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Abstract

Carbon Monoxide (CO) was discovered in the stratosphere of Neptune from the

detection of the J=3-2 and J=2-1 rotational transitions in emission at 345.8 and

230.5 GHz respectively. It was conventionally thought that all of the atmospheric

carbon should be in its reduced form of methane (CH4). Two sources of stratospheric

CO have been postulated: CO transported from the interior by convection due to

Neptune’s strong internal heat source (internal source); or, CO produced through

photochemical reactions from an external supply of water (external source).

In this research project the J=3-2 transition of CO was observed to find the CO

profile in Neptune’s atmosphere and determine the mechanism producing CO. Three

instruments were used at the James Clerk Maxwell Telescope (JCMT) to measure

the CO line: the heterodyne receiver B3; the University of Lethbridge Fourier Trans-

form Spectrometer (FTS); and, the Submillimeter Common User Bolometer Array

(SCUBA).

The high resolution (1.25 MHz) of the heterodyne observations over a large fre-

quency range (∼20 GHz) produced a very powerful result because the narrow emis-

sion core from the stratosphere and the broad absorption feature arising in the lower

atmosphere were measured simultaneously. The CO abundance profile was deter-

mined using a model of the J=3-2 CO transition in Neptune’s atmosphere developed

for this project. Calculations indicate a CO abundance of 1.9+0.5
−0.3x10

−6 in the upper

stratosphere and (0.8± 0.2)x10−6 in the lower stratosphere and troposphere.

The moderate resolution of the FTS data allowed the broad absorption feature

to be measured. Uranus was originally chosen as the calibration source, but the dis-

covery of CO in Uranus by Encrenaz et al. (2004), while this project was in progress,
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prompted both Neptune and Uranus to be examined for CO absorption. Two data

sets (1993 and 2002) were analyzed and it was found that the 1993 spectra produced

superior results, giving a CO mole ratio in the lower atmosphere between 0.8x10−6

and 2x10−5; this agrees, within the uncertainty limit, with the lower atmosphere

heterodyne result. A tentative detection of CO in Uranus was also obtained from

the 1993 data, with a CO abundance profile constrained to pressures greater than

0.5 bar with an abundance between 5x10−7 and 1x10−5. The 2002 data were found

to be inferior to the 1993 data because of imperfect cancellation of thermal emission

from the terrestrial atmosphere.

The 850 µm SCUBA filter profile is well matched to the width of the CO feature.

Photometric observations of Neptune and Uranus were used to determine if the

reduction in integrated flux due to CO absorption could be detected using SCUBA.

A CO mole ratio in the range (1.2 − 1.7)x10−6 was found for Neptune, calibrated

against Uranus and assuming no CO in Uranus. Calibration of the Neptune and

Uranus SCUBA data against Mars to produce an independent estimate of the CO

abundance in both planets did not produce a useful result because of large calibration

errors.

Comparison of the results from the three techniques determined that the hetero-

dyne measurement was superior and the derived CO profile was used to determine the

source of neptunian CO. It was concluded that the source of CO in Neptune is both

internal and external. The lower atmosphere result indicates an interior dominated

by water ice. The most likely mechanism for the upper atmosphere CO involves

meteoritic ablation, photolysis of H2O, and chemical reaction with by-products of

methane photochemistry. The required H2O influx for this mechanism is at least

two orders of magnitude higher than previously observed, indicating either that the

observed H2O abundance is too small or that CO is produced by a different mecha-

nism.
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Chapter 1

Introduction

Neptune is the furthest of the Jovian planets and very poorly understood. The

objective of this project was to study the chemical composition of Neptune to more

accurately constrain its structure. The history of neptunian observations, including

a review of the thermal balance, thermal structure, and chemical composition, are

considered first in this chapter. The discovery of CO in Neptune’s atmosphere, the

measurements that ensued, and the possible sources of neptunian CO follows. The

telescope used in this project is the James Clerk Maxwell Telescope (JCMT); a brief

overview of the telescope including a discussion of the obstacles facing submillimetre

planetary astronomy is provided. This chapter closes with a summary of the objective

and organization of this thesis.

1.1 History of observations

Observations of the perturbations of Uranus’ orbit taken between 1790 and 1840,

were used to discover Neptune. J.C. Adams (in 1843) and U.J. Leverrier (in 1846)

independently postulated that the perturbations of Uranus’ orbit were due to a

more distant planet. Celestial mechanics and Uranus’ perturbations were used to

determine the mass and orbit of Neptune. At the Berlin observatory in 1846, Johann

G. Galle found Neptune within 1◦ of its predicted position (Zeilik et al. 1992).

Early measurements of Neptune’s atmospheric composition and temperature struc-

ture were obtained by ground-based observatories. These results laid the foundation

for understanding Neptune’s atmosphere and identified areas that required investiga-

tion by the Voyager 2 spacecraft (Voyager, hereafter). The Voyager mission produced
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a wealth of data on Neptune’s atmosphere due to the wide spectral coverage of its

onboard instrumentation. The relevant Voyager observations were carried out with

the following instruments: the Ultraviolet Spectrometer (UVS); the Infrared Spec-

trometer and Radiometer (IRIS); and, the Radio Science Subsystem (RSS). There

have been no other probes to Neptune since Voyager; despite this, space-based stud-

ies have continued with the Infrared Space Observatory (ISO) and the Hubble Space

Telescope (HST). The most significant results, in the determination of Neptune’s

thermal and chemical structure, from these platforms are reviewed.

1.2 Thermal balance

A comparison of the emitted thermal flux with the absorbed solar flux is key to

determining the structure and formation of the planet (Fig. 1.1). The power absorbed

from incident sunlight is given by,

Fin = (1− Ab)
F¯

r2
AU

πR2, (1.1)

where F¯ is the solar constant, rAU is the heliocentric distance in AU, and πR2 is the

projected surface area of the planet that intercepts solar radiation. An astronomical

unit is the mean Sun-to-Earth distance (1 AU = 1.496x1011 m). The solar constant

is the solar flux at 1 AU (F¯=1360 Wm−2). Ab is the bond albedo of the planet,

which is the fraction of incident energy reflected by the planet in all directions. This

quantity was measured by Voyager for each of the Jovian planets and is given in

Table 1.1 (Conrath et al. 1989).

The power emitted due to thermal emission is given by,

Fout = 4πR2εσT 4, (1.2)

where 4πR2 is the surface area of the planet, ε is the emissivity, σ is the Stefan-

Boltzmann constant, and T is the temperature of the planet. An emissivity of 0.9

was assumed for this calculation to account for the fact that the Jovian planets are

not perfect blackbody radiators (de Pater and Lissauer 2001).
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Table 1.1: The Bond albedo for the Jovian planets (Conrath et al. 1989).

Planet Bond albedo

Jupiter 0.343±0.032
Saturn 0.342±0.030
Uranus 0.290±0.051
Neptune 0.31±0.04

Table 1.2: The equilibrium temperature and effective temperature for the
Jovian planets (de Pater and Lissauer 2001, Hubbard et al. 1995).

Jupiter Saturn Uranus Neptune

Equilibrium Temperature (K) 113 83 60 48

Effective Temperature (K) 124.4±0.3 95.0±0.4 59.1±0.3 59.3±0.8

If the planet is assumed to be in thermal equilibrium Eqs. 1.1 and 1.2 are equated

and the equilibrium temperature Teq of the planet is,

Teq =

(
F¯

r2
AU

1− Ab

4εσ

)1/4

. (1.3)

This equilibrium temperature can be compared to the measured effective temperature

of the planet. The effective temperature Te is the temperature a blackbody, that

radiates with a flux equivalent to the total of the infrared energy flux from the

planet, would have. Table 1.2 compares these two values for the Jovian planets.

These values indicate that Uranus is in thermal equilibrium but Jupiter, Saturn,

and Neptune must possess an internal heat source to account for their higher effective

temperatures. The magnitude of the Jovian internal heat sources is given by the

internal energy flux in Table 1.3, as derived from the energy balance. The energy

balance is defined as the ratio of the total energy flux from the planet (interior plus

reradiated solar flux) to the flux from reradiated solar energy alone. The internal

energy flux is defined as the total infrared energy flux minus the flux from reradiated
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Solar system view

incident

solar

flux

flux

r
AU

R

Planet

Planet view

π R 2A
proj =

A = 4 π R2

Radiated

Figure 1.1: A planet in thermal equilibrium where the absorbed solar flux
is balanced by the radiated thermal flux.
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Table 1.3: The energy balance and internal heat flux for the Jovian planets
(de Pater and Lissauer 2001, Hubbard et al. 1995).

Jupiter Saturn Uranus Neptune

Energy Balance 1.67±0.09 1.78±0.09 1.06±0.08 2.61±0.28
Internal Energy 5.44±0.43 2.01±0.14 0.042±0.047 0.433±0.046
Flux (W ·m−2)

solar energy (Hubbard et al. 1995).

The release of primordial heat stored during the accretion stage of the planet’s

formation is likely the major source of internal heat. Jupiter’s internal flux is con-

sistent with this mechanism; however, Saturn’s internal flux cannot be explained by

accretion alone. The additional heat flux in Saturn results from an energy release

due to helium differentiation in the interior.

Explaining the difference between Uranus and Neptune’s internal fluxes is more

difficult. Neptune’s internal flux can be explained by energy release from accretion.

Uranus, however, has little or no internal heat flux, but it seems unlikely that Uranus

did not store heat during its accretion stage. The low internal flux of Uranus can

be explained if convection is inhibited in the interior due to differences in density

gradients. Compositional gradients may have arisen from the late accretion of large

planetesimals which would have broken up on impact and only partially mixed in

Uranus’ interior (de Pater and Lissauer 2001).

Neptune’s internal heat flux indicates that it should have strong convection; this

is central to constraining the chemical structure.

1.3 Thermal structure

The thermal structure of Neptune, before the Voyager encounter, was deduced from

stellar occultations by the planet and measurements of the atmospheric thermal

emission at wavelengths between 7 µm and 3 mm. These measurements provided
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thermal structure information for the upper troposphere and stratosphere. The

wide spectral coverage of the Voyager instrumentation allowed more altitudes to be

probed producing a more complete temperature profile. The temperature structure

is discussed in three areas: the deep, middle, and upper atmosphere. A comparison

with the Earth’s atmosphere is presented last.

1.3.1 Deep atmosphere

The deep atmosphere comprises pressures higher than approximately 2 bars (lower

troposphere). The temperatures at these altitudes are key to determining the compo-

sition of the interior which places constraints on interior models and formation theo-

ries of Neptune. There is a lack of knowledge of deep atmosphere opacity sources and

the atmospheric structure because the atmosphere is optically opaque at pressures

higher than approximately 2 bars; this limits the ability to extract temperatures

from microwave measurements.

The temperature profile must be determined using theoretical calculations involv-

ing adiabatic extrapolation using a reference temperature and pressure (T0, P0) from

the convective part of the upper troposphere. Hydrostatic equilibrium is assumed to

construct the adiabatic model,

dP = −ρgdz, (1.4)

where dP is the layer atmospheric pressure, ρ is the atmospheric density, g is the

acceleration of gravity for Neptune, and dz is the thickness of an atmospheric layer

(Lewis 1997). The atmospheric density is determined using the ideal gas law,

ρ =
µP

RT
, (1.5)

where µ is the molecular weight, P is the atmospheric pressure, R is the universal gas

constant, and T is the atmospheric temperature. Substituting Eq. 1.5 into Eq. 1.4

gives,

dP = −µP
RT

gdz. (1.6)

When the planetary interior is assumed to lie along an adiabat, the temperature

6



gradient is given by,

dT

dz
= − g

cp
, (1.7)

where cp is the specific heat for the mixture of atmospheric gases (de Pater and

Lissauer 2001). Assuming that g and cp are constant allows the atmospheric tem-

perature to be expressed as,

T = To −
g

cp
(z − zo). (1.8)

Substituting Eqs. 1.8 and 1.7 into Eq. 1.6 and integrating from the reference level

gives,

T = To

(
Po
P

)µcp/R
. (1.9)

The specific heat of H2 is dependent upon the ortho-to-para hydrogen ratio and

the rate of equilibration between the two states. The spins of both protons are

parallel in the ortho-hydrogen state; in para-hydrogen the proton spins are anti-

parallel. The ratio of H2 in the ortho- and para-states is important to both the

thermodynamic and spectroscopic properties of H2. When the ortho-to-para ratio is

equal to the equilibrium ratio at the local temperature at each level in the atmosphere

it is referred to as frozen equilibrium. To fit millimetre spectra, a frozen equilibrium

adiabat is required (see §1.4.1, Gautier et al. 1995).

Condensation of molecular species must be considered at these high pressures in

the lower troposphere. CH4, H2O, NH3, PH3, and H2S are believed to exist in the

deep atmosphere, but condense when the partial pressure of the condensing species

reaches the saturation vapour pressure at the local temperature. This condensation

causes a release of latent heat and slows cooling, requiring the use of the wet adiabatic

lapse rate in determining the temperature structure. This effect can be significant if

the species is present in large quantities, as CH4 is in Neptune. When interpolating

temperatures in the lower atmosphere the dry and wet adiabatic lapse rates must be

used in the proper areas of the atmosphere. The extrapolation of the temperature

profile to the lower troposphere is shown in Fig. 1.2.
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Figure 1.2: Temperature profile of the deep atmosphere as determined by
adiabatic extrapolation (Burgdorf et al. 2003).

1.3.2 Middle atmosphere

This region comprises pressures less than 2 bars and greater than 10−3 mbar (upper

troposphere and stratosphere). Fig. 1.3 is a summary of the temperature profiles ex-

tracted from ground-based observations and Voyager data. Three methods have been

used to determine the middle atmosphere temperatures: radiative transfer modelling

of thermal emission measurements; the Voyager RSS occultation by Neptune; and

stellar occultations by Neptune’s atmosphere.

The upper troposphere and lower stratosphere temperatures have been deduced

primarily by radiative transfer modelling of ground-based thermal emission measure-

ments and the occultation of the Voyager radio link by Neptune. Orton et al. (1987,

1990) used perturbations of the radiative-convective models of Appleby (1986) (see

inset Fig. 1.3; profiles a, c, and e are from Appleby) to fit their ground-based thermal

emission measurements in the range 7–23 µm. The results of this analysis (dashed

curve, Fig. 1.3) determined temperatures at pressures between 2 bar and 10−3 mbar.
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Figure 1.3: P-T profiles for the atmosphere of Neptune. The RSS oc-
cultations provide the thermal structure for P>2 mbar (Lindal et al. 1990,
Lindal 1992). Ground-based measurements by Orton et al. (1990), with
f(He)=0.15, provide thermal information on the lower stratosphere/upper
troposphere (dashed curve). Stellar occultations provide data at pressures
from 10−3 to 0.03 mbar. The August 20, 1985 occultation observed by
Hubbard et al. (1987) permitted the construction of the upper stratosphere
temperature profile (solid curve). The shaded region corresponds to the
range of mean temperatures, defined by Roques et al. (1994), after analysis
of many stellar occultations. Ground-based measurements by Orton et al.
(1992) provide a mean stratospheric temperature. The UVS solar occul-
tation analysis by Broadfoot et al. (1989) and Yelle et al. (1993) provide
thermosphere temperatures. The lower inset shows the radiative-convective
models of Appleby (1986) (a, c, and e), with a f(He)/f(H2)=0.1, used in
the determination of the Orton et al. (1990) profile. Note: unless otherwise
noted, f(He)=0.19 (Bishop et al. 1995).
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The RSS on Voyager was used to probe Neptune’s atmosphere during the occulta-

tion of the spacecraft by Neptune. This was accomplished by tracking the signals

transmitted at 3.6 and 13 cm as they passed through Neptune’s atmosphere. Ingress

and egress of the spacecraft sampled the atmosphere at latitudes from 62◦N to 59◦N

and 45◦S to 20◦S respectively (Lindal et al. 1990, Lindal 1992). The ingress and

egress results are shown in Fig. 1.3. The RSS profiles are location-specific to the

planet whereas the ground-based observations of Orton et al. (1990) are not spa-

tially resolved. This probably accounts for the higher temperatures determined by

the Orton et al. (1990) analysis in comparison to the results obtained from the RSS

data.

The temperature structure was recently updated by Burgdorf et al. (2003) in the

region of the tropopause (63 to 630 mbar) using disk-averaged spectra of Neptune

from ISO’s Short Wavelength Spectrometer (SWS) and Long Wavelength Spectrom-

eter (LWS) instruments. The initial input to their derivation was taken from far-

infrared and submillimetre disk-averaged photometry (Orton et al. 1986, Griffin and

Orton 1993) and middle-infrared ground-based spectra (Orton et al. 1987, 1990).

The upper stratosphere temperatures have been determined using radiative trans-

fer modelling of ground-based thermal emission measurements and stellar occulta-

tions by Neptune’s atmosphere. Thermal emission measurements at high spectral

resolution, combined with the moderate resolution measurements of Orton et al.

(1990), allowed Orton et al. (1992) to determine a mean temperature in the upper

stratosphere of 168 ± 10 K (see Fig. 1.3). Hubbard et al. (1987) and Roques et al.

(1994) observed stellar occultations to determine the thermal profile of the upper

stratosphere. During a stellar occultation, refractive dimming on immersion and

brightening on emersion of the stellar light is recorded as a star passes behind Nep-

tune as seen from Earth. The results of these studies are shown in Fig. 1.3. This

method, unfortunately, yielded a field of solutions requiring Roques et al. (1994) to

define a range of stratospheric temperatures at 0.025 mbar of 150 to 200 K. The upper

stratosphere comprises the greatest temperature uncertainty in Neptune’s thermal

profile.
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1.3.3 Upper atmosphere

The high atmosphere comprises pressures lower than approximately 10−3 mbar (ther-

mosphere). The thermal structure in this region was determined by Voyager UVS

solar occultation whereby the transmission of Neptune’s atmosphere was determined

by measuring the solar spectrum during the atmospheric occultation. UVS trans-

mission spectra were used to calculate the variation of H2 density with altitude.

The H2 density profile and the hydrostatic law (Eq. 1.4) were used to determine the

temperature structure; this required that extinction be caused predominantly by H2.

H2 is the dominant absorber in the atmosphere in three wavelength regions al-

lowing the UVS to probe different areas of Neptune’s atmosphere. At wavelengths

below 80 nm extinction is due to absorption by H2 in its ionization continuum; these

wavelengths probe the upper thermosphere at pressures of approximately 10−8 mbar.

From 80 to 110 nm, extinction is caused by absorption in the electronic band of H2,

which probes a large pressure range of the lower thermosphere centred at 10−5 mbar.

The temperatures resulting from the analysis of UVS transmission data in these two

wavelength regions are shown in Fig. 1.3 (Broadfoot et al. 1989, Yelle et al. 1993).

The third region comprises wavelengths longward of 150 nm where Rayleigh-

Raman scattering by H2 is the dominant extinction process. This should allow the

upper stratosphere to probed; unfortunately, this region appears to be dominated by

hydrocarbon absorption rather than H2 absorption (Bishop et al. 1995). There is,

therefore, great uncertainty in the temperatures in the region from 2 to 10−4 mbar.

1.3.4 Comparison with Earth’s atmosphere

Using the results described above, a thermal profile of Neptune’s atmosphere can be

constructed. Fig. 1.4 has been constructed in 4 regions:

1. At pressures higher than 10−3 bar the profile is the result of the analysis by

Burgdorf et al. (2003).

2. Between 10−3 and 10−6 bar, the temperature structure follows that used by
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Marten et al. (1993); the temperature approaches a constant value of 159 K at

10−6 bar (solid line, Fig. 1.4). This upper stratosphere temperature is within

the range of temperatures determined by Orton et al. (1992) and Roques et al.

(1994). The large temperature uncertainty in the upper stratosphere requires

a range of profiles to be considered (dashed curves, Fig. 1.4).

3. Between 10−6 to 4x10−8 bar, temperatures are not extracted from measure-

ments and have, therefore, been interpolated between the upper stratosphere

and thermosphere profiles. The following interpolation is used in connecting

the two regions,

T

To
=
(
P

Po

)α
, (1.10)

where T is the atmospheric temperature, and P is the atmospheric pressure.

Reference temperatures of 159 K at 10−6 bar and 250 K at 4x10−8 bar are used

to determine α (Bishop et al. 1995).

4. The thermosphere temperature profile (P < 4x10−8 bar) is that determined

by Broadfoot et al. (1989) and Yelle et al. (1993). The thermospheric profile

has only been measured by Voyager so the temporal and spatial variability is

unknown.

The measurements performed in this project are not sensitive to pressures less than

10−6 bar; this region of the temperature profile is not required but included here for

completeness.

Fig. 1.5 is the Earth’s temperature profile for northern winter and summer as

calculated using the Mass Spectrometer, Incoherent Scatter Radar Extended Model

(MSISE). This model is based on the work of Barnett and Corney (1985) and Hedin

(1991). The processes that cause the shape of the Earth’s temperature profile can

be compared to Neptune’s. The troposphere in Neptune is marked by decreasing

temperatures; at the tropopause, absorption of solar radiation by CH4 causes the

temperature inversion and increasing temperatures of the stratosphere. On Earth

the same process is observed, but with ozone (O3) as the absorbing molecule.
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ATMOSPHERIC PROFILE OF NEPTUNE
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Figure 1.4: Temperature profile of Neptune’s atmosphere derived from
ground-based, Voyager, and ISO measurements (Burgdorf et al. 2003,
Marten et al. 1993, Broadfoot et al. 1989, Yelle et al. 1993).

The upper stratosphere of Neptune approaches a constant temperature, but at

the stratopause on Earth the temperature begins to decrease. A lack of ozone absorb-

ing solar radiation causes the decreasing temperatures of the mesosphere on Earth.

Neptune and Earth’s thermospheres exhibit a strong temperature increase due to the

absorption of UV radiation by H2 in Neptune and O2 in Earth. The thermosphere

marks the region in both planets where molecular diffusion becomes the dominant

process over eddy diffusion (turbulent mixing; see §1.4.2).

There are two temperature profiles shown in Fig. 1.5. On Earth, the temperature

profile in the mesosphere changes significantly between summer and winter; this is

due to breaking waves in the Earth’s atmosphere (Lewis 1997). This behaviour is not

shown in Neptune’s profile. The temperature profile has been monitored for only 20

years; much longer seasons (∼ 80 years between summer and winter) require many

generations of observations before Neptune’s seasonal response can be determined.

13



ATMOSPHERIC PROFILE OF EARTH
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Figure 1.5: Temperature profile of the Earth’s atmosphere
at mid-latitudes for two seasons: northern winter (solid),
and northern summer (dashed). Temperature data from
http://nssdc.gsfc.nasa.gov/space/model/models/msis.html.
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1.4 Chemical composition

The major constituents of Neptune’s atmosphere are molecular hydrogen (H2), he-

lium (He) and methane (CH4). Methane is of importance in the atmosphere because

its absorption of solar photons causes the positive temperature gradient in the strato-

sphere (see Fig. 1.3). Photochemical reactions resulting from methane photolysis give

rise to hydrocarbons such as ethane (C2H6), acetylene (C2H2), ethylene (C2H4), and

methyl (CH3)in the stratosphere. Carbon monoxide (CO), hydrogen cyanide (HCN),

monodeuterated methane (CH3D), and monodeuterated hydrogen (HD) have also

been detected. Other species expected to exist deep in the troposphere include

water (H2O), ammonia (NH3), hydrogen sulphide (H2S) and phosphine (PH3), but

these have not been detected. Measurements to determine the abundance and profile

of the species relevant to this project are discussed in the following sections. The

abundances will be reported in terms of the mole ratio q,

q =
Pspecies
Ptotal

, (1.11)

where Pspecies is the partial pressure of the species and Ptotal is the total atmospheric

pressure.

1.4.1 Hydrogen and Helium

H2 was first observed in Neptune’s atmosphere by Belton and Spinrad (1973). H2

is a homonuclear molecule and has no electric dipole moment. It should, therefore,

exhibit no dipole transitions; however, at high pressures electric dipole absorption is

observed (eg. Bishop et al. 1998). This absorption is the result of a collision between

two molecules (i.e. H2–H2) causing a transient dipole moment to arise; during this

collision transitions among rotational, vibrational, and translational states can take

place. This type of absorption dominates the far-infrared spectrum of Neptune. In

addition, H2 has an electric quadrupole moment. These transitions, while weaker

than electric dipole transitions, are also observed in Neptune’s spectrum (eg. Baines

et al. 1995).
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Observations of the collision-induced and quadrupole transitions of H2 have been

used to determine the ortho-to-para ratio in Neptune’s atmosphere. Frozen equi-

librium is usually assumed in model calculations (see §1.3.1). The validity of this

assumption has been tested most recently by Conrath et al. (1998) and Burgdorf

et al. (2003); both concluded that the ratio must be near the equilibrium value.

The abundances of H2 and He have been determined simultaneously by the analy-

sis of a combination of IRIS spectra and egress radio occultation measurements from

Voyager. Conrath et al. (1991) assumed that only H2 and He contributed significantly

to the mean molecular weight and the coefficient of radio refractivity in the upper

troposphere and lower stratosphere. Temperature profiles were calculated from the

radio refractivity results for various values of the helium mole fraction. These tem-

perature profiles were used in a radiative transfer model to calculate thermal emission

spectra for comparison against IRIS spectra between 25 and 50 µm. The IRIS spec-

tra were obtained in the same latitudinal location as the egress RSS measurements.

The best-fit to the IRIS data found a helium mole fraction of qHe = 19.0 ± 3.2%,

indicating that qH2
= 81.0± 3.2% (Conrath et al. 1991).

The H2/He ratio was re-investigated by Burgdorf et al. (2003) recently using ISO’s

SWS and LWS. Disk-averaged mole ratios of qHe = 14.9+1.7
−2.2% and qH2

= 83.1+1.7
−2.2%

were determined using the most recent temperature profile, a tropospheric CH4 mole

ratio of 2%, and a radiative transfer model incorporating collision-induced absorption

of H2 by H2, He, and CH4.

1.4.2 Methane

The low temperatures on Neptune (∼ 50 K near the tropopause) cause CH4 to

condense indicating that the CH4 abundance profile should be constant in the tropo-

sphere until it reaches the saturation layer; at that point the CH4 abundance profile

should follow the vapour pressure curve.

Measurements of the tropospheric CH4 abundance were not possible using Voy-

ager instruments because the CH4 fundamental bands at 3.3 and 7.8 µm were ob-

scured by emission from the CH4-rich stratosphere. The determination of the tropo-
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spheric CH4 mole ratio has relied on ground-based observations in the submillimetre

by Orton et al. (1986) and visible by Baines et al. (1995). The most recent findings

show a tropospheric value of qtCH4
= 2.2+0.5

−0.6% (Baines et al. 1995).

Early measurements, by Orton et al. (1987, 1990), found that the stratospheric

and tropospheric CH4 abundances were approximately equivalent. The analysis of

Voyager UVS measurements by Yelle et al. (1993) and Bishop et al. (1992) found

much lower stratospheric values in the range 0.001–0.1%. Ground-based work in

the infrared by Orton et al. (1992) and visible by Baines and Hammel (1994) found

a similar range to the Voyager results. Most recently, ISO measurements found a

stratospheric value of qsCH4
= 0.13± 0.08% (B. Bézard, personal communication).

CH4 gas should be trapped below the tropopause by condensation, due to the low

temperatures found there; however, measurements of the stratospheric abundances

have proved otherwise (> 10 times the value allowed by saturation). This “leaky

tropopause” is explained by Appleby (1986) who labels this mechanism “convective

penetration”. Appleby argued that supersaturation, partial pressures greater than

the vapour pressure at the local temperature, could be caused by rapid upward

transport inhibiting condensation as the gas is swept into warmer regions.

The CH4 abundance profile is shown in Fig. 1.6; between the tropospheric and

stratospheric abundances it is limited by condensation. The following vapour pres-

sure equation for CH4 was used,

log10(P ) =
−459.82

T
+ 4.09, (1.12)

where P is the pressure in bars, and T is the temperature in kelvins (Lide 2003).

CH4 reaches levels where absorption of solar photons becomes important. The

primary photolysis levels for CH4 occur at pressures ≤ 10−3 mbar. At these levels

CH4 is converted to higher order hydrocarbons (C2H2, C2H4, C2H6, and CH3) by

photolysis and subsequent chemical reactions (Bishop et al. 1995, Schulz et al. 1999,

Bézard et al. 1999). The important effects governing the distribution of hydrocarbons

in the upper atmosphere include: diffusive separation, vertical mixing, production

and loss processes. These effects are considered using the steady-state continuity
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METHANE ABUNDANCE PROFILE OF NEPTUNE
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Figure 1.6: CH4 profile in Neptune’s atmosphere (solid curve). The tem-
perature profile assumed for Neptune’s atmosphere is shown as the dashed
curve.

equation,
dΦi

dz
= Pi − Li, (1.13)

where z is the altitude, Φi is the flux of species i, and Pi and Li are the production

and loss rates of the species (Bishop et al. 1995). The flux is given by the vertical

transport equation,

Φi = −Di

[
dni
dz

+ ni

(
1

H
+

1 + α

T

dT

dz

)]
−K

[
dni
dz

+ ni

(
1

H
+

1

T

dT

dz

)]
, (1.14)

whereDi is the molecular diffusion coefficient, ni is the number density of constituent

i, H is the scale height (H = kbT/mg), α is the thermal diffusion parameter, and K

is the eddy diffusion coefficient (de Pater and Lissauer 2001). Molecular diffusion,

the vertical movement of individual molecules, only dominates in regions where the

atmospheric density is low and mixing is weak (P < 10−8 bar). Eddy diffusion, the

turbulent movement of air parcels, dominates at pressures greater than 10−8 bar. The

altitude at which the atmosphere ceases to be dominated by turbulent diffusion and

molecular diffusion takes over is referred to both as the homopause and turbopause.
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In the stratosphere, where hydrocarbons are produced, eddy diffusion dominates

requiring knowledge of the eddy diffusion coefficient to determine the hydrocarbon

abundances in this region. It has been conventional to adopt, for K, a dependence

on the number density,

K(z) = K0

(
n0

n(z)

)β
, (1.15)

where n is the number density at altitude z, n0 and K0 are respectively the number

density and eddy diffusion coefficient at the CH4 homopause (the level to which CH4

is well mixed in the atmosphere) and β is a fitting parameter used in modelling the

observations (Bishop et al. 1998).

Hydrocarbons will move downwards through the atmosphere from the location

in the stratosphere where they are formed. Their abundances will follow the satu-

ration vapour pressure curve as they move to the tropopause and condense. Their

abundances in the stratosphere will be driven by eddy diffusion and photochemical

production and loss processes. The hydrocarbon abundance profiles are important,

in the context of this thesis, only in that they help constrain the eddy diffusion

profile.

Romani et al. (1993) used photochemical modelling of Voyager IRIS and UVS

measurements of C2H2, C2H4, and C2H6 to determine eddy diffusion profiles. Two

types of profile were found: the first used the traditional form of Eq. 1.15 with

β = 0.6 and K0 = 107 cm2 · s−1 (Romani “A” profile, hereafter); the second had

a stagnant lower stratosphere below a rapidly mixed upper stratosphere with K =

5x107cm2 · s−1 from 1 to 0.001 mbar (Romani “B” profile, hereafter). The Romani

B profile was found to produce a better fit to the IRIS and UVS data.

The most recent update to the eddy profile is from observations using ISO of

C2H4 and CH3 emission by Schulz et al. (1999) and Bézard et al. (1999), respectively.

Schulz et al. found their data were best fit using an eddy profile equivalent to the

Romani A profile. Bézard et al. also found the Romani A profile to be the best fit;

however, they required a lower homopause eddy value of K0 = 5x106cm2 · s−1.
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1.4.3 Minor constituents

CO and HCN were discovered in the stratosphere of Neptune by Marten et al. (1993).

The discovery of CO and its importance in Neptune’s atmosphere is covered in §1.5.
Marten et al. found a HCN mole fraction of q = (1.2 ± 0.4)x10−9 using the J=4–

3 rotational emission line at 354.5 GHz. The discovery of HCN was unexpected

because the species is not expected to survive the low temperatures found at the

tropopause. Marten et al. postulated that upward transport of N2 from the interior

could subsequently dissociate in the stratosphere and form HCN. There is no direct

evidence of N2 in the upper troposphere to support the internal origin theory and

this led Rosenqvist et al. (1992) and Lellouch et al. (1994) to formulate a theory that

nitrogen atoms originate from an exterior source.

CH3D and HD have been found in Neptune’s atmosphere by de Bergh et al.

(1990), Orton et al. (1992) and Feuchtgruber et al. (1999), respectively. These species

have been used to determine the D/H ratio in Neptune. The deuterium content of

Neptune’s atmosphere provides a useful constraint on models for planetary origin and

evolution. All three measurements concluded that there is deuterium enhancement

on Neptune relative to the protosolar abundance.

Feuchtgruber et al. (1997) detected gaseous H2O in the upper atmosphere of

Neptune using ISO’s SWS. A uniform abundance was assumed above the H2O con-

densation level, at approximately 140 K, to find a mole ratio of q = (1.5−3.5)x10−9.

A transport model was used to calculate the external H2O flux that corresponds to

the measured abundance. In creating this model, both the Romani A and B profiles

were assumed (see §1.4.2) to give an H2O external flux of (1.2− 150)x105 cm−2s−1.

1.4.4 Deep atmosphere constituents

The composition of the deep atmosphere (P > 8 bars) has been deduced using

microwave remote sensing. H2S, NH3, PH3, and H2O have been used as sources

of opacity in radiative transfer models to fit microwave observations; there have

been no direct observations of these molecules. The most recent model fits to radio
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observations require mole ratios of qH2S = (300−600)x10−6, qNH3
= 95x10−6, qPH3

=

(2.5− 3.5)x10−6, and qH2O = 1.45x10−3 (Hoffman et al. 2001).

1.5 CO in Neptune’s atmosphere

CO was discovered in the stratosphere of Neptune through the detection of the J=3–

2 and 2–1 rotational transitions in emission at 345.8 and 230.5 GHz respectively

(Marten et al. 1993). Fig. 1.7 shows the original detection of the J=3–2 emission.

These narrow emission lines originate in the upper stratosphere of Neptune. Nar-

row spectral lines arise because the pressure is low since pressure broadening is the

dominant process. These lines appear in emission because the temperature of the

upper stratosphere is greater than the region in which the surrounding continuum

is produced (∼ 90 K, 2 bar). This discovery was unexpected because CO is not

thermochemically stable at observable levels (Bishop et al. 1995); it was conven-

tionally thought that Neptune’s atmospheric carbon must be in its reduced form

of CH4. Several measurements of the stratospheric emission lines followed. Using

the JCMT and the Caltech Submillimeter Observatory (CSO), Marten et al. (1993)

found a CO mole ratio of (1.2± 0.4)x10−6; Rosenqvist et al. (1992) used the Institut

de Radio Astronomie Millimétrique radio telescope (IRAM) to determine a value of

(0.65 ± 0.35)x10−6; and, recently Marten et al. (2005) confirmed their 1993 values

using the JCMT and IRAM.

Two explanations have been proposed for the presence of CO in Neptune’s strato-

sphere. The first consists of CO being transported from the interior to higher al-

titudes by convection due to Neptune’s strong internal heat source. If this is the

only mechanism, then thermochemical models require the interior to be enriched in

oxygen 440 times the solar abundance in order to produce the observed stratospheric

CO abundance (Lodders and Fegley 1994), indicating a planetary interior composed

primarily of water ice. The second hypothesis involves the external supply of OH

radicals or oxygen atoms into the atmosphere where they can be combined with

by-products of methane photochemistry to produce CO (Rosenqvist et al. 1992). It
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Figure 1.7: Stratospheric CO line detected by RxB at the JCMT in 1991
(Marten et al. 1993).

is unlikely, however, that an external supply of oxygen can be the dominant source

of CO in Neptune, considering that Saturn has more abundant water sources (rings,

satellites) but a much smaller stratospheric CO abundance (< 10−7) (Noll et al.

1986).

A measurement of the CO abundance profile through the atmosphere is required

in order to determine the correct mechanism. If CO exists in the troposphere, the

spectral line will be in absorption because the temperature in the troposphere is

lower than the region in which the surrounding continuum is produced (∼ 90 K,

2 bar). The spectral feature will be pressure-broadened due to the high pressures

in this region of the atmosphere, resulting in the tropospheric spectral feature being

a broad absorption line. These lines are difficult to measure because of the large

bandwidth required.

There have been four reported attempts to measure CO in Neptune’s troposphere,

with divergent results. Guilloteau et al. (1993) used a hybrid heterodyne technique

on IRAM to measure the reduction in flux that would result from an absorption line.

This resulted in a tropospheric abundance of (0.6− 1.5)x10−6. Naylor et al. (1994)
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1993 CO MEASUREMENT
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Figure 1.8: Detection of the J=3–2 CO absorption line. Model fit, dashed
curve, is for a CO model ratio of 1.2x10−6; data is the solid curve (Naylor
et al. 1994).

used a polarizing Fourier Transform Spectrometer (FTS) at the JCMT to measure

the J=3–2 absorption line at 345.8 GHz. The moderate resolution and large spectral

bandwidth of an FTS makes it particularly well suited to measuring these strongly

pressure broadened absorption lines. A marginal detection was achieved to find a

mole ratio of (0.7 − 1.3)x10−6. The measured spectrum, along with a model fit,

is shown in Fig. 1.8. The sinusoidal modulation present in the data limited the

precision of this measurement. The modulation was attributed to channel fringing,

which is the result of multiple reflections in the optics of the photometric detector

system. Courtin et al. (1996) used the Faint Object Spectrograph onboard the HST

to identify the UV Cameron bands of CO leading to a value of (2.7 ± 1.8)x10−6.

Using a different FTS on the CSO, Encrenaz et al. (1996) found an upper limit on

the tropospheric value of 1.0x10−6.

The precision of these measurements limited the ability to draw firm conclusions

as to the source of atmospheric CO. A more accurate determination of the CO
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Figure 1.9: The James Clerk Maxwell Telescope. The telescope is shown
here without the Gore-Tex membrane that resides above the telescope. The
membrane prevents wind and dirt from entering the dome and is transparent
to radiation at these wavelengths.

abundance profile is required and has been the focus of this thesis project.

1.6 The James Clerk Maxwell Telescope

The CO line in this investigation (J=3–2 at 345.8 GHz, 0.87 mm) is in the submil-

limetre region of the electromagnetic spectrum. The largest telescope in the world

for submillimetre astronomy is the JCMT located on the island of Hawaii on Mauna

Kea at an altitude of 4092 m (Fig. 1.9). Mauna Kea is the highest point in the Pacific

Ocean and the telescope is above 97% of the water vapour in the terrestrial atmo-

sphere. The JCMT covers a wavelength range from 0.3 to 3 mm. It is a Cassegrain

telescope with a 15 m primary dish composed of 276 aluminum panels with each one

adjustable to ensure a parabolic surface.

Fig. 1.10 is a schematic of the optical configuration. Radiation is reflected from
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Figure 1.10: Optical configuration of the JCMT.

the main dish to the convex secondary where it is redirected through a hole in the

main dish to the planar tertiary; from there it is redirected to the selected instrument.

The angular resolution of the JCMT is limited by diffraction. The diffraction

limit is, therefore, used to define the beamwidth (Bw) of the primary mirror and is

given by,

Bw = 1.22
λ

D
, (1.16)

where λ is the wavelength of observation and D is the primary mirror diameter

(Hanel et al. 1992). This gives a beamwidth of approximately 14′′ (arcseconds) at

the wavelength of this CO line. Neptune has an equatorial diameter of approxi-

mately 2.3′′ and an effective temperature of 59K (Table 1.2). The small size and low

temperature of Neptune presents some observational challenges, particularly when

viewed through a warm, semi-transparent, and variable atmosphere that fills the

telescope beam.

The precision of spectroscopic measurements is limited by the variability of the
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Figure 1.11: Transmittance of the Earth’s atmosphere for pwv values of
0.5mm (red), 1mm (green), 2mm (violet), 3mm (blue).

Earth’s atmosphere. The atmospheric transmittance spectrum above Mauna Kea is

shown in Fig. 1.11. The window used for this measurement is located in the 350 GHz

region, which is not as sensitive to water vapour as the regions around 600 and

800 GHz. Water vapour content in the atmosphere in quantified by the precipitable

water vapour (pwv), which is the depth in millimetres of liquid water that would

result from condensing the water vapour in an atmospheric column. Fluctuations in

water vapour can hinder the removal of the Earth’s atmospheric sky emission; it is

for this reason that dry and stable weather is required for this measurement.

Fluctuations in the pwv are a source of noise and have a daily fluctuation that

peaks during the middle of the day. The most ideal conditions occur during the night.

This is observed on the mountain when the clouds come in during the afternoon

and then sink into the valley during the early evening. The sun rising and setting

causes turbulence in the atmosphere making measurements during these times nearly

impossible (Fig. 1.12).

The atmospheric transmittance is monitored during observations using the JCMT
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PWV DATA FROM 2002
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Figure 1.12: The pwv values over a two-day period in 2002. The daylight
hours show significant pwv fluctuations.

Water Vapour Monitor (WVM). The WVM measures the atmospheric emission

across the 183 GHz H2O line in the telescope line of sight every 1.2 s to deter-

mine the optical depth at 183 GHz. The optical depth at 183 GHz is converted to

the optical depth at 225 GHz (τ225) for output to the telescope user. Davis et al.

(1997) defined the relation between the τ225 and pwv w (in mm),

w = 20(τ225 − 0.016). (1.17)

1.7 Organization

The preceding sections of this chapter indicate that the CO abundance profile is

poorly constrained. A more accurate profile is required to ascertain the source of

atmospheric CO (internal or external). Determining a more accurate CO abundance

profile has been the focus of this project. The first step was to develop a radiative

transfer model of the CO J=3–2 transition in Neptune’s atmosphere to calculate

the CO abundance from measurements obtained for this project. This is presented
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in Chapter 2. The next three chapters focus on the measurements of this CO line.

Three instruments at the JCMT were used:

1. RxB3 was used to perform high resolution heterodyne spectroscopy. This in-

strument allowed the stratospheric emission and tropospheric absorption to be

measured together (Chapter 3).

2. The University of Lethbridge FTS was used to perform low resolution Fourier

transform spectroscopy. This instrument was used to observe the tropospheric

absorption (Chapter 4).

3. The Submillimetre Common User Bolometer Array (SCUBA) was used to per-

form photometry of Neptune at 850µm. This instrument was used to measure

the integrated flux of Neptune across the 850µm atmospheric window (Chapter

5).

Chapter 6 contains a comparison of the three results and recommendations for future

work to be done.
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Chapter 2

Radiative Transfer Model

Abundance profiles of atmospheric constituents are determined using model fits

to measured spectra. A model of the J=3–2 CO line in Neptune’s atmosphere was

developed to determine the CO abundance profile from the measured line. This

chapter starts with a brief overview of rotational transitions in molecules, then a

description of the Neptune CO line model. The last part of this chapter will discuss

the models used for the calibration targets: Uranus and Mars.

2.1 Absorption and emission by gases

Absorption and emission of radiation by molecules and atoms cause patterns of

spectral lines. A spectral line is the result of a transition between quantized energy

states in a molecule (or atom). The energy state is changed by absorption or emission

of a photon with a frequency proportional to the energy difference between the initial

and final energy states. Transitions are possible among the electronic, vibrational

and rotational energy levels.

Vibrational and rotational transitions arise because a molecule is an aggregate

of atoms bound together by mutually attractive and repulsive forces. These forces

cause the molecule to both vibrate and rotate. Individual atoms vibrate with respect

to each other while the molecule rotates around any spatial axis. Vibrational and

rotational motion is quantized into states; transitions among these states give rise

to vibrational and rotational spectra.

Transitions between electronic states require more energy than vibrational tran-

sitions, which also require more energy than rotational transitions. In the submil-
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limetre, where this work is performed, photons only have sufficient energy to cause

rotational transitions. In this section, the energy levels and spectrum of a rotating

diatomic molecule are described.

In the rigid rotator model, a diatomic molecule is represented as two masses (m1

and m2) at distances (r1 and r2) from the centre of mass. The masses have a fixed

separation and rotate about an axis perpendicular to the line joining the nuclei. For

simplicity, these two masses can be treated as one with a reduced mass µ,

µ =
m1m2

m1 +m2

, (2.1)

moving at a radius re = (x2 + y2 + z2)
1

2 about the centre of mass of the system. The

classical expression for the energy of this system is,

E =
L2

2I
, (2.2)

where L = Iω is the angular momentum, ω = 2πν is the rotation frequency, and I

is the moment of inertia,

I = µr2
e . (2.3)

In quantum mechanics the rigid rotator can only exist in discrete energy states

and these are found through the time independent Schrödinger wave equation,

− h̄
2

2µ
∇2ψ + V (x, y, z)ψ = Eψ, (2.4)

where h̄ = h/2π, h is Planck’s constant, µ is the reduced mass of the system, ψ is the

time independent wave function, and V (x, y, z) and E are the potential energy and

energy of the system respectively. V = 0 in the rigid rotator model since the masses

have a fixed separation; applying this to Eq. 2.4, expressed in spherical coordinates

(θ, φ), gives the following wave equation,

1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

sin2θ

∂2ψ

∂φ2
+

2µr2
e

h̄2 Eψ = 0, (2.5)

(Hanel et al. 1992). The solutions to this wave equation are,

ψJM =

[
(2J + 1)(J − |M |)!

4π(J + |M |)!

]1/2

eiMφP
|M |
J (cos θ), (2.6)
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where J andM are the angular momentum quantum numbers (J ≥ 0, |M | ≤ J), and

P
|M |
J are the associated Legendre polynomials (Hanel et al. 1992). The corresponding

energy for this system is,

E =
h̄2

2µr2
e

J(J + 1), (2.7)

and angular momentum,

L = h̄(J(J + 1))
1

2 , (2.8)

(Hanel et al. 1992).

In the infrared and submillimetre, formulae are often expressed in terms of

wavenumber ν̃ [cm−1] rather than frequency ν [Hz] or wavelength λ [cm]. Wavenum-

ber is related to frequency through the speed of light c in units of cm·s−1,

ν =
c

λ
= cν̃. (2.9)

The energy of the system can be expressed in wavenumbers through the following

relation,

E = hcν̃. (2.10)

Applying Eq. 2.10 to Eq. 2.7 results in an energy expression in units of cm−1,

F (J) =
E

hc
= BJ(J + 1), (2.11)

where,

B =
h

8π2cµr2
e

. (2.12)

To determine which transitions are allowed, the expectation value of the dipole

moment is calculated,

RJ ′M ′J ′′M ′′ =
∫ ∞

−∞
ψ∗
J ′M ′MψJ ′′M ′′dθdφ, (2.13)

where the dipole moment, the sum of the product of the charges qi and the positions

ri of all the electrons and nuclei in the molecule, is given by,

M =
∑

i

qiri, (2.14)

31



(Hanel et al. 1992). This integral is only nonzero in the situation when J ′ = J ′′ ± 1.

Applying the selection rule of ∆J = 1 the allowed transition wavenumbers are,

ν̃ = F (J + 1)− F (J)

= 2B(J + 1), (2.15)

where J refers to the lower state. This indicates that the spectral lines will be spaced

by 2B.

A detailed comparison between calculated and observed spectra shows that the

rigid rotator model agrees reasonably well with the observed spectra, but there are

some discrepancies. The discrepancies arise because a diatomic molecule cannot

maintain a perfectly rigid structure as it rotates; it stretches slightly in response to

centrifugal forces. When this effect is taken into account, the rotational energy levels

are given by,

F (J) =
E

hc
= BJ(J + 1)−DJ2(J + 1)2, (2.16)

where D is the centrifugal distortion constant (Hanel et al. 1992). The second term

in Eq. 2.16 slightly lowers the energy level compared to the rigid rotator calculation.

Fig. 2.1 shows the pattern of transition lines that arise from purely rotational

transitions in CO. The line being investigated in this work is the J=3–2 transition

located at 11.5 cm−1 (in bold).

2.2 Radiative transfer

Radiative transfer is the process by which molecules in the atmosphere absorb, emit,

and scatter electromagnetic radiation. Scattering can usually be neglected in sub-

millimetre calculations because scattering particles are small in comparison to the

wavelength of observation. Absorption and emission by atmospheric gases dominates

the submillimetre spectrum.
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ROTATIONAL SPECTRUM FOR CARBON MONOXIDE
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Figure 2.1: The rotational spectrum of CO. The line intensities are for a
temperature of 296 K. The rotational quantum number indicates the lower
state of the transition (CO line data from HITRAN 2004; Rothman et al.
2005).
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2.2.1 Single layer radiative transfer

The first step in developing the equation of radiative transfer is to consider a thin

layer of atmosphere as shown in Fig. 2.2. Incident radiation I(ν) on the layer will

be subject to absorption within the layer. The change in intensity due to absorption

in the layer dIa is given by,

dIa(ν) = −I(ν)k(ν)ndz, (2.17)

where k(ν) is the absorption coefficient [m2·molecule−1], n is the number density

of the absorbing molecule, and dz is the thickness of the layer. Eq. 2.17 can be

rewritten as,

dIa(ν) = −I(ν)k(ν)du, (2.18)

where du is the column density of the absorber [molecule·m−2]. Using the ideal gas

law and the mole ratio of the absorber qi, the absorber column density is expressed

as,

du =
qiP

kbT
dz. (2.19)

Integration of Eq. 2.18 produces the intensity of the transmitted radiation Itr,

Itr(ν) = I(ν)e−k(ν)u. (2.20)

The exponential in Eq. 2.20 is a measure of the transmittance of the layer and the

exponent is defined as the optical depth τ ,

τ(ν) ≡ k(ν)u, (2.21)

(de Pater and Lissauer 2001).

The layer of atmosphere in Fig. 2.2 will also emit radiation; by analogy with

Eq. 2.17 the emission is expressed as,

dIe(ν) = k(ν)J(ν)ndz = k(ν)J(ν)du, (2.22)

where J(ν) is the source function. If the layer is assumed to be surrounded by a

perfectly insulating enclosure which maintains the particles in the layer at a con-

stant temperature T , the layer is said to be in thermodynamic equilibrium. In this
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Figure 2.2: Absorption and emission of radiation by an atmospheric layer.

situation, the source function is given by the Planck function (de Pater and Lis-

sauer 2001). The Planck function describes the continuous spectrum of a blackbody

radiator and is given by,

B(ν, T ) =
2hν3

c2(ehν/kbT − 1)
, (2.23)

where B(ν, T ) is the intensity of radiation from a blackbody at temperature T and

frequency ν [W ·m−2 · Hz−1 · sr−1] (Hanel et al. 1992). If the insulating enclosure

is removed, thermodynamic equilibrium no longer exists because the matter in the

layer will be subject to external radiation. The emission from the layer depends

on the dominant process in the layer; either emission produced through absorption

of incident radiation by molecules, or emission as a result of collisions between the

molecules. Emission due to collisions between molecules dominates in regions of the

atmosphere where the molecular density is high (troposphere and stratosphere). The

temperature in the layer depends only on the energy available through collisions and

the layer is said to be in Local Thermodynamic Equilibrium (LTE). In this situation,

the Planck function is once again a valid representation of the source function (Hanel
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et al. 1992).

The change in intensity due to absorption and emission in the layer can therefore

be expressed as,

dIa = −I(ν)dτ (absorption), (2.24)

dIe = B(ν, T )dτ (emission), (2.25)

where dτ is the layer optical depth. The outgoing intensity of the layer is expressed

as,

Iout(ν) = I(ν) + dIa(ν) + dIe(ν). (2.26)

Substituting Eq. 2.24 and Eq. 2.25 into Eq. 2.26 and rearranging gives,

Iout(ν)− I(ν) = −I(ν)dτ +B(ν, T )dτ

dI

dτ
(ν) = B(ν, T )− I(ν), (2.27)

which is known as the Schwarzschild equation and describes how the intensity of

radiation changes due to the optical depth. Eq. 2.27 can be integrated using the

integrating factor eτ to find,

Iout(ν) = I(ν)e−τ +B(ν, T )(1− e−τ ), (2.28)

where the first term is the intensity transmitted through the layer and the second

term the intensity emitted by the layer (de Pater and Lissauer 2001). The outgoing

intensity in Eq. 2.28 is for radiation propagating at normal incidence in the atmo-

sphere. When the emission angle of the radiation is taken into account Eq. 2.28

becomes,

Iout(ν) = I(ν)e−τ/µ +B(ν, T )(1− e−τ/µ), (2.29)

where µ = cos(θ) is the emission angle (de Pater and Lissauer 2001).

2.2.2 Multi-layer model

The outgoing intensity due to a single thin layer (Eq. 2.29) can be repeatedly applied

to an atmosphere divided into n thin layers in each of which the temperature Ti,

pressure Pi, and optical depth τi are known (Fig. 2.3).
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Figure 2.3: Setup of the plane parallel atmosphere used in calculating the
Neptune model.

In the bottom layer, the emission will dominate over the transmission indicating

that the first term of Eq. 2.29 is negligible. The outgoing intensity In from layer n

will therefore be given by,

In(ν, µ) = B(ν, Tn)(1− e−τn/µ), (2.30)

where B(ν, Tn) is the Planck function for the layer at temperature Tn, and τn is the

optical depth of layer n. The outgoing intensity from layer n− 1 is composed of the

transmission of the emission from layer n and the emission from layer n− 1 to give,

In−1(ν, µ) = In(ν, µ)e
−τn−1/µ +B(ν, Tn−1)(1− e−τn−1/µ). (2.31)

Substituting Eq. 2.30 into Eq. 2.31 gives,

In−1(ν, µ) = B(ν, Tn)(1− e−τn/µ)e−τn−1/µ +B(ν, Tn−1)(1− e−τn−1/µ). (2.32)

Eq. 2.29 is repeatedly applied to all of the layers until the top layer is reached. At

layer 1 the outgoing intensity is given by,

I1(ν, µ) = I2(ν, µ)e
−τ1/µ +B(ν, T1)(1− e−τ1/µ). (2.33)
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Substituting the outgoing intensity from layer 2 gives the outgoing intensity at the

top of the atmosphere,

I1(ν, µ) = B(ν, Tn)(1− e−τn/µ)e−(τn−1+···+τ1)/µ +

B(ν, Tn−1)(1− e−τn−1)e−(τn−2+···+τ1)/µ +

· · ·+

B(ν, T2)(1− eτ2/µ)e−τ1/µ +

B(ν, T1)(1− e−τ1/µ), (2.34)

which can be expressed as,

I(ν, µ) =
n∑

i=1

B(ν, Ti)
(
1− e−

τi
µ

)
exp


− 1

µ

i−1∑

j=1

τj


 , (2.35)

(Hanel et al. 1992).

The Neptune CO model was calculated using a line-by-line, plane-parallel radia-

tive transfer code written using the Interactive Data Language (IDL r©). The model

atmosphere was composed of 152 layers (Pi, Ti) in each of which the Planck function

B(ν, Ti) (Eq. 2.23) and the layer optical depth τi were calculated (Fig. 2.3). The

layer optical depth was calculated in two parts, CO line and continuum, and then

combined to give the total layer optical depth,

τi = τCOi + τ conti , (2.36)

where τCOi and τ conti are the layer optical depths due to the CO line and continuum

respectively.

2.2.3 CO opacity

The CO line optical depth was calculated using the CO column density and absorp-

tion coefficient,

∆uCO =
qCOP

kbT
∆z, (2.37)

τCO = kCO∆uCO. (2.38)
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The absorption coefficient kCO is the product of line strength, S, and line shape, f ,

kCO(ν) = Sf(ν), (2.39)

where line strength is the spectrally integrated cross section (§2.2.4),

S =
∫ ∞

0
kCO(ν)dν, (2.40)

and the line shape function determines the frequency dependence of a spectral feature

around the central frequency of the line (§2.2.5).

2.2.4 Line strength

The strength of a spectral line is proportional to the number of molecules in the

lower state and the probability of transition at that frequency. Rothman et al.

(1998) define the line strength as,

S(T0) =
8π3

3hc2
ν0
Iag

′′exp(−E ′′/kbT0)

Q(T0)
[1− exp(−hν0/kbT0)] |RJ ′M ′J ′′M ′′ |2, (2.41)

where T0 is the reference temperature, ν0 is the transition frequency, Ia is the isotopic

abundance, g′′ and E ′′ are respectively the degeneracy and energy of the lower state,

and |RJ ′M ′J ′′M ′′ |2 is the square of the electric dipole moment matrix (Eq. 2.13). The

partition function Q(T0) is given by,

Q(T0) =
∞∑

n=0

gne
−E′′n/kbT0 , (2.42)

which is the sum of the Boltzmann factors (e−E
′′

n/kbT0) weighted by their degeneracies

(Hanel et al. 1992) .

Calculation of the electric dipole moment matrix is difficult, so line strengths are

usually determined experimentally and catalogued in a database such as HITRAN

(Rothman et al. 1998). In this catalogue, line strengths are tabulated at a reference

temperature of 296 K and corrected for temperature using the following relation,

S(T ) = S(T0)
(
T0

T

)m 

exp

(
− E′′

kbT

)

exp
(
− E′′

kbT0

)





1− exp

(
− hν0

kbT

)

1− exp
(
− hν0

kbT0

)


 , (2.43)

where m = 1 for linear molecules (Rothman et al. 1998).
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2.2.5 Line shape

Transitions do not produce infinitely narrow lines; each line has a shape associated

with it. The line shape determines the frequency dependence around the central

line position. Several mechanisms are responsible for causing the line to be spread

over a frequency range: natural line broadening results from quantum mechanical

principles; collision and Doppler broadening arise because of the environment the

molecule is located in.

Natural line broadening arises from the Heisenberg uncertainty principle which

states that it is not possible to absolutely determine the position and momentum of

a particle simultaneously,

∆x∆p ≥ h̄

2
, (2.44)

where ∆x and ∆p are the uncertainties in the position and momentum respectively

(Brehm and Mullin 1989). An alternative expression of this principle involves the

uncertainty in energy ∆E and time ∆t

∆E∆t ≥ h̄

2
. (2.45)

Applying E = hν indicates that the uncertainty in the line centre is inversely pro-

portional to the lifetime of the state,

∆ν ∼ 1

∆t
. (2.46)

This indicates that as the excited state lifetime becomes shorter, the line will broaden.

In the submillimetre, where rotational transitions dominate and lifetimes are long in

comparison to electronic transitions, natural line broadening has little effect. This is

true except for transitions that arise due to collision-induced dipoles; in this situation

dipoles exist for short periods which result in very broad lines.

Line broadening due to the environment dominates the submillimetre spectrum.

In collisional broadening (also known as pressure broadening), the mean lifetime of

the excited state is reduced because of collisions between molecules. This process

results in a Lorentzian line shape,

f(ν) =
1

π

αL
α2
L + (ν − ν0)2

, (2.47)
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where ν0 is the central frequency, and αL is the Lorentz halfwidth (Hanel et al. 1992).

αL is proportional to the atmospheric pressure and defined as,

αL = [αsqCO + αa(1− qCO)]
[
P

P0

] [
T0

T

]n
, (2.48)

where αs and αa are the self-broadened and air-broadened halfwidths respectively,

T0 and P0 are the reference temperature and pressure (T0 = 296 K, P0 = 1 atm), and

n is the coefficient of temperature dependence. αs, αa, and n are quantities that are

measured in the lab and tabulated in a database such as HITRAN (Rothman et al.

1998). The values used for this CO line are discussed in §2.3.2.
Doppler broadening of a spectral line results from the thermal motion of a gas.

In this situation, molecules moving at a line-of-sight velocity v will exhibit a different

transition frequency than those at rest. The frequency shift that results is given by,

∆ν =
v

c
ν0, (2.49)

where ν0 is the rest transition frequency. The line-of-sight velocity components have

a Maxwellian distribution which results in a Gaussian line shape,

f(ν) =
1

αD

√
ln 2

π
e−ln 2(ν−ν0)2/α2

D , (2.50)

where αd is the Doppler halfwidth which depends on the temperature T and molec-

ular weight M of the gas,

αD =
ν0

c

√
2ln 2 kbT

M/Na

, (2.51)

and Na is Avogadro’s number (Hanel et al. 1992).

When the line profile is completely resolved by the spectrometer, collisional (pres-

sure) and Doppler broadening must both be considered. This requires the convolu-

tion of the Gaussian and Lorentz line shapes to produce the Voigt line shape,

f(ν) =
1

αD

√
ln 2

π
K(x, y), (2.52)

where K(x, y) is the Voigt function given by,

K(x, y) =
y

π

∫ +∞

−∞

e−t
2

y2 + (x− t)2
dt, (2.53)
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Figure 2.4: The collision (dashed), Voigt (solid), and Doppler (dash-dot)
line shape profiles. All three have been normalized to the same maximum
amplitude and halfwidth half-maximum.

where,

x ≡ ν − ν0

αD

√
ln 2, (2.54)

y ≡ αL
αD

√
ln 2, (2.55)

(Armstrong 1967). Fig. 2.4 compares the collisional, Doppler and Voigt line shapes.

The high-resolution heterodyne spectroscopy measurements performed for this project

required the Voigt line shape to be used. The IDL r© Voigt function was used in com-

puting this line shape because execution time was not a dominant constraint in the

radiative transfer model code.

2.2.6 Continuum opacity

Neptune’s composition is dominated by H2 and He which have no permanent dipole

moments and should not exhibit electric dipole transitions. At high pressures and

long path length, however, electric dipole absorption is observed. The absorption
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results when two species collide and induce a transient dipole; during this time

transitions among vibrational, rotational, and translational states take place. The

dipole arises because the electron distribution is distorted during the collision. This

process is important in Neptune’s atmosphere because collision-induced absorption

of H2–H2, H2–He, and H2–CH4 dominate the far-infrared spectrum.

The spectral width ∆ν of these collision-induced features is related to the collision

time through Eq. 2.46. In this situation, ∆t is very short (< 10−12 s) indicating that

these features are extremely broad (Hanel et al. 1992). Fig 2.5 shows the measured

(+ marks) and calculated (solid line) collision-induced spectrum of H2-H2 from 0 to

2000 cm−1 (0 to 60 THz) (Bachet et al. 1983). The collision-induced H2-H2 spectrum

is dominated by the J=0–2 and J=1–3 rotational transitions; at low wavenumbers a

translational band also contributes.

A full quantum mechanical formalism is required for a correct description of the

line shapes, positions, and strengths of these transitions. This type of calculation

is cumbersome and not practical for wide use. Development of empirical line shape

functions has, therefore, resulted. These are used to approximate the measured

spectrum from collision-induced transitions (e.g. Borysow et al. 1985).

The absorption coefficients due to the collision-induced transitions of H2–H2,

H2–He, and H2–CH4 were calculated using the algorithms of Borysow et al. (1985),

Borysow and Frommhold (1988), and Borysow and Frommhold (1986) respectively.

The continuum optical depth was calculated using the H2 column density and the

absorption coefficients due to the H2–H2, H2–He, and H2–CH4 collisions,

∆uH2
=

qH2
P

kbT
∆z, (2.56)

τcont = (kH2H2
+ kH2He + kH2CH4

)∆uH2
. (2.57)

2.2.7 Model geometry

Neptune is unresolved by the diffraction-limited beam of the JCMT (14′′ at this

frequency). Integration of the outgoing intensity over the visible hemisphere of the

planet was therefore required. This was accomplished by dividing the visible disk
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translational band

J = 1 − 3

J = 0 − 2

Figure 2.5: The collision-induced spectrum of H2 at a temperature of
195 K. Experimental data are shown in + marks while the calculated spec-
trum is the solid line. The individual spectral lines that dominate this spec-
trum are labelled (Bachet et al. 1983).
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Figure 2.6: Geometry for the Neptune model. In (a) the position of a point
on Neptune is defined by the coordinates θ (longitude) and β (latitude); (b)
shows a polar view of Neptune’s disk divided into rings.

of Neptune into 25 rings. Fig. 2.6 shows the geometry used in this calculation. In

(a) θ is the longitude from the central meridian and β is the latitude; (b) shows the

division of Neptune’s disk into rings. Each ring had to be further divided into 100

equal-area segments (Fig. 2.7) when high-resolution (∆ν < 1.25 MHz) calculations

were required. This was needed to account for the line broadening resulting from

the rotational velocity of Neptune.

To determine the line broadening, the line-of-sight component of the rotational

velocity V , within each segment, was considered to be constant and given by,

V = Veqsin(θ)cos(β), (2.58)

where Veq is the velocity at the equatorial limb (2.68 km/s). The intensity spectrum

(Eq. 2.35) was shifted to higher or lower frequencies depending on the sign and

magnitude of V (Eq. 2.58). The segment intensities were then combined to give an
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Figure 2.7: The geometry used for calculating the line broadening. This
example shows one of 25 rings divided into 100 equal-area segments.

intensity for each ring,

Iring(ν, µ) =
1

Aring

100∑

l=1

Il(ν, µ)Al, (2.59)

where Il(ν, µ) is the frequency-shifted intensity of each segment in the ring with

emission angle µ, Al is the area of each segment, and Aring is the total area of the

ring. The segments were of equal area, allowing Eq. 2.59 to be re-written as,

Iring(ν, µ) =
1

100

100∑

l=1

Il(ν, µ) = Il(ν, µ). (2.60)

This produces a rotationally-broadened intensity spectrum for each ring of the planet.

The ring intensities were combined using a weighted sum to produce the final

outgoing intensity,

IN(ν) = 2
25∑

k=1

Iring(ν, µk)sinθkcosθk∆θ, (2.61)

where Iring(ν, µk) is the rotationally-broadened intensity in each ring k (Eq. 2.60).

Fig. 2.8 shows the result of introducing this effect into the model. A line broadening

of approximately 2 MHz was observed in the final spectrum.
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Figure 2.8: The CO J=3–2 model of Neptune taking into account rota-
tional broadening (dashed), and without rotational broadening (solid).

Integration of the outgoing intensity over the visible hemisphere was sufficiently

calculated using 25 rings; increasing the number of rings did not produce improved

intensity results. The further division of the rings into 100 equal-area segments, to

account for rotational broadening, produced equivalent broadening results to that

found by Marten et al. (2005).

2.3 Model input parameters

2.3.1 Temperature profile

The temperature structure assumed for the radiative transfer calculations (Fig. 2.9)

is identical to the temperature profile of Burgdorf et al. (2003) at pressures higher

than 10−3 bar (see §1.3.2). At pressures lower than 1x10−3 bars the temperature

structure follows that used by Marten et al. (1993) (see §1.3.4).
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Figure 2.9: The temperature profile of Neptune used in the CO line model
(Burgdorf et al. 2003, Marten et al. 1993).

2.3.2 CO line parameters

The CO line opacity was calculated using line parameters from the HITRAN molec-

ular line catalogue, 2004 edition (Rothman et al. 2005). Table 2.1 lists the CO line

parameters, and their associated errors, used in this model. The JPL molecular

line catalogue (Pickett et al. 1998) was also accessed, but did not provide all of the

parameters required for this calculation.

2.3.3 Abundances of atmospheric constituents

The two most abundant species in the model are H2 and He, with mole ratios of

qH2
= 83.1+1.7

−2.2% and qHe = 14.9+1.7
−2.2% (Burgdorf et al. 2003). Methane is present,

but its abundance is constrained by condensation due to the low temperatures found

at the tropopause. Baines et al. (1995) determined the tropospheric value to be

qtropCH4
= 2.2+0.5

−0.6%. This is consistent with a wet adiabatic lapse rate matching far-

infrared photometry (Orton et al. 1986). The strong convection on Neptune allows
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Table 2.1: HITRAN 2004 CO line parameters

Line Parameter Value Error

Central wavenumber (ν̃0) 11.534513 cm−1 ≥ 0.00001 and < 0.0001 cm−1

Lower state energy (E′′) 11.534953404 cm−1 ±2x10−9 cm−1

Line strength (S(T0)) 8.210x10−23 cm−1/molecule·cm−2 < 1%

Air-broadened halfwidth (αa) 0.0709 cm−1atm−1 ±1.3%
Self-broadened halfwidth (αs) 0.0785 cm−1atm−1 ±2.5%

Coefficient of temperature dependence (n) 0.740 ±2.7%
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methane to reach altitudes above its condensation level by convective penetration,

producing a stratospheric abundance higher than would normally result from fol-

lowing the vapour pressure profile. A value of qstratCH4
= 0.13 ± 0.08% was assumed

for the stratospheric abundance (B. Bézard, personal communication, Orton et al.

1986). Between the tropospheric and stratospheric abundances the methane profile

is limited by condensation (Eq. 1.12).

2.4 Neptune model results

The radiative transfer model of §2.2 produces a spectrum of outgoing intensity I as a

function of frequency ν (Eq. 2.61). It is common to express the intensity in terms of

the brightness temperature. The latter is also a function of frequency and is defined

as the temperature of a blackbody, at each frequency, which would emit the same

intensity. The relationship between the two quantities is described by the Planck

function.

The spectra in Fig. 2.10 were calculated using the Neptune model for a selection

of CO abundances. The abundance was assumed, for illustrative purposes, to be

uniform with altitude. The CO line is composed of two parts: the emission from

the upper stratosphere, and the broad absorption from the troposphere and lower

stratosphere. The regions of the atmosphere that form these components of the line

are determined through examination of the contribution functions.

Eq. 2.35 gives the sum of the emission at each pressure level attenuated by

the transmission of the levels above it for all pressure levels in the model atmo-

sphere. Both the opacity (τ) and the Planck function (B) are temperature and

frequency dependent; therefore, each frequency and pressure level will contribute

different amounts to the final outgoing intensity. At a particular frequency ν and

an emission angle of µ = 1 the intensity Ci that pressure level i contributes to the

outgoing intensity I is determined by calculating Eq. 2.35 at pressure level i,

Ci(ν) = B(ν, Ti)


exp


−

i−1∑

j=1

τj(ν)





[
1− e−τi(ν)

]
, (2.62)
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Figure 2.10: The Neptune CO line model for constant CO distribu-
tions; 0.5x10−6 (black), 1.0x10−6 (red), 1.5x10−6 (yellow), 2.0x10−6 (green),
2.5x10−6 (blue).
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Figure 2.11: The Neptune CO line model for a constant CO mole ratio
of 1.0x10−6 indicating the frequencies used to calculate the contribution
functions shown in Fig. 2.12.

(Hanel et al. 1992). Calculation of Eq. 2.62 at each pressure level in the model

atmosphere allows the contribution, at a particular frequency, to be examined, but

does not take into account the effect of rotational broadening. A series of contribu-

tion functions, for the frequencies labelled in Fig. 2.11, are shown in Fig. 2.12. The

contribution from the central frequency of the line (red curve) peaks in the strato-

sphere and, as the frequency moves away from line centre, peaks at higher pressures.

At frequencies less than ∼335 GHz and greater than ∼355 GHz the contribution

functions peak in the continuum forming region of the atmosphere at a pressure and

temperature of approximately 2 bar and 90 K respectively.

2.5 Calibrators

Observations of Neptune using the FTS and SCUBA required calibration against an

astronomical target. There were three criteria used for selecting a calibrator:
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Figure 2.12: The contribution functions for frequencies of the J=3–
2 CO line shown in Fig. 2.11; 345.796 GHz (red), 345.780 GHz (or-
ange), 345.761 GHz (yellow), 345.601 GHz (green), 341.722 GHz (blue),
336.054 GHz (violet). The temperature profile is shown as the dashed curve.
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1. The source must be amenable to spectral modelling,

2. CO absorption must not be measurable by the instrument being used and,

3. It must be a point source.

Two planets were selected: Uranus and Mars. These planets and their models will

be briefly discussed.

2.5.1 Uranus

Uranus was a good candidate for a calibration target because of its similar angular

size to Neptune (3.6′′ compared to 2.3′′), the ease in modelling its atmosphere, and

the inability of Marten et al. (1993) to detect CO in its atmosphere.

Uranus is very different from the other Jovian planets because of its large obliquity

of 97.86◦ and low internal heat flux. It has been postulated that its obliquity was

caused by a collision with a large planetesimal, and the density gradients that resulted

have inhibited convection in the interior. This may be the cause of its low internal

heat flux (see §1.2, de Pater and Lissauer 2001).

The Uranus model is identical to the Neptune model except for the temperature

profile and mole ratios of its atmospheric constituents. The temperature profile,

shown in Fig. 2.13, was derived from the radio refractivity profile measured by the

RSS experiment on Voyager when it visited Uranus in 1986 (Lindal et al. 1987).

Uranus’ profile has many similarities to Neptune’s; for instance, the temperature

inversion on Uranus is due to absorption of solar radiation by CH4. Uranus’ strato-

sphere, however, shows significant structure in comparison to Neptune’s. Lindal

et al. suggest that the vertical structure on Uranus is due to heating by C2H6 and

C2H2 hazes.

Lindal et al. (1987) used the derived temperature profile of Uranus with IRIS

data to determine H2 and He mole ratios of qH2
= 85 ± 3% and qHe = 15 ± 3%.

These values were determined for the stratosphere where CH4 does not contribute to

the mean molecular weight. When these values are scaled for the lower troposphere,

where CH4 exists, the mole ratios become qH2
= 83.0% and qHe = 14.7%.
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Figure 2.13: The temperature profile of Uranus used in the model (Lindal
et al. 1987).

The tropospheric methane mole ratio was determined by Orton et al. (1986) and

Griffin and Orton (1993) using radiative transfer modelling of submillimetre and

millimetre thermal emission measurements to find a qtCH4
= 2.3%. The stratospheric

methane mole ratio was determined by Orton et al. (1987) using mid-infrared spectra

to set an upper limit of 0.001%, indicating that convective penetration (§1.4.2) is not
significant on Uranus. The CH4 mole ratio profile used in this model is constant in

the troposphere, with a value of 2.3%, until it reaches the saturation layer; at that

point the CH4 abundance profile follows the vapour pressure curve (Eq. 1.12).

The above parameters and a CO mole ratio of 0 were used to create the Uranus

model shown in Fig. 2.14.

2.5.2 Mars

Mars has a rocky surface composed mostly of silica, calcium carbonate, and iron

oxides. It has global asymmetry in that half the planet (southern hemisphere) is

55



URANUS MODEL

320 330 340 350 360 370
FREQUENCY (GHz)

40

50

60

70

80

90

100

B
R

IG
H

T
N

E
S

S
 T

E
M

P
E

R
A

T
U

R
E

 (
K

)

Figure 2.14: The Uranus model.

heavily cratered and elevated 1–4 km above the nominal surface level; the northern

hemisphere is relatively smooth and lies at or below the nominal level. Mars has an

average surface pressure of 6 mbar and a mean surface temperature of 215 K. The

low atmospheric pressure, obliquity (25.19◦), and eccentric orbit (e = 0.093) cause

the surface temperature to display large latitudinal, diurnal and seasonal variations.

The surface temperature at the equator varies from ∼200 K at night to ∼300 K

during the day and the temperature at the winter pole is ∼130 K in comparison to

∼190 K at the summer pole (de Pater and Lissauer 2001).

Mars has a tenuous atmosphere composed of: 95.3% CO2, 2.7% N2, 1.6% Ar,

0.13% 02, 0.07% CO, and < 0.03% H2O (de Pater and Lissauer 2001). The atmo-

spheric temperature profile decreases above the surface and exhibits no stratosphere.

The temperature can vary widely with the amount of dust in the atmosphere. When

a dust storm arises, absorption of solar radiation by dust heats up the atmosphere

(Fig. 2.15).

CO is present in Mars’ atmosphere and exhibits an absorption line at 345.8 GHz

(Fig. 2.16). Pressure broadening has minimal effect because of low atmospheric pres-
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Lissauer 2001).
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Figure 2.16: The Mars J=3–2 CO line measured using RxB3. The line
has a FWHM of ∼13 MHz. The FTS measurements use a resolution of
1.8 GHz which indicates that this line will not be measurable (Clancy et al.
2003).

sure. This results in a narrow absorption line (FWHM ∼ 13 MHz) which was not

resolved by the FTS. The absorption was also not significant for the SCUBA obser-

vations; calculations performed showed that the line does not significantly alter the

flux received from Mars (< 0.1%) . RxB3 is capable of high resolution measurements,

but calibration against an astronomical target was not required.

Mars was used as a calibrator because, at conjunction, it has an angular size less

than 5′′. In addition, millimetre measurements (at 90 GHz) by Ulich (1981) and

far-infrared model results (at 857 GHz) by Wright (1976) indicate that Mars is a

near-blackbody in the submillimetre region (Griffin et al. 1986).

The Mars model was developed for the FLUXES program at the Joint Astronomy

Centre (JAC) to predict planetary brightness temperatures based on the date of

observation. Brightness temperatures for Mars at 345 GHz are derived by logarithmic

interpolation between the 857 GHz results fromWright (1976) and the 90 GHz results

from Ulich (1981). Ulich showed that the 90 GHz brightness temperature is given
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by,

T (R) = T (R0)
(
R0

R

) 1

2

, (2.63)

T (R0) = 206.8± 5.8K,

R0 = 1.524AU,

where T (R) is the brightness temperature at a heliocentric distance R, and T (R0)

is the brightness temperature at a mean heliocentric distance R0. The 857 GHz

brightness temperatures are tabulated in 40 day increments; using the values on

either side of the date in question, the brightness temperature is found by linear

interpolation.

This model does not take into account the effect of dust storms; measurements

during these times were avoided. The quoted uncertainty in this model, without

accounting for error due to dust storms, is ±5% (Privett et al. 1998).

To calculate the Mars model a date and heliocentric distance must be provided.

An example of the Mars model (Fig. 2.17) has been produced for a Universal Time

(UT) of April 24, 2003 at 14:15. This corresponded to a heliocentric distance of

R = 1.480 AU.
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Figure 2.17: The Mars model at 14:15 hrs on 2004-04-24 (UT).
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Chapter 3

Heterodyne Observations of Neptune

Spectroscopic observations of Neptune’s J=3–2 CO line were conducted using the

facility heterodyne receiver, B3, at the JCMT. RxB3’s high resolution allowed a CO

profile through the atmosphere to be determined by measuring the strong emission,

originating in the upper stratosphere, and the broad absorption, from the lower

stratosphere and troposphere simultaneously. This chapter starts with a general

explanation of the operation of RxB3. Observations and data analysis follow. A

summary of the results found using this method will end the chapter.

3.1 Heterodyne receivers

Receiver B3 is a facility receiver, by which is meant that it is operated and maintained

by the JCMT staff for the benefit of visiting observers. Observers typically need only

specify the instrument configuration required for their observations, and are provided

with a calibrated data set. A brief overview of the operation of heterodyne receivers,

and RxB3 in particular, is nevertheless provided in this section.

Heterodyne receivers measure the signal from an astronomical source by mixing

the source radiation with radiation from a local oscillator (LO) by means of a non-

linear mixer. Converting the high frequency source radiation to a lower frequency

allows the use of low-noise radio-frequency electronics to amplify and process the

signal. Fig 3.1 is a basic schematic of the optical layout of the heterodyne receiver,

B3.

The first component in the receiver is a reflecting chopper wheel that allows the

receiver to alternately view the astronomical and calibration sources. The source
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Figure 3.1: A basic optical schematic of heterodyne receiver, B3.
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radiation then encounters the LO injection system. This is a dielectric (Mylar) sheet

that has a high transmittance and low reflectance allowing both the source and LO

signals to enter the receiver.

The source and LO signals travel from the LO injection system to a wire grid po-

larizing beamsplitter which transmits one polarization to the first mixer and reflects

the other polarization to the second mixer. The radiation propagates in free space

before reaching the mixers, which absorb energy from the incoming electromagnetic

wave. The mixers are located inside waveguides to provide optimal signal conversion

efficiency. Horns at the entrances to the waveguides serve to focus the free-space

wave into the cavity.

Heterodyne receivers require a non-linear mixer, the simplest of which can be a

diode. RxB3 uses the superconductor-insulator-superconductor (SIS) junction for

its mixers. They are constructed using a thin insulating (oxide) layer sandwiched

between two superconducting (niobium) layers. This type of mixer offers significant

advantages in nonlinearity and sensitivity (Matthews et al. 2004). Fig. 3.2 shows the

current-voltage (IV) response curve of a SIS junction. The “LO off” curve shows that

the current flowing across the junction is virtually negligible until a large bias voltage

is reached (Vg). This is the voltage required to break Cooper pairs of electrons and

is given by,

Vg =
2∆

e
, (3.1)

where 2∆ is the energy gap of the superconductor (Lazareff 2005). In the presence of

electromagnetic radiation, “LO on” curve, photons are absorbed and their energy hν

allows the onset of conduction at a lower bias voltage, referred to as photon-assisted

tunnelling. The result is the conversion of an incoming stream of photons to an

electrical current across the junction (Phillips 1988).

Despite the complex form of the SIS mixer response, its basic operation can be

demonstrated by considering instead the simplest possible example of a nonlinear

mixer, a quadratic response,

I = αV 2, (3.2)

where α is a proportionality constant. The incoming signal from the LO VLO and a
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Figure 3.2: A plot of the IV response curve for a SIS junction (Lazareff
2005).

monochromatic source VS can be represented as,

VLO = Vlo cos ωlot, (3.3)

VS = Vs cos ωst, (3.4)

where Vlo is the LO voltage, ωlo is the angular frequency of the LO, Vs is the source

signal voltage, and ωs is the angular frequency of the source. The resulting current

after the source and LO signals (Eqs. 3.3 and 3.4) are mixed is given by,

I = α
(
V 2
s cos

2 ωst+ V 2
lo cos

2 ωlot+ 2VsVlo cos ωst cos ωlot
)
, (3.5)

and expanding the last term gives,

2VsVlo cos ωst cos ωlot = VsVlo [cos(ωs − ωlo)t+ cos(ωs + ωlo)t] . (3.6)

Eq. 3.6 shows that a component of the current will leave the mixer at a difference

frequency of ωs − ωlo, referred to as the intermediate frequency (IF) (White 1988).
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The source signal frequency and voltage can be recovered after the signal has been

processed by holding the local oscillator frequency and voltage constant.

When the source is composed of many frequency components Eq. 3.4 is altered

to give,

VS = Vs1 cos ωs1t+ Vs2 cos ωs2t+ .... (3.7)

Eq. 3.6 will then include terms of the form Vs1Vs2 cos(ωs1 − ωs2)t. These cross-term

signals will lie in the same band as the IF signal and will confuse the recovery of the

source signal frequency and voltage. Vlo is set significantly higher than the source

voltage to suppress the cross-term signals.

Radiation from an astronomical source can be represented as a series of frequency

components higher and lower than the LO frequency. Source frequencies lower than

the LO frequency lie in the lower sideband (LSB); similarly, source frequencies higher

than the LO frequency lie in the upper sideband (USB) (Fig. 3.3). This presents

some complications in extracting the original source signal as both the upper and

lower sideband frequencies are mixed with the LO frequency. For example, input

signals at ν = 100.1 GHz and ν = 99.9 GHz mixed with a 100 GHz LO frequency

will each produce an IF at 100 MHz. The LSB components produce an IF spectrum

which is a mirror image of the input signal. This can produce an IF output where

it is not possible to determine which band the signal is originally from, or, if it is

a combination of both. A single sideband filter can be employed to avoid this. In

RxB3 this filter is incorporated into the LO injection system. This mode, referred

to as single sideband (SSB), was chosen for these observations.

The signal is processed using the Digital Autocorrelation Spectrometer (DAS)

(Fig. 3.4), which ultimately sets the spectral resolution and bandwidth of the obser-

vations. Each mixer signal is connected to 8 down-converter modules (DCM), which

split the signal into 8 subbands each 160 MHz wide. Typically only 125 MHz of

each is used which produces an output from the subbands that overlaps in frequency

space. The DCM’s are electronically connected to the 2048 DAS channels under

software control in a configuration which is selectable by the observer. The set of

DAS channels connected to each subband measures the autocorrelation of the signal,
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Figure 3.3: A diagram of the resulting IF spectrum when the upper and
lower SB source frequencies are measured(Lesurf 2005).

the Fourier transform of which is the spectrum.

Each channel in the DAS is set to sample the autocorrelation at fixed, regular time

intervals. When all 2048 channels are connected to one subband the autocorrelation

is sampled over a long time period producing a resolution of 78 kHz for a bandwidth

of 125 MHz. This is the highest spectral resolution and only one polarization can be

measured in this mode. At the opposite extreme, 128 DAS channels are connected

to each of the 16 DAS subbands. This results in a shorter sampling time, giving

a resolution of 1.25 MHz and a total bandwidth of 920 MHz in each polarization.

When both polarizations are utilized, two spectra are produced for each integration

maximizing the observing efficiency (Matthews et al. 2004). The output to the

telescope user is a spectrum that is contiguous in channel space but overlaps in

frequency space. Analysis software allows the user to merge the spectra between

subbands and average the polarizations if two mixers are used.

The observations conducted for this project required a large bandwidth to be
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covered (∼20 GHz). The DAS was configured for its maximum bandwidth (920 MHz)

and lowest resolution (1.25 MHz) using dual mixers to ensure that a minimal amount

of tunings were required.

3.2 Observations

Observations of the CO J=3–2 transition in Neptune were carried out on a series

of dates in 2003 and 2004 (Table 3.1). The stratospheric emission core was eas-

ily measured at the selected spectral resolution. The tropospheric absorption fea-

ture, however, is strongly pressure-broadened and covers a large frequency range (∼
20 GHz). This makes it significantly more difficult to measure with traditional het-

erodyne techniques. The line was therefore measured in 25 discrete segments with

tunings spaced by 850 MHz, a resolution of 1.25 MHz, and a frequency overlap at

each tuning of approximately 8%. The overlap between tunings was necessary to

provide an indication of baseline continuity.

The receiver was operated in SSB mode with dual SIS mixers simultaneously

detecting orthogonally-polarized radiation. This produced two spectra for each in-

tegration which were averaged during the processing stage. The target was observed

using a standard beam-switching procedure with a beam throw of 60′′ in azimuth.

Calibration was performed using the standard hot/cold load method (Ulich and Haas

1976, Kutner and Ulich 1981). Frequent (approximately every 30 minutes) point-

ing checks were performed to maintain the pointing accuracy necessary for these

measurements (within 1–2′′). At each tuning frequency, 5-minute integrations were

performed; many tunings were repeated more than once. Total integration times for

each tuning therefore varied from 5 to 20 minutes.

The measured CO feature is shown in Fig. 3.5, with the tuning bands indicated

by different colours. Baseline continuity was crucial in order to avoid post-processing

baseline adjustments which would severely limit the accuracy of the data set. For-

tunately, the instrument calibration stability was such that the data quality was

excellent and no such adjustments were required.
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Table 3.1: Summary of B3 observations.

Tuning Date of Int. Tuning Date of Int.

Frequency Observations Time Frequency Observations Time

(GHz) (UT) (min) (GHz) (UT) (min)

YYYY/MM/DY YYYY/MM/DY

335.60 2004/06/07 5 346.65 2003/10/15 5

2004/05/26 5

336.45 2004/06/07 5 347.50 2003/10/15 5

2004/05/26 5

337.30 2004/06/07 5 348.35 2003/10/15 5

2004/05/26 5

338.15 2004/06/07 5 349.20 2003/10/15 5

2004/05/26 5

339.00 2004/05/24 10 350.05 2003/10/15 5

2004/06/07 5 2004/05/26 5

339.85 2004/05/24 10 350.90 2003/10/15 5

2004/06/07 5 2004/05/26 5

340.70 2004/05/24 10 351.75 2003/10/15 5

2004/06/07 5 2004/05/26 5

341.55 2004/06/07 5 352.60 2003/10/16 5

2004/05/26 5

342.40 2003/10/16 5 353.45 2003/10/16 5

2004/05/26 5 2004/05/26 5

2004/06/07 5

69



Table 3.1: continued...

Tuning Date of Int. Tuning Date of Int.

Frequency Observations Time Frequency Observations Time

(GHz) (UT) (min) (GHz) (UT) (min)

YYYY/MM/DY YYYY/MM/DY

343.25 2003/10/16 5 354.30 2003/10/16 5

2004/05/26 5 2004/05/26 5

2004/06/07 5

344.10 2003/10/16 5 355.15 2003/10/16 5

2004/05/26 5 2004/05/26 5

2004/06/07 5

344.95 2003/10/16 5 356.00 2003/10/16 5

2004/05/26 5 2004/05/26 5

2004/06/07 5

345.80 2003/10/15 5

2003/10/16 5

2004/05/26 5

2004/06/07 5
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Figure 3.5: The antenna temperature spectra of Neptune, measured using
receiver B3 at the JCMT. Resolution, 1.25 MHz; band overlap, 70 MHz;
bandwidth, 920 MHz. Each of the 25 tunings are indicated by a different
colour.
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3.3 Data analysis

The observations resulted in spectra calibrated in antenna temperature, T ?
A, and cor-

rected for the Earth’s atmospheric extinction and various telescope losses (spillover

of the beam around the primary and secondary mirrors, imperfect reflectivity, scat-

tering from the secondary mirror support structure). The model produces intensities

which can be expressed as brightness temperature TB through the Planck function.

In order to compare the two, the measured spectrum was translated from antenna

temperature to brightness temperature as follows,

TB = T ?
A

1

Beff

[
1

(1− 2−(θs/Bw)2)

]
, (3.8)

which describes the coupling of the telescope beam to the source (Marten et al.

1993). The term in square brackets describes the coupling of an ideal Gaussian

beam of width Bw (full width at half maximum) to a source of angular diameter θs;

the beam efficiency Beff is a known property of the telescope and characterizes the

departure of the beam from the ideal Gaussian shape. The large frequency coverage

of these observations required that Bw be parameterized as a function of frequency.

A straight line was fit to the measured beam width at a variety of frequencies across

this range,

Bw = −0.0396ν + 27.524, (3.9)

where ν is the observation frequency in GHz. The main beam efficiency (Beff ) at

345 GHz is 0.62±0.03 (Avery 1998).

Previous measurements were consistent with uniform CO profiles with abun-

dances of approximately 1.2x10−6 (Marten et al. 1993). A model spectrum, calcu-

lated for a uniform profile with this abundance value, is compared with the measured

spectrum in Fig. 3.6. The agreement between the shapes of the two spectra is vis-

ibly poor in the wings of the line, indicating that a uniform-abundance profile is

inappropriate.

The inadequacy of the uniform CO profile fit required that the contribution

functions (Fig. 2.12) be examined to determine which atmospheric pressure levels

72



NEPTUNE DATA AND MODEL
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Figure 3.6: The measured Neptune spectrum (red) overlaid with a model
corresponding to a constant CO abundance of 1.2x10−6 (black).

contribute most significantly to the absorption and emission components of the line.

As the frequency displacement from line centre increases the contribution peaks at

higher pressures. Examination of the width and overlap of the contribution functions

constrained the number of parameters that could be fit using the measured spectrum.

The red and violet curves of Fig. 2.12 show the least amount of overlap thereby

allowing the upper stratosphere and troposphere CO values to be fit independently

of each other. The contribution functions, calculated at frequencies that lie between

345.8 GHz (red curve) and 336.1 GHz (violet curve), show significant overlap allowing

only an additional two parameters to be fit independently. These two parameters

were chosen to be the top and bottom pressure levels of the transition region between

the stratospheric and tropospheric CO.

A variable CO profile with constant values in the troposphere and in the upper

stratosphere, and a transition region between them in which the CO abundance

varied logarithmically with pressure was therefore adopted for the present analysis.

The best-fit values of the four parameters (two abundances and the top and bottom
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Figure 3.7: The measured Neptune spectrum (red) overlaid with the best-
fit model (black). This model was produced using the CO profile shown in
Fig. 3.8.

pressures of the transition region) were determined by the least-squares method in

two stages in which the emission and the absorption components of the line were

considered independently. The measured and modelled spectra are compared in

Fig. 3.7. The drop off in the far-wings of the measured spectrum (red curve; Fig. 3.7)

is likely due to calibration uncertainty and is taken into account when determining

the uncertainty, due to the beam efficiency parameter (Beff ), in the CO profile.

The best-fit CO profile corresponding to the model in Fig. 3.7 is shown in Fig. 3.8.

The best-fit abundances were found to be 0.8x10−6 in the troposphere and lower

stratosphere, increasing with altitude to 1.9x10−6 in the upper stratosphere.

To determine the error on the derived CO profile, the errors associated with

each model input parameter were considered. This involved the following model

components:

1. The HITRAN CO line parameters (Table 2.1),

2. The mole ratios of H2, He, and CH4 (§2.3.3), and
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Figure 3.8: The model temperature profile (dashed) and the CO profile
(solid) required to produce the best-fit model of Fig. 3.7.

3. The temperature profile (§2.3.1).

This analysis produced a best-fit CO profile to the data, using the same method as

for the nominal model, for each of the upper and lower ranges of the parameters listed

above. The errors in both the HITRAN line parameters and the mole ratios (H2,

He, CH4) produced negligible differences from the nominal result. The temperature

profile, however, has many regions in which the temperature is not well constrained

(Fig.1.4). Applying these temperature ranges to the analysis resulted in significant

changes to the derived CO abundance profile.

To determine the effect that variations in the temperature profile had on the

derived CO abundance the errors on the temperature in each region of the atmosphere

were considered. The temperatures, at pressures above 2 mbar, are well constrained

by disk-averaged mid- and far-infrared spectra for which disk-averaged temperature

profiles can be fit with an uncertainty of approximately ±2 K (G.S. Orton, personal

communication). At pressures lower than 2 mbar, however, the temperatures are

not well constrained, with a value of 168 ± 20 K (Bishop et al. 1998, Roques et al.
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1994). The nominal profile uses a value of 158 K, as used in Marten et al. (1993),

and within the error of the value quoted above. The error in the derived CO profile

has been estimated using four different temperature profiles: the first two profiles

were chosen to deviate from the nominal profile by ±2 K, while the third and fourth

profiles use the extreme values of 148 K and 188 K above 2 mbar.

The best-fit CO profiles corresponding to the nominal and ±2K temperature

profiles are shown in Fig. 3.9. It can been seen that the lower atmosphere CO abun-

dance changes along with the pressure levels of the transition region, but the upper

atmosphere CO abundance is unaffected. The calculated spectra corresponding to

these temperature profiles are shown in Fig. 3.10. The colder temperature profile

produces a better fit to the data than the nominal and warmer temperature profiles.

This may indicate that temperatures in the troposphere are better represented by a

smaller increase over the Voyager radio occultation profile (4 - 8 K rather than 6 -

10 K). The best-fit CO profiles corresponding to the nominal, 148 K, and 188 K tem-

perature profiles are shown in Fig. 3.11. While the upper atmosphere CO abundance

is strongly dependent on the assumed temperature, the transition region moves by

less than 1 mbar from the nominal result and the lower atmosphere CO abundance

is completely unaffected.

The conversion of the data from antenna temperature to brightness temperature

was also a source of error in the derived CO profile. To account for the uncertainty in

the beam efficiency, a best-fit CO profile was determined for each spectrum resulting

from low and high beam efficiencies of 0.59 and 0.65 respectively. The best-fit CO

profiles resulting from the beam efficiency error calculation are shown in Fig. 3.12.

A beam efficiency of 0.59 produces a better fit to the data than 0.62 and 0.65. Beam

efficiency calculations, using Uranus as the reference source, gave no indication that

a lower beam efficiency should be used in this present analysis.
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Figure 3.9: The errors on the atmospheric profile (dashed curves) and
their effect on the best-fit CO profile (solid curves). Nominal (black), −2K
(red), +2K (blue).
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Figure 3.10: The measured spectrum (green) overlaid with the model fits
for the atmospheric profiles of Fig. 3.9.
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BEST-FIT CO PROFILES CORRESPONDING TO T(P) ERROR
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Figure 3.11: The errors on the atmospheric profile (dashed curves) and
their effect on the best-fit CO profile (solid curves). Nominal (black), upper
atmosphere T=148 K (blue), upper atmosphere T=188 K (red).
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Figure 3.12: The best-fit CO profiles that result from brightness temper-
ature calibration using beam efficiencies of 0.59 (blue) and 0.65 (red).
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3.4 Summary

On the basis of the calculations performed in §3.3 the CO abundances are estimated

to be 0.8± 0.2x10−6 and 1.9+0.5
−0.3x10

−6 in the lower and upper regions respectively.
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Chapter 4

Fourier Transform Spectroscopy

Observations of Neptune

A Fourier Transform Spectrometer (FTS), of which the Michelson interferometer

is a simple example, measures the two-beam interference pattern of the radiation

from a source as the path difference is continuously varied, the Fourier transform

of which is the spectrum. One of the main advantages of a FTS is that all of

the radiation over an entire spectral region is used at all times in constructing the

spectrum of the source; this is called the multiplex advantage. The spectral resolution

of a FTS is however significantly lower than for a heterodyne receiver. Fig. 4.1 shows

the tropospheric CO absorption line in Neptune convolved to a spectral resolution

of 1.8 GHz, which is the resolution used for the measurements presented in this

chapter. The broad spectral range of this absorption line makes it ideally suited

to observation using a FTS. The intermediate spectral resolution of this type of

spectrometer, however, does not allow a measurement of the stratospheric emission.

Observations using a FTS and can therefore only be used to determine the lower

atmosphere CO abundance in Neptune.

The J=3–2 CO line in Neptune was measured in 1993 using a polarizing FTS by

Naylor et al. (1994) (Fig. 1.8). The large sinusoidal modulation in the data (solid

curve, Fig. 1.8) was the result of multiple reflections from parallel surfaces within

the detector optics; this limited the precision in the derived CO abundance. It was

therefore decided that a repeat of this measurement, with improved instrumentation,

was required to improve upon the 1993 results. The following were implemented for

this purpose:
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Figure 4.1: The Neptune CO line model, for a uniform abundance of
1x10−6, convolved to the FTS resolution (1.8 GHz).

1. A new detector with optics designed to minimize the effects of multiple reflec-

tions,

2. A new FTS, in the Mach-Zehnder (MZ) design and,

3. A data reduction pipeline, which allowed for correction due to the Earth’s

atmospheric transmission.

A successful observing run, using this new equipment, was undertaken in September

2002. The 1993 data analysis was also revisited because of the development of the

data reduction pipeline.

This chapter is divided into two parts: the 2002 MZ FTS observations and the re-

analysis of the 1993 data. The 2002 observations include a discussion of the operation

and calibration of the MZ FTS, the observations, data analysis, and results. The

1993 re-analysis includes a brief summary of the operation of the polarizing FTS

and the observations. A discussion of the re-analysis using Mars as the calibration

source follows. The chapter ends with a summary of the results from the two data
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sets.

4.1 2002 FTS observations

The FTS used for these observations was a visiting instrument at the JCMT. The

entirety of the setup, maintenance, data collection and analysis rests on the vis-

iting instrument team. This requires the observer to have extensive knowledge of

the operation of the instrument to ensure that the observations and analysis are

performed correctly. The JAC staff interacts with the visiting instrument team to

provide telescope support during the observing run.

4.1.1 The Mach-Zehnder FTS

The Mach-Zehnder (MZ) FTS was designed and built at the University of Lethbridge

by the Astronomical Instrumentation Group (Naylor et al. 2003). The FTS uses a

Mach-Zehnder design employing two identical intensity beamsplitters allowing access

to all four interferometer ports (two input and output ports). This design creates a

differential instrument; one input port directed on the astronomical source and the

other on a background sky position allowing instantaneous removal of the Earth’s

atmospheric emission. The signal from the astronomical source is reflected through

the telescope optics to the tertiary mirror (Fig. 1.10). This mirror directs the radi-

ation through the elevation bearing to the right Nasmyth platform where the FTS

is located during an observing run (Fig. 4.2). An optical schematic of the FTS is

shown in Fig. 4.3.

During the commissioning run of the MZ FTS (June 2001), it was discovered

that the elevation bearing was, unfortunately, too small to allow dual beams to pass.

This required a change in the observing strategy; only one port could be directed on

the sky (input port 2, Fig. 4.3). A constant temperature calibration source (liquid

nitrogen) was placed in input port 1. The Earth’s atmospheric emission was therefore

not instantaneously removed during the source observations.

The converging beam from the telescope enters through input port 2 and is
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Figure 4.2: The Mach-Zehnder FTS on the right Nasmyth platform at
the JCMT.

brought to a focus at the first beamsplitter (BS1) by two flat mirrors (M1 and M2).

The beamsplitters (BS1 and BS2) are broadband intensity beamsplitters which ex-

hibit equal transmission and reflection in addition to high and uniform beamsplitter

efficiency over a broad spectral range (Ade et al. 1999). These properties give sig-

nificant advantages over polarizing and dielectric beamsplitters. For example, both

polarizations of the source radiation are processed in the MZ interferometer making

it twice as efficient as a polarizing interferometer. Low beamsplitter efficiency and

limited spectral range, known to plague dielectric beamsplitters, are not apparent.

After the radiation encounters the first beamsplitter, where half of the radiation is

transmitted and the other half reflected, it then travels to the powered mirrors (M3),

which collimate the beam. The four mirrors on the moving stage (RT) generate the

path difference between the beams in the instrument. The translation stage travels

a maximum of 30 cm which provides a maximum optical path difference between the

interfering beams of 120 cm. The resolution of a spectrometer ∆ν̃ varies inversely
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Figure 4.3: The optical schematic of the Mach-Zehnder FTS (Naylor
et al. 2003). There are two errors in this diagram: the incoming beam from
telescope is converging, and the second focus is at field lens in the detector,
not BS2.
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with the maximum optical path difference L and is given by,

∆ν̃ =
1.21

2L
, (4.1)

(Bell 1972). The maximum resolution achievable by this FTS is therefore ∆ν =

150 MHz.

The FTS was designed to allow spectra to be obtained as the travelling stage

scanned in one direction and as the stage scanned in the reverse direction; these

scans were labelled UP and DOWN and were treated separately during the analysis

process. It was advantageous to be able obtain data in both scan directions because

it increased the efficiency of the FTS.

After passing through the moving stage the beam reflects from the second set of

powered mirrors (M4) that focus the radiation onto the second beamsplitter (BS2).

The MZ FTS has two output ports; however, only one of the output ports was used

for these measurements since only one detector was available.

Naylor et al. (1999) provide a thorough description of the design and operation

of the detector used with the FTS; a brief summary is provided here. Radiation

enters the detector dewar through a polypropylene window where it encounters an

edge filter which efficiently blocks short wavelength radiation (Fig. 4.4). The next

optical element is an adjustable iris which allows the optical beam to be matched

to the diffraction-limited telescope beam. This element is manually adjustable and

has set values for each of the filter passbands. The beam is then directed to one of

the 6 filters in the filter wheel. These filters have passbands that are matched to the

atmospheric windows accessible from the telescope (Fig. 1.11). Subsequently, the

radiation is passed into the detector unit which concentrates the radiation onto the

bolometer element. These observations required the use of the 850µm filter and an

aperture of 50 mm to match the diffraction limit of the telescope beam.

Fig. 4.4 shows two detectors, but only one is used. The detector contains a sin-

gle element bolometer that consists of a small semiconductor element mounted on

a dielectric substrate. The dielectric serves as the absorber of the incident radia-

tion while the semiconductor element serves as the thermometer that measures the
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Figure 4.4: The optical schematic of the FTS detector system (Naylor
et al. 1999).
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temperature fluctuations of the substrate. In order to suppress thermal noise which

would otherwise mask these temperature fluctuations, the bolometer is cooled to

0.3 K using 3He/4He.

4.1.2 Calibration of FTS data

The output from the detector contains a record of the radiation intensity versus

path difference, referred to as an interferogram. The signal at the detector output

contains many components in addition to the source spectrum that can only be

removed during the analysis stage using data from both the Earth’s atmospheric

emission and calibration source observations.

The signal received at the detector is derived by defining the signals in port 1 and

2. The emission due to a source (astronomical, the Earth’s atmosphere, instrument)

is represented using the source function J(ν) (§2.2.1). Port 1 continuously views a

liquid nitrogen (LN2) calibration source. The signal in this port is given by,

Sport1 = G(JLN2
ΩbηI + JIΩb +O1), (4.2)

where G is the instrument responsivity, JLN2
is the emission from the LN2, Ωb is the

solid angle of the JCMT beam, ηI is the transmission of the instrument, JI is the

emission from the instrument, and O1 is an offset term.

Port 2 sequentially views the astronomical source, calibration source, and the

terrestrial atmosphere. When port 2 views an astronomical source the signal in the

port is given by,

Ssourceport2 = G(JSΩSe
−τAηI + JAΩbηI + JIΩb +O2), (4.3)

where JS is the emission spectrum from the astronomical source, ΩS is the solid

angle of the source, τ is the zenith optical depth of the Earth’s atmosphere, A is the

airmass of the observation, JA is the emission from the atmosphere, and O2 is an

offset term. When port 2 views only the Earth’s atmosphere the signal in the port

is given by,

Sskyport2 = G(JAΩbηI + JIΩb +O2). (4.4)

87



The FTS is a differential instrument; the signals received through port 1 and 2 are

differenced in the interferometric measurement. The signal received by the detector

when the source is in port 2 is therefore given by,

∆Ssource = Ssourceport2 − Sport1

= G(JSΩSe
−τAηI + JAΩbηI − JLN2

ΩbηI +O2 −O1), (4.5)

and when the background sky is in port 2,

∆Ssky = Sskyport2 − Sport1

= G(JAΩbηI − JLN2
ΩbηI +O2 −O1). (4.6)

The emission from the LN2 and offset terms are constant and can be removed by

subtraction of the sky signal from the source signal during the data analysis process.

The atmospheric emission (JA) is a variable quantity that can change significantly

during the observation period. To guarantee that the term JAΩbηI is effectively

removed from the source observations, source and atmospheric observations must be

interleaved in small time intervals and the atmospheric emission must be relatively

stable during the observing cycle. The observing procedure is described in §4.1.3.
To extract the source signal JS from the source observations (Eq. 4.5) the fol-

lowing steps must be taken during the data analysis. Subtraction of the sky signal

(Eq. 4.6) from the source signal (Eq. 4.5) gives the following source signal after

subtraction,

Ssource = ∆Ssource −∆Ssky = G(JSΩSe
−τAηI). (4.7)

Eq. 4.7 contains terms due to the Earth’s atmospheric transmittance and the instru-

ment. Observations of an astronomical source of known properties are required so

that these terms can be removed from the source observations. A ratio of the source

against the calibrator gives,

Ssource
Scal

=
G(JSΩSe

−τSASηI)

G(JCΩCe−τCACηI)

=
JSΩSe

−τSAS

JCΩCe−τCAC
, (4.8)
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Table 4.1: Coordinates and angular diameters of Neptune and Uranus for
September 30, 2002.

Source Right Declination Angular

Ascension Diameter

HR MN
◦ ′ ′′

Neptune 20 42 -18 07 2.310

Uranus 21 51 -13 46 3.659

from which the source spectrum JS can be recovered. In §2.5 the criteria for calibrator
selection were discussed and Uranus and Mars were determined to be the best targets.

Each set of observations with the FTS was accompanied with observations of one or

both of these calibration sources.

4.1.3 Observations

The MZ FTS observations of Neptune were performed on September 30, 2002.

Uranus was selected as the calibration source because it had similar rise and set

times as Neptune and the two objects were separated in the sky by 17◦. The coor-

dinates and angular diameters of Neptune and Uranus for the date of observation

are given in Table 4.1. The FTS was operated at a low resolution (1.8 GHz) be-

cause of the low spectral content of the tropospheric CO absorption line in Neptune

(Fig. 4.1). This provided a significant advantage in observing efficiency since low

resolution scans were short (∼10 s) compared with the scans at maximum resolution

(∼1 min.).

Interferograms were obtained in groups: 5 scans on source (Neptune or Uranus)

followed by 5 scans of the Earth’s atmosphere (sky, hereafter). The telescope pointing

offset for the sky observations was calculated such that each set of sky observations

took place at nominally the same coordinates on the sky as the preceding set of

source observations. This observing pattern was repeated over the entire observing

period with pointing and focus checks interleaved approximately every 30 minutes.
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Table 4.2: FTS observing times of Neptune and Uranus

Source Start Date Start Time End Date End Time

(HST) (HST)

YYYY/MM/DY HR:MN:SS YYYY/MM/DY HR:MN:SS

Neptune 2002/09/30 18:16:38 2002/09/30 21:39:40

Uranus 2002/09/30 21:47:54 2002/10/01 00:52:54

Table 4.2 gives the observing times for the Neptune and Uranus observations. These

observing times include the time for pointing and focus checks, the sky observations,

and the source observations. Approximately half of the time was spent observing

the sky.

4.1.4 Cancellation of atmospheric emission

It was crucial, for effective removal of atmospheric emission from the source ob-

servations, to repeat the observing cycle (see §4.1.3) in short time intervals and to

match the airmass of the sky and source observations. The former was required be-

cause the water vapour content in the atmosphere can very significantly over short

time periods; the latter because the atmospheric emission varies significantly with

airmass.

To determine the required atmospheric stability during each observation cycle

the emission from the Earth’s atmosphere and Neptune were compared. Using the

Neptune model with a lower atmosphere CO abundance of 0.8x10−6 the model flux

of Neptune FN was calculated using the model intensity JN and the solid angle

subtended by Neptune,

FN = JN ∗
π

4
d2
N , (4.9)

where dN is the angular diameter of Neptune, in radians, for the date of obser-

vation. It is conventional to express the flux in units of Janskys where 1 Jy =

1x10−26 Wm−2Hz−1. Fig. 4.5 shows that the CO line depth in Neptune is approxi-
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Figure 4.5: The model Neptune flux calculated using a uniform CO abun-
dance of 0.8x10−6 and an angular diameter of 2.310′′.

mately 5 Jy. In order to measure the shape of the line it was considered necessary

to achieve a precision of 10% of the line depth. The atmospheric emission must

therefore not vary by more than 0.5 Jy between the source and sky observations for

the line to be detected with sufficient precision.

The atmospheric emission, in the 850µm band, was estimated using the ULTRAM

model developed by Chapman (2000). The output from this model is the atmospheric

emission JA as a function of frequency ν, airmass A, and zenith opacity τ . Davis

et al. (1997) showed that τ varies linearly with pwv w at all frequencies,

τ(ν) = τ0(ν) + τ1(ν)w, (4.10)

where τ1 is the opacity per unit of pwv and τ0 is the opacity due to all other absorbing

gases. The model atmospheric emission for a specific pwv, airmass, and frequency

could therefore be interpolated from the ULTRAM output.

Using similar viewing conditions as for the FTS observations, w = 1.0 mm and

A = 1.3, the model atmospheric flux FA was calculated using the ULTRAM atmo-
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Figure 4.6: The model atmospheric flux.

spheric emission intensity JA and the solid angle subtended by the 850µm beam,

FA = JA ∗
[
πB2

w

4ln2

]
, (4.11)

where Bw is the beamwidth in radians at 850µm (Bw
∼= 14′′). The term in the

square brackets results from computing the area of a Gaussian beam. The result

of this calculation is shown in Fig. 4.6. The atmospheric emission at 345.8 GHz is

approximately 44 times larger than the emission at that frequency from Neptune,

indicating that this is a technically challenging measurement to make.

The criterion that the atmospheric emission must vary by less than ±0.5 Jy

during 1 cycle (5 source scans followed by 5 sky scans) corresponds to a pwv stability

criterion of ≤ 0.0007 mm over approximately a 2 minute period. To determine if

the atmospheric stability requirement was met in the 2002 observations the pwv

during the observations was examined. The pwv was calculated with Eq. 1.17 using

the zenith τ225 values as measured by the WVM. The pwv varied between 0.75 and

0.99 mm over the entire Neptune and Uranus observing period (Fig. 4.7).

The pwv values in each source-sky cycle of observations were used to calculate
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Figure 4.7: The pwv during the Neptune and Uranus observations as
measured by the WVM.

the atmospheric stability. The mean pwv during the sky scans was subtracted from

the mean pwv during the source scans to produce the results shown in Fig. 4.8. The

data in each scan direction (UP and DOWN) were treated separately. The dashed

curves in Fig. 4.8 indicate the pwv difference required to meet the emission stability

requirement; only 7% and 3% of the Neptune and Uranus cycles respectively fall

within this range. This indicates that the stability criterion was clearly not met, the

implications of which will be discussed in §4.1.8.

4.1.5 Analysis

The analysis of the FTS data was performed using pipeline software written using

the Interactive Data Language (IDL r©). A schematic of the analysis pipeline is shown

in Fig. 4.9.

UP and DOWN interferograms were produced for each scan of the FTS. These

interferograms were treated separately for the analysis pipeline until step 5. In the

interest of simplicity, the analysis pipeline shows the steps for analyzing only one set
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Figure 4.8: The pwv difference, in each cycle, during the Neptune and
Uranus observations. The pwv differences from the DOWN scans are shown
in (a) and (b) gives the pwv differences for the UP scans.

of data. In reality, steps 1 to 4 were repeated for both the UP and DOWN scans

and at the average stage (step 5) all of the data were combined.

STEP 1: Each interferogram was manually inspected for transients such
as cosmic rays.

When a cosmic ray intercepts the detector it deposits a large amount of energy

causing a spike in the interferogram. Cosmic ray spikes occurred approximately

once in 20 interferograms and were easily removed by linear interpolation between

the data points before and after the transient. Whenever an extremely energetic

cosmic ray intercepted the detector it took many data points for the detector to

recover, resulting in a corrupted interferogram; these files were discarded. Very few

interferograms in the 2002 data set were discarded at this stage.

STEP 2: The interferograms were Fourier transformed to spectra.

The interferogram is a record of the intensity versus path difference produced

by the spectrometer (Fig. 4.10). It is related to the spectrum (intensity versus
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Figure 4.9: Flow chart of the FTS analysis pipeline.
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Figure 4.10: An interferogram from the MZ FTS.

wavenumber) through the Fourier transform,

S(ν̃) = F{i(x)} =
∫ +∞

−∞
i(x)e−j2πν̃xdx, (4.12)

where j =
√
−1, x is the path difference, i(x) is the interferogram, and S(ν̃) is

the spectrum. It is possible to recover i(x) from S(ν̃) through the inverse Fourier

transform,

i(x) = F−1{S(ν̃)} =
∫ +∞

−∞
S(ν̃)ej2πν̃xdν̃. (4.13)

The quantities i(x) and S(ν̃) are referred to as a Fourier transform pair because they

are related through the Fourier transform (i(x) ⇔ S(ν̃)) (Brigham 1974).

The interferogram is not recorded continuously over path length, but in dis-

crete steps of path difference spaced by 32 µm. The continuous Fourier transform

(Eq. 4.12) must therefore be converted to a discrete Fourier transform to compute the

spectrum from the discrete interferogram. The discrete Fourier transform is given

by the following relation,

S
(

n

NX

)
≡

N−1∑

k=0

i(kX)e−j2πnk/N n = 0, 1, ..., N − 1, (4.14)
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where n and k are integers, N is the total number of samples in the interferogram,

and X is the path difference sample interval. The computation time for Eq. 4.14 is

proportional to N 2 and requires excessive machine time for large values of N, indicat-

ing that wide application of this method was historically not practical. Development

of the fast Fourier transform algorithm (FFT) by Cooley and Tukey (1965) reduced

the number of computations to Nlog2N (Brigham 1974). This algorithm was used

to compute the Fourier transform of the FTS data.

The Fourier transform integral (Eq. 4.12) has infinite limits for the optical path

difference. In reality, the spectrometer has a finite optical path length. It is therefore

necessary to compare the transform of a monochromatic source using both infinite

and finite limits to determine the effect this will have on the computed spectrum. The

spectrum of the monochromatic source is represented using the Dirac delta function

(δ(ν̃)) at ν̃ = 0. Employing the properties of the delta function the interferogram is

given by,

i(x) =
∫ +∞

−∞
δ(ν̃)ej2πν̃xdν̃

= ej2π(0)x

= 1, (4.15)

which indicates that S(ν̃) = δ(ν̃) and i(x) = 1 are a Fourier transform pair (1 ⇔ δ(ν̃))

(Brigham 1974).

If the spectrometer can only scan from x = −L to x = L, a different spectrum is

produced,

S(ν̃) =
∫ +L

−L
1 · e−j2πν̃xdx

= 2L sinc(2πν̃L), (4.16)

where the sinc function is given by sinx
x

. The recovered spectrum has changed from

a delta function at ν̃ = 0 to a sinc function centred at ν̃ = 0 (Fig. 4.11). Eq. 4.16

is called the instrument line shape function (ILS). The result of the finite limits of

the spectrometer is to spread the energy over a finite frequency width and produce

sidelobes that drop approximately 22% below zero (Bell 1972).
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COMPARISON OF SPECTRUM FOR INFINITE AND FINITE PATH LENGTH
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Figure 4.11: The spectrum that results from a monochromatic source
with interferogram i(x) = 1 with integration over infinite limits (solid) and
finite limits (dashed).

A process called apodization is applied to the interferogram before transformation

to reduce the sidelobes. This involves multiplying the interferogram by an apodizing

function. Apodizing functions are constructed so that the sidelobes in the resultant

spectrum are reduced. A major drawback of apodization is that the FWHM of the

peak intensity in the spectrum becomes broader, thereby reducing the resolution of

the data being apodized. There are many apodization functions that reduce the

sidelobes and resolution by various amounts. It was necessary, for this analysis, to

reduce the sinusoidal modulation in the data as much as possible. This required

an apodization function that significantly reduced the sidelobes in the ILS. The

apodizing function chosen for the FTS analysis was therefore the modified Blackman-

Harris function given by,

A(x) = 0.355766 + 0.487395 cos
(
πx

L

)
+

0.144234 cos
(
2πx

L

)
+
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COMPARISON OF SPECTRUM WITH AND WITHOUT APODIZATION
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Figure 4.12: The spectrum that results from Fourier transforming i(x) =
1 over finite limits (solid). The spectrum that results from Fourier trans-
forming i(x) = 1 multiplied by Eq. 4.17 over finite limits (dashed).

0.012605 cos
(
3πx

L

)
, (4.17)

(Learner et al. 1995). This function was added to the suite of apodizing functions

available in the pipeline after a review of the literature by Tahić (2004). Multipli-

cation of this function by i(x) = 1, and transforming, gives the following apodized

instrument line shape,

S(ν̃) =
2L sinc(2πν̃L)(3.201894− 1.134000ν̃2L2 + 0.095616ν̃4L4)

(1− 4ν̃2L2)(1− ν̃2L2)(9− 4ν̃2L2)
. (4.18)

Fig. 4.12 compares the result of transforming i(x) = 1 over finite limits with and

without apodization. Eq. 4.18 produces a broader central peak, by a factor of 2.24,

but has minimal sidelobes. By applying this function to the data the resolution is

degraded from 1.8 GHz to 4 GHz.

Phase errors in the interferogram will corrupt the spectrum and must therefore

be removed before transformation. The interferogram, in the ideal case, is a sym-

metric function of the path difference. The spectrum is calculated using the Fourier
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transform over a finite path difference,

S(ν̃) =
∫ +L

−L
i(x)e−j2πν̃xdx. (4.19)

Using Euler’s equation, Eq. 4.19 is rewritten as,

S(ν̃) =
∫ +L

−L
i(x) cos(2πν̃x)dx− j

∫ +L

−L
i(x) sin(2πν̃x)dx. (4.20)

The sine function is odd and i(x), in the ideal case, is even, indicating that the

second term of Eq. 4.20 is zero. The resulting spectrum is a real function of the

form,

S(ν̃) =
∫ +L

−L
i(x) cos(2πν̃x)dx. (4.21)

In actuality, the interferogram is usually asymmetric. The asymmetry results

from not precisely sampling the zero path difference point and misalignments in the

instrument. The asymmetry of the interferogram causes the second term of Eq. 4.20

to be non-zero. The spectrum that results from this transformation has real and

imaginary parts,

S(ν̃) = Re(ν̃) + jIm(ν̃). (4.22)

An example of the real and imaginary output from Fourier transforming the inter-

ferogram in Fig. 4.10 is shown in Fig. 4.13. The amplitude |S(ν̃)| and phase φ(ν̃) of

the transformation are given by,

|S(ν̃)| =
√
Re(ν̃)2 + Im(ν̃)2, (4.23)

φ(ν̃) = tan−1

[
Im(ν̃)

Re(ν̃)

]
, (4.24)

(Brigham 1974).

When a phase error φ(ν̃) is introduced into the data it has the following effect,

i(x) =
∫ +∞

−∞
S(ν̃)ej[2πν̃x+φ(ν̃)]dν̃

=
∫ +∞

−∞
Sc(ν̃)e

j2πν̃xdν̃, (4.25)

where S(ν̃) is the spectrum that results when there is no phase error and the com-

puted spectrum Sc(ν̃) is given by,

Sc(ν̃) = S(ν̃)ejφ(ν̃). (4.26)
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Figure 4.13: The real (a) and imaginary (b) parts of the transformation
of the interferogram shown in Fig. 4.10.

An example of the phase error inherent in FTS data is shown in Fig. 4.14. The

spectrum corrected for the phase error is found using,

S(ν̃) = Sc(ν̃)e
−jφ(ν̃), (4.27)

(Bell 1972). This phase correction method effectively removes the imaginary com-

ponent of the spectrum. Fig. 4.15 shows the real and imaginary components of the

transformation after phase correction.

The transformation from interferograms to spectra was therefore a three step

process in which:

(a) The interferogram was apodized using the selected apodizing function;

(b) The fast Fourier transform was used to compute the transform of the apodized

interferogram; and,

(c) A phase correction was applied to the real and imaginary parts of the Fourier

transformed interferogram.
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Figure 4.14: The phase error inherent in the interferogram shown in
Fig. 4.10.
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Figure 4.15: The real (a) and imaginary (b) parts of the transformation
after the phase correction is applied.
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This produced a phase corrected, apodized spectrum for each interferogram in the

data set.

STEP 3: The spectra were group-averaged by source.

Before the data were group-averaged each spectrum was assigned airmass and

pwv values to allow correction for the atmospheric transmittance at later stages of

the pipeline. The airmass was assigned to each scan by linear interpolation, in time,

from airmass values recorded approximately every minute while at the telescope. The

pwv was monitored during the observations using the WVM (Fig. 4.7). In 2002, the

τ225 was measured in the telescope line-of-sight approximately every 6 s. The FTS

scans were approximately 10 s in duration indicating that there were at most two

WVM measurements per scan. In most cases there was one measurement per scan,

but in the instance of two measurements per scan the WVM data were averaged and

the average value was assigned to the scan. The τ225 values were converted to pwv

using Eq. 1.17.

The sources were observed in a cycle of 5 scans on source, followed by 5 scans

on a sky position. There were a total of 54 Neptune cycles followed by 53 Uranus

cycles during the observing period. The spectra at this stage were group-averaged

by source to produce one spectrum for each source in each cycle of the observations,

Ni =

∑j=n
j=1 Nij

n
i = 1, 2, ..., 54 (4.28)

NBi =

∑j=n
j=1 NBij

n
i = 1, 2, ..., 54 (4.29)

Ui =

∑j=n
j=1 Uij

n
i = 1, 2, ..., 53 (4.30)

UBi =

∑j=n
j=1 UBij

n
i = 1, 2, ..., 53, (4.31)

where Ni, NBi, Ui, UBi are respectively, for cycle i, the averaged Neptune spectra,

the averaged sky spectra for Neptune, the averaged Uranus spectra, and the averaged

sky spectra for Uranus; Nij, NBij, Uij, UBij are the jth Neptune, Neptune sky,

Uranus, and Uranus sky spectra in cycle i; and n is the number of spectra for

each source in the cycle (n ≤ 5). The error in each grouping was calculated and
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propagated through the analysis procedure to assist in statistically filtering out data

of poor quality. The group error was determined using the standard deviation in the

mean given by,

δNi =

√√√√√ 1

n(n− 1)

j=n∑

j=1

(Nij −Ni)2 i = 1, 2, ..., 54 (4.32)

δNBi =

√√√√√ 1

n(n− 1)

j=n∑

j=1

(NBij −NBi)2 i = 1, 2, ..., 54 (4.33)

δUi =

√√√√√ 1

n(n− 1)

j=n∑

j=1

(Uij − Ui)2 i = 1, 2, ..., 53 (4.34)

δUBi =

√√√√√ 1

n(n− 1)

j=n∑

j=1

(UBij − UBi)2 i = 1, 2, ..., 53, (4.35)

The average pwv and airmass for each cycle of Eqs. 4.28, 4.29, 4.30, and 4.31 were

calculated and assigned to each group averaged spectrum.

STEP 4: The sky spectra were subtracted from the source spectra.

This step removed the Earth’s atmospheric sky emission JA from the source

spectra (§4.1.4). Using the procedure described by Eq. 4.7 the sky spectrum was

subtracted from the source spectrum in each cycle,

Ni = Ni −NBi i = 1, 2, ..., 54 (4.36)

Ui = Ui − UBi i = 1, 2, ..., 53, (4.37)

where Ni and Ui are respectively the Neptune and Uranus sky subtracted spectra in

each cycle i. The errors of the two spectra were added in quadrature to propagate

the error through this stage of the pipeline. The pwv and airmass were propagated

by averaging the values from the two spectra being subtracted.

The atmospheric emission sometimes varied significantly over the 2 minute period

of a cycle, resulting in some negative differences at this stage. An average intensity

was computed for spectral points between 327 and 372 GHz and spectra that had an

average value below zero were removed. Of the Neptune and Uranus spectra, 14%

and 3% were removed respectively.

104



STEP 5: The Neptune and Uranus spectra (both UP and DOWN scans)
were averaged.

The remaining spectra were sorted by the increasing average of their error be-

tween 327 and 372 GHz (UP and DOWN scans included together). A running

average was computed, which involved calculating the average and average error as

spectra were added in order of their increasing error.

The spectra had to be corrected to a mean airmass and pwv before they could be

averaged. This was accomplished using the ULTRAM model of the Earth’s atmo-

spheric transmittance (Chapman (2000); §4.1.4). Each spectrum Si had, therefore,

to be multiplied by a ratio of the Earth’s atmospheric transmittance at an average

pwv and airmass (e−τAVGAAVG) and the Earth’s atmospheric transmittance at the pwv

and airmass (e−τiAi) of the spectrum,

Scorri = Si

(
e−τAVGAAVG

e−τiAi

)
. (4.38)

The average spectra for Neptune and Uranus were then calculated by,

N =

∑n
i=1N

corr
i

n
(4.39)

U =

∑n
i=1 U

corr
i

n
, (4.40)

where N and U are the average spectra of the Neptune and Uranus data respectively,

and n is the number of spectra included in the average. The error in the averaged

spectrum was calculated by adding the errors, from the spectra included in the

average, in quadrature.

A second quality filter was applied to the data at the average step. This was

accomplished by recording the error in the average as spectra were incrementally

added to the average. The average error continued to fall, as spectra were added,

but eventually reached a point where adding new spectra to the average increased

the error in the resultant averaged spectrum. Any files that increased the error in

the averaged spectrum were removed at this point. This resulted in 11% and 9% of

the remaining Neptune and Uranus spectra respectively being removed.

The remaining files were averaged to produce one spectrum for each of Neptune

and Uranus. The pwv and airmass for each of the Neptune and Uranus averages
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Figure 4.16: The Neptune (a) and Uranus (b) spectra corrected to a mean
airmass and pwv (coloured curves). The averaged spectrum for Neptune and
Uranus are shown in black.

were calculated by averaging the pwv and airmass from each of the spectra included

in the average. Fig. 4.16 shows the corrected Neptune and Uranus spectra that were

used in the average. The scatter in the spectra was used as a measure of the error

in the data set, computed using the standard deviation,

δN =

√√√√ 1

n− 1

n∑

i=1

(N corr
i −N)2 (4.41)

δU =

√√√√ 1

n− 1

n∑

i=1

(U corr
i − U)2. (4.42)

STEP 6: The ratio of the Neptune and Uranus spectra was calculated.

Eq. 4.7 contains terms due to the Earth’s atmospheric transmittance and the

instrument. These terms were eliminated by calculating a ratio against Uranus

(Eq. 4.8) and correcting for the atmospheric transmittance in the direction of each

source given by,

RatioN :U =
N

U
∗ e

−τUAU

e−τNAN
. (4.43)
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Figure 4.17: The ratio of Neptune to Uranus with the modified Blackman-
Harris apodization applied (blue) and without (red). The error in the ratio
is shown with the dashed curves.

Fig. 4.17 shows the ratio of Neptune to Uranus with the modified Blackman-Harris

apodization function (Eq. 4.17) applied (dashed curve) and without (solid curve).

The error in the ratio was calculated by propagating the standard deviation deter-

mined at the average stage (δN, δU) using,

δRatioN :U = RatioN :U ∗

√√√√
(
δN

N

)2

+

(
δU

U

)2

. (4.44)

4.1.6 Flux calibration

Using the calibrator model, the source spectrum was derived from the computed

ratio using the following relation, which follows from Eqs. 4.8 and 4.43,

IS = RatioS:C ∗ IC ∗
d2
C

d2
S

, (4.45)

where IC is the model intensity of the calibrator , dC and dS are respectively the

angular diameters of calibrator and source, and IS is the calculated intensity of the
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source. In this situation the calibrator was Uranus and the source was Neptune. The

error was determined using the following relation,

δIS = IS

√√√√
(
δRatioS:C

RatioS:C

)2

+

(
δIC
IC

)2

, (4.46)

where δIC is the error in the calibrator model. This value was determined by calcu-

lating the Uranus model using temperatures profiles of ±2 K from the nominal profile

(§2.5.1). Calculations showed that the error in the Uranus model was insignificant

in comparison to the error in the ratio and it was therefore neglected.

The source intensity IS was converted to brightness temperature TB by inverting

the Planck function,

TB =
hν

kb

[
ln

(
2hν3

c2IS
+ 1

)]−1

, (4.47)

and the error in the brightness temperature δTB was calculated using the following

relation,

δTB = δIS
dTB
dIS

. (4.48)

Fig. 4.18 shows the resultant Neptune brightness temperature spectrum with and

without apodization applied.

4.1.7 Calibration against Mars

The detection of CO in the atmosphere of Uranus by Encrenaz et al. (2004), while this

project was in progress, prompted an analysis of the 2002 Neptune and Uranus data

using Mars as the calibration source. Mars was, unfortunately, not observed during

the 2002 observing run, prompting use of the Mars observations from a different run

in April 2003 for this purpose.

The 2003 Mars observations were taken at the highest resolution of 150 MHz.

At this resolution the scans are ∼60 s in duration; to attain adequate atmospheric

emission removal the observing strategy was to perform one scan on source followed

by one scan on the sky. There were a total of 8 scans on Mars and 8 scans on the

sky in an observing period of 24 minutes. By reducing the resolution of this data set

to 1.8 GHz the integration time on source was reduced to approximately 6 minutes.
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Figure 4.18: The resultant Neptune brightness temperature spectrum
with the modified Blackman-Harris apodization applied (blue) and without
(red). The error in the brightness temperature is shown with the dashed
curves.
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Table 4.3: Coordinates and angular diameter of Mars for April 24, 2003.

Source Right Declination Angular

Ascension Diameter

HR MN
◦ ′ ′′

Mars 20 16 -21 02 8.973

The coordinates and angular diameter of Mars for the date of observation are given

in Table 4.3.

The weather during the Mars observations was dry and stable with pwv values

that ranged between 0.89 and 1.0 mm (Fig. 4.19).

The analysis of the Mars data proceeded in a similar fashion to the analysis

pipeline used for Uranus and Neptune, the only difference being that the Mars data

had to be degraded to the resolution of the Neptune and Uranus data sets. Fig. 4.20

shows the Mars spectra at the average step.

The Neptune and Uranus averages were divided by the Mars average to produce

a ratio of Neptune to Mars RatioN :M and Uranus to Mars RatioU :M . Using the Mars

model (§2.5.3), the Neptune and Uranus spectra were derived from the computed

ratios using Eq. 4.45. The error in the intensity spectra followed as in Eq. 4.46

with the error in the Mars model being ±5% (§2.5.3). The brightness temperature

spectra of Neptune and Uranus and their associated errors were then computed using

Eqs. 4.47 and 4.48 respectively. Figs. 4.21 and 4.22 show the resultant Neptune and

Uranus brightness temperature spectra with and without apodization applied.

4.1.8 Results

The Neptune and Uranus model intensity spectra were convolved with the ILS to

the resolution of the data set,

I(ν) ? S(ν) ≡
∫ +∞

−∞
I(u)S(ν − u)du, (4.49)
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Figure 4.19: The pwv during the 2003 Mars observations as measured by
the WVM.
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Figure 4.20: The Mars spectra corrected to a mean airmass and pwv
(coloured curves). The averaged spectrum for Mars is shown in black.
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Figure 4.21: The resultant Neptune brightness temperature spectrum
with the modified Blackman-Harris apodization applied (blue) and without
(red). The error in the brightness temperature is shown with the dashed
curves.
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Figure 4.22: The resultant Uranus brightness temperature spectrum with
the modified Blackman-Harris apodization applied (blue) and without (red).
The error in the brightness temperature is shown with the dashed curves.

where I(ν) is the model intensity spectrum, and S(ν) is the ILS of the apodization

function; in this case the ILS function was given by Eq. 4.18. The extreme uncer-

tainty associated with the spectra of Neptune and Uranus indicate that a range of

models can be fit to the data. Figs. 4.23 and 4.24 show models of various uniform

CO abundances overlaid on the data.

Comparison of the Neptune data against the models indicates that the CO abun-

dance must be higher than 0.3x10−6 (yellow curve, Fig. 4.23), but the large error

prevents establishing an upper limit. In addition to the significant error in this data

set, the data also exhibit a poor lineshape; the high-frequency and low-frequency

wings could not be fit simultaneously. A CO abundance greater than 0.3x10−6 can

therefore be established using this data set.

For the Uranus data (Fig. 4.24), all of the curves, including the case for no CO,

fit within the error bars of this result. It is therefore not possible constrain the CO

abundance in Uranus from this measurement.
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Figure 4.23: The resultant Neptune brightness temperature spectrum
with modified Blackman-Harris apodization (black). The error in the bright-
ness temperature is shown with the dashed curves. Eight uniform CO abun-
dance models are overlaid: 0 (upper brown), 1x10−7 (red), 2x10−7 (orange),
3x10−7 (yellow), 4x10−7 (green), 4x10−6 (blue), 1x10−5 (violet), and 1x10−4

(lower brown).
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Figure 4.24: The resultant Uranus brightness temperature spectrum with
modified Blackman-Harris apodization (black). The error in the brightness
temperature is shown with the dashed curves. Six uniform CO abundance
models are overlaid: 0 (brown), 5.0x10−8 (red), 1.0x10−7 (orange), 5.0x10−7

(yellow), 2.0x10−6 (green), and 4x10−6 (blue).
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Table 4.4: The measured and expected SNR values. The parameters
used in calculating the expected SNR values for the Neptune, Uranus, and
Mars data are also included. The integration times for Neptune and Uranus
include the time spent observing the source and background sky (time due
to pointing and focus checks was removed). The integration time listed for
Mars results from the reduced resolution.

Source Measured TS tS dS db ∆νS Expected

SNR K hrs ′′ ′′ GHz SNR

Neptune 1.2 80 2.7 2.310 14 1.8 139

Uranus 2.2 81 2.6 3.659 14 1.8 146

Mars 24.4 218 0.1 8.973 14 1.8 1099

The large errors of these data sets prompted a signal-to-noise analysis of the 2002

data. The signal-to-noise ratio (SNR) was determined by dividing the mean signal

between 330 and 375 GHz by the mean noise over the same range. The mean signal

was calculated using the average spectrum while the mean noise was derived from

the standard deviation in the averaged spectra (see Fig. 4.16). The measured SNR

values for the Neptune, Uranus, and Mars data sets are given in Table 4.4.

Observations of the Orion nebula at a resolution of 150 MHz using the MZ FTS

in October 2002 produced excellent results and were used as a reference to calculate

the expected SNR values for the Neptune, Uranus, and Mars observations. The

Orion nebula fills the 14′′ JCMT beam and exhibits the J=3–2 CO line in emission

with a brightness temperature of 21 K. A SNR of 31 was achieved in 25 minutes of

observations. The SNR is defined using the following relation,

SNR =
P

NEP

√
t, (4.50)

where P is the power received in a spectral element ∆ν, NEP is the noise-equivalent-

power, and t is the integration time (Phillips 1988). The NEP is defined as the rms,

full-beam signal power for a SNR of unity in one second. The power received P per

spectral element ∆ν is given by,

P = IAeΩ∆ν, (4.51)
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where I is the intensity of the source, Ae is the effective aperture of the antenna, and

Ω is the solid angle of the source (Kraus 1966). In the Rayleigh-Jeans approximation,

I ∝ T, (4.52)

where T is the brightness temperature of the source. Applying Eq. 4.52 and Ω ∝ d2,

where d is the diameter of the source, to Eq. 4.51 gives,

P ∝ Td2∆ν, (4.53)

and combining Eqs. 4.53 and 4.50 gives,

SNR ∝ Td2∆ν

NEP

√
t. (4.54)

The NEP for the planetary and Orion measurements is assumed to be constant and

the expected SNR for each source was found using,

SNRS =
√
2 SNROr

TS
TOr

∆νS
∆νOr

√
tS
tOr

(
dS
db

)2

, (4.55)

where the variables for each planetary source and the expected SNR are given in

Table 4.4. The
√
2 in Eq. 4.55 accounts for the planetary observations being double-

sided interferograms. In all cases the expected SNR values are significantly higher

(2 orders of magnitude) than the measured values.

If the dominant source of noise in this experiment is the fluctuations in the

atmospheric emission over the two-minute period of a cycle of observations, then this

incomplete cancellation indicates that the signal from the sky observations (Eq. 4.6)

should be altered to give,

∆Ssky = G [(JA + J ′)ΩbηI − JLN2
ΩbηI +O2 −O1] . (4.56)

where JA + J ′ is the atmospheric emission during the source observations plus the

change in the atmospheric emission. Subtracting Eq. 4.56 from Eq. 4.5 gives,

Ssource = GηI(JSΩSe
−τA − J ′Ωb). (4.57)

An estimate of J ′Ωb is necessary to understand why the measured SNR values were

so low.
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In §4.1.4 the airmass values during each source-sky cycle were assumed to be

identical. The fluctuation in the atmospheric emission during a source-sky cycle was

therefore only due to fluctuations in pwv. Fig. 4.25 shows the airmass difference

during each source-sky cycle indicating that imperfect airmass matching cannot be

disregarded. This can occur because the telescope pointing for background scans is

calculated on the basis of the elapsed time for the source scans, and this can vary

slightly from cycle to cycle for various reasons. The variation in the model atmo-

spheric emission at 345.8 GHz was therefore calculated using the pwv and airmass

during each source and sky observation (Fig. 4.26). In §4.1.4 it was shown that the

atmospheric emission could fluctuate by no more than ± 0.5 Jy between source and

sky scans to ensure that Neptune was measured with sufficient precision. Fig. 4.26

shows that only 6% and 2% of the Neptune and Uranus cycles respectively fall within

this range and also provides an estimate of J ′Ωb (Eq. 4.57); values as large as 20 Jy

are indicated with a mean difference of ∼6.5 Jy and a standard deviation of ∼5 Jy.

Fig. 4.5 indicates that the value of JSΩS for Neptune is ∼21 Jy at 345.8 GHz which

is reduced to ∼17 Jy when the atmospheric transmittance (e−τA ∼= 0.8 for Neptune

observing conditions) is applied. The SNR for Neptune should therefore be approx-

imately 3, which is comparable with the measured SNR. Incomplete cancellation of

the atmospheric emission between source and background scans was therefore the

cause of the poor measured SNR.

4.2 Re-analysis of 1993 FTS observations

The re-analysis of the 1993 data was prompted by the following:

1. The development of the data reduction pipeline, which allowed for correction

of the Earth’s atmospheric transmittance;

2. The discovery of CO in Uranus by Encrenaz et al. (2004) indicating that the

Neptune data should be calibrated against a different source; and,

3. The high error in the 2002 results.
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Figure 4.25: The difference in airmass between the source and sky obser-
vations in each cycle of the Neptune and Uranus observations.
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Figure 4.26: The difference in model atmospheric emission at 345.8 GHz
between the source and sky observations in each cycle of the Neptune and
Uranus observations. The atmospheric stability criterion is shown as the
dashed curves.
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For the re-analysis, Mars was chosen as the new calibration source allowing both the

Neptune and Uranus data to be examined for CO absorption.

4.2.1 Polarizing FTS

Previous to the development of the MZ FTS a polarizing FTS, developed and built

at the University of Lethbridge, was in use as a visiting instrument at the JCMT.

The design of the polarizing FTS was based on the two-beam Martin-Puplett inter-

ferometer (Martin and Puplett 1969) which allowed access to two input ports. The

polarizing FTS was mounted on the left Nasmyth platform to utilize the bolometric

facility detector UKT14 (Duncan et al. 1990); at the time there was no detector

system dedicated to FTS use.

The interferometer shown in Fig. 4.27 has its optical components mounted on

2 levels. Components M1, P1, M5, P2 are on the upper level, while the remaining

components are on the lower level. Half of the radiation from port 1 reflects from

the input polarizer P1 down to the concave mirror M2. Radiation entering port

2 reflects from the plane mirror M1 and the orthogonal component of polarization

is transmitted by P1 down to M2. M2 collimates the beam and directs it to the

polarizing beamsplitter BS which has its polarization axis oriented to reflect 50%

and transmit 50% of the incident radiation. The reflected component is directed to

the fixed mirror FM; the transmitted component is sent to the moving mirror MM.

FM and MM are rooftop mirrors oriented to rotate the plane of polarization of the

radiation by 90◦. When the radiation encounters the beamsplitter for the second

time, the opposite effect to the first encounter results (reflected is now transmitted).

The resulting two beams of orthogonal polarization are directed by the plane mirror

M3 to the concave mirror M4 which focuses the beam, after refection from the

plane mirror M5, at the detector. The last component is the analyzer P2, whose

polarization axis combines the two orthogonal beams so that maximum interference

occurs (Naylor et al. 1994).
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Figure 4.27: The optical layout of the polarizing FTS (Naylor et al. 1994).
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4.2.2 Calibration of polarizing FTS data

Input beams for both ports of this FTS were able to pass unobstructed through

the telescope optics, allowing the astronomical source and the background sky to

be viewed simultaneously. This was accomplished by directing one port on the

source and the other port on a nearby sky position (ports separated by 65′′) allowing

instantaneous removal of the Earth’s atmospheric sky emission.

When the astronomical source was in port 1 the signal in that port was given by,

Ssourceport1 = G(JSΩSe
−τAηI + JAΩbηI + JIΩb +O1), (4.58)

and the signal of the sky in port 2 was,

Sskyport2 = G(JAΩbηI + JIΩb +O2). (4.59)

The polarizing FTS was a differential instrument; the signal received by the detector

was the difference of the signal between the two ports given by,

∆SP1
source = Ssourceport1 − Sskyport2

= G(JSΩSe
−τAηI +O1 −O2). (4.60)

The offset terms arise in part from additional optical contributions, and are in

general different for the two ports. The source was therefore alternately viewed

through both ports (a process known as “nodding”). The signal at the detector

when the source was in port 2 and the sky was in port 1 was given by,

∆SP2
source = Sskyport1 − Ssourceport2

= G(−JSΩSe
−τAηI +O1 −O2). (4.61)

The source had to be observed for equal amounts of time, in each port, to guarantee

the offsets in both ports were well monitored. The offset signals O1 and O2 were

removed during the analysis stage through subtraction of Eq. 4.61 from Eq. 4.60 to

give,

Ssource = ∆SP1
source −∆SP2

source = 2GJSΩSe
−τAηI . (4.62)
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Table 4.5: Coordinates and angular diameters of Neptune, Uranus, and
Mars for the 1993 observations.

Source Date Integration Right Declination Angular

(HST) Time Ascension Diameter

MN/DY/YYYY hrs HR MN
◦ ′ ′′

Neptune 05/10/1993 1.0 19 30 -21 05 2.300

Uranus 05/10/1993 0.4 19 35 -22 03 3.690

Mars 05/09/1993 2.0 08 35 +20 30 5.920

An astronomical source of known properties had to be observed to remove the

terms G, e−τA, and ηI (using Eq. 4.8). The original observations were performed

using Uranus as the calibration source, but, fortuitously, data were also taken for

Mars allowing either source (Uranus or Mars) to be used as the calibrator in the

analysis process.

4.2.3 Observations

The observations of Neptune were performed on May 10, 1993. Uranus was the

selected calibration source, because it had similar rise and set times as Neptune and

the two objects were separated in the sky by only 1.5◦. The later discovery of CO

in Uranus by Encrenaz et al. (2004) indicated that a different calibration source was

required for this re-analysis. The Mars observations from May 9, 1993 were therefore

selected. The coordinates and angular diameters of Neptune, Uranus, and Mars for

the date of observation are given in Table 4.5. The polarizing FTS was operated

using the 850µm filter and an aperture of 47 mm.

The observing strategy for the Neptune and Uranus observations was to spend

70% of the observing period on Neptune and 30% on Uranus. Observations were

interleaved between the two sources because of the proximity of Neptune and Uranus

on the sky. The Uranus observations proceeded with three scans of Uranus in port

1 followed by three scans in port 2. The telescope was then moved to Neptune
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for 10 scans of Neptune in port 2 followed by 10 scans in port 1. This procedure

was repeated over the 1.4 hour observing period. A pointing and focus check was

completed half way through the observations.

The observing strategy for Mars was to perform 5 scans of Mars in port 1 followed

by 5 scans in port 2. This cycle was repeated over the 2 hour observing period. A

pointing and focus check was completed half way through the observations.

The Neptune and Uranus data were collected at a low resolution of 1.2 GHz.

Their scans took ∼10 s in comparison to the high resolution (125 MHz) scans of

Mars that took ∼60 s: 264 scans on Neptune and Uranus were completed in 1.4 hrs

where only 78 scans on Mars were completed in 2 hrs. The integration time on Mars

was reduced to 0.4 hrs by reducing the resolution of the data to 1.2 GHz.

The weather during this run was exceptionally dry and stable. In 1993, the pwv

was monitored using the CSO radiometer. This system measured the atmospheric

emission at 225 GHz, every 20 minutes, at a set azimuth on the sky. The pwv was

calculated with Eq. 1.17 using the zenith τ225 values as measured by the radiometer.

The pwv varied between 0.54 and 0.62 mm over the entire Neptune and Uranus

observing period (Fig. 4.28). The weather was even drier for the Mars observing

period, with pwv values between 0.46 and 0.54 mm (Fig. 4.29).

4.2.4 Analysis

The analysis of the 1993 Neptune, Uranus, and Mars data proceeded using the same

steps as described in §4.1.5. The major differences in this analysis procedure were:

1. The data were transformed using the Norton-Beer medium apodization func-

tion given by,

A(x) = 0.26− 0.154838

(
1−

(
x

L

)2
)
+

0.894838

(
1−

(
x

L

)2
)2

, (4.63)

which has the following ILS,

S(ν̃) = 0.26 sinca−
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Figure 4.28: The pwv during the Neptune and Uranus observations.
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Figure 4.29: The pwv during the Mars observations.
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0.154838

(
3(sinca− cos a)

a2

)
+

0.894838

(
−15((1− 3

a2 )sinca+
3
a2 cos a)

a2

)
, (4.64)

where a = 2πν̃L (Norton and Beer 1976). This function reduced the resolution

of the data from 1.2 GHz to 1.8 GHz.

During the original analysis the modified Blackman-Harris function (Eq. 4.17)

had not been developed yet and the Norton-Beer functions were the standard

apodizing functions used in Fourier transform spectroscopy. The function was

not changed during the re-analysis because the Mars data were only available

as spectra; the interferograms could not be located.

2. The subtraction stage involved subtracting the two ports (Eq. 4.62) rather than

subtracting background scans from source scans; this removed the offset terms

O1, O2 from Eqs. 4.60 and 4.61.

3. A statistical filter to remove poor-quality spectra was not applied to this data

set.

At the averaging step (step 5), all the data for Neptune and Uranus were combined

to produce the averages shown in Fig. 4.30. Initial inspection of the raw Mars data

showed that some scans exhibited inconsistent intensities and 2 of the subtractions

were removed to avoid contamination of the final average. The averaged Mars spectra

are shown in Fig. 4.31.

The ratios of Neptune to Mars (RatioN :M) and Uranus to Mars (RatioU :M) were

then computed as in §4.1.5. Fig. 4.32 shows the ratios that result from the analysis.

The error in the ratio was determined by the propagation of the standard deviation

in the averaged data (as in §4.1.5).

4.2.5 Flux calibration

The intensity spectra of Neptune and Uranus were computed as in Eq. 4.45 and then

converted to brightness temperatures using the Planck function (Fig. 4.33). The
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Figure 4.30: The Neptune (a) and Uranus (b) spectra corrected to a mean
airmass and pwv (coloured curves). The averaged spectrum of Neptune and
Uranus are shown in black.
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Figure 4.31: The Mars spectra corrected to a mean airmass and pwv
(coloured curves). The averaged spectrum of Mars is shown in black.
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Figure 4.32: (a) The ratio of N:M (solid) along with the error on the
derived result (dashed); (b) The ratio of U:M (solid) along with the error on
the derived result (dashed).

error computed at the average stage was propagated using Eqs. 4.44, 4.46, and 4.48.

4.2.6 Results

The error in the 1993 results is significantly less than in the 2002 data. The lower

error can be attributed to the instantaneous removal of atmospheric emission produc-

ing less scatter in the spectra at the average step. The remaining error in the results

(Neptune and Uranus) and the sinusoidal modulation (channel fringing) in the data

still make computing a best-fit model extremely difficult. A range of models was

therefore produced for comparison against the data. The model was convolved to

the resolution of the data set with the Norton-Beer medium ILS (Eq. 4.64). Figs. 4.34

and 4.35 show models of various CO abundances overlaid on the Neptune and Uranus

data.

Comparison of the Neptune data against the models indicate that the CO abun-
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Figure 4.33: (a) The brightness temperature spectrum of Neptune (solid)
with the error in the result (dashed); (b) The brightness temperature spec-
trum of Uranus (solid) with the error in the result (dashed).

dance must be higher than 0.8x10−6 (orange curve, Fig. 4.34) and lower than ap-

proximately 2x10−5 (lower brown curve). A tentative detection of CO in Uranus is

shown in Fig. 4.35. Comparison of the Uranus data against the models indicate that

the CO abundance is higher than approximately 1x10−7 (orange curve, Fig. 4.35)

and lower than 4x10−6 (blue curve).

The uniform CO abundance models in Fig. 4.35 show very poor agreement with

the measured lineshape of the Uranus data. Non-uniform CO abundance profiles

were therefore used in model calculations to determine if the model fit could be

improved. Fig. 4.36 shows the 1993 Uranus spectrum (solid curve) with a model

(dash-dot curve) produced using the CO profile shown in Fig. 4.37. This abundance

profile was determined by calculating a least-squares fit of the model to the data for

which the upper atmosphere CO abundance was set to zero and the lower atmosphere

CO abundance along with the pressure levels of transition were allowed to vary. The

dash-dot curve of Fig. 4.36 produces an overall better fit to the data than the curves
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Figure 4.34: The resultant Neptune brightness temperature spectrum
with Norton-Beer medium apodization (black). The error in the brightness
temperature is shown with the dashed curves. Eight uniform CO abundance
models are overlaid: 0 (upper brown), 1x10−7 (red), 8x10−7 (orange), 1x10−6

(yellow), 2x10−6 (green), 4x10−6 (blue), 1x10−5 (violet), and 2x10−5 (lower
brown).
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Figure 4.35: The resultant Uranus brightness temperature spectrum with
Norton-Beer medium apodization (black). The error in the brightness tem-
perature is shown with the dashed curves. Six uniform CO abundance mod-
els are overlaid: 0 (brown), 5x10−8 (red), 1x10−7 (orange), 5x10−7 (yellow),
2x10−6 (green), and 4x10−6 (blue).
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Figure 4.36: The Uranus brightness temperature spectrum (black). A
model calculated using a CO abundance of 1.5x10−6 confined to the lower
troposphere (see Fig. 4.37) is shown with the dash-dot curve.

shown in Fig. 4.35. To establish the uncertainty in this result a range of models

were calculated using the profile in Fig. 4.37 with a variable lower atmosphere CO

abundance. Fig. 4.38 shows that the lower atmosphere Uranus CO abundance is

between 5x10−7 (orange curve) and 1x10−5 (blue curve).

A signal-to-noise analysis, using the procedure described in §4.1.8, was performed

on this data set. The observed SNR values for Neptune, Uranus, and Mars are given

in Table 4.6 along with the 2002 measured SNR scaled for resolution, integration

time, source size, and brightness temperature where necessary.

The 1993 observed SNR values for Neptune and Uranus are respectively ∼ 8

and 11 times larger than the scaled 2002 results (Table 4.6). This is due to the

instantaneous removal of atmospheric emission in the dual-port configuration. A

clear detection of the CO line in Neptune is a result of the smaller uncertainty in

the data. A tentative detection of CO in Uranus is due to the significant uncertainty

in the data. Smaller uncertainties would have been achieved for the Neptune and
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Figure 4.37: The CO profile (solid curve) corresponding to the dash-dot
curve in Fig. 4.36. The temperature profile of Uranus is shown with the
dashed curve.

Table 4.6: The measured SNR values the parameters of the Neptune,
Uranus, and Mars observations.

Source Measured TS tS dS db ∆νS Scaled 2002

SNR K hrs ′′ ′′ GHz SNR

Neptune 4.1 80 1.0 2.300 14 0.04 0.5

Uranus 6.6 81 0.4 3.690 14 0.04 0.6

Mars 17.9 195 0.4 5.920 14 0.04 12.7
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Figure 4.38: The Uranus brightness temperature spectrum (black). The
error in the brightness temperature is shown with the dashed curves. Six
models using the profile of Fig. 4.37 are overlaid: 0 (brown), 3x10−7 (red),
5x10−7 (orange), 1.5x10−6 (yellow), 6x10−6 (green), and 1x10−5 (blue).
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Uranus spectra if Mars had been measured to a higher SNR. The 1993 SNR of Mars is

only 1.4 times larger than the scaled 2002 SNR which may indicate that there was an

additional source of noise in the Mars data. In these observations, 5 high-resolution

scans were performed before the source was switched to the other port. The noise

may be due to poor monitoring of the offsets in each port and these observations may

have benefited from shorter time scales between nodding. The noise may also be due

to imperfect cancellation of atmospheric emission because of the 65′′ separation of

the ports on the sky.

4.3 Summary

The results produced here show conclusive evidence of CO in Neptune and a tentative

detection of CO in Uranus. While the 2002 data show significant uncertainty it is

interesting to compare the 2002 and the re-analyzed 1993 data. Figs. 4.39 and 4.40

show excellent agreement between the two data sets considering that the observations

were separated by ten years, applied different observing strategies, and used different

instruments and detectors.

Extremely low SNR values were achieved in the Neptune and Uranus 2002 ob-

servations even though almost 3 hours were spent observing each source (Table 4.4).

Increasing the integration time on source would not have necessarily lead to higher

SNR values because the Earth’s atmospheric emission was removed during the anal-

ysis. Sky emission variations in short time intervals preclude this method of ob-

servation from producing meaningful results. A dual port system which allows for

instantaneous removal of the Earth’s atmospheric emission is therefore absolutely

required to measure the absorption lines in Neptune and Uranus.

The 1993 spectra produce better results over the 2002 data because of the instan-

taneous removal of sky emission. The uncertainties are still significant in the 1993

spectra, indicating that longer integration times on Neptune, Uranus, and Mars were

required. In addition, shorter time scales between nodding would have monitored

the offset terms in each port to greater accuracy and allowed these terms to be more
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Figure 4.39: The resultant 1993 Neptune brightness temperature spec-
trum (dash-dot) and the 2002 spectrum without apodization (dashed).
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Figure 4.40: The resultant 1993 Uranus brightness temperature spectrum
(dash-dot) and the 2002 spectrum without apodization (dashed).
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accurately removed from the source data.

The lower uncertainties in the 1993 spectra produce the best CO abundance

results for Neptune and Uranus. For Neptune, a uniform CO abundance between

0.8x10−6 and 2x10−5 is indicated, while a profile with CO constrained to the lower

atmosphere with an abundance between 5x10−7 and 1x10−5 is indicated for Uranus.
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Chapter 5

Photometric Observations of Neptune

Photometric observations of Neptune were conducted using the Submillimetre

Common User Bolometer Array (SCUBA), a facility instrument at the JCMT. Pho-

tometric observations measure the integrated flux of a source within a filter band-

pass. Photometry is an important technique in submillimetre astronomy because

the brightness of faint sources, whose continua vary smoothly with frequency, can

be measured to better signal-to-noise than would be possible with a spectrometer.

Photometry was attempted on Neptune to determine if the reduction in inte-

grated flux due to a broad CO absorption line could be detected using SCUBA.

Fig. 5.1 is a comparison of the SCUBA 850µm filter profile and the Neptune model

with CO mole ratios of zero (dashed) and 1x10−6 (solid). This figure shows that

the SCUBA 850µm profile is well matched to the width of the CO feature at this

wavelength. Photometric calculations using the Neptune model with a mole ratio of

1x10−6 in comparison to the Neptune model with no CO show a ∼10% reduction in

the flux received.

Griffin and Orton (1993) performed precision photometry on Uranus and Nep-

tune in order to fully characterize these planets as submillimetre calibration sources.

Their measured fluxes were consistent with models which did not include any ef-

fects of CO absorption. The detection of tropospheric CO by Naylor et al. (1994),

however, contradicted this result. One motivation for repeating the photometric

observations of Neptune was to resolve this discrepancy. Whereas the Griffin and

Orton measurements were made using UKT14, a single-pixel facility photometer at

the JCMT which was retired in 1997, the observations reported in this chapter were

made with SCUBA, the JCMT’s facility photometric imaging system. This chapter

138



COMPARISON OF 850µm FILTER PROFILE AND NEPTUNE MODEL
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Figure 5.1: The Neptune model for uniform CO abundances of 0 (black,
dashed) and 1x10−6 (black, solid) at a resolution of 1.8 GHz. The transmis-
sion of the 850µm SCUBA filter (red).

starts with a brief overview of the SCUBA system, including a discussion of the cali-

bration of SCUBA data; observations, data analysis, and results follow. Calibration

of the Neptune and Uranus data against Mars is briefly discussed and the chapter

ends with a summary of the results.

5.1 Submillimetre Common User Bolometer Ar-

ray

SCUBA is the facility continuum instrument at the JCMT and is mounted on the

left Nasmyth platform. SCUBA is a detector system with 2 arrays of bolometers; 91

bolometers (pixels, hereafter) in the short-wavelength (SW) array, and 37 pixels in

the long-wavelength (LW) array (Fig. 5.2). The coupling efficiency of the SW array is

optimized for use at 450µm while the LW array is optimized for 850µm. Both arrays

have a field of view on the sky of 2.3′ (Holland et al. 1999). Fig. 5.3 is an optical
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Figure 5.2: The arrangement of the bolometers in the SW and LW arrays
(Holland et al. 1999).

schematic of the SCUBA system. The telescope beam reflects from the tertiary

mirror, which relays the beam through the telescope bearing, to the left Nasmyth

platform. The beam is transmitted into the detector dewar using the external optics

(mirrors M1, M2, and M3). An external chopper lies outside of the detector dewar

which allows the array bolometers to alternately view the beam from the telescope,

the emission from an ambient temperature blade covered in Eccosorb1, and the

reflection of the cold internal optics from the back of a polished blade. Eccosorb is

a synthetic material of high emissivity used to simulate blackbody emission. These

different loads are used to provide diagnostics of the behaviour of the system.

Upon entering the detector dewar, mirrors M4, M5, and M6 fold the telescope

beam into the compact volume and direct the radiation to the dichroic beamsplitter

which transmits the LW radiation and reflects the SW radiation. This allows the

LW and SW arrays to be used simultaneously. The radiation is passed through a

filter which defines the bandpass of the observation before it enters either the LW

or SW arrays; the bandpass filters are designed to match the transmission windows

1Emerson & Cumins Microwave Products, Inc., 28 York Avenue, Randomly, MA 02368, USA.
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Figure 5.3: The optical schematic of the SCUBA system (Holland et al.
1999).
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available from Mauna Kea (Fig. 1.11). Fig. 5.1 shows the transmission profile for the

SCUBA 850µm filter. This was the only filter used in this project because the CO

line lies near the centre of the atmospheric window. There are spaces for 9 filters

in the rotating drum which is maintained at a temperature of approximately 4 K

(Holland et al. 1999). The mechanism by which the drum rotates has unfortunately

not worked for several years; therefore, only the 450 and 850µm filters are accessible.

The bolometers are constructed and function similarly to the FTS bolometer

detector (§4.1.1). The arrays are cooled to an operating temperature of 0.1 K using

a dilution refrigerator.

5.2 Calibration of SCUBA observations

When a source with intensity Js(ν) is viewed by SCUBA the signal received Ssourcebeam1

is given by,

Ssourcebeam1 = G
[∫ ν2

ν1

(
Js(ν)e

−τ(ν)AΩsηI(ν) + JA(ν)ΩbηI(ν) + JI(ν)Ωb

)
dν +O1

]
, (5.1)

where G is the instrument responsivity, ν1 and ν2 are the integration limits set by the

filter being used, e−τ(ν)A is the transmittance of the atmosphere, Ωs is the solid angle

of the source, ηI(ν) is the coupling efficiency of the telescope system, JA(ν) and JI(ν)

are the emission intensities from the atmosphere and telescope system respectively,

Ωb is the solid angle of the beam, and O1 is an offset term. The telescope system

includes the Gore-Tex membrane, telescope, instrument, and detector system.

Several techniques are applied during the observations and analysis to remove

components of Eq. 5.1 that mask the source signal Js(ν). The secondary mirror

is moved by a user-specified distance, called the chop throw, to view the terrestrial

atmosphere (sky, hereafter) in order to remove the atmospheric and telescope system

emission (JA(ν), JI(ν)). The signal received when the sky is observed Sskybeam2 is given

by,

Sskybeam2 = G
[∫ ν2

ν1
(JA(ν)ΩbηI(ν) + JI(ν)Ωb) dν +O2

]
, (5.2)

where O2 is an offset different from O1 because the secondary has moved causing the
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detector beam to fall on slightly different parts of the telescope optics. Subtraction

of Eq. 5.2 from Eq. 5.1 gives,

∆Sbeam1 = Ssourcebeam1 − Sskybeam2 = G
[∫ ν2

ν1

(
Js(ν)Ωse

−τ(ν)AηI(ν)
)
dν +O1 −O2

]
. (5.3)

The atmospheric and telescope system terms will only be removed by this method if

they do not change over the time period of the secondary mirror motion. Chopping

must be fast because the atmosphere is known to vary in water vapour content on

sub-second times scales (Archibald et al. 2002). The secondary mirror is therefore

chopped at a rate of 7.8 Hz so that the telescope beam moves rapidly between the

source and sky.

In order to remove the offset term O1 − O2 the telescope “nods” during the

observations (Fig. 5.4). This involves moving the telescope by an amount equal to the

chop throw to bring the source into the reference beam (beam 2). The observations

continue in this mode with the secondary mirror chopping to give the following signal,

∆Sbeam2 = Sskybeam1 − Ssourcebeam2 = −G
[∫ ν2

ν1

(
Js(ν)Ωse

−τ(ν)AηI(ν)
)
dν +O1 −O2

]
. (5.4)

During analysis the signals from the two modes (Eqs. 5.3 and 5.4) are subtracted to

remove the offset terms,

∆Ssource = ∆Sbeam1 −∆Sbeam2 = 2G
∫ ν2

ν1
Js(ν)Ωse

−τ(ν)AηI(ν)dν. (5.5)

It is convenient to split the telescope coupling efficiency ηI(ν) into a frequency-

independent component ηI and a frequency-dependent component ηf (ν),

ηI(ν) = ηIηf (ν), (5.6)

where ηf (ν) is the transmittance of the selected filter. Applying Eq. 5.6 to Eq. 5.5

and re-arranging gives,

∆Ssource = 2GηI

∫ ν2

ν1
Js(ν)Ωse

−τ(ν)Aηf (ν)dν, (5.7)

which is the signal received by SCUBA. A calibration source must be observed to

determine the flux conversion factor. The main calibration sources for SCUBA are
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Figure 5.4: A schematic of the telescope nodding procedure. The blue
circle represents Neptune.

Mars, Uranus, and Neptune. A ratio of the source data against the calibration data

gives,

∆Ssource
∆Sc

=

∫ ν2
ν1
Js(ν)Ωse

−τs(ν)Asηf (ν)dν∫ ν2
ν1
Jc(ν)Ωce−τc(ν)Acηf (ν)dν

, (5.8)

where Js(ν)Ωs and Jc(ν)Ωc are the flux densities of the source and calibrator respec-

tively; and, τs(ν), τc(ν), As, and Ac are the zenith sky opacities and airmass values

for the source and calibrator observations. This measured ratio was compared to

model ratios to determine if CO absorption is present in Neptune.

5.3 Observations

The SCUBA observations of Neptune were performed on September 29, 2002 during

the same observing run as the 2002 FTS observations (§4.1.3). Uranus was selected
as the calibration source, as in Chapter 4, because it met the calibrator criteria (§2.5)
and had similar rise and set times as Neptune.

SCUBA was used in photometry mode to measure the flux of Neptune in the

850µm bandpass (LW array). This mode used the central pixel of the LW array to
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2"
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Figure 5.5: The observation pattern observed by SCUBA. A sample is
taken at each position on the grid. The grid is covered by moving the
secondary by 2′′ spacing.

observe the source. The standard method of observation for point-source photometry

was used, which involved moving the secondary mirror, during the integrations,

to observe a small 3x3 grid with a 2′′ spacing around the source (Fig. 5.5). This

observation method was necessary because the source will not always be precisely

centred on the array; applying the jiggle pattern and fitting a paraboloid to the data

accounts for this situation.

The secondary mirror was moved by a chop throw of 60′′ at a rate of 7.8 Hz

to allow sequential viewing of the source and sky. The observations proceeded by

observing one cycle of the 3x3 grid (9 positions) after which the telescope nodded

and the observations were repeated. A total integration time of ∼30 s was required

for each one of these cycles.

The observations of Uranus and Neptune produced a total of 16 and 64 integra-

tions in ∼7 and ∼29 minutes respectively. These integration times were chosen so

as to guarantee a SNR greater than 200.

The pwv was monitored during the SCUBA observations allowing the Earth’s

atmospheric transmittance to be accounted for during the analysis. Fig. 5.6 shows the

pwv during the Uranus and Neptune observations as measured by three instruments:

(a) the WVM;
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Figure 5.6: The pwv during the SCUBA observations of Neptune and
Uranus. The pwv was measured using three instruments: (a) using theWVM
(+), (b) using the CSO radiometer (×) and, (c) using skydips performed by
the telescope (∗).

(b) the CSO radiometer; and,

(c) skydips performed by the telescope.

Skydips are regularly performed during SCUBA observations to measure the atmo-

spheric transmittance. During a skydip the sky brightness temperature is measured

using SCUBA as a function of elevation. Knowledge of the telescope’s transmission

properties allow these data to be fit and a zenith sky opacity derived (Archibald

et al. 2002).

5.4 Data analysis

The Neptune and Uranus photometric observations were reduced using the SCUBA

User Reduction Facility (SURF) suite of software (Jenness and Lightfoot 2000).

Several measurements were included in the data set:
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Table 5.1: The mean signal for Neptune and Uranus.

Source Number of Mean Standard

Integrations (arb. units) Deviation

Neptune 64 0.079 0.001

Uranus 16 0.2227 0.0007

1. Noise measurements. The external chopper was activated allowing the arrays

to look at a cold load so that noise measurements were performed. Especially

noisy pixels were identified and noted for the data analysis.

2. Skydip data. The skydip data were reduced and used, in conjunction with the

WVM and CSO data, to extract the sky opacity during each of the observa-

tions. These data were used in the extinction correction process (see §5.4.1).

3. Source and calibrator data. These data were reduced using the standard data

reduction method for photometry. The first step in this reduction algorithm

subtracted the sky from the source signal and then subtracted the nodded data.

The data were then flat-fielded to standardize the output from each bolometer.

The ring of pixels surrounding the central pixel in the 850µm array were used

to determine a mean sky signal; these pixels viewed the terrestrial atmosphere

during the observations. The mean sky signal was subtracted from the source

signal. In the last step, the 9-point grid was reduced to one value for each

integration in the measurement.

Figs. 5.7 and 5.8 show the signal received for each integration in the Neptune

and Uranus observations respectively. The Neptune and Uranus integrations were

averaged to give a mean and standard deviation (Table 5.1). A Neptune:Uranus

ratio of 0.355± 0.005 was found using these values.
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Figure 5.7: The peak signal for Neptune during each integration.
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Figure 5.8: The peak signal for Uranus during each integration.
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Table 5.2: The airmass, pwv, and angular diameters for the Neptune and
Uranus observations.

Source Airmass pwv Ang. Dia.

(mm) ′′

Neptune 1.590 1.09 2.311

Uranus 1.231 1.19 3.662

5.4.1 Adaptation of the radiative transfer model

The Neptune and Uranus models (Chapter 2) were adapted to compute the flux in

the 850µm band. To model the signal received by SCUBA, Eq. 5.8 was calculated in

which the source (Neptune) and calibrator (Uranus) emission Js(ν), Jc(ν) were given

by the model intensities Is(ν), Ic(ν) (Eq. 2.61). The black curve of Fig. 5.9 shows the

model Neptune flux density (JN(ν)ΩN). The extinction term e−τ(ν)A, of Eq. 5.8, was

calculated by determining the average airmass and pwv during the observations. The

average pwv was calculated using the WVM measurements during each observation

period. This was justified due to the strong correlation, at the beginning of the night,

between the skydip and WVM data (Fig. 5.6). Table 5.2 lists the values used in the

model calculations. These values were used along with the ULTRAM model (§4.1.4;
Chapman (2000)) to calculate the zenith sky opacity and the extinction. The blue

curve of Fig. 5.9 shows an example of the transmittance of the Earth’s atmosphere

for pwv = 1 mm and A = 1.3. The term ηf (ν) was given by the transmittance of the

850µm filter (red curve, Fig. 5.9) as measured by the University of Lethbridge FTS

(Holland et al. 1999). The integration over the product of all three terms produced

the model SCUBA signal for the source being observed.

5.4.2 Results

The Neptune and Uranus models were calculated assuming a CO mole ratio of zero.

The model and measured ratios are given in Table 5.3. The measured N:U ratio

149



SCUBA MODEL CALCULATION
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Figure 5.9: The three terms used in the computation of the SCUBA
model: (a) the flux density of Neptune using a CO mole ratio of 1.0x10−6

and an angular diameter of 2.311′′ (black curve); (b) the transmission of the
Earth’s atmosphere calculated for A = 1.3 and pwv = 1 mm (blue curve);
(c) the transmission of the 850µm SCUBA filter (red curve).
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Table 5.3: The measured and model ratios assuming a CO mole ratio of
zero.

Source/Calibrator Measured Modelled

Ratio Ratio

Neptune/Uranus 0.355± 0.005 0.403

when compared to the modelled ratio indicates that the SCUBA data show evidence

of CO absorption in Neptune. Fig. 5.10 shows the model Neptune to Uranus ratios

calculated for various uniform Neptune CO mole ratios. The measured ratio is shown

as a range of values with the upper and lower values defined by the uncertainty

in the measurement (dashed curves). Uranus was assumed to have no CO in this

calculation. These values indicate that Neptune’s CO mole ratio is between 1.2x10−6

and 1.7x10−6.

5.5 Calibration against Mars

After the discovery of CO in Uranus during the course of this project by Encrenaz

et al. (2004), the Neptune and Uranus SCUBA data were re-analyzed using Mars

as the calibration source. Mars photometry data were taken from the JCMT data

archive, since Mars was not observed during the September 2002 observations. The

Mars data were taken on February 16, 2002, during which a total of 6 integrations

in 3 minutes were performed to guarantee a SNR greater than 200. Fig. 5.11 shows

the pwv during the Mars observations.

The Mars data were analyzed using the same method as the Neptune and Uranus

SCUBA data (§5.4). The output from this analysis is shown in Fig. 5.12. Integration

3 was removed from the Mars analysis because it showed an erroneously high signal.

The 5 data points were averaged to give a mean signal and standard deviation for

Mars of 1.280 ± 0.003. The mean Mars signal and the Neptune and Uranus mean
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Figure 5.10: The range of CO mole ratios that produce model Neptune
to Uranus ratios in the range of the measured ratio. The calculated ratios
are given by the ∗ symbols. The range of the measured ratio is shown with
the dashed curves. In this calculation Uranus was assumed to have no CO .
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Figure 5.11: The pwv during the SCUBA observations of Mars. The pwv
was measured using two instruments: (a) using the CSO radiometer (×)
and, (b) using skydips performed by the telescope (∗).

signal values given in Table 5.1 were used to compute ratios of,

Neptune :Mars = 0.0617± 0.0008, (5.9)

Uranus :Mars = 0.1740± 0.0007. (5.10)

The pwv, airmass, and angular diameter of Mars during the observations were

required to compute the Mars SCUBA model. The WVM was unfortunately not

functioning during these observations; therefore, the pwv for the mid-point of the

Mars observations was calculated using a straight line fit between the skydip mea-

surements taken before and after the Mars observations. A mean airmass of 1.158,

pwv of 0.49 mm, and angular diameter of 5.061′′ were used in the Mars model calcula-

tions. Assuming CO mole ratios of zero for all three planets, the model Neptune:Mars

and Uranus:Mars ratios were calculated for comparison against the measured ratios

(Table 5.4).

Fig. 5.13 and 5.14 show the CO mole ratio results for Neptune and Uranus respec-

153



MARS SCUBA DATA

0 1 2 3 4 5 6 7
INTEGRATIONS

1.25

1.26

1.27

1.28

1.29

S
IG

N
A

L
 (

ar
b

it
ra

ry
 u

n
it

s)

Figure 5.12: The peak signal for Mars during each integration.

Table 5.4: The measured ratios and model ratios assuming a CO mole
ratio of zero for all three planets.

Source/Calibrator Measured Modelled

Ratio Ratio

Neptune/Mars 0.0617 ± 0.0008 0.064

Uranus/Mars 0.1740 ± 0.0007 0.159
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Figure 5.13: The range of CO mole ratios that produce model Neptune
to Mars ratios in the range of the measured ratio. The calculated ratios are
given by the ∗ symbols. The range of the measured ratio is shown with the
dashed curves.

tively when the ratio was taken against Mars. For Neptune, calculations indicate

a CO mole ratio between 0.2x10−6 and 0.45x10−6. For Uranus, a CO mole ratio

cannot be determined because the measured ratio is higher than the computed zero

CO ratio.

Figs. 5.13 and 5.14 indicate that the computed ratios are much too small in com-

parison to the measured ratios, for both N:M and U:M. The N:M ratio yields CO

abundances for Neptune that are unrealistically small, and the U:M ratio does not

produce a solution for Uranus. The Mars model was investigated as a potential cause

of this discrepancy. Mars exhibits CO absorption but the low-pressure atmosphere

produces a very narrow absorption (Fig. 2.16). Calculations taking into account the

absorption in Mars produce a SCUBA Mars model that changes by less than 0.1%

in comparison to the model without CO. The measured and model ratios can not

therefore be brought into agreement with this change alone. The calibration of Nep-

tune and Uranus data against Mars observations taken on different days introduces
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Figure 5.14: The range of CO mole ratios that produce model Uranus to
Mars ratios in the range of the measured ratio. The calculated ratios are
given by the ∗ symbols. The range of the measured ratio is shown with the
dashed curves.
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an undeterminable error into the measured ratios which this model does not and can

not account for. Experience at the JCMT indicates that SCUBA flux repeatability

from night to night is rarely better than 5% (Archibald et al. 2002) due to a number

of factors, including pointing repeatability, focus and dish gain variations, and re-

sponsivity variations in the bolometers. This systematic error is significantly higher

than the statistical error in the data.

5.6 Summary

The ratios derived using Mars as the calibration source are clearly not trustworthy

and therefore can not be used in specifying the CO abundance in Neptune and

Uranus. The measured N:U ratio indicates a CO mole ratio in Neptune between

1.2x10−6 and 1.7x10−6, assuming no CO in Uranus.
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Chapter 6

Conclusion

In this thesis project three measurement techniques were used to determine the

CO abundance in Neptune. A comparison of the results from these techniques starts

this chapter. A discussion of the best result and its implications for the source of

CO follows. This chapter ends with recommendations for future work in the field.

6.1 Comparison of results

Three measurement techniques were used to determine the CO abundance profile in

Neptune. In Chapter 3, the heterodyne receiver B3 was used to measure the entire

CO J=3–2 transition in Neptune, including both the emission and absorption com-

ponents, at a resolution of 1.25 MHz. Chapter 4 presented the results from two sets

of FTS measurements of the CO absorption; the 1993 data were found to be supe-

rior and are considered here to the exclusion of the 2002 data. Finally, in Chapter

5 photometric measurements were undertaken using SCUBA to determine the inte-

grated flux in the 850µm band. The results from these three sets of measurements

are summarized in Table 6.1.

The heterodyne measurements were superior to the FTS and SCUBA results for

two reasons: first, the comprehensive nature of the high-resolution measurement en-

abled simultaneous determination of the CO abundance throughout the atmosphere;

and second, the error bars are smaller indicating a more precise measurement.

The 1993 polarizing FTS spectrum agrees with the RxB3 spectrum to within

one standard deviation for a significant part of the frequency range and within two

standard deviations for the entire frequency range (Fig. 6.1). As a result of this
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Table 6.1: The CO results for Neptune for the three measurement tech-
niques. All CO values are x10−6.

Instrument Lower Upper

Atmosphere Atmosphere

RxB3 0.6–1.0 1.6–2.4

FTS 0.8–20

SCUBA 1.2–1.7

agreement, the determined CO mole ratios also agree within the uncertainties. The

large uncertainty in the CO mole ratio derived from the FTS spectrum, however,

precludes any conclusions being drawn from this result about the source of CO in

Neptune’s atmosphere.

The SCUBA and RxB3 results do not agree within the given uncertainties.

Prompted by this discrepancy, the SCUBA data for Neptune and Uranus were ex-

amined in more detail. It will be recalled that in the SCUBA photometry mode

(§5.3), the telescope executes a small 3x3 grid centred on the nominal position of

the source for each integration, and a parabola is fit to the points so obtained. This

method provides an estimate of the flux from the source even in the presence of

pointing errors of up to 1.5′′, which are common. The parabolic fit also provides,

as a by-product, the coordinates of the fitted peak. For the Uranus measurements,

the average pointing error was 0.4′′, which is well within the 3x3 grid of measured

points. For Neptune, however, the pointing error in the 64 integrations ranged from

1.5′′ to 5.5′′, with a mean value of 3.1′′. All of the Neptune data points were there-

fore outside the range within which the parabolic fit technique is valid, and for most

integrations (53) the fitted peaks actually lay outside the 3x3 grid. It is extremely

difficult under these circumstances to derive a robust estimate of the flux from the

source, and it is therefore not surprising that the SCUBA and RxB3 results do not

agree.

The CO abundance profile determined from the B3 measurements is clearly the
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Figure 6.1: The heterodyne spectrum (red) and the FTS spectrum (black)
with uncertainty (dashed curve).

superior result. This CO abundance profile will therefore be used for the discussion

which follows.

6.2 Discussion

Previous determinations of the tropospheric CO abundance by Guilloteau et al.

(1993), Naylor et al. (1994), Courtin et al. (1996), and Encrenaz et al. (1996) were

limited by the precision of their measured spectra. The tropospheric abundance of

(0.8 ± 0.2)x10−6 determined here agrees with most of these previous measurements

within their estimated uncertainties.

The stratospheric CO abundance of 1.9+0.5
−0.3x10

−6, however, is significantly higher

than others reported in the literature. Using receivers at the JCMT, CSO and IRAM

in 1998, Marten et al. (2005) measured the emission cores of the J=2–1, 3–2 and

4–3 lines of CO. They assumed a uniform CO abundance of 1.0x10−6, because their

spectra did not include any absorption signatures, and determined the corresponding
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best-fit temperature profile. In view of more recent results, as discussed in the

following paragraph, this assumption is no longer valid.

One strategy to address the conflicting results was to measure a CO transition

over a large frequency range at high resolution so that the CO abundance in the

stratosphere and troposphere could be determined simultaneously using a single mea-

surement. Concurrently with this thesis project, Lellouch et al. (2005) attempted

this technique on the J=2–1 line using IRAM. The outcomes are qualitatively sim-

ilar: Lellouch et al. also found a higher CO abundance in the upper stratosphere

(1.0x10−6 ± 15%) than in the troposphere and lower stratosphere (0.5x10−6 ± 15%).

Quantitatively, however, the results do not agree within the quoted uncertainties. It

appears that the errors quoted by Lellouch et al. were underestimated because their

analysis did not include the effects of either the calibration variability in their data

or the uncertainty in their temperature profile (Lellouch, private communication).

The former effect required these authors to apply post-processing calibration cor-

rections, which carry the potential for corruption of the measured line shape. This

corruption is evident on the low-frequency side of their spectrum, as the authors

recognize, but examination of their raw data indicates that it must also be present

on the high-frequency side at some level. By contrast, the spectrum measured in

this work required no post-processing. The latter effect led, in the present work, to

an uncertainty of ∼30% in the troposphere and lower stratosphere, and would have

a similar magnitude for Lellouch et al.. It is therefore likely that these results would

be brought into quantitative agreement if all sources of error in both data sets were

considered. Finally, it is important to recognize that quantitative comparison of the

CO abundances is intrinsically difficult in any case, since different spectral models

were used; the model in this work included the most recent values of the CO line

parameters and the H2, He, and CH4 abundances.

Despite these differences, the measured CO abundance profiles from this work

and from Lellouch et al. (2005) indicate the presence of both an internal source,

which provides the tropospheric and lower stratospheric CO, and an external source

which provides additional CO to the upper atmosphere. The former, whereby CO is
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transported by convection from the deep atmosphere to observable levels, requires

an oxygen enrichment in the planetary interior of 440 times the solar abundance

(Lodders and Fegley 1994). This high O/H enrichment would indicate an interior

dominated by water ice.

Rosenqvist et al. (1992) considered two external sources for CO. The first mech-

anism was the photochemical formation of CO from reactions between methane

photochemistry by-products and oxygen released from water on the satellites and

rings of the planet. There are three chemical pathways from which CO is formed by

an external source of O,

(a) O + CH3 → CH2O+H,

CH2O+ hν → CO+ H2, (6.1)

(b) O + C2H4 → CH3 +HCO,

HCO+H→ H2 + CO, (6.2)

(c) O + C2H2 → CO+ CH2. (6.3)

It is unlikely that this mechanism is responsible for the observed CO abundances due

to the lack of water sources at Neptune in comparison with Saturn, and Saturn’s

low stratospheric CO abundance (more than an order of magnitude smaller than

Neptune’s).

The second mechanism considered by Rosenqvist et al. (1992) involves the photo-

chemical formation of CO by reactions between methane photochemistry by-products

and OH. This photochemical pathway begins with the formation of OH from the

photolysis of water released from meteoritic ablation through the following reaction,

H2O+ hν → OH+H. (6.4)

A methane photochemistry by-product (C2H2) is used to produce an intermediate

molecule, CHCHOH, in the next step,

OH + C2H2 → CHCHOH. (6.5)

At low pressures CHCHOH decomposes to produce ketene (CH2CO) which is then
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photolyzed to CO,

CHCHOH→ CH2CO+ H, (6.6)

CH2CO+ hν → CH2 + CO. (6.7)

This mechanism is more likely because meteorites composed primarily of water ice

are known to ablate at high elevations producing OH radicals (Moses 1992).

An order-of-magnitude estimate of the planetary H2O influx corresponding to

the observed abundance of stratospheric CO may be determined as follows. In the

stratosphere and troposphere eddy diffusion dominates over molecular diffusion. The

downward flux of CO (Φ) is therefore given by the eddy diffusion component of

Eq. 1.14,

Φ = K

(
dni
dz

+ ni

[
1

H
+

1

T

dT

dz

])
, (6.8)

where ni is the number density of CO, H is the scale height, T is the temperature and

K is the eddy diffusion coefficient. If it is assumed that the atmosphere is isothermal

(dT
dz

= 0) and in hydrostatic equilibrium (p = p0e
−z/H) then Eq. 6.8 reduces to,

Φ = Kn
∂q

∂z
' Kn

∆q

∆z
, (6.9)

where q is the CO mole ratio, n is the atmospheric number density, and ∆q/∆z is

the gradient in the CO mole ratio. Eq. 6.9 was applied to the CO transition layer

located at approximately 3 mbar, where the CO produced in the upper atmosphere

is converted to CH4. Using values of K = 8x103 cm2s−1 (Romani A profile; §1.4.2),
n = 2.4x1023 molecules m−3, ∆q = 1.1x10−6 and ∆z = 3482 km, a flux of 6x109

CO molecules cm−2s−1 was determined. A planetary influx of > 109 H2O molecules

cm−2s−1 would therefore be required to match this observed CO abundance.

Feuchtgruber et al. (1997) used the first and only observations of neptunian H2O,

as measured by ISO, to estimate the planetary H2O influx. They found an H2O influx

in the range 105 to 107 molecules cm−2s−1. This is 102 to 104 times smaller than the

influx calculated above. Two possibilities remain:

1. If stratospheric CO in Neptune is produced by water influx due to meteorites

and interplanetary grains, as originally suggested by Rosenqvist et al. (1992),
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then the steady-state influx of H2O must be higher than estimated by Feucht-

gruber et al.. More measurements of neptunian H2O are necessary to determine

if the H2O influx is in fact higher.

2. If, on the other hand, the steady-state influx of H2O was correctly estimated by

Feuchtgruber et al., then an alternative physical mechanism is required which

can deliver CO, but not H2O, to Neptune’s upper atmosphere. Cometary im-

pacts represent an attractive hypothesis, since observations of the Shoemaker-

Levy 9 impact revealed that most of the cometary water ice was converted to

CO by shock chemistry (Lellouch 1996).

The observations presented here do not, by themselves, allow for discrimination

between these two possibilities.

In the case of Uranus, there has been only one other positive detection, by En-

crenaz et al. (2004), of CO in the planet. Encrenaz et al. measured the spectrum

of Uranus between 4.6 and 5.0µm using an imaging spectrometer on the Very Large

Telescope (VLT) in Chile. The tropospheric continuum was detected and a CO up-

per limit of 2x10−8 for the pressure region between 0.5 and 3.1 bar was determined.

The result in this project finds that CO is constrained to the lower troposphere

(P > 0.5 bar) with an abundance between 5x10−7 and 1x10−5. The abundances

found in this work are at least one order of magnitude larger than the Encrenaz

et al. results. More measurements of the Uranus CO profile are required to resolve

this discrepancy.

6.3 Recommendations for future work

Plans are already under way to improve the CO abundance profile in Neptune by

measuring the J=2–1 and 4–3 CO lines at 230.5 GHz, and 461.0 GHz respectively.

The JCMT facility heterodyne receivers A and W (C band) will be used at a res-

olution of 1.25 MHz to measure both the emission and absorption of each line.

Figs. 6.2 and 6.3 show the model J=2–1 and 4–3 CO lines for uniform CO mole

164



NEPTUNE MODEL - J=2-1

210 220 230 240 250
FREQUENCY (GHz)

40

60

80

100

120

B
R

IG
H

T
N

E
S

S
 T

E
M

P
E

R
A

T
U

R
E

 (
K

)

Figure 6.2: The J=2–1 CO line at 230.5 GHz for a uniform CO mole ratio
of 1x10−6 and a resolution of 1.25 MHz.

ratios of 1x10−6. The contribution functions corresponding to these lines are shown

in Figs. 6.4 and 6.5; for comparison the J=3–2 contribution functions are shown

in Fig. 6.6. The contribution from the central frequencies (red curves) of all three

lines peak at different levels in the stratosphere and the J=2–1 line shows a broad

contribution over a range of pressure levels including a significant component in the

lower troposphere. The peak of the contribution functions at 0.5, 5, and 10 GHz

from line centre (green, blue, and violet curves) also corresponds to different pres-

sure levels in the atmosphere. Model fits to measurements of these lines will allow a

more complete CO abundance profile to be constructed. In addition, observations of

the J=2–1, 3–2, and 4–3 CO lines in Uranus will also be attempted to confirm the

tentative detection of CO obtained with the FTS.

It was concluded in chapter 4 that improved FTS measurements of CO in Neptune

and Uranus require a system that can provide instantaneous removal of atmospheric

emission. The imaging FTS (Gom and Naylor 2004, Naylor and Gom 2003) being

developed for SCUBA-2 (Holland et al. 2003) is a dual-port system that will fulfill
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Figure 6.3: The J=4–3 CO line at 461.0 GHz for a uniform CO mole ratio
of 1x10−6 and a resolution of 1.25 MHz.
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Figure 6.4: The contribution functions for the J=2–1 CO line. The con-
tribution functions are plotted for the central frequency (red). Frequencies
0.5, 5, and 10 GHz from line centre (green, blue, and violet respectively) are
also shown.
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Figure 6.5: The contribution functions for the J=4–3 CO line. The con-
tribution functions are plotted for the central frequency (red). Frequencies
0.5, 5, and 10 GHz from line centre (green, blue, and violet respectively) are
also shown.
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Figure 6.6: The contribution functions for the J=3–2 CO line. The con-
tribution functions are plotted for the central frequency (red). Frequencies
0.5, 5, and 10 GHz from line centre (green, blue, and violet respectively) are
also shown.
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this requirement. SCUBA-2 is the successor to SCUBA, and will have ∼5,000 pixels

in each of the 450 and 850µm arrays compared to 91 and 37 pixels for the 450 and

850µm arrays in SCUBA. SCUBA-2 will map the submillimetre sky up to 1000 times

faster than SCUBA.

The imaging FTS is being built using the MZ design described in Chapter 4 and

will operate at resolutions from 3 to 0.15 GHz. It will have a 3′x3′ field-of-view

in each port and will simultaneously produce spectra in the 450 and 850µm bands.

The expected per-pixel sensitivity is 280 mJy for a 1-hour integration at the highest

resolution (Gom and Naylor 2004). This, combined with instantaneous removal of

atmospheric emission, will provide sufficient precision to measure the shapes of the

CO lines in both Neptune and Uranus.

It was always part of the observing plan for this thesis project to repeat the

SCUBA observations described in Chapter 5 with the following improvements to the

observing procedure:

1. Mars, Neptune, and Uranus must be observed on the same day and as close

together in time as possible;

2. The pointing must be accurate to within 1.5′′ on all sources;

3. Before and after each source measurement a skydip must be performed; and,

4. The WVM must be functioning so that skydip and WVM data can be corre-

lated to more accurately constrain the pwv during each measurement.

SCUBA was recently decommissioned, however, due to a cryogenic fault, precluding

any further photometric measurements for this project.

Photometric measurements of Neptune were an interesting attempt to measure

the CO abundance indirectly. The superior results obtained using the spectroscopic

techniques presented here indicate that this method is not a very promising approach

for measuring the CO in both Neptune and Uranus. Photometric measurements

using SCUBA-2 for the purpose of measuring the CO abundance in these planets
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will likely never be attempted because of the far superior results that will possible

using the SCUBA-2 imaging FTS.
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