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ABSTRACT 

North American beavers (Castor canadensis) build dams in stream channels, thus creating 

impoundments that flood surrounding riparian areas.  Due to the widely circulating global pool 

of mercury in the atmosphere, mercury is deposited onto the landscape both near and far from 

point sources, including areas occupied by beavers.  The organic form of mercury, 

methylmercury, is a potent neurotoxin with potential to cause harm to both humans and wildlife 

due to its ability to biomagnify up food chains.  Recently flooded areas, such as those resulting 

from beaver impoundments, create ideal environments for the methylation of mercury.  These 

impoundments can release methylmercury to downstream food webs where there is potential for 

it to be transferred to higher trophic level organisms.  Beaver impoundments can also boost 

productivity in aquatic systems, so increases in mercury may be accompanied by an increase in 

nutrients and algal and invertebrate biomass.  The findings here describe increased 

concentrations of methylmercury in water, algae, and invertebrates downstream from in-channel 

beaver dams in the southern Canadian Rockies.  There was, however, no significant increase in 

nutrients or algal and invertebrate biomass downstream from impoundments.  An examination of 

trophic transfer of mercury in these stream systems reveals that uptake is enhanced at low 

concentrations.  The uptake pathway from water to algae is especially important but is attenuated 

in higher trophic levels due to a small relative difference in trophic level between predators and 

prey.  The overall rate of trophic transfer in these systems falls within the low end of the typical 

range, and low baseline concentrations mean that methylmercury is not biomagnifying to 

dangerous levels in these low-productivity mountain systems.  Beavers can provide important 

ecosystem services such as improving landscape heterogeneity, creation of new habitat for 

invertebrates and fish and improved angling opportunities, but they also enhance mercury export.  

Therefore, in systems that are mercury-sensitive such as those with low pH or long-lived, slow-
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growing predatory fish species, beaver influence should be considered as an important source of 

methylmercury.
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CHAPTER 1 

1. GENERAL INTRODUCTION 

This thesis is composed of a review of the relevant literature, two manuscript-style 

research chapters (Chapters 3 and 4), and a concluding synthesis chapter. The objective of these 

chapters is to answer the overall question: Does beaver activity alter downstream food web 

structure and lead to higher concentrations of methylmercury (MeHg) in biota?  

In Chapter 3 (currently a manuscript in review with Environmental Science and 

Technology, submitted June 2014), I determined if in-channel beaver impoundments result in 

alteration of downstream food web-available MeHg and greater algal and invertebrate biomass.  

This was done by measuring MeHg concentrations in water, periphyton and benthic invertebrates 

above and below impoundments in Rocky Mountain foothills streams.  Additionally, benthic 

chlorophyll a, invertebrate standing stock, and nutrients (total P, total N and dissolved organic 

carbon) were measured above and below impoundments.  Finally, to determine if in-channel 

impoundments alter the flow of energy to downstream primary consumers, I used carbon stable 

isotope ratios (
13

C/
12

C) to determine source reliance. 

Chapter 4 examined the transfer of MeHg to higher trophic levels by biomagnification 

(currently a draft manuscript to be submitted to Archives of Environmental Contamination and 

Toxicology). This was done by measuring trophic position using nitrogen stable isotope ratios 

(
15

N/
14

N), 
15

N/
14

N vs. bodysize, MeHg vs. 
15

N/
14

N and MeHg vs. bodysize relationships.  

Trophic transfer of MeHg was determined by calculating bioconcentration factors, 

bioaccumulation factors, biomagnification factors, and trophic magnification factors, and used to 

assess implications for downstream consumers. 
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The concluding Synthesis chapter brings together the two research chapters, summarizes 

my findings, and discusses the overall implications of the research as a whole, with suggestions 

for future work. All literature cited throughout the thesis is presented in a References chapter 

immediately following the Synthesis chapter.  Additional information will be presented in the 

Appendix at the end of the document
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CHAPTER 2 

2. LITERATURE REVIEW 

Growth in the global population and corresponding economic activities has left 

freshwater ecosystems imperiled in many regions of the world due to anthropogenic resource 

production, overexploitation and pollution.  These activities result in worldwide loss of 

biodiversity (Dudgeon et al. 2006), threatened fisheries (Brander 2007) and systems increasingly 

burdened with toxic contaminants (Kelly et al. 2010).  In western Canada, in particular, resource 

development is on the rise putting freshwaters at risk.  The western provinces have become 

Canada’s economic engine due to resource extraction (oil, gas, and mineral mining activity).  

With these increased activities come modifications to hydrological systems that were once 

untouched.  The push for development has put many waterways at risk despite the fact that little 

information about these systems exists.  Despite their importance to downstream users (Wolfe et 

al. 2008), mountain stream ecosystems in western Canada are not well-studied. A growing 

regional population relies on these ecosystems, largely as a recreational haven.  In addition, 

many of these streams are tributaries to larger systems that provide important freshwater 

resources to downstream communities across the Canadian prairies.  Mountain water supplies are 

diminishing (Schindler and Donahue 2006); therefore, understanding the implication of human-

induced modifications of these waterways and their natural analogues should be a priority to 

provide information for researchers and managers responsible for the protection of sensitive 

freshwater ecosystems. 



 

4 

2.1 Ecosystem engineers 

Organisms within the natural environment can act as agents of change on large spatial 

and temporal scales, thus becoming important modifiers of freshwater ecosystems.  These 

organisms are defined as ecosystem engineers – those that directly modulate the availability of 

resources to other species by causing physical state changes in biotic and abiotic materials (Jones 

et al. 1994).  For example: dreissenid mussels (Dreissena sp.) in the Laurentian Great Lakes 

cause large-scale substrate modification and shifts in nutrient cycling (Coleman and Williams 

2002; Hecky et al. 2004); hippos (Hippopotamus amphibius), due to their large physical size, 

create channels between rivers and lagoons during their daily movements, creating fish habitat 

and modifying the structure of riverbanks and surrounding swampland (McCarthy et al. 1998; 

Mosepele et al. 2009); and finally, perhaps the most well-known example of ecosystem 

engineering, and the focus of the current study, is the engineering of waterways by beavers 

(Castor sp.). 

2.2 Beaver history and ecology 

North American beavers (C. canadensis) have always been a source of great significance 

and debate, both historically during the era of the fur trade, and currently as a species often 

regarded with contravening opinions. Most recently, beavers have been described in a variety of 

ways: revered as keystone species (Naiman et al. 1986) and disdained as nuisance animals 

(Conover et al. 1995; Curtis and Jensen 2004).  Preceding the arrival of Europeans, the 

population of beavers in North America was estimated at 60 to 400 million animals (Seton 

1929).  Following European settlement, vast overexploitation left beaver populations nearly 

decimated by the advent of the 20th century after beavers were heavily trapped for their valuable 

pelts and castoreum (Rosell et al. 2005).  This continued exploitation and concomitant 
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conversion of many wetlands to dry land for human development resulted in near extinction of 

beavers in North America (Naiman et al. 1988).  After coming under protective law in the early 

1900s, combined with decreased natural predation (Naiman et al. 1988; Collen and Gibson 

2001), beaver populations have been steadily increasing over the past century. The current 

population is now thought to be 6 to 12 million individuals (Naiman et al. 1988).  

As populations increase so do the effects of beaver activity. Beavers impound water 

because they need access to water with adequate depth to allow the construction of a winter food 

cache and to ensure the entrance of their lodge or burrow remains underwater.  These criteria 

make small, low gradient streams attractive for beaver to build dams and create impoundments 

(Collen and Gibson 2001).  Landscape changes owing to beaver activity include the alteration of 

stream and river channels and associated riparian areas, and the creation of wetlands and new 

habitat for aquatic organisms (Naiman et al. 1986; Westbrook et al. 2011).  In addition, dam 

building changes stream discharge, velocity and gradient, expands flooded soil area and 

increases retention of sediment and organic matter (Naiman et al. 1988).  The population and 

distribution increase of a species which is able to significantly modify ecosystems clearly 

generates a considerable amount of scientific interest (Rosell et al. 2005).  Where beavers remain 

undisturbed, their influence can be wide-reaching, affecting a large proportion of the streams in a 

given drainage network (Naiman et al. 1988).   Beavers are generalist herbivores (Rosell et al. 

2005), and have the ability to fell large trees for the purpose of impoundment creation; thus, their 

presence can have a profound impact on standing vegetation biomass.  One study noted a 40% 

decrease in standing biomass around a beaver pond over the course of six years of foraging 

activity (Johnston and Naiman 1990).   Tree-felling activity can make beavers a costly nuisance 

due to loss of saleable lumber in addition to the flooding of roadways and trail networks. These 
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changes introduce challenges for land-owners and environmental stewards that have resulted in 

calls to cull beaver populations and destroy dams.   

In both past and recent literature, the effects of beaver activity on waterways have been of 

significant interest.  It is known that beaver-induced stream channel alterations change the way 

materials flow through streams (Naiman et al. 1986; Naiman et al. 1988).  Furthermore, the 

extent of alteration of stream ecosystem characteristics by removal of beavers long before the 

advent of modern limnological research remains largely unknown.  Thus, much of our 

understanding of stream ecosystems is derived from sites that lack the influence of this 

ecologically significant and once-abundant animal (Naiman et al. 1988).  It is important to note 

that there is no such thing as a typical beaver pond (Butler and Malanson 2005).  Variation in 

pond morphology and hydrology drives effects on downstream nutrients, resources and benthic 

invertebrates (Fuller and Peckarsky 2011).  Thus, it is difficult to make predictions about 

downstream effects of beaver damming activity in streams.  To understand the implications of 

current management strategies for river systems, more information is needed about the 

ecological outcomes of beaver dam construction and/or removal for downstream waterways. 

2.3 Mercury dynamics 

Methylmercury (MeHg) has long been a contaminant of global concern, particularly 

because of its ability to biomagnify through food webs, often resulting in high concentrations in 

fish and mammals that serve as subsistence for human populations (Mergler et al. 2007).  MeHg 

is reported to increase two- to eight-fold across trophic levels (Lavoie et al. 2013) resulting in 

dangerous concentrations in piscivorous fish and other wildlife that are commonly consumed 

(Watras et al. 1998; Ward et al. 2010).  MeHg is a potent neurotoxin and can have devastating 

health effects on both humans and wildlife.   MeHg causes central nervous system damage in 
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mammals, including humans, manifesting itself favorably in the fetal brain due to its ability to 

cross the placental barrier (Wolfe et al. 1998).  This puts young children and developing fetuses 

particularly at risk; especially those who rely on contaminated local subsistence fisheries and 

marine mammal populations (Chan et al. 2003).  As a result, MeHg contamination is the most 

frequent cause of human fish consumption advisories around the world (Ward et al. 2010).  In 

Canada, edible portions of fish sold commercially must have concentrations less than 0.5 parts 

per million (ppm) wet weight.  For subsistence consumers, this level is reduced to 0.2 ppm wet 

weight (Health Canada 2007).   Indirect effects of MeHg contamination of fish are also an issue 

of concern: Avoidance of otherwise-healthy fish consumption by Aboriginal peoples and greater 

reliance on an unhealthy “Western” style diet can lead to various health problems such as 

diabetes and cardiovascular diseases (Chan et al. 2003). 

While controls can be put in place to limit consumption of MeHg in the diet of humans, 

for wildlife this is not the case. Species consuming a diet consisting wholly of fish are 

particularly vulnerable (Ward et al. 2010). In predatory fish and piscivorous birds and mammals, 

MeHg has been known to cause a range of toxic effects at ecologically relevant concentrations 

including behavioural, neurological, hormonal and reproductive alterations (Scheuhammer et al. 

2007).  This has led to the development of protocols for assigning tissue reference guidelines 

(CCME 1998) to protect some wildlife species that are known consumers of MeHg-contaminated 

fish.   For example, female mink (Mustella sp.) are expected to exhibit toxic effects when 

consuming fish containing more than 0.092 µg/g MeHg wet weight (Environment Canada 2003).   

Beaver activity may affect downstream ecosystems through the flooding of landscapes 

resulting in enhanced MeHg production.  Flooding forested areas promotes in situ formation of 

MeHg (Roy et al. 2009b).  The increase in beaver dams and flooded forested areas may therefore 
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favour the production and transfer of MeHg to streams (Roy et al. 2009a). Flooding resulting 

from the formation of beaver impoundments creates wetlands – sites with environmental 

conditions favourable for the production of MeHg (St. Louis et al. 1994; Roy et al. 2009a).  

Over the past 20 years, mercury (Hg) in lakes, reservoirs and wetlands has been 

researched extensively, with streams receiving comparatively less consideration (Ward et al. 

2010).   Wetland abundance and dissolved organic carbon (DOC) in stream watersheds are 

strongly linked to MeHg export and availability (Driscoll et al. 1995; Brigham et al. 2009; 

Chasar et al. 2009). MeHg production in hydrologically connected wetlands and transfer to 

streams via run-off is likely the predominant source of MeHg to streams (Brigham et al. 2009).  

Beavers play an important role in incorporating these wetlands into stream drainage networks.  

Driscoll et al. (1995) investigated the role of wetlands in regulating the supply of Hg to 

downstream lakes.  A stream was sampled above and below a beaver impoundment and water 

was found to be enriched in total Hg, MeHg and DOC after transport through the beaver-created 

wetland system.    

A great deal of attention has been paid to anthropogenic reservoir creation and the 

subsequent influence on Hg cycling within the environment; however, little work has been done 

to examine the natural version of this phenomenon – the creation of dams and resultant 

impoundments by beavers.  In nearly all man-made reservoirs created, MeHg concentrations in 

top predatory fish have exceeded the allowable guideline for sale and human consumption (St. 

Louis et al. 2004).  It is known that after the initial flooding of reservoirs, Hg concentrations 

increase greatly (St. Louis et al. 2004; Hall et al. 2005). Because beavers impound much smaller 

waterways than most human-constructed impoundments, only limited extrapolations can be 

made (Fuller and Peckarsky 2011).  However, recent work suggests similarities in 
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biogeochemical processes but at a smaller scale.  For example, higher Hg concentrations are 

observed in water flowing out of ponds compared with upstream concentrations (Roy et al. 

2009a), as are elevated nutrient concentrations and depleted oxygen, SO4
2-

 and NO2-NO3 in 

water draining from beaver impoundments, suggesting high heterotrophic microbial activity and 

the presence of reducing conditions – key conditions that favor the methylation of Hg.  This is 

caused by the flooding of large amounts of organic matter which subsequently decompose, 

increasing the activity of microorganism respiration and inducing an anoxic environment.  

Inorganic Hg can also be released from inundated soil, becoming available for methylation 

(Brinkmann and Rasmussen 2010).  Sulfate and iron-reducing bacteria, the microbes responsible 

for MeHg production (Gilmour et al. 2013), flourish in the anoxic environment created 

immediately following reservoir creation (St. Louis et al. 2004).  Higher proportions of total Hg 

as MeHg have been noted in reservoirs (Montgomery et al. 2000), which makes for greater 

potential for bioaccumulation of Hg in these types of systems.    

Hg contamination in top predator fish in streams is likely dominated by the amount of 

MeHg available for uptake at the base of the food web rather than by differences in fish trophic 

position (Chasar et al. 2009).  Biofilm and aquatic invertebrates are parts of this basal 

community that transfer MeHg from the physical environment to fish; therefore, increases in 

MeHg in these lower trophic levels are an important consequence of reservoir formation (Hall et 

al. 1998).  An experimentally flooded wetland complex studied as a component of the 

Experimental Lakes Area Reservoir Project (ELARP) revealed an increase in predatory 

invertebrate MeHg following flooding (Hall et al. 1998), likely a function of increased 

bioaccumulation in lower trophic level organisms.  During a nine year ELARP study of the same 

complex, St. Louis et al. (2004) found a large initial stimulation of methylation in peat in the first 
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few years of flooding which receded to pre-flooding levels after approximately five years.  

Methylation activity in open water areas, however, remained elevated leading to high MeHg 

concentrations in biota for the entire course of the study suggesting biotic MeHg concentrations 

are sustained by only a small source of Hg.  Sustained MeHg production in this flooded pond is 

not at the scale of that observed in large hydroelectric reservoirs but is more similar to what 

would be expected in the smaller-scale case of beaver impoundments.  Other studies that have 

followed post-impoundment Hg levels have revealed that elevated Hg concentrations in 

predatory fish remain for up to three decades before returning to normal background 

concentrations (Bodaly et al. 2007).  These studies of reservoirs (St. Louis et al. 2004; Bodaly et 

al. 2007) along with those of beaver impoundments (Roy et al. 2009b) have indicated that 

impoundment age may play an important role in the production and supply of MeHg. 

All of these observations point to the potential for enhanced MeHg supply to downstream 

ecosystems such as those that may be observed downstream of beaver impoundments.  Upon 

observing elevated MeHg in water downstream of beaver impoundments, Roy et al. (2009b) 

highlighted the need for further research to address the downstream fate of MeHg in food webs.  

Therefore, to better understand the consequences of the in-channel construction of beaver 

impoundments on downstream fluvial environments, more information about Hg dynamics 

within these small-scale systems is needed. 

2.4 Dietary carbon source and invertebrate community structure 

In addition to altering contaminant flow, beaver-induced stream channel alterations 

change the way energy and materials flow through streams (Naiman et al. 1988) and can also 

alter invertebrate community structure (Smith et al. 1989; Anderson and Rosemond 2010; Fuller 

and Peckarsky 2011).  Beaver ponds are believed to enhance algal growth below dams because 
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they foster the release of nutrients from decaying plant matter.  Algae are nutritionally superior 

to terrestrial carbon sources (leaf litter, wood debris, etc.), so higher algal biomass may lead to 

higher production of invertebrates that serve as food for fish, thereby providing positive benefits 

for recreational fisheries.  However, dams also enhance the export of DOC (Roy et al. 2009b) 

that can serve as food and a source of MeHg for filter-feeding insects (Harding et al. 2006).  If 

beavers change these flows of carbon to the food web downstream of a beaver impoundment, 

there could be important implications for Hg entering the food web from enhanced production in 

the pond.  Because consumers generally obtain Hg from their diet, the availability of Hg to 

higher predators such as fish may depend largely on the types of invertebrates present and their 

feeding behaviour.  These kinds of interactions make it important to be able to quantify C flows 

in stream food webs in conjunction with analyses of contaminants (Jardine et al. 2012), 

something that has never been done for beaver-influenced streams.   

Different foraging strategies and habitats of invertebrates influence MeHg 

bioaccumulation in streams even at relatively small spatial scales (Riva-Murray et al. 2013). 

Alterations in community structure and functional feeding groups such as algal scrapers, detrital 

shredders, filterers and collectors could therefore play an important role in facilitating the 

transfer of MeHg to higher trophic levels.  Anderson and Rosemond (2007) found a 

taxonomically simplified but more productive (based on abundance and biomass) benthic 

invertebrate community in beaver ponds likely resulting from a decrease in microhabitat 

heterogeneity. This is because beavers transform streams from an erosional environment to a 

depositional environment (Butler and Malanson 2005) resulting in greater retention of sediment 

and organic matter.  In addition, a noted shift from lotic to lentic taxa has been observed in 

beaver pond invertebrate communities (Naiman et al. 1986; Anderson and Rosemond 2007).  
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These observations have been largely confined to the ponds with little evidence of downstream 

changes, though increases in abundance of suspension feeding invertebrates downstream of 

reservoirs and lake-outlets have been observed (Anderson and Rosemond 2010).  This potential 

change in community composition could change carbon (C) and MeHg flows downstream of 

beaver ponds (Anderson and Rosemond 2010). 

2.5 Stable isotopes 

Stable isotope analysis is a technique that uses intrinsic chemical signatures of tissues to 

provide information about energy flow and the diet of organisms (Hobson 1999).  Stable isotope 

ratios of carbon (
13

C/
12

C), nitrogen (
15

N/
14

N), oxygen (
18

O/
16

O), sulfur (
34

S/
32

S) and hydrogen 

(H
2
/H

1
) are now widely used in ecology and ecotoxicology (Jardine et al. 2006; Hobson 1999).  

Stable isotopes are a useful tool for ecologists because stable isotope ratios in consumers are 

proportional to ratios in their assumed diet, and differences in isotope ratios exist among dietary 

sources (Jardine et al. 2006).  These characteristics make stable isotope analysis useful in tracing 

and characterizing sources of energy and contaminants in food webs as well as food web 

structure 

2.5.1 Stable carbon isotopes (
13

C/
12

C) 

An important consideration when studying food web accumulation of a contaminant is 

the source of dietary C at the base of the food web.  C fixation by benthic algal photosynthesis is 

an important source of fixed energy to consumers occupying higher trophic levels (Hecky and 

Hesslein 1995).  Dietary source information can be ascertained from stable isotope ratios of C, 

13
C/

12
C, because values, while variable at the base of the food chain, are conserved across higher 

trophic levels thus providing information about the sources of energy (C) to higher consumers 

(Hecky and Hesslein 1995; Vander Zanden and Rasmussen 1999). This conservation of 
13

C/
12

C 
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values from fixation at the base of the food web through to higher consumers has been relatively 

well-studied in lakes where 
13

C/
12

C gradients have been related to in-shore and open water food 

webs (Hobson 1999) due to differential fractionation of 
13

C by benthic algae and pelagic 

phytoplankton (Hecky and Hesslein 1995).    

Fluvial environments offer an additional layer of complexity when attempting to establish 

C sources.   Source delineation in streams is difficult because the range of 
13

C/
12

C values 

resulting from photosynthesis in aquatic systems often overlaps the δ
13

C of terrestrial plants and 

aquatic macrophytes (France 1995; Finlay 2001)  This makes it challenging to address and 

quantify the reliance of consumers (i.e. benthic invertebrates) in streams on terrestrial C inputs.     

2.5.2 Stable nitrogen isotopes (
15

N/
14

N) 

Along with 
13

C/
12

C, 
15

N/
14

N
 
can be useful in confirming feeding linkages in aquatic food 

webs.  The habitat-independent, step-wise enrichment of 
15

N with trophic level (Minagawa and 

Wada 1984) has been widely used to characterize aquatic food webs. Trophic position estimates 

are calculated from 
15

N/
14

N
 
values by interpreting the 

15
N/

14
N

 
of higher consumers relative to a 

baseline 
15

N/
14

N
 
value (Cabana and Rasmussen 1996) with an a priori assumption of a trophic 

fractionation ranging between 2 and 5‰ (Minagawa and Wada 1984; Post 2002). 

The relationships that exist among 
15

N values of primary consumers and various 

environmental variables have been of particular importance in developing the utility of 
15

N 

analysis in aquatic systems.   The relationship between 
15

N and environmental contaminants has 

long been used as predictors of contaminant biomagnification in aquatic food webs (Kidd et al. 

1995).   Because 
15

N increases with trophic level (TL), it can be used to compare Hg 

biomagnification across systems either as the slope of the regression of log-transformed Hg vs. 

15
N or log-transformed Hg vs. trophic level (Borgå et al. 2011; Kidd et al. 2012).  The use of TL, 
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rather than 
15

N, when calculating this relationship is preferred (Borgå et al. 2011).  The 

calculation of a TL value takes into consideration an enrichment factor (increase in 
15

N from diet 

to consumer) and assigns discrete TLs to baseline organisms.  TL can be calculated as follows: 

TLconsumer = (δ
15

Nconsumer - δ
15

Nbaseline)/ ∆15N + λ          (Eq. 2.1) 

Where λ = TL of the baseline organism: 1 for primary producers and 2 for primary consumers; 

and ∆15N is the enrichment factor.   

Trophic magnification factors (TMFs), also known as trophic magnification slopes 

(TMSs) (Lavoie et al. 2013) can be used to calculate an average change in Hg concentration per 

relative TL, thus representing the average bioaccumulation through the entire food web.   The 

TMF is calculated as the antilog of Hg-TL slope (b) in the following model: 

LogHg = TL (b) + a          (Eq. 2.2) 

TMF = 10
b          

(Eq. 2.3) 

When TMF is equal to 1, the slope of the Hg-TL relationship is 0, leading to the conclusion that 

Hg does not biomagnify through the food web.  When TMF is > 1, the slope is also > 1 and it 

can be said that Hg biomagnifies through the food web with an average factor of TMF per TL. 

When TMF < 1, the slope is also < 1 illustrating that Hg is decreasing in concentration with an 

average factor of TMF per TL (i.e. trophic dilution is occurring).  TMFs for Hg are typically > 1 

(Borgå et al. 2011; Kidd et al. 2012; Lavoie et al. 2013) but are highly spatially variable. 

TMFs can be compared across systems to understand how biomagnification varies with 

the properties of the ecosystems of interest (Borgå et al. 2011; Lavoie et al. 2013).   Should 

beaver impoundments increase productivity in downstream food webs, the resulting growth on 

higher quality food by benthic organisms could translate into reduced biomagnification.  This is 

because increased algal growth can reduce the uptake of MeHg by higher trophic level organisms 
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as the pool of Hg is diluted by a larger amount of biomass (Pickhardt et al. 2002, Lavoie et al. 

2013).   

The addition of trophic links can enhance the transfer of contaminants to higher trophic 

levels (Rasmussen et al. 1990; Cabana and Rasmussen 1994; Vander Zanden and Rasmussen 

1996).  More productive sites are more likely to support additional predators (Thompson and 

Townsend 2005; Anderson and Cabana 2009). 
15

N-size relationships for benthic invertebrates 

may be useful as tools to measure the addition of predators to food webs (Anderson and Cabana 

2009) because predators are consistently larger than their prey (Riede et al. 2011).  Anderson and 

Cabana (2009) suggest that the relationship between 
15

N and body size can be used as an 

indicator of food web structure alteration by human activity, and thus beaver-induced increases 

in productivity may also be accompanied by altered 
15

N-size relationships. 

2.6 Summary 

Chemical and biological processes at the base of the food web can have considerable 

influence on Hg concentrations in higher order consumers (Jardine et al. 2013).  While the 

potential for beaver impoundments to increase waterborne Hg downstream has been 

demonstrated (Roy et al. 2009a,b), the current study aims to address this issue further by 

bringing together two key components that play a role in driving Hg contamination in fluvial 

systems: 1) food web availability of Hg and 2) sources of dietary carbon to primary consumers.   

Small changes in these two components at the base of the food web can amplify into large-scale 

changes in top predators.  There is an increasing amount of evidence that dietary carbon source is 

an important control on Hg bioaccumulation in streams (Jardine et al. 2012; Riva-Murray et al. 

2013).  It is already known that beaver activity can substantially change the absolute carbon 

inputs, standing stock and outputs of C (Naiman et al. 1988).  These changes in C flows owing to 
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beaver activity, then, could translate into a reliance on more in-stream C (autochthonous) or 

more terrestrially derived (allochthonous) C and result in enhanced or reduced exposure to 

MeHg.   

Evidence suggests that autochthonous C sources accumulate higher concentrations of 

MeHg relative to allochthonous sources.  Riva-Murray et al. (2013) studied a range of small to 

midsize streams to examine links between dietary C sources and bioaccumulation of MeHg.  

Shredding invertebrates with enriched 
13

C associated with the consumption of terrestrial detritus, 

had lower MeHg concentrations than organisms with more depleted 
13

C associated with 

consumption of algae. This is consistent with the findings of Jardine et al. (2012) where 

autochthonous carbon reliance corresponded with higher Hg in low-pH streams, and Tsui et al. 

(2009) who reported significantly higher MeHg concentrations in periphyton than in terrestrial 

organic materials in a California stream ecosystem.  The findings of these studies suggest that an 

increased reliance on autochthonous carbon will translate into higher food web available Hg.  In 

addition, benthic primary production across sites may be important controls on Hg 

bioaccumulation at small scales (Riva Murray et al. 2013), both through increased exposure but 

also through growth dilution by organisms feeding on the high-quality algal diet (Pickhardt et al. 

2002; Karimi et al. 2007).  These small-scale changes within drainage networks are what would 

be expected if beaver dams release water with high nutrients that stimulate algal growth. 

I hypothesize that beaver ponds increase food-web available Hg but also enhance 

resource availability for the food web.  Below beaver dams I expect higher Hg concentrations in 

all biological compartments, higher nutrient concentrations, more algal growth, and greater 

densities of invertebrates. These changes will result in more pronounced use of the aquatic food 

source pathway and longer food chains but lower MeHg biomagnification through the food web.  
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I expect that the sum of these processes will have the potential to cause an increased risk to fish-

eating wildlife downstream.  This risk will be estimated from measured concentrations in 

predatory insects and extrapolated further up the food chain using calculated TMFs.   However, 

if the rate of biomagnification is low due to enhanced productivity downstream from beaver 

dams, then MeHg availability to top predator fish will be limited resulting in little or no risk to 

piscivorous wildlife and humans. 
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CHAPTER 3 

3. IN-CHANNEL BEAVER IMPOUNDMENTS INCREASE UPTAKE OF 

METHYLMERCURY BY ORGANISMS AT THE BASE OF STREAM FOOD WEBS 

3.1 Preface 

Supply and availability of MeHg at the base of the food web are important determinants of 

bioaccumulation potential.  Changes in resource availability owing to beaver activity can affect 

the availability of MeHg in aquatic systems.  While it is known that MeHg can be released into 

water downstream from beaver impoundments, there have been no comprehensive studies 

examining the availability of this MeHg to organisms.  This chapter focuses on the supply of 

MeHg and nutrients at the base of stream food webs by presenting an up- vs. down-stream 

comparison of concentrations of nutrients, algal and invertebrate biomass and MeHg in water, 

algae and invertebrates.  
1
 

  

                                                           
1
 This chapter was submitted for publication in Environmental Science and Technology on June 

5, 2014 as a manuscript entitled “In-channel beaver impoundments increase uptake of 

methylmercury by organisms at the base of stream food webs” by K. J. Painter, C. J. Westbrook, 

B. D. Hall, N. J. O’Driscoll and T. D. Jardine. 
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3.2 Abstract 

Beavers (Castor spp.) are ecosystem engineers and important modifiers of freshwater 

ecosystems.  They create impoundments that flood the surrounding landscape and modify the 

flow of materials through streams, thus potentially increasing nutrients, productivity and the 

availability of toxic MeHg to downstream food webs. Here we quantify food web-available 

MeHg in water, periphyton, and invertebrates collected from 15 streams up- and down-stream 

from beaver impoundments in the Rocky Mountain foothills of Western Canada.  While 

nutrients, algal biomass, and total invertebrate standing stock were not significantly elevated 

below ponds, MeHg concentrations (average increase of 1.7X) and percent of total Hg that was 

MeHg (average increase of 1.3X) consistently increased in all compartments. This demonstrates 

that beaver impoundments increase the availability and subsequent uptake of MeHg by basal 

food web organisms even if their immediate influence on nutrients and resources is limited. The 

findings present important implications for research and management of Hg in stream drainage 

networks where beavers are present. Increasing beaver populations will have downstream 

consequences for fish and wildlife and ongoing consumption advisories for Hg. 

 

3.3 Introduction 

Chemical and biological processes at the base of aquatic food webs can have 

considerable influence on Hg concentrations in higher order consumers (Watras et al. 1998; 

Chasar et al. 2009).
  
This is because MeHg, a neurotoxin, biomagnifies through aquatic food 

webs (Lavoie et al. 2013), resulting in high concentrations in fish and mammals that serve as 

subsistence for human populations (Mergler et al. 2007).  It is well established that Hg sensitivity 

in freshwater aquatic systems is influenced by high DOC (Watras et al. 1998), low pH (Jardine et 

al. 2012), and low productivity (Pickhardt et al. 2002).  Flooding of uplands through reservoir 



 

20 

creation has been shown to alter many of these influencing factors and lead to higher MeHg 

production (Hall et al. 2005).
 
 Beavers (Castor canadensis and C. fiber) also flood substantial 

tracts of land through building dams, but how their ponds affect Hg sensitivity is not well 

studied. Initial work shows that Hg concentrations in water can be elevated downstream of 

beaver dams (Driscoll et al. 1995; Roy et al. 2009a; Roy et al. 2009b).  At beaver pond outlets, 

MeHg concentrations in stream water can be several-fold higher than at inlets, indicating that 

impoundments can serve as significant sources of MeHg to downstream water bodies (Roy et al. 

2009a; Roy et al. 2009b).  Here we explore, for the first time, how this affects uptake by basal 

food web organisms. 

Beaver are ecosystem engineers (Jones et al. 1994), and their influence can be wide-

reaching, affecting most headwater streams in a given drainage network (Naiman et al. 1988).  

The impoundment of streams by beaver floods local vegetation and creates wetlands (Westbrook 

et al. 2006), thus potentially increasing Hg methylation, the key step leading to MeHg uptake and 

trophic transfer (St. Louis et al. 2004; Roy et al. 2009a).  This is because of substantial 

accumulation and subsequent decay of organic matter in ponds leading to enhanced microbial 

decomposition which is a precursor for Hg methylation.  At the same time, impoundments often 

also enhance export of DOC and other nutrients (Driscoll et al. 1995; Naiman et al. 1988; Roy et 

al. 2009b), thereby altering the resource base for downstream food webs.  Specifically, these 

changes can alter invertebrate community structure (Anderson and Rosemond 2010; Fuller and 

Peckarsky 2011)
 
as well as food source pathways that are known to influence Hg 

bioaccumulation (Jardine et al. 2012).  

The predominant source of MeHg to streams is production in wetlands and subsequent 

transfer during times of high hydrological connectivity (Brigham et al. 2009).  While it is well 
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known that beaver-induced channel alterations change the way materials flow through streams 

(Naiman et al. 1986; Naiman et al. 1988), only recently has the enhancement of landscape 

hydrological connectivity by beaver damming been considered in the Hg literature. These recent 

findings suggest that beaver dams play an important role in creating ideal conditions for Hg 

methylation and thus, the subsequent export of that MeHg downstream (Driscoll et al. 1995; Roy 

et al. 2009b).  

Our goal was to characterize the transfer of MeHg into food webs in fluvial systems 

affected by beaver activity. Here, we examine how elevated Hg concentrations downstream of 

beaver dams in fluvial systems influences food web availability of Hg and the source of available 

carbon at the base of the food web. We hypothesized that in-channel beaver impoundments 

would result in an increase of downstream food web-available Hg and nutrients, and an alteration 

in basal resources, specifically the flow of C, leading to increased reliance on an aquatic food 

source and thus greater potential for Hg to enter the food web. To test our hypothesis, we 

quantified Hg concentrations in biological compartments above and below beaver dams located 

in oligotrophic Canadian Rocky Mountain streams, as well as nutrient concentrations, algal 

biomass, invertebrate density, and invertebrate dietary C sources. Since the net effect of these 

processes ultimately dictates the risk to fish-eating wildlife downstream, this study thus provides 

key information about Hg bioavailability to the growing body of information regarding the role 

of ecosystem engineers in the movement of contaminants through fluvial systems. 

 

3.4 Methods 

3.4.1 Field sampling 

From mid-July to early August 2012, 15 streams with in-channel beaver impoundments 

were sampled in the Canadian Rocky Mountain and Foothill Regions of Kananaskis Country, 
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Alberta (Fig. A-1).  Streams and impoundments were identified using aerial photographs 

(Alberta Parks 2007/2008), a 1:50,000 topographic map series (Natural Resources Canada 2001),
 

through personal communications with Alberta Sustainable Resource Development staff, and by 

visual identification while surveying the area.  Most streams selected were in conifer dominated 

watersheds at elevations of 1300 m to 1900 m. Sites had limited canopy cover (typically < 20%, 

Table A-1), were generally high gradient with cobble and gravel substrates, and had a limited 

accumulation of leaf litter. The flow characteristics of these mountain streams were such that a 

large influx of water during snowmelt (annual peak flow) compromised the structural integrity of 

several dams, resulting in a mix of “intact” and “breached” dams encountered during sampling 

(Fig. A-2).  Intact beaver dams were classified as those that were actively holding back water 

with an intact structure (n = 11) whereas breached dams were classified as those that were 

damaged, allowing flow to pass through the structure (n = 4). 

At each sampling location we collected water, periphyton, leaf litter and aquatic 

macroinvertebrates immediately above and below the impoundment (i.e. at an inflow and an 

outflow).  Subsurface spot readings of pH, turbidity, conductivity and temperature were taken at 

the time of water sampling using hand-held probes (Table A-1). Unfiltered water samples were 

collected for MeHg in sterile flouro-carbon polymer bottles (Hall et al. 2009) using clean 

techniques and in polyethylene bottles for total nitrogen (TN) and total phosphorus (TP). 

Samples for DOC were passed through 0.45 μm syringe filters and stored in amber polyethylene 

bottles. All water samples were frozen at -20⁰C until time of analysis. Benthic chlorophyll a (chl 

a) samples were obtained by scrubbing algal biomass from a known surface area of stream 

substrate (usually rock or cobble) and collecting algal material from the resultant slurry on 0.70 

μm glass fibre filters prior to freezing. Periphyton was also collected for Hg and stable isotope 
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analysis by scrubbing the substrate until adequate biomass was obtained. Benthic invertebrates 

were collected using a 30 cm by 30 cm surber sampler in three by three replicates. At three 

locations within the study reach, the surber net was placed on the stream bottom at three random 

locations and the substrate area within the frame was disturbed by hand. All macroinvertebrates 

were picked from these samples and frozen immediately.  

3.4.2 Laboratory analysis 

Water samples were analysed for TN, TP, DOC and MeHg using standard techniques.  

TN and TP samples were analysed according to methods outlined in Parsons et al. (1984), 

Crumpton et al. (1992), and Bachmann and Canfield (1996).  DOC analysis was conducted on an 

automated Shimadzu TOC-VCPN C and N analyzer.  MeHg concentrations in water were 

measured following distillation (US EPA 2001) on a Tekran 2750 after addition of C5H12N2S2 

and HCl. Samples were distilled at the University of Regina until ~45 mL had collected in the 

receiving vial, and were shipped overnight in a cooler with ice to the University of Western 

Ontario.  Samples were analyzed for MeHg immediately upon arrival by CVAFS on a Tekran 

2700 analyzer after ethylation with sodium tetraethyl borate (US EPA 2001).  Duplicate analysis 

of 10% of samples, ultra-pure water blanks, and spike recoveries were used as quality 

assurance/quality control.  Duplicate analyses were within 10% of each other and spike 

recoveries ranged from 98 to 110%. 

Due to instrument availability, chl a analysis was conducted using both 

spectrophotometric and fluorometric techniques.  From each site, one of the three replicates was 

analysed on a spectrophotometer following a 24 hour cold ethanol (EtOH) extraction 

(Wintermans and De Mots 1965) using methods outlined by Bergmann and Peters (1980) and 

Webb et al. (1992).  The remaining two replicates were analysed using a Turner 10AU
TM 
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flourometer following a seven minute digestion in 90% EtOH at 80°C.  Results for both methods 

were consistent within sites (Figure A-3). 

Samples of periphyton and macroinvertebrates were dried and analysed for total Hg 

(THg), MeHg, and C and N stable isotopes.  Invertebrates were sorted and identified to family 

level, counted, and weighed prior to drying.  Following drying, invertebrates were weighed again 

and homogenized using a mortar and pestle.  Invertebrate biomass was calculated by determining 

the average total biomass of the three replicates collected at each site.  Homogenized samples of 

taxa dominant across all sites were analysed simultaneously for THg and MeHg.  Leaf litter 

samples were dried and ground and analysed for stable isotopes of C and N and THg but not 

MeHg concentrations. 

MeHg concentrations in periphyton and invertebrate samples were determined by gas 

chromatography combined with atomic fluorescence spectrophotometry (GC-AFS) on a Brooks 

Rand Model III (Brooks Rand Labs, Seattle WA, USA) following digestion in 25% KOH/MeOH 

and ethylation with NaB(C2H5)4 (Florida DEP 2012).  DOLT-4 (dogfish liver) was used as a 

certified reference material (CRM). Mean recovery of MeHg in DOLT-4 CRM was 97% (n = 

14). The mean coefficient of variation (CV) for analytical replicates for MeHg was 7% (n = 6) 

and for method replicates was 13% (n = 4).  THg was determined following the concurrent 

calibration for MeHg and Hg(II) and addition of these two species (Liang et al. 1994).  Mean 

recovery of THg in DOLT-4 CRM was 97% (n = 14).  The mean CV for analytical replicates for 

THg was 10% (n = 6) and for method replicates was 11% (n = 4).  All Hg data are reported in 

nanograms per gram (ng/g) dry weight. 

THg in leaf litter was determined by Direct Mercury Analysis on a DMA-80 (Milestone, 

Inc., Shelton, CT). TORT-3 (lobster hepatopancreas) and DORM-4 (dogfish muscle) were used 
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as CRMs.  Mean recovery of THg in the TORT-3 CRM was 97% (n=4) and in the DORM-4 

CRM was 95% (n=3).  

3.4.3 Stable isotopes 

To assess if organic carbon originating from periphyton was the dominant energy 

pathway for these stream food webs, we analysed samples for stable isotopes of carbon (
13

C/
12

C) 

and nitrogen (
15

N/
14

N) (Jardine et al. 2012).  Stable isotope ratios are measured by isotope ratio 

mass spectrometry and expressed as δ values (e.g. δ
13

C and δ
15

N). The ratio of the raw isotopic 

sample (Rsample, the ratio of heavy to light isotopes, e.g. 
13

C/
12

C and 
15

N/
14

N) is compared to a 

known standard value (Rstandard) and expressed in per mil units (‰) according to: 

δX = (Rsample/Rstandard - 1)  x 1000        (Eq. 3.1) 

where X is the heavy isotope (e.g. 
13

C). The standard values are derived from heavy to light 

isotope ratios of internationally accepted standards, Peedee belemnite (PDB) for δ
13

C and 

atmospheric nitrogen (AIR) for δ
15

N. 

 One milligram (mg) of homogenized invertebrates and three mgs of periphyton was 

weighed into tin capsules and analysed using a PDZ Europa ANCA-GSL elemental analyzer 

interfaced to a PDZ Europa 20-20 continuous flow isotope ratio mass spectrophotometer (Sercon 

Ltd, Cheshire, UK).  Accuracy and precision were measured relative to laboratory standards 

considered compositionally similar to the samples analysed and the long term standard 

deviations were 0.2‰ for δ
13

C and 0.3‰ for δ
15

N.  All standards were calibrated against 

National Institute of Standards Technology standard reference materials.  Invertebrate δ
13

C data 

were corrected for lipid content according to methods outlined in Logan et al. (2008).  Upon 

inspection of carbon to nitrogen ratios, periphyton samples were found to contain a high amount 

of carbonate (Jacob et al. 2005).  Because carbonate confounds the δ
13

C value resulting in a 
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positive bias, periphyton samples were acidified by adding HCl drop-by-drop (Jacob et al. 2005)
 

and re-analysed a second time, post-acidification, on a Costech ECS4010 elemental analyzer 

coupled to a Thermo Scientific Delta V mass spectrometer.  Precision estimates for both isotope 

ratios were less than 0.2 ‰ relative to laboratory standards considered compositionally similar to 

the samples analysed.  As expected, post-acidification periphyton δ
13

C values were more typical 

of temperate stream periphyton (Jardine et al. 2012) (Fig. A-4). 

3.4.4 Data analysis 

Breached and intact sites were not separated in the statistical analyses because of the 

limited sample size (n = 15). Paired t-tests, with site as the unit of replication, were used to 

compare up- and down-stream concentrations of nutrients (TN, TP, DOC) and MeHg in water, 

chl a, invertebrate biomass (total and separately for dominant families), and MeHg in periphyton 

and invertebrates. Data were log-transformed prior to analysis to achieve normality. Statistical 

analyses were conducted with SYSTAT 13 (Systat Software Inc. 2009).   

Invertebrates chosen for up- and down-stream comparisons included primary consumer 

mayflies (Heptageniidae, Ephemerellidae, Baetidae) and caddisfly and stonefly predators 

(Rhyacophilidae, Perlodidae), classified according to Merritt and Cummins (1996).  Collectively, 

these five families accounted for 63.7% of biomass across sites.  There were no differences in 

MeHg concentrations among the three families of mayflies (p > 0.05) or the two predatory 

families (p > 0.05); thus, a mean MeHg value was calculated for each group in each site and used 

for subsequent up- versus down-stream comparisons.  In sites where only one or two of the taxa 

in each group were present, a mean value was used.   

To examine variables that may explain additional variability in MeHg across sites, an 

information-theoretic approach was used.  This analysis was carried out using upstream sites 
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only.  Akaike’s Information Criterion (AIC) was used to compare and rank competing regression 

models to determine the best approximating model.  Model sets were developed for each 

biological compartment in question (water, periphyton, invertebrates) and included variables 

known or believed to influence MeHg (TN, TP, DOC, pH, conductivity, turbidity, chl a and 

invertebrate biomass).  Due to the small sample size and small n/k, where n is the sample size 

and k is the number of fitted parameters, AICC was used.  AICC values were used to calculate ∆ᵢ, 

the difference between the AICC value of the best model and the value of any other given model.  

∆ᵢ was then used to calculate Akaike weights (wᵢ) and evidence ratios (ER) for each model (Table 

3-1). The models are considered as follows: a model with ∆ < 2 has very good support, a model 

with ∆ = 4 to 7 has less support but should still be considered, and a model with ∆ > 10 has no 

support (Burnham and Anderson 2002; Symonds and Moussalli 2011).  Following creation of 

model sets, it was determined that no single model was overwhelmingly supported (Akaike 

weight > 0.9) in three of the four sets; therefore, model averaging was carried out (Burnham and 

Anderson 2002) to reduce model selection uncertainty.  Model-averaged parameter estimates 

(i.e. in this case, the regression coefficients) and corresponding standard errors were calculated 

according to Burnham and Anderson (2002).  By examining the entire set of candidate models 

(all models with ∆i ≤ 7), it was then possible to determine the relative importance of individual 

parameters. 

3.5 Results 

3.5.1 Water chemistry and nutrients 

There were no differences in water chemistry or resource availability upstream (US) and 

downstream (DS) from beaver ponds.  All sites had moderately alkaline pH (US mean = 8.1 ± 

0.2; DS mean = 8.1 ± 0.2) and low turbidity (US mean = 2.0 ± 3.4 NTU; DS mean = 2.9 ± 3.0 

NTU) (Table A-1). Concentrations of nutrients, including TP (US mean = 3.1 ± 3.0 µg/L; DS 
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mean = 3.7 ± 3.1 µg/L), TN (US mean = 107.1 ± 69.2 µg/L; DS mean = 99.1 ± 59.4 µg/L) and 

DOC (US mean = 2.9 ± 2.5 mg/L; DS mean = 3.0 ± 2.5 mg/L) were all low suggesting that these 

are nutrient-limited systems (Fig. 3-1). We found no significant increase in TP (p = 0.124), TN 

(p = 0.314) or DOC (p = 0.924) downstream relative to upstream, nor was there a significant 

increase in resource availability below ponds, measured as benthic chl a (p=0.307). Invertebrate 

biomass, whether considered collectively (p = 0.406) (Fig. 3-1) or by family (p > 0.500 for all 

families) was similar, with the exception of Perlodidae which had marginally higher biomass at 

US sites (p = 0.071).
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Fig. 3-1 Comparisons of A) TP, B) TN, C) DOC, D) Benthic Chl a, and E) Invertebrate Biomass 

upstream and downstream of beaver ponds in the Rocky mountain foothills, Alberta, Canada.  

Sites with breached dams are depicted by white symbols while sites with intact dams have black 

symbols. The 1:1 line represents equivalent upstream and downstream values, thus sites falling 

above the 1:1 line have greater downstream values and sites falling below the line have greater 

upstream values.
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3.5.2 Mercury  

Mercury concentrations were generally low but varied among food web compartments. 

MeHg in water was low at all sites, with several sites below detection (US n = 9 of 15, DS n = 6 

of 15); mean MeHg was 0.03 ± 0.03 ng/L US and 0.04 ± 0.03 ng/L DS. Periphyton MeHg 

concentrations averaged 1.5 ± 1.1 ng/g US and 2.0 ± 1.7 ng/g DS. Mean herbivore MeHg 

concentrations were relatively high and covered the largest range of values, averaging 28.3 ± 

22.2 ng/g US and 38.4 ± 38.4 ng/g DS. Mean predator MeHg concentrations were lower than 

herbivores, with averages of 20.4 ± 11.9 ng/g US and 34.2 ± 22.4 ng/g DS. 

In contrast to nutrients and resources, beaver impoundments consistently led to increased 

concentrations of MeHg in water, periphyton, and herbivorous and predatory invertebrates 

downstream (Fig. 3-2). This increase was significant for predators (p = 0.030) and marginally 

non-significant for water (p = 0.068), periphyton (p = 0.134) and herbivores (p = 0.067). These 

values correspond to a 1.8 fold increase in water MeHg concentrations from upstream to 

downstream and increases of 1.4, 1.6 and 2.0 in periphyton, herbivores and predators, 

respectively. 

The percentage of total Hg as MeHg exhibited a similar trend to overall MeHg 

concentrations. Mean %MeHg in periphyton was 3.3 ± 1.6 US and 4.6 ± 2.8 DS; in herbivores 

%MeHg was 26.3 ± 13.3 US and 35.6 ± 17.0 DS; in predators %MeHg was 27.1 ± 18.9 US and 

34.1 ± 15.4 DS.  As with concentration data, while not all compartments exhibited a significant 

increase in %MeHg (periphyton p = 0.067; herbivores p = 0.032; predators p = 0.310), all 

compartments were consistently higher downstream.  
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Fig. 3-2  Comparisons of MeHg concentrations in A) Water, B) Periphyton, C) Herbivores, and 

D) Predators upstream and downstream of beaver ponds in the Rocky Mountain foothills, 

Alberta, Canada.  Symbols as in Fig. 3-1. To increase the number of sites considered, statistical 

analyses were performed using pooled means for herbivores and predators.
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3.5.3 Influence of upstream variables 

There was a range of MeHg concentrations observed in all compartments that was not 

explained by beaver ponds.  Model sets derived for the four dependent variables show that higher 

MeHg concentrations are associated with higher DOC and nutrients (Table 3-1).  The main 

drivers of MeHg in water were DOC and TP (∆ < 2) with averaged parameter estimates of 0.529 

(SE = 0.238) and 0.365 (SE = 0.318) respectively, although the intercept-only model (i.e. the 

“baseline”) had a small enough Akaike weight to be considered.  Although TN and turbidity 

were included in several models with ∆ < 7, large standard errors associated with their parameter 

estimates deemed them uninformative.  MeHg in periphyton was influenced by TP (averaged 

parameter estimate = 0.589, SE = 0.220) and DOC (parameter estimate = 0.496, SE = 0.284).  

TN appeared in several models ranked above the intercept-only model with ∆ < 7; however, 

again the large standard error associated with its averaged parameter estimate (-0.355, SE = 

0.444) deemed it uninformative.  MeHg in herbivores was influenced by DOC (parameter 

estimate = 0.769, SE = 0.263) and TP (parameter estimate = 0.477, SE = 0.389).  Again, 

combinations of these two parameters with TN had ∆ < 7 and were ranked above the intercept-

only model but there was a large standard error associated with its averaged parameter estimate 

(0.069, SE = 0.560).  MeHg in predators was explained by a combination of DOC and 

invertebrate biomass (∆ < 1), a model which was overwhelmingly supported with the second 

ranked model having an ER of 1194.5; therefore model averaging was not carried out on this 

data set. 



 

33 

 

Table 3-1 Model sets used to account for variation in MeHg concentrations at sites upstream of 

beaver ponds in Rocky Mountain streams.  ∆i is the difference between the AICc value of the 

best model and a given competing model (due to small sample size, AICc values were used). wi is 

the Akaike weight, with the highest ranked model in the set having the highest wi.  The evidence 

ratios are a measure of likelihood of the best model over competing models (i.e. the highest 

ranked model in set A is approx. 1.9 times more likely to be the best model than the second 

model). 
Model Set Model ∆i wᵢ Evidence Ratios 

A) Water MeHg 

DOC 0.000 0.462 − 

TP 1.301 0.241 1.916 

Intercept-only 2.765 0.116 3.986 

TP, DOC 3.739 0.071 6.485 

TP, TURB 4.232 0.055 8.301 

TP, TN 4.660 0.045 10.279 

B) Periphyton MeHg 

TP 0.000 0.511 − 

DOC 1.904 0.197 2.592 

TP, TN 2.541 0.143 3.564 

TP, DOC 3.592 0.084 6.027 

TP, TN, DOC 5.858 0.027 18.715 

Intercept-only 6.757 0.017 29.327 

C) Herbivore MeHg 

DOC 0.000 0.617 − 

TP 2.731 0.157 3.917 

TP, DOC 3.935 0.086 7.155 

TN, DOC 4.044 0.081 7.554 

TP, TN 6.387 0.025 24.374 

Intercept-only 6.501 0.023 25.802 

D) Predator MeHg 

DOC, Invert Biomass 0.000 0.998 − 

Invert Biomass 14.171 0.000 1194.573 

Invert Biomass, TP 15.702 0.000 2568.457 

DOC 16.341 0.000 3536.605 

Intercept-only 17.387 0.000 5965.839 
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3.5.4 Stable Isotopes 

Results of carbon and nitrogen stable isotope analysis suggest that the algal-based food 

web is dominant in these systems. δ
13

C and δ
15

N values of invertebrates aligned more closely 

with those of periphyton than terrestrial leaf litter, with a slight negative offset relative to both 

sources (Figure A-5).  This is consistent with observations of little canopy cover, limited 

terrestrial detritus found in the study streams and the absence of shredding macroinvertebrates.  

Upstream and downstream δ
13

C values were very similar, suggesting that despite the presence of 

beaver impoundments, there was no shift in food web energy pathways.  Comparisons of δ
13

C 

revealed no statistical difference up- and downstream of impoundments in the seven 

compartments with the exception of one of the three grazing mayfly families, Heptageniidae (p = 

0.029), which exhibited a slight 
13

C-enrichment of 1.8‰ upstream compared to downstream 

(Figure A-5). 

3.6 Discussion 

Beaver impoundments increased MeHg concentrations in water, periphyton and 

invertebrates downstream, likely due to increased net methylation within ponds.  The changes in 

MeHg concentrations in higher trophic level consumers occurred despite similarities between up- 

and downstream TP, TN, DOC, chl a and invertebrate biomass.  Our findings contrast with those 

of Roy et al. (2009b) who observed 2-4 fold increases in DOC, TP and TN at impoundment 

outlets in boreal streams.  The depleted oxygen, SO4
2-

 and NO2-NO3 downstream from 

impoundments led Roy et al. (2009b) to infer that high heterotrophic microbial activity and the 

presence of reducing conditions were favoring the methylation of Hg.  As with Roy et al. 

(2009b), we observed increases in %MeHg in periphyton and invertebrates between upstream 

and downstream sites.  However, our concentrations and %MeHg were at the low end of the 
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range of values reported for streams elsewhere e.g. periphyton 3 to 27% MeHg (Jardine et al 

2012) and benthic insects 9 to 95% MeHg (Kidd et al. 2012).   

We found no evidence of an increase in nutrient or resource availability downstream of 

beaver ponds. This finding is in contrast with studies that document an increase in nutrient 

concentrations downstream of beaver impoundments (Fuller and Peckarsky 2011).  However; 

studies elsewhere in the Rocky Mountains suggest beaver dams enhance nutrient and C storage 

in these ecosystems. For example, Wohl et al. (2012) described the importance of beaver 

impoundments as drivers of C storage in the Colorado Rocky Mountains. They found that total 

and dissolved forms of organic C are preferentially deposited along floodplains, particularly 

when flow is forced out of the channel by beaver dams, where low-oxygen saturated soils 

prevent microbial degradation. Furthermore, they highlighted the importance of coarse woody 

debris as a form of C storage in mountain streams.  Beavers incorporate a large proportion of 

woody debris that enters the pond into the dam structure (Naiman and Melillo 1984), while other 

debris is deposited into the sediment where the anoxic environment prevents further breakdown 

and thus nutrients are not made available (Devito et al. 1989).
  
Sediment deposition is also a key 

feature of beaver impoundments (illustrated in Figure A-2b) (Westbrook et al. 2011).  Strong 

correlations of nutrients, particularly phosphorus, with suspended sediment (Triska et al. 1994) 

could lead to deposition in ponds or floodplains and thus limit downstream transport.  It is also 

important to note that we examined only total nutrient concentrations; so, while no change in 

nutrient concentrations were observed from up- to downstream, there may have been 

unmeasured changes in the dissolved vs. particulate fraction of nutrients, especially since 

particles are more readily retained in ponds (Naiman et al. 1988).
 
 In contrast, Hall et al. (1999) 

compared patterns of productivity in two reservoirs from similar locations in Saskatchewan, 
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Canada: Lake Diefenbaker, a large (500 km
2
) reservoir for a hydroelectric dam, and Buffalo 

Pound lake, a small (5 km
2
) impoundment.  The authors found that while the large reservoir 

exhibited evidence of nutrient increase following impoundment, the small impoundment did not. 

In fact, Buffalo Pound Lake showed evidence of a decline in productivity in the years 

immediately following its creation which the authors suggest indicates that reservoir formation 

does not necessarily lead to increases in algal production, particularly when flooding is on a 

small scale and does not greatly affect the supply of nutrients to the system.  Because beaver 

impoundments are also small in comparison to the large reservoirs associated with hydroelectric 

dams, a similar conclusion could be made about the ponds in this study. 

Although MeHg concentrations in stream water are often linked to DOC and nutrients 

(Chasar et al. 2009); other factors can contribute to increases in MeHg.  Catchment vegetation 

could drive an increase in MeHg concentrations without a corresponding change in export of 

DOC and nutrients, such as was observed in our study.  The dominant trees and resulting litter in 

the study area are largely coniferous, which, while providing less labile organic matter to the 

ponds, are still acted on by methylation processes and therefore still contribute to in situ 

methylation (Hall et al. 2004).  This is consistent with Roy et al. (2009b), where THg and MeHg 

concentrations in water were positively correlated with elevations where conifer forest 

dominated.  Conifer-dominated streams had higher water THg and MeHg concentrations 

whereas lower elevation forests dominated by deciduous trees had lower concentrations, thus 

leading the authors to conclude that forest composition had an effect on Hg chemistry (Roy et al. 

2009b).  Further, previous findings of elevated carbon standing stock within ponds were from 

work conducted in a largely deciduous-dominated landscape (Naiman et al. 1986) with high 

allochthonous inputs from alder (Alnus spp.), birch (Betula spp.) and aspen (Populus spp.) 
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through both direct input and from the landscape – features that are not apparent in our study 

area. These high allochthonous inputs are likely associated with the known co-transport of DOC 

and Hg from the terrestrial environment into aquatic systems (Watras et al. 1998).  While pH is 

widely known to play a key role in determining Hg availability (Jardine et al. 2012), the high and 

relatively invariant pH (mean = 8.1) indicate that it is not an important factor in our systems.   

Evidence suggests that under certain chemical conditions, aquatic C sources at the base of 

the food web can accumulate higher concentrations of MeHg relative to terrestrial sources 

(Jardine et al. 2012; Riva-Murray et al. 2013). While we did not measure MeHg in our leaf litter 

samples, we found that invertebrates in these systems derive their C primarily from an aquatic 

source (i.e. periphyton) rather than a terrestrial source (i.e. detritus falling into streams). Water 

and periphyton MeHg concentrations were significantly positively correlated with herbivore 

MeHg concentrations (ρ = 0.637, p = 0.014 Table A-2), supporting a food web linked pathway of 

MeHg accumulation, and THg concentrations in periphyton were consistently higher than those 

in leaf litter (Fig. A-6). The beaver ponds in our streams did not change the periphyton 

contribution to invertebrate diets from upstream to downstream sites, which is supported by the 

lack of a difference in nutrients and algal biomass above and below dams. In other instances 

where nutrients and productivity were higher downstream of dams, such as under low flow 

conditions and certain beaver pond morphologies (Fuller and Peckarsky 2011), this may not be 

the case.  In such instances a pronounced increase in resources at the base of the food web could 

be offset by more rapid growth by primary consumers, leading to growth dilution and lower 

MeHg concentrations in consumers than might be expected based on higher waterborne 

concentrations (Pickhardt et al. 2002; Hill and Larsen 2005).   
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Generally, sites with the highest MeHg concentrations also had higher nutrient and DOC 

concentrations (Table 3-1).  This suggests that landscape-scale factors play a role in MeHg 

transfer to the food web in addition to the immediate, short-term effect of the beaver ponds.  Our 

results are consistent with previously observed correlations between DOC at inlets and Hg as 

well as correlations between DOC and phosphorus (Roy et al. 2009b).
 
 Watershed-derived DOC 

is often associated with MeHg in streams, driven by the presence of wetlands (Brigham et al. 

2009; Chasar et al. 2009).  Brigham et al. (2009) observed a positive correlation of MeHg with 

DOC and stream flow in streams with moderate wetland influence, reasoning that the conditions 

that cause high flows both expand flooded area and wash materials, including DOC, from 

wetlands into streams. 

Beaver impoundments may be thought of as natural analogues to man-made reservoirs, 

such as those created during the construction of hydroelectric dams. Periphyton and aquatic 

invertebrates play an important role in the basal transfer of MeHg from the physical environment 

to higher consumers such as fish and piscivorous wildlife; therefore, increases in MeHg in these 

lower trophic levels are an important consequence of reservoir formation (Hall et al. 1998).  

Changes in environmental conditions, such as inundation of vegetation and increased MeHg 

production that occur post-impoundment are similar to those observed at beaver dams, albeit on 

a much larger scale.  MeHg production due to the flooding of large tracts of land during hydro 

dam construction has been well-documented (Rosenberg et al. 1997).  Downstream transport of 

MeHg from reservoirs has been reported in several studies, (Rosenberg et al. 1997; Bodaly et al. 

2007) with the dissolved form accounting for the largest mass flux ( > 64%) downstream 

(Schetagne 2000).  The dominance of this dissolved form of MeHg in downstream export 

provides some evidence as to why we observed increases in MeHg downstream of our 
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impoundments that are not associated with increased nutrients, and the common mechanism of 

sediment trapping in both beaver impoundments and large, man-made reservoirs.  This highlights 

the ability of MeHg to be exported from reservoirs resulting in elevated concentrations in all 

biological compartments as mediated by the periphyton source pathway.  

Beaver populations suffered near decimation during the fur-trade era, but after coming 

under protective law in the early 1900s, and decreased natural predation (Naiman et al. 1988; 

Collen and Gibson 2001),
 
beaver populations have been recovering over the past century 

(Naiman et al. 1986).  As their population increases, so do the effects of their damming activities. 

This has important management implications for recreational fisheries downstream as well as for 

the study of contaminant flows through drainage systems inhabited by beaver. For example, 

beaver ponds are known to create habitat for many salmonid fishes, particularly in cold mountain 

systems such as our study area where angling is popular (Collen and Gibson 2001).  The transfer 

of MeHg from impoundments to downstream food webs has potentially far-reaching 

implications for recreational fisheries on lakes in these drainage systems.  In areas that are Hg-

sensitive (i.e. low pH, high DOC streams), enhanced bioaccumulation in ponds has the potential 

to push downstream fish MeHg concentrations above consumption guidelines with consequences 

for piscivorous wildlife. 
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CHAPTER 4 

4. BIOACCUMULATION OF MERCURY IN INVERTEBRATE FOOD WEBS OF 

SOUTHERN CANADIAN ROCKY MOUNTAIN STREAMS 

4.1 Preface 

While the previous chapter (Chapter 3) focused on supply at the base of the food web, this 

chapter takes the information from Chapter 3 and applies it to trophic transfer.  MeHg taken up 

from the water by primary producers is transferred to higher trophic level consumers via the diet 

through the process of biomagnification.  It is through this process that piscivorous wildlife and 

humans can become exposed to potentially dangerous MeHg concentrations.  Chapter 4 aims to 

determine if the presence of in-channel beaver impoundments result in enhanced trophic transfer 

downstream and to estimate potential risk to higher consumers.
2
 

  

                                                           
2
 This chapter will be submitted as a manuscript to Archives of Environmental Contamination 

and Toxicology entitled “Bioaccumulation of mercury in invertebrate food webs of southern 

Canadian Rocky Mountain streams” by K. J. Painter and T. D. Jardine. 
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4.2 Abstract 

Methylmercury (MeHg) is a contaminant of concern due to its ability to biomagnify in aquatic 

food webs, resulting in potentially harmful concentrations in higher consumers. Beaver 

impoundments in the southern Canadian Rockies release bioavailable MeHg to downstream food 

webs.  This study examined the magnitude of uptake and trophic transfer of this exported 

mercury to higher consumers, and controls on these transfers by site-specific (dissolved organic 

carbon, Hg in water, Hg in diet) and individual (body size, trophic level) variables. 

Bioconcentration factors (BCFs) were fairly high (mean = 79,756 ± 68, 204), a function of the 

low exposure concentrations present in these systems.  In contrast, Biomagnification factors 

(BMFs) for uptake from periphyton to grazers (mean = 18.3 ± 11.7) and grazers to predators 

(mean = 2.1 ± 1.2) were low.  Invertebrate body size had no effect on MeHg concentration; 

however, the relative difference in trophic level from prey to consumer was an important driver 

of BMFs, and MeHg in the diet was negatively associated with BMFs. While rates of uptake and 

transfer were greater at low concentrations relative to that at higher concentrations, overall 

trophic magnification through the food web (average TMF = 2.3) was on the lower end of the 

typical range observed worldwide. Thus, while there is little risk to wildlife and humans who 

consume fish from these systems, we caution that in Hg-sensitive regions where conditions for 

methylation and transfer are ideal, beaver activity could have important implications for the 

movement of Hg through food webs. 

4.3 Introduction 

Bioaccumulation, the process by which an organism attains a higher concentration of a 

chemical relative to its environment (Borgå et al. 2011), is highly variable among chemicals, 

organisms and ecosystems.  As such, bioaccumulation is a key endpoint criterion identified 
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during hazard assessment, which traditionally attempts to define PBT (Persistence, 

Bioaccumulation and Toxicity).  Bioconcentration and biomagnification are two components of 

bioaccumulation that are used to define rates of uptake and subsequent trophic transfer of a 

chemical.  Bioconcentration in aquatic organisms is the uptake of a chemical across 

respiratory/dermal surfaces (i.e. from water), excluding the diet. Thus, bioconcentration factor 

(BCF) is the ratio of the concentration of a substance in a given organism to that in the water.  

Biomagnification is a special case of bioaccumulation that occurs when the chemical 

concentration is greater in an organism than in its prey due to dietary absorption occurring faster 

than elimination (Borgå et al. 2011).  Biomagnification factor (BMF), sometimes referred to as 

Trophic Transfer Factor (TTF, DeForest et al. 2007), is the ratio of the concentration of a 

substance in a given organism to that in its diet (Gobas et al. 2009).  The sum of these processes 

yields the Bioaccumulation factor (BAF), the ratio of the concentration of a substance in an 

organism to that in the ambient environment including both water and dietary sources (Gobas et 

al. 2009).  BCF and BAF are bioconcentration and bioaccumulation endpoints that have been 

used in the development of environmental guidelines for risk assessment (Arnot and Gobas 

2006).  For example, Environment Canada identifies substances with BCF and BAF values 

greater than or equal to 5000 as bioaccumulative under the Canadian Environmental Protection 

Act (CEPA 1999).   

Because some metals, such as Hg, are persistent in the environment, and their 

bioavailability heavily influenced by geochemical factors (DeForest et al. 2007), rates of Hg 

bioaccumulation are highly variable among locations (Lavoie et al. 2013) and defining critical 

PBT levels can be difficult (DeForest et al. 2007).   For Hg, and other metals such as selenium, 

zinc, copper and lead, BCFs tend to be the highest (indicating hazard) at low concentrations of 
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exposure (low potential for toxicity) and lowest (indicating reduced hazard) at higher 

concentrations of exposure (high potential for toxicity).  This complicates risk assessments and 

suggests exposure concentration may be as important a driver of BAFs as other metal- and 

species-specific determinants of bioaccumulation (McGeer et al. 2003; Deforest et al. 2007).  

MeHg is a potent neurotoxin with the potential to pose a serious health risk to both humans and 

wildlife (Mergler et al. 2007).  Thus, it is imperative to understand the potential for MeHg to 

transfer from abiotic to biotic compartments and move further up the food web to higher 

predators.  Based on a large compilation of available data from peer-reviewed literature and 

technical documents, DeForest et al. (2007) found that BAFs for MeHg range from 100,000 to 

48,000,000 across species and trophic levels, including invertebrates, small fish and large fish. 

This wide range highlights the importance of understanding Hg bioaccumulation and 

biomagnification and their drivers in aquatic systems  

Stream systems inhabited by North American beaver (Castor canadensis) exhibit 

elevated levels of methyl mercury (MeHg) in water downstream from impoundments (Roy et al. 

2009b), an increase that also results in higher concentrations in algae and invertebrates (Chapter 

3).  However, the magnitude of change from upstream to downstream varies among these 

ecological compartments and among sites, ranging from a 0.5 to 2.5 times increase in algae and a 

0.6 to 5.0 times increase in predatory invertebrates, suggesting that other factors may modulate 

responses within the food web.  For example, concentrations in water and the diet are inversely 

related to BCFs and BMFs, respectively, in both lab- and field-based studies (DeForest et al. 

2007), and low pH can also lead to higher BMFs in some organisms (Jardine et al. 2013).  

 DOC, an indicator of wetland influence (Chasar et al. 2009; Brigham et al. 2009), also 

explains additional variability in Hg concentrations across sites (Chapter 3), but relationships 



 

44 

between DOC and Hg transport and uptake are complex.  For example, Dittman and Driscoll 

(2009) report that increased DOC concentrations in the water column of Adirondack lakes 

resulted in a negative correlation between DOC and BAF for yellow perch. They hypothesized 

that this was caused by DOC in the water column binding with MeHg, thus reducing the 

bioavailable pool.  Other studies (Adams et al 2009; Brigham et al 2009) illustrate the 

importance of DOC in transporting MeHg into aquatic systems.  Positive correlations between 

DOC concentrations and methyl mercury in the water column (Brigham et al. 2009) and in basal 

food web organisms (Adams et al. 2009) are common.  Therefore, we need to understand how 

this variable controls both uptake and transfer of MeHg.   

This study aims to examine uptake and accumulation of Hg in stream food webs with an 

Hg gradient (i.e. upstream to downstream of beaver impoundments) by examining  the 

movement of this metal among environmental compartments (water, periphyton and herbivorous 

and predatory invertebrates).  In addition to using BCFs, BAFs and BMFs as described above, 

this study will examine other aspects of the invertebrate food web that can influence Hg 

concentrations.  First, trophic transfer of Hg will be assessed using nitrogen stable isotope ratios 

(
15

N/
14

N), denoted as δ
15

N, to establish feeding linkages in stream food webs. The habitat-

independent, step-wise enrichment of 
15

N with TL (Minagawa and Wada 1984) has been widely 

used to characterise aquatic food webs, and the relationship between δ
15

N and environmental 

contaminants, such as MeHg, has long been used as a predictor of contaminant biomagnification 

(Kidd et al. 1995).   Second, body size is correlated with higher Hg concentrations in fishes 

because larger fishes tend to be older and/or feed at higher TLs (Kidd et al. 1995; Gewurtz et al. 

2011).  Unlike fishes, invertebrates are rarely classified based on their size in contaminant 

studies because TL estimates vary widely with functional feeding group (Merritt and Cummins 
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1996), though we expect that 
15

N-size relationships for benthic invertebrates may be useful as 

tools to measure predatory behaviour in food webs (Anderson and Cabana 2009).   There is 

likely to be an interaction between δ
15

N, body size and Hg because predators are consistently 

larger than their prey (Riede et al. 2011) and because predators tend to occupy higher TLs then 

their prey (Anderson and Cabana 2009).   Taken together, we seek to determine the importance 

of physicochemical drivers, such as DOC and Hg concentrations in water and the diet, at the base 

of the food web and how these processes relate to bioconcentration and trophic transfer of Hg.   

4.4 Methods 

4.4.1 Field sampling 

From mid-July to early August 2012, 15 streams with in-channel beaver impoundments 

were sampled in the Canadian Rocky Mountain and Foothill Regions, Kananaskis Country, 

Alberta, using methods described in Chapter 3.  An additional six free-flowing streams assumed 

to have no influence from beaver activity were also sampled using identical methods.  Most 

streams were in conifer dominated watersheds at elevations of 1300 m to 2150 m.  All sites were 

generally clear and high gradient with cobble and gravel substrates, had moderately basic pH, 

and limited accumulation of leaf litter due to low canopy cover, typically < 20% (Chapter 3; 

Table A-1).  At each sampling location we collected water, periphyton and aquatic 

macroinvertebrates.  At dammed sites, collections were made immediately above and below the 

impoundment (i.e. at an inflow and an outflow).  All sample collection, processing and 

laboratory analyses for total and methyl Hg, DOC, TP, TN and benthic  chl a are described in 

Chapter 3.  

To assess the role of body size in driving Hg concentrations, invertebrates were sorted 

and identified to family level (Merrit and Cummins 1996), counted and weighed prior to drying.  
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Following drying, invertebrates were weighed again and homogenized.  Invertebrate body size 

was calculated by determining the average wet weight of individuals from the three replicates 

collected at each site. Homogenized samples of taxa dominant across all sites, including grazing 

mayflies from the families Heptageniidae (flat-headed mayflies), Ephemerellidae (spiny crawler 

mayflies) and Baetidae (small minnow mayflies) and predatory invertebrates from the families 

Perlodidae (perlodid stoneflies) and Rhyacophilidae (free-living caddisflies), were analysed 

simultaneously for Hg and isotopes.  In addition, we analysed all collected organisms from 

upstream and downstream at two beaver-impacted sites, to develop an understanding of Hg 

behaviour in more comprehensive invertebrate food webs in these systems.  Additional taxa 

analyzed at those sites were Hydropsychidae (net-spinning caddisflies), Limnephilidae (case-

constructing caddisflies), Tipulidae (crane flies), Chironomidae (nonbiting midges), 

Siphlonuridae (primitive minnow mayflies), Polycentropodidae (tube maker caddisflies), 

Peltoperlidae (roach-like stoneflies) and Phyrygancidae (giant case-making caddisflies).  

4.4.2 Calculations 

Uptake and trophic transfer is calculated by three factors: the BCF, the BMF and the 

BAF.  BCF for animals can only be measured under controlled laboratory conditions (i.e. steady 

state) in which dietary uptake is deliberately excluded (Arnot and Gobas 2006; Gobas et al. 

2009), but for autotrophs such as periphyton with a single route of uptake it can be calculated 

from field data as the ratio of the chemical concentration in the organism (CB) to the chemical 

concentration in the water (CW) according to: 

BCF = CB/CW           (Eq. 4.1) 

Biomagnification is the process in which the thermodynamic activity of the chemical in 

an organism exceeds that of its diet (Arnot and Gobas 2006; Gobas and Morrison 2000).  BMF 



 

47 

for metals such as mercury that are almost exclusively derived from the diet (Hall et al. 1997) is 

expressed as the ratio of the chemical concentration in an organism (CB) to that in its diet (CD) 

according to: 

BMF = CB/CD           (Eq. 4.2) 

A BMF > 1 indicates that the chemical is a probable bioaccumulative substance (Gobas et al. 

2009).  For these analyses, we classified Heptageniidae, Ephemerellidae and Baetidae as 

herbivorous grazers and Perlodidae and Rhyacophilidae as predatory taxa and assumed each 

trophic level fed 100% on the trophic level below it.  Because their Hg concentrations were not 

statistically different, the three mayfly taxa were pooled as were the two predator taxa (see 

Chapter 3). To account for potential omnivory, we used stable N isotope data to confirm feeding 

linkages (see below). 

Bioaccumulation, the multiplier of all exposure routes (Arnot and Gobas 2006), is 

expressed as the BAF, according to: 

BAF = CB/CW           (Eq. 4.3) 

BAFs, while calculated similarly to BCFs, are used when the sample organism is exposed to a 

given chemical through both water and their diet and is usually inferred from field data (Gobas et 

al. 2009).  For chemicals with a logKOW (octanol-water partitioning coefficient) ≤5, BCFs and 

BAFs  ≤ 5000 L/kg wet weight indicate a lack of biomagnification potential in water-respiring 

organisms (Gobas et al. 2009). 

 

4.4.3 Stable isotopes 

Because δ
15

N increases with TL, it can be used to compare Hg biomagnification across 

systems as the slope of the regression of log-transformed Hg vs. δ
15

N or TL, (Borgå et al. 2011; 
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Lavoie et al. 2013).  The calculation of a TL value takes into consideration a trophic enrichment 

factor (TEF, increase in δ
15

N from diet to consumer, denoted as ∆15N) and assigns discrete TLs 

to a baseline organism (e.g. periphyton TL = 1) because δ
15

N can vary widely among sites 

(Cabana and Rasmussen 1996).  δ
15

N was converted to TL as follows: 

TLconsumer = (δ
15

Nconsumer -  δ
15

Nbaseline)/∆15N + TLbaseline      (Eq. 4.4) 

 

where TLbaseline = TL of the baseline organism and ∆15N is the TEF.  We used periphyton as the 

baseline organism with a TL=1.  We chose a TEF of 2.0‰ based on McCutchan et al. (2003), a 

value suitable for stream food webs (Bunn et al. 2013; Jardine et al. 2013). 

Trophic magnification factors (TMFs) represent the average biomagnification per TL 

through the entire food web and are calculated as the antilog of the logHg vs. TL slope (b) as 

follows (Borgå et al. 2011): 

TMF=10
b
            (Eq. 4.5) 

When TMF = 1, (b = 0), Hg does not biomagnify on average through the food web.  

When TMF > 1 (b > 0), Hg biomagnifies through the food web by an average of TMF per TL 

and when TMF < 1 (b < 0), Hg decreases by an average of TMF per TL (Borgå et al. 2011). 

Trophic magnification slopes (TMSs) can also be derived directly from the logHg vs. 
15

N 

regression, and can be compared across systems without standardizing to a baseline (Lavoie et al. 

2013).   The TMS is calculated as the slope (b) in the following model: 

LogHg=δ
15

N (b) + a          (Eq. 4.6) 

No change of the chemical concentration with increasing 
15

N produces a TMS of 0, indicating 

no biomagnification.  An increase in logHg concentration with increasing 
15

N produces a TMS 

> 0, which indicates biomagnification.  A decrease of logHg concentration with increasing 
15

N 
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produces a TMS < 0 and would indicate trophic dilution, i.e. the opposite of biomagnification 

(Gobas et al. 2009). 

For this study we were able to calculate BCFs, BAFs and BMFs for each of our 36 sites 

(hereafter expressed as log-transformed values unless otherwise specified); however, TMSs and 

TMFs require a regression model within each site which we were unable to calculate due to 

limited sample sizes within individual sites, with the exception of the two comprehensive food 

web sites (both upstream and downstream).  Instead, we calculated overall TMF values for all 

sites combined into a single regression, and then back-calculated TMS to compare to other 

studies (Lavoie et al. 2013) by dividing the logHg vs. TL slopes by the TEF.  

 

4.4.4 Data analysis 

BCFs, BAFs and BMFs were compared between up- (US) and down-stream (DS) for all 

beaver-impacted sites using paired t-tests. The relative strength of associations between MeHg 

and invertebrate body size, TL and body size, and MeHg and TL were measured using linear 

regression analysis.  To account for differences in MeHg between sites, MeHg was normalized to 

periphyton by dividing invertebrate MeHg values by their site-specific periphyton MeHg values 

before regressions with body size and TL were carried out.  Linear regressions were also used to 

measure the MeHg vs. δ
15

N relationship for two sites where the food web was more 

comprehensively sampled.   

To examine variables that may explain among-site variability in uptake and trophic 

transfer, an information-theoretic approach was used.  Akaike’s Information Criterion (AIC) was 

used to compare and rank competing regression models to determine the best approximating 

model or set of models.  Prior to AIC analysis, initial screening of data suggested upstream and 
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downstream values at beaver impacted sites to be similar, therefore we only used upstream data 

to conduct the AIC analysis.   We combined data for upstream locations of beaver-impacted 

streams with free flowing streams (model sets A and B).  Then, to expand our analysis on a 

broader scale, we used data from a set of New Brunswick streams to increase the range of 

variation in our variables (model sets C and D).  Details on collection and analysis for the New 

Brunswick streams can be found in Jardine et al. (2012), and include similar taxa 

(Ephemeroptera, Plecoptera) as our Alberta streams.  The New Brunswick data did not include 

water MeHg concentrations; therefore, these data are only included when examining BMFs.  

New Brunswick data also included total organic carbon (TOC) in place of DOC; however, 

previous studies have shown that ≥ 95% of TOC exists as DOC in these systems (Clair et al 

1994).   AIC analysis was not performed on BCFs because many of the sites had water MeHg 

concentrations that were below detection limits.   

Model sets were developed for BMF(grazers/periphyton) and BMF(predators/grazers) and included 

variables selected a priori because they were likely to influence BMF.  These include MeHgdiet 

(DeForest et al. 2007, Jardine et al. 2013), DOC (Chasar et al. 2009), TP (Lavoie et al. 2013) and 

benthic chl a (Lavoie et al. 2013) and the relative difference in TL from prey to consumer, 

calculated as TL(consumer/prey) (Fisk et al. 2001).  We could not test for the effects of pH (Jardine et 

al. 2013) because of the limited range of values for this variable at our study sites (7.8 to 8.4).  

Due to the small sample size and small n/k, where n is the sample size and k is the number of 

fitted parameters, AICC was used as described in Chapter 3.  Following creation of model sets, it 

was determined that no single model was overwhelmingly supported (Akaike weight > 0.9); 

therefore, model averaging was carried out (Burnham and Anderson 2002) to reduce model 

selection uncertainty.   Model-averaged parameter estimates (i.e. in this case, regression 
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coefficients) and corresponding standard errors were calculated according to Burnham and 

Anderson (2002).   By examining the entire set of candidate models (all models with ∆i ≤ 7), it 

was then possible to determine the relative importance of individual parameters.  All data except 

TL were log-transformed prior to analysis.  Statistical analyses were carried out using SYSTAT 

13 (Systat Software Inc. 2009). 

 

4.5 Results 

4.5.1 General bioaccumulation trends 

 BCFs were fairly high while BMFs and BAFs were generally low (Table 4-1).  

Untransformed BCFs ranged from approx. 12,000 to 344,000 while untransformed BMFs ranged 

from approximately 3 to 48 for BMF(grazers/periphyton) and < 1 to < 10 for BMF(predators/grazers).  At 

beaver-affected sites, there was no difference between up- (US) and down-stream (DS) log-

transformed BCFs (US mean logBCF(periphyton/water) = 4.79 ± 0.40SD; DS mean 

logBCF(periphyton/water) = 4.74 ± 0.35SD), BAFs (US mean logBAF(grazers/water) =6.02 ± 0.35SD; DS 

mean logBAF(grazers/water) = 6.00 ± 0.33SD; US mean logBAF(predators/water) = 6.09 ± 0.44SD; DS 

mean logBAF(predators/water) = 6.21 ± 0.42SD), or BMFs (US mean logBMF(grazers/periphyton) = 1.18 ± 

0.34SD; DS mean logBMF(grazers/periphyton) = 1.22 ± 0.26SD; US mean logBMF(predators/grazers) =0.27 

± 0.22SD; DS mean logBMF(predators/grazers) = 0.25 ± 0.15SD) (p > 0.05 for all comparisons).  
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Table 4-1 MeHg concentrations and trophic levels (TLs) for all biological compartments in invertebrate food webs in Rocky 

Mountain Foothills streams, and corresponding Bioconcentration Factors (BCFs), Bioaccumulation Factors (BAFs) and 

Biomagnification Factors (BMFs). BCFs, BAFs and BMFs are log transformed. Periphyton TL is assumed to be 1. U indicates sites 

upstream from beaver impoundments. D indicates sites downstream from beaver impoundments.  No suffix indicates sites without 

beaver activity.  

 

Site 

Water 

MeHg 

(ng/L) 

Periphyton 

MeHg 

(ng/g) 

Herbivore 

MeHg 

(ng/g) 

Predator 

MeHg 

(ng/g) 

Grazer 

TL 

Predator 

TL 

BCF 

(periphyton/ 

water) 

BAF 

(grazers/ 

water) 

BAF 

(predators/ 

water) 

BMF 

(grazers/ 

periphyton) 

BMF 

(predators/ 

grazers) 

BEV012U

S 

0.01 0.63 6.00 10.10 0.85 2.09 4.80 5.78 6.00 0.98 0.23 

BEV002U

S 

0.09 1.20 57.83 - 1.42 
 

4.11 5.80 - 1.68 - 

BEV004U

S 

0.06 1.17 17.55 36.36 1.80 2.45 4.30 5.48 5.79 1.18 0.32 

BEV015U

S 

0.01 0.61 24.42 - 1.83 2.83 4.79 6.39 - 1.60 - 

BEV028U

S 

0.01 2.08 6.94 17.19 1.35 1.96 5.32 5.84 6.24 0.52 0.39 

BEV020U

S 

0.01 1.87 19.73 35.02 0.89 1.63 5.27 6.30 6.54 1.02 0.25 

BEV021U

S 

0.01 2.14 25.99 25.72 1.35 1.96 5.33 6.41 6.41 1.08 0.00 

BEV019U

S 

0.01 0.42 2.04 8.98 0.18 1.04 4.63 5.31 5.95 0.68 0.64 

BEV024U

S 

0.06 2.69 55.58 - 0.35 - 4.69 6.00 - 1.32 - 

BEV025U

S 

0.01 1.23 12.32 30.04 1.88 2.94 5.09 6.09 6.48 1.00 0.39 

BEV027U

S 

0.07 3.36 62.23 - 1.55 - 4.70 5.97 - 1.27 - 

BEV030U

S 

0.03 0.36 - 3.48 - 1.97 4.15 - 5.13 - - 

BEV026U

S 

0.01 0.50 20.36 - 1.74 2.50 4.70 6.31 - 1.61 - 

BEV022U

S 

0.03 3.77 65.44 - 1.46 2.13 5.15 6.39 - 1.24 - 

BEV010U

S 

0.01 0.79 19.12 16.92 1.75 2.37 4.90 6.28 6.23 1.39 -0.05 

BEV012D

S 

0.01 0.53 8.81 13.45 1.31 2.70 4.73 5.95 6.13 1.22 0.18 

BEV002D

S 

0.08 1.98 24.98 - 2.78 - 4.38 5.48 - 1.10 - 

BEV004D

S 

0.06 1.45 24.73 22.85 0.71 1.21 4.36 5.59 5.55 1.23 -0.03 

BEV015D

S 

0.08 1.48 37.56 - 1.11 - 4.24 5.65 - 1.40 - 

BEV028D

S 

0.01 1.04 6.67 17.10 0.82 2.16 5.02 5.82 6.23 0.81 0.41 

BEV020D

S 

0.02 1.16 54.19 72.87 0.77 0.87 4.76 6.43 6.56 1.67 0.13 

BEV021D

S 

0.01 3.45 28.68 65.19 1.59 2.52 5.54 6.46 6.81 0.92 0.36 

5
2
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BEV019D

S 

0.01 0.78 8.54 18.15 1.51 2.34 4.89 5.93 6.26 1.04 0.33 

BEV024D

S 

0.04 1.36 37.12 - 0.74 1.31 4.54 5.97 - 1.44 - 

BEV025D

S 

0.04 3.12 19.47 34.52 1.34 1.84 4.91 5.70 5.95 0.80 0.25 

BEV027D

S 

0.08 5.23 114.76 - 1.60 3.05 4.80 6.15 - 1.34 - 

BEV030D

S 

0.03 0.50 - 17.43 1.83 2.71 4.21 - 5.76 - - 

BEV026D

S 

0.01 0.93 20.21 - 0.83 2.02 4.97 6.31 - 1.34 - 

BEV022D

S 

0.06 5.69 132.35 - 0.88 1.84 4.98 6.35 - 1.37 - 

BEV010D

S 

0.01 0.71 19.49 45.95 1.14 2.22 4.85 6.29 6.66 1.44 0.37 

BEV016 0.01 0.87 8.87 - 1.36 - 4.94 5.95 - 1.01 - 

BEV017 0.01 0.49 4.68 27.89 0.88 2.12 4.69 5.67 6.45 0.98 0.33 

BEV018 0.01 0.41 4.84 13.34 0.72 1.26 4.61 5.68 6.13 1.08 0.22 

BEV031 0.01 0.79 16.98 17.26 1.23 - 4.90 6.23 6.24 1.33 0.00 

BEV032 0.01 1.08 20.32 - 1.25 - 5.03 6.31 - 1.27 - 

BEV033 0.01 0.38 1.46 9.12 0.24 - 4.58 5.17 5.96 0.59 0.76 

 

 

 

 

 

5
3
 



 

54 

 

The slope of the logHg vs. TL regression for all 21 Alberta sites combined was 0.34 for MeHg 

and 0.08 for THg (Fig. 4-1), resulting in TMFs of 2.3 for MeHg and 1.2 for THg.  These values 

correspond to TMSs of 0.18 for MeHg and 0.03 for THg. At the two locations where the food 

web was more comprehensively sampled, the MeHg TMSs were higher upstream of in-channel 

beaver impoundments (BEV004 US TMS = 0.327, r
2 

= 0.61, p = 0.022; BEV028 US TMS = 

0.267, r
2 

< 0.01, p = 0.957) than downstream (BEV004 DS TMS = -0.007, r
2 

= 0.39, p = 0.099; 

BEV028 DS TMS = 0.136, r
2 

= 0.21, p = 0.182) despite higher concentrations overall 

downstream (Fig. 4-2), though this relationship was not significant for three of the four 

relationships and confidence intervals around slope estimates overlapped due to high variability 

and low sample size.
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Fig 4-1 LogHg vs. trophic level for MeHg (black symbols, dashed line) and THg (white 

symbols, solid line) for Rocky Mountain stream food webs (circle = periphyton, triangle = 

grazers, square = predators).   
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Fig. 4-2  Two comprehensive invertebrate food web sites comparing up- (black symbols, dashed 

line) and downstream (white symbols, solid line) slopes.  Panel A refers to site BEV004 and 

panel B refers to site BEV028.
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4.5.2 Drivers of Hg transfer within food webs 

 There were weak relationships between log normalized MeHg and log-transformed mean 

body size (slope = -0.011, r
2
 < 0.01, p = 0.789) and body size and trophic level (slope = 0.174, r

2 

= 0.01, p=0.109) (Fig. 4-3).  Though the log normalized MeHg-TL relationship was also weak 

(slope = 0.133, r
2 

= 0.10, p = 0.0001), TL accounted for more variation in invertebrate Hg across 

sites than did body size.   
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Fig. 4-3  A) Log periphyton-normalized MeHg concentrations vs. log-transformed body size, B) 

Log body size vs. trophic level, and C) Log periphyton normalized MeHg concentrations vs. 

trophic level for invertebrates from 21 Alberta sites (n=131)
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BCFs and BMFs were negatively associated with Hg concentrations in water and the diet, 

respectively (Fig. 4-4), and DOC had a relatively weak influence on both of these 

bioaccumulation endpoints (Fig. 4-5).  The most important variables used to explain BMFs were 

TL(consumer/prey), MeHg in the diet and DOC (Table 4-2).  For model set A (BMF(grazers/periphyton) for 

Alberta sites), the top four models had ∆ ≤ 2, with TL(grazers/periphyton) alone being the top model 

and a combination of TL(grazers/periphyton) and DOC being the second-best model with an ER of only 

1.034, suggesting almost equal weight between the two top models (Table 4-2).  After model 

averaging, the strongest parameter estimates for model set A were TL(grazers/periphyton) and DOC 

with averaged parameter estimates of 0.287 (SE = 0.121) and 0.381 (SE = 0.199) respectively.  

MeHg in the diet, in this case periphyton MeHg concentration, TP and chl a had averaged 

parameter estimates of -0.317 (SE = 0.379), -0.296 (SE = 0.250) and 0.047 (SE = 0.116), 

respectively, but the large standard error makes them weak predictors of BMF(grazers/periphyton).  

The intercept-only (i.e. null) model had a ∆ value of 3.9, making it a plausible model, however 

the top 4 models had a summed weight of .809, or accounted for 80.9% of the weight in the set, 

compared to only 3.7% for the intercept-only model.   For model set B (BMF(predators/grazers) for 

Alberta sites), the top two models had ∆ ≤ 2  with MeHg in the diet (grazer MeHg concentration) 

and DOC being the best-ranked model and the second best model containing MeHg in the diet, 

DOC and benthic chl a (Table 4-2).   MeHgdiet and DOC had the strongest averaged parameter 

estimates and were -0.631 (SE = 0.107) and 0.379 (SE = 0.119), respectively.  The averaged 

parameter estimates for chl a and TL(predators/grazers) were 0.120 (SE = 0.055) and 0.084 (SE = 

0.035), respectively, while TP had no support whatsoever.   

While there was a positive association between DOC and BMFs in the Alberta sites, the 

addition of the New Brunswick sites weakened the relationship.  Model set C 
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(BMF(grazers/periphyton) for combined AB and NB sites) had similar results to model set A with the 

top 4 models having ∆ ≤ 2 (Table 4-2).  The strongest averaged parameter estimates for model 

set C were: TL(grazers/periphyton) (0.250, SE = 0.110), MeHgdiet (-0.382, SE = 0.149), and TP (0.358, 

SE = 0.263).  DOC had an averaged parameter estimate of 0.167 with a high standard error (SE = 

0.205) making it uninformative in set C despite appearing in three of the four top models.  For 

model set D, (BMF(predators/grazers) for AB and NB sites), the top three models had ∆ ≤ 2 including 

TL(predators/grazers) as the top ranked model and TL(predators/grazers) and MeHgdiet as the second-best 

model.  The averaged parameter estimates were: TL(predators/grazers), 0.115 (SE = 0.059); Hgdiet, -

0.143 (SE = 0.102); and TP, 0.355 (SE = 0.259).  DOC had an averaged parameter estimate of 

0.031 (SE = 0.154), again with a high standard error making it uninformative in set D also.     
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Fig 4-4 A) LogBCF vs. LogMeHg in water, B) LogBMF(grazers/periphyton) vs. LogMeHg in 

periphyton , and C) LogBMF(predators/grazers) vs. LogMeHg in grazers.  Circles are up- (black) and 

down- (grey) stream beaver impacted sites, triangles are free-flowing sites and squares are New 

Brunswick sites. 
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Fig. 4-5 A) LogBCF vs. DOC, B) LogBMF(grazers/periphyton) vs. DOC, and C) LogBMF(predators/grazers) 

vs. DOC.  Circles are up- (black) and downstream (grey) beaver impacted sites, triangles are 

free-flowing sites and squares are New Brunswick sites.
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Table 4-2 Model sets used to account for variation in BMFs at Alberta sites (A and B), and 

Alberta sites and New Brunswick sites combined (C and D).  ∆i is the difference between the 

AICc value of the best model and a given competing model. wi is the Akaike weight, with the 

highest ranked model in the set having the highest wi.  Evidence ratios are a measure of 

likelihood of the best model over competing models. Models shown are those which were used 

for model averaging with ∆ ≤ 7. 
Model Set Model  ∆i wᵢ Evidence Ratios 

A) BMF(grazers/periphyton) TL(grazers/periphyton) 0.000 0.259 - 

  TL(grazers/periphyton), DOC 0.066 0.251 1.034 

  MeHgdiet, TL(grazers/periphyton), DOC 0.588 0.193 1.342 

  DOC 1.791 0.106 2.449 

  MeHgdiet, TL(grazers/periphyton) 3.138 0.054 4.803 

  MeHgdiet, DOC 3.317 0.049 5.252 

  Intercept Only 3.909 0.037 7.059 

  MeHgdiet, TL(grazers/periphyton), DOC, Chl a 4.402 0.029 9.032 

  MeHgdiet 6.421 0.010 24.792 

  DOC, TP, Chl a 6.765 0.009 29.442 

B) BMF(predators/grazers) MeHgdiet, DOC 0.000 0.456 - 

  MeHgdiet, DOC, Chl a 0.257 0.401 1.137 

  MeHgdiet 3.120 0.096 4.759 

  MeHgdiet, Chl a 5.796 0.025 18.136 

  TL(predator/grazer) 7.107 0.013 34.932 

  MeHgdiet, DOC, TP, Chl a 8.988 0.005 89.483 

  MeHgdiet, TL(predator/grazer) 11.274 0.002 280.630 

  MeHgdiet, TL(predator/grazer), DOC 11.876 0.001 379.108 

  Intercept Only 12.995 0.001 663.349 

C) BMF(grazers/periphyton) MeHgdiet, TL(grazers/periphyton) 0.000 0.297 - 

incl. NB sites MeHgdiet, TL(grazers/periphyton), DOC 0.114 0.281 1.059 

  MeHgdiet, TL(grazers/periphyton), DOC, TP 0.571 0.223 1.330 

  MeHgdiet, DOC 2.068 0.106 2.812 

  MeHgdiet 3.421 0.054 5.532 

  Intercept Only  5.309 0.021 14.217 

  TP 7.141 0.008 35.539 

D) BMF(predators/grazers) TL(predators/grazers) 0.000 0.424 - 

incl. NB sites MeHgdiet, TL(predators/grazers) 1.647 0.186 2.279 

  MeHgdiet 2.079 0.150 2.828 

  TL(predators/grazers), DOC 2.793 0.105 4.041 

  MeHgdiet, TL(predators/grazers), DOC 3.699 0.067 6.357 

  MeHgdiet, TL(predators/grazers), DOC, TP 4.903 0.036 11.609 

  Intercept Only 5.886 0.022 18.977 

  DOC 7.387 0.011 40.193 
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4.6 Discussion 

We found high Hg uptake from abiotic to biotic compartments but low rates of transfer 

within the invertebrate food webs of these Rocky Mountain streams.  Mean untransformed BCFs 

were 79,756 ± 68,204, which are high compared to literature values for MeHg reported by 

McGeer et al. (2003) for a range of organisms including algae, invertebrates and fish of 8952 ± 

24,675 (n = 53).   These high values are likely not indicative of a greater hazard of toxicity but 

rather reflect natural conditions where uptake is high when ambient concentrations are low 

(DeForest et al. 2007).  Bioaccumulation factors (mean BAF(grazers/water) = 1,259,951 ± 838,812,  

mean BAF(predators/water) 1,969,288 ± 1,541,130) were within the 100,000 to 48,000,000 range of 

literature BAF values for MeHg reported by DeForest et al. (2007). Within the food web, we 

found rates of trophic transfer to be low in these systems. Our calculated mean MeHg TMS 

(0.18) was near the global average TMS value for MeHg in freshwater systems (0.24 ± 0.08), but 

the THg TMS (0.03) was well below the average THg TMS (0.15 ± 0.11) (Lavoie et al. 2013).  

Accordingly, TMFs (2.3 for MeHg and 1.2 for THg) were also at the lower end of the range for 

freshwater systems (8.3 ± 7.5 for MeHg and 4.3 ± 4.8 for THg, Lavoie et al. 2013).   

The far larger BCF values compared to BMFs illustrate that processes at the base of the 

food web will have a greater influence on overall Hg concentrations of higher consumers than 

trophic transfer of Hg through the food web. At every one of the 35 sites in our study, the 

magnitude of change in MeHg was greatest from water to organisms. It declined from primary 

producers to consumers and further again from primary consumers to predators.  This is 

consistent with other studies that have shown that bioconcentration from water to algae is several 

orders of magnitude larger than biomagnification from algae to successively higher trophic levels 
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(Weiner et al. 2007; Chasar et al. 2009). This places a renewed emphasis on understanding 

controls on the delivery and uptake of Hg from water to periphyton in these systems.    

Based on the two beaver-impacted sites where a more comprehensive food web analysis 

was conducted, our findings suggest that MeHg is being taken up by periphyton and 

invertebrates more efficiently at the lower concentrations upstream than at the higher 

concentrations downstream (Chapter 3).  This is consistent with the inverse relationship between 

concentration and uptake observed for lab-reared organisms (Tsui and Wang 2004; DeForest et 

al. 2007) and further demonstrated for grazers and predators in New Brunswick streams (Jardine 

et al. 2013) that may be explained by a saturation of binding sites for Hg at high concentrations 

combined with slow turnover (Tsui and Wang 2004).  Across all sites in the current study, MeHg 

was readily taken up into the food web even when water concentrations were below detection, 

resulting in highest BCFs when concentrations were low.  This is further supported by the results 

of our AIC analysis where MeHgdiet had a negative effect on BMFs from periphyton to grazers 

and from grazers to predators.  Similarly, Lavoie et al. (2013) found that MeHg TMSs were 

lowest when Hg at baseline trophic level and GIS-derived atmospheric Hg deposition were 

highest. 

DOC leads to higher baseline MeHg in the study streams (Chapter 3), an effect that has 

been well described for MeHg in aquatic systems (Driscoll et al. 1995).  Particularly in streams, 

DOC is associated with the presence of wetlands, major sources of Hg methylation, in the 

surrounding watershed as well as DOC-Hg complexes washing in from the terrestrial 

environment (Brigham et al. 2009; Chasar et al. 2009).  DOC is positively associated with BMFs 

for the Alberta streams (Table 4-2, Model Set A and B), however at the higher concentrations 

observed in the New Brunswick streams (Table 4-2, Model Set C and D), the effect is dampened.  
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This suggests that DOC enhances the biomagnification of MeHg through the food web at low 

concentrations but at higher concentrations may inhibit trophic transfer.  This is in agreement 

with Driscoll et al. (1995) who reported that fish MeHg correlated positively with DOC at low 

concentrations (<8 mg/L) but then declined when DOC was very high (24 mg/L).   

This study highlights the relative difference in trophic level from prey to consumer as an 

important variable driving BMFs. The addition of stable isotope information helps to refine 

BMFs: for example, Dietz et al. (2000) examined contaminant biomagnification in an arctic 

ecosystem and found that some concentrations were unexplained by BMF alone, speculating that 

trophic linkages likely played a role. The stepwise increase in TL from prey to predator has long 

been associated with increased contaminant concentrations i.e. the TL-Hg relationship is 

significant overall (Kidd et al. 1995).   Thus, it is expected that trophic transfer of Hg will be 

greater when the “step up” in TL is greater for a given predator/prey pair.  When calculating 

trophic transfer, we caution that good judgement should be used when selecting the TEF because 

TMFs are sensitive to changes in the TEF value used (Lavoie et al. 2013).  For example, the use 

of a commonly applied TEF of 3.4‰ (Minagawa and Wada 1984, Post 2002) would result in 

TMFs of 4.06 for MeHg and 1.27 for THg in our food webs, effectively doubling the rate of 

biomagnification of MeHg from what we have calculated using a TEF of 2.0‰.  In an analysis 

of 144 records across arid, tropical, subtropical and temperate sites, Bunn et al. (2013) found that 

many TEF estimates for invertebrate food webs were lower than the commonly reported 3.4‰.  

We chose the 2.0‰ value based on similar TEFs from the literature for stream invertebrate food 

webs (McCutchan et al. 2003, Bunn et al. 2013). 

Hg bioaccumulation models that were largely developed from pelagic freshwater systems 

(Watras et al. 1998), where there is strong size structuring due to gape limitation in fishes, do not 
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necessarily apply to stream invertebrate food webs. Instead, invertebrates in streams have high 

diversity and occupy many different niches, resulting in weak size structuring and short food 

chains (Vander Zanden and Fetzer 2007, Riede et al. 2011). For example, a study by Jardine 

(2014) found that body size significantly increased with trophic position in stream invertebrate 

food webs in tropical, subtropical and temperate regions, but the relationship was weak, 

especially compared to strongly size-structured food webs commonly found in the pelagic zone 

of temperate lakes (Hairston and Hairston 1993).  The implication of this weak size structuring is 

that larger animals will not necessarily have the highest Hg, nor might they occupy the highest 

trophic levels.  An example of this is seen in the two sites that were analysed more 

comprehensively – Tipulidae spp. occur in these food webs and have the largest body sizes 

despite having low MeHg concentrations and low TLs.  Instead, smaller invertebrates, 

particularly grazing mayflies, have the highest Hg suggesting that other factors drive 

accumulation of Hg in these organisms. Mason et al. (2000) found that smaller-sized 

invertebrates can have higher concentrations of arsenic and selenium due to their high surface 

area to volume ratio, resulting in a greater absorptive area. Though findings for Hg were 

inconsistent in that study (Mason et al. 2000), the relative contribution of dermal absorption 

versus the diet in dictating uptake in small invertebrates is less well understood relative to fishes 

(Hall et al. 1997).   

One potential cause of higher TLs in smaller organisms that have not been classified as 

predators is omnivory.  Invertebrates can exhibit both obligate and facultative functional feeding 

behaviour (Cummins and Klug 1979).  Both Heptageniidae and Ephemerellidae mayflies are 

classified as herbivorous scrapers (Merrit and Cummins 1996) but can also be facultative 

collectors.  Thus, they have the potential to collect particles “of animal origin” or bacteria and 
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may therefore occupy a higher trophic position due to omnivory (Anderson and Cabana 2007).  

This further reiterates the importance of using stable isotopes in bioaccumulation studies, 

particularly the relative difference in TL from prey to consumer (TLconsumer/prey) as it should 

accurately depict omnivorous behavior.  For example, we observed instances where grazing 

mayflies had higher δ
15

N than presumed predators, leading to lower TL(consumer/prey) values, and 

Ephemerellids occupied the same trophic level as predators at two upstream beaver sites.   As 

such, there are implications for trophic transfer because if fish tend to eat larger invertebrates and 

larger invertebrates have lower Hg, then there will be less Hg transferred up the food chain. 

Although trophic transfer is more efficient at low concentrations, our results suggest that 

MeHg in top predators will be governed more by supply of MeHg at the base of the food web, 

rather than trophic transfer and trophic efficiency (Chasar et al. 2009).  Hg inputs to ecosystems 

are largely as Hg(II), while MeHg production and subsequent uptake into algae occurs within the 

system (Driscoll et al. 2013) and is highly variable.  The relative importance of supply versus 

uptake and transfer in determining Hg in higher trophic level organisms is thus of considerable 

interest because inputs are more readily managed than transfers through the food web.  For 

example, following the flooding of large reservoirs, concentrations of MeHg in predatory fishes 

can remain elevated for years following impoundment due to release of Hg from soils and 

vegetation (Hall et al. 2005, St. Louis et al. 2004).  Furthermore, atmospheric deposition of Hg is 

strongly linked to Hg in fish (Harris et al. 2007) with anthropogenic emissions contributing to 

two-thirds of all atmospheric deposition (Hammerschmidt and Fitzgerald 2006) and affecting 

fish populations that are far from any direct emissions source.  Decreases in Hg emissions are 

predicted to result in rapid declines in fish concentrations (Harris et al. 2007).   Also, decreases 

in anthropogenic SO4
2-

 deposition (i.e. acid rain) are associated with decreased MeHg 
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concentrations in fish (Dittman and Driscoll 2009); however, decreases in acid deposition have 

been reported to increase dissolved organic matter inputs, thus increasing availability of Hg to 

the food web (Hongve et al. 2012; Driscoll et al. 2013).   These examples, taken together with 

our findings, further highlight the importance of processes at the base of the food web in driving 

uptake and trophic transfer of Hg. 
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CHAPTER 5 

5. SYNTHESIS 

This study was the first of its kind to examine MeHg bioaccumulation at the base of 

stream food webs that are influenced by beaver activity. Prior work had focused on elevated Hg 

in water downstream from in-channel beaver impoundments (Driscoll et al. 1995; Roy et al. 

2009b). In addition, this study contributed to our understanding of the ecology of Rocky 

Mountain stream systems and their potential to be contaminated by Hg. 

The global reservoir of atmospheric Hg has increased 2-5 times since the onset of the 

industrial revolution (Boening 2000).  Hg is rapidly circulated around the globe in its gaseous 

elemental form, Hg
0
, meaning that although emission sources tend to be clustered around areas 

of human industrialization, Hg is problematic across all landscapes regardless of remoteness, due 

to long range transport (Morel et al. 1998; Driscoll et al. 2013).  Hg
0
 is slowly oxidized to Hg(II), 

enhancing its ability to circulate in the atmosphere for long periods of time.  Hg(II) is then 

deposited onto the landscape via precipitation (wet deposition) and by adhering to particulates 

(i.e. aerosols, soot) where it enters terrestrial and aquatic environments (Morel et al. 1998).  

However, environmental and health impacts are only indirectly related to ambient concentrations 

in abiotic compartments because toxicity generally results from the net conversion of Hg(II) to 

MeHg, the more bioaccumulative and toxic form (Driscoll et al. 2013).   

In freshwater systems, Hg(II) undergoes methylation by sulfate-reducing microbes in the 

low oxygen environments of wetlands and sediments (Gilmour et al. 1992).  Human and wildlife 

exposure occurs almost entirely via the consumption of MeHg contaminated organisms. In lakes, 

the average proportion of total Hg as MeHg increases from about 10% in water to 15% in 

phytoplankton, 30% in zooplankton, and 95% in fish (Watras and Bloom 1992); these increases 
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are mirrored in stream food webs (Kidd et al. 2012).   Reasons for differences in the proportion 

of MeHg in different biological compartments include the relative concentrations of Hg(II) and 

MeHg likely to be present and lipid solubility of Hg species (Boening 2000).  This makes uptake 

into primary producers (periphyton) and efficiency of assimilation by grazers important (Morel 

et al. 1998).  Thus, the impact of Hg on ecosystems is related not only to regional and global 

emissions and deposition, but also to the potential for aquatic systems to methylate Hg, 

subsequent biomagnification of MeHg in food webs, and the processes that drive net methylation 

and trophic transfer (Driscoll et al. 2007; Munthe et al. 2007; Driscoll et al. 2013).  

This study offers an important piece of the puzzle for researchers studying MeHg in 

running waters. Contaminant cycling in river systems that are naturally engineered by beavers 

receives comparatively little attention to their man-made counterparts.  While MeHg in aquatic 

systems has been well-studied, the degree of complexity and controls on its availability are still 

not entirely understood, especially in stream ecosystems (Ward et al. 2010).  For perspective, 

approximately 1.3 million river miles in the United States alone (or approximately 40%) are 

under an Hg advisory (US EPA 2010). My study revealed that elevated MeHg concentrations in 

water downstream from impoundments enters the food web and biomagnifies to higher 

consumers.  MeHg at the primary consumer level often dictates subsequent trophic transfer up 

the food chain (Chasar et al. 2009); therefore, understanding the processes, such as ecosystem 

engineering by beavers, that change the way materials flow through streams are key in increasing 

our understanding of the behavior of Hg in aquatic systems.  Furthermore, beavers have the 

ability to create impoundments across a wide variety of climates and environments throughout 

North America.  As such, these impoundments can occur in areas that receive large loads of 

atmospheric Hg deposition (Hammerschmidt and Fitzgerald 2006), areas near point source 
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emitters of Hg (Jardine et al. 2009) and areas that are naturally Hg-sensitive due to prevailing 

environmental conditions (Ward et al. 2010).   

I hypothesized that in-channel beaver impoundments would increase food-web available 

Hg and enhance resource availability in these systems.  Below beaver dams, I expected higher 

Hg concentrations in all biological compartments, higher nutrient concentrations (TP, TN and 

DOC), more algal growth (measured as benthic chl a), and greater densities of invertebrates 

(measured as total invertebrate biomass).  In terms of food webs/trophic transfer, I hypothesized 

that beaver impoundments would cause a shift in the flow of energy (primary consumer derived 

C) from upstream to downstream.  Assuming increased productivity and algal growth, I 

hypothesized an increased reliance on aquatically derived C (algal-based) as opposed to 

terrestrially derived C (terrestrial leaf litter). This was important because algal C is associated 

with higher available MeHg concentrations at the base of food webs (Jardine et al. 2012; Riva-

Murray et al. 2013).  Increased productivity also has the potential to result in increased 

invertebrate body size and the addition of more trophic linkages (i.e. a longer food chain with 

more predators); therefore, I also hypothesized that an increase in invertebrate biomass and body 

size would also be associated with higher MeHg concentrations and increased trophic transfer.  

Through the sum of all of these processes, I then expected that beaver impoundments would have 

the potential to cause an increased risk to fish and ultimately fish-eating wildlife downstream.  

However, I understood that processes acting on Hg would be complex and made a secondary 

hypothesis that the rate of biomagnification could also be lower due to growth dilution from 

enhanced productivity downstream from beaver dams (Pickhardt et al. 2002).  This would limit 

MeHg availability to predators further up the food chain, resulting in little or no risk to 

piscivorous wildlife and humans, despite increases in water and at lower trophic levels. 
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My overall findings are summarized in a conceptual model (Fig. 5-1).  I observed a 

consistent increase in MeHg concentrations and % MeHg downstream from in-channel beaver 

impoundments in all biological compartments (water, periphyton and invertebrates, Fig. 5-1).  

This suggests that net methylation is occurring in the ponds and the MeHg is being subsequently 

released downstream.  However, unlike other studies on beaver impoundments (Naiman et al. 

1986, 1988; Roy et al 2009ab), this was not accompanied by an increase in nutrients or algal and 

invertebrate biomass downstream (Fig. 5-1).  This could potentially be attributed to local 

conditions.  For example, my study streams had limited local litter input from trees compared to 

other studies referenced here (Roy et al. 2009b; Naiman et al. 1988) likely due to the short 

growing season at high elevations with snowmelt occurring relatively late in the year.  For 

example, in sub-Antarctic streams in Patagonia, South America, where Castor canadensis is 

invasive, Anderson and Rosemond (2010) found that the greatest impact of beaver activity on 

food web resources is seen in the ponds themselves. There, the overall effect of in-channel 

impoundments on resources at the base of food webs below ponds was attenuated by local 

conditions at high latitude (56°S), with low nutrient concentrations similar to the streams studied 

here.  These features of mountain systems therefore provide different perspectives on beaver 

impacts since hydro-climatic conditions are unlike those observed at other beaver research sites 

in lowlands (Naiman et al. 1986; 1988; Roy et al 2009ab).  For example, in an area where 

vegetation is largely comprised of deciduous trees with a large annual leaf dropping event, the 

ponds themselves would act as a sink for the high volume of terrestrial inputs, thus increasing the 

amount of standing stock associated with ponds.  This highlights the importance of studying the 

effects of impoundments in many different ecosystem types – mountains, forests and plains 

would likely all exhibit different responses.  



 

71 

 

 

Fig. 5-1 Conceptual model showing drivers of supply and trophic transfer in the study systems. 

Objects enclosed in solid lines represent compartments.  Dashed arrows indicate no effect (ns = 

not significant), solid arrows indicate a positive (+) or negative (-) effect.  Red bold arrows 

indicate transfer of Hg.
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While I did not observe an increase in DOC below impoundments (Fig. 5-1), it is 

apparent based on AIC analysis that DOC is an important driver of variability in MeHg 

concentrations in these systems.  Variation in DOC could be driven by the long-term effects of 

beaver activity (Westbrook et al. 2011) as well as other landscape features (wetlands, peat 

deposits, deciduous trees) that create between-stream differences.  I observed a positive 

association between DOC and MeHg concentrations in all compartments at upstream sites, 

consistent with a role for DOC in aiding in the transport of Hg into systems.  For example, in 

lakes with DOC values below 4.0 mg/L, McMurty et al. (1989) observed that Hg concentrations 

in lake trout muscle tissue were strongly positively correlated with DOC, which explained 37% 

of the variation in Hg concentrations. This is in agreement with Driscoll et al. (1995) who 

observed increased concentrations of MeHg in fish tissue associated with levels of DOC up to 8 

mg/L in Adirondack lakes.  However, at higher concentrations DOC can interact competitively 

with Hg for binding sites, inhibiting uptake (Dittman and Driscoll 2009).  This was evident in my 

work as well.  The low DOC Alberta sites showed positive correlations between MeHg in all 

biological compartments and DOC as well between BMFs and DOC.  When higher DOC New 

Brunswick sites were added to the analysis, that effect was no longer apparent. 

Despite my predictions, I did not observe a shift in dietary carbon source downstream 

from impoundments.  Rather, I observed complete reliance on aquatic carbon both up- and 

down-stream (Fig. 5-1).  Stream invertebrate community structure provides clues as to why this 

occurred: shredding invertebrates were not present, there was limited canopy cover (Table A-1), 

and leaf litter was only present in small quantities.  The small offset between periphyton δ
13

C 

and invertebrate δ
13

C (Fig. A-5) is likely attributed to impurities in the bulk algal sample rather 

than consumption of an alternative basal energy source.  Hamilton et al. (2005) describe caveats 
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associated with bulk biofilm scrapings, stating that these samples are often comprised of algal 

material and detritus including bacterial cells and inorganic components.  Invertebrates may 

selectively feed on only some of these components (Clapcott and Bunn 2003); therefore these 

impurities should be considered when reporting stable isotope ratios.  Anderson and Rosemond’s 

(2010) study of sub-Antarctic streams, which were largely reliant on terrestrial carbon, showed 

that beaver ponds increase autochthonous resources downstream, but this shift was small relative 

to the overall terrestrial influence.  Stream food webs, such as the ones in this study that are 

entirely reliant on aquatic carbon (McCutchan and Lewis 2002), accumulate Hg more effectively 

than those with reliance on terrestrial carbon because terrestrial C sources are associated with 

lower Hg than aquatic C sources (Jardine et al. 2012).  This suggests that when beavers impound 

waterways in areas where terrestrial inputs dominate stream food webs (Anderson and 

Rosemond 2010), Hg availability to basal food web organisms may be low even if water Hg 

concentrations are elevated. 

I measured trophic transfer of Hg by calculating TLs, TMFs, BCFs, BAFs and BMFs.  

Overall TMFs of 2.3 for MeHg and 1.2 for THg were at the low end of the range for freshwater 

systems (8.3 ± 7.5 for MeHg and 4.3 ± 4.8 for THg, Lavoie et al. 2013).  This means that MeHg 

is biomagnifying at a rate of approximately 2.3 times per trophic level in these systems, though 

this number would have been higher had I used a more conventional TEF for 
15

N (Post 2002).  

Care should thus be taken to choose a suitable TEF for a food web biomagnification study 

because depending on the characteristics of the food web, this value could depart greatly from 

the typical literature value of 3.4‰ (Bunn et al. 2013).  Small changes in TEF can result in very 

different TMFs (Lavoie et al 2013).   
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MeHg BCFs are on the order of 10,000 to 100,000 (Boening 2000).  I observed BCFs for 

periphyton ranging from 12,000 to 344,000 while BMFs for invertebrates were 3 to 48 for the 

grazer/periphyton linkage and <1 to 10 for the predator/grazer linkage, resulting in BAFs of 

1,259,950 for grazers/water and 1,969,288 for predators/grazers, consistent with the range 

(100,000 to 48,000,000) reported by DeForest et al. (2007).  The magnitude of change decreased 

with each subsequent trophic linkage, which emphasizes the importance of uptake from water to 

periphyton in dictating MeHg availability to higher trophic levels.  This, combined with the 

greater uptake of Hg at low concentrations, highlights supply at the base of the food web as a key 

driver of subsequent biomagnification. 

BMFs were particularly influenced by the relative difference in TL from prey to 

consumer (Fig. 5-1).  TL, calculated using δ
15

N, refines BMFs and is particularly useful when 

some trophic linkages in a food web may be unknown.  The importance of the relative difference 

in TL from prey to consumer in determining BMFs is intuitive because the significant positive 

linear relationship between Hg and TL is well documented (Kidd et al. 1995). Here, I stress the 

importance of accurately incorporating stable isotopes and TLs into biomagnification studies 

rather than making assumptions about diet (Dietz et al. 2000).  There could be a small difference 

in TL between an omnivore and a predator which would equate to a small TLprey/consumer and 

BMF even though the two taxa might be compared as a predator and its prey.  For example, at 

some sites in this study grazing mayflies had higher Hg concentrations than predators, resulting 

in lower BAFs for predators than for grazers.  Some mayflies occupied similar TLs to predatory 

invertebrates, suggesting omnivory via the consumption of bacteria or other animal particles.  

Assuming strict adherence to functional feeding group classifications (Merritt and Cummins 
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1996) may be erroneous because invertebrates, especially facultative omnivores, likely deviate 

from functional feeding groups as defined in the literature.   

My AIC analysis revealed a negative association between MeHgdiet and BMF, meaning 

that biomagnification occurs at a greater rate when MeHg concentrations in prey organisms are 

low.  This means that at low concentrations, MeHg is transferred more efficiently through the 

food web than at higher concentrations.  This “uptake paradox” has been reported in other 

studies (Tsui and Wang 2004; DeForest et al. 2007; Lavoie et al. 2013) and may be explained by 

a saturation of binding sites for Hg combined with slow turnover.  Once MeHg is bound, it is not 

easily excreted, thus adding more Hg to the system would not necessarily increase uptake.  The 

physiological turnover rate constant for MeHg is smaller than that of other trace metals (Cd, Cr, 

Zn and Se) and inorganic Hg (Tsui and Wang 2004).  In a laboratory-based experiment using 

Daphnia magna, Tsui and Wang (2004) found that after seven days of depuration, D. magna 

retained 57 to 66% MeHg while they only retained 37 to 46% Hg(II).  The authors also observed 

decreasing concentration factors with increased exposure concentrations, which led them to 

suggest the possibility that saturation of binding sites is achieved at higher concentrations.   

In addition to using δ
15

N to calculate TLs, it was also regressed against invertebrate body 

size. I hypothesized that increases in nutrients below impoundments would equate to more 

resources for the growth of invertebrates, resulting in larger-bodied organisms (Anderson and 

Cabana 2009).  Larger body size is associated with higher trophic levels (i.e. predators) and 

therefore accumulation of greater concentrations of Hg, so it was of particular interest in this 

study.  However, I found that mean body size was the same up- and downstream of beaver ponds 

and overall it was not a driver of Hg concentrations (Chapter 4). Invertebrate sizes, densities and 

species abundance and TLs were the same above and below ponds suggesting that if beaver 
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activity alters invertebrate communities, the change is confined to within the ponds themselves, 

as was observed in the Anderson and Rosemond (2010) study. The beaver ponds studied here 

were likely relatively new because of recurring floods and breaching, which may limit the 

establishment of new communities.  Beaver ponds are associated with habitat creation, 

particularly for salmonids in mountain regions (Collen and Gibson 2001).  If ponds created fish 

habitat, there would be addition of predators to the food chain.  A longer food chain and with 

animals occupying higher TLs would mean further biomagnification of Hg.   

Beavers flood landscapes in a similar way to human dams. I observed net methylation 

occurring in ponds which likely follows the same mechanism of flooding and subsequent 

methylation of Hg in human-made reservoirs.  MeHg tends to be exported from reservoirs in the 

dissolved form (Schetagne 2000) and dissolved Hg is also likely the most important form in 

these systems.  While I did not sample both particulate and dissolved fractions of nutrients and 

Hg, most particulates would have probably settled out in beaver ponds (Naiman and Melillo 

1984) and are unlikely to contribute to loads in the downstream channel.  Similarly, coarse debris 

is likely entirely retained in the ponds and sediments (Wohl et al. 2012), but would still provide a 

surface on which methylation can occur (Hall et al. 2004).   

Streams vary in their sensitivity to Hg contamination (Driscoll et al. 2007; Ward et al. 

2010).  My study systems are not Hg-sensitive but the range of beavers includes many regions of 

greater Hg sensitivity. On a broad-scale, some high altitude areas (i.e. Adirondacks), those that 

experience high atmospheric Hg loading, and those with naturally low pH would all be 

susceptible. While pH did not play an important role in my study systems, its significance as an 

overall driver of Hg in many freshwater systems means it is worth mentioning here. The near 

neutral pH (mean = 8.1) of my study streams likely provides some protective effect from Hg.  If 



 

77 

systems were instead low in pH, had low buffering capacity (soft water) or local geology that 

lends itself to these features then beaver impoundments could become problematic.  For 

example, McMurty et al. (1989) observed that Hg concentrations in smallmouth bass were 

negatively correlated with variables affecting water hardness (Mg, Ca, conductivity) and 

positively correlated with those affecting acidity (pH, alkalinity). Jardine et al. (2013) found a 

significant relationship between pH and BMFs between predatory invertebrates and blacknose 

dace, indicating that pH can act directly on the accumulation of Hg by higher trophic level 

organisms.  Should beavers build impoundments in low pH waterways such as those found in the 

Roy et al. (2009b) study, fishes residing downstream could have higher concentrations than what 

we might assume based only on concentrations in lower trophic level organisms. 

In contrast, Hg outputs from ponds in areas that are less likely to be Hg-sensitive, such as 

those that are lower gradient (i.e. prairie or flood plains) and higher nutrient systems would 

likely be diminished.  In low gradient systems, ponds would be expected to remain intact for a 

longer period of time due to a lack of high-flow events such as those observed in the mountains.  

This longevity would be associated with a decrease in Hg methylation over time (Bodaly et al. 

2007).  High nutrient systems where algal biomass is abundant are likely to be associated with 

lower Hg concentrations in organisms due to bloom dilution – an increase in algal cells results in 

a decrease in Hg concentration per cell (Pickhardt et al. 2002).  This would result in lower inputs 

at the base of the food web.  High DOC systems are also associated with decreased Hg 

concentrations, likely due to DOC forming complexes with Hg and inhibiting uptake (Dittman 

and Driscoll 2009).  Therefore systems with high nutrient loads are likely to exhibit little, if any, 

increase in Hg concentrations downstream from beaver impoundments.    
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An additional factor to consider when assessing potential for Hg contamination 

downstream from beaver impoundments is dam age (Roy et al. 2009b).  While I was unable to 

estimate dam ages, evidence suggests most are young.  These mountain systems endure 

occasional high flows associated with rain on snow events, meaning the dams probably are 

breached at regular intervals.  My observations of elevated Hg concentrations downstream from 

ponds, and data from previous research below experimental reservoirs (St. Louis et al. 2004) 

suggests these ponds are likely quite new (less than five years old).  The continual breaching and 

rebuilding of beaver impoundments, particularly those in mountain regions, could therefore 

result in continual pulses into the system, similar to natural wetland disturbances that can induce 

mobility of Hg stored on the landscape (Zillioux et al. 1993).  Because the cycle of breaching 

and rebuilding is an important reality in these mountain systems, I chose to include four breached 

dams in the study.  Despite not actively holding water back, the large area of exposed sediment 

and alteration of normal flow patterns (Fig. A-2) makes these breached dams important 

disrupters of stream channels related to beaver activity.  While it was not logistically possible to 

sample additional breached sites in this study, future work comparing breached vs. intact beaver 

dams would be interesting.  I would hypothesize that recently breached ponds would still show a 

consistent downstream increase in MeHg, though perhaps not to the extent observed here with 

intact dams.  In other systems where high flow events are uncommon, dams could persist for 

many years and MeHg concentrations downstream from ponds likely would decline with time 

(Roy et al. 2009b).   

Beavers are often regarded as pests, and the implementation of removals/culls may occur 

even when their hydrological and ecological effects are positive (Collen and Gibson 2001; 

Westbrook et al. 2011).  Beavers are major drivers of change in ecosystem and geomorphic 
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function.  Their ponds in North America number in the millions, with billions of m
3
 of sediment 

retained (Butler and Malanson 2005).  The ecosystem services they provide are of great 

importance,  forming ponds and meadows that contribute to landscape heterogeneity (Westbrook 

et al. 2011) and creating habitat for fishes and associated angling opportunities (Collen and 

Gibson 2001).  It is estimated that over thousands of years, beavers have aggraded valleys, 

forming even valley plains and the fine silt retained in the beaver ponds has contributed to the 

rich farm land in the valleys of northern North America (Ruedmann and Schoonmaker 1938).   

All of these positive effects mean we need to balance our interactions with beavers.  

While dam building does have consequences, including elevated Hg in streams and flood 

damage to human infrastructure and property, this does not mean beavers should automatically 

be labelled as pests. Because we now know that in-channel beaver impoundments consistently 

increase MeHg levels in basal food web organisms downstream, we can advise both researchers 

and land managers to consider the role of beaver activity in these sensitive regions, particularly 

where there is potential for accumulation of high MeHg concentrations in food sources for 

wildlife and humans.   
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APPENDIX  

 
Fig. A-1 Study area comprising 7912 km

2
.  The hatched area represents the parks and 

recreational areas that make up Kananaskis Country.  Major water features are highlighted in 

blue and sites are indicated by red circles (sites in very close proximity to one another overlap)
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Fig. A-2 An intact (left) and recently breached (right) beaver impoundment 
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Fig. A-3 Comparison of chlorophyll a concentrations obtained using the two methods outlined in 

the text.  Line represents 1:1. 
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Fig. A-4 Change in C:N and δ

13
C pre- (“Raw”) and post-acidification of periphyton samples.  

High carbonate content caused erroneous enrichment of 
13

C, necessitating acid treatment. 
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Fig. A-5 Isotope bi-plots showing δ

13
C and δ

15
N values for invertebrate food webs in streams A) 

upstream and B) downstream of beaver impoundments.
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Fig. A-6 Total mercury (THg) concentrations in periphyton vs. leaf litter. Each point represents a 

site
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Table A-1 Environmental characteristics of streams sampled upstream (US) and downstream (DS) of beaver impoundments in the 

study area. 

Site Lat Lon 
Stream 
Width 

(m) 

Canopy 
Cover 

(%) 

Substrate Composition (%) 
pH 

Cond 
(µS/cm) 

Turb 
(NTU) bedrock boulder rock coble gravel sand mud 

BEV012 
 

US 50.759 115.264 8 0 0 0 0 40 50 10 0 8.2 203 1.51 
DS 50.758 115.263 8 0 0 0 0 40 40 10 10 8.1 206 1.27 

BEV002 US 51.318 114.960 2 50 0 0 10 0 40 0 50 8.2 400 13.30 
DS 51.317 114.958 2 25 0 0 20 0 30 20 30 8.3 207 10.25 

BEV004 US 50.379 114.668 3 0 0 0 10 40 10 0 40 8.0 312 0.21 
DS 50.378 114.666 3 10 0 0 40 40 0 20 0 8.0 318 0.42 

BEV015 US 51.051 114.924 4 30 0 0 40 40 0 10 10 8.3 299 0.25 
DS 51.038 114.868 3 10 0 0 40 10 10 0 40 7.9 305 8.13 

BEV028 US 50.526 114.930 2 10 0 0 30 30 10 10 20 8.1 244 0.10 
DS 50.523 114.927 1.5 0 0 0 30 40 20 0 10 8.2 245 1.06 

BEV020 US 50.865 114.790 3 0 0 0 0 50 15 15 20 7.9 287 0.15 
DS 50.866 114.787 2.5 10 0 0 30 30 30 10 0 8.1 293 1.17 

BEV021 US 50.860 114.795 5 10 0 0 20 30 30 10 10 8.1 298 0.97 
DS 50.862 114.794 3 20 0 0 20 30 20 10 10 8.2 299 0.60 

BEV019 US 50.803 114.844 6 0 0 0 0 20 20 20 40 8.1 263 0.12 
DS 50.804 114.842 3 0 0 0 10 40 30 10 10 8.2 262 0.91 

BEV024 US 51.609 115.161 2.5 10 0 0 10 30 30 15 15 8.3 392 2.89 
DS 51.609 115.160 2.5 10 0 0 0 50 20 0 30 8.3 390 3.72 

BEV025 US 51.610 115.176 3 0 0 0 10 30 20 10 30 8.3 402 1.82 
DS 51.609 115.170 2 0 0 0 10 30 30 10 20 8.2 406 2.83 

BEV027 US 51.531 115.099 3 0 0 0 10 45 35 10 0 8.1 168 5.35 
DS 51.531 115.097 2.5 0 0 0 10 30 30 10 20 8.4 166 5.98 

BEV030 US 50.789 115.304 3 20 10 0 10 30 10 10 30  

 
7.8 

321 0.10 
DS 50.787 115.299 4 0 0 0 20 50 10 0 20 7.8 302 1.34 

BEV026 US 51.659 115.292 3.5 0 0 5 20 30 30 10 5 7.9 354 1.06 
DS 51.659 115.290 3.5 0 0 0 10 40 20 0 30 7.9 355 1.23 

BEV022 US 51.478 114.855 3 0 0 0 0 20 50 15 15 8.0 261 2.01 
DS 51.480 114.853 4 0 0 0 0 40 30 15 15 7.8 259 3.90 

BEV010 US 50.949 115.126 9 0 0 0 5 60 20 10 5 7.9 326 0.13 
DS 50.951 115.126 3 0 0 0 0 60 20 10 10 7.9 325 0.14 
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Table A-2 Pearson correlation matrix illustrating relationships between measured variables at sites upstream from beaver 

impoundments.  Top values are Pearson correlation coefficients (ρ) and bottom italicized values are probabilities (p-values).  

Variables that are significantly correlated p  0.05 are highlighted in bold text. 

 
  
  

Water 
MeHg 

Periphyton 
MeHg 

Herbivore 
MeHg 

Predator 
MeHg 

TP TN pH Cond. Turb. DOC 
Benthic   

Chl a 
Invert. 

Biomass 

Water MeHg 
1.000  

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
  

  
  0.000 

Periphyton 
MeHg 

0.378 1.000  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
  

  
  0.165 0.000 

Herbivore 
MeHg 

0.637 0.637 1.000  
 

 
 

 
 

 
 

 
 

 
 

 
 

  
  

  
  0.014 0.014 0.000 

Predator 
MeHg 

-0.017 0.823 0.811 1.000  
 

 
 

 
 

 
 

 
 

 
 

  
  

  
  0.964 0.006 0.014 0.000 

TP 
0.532 0.691 0.631 0.464 1.000  

 
 
 

 
 

 
 

 
 

  
  

  
  0.041 0.004 0.016 0.209 0.000 

TN 
0.504 0.402 0.555 0.472 0.772 1.000  

 
 
 

 
 

 
 

  
  

  
  0.055 0.137 0.039 0.200 0.001 0.000 

pH 
0.112 0.232 0.029 0.294 0.616 0.569 1.000  

 
 
 

 
 

  
  

  
  0.691 0.406 0.921 0.442 0.014 0.027 0.000 

Conductivity 
0.059 -0.216 0.181 0.259 0.023 0.264 0.061 1.000  

 
 
 

  
  

  
  0.834 0.438 0.535 0.502 0.934 0.341 0.830 0.000 

Turbidity 
0.551 0.443 0.633 0.293 0.813 0.706 0.495 0.052 1.000  

 
  
  

  
  0.033 0.098 0.015 0.445 0.000 0.003 0.061 0.853 0.000 

DOC 
0.585 0.638 0.710 0.655 0.857 0.809 0.415 0.215 0.706 1.000   

  
  
  0.022 0.011 0.004 0.055 0.000 0.000 0.124 0.442 0.003 0.000 

Benthic  Chl a 
-0.241 -0.087 -0.156 0.227 -0.421 -0.255 -0.183 -0.028 -0.562 -0.413 1.000  

 0.387 0.758 0.594 0.557 0.118 0.358 0.513 0.922 0.029 0.126 0.000 

Invertebrate 
Biomass 

0.073 0.297 0.136 0.743 0.091 0.117 0.247 -0.036 0.068 -0.024 0.322 1.000 

0.795 0.282 0.643 0.022 0.746 0.679 0.374 0.899 0.810 0.934 0.242 0.000 
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