, variable-speed, centrifugal pump located at the downstream end of 

the flume.  The water discharge is measured by a magnetic flow meter located in the 

water return pipe at the downstream end of the flume.  The magnetic flow meter 

frequently updates its readings at every few seconds but at a time less than a minute.  

Each of the readings varies between ±0.02 from the mean reading.  Figure 3.1 and 

Figure 3.2a show a schematic illustration and photograph of the experimental setup, 

respectively, while the photograph of the magnetic flow meter is shown in Figure 3.2b.  

The pump takes the water from the reservoir at the downstream end of the flume and 

returns it to the upstream end via a 223 mm diameter aluminum pipe line which runs 

directly underneath the flume.  The reservoir, which is about 5.34 m long and has the 

same width as the flume, is located immediately at the downstream end of the flume and 

is separated from it by the tailgate.   
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Figure 3.1. Schematic illustration of the experimental setup 

        

Figure 3.2. Photograph: (a) Experimental setup and (b) Magnetic flow meter 

 
At the upstream end of the flume is installed a head box equipped with a screen to sieve 

any unwanted particles and debris that might otherwise enter the working section of the 

flume.  To facilitate rapid development of the turbulent boundary layer on the channel 

bed, the entrance zone upstream of the sand bed was artificially roughened using 

galvanised wire-mesh of diameter 1.0 mm with each square having a size of 20 mm x 

20 mm.  While the wire mesh assists in providing excess friction to ensure the existence 

of fully developed turbulent flow, the screen at the upstream section of the flume also 

provides baffles for the elimination of eddies that form at the entrance to the flume.  A 

(a) (b) 
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wooden wave suppressor was also used in the upstream approach section to smooth the 

flow coming onto the sand bed. 

 

3.3 Flow conditions 

A Nixon micro-propeller current meter was used for all vertical velocity profiles.  The 

device, which is a member of the Streamflo current velocity flowmeter family, model 

403 is a standard low speed velocity probe that measures velocity in the range 2.5 to 

150 cm/s.  The velocity profile measuring device is shown in Figure 3.3.  As shown in 

Figure 3.3a, each mini-propeller probe consists of a plastic propeller mounted on two 

jewel bearings.  A sensing electrode is located within the inner stem of each probe.  As 

the propeller turns with the flow, the capacitance across the probe is modulated every 

time that a blade passes close to the sensing terminal.  The modulation produces a pulse 

which is registered by an electronic counter, which then records and displays the number 

of pulses for a period.  As an accessory to the probe is a volt-meter, called a digital 

indicator, which is capable of giving the mean velocity in terms of frequency either 

every one second, 10 seconds or continuously (see Figure 3.3b).  The frequency thus 

recorded in Hz can be converted to mean velocity by means of a calibration chart.  The 

accuracy of the device is within ±1% of the true velocity.  The operating temperature of 

the probe ranges between 0 and 50º C.  

         

Figure 3.3. Velocity measurement system: (a) Current meter probe, and (b) 
Digital indicator box 

 

(a) (b) 
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A point gauge having a precision of 0.2 mm was used for the depth measurements.  The 

flow depth was controlled by a vertical-leaf gate that spans the full width of the flume.  

For all of the tests, the relative flow depth used was twice the pier diameter (i.e., 

yo/D = 2).  The ratio was chosen in order to ensure that the local scour occurs as a 

narrow pier such that the local scour depth only depends on the pier diameter and not on 

the flow depth as discussed in Chapter 2. 

 
Measurement of the flow rate was achieved by the use of a model E96T-1A magnetic 

flowmeter made by Foxboro.  The discharge in the flume was controlled by a model 

10F-4310 variable speed pump made by S.A. Armstrong Ltd.  Control of the pump 

motor speed was achieved by the use of a Model Y300 Parajust Y AC motor speed 

controller made by Parametrics. 

 
Water temperature was recorded using an Omega digital thermometer model HH-25TC 

each time the maximum scour depth was measured throughout each run.  Barkdoll 

(2000) suggested that water temperature, in the form of changes in viscosity and density 

of water, may exert an influence on the scour development.  Melville and Chiew (2000) 

however, observed otherwise by conducting two experiments which were identical 

except for the water temperatures, which were at 26.5ºC and 17ºC, respectively.  

According to Melville and Chiew, no discernible difference in the scour depth 

development, or equilibrium scour depth, was evident for the two experiments. Despite 

these contradictions, the operating temperature was monitored for all of the tests.  Water 

level was monitored throughout each test in order to ensure that the water level was kept 

at the required level.  However, for long duration tests, the water level reduced due to 

evaporation.  Therefore, to maintain the same water level, the flume was periodically 

replenished with water as required (say, two to three days interval).  A red dye (Triacrile 

BR Red 4G 200%) was used to facilitate visual observation of the flow patterns. 
 
 
3.4 Model 

The pier model was fabricated from Polyvinyl Chloride (PVC) pipe.  Two circular 

model piers of diameter 115 mm and 73 mm (having a vertical scale of 5 mm marked 

onto their sides) were used for the study.  The purpose of the 5 mm scale around the pier 
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was to facilitate the measurement of the magnitude of the scour depth.  In each case, the 

pier was placed on the centerline of the flume at the same longitudinal location.  

Specifically, the coordinates of the centre of the pier along the flume is (15041 mm, 

751.4 mm).  This coordinate is important in this study especially when measuring the 

contour profiles of the scour hole as all other measurements were taken with respect to 

the centre of the pier.  The pier was mounted on a base support of thickness 12.25 mm 

and dimension approximately 250 mm x 250 mm.  The collar used in the experiments 

was 5 mm thick and was made from a transparent Acrylic material.  Two different collar 

widths were used, with one having a width of two times the pier diameter (2D) while the 

other had a diameter of 3D, where D is the diameter of the pier.   Figure 3.4 shows a 

schematic illustration of a pier fitted with a collar.  For all of the tests with a collar, the 

collar was positioned at the bed level in accordance with the recommendations of earlier 

researchers (e.g., Ettema 1980; Kumar et al. 1999).  The collar thickness of 5 mm used 

was observed not to have any adverse effect on the flow field.  The 5 mm thickness is 

small enough not to cause any obstruction to the flow through an increase in the 

effective width of the pier.  Dargahi (1990) has observed that, if the ratio of the collar 

thickness to the cylinder diameter becomes large, the effective pier diameter will 

increase, causing an increase in the scour depth. 

 
Figure 3.4. Schematic illustration of a pier fitted with a collar 
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Three pins set at angle of approximately 120°, as shown in Figure 3.5, were used to 

accurately position the collar in a level orientation precisely at the bed level.  The collar 

was prevented from moving on the pier by the friction fit provided by a rubber O-ring in 

the collar.   

 

Figure 3.5. The pier, collar and support pin arrangement 

 

The pier diameter was carefully chosen so that there was negligible effect of flume 

width on the depth of scour.  Shen et al. (1969) suggested that, for the purpose of 

experimental investigations, the width of an experimental flume should be at least eight 

times the pier size for clear-water scour conditions so that blockage effects, otherwise 

known as sidewall effects, are minimised.  In this study, the flume width to pier 

diameter ratios are 10.6 and 16.7 for the piers of diameter 115 mm and 73 mm, 

respectively, which more than satisfies the criterion of Shen et al. 
 
 
3.5 Sand bed 

A series of tests were carried out to characterise the sand bed material present in the 

flume used for the study.  The soil tests carried out included a mechanical sieve analysis 

and a specific gravity test.  The results of the tests showed that the bed material consists 

of cohesionless sand with a median particle size (d50) of 0.53 mm and a specific gravity 

of 2.65.  The geometric standard deviation of the sand size, σg, is 1.23, which implies 

that the sand is of uniform size distribution.  The σg is defined as, σg = (d84/d16)
0.5.  The 

plot of the grain size distribution (sieve analysis) test is depicted in Figure 3.6.  The pier 

diameter was also carefully chosen so that there was negligible effect of sediment size 

on the depth of scour.  It is known that the bed material grain size does not affect the 

depth of scour if the pier width to grain size ratio exceeds a value of about 50 (Ettema 

Pins set at 120° 
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1980).  For this study, the ratios are about 138 and 217 for the piers of diameter 73 mm 

and 115 mm, respectively, which more than satisfies the criterion of Ettema.   

 
As depicted in Figure 3.7, the angle of repose of the sand material used in this study was 

measured to be about 30o using the shear box test.   
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Figure 3.6. Soil test: Grain size distribution (sieve analysis) 

 
 

y = 0.5731x - 1949.4
R2 = 0.9998

-

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

- 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000
Normal stress (pa)

Sh
ea

r s
tre

ss
 (p

a)

Ø = 30o

Ø = Angle of Repose

 
Figure 3.7. Soil test: Angle of repose 
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3.6 Incipient motion of sediment  

Knowledge of the hydraulic conditions at which motion of sediment particles is initiated 

is very significant as far as clear-water scour is concerned.  The threshold of bed 

material motion was determined using the critical tractive force approach and the 

Shields diagram as described in Chapter 2.  A series of calculations was done in this 

regard, and the Shields parameter, also known as the dimensionless shear stress, was 

determined to be equal to 0.032.  In doing the critical shear stress calculations, 

Manning�s n value was assumed as 0.012.  A sample calculation method for the 

incipient motion of sediment has been itemised in Appendix A-1.  The experiments were 

performed under clear-water conditions at two different flow intensities (u*/u*c) of 0.89 

and 0.70, corresponding to a shear stress levels of 80% and 49% of the critical shear 

stress level based on Shields stress, respectively.  The symbols u* and u*c are the shear 

velocity and the critical shear velocity, respectively. 

 
 
 
3.7 Test program 

The use of collars has been suggested as a possible pier scour mitigation technique by 

researchers, largely on the basis of model study results.  However, in undertaking model 

studies of pier scour, and particularly in the case of a pier fitted with a collar, there is 

some evidence to show that the time required to achieve an equilibrium scour condition 

needs special attention.  The test program was developed to deal with the evaluation of 

the efficacy of using a collar as a mitigation technique against pier scour, with a major 

focus on the time required to achieve an equilibrium scour condition.  The test program 

was divided into three series of tests, with each test series representing a complete set of 

tests.  The three series of tests are referred to as Series 1, Series 2, and Series 3. For all 

of the tests, the collar was positioned at the bed level.  A summary of the basic test 

conditions and flow conditions is shown in Table 3.1.   
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Table 3.1. Summary of test conditions for Series 1, 2 and 3 tests. 

Tests Pier 
diameter 

(mm) 

Flow 
depth 
(mm) 

Mean 
velocity

(m/s) 

Discharge 
(m3/s) 

Froude 
Number 

Flow 
intensity

Collar 
size 

Series 1 115 230 0.249 0.070 0.166 0.89 2D 
Series 2 73 146 0.248 0.044 0.207 0.89 2D 
Series 3 115 230 0.195 0.055 0.130 0.70 3D 

 

 

Series 1 

The first series of tests (Series 1) was designed to study the time development of scour 

as well as the efficacy of using a collar as a countermeasure for scour at a bridge pier.  

The first test under Series 1 tests was conducted without a collar fitted to the pier.  In the 

second test, a collar of width equal to two times the pier diameter was used.  For both 

tests, a pier of diameter 115 mm was used.  The experiments were performed under 

clear-water conditions at a flow intensity (u*/u*c) of 0.89.  Two tests were conducted 

under Series 1, namely: A test with a plain pier and the other one for a pier fitted with a 

2D collar.  Some of the tests mentioned above were conducted in duplicate in order to 

ascertain the repeatability of the results. 

 

Series 2 

The second series of tests (Series 2) was also conducted for the case where a pier is 

protected with a collar and the case where it is not.  The only difference between the 

Series 1 and Series 2 tests is the pier diameter, which was 73 mm for the Series 2 tests.  

For both the Series 1 and 2 tests, the relative flow depth was two times the pier 

diameter.  A summary of the basic test conditions and flow conditions are shown in 

Table 3.1.  The Series 1 and 2 tests were undertaken in order to evaluate the influence of 

pier diameter on the temporal development of scour and also to evaluate the efficacy of 

using a collar as a countermeasure for bridge pier scour.  Assessment of the occurrence 

of an equilibrium scour condition, if achieved, or of the implications of not achieving 

such a condition in respect of interpreting the results obtained from a physical hydraulic 

model study, was also studied.  The effect of adopting some definitions of time to 

equilibrium scour depth found in the literature on the efficacy of using a collar as a 
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countermeasure was also undertaken.  Two tests were conducted under Series 2, namely: 

A test with a plain pier and the other one for a pier fitted with a 2D collar.   

 

Series 3 

The third series of tests (Series 3) comprised of two tests.  The first test was run without 

a collar installed while the second test was conducted with the installation of a collar 

having a diameter equal to three times that of the pier.  The purpose of the Series 3 tests 

was to evaluate the temporal development of scour with and without a collar while 

subjected to the same flow conditions.  For the Series 3 tests, the bed shear stress was 

0.49 times that of the critical shear stress level.  It should be noted, however, that these 

tests were conducted at a lower shear stress level than the Series 1 and 2 tests, where the 

bed shear stress was 0.80 times the critical shear stress level.  Table 3.1 also shows the 

test conditions and the flow condition for the Series 3 tests.  

 
The purpose of this set of runs was to evaluate the temporal development of scour depth 

with and without a collar subjected to the conditions shown in Table 3.1.   Results from 

the Series 3 tests were analysed together with some results obtained using a 2D collar 

fitted to the pier diameter.  Two tests were conducted under Series 3, namely: A test 

with a plain pier and the other one for a pier fitted with a 3D collar.  For the Series 3 

tests, the contour profile for the case where a collar was not fitted to the pier was 

compared with the case where a collar was positioned on the pier at the bed level.  The 

longitudinal and transverse scour profiles through the centre of the pier were also plotted 

using software called Surfer version 8 and the results were discussed for the two tests.  

Surfer version 8, a software developed by Golden Software is a full-function 3-D 

surface modelling/mapping program and contouring package.  Surfer is capable of 

quickly and easily converting XYZ data into contour, surface, wireframe, vector, image 

and shaded relief plots.  The data can be randomly dispersed or scattered over the map 

area; regardless, Surfer�s gridding will interpolate the data onto a grid.  The Surfer tool 

was employed to convert the scour hole topographical data into a contour map as well as 

into a three-dimensional profile of the scour hole region.  Surfer is also capable of 
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calculating the volume of the contour hole using inbuilt trapezoidal and Simpson rules.  

It can also calculate the surface area of the scour hole.   

 

3.8 General experimental procedure and data acquisition 

The pier was first installed in the flume at the desired location.  For the tests with the 

collar in place, the collar was also fitted to the pier at the required bed level.  Before 

each test, care was taken to level the sand bed throughout the entire length of the flume 

and particularly in the vicinity of the pier using a wooden screed that is of the same 

width as the flume.  The screed can be dragged along the flume rails to produce a sand 

bed having a smooth, uniform surface.  Thereafter, any uneven bed surface was levelled 

using a hand-trowel.  By employing the point gauge mounted on a carriage, initial bed 

elevations were taken randomly to check the levelling of the flume.  The sand bed 

preparation was very key as far as the experiment was concerned.  This is because any 

unevenness or defect in the channel bed can cause premature bed form development.  

 
To start the test, the flume was slowly filled with water to the required depth.  It should 

be noted that extra care is required when filling the flume, especially for tests of this 

nature where no sediment movement is allowed.  Any deformity in the bed surface may 

trigger the development of ripples or dunes and general movement of the sand if the 

shear stress on the smooth bed is close to the critical shear stress.  The pump was then 

turned on and its speed slowly increased until the desired flow rate had been achieved.  

Concurrent with getting the pump up to speed, the tailgate was adjusted so as to 

maintain the correct depth of flow in the flume.   

 

Throughout the test period, the location and magnitude of the point of maximum scour 

depth was recorded, with the depth being acquired either using the point gauge or the 

5 mm scale marked onto the side of the pier.  The 5 mm scale can be read to a precision 

of approximately 1 mm. The frequency of the measurements varied throughout the test 

period, with the maximum scour depth readings being taken every few minutes during 

the first hour or so of the test and less frequently thereafter.  It should be noted, 

however, that the first four hours of each test is very important as frequent readings are 
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required to be taken in order to properly define the early stage of the graph of maximum 

scour depth versus time.  The required frequency of scour depth measurements 

decreases as the rate of scouring decreases.  Vertical velocity profiles were measured 

along the length of the flume using the current meter while the development of the scour 

hole with time was also recorded using an electronic stop watch during each test for the 

case when a collar was fitted to the pier and the case where no collar was fitted.  In 

additional to a series of lights present in the laboratory, a flood light was put on 

whenever a reading was being taken.  For further visibility of the scour hole, a 

transparent glass tube was used to facilitate the visual observation of the scour hole 

development and measurement.  The glass tube aided the visibility under the water by 

clearing the refraction and reflection due to the presence of the flowing water.  

 

A visual record of the important features pertaining to the temporal development of 

local scour at a cylindrical pier was kept with the aid of photographs and sketches.  This 

record was also accompanied by notes.   

 
At the completion of each test, the pump was stopped to allow the flume to slowly drain 

without disturbing the scour topography.  The flume bed was then allowed to dry, during 

which time   photos of the scour topography around the pier were taken, and the final 

maximum scour depth was recorded using the point gauge.  The contour profile of the 

scour hole, in the plane of symmetry of the pier and parallel to the flow direction, was 

taken with the point gauge supported by the mobile carriage of the flume.  It should be 

noted, however, that the contouring of the scour pattern that developed was measured 

only for the Series 3 tests.  The first step in the contouring involved the outlining of the 

area to be contoured into a grid.  Using a grid of 50 mm interval, the three-dimensional 

co-ordinates of each point within the scour hole and contour area was measured.  

However, defining the bed topography of the scour hole formed in the vicinity of the 

pier required more intensive measurements.  The maximum scour depth value for each 

grid point in the scour hole was calculated as the difference between the mean initial bed 

elevation and the measured scour depth at each grid point around the contoured area.  A 

contour plot as well as the three-dimensional profile of the contour area were created 
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using computer software called Surfer© version 8.   The upstream cone angle, and exit 

slope cone angle of the scour hole, were determined from the contour profile. 

 
The above procedures were repeated for each test run.  It should be noted, however, that 

in addition to carrying out the routine start-up work for each experiment as discussed 

above, at the location of the scour hole from a previous test, the sand must be reworked 

properly so as to remove any �prior history� of scour development. 

 
It should also be noted that the point gauge has a small thickness and as such it is 

doubtful if the point gauge obstructed the flow to the extent of causing more scour.  

However, having observed the point gauge as it was slowly lowered toward the sand 

bed, the sand grains were observed moving in apparent response to the presence of the 

point gauge.  When dealing with 0.5 mm sand grains, the point gauge is no longer 

particularly �small� in thickness and as such some small disturbances might have 

occurred but not to the extent of causing more scour than would otherwise be expected.  

 

For all of the tests, no definition of time to equilibrium was adopted per se.  The idea 

behind this was that tests were proposed to run until an equilibrium condition was 

reached.  The existence of an equilibrium condition is doubtful though as observed by 

other researchers (e.g. Melville and Chew 1999).  Nevertheless, tests were stopped only 

if a form of constraint was encountered in the course of each test.  This point is 

discussed more extensively in Chapter 4. 
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CHAPTER 4 

PRESENTATION, ANALYIS AND DISCUSSION OF RESULTS 

4.1 Introduction 

The primary objective of this research program was to study the temporal development 

of scour at a bridge pier fitted with a collar.  Also to be evaluated as part of this study 

was the efficacy of using a collar as a countermeasure for local scour at a bridge pier.  

Assessment of the occurrence of an equilibrium scour condition, if achieved, or of the 

implications of not achieving such a condition in respect of interpreting the results 

obtained from a physical hydraulic model study was to be carried out.  In this chapter, 

the results obtained from all of the experiments are presented.  Also presented are the 

analyses of the results and discussions pertaining thereto.  This research program 

consists of three series of tests as described in Chapter 3.  The general observations 

made for each series of tests have been summarised in terms of the objectives of the 

study.  The issue of initiation of motion was also experimentally studied vis-à-vis the 

sediment material used in this study.  The evaluation of several equilibrium scour 

prediction equations described in the literature was also carried out.  Some of the results 

obtained in this study in terms of the temporal development of scour have also been 

compared with the work of other researchers. 

 
 
4.2 Initiation of sediment motion 

For Series 1 and Series 2 tests, it was observed that ripples formed on the sand bed of 

the flume, starting from the upstream end and progressing downstream toward the pier 

study area.  A photograph showing the ripples as a result of bed movement is shown in 

Figure 4.1.  When the ripples reached the pier study area, it was assumed that clear-

water scour conditions no longer prevailed, and the particular test was stopped.  The 

formation and migration of ripples was somewhat surprising given that the tests were 

being run at a shear stress level corresponding to 80% of that given by the Shields 

diagram.  It appeared as though the formation of ripples was triggered by minor 

instabilities within the flow due to the entrance conditions to the test section of the 
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flume and/or due to the undeveloped velocity distribution in the upstream reaches of the 

flume.   

 
 

Figure 4.1. Ripple formation at a location far upstream of the pier  
 

In an effort to curb the formation of ripples, several modifications were made to the 

flume entrance, including the use of a series of baffles and the addition of mesh 

roughness to the floor of the approach section to the sand bed.  Unfortunately, the 

modifications seemed to do little to prevent the formation of ripples. 

Recourse to the literature revealed that, for ripple-forming sediments, which are 

classified as sediment having d50 < 0.7 mm, it is seldom possible to maintain a plane bed 

condition (Breusers and Raudkivi 1991).  That this should occur is apparently in spite of 

the test conditions being below the threshold of motion as determined using the Shields 

diagram.  In fact, Breusers and Raudkivi further noted that ripples can be expected to 

develop for u* > 0.6u*c in ripple-forming sediments.  Given that the sand used in the 

current study had a median grain size of 0.53 mm, the implication of this is that ripple 
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formation should be expected and that clear-water scour conditions could not likely be 

maintained at high shear stress levels.  This is a rather curious finding given that critical 

or threshold conditions as determined from the Shields diagram presumably mean that 

bed material motion is incipient and any stress level less than the incipient condition 

should yield a clear-water flow. 

To further evaluate the apparent �real� threshold of motion stress level, a series of tests 

was run in sequence with successive increases in the applied shear stress being imposed 

on the system.  For this series of tests, the flow depth was set at 230 mm, which 

corresponds to two diameters of the larger model pier (i.e. yo = 2D).  The test sequence 

was started at a stress level corresponding to 0.55 u*c, in which u*c was based on the 

Shields diagram, and run for 24 hours.  When no ripples were observed to have started 

to form on the bed, the stress level was increased by 0.05u*c to 0.60u*c by increasing the 

flow rate and adjusting the tailgate so as to maintain yo = 2D.  Again, when no ripples 

were observed to have started to form after 24 hours of running the test, the stress level 

was increased by an additional 0.05u*c.  For tests at u*c values of 0.80 or more, the test 

was allowed to run for 48 hours simply so that any minor tendency for ripple formation 

could reveal itself before the stress level was again increased.  Eventually, ripples were 

observed to form at a stress level corresponding to 0.85u*c.   

The same exercise was repeated for shallower depths of flow as well (i.e. yo = 0.5D and 

yo = 0.75D).  It was found that ripples formed more readily at a lower shear stress level 

shortly after the commencement of the tests when compared with a flow depth of 

yo = 2D.  From this evaluation, it can be concluded that, for the sand material used in 

this study, ripple formation (hence some form of bed material motion) will begin for a 

flow condition corresponding to 0.80u*c < Critical < 0.85u*c for a flow depth of 230 mm 

and a lower proportion of u*c for shallower depths of flow.  

It should be borne in mind that the exercise described above was done after carrying out 

the Series 1 and Series 2 tests and as such the effect of ripples was noticed in all of the 

tests in these test series.  The finding from the exercise influenced the decision to make 
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use of a lower flow intensity of 70% in the Series 3 tests instead of the 89% flow 

intensity used in the Series 1 and Series 2 tests. 

 
 
4.3 Velocity distribution 

The velocity profiles for each experiment were measured in order to establish if the flow 

was fully developed at the location of the pier.  The variation of the velocity profiles at 

the upstream reach of the pier was measured and assessed in the flume.  For illustration 

purposes, at the locations shown in Table 4.1, six velocity profiles were measured for 

the Series 1 test for the case when no collar was fitted to the pier.  The approach flow 

velocity profiles were measured at the centreline of the flume with a mini-propeller 

current meter at the locations identified in Table 4.1.  For each profile, velocities were 

recorded incrementally from approximately 7 mm near the bed level (but not at the bed) 

up to the water surface.   

The velocity profiles for all of the locations shown in Table 4.1 for the Series 1 test are 

shown in Figure 4.2.  The data for the velocity profiles are found in Appendix B.  

Similar velocity profiles were measured for all of the other tests carried out in the course 

of the study.  As shown in Figure 4.2, the vertical velocity distribution does change with 

position along the length of the flume, and judged by visual appearance, the velocity 

profiles seem to have approached a quasi-equilibrium state just upstream of the pier 

(e.g., compare L1 and L2).  Also, velocity profiles at a location L1 closest to the pier as 

well as the velocity profiles at locations L2 and L3 are log-linear going by the linear 

relationships of the curve fitting as shown in Figure 4.3, which implies that the velocity 

profiles at these locations have approached quasi-equilibrium and as such the flow is 

somewhat fully developed.  The velocity distribution is assumed to be a fully developed 

turbulent boundary layer when its velocity profile can be approximated by the log-law 

velocity profiles which is expressed as shown in [2.4].  It should be noted that the 

velocity profiles shown in the figure for locations L1, L2 and L3 have been included for 

comparison purposes.  Interestingly, the fit for L1 is poorer than L2, the latter of which is 

located further away from the pier.   The plausible reason for this might have been due 

to the small interference of the flow by the pier at a location L1 through the backwater 
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effect behind the pier.  Another reason for this may be due to some uncertainties 

associated with the velocity measurement using the current meter.   

Table 4.1. Positions for the measurement of velocity profiles relative to the pier 
location 

Position Distance upstream 
from pier 

Remarks 

L1       About 1 m The closest location to the pier 
L2 2 m  
L3 3 m  
L4 4 m  
L5 5 m  
L6 7 m The farthest location from the pier 

 

In order to compare the discharge, Q, from the velocity profile measurements with the 

discharge from the magnetic flow meter during the course of the Series 1 tests, the 

velocity profile at a location 1.0 m upstream from the pier as shown in Figure 4.2 was 

integrated using the trapezoidal rule to get the corresponding discharge.  The result is 

shown in Table 4.2.  It is shown that the difference in the magnetic flow meter discharge 

and the discharge determined through the integration of the velocity profile is small.  

The close agreement of the two discharge values increases the confidence in the velocity 

measurement.  It should be noted, however, that the integration of the 2-D velocity 

profile measured along the centreline of the flume only gave approximately the 

discharge per unit width.  Accounting for the width of the flume gave the discharge 

value.  That discharge value was then compared against the value from the magnetic 

flow meter.  Of course, such a procedure does not account for the lateral variation in 

velocity. This coupled with the uncertainty associated with the instrumentation and 

measurement technique as well as the trapezoidal integration rule, which is only an 

approximation technique, among others are the reasons why there is a difference in the 

discharge values shown in Table 4.2. 
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Table 4.2. Discharges as determined from velocity profile and magnetic 
 flow meter  

 Discharge (m3/s) 
Discharge from the velocity profile at L1 0.068 
Magnetic flow meter discharge 0.070 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Velocity profiles of the approach flow at the centreline of the flume at 
various longitudinal locations (locations described in Table 4.1)  
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Figure 4.3. Log-linear velocity profiles for location L1, L2 and L3  
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The shear velocity computation from the velocity profiles for the Series 1 test data were 

also compared with the actual shear velocity and the result is depicted in Table 4.3.  The 

shear velocity computation from the velocity profile data gives an approximation of the 

actual shear velocity obtained from the Shields criterion for the flow conditions and 

sediment material.  The close agreement (90%) of the computed shear velocity with the 

expected or actual value further increases the confidence in the measured velocity 

profiles.  An illustrative example of computing the shear velocity and the bed shear 

stress from the velocity profiles is shown in Appendix A-2.   

Table 4.3. Shear velocity computation from the velocity profiles 

 Shear velocity 
(m/s) 

Shear velocity from velocity profile at L1 0.0130 
Expected shear velocity based on the test conditions 0.0148 

 

 

4.4 Scour test results: Series 1 tests  

In the Series 1 tests, the time development of scour as well as the efficacy of using a 

collar as a countermeasure was studied.  For the Series 1 tests, a 115 mm pier diameter 

was used for the case where no collar was fitted to the pier and for the case where a 2D 

collar was used. The tests were conducted under clear-water conditions at a flow 

intensity (u*/u*c) of 0.89.  As mentioned in section 4.2, the flow intensity of 0.89 had 

been used for the Series 1 and Series 2 tests before the discovery of the idea that it is 

hard to maintain a clear-water flow for a long time for the fine sediment used in the 

study.  The tests had initially been run at a flow intensity of 0.89 with the expectation 

that a clear-water condition would occur for a flow intensity below 100%.   It should be 

noted that the Shields criterion was used in the study for the calculation of the point of 

incipient motion. The test conditions are summarised in Table 3.1. 

 
4.4.1 Pier without a collar: 115 mm diameter pier (flow intensity = 0.89) 

For this test, the effect of the scouring process was noticed immediately upon starting 

the test.  Figure 4.4 shows a schematic illustration of the scour hole development pattern 
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with time.  The scour started first at the sides of the pier (i.e., region 1 in Figure 4.4a), 

and eventually propagated rather rapidly around the pier perimeter from both sides 

toward the centerline of the pier at the upstream face (i.e., region 2).  At this stage, there 

was a ring-like groove formed by the scouring process around the upstream half of the 

pier between regions 1 and 2.  Ripple formation was noticed in the wake region after 15 

minutes of running the test.  There was also the deposition of sediment in the wake 

region (i.e., region 3) due to the transport of eroded sediment from the scour hole.  After 

one hour of running the test, the deposited sediment initially found very close to the 

back of the pier was observed to be moving downstream.  At this point, a scour hole 

became noticeable immediately behind the pier within the wake region (i.e., region A in 

Figure 4.4b).   

In due course, the point of maximum scour, which was initially located at the side of the 

pier (i.e., region 1), migrated to the upstream face of the pier (i.e. region 2).  As the 

scour process continued, the scoured sand material was deposited in the wake region 

immediately downstream from the pier and the ripples continued to migrate further 

downstream of the pier (i.e., region 4). The overall scour pattern, which was 

symmetrical, consisted of a hole situated in front of the pier, a mound of deposited sand 

located a short distance downstream from the pier, and an alternate formation of 

depressions and mounds and a series of ripples fanning out from the pier in the 

downstream direction.  The point of maximum scour depth was located immediately in 

front of the pier for most of the test duration. 

Figure 4.5 shows the time development of the maximum scour for the 115 mm diameter 

pier.  The data plotted in the figure are presented in a tabular format in Appendix C- 1.  

As the results show, the maximum scour depth increases with time.    However, an 

equilibrium scour condition was not reached before the test was stopped at about 

80 hours.  The test was stopped because the scour was about to penetrate through the 

thickness of the sand layer in the flume.  The log-log plot of the temporal development 

of scour depth has been included to show that the equilibrium scour is not being 

approached as indicated by the continuous increase of the slope of the plot in 

Figure 4.5(b). 



 70

 
 
 

 
Figure 4.4. Schematic illustration of the scour hole development for the plain pier:        

(a) Scour pattern, and (b) Sketches of scour hole with time  

 

The scour rate versus time for the test is shown in Figure 4.6.  The scour rate is defined 

as the change in scour depth per change in time (mm/hour). Even though equilibrium 

was not attained, the rate of scour is low by the end of the test.  The scour rate, which 

was 240 mm/hr during the first three minutes of the test, was drastically reduced to 

about 0.2 mm/hr by the end of the test as depicted in Figure 4.6.  The slope of a straight 
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line fitted to the figure is 0.833.  Being a negative slope denotes that the scour rate 

decreases with time.  After the 80-hour test duration, the maximum scour depth was 

140 mm.  As the data show, about 70% of the maximum depth of scour was attained 

within the first 12 hours, which corresponds to approximately 15% of the total test 

duration. 
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Figure 4.5. Temporal development of scour depth for the 115 mm pier without a collar:              

(a) Arithmetic scale, and (b) Log-log scale 
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Figure 4.6. Scour rate with time for the 115 mm pier without a collar 
 

4.4.2 Pier fitted with a collar: 115 mm diameter pier (flow intensity = 0.89) 

For this test, a 2D collar was positioned at the level of the channel bed in accordance 

with the recommendations of earlier researchers (e.g., Ettema 1980; Kumar et al. 1999).  

Figure 4.7 shows the schematic illustration of the scour development pattern with time.  

Scour was first noticed to occur at the edge of the collar on either side of the collar 

toward the downstream portion of the collar (i.e, region 1 in Figure 4.7a).  During the 

first few minutes of the test, a groove was observed to form on either side of the collar at 

the interface with the sand bed.  As the test proceeded, the grooves extended toward the 

upstream side of the collar, eventually meeting at the centerline (i.e., region 2).    In due 

course, the scour pattern at the upstream side of the collar progressed below the collar 

and eventually to the upstream face of the pier (i.e., region P).  After 20 hours of 

running the test, the location of maximum scour shifted to being adjacent to the front 

face of the pier.  Figure 4.8 shows a photograph of the scour hole at a point during the 

test.  As sediment material was being removed from beneath the collar at the upstream 

side of the pier, deposition was taking place in the grooves that had formed around the 

periphery of the collar.  Some of the material was also deposited in the wake region (i.e., 

region 3, Figure 4.7a).  Ripple formation was noticed at the wake region. The ripples 

continued to migrate further downstream of the collar (i.e., region 4).  Consequently, the 

grooves hitherto formed in regions 1 became shallower with time.  The maximum scour 
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depth, which had been located within the grooves, gradually decreased as more sediment 

material was scoured from below the collar.   

 
 

 
Figure 4.7. Schematic illustration of the scour hole development for pier with a collar: 

Scour pattern, and (b) Sketches of scour hole with time 
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Figure 4.8. Photograph of scour hole at the middle of the Series 1 test with a 2D collar 
 

Figure 4.9 shows the temporal development of scour for the test.  The data plotted in the 

figure are also listed in Appendix C-2.  There was a temporary equilibrium during an 

early stage of the test (because of the deposition of sediment material on the grooves), 

during which time the maximum depth of scour was constant, as shown in Figure 4.9.   

A similar observation was made by Ettema (1980).  Eventually, the development of the 

scour hole resumed, and the scour phenomenon behaved in a way similar to what was 

observed when the test was carried out without the collar installed.  The test was run for 

194 hours.  An equilibrium scour condition was not achieved by the end of the test.  The 

test was stopped because the scour was about to penetrate through the thickness of the 

sand layer. 

The scour rate with time for the 115 mm pier fitted with a 2D collar is shown in 

Figure 4.10.  Similar to the data indicated in Figure 4.6, the rate of scour decreases with 

time.  As shown in Figure 4.10, the rate of increase of the scour depth had reduced from 

138 mm/hr during the first three minutes of the test to 0.3 mm/hr by the end of the test.  

The figure has a similar pattern and trend with that of Figure 4.6.  Similarly, a slope of a 

straight line fitted to the curve in Figure 4.10 is 0.753 and when compared with the slope 

shown in Figure 4.6 for the case of a plain pier, it is seen that they both have a negative 

slope and that there is a reduced slope in case of a test involving a 2D collar.  The collar 

acts as an obstacle against the down-flow and the down-flow loses its strength on 
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impingement at the collar thereby reducing the rate at which sediment is removed.  It 

should be noted, as evident in Figure 4.9, that some negative scour rates were 

experienced but Figure 4.10 shows no such evidence.  The negative values of the scour 

rate were not plotted in Figure 4.10 because negative values cannot be plotted on log-log 

scale.  In part, however, the matter of negative scour rates is an issue of measurement 

resolution rather than the actual depth of the scour getting larger and smaller.   
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Figure 4.9. Temporal development of scour depth for the 115 mm pier with a 2D collar:                   

(a) Arithmetic scale, and (b) Log-log scale 
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The maximum scour depth reached was 137 mm.  About 70% of the measured 

maximum depth of scour occurred within the first 45 hours, which is equivalent to 23% 

of the total test time. 
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Figure 4.10. Scour rate with time for the 115 mm pier with a 2D collar 

 

To further compare the data set in the Series 1 tests, the time development of the 

maximum scour depth for the model pier with a 2D collar and the case where a plain 

pier was used is shown in Figure 4.11.  In Figure 4.11, the data indicated in Figure 4.5 

were plotted together with that of Figure 4.9 for easy comparison.   As shown in 

Figure 4.11, the time development of local scour can vary depending on whether a collar 

has been fitted to the pier or not.  For the two tests, it can be seen that the time history of 

the scour is different.  For example, after 22 hours, the maximum measured depths were 

44 mm and 109 mm, respectively, for the pier protected with a 2D collar and the one 

without a collar. 

Ettema (1980) identified three phases of the development of local scour at a cylindrical 

pier. They are the initial phase, the principal erosion phase, and the equilibrium phase. 

As defined by Ettema, only the first two phases have been experienced in the Series 1 

tests. An equilibrium phase was not reached.  Ettema defined the time to equilibrium 

scour as the time at which no more than 1 mm of incremental scour was realised within 

a timeframe of four hours.  Since the test durations reported here are greater than some 

of those reported by Ettema (less than six days), it would seem doubtful if an 
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equilibrium phase is attainable.  Therefore, the idea of equilibrium scour condition being 

achieved within that time frame as reported by Ettema might have been misreported in 

the literature. 
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Figure 4.11. Combined temporal development of scour depth for the Series 1 tests:                       
(a) Arithmetic scale and (b) Log-log scale 

 

In summary, the time development of scour for a 115 mm diameter pier was studied in 

the Series 1 tests for the case where a 2D collar was fitted to the pier and for the plain 

pier case where no collar was fitted to the pier.  It was observed that as the time 

increased the scour depth also increased.  It was observed that the rate of scour 

decreased as the time increased.  The results are in agreement with the work of other 
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researchers such as Ettema (1980), Tanaka and Yano (1967), Chabert and Engeldinger 

(1956), Thomas (1967) and Chiew and Melville (1992).  It was noted that the efficacy of 

a collar as a countermeasure decreased as the test duration increased.  An equilibrium 

condition was not achieved in the Series 1 tests. 

 

4.5 Scour test results: Series 2 tests  

The Series 2 tests are a little the same as the Series 1 tests but with a few differences.  

The basic difference is that, in the Series 2 tests, the pier diameter was 73 mm instead of 

115 mm.   The Series 2 tests were also operated at a flow intensity of 89%.  Since the 

flow depth for the tests was set at two times the pier diameter, the approach flow 

velocity and flow rate for the Series 2 tests are different from the Series 1 tests.  The 

flow conditions are as shown in Table 3.1. 

 

4.5.1 Pier without a collar: 73 mm diameter pier (flow intensity = 0.89) 

The same observations presented above for the case of 115 mm diameter pier were also 

noticed for the 73 mm diameter pier.  The scour started at the sides of the pier (i.e., 

region 1 in Figure 4.4a).  The resulting scour hole rapidly propagated around the pier 

perimeter shortly after the commencement of the test, eventually coinciding at the 

upstream centerline of the pier (i.e., region 2 in Figure 4.4a).  At a time of five minutes 

after the commencement of the test, the maximum scour depth at the sides (region 1) 

and immediate back of the pier (region 3) was 38 mm and 10 mm, respectively.  The 

height of the sediment mound at the backside of the pier at this time was about 30 mm.  

At about 22 minutes after the commencement of the test, the point of maximum scour 

depth shifted to the upstream face of the pier (region 2, Figure 4.4a).  The corresponding 

scour depth at the backside of the pier was 20 mm while the height of the mound was 

40 mm.  The ripples that formed at the backside of the pier migrated rapidly downstream 

(Region 4).  Figure 4.12 shows the temporal development of the maximum scour depth 

for the 73 mm diameter pier.  The data plotted in the figure are also presented in 

Appendix D-1. 
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As the results of the test show in the figure, an equilibrium scour condition was not 

attained before the test was ended at about 49 hours.  As with the pier of diameter 

115 mm, the scour depth increases with time. The relatively short test duration of about 

49 hours was due to the development of bed material transport in the form of ripples 

advancing from the upstream end of the flume.  About 70% of the measured depth of 

scour was achieved at about 6.5 hours, which corresponds to approximately 13% of the 

total test duration. 
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Figure 4.12. Temporal development of scour depth for the 73 mm pier without a collar:               

(a) Arithmetic scale and (b) Log-log scale 
 

The maximum scour depth was about 107 mm by the time the test was stopped.  The test 

was stopped because of the general bed material motion.  Figure 4.13 shows the scour 

(b) 

(a) 
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rate with time for the test.  The rate of scouring, which was 60 mm/hr after only three 

minutes into the test, was reduced to 0.4 mm/hr by the time that the test was stopped.  

Figure 4.13 follows the same trend as Figure 4.6 and Figure 4.10.  For instance, the 

slope of a line of best fit to Figure 4.13 is 0.828, which is approximately equal to a slope 

of 0.833 obtained from Figure 4.6. 
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Figure 4.13. Scour rate with time for the 73 mm pier without a collar 

 

4.5.2 Pier fitted with a collar: 73 mm diameter pier (flow intensity = 0.89) 

The same observations made in the case of the 115 mm diameter pier with a 2D collar 

were observed for the 73 mm diameter pier fitted with a 2D collar.  The scour started at 

both sides of the collar (i.e., region 1, Figure 4.7a), reaching the upstream face of the 

collar (region 2) after 43 minutes of running the test.  At that time, the maximum scour 

depth at the sides of the collar and at the upstream face of the collar were about 28 mm 

and 5 mm, respectively.  Within about 48 minutes of starting the test, the sediment 

deposit at the backside of the collar (region 3) was 18 mm high while the maximum 

scour depth at the upstream face and sides of the collar was 15 mm and 29 mm, 

respectively.  As was also observed for a pier of diameter 115 mm fitted with a 2D 

collar, ripples formed at the backside of the collar as the test progressed (region 4, 

Figure 4.7a).  For instance, the ripples propagated downstream a distance of about 

450 mm relative to the pier position after a time of 59 minutes, while at a time of 124 

minutes the ripples had spread to about 850 mm.    
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It was observed that the position of the maximum scour depth was sometimes located 

under the collar at the upstream face.  For example, Figure 4.14 shows the location of 

the point of maximum scour depth beneath the collar at a time of 144 minutes of running 

the test.  At this time, the maximum scour depth was located at about 5 mm from the 

edge of the collar circumference at the upstream face as depicted in Figure 4.14.   

 

 

 

 

 

 

 

Figure 4.14. Location of point of maximum scour depth found beneath the collar 

 

When the point of maximum scour depth was located under the collar, the scour depth 

was estimated relative to the reading from the point gauge measurement taken outside 

the collar position at the upstream face and also relative to the reading from the scale 

around the pier.  An estimate of the maximum scour depth was achieved by using these 

two related measurements as a reference. 

As the test proceeded, there was alternate formation of depressions and mounds in the 

region downstream from the pier.  After about two and a half hours of running the test, 

the mound, which had a maximum height of 30 mm, was located at the backside of the 

collar at a distance of 200 mm from the centre of the pier.   
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Figure 4.15 show the temporal development of scour for the pier of diameter 73 mm 

fitted with a collar.  The data plotted in the figure are also presented in Appendix D-2.  

As shown in the figure, there was an irregular growth in the scour depth during an early 

stage of the test (say 3 hours) because of the deposition of sediment material removed 

from beneath the collar on the grooves as shown in figure.  Therefore, there was an 

alternate decrease and increase of the scour depth with time during the initial phase of 

the scour process.  The collar acts as an obstacle against the down-flow and the down-

flow loses its strength on impingement at the collar thereby reducing the rate at which 

sediment is removed.  The test was run for about 59 hours.  An equilibrium scour 

condition was not reached as the test was stopped because of the cascade of ripples that 

enveloped the flume.  The maximum scour depth attained was 83 mm.  About 70% of 

the measured maximum scour depth occurred during the first 15 hours of the test, 

representing about 26% of the total test duration. 

Figure 4.16 shows the scour rate with time for the 73 mm pier with a 2D collar.  As with 

the other tests, the rate of increase of the scour depth reduces with time.  For example 

the scour rate reduced from 60 mm/hr during the first six minutes of the test to about 

0.2 mm/hr at the end of the test.  The slope of the power law equation fitted to the figure 

is 0.809, which is slightly lower than the slope for a plain pier shown in Figure 4.13.   

Figure 4.17 shows the temporal development of scour for the tests in Series 2 plotted 

together. The reason for doing this is for comparison purposes as explained above for 

the case of Series 1 tests.  It is shown that the temporal development of the maximum 

scour depth is similar in trend to that of the 115 mm pier.  Moreover, it is apparent that 

an equilibrium scour condition was not achieved.  It is also found that the temporal 

development of the scour with and without a protective collar in place is different, with 

the collar providing for a delay in the scour development. 

In summary, it is seen that the same trend that was noticed in the Series 1 tests was also 

observed in these tests.  The scour depth increased with time and the scour rate reduced 

with time.  An equilibrium condition was not also attained in the Series 2 tests.  Based 

on the Series 1 and 2 tests, it can be said that for the same flow intensity of 0.89, the 
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slope of the line of best fit to the scour rate versus time is higher for the case of a plain 

pier when compared with a pier fitted with a collar. 
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Figure 4.15. Temporal development of scour depth for the 73 mm pier with a 2D collar:                    
(a) Arithmetic scale and (b) Log-log scale 

 

(b) 

(a) 



 84

y = 11.426x-0.8093

R2 = 0.8611

0.1

1

10

100

1000

0.01 0.10 1.00 10.00 100.00 1000.00
Time (hrs)

Sc
ou

r r
at

e 
(m

m
/h

r)

 
Figure 4.16. Scour rate with time for the 73 mm pier with a 2D collar 
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Figure 4.17. Combined temporal development of scour depth for the Series 2 tests:                     

(a) Arithmetic scale and (b) Log-log scale 
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4.5.3 Repeatability of tests 

In hydrotechnical engineering, running duplicate tests in order to ensure data quality and 

integrity is sometimes not done.  What is typically being done is to carry out several 

series of tests under systematically selected experimental conditions such that any 

outlier among the tests can easily be detected.  Duplicate tests were run as part of the 

study in order to clarify the issue of repeatability of tests.  The results of such tests 

helped to ascertain whether it is possible to repeat a test.  To demonstrate the 

repeatability of a test and for the purpose of an illustration, the results of the two tests 

carried out using a 73 mm diameter pier for the same experimental conditions (Table 

3.1) is presented in Figure 4.18.  As can be seen in the figure, the temporal development 

of maximum scour depth for the two tests, A and B, collapsed to form almost a single 

function.  It may not be necessary, therefore, to run a duplicate test for a test of this 

nature especially when the cost and time of doing so are taken into consideration.  It 

should be noted that Series 1 tests were also repeated and they were found to be 

reproducible.  
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Figure 4.18. Time development of scour for the repeated test: Series 2 test without collar 
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4.6 Scour test results: Series 3 tests  

The Series 3 tests comprised of two tests.  A 115 mm diameter pier was used for both 

tests.  The first test was run without a collar installed on the pier, while in the second test 

a 3D collar was fitted to the pier.  In the Series 3 tests, an evaluation of the temporal 

development of the maximum scour depth for the flow conditions shown in Table 3.1 

was carried out.   For these tests, the flow intensity was 0.70.  This is a lower flow 

intensity than for the Series 1 and 2 tests where the flow intensity was 0.89.  As shown 

in Section 4.2, a clear-water flow cannot be maintained for a longer time at a higher 

flow intensity for the sediment size used in these tests.  Therefore, a lower flow intensity 

was used in the Series 3 tests. 

 

4.6.1 Pier without a collar: 115 mm diameter pier (flow intensity = 0.70) 

The effect of the scouring process was noticed immediately upon starting the test as 

indicated by the removal of sand particles in the vicinity of the pier.  The scour started 

first at the sides of the pier (i.e., region 1, Figure 4.4a), and eventually propagated rather 

rapidly around the pier perimeter from both sides toward the centerline of the pier at the 

upstream face (region 2, Figure 4.4a).  At this stage, there was a ring-like groove formed 

by the scouring process around the upstream half of the pier (i.e., between 

regions 1 and 2).  The point of maximum scour, which was initially located at the side of 

the pier, migrated to the upstream face of the pier after about six hours of starting the 

test.  As the scour process continued, the scoured sand material was deposited in the 

wake region immediately downstream from the pier (region 3) and the formation of 

ripples became evident (region 4).  The deposited sediment in the wake region, which 

was initially found very close to the backside of the pier, was observed to move 

downstream while a scour hole became noticeable immediately behind the pier.   

Photographs of the final scour pattern are as shown in Figures 4.19 and 4.20.  The 

overall scour pattern, which was symmetrical, consisted of a hole situated in front of the 

pier, a mound of deposited sand located a short distance downstream from the pier, and 

an alternate formation of depressions and mounds and a series of ripples fanning out 

from the pier in the downstream direction.  The point of maximum scour depth, which 
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was first noticed at the immediate upstream face of the pier after about six hours, 

remained at the upstream face of the pier for most of the test duration of about 531 

hours.  The test was stopped because the scour was about to penetrate through the 

thickness of the sand layer in the flume.  It was apparent from the test that the maximum 

depth of scour and the maximum height of the mound continued to increase with time. It 

was also evident that the location of the mound moved downstream as time increased.  

At the end of the test, the shape of the scour hole around the pier could be approximated 

by the shape of an inverted cone, as shown in the photographs.  The upstream half of the 

scour hole can be approximated as that of half an inverted frustum of a right circular 

cone.  The cone angle of the frustum at the upstream face of the pier was estimated to be 

equal to the angle of repose of the sediment (i.e., 30û)   

 

 

 
 
 

Figure 4.19. Photograph of scour hole at the end of the Series 3 test: No collar 
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Figure 4.20. Photograph of mounds and depressions at the end of the Series 3 test: No 

collar (Note the scour hole at the pier) 
 
 
 

The result of the test carried out for the pier not protected with a collar is shown in 

Figure 4.21.  The data plotted in the figure are also presented in Appendix E-1(a).  The 

results show that the maximum scour depth increases with time and that the rate of 

increase of scour depth decreases as the time increases.  An equilibrium condition was 

not reached in this test.  The scour rate with time for this test is shown in Figure 4.22.   

 

The rate of scouring, which was 180 mm/hr after only three minutes into the test, was 

reduced to 0.1 mm/hr by the time that the test was stopped.  At that point, the maximum 

scour depth was about 140 mm.  As shown in Figure 4.22, the plot shows the same trend 

and pattern with that of Figure 4.6 even though they are of different test conditions.  The 

slope of the power equation fitted to Figure 4.22 (i.e., 0.7635), however, is lower than 

that of Figure 4.6 and Figure 4.13.  The reason for this lower slope might be due to a 

lower flow intensity used in the case of the test results shown in Figure 4.22.  
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Figure 4.21. Temporal development of scour depth for the Series 3 test without a collar:            
(a) Arithmetic scale and (b) Log-log scale 
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Figure 4.22. Scour rate with time for the 115 mm pier without a 3D collar (Series 3 test) 
 
 

4.6.1.1 Scour hole contour for Series 3 tests without a collar  

The contour map and the 3-D map of the scour hole at the end of the test are as shown in 

the Figures 4.23 and 4.24, respectively.  The data plotted in the figures are given in 

tabular format in Appendix E-1(b).  As shown, apart from the scour hole, there was also 

the alternate formation of mounds and depressions.  Also, the scour hole is predominant 

at the upstream face of the pier.  The maximum scour depth is also located at the 

upstream face of the pier.  The maximum scour depth is shown by a contour line of 

about 14 cm while the maximum height of the mound is about 7 cm.   
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Figure 4.23. Contour map of the scour for the Series 3 test: No collar 
 

 
Figure 4.24. Oblique 3-D map of the scour for the Series 3 test: No collar 
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4.6.1.2 Longitudinal scour profile for Series 3 test for a plain pier  

The longitudinal profile of the scour along the centreline of the channel is plotted in 

Figure 4.25.  Since an equilibrium scour condition has not been reached, the scour 

process at this stage is still at the erosion phase as defined by Ettema (1980).  The data 

plotted in the figure are given in tabular format in Appendix E 1(c).  The (0,0) reference 

point is at the original bed level at the centreline of the pier.  As shown, the deepest 

portion of the scour hole occurred at the upstream face of the pier.  After a distance of 

115 cm downstream of the pier, there was a series of ripples fanning out and occupying 

the entire width of the flume. The maximum height of the mound at the wake is about 

54% of the maximum scour depth. 
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Figure 4.25. Longitudinal scour profile at the centreline of the plain pier: Series 3 test 

 

4.6.1.3 Transverse scour profile for Series 3 test for a plain pier  

Figure 4.26 shows the lateral profile of the scour hole through the centreline of the pier.  

The data plotted in the figure are given in tabular format in Appendix E-1(d).  The (0,0) 

reference point is at the original bed level at the centerline of the pier.  As shown in 

Figure 4.26, the scour profile is symmetrical about the pier.  For instance, it is shown 

that the scour hole extended to a distance of approximately 300 mm away from either 

side of the pier.  It is also shown that the maximum scour depth at the side of the pier is 

about 126 mm, which is less than the 140 mm maximum scour depth observed at the 

upstream face of the pier.  

(0,0) at centre of pier 
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Figure 4.26. Transverse section of scour profile across the plain pier centre: Series 3 test 

4.6.2 Pier fitted with a collar: 115 mm diameter pier (flow intensity = 0.70) 

For the test with a 3D collar fitted to the pier, scour was first noticed to occur at the 

backside of the collar on either side of the pier toward the downstream region as shown 

in Figure 4.27a.  At about 20 minutes after starting the test, no scour had yet occurred at 

the side and upstream face of the collar, however, a small amount of sediment was 

deposited on top of the collar at the backside.  As the test progressed, the scour hole on 

either side of the backside (regions A and B in Figure 4.27a) started expanding in size 

towards the downstream region away from the collar.  It took about 313 hours into the 

test before the scour hole started migrating toward the side of the collar, but surprisingly 

only at one side of the collar as depicted in Figure 4.27b.  Thus, the scour was 

asymmetrical around the collar perimeter.  It is to be noted, however, that the scour 

penetrated beneath the collar towards the pier as shown in Figure 4.27b.   

 

As the test proceeded, the groove, which was formed at only one side of the collar, 

began to extend toward the upstream side, eventually reaching to the centreline of the 

collar (see Figure 4.27b).  In due course, the scour pattern at the upstream side of the 

collar progressed below the collar and eventually to the other side of the collar as shown 

in Figure 4.27c.  For this test, the points of maximum scour were located at regions A 

and B as shown in Figure 4.27c.  The test was stopped after 955 hours.   

 

(0,0) @ centre of pier 
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The location of the maximum scour depth with time is shown in Figure 4.28.  The data 

plotted in the figure are given in tabular format in Appendix E-2(a).  For illustration 

purposes, the term t[419] as shown in the legend of the figure denotes the time of the 

test in hours, while the corresponding symbol shows the location of the maximum scour 

depth at that time.  As shown, the point of maximum scour depth hovered around the 

backside of the collar. 

 

 
 
 

 
 
Figure 4.27. Schematic illustration of the scour hole patterns for the Series 3 test with a 

3D collar: (a) First few minutes, (b) about 13 days, and (c) 28 days 
 
 

 
The photographs in Figures 4.29, 4.30 and 4.31 show the scour pattern at the end of the 

test.  As shown in Figure 4.29, the scour hole was most pronounced immediately 
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downstream from the collar.  There were deposits of sediment in the region downstream 

of the collar as depicted in Figure 4.30.  As shown in Figure 4.31, ripples formed further 

downstream of the collar. 
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Figure 4.28. Locations of maximum scour depth with time: Series 3 test with a 3D collar 
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Figure 4.29. Scour pattern before the removal of  the 3D collar at the end of the test 
 

 

 

Figure 4.30. Scour pattern after removing the 3D collar at the end of the test 
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Figure 4.31. Scour pattern with mounds, depressions and ripples at the end of the test 
 

The temporal development of the scour for the pier protected with a 3D collar is shown 

in Figure 4.32.  The data plotted in the figure are given in tabular format in 

Appendix E 2(b).  As shown, the scour depth increased with time.   An equilibrium 

scour condition was not attained before the test was stopped due to a faulty pump 

controller.  It should be pointed out here, however, that the test was being contemplated 

to be stopped just before this pump controller developed a fault. The test was taking a 

longer time than was anticipated.  The test was ended after about 955 hours of its 

commencement. 
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Figure 4.32. Temporal development of scour depth for the Series 3 test with a 3D collar: 

(a) Arithmetic scale and (b) Log-log scale 
 

Figure 4.33 shows the scour rate with time for this test.  As shown, the rate of scour 

decreases with time.  For instance, the rate of increase of scour depth, which was 

60 mm/hr during the first three minutes of the test, decreased drastically to about 

0.1 mm/hr by the end of the test.  Although, Figure 4.33 and Figure 4.22 show the same 

trend, the slope of the power law equation fitted to the former (i.e., 0.6995), is lower 

than that of the latter.  Also, the slope as shown in Figure 4.33 is lower than the ones 

shown in Figures 4.10 and 4.16.  The reason for the lower slope in Figure 4.33 might be 

due to a lower shear flow intensity under which the test was carried out and also because 

(b) 

(a) 
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of a larger size of collar used.  The collar acts as an obstacle against the down-flow and 

the down-flow loses its strength on impingement at the collar thereby reducing the rate 

at which sediment is removed.   
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Figure 4.33. Scour rate with time for the 115 mm pier with a 3D collar (Series 3 test) 

 

4.6.2.1 Scour hole contour for Series 3 tests for a pier fitted with a collar  

Figure 4.34 shows the contour map of the scour hole at the end of the test while 

Figure 4.35 shows the 3-D map of the scour hole.  The data plotted in the figure are 

given in tabular format in Appendix E-2(c).  The maximum scour depth is about 6 cm 

while the maximum height of the mound is about 5 cm.  From the figures, it is shown 

that the point of deepest scour is located immediately downstream from the collar.  This 

observation is different from the case for the plain pier in which the point of maximum 

scour depth was located at the upstream face of the pier.  Similar observations were 

made by Kumar et al. (1999) for a larger size collar.  However, it is not clear if in the 

longer term the position of the deepest scour would have shifted to the upstream face.   

As shown in Figure 4.35, the scour hole did not reach the immediate vicinity of the pier 

after about 40 days of running the test, although the scour depth was increasing 

marginally, albeit at a slow rate at the time the test was stopped.  This finding is in 

contrast to the test without a collar fitted to the pier (Figure 4.24) in which the position 

of the maximum scour depth was found at the immediate front face of the pier after 

about six hours of running the test.  The reason for this is that the collar was able to 

curtail the action of the down-flow and the horseshoe vortex, thereby reducing the extent 
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of the scour.  A similar observation that the scour did not extend to the immediate area 

of the pier was made by Mashahir and Zarrati (2002) after conducting an experiment for 

a duration of 52 hours also using a 3D collar.  However, it may be speculated that there 

is the possibility of the scour hole reaching the immediate front face of the pier if the 

test had been allowed to run for a longer period of time.  The logical question is for how 

long?  This has remained unknown in the course of this study.   It should be noted that 

little was done with the 3-D plots in Figure 4.24 and Figure 4.35, although the former at 

least gives a visual impression of the scour pattern, the latter figure does not really 

represent any type of an end condition, so it is less useful. 
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Figure 4.35. Oblique 3-D map of the scour for the Series 3 test: With a 3D collar 
 

4.6.2.2 Longitudinal scour profile for Series 3 test with a collar  

The longitudinal scour profile along the centreline of the channel for this test is shown 

in Figure 4.36.  The data plotted in the figure are given in tabular format in 

Appendix E 2(d).  It can be seen that there was a limited amount of scour along the 

longitudinal centre of the pier in the region downstream from the collar.  For instance, 

the maximum scour depth at the backside of the collar (labeled as C) in the Figure 4.36 

was about 3.4 mm whereas at the upstream face of the collar (labeled as D), the 

maximum scour depth was 43 mm.  As shown in Figure 4.36, there was an alternate 

formation of mounds and depressions at the region downstream from the collar.  The 

same observation pertaining to the mounds and depressions was made for the case 

where the pier was unprotected with a 3D collar.  The only difference is that the mounds 

and depressions occurred further downstream of the collar for the test with a 3D collar.  

The mounds and the depressions occurred in response to the deposition of the scoured 

sediment. 

Note: all units in cm 
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Figure 4.36. Longitudinal scour profile along the pier centre: Series 3 test with a 3D 

collar 
 

4.6.2.3 Transverse scour profile for Series 3 test with a collar  

The transverse section of the scour hole through the centre of the pier and across the 

flume width is shown in Figure 4.37.  The data plotted in the figure are given in tabular 

format in Appendix E-2(e).  In this test, it was discovered that the scour hole profile at 

the two sides of the collar in the transverse direction was not similar.  As shown in 

Figure 4.37, the scour depth at the side labelled E was 36.4 mm whereas at the side 

labelled F the scour depth was only 26.4 mm.  Therefore, there was a 27.5% difference 

in the maximum scour depth between the two sides of the collar.  The only plausible 

reason that could be given to the dissimilarity in the maximum scour depth is that there 

may have been a minor disturbance or disequilibrium in the course of conducting the 

test.  When the result in Figure 4.37 is compared with the result of the test for the plain 

pier (Figure 4.26), an approximately equal depth of scour was observed at both sides of 

the pier instead of the dissimilarity in scour depth observed when a 3D collar was fitted 

to the pier.  It is shown in Figures 4.36 and 4.37 that the scour hole did not reach the 

pier.  

CD 

(0,0) at centre of pier 
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Figure 4.37. Transverse section of scour profile across the pier centre: Series 3 test with              

a 3D collar 
 

4.6.3 Scour depth with time for the Series 3 tests (flow intensity = 0.70) 

The temporal development of scour for the case where a 3D collar was fitted to the pier 

is compared with the case of a plain pier.  Figure 4.38 shows the temporal development 

of scour for the two cases for a flow intensity of 70%.  It is shown that the time history 

of the scour for the two cases is different.  Also, there is an apparent reduction in the 

scour depth when a 3D collar was used to protect the pier against scour.   The results in 

Figure 4.38 showed that a 3D collar may be very effective at reducing the maximum 

scour depth as well as the scour rate.  It is shown that the 3D collar was able to reduce 

the maximum scour depth by about 58% after a test duration of 955 hours.  It is also 

observed that an equilibrium scour condition has not been reached.  Therefore, the 58% 

reduction in the scour depth due to the installation of the 3D collar cannot be said with a 

full conviction as the two tests were not run to an equilibrium stage. 

 

E

F

(0,0) at centre of pier 
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Figure 4.38. Combined time development of maximum scour depth for the Series 3 test:             

(a) Arithmetic scale and (b) Log-log scale 
 
 

The following points can be concluded within the scope of the Series 3 tests: 

• For a test duration of about 22 days, the maximum scour depth was observed at 

the upstream face of the pier for an unprotected pier while the position of the 

maximum scour depth for a pier protected with a 3D collar was found within the 

region immediately downstream of the collar over a test duration of about 40 

days. 

• There was a reduction in the scour depth when a 3D collar was used to protect 

the pier when compared with a plain pier. 

(b) 

(a) 
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• The scour rate was lower for the case of a test with a 3D collar than when no 

collar was attached (see Figures 4.22 and 4.33).  Also, the slope of the power law 

fitted to the scour rate versus time graph is a bit flatter in the Series 3 tests when 

compared to the Series 1 and Series 2 tests.    

 

4.6.4 Maximum scour at the pier versus maximum scour elsewhere within the 
flow field 

For a fair assessment of the efficacy of using a collar as a countermeasure against the 

pier scour, it is pertinent to compare the time development of maximum scour for scour 

occurring immediately adjacent to the pier and that elsewhere within the flow field.  The 

term flow field as used here means any location within the flume.  The maximum scour 

elsewhere in the flow field is the greatest scour at any location within the flow field 

aside the pier immediate face where the maximum scour depth has been observed to 

occur.  The data from the Series 3 tests and those from the Series 1 tests were used for 

this analysis.  The results of the run in the Series 3 tests with a 3D collar are shown in 

Figure 4.39. It is noted that, after 955 hours of running the test, the scour has not 

reached the immediate vicinity of the pier.  The implication of this is that, for a short 

duration storm, the effect of the scour may not be felt near the pier and the risk of failure 

may be small. 
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Figure 4.39. Comparison of the temporal development of the maximum scour occurring             
at the pier face and within the flow field for a pier fitted with a 3D collar only 
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The temporal development of maximum scour at the pier face for the test where a 3D 

collar was fitted to the pier and the test involving a plain pier is depicted in Figure 4.40.  

As shown, when using a 3D collar, no scour was experienced at the pier after 955 hours 

of running the test, whereas for the plain pier, a scour depth of about 140 mm was 

reached after 530 hours.   It is seen that a collar efficacy at reducing pier scour can be 

appreciated because of non-occurrence of scour at the immediate pier face when a 3D 

collar was used.   
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Figure 4.40. Temporal development of maximum scour at the pier face for Series 3 tests 
 

With a test involving a 2D collar in the Series 1 test, as shown in Figure 4.41, the scour 

hole did not reach the immediate face of the pier until between 6 to 21 hours into the 

test.  Comparison of Figure 4.41 with Figure 4.40 shows that a 3D collar protected the 

pier better than a 2D collar.  As shown in Figures 4.39 and 4.40, even after a period of 

over 900 hours, the scour hole was yet to reach the immediate face of the pier for a 3D 

collar whereas at a duration of between 6 to 21 hours, the scour hole was at the face of 

the pier for a pier protected with a 2D collar (Figure 4.41).   
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Figure 4.41. Temporal development of maximum scour at the pier face for Series 1 tests  
 

A similar observation made for the cases of the Series 3 and 1 tests was made for the 

Series 2 tests as depicted in Figure 4.42.  As shown in the figure, the scour hole did not 

reach the pier face until after about three hours into the test.   
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Figure 4.42. Temporal development of maximum scour at pier face for the Series 2 tests 
 

4.7 Implications of the definition of time development of local scour 

The difference in the time development of local scour for tests having different physical 

setups (e.g., collar vs. no collar) has significant implications for those studies in which 

the test is stopped after a finite, pre-determined length of time (e.g., 2 hrs., 24 hrs., etc.).  

That is, while the ultimate or equilibrium scour condition for two situations may be the 
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same, the time history to the equilibrium point can vary significantly, as illustrated by 

the data shown in Figure 4.11.  For the case where the collar was not used to protect the 

pier against scour, a maximum scour depth of 140 mm was reached in about 80 hours.  

When a 2D collar was installed at the channel bed, it took some 194 hours to accomplish 

a maximum scour depth of 137 mm.  In essence, this means that nearly the same 

maximum scour depth was achieved in both cases, with the only difference being the 

time required for scour development.  Zarrati et al. (2004) made a similar finding for 

scour at a rectangular pier in respect of the time for scour development. 

Using the data given in Figure 4.11, one can easily demonstrate that wrong conclusions 

may be reached if a test is stopped short of an equilibrium state.  For example, if the 

tests had been stopped at, say, 40 hours, a different conclusion would have been reached 

than if the test had been stopped at 60 hours.  For example, in the case of the 115 mm 

pier shown in Figure 4.11, it is evident that the apparent reduction in the maximum 

scour depth with the collar at 24 hours is 56%, whereas if the results had been assessed 

at a test time of two hours the reduction in maximum scour depth would have been 40%.  

Other examples of this assessment are shown in Table 4.4. 

Table 4.4. Time variation in the apparent efficacy of the 2D collar pier 
scour countermeasure for the 115 mm pier (data from Figure 4.11) 

Time 
(hrs) 

Max. scour 
depth: 

No collar (mm) 

Max. scour 
depth: 

With collar (mm)

Apparent 
reduction in 

scour depth (%) 
20 108 42 61 
40 125 93 26 
60 135 104 23 
80 140 118 16 

 

A similar analysis of the apparent efficacy of a collar was also done using the various 

definitions of the equilibrium condition as published in the literature.  The results of this 

analysis are shown in Table 4.5.  As shown in the table, the conclusion that one might 

reach on the apparent efficacy of a collar varies considerably, depending on what 

definition of equilibrium scour is used.  Even though an equilibrium scour condition was 
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not achieved in the current study, it is also shown that most of the definitions given in 

the table are pointing to the fact that an equilibrium condition has been achieved. 

As such, there is some apparent cause for concern and further indication of the need to 

continue the search for improved understanding of the scour process and the need for 

global definition of equilibrium scour condition.  

Table 4.5. Effect of definition of time to equilibrium scour on the conclusion of         
efficacy of using collar as a countermeasure for pier scour (Figure 4.11 data) 

Definitions of time to 
equilibrium scour 

Source Equilibrium 
scour depth: 
Test without 
collar (mm) 

Equilibrium 
scour depth: 

Test with 
collar (mm) 

Apparent 
reduction 
in scour 

depth (%) 
The time at which the 
rate of increase of 
scour depth does not 
exceed 5% of the pier 
diameter over a 24-
hour period 

 

Melville and 
Chiew 
(1999) 

140 130 7 

The time at which the 
increase in scour depth 
does not exceed 1 mm 
within an 8-hour 
period 

 

Zaratti et al. 
(2004) 

140 121 14 

The time at which the 
increase in scour depth 
does not exceed 1 mm 
within a 3-hour period 

 

Kurmar et 
al. (1999) 

140 100 29 

Scour depth at the   
  point of deepest     
  scour adjacent to the 
pier face were recorded 
for 24 hours period. 

 

Lauchlan 
(1999) 

112 49 56 

Stoppage time for    
  Series 1 tests 

Present 
study 

140 137 2 
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4.8 Equilibrium scour depth from common prediction equations 

In an effort to analyse the data from this study further, several of the common 

equilibrium scour depth prediction equations as published in the literature were used to 

compute the equilibrium scour depth to be expected for the test conditions applicable to 

the 115 mm pier for the case of no collar protection (i.e. data from Figure 4.11).  The 

reason for the analysis is to evaluate the usefulness of some of the renowned equations 

in the literature with a view of testing how reasonably they can predict the equilibrium 

scour depth based on the flow and sediment conditions used in this study.   The results 

of this analysis are shown in Table 4.6 (same as Table 2.2 but with the results 

incorporated).   

Table 4.6. Predicted equilibrium scour depth for the 115 mm pier 
using several equilibrium scour depth prediction equations (data from 

Figure 4.11) 

Investigator(s) Equation Source Predicted 
equilibrium 
scour depth 

(mm) 
Breusers et al. 
(1977) [Based on 
Laursen & Toch 
(1956) data] 

3.0
o

7.0
ise ybK35.1y =  

where yse = equilibrium scour 
depth, Ki = 1.0 for circular pier,  
b = pier width, yo = flow depth 

Hoffmans & 
Verheij (1997) 

191 

Neill (1973) bKy sse =  
where Ks = 1.5 for circular pier 

Melville & 
Coleman (2000) 

173 

Colorado State 
University (CSU) 

65.0

o

43.0
roise y

bFyK0.2y 







=

 
where Ki = 1.1 for a circular pier 
with clear-water scour,  
Fr = Froude number 

Hoffmans & 
Verheij (1997); 
HEC-18 

150 

Raudkivi & 
Ettema (1983) 

σ= bK3.2yse  
where K  = f(σg) = 1 for uniform 
sediment, σg = geometric standard 
deviation of the grain size 
distribution 

Dey (1997) 265 

Shen et al. (1969) 619.0
bse R000223.0y =  

where Rb = pier Reynolds number 
Dey (1997) 109 
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Perhaps not surprisingly, there is a wide variation in the predicted equilibrium scour 

depth.  Moreover, even though an equilibrium scour condition was not achieved in the 

current study, one of the prediction equations shown in Table 4.6 yields an equilibrium 

scour depth less than the 140 mm reached in the test (i.e., under-prediction).  As such, 

there is some apparent cause for concern and further indication of the need to continue 

the search for improved understanding of the scour process and the development of 

better scour prediction tools. 

 

4.9 Effect of pier size on the temporal development of scour  

For the analysis of the effect of pier diameter on the temporal development of the 

maximum scour depth, the data from the Series 1 and Series 2 tests for the case where a 

collar has not been fitted to the pier was used.  It should be recalled that, in the Series 1 

tests, the pier diameter used was 115 mm while in the Series 2 tests the diameter of the 

pier was 73 mm.  Figure 4.43 shows the temporal development of the maximum scour 

depth for the pair of tests.  As the results show, greater depth of maximum scour 

occurred for the larger diameter pier (D = 115 mm) when compared with the smaller 

pier of diameter 73 mm.  Also, the scour depth increased with time for each case.  Thus, 

the smaller the size of the pier the longer it takes to reach a given value of the scour 

depth.   The same observation was made by Ettema (1980). 

The reason for the trends in Figure 4.43 is that a greater disturbance to the flow due to a 

larger pier size can cause a greater acceleration of the flow with an implication of a 

greater entrainment of the bed sediment by the action of the downflow.  The overall 

effect is a much greater scour depth with time for a larger diameter pier when compared 

with a smaller pier.  The same observations on the effect of pier diameter on scour as 

shown in Figure 4.43 were also observed by Chabert and Engeldinger (1956), Raudikivi 

and Ettema (1983) and Franzetti et al. (1982).  As depicted in Figure 4.43, the actual 

difference in the maximum scour depth between the two piers increases with time.   

 

 



 112

0

50

100

150

0 20 40 60 80 100
Time (hrs)

M
ax

. s
co

ur
 d

ep
th

 (m
m

)

D = 115 mm
D = 73 mm

 

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

0 200,000 400,000 600,000 800,000
Dimensionless time (ut/D)

y s
/D

D = 115 mm
D = 73 mm

 

0

2

4

6

8

10

12

0 200,000 400,000 600,000
Dimensionless time (T = ut/D)

y s
/D

0.
55

D = 115 mm
D = 73 mm

 

Figure 4.43. Temporal development of maximum scour depth (effect of pier size):                       
(a) Arithmetic scale,  (b) Dimensionless form, and (c)  Dimensional form 
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Melville and Coleman (2000) found that, for a narrow pier in which the ratio of the pier 

diameter to the flow depth is less than 0.7, the scour depth will depend only on the pier 

diameter (D).  Since this ratio is equal to 0.5 for the two tests shown in Figure 4.43(a), it 

is pertinent to show the dimensionless scour depth with respect to the pier diameter (D) 

as shown in Figure 4.43(b).  As shown in Figure 4.43(b), it can be seen that the relative 

scour depth, ys/D, increased with time and is larger for a smaller pier diameter.  As 

depicted in Figure 4.43(b), one would have expected the data for the two piers to 

collapse into a single relationship but they did not.  That this does not occur indicates 

that there is a scale effect or that there is a wrong scaling parameter.   

The formulation of a relationship to describe the temporal development of local scour at 

the pier is very complex because of the complex nature of the evolution of the scour 

mechanisms.  The number of influencing parameters as described in Chapter 2 is so 

numerous that it is difficult to say categorically the reason for the scale effect observed 

in the data trends given in Figure 4.43(b).  However, Figure 4.43(c) shows the 

dimensional scour depth with time for the same set of data shown in Figures 4.43(a) and 

4.43(b).  Perhaps the correcting scaling parameter is Dn for n < 1 as shown by the 

collapse of the data to a single relationship in Figure 4.43(c) when the value of n = 0.55. 

The essence of using dimensional scaling parameter, Dn, is to be able to find the scour 

depth for a given flow condition and for a given pier diameter. 

The effect of pier diameter on the temporal development of scour for the case of a pier 

with a 2D collar for the Series 1 and Series 2 tests is shown in Figure 4.44.   The results 

show that the scour depth increased with time and that a greater scour depth was 

observed with time for the 115 mm pier when compared with the 73 mm pier. 
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Figure 4.44. Temporal development of maximum scour depth for the pier protected with 

a 2D collar (effect of pier size) 
 

4.10 Effect of flow intensity  

The variation of flow intensity on the temporal development of scour was also 

considered.  For this evaluation, the data collected under the Series 1 and Series 3 tests 

for the plain pier were used.  It should be noted that the Series 2 data have not been 

analysed as part of this section because a different pier size (73 mm) was used.  As 

depicted in Figure 4.45, it can be seen that the higher the flow intensity the deeper the 

scour depth at a given time.  The reason for this is related to the fact that at higher flow 

intensity there is a greater acceleration of the flow within the vicinity of the pier, and 

thus the intensity of the downflow and the horseshoe vortex is greater.  The same trend 

was observed by Raudikivi and Ettema (1983), Breusers et al. (1977) and Chiew (1984).  

It was noted that it takes more time to achieve the same level of scour depth for the 

lower flow intensity (i.e. u*/u*c = 0.70) when compared with a higher flow intensity (i.e. 

u*/u*c = 0.89).   To be precise, it takes over six times as long to achieve the same level of 

maximum scour depth for the case of the flow intensity of 70% when compared with a 

flow intensity of 89%.  It should be noted, however, that the scour process was still at 

the erosion phase of the scour process by the time the tests referred to here were stopped 

since equilibrium condition was not reached. 



 115

0
20
40
60
80

100
120
140
160

0 100 200 300 400 500 600
Time (hrs)

M
ax

. s
co

ur
 d

ep
th

 (m
m

) 

u* = 0.89u*c
u* = 0.70u*c

 

Figure 4.45. Temporal development of maximum scour depth (flow intensity effect) 
 

4.11 Temporal development of scour depth: Comparison with existing formulas  

The scour that occurs at a bridge pier has been analysed by many researchers.  A 

number of approaches relating to the quantitative description of the time development of 

scour at a bridge pier exist in the literature.  This section is devoted to comparing the test 

data to several of the equations that are found in the literature to describe the time 

evolution of scour at a bridge pier.  The Series 3 and Series 1 test data from the present 

study for the case where the pier is unprotected with a collar are used for the 

comparison.  The equations used for the basis of the comparison include: Franzetti et al. 

(1982), Melville and Chiew (1999), Barkdoll (2000), Ettema (1980) and Sumer et al. 

(1993).  Also discussed in this section is the application of the Franzetti et al. (1982) 

equation to a case where a pier has been fitted with a collar.   

 

4.11.1 Franzetti et al. (1982) comparison: For plain pier  

Franzetti et al. (1982) suggested an exponential function in the form of [2.6] to be well 

suited to describing the evolution of scour with time. The data from the present study 

were compared with the Franzetti et al. equation [2.6].  In making the comparison, the 

data obtained from the Series 1 and Series 3 tests for the plain pier were used.  Since 

none of the tests reported in this work reached an equilibrium state, a regression analysis 

was performed on the data obtained from the Series 1 and 3 tests in order to 
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independently calculate the values of yse and constants B and C in [2.6].  Thus, the 

average values of B and C as suggested by Franzetti et al. in [2.8] were not used.  The 

reason for this was that, when an attempt was made to use a regression analysis to 

calculate the value of yse using [2.8], the value of yse obtained was even less than the 

scour depth that had been observed in these tests even though an equilibrium condition 

had not yet been attained.  Thus, the general form of the Franzetti et al. equation was 

used as shown in [2.6].  A regression analysis was performed on the data in order to 

obtain the values of yse and constants B and C. 

 

Looking at the data set for the Series 1 and 3 tests, it is evident the frequency of the 

measurements varied throughout the test period, with the maximum scour depth 

readings being taken every few minutes during the first hour or so of the test and less 

frequently thereafter.  Since most of the data are clustered around the beginning of the 

test period, there is a weighting issue to consider when carrying out the regression 

analysis.  Simply, weighting is a way of varying the amount that each point �counts� or 

is significant in the data distribution.  The regression procedure treats each point of the 

data equally, and thus the use of many points during the first hour or so of testing and 

relatively few points thereafter inherently biases the outcome to the early stages of the 

test period.  The purpose of the weighting is to allow the regression analysis to be 

adjusted to better represent the data.  As regards the temporal development of scour, if 

the weighting is not considered, therefore, the results of the regression analysis will be 

heavily based by the early stages of the scour process.  An adjustment needs to be made, 

therefore, to account for the weighting.  In this study, the weighting problem has been 

handled by simply removing some of the data from the beginning of the test since the 

SPSS tools used for the regression analysis do not have the capability of doing a 

weighting of individual points.  The criterion for determining which data to remove is 

simply by locating the point of discontinuity of the supposedly linear relationship of the 

log-log plot of the temporal development of scour and deleting the test data up to that 

point. To demonstrate this approach, Figure 4.46 shows a schematic illustration of the 

log-log plot of the temporal development of scour, with the point W in the figure being 

the point of discontinuity and the data to be removed are those from S to W.  For the 
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purpose of long term prediction of yse, the data for the latter part of the linear 

relationship (i.e., data between W and V) after deleting the first linear part are then made 

use of.  It should also be realised that the application of the regression analysis to the 

data between W and V only minimises the weighting problem but the problem is not 

totally eradicated.  In this study, no other method apart from the method described above 

was found to address the weighting problem.  

 
Figure 4.46. Schematic illustration of the log-log plot of the temporal development of 

scour for a plain pier 
 

The distribution of the data plotted in Figure 4.5b for the Series 1 test and Figure 4.21b 

for the Series 3 test revealed that there were many measurements during the early stages 

of the test and few measurements later on.  In SPSS, which was the regression analysis 

tool used in this study, this will influence the curve fit because there are so many data 

points measured near to t = 0, which will affect the coefficients B and C in Franzetti et 

al. (1982) equation. Referring to Figure 4.5b and Figure 4.21b, it is observed that there 

is discontinuity in the linear relationship in the log-log plots, thus, dividing the plot into 

two log-linear parts. For the Series 1 test, the point of discontinuity is located at a time 

of one hour into the test (Figure 4.5b) while in the Series 3 test, as shown in 

Figure 4.21b, the point of discontinuity is located at a time in which the test had been 

run for about six hours.  Interestingly, the point of discontinuity referred to here seems 

to coincide with the shift in maximum scour depth location to the front of the pier. 
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When a regression analysis was performed on the data from the Series 1 and Series 3 

tests, the values of the constants obtained from the analysis are as shown in Table 4.7.  

As the results show, the equilibrium scour depth for the Series 1 test was 248 mm while 

that of the Series 3 test was 197 mm.   

Table 4.7. Regression analysis results using Franzetti et al. (1982) 
equation 

Variable Series 1 Series 3 
yse 248 mm 197 mm 
B 0.026 0.0043 
C 0.259              0.379 

Regression Statistics (R2)   0.9972   0.9972 

 

Employing the values of constants B and C given in Table 4.7, it is obvious that the 

resulting curves using the general form of the Franzetti et al. equation displayed a good 

correlation with the data for the Series 1 and Series 3 tests as shown in Figure 4.47 and 

Figure 4.48, respectively.  From the figures, the Franzetti et al. (1982) equation fits well 

to the data in the present study and the corresponding R2 = 0.9972.  Even though [2.6] 

fits well to the data of the present study, the associated coefficients B and C seem to be 

related to specific data (i.e. flow conditions, pier geometry and sediment parameters). 
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Figure 4.47. Series 1 data and Franzetti et al. (1982) prediction line 

u*/u*c = 0.89 
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Figure 4.48. Series 3 data and Franzetti et al. (1982) prediction line 

 

Alternatively, it was also found from Whitebread et al. (2000) that [4.1] can be used in 

place of [2.7], viz. 

[4.1]  ( )Dy
ut

=Τ 5.0
o

     

When [4.1] was used in the analysis of the Series 3 test, it yielded the same value of 

yse = 197 mm.  Equation [4.1] specifically takes into account the flow depth, yo and 

being one of the parameters influencing the scour mechanism, it does provide an 

alternative method of determining the dimensionless time, T.  

 

In order to calculate the time that a significant portion of the equilibrium scour depth of 

197 mm would have been reached for the Series 3 test, a 90% asymptote as suggested 

by Cunha (1975) was adopted.  The 90% asymptote was adopted because it is not 

mathematically possible to determine the time to infinity at which an equilibrium scour 

depth is purported to be achieved based on the form of the Franzetti et al. (1982) 

relationship (i.e., using equation 2.6 and values in Table 4.7).  From the calculation, it 

was estimated that it will take about 7 months to achieve 90% of the equilibrium scour 

depth, which amounts to 177 mm. This duration is long and casts doubt on whether 

an equilibrium condition can be achieved within the context of a laboratory experiment.  

u*/u*c = 0.70 
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It may not be economically feasible to carry out experiments of such a long duration in 

the laboratory.   

 

Even though Franzetti et al. (1982) observed that the value of the constant B varied 

between 0.021 and 0.042, the value of B for the Series 3 test shown in Table 4.7 falls 

outside this range but not by a significant amount.  Also, the values of the constant C 

shown in the table are also pretty close to the average value of 1/3 given by Franzetti et 

al.  The reason for the very little differences seen may be due to the difference in the 

flow conditions and/or sediment properties that were used for the tests upon which the 

Franzetti et al. findings were based and the ones used for the present study.  It is to be 

noted also that the average values of B and C given in [2.8] were based on experimental 

results by Chabert and Engeldinger (1956) and Franzetti et al. (1982).  The longest 

duration of those tests was about 234 hours.  The test reported under Series 3 was run 

for about 531 hours.  This might be the reason why there was a significant difference in 

the values of B as given by Franzetti et al. and that given in Series 3 of the present 

study.  Therefore, average values of the constants B and C as suggested by Franzetti et 

al. should be used with caution.   

In order to contest further the idea of using the average values of B and C in [2.8], ys/yse 

was plotted against the dimensionless time, T, using [2.8] and values of B and C in [4.2] 

as given in Table 4.7.  The resulting figure is as shown in Figure 4.49.  It should be 

noted that the Series 3 data have been used for illustration only.    

[4.2]  ( )[ ]379.0

se

s T00425.0exp1
y
y

−−=      (Present study, Series 3 test) 

As shown in Figure 4.49, it can be seen that at a dimensionless time of 3,200,000 with 

an equivalent experimental duration of about 531 hours, the equilibrium depth of scour 

attained was 71% and 98%, respectively, for the Series 3 test (i.e., equation [4.2]) and 

by using the Franzetti et al. (1982) average values of B and C (i.e., equation [2.8]).  It is 

uncertain if 98% of the equilibrium scour depth would have been achieved within the 

531 hours of the Series 3 test going by the fact that equilibrium condition was not 

reached in the course of this test. The 71% of the equilibrium scour depth which 
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corresponded to a scour depth of about 140 mm seems more reasonable a value as far as 

this test is concerned.  
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Figure 4.49. The scour depth, ys, relative to equilibrium scour depth, yse, as a function of 

dimensionless time, T 
 
 

4.11.2 Melville and Chiew (1999) and Barkdoll (2000) comparison 

The comparison of the present study data with [2.9] and [2.13] is given in Figure 4.50.  

For this comparison, [4.2], which best described the data set for the Series 3 test, was 

used.  It should be noted, however, that the coefficients for [4.2] were obtained from the 

regression analysis performed on the Series 3 test data.  Equation [4.2] has been used in 

place of the measured data in the Series 3 test for two reasons.  The first reason is that 

[4.2] describes the Series 3 data set very well and, secondly, the Series 3 data is obtained 

from a test which was run for only a duration of 22 days, and for a good comparison 

with the work of  Melville and Chiew (1999) and Barkdoll (2000) the experimental 

duration should be very long.  Therefore, since no equilibrium was reached in the 

Series 3 test, the equilibrium scour depth obtained by regression analysis using [4.2] was 

employed.  Since the time to equilibrium scour was at infinity using the equation, a 90% 

asymptote as explained before was used.  At 90% of the equilibrium condition, the scour 

depth was 177 mm and the corresponding time to reach the 90% asymptote was 5,040 
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hours.  The time to equilibrium scour, te, was assumed to be equal to 5,040 hours while 

the corresponding equilibrium scour depth was also taken as 177 mm.   

As shown in Figure 4.50, the Series 3 data set is well described by the Melville and 

Chiew (1999) equation when compared with the equation given by Barkdoll (2000).  

The reason for the near-fit may be connected with the fact that the Melville and Chiew 

equation was developed from a data set wholly for a circular pier whereas the Barkdoll 

equation was developed from a combined data set for both circular and noncircular 

piers.  The reason why the plots, as shown in Figure 4.50, did not collapse into a single 

relationship may be due to the fact that [2.9] and [2.13] were developed from a pool of 

data obtained from various flow conditions, geometry and sediment parameters.  In 

conclusion, the Melville and Chiew equation described the present Series 3 test data 

better than the Barkdoll (2000) equation. 
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Figure 4.50. Comparison of scour depth with time: Melville & Chiew (1999) and 

Barkdoll (2000) equations for flow intensity of 0.70 

 

4.11.3 Ettema (1980) equation comparison 

In order to determine if [2.15] can be fitted to the Series 3 data, a regression analysis 

was performed to determine the coefficients K1 and K2.  For the tests in this study, the 

average value of the water temperature was 20°C.  The corresponding value of viscosity, 
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υ = 1.00 x10-6 m2/s, was used in calculating X.  The results of the regression analysis 

showed that the values of K1 and K2 are 290 and 1147, respectively, for the Series 3 data 

with R2 = 0.94.  The comparison of the Series 3 test data to [2.15] is given in 

Figure 4.51.  As shown in the figure, the trend of the Series 3 test data is the same as 

that of Ettema�s equation.   Even though the trend is the same, it can be seen that the 

scour depth is overpredicted by Ettema�s equation before the time of 167 hours and 

underpredicted thereafter.  In conclusion, Ettema�s equation does not represent the 

Series 3 test data very well. 
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Figure 4.51. Comparison of measured Series 3 scour depth versus time with Ettema 

(1980) equation 
 

4.11.4 Sumer et al. (1993) comparison  

In order to compare the Series 3 test data with [2.16], the time scale (T1) for the data was 

estimated to be approximately 20 hours in accordance with the Sumer et al. (1993) 

approach.  By regression analysis using the Series 3 data and [2.16], the value of the 

equilibrium scour depth, yse, was found to be 117 mm.  This is a poor correlation as the 

value of the equilibrium scour depth is even smaller than the 140 mm maximum scour 

depth reached in the Series 3 test even though an equilibrium scour depth was not 

reached.  Therefore, the expression given by Sumer et al. (1993) does not fit the Series 3 
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test data.  The regression analysis performed on the data with the Sumer et al. approach 

gave an R2 = 0.86.   

 

An adjustment to the Sumer et al. equation in the present study gave rise to an equation 

that fitted well to the data. The adjusted equation was re-written in the form of [2.9] as 

[4.3]  





















−−=

F

1
ses T

tGexp1yy  

 
It was noted that by introducing new coefficients, G and F, in [2.16], a new form of the 

equation as shown in [4.3] fitted well to the Series 3 test data.  The value of the time 

scale for the Series 3 data analysis was still T1 = 20 hours, as mentioned above.  The 

results of the regression analysis yielded the value of equilibrium scour depth, which is 

the same as that obtained from the Franzetti et al. (1982) equation. Specifically, the 

equilibrium scour depth, yse, is 196 mm.  A plot showing the comparison of the 

measured scour depth versus time with the Sumer et al. (1993) equation and the adjusted 

Sumer et al. (1993) equation is shown in Figure 4.52.  It is shown that the Sumer et al. 

(1993) equation did not describe the Series 3 test data.  It is shown by Sumer et al.�s 

equation that the equilibrium condition has been reached at a scour depth of 117 mm 

even though, the Series 3 test data did not show any equilibrium condition as the scour 

depth was still increasing at the time the test was stopped.  Equation [2.16] was used to 

describe the time evolution of scour around circular vertical piles by waves in marine 

environments.   

 
That the equation did not correlate well with the Series 3 data may be due to the fact that 

this present study has been conducted for a steady flow rather than under a steady 

current and wave action that are associated with a flow in which [2.16] was applied.  

However, the adjusted Sumer et al. (1993) equation aligns well with the Series 3 data as 

shown in Figure 4.52.   

 
In summary, for the studies in which no collar was fitted to the pier, it was noted that the 

form of an equation that fits the experimental data was the one given by Fanzetti et al. 

(1982).  The equation is given as:  
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( )( )C
ses BTexp1y=y  

However, there is every reason to be cautious of the use of the average values of B and 

C given by Franzetti et al.  The adjusted Sumer et al. (1993) equation aligns well with 

the data though it is recognised that it is a form of Franzetti et al. (1982) equation.    
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Figure 4.52. Comparison of measured scour depth with time: Sumer et al. (1993) and the 

adjusted Sumer et al. (1993) equations 
 

4.11.5 Application of Franzetti et al. (1982) equation to a pier fitted with a collar 

Having successfully applied the form of Franzetti et al. (1982) equation to describe the 

temporal development of scour depth for the case of a plain pier, the same idea was 

extended to a case where a collar was fitted to a pier.  With a collar in place, the idea is 

to integrate a delay factor into the curve fitting analysis using the regression analysis 

technique together with the form of Franzetti et al. (1982) equation.  An attempt was 

made to simply apply the Franzetti et al. equation and the regression analysis technique 

to Series 1 and Series 2 test data for the case in which a 2D collar was fitted to the pier.  

Figure 4.53 shows the schematic illustration of temporal development of scour for a pier 

fitted with a collar (point J to M).  This figure is similar in trend to that of Figure 4.9 and 

Figure 4.15.  By incorporating such a delay factor, it is meant that the data between 

point L and M as shown in Figure 4.53, which show the same trend as that of a test with 



 126

a plain pier are only used for the purpose of the curve fitting analysis.  It is like 

truncating the data between J and L.  However, the point L for the purpose of the 

analysis still retained it original coordinates in both (x,y).   

 
Figure 4.53. Schematic illustration of the temporal development of scour for a pier fitted 

with a collar 
 
 
The results of the regression analysis are shown in Table 4.8 and Figure 4.54.   As 

shown in the table the resulting equilibrium scour depths predicted from the regression 

analysis for the Series 1 test are smaller than the maximum scour depths obtained at the 

end of the test.  The result, therefore, is not meaningful.  In case of Series 2 test, 

however, the resulting equilibrium scour depth from the analysis is a little more than the 

maximum scour depth obtained when the test was stopped. It is known that the 

equilibrium condition has not been reached as the test was stopped abruptly because of 

ripple formation as explained earlier.  That the equilibrium condition is obtained to be 

87 mm from the regression analysis may not be correct.  Can a delay factor be simply 

incorporated into the form of Franzetti e al. (1982) relationship such that the equation 

fits well to the data?  The answer is yes, but the resulting equilibrium scour depth from 

this approach is not correct and therefore, the approach may not be useful for the case 

where a collar has been fitted to the pier.  However, the application of Franzetti et al. 

equation for a case where a collar is fitted to a pier can be a potential research area in 

which a further work is required.  
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Figure 4.54. Test data and Franzetti et al. (1982) prediction line for a pier with a 2D 

collar: (a) Series 1 test, and (b) Series 2 test 
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Table 4.8. Regression analysis results using Franzetti et al. (1982) 
equation for a pier fitted with a 2D collar 

Variable Series 1 Series 2 
yse 131 mm 87 mm 
B 4.16E-8 2.38E-4 
C 1.342 0.726 

ys when test ended 137 mm 83 mm 
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CHAPTER 5 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.1 Summary 

The scour that occurs around a circular pier founded in erodible bed material is a 

complex three-dimensional phenomenon. Notwithstanding the considerable effort that 

has been invested in the study of local scour by many researchers, an understanding of 

the mechanics of local scour around a bridge pier remains far from complete. This is 

reflected by the wide range of relationships available to the designer for the estimation 

of the depth of local scour around a bridge pier. There are also various methods that 

have been proposed to prevent local scour at bridge piers.  Among others, the use of 

collars has been suggested as a possible mitigation technique, largely on the basis of 

model study results.  Peak flood flows may last for only a few hours or days in the field.  

For short duration floods, the duration of the flood may be insufficient for achieving an 

equilibrium scour depth.  In such instances, the actual scour depth may only be a small 

percentage of the equilibrium scour depth, which could take weeks or months to fully 

develop. In this regard, reducing the rate of scour can serve to limit the risk of pier 

failure when short duration floods occur. When a collar is installed on a pier, the direct 

impact of the downflow to the riverbed is prevented, which serves to reduce the depth of 

scour that can take place.  In addition to reducing the depth of maximum scour, the rate 

of scour is also reduced considerably. Therefore, the capability of a collar at reducing 

the rate of scour can play a significant role at slowing down the development of scour 

and, hence, reducing the impact of scour at a bridge pier. 

In this work, the temporal development of scour at a circular pier fitted with or without a 

collar was experimentally studied using a physical hydraulic model. The study was 

performed under clear-water conditions using a uniform cohesionless bed material and a 

circular pier. The principal objective of this study is to carry out a much longer test than 

found in the literature with a view to evaluating the time development of the local scour 

at a bridge pier that has been fitted with a protective collar for the purpose of mitigating 

the scour.  Subsidiary objectives also included the evaluation of the effectiveness of a 
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pier collar for mitigating the depth of scour that would otherwise occur at a bridge pier, 

and the assessment of the occurrence of an equilibrium scour condition, if achieved, or 

of the implications of not achieving such a condition in respect of interpreting the results 

obtained from a physical hydraulic model study. Also to be assessed as part of this study 

are some of the equilibrium scour depth prediction equations as well as some definitions 

of equilibrium scour depth found in the literature.  

In addressing the objectives, a series of tests was designed to study the time 

development of scour as well as the efficacy of using a collar as a countermeasure for 

the scour at a bridge pier. Tests were conducted using two different pier diameters so as 

to determine the effect of pier diameter on the temporal development of scour. Also 

investigated was the effect of collar size on the time development of scour and its 

efficacy at preventing scour at a bridge pier. The effect of flow intensity on temporal 

development of scour was also studied. The time development of the scour hole around 

the model pier with and without a collar installed was also compared with similar 

studies on bridge piers.  Several equations for the temporal development of scour depth 

and those for the prediction of the equilibrium scour depth were tested as part of this 

study.  Based on the results obtained, the objectives of the current study were 

successfully achieved.  

 
 
5.2 Conclusions 

The results of the model study indicated that the depth of scour is highly dependent on 

time. The depth of the scour hole increases as the time increases. The extent of scour 

observed downstream of the pier also increases as time increases. It was found that the 

temporal development of the scour hole at a pier is dependent on whether or not the pier 

is fitted with a collar placed at the bed level. The pathway to equilibrium depth is 

different depending on whether the pier is fitted with a collar or not. There were two 

bends in the scour depth-time curve for a case where a collar was fitted to the pier when 

compared with a single kink in case of a plain pier.  With a collar in place, the 

development of the scour hole is considerably delayed.  
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Further, it was also found that: 

• A 2D collar delays the development of the scour hole.  However, its usage may 

provide little long-term benefit at reducing the maximum scour depth.  Based on 

40 days test duration and results, a 3D collar may be very effective at reducing 

both the scour depth and the scour rate when compared with a 2D collar.  Having 

run one of the tests in the present study for as long as about 40 days, the 

conclusion that can be drawn is that the scour still did not extend to the vicinity 

of the pier when a 3D collar was fitted to it, although the scour depth continued 

to increase at a very low rate.  

• As regards the temporal development of scour depth and for the tests in which no 

collar was fitted to the pier, it was noted that the form of equation that fits the 

experimental data well was the one given by Franzetti et al. (1982). The equation 

is given as:  

[2.6]   ( )( )C
ses BTexp1yy −−=  

 
 However, there is every reason to be cautious of the use of the average values of 

B and C given by Franzetti et al.   

With a collar in place and with an integration of a delay factor into the curve 

fitting analysis using the regression analysis technique together with the form of 

Franzetti et al. (1982) equation, the resulting equilibrium scour depth seems to be 

questionable and thus may not be correct. Therefore, the application of the 

Franzetti et al. equation may not work for the case where a collar has been fitted 

to the pier. 

• A modification to the Sumer et al. (1993) equation made the modified equation  

fit well to the data from the present study when compared with the original 

equation.  The adjusted equation was re-written as 

[4.3]   
































−−=

F

1
ses T

tGexp1yy  



 132

The adjusted Sumer et al. (1993) equation shares a great resemblance to the 

Franzetti et al. (1982) equation, but the method of obtaining the time scale, T1, is 

different.  

• Based on the limited amount of testing done as part of this study and some of the 

results reported in the literature, it appears that one benefit of using a collar at a 

pier is to delay the development of the scour hole.  However, the use of a collar 

may provide little long-term benefit at reducing the maximum scour depth.  It 

was also noted that collar efficacy increases with increasing collar diameter. 

• A truly equilibrium scour condition is not readily attainable and was not 

achieved in the work reported herein.  Given that many scour tests reported in 

the literature have been undertaken for test durations considerably less than that 

used in this work, it is speculated that the occurrence of an equilibrium scour 

condition may be widely misreported in the literature. 

• From the regression analysis and using the form of equation given by Fanzetti et 

al. (1982), it was estimated that, for a test with a plain pier, it will take about 

seven months to achieve 90% of the equilibrium scour depth.  This duration is 

long and tends to cast doubt on whether an equilibrium condition can be 

achieved within the context of a laboratory experiment.  This point is supported 

by the finding from the study herein in which no equilibrium scour condition 

was reached despite running a long test. 

• From this study, it was demonstrated that wrong conclusions may be reached if a 

test is stopped short of an equilibrium state.  An equilibrium scour depth 

determined based on some definitions of an equilibrium scour condition reported 

in the literature may not be correct as shown from the results of the present 

study.  Furthermore, it is possible to reach a variety of conclusions about the 

efficacy of using collars as a pier scour countermeasure technique, depending on 

which definition of time to equilibrium scour is adopted. 

• In addition to experimental testing, several suggested empirical equations by 

researchers were used as predictors for the maximum depth of clear-water scour. 
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When compared to the test data, these equations give a wide range of values. 

Therefore, the performance of many scour prediction formulas in the literature 

may need to be further evaluated. As such, there is some apparent cause for 

concern and further indication of the need to continue the search for improved 

understanding of the scour process and the development of better scour 

prediction tools. 

In the course of the work, the following conclusions also became evident:  

• For the case where a collar was not fitted to the pier, the overall scour pattern, 

which was symmetrical, consisted of a hole situated in front of the pier, a mound 

of deposited sand located a short distance downstream from the pier, and the 

alternate formation of depressions and mounds and a series of ripples fanning out 

from the pier in the downstream direction.  The point of maximum scour depth 

was found immediately in front of the pier for most of the test duration. 

• From this study and based on some work of other researchers, it can be 

concluded that the time taken to reach any given scour depth decreases as the 

flow intensity increases.   

• Shields criterion for the initiation of sediment motion needs to be interpreted with 

caution.  Bed material motion may occur for flow conditions apparently below 

Shields� threshold of motion condition.  For a sand bed having d50 = 0.53 mm, 

the incipient motion condition for clear-water scour would appear to occur in the 

range 0.80u*c  - 0.85u*c for a flow depth of 230 mm and a lower u*c condition for 

shallower depths of flow.  In this, u*c was defined using the Shields diagram. 

 

5.3 Recommendations 

Recommendations regarding possible future work in relation to the current research 

project are as follows: 

• Since a river usually carries debris, particularly during flood conditions, a study 

of the effect of debris on the performance of a collar and on the temporal 
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development of scour could be investigated in order to gain more knowledge or 

insight as to the use of a collar. 

• All previous studies on the use of a collar as a countermeasure for local scour at 

a bridge pier are based on experiments carried out using a physical hydraulic 

model.  It would be useful to investigate the practicality of using a collar on the 

field through a prototype study. 

• All previous studies on the use of a collar as a countermeasure for local scour at 

a bridge pier have been confined to cohesionless material and clear-water flow 

conditions. Since local scour other than under a clear-water scour condition is 

possible at a bridge pier, it could be useful if the use of a collar under a live-bed 

scour condition were studied. Also, since a bridge pier can be located on a soil 

other than cohesionless soil, studying the performance of a collar as well as the 

temporal development of scour in a cohesive soil will give valuable clues to the 

behaviour of a collar under this circumstance. 

• Having run one of the tests in the present study for as long as about 40 days, the 

conclusion that can be drawn is that the scour still did not extend to the vicinity 

of the pier when a 3D collar was fitted to it, although the scour depth continued 

to increase at a reduced rate. As a further piece of research work, perhaps the test 

could be run for a much longer time to investigate if the scour hole would 

eventually extend to the vicinity of the pier. 

• What is common in the literature is the description of flow mechanism causing 

local scour at a plain pier. Since no work has been done to describe the flow 

behaviour with a collar in place, a research study in this area will address a 

deficiency in the understanding of such a flow mechanism. 

• Even though the general form of the equation given by Franzetti et al. (1982) fits 

well to the data of the present study as well as some of the data of other 

researchers, the associated coefficients contained in the formulae seem to be data 

specific (i.e., flow conditions and sediment parameters).  Therefore, the 

dependence of those coefficients on some other parameters that are related to the 
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evolution of scour may be a potential area of further research. As regards this 

point, more tests relating to different flow intensity, sediment material, collar and 

pier diameters and flow depth are needed to properly define the coefficients and 

also the time scour relationship for the case where a collar is not fitted to the pier 

and the case where it is. 
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Appendix A-1 
 

Calculation of incipient motion condition. 
 
A condition of incipient motion is the hydraulic condition at which motion is initiated in 
sediment particles (of a given size).  The requirement for a clear-water condition is that 
the shear stress in the upstream reach of the flume be equal to or less than the critical 
shear stress of the bed material. The calculation example given below illustrates the 
procedure for using Shields diagram and the tractive force approach for calculating the point 
of incipient motion in a flume bed.   
 
An experiment is being designed in a flume to convey clear-water to a pier located 
downstream of the flume.  The design calls for a strict adherence to a flow depth, yo = 
230 mm. The width of the flume is 1.22 m. The flume bed material consists of sediment of 
median size of 0.53 mm and its specific gravity (G.S.) is 2.65.  Clear-water is admitted to 
the flume channel and it is imperative that no material be scoured from the channel bottom 
at the upstream of the pier.  To be on the side of safety, the experiment is being designed to 
be conducted at a shear stress of 80% of the critical shear stress in order to ensure that no 
scour or ripple formation is expected on the flume channel prior to reaching the pier 
location. Determine the flow conditions to achieve these requirements.  Assume a 
temperature of 10°C and a corresponding kinematic viscosity, υ = 1.306 x 10-6m2/s.   
 
Solution 
 
By using the approach described in Section 2.3 of Chapter 2, the steps below can be used to 
determine conditions of incipient motion. 
 
Step 1:  Find the third dimensionless parameter using  

   
υ
50d

2/1

50
s gd11.0 















 −
γ
γ  or  

υ
50d ( )[ ] 2/1

50gd1S.G1.0 γ−  

The value of the parameter for this example is equal to 11.89  

Step 2:  Determine the dimensionless shear stress τ* from the Shields diagram using the    
             dimensionless parameter from Step 1 (i.e, 11.89)  
 

Hence, τ* = 0.032 
 
Step 3:  Find the critical shear stress τc, from  
 

( ) 50s*c dγ−γτ=τ    or    ( ) 50*c d1S.G γ−τ=τ  
 

τc  =  0.275 N/m2 
 
Step 4:  Calculate the critical shear velocity, u*c, from  
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2/1

c
c*u 








ρ
τ=          [ρ = 1000 

kg/m3] 
 
u*c = 0.0166 m/s 

Step 5:  Determine the actual shear stress, τa, expected to prevent ripple formation using the       
             percentage of  critical shear stress expected (i.e., 80%) 
 

τa = 80% τc = 0.220 N/m2 
 

Similarly, as in step 4, the actual shear velocity u* = 0.0148 m/s 
 
and u*/u*c =  0.89 

 
Step 6:  Calculate the friction slope, Sf, using the relationship 
 

foa Syγ=τ     
Sf = 9.74 x 10-5 m/m 

  
Step 7:  Calculate the mean approach velocity, u, by employing the Manning�s formula with   

So known and assuming the value of Manning�s n, n = 0.012. The symbol R is the 
hydraulic radius. 

 

n
SR

=u
2/1

f
3/2

 

                                      u = 0.249 m/s 
 
Step 8:  The flow discharge, Q, can then be determined using the continuity equation 
 

Q = Au 
 
   Q = 0.070 m3/s 
 
 
Note 
γ � Specific weight of water 

   γ s � Specific weight of sediment 
 
Note: In doing the critical shear stress calculations, Manning�s n value was assumed as 
0.012.   
 
 
 
 
 



 147

Appendix A-2 
 

Calculation of bed shear stress 
 
As part of experiments conducted in the Hydrotechnical Laboratory at the University of 
Saskatchewan, Saskatoon, Canada, the velocity distribution in the central portion of a 
recirculating flume, 20 m long, 1.22 m wide and 0.61 m deep was measured.   The flume 
has a working section in the form of a recess that is filled with sediment to a uniform 
thickness of 0.16 m.  The data is given in the table below for the location identified as L1 
in Section 4.3.  Compute the bed shear velocity and the corresponding bed shear stress. 
 

Flow depth (y) 
(m) 

Velocity (u) 
(m/s) 

0.0075 0.181 
0.0175 0.212 
0.0275 0.223 
0.0375 0.232 
0.0475 0.236 
0.0575 0.244 
0.0675 0.246 
0.0775 0.248 
0.0875 0.251 
0.0975 0.249 
0.1075 0.252 
0.1175 0.251 
0.1275 0.249 
0.1375 0.254 
0.1475 0.249 
0.1575 0.251 
0.1675 0.253 
0.1775 0.254 
0.1875 0.254 
0.1975 0.262 
0.2075 0.256 
0.2175 0.256 
0.2275 0.257 

 
Solution 
Step 1:  Plot velocity, u, versus y  
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y = 1E+07u13.35

R2 = 0.9471

0.001

0.01

0.1

1

0.17 0.19 0.21 0.23 0.25 0.27
Velocity, u (m/s)

 y
 (m

)

 
Step 2:  From the plot, fit a straight line equation of best fit to the data, i.e. 

 
[1] 35.13071 uEy +=  
 
Which implies, for the plot shown, the slope = 13.35 

 
Step 3:  The semi-logarithmic average velocity equation for a bed given by   

Chiew and Lim (2000) and Chang (1988) is: 

[2] 







=

50* d
y53.5log75.5

u
u   [where u* is the shear velocity] 

Recall,  
[3] mx + c       [Equation of a straight line] 
 
If [2] is expressed in the form of [3], then 
 

[4] 
50* d
53.5log

u75.5
u)y(Log =   [where d50 is the median grain size] 

 
Step 4: By comparing the slopes of [1] and [4], the shear velocity, u* can be determined.
  

 [5] 
*u75.5

135.13 =  

 By solving [5], the shear velocity,  
 

u* = 0.013 m/s  
 
Step 5: The bed shear stress, τ, can be determined by using: 

 
[6] ρu=τ 2

*      [ρ = 1000 kg/m3] 
 



 149

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

APPENDIX  B   Data for the velocity profiles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 



 150

Appendix B 
 

Table B shows the velocity profile data which were analysed in Section 4.3. 
 

Table B. Data for the velocity profiles  

L1 L2 L3 L4 L5 L6 
y 

 (m)  
u 

(m/s) 
y 

 (m)  
u 

(m/s) 
y 

 (m)  
u 

(m/s) 
y  

(m)  
u 

(m/s) 
y  

(m)  
u 

(m/s) 
y  

(m)  
u 

(m/s) 
0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000
0.0075 0.181 0.0075 0.174 0.0075 0.186 0.0075 0.173 0.0075 0.138 0.0075 0.099
0.0175 0.212 0.0175 0.195 0.0175 0.202 0.0175 0.187 0.0175 0.182 0.0175 0.162
0.0275 0.223 0.0275 0.213 0.0275 0.223 0.0275 0.206 0.0275 0.216 0.0275 0.183
0.0375 0.232 0.0375 0.214 0.0375 0.217 0.0375 0.208 0.0375 0.179 0.0375 0.215
0.0475 0.236 0.0475 0.218 0.0475 0.212 0.0475 0.221 0.0475 0.189 0.0475 0.234
0.0575 0.244 0.0575 0.223 0.0575 0.220 0.0575 0.220 0.0575 0.199 0.0575 0.216
0.0675 0.246 0.0675 0.227 0.0675 0.226 0.0675 0.225 0.0675 0.235 0.0675 0.225
0.0775 0.248 0.0775 0.229 0.0775 0.233 0.0775 0.228 0.0775 0.258 0.0775 0.247
0.0875 0.251 0.0875 0.232 0.0875 0.236 0.0875 0.232 0.0875 0.247 0.0875 0.240
0.0975 0.249 0.0975 0.235 0.0975 0.232 0.0975 0.227 0.0975 0.252 0.0975 0.262
0.1075 0.252 0.1075 0.235 0.1075 0.233 0.1075 0.239 0.1075 0.263 0.1075 0.277
0.1175 0.251 0.1175 0.237 0.1175 0.239 0.1175 0.240 0.1175 0.260 0.1175 0.278
0.1275 0.249 0.1275 0.238 0.1275 0.234 0.1275 0.244 0.1275 0.273 0.1275 0.284
0.1375 0.254 0.1375 0.236 0.1375 0.228 0.1375 0.256 0.1375 0.271 0.1375 0.288
0.1475 0.249 0.1475 0.243 0.1475 0.243 0.1475 0.255 0.1475 0.257 0.1475 0.287
0.1575 0.251 0.1575 0.245 0.1575 0.257 0.1575 0.266 0.1575 0.266 0.1575 0.299
0.1675 0.253 0.1675 0.247 0.1675 0.251 0.1675 0.276 0.1675 0.273 0.1675 0.294
0.1775 0.254 0.1775 0.253 0.1775 0.248 0.1775 0.277 0.1775 0.293 0.1775 0.306
0.1875 0.254 0.1875 0.253 0.1875 0.257 0.1875 0.283 0.1875 0.314 0.1875 0.309
0.1975 0.262 0.1975 0.254 0.1975 0.266 0.1975 0.281 0.1975 0.277 0.1975 0.320
0.2075 0.256 0.2075 0.259 0.2075 0.271 0.2075 0.287 0.2075 0.297 0.2075 0.318
0.2175 0.256 0.2175 0.251 0.2175 0.266 0.2175 0.287 0.2175 0.290 0.2175 0.310
0.2275 0.257 0.2275 0.253 0.2275 0.270 0.2275 0.289 0.2275 0.272 0.2275 0.303
0.2300 0.202 0.2300 0.211 0.2300 0.216 0.2300 0.204 0.2300 0.212 0.2300 0.178

 
 
 

Note 
y � Position within the vertical 
u  � Approach mean velocity 
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APPENDIX C-1  
The data presented in this appendix refer to the Series 1 test without a collar and the 
combination of pier and flow conditions that are given in Table 3.1. The data are analysed in 
Section 4.4.1. 

Table C-1. Data for temporal development of scour depth for the 115 mm pier 
without a collar (Flow intensity = 0.89) 

Time 
Max. scour 
depth ( ys) 

Temp. 
 

Scour 
rate 

 
Time 

Max. scour 
depth ( ys) Temp. 

Scour  
rate 

(hrs) (mm) (oC) (mm/hr)  (hrs) (mm) (oC) (mm/) 
0.000 0 12.1   4.033 80 14.3 3.8 
0.017 15 12.1 900.0  4.083 80.5 14.3 10.0 
0.033 25 12.1 600.0  5.650 85 14.4 2.9 
0.050 29 12.1 240.0  6.083 86 15 2.3 
0.067 32 12.1 180.0  6.383 87 15.1 3.3 
0.083 35 12.1 180.0  6.517 88 15.1 7.5 
0.100 37 12.2 120.0  7.005 89 15.3 2.0 
0.117 39 12.2 120.0  7.300 89.5 15.4 1.7 
0.133 40 12.2 60.0  7.750 90 15.5 1.1 
0.150 42 12.3 120.0  8.417 92 15.6 3.0 
0.167 43 12.3 60.0  8.883 94 15.8 4.3 
0.183 44 12.3 60.0  9.450 95 15.9 1.8 
0.200 45 12.3 60.0  9.917 96 16 2.1 
0.217 45.5 12.3 30.0  10.417 98 16.1 4.0 
0.233 46 12.4 30.0  10.933 99 16.2 1.9 
0.250 46.5 12.4 30.0  11.333 100 16.3 2.5 
0.267 47.5 12.4 60.0  21.650 109 18.4 0.9 
0.283 48.5 12.4 60.0  22.600 110 18.5 1.1 
0.300 49 12.5 30.0  24.250 112 18.5 1.2 
0.317 49.5 12.5 30.0  25.017 113 18.5 1.3 
0.333 50 12.5 30.0  25.750 114 18.9 1.4 
0.400 52 12.5 30.0  27.333 115 19 0.6 
0.467 53 12.6 15.0  28.600 116 19.1 0.8 
0.500 54 12.6 30.0  29.217 117 19.1 1.6 
0.650 55 12.8 6.7  30.217 118 19.2 1.0 
0.750 56 12.9 10.0  30.950 119 19.3 1.4 
0.917 57.5 13 9.0  32.800 120 19.4 0.5 
0.967 58 13 10.0  33.500 121 19.4 1.4 
1.083 59 13.1 8.6  45.033 128 20.1 0.6 
1.217 60 13.2 7.5  46.733 129 20.3 0.6 
1.300 62 13.2 24.0  47.650 130 20.3 1.1 
1.383 63 13.2 12.0  53.800 131 20.3 0.2 
1.750 65 13.4 5.5  55.483 132 20.3 0.6 
2.000 68 13.5 12.0  56.500 133 20.3 1.0 
2.383 70 13.7 5.2  57.717 134 20.3 0.8 
2.633 72 13.8 8.0  70.750 136 20.9 0.2 
2.967 74 13.9 6.0  72.583 138 20.8 1.1 
3.267 75 14 3.3  74.817 139 20.8 0.4 
3.500 77 14.1 8.6  79.367 140 20.8 0.2 
3.767 79 14.2 7.5      
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APPENDIX C-2 
The data presented in this appendix refer to the Series 1 test with a 2D collar and the 
combination of pier and flow conditions that are given in Table 3.1.  The data are analysed 
in Section 4.4.2. 

Table C-2. Data for temporal development of scour depth for the 115 mm pier with 
a 2D collar (Flow intensity = 0.89) 

Time 
Max. scour 
depth ( ys) 

Temp. 
 

Scour 
rate 

 
Time 

Max. scour 
depth ( ys) 

Temp. 
 

Scour 
rate 

(hrs) (mm) (oC) (mm/hr)  (hrs) (mm) (oC) (mm/hr)
0.000 0.00 13.70   50.083 99.00 21.00 0.3 
0.017 14.27 13.70 856.0  53.133 100.00 21.00 0.3 
0.050 18.87 13.70 138.0  69.100 110.00 21.30 0.6 
0.083 24.27 13.70 162.0  73.500 112.00 21.40 0.5 
0.133 24.27 13.70 0.0  74.967 113.00 21.40 0.7 
0.183 25.27 13.70 20.0  75.917 114.00 21.40 1.1 
0.233 28.27 13.70 60.0  97.083 120.00 21.40 0.3 
0.283 29.27 13.70 20.0  105.417 121.00 21.10 0.1 
0.333 33.67 13.70 88.0  119.667 125.00 21.20 0.3 
0.417 35.47 13.70 21.6  130.083 127.00 20.90 0.2 
0.500 36.27 13.70 9.6  142.050 130.00 21.10 0.3 
0.583 38.27 14.00 24.0  143.250 130.00 21.10 0.0 
0.683 38.67 14.00 4.0  145.583 130.00 21.10 0.0 
0.800 40.27 14.00 13.7  146.583 130.00 21.10 0.0 
0.917 40.47 14.10 1.7  148.333 130.00 21.10 0.0 
1.000 40.67 14.10 2.4  164.917 134.00 21.10 0.2 
1.083 41.07 14.20 4.8  170.583 135.00 21.10 0.2 
1.283 40.27 14.30 -4.0  190.583 136.00 21.30 0.1 
1.417 40.27 14.40 0.0  194.050 137.00 21.20 0.3 
1.633 39.27 14.50 -4.6 
1.783 39.47 14.50 1.3 
1.883 40.47 14.50 10.0 
2.083 40.87 14.50 2.0 
2.583 42.27 15.00 2.8 
3.150 42.27 15.00 0.0 
3.967 41.27 15.50 -1.2 
5.483 40.27 15.90 -0.7 
21.267 43.40 19.60 0.2 
22.000 44.00 19.30 0.8 
24.150 49.00 19.50 2.3 
25.333 50.00 19.60 0.8 
26.517 53.00 19.70 2.5 
27.350 55.00 19.80 2.4 
43.667 95.00 21.00 2.5 
45.083 96.00 21.00 0.7 
46.383 97.00 21.00 0.8 
47.183 98.00 21.00 1.3 
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APPENDIX D-1 
The data presented in this appendix refer to the Series 2 test without a collar and the 
combination of pier and flow conditions that are given in Table 3.1.   The data are analysed 
in Section 4.5.1. 

Table D-1. Data for temporal development of scour depth for the73 mm pier 
without a collar (Flow intensity = 0.89) 

Time 
Max. scour 
depth ( ys) 

Temp. 
 

Scour 
Rate 

 
Time 

Max. scour 
depth ( ys) 

Temp 
 

Scour 
rate 

(hrs) (mm) (oC) (mm/hr)  (hrs) (mm) (oC) (mm/hr) 
0.00 0.0 9.0   3.72 69.0 12.6 2.9 
0.02 30.0 9.0 1800.0  4.15 70 12.9 2.3 
0.03 35.0 9.0 300.0  5.22 71 13.4 0.9 
0.05 36.0 9.0 60.0  5.37 72 13.5 6.7 
0.07 37.0 9.0 60.0  5.57 73 13.5 5.0 
0.08 38.0 9.0 60.0  5.72 74 13.6 6.7 
0.10 39.0 9.1 60.0  6.05 74 13.8 0.0 
0.12 39.5 9.1 30.0  6.52 75 13.9 2.1 
0.13 40.0 9.2 30.0  7.00 76 14 2.1 
0.15 40.5 9.3 30.0  7.48 77 14.5 2.1 
0.17 40.5 9.3 0.0  8.25 78 14.7 1.3 
0.18 41.0 9.4 30.0  8.65 79 14.8 2.5 
0.22 42.0 9.4 30.0  9.70 80 15 1.0 
0.25 43.0 9.5 30.0  21.50 95 18 1.3 
0.28 44.0 9.6 30.0  23.03 96 18.3 0.7 
0.33 45.0 9.6 20.0  25.28 97 18.5 0.4 
0.37 46.0 9.7 30.0  26.50 98 18.6 0.8 
0.42 47.0 9.7 20.0  27.38 99 18.7 1.1 
0.45 48.0 9.8 30.0  29.50 100 18.9 0.5 
0.48 49.0 9.9 30.0  30.67 100 19 0.0 
0.60 50.0 10.1 8.6  47.08 106 19.8 0.4 
0.65 51.0 10.1 20.0  48.50 106.5 19.9 0.4 
0.72 52.0 10.3 15.0 
0.80 53.0 10.3 12.0 
0.85 54.0 10.4 20.0 
1.00 55.0 10.7 6.7 
1.08 56.0 10.8 12.0 
1.17 57.0 10.9 12.0 
1.25 58.0 10.9 12.0 
1.32 59.0 11.0 15.0 
1.48 59.5 11.2 3.0 
1.65 60.0 11.4 3.0 
1.92 62.0 11.5 7.5 
2.07 63.0 11.6 6.7 
2.28 64.0 11.7 4.6 
2.52 65.0 11.8 4.3 
2.90 66.0 12.2 2.6 
3.13 67.0 12.3 4.3 
3.37 68.0 12.4 4.3 
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APPENDIX D-2 
The data presented in this appendix refer to the Series 2 test with a 2D collar and the 
combination of pier and flow conditions that are given in Table 3.1.  The data are 
analysed in Section 4.5.2. 

Table D-2. Data for temporal development of scour depth for the 73 mm pier 
with a 2D collar (Flow intensity = 0.89) 

Time 
Max. scour 
depth ( ys) 

Temp. 
 

Scour 
rate 

 
Time 

Max. scour 
depth ( ys) 

Temp. 
 

Scour 
rate 

(hrs) (mm) (oC) (mm/hr)  (hrs) (mm) (oC) (mm/hr) 
0.00 0.0 9.9   48.00 80.0 19.3 0.0 
0.02 12.0  720.0  50.33 81.0 19.4 0.4 
0.03 14.0  120.0  58.60 83.0 19.4 0.2 
0.07 15.0  30.0 
0.10 17.0  60.0 
0.15 20.0  60.0 
0.18 20.0 9.7 0.0 
0.23 21.0  20.0 
0.30 19.0  -30.0 
0.38 20.0  12.0 
0.45 22.0  30.0 
0.53 25.0  36.0 
0.62 27.0  24.0 
0.72 28.4  14.0 
0.80 29.0  7.2 
0.88 28.0  -12.0 
0.98 28.0  0.0 
1.10 27.0  -8.6 
1.23 22.0 11.1 -37.5 
1.42 23.0  5.5 
1.67 19.0  -16.0 
1.72 24.0  100.0 
1.85 24.0  0.0 
2.07 29.0 11.7 23.1 
2.40 30.0 11.7 3.0 
2.58 31.0 11.9 5.5 
3.02 32.0 12.1 2.3 
3.30 33.0 12.3 3.5 
6.25 33.0 13.5 0.0 
11.62 52.0 15.2 3.5 
12.38 54.0 15.2 2.6 
19.87 68.0 17.1 1.9 
25.25 71.0 17.7 0.6 
26.78 72.0 17.9 0.7 
28.03 73.0 18.0 0.8 
29.12 74.0 18.1 0.9 
33.12 75.0 18.2 0.3 
45.65 80.0 19.3 0.4 
46.65 80.0 19.3 0.0 
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APPENDIX  E   Data for the Series 3 tests 
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APPENDIX E-1(a) 
The data presented in this appendix refer to the Series 3 test without a collar and the 
combination of pier and flow conditions that are given in Table 3.1.  The data are analysed in 
Section 4.6.1. 

Table E-1(a). Data for temporal development of scour depth for the 115 mm pier 
without a collar (Flow intensity = 0.70) 

Time 
Max. scour 
depth ( ys) 

Temp. 
 

Scour 
rate 

 
Time 

Max. scour 
depth ( ys) 

Temp. 
 

Scour 
rate 

(hrs) (mm) (oC) (mm/hr)  (hrs) (mm) (oC) (mm/hr) 
0.000 0.0 8.4   30.567 69.0 17.9 1.0 
0.017 5.0  300.0  43.667 75.0 19.0 0.5 
0.033 8.0  180.0  46.667 77.0 19.1 0.7 
0.050 11.0  180.0  49.333 79.0 19.1 0.7 
0.067 13.0  120.0  51.383 79.5 19.2 0.2 
0.083 14.0  60.0  68.417 85.0 19.6 0.3 
0.100 14.5  30.0  70.417 86.0 19.6 0.5 
0.117 15.0  30.0  77.167 87.0 19.6 0.1 
0.133 16.0  60.0  97.833 92.0 19.6 0.2 
0.150 17.0  60.0  103.833 94.0 19.5 0.3 
0.167 18.0 10.0 60.0  120.000 97.0 19.5 0.2 
0.183 19.0  60.0  126.167 99.0 19.6 0.3 
0.200 19.5  30.0  141.333 102.0 19.8 0.2 
0.250 20.0 9.9 10.0  143.333 103.0 19.9 0.5 
0.317 21.0  15.0  151.333 105.0 19.7 0.3 
0.367 22.0  20.0  163.167 108.0 20.1 0.3 
0.383 23.0  60.0  166.917 109.0 20.0 0.3 
0.467 24.0  12.0  176.333 112.0 20.0 0.3 
0.567 25.0  10.0  189.667 114.0 20.2 0.2 
0.717 26.0 10.2 6.7  192.000 114.0 20.3 0.0 
0.850 27.0  7.5  200.167 115.0 20.2 0.1 
0.933 28.0  12.0  213.333 116.0 20.5 0.1 
1.050 29.0 10.4 8.6  221.333 117.0 21.0 0.1 
1.533 30.0 10.7 2.1  237.167 119.0 21.1 0.1 
1.800 31.0  3.8  242.917 120.0 21.4 0.2 
2.117 32.0  3.2  247.333 120.0 21.6 0.0 
2.300 33.0  5.5  266.667 122.0 21.2 0.1 
2.450 34.0 11.2 6.7  295.500 126.0 21.2 0.1 
2.650 35.0  5.0  307.167 127.0 20.5 0.1 
3.000 36.0  2.9  319.667 128.0 20.4 0.1 
3.483 37.0  2.1  330.667 129.0 20.0 0.1 
3.833 38.0  2.9  336.333 130.0 20.3 0.2 
4.150 39.0 12.0 3.2  354.167 130.0 20.5 0.0 
4.650 40.0  2.0  365.667 130.0 20.7 0.0 
5.200 41.0  1.8  383.167 130.0 20.5 0.0 
5.833 42.0 12.7 1.6  384.000 130.0 20.5 0.0 
18.167 57.0 16.1 1.2  404.417 130.5 20.6 0.0 
23.633 62.0 17.1 0.9  408.667 131.0 20.3 0.1 
26.017 64.5 17.4 1.0  429.167 133.0 20.8 0.1 
26.617 65.0  0.8  438.667 134.0 20.7 0.1 
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Table E-1(a) Continued 

Time 
Max. scour 
depth ( ys) 

Temp- 
Erature

Scour 
rate 

(hrs) (mm) (oC) (mm/hr) 
452.667 135.0 20.8 0.1 
464.167 136.0 20.9 0.1 
476.167 137.0 20.9 0.1 
487.167 137.0 20.1 0.0 
500.167 138.0 21.2 0.1 
509.167 139.0 21.1 0.1 
525.167 140.0  0.1 
530.667 140.0 22.0 0.0 
452.667 135.0 20.8 0.1 
464.167 136.0 20.9 0.1 
476.167 137.0 20.9 0.1 
487.167 137.0 20.1 0.0 
500.167 138.0 21.2 0.1 
509.167 139.0 21.1 0.1 
525.167 140.0 21.2 0.1 
530.667 140.0 21.2 0.0 
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APPENDIX E-1(b) 
The data for the scour hole contour for the Series 3 test without a collar are shown in 
Table E-(b).  The data are plotted and analysed in Section 4.6.1.1. 

Table E-1(b). Scour hole contour data for Series 3 test without a collar 
Longitudinal 

position 
relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-84.1 -61.4 0.00  -79.1 13.6 0.00 
-84.1 -56.4 0.00  -79.1 18.6 0.00 
-84.1 -51.4 0.00  -79.1 23.6 0.00 
-84.1 -46.4 0.00  -79.1 28.6 0.00 
-84.1 -41.4 0.00  -79.1 33.6 0.00 
-84.1 -36.4 0.00  -79.1 38.6 0.00 
-84.1 -31.4 0.00  -79.1 43.6 0.00 
-84.1 -26.4 0.00  -79.1 48.6 0.00 
-84.1 -21.4 0.00  -79.1 53.6 0.00 
-84.1 -16.4 0.00  -79.1 58.6 0.00 
-84.1 -11.4 0.00  -74.1 -61.4 0.00 
-84.1 -6.4 0.00  -74.1 -56.4 0.00 
-84.1 -1.4 0.00  -74.1 -51.4 0.00 
-84.1 3.6 0.00  -74.1 -46.4 0.00 
-84.1 8.6 0.00  -74.1 -41.4 0.00 
-84.1 13.6 0.00  -74.1 -36.4 0.00 
-84.1 18.6 0.00  -74.1 -31.4 0.00 
-84.1 23.6 0.00  -74.1 -26.4 0.00 
-84.1 28.6 0.00  -74.1 -21.4 0.00 
-84.1 33.6 0.00  -74.1 -16.4 0.00 
-84.1 38.6 0.00  -74.1 -11.4 0.00 
-84.1 43.6 0.00  -74.1 -6.4 0.00 
-84.1 48.6 0.00  -74.1 -1.4 0.00 
-84.1 53.6 0.00  -74.1 3.6 0.00 
-84.1 58.6 0.00  -74.1 8.6 0.00 
-79.1 -61.4 0.00  -74.1 13.6 0.00 
-79.1 -56.4 0.00  -74.1 18.6 0.00 
-79.1 -51.4 0.00  -74.1 23.6 0.00 
-79.1 -46.4 0.00  -74.1 28.6 0.00 
-79.1 -41.4 0.00  -74.1 33.6 0.00 
-79.1 -36.4 0.00  -74.1 38.6 0.00 
-79.1 -31.4 0.00  -74.1 43.6 0.00 
-79.1 -26.4 0.00  -74.1 48.6 0.00 
-79.1 -21.4 0.00  -74.1 53.6 0.00 
-79.1 -16.4 0.00  -74.1 58.6 0.00 
-79.1 -11.4 0.00  -69.1 -61.4 0.00 
-79.1 -6.4 0.00  -69.1 -56.4 0.00 
-79.1 -1.4 0.00  -69.1 -51.4 0.00 
-79.1 3.6 0.00  -69.1 -46.4 0.00 
-79.1 8.6 0.00  -69.1 -41.4 0.00 
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      Table E-1(b) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-69.1 -36.4 0.00  -64.1 38.6 0.00 
-69.1 -31.4 0.00  -64.1 43.6 0.00 
-69.1 -26.4 0.00  -64.1 48.6 0.00 
-69.1 -21.4 0.00  -64.1 53.6 0.00 
-69.1 -16.4 0.00  -64.1 58.6 0.00 
-69.1 -11.4 0.00  -59.1 -61.4 0.00 
-69.1 -6.4 0.00  -59.1 -56.4 0.00 
-69.1 -1.4 0.00  -59.1 -51.4 0.00 
-69.1 3.6 0.00  -59.1 -46.4 0.00 
-69.1 8.6 0.00  -59.1 -41.4 0.00 
-69.1 13.6 0.00  -59.1 -36.4 0.00 
-69.1 18.6 0.00  -59.1 -31.4 0.00 
-69.1 23.6 0.00  -59.1 -26.4 0.00 
-69.1 28.6 0.00  -59.1 -21.4 0.00 
-69.1 33.6 0.00  -59.1 -16.4 0.00 
-69.1 38.6 0.00  -59.1 -11.4 0.00 
-69.1 43.6 0.00  -59.1 -6.4 0.00 
-69.1 48.6 0.00  -59.1 -1.4 0.00 
-69.1 53.6 0.00  -59.1 3.6 0.00 
-69.1 58.6 0.00  -59.1 8.6 0.00 
-64.1 -61.4 0.00  -59.1 13.6 0.00 
-64.1 -56.4 0.00  -59.1 18.6 0.00 
-64.1 -51.4 0.00  -59.1 23.6 0.00 
-64.1 -46.4 0.00  -59.1 28.6 0.00 
-64.1 -41.4 0.00  -59.1 33.6 0.00 
-64.1 -36.4 0.00  -59.1 38.6 0.00 
-64.1 -31.4 0.00  -59.1 43.6 0.00 
-64.1 -26.4 0.00  -59.1 48.6 0.00 
-64.1 -21.4 0.00  -59.1 53.6 0.00 
-64.1 -16.4 0.00  -59.1 58.6 0.00 
-64.1 -11.4 0.00  -54.1 -61.4 0.00 
-64.1 -6.4 0.00  -54.1 -56.4 0.00 
-64.1 -1.4 0.00  -54.1 -51.4 0.00 
-64.1 3.6 0.00  -54.1 -46.4 0.00 
-64.1 8.6 0.00  -54.1 -41.4 0.00 
-64.1 13.6 0.00  -54.1 -36.4 0.00 
-64.1 18.6 0.00  -54.1 -31.4 0.00 
-64.1 23.6 0.00  -54.1 -26.4 0.00 
-64.1 28.6 0.00  -54.1 -21.4 0.00 
-64.1 33.6 0.00  -54.1 -16.4 0.00 
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       Table E-1(b) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-54.1 -16.4 0.00  -49.1 58.6 0.00 
-54.1 -11.4 0.00  -44.1 -61.4 0.00 
-54.1 -6.4 0.00  -44.1 -56.4 0.00 
-54.1 -1.4 0.00  -44.1 -51.4 0.00 
-54.1 3.6 0.00  -44.1 -46.4 0.00 
-54.1 8.6 0.00  -44.1 -41.4 0.00 
-54.1 13.6 0.00  -44.1 -36.4 0.00 
-54.1 18.6 0.00  -44.1 -31.4 0.00 
-54.1 23.6 0.00  -44.1 -26.4 0.00 
-54.1 28.6 0.00  -44.1 -21.4 0.00 
-54.1 33.6 0.00  -44.1 -16.4 0.00 
-54.1 38.6 0.00  -44.1 -11.4 0.00 
-54.1 43.6 0.00  -44.1 -6.4 0.00 
-54.1 48.6 0.00  -44.1 -1.4 0.00 
-54.1 53.6 0.00  -44.1 3.6 0.00 
-54.1 58.6 0.00  -44.1 8.6 0.00 
-49.1 -61.4 0.00  -44.1 13.6 0.00 
-49.1 -56.4 0.00  -44.1 18.6 0.00 
-49.1 -51.4 0.00  -44.1 23.6 0.00 
-49.1 -46.4 0.00  -44.1 28.6 0.00 
-49.1 -41.4 0.00  -44.1 33.6 0.00 
-49.1 -36.4 0.00  -44.1 38.6 0.00 
-49.1 -31.4 0.00  -44.1 43.6 0.00 
-49.1 -26.4 0.00  -44.1 48.6 0.00 
-49.1 -21.4 0.00  -44.1 53.6 0.00 
-49.1 -16.4 0.00  -44.1 58.6 0.00 
-49.1 -11.4 0.00  -39.1 -61.4 0.00 
-49.1 -6.4 0.00  -39.1 -56.4 0.00 
-49.1 -1.4 0.00  -39.1 -51.4 0.00 
-49.1 3.6 0.00  -39.1 -46.4 0.00 
-49.1 8.6 0.00  -39.1 -41.4 0.00 
-49.1 13.6 0.00  -39.1 -36.4 0.00 
-49.1 18.6 0.00  -39.1 -31.4 0.00 
-49.1 23.6 0.00  -39.1 -26.4 0.00 
-49.1 28.6 0.00  -39.1 -21.4 0.00 
-49.1 33.6 0.00  -39.1 -16.4 0.00 
-49.1 38.6 0.00  -39.1 -11.4 0.00 
-49.1 43.6 0.00  -39.1 -6.4 0.00 
-49.1 48.6 0.00  -39.1 -1.4 0.00 
-49.1 53.6 0.00  -39.1 3.6 0.00 
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      Table E-1(b) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-39.1 8.6 0.00  -31.1 -41.4 -0.20 
-39.1 13.6 0.00  -31.1 -36.4 -0.24 
-39.1 18.6 0.00  -31.1 -31.4 -0.22 
-39.1 23.6 0.00  -31.1 -26.4 -0.24 
-39.1 28.6 0.00  -31.1 -21.4 -0.28 
-39.1 33.6 0.00  -31.1 -16.4 -0.34 
-39.1 38.6 0.00  -31.1 -11.4 -0.28 
-39.1 43.6 0.00  -31.1 -6.4 -0.38 
-39.1 48.6 0.00  -31.1 -1.4 -0.44 
-39.1 53.6 0.00  -31.1 0 -0.46 
-39.1 58.6 0.00  -31.1 3.6 -0.44 
-34.1 -61.4 0.00  -31.1 8.6 -0.38 
-34.1 -56.4 0.00  -31.1 13.6 -0.26 
-34.1 -51.4 -0.04  -31.1 18.6 -0.14 
-34.1 -46.4 -0.02  -31.1 23.6 0.00 
-34.1 -41.4 0.00  -31.1 28.6 0.00 
-34.1 -36.4 -0.18  -31.1 33.6 0.00 
-34.1 -31.4 -0.20  -31.1 38.6 0.00 
-34.1 -26.4 -0.20  -31.1 43.6 0.00 
-34.1 -21.4 -0.22  -31.1 48.6 0.00 
-34.1 -16.4 -0.24  -31.1 53.6 0.00 
-34.1 -11.4 -0.24  -31.1 58.6 0.00 
-34.1 -6.4 -0.24  -29.1 -61.4 0.00 
-34.1 -1.4 -0.24  -29.1 -56.4 0.00 
-34.1 3.6 -0.16  -29.1 -51.4 0.00 
-34.1 8.6 -0.30  -29.1 -46.4 0.00 
-34.1 13.6 -0.20  -29.1 -41.4 -0.24 
-34.1 18.6 -0.18  -29.1 -36.4 -0.14 
-34.1 23.6 -0.14  -29.1 -31.4 -0.20 
-34.1 28.6 0.00  -29.1 -26.4 -0.34 
-34.1 33.6 0.00  -29.1 -21.4 -0.20 
-34.1 38.6 0.00  -29.1 -16.4 -0.30 
-34.1 43.6 0.00  -29.1 -11.4 -0.54 
-34.1 48.6 0.00  -29.1 -9.4 -0.54 
-34.1 53.6 0.00  -29.1 -6.4 -0.64 
-34.1 58.6 0.00  -29.1 -1.4 -1.09 
-31.1 -61.4 0.00  -29.1 3.6 -1.12 
-31.1 -56.4 -0.14  -29.1 8.6 -0.54 
-31.1 -51.4 -0.18  -29.1 13.6 -0.40 
-31.1 -46.4 -0.14  -29.1 18.6 -0.14 
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       Table E-1(b) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-29.1 18.6 -0.14  -19.1 -41.4 0.00 
-29.1 23.6 -0.06  -19.1 -36.4 -0.24 
-29.1 28.6 0.00  -19.1 -31.4 -0.12 
-29.1 33.6 0.00  -19.1 -26.4 -0.34 
-29.1 38.6 0.00  -19.1 -23.9 -0.46 
-29.1 43.6 0.00  -19.1 -21.4 -1.48 
-29.1 48.6 0.00  -19.1 -16.4 -3.84 
-29.1 53.6 0.00  -19.1 -11.4 -5.70 
-29.1 58.6 0.00  -19.1 -6.4 -6.84 
-24.1 -61.4 0.00  -19.1 -1.4 -7.24 
-24.1 -56.4 -0.06  -19.1 3.6 -6.84 
-24.1 -51.4 -0.02  -19.1 8.6 -6.24 
-24.1 -46.4 -0.06  -19.1 13.6 -4.50 
-24.1 -41.4 -0.26  -19.1 18.6 -2.44 
-24.1 -36.4 -0.24  -19.1 23.6 -0.36 
-24.1 -31.4 -0.14  -19.1 28.6 0.00 
-24.1 -26.4 -0.20  -19.1 33.6 0.00 
-24.1 -21.4 -0.34  -19.1 38.6 0.00 
-24.1 -18.4 -0.68  -19.1 43.6 0.00 
-24.1 -16.4 -1.30  -19.1 48.6 0.00 
-24.1 -11.4 -2.70  -19.1 53.6 0.00 
-24.1 -6.4 -3.60  -19.1 58.6 0.00 
-24.1 -1.4 -4.10  -14.1 -61.4 0.00 
-24.1 3.6 -3.88  -14.1 -56.4 0.00 
-24.1 8.6 -3.00  -14.1 -51.4 -0.10 
-24.1 13.6 -1.86  -14.1 -46.4 0.00 
-24.1 18.6 -0.68  -14.1 -41.4 -0.14 
-24.1 19.1 -0.56  -14.1 -36.4 -0.10 
-24.1 23.6 0.00  -14.1 -31.4 -0.12 
-24.1 28.6 0.00  -14.1 -27.4 -0.34 
-24.1 33.6 0.00  -14.1 -26.4 -0.84 
-24.1 38.6 0.00  -14.1 -21.4 -3.54 
-24.1 43.6 0.00  -14.1 -16.4 -6.04 
-24.1 48.6 0.00  -14.1 -11.4 -7.94 
-24.1 53.6 0.00  -14.1 -6.4 -9.68 
-24.1 58.6 0.00  -14.1 -1.4 -10.54 
-19.1 -61.4 0.00  -14.1 3.6 -10.24 
-19.1 -56.4 -0.04  -14.1 8.6 -8.64 
-19.1 -51.4 -0.02  -14.1 13.6 -6.74 
-19.1 -46.4 0.00  -14.1 18.6 -4.64 
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     Table E-1(b) Continued 
 
Longitudinal 

position 
relative to 

the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-14.1 23.6 -1.88  -6.1 -36.4 0.00 
-14.1 27.1 -0.08  -6.1 -31.4 -0.06 
-14.1 28.6 0.04  -6.1 -26.4 -3.00 
-14.1 33.6 0.16  -6.1 -21.4 -5.44 
-14.1 38.6 0.00  -6.1 -16.4 -8.10 
-14.1 43.6 0.00  -6.1 -11.4 -11.04 
-14.1 48.6 0.00  -6.1 -6.4 -13.96 
-14.1 53.6 0.00  -6.1 -1.4 -14.48 
-14.1 58.6 0.00  -6.1 3.6 -14.20 
-9.1 -61.4 0.00  -6.1 8.6 -12.16 
-9.1 -56.4 0.00  -6.1 13.6 -9.14 
-9.1 -51.4 0.00  -6.1 18.6 -6.42 
-9.1 -46.4 0.00  -6.1 28.6 -0.54 
-9.1 -41.4 0.00  -6.1 29.6 -0.04 
-9.1 -36.4 0.00  -6.1 33.6 0.00 
-9.1 -31.4 0.00  -6.1 38.6 0.00 
-9.1 -29.9 -0.20  -6.1 43.6 0.00 
-9.1 -26.4 -2.30  -6.1 48.6 0.00 
-9.1 -21.4 -4.94  -6.1 53.6 0.00 
-9.1 -16.4 -7.54  -6.1 58.6 0.00 
-9.1 -11.4 -10.34  -4.1 -61.4 0.00 
-9.1 -6.4 -12.68  -4.1 -56.4 0.00 
-9.1 -1.4 -14.00  -4.1 -51.4 0.00 
-9.1 3.6 -13.10  -4.1 -46.4 0.00 
-9.1 8.6 -10.94  -4.1 -41.4 0.00 
-9.1 13.6 -8.40  -4.1 -36.4 0.00 
-9.1 18.6 -6.06  -4.1 -31.4 -0.34 
-9.1 23.6 -3.38  -4.1 -26.4 -3.20 
-9.1 28.6 -0.14  -4.1 -21.4 -5.36 
-9.1 33.6 0.06  -4.1 -16.4 -8.44 
-9.1 38.6 0.00  -4.1 -11.4 -11.58 
-9.1 43.6 0.00  -4.1 -6.4 -13.88 
-9.1 48.6 0.00  -4.1 -5.4 -13.94 
-9.1 53.6 0.00  -4.1 4.7 -14.00 
-9.1 58.6 0.00  -4.1 6.6 -13.64 
-6.1 -61.4 0.00  -4.1 8.6 -12.48 
-6.1 -56.4 0.00  -4.1 13.6 -9.48 
-6.1 -51.4 0.00  -4.1 18.6 -6.58 
-6.1 -46.4 0.00  -4.1 23.6 -3.96 
-6.1 -41.4 0.00  -4.1 28.6 -0.84 
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    Table E-1(b) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-4.1 30.1 -0.02  5.9 -33.4 -0.34 
-4.1 33.6 0.00  5.9 -31.4 -1.18 
-4.1 38.6 0.00  5.9 -26.4 -2.88 
-4.1 43.6 0.00  5.9 -21.4 -4.74 
-4.1 48.6 0.00  5.9 -16.4 -7.62 
-4.1 53.6 0.00  5.9 -11.4 -9.74 
-4.1 58.6 0.00  5.9 -6.4 -10.44 

0 0   5.9 -1.4 -8.24 
0.9 -61.4 0.00  5.9 3.6 -9.68 
0.9 -56.4 0.00  5.9 6.1 -10.74 
0.9 -51.4 0.00  5.9 8.6 -10.34 
0.9 -46.4 0.00  5.9 13.6 -8.02 
0.9 -41.4 0.00  5.9 18.6 -5.44 
0.9 -36.4 0.00  5.9 23.6 -3.08 
0.9 -32.5 -0.28  5.9 28.6 -1.02 
0.9 -31.4 -0.88  5.9 30.35 -0.34 
0.9 -26.4 -1.40  5.9 33.6 0.00 
0.9 -21.4 -5.20  5.9 38.6 0.00 
0.9 -16.4 -8.58  5.9 43.6 0.00 
0.9 -11.4 -11.56  5.9 48.6 0.00 
0.9 -7.4 -12.38  5.9 53.6 0.00 
0.9 6.6 -12.64  5.9 58.6 0.00 
0.9 8.6 -12.40  10.9 -61.4 0.00 
0.9 13.6 -9.44  10.9 -56.4 0.00 
0.9 18.6 -6.34  10.9 -51.4 0.00 
0.9 23.6 -3.92  10.9 -46.4 0.00 
0.9 28.6 -1.08  10.9 -41.4 -0.34 
0.9 30.3 -0.22  10.9 -36.4 -0.26 
0.9 33.6 -0.05  10.9 -35 -0.44 
0.9 38.6 0.00  10.9 -33.4 -0.46 
0.9 43.6 0.00  10.9 -31.4 -0.98 
0.9 48.6 0.00  10.9 -26.4 -1.08 
0.9 53.6 0.00  10.9 -21.4 -4.28 
0.9 58.6 0.00  10.9 -16.4 -6.44 
5.9 -61.4 0.00  10.9 -11.4 -7.44 
5.9 -56.4 0.00  10.9 -6.4 -8.24 
5.9 -51.4 0.00  10.9 -1.4 -8.42 
5.9 -46.4 0.00  10.9 3.6 -8.38 
5.9 -41.4 0.00  10.9 8.6 -7.54 
5.9 -36.4 0.00  10.9 13.6 -6.24 

 



 167

      Table E-1(b) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
10.9 18.6 -4.16  20.9 -41.4 -0.14 
10.9 23.6 -2.10  20.9 -36.4 -0.74 
10.9 28.6 -0.54  20.9 -31.4 -0.10 
10.9 33.6 -0.20  20.9 -29.4 -1.28 
10.9 38.6 0.00  20.9 -27.4 -0.24 
10.9 43.6 0.00  20.9 -26.4 -0.84 
10.9 48.6 0.00  20.9 -21.4 -2.44 
10.9 53.6 0.00  20.9 -16.4 -3.38 
10.9 58.6 0.00  20.9 -11.4 -3.60 
15.9 -61.4 0.00  20.9 -6.4 -3.12 
15.9 -56.4 0.00  20.9 -1.4 -2.74 
15.9 -51.4 0.00  20.9 3.6 -2.44 
15.9 -46.4 0.00  20.9 8.6 -3.44 
15.9 -41.4 0.00  20.9 13.6 -3.04 
15.9 -36.4 -0.54  20.9 18.6 -2.38 
15.9 -32.2 -0.40  20.9 23.6 -0.34 
15.9 -31.4 -0.48  20.9 25.6 -0.08 
15.9 -26.4 -1.44  20.9 28.6 -1.04 
15.9 -21.4 -3.20  20.9 31.6 -1.34 
15.9 -16.4 -5.00  20.9 33.6 -1.14 
15.9 -11.4 -5.74  20.9 38.6 -0.04 
15.9 -6.4 -5.54  20.9 43.6 0.00 
15.9 -1.4 -5.56  20.9 48.6 0.00 
15.9 3.6 -5.08  20.9 53.6 0.00 
15.9 8.6 -5.24  20.9 58.6 0.00 
15.9 13.6 -4.64  25.9 -61.4 0.00 
15.9 18.6 -2.74  25.9 -56.4 0.00 
15.9 23.6 -1.04  25.9 -51.4 0.00 
15.9 27.6 -0.18  25.9 -46.4 -0.24 
15.9 28.6 -0.14  25.9 -41.4 -0.56 
15.9 33.6 -0.24  25.9 -36.4 -2.02 
15.9 38.6 0.00  25.9 -31.4 -0.84 
15.9 43.6 0.00  25.9 -26.4 -1.04 
15.9 48.6 0.00  25.9 -21.4 -2.14 
15.9 53.6 0.00  25.9 -16.4 -2.84 
15.9 58.6 0.00  25.9 -11.4 -3.04 
20.9 -61.4 0.00  25.9 -6.4 -1.24 
20.9 -56.4 0.00  25.9 -1.4 -0.24 
20.9 -51.4 0.00  25.9 3.6 -0.04 
20.9 -46.4 0.00  25.9 8.6 -0.74 
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    Table E-1(b) Continued 
 
Longitudinal 

position 
relative to 

the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
25.9 13.6 -1.06  35.9 -41.4 -1.76 
25.9 18.6 0.06  35.9 -36.4 -0.96 
25.9 22.1 0.46  35.9 -31.4 -1.20 
25.9 23.6 -0.24  35.9 -26.4 0.42 
25.9 28.6 -1.38  35.9 -21.4 0.62 
25.9 33.6 -0.64  35.9 -16.4 0.64 
25.9 38.6 -0.14  35.9 -11.4 0.76 
25.9 43.6 0.00  35.9 -6.4 2.10 
25.9 48.6 0.00  35.9 -1.4 2.60 
25.9 53.6 0.00  35.9 3.6 1.92 
25.9 58.6 0.00  35.9 8.6 0.66 
30.9 -61.4 0.00  35.9 13.6 0.46 
30.9 -56.4 0.00  35.9 18.6 0.68 
30.9 -51.4 0.00  35.9 23.6 1.16 
30.9 -46.4 0.00  35.9 28.6 0.36 
30.9 -41.4 -0.04  35.9 33.6 -0.44 
30.9 -36.4 -1.14  35.9 38.6 -0.24 
30.9 -31.4 -1.54  35.9 43.6 -0.10 
30.9 -26.4 -0.04  35.9 48.6 0.00 
30.9 -21.4 -1.24  35.9 53.6 0.00 
30.9 -16.4 -1.44  35.9 58.6 0.00 
30.9 -11.4 -1.14  40.9 -61.4 0.00 
30.9 -6.4 -0.42  40.9 -56.4 0.00 
30.9 -1.4 2.16  40.9 -51.4 -0.14 
30.9 3.6 1.46  40.9 -46.4 -1.14 
30.9 8.6 0.26  40.9 -41.4 -2.14 
30.9 13.6 -0.04  40.9 -36.4 -1.84 
30.9 18.6 0.16  40.9 -31.4 -0.74 
30.9 23.6 -0.04  40.9 -26.4 -1.14 
30.9 28.6 0.00  40.9 -21.4 -0.30 
30.9 33.6 -0.94  40.9 -16.4 -0.14 
30.9 38.6 -0.24  40.9 -11.4 0.66 
30.9 43.6 0.00  40.9 -6.4 2.06 
30.9 48.6 0.00  40.9 -1.4 1.88 
30.9 53.6 0.00  40.9 3.6 1.96 
30.9 58.6 0.00  40.9 8.6 1.86 
35.9 -61.4 0.00  40.9 13.6 1.96 
35.9 -56.4 0.00  40.9 18.6 2.36 
35.9 -51.4 0.00  40.9 23.6 1.76 
35.9 -46.4 -0.54  40.9 28.6 0.40 
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    Table E-1(b) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
40.9 33.6 -0.74  55.9 -6.4 2.82 
40.9 38.6 -2.04  55.9 -1.4 2.72 
40.9 43.6 -1.14  55.9 3.6 5.86 
40.9 48.6 0.00  55.9 8.6 5.76 
45.9 -61.4 0.00  55.9 13.6 4.86 
45.9 -56.4 0.00  55.9 18.6 2.82 
45.9 -51.4 -0.24  55.9 23.6 1.26 
45.9 -46.4 -0.44  55.9 28.6 0.66 
45.9 -41.4 -1.28  55.9 33.6 0.56 
45.9 -36.4 -1.34  55.9 -60.4 -0.24 
45.9 -31.4 -1.04  55.9 43.6 -0.34 
45.9 -26.4 0.02  55.9 48.6 0.08 
45.9 -21.4 0.26  55.9 53.6 -0.02 
45.9 -16.4 0.46  55.9 58.6 0.00 
45.9 -11.4 1.48  65.9 -61.4 0.00 
45.9 -6.4 2.60  65.9 -56.4 -0.54 
45.9 -1.4 2.46  65.9 -51.4 -1.44 
45.9 3.6 3.16  65.9 -46.4 -2.64 
45.9 8.6 2.76  65.9 -41.4 -2.14 
45.9 13.6 2.30  65.9 -36.4 -0.84 
45.9 18.6 2.16  65.9 -31.4 -0.44 
45.9 23.6 1.76  65.9 -26.4 0.56 
45.9 28.6 0.60  65.9 -21.4 2.66 
45.9 33.6 -0.90  65.9 -16.4 3.10 
45.9 38.6 -1.74  65.9 -11.4 4.56 
45.9 43.6 -1.14  65.9 -6.4 5.00 
45.9 48.6 -0.44  65.9 -1.4 5.00 
45.9 53.6 0.00  65.9 3.6 5.76 
45.9 58.6 0.00  65.9 8.6 6.82 
55.9 -61.4 0.00  65.9 13.6 5.26 
55.9 -56.4 0.00  65.9 18.6 3.46 
55.9 -51.4 -1.48  65.9 23.6 2.00 
55.9 -46.4 -1.04  65.9 28.6 -0.22 
55.9 -41.4 -1.24  65.9 33.6 -0.54 
55.9 -36.4 -1.20  65.9 38.6 -1.84 
55.9 -31.4 0.16  65.9 43.6 -2.24 
55.9 -26.4 -0.04  65.9 48.6 -2.10 
55.9 -21.4 0.24  65.9 53.6 -1.84 
55.9 -16.4 1.56  65.9 58.6 -0.38 
55.9 -11.4 2.26  75.9 -61.4 -2.54 
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     Table E-1(b) Continued 
 
Longitudinal 

position 
relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
75.9 -56.4 -1.44  85.9 18.6 2.96 
75.9 -51.4 -0.34  85.9 23.6 2.76 
75.9 -46.4 0.36  85.9 28.6 0.56 
75.9 -41.4 -1.00  85.9 33.6 -1.14 
75.9 -36.4 -0.44  85.9 38.6 -1.04 
75.9 -31.4 0.56  85.9 43.6 -1.24 
75.9 -26.4 0.76  85.9 48.6 -0.60 
75.9 -21.4 1.96  85.9 53.6 -2.44 
75.9 -16.4 3.28  85.9 58.6 -4.48 
75.9 -11.4 5.08  95.9 -61.4 -0.03 
75.9 -6.4 5.96  95.9 -56.4 -0.44 
75.9 -1.4 6.58  95.9 -51.4 -0.04 
75.9 3.6 7.26  95.9 -46.4 0.96 
75.9 8.6 5.56  95.9 -41.4 0.56 
75.9 13.6 4.16  95.9 -36.4 -0.44 
75.9 18.6 3.12  95.9 -31.4 -0.34 
75.9 23.6 2.32  95.9 -26.4 1.86 
75.9 28.6 0.24  95.9 -21.4 4.06 
75.9 33.6 0.72  95.9 -16.4 5.00 
75.9 38.6 -0.10  95.9 -11.4 6.26 
75.9 43.6 -0.64  95.9 -6.4 6.90 
75.9 48.6 0.08  95.9 -1.4 7.36 
75.9 53.6 0.44  95.9 3.6 5.76 
75.9 58.6 0.24  95.9 8.6 4.26 
85.9 -61.4 -0.64  95.9 13.6 3.16 
85.9 -56.4 -0.34  95.9 18.6 1.76 
85.9 -51.4 -1.04  95.9 23.6 0.86 
85.9 -46.4 -0.74  95.9 28.6 0.76 
85.9 -41.4 -1.04  95.9 33.6 0.06 
85.9 -36.4 -0.24  95.9 38.6 -0.68 
85.9 -31.4 0.76  95.9 43.6 -0.68 
85.9 -26.4 1.36  95.9 48.6 -0.74 
85.9 -21.4 1.38  95.9 53.6 -0.64 
85.9 -16.4 2.96  95.9 58.6 -1.14 
85.9 -11.4 4.46  105.9 -61.4 0.06 
85.9 -6.4 5.36  105.9 -56.4 -1.04 
85.9 -1.4 -2.90  105.9 -51.4 0.00 
85.9 3.6 6.16  105.9 -46.4 -0.24 
85.9 8.6 6.06  105.9 -41.4 -0.28 
85.9 13.6 4.06  105.9 -36.4 0.50 
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       Table E-1(b) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
105.9 -31.4 1.08  115.9 43.6 0.06 
105.9 -26.4 2.26  115.9 48.6 1.34 
105.9 -21.4 3.26  115.9 53.6 0.86 
105.9 -16.4 4.12  115.9 58.6 -1.02 
105.9 -11.4 4.86 
105.9 -6.4 4.56 
105.9 -1.4 2.86 
105.9 3.6 1.48 
105.9 8.6 0.56 
105.9 13.6 0.52 
105.9 18.6 0.16 
105.9 23.6 0.66 
105.9 28.6 0.86 
105.9 33.6 0.96 
105.9 38.6 0.88 
105.9 43.6 0.66 
105.9 48.6 0.86 
105.9 53.6 -0.66 
105.9 58.6 -0.26 
115.9 -61.4 -0.52 
115.9 -56.4 0.06 
115.9 -51.4 0.34 
115.9 -46.4 -0.24 
115.9 -41.4 -1.00 
115.9 -36.4 -0.34 
115.9 -31.4 0.10 
115.9 -26.4 0.76 
115.9 -21.4 0.80 
115.9 -16.4 0.36 
115.9 -11.4 0.06 
115.9 -6.4 -0.34 
115.9 -1.4 0.86 
115.9 3.6 0.16 
115.9 8.6 0.06 
115.9 13.6 -0.86 
115.9 18.6 -1.24 
115.9 23.6 -1.54 
115.9 28.6 -1.14 
115.9 33.6 -0.04 
115.9 38.6 0.16 
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APPENDIX E-1(c) 
Table E-1(c) shows the data for the longitudinal profile of the scour hole across the centre of 
the pier for a Series 3 test for a pier without a collar.  The data are plotted and analysed in 
Section 4.6.1.2. 

Table E-1(c). Data for the longitudinal scour profile along the centreline of the pier 
for Series 3 test: No collar 

Longitudinal position 
relative to the pier Scour depth  

Longitudinal position 
relative to the pier Scour depth 

(cm) (cm)  (cm) (cm) 
-84.1 0.00  85.9 6.96 
-79.1 0.00  90.9 7.60 
-74.1 0.00  95.9 6.46 
-69.1 0.00  100.9 4.66 
-64.1 0.00  105.9 1.76 
-59.1 0.00  110.9 -0.14 
-54.1 0.00  115.9 0.06 
-49.1 0.00  120.9 0.16 
-44.1 0.00  125.9 0.14 
-39.1 0.00  130.9 -0.54 
-34.1 -0.02  135.9 -0.98 
-31.1 -0.28  140.9 -0.56 
-29.1 -0.90  145.9 -0.14 
-24.1 -3.94  150.9 -0.44 
-19.1 -7.04  155.9 -0.84 
-14.1 -10.32  160.9 0.24 
-9.1 -13.72  165.9 -0.10 
-8.1 -14.28  170.9 0.96 
-7.1 -14.50  175.9 -0.04 
-6.1 -14.24  180.9 -0.44 
-5.7 -14.20  185.9 -0.32 
6.3 -8.04  190.9 0.16 
8.9 -8.64  195.9 -0.58 
9.9 -8.62  200.9 0.06 

10.9 -8.30  205.9 -0.54 
15.9 -5.58  210.9 0.12 
20.9 -2.66  215.9 -0.24 
25.9 0.04  220.9 -0.06 
30.9 2.16  225.9 -0.04 
35.9 2.44  230.9 0.00 
40.9 2.06  235.9 0.00 
45.9 2.56  240.9 0.00 
50.9 4.56  245.9 0.00 
55.9 4.10  250.9 0.00 
60.9 4.08  255.9 0.00 
65.9 4.94  260.9 0.00 
70.9 6.88  265.9 0.00 
75.9 6.52 
80.9 6.16 
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APPENDIX E-1(d) 
The data for the transverse profile of the scour hole across the centre of the pier for the 
Series 3 test for a pier without a collar are shown in Table E-1(d).  The data are plotted and 
analysed in Section 4.6.1.3. 

Table E-1(d). Data for the transverse scour profile along the centreline of the 
pier for Series 3 test: No collar 

Transverse position 
relative to the pier Scour depth 

(cm) (cm) 
-61.4 0.0 
-56.4 0.0 
-51.4 0.0 
-46.4 0.0 
-41.4 0.0 
-36.4 0.0 
-32.5 -0.3 
-31.4 -0.9 
-26.4 -1.4 
-21.4 -5.2 
-16.4 -8.6 
-11.4 -11.6 
-7.4 -12.4 
6.6 -12.6 
8.6 -12.4 
13.6 -9.4 
18.6 -6.3 
23.6 -3.9 
28.6 -1.1 
30.3 -0.2 
33.6 -0.1 
38.6 0.0 
43.6 0.0 
48.6 0.0 
53.6 0.0 
58.6 0.0 
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APPENDIX E-2 (a)  
 

The appendix represents the data for the locations of maximum scour depth with time 
for the Series 3 test for a pier fitted with a 3D collar.  The data are plotted and analysed 
in Section 4.6.2. 

   Table E-2(a). Data for locations of maximum scour depth with time for 
Series 3 test with a 3D collar 

Time (hrs) 0.00 0.02 0.08 0.53 121.33 170.83 220.83 312.50
X (cm) 0.0 21.3 21.3 22.9 27.7 27.7 27.7 27.7
Z (cm) 0.0 -17.6 -15.1 -15.1 -19.5 -25.0 -25.0 -25.4
ys (mm) 0.0 0.0 2.0 7.0 17.6 44.4 45.0 48.4

 
 

Time (hrs) 317.08 327.00 338.17 363.83 419.00 454.83 528.33 553.08
X (cm) 30.1 30.9 27.9 28.9 25.9 30.9 30.9 31.9
Z (cm) -25.7 -23.4 -22.9 -22.9 -25.4 -25.2 -25.4 -25.7
ys (mm) 52.4 53.4 52.2 51.4 52.4 56.4 57.4 62.4

 
 

Time (hrs) 577.17 603.83 625.25 694.33 720.83 746.58 752.75 769.08
X (cm) 31.9 34.9 30.9 15.9 15.9 17.1 19.3 18.1
Z (cm) -25.7 -25.5 -24.4 -18.9 21.3 21.6 20.6 21.0
ys (mm) 61.0 59.4 61.0 60.6 60.3 61.2 62.4 62.6

 
 

Time (hrs) 793.67 813.75 821.83 838.75 862.75 869.83 879.83 882.00
X (cm) 19.1 19.1 19.7 19.3 19.3 19.3 20.1 20.1
Z (cm) 21.2 21.2 21.6 22.0 22.0 22.0 21.6 21.6
ys (mm) 63.2 63.4 64.4 64.5 64.5 64.4 64.4 64.4

 
 

Time (hrs) 899.92 917.58 917.67 926.67 943.75 954.42 
X (cm) 20.1 20.9 20.9 21.1 21.1 21.9 
Z (cm) 21.6 21.8 21.8 22.1 22.2 -20.9 
ys (mm) 64.2 63.8 63.6 63.6 63.6 63.4 

 
 
 

Note: 
X   - Longitudinal position relative to the pier 

 
Z   - Transverse position relative to the pier 

 
ys  -  Maximum scour depth 
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APPENDIX E-2(b) 
The data presented in this appendix refer to the Series 3 test with a 3D collar and the 
combination of pier and flow conditions that are given in Table 3.1.  The data are analysed 
in Section 4.6.2. 

Table E-2(b). Data for temporal development of scour depth for the 115 mm pier 
with a 3D collar (Flow intensity = 0.70) 

Time 

Max. 
scour 
depth ( ys) 

Temp- 
 

Scour 
rate Time 

Max. 
scour 
depth ( ys) 

Temp- 
 

Scour 
rate 

(hrs) (mm) (oC) (mm/hr) (hrs) (mm) (oC) (mm/hr) 
0.000 0.0 17.0  121.333 44.4 20.5 0.1 
0.017 2.0 17.0 120.0 124.000 44.4 20.2 0.0 
0.033 3.0 17.0 60.0 130.833 44.4 20.4 0.0 
0.050 4.0 17.0 60.0 145.833 44.4 20.6 0.0 
0.067 5.0 17.0 60.0 154.833 44.6  0.0 
0.083 7.0 17.0 120.0 170.833 45.0 20.9 0.0 
0.150 10.4 17.0 51.0 180.833 45.1 20.9 0.0 
0.217 10.6 17.0 3.0 196.167 45.2 21.2 0.0 
0.333 13.4 17.1 24.0 220.833 48.4 21.3 0.1 
0.467 15.2 17.1 13.5 248.000 49.4 21.1 0.0 
0.533 17.6 17.1 36.0 266.000 50.0 21.2 0.0 
0.600 18.4 17.1 12.0 274.167 50.4 22.5 0.0 
0.717 19.4 17.1 8.6 290.833 51.4 21.8 0.1 
0.883 20.0 17.1 3.6 312.500 52.4 21.0 0.0 
1.033 22.0  13.3 317.083 53.4 22.5 0.2 
1.400 24.4  6.5 321.333 52.9 22.2 -0.1 
1.633 24.5  0.4 327.000 52.2 21.8 -0.1 
2.000 24.4  -0.3 338.167 51.4 21.7 -0.1 
2.417 25.4 17.4 2.4 346.833 51.6 23.0 0.0 
3.000 26.0 17.6 1.0 363.833 52.4 21.9 0.0 
4.083 27.4  1.3 370.167 51.8 23.4 -0.1 
5.083 28.4  1.0 389.833 52.4 24.1 0.0 
6.083 29.0 18.0 0.6 419.000 56.4  0.1 
6.750 30.2  1.8 432.250 57.4 25.5 0.1 

12.750 30.6 18.8 0.1 454.833 57.4 26.3 0.0 
24.750 33.6 19.8 0.3 463.333 57.4  0.0 
26.000 34.6 19.9 0.8 477.583 60.4 26.2 0.2 
28.000 33.8 20.0 -0.4 483.333 60.4 26.6 0.0 
36.750 34.8 20.1 0.1 489.333 60.4 26.5 0.0 
49.833 38.4 20.5 0.3 506.167 60.4 26.6 0.0 
56.333 39.0 20.5 0.1 510.833 60.6 26.5 0.0 
73.833 41.4 20.4 0.1 528.333 62.4 26.6 0.1 
85.333 42.4 20.2 0.1 532.583 62.4 26.5 0.0 
98.333 42.4 20.5 0.0 553.083 61.0 26.6 -0.1 
102.833 43.4  0.2 577.167 59.4 26.5 -0.1 
106.833 43.4 20.4 0.0 603.833 61.0 25.9 0.1 
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         APPENDIX E-2(b) continued 
 

Time 
Max. scour 
depth ( ys) 

Temp- 
erature Scour rate 

(hrs) (mm) (oC) (mm/hr) 
    

609.333 60.8 26.3 0.0 
625.250 60.6 26.0 0.0 
632.333 60.5 26.0 0.0 
648.833 60.4 25.9 0.0 
654.833 60.3 26.0 0.0 
655.833 60.3  0.0 
669.750 60.4  0.0 
679.833 60.4  0.0 
694.333 60.3  0.0 
702.333 60.4  0.0 
720.833 61.2 21.2 0.0 
723.833 61.4  0.1 
727.417 61.6 21.1 0.1 
729.167 62.4 21.1 0.5 
746.583 62.4 21.3 0.0 
752.750 62.6 21.4 0.0 
763.833 62.8 21.6 0.0 
769.083 63.2 21.6 0.1 
793.667 63.4 21.5 0.0 
813.750 64.4 21.5 0.0 
821.833 64.5 21.5 0.0 
838.750 64.5 21.6 0.0 
862.750 64.4 21.7 0.0 
869.833 64.4 21.6 0.0 
869.833 64.4 21.2 0.0 
882.000 64.2 21.0 0.0 
899.917 63.8 21.1 0.0 
917.583 63.6 21.1 0.0 
917.667 63.6 21.1 0.0 
926.667 63.6 21.2 0.0 
943.750 63.4 21.3 0.0 
954.417 64.4 21.4 0.1 
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APPENDIX E-2(c)  
The data for the Scour hole contour for the Series 3 test with a 3D collar are shown in  
Table E- 2(c).  The data are plotted and analysed in Section 4.6.2.1. 

Table E-2(c). Data for the scour hole contour for Series 3 tests with a 3D collar 
Longitudinal 

position 
relative to 

the pier 

Transverse 
position 

relative to 
the pier Scour depth  

Longitudinal 
position 

relative to the 
pier 

Transverse 
position 

relative to the 
pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-84.1 -61.4 0.00  -79.1 13.6 0.00 
-84.1 -56.4 0.00  -79.1 18.6 0.00 
-84.1 -51.4 0.00  -79.1 23.6 0.00 
-84.1 -46.4 0.00  -79.1 28.6 0.00 
-84.1 -41.4 0.00  -79.1 33.6 0.00 
-84.1 -36.4 0.00  -79.1 38.6 0.00 
-84.1 -31.4 0.00  -79.1 43.6 0.00 
-84.1 -26.4 0.00  -79.1 48.6 0.00 
-84.1 -21.4 0.00  -79.1 53.6 0.00 
-84.1 -16.4 0.00  -79.1 58.6 0.00 
-84.1 -11.4 0.00  -74.1 -61.4 0.00 
-84.1 -6.4 0.00  -74.1 -56.4 0.00 
-84.1 -1.4 0.00  -74.1 -51.4 0.00 
-84.1 3.6 0.00  -74.1 -46.4 0.00 
-84.1 8.6 0.00  -74.1 -41.4 0.00 
-84.1 13.6 0.00  -74.1 -36.4 0.00 
-84.1 18.6 0.00  -74.1 -31.4 0.00 
-84.1 23.6 0.00  -74.1 -26.4 0.00 
-84.1 28.6 0.00  -74.1 -21.4 0.00 
-84.1 33.6 0.00  -74.1 -16.4 0.00 
-84.1 38.6 0.00  -74.1 -11.4 0.00 
-84.1 43.6 0.00  -74.1 -6.4 0.00 
-84.1 48.6 0.00  -74.1 -1.4 0.00 
-84.1 53.6 0.00  -74.1 3.6 0.00 
-84.1 58.6 0.00  -74.1 8.6 0.00 
-79.1 -61.4 0.00  -74.1 13.6 0.00 
-79.1 -56.4 0.00  -74.1 18.6 0.00 
-79.1 -51.4 0.00  -74.1 23.6 0.00 
-79.1 -46.4 0.00  -74.1 28.6 0.00 
-79.1 -41.4 0.00  -74.1 33.6 0.00 
-79.1 -36.4 0.00  -74.1 38.6 0.00 
-79.1 -31.4 0.00  -74.1 43.6 0.00 
-79.1 -26.4 0.00  -74.1 48.6 0.00 
-79.1 -21.4 0.00  -74.1 53.6 0.00 
-79.1 -16.4 0.00  -74.1 58.6 0.00 
-79.1 -11.4 0.00  -69.1 -61.4 0.00 
-79.1 -6.4 0.00  -69.1 -56.4 0.00 
-79.1 -1.4 0.00  -69.1 -51.4 0.00 
-79.1 3.6 0.00  -69.1 -46.4 0.00 
-79.1 8.6 0.00  -69.1 -41.4 0.00 
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      Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-69.1 -36.4 0.00  -64.1 38.6 0.00 
-69.1 -31.4 0.00  -64.1 43.6 0.00 
-69.1 -26.4 0.00  -64.1 48.6 0.00 
-69.1 -21.4 0.00  -64.1 53.6 0.00 
-69.1 -16.4 0.00  -64.1 58.6 0.00 
-69.1 -11.4 0.00  -59.1 -61.4 0.00 
-69.1 -6.4 0.00  -59.1 -56.4 0.00 
-69.1 -1.4 0.00  -59.1 -51.4 0.00 
-69.1 3.6 0.00  -59.1 -46.4 0.00 
-69.1 8.6 0.00  -59.1 -41.4 0.00 
-69.1 13.6 0.00  -59.1 -36.4 0.00 
-69.1 18.6 0.00  -59.1 -31.4 0.00 
-69.1 23.6 0.00  -59.1 -26.4 0.00 
-69.1 28.6 0.00  -59.1 -21.4 0.00 
-69.1 33.6 0.00  -59.1 -16.4 0.00 
-69.1 38.6 0.00  -59.1 -11.4 0.00 
-69.1 43.6 0.00  -59.1 -6.4 0.00 
-69.1 48.6 0.00  -59.1 -1.4 0.00 
-69.1 53.6 0.00  -59.1 3.6 0.00 
-69.1 58.6 0.00  -59.1 8.6 0.00 
-64.1 -61.4 0.00  -59.1 13.6 0.00 
-64.1 -56.4 0.00  -59.1 18.6 0.00 
-64.1 -51.4 0.00  -59.1 23.6 0.00 
-64.1 -46.4 0.00  -59.1 28.6 0.00 
-64.1 -41.4 0.00  -59.1 33.6 0.00 
-64.1 -36.4 0.00  -59.1 38.6 0.00 
-64.1 -31.4 0.00  -59.1 43.6 0.00 
-64.1 -26.4 0.00  -59.1 48.6 0.00 
-64.1 -21.4 0.00  -59.1 53.6 0.00 
-64.1 -16.4 0.00  -59.1 58.6 0.00 
-64.1 -11.4 0.00  -54.1 -61.4 0.00 
-64.1 -6.4 0.00  -54.1 -56.4 0.00 
-64.1 -1.4 0.00  -54.1 -51.4 0.00 
-64.1 3.6 0.00  -54.1 -46.4 0.00 
-64.1 8.6 0.00  -54.1 -41.4 0.00 
-64.1 13.6 0.00  -54.1 -36.4 0.00 
-64.1 18.6 0.00  -54.1 -31.4 0.00 
-64.1 23.6 0.00  -54.1 -26.4 0.00 
-64.1 28.6 0.00  -54.1 -21.4 0.00 
-64.1 33.6 0.00  -54.1 -16.4 0.00 
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       Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-54.1 -16.4 0.00  -49.1 58.6 0.00 
-54.1 -11.4 0.00  -44.1 -61.4 0.00 
-54.1 -6.4 0.00  -44.1 -56.4 0.00 
-54.1 -1.4 0.00  -44.1 -51.4 0.00 
-54.1 3.6 0.00  -44.1 -46.4 0.00 
-54.1 8.6 0.00  -44.1 -41.4 0.00 
-54.1 13.6 0.00  -44.1 -36.4 0.00 
-54.1 18.6 0.00  -44.1 -31.4 0.00 
-54.1 23.6 0.00  -44.1 -26.4 0.00 
-54.1 28.6 0.00  -44.1 -21.4 0.00 
-54.1 33.6 0.00  -44.1 -16.4 0.00 
-54.1 38.6 0.00  -44.1 -11.4 0.00 
-54.1 43.6 0.00  -44.1 -6.4 0.00 
-54.1 48.6 0.00  -44.1 -1.4 0.00 
-54.1 53.6 0.00  -44.1 3.6 0.00 
-54.1 58.6 0.00  -44.1 8.6 0.00 
-49.1 -61.4 0.00  -44.1 13.6 0.00 
-49.1 -56.4 0.00  -44.1 18.6 0.00 
-49.1 -51.4 0.00  -44.1 23.6 0.00 
-49.1 -46.4 0.00  -44.1 28.6 0.00 
-49.1 -41.4 0.00  -44.1 33.6 0.00 
-49.1 -36.4 0.00  -44.1 38.6 0.00 
-49.1 -31.4 0.00  -44.1 43.6 0.00 
-49.1 -26.4 0.00  -44.1 48.6 0.00 
-49.1 -21.4 0.00  -44.1 53.6 0.00 
-49.1 -16.4 0.00  -44.1 58.6 0.00 
-49.1 -11.4 0.00  -39.1 -61.4 0.00 
-49.1 -6.4 0.00  -39.1 -56.4 0.00 
-49.1 -1.4 0.00  -39.1 -51.4 0.00 
-49.1 3.6 0.00  -39.1 -46.4 0.00 
-49.1 8.6 0.00  -39.1 -41.4 0.00 
-49.1 13.6 0.00  -39.1 -36.4 0.00 
-49.1 18.6 0.00  -39.1 -31.4 0.00 
-49.1 23.6 0.00  -39.1 -26.4 0.00 
-49.1 28.6 0.00  -39.1 -21.4 0.00 
-49.1 33.6 0.00  -39.1 -16.4 0.00 
-49.1 38.6 0.00  -39.1 -11.4 0.00 
-49.1 43.6 0.00  -39.1 -6.4 0.00 
-49.1 48.6 0.00  -39.1 -1.4 0.00 
-49.1 53.6 0.00  -39.1 3.6 0.00 
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      Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-39.1 8.6 0  -29.1 -46.4 0 
-39.1 13.6 0  -29.1 -41.4 0 
-39.1 18.6 0  -29.1 -36.4 0 
-39.1 23.6 0  -29.1 -31.4 0 
-39.1 28.6 0  -29.1 -26.4 0 
-39.1 33.6 0  -29.1 -21.4 0 
-39.1 38.6 0  -29.1 -16.4 0 
-39.1 43.6 0  -29.1 -11.4 0 
-39.1 48.6 0  -29.1 -6.4 0 
-39.1 53.6 0  -29.1 -1.4 0 
-39.1 58.6 0  -29.1 0 0 
-34.1 -61.4 0  -29.1 3.6 0 
-34.1 -56.4 0  -29.1 8.6 0 
-34.1 -51.4 0  -29.1 13.6 0 
-34.1 -46.4 0  -29.1 18.6 0 
-34.1 -41.4 0  -29.1 23.6 0 
-34.1 -36.4 0  -29.1 28.6 0 
-34.1 -31.4 0  -29.1 33.6 0 
-34.1 -26.4 0  -29.1 38.6 0 
-34.1 -21.4 0  -29.1 43.6 0 
-34.1 -16.4 0  -29.1 48.6 0 
-34.1 -11.4 0  -29.1 53.6 0 
-34.1 -6.4 0  -29.1 58.6 0 
-34.1 -1.4 0  -24.1 -61.4 0 
-34.1 0 0  -24.1 -56.4 0 
-34.1 3.6 0  -24.1 -51.4 0 
-34.1 8.6 0  -24.1 -46.4 0 
-34.1 13.6 0  -24.1 -41.4 0 
-34.1 18.6 0  -24.1 -36.4 0 
-34.1 23.6 0  -24.1 -31.4 0 
-34.1 28.6 0  -24.1 -26.4 0 
-34.1 33.6 0  -24.1 -21.4 0 
-34.1 38.6 0  -24.1 -16.4 0 
-34.1 43.6 0  -24.1 -11.4 0 
-34.1 48.6 0  -24.1 -6.4 0 
-34.1 53.6 0  -24.1 -1.4 0 
-34.1 58.6 0  -24.1 0 0 
-29.1 -61.4 0  -24.1 3.6 0 
-29.1 -56.4 0  -24.1 8.6 0 
-29.1 -51.4 0  -24.1 13.6 0 
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       Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-24.1 18.6 0  -22.3 48.6 0 
-24.1 23.6 0  -22.3 53.6 0 
-24.1 28.6 0  -22.3 58.6 0 
-24.1 33.6 0  -19.1 -61.4 0 
-24.1 38.6 0  -19.1 -56.4 0 
-24.1 43.6 0  -19.1 -51.4 0 
-24.1 48.6 0  -19.1 -46.4 0 
-24.1 53.6 0  -19.1 -41.4 0 
-24.1 58.6 0  -19.1 -36.4 0 
-22.3 -61.4 0  -19.1 -31.4 0 
-22.3 -56.4 0  -19.1 -26.4 0 
-22.3 -51.4 0  -19.1 -21.4 0 
-22.3 -46.4 0  -19.1 -16.4 0 
-22.3 -41.4 0  -19.1 -11.4 -0.01 
-22.3 -36.4 0  -19.1 -6.4 -1.54 
-22.3 -31.4 0  -19.1 -4.4 -1.88 
-22.3 -26.4 0  -19.1 -1.4 -2.3 
-22.3 -21.4 0  -19.1 0 -2.44 
-22.3 -16.4 0  -19.1 3.6 -2.16 
-22.3 -11.4 0  -19.1 8.6 -1.24 
-22.3 -6.4 0  -19.1 13.6 -0.02 
-22.3 -4.4 0  -19.1 18.6 0 
-22.3 -3.4 -0.02  -19.1 23.6 0 
-22.3 -2.4 -0.04  -19.1 28.6 0 
-22.3 -1.4 -0.09  -19.1 33.6 0 
-22.3 0 -0.12  -19.1 38.6 0 
-22.3 0.6 -0.14  -19.1 43.6 0 
-22.3 1.6 -0.16  -19.1 48.6 0 
-22.3 2.6 -0.14  -19.1 53.6 0 
-22.3 3.6 -0.14  -19.1 58.6 0 
-22.3 4.6 -0.09  -14.1 -61.4 0 
-22.3 5.6 -0.06  -14.1 -56.4 0 
-22.3 8.6 -0.02  -14.1 -51.4 0 
-22.3 13.6 0  -14.1 -46.4 0 
-22.3 18.6 0  -14.1 -41.4 0 
-22.3 23.6 0  -14.1 -36.4 0 
-22.3 28.6 0  -14.1 -31.4 0 
-22.3 33.6 0  -14.1 -26.4 0 
-22.3 38.6 0  -14.1 -21.4 0 
-22.3 43.6 0  -14.1 -17.9 0 
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       Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
-14.1 -16.4 -0.54  -9.1 31.6 -0.02 
-14.1 -11.4 -2.84  -9.1 33.6 0 
-14.1 -6.4 -4.04  -9.1 38.6 0 
-14.1 -1.4 -4.24  -9.1 43.6 0 
-14.1 0 -4.3  -9.1 48.6 0 
-14.1 3.6 -4.4  -9.1 53.6 0 
-14.1 8.6 -3.96  -9.1 58.6 0 
-14.1 11.6 -2.94  -4.1 -61.4 0 
-14.1 13.6 -2.04  -4.1 -56.4 0 
-14.1 18.6 -0.76  -4.1 -51.4 0 
-14.1 23.6 -0.06  -4.1 -46.4 0 
-14.1 25.6 -0.02  -4.1 -41.4 0 
-14.1 28.6 0  -4.1 -36.4 0 
-14.1 33.6 0  -4.1 -31.4 0 
-14.1 38.6 0  -4.1 -26.4 -0.04 
-14.1 43.6 0  -4.1 -21.4 -1.94 
-14.1 48.6 0  -4.1 -16.4 -2.44 
-14.1 53.6 0  -4.1 -14.4 -1.54 
-14.1 58.6 0  -4.1 -13.4 -1.14 
-9.1 -61.4 0  -4.1 -12.4 -0.84 
-9.1 -56.4 0  -4.1 -11.4 -0.3 
-9.1 -51.4 0  -4.1 -6.4 0 
-9.1 -46.4 0  -4.1 -4.9 0 
-9.1 -41.4 0  -4.1 4.1 0 
-9.1 -36.4 0  -4.1 8.6 0 
-9.1 -31.4 0  -4.1 10.1 -0.42 
-9.1 -26.4 0  -4.1 13.6 -1.04 
-9.1 -23.4 -0.1  -4.1 18.6 -2.04 
-9.1 -21.4 -1.24  -4.1 21.1 -1.16 
-9.1 -16.4 -2.24  -4.1 23.6 -1.98 
-9.1 -11.4 -2.22  -4.1 28.6 -1.54 
-9.1 -6.4 -1.5  -4.1 33.6 -1.04 
-9.1 -1.4 -1.34  -4.1 35.1 -0.04 
-9.1 0 -1.44  -4.1 38.6 0 
-9.1 3.6 -1.74  -4.1 43.6 0 
-9.1 8.6 -2.12  -4.1 48.6 0 
-9.1 13.6 -3.1  -4.1 53.6 0 
-9.1 18.6 -1.48  -4.1 58.6 0 
-9.1 23.6 -2.14  0 -61.4 0 
-9.1 28.6 -0.66  0 -56.4 0 
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       Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
0 -51.4 0  0.9 -14.4 -2.04 
0 -46.4 0  0.9 -12.4 -1.04 
0 -41.4 0  0.9 -11.4 -0.2 
0 -36.4 0  0.9 -6.4 0 
0 -31.4 0  0.9 6.6 0 
0 -27.9 -0.1  0.9 8.6 0 
0 -26.4 -0.44  0.9 12.1 -1.74 
0 -21.4 -1.24  0.9 13.6 -1.04 
0 -16.4 -2.64  0.9 15.6 -0.74 
0 -16.4 -1.44  0.9 18.6 -1.64 
0 -14.4 -2.04  0.9 23.6 -1.14 
0 -12.4 -1.04  0.9 28.6 -3.64 
0 -11.4 -0.2  0.9 33.6 -2.46 
0 -6.4 0  0.9 38.6 -0.02 
0 6.6 0  0.9 43.6 0 
0 8.6 0  0.9 48.6 0 
0 12.1 -1.74  0.9 53.6 0 
0 13.6 -1.04  0.9 58.6 0 
0 15.6 -0.74  5.9 -61.4 0 
0 18.6 -1.64  5.9 -56.4 0 
0 23.6 -1.14  5.9 -51.4 0 
0 28.6 -3.64  5.9 -46.4 0 
0 33.6 -2.46  5.9 -41.4 0 
0 38.6 -0.02  5.9 -36.4 -1.44 
0 43.6 0  5.9 -31.4 -2.54 
0 48.6 0  5.9 -26.4 -3.04 
0 53.6 0  5.9 -21.4 -2.44 
0 58.6 0  5.9 -16.4 -1.54 

0.9 -61.4 0  5.9 -11.4 -1.24 
0.9 -56.4 0  5.9 -6.4 0 
0.9 -51.4 0  5.9 -2.4 0 
0.9 -46.4 0  5.9 3.6 0 
0.9 -41.4 0  5.9 8.6 0 
0.9 -36.4 0  5.9 13.6 -1.94 
0.9 -31.4 0  5.9 16.6 -0.9 
0.9 -27.9 -0.1  5.9 18.6 -1.74 
0.9 -26.4 -0.44  5.9 23.6 -2.74 
0.9 -21.4 -1.24  5.9 28.6 -4.28 
0.9 -16.4 -2.64  5.9 33.6 -3.44 
0.9 -16.4 -1.44  5.9 38.6 -1.44 
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       Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
5.9 41.6 -0.02  15.9 -31.4 -5.04 
5.9 43.6 0  15.9 -26.4 -5.84 
5.9 48.6 0  15.9 -21.4 -5.64 
5.9 53.6 0  15.9 -16.4 -4.64 
5.9 58.6 0  15.9 -11.4 -2.64 
10.9 -61.4 0  15.9 -6.4 -1.04 
10.9 -56.4 0  15.9 -1.4 -0.54 
10.9 -51.4 0  15.9 0 -0.34 
10.9 -48.4 -0.05  15.9 3.6 -0.64 
10.9 -46.4 -0.84  15.9 8.6 -1.14 
10.9 -41.4 -2.44  15.9 13.6 -2.34 
10.9 -36.4 -3.44  15.9 18.6 -4.94 
10.9 -31.4 -4.14  15.9 23.6 -5.14 
10.9 -26.4 -4.44  15.9 28.6 -4.54 
10.9 -21.4 -4.58  15.9 33.6 -1.64 
10.9 -16.4 -3.44  15.9 38.6 -1.04 
10.9 -11.4 -2.1  15.9 43.6 -0.14 
10.9 -6.4 0  15.9 48.6 0 
10.9 -1.4 0  15.9 53.6 0 
10.9 0 0  15.9 58.6 0 
10.9 3.6 0  20.9 -61.4 0 
10.9 7.6 0  20.9 -56.4 0 
10.9 8.6 -0.24  20.9 -55.4 -0.16 
10.9 13.6 -1.84  20.9 -51.4 -2 
10.9 18.6 -3.74  20.9 -46.4 -3.24 
10.9 23.6 -4.04  20.9 -41.4 -4.04 
10.9 28.6 -5.34  20.9 -36.4 -4.64 
10.9 33.6 -3.24  20.9 -31.4 -5.14 
10.9 38.6 -1.54  20.9 -26.4 -6.04 
10.9 43.6 -0.02  20.9 -21.4 -6.24 
10.9 48.6 0  20.9 -16.4 -5.24 
10.9 53.6 0  20.9 -11.4 -2.54 
10.9 58.6 0  20.9 -6.4 -0.74 
15.9 -61.4 0  20.9 -1.4 -0.14 
15.9 -56.4 0  20.9 0 -0.16 
15.9 -52.9 -0.2  20.9 3.6 -0.24 
15.9 -51.4 -0.94  20.9 8.6 -0.64 
15.9 -46.4 -2.74  20.9 13.6 -3.24 
15.9 -41.4 -3.64  20.9 18.6 -5.24 
15.9 -36.4 -4.34  20.9 23.6 -5.64 
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       Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
20.9 28.6 -2.92  30.9 -31.4 -4.84 
20.9 33.6 -2.84  30.9 -26.4 -4.44 
20.9 38.6 -1.24  30.9 -21.4 -4.64 
20.9 43.6 -1.04  30.9 -16.4 -3.94 
20.9 47.6 -0.24  30.9 -11.4 -1.84 
20.9 48.6 0  30.9 -6.4 -0.04 
20.9 53.6 0  30.9 -1.4 -0.05 
20.9 58.6 0  30.9 0 -0.04 
25.9 -61.4 0  30.9 3.6 0.06 
25.9 -56.4 -0.04  30.9 8.6 0.56 
25.9 -51.4 -1.24  30.9 13.6 -2.04 
25.9 -46.4 -3.04  30.9 18.6 -3.64 
25.9 -41.4 -3.74  30.9 23.6 -3.54 
25.9 -36.4 -4.24  30.9 28.6 -3.24 
25.9 -31.4 -4.74  30.9 33.6 -3.04 
25.9 -26.4 -5.24  30.9 38.6 -2.24 
25.9 -21.4 -5.84  30.9 43.6 -1.54 
25.9 -16.4 -4.84  30.9 48.6 -0.24 
25.9 -11.4 -2.34  30.9 53.6 0 
25.9 -6.4 -0.54  30.9 58.6 0 
25.9 -1.4 -0.16  35.9 -61.4 0 
25.9 0 -0.04  35.9 -56.4 -0.02 
25.9 3.6 0.16  35.9 -51.4 -0.34 
25.9 8.6 -0.14  35.9 -46.4 -0.14 
25.9 13.6 -2.9  35.9 -41.4 -1.64 
25.9 18.6 -4.34  35.9 -36.4 -2.94 
25.9 23.6 -5.14  35.9 -31.4 -4.64 
25.9 28.6 -4.04  35.9 -26.4 -4.84 
25.9 33.6 -3.44  35.9 -21.4 -3.44 
25.9 38.6 -2.74  35.9 -16.4 -2.94 
25.9 43.6 -1.94  35.9 -11.4 -1.34 
25.9 48.6 -0.04  35.9 -6.4 -0.04 
25.9 53.6 0  35.9 -3.9 -0.34 
25.9 58.6 0  35.9 -1.4 -0.02 
30.9 -61.4 0  35.9 0 0.16 
30.9 -56.4 0  35.9 3.6 -0.24 
30.9 -51.4 0.16  35.9 8.6 -0.14 
30.9 -46.4 -1.64  35.9 13.6 -1.84 
30.9 -41.4 -2.74  35.9 18.6 -2.64 
30.9 -36.4 -3.54  35.9 23.6 -3.44 
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      Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
35.9 28.6 -3.84  45.9 -26.4 -4.24 
35.9 33.6 -3.54  45.9 -21.4 -4.94 
35.9 38.6 -1.64  45.9 -16.4 -3.04 
35.9 43.6 -0.24  45.9 -11.4 -1.14 
35.9 48.6 -0.02  45.9 -6.4 -1.04 
35.9 53.6 0  45.9 -1.4 0.16 
35.9 58.6 0  45.9 0 0.36 
40.9 -61.4 0  45.9 2.1 1.36 
40.9 -56.4 -0.54  45.9 3.6 0.96 
40.9 -51.4 -1.84  45.9 8.6 -1.04 
40.9 -46.4 -0.74  45.9 13.6 -1.64 
40.9 -41.4 -0.64  45.9 18.6 -1.94 
40.9 -36.4 -3.24  45.9 23.6 -2.74 
40.9 -31.4 -3.64  45.9 28.6 -1.44 
40.9 -26.4 -4.24  45.9 33.6 0.56 
40.9 -21.4 -3.04  45.9 38.6 0.96 
40.9 -16.4 -2.24  45.9 43.6 0.46 
40.9 -11.4 -1.14  45.9 48.6 -0.84 
40.9 -6.4 -0.58  45.9 53.6 -1.64 
40.9 -1.4 -0.02  45.9 58.6 -0.44 
40.9 0 0.46  50.9 -61.4 -0.14 
40.9 3.6 0.06  50.9 -56.4 -1.44 
40.9 8.6 -1.44  50.9 -51.4 -1.84 
40.9 13.6 -1.74  50.9 -46.4 -0.84 
40.9 18.6 -1.34  50.9 -41.4 -1.94 
40.9 23.6 -2.44  50.9 -36.4 -1.64 
40.9 28.6 -3.84  50.9 -31.4 -2.84 
40.9 33.6 -1.54  50.9 -26.4 -4.34 
40.9 38.6 0.26  50.9 -21.4 -4.14 
40.9 43.6 0.46  50.9 -16.4 -3.74 
40.9 48.6 0  50.9 -11.4 -2.14 
40.9 53.6 0  50.9 -6.4 -0.68 
40.9 58.6 0  50.9 -1.4 1.06 
45.9 -61.4 0  50.9 0 0.98 
45.9 -56.4 -1.54  50.9 3.6 0.46 
45.9 -51.4 -2.24  50.9 8.6 -0.26 
45.9 -46.4 -1.54  50.9 13.6 -2.24 
45.9 -41.4 -1.04  50.9 18.6 -1.34 
45.9 -36.4 -1.24  50.9 23.6 -1.54 
45.9 -31.4 -1.16  50.9 28.6 -0.64 
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       Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
45.9 -26.4 -4.24  50.9 33.6 -0.34 
45.9 -21.4 -4.94  50.9 38.6 -0.35 
45.9 -16.4 -3.04  50.9 43.6 -1.66 
45.9 -11.4 -1.14  50.9 48.6 -2.64 
45.9 -6.4 -1.04  50.9 53.6 -2.9 
45.9 -1.4 0.16  50.9 58.6 -2.34 
45.9 0 0.36  55.9 -61.4 -0.44 
45.9 2.1 1.36  55.9 -56.4 -2.54 
45.9 3.6 0.96  55.9 -51.4 -2.46 
45.9 8.6 -1.04  55.9 -46.4 -2.04 
45.9 13.6 -1.64  55.9 -41.4 -0.64 
45.9 18.6 -1.94  55.9 -36.4 -0.94 
45.9 23.6 -2.74  55.9 -31.4 -2.14 
45.9 28.6 -1.44  55.9 -26.4 -1.84 
45.9 33.6 0.56  55.9 -21.4 -1.74 
45.9 38.6 0.96  55.9 -16.4 -2.54 
45.9 43.6 0.46  55.9 -11.4 -1.24 
45.9 48.6 -0.84  55.9 -6.4 0.36 
45.9 53.6 -1.64  55.9 -1.4 2.26 
45.9 58.6 -0.44  55.9 0 1.98 
50.9 -61.4 -0.14  55.9 3.6 0.86 
50.9 -56.4 -1.44  55.9 8.6 -1.24 
50.9 -51.4 -1.84  55.9 13.6 -1.02 
50.9 -46.4 -0.84  55.9 18.6 -0.04 
50.9 -41.4 -1.94  55.9 23.6 -1.94 
50.9 -36.4 -1.64  55.9 28.6 -1.04 
50.9 -31.4 -2.84  55.9 33.6 -0.74 
50.9 -26.4 -4.34  55.9 38.6 -1.34 
50.9 -21.4 -4.14  55.9 43.6 -2.94 
50.9 -16.4 -3.74  55.9 48.6 -3.54 
50.9 -11.4 -2.14  55.9 53.6 -2.74 
50.9 -6.4 -0.68  55.9 58.6 -1.14 
50.9 -1.4 1.06  65.9 -61.4 -1.84 
50.9 0 0.98  65.9 -56.4 -1.44 
50.9 3.6 0.46  65.9 -51.4 -0.44 
50.9 8.6 -0.26  65.9 -46.4 -0.84 
50.9 13.6 -2.24  65.9 -41.4 -1.44 
50.9 18.6 -1.34  65.9 -36.4 -0.94 
50.9 23.6 -1.54  65.9 -31.4 -1.84 
50.9 28.6 -0.64  65.9 -26.4 -2.64 
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       Table E-2(c) Continued 
 

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
65.9 -26.4 -2.64  75.9 38.6 -1.4 
65.9 -21.4 -3.04  75.9 43.6 -0.94 
65.9 -16.4 -2.04  75.9 48.6 -1.64 
65.9 -11.4 0.66  75.9 53.6 -1.94 
65.9 -6.4 2.56  75.9 58.6 -0.24 
65.9 -1.4 2.96  85.9 -61.4 -1.34 
65.9 0 2.76  85.9 -56.4 -0.84 
65.9 3.6 2.06  85.9 -51.4 -0.04 
65.9 8.6 1.96  85.9 -46.4 -0.64 
65.9 13.6 1.76  85.9 -41.4 -1.84 
65.9 18.6 -0.44  85.9 -36.4 -2.04 
65.9 23.6 -0.74  85.9 -31.4 -2.24 
65.9 28.6 -0.84  85.9 -26.4 -1.24 
65.9 33.6 -0.34  85.9 -21.4 0.56 
65.9 38.6 -1.74  85.9 -16.4 1.72 
65.9 43.6 -3.04  85.9 -11.4 2.46 
65.9 48.6 -1.92  85.9 -6.4 2.96 
65.9 53.6 -1.84  85.9 -1.4 2.74 
65.9 58.6 -3.14  85.9 0 2.76 
75.9 -61.4 -1.44  85.9 3.6 3.26 
75.9 -56.4 -1.04  85.9 8.6 2.56 
75.9 -51.4 -0.84  85.9 13.6 2.1 
75.9 -46.4 -1.46  85.9 18.6 1.66 
75.9 -41.4 -0.74  85.9 23.6 0.46 
75.9 -36.4 -1.26  85.9 28.6 0.08 
75.9 -31.4 -1.04  85.9 33.6 -1.44 
75.9 -26.4 -1.54  85.9 38.6 -1.64 
75.9 -21.4 -1.34  85.9 43.6 -1.24 
75.9 -16.4 -0.84  85.9 48.6 -2.64 
75.9 -11.4 0.56  85.9 53.6 -2.04 
75.9 -6.4 2.56  85.9 58.6 -1.14 
75.9 -1.4 2.52  95.9 -61.4 -0.44 
75.9 0 3.56  95.9 -56.4 -1.94 
75.9 3.6 3.7  95.9 -51.4 -0.14 
75.9 8.6 3.16  95.9 -46.4 0.06 
75.9 13.6 2.56  95.9 -41.4 -0.94 
75.9 18.6 1.26  95.9 -36.4 -0.78 
75.9 23.6 0.86  95.9 -31.4 -2.14 
75.9 28.6 -1.44  95.9 -26.4 -2.04 
75.9 33.6 -0.88  95.9 -21.4 -0.04 
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       Table E-2(c) Continued 
Longitudinal 

position 
relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth  

Longitudinal 
position 

relative to 
the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm)  (cm) (cm) (cm) 
95.9 -16.4 2.06  105.9 48.6 0.66 
95.9 -11.4 3.36  105.9 53.6 2.96 
95.9 -6.4 3.46  105.9 58.6 2.66 
95.9 -1.4 2.42  115.9 -61.4 -0.64 
95.9 0 2.56  115.9 -56.4 -0.94 
95.9 3.6 2.56  115.9 -51.4 0.56 
95.9 8.6 2.14  115.9 -46.4 -1.14 
95.9 13.6 2.26  115.9 -41.4 -2.24 
95.9 18.6 1.96  115.9 -36.4 -0.84 
95.9 23.6 1.36  115.9 -31.4 -0.24 
95.9 28.6 -1.14  115.9 -26.4 0.56 
95.9 33.6 -1.04  115.9 -21.4 2.66 
95.9 38.6 -0.74  115.9 -16.4 4.06 
95.9 43.6 0.4  115.9 -11.4 5.56 
95.9 48.6 0.36  115.9 -6.4 5.76 
95.9 53.6 1.34  115.9 -1.4 4.66 
95.9 58.6 0.66  115.9 0 4.46 

105.9 -61.4 -2.14  115.9 3.6 4.56 
105.9 -56.4 -1.14  115.9 8.6 3.6 
105.9 -51.4 -0.78  115.9 13.6 1.96 
105.9 -46.4 -0.94  115.9 18.6 -0.46 
105.9 -41.4 -0.74  115.9 23.6 -1.74 
105.9 -36.4 -1.64  115.9 28.6 -0.04 
105.9 -31.4 -0.54  115.9 33.6 0.76 
105.9 -26.4 1.16  115.9 38.6 0.16 
105.9 -21.4 1.66  115.9 43.6 0.38 
105.9 -16.4 3.16  115.9 48.6 0.52 
105.9 -11.4 3.76  115.9 53.6 1.56 
105.9 -6.4 4.76  115.9 58.6 0 
105.9 -1.4 4.92  125.9 -61.4 -0.14 
105.9 0 4.76  125.9 -56.4 0.06 
105.9 3.6 4.36  125.9 -51.4 -0.54 
105.9 8.6 2.36  125.9 -46.4 -2.24 
105.9 13.6 1.66  125.9 -41.4 -1.04 
105.9 18.6 0.96  125.9 -36.4 -0.14 
105.9 23.6 0.22  125.9 -31.4 0.02 
105.9 28.6 1.16  125.9 -26.4 0.22 
105.9 33.6 0.36  125.9 -21.4 0.96 
105.9 38.6 -1.02  125.9 -16.4 1.46 
105.9 43.6 -1.04  125.9 -11.4 3.36 
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       Table E-2(c) Continued 
 
Longitudinal 

position 
relative to 

the pier 

Transverse 
position 

relative to 
the pier 

Scour 
depth 

(cm) (cm) (cm) 
125.9 -6.4 3.96 
125.9 -1.4 4.46 
125.9 0 4.56 
125.9 3.6 3.86 
125.9 8.6 2.66 
125.9 13.6 1.94 
125.9 18.6 1.36 
125.9 23.6 0.96 
125.9 28.6 0.26 
125.9 33.6 0.56 
125.9 38.6 0.16 
125.9 43.6 0.34 
125.9 48.6 -0.24 
125.9 53.6 0.36 
125.9 58.6 0.16 
135.9 -61.4 -0.04 
135.9 -56.4 0 
135.9 -51.4 0.56 
135.9 -46.4 -0.84 
135.9 -41.4 -0.24 
135.9 -36.4 0.76 
135.9 -31.4 1.96 
135.9 -26.4 1.98 
135.9 -21.4 3.46 
135.9 -16.4 3.56 
135.9 -11.4 4.66 
135.9 -6.4 5.46 
135.9 -1.4 5.66 
135.9 0 5.16 
135.9 3.6 3.86 
135.9 8.6 3.46 
135.9 13.6 2.76 
135.9 18.6 1.66 
135.9 28.6 0.66 
135.9 33.6 -0.24 
135.9 38.6 -0.14 
135.9 43.6 -0.12 
135.9 48.6 -0.06 
135.9 53.6 -0.64 
135.9 58.6 0.96 
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APPENDIX E-2(d) 
Table E-2(d) shows the data for the longitudinal profile of the scour hole across the 
centre of the pier for a Series 3 test for a pier with a 3D collar.  The data are plotted and 
analysed in Section 4.6.2.2. 

Table E-2(d). Data for the longitudinal scour profile along the centreline of the 
pier for Series 3 test: With a 3D collar 

Longitudinal position 
relative to the pier Scour depth 

(cm) (cm) 
-84.1 0 
-79.1 0 
-74.1 0 
-69.1 0 
-64.1 0 
-59.1 0 
-54.1 0 
-49.1 0 
-44.1 0 
-39.1 0 
-34.1 0 
-29.1 0 
-24.1 0 
-22.3 -0.12 
-19.1 -2.44 
-14.1 -4.3 
-9.1 -1.44 
-4.1 0 

0 0 
0.9 0 
5.9 0 
10.9 0 
15.9 -0.34 
20.9 -0.16 
25.9 -0.04 
30.9 -0.04 
35.9 0.16 
40.9 0.46 
45.9 0.36 
50.9 0.98 
55.9 1.98 
65.9 2.76 
75.9 3.56 
85.9 2.76 
95.9 2.56 

105.9 4.76 
115.9 4.46 
125.9 4.56 
135.9 5.16 
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APPENDIX E-2(e) 
The data for the transverse profile of the scour hole across the centre of the pier for the 
Series 3 test for a pier with a 3D collar are shown in Table E-2(e).  The data are plotted and 
analysed in sSction 4.6.2.3. 

Table E-2(e). Data for the transverse scour profile along the centreline of the 
pier for Series 3 test: With a 3D collar 

Transverse position 
relative to the pier Scour depth 

(cm) (cm) 
-61.4 0 
-56.4 0 
-51.4 0 
-46.4 0 
-41.4 0 
-36.4 0 
-31.4 0 
-27.9 -0.1 
-26.4 -0.44 
-21.4 -1.24 
-16.4 -2.64 
-16.4 -1.44 
-14.4 -2.04 
-12.4 -1.04 
-11.4 -0.2 
-6.4 0 
-5.14 0 
-0.14 0 
2.86 0 
4.86 0 
6.6 0 
8.6 0 
12.1 -1.74 
13.6 -1.04 
15.6 -0.74 
18.6 -1.64 
23.6 -1.14 
28.6 -3.64 
33.6 -2.46 
38.6 -0.02 
43.6 0 
48.6 0 
53.6 0 
58.6 0 

 
 
 
 
 
 
 


