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ABSTRACT 

 

 
 

Naphthenic acids (NAs) comprise a complex mixture of alkyl-substituted acyclic and 

cycloaliphatic carboxylic acids. NAs are present in wastewaters at petroleum refineries and in the 

process waters of oil sands extraction plants where they are primarily retained in large tailing 

ponds in the Athabasca region of Northern Alberta. The toxicity of these waters, primarily 

caused by NAs, dictates the need for their treatment.  

Bioremediation is considered as one of the most cost-effective approaches for the 

treatment of these wastewaters. Ex-situ bioremediation conducted in a bioreactor optimizes the 

microbial growth and activity by controlling environmental conditions resulting in efficient 

conversion of the contaminants to less harmful compounds. In this work, a circulating packed 

bed bioreactor (CPBB), with improved mixing, mass transfer and biomass hold-up has been used 

to study biodegradation of several model NA compounds: namely trans-4-methyl-1-cyclohexane 

carboxylic acid (trans-4MCHCA), a mixture of cis- and trans- 4-methyl-cyclohexane acetic acid 

(4MCHAA), and octanoic acid as well co-biodegradation of these naphthenic acids with octanoic 

acid, using a mixed culture developed in our laboratory. The biodegradation rates achieved for 

trans-4MCHCA in the CPBB are far greater than those reported previously in the literatures. The 

maximum biodegradation rate of trans-4MCHCA observed during batch operation was 43.5 

mg/L-h, while a rate of 209 mg/L-h was achieved during continuous operation. Although cis-

4MCHAA is more resistant to biodegradation when compared with trans-4MCHCA, the 

experimental results obtained from this study indicated both isomers were effectively 

biodegraded in the CPBB, with the maximum biodegradation rates being as high as 2.25 mg/L-h 

(cis-4MCHAA) and 4.17 mg/L-h (trans-4MCHAA) during batch operations and 4.17 mg/L-h 
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(cis-4MCHAA) and 7.80 mg/L-h (trans-4MCHAA) during the continuous operation. Optimum 

temperature for biodegradation of 4MCHAA was determined as 25 C. Furthermore, the 

biodegradation rate of single ring NAs (trans-4MCHCA and 4MCHAA) were found to be 

significantly improved through utilization of octanoic acid as a co-substrate. For example, the 

maximum biodegradation rate of trans-4MCHCA obtained during batch operation with the 

presence of octanoic acid was 112 mg/L-h, which was 2.6 times faster than the maximum value 

of 43.5 mg/L-h when trans-4MCHCA was used as a sole substrate. Similarly, the highest 

biodegradation rates of cis-4MCHAA and trans-4MCHAA were 16.7 and 28.4 mg/L-h in the 

presence of octanoic acid, which were 7.4 and 6.8 times higher than the maximum rates of 2.25 

and 4.17 mg/L-h in the absence of octanoic acid.  
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NOMENCLATURE AND ABBREVIATIONS 

 

Nomenclature  

 

 

Dd - down comer diameter (cm) 

 

Dr -  riser Diameter (cm) 

 

hd - down comer height (cm) 

 

hr - riser height (cm) 

 

rtrans-4MCHAA – biodegradation rate of trans-4MCHAA (mg/L-h) 

 

rtrans-4MCHAA – biodegradation rate of trans-4MCHAA (mg/L-h) 

 

rtrans-4MCHCA – biodegradation rate of trans-4MCHCA (mg/L-h) 

 

Si – initial substrate concentration (mg/L) 

 

VR - reactor volume (ml) 

 

Vw - volume of free liquid at completion /working volume (ml) 

 

Wb - dry weight of biofilm (g) 

 

 

 

Abbreviation  
 

4MCHAA - 4-methylcyclohexane acetic acid 

cis-4MCHAA - cis-isomer of  4-methylcyclohexane acetic acid 

CPBB - circulating packed bed bioreactor 

CSTR - continuous stirred tank reactor 

 

ESI - electrospray ionization 

 

FID - flame ionization detection 

FTIR - fourier transform infrared 

 



 

xiii 

 

GC - gas chromatography 

HDPE - high density polyethylene 

HPLC - high-performance liquid chromatography 

 

LSI - liquid secondary ion 

 

MS - mass spectrometry 

NA - naphthenic acid 

NAs - Naphthenic acids 

OD - optical density 

QTOF - quantitative quadrupole time of flight 

 

RO - reverse osmosis  

trans-4MCHCA - 4 methyl-1-cyclohexane carbpxylic acid  

trans-4MCHAA - trans-isomer of 4-methylcyclohexane acetic acid 

 

Greek Symbols 

 

η - porosity (unitless) 

 

ρss - density of stainless steel (g/cm
3
) 
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1 INTRODUCTION 
 

 

 

Canada has a highly sophisticated energy industry and is both an importer and exporter of 

oil and refined products.  In 2008 the average petroleum production was about 438,000 m
3
/d 

(2,750,000 bbl/d), of which 45% was conventional crude oil, 49.5% was bitumen from oil sands, 

and 5.5% was condensate from natural gas wells (NEB, 2009).Currently, Over 99% of Canadian 

oil exports are sent to the United States, and it is consistently the top source of U.S. oil imports 

(NEB, 2009; USEIA, 2011).  

Most of Canadian oil sands are located in three major deposits in northern Alberta, 

namely Athabasca-Wabiskaw , the Cold Lake, and the Peace River oil sands deposits. Alberta 

has the second largest petroleum reserves in the world, second only to Saudi Arabia. It is 

estimated that about 27.6 billion m
3
 (175 billion barrels) of bitumen exist in the northern oil 

sands. Currently, industry in Alberta extracts around 236,700 m
3
 (1.49 million barrels) of 

bitumen each day, representing about 76% of the province's total crude oil production, this rate 

expected to rise to 429,000 m
3
 (2.7 million barrels) by 2015 (ERCB,  2011).  

The rapid expansion of Canada’s oil sands industry requires a sustainable supply of fresh 

water to meet the water consumption of surface mining operations. Presently, each barrel of oil 

produced from surface mining consumes 3 barrel of fresh water (Syncrude Canada, 2004; Suncor 

Energy, 2005; Shell Canada 2005).  The produced waste slurry, comprised of sand, clay, water, 

residual bitumen, organic acids, and polycyclic aromatic hydrocarbon (PAH), is retained in the 

large tailing ponds in Northern Alberta. In 2003, the estimated volume of tailings in the 

Athabasca region was approximated 4 x 10
8
 m

3
 and the total volume is expected to increase to 

over 1 billion m
3
 by 2020 (Paslawski,  2008).   

http://en.wikipedia.org/wiki/Oil_sands
http://en.wikipedia.org/wiki/Alberta
http://en.wikipedia.org/wiki/Athabasca_Oil_Sands
http://en.wikipedia.org/wiki/Cold_Lake,_Alberta
http://en.wikipedia.org/wiki/Peace_River,_Alberta
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  The primary source of toxicity of the liquid wastes in the tailing ponds has been traced to 

a complex mixture of organic acids, collectively referred to as naphthenic acids (NAs) (Headley 

et al., 2002a, Quagraine et al., 2005, Paslawski, 2008).  NAs occur naturally in oil sands 

bitumen, and are a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic 

acids with general chemical formula CnH2n+ZO2, where n indicates the carbon number and Z 

specifies the hydrogen deficiency (Brient et al., 1995; Clemente et al., 2005). During the 

processing of oil sands produced by surface mining, NAs are released from bitumen through the 

alkaline hot water extraction process. Since oil sands companies intend to improve the water use 

efficiency, NAs are concentrated through process water recycling and repeated extraction cycles.  

Currently, the NAs concentrations in the tailing ponds range from 40 to 120 mg/L (Schramm et 

al., 2000; Holowenko et al., 2002; Mishra, 2009). Due to Canadian environmental regulations, 

these waters must be retained on-site to prevent the release of the toxic NAs into the environment 

(Quagraine et al., 2005, Paslawski 2008). To preserve the fragile Northern ecosystem, 

development of efficient water treatment technologies aiming to remove NAs has appeared as a 

major challenge.  

 Over the past few decades, various methods have been developed to remediate NAs in 

tailings water such as microfiltration and ultrafiltration, biological treatment, and advanced 

oxidation (Allen, 2008). Among these methods, bioremediation is considered as one of the most 

economical methods. However, natural biodegradation is generally slow and can not cope with 

increasing wastewater production. Therefore, enhancement of natural biodegradation has become 

the focus of engineers and researchers aiming to address this problem. 

On the basis of existing literatures, information regarding the impact of NA structure on 

the biodegradation rate is limited. Only a few studies have included the information about the 
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dependency of biodegradation kinetics on the molecular structure of individual NA (Tanapat, 

2001; Paslawski, 2008).  Therefore, further research on biodegradation of single NA with various 

structures is needed. Additionally, biodegradation of NAs can be enhanced in an improved 

bioreactor deign. Further investigations on the ex-situ process were necessary in order to evaluate 

the performance of these novel bioreactors and the influential factors influencing the degradation 

process.  

 In this work, using a mixed culture developed in our laboratory and a novel circulating 

packed bed bioreactor (CPBB), biodegradation of several model NA compounds including trans-

4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA), cis- and trans- 4-methyl-

cyclohexane acetic acid (4MCHAA), and octanoic acid have been investigated under batch and 

continuous modes of operation. Effects of NA molecular structure, concentration, and 

temperature on the performance of the bioreactor and extent of bioremediation have been 

quantified. Possibility of enhancing the biodegradation rate through co-metabolism of NAs and 

octanoic acid also has been conducted.   
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2 LITERATURE REVIEW 

 
 

 

2.1 Naphthenic Acids 

 

In the petroleum industry, naphthenic acids (NAs) are commonly referred to as a complex 

mixture of carboxylic acids present in crude oil. The term NA is derived from the early discovery 

of monobasic carboxylic acids in petroleum, where these acids are based on a saturated single-

ring structure (Brient et al., 1995; Tanapat, 2001). NAs are mainly composed of alkyl-substituted 

cycloaliphatic carboxylic acids and a small amount of acyclic aliphatic (paraffinic or fatty) acids, 

with a general chemical formula of CnH2n+zO2, where n represent the number of carbon atoms, 

and Z specifies the hydrogen deficiency and usually has a zero or negative value (Brient et al., 

1995; Clemente et al., 2005). Generally, the structure of NAs becomes more compact due to the 

loss of hydrogen atoms (Holowenko et al., 2001; Clemente et al., 2005). For example, NAs can 

be saturated, acyclic acids with Z equals to 0, monocyclic acids (Z= -2), bicyclic acids (Z= -4), 

or tricyclic acids (Z= -6) etc. NAs mixture consists mainly of monocyclic acids as the carbon 

number in the range of 7 to 12 (n =7 to 12), and multicyclic acids become predominate as carbon 

number increased above 12 (n >12) (Brient et al., 1995). Based on the current reports it seems 

that NAs with Z= -4 predominate in Athabasca oil sands tailings ponds waste waters of Suncor 

and Syncrude (McMartin, 2003; Headley et al., 2004; Mishra, 2009). Additionally, as shown in 

Figure 2.1, the carboxyl group (-COOH) is attached to aliphatic side chain (-CH2) and alkyl 

group (-R) is directly attached to the cycloaliphatic ring. The molecular weight of NAs at various 

Z series and carbon number (n) is also shown in Table 2.1. 
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Figure 2.1: Structures of the homologues of naphthenic acids, where Z represents hydrogen 

deficiency, R is an alkyl chain, and m indicates the number of CH2 units (Clemente et al., 2005) 

 

Table 2.1: Molecular weight (M.W.) of naphthenic acids at various Z series and carbon number 

(n) (CEATAG, 1998; McMartin, 2003) 

Number of 

Carbon Atoms 

M.W. 

Z=0 (liner chain) 

M.W. 

Z=-2(1 ring) 

M.W. 

Z=-4(2  rings) 

M.W. 

Z=-6 (3 rings) 

10 172 170 168 166 

11 186 184 182 180 

12 200 198 196 194 

13 214 212 210 208 

14 228 226 224 222 

15 242 240 238 236 

16 256 254 252 250 

17 270 268 266 264 

18 284 282 280 278 

19 298 296 294 292 

20 312 310 308 306 

 

 

Commercial NA preparations are extracted from petroleum distillates, categorized by 

acid number, impurity level, and color, and commonly used to produce metal salts such as 

copper naphthenate, which are largely consumed in the wood preservation industry. Other uses 
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of NAs include oil lubricants, fuel additives, paint dryers, and manufacturing of tires (Deineko 

et. al., 1994; Brient et al. 1995; Paslawski 2008).  

 

2.2 Physical and Chemical Properties of NAs 

 

Naphthenic acids (NAs) are viscous liquids and generally are non-volatile, chemically 

stable, and toxic compounds. Their colors range from pale yellow to dark amber. Their 

characteristic odour develops upon storage of refined acids and is mainly attributed by the 

presence of phenolic and sulphur impurities in the mixture. NAs mixture is slightly soluble in 

water, but soluble in certain organic solvents. Additionally, the boiling points of NAs range from 

250 to 350 ºC (Brient et al. 1995).  

Chemically, NAs behave as carboxylic acids such as long chain fatty acids (Brient et al. 

1995) and the associated pH correlates with their solubility (Headley et al., 2002a; McMartin, 

2003).  Their acidity are slightly weaker than some lower molecular weight carboxylic acids like 

acetic acid (pH=4.76), but stronger than phenol (pH = 9.95). NA dissociation constants are in the 

range 10
-5

 to 10
-6

. Additionally, due to their acidic nature, naphthenic acid corrosion has been a 

problem in the petroleum refining operations since the early 1900s. On the other hand, NA 

derivatives have been used as corrosion inhibitors for the purpose of protection of refining units 

(Brient et al., 1995). A summary of general physical and chemical characteristics of NAs that can 

describe the overall mixture is shown in Table 2.2.  

 

 

 

 



 

7 

 

Table 2.2: Summary of physical and chemical properties of naphthenic acid (NAs) mixture 

(Brient et al. 1995; Herman et al., 1993; Headly et al., 2002a; McMartin, 2003).  

Parameter General Characteristics 

Colour Pale yellow, dark amber, yellowish brown , black 

Odour Primarily imparted by the presence of phenol and sulphur impurities, 

musty hydrocarbon odour 

State Viscous liquid 

Molecular Weight Generally between 140 and 450 amu 

Solubility <50 mg/L at pH7 in water, Completely soluble in organic solvents 

pKa Between 5 and 6 

Boiling Point Range between 250 to 350 ºC 

 

 

2.3 Occurrence and Toxicity of Naphthenic Acids  

 

NAs are oxidative products of petroleum hydrocarbons, which occur naturally in crude oil 

and/or bituminous oil sands.  In Athabasca oil sands, the carboxylic acids (particularly NAs) 

content is approximately 2% (Strausz 1988; CEATAG, 1998; Quagraine et al., 2005). The 

corrosive nature of NAs, especially at high temperature conditions (>230 °C), can potentially 

affect the safety and reliability of oil refining processes.  Additionally, their presence in crude oil 

normally increases the oil acidity (total acid number), which reduces the commercial value of the 

petroleum product. Therefore, Canadian oil-processing companies tend to separate NAs from the 

crude bitumen during the extraction process before the upgrading and refining stages (Brient et. 

al., 1995; Clemente et al., 2005; Quagraine et al., 2005). 

Currently, the Clarke caustic hot water extraction (79-93 C) process has been widely 

adopted in processing of oil sands to separate bitumen from oil sands ore. Through this 

procedure, the viscosity of bitumen is reduced which favors the subsequent refining and 

upgrading processes. However, hot water extraction causes the transfer of NAs into the water 

fraction as naphthenates (Quagraine et al, 2005).Currently, both Syncrude Canada Ltd and 
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Suncor Energy Inc, involved with surface mining activities in Northern Alberta, use this 

procedure to extract bitumen from oil sands ore (Rogers et.al., 2002; Quagraine et al, 2005).  

A large amount of water is consumed by this process which results in the generation of 

NAs contaminated wastewaters. It is reported that each cubic meter of mined oil sands requires 

up to 3 m
3 

of water and produces about 4 m
3
 of slurry wastes (Holowenko et al., 2002; Quagraine 

et al., 2005). At present, 117 million tonnes of oil sands ore are mined annually by Syncrude 

Canada Ltd at the Aurora North Site (Syncrude Canada, 2011). Typically, 200 mg of NAs are 

produced per kg of processed oil sands (Clemente et. al., 2005; Mishra, 2009). Thus, there is a 

potential to release 23,400 tonnes of NAs from the ore into oil sands process water (OSPW) 

every year.  

The produced waste slurry from the oil sands extraction process is mainly comprised of 

sands, clay, water, unrecovered bitumen, and dissolved inorganic and organic compounds 

(MacKinnon 1989; Schramm et al., 2000). Due to a “zero discharge” policy, these wastes have 

been contained on-site, primarily in lager settling ponds. In 2003, it was estimated that about 

4×10
8
 m

3
 of process-affected water was retained in the Athabasca region,  and  the total volume 

is expected  to increase to over 1 billion  m
3
 by 2020 (Lo et al.,2003;  Quagraine et al., 2005). 

Through the recycling and reuse of tailing waters, the NAs concentrations in the tailings ponds 

are typically in the range 40 -120 mg/L (Schramm et al., 2000; Holowenko et al., 2002; Mishra, 

2009).  

Naphthenic acids are acutely and chronically toxic to aquatic biota, and their toxic nature 

is associated with their surfactant characteristics (Dokholyan et al., 1983; Rogers et al., 2002
a
; 

Quagraine et al, 2005). The source of toxicity of the tailing ponds water has been traced to a 

complex mixture of organic acids, which is believed to be NAs (Mackinnon et al., 1986; 
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Schramm et al., 2000; Quagraine et al., 2005). Due to the complexity of NAs mixtures and 

difficulty under current technology in analyzing and isolating individual NA compound within 

the mixtures, the principal toxic members in the NAs mixtures still remains unknown  

(Quagraine et.al., 2005) . Rogers et al. (2002b) reported that the most toxic contaminants in the 

tailing ponds waters are those NAs with low molecular weights. Additionally, Holowenko et al, 

(2002) reported that the toxicity decreases by the increases the number of cycloaliphatic rings 

(Holowenko et al., 2002; Mishra, 2009). Considering that the NA fractions with multiple rings 

and higher molecular weights are less toxic and that lower molecular weight NAs are more 

bioavailable in Nature, one can conclude that toxicity of oil sand process water decreases with 

aging (Holowenko et al., 2002; Frank et al., 2008).  

Determination of the total concentration of naphthenic acids is not sufficient to explain 

the toxic effects, many research results demonstrate that the toxicity eventually can be related 

back to the concentration of individual NAs (Holowenko et al., 2002; McMartin, 2003; 

Paslawski, 2008;). The current NA concentrations in the tailing ponds are in the range of 40-120 

mg/L and expected to increase (Schramm et al., 2000; Holowenko et al., 2002; Mishra, 2009). 

When the oil sands operations cease (in about 50 years) or even during the processing, the 

disturbed land and tailing ponds wastewaters will have to be reclaimed, which means the 

concentration of NAs needs to be reduced to a safe level.  

The petroleum industry intends to reduce the toxicity of the mine tailings wastes, partially 

by natural biodegradation.  However, the rate of natural biodegradation is generally slow and not 

sufficient to cope with the increasing wastewater production. Therefore, enhancing the 

biodegradation rate has become a challenge and the focal point for engineers and researchers 

dealing with the treatment of oil sand tailings. 
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2.4 Treatment Methods for Naphthenic Aicds Contaminated Water  

 

Over the past few decades, various methods have been developed to treat NAs 

contaminated oil sands process water (OSPW). These methods include chemical oxidation 

(ozonation), adsorption of NAs on activated carbon, membrane filtration (ultrafiltration), and 

bioremediation (Allan, 2008). Among these methods, bioremediation is considered as one of the 

most cost-effective and environmental friendly methods (Scott et al., 2008). Chemical oxidation, 

photocatalysis, and bioremediation as the most studied NAs treatment technologies will be 

briefly discussed in this section. 

 

2.4.1 Chemical Treatment 

 

Chemical treatment typically refers to use of chemical agents to destroy or to convert the 

contaminants to less toxic compounds (Gore, 2006). Chemical treatment has a short reaction 

time, but disadvantages in high operating costs and the potential causing “secondary 

contamination” through producing hazardous by-products. Chemical oxidation of wastewater has 

been used for decades, and has been proven to be effective in removing NAs from OSPW.  

Chemical oxidation processes degrade pollutants through a series of ionic or radical 

reactions, where the oxidant compound either accepts electrons or donates an electron-accepting 

group (Allen, 2008). Common oxidants used in wastewater treatment include chlorine (Cl2), 

hydrogen peroxide (H2O2), ozone (O3), and permanganate (MnO4
-
) (Singer et al., 1999; Allen, 

2008). Chemical oxidation is normally applied to the more persistent and recalcitrant pollutants 

that are not amenable to biological treatment.  

Ozonation (O3) has been widely investigated for the removal of NAs. Scott et al. (2008) 

demonstrated that ozonation of sediment-free oil sands process wastewater for 50 minutes led to 
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a non-toxic effluent and decreased the NAs concentration by approximately 70%. After 130 min 

of ozonation, the NAs concentration was reduced to 2 mg/L from the initial 59 mg/L. These 

results show ozonation is superior to biodegradation in term of rate of degradation as well the 

possibility of removing NAs by using powerful chemical agents. However, relatively high costs 

of generating ozone would be an important factor which should be considered when evaluating 

whether ozonation could be incorporated as part of a feasible petroleum wastewater management 

strategy (Scott et al., 2008).  

 

2.4.2 Photocatalysis 

 

Photocatalysis is one of the most promising alternatives for wastewater treatment (Doll et 

al., 2005).   Photocatalysis is a photochemical process where the pollutants are oxidized by the 

radicals produced through the photo-excitation of a valence electron on the surface of a catalyst 

(Bahnemann, 2004). Titanium dioxide (TiO2) is the most common catalyst used in the 

photocatalytic process due to its activity, non-toxic characteristic, and stability in aqueous 

environments (Hsien et al., 2000; Mishra, 2009).  Titanium dioxide generates electron-hole pairs 

when it is subjected to radiation exceeding the materials’ band gap. The energetic electrons and 

the holes carrying the positive charges in the valence band are highly reactive, which facilitate 

the reduction and/or oxidation reactions of adsorbed molecules on TiO2 surfaces (Fujishima et al., 

2008).  

Protosawicki et al. (2002) reported that the suitable ultraviolet wavelengths for most 

waste water treatments are  the UV-B (280 to 315 nm) and UV-C (200 to 280 nm) sub ranges 

and  UV254 radiation has the most potential for remediation of naphthenic acids (Dutta et al., 
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2000; McMartin et al., 2004). Normally, photocatalyst particles are either immersed in the 

contaminated water as slurry or fixed as a bed in a proper reactor (Devipriya et al., 2005).  

Many lab-scale studies have reported the successful photocatalytic oxidation of aliphatic 

and aromatic carboxylic acids, including naphthenic acids. For example, McMartin (2003) 

reported that the use of photolysis as a pre-treatment of NAs prior to the biological treatment 

increases the bioavailability of NAs to microorganisms, which is beneficial for the latter 

biodegradation stage. Headley et al. (2009) studied the photocatalytic oxidation of commercial 

Fluka NAs mixture and a model NA (4-methyl-cyclohexane acetic acid, 4MCHAA) and reported 

that under natural sunlight irradiation over the TiO2 suspension, 75% of NAs mixture (64 mg/L) 

and 100% of 4MCHAA (1.5 mg/L) were degraded within 8 hrs. However, no degradation 

occurred under dark conditions, regardless of presence or absence of TiO2.  

Photocatalytic oxidation of NAs contaminated OSPW has been investigated.  However, 

this area of research is not well developed as others. One of the key disadvantages of this 

technology is that photocatalytic degradation rates are strongly dependent on the efficiency of 

adsorption of pollutants on the catalysts. The presences of certain ionic compounds such as 

chloride (Cl
-
), or bicarbonate (HCO3

-
) in the OSPW may compete for the adsorption site, which 

reduces the activity of catalyst with respect to NAs (Bessa et al., 1999). Therefore, commercial 

application of photocatalytic processes requires a source of an inexpensive and highly active 

photocatalyst to be competitive with the conventional and well established water treatment 

processes (Freudenhammer et al., 1997; Bahnemann, 2004; Allen, 2008).   
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2.4.3 Bioremediation  

 

Bioremediation is a treatment process relying on the use of microorganisms to remove 

organic pollutants from the biosphere to minimize the unwanted environmental impacts (Prince, 

2009). As a cleanup technology, it has been successfully used to treat contaminated air, water, 

soils and sediments. Compared to conventional treatment methods, bioremediation is low cost 

and could be considered as a permanent solution since in most cases the contaminants can be 

completely destroyed or metabolized by the microorganisms.  

Along with rapid expansion of the oil sands industry in Northern Alberta, Canada, 

interests in the application of bioremediation technology to eliminate petroleum pollutants has 

became intensified in recent years. The bioremediation process can be carried out either in-situ 

or ex-situ. Ex-situ bioremediation conducted in a bioreactor optimizes the microbial growth and 

activity by controlling the environmental conditions resulting in efficient conversion of the 

contaminants to less harmful compounds.  

Preliminary analyses have shown that indigenous microorganisms found in the local 

tailing ponds are able to effectively metabolize commercially available surrogate NAs 

(Biryukova et al., 2007). However, NAs extracted from the local tailing ponds are observed to be 

degraded at a slow rate (Tanapat, 2001; Quagraine et al, 2005). Published works have revealed 

the effect of chemical structures of NAs on the biodegradation. For example, Tanapat (2001) 

demonstrated the significant impacts of chemical structure on biodegradation rate by studying 

several commercially available NAs isomers including cis- and trans- isomer of 4-

methylcyclohexane acetic acid, 4-methyl-1-cyclohexane carboxylic acid, and 3-

methylcyclohexane carboxylic acids. NAs extracted from the oil sands tailing wastes have much 
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greater structural complexity than commercial compounds, which may partially explain their 

greater resistances to the natural biodegradation. 

 Quail et al. (1991) demonstrated that the rate of biodegradation can be greatly improved 

by treating the pollutants using optimum environmental conditions and a better designed and 

controlled bioreactor. Biodegradation of NAs in laboratory studies provides rapid degradation 

compared to in-situ approaches through optimizing the environmental conditions to promote the 

growth and activity of the microorganisms (Mandelstam et al. 1968; Tanapat 2001; Paslawski 

2008). For example, Mandelstam et al. (1968) reported that the rate of biodegradation of NAs 

was greatly enhanced in the temperature range of 30 ˚C to
 

37 ˚C compared to lower 

temperatures. Paslawski (2008) investigated the enhancement of biodegradation of model NAs 

(trans- 4-methyl-1-cyclohexane carboxylic acid) and reported that the biodegradation rate can be 

significantly improved by varying the environmental conditions (temperature and pH) and 

reactor configuration. Overall, the factors that may potentially affect the rate of NAs 

biodegradation include salinity, temperature, nutrient availability, pH, dissolved oxygen and 

bioreactor design (Shuler et al., 2002; Quagraine et al., 2005; Paslawski, 2008).  

 

2.5 Bioreactors 

 

The bioremediation of contaminated waters is typically carried out either in- situ or ex-situ. 

In-situ process is generally slow and can not be effectively controlled while the ex-situ process 

has proved to efficiently accelerate the biodegradation rate by treating the contaminants in a 

controlled environment (i.e. bioreactor). A wide variety of bioreactors have been invented over 

the past few decades. Three representative bioreactors will be discussed in this section, including 

bioreactors with internal mechanical agitation such as a stirred-tank bioreactor, bubble column 
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where the agitation is achieved by gas sparging, and loop reactor, in which circulation is induced 

by the motion of injected air/gas or by a mechanical pump such as circulating packed bed 

bioreactor.  

 

2.5.1 Stirred-tank Bioreactors 

 

The stirred tank bioreactor, equipped with a rotating impeller and baffles, is the most 

common type of aerobic bioreactor in use today. The main virtues of such a bioreactor are its 

ability to provide a high KLa (volumetric mass-transfer coefficient) value for gas transfer and for 

being extremely adaptable to a wide range of conditions (Shuler et al., 2002).  The air can be 

supplied up to ~1.5 vvm (volume of air/min per unit volume of fluid), which satisfies most 

aerobic bioreactions (Nienow, 2000).  The customized internal configuration can provide a 

specific circulation pattern and good bulk mixing. The Rushton impeller, a disc with typically 6 

to 8 blades with the diameter approximate 30 % to 40% of the tank diameter, are commercially 

used to improve the hydrodynamics and ensure the efficient mixing of liquids with viscosities up 

to 2000 centipoise (Shuler et al., 2002).  

However, stirred bioreactors often encounter foaming problems, which makes the exhaust 

filters wet, increases the pressure drop, reduces the air flow, and provides alternative pathways 

for contaminating cells to enter the bioreactor (Shuler et al., 2002). Furthermore, the presence of 

mechanical agitation may not be suitable for some shear sensitive cells. Stainless steel is the 

standard material of construction of stirred tanks while glass is commonly used at the laboratory 

scale. Moreover, most stirred tank bioreactors are built with a height-to-diameter ratio of 2 to 3 

(Shuler et al., 2002). Under aeration conditions, the exhaust gas is discharged from the top of the 

tank. A schematic diagram of stirred-tank bioreactor is showed in Figure2.2. 
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Figure 2.2: Schematic diagram of stirred-tank bioreactor 

Stirred-tank reactors can be run in either batch or continuous mode. Under continuous mode, the 

substrate is continuously fed into the system while the product is continuously or semi-

continuously withdrawn from the reactor.  Paslawski et al. (2009) used a continuous stirred-tank 

reactor to study the kinetics of biodegradation of a model NA (trans-4-methyl-1-cyclohexane 

carboxylic acid) and achieved a maximum biodegradation rate of 9.6 mg/L-h.  

 

2.5.2 Bubble Column Bioreactors 

 

The bubble column or airlift bioreactor is simply an air driven system, in which the liquid 

is partially mixed by dispersed bubbles due to the injection of air from a sparger located at the 

bottom of the column. Compared to other conventional bioreactors, the bubble column is clearly 
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the simplest type to construct and encompasses several advantages including: 1) extremely 

suitable for low-viscosity Newtonian broths; 2) simple design with no moving parts or agitator 

shaft, which reduces the potential for contamination; 3) lower shear rate, which provides a 

suitable environment for shear- sensitive cell growth such as animal cells. 4) higher energy 

efficiency, it greatly reduces energy consumption due to the absence of mechanical agitation 

(Nienow, 2000; Shuler et al., 2002; Williams, 2002;).  

However, there are also some associated disadvantages. For example, there is poor 

capability for handling highly viscous broths, and inadequate mixing at low air flow rates (Shuler 

et al., 2002). Besides having less vigorous mixing capabilities than stirred-tank bioreactors, 

bubble column operation is also limited by foaming and bubble coalescences. It is understood 

that the range of appropriate gas flow varies with the nature of the broth.  However, due to 

bubble coalescence, bubble column works over a rather narrow range of gas flow rate.  Thus, 

less sufficient gas dispersion in the column is likely to occur that reduces the KLa (volumetric 

mass-transfer coefficient) values for gas transfer (Shuler et al., 2002). This can be a major 

concern for an aerobic biological process. The schematic diagram of bubble column is shown in 

Figure 2.3.  
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Figure 2.3: Schematic diagram of bubble column 

 

 

 

2.5.3 Circulating Packed Bed Bioreactors 

 

Air-lift loop reactors have characteristics between those of bubble columns and stirred 

tanks. Based on the pattern of liquid circulation in the reactor, they can be categorized into either 

internal (draught) or external (loop) type. The design of airlift-loop bioreactors is similar to 

bubble columns with an additional draft tube devised either inside of the column or external loop 

(down comer) attached to the column, which is used to control the circulation of air and medium 

(Shuler et al., 2002). Compared to bubble columns, loop reactors can handle somewhat more 

viscous fluids and create a more homogeneous environment, especially in continuous mode of 

operation (Nienow, 2000; Nikakhtari, 2005).  
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In an air-lift loop system, gas disengages from the liquid at the top and the degassed 

liquid (denser than gassed liquid) descends through a draft tube or down comer. At the bottom of 

the reactor, the descending fluid again encounters the gas stream and is carried back up to the top 

to accomplish the circulation. Therefore, coalescence is not so much of a problem in the loop 

reactor due to the presence of internal or external circulation (Shuler et al., 2002). Additionally, 

it was found that the characteristics of coalescing and non-Newtonian fluids in external loop are 

distinctly different from internal loop airlift reactors (Nienow, 2000). In other words, the 

difference of the two-phase flow pattern in the two types of loop reactors may lead to different 

efficiency of oxygen mass transfer rates. Other advantages associated with airlift-loop reactors 

include: 1) low friction with an optimal hydraulic diameter for both the riser and downcomer; 2) 

energy efficiency as no pump or impellers are required for circulating and mixing, which reduces 

the operating costs, 3)  effective control of heat and mass transfer (Shuler et al., 2002; Williams, 

2002). Schematic diagrams of loop-airlift bioreactors a) draught tube and b) external loop are 

shown in Figure 2.4. 
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Figure 2.4: Schematic diagrams of loop airlift bioreactor: (a) draught tube, (b) external loop   

 

The circulating packed bed bioreactor (CPBB) is a novel bioreactor configuration. It is a 

modified external loop airlift bioreactor (ELAB) in which packing material is placed in the riser 

section. For aerobic biodegradation, microorganisms are able to aggressively degrade the water 

soluble toxic organic with sufficient oxygen present in the environment. Meng et al. (2002a) 

reported that including the packing in an external loop airlift bioreactor increases gas-hold up, 

reduces bubble size, and decreases liquid circulating rate, which all contributed to the significant 

improvement in oxygen mass transfer rates in the reactor. A wide variety of packing materials, 

including nylon, HDPE (high density polyethylene), crushed glass, stainless steel mesh, 

porcelain and acrylic Raschig rings, has been investigated to improve oxygen mass transfer rates. 

a  

a b 



 

21 

 

Nikakhtari (2005) reported that the oxygen mass transfer coefficient can be improved by an 

average factor of 2.45 using stainless steel mesh packing (porosity of ~0.90) in the ELAB.  

The packing inside of the ELAB not only enhances the oxygen mass transfer but also 

provides a solid support surface for cell immobilization that improves the biomass hold-up in the 

bioreactor.  Paslawski et al. (2009) used a stainless steel coiled mesh in a bubble column to 

enhance the performance of biodegradation of a model NA and reported biodegradation rate 

increases up to 95 times of that in a system with freely suspended cells. The schematic diagram 

of a modified ELAB, a circulating packed bed bioreactor, is shown in Figure 2.5.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Schematic diagram of the circulating packed bed bioreactor. 
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3 RESEARCH OBJECTIVES 
 

 

 

 

A review of the available literature reveals that the majority of earlier works have focused 

on the bioremediation of the whole NAs mixture with very limited success.  Biodegradation 

studies of individual NA are limited.  Additionally, biodegradation can be greatly improved by 

treating the pollutants in a well designed and controlled bioreactor (Quail et al., 1991), where the 

microbial growth and activity are optimized by controlling the environmental conditions 

resulting in efficient conversion of the contaminants to less harmful compounds. Therefore, 

further investigation on the ex-situ process is necessary to enhance the biodegradation of NAs. 

The specific objectives of this work are: 

1. Biodegradation studies of several representative NAs (trans-4-methyl-1-cyclohexane 

carboxylic acid (trans-4MCHCA), 4-methyl-cyclohexane acetic acid (cis- and trans- 

4MCHAA), and octanoic acid under batch and continuous modes of operation to assess 

the impact of structure and to evaluate the relevant biodegradation kinetics.  

2. Comparing the biodegradation of model NAs using the novel circulating packed bed 

bioreactor (CPBB) in respect to those obtained in the conventional batch reactor, 

continuous stirred tank reactor (CSTR), and the packed-bed bioreactor.  

3. Investigation of temperature effects on the rate of biodegradation of 4-methyl-

cyclohexane acetic acid (4MCHAA). 

4. Evaluation of the potential for enhanced biodegradation of ring-structural NAs (trans-

4MCHCA and 4MCHAA) through co-metabolism of NAs with octanoic acid as a co-

substrate. 
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4 MATERIAL AND METHODS 
 

 

 

 

4.1 Selection of Model Naphthenic Acids 

 

Based on the current literatures, naphthenic acids (NAs) used in laboratory investigations 

to assess the biodegradation potential are generally classified into three categories: surrogate 

naphthenic acids which is individual (pure) naphthenic acid fitting the formula CnH2n+Z O2, 

commercially available mixture of NAs (i.e. Fluka or Kodak), and NAs extracted from the oil 

sands tailing ponds water (Clemente et al., 2005).  

Based on the commercial availability and variation in structure, trans-4-methyl-1-

cyclohexane carboxylic acid (referred to herein trans-4MCHCA, CAS NO. 13064-83-0),  4-

methylcyclohexane-acetic acid (mixture of cis- & trans- isomers, referred to herein 4MCHAA, 

CAS NO. 6603-71-0), and octanoic acid (CAS NO. 124-07-2) were selected as model 

compounds to evaluate the kinetics of biodegradation  in the designed circulating packed bed 

bioreactor (CPBB). All model NA compounds used in the study were purchased from Sigma-

Aldrich Co. (~97 % purity).  

At room temperature, trans-4MCHCA appears as a white crystalline solid, 4MCHAA 

appears as a white solid with a waxy texture, and octanoic acid is a clear, colorless to slightly 

yellow, oily liquid. The biodegradation of candidate NAs have been previously studied in a 

shake flask, CSTR, and packed-bed bioreactor with no circulation (Tanapat 2001; Paslawski, 

2008). The molecular structure of trans-4MCHCA, 4MCHAA, and octanoic acid are shown in 

Figures 4.1, 4.2 and 4.3, respectively.  
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Figure 4.1: Molecular structure of trans-4-methyl-1-cyclohexane carboxylic acid, trans-

4MCHCA (Sigma Aldrich Co., 2009) 

 

 

 
 

Figure 4.2: Molecular structure of trans- isomer (a) and cis- isomer (b) of 4-methylcyclohexane-

acetic acid, 4MCHAA (Sigma Aldrich Co., 2009) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Molecular structure of octanoic acid (Sigma Aldrich Co., 2009) 
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4.2    Microbial Cultures and Medium  

 

 

 

4.2.1 Microbial Consortium  

 

The indigenous microorganisms isolated from a contaminated tailing pond soil of an 

industrial site were initially grown and maintained in modified McKinney’s medium using Fluka 

commercial NAs (Sigma-Aldrich , CAS No. 1338-24-5) as substrate (Paslawski, 2008). This 

culture was then inoculated (10% v/v) into McKinney’s medium containing 100 mg/L of trans-

4MCHCA. All cultures were maintained in shake flasks at 25 C and used as inocula for batch 

and continuous runs carried out throughout this study.  

The dominant species of the developed microbial consortium was identified by growing 

the culture on aseptic agar. The agar mixture was prepared by dissolving 3g of Difco
®

 Bacto 

agar, 3g Difco
®
 Bacto tryptose phosphate, and 250mg of trans-4MCHCA in 100 ml of 

McKinney’s medium. This prepared mixture was then sterilized and poured into Petri dishes. 

After streaking the microbial culture on agar plates, they were placed in an incubator at 32 C. 

The bacterial growth became visible in 2-3 days. Microbial identification had been conducted at 

a commercial laboratory (EPCOR-Quality Assurance Lab, Edmonton, Canada) and indicated that 

the consortium was comprised of two bacterial species, which were Pseudomonas aeruginosa 

and Achromobacter xylosoxidans xylosoxidans (Alcaligenes).  

Pseudomonas aeruginosa is a well-known microorganism due to its capability to 

metabolize recalcitrant chemicals and it is commonly used to treat persistent environmental 

contaminants.  Additionally, Alcaligenes has been shown to effectively degrade single NA 

compounds (Paslawski, 2008). 
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4.2.2 Medium  

 

McKinney’s modified medium containing essential mineral nutrients to support the 

growth and activity of microorganisms was used for the purpose of candidate NAs 

biodegradation throughout this study. The medium composition was selected on the basis of 

earlier works (Paslawski, 2008; Hill, 1974). The medium was prepared in 2 L batches of reverse 

osmosis (RO) water and had the following composition: KH2PO4 (840 mg/L); K2HPO4 (750 

mg/L); (NH4)2SO4 (474 mg/L); NaCl (60 mg/L); CaCl2 (60 mg/L); MgSO4 ·7H2O (60 mg/L); 

Fe(NH4)2(SO4)2 · 6H2O (20 mg/L).Trace mineral medium was added to the macronutrients at a 

concentration of 0.1% on a volumetric basis. The trace mineral medium was comprised of: 

H3BO3 (600 mg/L); CoCl3 (400 mg/L); ZnSO4 ·7H2O (200 mg/L); MnCl2 (60 mg/L); NaMoO4 

·2H2O (60 mg/L); NiCl2 (40 mg/L); and CuCl2 (20 mg/L). 

 

4.3    Experimental Systems for Biodegradation Study  

 

 

4.3.1  Specification of Circulating Packed-bed Bioreactor (CPBB) 

 

Batch and continuous experiments were carried out in two circulating packed-bed 

bioreactors.  Both CPBBs were constructed of clear glass. The specifications of 1
st
 and 2

nd
 CPBB 

are listed in Table 4.1. Each CPBB had inlet and outlet ports which allowed batch and 

continuous operation of the bioreactor. Stainless steel mesh was used as carrier matrix for 

establishment of biofilm. The steel packing material used in CPBBs had a porosity of ~80% 

(fresh packing). The representative photograph of the CPBB prior to experiments is presented in 

Figure 4.4. 
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Table 4.1: Specifications of 1
st
 and 2

nd
 circulating packed bed bioreactor (CPBB) 

Parameter 1
st
 CPBB 2

nd
 CPBB 

Riser height, hr (cm) 35.0 35.0 

Riser Diameter, Dr (cm) 4.5 4.1 

Down comer height, hd(cm) 32.0 32.0 

Down comer diameter, Dd (cm) 0.5 0.5 

Porosity, η (unitless) 0.801 0.802 

Volume of free liquid at completion / working 

volume, Vw (ml) 

450 375 

Reactor volume (without packing), VR (ml) 562 468 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: The representative photograph of the bioreactor prior to formation of biofilm.    
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4.3.2 Development of Biofilm 

 

The biofilm were developed in both CPBBs using a procedure developed by Walls 

(1993), separately. The biofilm was developed in the 1
st
 CPBB firstly, where the sterile medium 

containing substrate (50 mg/L trans-4MCHCA) was trickled at a flow rate of 0.0375 L/h over the 

stainless steel mesh packing for a month.  Simultaneously, partially degraded effluent was 

recycled back into the reactor at a rate of 2.4 L/h, which provided a continuous source of viable 

microorganisms and substrate.  Upon completion of this period of operation, visual examination 

indicated formation of a substantial amount of biofilm on the packing.  The bioreactor was then 

drained and filled with fresh medium with desired NAs at the specified concentrations in order to 

initiate batch or continuous experiments.   

The development of biofilm in the 2
nd

 CPBB was similar to the procedure described 

above. However, the inoculum used in the 2
nd

 CPBB was from the effluent of 1
st
 CPBB, and 

biofilm was grown on octanoic acid instead of trans-4MCHCA. Much higher feed substrate 

concentrations (500mg/L octanoic acid) were implemented in the 2
nd

 CPBB, where the setting of 

trickling and recycling flow rates however was the same as the 1
st
 CPBB. Due to aggressive 

feeding and an easy-degraded growth substrate of octanoic acid itself, the biofilm was able to 

form within 2 weeks. A representative photograph indicating the CPBB with fully developed 

biofilm is shown in Figure 4.5. 
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Figure 4.5: The representative photograph of the bioreactor after formation of biofilm.  

 

4.4    Experimental Procedure  

 

 

4.4.1 Batch Experiments 

 

For batch experiments the CPBBs were charged with medium containing the desired 

concentrations of the designated naphthenic acids. Air was introduced into the bottom of the 

bioreactors. The progress of biodegradation was monitored by sampling of the liquid at the 

desired time intervals. Samples were tested for residual concentration of NAs. All batch 

experiments for biodegradation of trans-4MCHCA, 4MCHAA, mixture of trans-4MCHCA and 

4MCHAA, and assessment of temperature effect were carried out in the 1
st
 CPBB. Batch 

biodegradation of the mixture of octanoic acid with trans-4MCHCA or 4MCHAA were 

conducted in the 2
nd

 CPBB. 
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The range of concentrations evaluated for biodegradation of trans-4MCHCA and 

4MCHAA were from 50 mg/L to 500 mg/L (50, 100, 250, and 500 mg/L) and 25 mg/L to 350 

mg/L (25, 50, 75, 100, 250, and 350 mg/L) respectively, which spanned concentrations that were 

higher than the actual concentrations observed in tailing pond waters (40-120 mg/L) (Paslawski, 

2008; Clemente et al., 2005). The reason for applying higher concentrations than those in the 

tailing ponds was to evaluate the ultimate capability of this system, as application of this system 

was not limited to treatment of NAs in oil sand tailings. The applied temperature was (25+2 ºC).  

The injected airflow was controlled in the range of 0.5 to 1.2 L/min (corresponding to 1.1 to 2.7 

vvm) which ensured oxygen was not a limiting factor for microbial growth. 

Batch experiments were also conducted on the mixture of trans-4MCHCA and 

4MCHAA at room temperature where trans-4MCHCA initial concentration was set as 

approximate 100 mg/L and 4MCHAA concentrations were increased incrementally from 25 

mg/L to 70 mg/L (25, 50, and 70 mg/L).  Upon completion of room temperature experiments, 

additional batch experiments were carried out with pure 4MCHAA (100 mg/L) at various 

temperatures of 15, 20, 25, 30, and 35 ºC to assess temperature effects on biodegradation rates.    

Furthermore, additional batch experiments were carried out in the 2
nd

 CPBB to 

investigate effect of co-substrate on enhancement of biodegradation of trans-4MCHCA and 

4MCHAA. During these experiments, octanoic acid served as a co-substrate for biodegradation 

of trans-4MCHCA or 4MCHAA. In these experiments initial octanoic acid concentration was 

kept constant as approximately 500 mg/L and varying trans-4MCHCA concentrations (50, 100, 

and 250 mg/L) and 4MCHAA concentrations (50, 100, and 330 mg/L) were used. All 

experiments were conducted at room temperature (25+ 2 ºC) condition. Airflow was controlled 

in the range of 0.5 to 1.2 L/min 
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 To assess the reproducibility of the results, some of the batch experiments were repeated 

at specified conditions. These include experiments aiming to study the effects of initial substrate 

concentration, temperature, and co-substrate biodegradation. 

 

4.4.2 Continuous Experiments  

 

The circulating packed bed bioreactors (CPBBs) were also used to study the continuous 

removal of NAs under aerobic condition at room temperature (25 + 2ºC). Similar to batch 

studies, the 1
st
 CPBB was used for continuous experiments of pure trans-4MCHCA and 

4MCHAA while the 2
nd

 CPBB was used for biodegradation of pure octanoic acid.  

During continuous experiments, sterile medium containing the model NA at the desired 

concentration was continuously fed into the CPBB at the top using a peristaltic pump.  

Simultaneously, the effluent was removed from the bottom of the reactor using an overflow tube. 

The flow rates were set using a calibrated pump and were measured daily by weighing the 

effluent collected over a specified period.  Furthermore, a feed reservoir tank (1L) was placed on 

a magnetic stirrer with vigorous mixing to ensure the complete dissolution of NAs in the feed 

stream. 

Two initial substrate concentrations (50 mg/L and 100 mg/L) were selected to study 

continuous biodegradation of trans-4MCHCA while one constant concentration (100 mg/L) was 

used for continuous biodegradation of 4MCHAA.  Experiments with pure octanoic acid were 

conducted at a concentration of 615 +30 mg/L.  

Initially, biodegradation of trans-4MCHCA was studied where the CPBB was operated 

with a medium containing 50 mg/L of tran-4MCHCA at incrementally increased flow rates of 

6.25, 12.5, 25.0, 50.0, and 100 ml/min (corresponding to residence time of 1.2, 0.6, 0.3, 0.15, and 
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0.075 h; Loading rate of 39.2,85.2,151,320, and 642 mg/L-h,).Then the flow rate was maintained 

at 100 ml/min and feed concentration was increased to100 mg/L (corresponding to a residence of 

0.075 h and loading rate of 1230 mg/L-h). At each flow rate sufficient time (at least 8 residences 

times) was given for establishment of steady state conditions which was verified by stability in 

the residual substrate concentrations (variation less than 10%). Throughout the experiments, the 

optical densities of the liquid samples from the top and bottom of the bioreactor were measured. 

Substrate concentrations in the reservoir tank and the delivery point to the bioreactor were 

checked frequently to ensure no contamination occurred in the feed reservoir tank or within the 

tube to the reactor. Furthermore, to assess the reproducibility of the experimental results, 

duplicate experiments were conducted at the flow rate of 25 ml/min. 

Continuous biodegradation of 4MCHAA was also studied in the 1
st
 CPBB, where the 

bioreactor was operated with a feed containing 50 mg/L of 4MCHAA. Since 4MCHAA was 

much more persistent and recalcitrant than trans-4MCHCA, lower flow rates were applied for 

this study. The flow rate was increased step-wise 56.3, 97.8, 135 and 167 ml/h (corresponding to 

residence time of 8.0, 4.6, 3.3, and 2.7 h).  

The 2
nd

 CPBB was operated with a medium containing 615+30 mg/L octanoic acid. The 

reactor was initially operated continuously at a flow rate of 52.4 ml/h which was gradually 

increased. The applied flow rates were 168, 283, 403, 476, 583 ml/h with the corresponding 

residence times being 7.06, 2.20, 1.30, 0.923, 0.78, and 0.63 h. Due to molecular structure of 

octanoic acid, consisting of a saturated hydrocarbon chain and carboxyl group, this substrate was 

not as persistent as other NAs. Therefore, higher loading rates were applied for this study. 

Furthermore, a duplicate steady state condition was examined at the flow rate of 4.47 ml/min. All 

other conditions and procedures were similar to those described earlier. The schematic diagram 
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and photograph of the experimental system used in these experiments are shown in Figure-4.6 

and 4.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Process flow diagram of experimental system. 
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Figure 4.7: Photograph of experimental setup 

 

 

 

 

4.5    Analytical Methods 

  

 

4.5.1 Measurement of Naphthenic Acids Concentration  

 

NAs are in general difficult to analyze. Several methods have been successfully 

developed for the purpose of quantitative or qualitative analyses of naphthenic acids in water and 

biological medium over the past few decades.  Techniques include high-performance liquid 
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chromatography (HPLC), fourier transform infrared (FTIR) spectroscopy, negative ion 

electrospray ionization-mass spectrometry (ESI-MS), gas chromatography with a flame 

ionization detector (GC-FID), gas chromatograph-mass spectrometry (GC-MS), liquid secondary 

ion mass spectrometry (LSI-MS),  electrospray ionization (ESI), and quantitative quadrupole 

time of flight –MS (QTOF_MS) (Paslawski, 2008; Bataineh et al., 2006; Clemente et al., 2005; 

Barrow et al.,2004). All of the above methods have unique strengths as well limitations. 

 In an earlier work in our laboratory, Paslawski (2008) successfully used gas 

chromatography with a flame ionization detector (GC-FID) to accurately determine NAs 

concentrations in aqueous solutions. In this work, due to its simplicity, GC-FID was also used for 

analysis of the candidate NAs. The analytical equipment used in this study was a Varian- 430 gas 

chromatograph, where helium served as carrier and makeup gas and hydrogen and air were used 

as combustion gas in the FID. A HP-INNOWAX high resolution gas chromatography column 

(19091N-133) was used. The column had the following specifications: length of 30m, inside 

diameter of 0.250 mm, and film thickness of 0.25 µm. The operating conditions for the system 

were as follows: 

 H2 flow rate: 30 ml/min 

 He flow rate: 29 ml/min 

 Air flow rate: 300ml/min 

 Injector split ratio: 1to10 

 Column oven initial temperature: 90 C 

 Injector temperature: 220 C 

 Detector temperature: 250 C 

 Column oven temperature program: 90 C ramped to 210 C at a rate of 40 C/min  

 

A linear calibration curve was developed to convert gas chromatography readings to the 

actual NAs concentrations (mg/L) in the sample. To develop the calibration curve, the candidate 

NA compounds were dissolved into the sterile McKinney’s modified medium. This solution was 

then diluted into five different concentration solutions, which were used as the standards.  The 
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standard concentrations were 0.932 mg/L, 12.4, 24.8, 49.6, and 99.2 for trans-4MCHCA, 0.673, 

13.5, 26.9, 53.8, and 108 mg/L for 4MCHAA, and 16.8, 37.3, 74.7, 149, 299, and 580 mg/L for 

octanoic acid. Each standard solution was injected four times and Millipore water was run 

between samples to prevent the possible accumulation of the substrate in the column and ensure 

the accuracy of readings. The developed linear calibration curves for trans-4MCHCA, 

4MCHAA, and octanoic acid are shown through Figure A.1 to A.3 in the Appendices. The 

elution order of investigated NAs was octanoic acid (3.40min), trans-4MCHCA (3.72min),   cis-

4MCHAA (4.10min), and trans-4MCHAA (4.27min). The representative GC-FID 

chromatogram of these three model NAs is shown in Figure B.1 

 

Measurement of Biomass Hold-up 

Upon completion of all experiments, both CPBBs were drained and the stainless steel 

mesh was removed from the column. The drained liquid volume was measured as the working 

volume in each reactor. Then, the liquid was filtered, and the residues were dried in a vacuum 

oven at 65 C with a vacuum pressure of -70 kPa over a week to determine the weight of 

suspended biomass in the reactor. Meanwhile, the wet biofilm packing material from each 

reactor was weighted and then loaded into the same vacuum oven with the same conditions as 

stated above. After one week, the packing was carefully taken out of the oven and weighted 

again to obtain the dry mass of biofilm.  

 

4.5.2 Statistical Methods  

 

During batch and continuous experiments, samples were periodically taken in duplicate.  

Each sample was analyzed three times to determine the biomass and substrate concentrations. 



 

37 

 

The mean values with one standard deviation were reported throughout this thesis. The standard 

deviations were calculated using Microsoft Exel
TM

 and presented as error bars. With a normal 

distribution, this interval has a 68.26% confidence interval, which is commonly used in 

biological studies (Nikakhtari, 2005). Also, the reproducibility of the experimental data was 

assessed by repeating a number of experiments as stated previously. 
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5 RESULTS AND DISCUSSION 
 

 

 

 

5.1 Biodegradation of trans - 4-methyl -1-cyclohexane Carboxylic Acid  

This section presents the results of biodegradation of trans-4-methyl-1-cyclohexane 

carboxylic acid (trans-4MCHCA) in the circulating packed-bed bioreactor (CPBB). The effects 

of initial concentrations and volumetric loading rates of trans-4MCHCA on biodegradation rate 

were studied by running the 1
st
 circulation packed bed bioreactor (CPBB) under batch and 

continuous mode, respectively.  The obtained data were used to assess the performance of the 

CPBB under various conditions.  

The extent of biofilm (dry weight of attached biomass) in the 1
st
 CPBB was measured 

subsequent to completion of the entire research. The total dry biomass weighed 2.83g, which was 

4.78 % of clean dry packing material (g of dry mass per g of clean dry packing material). The 

free liquid volume present in the 1
st
 CPBB was found to be 450 ml, which was 80 % of the total 

volume of the bioreactor. The calculated biomass concentration in the 1
st
 CPBB was 6.29 g/L. 

This value was used to determine the relevant specific biodegradation for the experiments 

conducted in the 1
st
 CPBB in order to demonstrate the enhancement of CPBB on biodegradation 

of NAs in respect to conventional batch reactor, freely suspended cell reactor (CSTR), and 

packed bed reactor.  

 

5.1.1 Batch Biodegradation of trans-4MCHCA 

 

Four selected initial substrate concentrations (50, 100, 250, and 500 mg/L) were studied.  

Substrate concentration profiles are shown in Figure 5.1 (Panels: A to D). A short lag phase of 

approximately 0.651 to 1.30 h was observed for initial concentrations of 50 mg/L and 250 mg/l, 
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while no lag phase was seen at 106 mg/L and 503 mg/L.  During the exponential phase, 

regardless of substrate initial concentration, cells exhibited their metabolic activity which 

resulted in a continuous and linear decrease in substrate concentration until the substrate was 

completely consumed. Additionally, no substrate inhibitory effect was observed at any of the 

tested concentrations. 
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Figure 5.1: Substrate biodegradation as a function of time. trans-4MCHCA concentrations of 

50.0 (A), 100 (B), 250 mg/L (C) and 500 mg/L (D). Error bars represent one standard deviation 

and may not be visible for some cases 
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The biodegradation rates at various concentrations were determined using the slopes of 

the linear part of the concentration profiles (lag phase excluded). The biodegradation rate of 

trans-4MCHCA as a function of its initial concentration is shown in Figure 5.2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Biodegradation rates as functions of initial trans-4MCHCA concentrations. 

 

As can be seen biodegradation rates (rtrans-4MCHCA) increased with increases in initial 

substrate concentrations and followed a linear trend as represented by Equation 5.1:  

iMCHCAtrans Sr  0981.04                   (R
2
=0.800)                                                           (5.1)                                           

Similar biodegradation studies were conducted by Paslawski (2008) in shake flasks with free 

cells, where direct relationship between biodegradation rate and initial substrate concentration 

was reported according to Equation 5.2: 

iMCHCAtrans Sr  )00113.000800.0(4                                                                         (5.2) 
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In the present work the maximum biodegradation rate of 43.5 mg/L-h were observed at 

the highest concentration of 500 mg/L. Biodegradation rates obtained at all tested concentration 

levels were significantly higher than those reported previously. For example, Paslawski (2008), 

using a batch reactor, reported a biodegradation rate of 4.75 mg/L-h at an initial concentration of 

500 mg/L, which was 9.2 times less than the value obtained in this study. A summary of 

calculated trans-4MCHCA biodegradation rates at various initial substrate concentrations 

together with literature values are presented in Table 5.1. 

Table 5.1: Summary of biodegradation rates and literature values at various initial trans- 

4MCHCA concentrations at 25 
0
C and pH of 6.3 to 6.7.  

Initial Substrate 

concentration 

 

(present work) 

 

(mg/L) 

Biodegradation 

rate 

 

(present work) 

 

(mg/L-h) 

Biodegradation rate 

 

 

(Paslawski, 2008) 

 

(mg/L-h) 

50 5.770 0.46 

100 18.501 1.16 

250 33.067 1.30 

500 43.504 4.75 

 

 

pH was measured at the start and end of each experiment.  It was found that the value of 

pH in the bioreactor did not change by more than 0.5 and fell in the range of 6.3 to 6.7. Overall, 

the results of this study indicate that the biodegradation rate of the candidate naphthenic acid is 

strongly influenced by its initial concentration. Significantly higher biodegradation rates 

obtained in this study also revealed the advantages of the CPBB for creating good environmental 

conditions for microbial growth resulting in the enhancement of biodegradation rate.  
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5.1.2 Continuous Biodegradation of trans-4MCHCA 

 

The effect of volumetric loading rate of trans-4MCHCA on the biodegradation rate was 

examined in the 1
st
 CPBB, where the performance of the designed bioreactor was assessed in 

terms of conversion ratio and biodegradation rates of trans-4MCHCA. 

The reactor was initially fed with medium containing 50 mg/L of trans-4MCHCA and 

operated with a flow rate of 6.25 ml/min (equivalent loading rate of 39.2 mg/L-h) for 

approximate 209 hours, where the establishment of steady state conditions was verified by 

stability in the residual substrate concentration (less than 10% variation over 8 retention times of 

1.20 h). The highest conversion of 83.0% was achieved at the above flow rate with the 

corresponding trans-4MCHCA removal rate of 39.2 mg/L-h. The flow rate was then 

incrementally increased (12.5, 25, 50, and 100 ml/min), while feed substrate concentration was 

kept constant at 50 mg/L. At the end of experiments with 50 mg/L, the highest flow rate of 100 

ml/min was repeated with an increased feed concentration of 100 mg/L (corresponding to a 

loading rate of 1230 mg/L-h). Over this period, the trans-4MCHCA biodegradation rate was 

increased linearly with increases in flow rate or loading rate till it reached the maximum 

biodegradation rate of 209 mg/L-h, which had a corresponding flow rate and the loading rate of 

50 ml/min and 320 mg/L-h. Application of a higher flow rate (100ml/min) or loading rates (642 

mg/L-h and 1230 mg/L-h) led to decreases of biodegradation rates of trans-4MCHCA.  During 

the period of incremental increase of flow rate, the residence time decreased from 1.2 h to 0.075 

h and the residual steady state substrate concentrations increased from 7.98 mg/L to 87.3 mg/L. 

The minimum conversion of 9.16% was observed at the maximum loading rate of 1230 mg/L-

min. Also, pH in the reactor was found ~6.4. Steady state biodegradation rate of trans-4MCHCA 

and the associated conversion as functions of the volumetric loading rate of trans-4MCHCA are 
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shown in Figure 5.3. To assess the reproducibility of the experimental results, the bioreactor was 

operated again at the flow rate of 25 ml/min (corresponding loading rate of 151 mg/L-h) which 

yielded almost similar results where variation in removal rate and conversion were 3.2% and 

8.6%, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: The effect of trans-4MCHCA loading rates on the performance of the CPBB. Error 

bars represent one standard deviation and may not be visible for some cases 

 

 

Paslawski et al. (2009) studied continuous biodegradation of trans-4MCHCA in both 

CSTR and packed-bed reactor, and was able to achieve a maximum biodegradation  rate of 9.6 

mg/L-h (corresponding to a residence time of 38.4 hours) and 918 mg/L-h (corresponding to a 

residence time of 0.6 hours; specific biodegradation rate of 8.83 mg substrate /mg biomass -h ), 

respectively. The maximum biodegradation rate obtained in this study was 209 mg/L-h 

(corresponding to a residence time of 0.15 hours; specific biodegradation rate of 33.2 mg 
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substrate /mg biomass-h), which was approximate 22 times over that observed in the CSTR in 

term of biodegradation rate and 3.8 times than packed-bed reactor in term of specific 

biodegradation rate. Compared to a freely suspended cell bioreactor (CSTR) and packed-bed 

reactor, the CPBB with established biofilm was able to provide a higher concentration of 

biomass and form a much more homogeneous environment inside of reactor, which led to an 

efficient removal of soluble NAs and demonstrated that enhancement of biodegradation of NAs 

can be achieved by improving the configuration of bioreactor.  

 

5.2 Biodegradation of 4-methylcyclohexane Acetic Acid (4MCHAA) 

Acclimation experiments were conducted prior to the actual experiments to ensure the 

developed microbial consortium was able to utilize 4MCHAA as sole substrate. The following 

batch and continuous experiments at various initial substrate concentrations and loading rates 

were performed to assess the effects of these parameters on the biodegradation rate. 

Additionally, effect of temperature was also studied. All experiments were conducted in the 1
st
 

CPBB.  

 

5.2.1 Acclimation of the Microbial Consortium for Utilization of 4MCHAA 

 

Preliminary work conducted in our laboratory indicated that 4MCHAA was not 

biodegraded by the microbial consortium grown on trans-4MCHCA. Acclimation of the 

developed microbial consortium was necessary in order to improve 4MCHAA biodegradation 

efficiency, where non-specific enzymes could be induced for mutation or the appearance of new 

genotypes after the exposure of bacteria to the compound of interest (Stephenson et al., 1984; 

Torstensson et al., 1975; Schmidt et al., 1983; Walker et al., 1956).  Most importantly, species 
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with the ability to metabolize 4MCHAA become dominant in the mixed cultures. Acclimation 

was initiated by operating the 1
st
 CPBB under batch mode, where the medium contained both 

trans-4MCHCA and 4MCHAA as growth substrates. Since acclimation of NAs-degrading 

microorganisms was generally difficult due to the toxicity of the substrate, careful adjustment of 

the cultivation conditions was undertaken.  The bacteria were first fed with a rather low substrate 

concentration, and then the substrate concentration was increased incrementally. This allowed 

development of tolerance and utilization of substrate at higher concentrations. Therefore, during 

the acclimation period, the initial 4MCHAA concentrations gradually increased from 25 mg/L to 

70 mg/L (25, 50, 70 mg/L), while the initial trans-4MCHCA concentration was held constant as 

100 mg/L. Manonmani et al. (2000) reported that continuous exposure of bacteria to increasing 

concentrations of substrate markedly improved their degrading abilities.  

 Over this period, the reactor was incubated at room temperature (25 C) and sampled 

periodically to measure residual substrate concentrations. Also, pH was found in the range of 6.3 

to 6.5. Substrate utilization curves at three tested concentrations are shown in Figure 5.4 (panels 

A, B, C).  The corresponding substrate biodegradation rates were also calculated and are 

presented in Table 5.2  
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Figure 5.4: Substrate biodegradation profiles as a function of  time at various initial 

concentrations, where initial trans-4MCHCA concentration maintained  as 100 mg/L and trans-

4MCHCA concentration varied as 25 mg/L  (panel A), 50 mg/L  (panel B), and 70 mg/L (panel 

C). Error bars represent one standard deviation which may not be visible in some cases due to 

small value. 
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Table 5.2: Summary of biodegradation rates of 4MCHAA and trans-4MCHCA at various initial 

concentrations obtained at room temperature (25C), where initial trans- 4MCHCA 

concentration was kept constant at 100 mg/L.  pH ranged from 6.3 to 6.5.  

 

Initial 4MCHAA 

concentration 

(mg/L) 

 

Biodegradation rate 

of cis-4MCHAA 

(mg/L-h) 

Biodegradation rate 

of trans-4MCHAA 

(mg/L-h) 

Biodegradation rate 

of trans-4MCHCA 

(mg/L-h) 

25 0.276 (R
2
=0.861) 0.499 (R

2
=0.848) 11.686 (R

2
=0.913) 

50 0.438 (R
2
=0.823) 0.960 (R

2
=0.829) 12.975 (R

2
=0.896) 

70 0.698 (R
2
=0.971) 1.234  (R

2
=0.921) 10.135 (R

2
=0.907) 

 

 The results showed that the acclimated cultures were capable of utilizing 4MCHAA with 

varying initial concentrations up to 70 mg/L. Biodegradation rate of 4MCHAA increased linearly 

with increases in its initial concentration. This dependency is expressed by equations 5.3 and 5.4, 

respectively and represented in Figure 5.4. 

iMCHAAcis Sr  0097.04
   (R

2
= 0.959)      (5.3) 

iMCHAAtrans Sr  0183.04    (R
2
= 0.977)      (5.4) 

It was also observed that trans-4MCHCA  was degraded more rapidly in comparison to 

4MCHAA,  and biodegradation of trans-4MCHAA was faster than cis-4MCHAA.Furthermore, 

the maximum biodegradation rates for trans-4MCHCA, cis-4MCHAA and trans-4MCHAA 

were 10.1, 0.698 and 1.23 mg/L-h, respectively, and were observed with initial trans-4MCHCA 

concentration of 100 mg/L and 4MCHAA concentration of 70 mg/L.  
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Figure 5.5: Biodegradation rate as functions of initial 4MCHAA concentration. 

 

5.2.2 Batch Biodegradation of 4MHCAA as the Sole Substrate 
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st
 CPBB to study biodegradation of 4MCHAA as the 

sole substrate, and in particular to investigate the influence of initial substrate concentration on 

the biodegradation rate of 4MCHAA.  The initial concentrations ranged from 25 mg/l to 350 

mg/L (25, 50, 75, 100, 250, and 350 mg/L). The substrate utilization profiles are illustrated in 

Figure 5.6 (Panels A to F), where repeated experiments with initial 4MCHAA concentrations of 

243 mg/L and 246 mg/L are also shown together in panel (E) to demonstrate the reproducibility 

of experimental results. The pH ranged from 6.1 to 6.5 and do not change by more than 0.5 at the 

start and the end of experiment.  
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Figure 5.6: Biodegradation of 4MCHAA at initial concentrations of 25(A), 50(B), 75(C), 100 

(D), 250 (E), and 350 mg/L (F), where duplicate experiments with initial 4MCHAA 

concentration of 243 mg/L and 246 mg/L are shown in E-1 and E-2, respectively. Error bars 

represent one standard deviation which may not be visible in some cases due to small value.  
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Biodegradation rates, calculated using the slope of the linear part of the concentration 

profile, at different initial substrate concentrations are presented in Table 5.3. The maximum 

biodegradation rates for cis-4MCHAA and trans-4MCHAA were 2.25mg/L-h and 4.17 mg/L-h 

obtained at an initial concentration of 100 mg/L. A similar biodegradation study was conducted 

by Tanpat (2001) in a batch reactor, where initial 4MCHAA concentration was 5 mg/L and pH 

was 7. He reported biodegradation rates of only 0.0105 mg/L-h and 0.00760 mg/L-h for trans- 

and cis- isomers of 4MCHAA, respectively. Significant improvement in biodegradation rates 

achieved in the present study, three orders of magnitude higher, showed the superior 

performance of the circulating packed-bed bioreactor in terms of enhancement of biodegradation 

rate and capability of treating much higher concentration of  naphthenic acids when compared 

with a conventional batch bioreactor. The small variance in biodegradation rate (less than 4%) 

obtained in the repeated experiments proved the reproducibility of the experimental results.  

Overall biodegradation rates exhibited the trend that increased with increases of initial 

4MCHAA concentrations up to a maximum value 100 mg/L. Further increases in initial substrate 

concentrations led to decreases of biodegradation rate, indicating potential inhibitory effect of 

substrate. 4MCHAA biodegradation rates as functions of its initial concentrations are shown in 

Figure 5.5.  Interestingly, a similar trend was also reported by Kumar et al. (2011) when he 

studied the biodegradation of 1, 4-benzoquinone in a batch system using Pseudomonas as the 

microbial culture.  
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Table 5.3: Summary of biodegradation rates of 4MCHAA as the sole substrate obtained at 

various initial concentrations and room temperature (25°C), and pH ranged from 6.1 to 6.5.  

Initial substrate concentration 

(mg/L) 

 

Biodegradation rate of 

cis-4MCHAA 

(mg/L-h) 

Biodegradation rate of 

trans-4MCHAA 

(mg/L-h) 

25 0.867  (R
2
=0.981) 1.924  (R

2
=0.982) 

50 1.050    (R
2
=0.902) 2.486   (R

2
=0.916) 

75 1.305    (R
2
=0.884) 2.831   (R

2
=0.909) 

100 2.247    (R
2
=0.973) 4.165   (R

2
=0.988) 

250
a
 

250
a
 

 

1.265
a   

(R
2
=0.962) 

1.241
a   

(R
2
=0.934) 

 

2.593
a   

(R
2
=0.996) 

2.712
a   

(R
2
=0.985) 

 

350 0.336   (R
2
=0.977) 0.660   (R

2
=0.969) 

a
 Results obtained in repeated experiments.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: 4MCHAA biodegradation rates as functions of its initial concentrations. 
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During this biodegradation study, regardless of the initial concentration of the 4MCHAA 

mixture, higher biodegradation rates were observed for trans-4MCHAA when compared to cis-

4MCHAA, which revealed the importance of chemical structure on biodegradation rate. Tanapat 

(2001) stated that trans-isomer degraded more rapidly than cis- isomer due to its relatively open 

geometry.  He also explained that intramolecular hydrogen-bonding forces, only existing in the 

cis-isomer, require more energy to be broken down, and this is the main reason for slow 

degradation of the cis-isomer in comparison to the trans-isomer.  

Additionally, the structural difference between the trans-4MCHAA and the trans-

4MCHCA where the cartboxylic acid was directly attached to the cyclohexane ring (while with 

4MCHAA it was attached via –CH2 group) appeared to have a significant effect on 

biodegradation rate. For example, in batch system, the biodegradation rate of trans-4MCHCA 

(100 mg/L) was 17.6 mg/L-h, while for trans-4MCHAA the rate was 4.17 mg/L-h at the same 

concentration.   

 

5.2.3 Temperature Effect on Biodegradation Rate of 4MCHAA 

 

To evaluate the temperature effect on biodegradation rate of 4MCHAA, a series batch 

experiments were conducted in a temperature controlled environmental chamber where the 

temperatures were increased from 15 C to 35 C in 5 C increments. The initial substrate 

concentration was set at 100 mg/L for all cases. Substrate utilization profiles at various 

temperatures are shown in Figure 5.8 (panels A to E). A lag phase of 0.5 h and 4.25 h were 

observed upon changing the temperature from 25 C to 30 C or 20 C, respectively. After this 

lag phase, both isomers were degraded simultaneously and faster degradation rates were obtained 

for trans-4MCHAA compared to cis-4MCHAA which was similar to the previous observations.  
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Figure 5.8: Biodegradation of 100 mg/L 4-MCHAA at 15 C (A), 20 C (B), 25 C (C) 30 C 

(D), and 35 C (E). pH in all cases was ~6.5. Error bars represent one standard deviation which 

may not be visible in some cases due to small value. 
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As seen in Figure 5.8, the developed consortium were able to degrade 4MCHAA at pH of 

~6.5 over the selected temperature range with the optimum temperature (corresponding to the 

fastest biodegradation rate) being 25 C. The biodegradation rates of cis- and trans-4MCHAA 

reached the maximum values of 2.25 and 4.17 mg/L-h at 25 C, which was 5.4 and 7.4 times 

greater than the rates obtained at 15C. Interestingly, similar trends have been reported for 

Pseudomononas grown with different substrates such as trans-4MCHCA and 1, 4-benzoquinone 

(Paslawski, 2008; Kumar, 2010). A summary of biodegradation rates obtained at various 

temperatures is shown in Table 5.4.  

Table 5.4: Summary of biodegradation rates at different temperatures with an initial 4MCHAA 

concentration of 100 mg/L and pH ~ 6.5. 

Temperature 

 

(C) 

Biodegradation rate of 

cis-4MCHAA 

(mg/L-h) 

Biodegradation rate of 

trans-4MCHAA 

(mg/L-h) 

15 0.412 (R
2
=0.993) 0.565  (R

2
=0.991) 

20 0.483 (R
2
=0.946) 0.740  (R

2
=0.959) 

25 2.252  (R
2
=0.993) 4.171  (R

2
=0.993) 

30 1.873  (R
2
=0.968) 4.044  (R

2
=0.978) 

35 1.064  (R
2
=0.970) 1.860  (R

2
=0.973) 

                    



5.2.4 Continuous Biodegradation of 4MCHAA 

 

The 1
st
 CPBB which was earlier used for batch experiments was switched to continuous 

mode and fed with a medium containing 50 mg/L 4MCHAA at a flow rate of 56.3 ml/h. The 

flow rate was then increased incrementally up to 167 ml/h (56.3, 97.8, 135 and 167 ml/h). The 
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effect of the volumetric loading rate of 4MCHAA (or residence time) on the performance of the 

CPBB in terms of biodegradation rate and conversion was examined.  

Figure 5.9 shows the biodegradation rate of 4MCHAA as a function of its loading rate. 

Conversions at various loading rates are also presented in this figure. It was observed that 

biodegradation rates of both isomers increased with increases in flow rates up to 135 ml/h 

(corresponding to loading rates of 4.67 mg/L-h (cis-4MCHAA) and 10.7 mg/L-h (trans-

4MCHAA); residence time 3.3 h), with maximum biodegradation rates for cis-4MCHAA and 

trans-4MCHAA being 4.17 and 7.80 mg/L-h, respectively. Further increases of flow rate or 

loading rate led to a decline of biodegradation rate. It also was seen that increases of loading 

rates led to direct increases in residual steady state substrate concentrations from 0.862 to 9.36 

mg/L and 3.59 to 24.8 mg/l for cis-4MCHAA and trans-4MCHAA, respectively. The highest 

conversion of 94.5% (cis-4MCHAA) and 88.4% (trans-4MCHAA) were achieved at a flow rate 

of 56.3 ml/h (corresponding residence time: 8.0 h). The recorded pH in the reactor was ~ 6.4.   

Compared to batch mode of operation, continuous operation was found more efficient for 

treatment of 4MCHAA.  The maximum biodegradation rate was twice as fast compared to batch 

operation. Similar to batch results, higher biodegradation rates obtained for trans-4MCHAA 

when compared with cis-4MCHAA indicated the structural effects on the biodegradation rate, 

mainly due to the more open molecular structure of the trans- isomer. Furthermore, consistent 

with batch results the biodegradation rate obtained for 4MCHAA was much lower than that for 

trans-4MCHCA. For instance, with trans-4MCHCA the maximum biodegradation rate of 209 

mg/L-h was achieved at loading rate of 320 mg/L-h (residence time: 0.15 h), while the 

biodegradation rates for cis-4MCHAA and trans-4MCHAA were 4.17 and 7.80 mg/L-h, 

respectively and were achieved at loading rates of 4.67 and 10.7 mg/L-h, respectively (residence 
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time: 3.2 h).  This observation again revealed the more recalcitrant nature of 4MCHAA.  Since 

no study has previously been reported in the literature on the continuous biodegradation of 

4MCHAA, a direct comparison could not be made at this point.  

 

 

 

 

 

 

 

 

 

 

Figure 5.9: The effect of 4MCHAA loading rates on the performance of the CPBB. 
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substrate) was conducted firstly. This was followed by batch biodegradation of mixtures of 

trans-4MCHCA and 4MCHAA with octanoic acid in a multi-substrate system to study the co-

substrate effect on the rate of biodegradation.  

Upon completion of entire experiments conducted in the 2
nd

 CPBB, the bioreactor was 

disassembled, where the total weight of biomass was measured. The total dry biomass weighed 

5.82 g, which was 18.2 % of clean dry packing material (g of dry mass per g of clean dry 

packing material). The free liquid volume in the 2
nd

 CPBB was 375 ml, which was 80.2 % of the 

total volume of the bioreactor. The calculated biomass concentration in the 2
nd

 CPBB was 15.5 

g/L. This vale was used to determine the relevant specific biodegradation rates.  

 

5.3.1 Continuous Biodegradation of Octanoic Acid 

  

Initially, a medium containing 615 + 30mg/L of octanoic acid was continuously fed into 

the reactor at a flow rate of 52.4 ml/h (corresponding to a loading rate of 95.9 mg/L-h; residence 

time of 7.06 h). When a removal of 99% was achieved, the flow rates were increased step wise. 

The tested flow rates were 168, 283, 403, 476, 583 ml/h with the corresponding residence times 

being 2.20, 1.30, 0.923, 0.78, and 0.63 hours. The biodegradation rate and conversion of octanoic 

acid as functions of its loading rates obtained in the CPBB are shown in Figure 5.10. As seen the 

increase in loading rate up to 477 mg/L-h (corresponding to a flow rate of 283 ml/h; residence 

time of 1.30 h) led to a continuous increase in biodegradation rate of octanoic acid with the 

highest biodegradation rate and conversion being 352 mg/L-h and 73.8%, respectively.  Further 

increases of loading rate led to the decrease of biodegradation rate. Steady-state residual 

substrate concentration increased from 8.2 mg/L up to 452 mg/L when loading rate was 

increased from 95.9 mg/L-h to 933 mg/L-h.  
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After two weeks operation, a mild NaOH solution was used to remove the excess 

biomass and prevent the plugging of the bioreactor. The growth of biomass and extent of biofilm 

when octanoic acid was used as the single substrate was much higher than that observed when 

trans-4MCHCA or 4MCHAA were used as single substrates. To assess the reproducibility of the 

experimental result, the bioreactor was run at a loading rate of 454 mg/L-h which was close to 

477 mg/L-h (corresponding to a flow rate of 283 ml/h; residence time of 1.3 h) applied in the 

preceding runs. The results obtained in the reproducibility run were relatively close to the initial 

results. For instance biodegradation rates from the duplicated experiments were found to be 

352mg/L-h and 342 mg/L-h and corresponding conversions were 73.8% and 75.2%, with 

variations for biodegradation rates and conversions being 2.8% and 1.9%, respectively. 

Additionally, the measured pH and temperature in the reactor was 6.21 to 6.34 and 25 C, 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10: The effect of octanoic acid loading rates on the performance of CPBB 
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The maximum observed removal rate of octanoic acid in this study was 352 mg/L-h 

observed at a loading rate of 477 mg/L-h and a conversion of 73.8%.  Considering that the total 

biomass concentration measured in the bioreactor was 15.7 g/L and working volume of 375 ml, 

the corresponding specific biodegradation rate was calculated as 0.0224 mg substrate /mg 

biomass -h. In contrast, the highest biodegradation  rates of trans-4MCHCA and 4MCHAA from 

the previous continuous experiments were  209 mg/L-h (trans-4MCHCA), 4.17 mg/L-h (cis-

4MCHAA),  and 7.80 mg/L-h (trans-4MCHAA), which  corresponded to specific biodegradation 

rates of  3.3210
-2

  mg substrate /mg biomass -h,  6.6310
-4

 mg substrate /mg biomass -h, and 

1.2410
-3

   mg substrate /mg biomass -h, respectively, where the  total biomass concentration 

measured in the 1
st
 bioreactor was 6.29 g/L with working volume of 450 ml. 

Higher specific biodegradation rates obtained for octanoic acid compared to 4MCHAA 

using the same mixed microbial populations indicated the suitability of octanoic acid as a co- 

substrate which could enhance cell mass ( and/or cell number density) and production of non-

specific enzymes that promote degradation of other contaminants such as trans-4MCHCA or 

4MCHAA.  

Interestingly, the specific biodegradation rates of trans-4MCHCA were slightly higher 

than octanoic acid in this study. This could be potentially attributed to the acclimation of 

developed cultures in utilizing trans-4MCHCA. The mixed culture used in this study was 

maintained on trans-4MCHCA and subcultured regularly for a long period of time (~5 years). 

Therefore, as a growth substrate, trans-4MCHCA has been completely adopted by the 

microorganisms.  In contrast, acclimation period of microbial populations to octanoic acid was 

approximate 3 weeks, which could result in slow degradation at this point. 
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5.3.2 Batch Biodegradation of trans-4MCHCA Using Octanoic Acid as the Co-Substrate 

 

Upon competition of continuous biodegradation of octanoic acid, batch experiments were 

conducted to evaluate the effect of addition of octanoic acid as a co-substrate on biodegradation 

rate of trans-4MCHCA. In these experiments, 515 + 18 mg/L octanoic acid and trans-4MCHCA 

at various initial concentrations of 50, 100, and 250 mg/L were utilized. Additional duplicate 

batch experiments were also performed to assess the reproducibility of the results in which 

biodegradation of octanonic acid (350 mg/L) and trans-4MCHCA at concentrations of 447mg/L 

and 453 mg/L. Figure 5.10 illustrates the results of substrate utilization in the bioreactor. The 

biodegradation rates were determined using the slopes of the linear part of the concentration 

profiles. Data collected before complete exhaustion of octanoic acid were used for the 

calculation of biodegradation rate. Data obtained in the repeated experiments are compared in 

panel (D) of Figure 5.10.  
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Figure 5.11: Substrate biodegradation as a function of time.  Octanoic acid concentration 515 + 

18 mg/L and trans-4MCHCA concentrations of 50 (A), 100 (B), and 250 mg/L (C). Duplicate 

experimental results are presented in the panel D, where octanoic acid concentration set as 350 

mg/L and the tested trans-4MCHCA concentrations were 447mg/L and 453 mg/L. Error bars 

represent one standard deviation and may not be visible for some cases 
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It was observed that biodegradation of octanoic acid and trans-4MCHCA occurred 

simultaneously. However, degradation of octanoic acid was much faster than trans-4MCHCA 

that confirmed that linear NAs are more amenable to biodegradation when compared with those 

with a ring-structure. Additionally, no lag phase was observed in any cases and pH remained in 

the range of 5.4 to 6.7.  As shown in panel D-1 and D-2 of  Figure 5.10, experimental results 

from duplicate experiments were close, with the calculated  biodegradation rates of trans-

4MCHCA were found to be 112 mg/L-h and 97.2 mg/L-h. This translated to 13.2 % variation 

indicating the reproducibility of experimental result.  Calculated biodegradation rates from these 

experiments and those obtained in the absence of octanoic acids are presented in Table 5.5.  
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As shown in Table 5.5, addition of octanoic acid did not offer significant improvement in 

specific biodegradation rates of trans-4MCHCA.  However, it was observed that supplying the 

medium with octanoic aicd as an additional carbon source increased the biomass hold-up in the 

bioreactor and resulted in much higher biodegradation rates of trans-4MCHCA in all cases. For 

example, the maximum biodegradation rate of trans-4MCHCA was 112 mg/L-h observed at the 

initial trans-4MCHCA concentration of 450 mg/L, supplied with 350 mg/L octanoic acid, which 

was 2.6 times faster than the maximum value of 43.5 mg/L-h obtained in the absence of octanoic 

acid.  

Similar to previous observations, the biodegradation rate (rtrans-4MCHCA) increased 

proportional to the initial concentration of trans-4MCHCA following a linear correlation as 

expressed in Equation 5.5.  

iMCHCAtrans Sr  1945.04
    (R

2 
=0.975)      (5.5) 

It indicated no substrate inhibition on the microbial growth for the concentration range tested. 

Biodegradation rates as functions of initial substrate concentrations are presented in Figure 5.12.  
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Figure 5.12: Biodegradation rates as functions of trans-4MCHCA concentrations. 

 

5.3.3 Batch Biodegradation of 4MCHAA Using Octanoic Acid as the Co-substrate 

 

Batch experiments were also carried out to study biodegradation of 4MCHAA in the 

presence of octanoic acid as a co-substrate. The initial 4MCHAA concentrations for these 

experiments were 50,100, and 330mg/L, and the initial octanoic acid concentration was kept 

constant at 510+20 mg/L. Figure 5.12 shows the substrate utilization profiles obtained in these 

experiments. Similar to previous runs with trans-4MCHCA, biodegradation of 4MCHAA 

followed pseudo first – order kinetics and the corresponding biodegradation rates were 

determined using the slope of linear portion of the concentration profile (lag phase excluded). 

Only data collected prior to the depletion of octanoic acid in the reactor were used for the 

calculation of biodegradation rates of 4MCHAA. Calculated enhanced biodegradation rates and 

specific biodegradation rates of 4MCHAA at various initial substrate concentrations along with 

comparisons to the early results are presented together in Table 5.6 and 5.7, respectively.  
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Figure 5.13: Substrate biodegradation as a function of time.  Octanoic acid concentration 510 + 

20 mg/L and trans-4MCHCA concentrations of 50 (A), 100 (B), and 330 mg/L (C). Error bars 

represent one standard deviation and may not be visible for some cases.  
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As shown in Figure 5.13, the biodegradation of 4MCHAA and octanoic acid occur 

simultaneously at all tested concentrations (50,100, and 330 mg/L).  It was observed that the 

addition of octanoic acid successfully overcame the substrate inhibition problem. It is understood 

that at high concentrations of substrate, the microbial growth rate is inhibited by the substrate 

and depends on the inhibitor concentration. Our earlier results with pure 4MCHAA indicated that 

microbial growth became inhibited at 4MCHAA concentrations above 100 mg/L and resulted in 

decreased biodegradation rates. However, in the presence of octanoic acid this inhibition was not 

observed and the biodegradation rate increased linearly with increases of initial 4MCHAA 

concentration up to 330 mg/L, the highest tested concentration. The following expression 

represents the dependency of biodegradation rate on the concentration of cis- and trans-

4MCHAA. Biodegradation rate as a function of initial substrate concentrations is also presented 

in Figure 5.14:  

iMCHAAcis Sr  1432.04
    (R

2 
= 0.918)       (5.6) 

iMCHAAtrans Sr  1505.04         (R
2 

= 0.369)      (5.7) 
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Figure 5.14:  Biodegradation rates as functions of 4MCHAA initial concentrations. 

 

 

 

It was also observed that supplementation of the medium with 510+20 mg/L octanoic 

acid as a co-substrate resulted in significant improvement of biodegradation rate as well specific 

biodegradation rate for 4MCHAA. As a co-substrate, octanoic acid provided an additional 

carbon source which is much less recalcitrant than 4MCHAA, thus stimulating microbial activity 

and growth and consequently led to effective removal of 4MCHAA and trans-4MCHCA. The 

maximum biodegradation rates of cis-4MCHAA and trans-4MCHAA obtained were 16.7 and 

28.4 mg/L-h, respectively, almost eight times higher than 2.25 and 4.17 mg/L-h obtained when 

4MCHAA was used as the sole substrate from early study. The maximum specific 

biodegradation rates in the presence of octanoic acid were almost 19 times faster than that with 

4MCHAA alone as presented in the Table5.7. Moreover, measured pH during the experiments 

was found in the range of 5.8 to 6.3 and all experiments were conducted under room temperature 

(25 C).  
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6 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 
 

 

6.1 Conclusions 

 

Bioremediation is a clean technology using microorganisms to transform toxic compounds 

to less hazardous /non-hazardous forms with less input of chemical, energy and time compared 

to other remediation technologies. Bioremediation could be considered as one of the most 

effective, economical, and eco-friendly treatments for NAs contaminated oil sands process water 

(OSPW).  Due to the complexity of NAs mixtures, the present work mainly focused on the batch 

and continuous biodegradation of model NAs in pure form and in a mixture. 

 A novel circulating packed bed bioreactor (CPBB) was used to study biodegradation 

kinetics of the selected naphthenic acids, trans-4-methyl-1-cyclohexane carboxylic acid (trans-

4MCHCA), the trans- and cis- isomers of 4-methylcyclohexane-acetic acid (4MCHAA), and 

octanoic acid; using a microbial consortium developed in this study, dominated by Pseudomonas 

aeruginosa and Achromobacter xylosoxidans (Alcaligenes).   

 Batch biodegradation results for trans-4MCHCA (from 50 up to 500 mg/L)  indicated a 

maximum biodegradation rate of 43.5 mg/L-h at the highest applied concentration of 500 mg/L, 

which is 9.2 times higher than those reported previously. Biodegradation rates increased as 

increases of initial substrate concentrations. No substrate inhibitory effect was observed at any of 

the tested concentrations.  

 When the CPBB was run continuously, the achieved highest removal rate of trans-

4MCHCA was 209 mg/L-h corresponding to a specific biodegradation rate of 0.0332 mg 

substrate /mg biomass- h.  This biodegradation rate was approximately 22 times faster than that 

reported for a continuous stirred tank reactor (CSTR) and 3.8 times faster than that obtained in a 
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packed-bed bioreactor in term of specific biodegradation rate (Paslawski et al., 2009). Significant 

improvements of biodegradation rate in different bioreactor configurations demonstrate that ex-

situ biodegradation of NAs can be enhanced by modifying the bioreactor design (i.e. use of 

CPBB). 

 Acclimation of the developed microbial consortium before studying biodegradation of 

4MCHAA ensured that species with the ability to metabolize 4MCHAA became dominant in the 

mixed culture, or the existing species develop such ability. A gradual increase of initial 

4MCHAA concentration from 25 to 70mg/L and holding initial trans-4MCHCA concentration 

constant at 100 mg/L was found to be an effective strategy to achieve this objective.   

 Batch experimental results with 4MCHAA (mixture of cis- and trans- isomers) indicated 

that the biodegradation rate was dependent on the 4MCHAA concentration. However, in this 

case the pattern was different from that observed with trans-4MCHCA. The biodegradation rate 

increased as the substrate concentration increased to 100 mg/L. Further increases of 

concentrations resulted in reduction of the biodegradation rate indicating a potential inhibitory 

effect of substrate. The maximum biodegradation rates of cis-4MCHAA and trans-4MCHAA 

observed at an initial concentration of 100 mg/L were 2.25mg/L-h and 4.17 mg/L-h, 

respectively.  These values are three orders of magnitude higher than previous literature values 

obtained in a conventional batch bioreactor (Tanapat, 2001), which again showed the superior 

performance of the circulating packed-bed bioreactor. Also, higher biodegradation rates obtained 

for trans-4MCHAA compared to cis-4MCHAA indicated the structural effects on the 

biodegradation rate, mainly due to the more open molecular structure of trans-isomer of 

4MCHAA. 
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 The effect of the volumetric loading rate of 4MCHAA on the performance of the CPBB 

in terms of biodegradation rates was examined through continuous biodegradation experiments. 

It was observed that the removal rates of both isomers increased with increases of flow rate up to 

135 ml/h (corresponding to a loading rate of 4.67 mg/L-h of cis-4MCHAA) and 10.7 mg/L-h of 

trans-4MCHAA; residence time of 3.33 h), with the maximum biodegradation rates being 4.17 

and 7.80 mg/L-h, respectively. Further increases of flow rate or loading rate led to a decline of 

removal rate. The cis-4MCHAA and trans-4MCHAA conversion ranged from 49.5% to 94.5% 

and 30.0% to 88.4%, for the highest and lowest applied loading rates of 6.84 and 1.96 mg/L-h 

(cis-4MCHAA) and 13.1 and 5.88 mg/L-h (trans-4MCHAA), respectively. Lower 

biodegradation rates for 4MCHAA obtained in both batch and continuous operations when 

compared to trans-4MCHCA could be potentially attributed to structural differences, namely 

difference of attachment of the cartboxylic acid to the cyclohexane ring (direct attachment in 

case of trans-4MCHCA and attachment via –CH2 group for 4MCHAA). As discussed earlier, 

similar to batch results, biodegradation of trans-4MCHAA was faster than cis-4MCHAA that 

again could be attributed to the structural differences of these two isomers.  

Evaluation of temperature effects (15 to 35C in 5 C increments) indicated that 100% 

conversion of 4MCHAA at an initial concentration of 100mg/L was achieved in all cases. 

However, batch experiments indicated that biodegradation was strongly influenced by the 

temperature with 25 C being the optimum temperature. The maximum biodegradation rate for 

cis-4MCHAA and trans-4MCHAA at this optimum temperature was 2.25mg/L-h and 4.17 

mg/L-h, respectively, which was 5.4 and 7.4 times faster than that at 15 C in which the lowest 

rates were observed 0.412 and 0.565 mg/L-h.  
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Continuous biodegradation of octanoic acid was investigated in the 2
nd

 CPBB.  

Experimental results showed that the removal rates of octanoic acid increased with increases in 

loading rates up to 477 mg/L-h (corresponding to a flow rate of 283 ml/h and a residence time of 

1.30 h). Further increases of loading rate led to the decrease of removal rate. The maximum 

removal rate observed in this study was 352 mg/L-h with a conversion of 73.8%. Much higher 

specific biodegradation rates were obtained with octanoic acid (using the same microbial 

populations) when compared to 4MCHAA. This indicates that a linear NA could be more 

amenable to biodegradation than aromatic NAs. Moreover, it highlighted the potential for using 

octanoic acid as a co-substrate to stimulate the cell growth and enhance the biomass hold-up in 

the bioreactor as a means to improve the biodegradation of trans-4MCHCA or 4MCHAA.  

 Biodegradation studies of single ring NAs in the presence of octanoic acid as a co-

substrate revealed that addition of octanoic acid (~ 500 mg/L), significantly improved the 

biodegradation rate of trans-4MCHCA and 4MCHAA. The maximum biodegradation rate of 

trans-4MCHCA was 112 mg/L-h, which was 2.6 times faster than the maximum value of 43.5 

mg/L-h from the early study where trans-4MCHCA was used as a sole substrate in the designed 

system. Similarly, the highest biodegradation rates of cis-4MCHAA and trans-4MCHAA were 

16.7 and 28.4 mg/L-h, almost 7.4 and 6.8 times higher than the maximum rates of 2.25 and 4.17 

mg/L-h in the absence of octanoic acid.  
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6.2 Recommendations for Future Work 

 
The work presented in this thesis indicated that a single ring naphthenic acid can be treated 

efficiently by running the CPBB in either batch or continuous operation. Comparison of 

experimental results to the literature indicated that the biodegradation rate of NAs can be 

significantly enhanced by varying environmental conditions and using a proper designed 

bioreactor. However, further research in certain specific areas, as listed below, are required for 

more effective treatment and practical applications in treatment of oil sand tailings which are 

comprised of a complex mixture of NAs.  

Research with different commercially available pure compounds should be carried out to 

assess the NAs molecular structural effects on biodegradation kinetics. Particularly, it would be 

important to investigate the effect of the number of cycloalkane rings and/or position of alky-

groups respective to the ring. These studies should also be expanded to investigate 

biodegradation of commercially available NA mixtures and those which are extracted from the 

oil sand tailings. 

In this study biodegradation of naphthenic acids was investigated under aerobic 

conditions. There is little information about NAs biodegradation under an anaerobic condition. 

Further evaluation of the anaerobic process would be beneficial, especially that it could provide a 

basis for understanding the potential for in-situ bioremediation of oil sands naphthenic acid.  

The biological degradation of pollutants can be enhanced by a chemical pretreatment 

step, especially in case of recalcitrant NAs. The designed bioreactor could be used in conjunction 

with a chemical pretreatment step which requires a thorough understanding of various chemical 

treatments. Thus, a study on the effects of various oxidants such as ozone, hydrogen peroxide or 
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chlorine dioxide on oxidation of NAs and identification of intermediates formed as a result of 

such treatments would be beneficial. 

Co-metabolism has been demonstrated to be a feasible strategy to improve degradation 

efficiency of model NAs in this study. However, more detailed investigations of the effect of co-

substrates, especially on biodegradation of more complex NA and NA extracted from the tailing 

ponds is recommended.   

Mathematical models should be developed to predict the performance of the circulating 

packed bed bioreactor with respect to biodegradation of NAs. Such models would be also useful 

in the design and control of large scale systems.  Development of such models, however, requires 

a thorough understanding of the intrinsic kinetics and kinetic expressions governing 

biodegradation of NAs. Thus kinetic studies focusing on microbial growth and biodegradation 

are recommended.  
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8 APPENDICES 
 

 

A. Calibration Curves for Analytical Methods 

 

Utilization of GC-FID for direct analysis of model NAs in water and biological media 

requires a liner calibration curve to convert GC reading (uv.min) into actual concentration 

(mg/L). During the research standard solutions were prepared for each candidate NA.  The 

generated calibration curves were updated regularly to ensure the accuracy of experimental 

results. The representative calibration curves for the model NA are presented through Figure A.1, 

to A.3.  

a. Representative Calibration Curve for trans-4MCHCA  

The calibration curve for the measurement of trans-4MCHCA is shown in the Figure B.2. 

The equation of the best fit line was the following:  

2032.1Re0347.0  adingCbiomass
 (R

2
=0.997)                                        (A-1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: The representative calibration curve for trans-4MCHCA concentration measurement. 

Error bars represent standard deviation in GC readings and may not visible as the associated 

error is small. 
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b. Representative Calibration Curve for 4MCHAA  

 

Calibration curves for the measurement of 4MCHAA are shown in the Figure B.3. Due to 

the presence of two isomers (trans-and cis- ) in this compound, two calibration curves are require  

for the determination of  the concentration of individual isomer. The equation of the best fit lines 

for trans- and cis- 4MCHAA are shown in the Equation A.2 and A.3, respectively.   

4761.10254.04  readingC MCHAAtrans
 (R

2
=0.9967)                          (A.2) 

8215.00254.04  readingC MCHAAcis
   (R

2
=0.9971)                          (A.3) 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2: The representative calibration curves for trans- and cis- 4MCHCA concentration 

measurement. Error bars represent standard deviation in GC readings and may not visible as the 

associated error is small.  
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c. Representative Calibration Curve for Octanoic Acid  

 

The calibration curve for the measurement of octanoic acid is shown in the Figure B.4. 

The equation of the best fit lines was following:   

954.0046.0tan  readingC oicAcidOc
 (R

2
=0.9954)                             (B.5) 

 

 

 

 

 

 

 

 

 

Figure A.3: The representative calibration curve for octanoic acid concentration measurement. 

Error bars represent standard deviation in GC readings and may not visible as the associated 

error is small 

 

 

B. Quantification  of  tans- and cis- isomer of 4MCHAA Mixture  

 

Headley et al. (2002) reported that the trans-isomer eluted before the cis –isomer for 

4MHCAA in a non-polar column (RXI-5MS column from Restek Corporation, 2010; Cat. # 

13423). However, it was found that this elution order was reversed when using a polar column 

applied for this work (HP-INNOWAX purchased from Agilent Technologies Canada Inc, 2010; 

Part # 19091N-133), where identifications were based on comparison of their measured relative 

abundances. The elution time of all the investigated NAs was 3.40min (octanoic acid), 3.72min 
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(trans-4MCHCA), 4.10min (cis-4MCHAA), and 4.27min (trans-4MCHAA). The representative 

GC-FID chromatogram of these three model NAs is shown in the Figure B.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.1: The representative GC/FID chromatogram of the three NAs investigated.  

 

Furthermore, mass percentage of individual isomers in this product were unavailable 

from material data sheets, quantifying the composition prior to investigation was essential. cis- 

and trans- isomers of 4MCHCAA appear as two adjacent peaks in the GC-FID analysis, where 

the corresponding concentrations of individual isomers were determined by area count of each 
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peak. Therefore, the weight percentages of cis-4MCHAA and trans-4MCHAA were calculated 

by the following Equations B.1 and B.2, respectively.   

2414

14

4

MCHAAMCHAA

MCHAA
MCHAAcis

AreaCountAreaCount

AreaCount
mass





    (B.1)  

2414

24

4

MCHAAMCHAA

MCHAA
MCHAAtrans

AreaCountAreaCount

AreaCount
mass





   (B.2 ) 

Using the above two equations, analytical results indicated that the mixture of 4MCHAA 

consisted of 30-40 % (35% average) cis-4MCHAA and 60-70% (65% average) of trans-

4MCHAA.  The consistency and reproducibility of this result has been proved during this study 

and used to monitor the quantitative concentrations of the compounds.  

 

 

 

 

 


