

Can Organic Farms Benefit from Precision Agriculture?

Soils and Crops Conference 2020

Presented by: Sasha Loewen PhD student Montana State University Department of Land Resources and Environmental Sciences Advisor: Bruce Maxwell

Outline

- Research Problem/Question
- Methods & Preliminary Results
 - A Manitoba Example of On Field Precision Experimentation
- Challenges
- Future

Research Problem

 Feeding a growing population while maintaining ecosystem services

Solutions?

Organic Agriculture
No synthetic fertilizer, no chemicals
Low yield
Precision Agriculture
Reams of unused data AGRICULTURE

Sustainable Intensification in Agriculture: Premises and Policies

T. Garnett¹, M.C. Appleby², A. Balmford³, I.J. Bateman⁴, T.G. Benton⁵, P.Bloomer⁶, B. Burlingame⁷, M. Dawkins¹, L. Dolan¹, D. Fraser⁸, M. Herrero⁹, I. Hoffmann⁷, P. Smith¹⁰, P.K. Thornton¹¹, C. Toulmin¹², S.J. Vermeulen¹¹, H.C.J. Godfray^{1*}

nature International journal of science

Letter Published: 25 April 2012

Comparing the yields of organic and conventional agriculture

Verena Seufert 🖾, Navin Ramankutty & Jonathan A. Foley

The power of agricultural data

Joshua D. Woodard^{1,*}, Bruce J. Sherrick², Deborah M. Atwood³, Robert Blair⁴, Greg Fogel⁵, Nicholas Goeser⁶ + See all authors and affiliations

Science 26 Oct 2018: Vol. 362, Issue 6413, pp. 410-411 DOI: 10.1126/science.aav5002

Solutions for a cultivated planet nature

Jonathan A. Foley¹, Navin Ramankutty², Kate A. Brauman¹, Emily S. Cassidy¹, James S. Gerber¹, Matt Johnston¹ Nathaniel D. Mueller¹, Christine O'Connell¹, Deepak K. Ray¹, Paul C. West¹, Christian Balzer³, Elena M. Benn Stephen R. Carpenter⁵, Jason Hill^{1,6}, Chad Monfreda⁷, Stephen Polasky^{1,8}, Johan Rockström⁹, John Sheeh David Tilman^{1,11} & David P. M. Zaks¹²

Research Question

- Can we improve yields (and the farmer's bottom line) using PA?
- Apply On Farm Precision Experimentation (OFPE) to answer this question

Active Data Acquisition

On the Ground -soil sample -biomass crop -biomass weeds

Passive Data Acquisition

Input prescription map Remote sensing -NDVI -Elevation

Weather data

E

As applied map Yield monitor data

Economic data

Analysis -Linear -Non-linear -Bayesian updating -Random forest

On Farm Precision

Experimentation

Optimized Net Return \$ Prescription

New information built back into the model

OFPE - introduction

ec35mid

Sec1east

000

Sec1wes

Sec35west

Key point of our approach:

Experiments are intended to inform management on the field where conducted, not other fields.

Calgary

Applying On Field Precision Experimentation

Lake Manitoba

Precision seeding experiment Loewn winter wheat Precision seeding experiment spring wheat Casey Bailey Bob Quinn (Goodman) Ole Norgaard North Dakota Precision seeding experiment Montana Pea green manure followed by wheat Min Rocky Mountains M Ty O'Connor ountains Precision nitrogen experiment blood meal on wheat Black Hills South Dakota 2018 Google Wyoming Google Image Landsat / Copernicus

Variable Rate Spring Wheat, May 15 2019 Lbs/Ac Kg/h 0 225 250 High 180 200 Med 135 150 Low 0.4 Kilometers

0 400 Kilometers Field size: 71

hectares (175 acres) Farmer: Sasha Loewen Location: South East Manitoba

Field elevation levels

Field size: 71 hectares (175 acres) Farmer: Sasha Loewen Location: South East Manitoba

NDVI from Sentinel 8 from oat crop 2017

Field size: 71 hectares (175 acres) Farmer: Sasha Loewen Location: South East Manitoba

Weather data from nearby weather stations

Field size: 71 hectares (175 acres) Farmer: Sasha Loewen Location: South East Manitoba

Combine monitor yield results - SE Manitoba field wheat harvested Aug 15, 2019 field average: 3.01 tonnes/hectare (44.8 bushels/acre)

Field size: 71 hectares (175 acres) Farmer: Sasha Loewen Location: South East Manitoba

https://organicbiz.ca/organic-grain-price-trends-over-time/

Original Design

New, more complex design

Cost and benefit of OFPE from Manitoba test site in net return per acre

Cost and benefit of OFPE from Manitoba test site in net return per acre

Cost and benefit of OFPE from Manitoba test site in net return per acre

Unique Organic Challenges

Fertility – Green manure plowdowns

Unique Organic Challenges

Fertility – Green manure plowdowns Weeds – Map perennials

Unique Organic Challenges

Fertility Green manure plowdowns

• Weeds

•

Map perennials
 Organic farmers skeptical of

tech

– Is PA worth it?

Conclusion and Moving Forward

- Other inputs (manure?)
- Integrate satellite data, NDVI, Soil Moisture Active Passive (SMAP), Enhanced Vegetation Index (EVI)
- Develop complete program that can integrate weather, variable prices, to make predictions for ideal seed rates (build from conventional model)

On-Farm Precision Experimentation Data Analysis and Simulation

Developed by the Agroecology Laboratory for the On-Farm Precision Experiments Projec (OFPE) - Montana State University

Paul Hegedus or Bruce Maxwell for citing product. Copyright Montana State University. 2019/01/31.

AGRICULTURI

This application allows the user to select a farmer and field to query available field-specific data for analysis and simulation effective models as applied (ntrogen or seeding rate) application outcomes from various N-management strategies under user select deprediced weather scenarios in the upcoming year. The CPFE classibase is queried for fields that are available for analysis from which the user can select one or multiple. For each field specific de tabaxes is queried for years to use to fit yield or protein models as a function of variable N-application of corp response from the observed N-rates and other variables. Additionally, the user sale to run a simulation that randomly selects from economic data gathered for the past 16 years to compare the average net-returns (NR) per ace and total as-applied rates for a sele-specific optimized as-applied rate (FOR); are or nets across the field (NOSRD), and the net-return with zero nitrogen applied and organic prices received (Org). The user can select what they think the upcoming climate with zero nitrogen applied and organic prices received (Org). The user can select what they think the upcoming climate will be to compare N-management outcomes under their predicted what ere y canon.

Database Connection	Select Field Specific Inputs	Select Data	Select years for each field and response variable from which to get data.
Port Number	Field size in acres.	Select farmer to get data from.	
5432	427	broyles 👻	Select Years
Host	Cost for applying site-specific technology per acre.	Select response variables to use for	Select years to get yield from sec1east
127.0.0.1	4	Yield Protein	2019 2017
User	Fixed costs per acre.	Select field(s) to analyze and simulate	Select years to get protein from sec1east
loorgroo	71.31	field-specific responses.	2019 2017
Password	Farmer selected uniform rate (lbs/ac) that would be applied if no experiment was performed.	sec1east sec1west	Select years to get yield from sectivest
2h210220		Select the experimental variable to optimize rates on, based on maximizing	select years to get yield noin sectivest
Database Name			2019 2016
DFPE	70	the response variable(s).	Select years to get protein from sec1west
	Maximum as-applied rate (lbs/ac) to	As-Applied Nitrogen 🔹	2019 2016
Connect to Database	simulate responses up to.	Select function to use.	Gather the selected data from the database for
		Non-Linear Logistic	Gather Data

Thank you!

Advisor – Bruce Maxwell Lab mates – Hannah Duff, Paul Hegedus, Tommy Bass, Braedon Lineman, Lexi Emeny, Madison Boone Farmers: Bob Quinn, Ole Norgaard, Casey Bailey, Ty OConnor, Roy Loewen Funding: Western SARE, Montana Acadamy of Sciences

Questions?

Field size: 71 hectares (175 acres) Farmer: Sasha Loewen Location: South East Manitoba

OFPE - introduction

Farmer driven as far as possible
Experiments field scale
Conventional machinery
Analysis provides insight to treatment effect and causes of variation