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ABSTRACT: 

This thesis reports on a systematic experimental study for the preparation of cellulose 

supported iron oxide (goethite and hematite) composite adsorbent materials, and the use of such 

materials for the adsorption of arsenic species from arsenic containing water. The research is 

divided into two sections: 1) Synthesis and characterization of the goethite and goethite-cellulose 

composites for the sorption of roxarsone (4-hydroxy-3-nitrobenzenearsonic acid) and 2) Synthesis 

and characterization of the hematite and hematite-cellulose composites for the sorption of 

roxarsone. Adsorption properties of the cellulose, goethite, hematite, goethite-cellulose, and 

hematite-cellulose adsorbents were studied with roxarsone as a model organoarsenical adsorbate.  

Iron nanoparticles (NPs) and their cellulose composites were prepared with good yield, 

goethite and hematite were 98% and 97%, respectively. The characterization of various adsorbent 

materials used several techniques: Thermal gravimetric analysis (TGA), Fourier transform infrared 

(FTIR) spectroscopy, Raman spectroscopy, nitrogen gas adsorption/desorption (BET), 13C solid 

state NMR (ssNMR) spectroscopy, Transmission electron microscopy (TEM) and powder X-ray 

diffraction (pXRD). To understand the mode of interaction between the adsorbent and the 

adsorbate, Roxarsone (ROX) was used to study the molecular aspects of the adsorption process. 

The comparison between goethite-cellulose composites and hematite-cellulose composites was 

made by examining the surface area and available active adsorption sites on the iron oxide and 

cellulose materials surfaces. The nitrogen adsorption/desorption experiments showed hematite 

NPs have a relatively high surface area while TEM showed better dispersion of 10 nm hematite 

NPs onto the surface of cellulose at low iron coating. The maximum monolayer uptake (Qm) of the 

hematite was 0.155 mmol/g which was two-fold greater than goethite. The Qm value for the 25% 

Fe coated hematite-cellulose was 0.10 mmol/g and was 1.5-fold greater than the Qm value for the 

30% Fe coated goethite-cellulose composite. The kinetic uptake results for the 25% Fe coated 

hematite-cellulose was 0.186 min-1, and exceeded the uptake rate for the 35% Fe coated goethite-

cellulose. The better dispersion of hematite NPs resulted in more available active sites on the 

cellulose surface which increased the overall uptake of the roxarsone. 
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Both goethite and hematite NPs provide adsorption sites that can bind with arsenic 

containing species. It is a cost effective and efficient way to disperse iron NPs onto a cellulose 

surface because such supported NPs are involved in the adsorption of arsenic species. On the other 

hand, the composite materials have an advantage over the pure mineral phase since composites 

can reduce NP leaching whilst enhancing the uptake of arsenic species at a lower levels of iron 

oxide doping.  
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CHAPTER 1 : INTRODUCTION 

 

 Arsenic species possess variable toxicity, especially in cases where long-term exposure to 

arsenic from drinking water and food can cause cancer [1]. Various wastewater treatment 

technologies have been tested for arsenic removal: (i) oxidation/precipitation processes offer 

simple and rapid removal at low cost but have limited removal efficiency; (ii) coagulation and 

flocculation are relatively facile and efficient processes but often result in sludge by-products with 

arsenic; (iii) membrane-based techniques are relatively high cost such as nano filtration and reverse 

osmosis (RO)with good removal efficiency but are prone to membrane fouling. RO produces large 

quantities of wastewater [2], where ca. 3 to 4 volumes of wastewater are produced relative to 

permeate water for desalination processes [3]. By contrast, adsorption technology is a very cost 

effective method and is relatively simple to implement. This Master of Science thesis describes 

research on the preparation cellulose supported iron oxide (goethite and hematite) composite 

adsorbent materials and the use of such materials for the adsorption of arsenic species from arsenic 

(V) species in water. Roxarsone was used as a model organic arsenic compound to evaluate the 

adsorption efficiency of the binary composite materials. Two objectives for this research are as 

follows: 1) to develop improved iron oxide-cellulose composite materials with enhanced 

adsorption properties toward arsenic species; 2) to develop a greater understanding of the 

“structure-function relationship”, in terms of the adsorption properties for such systems.  

 

1.1 Roxarsone (ROX) 

 

1.1.1 Sources of arsenic pollution 

  

Prior to 2012, many livestock producers used roxarsone (ROX; 4-hydroxy-3-

nitrobenzenearsonic acid) as a feed additive for poultry production to control coccidia intestinal 

parasites. The safety of organoarsenicals such as ROX was raised after minor levels of chemical 

change were reported after consumption by poultry, the inorganic arsenic species were found 
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accumulated in soils [4]. However, roxarsone residues in poultry litter and waste may undergo 

chemical decomposition, especially when applied as a fertilizer and conditioner to soil matter. [5] 

The decomposition by-products of ROX include various organic and inorganic forms of arsenic. 

The inadvertent dispersal via crop and animal production may pose risks to ecosystems and human 

health, according to Brown et al. [6], where such organo-arsenicals may undergo microbial 

degradation. ROX undergoes rapid biotransformation to As (V) in the soil horizon with weak 

adsorption to soil that undergoes further degradation to inorganic arsenic species arsenite (H3AsO3) 

and arsenate (H3AsO4). Since arsenite and arsenate have relatively high mobility in aquatic 

systems and soil, an understanding of the environmental fate and transport of ROX in soil and 

aquatic environments is incomplete at present. Finally, arsenic species can occur either naturally 

or by anthropogenic sources in the environment. Roxarsone is one example of an arsenic pollutant 

from anthropogenic point source. Natural causes of arsenic breakdown in surface water are due to 

soil erosion, mineral leaching, volcanic deposits, and weathering [7]. Human activities such as 

smelting operations, fossil-fuel combustion, and gold or uranium mining are also major point 

sources of arsenic pollution [8].  

 

1.1.2 Physical and chemical properties of the roxarsone and inorganic arsenic species 

 

Elemental arsenic with atomic number 33 is a metalloid in group 5A of the periodic table. 

Elemental arsenic has 5 electrons in its valence electron shell and has 8 different oxidation states 

(5, 4, 3, 2, 1, -1, -2, -3) [9]. The redox potential and pH conditions affect the distribution of arsenic 

species in natural water, where the dominant inorganic forms of arsenic are the oxyanion forms of 

arsenite (As3+) and arsenate (As5+), according to Table 1.1 [9]. Arsenic contamination of surface 

water normally occurs at pH values between 6 to 8 that concur with the pKa around 8 which 

correspond to the mono- and di-anion species of arsenate and non-ionized arsenite. This results in 

a reduced removal of arsenite species when compared against the removal of arsenate species at 

pH above 8.Table 1.1 shows the chemical forms of arsenic species at different pKa.  
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Table 1.1 Acid–base equilibrium constants for arsenic acid (H3AsO4) and arsenous acid 

(H3AsO3) in aqueous solution.  

Arsenic 

Species 

Chemical 

Equilibria 

Chemical Equilibria Chemical Equilibria 

As (V)  H3AsO4  

H2AsO4
- + H+ 

   pKa = 2.22  

H2AsO4
-  HAsO4

2- + H+ 

   pKa = 6.98 

HAsO4
2-  

AsO4
3- + H+ 

   pKa = 11.53 

As (III) H3AsO3  

H2AsO3
- + H+ 

   pKa = 9.22  

H2AsO3
-  HAsO3

2- + H+ 

   pKa = 12.1 

HAsO3
2-  

AsO3
3- + H+ 

   pKa = 12.7 

 

Various chemical methods that involve oxidation of arsenite As (III) to arsenate As (V) and then 

removal of the charged arsenic species can occur by adsorption because most arsenate species bare 

negative charge at pH 8. Hence, oxidizing arsenite As (III) to arsenate As (V) is one facile approach 

for the remediation of arsenic contaminated water. 

Figure 1.1 illustrates the molecular structure of Roxarsone (4-hydroxy-3-

nitrobenzenearsonic acid). The effects of variable charge states of ROX due to ionization equilibria 

are shown in Scheme 1.1 where roxarsone carries no charge when pH<3 and negative charges 

when pH increases above the respective pKa values. 

 

Figure 1.1 Molecular structure of roxarsone 
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Scheme 1.1 Speciation of roxarsone at variable pH in water 

 

1.1.3 Toxicity of arsenic species in the environment 

 

Arsenic contamination of soils and aquatic environments is a concern due to its toxicity as 

evidenced by the Toroku arsenic disease [8]. High levels of arsenic are found  in nature and 

anthropogenic sources in many countries, including Bangladesh, New Zealand, USA, Italy, and 

Malaysia [10]. The World Health Organization (WHO) established international health standards 

for arsenic in drinking water at a maximum value of 10 ppb to minimize the risks of arsenic 

exposure. In Canada, the metal mining effluent regulations (MMER) require that Canadian mining 

industries adhere to the release limits on arsenic, radium-226, and total suspended solids [11]. 

Uranium mill tailings from the Key Lake mill mining site in northern Saskatchewan contains 

elevated levels of arsenic and nickel species [12]. In 2006, a national news release reported the 

arsenic levels from the untreated water on the Saskatchewan Gordon First Nation reserve in 

Canada were nearly four times above the acceptable limit [13]. 
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1.1.4 Remediation of roxarsone 

 

To address potential health concerns regarding arsenic waterborne contaminants, various 

wastewater treatment technologies have been tested: (i) oxidation/precipitation processes offer 

simple and rapid removal with low cost, but have limited arsenic removal efficiency; (ii) 

coagulation and flocculation are relatively facile and efficient processes, but often result in arsenic 

containing sludge by-products; (iii) membrane-based techniques are relatively high cost that 

include the nanofiltration and reverse osmosis (RO) while offering good removal with limited 

efficiency due to membrane fouling. The RO method produces large quantities of wastewater [2] 

and in the case of desalination, ca. 3 to 4 volumes of water are produced as wastewater relative to 

permeate water [3]. By contrast, adsorption techniques are well established with good uptake that 

is primarily determined by the various types of adsorbent media (e.g., activated alumina, ion 

exchange resins, and iron coated sand). Iron oxide NPs have received much attention in adsorption 

technology due to the relatively large surface area and active sites that can bind with arsenic species. 

While adsorbent technology is relatively facile with much scope for future development, it is often 

limited by the nature of the adsorbent material. Inorganic adsorbents for arsenic removal include 

metal organic frameworks [14], iron and aluminum oxides [15], while iron oxide composites have 

been reported to display relatively high uptake [16]. An ionic solvent (urea-thiourea-NaOH) at low 

temperature was developed to dissolve cellulose fibers for synthesis of iron oxide-cellulose 

composites [17]. The low temperature synthetic method may pose limitations due to the harsh 

basicity of the solvent and its effect on the molecular structure of cellulose. Iron oxide-cellulose 

composites using other methods are known where variable uptake of As species (arsenite; 32.1 

mg/g and arsenate; 183 mg/g) were recently reported [18]. Iron (hydr)oxide-modified multi-wall 

carbon nanotubes (MWCNTs) showed a maximum adsorption capacity (Qm = 5.98 mg/g) for 

roxarsone [19]. Similar results were obtained by using MWCNTs to yield a maximum adsorption 

capacity (Qm = 9.36 mg/g) for roxarsone [20].  Iron oxide-based composites containing granular 

activated carbon (GAC) were reported to display dual adsorption properties due to the removal of 

organoarsenicals and inorganic species [21]. The use of iron oxide nanoparticles (NPs) such as 

goethite was tested for the removal of roxarsone due to the comparable uptake observed for organic 

and inorganic species, the reported roxarsone uptake by goethite was 0.673 mmol/g at pH 7 [22]. 

However, such metal oxide NPs are potentially mobile in the environment and pose certain 
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challenges for practical water treatment. The use of supported NPs was reported to dramatically 

reduce the occurrence of leaching [19] whilst retaining favourable adsorption properties. Cellulose 

is a versatile biopolymer support with unique molecular structure due to its numerous polar 

hydroxyl groups which may coordinate with iron oxide-based NPs to form stable composites. Such 

types of binary composite materials may display tunable surface charge according to the respective 

pHpzc value (the pH value that results in a net zero net electrical charge on the surface) of the 

components and their relative composition. The value of pHpzc for cellulose is ca. 4 which  

indicates its point of zero charge is near pH 4 [23] and the value for goethite is ca. 9 [24].  

Herein, this thesis reports on the preparation, characterization, and adsorption properties of 

cellulose composite materials containing goethite/hematite nanoparticles (NPs). A systematic 

adsorption study of the properties of goethite-cellulose and hematite-cellulose composite materials 

with roxarsone at variable conditions (pH, equilibrium, and dynamic conditions) was carried out 

to provide thermodynamic and kinetic adsorption parameters for the uptake process. Roxarsone is 

a suitable model compound that can be used to further understand the fate and transport of 

organoarsenicals in aquatic environments. This thesis reports several contributions to the field of 

cellulose biopolymers and adsorption-based phenomena: (i) the development of a composite 

cellulose material with immobilized goethite and hematite NPs for the adsorption of roxarsone, (ii) 

the development of an improved understanding of uptake properties of roxarsone using goethite-

cellulose and hematite-cellulose composites, and (iii) a first report of a systematic study on 

goethite-cellulose and hematite-cellulose composite materials with roxarsone. A comparison of 

the adsorption properties of goethite-cellulose and hematite-cellulose materials relative to 

cellulose and goethite or hematite NPs provide an understanding of the role of surface modification 

of cellulose along with the relationship of structure and adsorption properties for these types of 

composites. 
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1.2 Iron Chemistry 

 

1.2.1 Introduction 

           

Iron is a group 8, d-block element with silver-white color; it exists in a wide range of 

oxidation states, -2 to +6. Iron is the fourth most abundant element in the earth’s crust. Elemental 

iron can undergo rapid oxidization to iron oxides at ambient conditions in the environment. The 

most common usage of iron includes the fabrication of carbon steel and iron alloys. Carbon steels 

are made from 99.5% of elemental iron and 0.1-0.5% carbon by weight; and stainless steels are 

made from iron alloys with ~ 18% and ~ 8% nickel for corrosion resistance [25].  

 

1.2.2 Iron oxide 

 

Iron oxides occur widely in the environment and are readily synthesized in the laboratory. 

The aerobic weathering of rocks on the earth’s surface is the main source of the Fe3+ oxides. 

Wind/water erosion process will redistribute iron oxides into soil and lakes, rivers, and oceans. 

Human activities such as mining and industrial application of iron oxides also increase the release 

of iron oxides in the global system. Figure 1.2 shows an outline of the occurrence of iron oxides 

in the global environment system [26]. 
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Figure 1.2 Sources of iron oxides in the global environment  

 

The research about iron oxides are truly multidisciplinary, where Figure 1.3 shows the 

application of iron oxides in all different research areas [26].  

 

Figure 1.3 The multidisciplinary nature of iron oxide research  
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There are many types of iron oxides, but the scope of this research will focus on three major 

types: goethite, ferrihydrite, and hematite. Most iron oxides are crystalline besides ferrihydrite 

which is poorly crystalline and certain iron oxides are isomorphous. For example, goethite (α-

FeOOH) is isomorphous and it is found in rocks and throughout various compartments of the 

global ecosystem. It has a diaspore structure which is based on hexagonal close packing of anions 

(hcp). It is one of the most thermodynamically stable forms of iron oxides since it consists of an 

hcp array of anions O2- and OH- stacked along the [010] direction, where Fe3+ ions occupy half of 

the octahedral interstices within a layer. Each Fe ion is surrounded by three O2- and three OH- to 

give FeO3(OH)3 octahedra, and the structure is usually described in terms of these octahedra [26].  

Ferrihydrite is poorly ordered and the degree of ordering is variable. The two extremes of 

such crystal ordering are referred to as 2-line and 6-line ferrihydrites. An exact formula for 

ferrihydrite has not yet been determined because a precise separation of structural OH and H2O 

from adsorbed water results in structural complexity. Towe and Bradley suggested the bulk 

formula Fe5HO8∙4H2O which is certainly to be preferred over Fe(OH)3, because of the bound water 

molecules. Infrared measurements using D2O exchange have suggested that ferrihydrite contains 

OH- and O2- with about half of the protons present such as OH- and the remainder as water (150 

g/kg) [27]. The unit cell parameters given by Chukhrov et. al. [Fe 1.42 O1.26 (OH)1.74] appear 

closer to the real composition of 6-line ferrihydrite [28]. In 1992 Stanjek & Weidler suggested the 

composing factors 0.15 < OH/Fe < 0.86 by performing a water loss test by heating the ferrihydrite 

and assuming that no transformation to hematite occurred [29].  

Hematite is similar to goethite and is extremely stable that is often the end stage of 

transformations to other iron oxides [26]. It has a molecular formula (α-Fe2O3) and its unit cell is 

hexagonal with a = 0.5034 nm and c =1.375 nm [30]. There are six formula units per cell. For 

hexagonal symmetry, the Miller indices are (hkil); i may be replaced by a dot or omitted. The 

structure of hematite can be described as consisting of hcp arrays of oxygen ions stacked along the 

[001] direction, where the planes of anions are parallel to the (001) plane. Two thirds of the sites 

are filled with Fe3+ ions which are arranged regularly with two filled sites being followed by one 

vacant site in the (001) plane thereby forming six-fold rings. The arrangement of cations produces 

pairs of Fe(O)6 octahedra. Each octahedron shares edges with three neighboring octahedra in the 

same plane and one face with an octahedron in an adjacent plane. Face-sharing occurs along the 
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c-axis. The face-sharing of octahedra is responsible for the distortion of the cation sub-lattice from 

ideal packing; Fe atoms in the octahedra which share faces are repelled along the direction normal 

to the [001], causing the cations to shift closer to the unshared faces. To provide charge balance, 

O2- may be partly replaced by the OH- accompanied by Fe3+ vacancies. General properties of the 

iron oxides such as the goethite, ferrihydrite and hematite are described in Table 1.2. Generally 

speaking the iron oxide NPs with more amorphous crystallinity have larger surface area, the larger 

surface area would favor their adsorption capacity. Briefly looking at the crystallinity of goethite, 

hematite and ferrihydrite, a very general statement about these iron oxide NPs adsorption capacity 

could be predicted as follows: ferrihydrite > hematite > goethite.    

 

Table 1.2 General properties of the goethite, ferrihydrite, and hematite [26] 

 Goethite Ferrihydrite Hematite 

Density (g/cm3) 4.26 3.96 5.26 

Octahedral 

occupancy 

½ <2/3 2/3 

Color Yellow-brown Red-brown Red 

Hardness 5 – 5.5 N/A 6.5 

Standard free energy 

of formation ΔG0
f 

(kJ/mol) 

-488.6 -699 -742.7 

 

 

 

 

1.2.2.1 Iron oxide crystal structure 

 

The crystal structures of iron oxides such as hematite and goethite are determined by 

single crystal X-ray diffraction. Table 1.3 Crystallographic data for iron oxides  [26]. The crystal 

structures of iron oxides are generally represented by close packed geometries of anion layers or 

as linkages of octahedron and tetrahedron units.  
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Table 1.3 Crystallographic data for iron oxides  

Compound Crystallograph-

ic system 

Stacking of 

close packed 

anions 

Unit cell dimensions (nm) Z (anions 

number per 

unit cell) x y z 

Goethite Orthorhombic ABAB [001] 0.9956 0.3021 0.4608 4 

Ferrihydrite Hexagonal ABAB [001] 0.2955 N/A 0.937 4 

Hematite Hexagonal 

(rhombohedral) 

ABAB [001] 0.50356 N/A 1.37489 6 

 

In the close packing of the anion layer, each Fe cation and oxygen anion are considered as 

spheres. The large sized anions usually make up the framework of the crystal lattice and the smaller 

sized cations normally fill the holes and spaces among the frameworks of anions. Geometrically, 

the cubic close-packed (ccp), hexagonal close-packed (hcp) are examples of structures that can 

minimize similar charge interactions from the ion within the lattice. The Fe cation and anions from 

goethite, hematite and Fe (OH)2 crystal structure represent A and B on two different planes, and 

these planes will stack in ABAB order along the Miller index [001] plane to form the hexagonal 

closed-packed structure in Figure 1.4.  

 

Figure 1.4 Crystallographic arrangement of hcp  
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Another way to explain how the hcp structure is formed for the hematite and ferrihydrite 

is to link the octahedron shape units of Fe (O)6 or FeO3(OH)3 and tetrahedron units of Fe(O)4 by 

corners, edges or faces. The crystal structure of iron oxide plays an important role in adsorption of 

arsenic species, where the arrangement of ions (oxygen, iron and OH-) can alternate the porosity 

of iron oxide NPs from microporous to mesoporous. The pore size of iron oxide NPs result in 

different surface area which will affect their adsorption capacity. On the other hand, the 

arrangement of OH- function groups of goethite NPs can also impact the adsorption capacity. For 

instance, more OH- presented on the outside shell of goethite NPs will favor arsenic species uptake.   

 

1.2.2.2 Iron and its oxides’ electronic properties  

 

1.2.2.2.1 Electronic properties – free iron 

 

To understand the physical and chemical behavior of iron, it is pertinent to give some 

fundamental information about relevant properties of electrons and nuclei. Iron is a group 8, d-

block element with atomic number 26 and electron configuration 1s2, 2s2, 2p6, 3s2, 3p6, 3d6, 4s2. 

Electrons are described by four kinds of quantum numbers from the wave function, n (principal 

quantum number), l (angular momentum), ml (magnetic quantum number) and ms (spin projection 

quantum number) that  represent the radial distance from the nucleus (shell), shape (subshell), 

energy shift (orientation of the subshell shape), and spin of the electron, respectively. The principal 

quantum number, n, takes on integer values (1, 2, 3, etc.) with energy increasing by increasing n. 

The shape quantum number, l, adopts values of 0, 1, 2, 3, etc. (or by letters s, p, d, f, etc.), and 

adopts 2l+1 orientations. The magnetic quantum number has values that range from +l to –l. Spin 

projection quantum number, ms, where an electron has only two values -1/2 for “spin down” and 

+1/2 for “spin up”. For example, d electrons will have a quantum number of 2 which will give 2  

2+1 = 5 orientations of the subshell’s shape (d-orbitals dxy, dxz, dyz, dx2-y2, and dz2). The magnetic 

and a number of spectroscopic properties of Fe-containing species are governed by the electrons 

in the 3d orbitals of Fe. The following sections will give a brief introduction to the principles that 

are responsible for the behavior of these electrons. 
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1.2.2.2.2 Iron oxide electronic properties – crystal field theory 

 

The basis of crystal field theory is when Fe is forming ionic compounds, its electrons will 

have a repulsive interaction with other electrons of the surrounding atoms (ligand) [31]. As a ligand 

approaches the Fe species, the electrons from the ligand repel the electrons in the d-orbitals of iron. 

Those d-electrons closer to the ligands will have a higher energy than those farther away, the result 

of the repulsion between the d-orbitals and electrons from ligands causes splitting in energy. 

Common iron oxide complexes are octahedral where six ligands form an octahedron around the 

Fe ion, and tetrahedral complexes where four ligands form a tetrahedron around the metal ion.  

Figure 1.5 shows energy levels of the d-orbitals in commonly occurring iron complexes.  

 

 

Figure 1.5 d-orbital splitting in common iron complexes 

 

The above d-orbital splitting is caused by ligands and “low spin” and “high spin” of ligand 

field theory are based on the experimental results of adsorption spectra of a cobalt complex 

reported in 1938 [32]. Some ligands like Br- and I- will result in low spin and CN- could result in 

high spin. Figure 1.6 indicates the spectrochemical series of ligands. 
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Figure 1.6 Ligand field spectrochemical series 

 

The ways of d-electron filling into the octahedral d-orbitals in the high-spin (HS) state and the 

low-spin (LS) state are shown in Figure 1.7. 

 

Figure 1.7 d-orbital filling patterns for a d4 electron configuration 

 

Figure 1.9 above illustrates how Fe d-orbitals will split and electrons will fill in these d-

orbitals when interacting with different ligands. The following paragraph will introduce molecular 

orbital theory to describe electron interaction between atoms under the influence of the nuclei in 

the whole molecule. 
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1.2.2.2.3 Electronic properties – molecular orbital theory 

 

The molecular orbital (MO) theory describes the distribution of electrons in molecules and 

incorporates the wave character of electrons in developing MO diagrams. With basic information 

on electronic properties of free iron and crystal field theory described above, MO diagrams of 

complexes can be constructed to predict the physical and chemical properties of a molecule such 

as shape, bond energy, bond length and bond angle.  

 

Figure 1.8 MO diagram for the octahedral complex of [Fe(H2O)6]
3+ 

 

Iron oxides such as goethite, hematite, and ferrihydrite prepared from Fe3+ ions normally 

form the octahedral complex (Figure 1.8) with water molecules.  
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1.3 Cellulose 

 

Cellulose is the most abundant natural biopolymer. Each cellulose molecule is an unbranched 

polymer containing from 1,000 to 1 million D-glucose units. It is formed by β-1, 4 linkages between 

D-glucose monomer units [33]. Figure 1.9 shows the structure of cellulose formed from β-1, 4 

linked D-glucose units, with hydrogen bonding between parallel chains. The various kinds of inter- 

and intra-molecular hydrogen bonds that are formed by hydroxyl groups at the C2-, C3-, and C6- 

positions of cellulose. Cellulose is permeable, meaning that it allows water and other substances 

to pass through it freely. Unlike starch and glycogen, cellulose cannot be hydrolyzed easily, 

because of the formation of inter- and intra- molecular hydrogen bonds in the cellulose fibril 

structure [34].   

 

Figure 1.9 Molecular structure of cellulose formed from β-1, 4 linked D-glucose units, with 

hydrogen bonding between parallel chains  

 

Cellulose is a colorless, odorless, and a nontoxic solid polymer. Because of its great 

mechanical strength, biocompatibility, relative thermostability, and high sorption capacity, 

cellulose materials has been investigated and researched for various applications. Table 1.4 lists 

some selected examples of cellulose-based materials and their technological applications.  
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Table 1.4 Technological application of different forms of cellulose 

Material forms  Applications References 

Film/membrane Separation, water treatment, 

adsorption, biomembrane, 

package, etc. 

[35], [36], [37] 

Nanocomposite Adhesion, drug delivery, 

membrane, etc. 

[38], [39], [40] 

Polymer Biomaterial, water treatment, 

thickener, stabilizer, etc. 

[41], [42] 

Fiber Reinforcement material, etc. [43] 

 

1.3.1 Iron oxide-cellulose composite materials as adsorbents for water treatment 

 

Cellulose is an environmentally friendly biomaterial with many applications. Due to the 

presence of available hydroxyl groups, cellulose is considered to be an excellent material for 

surface modification [44]. At the same time, a combination between bioadsorbents and iron oxide 

NPs can pose an efficient biocomposite material which could possibly show high adsorption 

capacity and easy recovery from treated effluents by magnetic separation. Meanwhile, pure iron 

oxide NPs tend to undergo aggregation because of interparticle electrostatic forces that reduce the 

intrinsic magnetic properties, resulting in a weak magnetic response and a decreased surface area 

[45]. To avoid aggregation, natural polymers such as cellulose have attracted much attention due 

to their environmentally friendly character. The use of composite materials comprised of 

functionalized cellulose as a support for iron oxide NPs can overcome the aggregation issues of 

iron oxide NPs. In turn, this will contribute to improved adsorption capacity of toxic contaminants 

[46]. Here, cellulose is used as supporting material for goethite NPs to make goethite-cellulose 

composite materials. Iron oxide NPs can be used as adsorbent materials for charged particles such 

as arsenate and arsenite species. Among the various types of iron oxides, goethite has abundant 

hydroxide groups which can be used as binding sites for metal ions. Similar types of cellulose and 

iron oxide composite materials were developed by Yu and her coworkers [17].  The latter study 

outlined the feasibility of developing iron oxide-cellulose composite materials for arsenic removal. 
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Duro and others investigated and compared arsenic adsorption onto natural goethite, hematite and 

magnetite NPs [47]. Herein, goethite showed potential adsorption ability towards arsenic which 

indicate that the hydroxide groups available for binding arsenic are important in the sorption 

properties. In this study, the goethite NPs were synthesized by precipitation of FeCl3 in NaOH and 

then impregnated onto cellulose fiber powders to produce goethite-cellulose (GC) composites.  

      

1.4 Physical Adsorption  

  

1.4.1 Introduction 

 

Adsorption and absorption are two processes that contribute to the overall sorption process. 

Absorption is the partitioning of adsorbates into the interior of the adsorbent where the sorbate 

may change the physical properties of the adsorbent; where the adsorption is the attraction of the 

adsorbates from the bulk phase onto the external surface of an adsorbent, and this process is 

normally reversible.  

Adsorption in solution experimental results that adsorption is a spontaneous process. The 

spontaneous process indicates an overall lowering of the Gibbs energy of a system (Gibbs energy, 

∆G). In other words, generally speaking the adsorption process is spontaneous because it gives off 

energy in the form of heat (∆H < 0) and indicates an exothermic process. According to the second 

law of thermodynamics, a spontaneous process indicates (S > 0) a more disordered system after 

adsorption process. However the change in entropy of adsorption (∆S) for the system can be 

negative or positive (decrease or increase) with the level of adsorption depending on the role of 

solvent.     
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Figure 1.10  Comparison of absorption and adsorption processes 

 

In general, sorption can be classified as chemisorption and physisorption. Chemisorption 

involves a chemical bond formation between the adsorbent surface and the adsorbate, the enthalpy 

of desorption for a typical chemisorption process is approximately 100 kJ/mol or greater. 

Chemisorption involves a strong intermolecular force that results in an irreversible sorption 

process [48]. Physisorption processes often at the surface by multiple intermolecular forces such 

as van der Waals, hydrogen bonding, and dipole-dipole interactions. In physisorption process, the 

enthalpy of desorption ranges up to 80 kJ/mol and results in a reversible sorption process [48].  

 

1.4.2 Solution vs. Gas based adsorption 

 

Gas based adsorption involves non-covalent attachment of gas molecules with an adsorbent 

[48]. A solution based adsorption process is the displacement of solvent molecules on the 

adsorbent surface by an adsorbate species from solution [49]. Figure 1.11 illustrates these two 

adsorption processes. 
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Figure 1.11 Gas phase and solution phase adsorption 

 

 

1.4.3 Types of isotherms 

 

According to the International Union of Pure and Applied Chemistry (IUPAC), there are 

six general types of adsorption isotherms which are shown in Figure 1.12 [50]. The shapes of 

adsorption isotherms are greatly affected by the pore size (pore diameter) and surface area of the 

adsorbent. Adsorbents with different pore diameters are classified as Macropores (>50 nm), 

Mesopores (2-50 nm), and Micropore (<2 nm).  
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Figure 1.12 Various types of sorption isotherms for gas adsorption [24] 

 

Type I 

This adsorption isotherm has a plateau which indicates a specific sorption capacity of the 

sorbents. Adsorbents with microporous pores like granular activated carbon (GAC) and zeolite 

have a very small cross-sectional area which cannot allow more than one adsorbate species to fit 

within a pore.  

Type II 

Two possible adsorption processes can be described by this adsorption isotherm, one is a 

non-porous material where the sorption sites are on the external surface. The other case is 

adsorbents with large macropores where the surface area of the pore is so large that multilayer 

adsorption can occur without restrictions. The point B is an indication that the monolayer coverage 

is complete.   
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Type III  

Strong adsorbate and adsorbate interaction can exceed the interaction between the 

adsorbate and adsorbent which will result in this type adsorption isotherm. 

Type IV 

This type of adsorption isotherm exhibits a hysteresis loop, where this is typical for 

mesoporous adsorbents. At low pressure, an adsorbent monolayer is formed on the adsorbent pore 

surface firstly. The subsequent multilayer formation of adsorbents will be formed as the adsorbate 

pressure increases. 

Type V 

Type V adsorption isotherm contains hysteresis loops which indicate the agglomerated 

particles desorb at once as a collective group. It also reveals finite sorption sites which cause a 

plateau to be seen because of the weak interactions between adsorbate fluid and the adsorbent 

surface sites. 

Type VI 

This type of curve shows a multilayer adsorption process and a stepwise adsorption from 

the external surface to internal surface and pores. Adsorbates fill the adsorption sites following the 

energy requirement for each type adsorption site. 
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1.4.3.1 Hysteresis in solid-gas adsorption/desorption curves 

 

 

Figure 1.13 General types of hysteresis loops observed for nitrogen adsorption and desorption as 

defined by IUPAC [52] 

 

Four types of hysteresis are shown in Figure 1.13. These different profiles of adsorption 

curves relate to different pore shapes of adsorbents [50]. When the relative pressure of nitrogen 

gas increases to unity, condensation occurs inside the pores. The adsorption isotherm obtained can 

reveal the shape of the pore before condensation. 

Type H1 

Gas molecules such as N2 can adsorb into the sides of the pores to form a monolayer firstly 

that continue to form a multilayer until the pore is filled. Adsorbents with cylindrical pores can 

result in this kind isotherm [50].  
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Type H2 

The H2 adsorption isotherm shows the adsorption process as very similar to H1, but there 

is a region inside the pore that is difficult to fill [50]. The desorption isotherm profile is usually 

understood as a sign of interconnection of the pores. For instance, a pore connected to the external 

vapor phase via a smaller pore, in many cases the smaller pore acts as a neck which is often referred 

as an “ink-bottle” pore.  

Type H3 

The broad type H3 adsorption isotherm shows the monolayer coverage, the interaction 

between adsorbates on the first layer and the nth layer is relatively weak. The presence of thin slit-

like capillary pores can result in this type of desorption curve [50]. 

 

Type H4 

The adsorption isotherm provides an indication of microporosity of the adsorbent and 

strong adsorbent-adsorbate interactions [50]. The desorption profile also indicates the presence of 

slit-shaped pores within the adsorbent phase. 

 

1.4.4 Models of sorption isotherms  

 

1.4.4.1 Langmuir isotherm model 

 

The Langmuir model assumes monolayer adsorption with a finite number of binding sites 

that are homogeneously distributed over the adsorbent surface, where no interaction occurs 

between adsorbed species, [51] described by Equation 1.1: 

𝑄𝑒 =
𝑄𝑚𝐾𝐿𝐶𝑒

(1+𝐾𝐿𝐶𝑒)
  (1.1) 

Qm is the maximum amount of the adsorbate bound onto the monolayer of the adsorbent, Qe is the 

amount of the adsorbate bound at equilibrium, Ce is the unbound adsorbate concentration in 

solution at equilibrium, and KL is the Langmuir adsorption constant.  
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Figure 1.14 Langmuir model of physical adsorption of a gas onto a solid adsorbent. 

 

1.4.4.2 Freundlich isotherm model 

 

The Freundlich model resembles the Langmuir model, except it assumes that the sorbent 

has a heterogeneous surface with nonequivalent binding sites with variable binding affinity [52], 

as described by Equation 1.2: 

𝑄𝑒 = 𝐾𝑓𝐶𝑒

1

𝑛                      (1.2) 

 

Qe is the amount of the adsorbate bound onto the adsorbent at equilibrium, while Kf and n are the 

Freundlich adsorption constants for a given adsorbent-adsorbate system at specific conditions.  

 

  

Figure 1.15 Freundlich isotherm model of physical adsorption of gas where surface 

heterogeneity sites are part of the adsorbent surface. 
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1.4.4.3 The BET (Brunauer-Emmett-Teller) adsorption isotherm 

 

The BET model is a theoretical equation and an extended form of the Langmuir isotherm 

by accounting for multilayer surface coverage [53]. Several assumptions are made in this model: 

1) the adsorbent surface is assumed to be uniform and homogeneous, so that the Langmuir theory 

can be applied to each layer; 2) there are no lateral molecular interactions between each adsorption 

layer; and 3) infinite multiple layers adsorption of gas molecules on a solid is achievable. The resulting 

BET equation is expressed in Equation 1.3: 

1

𝑣 [(
𝑃𝑜
𝑃

)−1]
=

𝑐−1

𝑣𝑚𝑐
 (

𝑃

𝑃𝑜
) + 

1

𝑣𝑚𝑐
               (1.3) 

 

P and Po are the equilibrium and the saturation pressure of adsorbates at the temperature of 

adsorption, v is the volume of adsorbed gas, and vm is the volume of monolayer adsorbed gas. c is 

the BET constant, which is expressed by Equation 1.4: 

𝑐 = exp (
𝐸1−𝐸𝐿

𝑅𝑇
)  (1.4) 

 

E1 is the heat of adsorption for the first layer, and EL is the heat of liquefaction of the layers on top 

of the first layer. From Equation 1.3, a graph with the y-axis for the 1 / v[(Po / P) − 1] and x-axis 

for the relative pressure P / Po can be plotted according to the experimental results. This type of 

isotherm is called a BET plot.  

𝑣𝑚 =
1

𝑆+𝐼
  (1.5) 

 

S is the value of the slope and I is the value of y – intercept  

𝑐 = 1 +  
𝑆

𝐼
  (1.6) 
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According to experimental observation, the linear relationship of Equation 1.3 is maintained only 

in the range of 0.05 < P / Po < 0.35 [53]. The values of the volume of monolayer adsorbed gas 𝑣𝑚 

and the BET constant c are calculated from Equation 1.5 and Equation 1.6. The total surface area 

Stotal and the specific surface area SBET are calculated by Equation 1.7 and Equation 1.8.  

𝑆𝑡𝑜𝑡𝑎𝑙
(𝑣𝑚𝑁𝑠)

𝑉
  (1.7) 

               𝑆𝐵𝐸𝑇
𝑆𝑡𝑜𝑡𝑎𝑙

𝑚
                  (1.8) 

 

Where N is Avogadro’s number, V is the molar volume of the adsorbate gas, and m is the mass of 

the solid sample or adsorbent, and 𝑣𝑚  is in units of volume which are also the units of the 

monolayer volume of the adsorbate gas, s is the adsorption cross-section of the adsorbed species. 

The disadvantages of this adsorption model are as follows: 1) surface is assumed to be homogenous 

which is not always true; 2) molecular interactions between each layer of adsorbed molecules are 

neglected; 3) it is not always valid to assume that the heat of adsorption from the second layer will 

be equal to subsequent layers.  

 

1.4.5 Models of sorption kinetics 

 

     1.4.5.1 PFO (Pseudo-first-order) kinetics 

 

The PFO kinetic model originally proposed by Lagergren and Svenska [54] has been 

widely used to describe kinetic adsorption processes. The PFO model assumes a large number of 

available adsorption sites, as described by Equation 1.9. 

𝑞𝑡 = 𝑞𝑒(1 − 𝑒−𝑘1𝑡)         (1.9)    

 

qe and qt are the amounts of adsorbate adsorbed (mg/g) at steady state and variable time (t; min) 

by the adsorbent.  

 

https://en.wikipedia.org/wiki/Molar_volume
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     1.4.5.2 PSO (Pseudo-second-order) kinetics 

 

The experimental uptake (qe) the amounts of roxarsone adsorbed (mg/g) at steady state can 

be calculated from the PSO model, according to Equation 1.10.                                             

𝑞𝑡 =
𝑘2𝑞𝑒

2t

(1+𝑘2𝑞𝑒𝑡)
  (1.10) 

 

The PSO rate constant (k2) is determined from a non-linear fit while qt are the amounts of roxarsone 

adsorbed (mg/g) at variable time (t; min) by the adsorbent.  

 

1.5 Application of Physical Adsorption: Goethite, Ferrihydrite, and Hematite 

 

Iron oxides represent mineral phases that consist of iron and oxygen. There are sixteen 

known iron oxides and hydrous ferric oxides (HFO) [26]. Hydrous ferric oxide is a class of 

minerals that contain iron (Fe), hydroxyl groups (-OH), and weakly bound water. They are 

normally poorly crystalline, highly porous and have large surface areas. Goethite and ferrihydrite 

are both considered as hydrous ferric oxide with chemical formulae; FeOOH and Fe2O3•0.5H2O.  

Accordingly, HFO is a 2-line ferrihydrite that has been reported as a classic sorbent for diverse 

adsorption studies. Dzombak and Morel (1990) reported on the use of ferrihydrite as an adsorbent; 

however, ferrihydrite is unstable and transforms into hematite [55]. Hence, goethite and hematite 

have attracted much attention by their utility as adsorbents and their abundance in nature. Goethite 

has been used as a model adsorbent because of its well-defined crystal structure since it can be 

synthesized readily in the laboratory.  

Goethite, ferrihydrite, and hematite have been widely used to adsorb simple inorganic 

anions, oxyanions and organic ions. Table 1.5 lists the technological applications that use goethite, 

ferrihydrite and hematite materials for anion species removal:  
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Table 1.5 Adsorption application of goethite, ferrihydrite and hematite materials towards anion 

species 

Oxide Anion Reference 

Goethite Arsenate/Arsenite 

(Inorganic) 

[56], [57], [58] 

Borate (Inorganic) [59], [60] 

Carbonate (Inorganic) [61] 

Chloride (Inorganic) [62] 

Fluoride (Inorganic) [62], [63] 

Iodate (Inorganic) [64] 

Molybdate (Inorganic) [59] 

Phosphate (Inorganic) [65], [66], [67] 

Selenate/Selenite 

(Inorganic) 

[68], [69] 

Silicate (Inorganic) [70] 

Sulphate (Inorganic) [71], [72] 

Carboxylic acids (Organic) [73] 

Citrate (Organic) [67], [74], [75] 

EDTA (Organic) [76] 

Humic acids (Organic) [77], [78] 

Lactate (Organic) [74], [75] 

Phenols (Organic) [79] 

2,4 – D (Organic) [80], [81] 

Ferrihydrite Arsenite/Arsenate 

(Inorganic) 

[82], [83] 

Carbonate (Inorganic) [84] 

Fluoride (Inorganic) [85] 

Phosphate (Inorganic) [86], [87] 

  

Silicate (Inorganic) [88], [89] 
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Sulphate (Inorganic) [90] 

Chromate (Inorganic) [91] 

Phenols (Organic) [79, 80] 

Quinmerac (Organic) [29] 

2,4-D (Organic) [80] 

Hematite Sulphate (Inorganic) [92] 

 Arsenate (Inorganic) [93] 

 Methylene blue (Organic) [94] 

 Congo red (Organic) [95] 

Using goethite, ferrihydrite, hematite to adsorb cations involves interaction with 

deprotonated surface hydroxyl groups to form mono- and bi-nuclear, inner-sphere complexes. 

Cation adsorption is initially fast onto hydrous ferric oxide, but adsorption of trace metals can 

continue for days before attaining equilibrium. Since the cation adsorption is not a focus of this 

research work, the Table 1.6 briefly lists the cation adsorption studies onto iron oxide materials. 

Table 1.6 The cation adsorption studies of iron oxides. 

Oxide  Cation Reference 

Goethite Al3+ [78], [96] 

Cu2+ [97] , [98] 

Co2+ [98], [99] 

Hg2+ [100], [101] 

Mg2+ [102] 

U6+ [103] 

Ferrihydrite Ca2+ [104] 

Co2+ [105] 

U6+ [106] 

Zn2+ [107], [108] 

Hematite Pb2+, Ni2+ [109], [92] 

 Cd2+ [110], [92] 

 As2+, 3+, 5+ [111], [92] 
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1.6 Application of Physical Adsorption: Cellulose and Cellulose Based Materials   

 

Because of the interparticle dipole forces, iron oxide NPs tend to aggregate into large 

particles [112] which lead to the loss of size effect and the decrease of specific surface area. In 

order to avoid the agglomeration, many materials such as carbon nanotubes [113], reduced 

graphene oxide [114], silica microspheres [115], and bacterial cellulose [116] have been used as 

template to disperse magnetic NPs. Because cellulose is one of the most abundant and renewable 

biopolymers on earth, cellulose has been considered a good candidate for the immobilization of 

these NPs [21]. Therefore, composites of cellulose and iron nanomaterials are very promising in 

many applications.  

Researchers have modified cellulose fibers chemically to remove cation organic dyes in 

wastewater [23]. Hokkanen’s group used magnetic NP activated microfibrillated cellulose to 

remove inorganic arsenic (V) species [18]. Yu and Tong’s group also discovered a simplified 

method for producing the magnetic iron oxide coated cellulose in “a one-step process” to remove 

inorganic arsenic species [17]. In this research, iron oxide coated cellulose was used for removal 

of anionic organoarsenical species such as ROX. 

 

1.7 Purpose of the Research 

 

Arsenic species are very toxic. Long-term exposure to arsenic from drinking water and 

food can be cancerous [10]. Hence, effort should be made to keep arsenic levels in drinking water 

as low as possible. Although there are various arsenic removal technologies available, the 

adsorption method is often preferred due to its cost effectiveness and simple operational 

requirements  [117]. This thesis presents the progress made in the research on the preparation of 

cellulose supported iron oxides NPs (goethite and hematite) composite adsorbent materials and the 

use of such materials for the adsorption of arsenic species in aqueous solution at variable 

conditions.  
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1.8 Objectives 

 

The overall objective for this research is to develop an environmental friendly iron oxide coated 

cellulose composites to remove organoarsenical species in an aqueous environment. 

1) to prepare and characterize iron oxides onto cellulose supports and mineral phases in the 

absence of supports;  

2) to evaluate the adsorption properties of iron oxides and their supported forms with selected 

adsorbates (PNP, Roxarsone, and nitrogen gas); 

3) to develop improved iron oxide–cellulose composite materials with enhanced adsorption 

properties; 

4) to study the structure-function properties of goethite-cellulose and hematite-cellulose 

composite materials’ that relate to the adsorption process.  
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CHAPTER 2 : MATERIALS AND METHODS  

 

2.1 Introduction 

 

In this section, instruments used in the study and this report will be described. Materials 

and the synthesis protocol for both of the goethite/hematite and their cellulose composite are also 

provided in this chapter. 

 

2.2 Materials 

 

Ferric chloride hexahydrate (FeCl3• 6H2O), sodium hydroxide (NaOH), Ferric nitrate 

nanohydrate (Fe(NO3)3•9H2O), potassium hydroxide (KOH), p-nitrophenol and cellulose 

(medium fiber derived from cotton linters) were obtained from Sigma-Aldrich Canada Ltd. 

(Oakville, ON). Roxarsone used was from Haohua Industry Co. Ltd. (Jinan, China). Roxarsone 

was purified via recrystallization by dissolving 5 g of roxarsone in 125 mL of millipore water at 

65 °C with stirring, this solution was then hot filtered through Whatman No.2 filter paper at the 

ambient condition. The filtrate solution was allowed to cool slowly before being placed in a 

refrigerator for 24 h. The recrystallized product was light yellow-orange in color and was 

recrystallized further until a homogeneous light yellow product remained. The final pure light 

yellow color roxarsone product was isolated through filtration and dried at 50 °C in a vacuum oven.   

     

2.3 Synthesis 

 

2.3.1 Preparation of the goethite and goethite-cellulose composite materials 

 

The synthesis of the goethite was modified from a previous report [21]. The slow addition 

of 20 mL of 0.4 M (FeCl3• 6H2O) was made into a basic solution of Millipore water (170 mL) 

containing 10 mL of 4.0 M NaOH. A dark red-orange colored precipitate formed immediately and 
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the slurry was further stirred for 24 h until a green-yellow goethite precipitate was formed. The 

product was filtered through Whatman No. 42 filter paper and washed with Millipore water. The 

product was repeatedly washed with water until the conductivity of the filtrate was ca. 30 µS/cm 

and finally dried in an oven at 70 °C for two days with a final yield of 98%, in agreement with 

another reported study [118].  

The synthesis of goethite-cellulose composites was carried out in a 250 mL plastic beaker 

using commercial bulk cellulose (2 g, 5 g or 10 g) with 6 g NaOH with mixing in 100 mL of 

Millipore water and heating to 70 ̊C, followed by the slow addition of a hot 70 ̊C solution of 8.11 

g FeCl3• 6H2O in water (100 mL). Fe3+/OH- was fixed at the 1:5 mole ratio. The slurry was mixed 

at ambient conditions and aerated for 1 h until a brown-yellow color solution appeared. The slurry 

was oven dried at 70 ̊C for ca. 12 h. The dried materials were washed with excess Millipore water 

and the filtrate was passed through Whatman no. 42 filter papers until the conductivity of the 

filtrate was ca. 30 µS/cm. The final product was oven-dried at 70 °C for two days. These products 

were referred to as 30% Fe coated GC (2 g), 20% Fe coated GC (5 g), and 10% Fe coated GC (10 

g) according to their variable iron loadings in parentheses. Scheme 2.1 illustrates a proposed 

synthetic pathway for the formation of goethite-cellulose composite materials.  

 

 

 

Scheme 2.1 Synthetic scheme for the formation of goethite-cellulose composite materials 
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2.3.2 Preparation of the hematite and hematite-cellulose composite materials 

 

The synthesis of the hematite NPs was prepared by dissolving 40 g Fe(NO3)3•9H2O in 500 

mL DI water and titrate with 1 M KOH solution to pH 7, the reddish precipitate was filtered through 

Whatman No. 42 filter papers and washed with Millipore water. The product was repeatedly 

washed with water until the conductivity of the filtrate was ca. 30 µS/cm. The product was dried 

in an oven at 70 °C for 18 h, the drying process produced hematite by transferring from ferrihydrite 

[119]. 

Three different Fe loaded hematite-cellulose materials were synthesized. To synthesize  

HeCell-3 with 5% Fe loading, first dissolve 5.38 g Fe(NO3)3•9H2O into 20 g Millipore water in a 

100 mL beaker and then heat to 75°C and add 14 g of cellulose into a glass beaker containing ferric 

nitrate solution and mix. In another beaker prepare 1 M KOH solution and heat to 75 °C; titrate 

the KOH solution into the iron (III) nitrate and cellulose mixture until the final pH of the slurry 

was around 7. The precipitates were filtered with No.42 quantitative filter papers, and then dried 

in oven at 90 °C for 8 h; after that these precipitates were washed with excess Millipore water until 

the conductivity of the filtrate was ca. 30 µS/cm. The final products were dried in an oven at 70 °C 

for 18 h. The synthesis of 10% and 25% Fe coated hematite-cellulose are similar to the synthesis 

of 5% Fe coated hematite-cellulose, where the only difference relates to the addition of different 

amount of cellulose fibers. For the 10% and 25% Fe coated hematite-cellulose, 7 g and 2.8 g of 

cellulose fibers are used in the synthesis.  

 

Scheme 2.2 A proposed pathway for the formation of hematite-cellulose composite materials 
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2.3.3 Preparation of ferrihydrite NPs materials 

 

The synthesis of the ferrihydrite NPs was prepared by dissolving 40 g Fe(NO3)3•9H2O in 

500 mL DI water and titrate with 1 M KOH solution to pH 7, the reddish precipitate was filtered 

through Whatman No. 42 filter paper and washed with Millipore water. The product was 

repeatedly washed with water until the conductivity of the filtrate was ca. 30 µS/cm. The product 

was air dried for 72 h [119].  

 

2.4 Instrumental Analysis 

 

2.4.1 TGA 

 

The thermogravimetric analysis (TGA) of materials was carried out using a TA instruments 

(Model Q50) thermal analyzer. Nitrogen gas was used for cooling and purging of the sample 

compartment, where samples were analyzed between 30 °C and 500 °C at a heating rate of 10 °C 

/min. 

 

2.4.2 FT-IR spectroscopy 

 

The Fourier Transform infrared (FTIR) spectra of the powder form samples were obtained 

with a BioRAD FTS-40 spectrophotometer, where samples were diluted with KBr (FTIR grade, 

Alfa Aesar) at 10% (w/w) and scanned (n = 256) from 4000 to 400 cm−1 with an instrument 

resolution of 4 cm−1. 

 

2.4.3 Raman spectroscopy 

 

Raman spectra were acquired with a Renishaw Invia Raman Microscope where the spectral 

shifts were obtained at ambient temperature with an argon ion laser at an excitation wavelength of 
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786 nm. The spectra were recorded over the rang 200 cm-1 to 2000 cm-1 using an operating spectral 

resolution of 1.9286 cm-1 of Raman shift. Instrument parameters used an optimized power (1 mW) 

to prevent sample decomposition, 50× objective lens magnification, and 50 scans with a 10 s 

integration time. Raman spectra of the dry ROX, dry adsorbents before ROX sorption and wet 

adsorbents after ROX sorption were obtained through observations from a gold coated microscope 

glass. 

 

2.4.4 TEM  

 

The transmission electron microscopy (TEM) images of samples were obtained using a 

Hitachi HT-7700 microscope with a 100 kV voltage. Samples were prepared by dispersing samples 

in ethanol solution in a sonication bath, them depositing a drop of sample in ethanol onto a carbon-

coated copper TEM grid without staining. The samples were examined under 50 (500k  

magnification), 100 (250k  magnification), 200 (125k  magnification), and 500 (50k  

magnification) nm scales. 

 

2.4.5 pXRD 

 

Powder X-ray diffraction (pXRD) was used to monitor the product phase variation at 

variable iron oxide compositions using a diffractometer (Model: Empyrean, manufacturer: 

PANalytical, The Netherlands) fitted with Cu K-alpha X-ray irradiation sources. pXRD results 

obtained herein for the iron oxides were compared to the simulated spectra from the X’pert 

Highscore Plus software (Ver. 3.0b (3.0.2), PANalytical, Almelo, The Netherlands). 

 

2.4.6 N2 adsorption–desorption analysis (BET) 

 

The specific surface areas of goethite, hematite, ferrihydrite and different Fe coated 

goethite-cellulose, and different Fe coated hematite-cellulose composites were measured by 
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Micromeritics ASAP 2020 (ver. 3.04). N2 adsorption–desorption analysis (BET) of the specific 

areas’ accuracy was ±5%. Approximately 200 mg samples were measured with a degassing 

temperature at 100 °C prior to analysis. 

 

 

2.4.7 Solid state 13C NMR spectroscopy 

 

13C solid state NMR experiments were performed using a Bruker AVANCE III HD 

spectrometer operating at 125.77 MHz (1H frequency at 500.13MHz), with a 4 mm DOTY CP-

MAS probe. The 13C CP/TOSS (Cross Polarization with Total Suppression of Spinning Sidebands) 

experiments were carried out at a spinning speed of 6 kHz, a 1H 90⁰ pulse of 3.5 µs, and contact 

time of 0.75 ms, with a ramp pulse on the 1H channel. For all the samples, 5120 scans were 

accumulated, with a recycle delay of 2 s. All experiments were recorded using 71 kHz SPINAL-

64 decoupling during acquisition. Chemical shifts are referenced to adamantane at 38.48 ppm (low 

field signal).  

 

2.4.8 Iron coating efficiency 

 

Samples were digested by dissolving approximately 0.1 g in 10 mL of nitric acid (conc.), 

to which was added 30 mL of hydrochloric acid (conc.) in a beaker. A graduated cylinder was used 

to deliver the correct acid volumes. Once the digestion was completed, the mixture was allowed 

cool then added it slowly to a 100 mL volumetric flask containing approximately 30 mL of 

Millipore water. The volumetric flask was diluted to mark with Millipore water and mixed well. 

The recommended linear range of response for atomic spectroscopic measurements of iron was 

2.5 to 10 ppm. A 100 ppm iron standard was diluted to 3, 4, 5, 6, 7, 8, 9 ppm to produce a calibration 

curve. the acid digested solution that contained samples 10 was diluted further to ensure the 

results fall into the calibration curve and then back calculated the iron content in the samples from 
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the dilution factor. Perkin Elmer Atomic Absorption Spectrometry (AAS) iCE 3300 AA with Iron 

Atomax hollow cathode 1.5 lamp was used for this analysis.  

 

 

 

 

 

 

2.5 Sorption Measurements 

 

2.5.1 Roxarsone adsorption isotherms 

 

2.5.1.1 Roxarsone adsorption isotherms of the goethite and goethite-cellulose composites 

 

An isotherm study of roxarsone uptake was conducted in a batch mode with accurately 

known amounts of adsorbent (ca. 35 mg). Each adsorbent was dispensed into 15 mL “Falcon” 

conical plastic centrifuge tubes containing ROX solution (7 mL) at variable pH (4, 5, 6, 7, and 8) 

and initial concentrations (0.05 mM to 1.5 mM). The samples were covered to minimize exposure 

to light while mixing on a shaker table at 250 RPM at 295 K for 24 h. After attaining equilibrium, 

60 µL of the supernatant solution was isolated after centrifuging and subsequent dilution with 2.94 

mL of pH 7 phosphate buffer to enable analysis of absorbance over a linear calibration range in 

triplicate fashion. Two different adsorption models were used to analyze isotherm adsorption data. 

 

2.5.1.2 Roxarsone adsorption isotherms of the hematite and hematite-cellulose composites 

 

An isotherm study of roxarsone uptake was conducted in a batch mode with accurately 

known amounts of adsorbents (ca. 35 mg). Each adsorbent was dispensed into 15 mL “Falcon” 

conical plastic centrifuge tubes containing ROX solution (7 mL) at pH 7 and initial concentration 
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(0.05 mM to 1.50 mM) values. The samples were covered to minimize exposure to light while 

mixing on a shaker table at constant speed (250 RPM) at 295 K for 24 h. After attaining equilibrium, 

0.5 mL of each sample was withdrawn and centrifuged. 60 µL of supernatant solution was isolated 

after centrifuging and subsequent dilution with 2.94 mL of pH 7 phosphate buffer to enable UV-

vis spectrophotometric analysis within a linear calibration range. Triplicate measurements were 

made to obtain average estimates of uptake, according to the calibration curve. Two adsorption 

models (Langmuir and Freundlich) were used to analyze isotherm adsorption data. 

 

2.5.2 Roxarsone adsorption kinetics 

 

2.5.2.1 Roxarsone adsorption kinetics of the goethite & goethite-cellulose composites 

 

Kinetic uptake was carried out by modifying a one-pot experiment [120] where ca. 0.7 g 

of adsorbent was added into 200 mL of roxarsone solution (1.5 mM). The conical sharp Whatman 

no. 42 filter paper (5.5cm diameter) was placed on the of the ROX solution as a barrier to prevent 

sampling the solid adsorbents. Figure 2.1 shows the setup for the adsorption kinetics experiments. 

The adsorption kinetics was studied over a 90 min interval where the roxarsone solution was 

adjusted to pH 3 and mixed before the addition of the adsorbent. 150 µL samples were taken at 

different time intervals and centrifuged. 60 µL of the supernatant solution was isolated after 

centrifuging and subsequently diluted with 2.94 mL of phosphate buffer at pH 7 prior to 

absorbance measurements. The uptake of roxarsone by the various adsorbents was analyzed using 

Equation 1.9 and Equation 1.10 from the chapter 1. The uptake kinetics for the goethite and the 

composite materials were carried out similarly apart from the variable sorbent dosage.  



41 

 

 

Figure 2.1 An illustration of the “filter barrier” setup for kinetic uptake studies  

 

2.5.2.2 Roxarsone adsorption kinetics of the hematite & hematite-cellulose composites 

 

Kinetic uptake was carried out by modifying a one-pot experiment [120] where ca. 0.4 g 

of adsorbent was added into 80 mL of roxarsone solution (1.5 mM). The experimental setup for 

the measurement of adsorption kinetics was similar as illustrated in Figure 2.1. The conical sharp 

Whatman no. 42 filter paper (5.5 cm diameter) was placed in the ROX solution as a barrier to 

prevent sampling the solid adsorbents that are dispersed in the main volume of the vessel. The 

adsorption kinetics was studied over a 90 min interval where the roxarsone solution was adjusted 

to pH 7 and mixed before the addition of the adsorbent. 150 µL samples were taken at different 

time intervals and centrifuged. 60 µL of the supernatant solution was isolated after centrifuging 

and subsequently diluted with 2.94 mL of phosphate buffer at pH 7 prior to absorbance 

measurements. The roxarsone solution uptake by the various adsorbent systems was analyzed 

using Equation 1.9 and Equation 1.10. The measurement of the adsorption kinetics for the hematite 

material and the hematite-cellulose material was carried out similarly, except that variable 

adsorbent dosage was used for hematite vs. composite materials.  
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2.5.3 Adsorption thermodynamic study  

 

The adsorption thermodynamic study of roxarsone was done by studying the uptake 

properties with 10% Fe coated hematite-cellulose composite at different temperatures. Figure 2.1 

showed the setup for the adsorption kinetic experiments, where the temperature water bath was 

used to conduct the experiments at 5, 15 and 25 ̊C. 1.5 mM ROX solution was cooled to required 

temperature, 1 g of the adsorbent was added into this 1.5 mM ROX solution. 150 µL of sample 

was taken at different time intervals to evaluate the ROX concentration during the adsorption 

process.  

 

 

2.5.4 Regeneration study  

 

The regeneration study was carried out using the 10% Fe coated hematite-cellulose and 0.6 

M NaOH caustic solution to wash off the ROX on the adsorbent surface. The volume of the 

regeneration fluid used in each washing cycle was recorded. Figure 2.2 shows the experimental 

setup for the regeneration process. The procedure was as follows: 1 g of used adsorbent was filtered 

out by 45 µm screen and air dried on the screen. For each regeneration cycle 20 mL of 0.6 M 

NaOH solution was poured onto the adsorbent placed on a No. 42 filter paper in a filtration funnel, 

the eluent was collected in a glass bottle. 60 µL sample was withdrawn from the eluent and further 

diluted with 2.94 mL pH 7 phosphate buffer to determine the ROX concentration from the UV-vis 

analysis.  

 



43 

 

 

Figure 2.2 Block diagram of adsorption-desorption-stripping cycle 

 

2.5.5 The hydration effect in the ROX adsorption process 

 

The objective was to compare the Raman spectra difference between ROX adsorption in 

H2O/D2O solvent system and pure H2O system to see the hydration effect in the ROX adsorption 

process. A pure 300 mL of 5% (by volume) D2O/ H2O solvent system without roxarsone was 

prepared as a blank solution. 60 mL of these 5% (by volume) D2O/ H2O solvent were used to make 

three 20 mL 1.5, 0.75, 0.375 mM ROX in 5% (by volume) D2O/ H2O solvent. 0.1 g of hematite 

added into three different vials contained with 20 mL 1.5, 0.75, 0.375 mM Roxarsone in 5% (by 

volume) D2O/ H2O solvent. The tests were done in triplicate. These vials were placed on a shaker 

and shook at 250rpm for 18 h to reach equilibrium. These hematite adsorbents were filtered out 

with 45 um filter paper and carefully dried with Kimwipe tissue for the Raman spectroscopy 

analysis. 

 

2.6 Error Analysis of Sorption Measurement 

 

Error analysis of the adsorption isotherms was done using the standard error of the 

regression (S), using the non-linear data fitting method [121], where “S” represents the average 

distance that the observed values fall from the regression line. The minimization of “S” ensures 
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that the observed values are closer to the fitted line. The best-fit model used herein involved a 

minimization of the sum of the standard error (SSE).  

 

2.7 Iron Leaching Tests  

 

To test if iron could be leached out from the composite materials, 0.1 g of the composite 

materials were soaked in the 100 g DI water and mixed at 300 RPM for 48 h. According to ASTM 

D3987 (method of shake extraction of solid waste with water), 18 h of extraction time is needed 

to leach out iron and 48 hours leaching time is adequate in this experiment. 2 mL samples of 

aqueous solution were taken at 1, 4, 22, 24, and 48 h and filtered by 0.45 µm syringe filters before 

conducting the iron concentration analysis. The experimental setup for the leaching tests are shown 

below.  

 

Figure 2.3 Setup for iron leaching tests 
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CHAPTER 3 : RESULTS AND DISCUSSION: SYNTHESIS AND 

CHARACTERIZATION OF GOETHITE, HEMATITE, GOETHITE-CELLULOSE, 

AND HEMATITE-CELLULOSE  

3.1 TGA Results 

 

3.1.1 TGA for the goethite and goethite-cellulose composites 

 

The thermal stability of the cellulose, goethite, and composite materials were examined 

using TGA, as shown in Figure 3.1 a-c. The goethite’s TGA graph showed a weight loss before 

300 oC and about 90% of goethite weight loss at 500 oC, which confirms results obtained by 

Kosmulski’s group [122]. The thermogram for the cellulose in Figure 3.1 c had a notable weight 

loss between 325 oC-375 oC. By comparison, a significant weight loss occurs between 200 to 400 

oC for the 30% Fe coated GC composite (Figure 3.1 b), while the composite showed a thermal 

event between 150 oC to 350 oC, with reduced thermal stability relative to cellulose. The lower 

thermal stability of composites related to the catalytic decomposition of iron oxide on the organic 

framework [17]. 
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Figure 3.1 TGA results: (a) goethite, (b) 30% Fe coated GC, and (c) cellulose 

 

Figure 3.1 (c) showed a small weight loss occurs between 40-70°C which was attributed 

to the removal of absorbed water in cellulose [123]. The decomposition steps of the cellulose 

involved the cleavage of the glycoside linkages of cellulose and produce CO2, H2O and a variety 

of hydrocarbon derivatives. The main weight loss events of cellulose occur over the range of 250°C 
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to 375°C. In the case of cellulose, the above results are consistent with Poletto’s results for the 

thermal decomposition of the cellulose [124]. 

 

3.1.2 TGA for the hematite and hematite-cellulose composites 

 

The thermal stability of the cellulose, hematite and the 10% Fe coated HeCell composite 

materials were examined using TGA. Figure 3,2 (a) showed hematite losses weight at 80 and 

200 °C, the wide peak at 80 °C was because of the iron oxide losses adsorbed water [119]. The 

observed water lost in hematite TGA analysis could be due to incomplete drying process or 

because of these hematite nanoparticles were synthesized from further oxidation of ferrihydrite 

NPs which likely interacts favourably with water molecules. The second peak at 200 °C was from 

the decomposition of hematite molecules. Figure 3.2 (b) showed a sharp peak at 340 °C from the 

cellulose decomposition. For the 10% Fe coated HeCell, Figure 3,2 (c) showed three peaks, one 

small peak around 80 °C, second shoulder peak at 280 °C and a sharp peak at 360 °C. The small 

peak around 80 °C was due to the water adsorbed in the hematite, the second small shoulder peak 

at 280 °C was due to the decomposition of the hematite NPs, the third peak at 360 °C was from 

the decomposition of cellulose. By comparing Figure 3,2  (c) with Figure 3,2 (a) and (b), the 

decomposition temperature of the 10% Fe coated HeCell composite shifted to a higher temperature 

than the pure hematite and cellulose material. This proved new composite material was 

successfully formed and it showed distinct thermal profile features over those containing only pure 

hematite and cellulose materials. The composite material was also more thermally stable according 

to the TGA analysis. 
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Figure 3.2 TGA results: (a) hematite, (b) cellulose, and (c) 10% Fe coated hematite-cellulose 

 

3.2 FTIR Spectroscopy  

 

3.2.1 FTIR for the goethite and goethite-cellulose composites  

 

FTIR spectra were used to characterize the available functional groups which are formed 

between the goethite NPs and the cellulose support. In Figure 3.3 a, goethite spectra showed sharp 

IR bands at 798 and 892 cm-1 due to Fe-O-H bending vibration, where the 657 cm-1 band related 

to Fe-O stretching vibration of goethite [125]. The IR band at 468 cm-1 was assigned to an 

antisymmetric Fe-O-H stretching band of goethite [126], while the cellulose had bands for O-CH 

in-plane bending vibration (1423 cm-1), COC, CCO and CCH deformation and stretching (895 cm-

1), C-OH out-of-plane bending at 662 cm-1 [33]. In Figure 3.3 b, goethite-cellulose composites 

with greater Fe content had a weaker band at 1423 cm-1, indicating that O-CH from cellulose may 

interact with Fe. Greater Fe bonded with cellulose revealed reduced O-CH bending of cellulose, 

while a broad IR band (3327 cm-1) related to the OH stretching of cellulose [33], and goethite had 

a stretching band at 3150 cm-1 [126]. Comparison of the goethite-cellulose composites indicated 
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spectral shifts occurred from 3327 to 3150 cm-1 with increasing Fe content.  The results indicated 

that the OH groups of cellulose were involved in bonding with Fe of goethite, in agreement with 

the bands at 657, 798 and 892 cm-1 for the Fe-O-H bending vibrations and Fe-O stretching of 

goethite for composites with variable Fe content.  

 

 

 

Figure 3.3 FTIR spectral results: (a) goethite, cellulose and GC materials, and (b) FTIR spectra 

of the GC materials with different Fe content 12.1%, 20.3% and 30.9%. 
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3.2.2 FTIR for the hematite and hematite-cellulose composites 

 

FTIR spectra were obtained to evaluate the role of active functional groups that form bonds 

between the hematite NPs and the cellulose support materials. In Figure 3.4, hematite showed IR 

bands at 1392 cm-1 and 1572 cm-1 due to Fe-OH and Fe-O respectively [127]. The adsorption 3327 

cm-1 can be attributed to structural OH. Cellulose showed bands for O-CH in-plane bending 

vibration 1423cm-1, COC, CCO and CCH deformation and stretching 895cm-1, C-OH out-of-plane 

bending at 662 cm-1 [33]. In Figure 3.4, hematite-cellulose composites with greater Fe content had 

a weaker band at 1423 cm-1, indicating that O-CH from cellulose may interact with Fe. Also, 

greater Fe bonded with cellulose revealed reduced O-CH bending from cellulose. A broad IR band 

3327 cm-1 related to the OH stretching of the cellulose and 2883 cm-1 related to C-H symmetrical 

stretching of the cellulose [33]. The results indicated that the OH groups of cellulose were involved 

in bonding with Fe groups of hematite, the more Fe loaded composites showed less OH signal in 

the IR spectra which was consistent with the goethite-cellulose composite.  

 

Figure 3.4 FTIR spectra of cellulose, hematite and HeCell materials with different Fe content 

5%, 10% and 25% 
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 Although GC and HeCell are different iron oxide-cellulose composites, the FTIR spectra 

shows information about the types of functional groups present. The similar functional groups 

from the two composites show similar IR spectra.  

 

3.3 Raman Spectroscopy  

 

3.3.1 Raman spectroscopy of the cellulose, goethite, and goethite-cellulose composites 

 

The cellulose material used was derived from cotton linters, the Raman spectra of cellulose 

from 200 cm-1 to 2000 cm-1 showed broadening peaks due to the more amorphous cellulose than 

the highly crystalline cellulose [128]. The weak peaks at 352 cm-1 and 373 cm-1 were due to the 

CCC, COC, OCC, OCO skeletal bending, the methane bending CCH, COH and movement of CC, 

CO groups within the glucopyranosyl units; the weak peak at 896 cm-1 was from HCC, HCO 

bending; strong peaks at 1095 cm-1 and 1117 cm-1 were due to COC stretching symmetrically; the 

weak peak at 1337 cm-1 was from HCH (wagging), HCC, HOC, COH (rocking) bending; the weak 

peak at 1376 cm-1 was from HCH, HCC, HOC, COH bending; the weak peak at 1462 cm-1 was 

caused by HCH scissoring bending [128].  

The Raman spectra of the synthetic goethite showed peaks at 223, 299, 400, 595, and 681 

cm-1. Raman bands occurring at 223 and 681 cm-1 were assigned to the Fe-O symmetric stretching; 

the 299 cm-1 peak was due to the Fe-OH symmetric bending; the 400 cm-1 peak was from the Fe-

O-Fe symmetric stretching; and the 595 cm-1 peak was resulted from Fe-OH asymmetric stretching 

[129]. The synthetic goethite’s Raman spectra from this work when compared with the goethite 

reported by Legodi and coworkers yielded results that were very similar. The similarities 

confirmed that the material synthesized in this work contained similar Fe-O, Fe-O-Fe characters 

as the goethite material [129].   
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Figure 3.5 Raman spectra of cellulose, synthetic goethite, and the 10% Fe coated GC 

The 10% Fe coated GC material’s Raman spectra showed peaks at 299 cm-1 as a result of 

the Fe-OH symmetric bending and other peaks 352, 373, 896, 1095, 1120, 1337, 1376, and 1462 

cm-1 that were similar to the cellulose’s Raman spectra. Looking at all three Raman spectra of 

cotton linters cellulose, the synthetic goethite, and the 10% Fe coated GC, peaks 223, 595, and 681 

cm-1 from goethite did not appear in the Raman spectra of 10% Fe coated GC. It could be that the 

intensity of these peaks was too weak to be detected. The other strong peak at 400 cm-1 from the 

goethite interfered with the 373 cm-1 peak from the cellulose, it also could not be detected in the 

Raman spectra of the 10% Fe coated GC. The strong peak 299 cm-1 was the only evidence that 

goethite NPs were presented with the cellulose to form the 10% Fe coated GC composite material.  
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3.3.2 Mode of adsorption between the ROX, goethite and goethite-cellulose composites  

 

      

Figure 3.6 Raman spectra of the adsorbent materials before and after the roxarsone uptake, (a) 

Goethite, and (b) Cellulose and GC composites 
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Figure 3.6 a-b illustrated a comparison of the Raman spectra of the solid ROX, the aqueous 

5 mM ROX, the adsorbent materials before and after uptake of roxarsone. The Raman spectra of 

solid roxarsone had a band at 636 cm-1 assigned to the As-C stretching, and the band at 809 cm-1 

was due to AsOx stretching [130]. The bands at 1152 and 1232 cm-1 were due to CN and OH 

stretching [131]. Vibrational modes corresponding to the NO2 group were also present in the 

Raman spectra at 1344 and 1600 cm-1, corresponding to the symmetric and asymmetric modes 

[132]. The Raman spectra of the 5 mM ROX solution had similar peaks as the solid ROX, in 

addition to the solid ROX, it had a notable band at 556 cm-1 assigned to the As-OH out-of-plane 

bending [133]. The Raman spectra of the synthetic goethite was the same as previously described, 

peaks at 299 and 400 cm-1 were labeled for synthetic goethite for better comparison with the 

goethite Raman spectra after ROX sorption. Looking at both the goethite Raman spectra before 

and after roxarsone sorption, the Raman spectra of goethite after ROX sorption contained bands 

at 636, 809, 1152, 1232, 1344, and 1575 (1600) cm-1 which proved the ROX molecules were 

bonded with goethite nanoparticles. The Raman spectra of 5 mM aqueous ROX had two Raman 

bands at 1555 and 1600 cm-1, corresponding to the aromatic ring and the nitro group asymmetric 

stretching. These two bands were overlapped at 1575 cm-1 from the effects of the As=O and 

As(OH)O2 symmetric stretching [134]. 

Comparing the two Raman spectra of cellulose before and after roxarsone sorption, there 

was a noticeable band at 809 cm-1 from AsOx stretching for cellulose after roxarsone sorption. This 

indicated that the roxarsone species were complexed with cellulose, where the weak bands at 1337, 

1376 and 1462 cm-1 became weaker comparing with the Raman spectra of cellulose before sorption 

of roxarsone. Weaker band signals resulted for cellulose after adsorption of roxarsone because the 

incorporation of roxarsone onto the cellulose surface made the whole celluose structure appear 

more amorphous than before adsorption of roxarsone. For the Raman spectra of 10% Fe coated 

GC, it contained most of the bands of cellulose at 352, 373, 1095, 1120, 1337, 1376, and 1462 cm-

1; the bands at 299 and 400 cm-1 were due to the Fe-OH symmetric bending and the Fe-O-Fe 

symmetric stretching [95], the band at 299 cm-1 was more noticeable because of the large amount 

of Fe-OH groups presented in the goethite material. The present of Fe-O-Fe bond at 299 cm-1 was 

another evidence to show the goethite and cellulose composite material formed. Looking at both 

Raman spectra of 10% Fe coated GC before and after roxarsone sorption, the band at 809 cm-1 
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from 10% Fe coated GC after roxarsone sorption showed that the roxarsone was complexed with 

the goethite-cellulose composite. 

 

3.3.3 Mode of adsorption between the ROX, hematite and hematite-cellulose composites 

 

The Raman results of the hematite and the hematite-cellulose composites are described in 

Figure 3.7, the bands at 299, 400, 495, 600 cm-1 and 1320 cm-1 in the synthetic hematite from this 

work were consistent with values recorded by other researchers [129, 135]. The results indicated 

that the hematite was successfully formed and the 1320 cm-1 peak was from nitrate due to 

insufficient washing of hematite [119]. The band at 299 cm-1 was more noticeable because of the 

large amount of Fe-OH from the water trapped within hematite during the synthesis [26]. The 

peaks at 400 and 600 cm-1 were due to Fe-O symmetric bending, the peak at 495 cm-1 was from 

the Fe-O symmetric stretching [129]. The Raman spectra of all the different Fe loaded hematite-

cellulose composites showed peaks with cellulose features, peaks at 373, 896, 1095, 1120, 1337, 

1376 and 1462 cm-1 all resulted from the cellulose. The weak peaks at 352 cm-1 and 373 cm-1 were 

due to the CCC, COC, OCC, OCO skeletal bending, the methane bending CCH, COH and 

movement of CC, CO groups within the pyranose ring units; the weak peak at 896 cm-1 was from 

HCC, HCO bending; strong peaks at 1095 cm-1 and 1120 cm-1 were due to COC stretching 

symmetric; the weak peak at 1337 cm-1 was from HCH (wagging), HCC, HOC, COH (rocking) 

bending; the weak peak at 1376 cm-1 was from HCH, HCC, HOC, COH bending; the weak peak 

at 1462 cm-1 was caused by HCH scissoring bending [128]. However, by comparing among 5%, 

10% and 25% Fe coated HeCell composites, the peaks with cellulose features reduced gradually 

as Fe content increased. For instance, the peak around 896 cm-1 was from C-O-C bond in cellulose 

[136], this peak was more noticeable in the 5% Fe coated HeCell composite than the 10% Fe coated 

HeCell, and it became hard to notice in the 25% Fe coated HeCell composite.  
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Figure 3.7 Raman spectra of hematite and composites with different Fe loading levels 

 

For the 25% Fe coated HeCell, it had peaks from the hematite at 226, 299, 400, and 600 

cm-1, but the peak at 495 cm-1 was not observed in the 25% Fe coated HeCell which was due to the 

small size of the Fe-O symmetric stretching peak. For the 10% Fe coated HeCell composite, only 

one peak at 299 cm-1 with hematite feature was observed the remaining peaks all came from 

cellulose. As the Fe content decreased from 10% to 5% by weight, there were no peaks with 

hematite features observed in the 5% Fe coated HeCell composite. The reduced hematite features 

resulted from the small amount of hematite NPs available to scatter the laser in the Raman spectra 

instrument.      

Figure 3.8 is the graph of the Raman spectra of the hematite and the 10% Fe coated HeCell 

composite before and after ROX adsorption. The Raman spectra of 5 mM ROX showed peaks at 

636, 792, 809, 1232, 1344, and 1600 cm-1. The Raman spectra of solid roxarsone had a band at 

636 cm-1 assigned to the As-C stretching, and the bands at 792 and 809 cm-1 were due to AsOx 

stretching [130]. The bands at 1152 and 1232 cm-1 were due to CN and OH stretching [131]. 
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Vibrational modes corresponding to the NO2 group were also present in the Raman spectra at 1344 

and 1600 cm-1, corresponding to the symmetric and asymmetric modes [132].  

 

Figure 3.8 Raman spectra of the hematite and 10% Fe coated HeCell before and after uptake of 

roxarsone  

 

The bands at 226, 299, 400, 495, and 600 cm-1 and 1320 cm-1 in the synthetic hematite 

from this work were consistent with values recorded by other researchers [129, 135]. It indicated 

that the hematite was successfully formed and the 1320 cm-1 peak was from nitrate due to 

insufficient washing of hematite [119]. The band at 299 cm-1 was the Fe-OH from the hematite 

during the synthesis [26]. The peaks at 400 and 600 cm-1 were due to Fe-O symmetric bending, the 

peak at 495 cm-1 was from the Fe-O symmetric stretching [129]. Comparison of the Raman spectra 

of the hematite before and after ROX sorption, the hematite after ROX sorption had an extra peak 

at 809 cm-1 from the ROX molecular. It provided evidence that the ROX adsorbed onto the 

hematite adsorbent. Furthermore, the Raman spectra of the hematite after ROX sorption showed 

reduced peaks intensity comparing with the hematite before ROX sorption. It indicated more 

amorphous structure in the short range after an uptake of ROX molecules by the hematite adsorbent; 
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it also provided evidence that the hematite can attract ROX molecules. Comparing the 10% Fe 

coated HeCell with the hematite’s Raman spectra, the peaks at 299 and 400 cm-1 were showed in 

the 10% Fe coated HeCell composite which provided evidence that hematite NPs were coated with 

cellulose. Looking at the Raman spectra of the 10 % Fe coated HeCell before and after ROX 

sorption, the peak at 809 from ROX was shown in the 10% Fe coated HeCell composite after ROX 

sorption which indicated the ROX molecule bonded to the composite. Both Raman spectra from 

10% Fe coated HeCell before and after ROX sorption, they had peaks at 373, 896, 1095, 1120, 

1337, 1376 and 1462 which were all from the cellulose [128]; the broaden and reduced peaks were 

also observed for the 10% Fe coated HeCell after ROX sorption which indicated more amorphous 

structure in the short range after ROX sorption, it supported the assumption that the hematite 

cellulose composite can attract ROX molecules. 

 

3.3.4 Hydration properties of adsorbent materials 

 

Figure 3.9 shows the Raman spectra of ROX uptakes by the hematite in 5 % (Vol.) 

D2O/H2O system. To compare the peak intensity, baseline of these Raman spectra was first set and 

then the start and end point for each peak to integrate the peak area was set. The full width at half 

maximum (FWHM) for each peak was calculated and compared among each other. There was a 

trend of reduced D2O peaks’ area as the roxarsone concentration increased. This fluctuation 

indicated that the hydrogen bonded character of the solvent H2O on the hematite adsorbent surface 

was affected by the adsorbate roxarsone concentration in the system [137]. The results suggest the 

possible adsorption mechanism of roxarsone onto adsorbents is a process of replace water 

molecules on the surface of adsorbents by roxarsone. At higher concentration of roxarsone, further 

replacement of water molecules occurs on the surface of adsorbents due to competitive binding of 

roxarsone on the adsorbent surface. Fewer water molecules on the surface of adsorbent will yield 

a weaker D2O signal. Hence, the trend of reduced D2O signals was observed with the increase of 

roxarsone concentration in solution.     
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Figure 3.9 Raman spectra of ROX adsorption by hematite in 5% (Vol.) D2O/H2O solvent  

 

 3.4 TEM  

 

3.4.1 TEM of the goethite and the 10% Fe coated goethite-cellulose composite  

 

Figure 3.10 shows the TEM results for the synthetic goethite and the different Fe loaded 

goethite-cellulose composites. Figure 3.10 (a-b) are the TEM images of the synthetic goethite 

under 200 nm scale. These images show needle-shape of synthetic goethite NPs with sizes that 

range from 200 to 400 nm. The results are consistent with the results of other research confirming 

common shape of goethite crystals to be needle-like (acicular) [119]. Figure 3.10 (c-d) are the 

TEM images of the 10% Fe coated GC composite on 500 nm and 200 nm scales. Comparing with 

the pure goethite NPs, the composite material had reduced the appearance of needle-like features 

of the coated goethite NPs. The presence of cellulose as a support for goethite NPs reduced the 

long-range order via formation of a binary composite. Figure 3.10 (e-f) are the TEM images of 10% 

Fe coated GC composite under 100 and 50 nm scales, these images confirmed that the morphology 
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of goethite NPs changed to smaller needle shape after forming binary composite with the cellulose 

support material. These changes could be due to changes in precipitation conditions when forming 

the 10% Fe coated GC composite. According to Schwertmann’s results, the length/width ratio of 

the needles varied widely, where the goethite crystals range from long, thin needles to short, broad 

blocks [119]. Figure 3.10 (g), (h), (I), and (j) display the TEM results of cellulose fibers under 500, 

200, 100, 50 nm scales. Individual cellulose fibers were about 50 nm in width and the length is 

much higher, leading to a practically infinite aspect ratio of the cellulose fibers. Comparing Figure 

3.10 (c-f) with Figure 3.10 (g-j), there were not many changes in the morphology of cellulose 

fibers after forming the 10% Fe coated GC composite material.     
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Figure 3.10 TEM of (a) and (b) goethite, (c), (d), (e), (f) goethite-cellulose under 500, 200, 100, 

50  nm scale, (g), (h), (i), and (j) cellulose were obtained at 500, 200, 100, 50 nm scales. 

 

3.4.2 TEM of the hematite and different Fe coated hematite-cellulose composites 

 

Figure 3.11 (a) and (b) are TEM images of the hematite NPs synthesized from heating 

ferrihydrite NPs at 70 °C for 18 h. The synthesized hematite was irregular and diamond shaped 

with about 50-100 nm in diameter which was consistent with the hematite produced by 
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Schwertmann’s method of transferring ferrihydrite NPs to hematite NPs [119]. Figure 3.11 (c), (d), 

and (e) were taken from the 10% Fe coated HeCell, these images show a fibril bundle of cellulose 

and an aggregate mass of hematite. Looking at Figure 3.11 (c), some spots on the cellulose fiber 

were covered with more hematite NPs than others. This indicated the coating of hematite NPs with 

the cellulose fiber support was not homogeneous. There were also some empty cellulose fiber spots 

which indicated some degrees of dispersion of hematite NPs on the cellulose fiber’s surface. Figure 

3.11 (f), (g), and (h) were taken from the 5% Fe coated HeCell composite, comparing Figure 3.11 

(c) to (h) the greater aggregation of NPs occurred at higher concentration of hematite, lower Fe 

concentration would favor better coverage and dispersion of hematite NPs in the case of 

nanoparticle materials. Comparing Figure 3.10 (a) with Figure 3.11 (a), the rod shaped goethite 

NPs were larger in size than the hematite NPs which reduced their surface area resulting in less 

available sites for adsorption. Comparing Figure 3.10 (c) with Figure 3.11 (h), for the same amount 

of 10% Fe coated cellulose composite materials, the 10% Fe coated GC composite material showed 

bigger aggregated NPs cluster on the cellulose fiber surface than the 10% Fe coated HeCell 

material. Therefore, the smaller hematite NPs and low Fe loading resulted in better dispersion of 

these NPs onto the cellulose fiber surface.     
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Figure 3.11 TEM of (a) and (b) hematite, (c) and (f) hematite-cellulose in 200 nm scale, (d), (e), 

(g), and (h) hematite-cellulose materials at 100 nm scale 

 

3.4.3 TEM of the ferrihydrite NPs 

 

Figure 3.12 (a) and (b) are TEM images of ferrihydrite NPs synthesized in work, these NPs 

were roughly round sphere shaped and aggregated together as big clusters. Comparing these 

images with literature results, the morphology of these ferrihydrite NPs was very similar and the 

diameter of ferrihydrite NPs was around 3-4 nm as shown in Figure 3.12 (c) and (d) [119]. The 

synthetic method for ferrihydrite NPs had been proven to be reliable and accurate and provided 

the basis for transferring to the hematite NPs by heating the ferrihydrite NPs.  
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Figure 3.12 TEM of ferrihydrite NPs, (a) and (b) were synthesized in this study, (c) and (d) were 

from Schwertmann’s work [119] 
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3.5 pXRD  

      

3.5.1 pXRD for the cellulose, the goethite and different Fe coated goethite-cellulose 

composites 

 

The synthetic goethite’s pXRD spectra in Figure 3.13 showed characteristic strong peaks 

at 2θ of, ~25o, ~39o, ~43o, ~48o, ~63o, ~70o, and ~72o as well as weak peaks at ~21o, ~31o ~48o, 

~59o, ~63o, ~64o, ~67o, , and ~75o. Due to the fix λ = 1.54 Å of the Cu K-alpha X-ray irradiation 

source, the 2θ reflection positions of synthesized goethite were slightly shifted from the Bragg’s 

law calculation λ = 2dSinθ. Overall the synthesized goethite pXRD spectra was consistent with 

data from Das, Hendry and Essilfie-Dughan [138]; it was also consistent with data from Cornell 

and Schwertmann [119].  

From the pXRD lines, it can be said that the goethite product was fairly crystalline and 

pure. The grain sizes of the synthetic goethite were calculated using the Scherrer relationship [139]. 

In Equation 3.1, τ was the grain size (nm), k was the Scherrer constant (0.94 for spherical crystals 

with cubic symmetry), λ was the wavelength (0.179 nm) of Co Kα, β was the full-width-half 

maximum (FWHM) of the highest intensity peak in radians, and cos θ was the angle (degree) value 

at the highest intensity peak in radians. The average grain size calculated for the synthetic goethite 

was 213 nm. 

τ =
𝑘 X λ

𝛽 X 𝑐𝑜𝑠𝜃
       (3.1) 

The cellulose’s pXRD spectra in Figure 3.13 showed the 17° 2θ reflection assigned to the 

( 1ī0 ) crystallographic plane, the 19° 2θ reflection assigned to the (110) crystallographic plane, 

the 23° 2θ reflection assigned to the amorphous phase and the 27° 2θ reflection assigned to the 

(200) crystallographic plane. The pXRD spectra obtained from this Sigma Aldrich cotton cellulose 

fiber was similar to the results of other researchers [124]. On the other hand, these (110) and (200) 

planes were named “hydrogen-bonded” plane. With the hydroxyl groups being equatorial to the 

cellulose ring plane, intra- and inter-chain hydrogen bonding was most prevalent within the (110) 

plane in the triclinic structure and within the (200) plane in the monoclinic structure. Inter-chain 
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hydrogen bonding within the other planes (010), (100) in the triclinic structure and the planes (110) 

and (1ī0) in the monoclinic structure was substantially lower, and van der Waals forces were 

considered the main forces between cellulose inter-chains [140]. 

The pXRD results for goethite coated cellulose composite materials displayed weaker and 

less intense peaks relative to the synthetic goethite NPs (Figure 3.13) in agreement with the 

reduction of long range order for the oxide phase as the cellulose content increases [141]. 

 

 

Figure 3.13 pXRD results for cellulose, goethite and goethite-cellulose composite materials 

 

Comparing cellulose pXRD spectra with all different Fe loaded goethite-cellulose 

composites’, the 10% and 20% Fe coated GC had no noticeable extra peaks with goethite NPs’ 

feature. As the Fe content of GC grew from 20% to 30%, peaks with cellulose feature becoming 

weaker and wider; on the other hand peaks with goethite features became noticeable at 2θ of, ~25o, 
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~39o, ~43o, ~48o, ~63o, ~70o, and ~72o for those strong peaks. The 30% Fe coated GC composite 

retained both the amorphous cellulose feature at 23° 2θ reflection and the crystal goethite Bragg 

reflections.  

 

3.5.2 pXRD for the ferrihydrite, the hematite and different Fe coated hematite-cellulose 

composites 

 

In Figure 3.14, the pXRD results for ferrihydrite showed two major peaks which were 

evidence for 2-lines ferrihydrite [119]. The X-ray diffraction pattern of synthesized Fe2O3 had the 

diffraction peaks can be indexed well to a pure rhombohedral structure of α-Fe2O3 with lattice 

constants of a = 5.036 A˚, c = 13.749 A˚ (JCPDS No. 33-0664). The cellulose’s pXRD spectra in 

Figure 3.14 showed the 17° 2θ reflection assigned to the (1ī0) crystallographic plane, the 19° 2θ 

reflection assigned to the (110) crystallographic plane, the 23° 2θ reflection assigned to the 

amorphous phase and the 27° 2θ reflection assigned to the (200) crystallographic plane [124]. 

Comparing the amorphous phase region around 23° 2θ reflection for all three HeCell composites, 

pXRD patterns of different Fe coated HeCell composite materials showed broad peaks in the 

cellulose’s amorphous region as more Fe loaded. The observation of reduced  cellulose feature 

peaks from iron doping was in agreement with the reduction in long range order of the cellulose 

as more iron oxide NPs coated [141].  
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Figure 3.14 pXRD of ferrihydrite, hematite and different Fe coated HeCell composites 

 

 

Figure 3.15 pXRD of cellulose, 10% Fe coated HeCell and 10% Fe coated GC 

Comparing the three pXRD patterns, 2θ reflection peaks at 17°, 19° and 27° were 

broadened when coating cellulose with iron. The cellulose’s amorphous phase region around 23° 
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also increased as more iron was coated with the cellulose. Comparing between the same amounts 

of iron coated cellulose composites the 10% Fe coated HeCell and the 10% Fe coated GC, the 

pXRD pattern showed the cellulose feature was more reduced for the 10% Fe coated GC. This was 

due to the goethite NPs being more crystalline and with more defined crystal structure than 

hematite; also the grain size of the goethite NPs was larger than hematite NPs. Hence, the coating 

of hematite NPs onto the cellulose had less effect on the long range crystal structure than coating 

with goethite NPs with the cellulose.     

 

 

3.6 BET  

 

3.6.1 Goethite and different Fe coated goethite-cellulose composites 

 

N2 adsorption–desorption analysis (BET) of the specific surface areas of goethite showed 

surface area 57 m2/g. The nitrogen adsorption isotherm of goethite NPs showed type IV of the 

IUPAC adsorption isotherm classification which exhibited a hysteresis loop. The type IV 

adsorption isotherm with H3 type hysteresis loop indicated goethite NPs were mesoporous 

adsorbents. At low pressure, an adsorbent monolayer was first formed on the adsorbent pore 

surface. The broad H3 type hysteresis loop indicated the thin slit-like capillary pores of the goethite 

NPs [142]. From the experimental results in Figure 3.17, the nitrogen adsorption isotherms of the 

different Fe loaded GC composites were also type IV adsorption isotherm with H3 type hysteresis 

loops. These BET results indicated nitrogen gas adsorption and desorption processes of GC 

composites were similar to the goethite NPs. The goethite NPs coated with the cellulose fiber must 

contribute the most in the nitrogen sorption process of the composite materials, because the 30% 

Fe coated GC composite had the largest nitrogen gas adsorption capacity. Results recorded in 

Table 3.1 showed that the 10% Fe coated GC composite had the smallest 8 m2/g among all the 

composites, the BET specific surface area increased with the Fe content for the composites. Hence, 

the uptake of nitrogen gas was mainly affected by the surface area of the goethite NPs on the 

composite materials.    
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Figure 3.16 Goethite sorption/desorption profile with nitrogen at 77 K 
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Figure 3.17 10% Fe coated GC composite sorption/desorption profile at 77 K 
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Table 3.1 Total specific surface area of the goethite NPs and the 10% Fe coated GC 

Adsorbent BET specific surface area (SBET, m2/g) 

Goethite 52 

10% Fe coated GC 8 

20% Fe coated GC 20 

30% Fe coated GC 38 

 

3.6.2 Ferrihydrite  

 

The BET specific surface area result for ferrihydrite was 282 m2/g. The smaller size and 

more amorphous structure of ferrihydrite NPs showed more surface area than goethite NPs. The 

isotherms presented a hysteresis loop which indicated the presence of mesoporosity for the 

ferrihydrite NPs [142]. The hysteresis loop for ferrihydrite was H2 type which indicated the 

constricted porous networks or ink-bottle pores in the ferrihydrite NPs [143]. For adsorption curve 

of the H2 type hysteresis loop, the capillary force adsorbed the nitrogen gas and condensation 

happened within the pores as the external pressure increased. As the external pressure 

corresponding to the upper closure point of the hysteresis loop, the pores were completely filled 

with liquid. On the other hand, in the desorption process one major mechanism may be associated 

with the H2 type desorption process: cavitation. When the external pressure dropped, the liquid 

trapped inside the pores reached the limit of stability and “boiled” to form gas bubbles in the pore 

interior [143]. 
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Figure 3.18 Ferrihydrite sorption/desorption profile with nitrogen at 77 K 

 

Table 3.2 Total specific surface area of ferrihydrite from BET analysis 

Adsorbent BET specific surface area (SBET, m2/g) 

Ferrihydrite 282 

 

3.6.3 Hematite and different Fe coated hematite-cellulose composites 

The N2 gas adsorption isotherms of the hematite and its cellulose composites at 77 K belong 

to type IV isotherm which also indicated the mesoporous pore size of these adsorbent and multiple 

layers of adsorbate can form on the adsorbent surface. These isotherms N2 gas adsorption 

isotherms of the hematite presented an H3-type hysteresis loop feature, which was related to the 

presence of slit-like pores in the hematite NPs [144]. All of these hematite and HeCell composites 

must possess/contain macropores because their isotherms showed continuous uptake of nitrogen 

gas when the relative pressure was close to unity. 
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Figure 3.19 Hematite nitrogen sorption/desorption profile at 77 K 

The BET equation was used to calculate the specific surface areas of each adsorbent. The 

methodology adopted by Barrett et al. was used to estimate the mesopore volumes and pore size 

distributions [53] [145]. The results for the hematite and its composites were listed in Table 3.3. 

Comparing the specific surface area of the synthesized hematite and different Fe coated HeCell 

composites, it became evident that the hematite had the largest specific area of 105 m2/g, and the 

smallest BET specific area was the 5% Fe coated HeCell with 10 m2/g. The observed trend was 

that the more hematite NPs coated onto the cellulose, the larger the surface area of the composite 

materials became. The surface area of the composite increased with the Fe content indicated the 

hematite NPs had more influence on the surface area of the composite materials which was 

reasonable due to the small surface area of the cellulose fibers. On the other hand, the TEM results 

of 5% and 10% Fe HeCell showed coating of Fe NPs on the cellulose surface was not 

homogeneous which concord with the BET results of 5% and 10% Fe HeCell that the surface area 

of 10% Fe HeCell was not two times larger than the surface area of 5% Fe HeCell.    
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Figure 3.20 10% Fe coated HeCell nitrogen sorption/desorption profile at 77 K 

 

Table 3.3 The BET specific surface area for the hematite and different Fe coated HeCell 

composites 

Adsorbent BET specific surface area (SBET, m2/g) 

Hematite 105 

5% Fe coated HeCell 10 

10% Fe coated HeCell 18 

25% Fe coated HeCell 32 
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     3.7 Solid State 13C NMR Spectroscopy 

 

3.7.1 Goethite and different Fe coated goethite-cellulose composites 

 

Figure 3.21 13C CP-MAS solids NMR (ssNMR) spectra of Goethite and different Fe coated GC 

composites  

 

The trend of the ssNMR results showed the more iron coated with the composites, the 

cellulose 13C NMR features were less pronounced. The 30% Fe coated GC had very little cellulose 

spectral features and indicated the composite material’s structure became more rigid which 

reduced the 13C resonance signal, thereby resulting in weaker 13C spectral lines. 

 

3.7.2 Hematite and different Fe coated hematite-cellulose composites 

 

Figure 3.22 showed the 13C solid NMR spectra of native cellulose and HeCell composites. 

Native cellulose had the following 13C NMR resonance lines: C1 (105 ppm), C2/C3/C5 (68–78 

ppm), C4 (88.4 and 83.3 ppm), and C6 (57–67 ppm), in agreement with a previous report [146]. 
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Comparing the solid states NMR patterns of cellulose and different Fe coated HeCell composites, 

weaker 13C peaks, band broadening and chemical shift variations were observed in more Fe coated 

HeCell composites. As more Fe coated on the cellulose fiber, the composite material’s structure 

became more rigid which reduced the 13C resonance signal which resulted weaker 13C peaks. For 

the 25% Fe coated HeCell composite, the cellulose’s C-2,3,4,5 carbon proton coupling signals all 

reduced which indicated the high level Fe coating effects of carbon proton coupling inside the 

cellulose molecules.   

 

Figure 3.22 13C CP-MAS solids NMR spectra of the hematite and HeCell composites 

 

3.8 Iron Coating Efficiency 

 

3.8.1 Goethite and different Fe coated goethite-cellulose composites 

 

The results of Fe coating efficiency of different Fe coated GC composites are listed in the 

Table 3.4. The reduced levels of Fe used for the loading results in greater Fe coating efficiency 

achieved. This can be understood since the cellulose material had limited surface sites for binding 
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Fe NPs and low concentration of Fe NPs generally led to more efficiently dispersed NPs onto the 

cellulose fiber surface and improving the Fe coating efficiency. 

Table 3.4 Fe coating efficiency of GC composite adsorbent materials with variable Fe content 

Adsorbent Fe content (w/w %) Fe coating efficiency (%) 

10% Fe coated GC 10.1 85 

20% Fe coated GC 20.3 80 

30% Fe coated GC 30.9 71 

 

3.8.2 Hematite and different Fe coated hematite-cellulose composites  

 

The results of Fe coating efficiency of different Fe coated HeCell composites are listed in 

the Table 3.5. The less Fe used for loading the more Fe coating efficiency was achieved, because 

the cellulose material had limited surface sites for binding hematite NPs and low concentration of 

hematite NPs disperse better on the cellulose fiber surface which also helped to increase the Fe 

coating efficiency. The higher Fe coating efficiency, the less of Fe NPs will be wasted during the 

synthesis process. Synthesis of iron oxide NPs coated onto cellulose led to composite materials 

with high Fe coating efficiency. This method is a cost effective way of making these composite 

materials and also reduces chemicals needed to precipitate uncoated Fe NPs in the wastewater. 

 

Table 3.5 Fe coating efficiency of HeCell composite adsorbent materials with variable Fe content 

Adsorbent Fe content (w/w %) Fe coating efficiency (%) 

5% Fe loaded HeCell 4.34 86.8 

10% Fe loaded HeCell 8.47 84.7 

25% Fe loaded HeCell 19.7 78.6 
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CHAPTER 4 : RESULTS AND DISCUSSION: CELLULOSE, GOETHITE, AND 

GOETHITE-CELLULOSE MATERIALS' SORPTION OF ROXARSONE 

 

4.1 Roxarsone Adsorption Isotherms 

4.1.1 pH effects on the sorption of ROX 

 

At pH 4, ROX was ionized and singly charged, whereas the dianion species were favored 

at pH 7. By contrast, goethite adopted a positive surface charge below pH 9 [24]. According to 

Table 4.1 (b), the GC composite material had a positive zeta-potential from pH 4 to 7. The low pH 

environment favored ROX uptakes, because the positively charged iron oxide NPs can attract 

negatively charged ROX molecules and single charged ROX molecule will likely to occupy one 

binding site from the iron oxide NPs’ surface. When pH reached neutral the uptake of ROX 

decreased, because the dominate dianion species of ROX molecules had to occupy two binding 

sites on iron oxide NPs’ surface. The more binding sites of the iron oxide NPs needed for attract 

the dianion ROX species resulted lower uptake of ROX in the neutral pH environment. Once the 

pH went above 9, the surface charge of iron oxide NPs became negative which will not attract the 

same negatively charged ROX molecules. The adsorption results were consistent with the Raman 

results above, since goethite and the composite material contained Fe-OH2 groups which can 

interact with roxarsone anions. The positively charged surface Fe-OH2 groups interacted with 

roxarsone to form complexes which included other heteroatom sites of the adsorbate such as Fe-

O-As and Fe-O-N.   
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Figure 4.1 (a) Schematic of dominant charge states for ROX (roxarsone) and goethite at variable 

pH conditions. (b) The pH effect of the roxarsone equilibrium uptake by a 10% Fe coated GC 

composite with a roxarsone solution (0.040 mM) using an adsorbent dosage at 0.2 g/L. 
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According to Figure 4.1 b, the uptake of ROX at lower pH was greater than elevated pH 

conditions for the GC material. The isotherm uptake results suggested that the uptake depended 

on the presence of available of binding sites of goethite NPs. At lower pH conditions, the surface 

charge of the GC composite was protonated (-OH2
+) where such groups served as ligand exchange 

sites for roxarsone anions [22]. At pH > 9, roxarsone molecules underwent further ionization where 

less adsorbate was bound to the adsorbent. At pH values above the pHpzc, the reduced adsorption 

of roxarsone related to a reduced positive charge on the adsorbent surface. Above pH 9, the surface 

charge of the adsorbent was reduced and the adsorbate had a reduced adsorption affinity due to 

electrostatic repulsions between the bound ROX anion species. Ionization of the –OH groups of 

goethite contributed negative surface charge (-O-) which led to charge repulsion between the 

adsorbent surface and the ROX anion species.  

Greater ROX uptake was observed for the GC material below pH 7 (Figure 4.1 b), in 

agreement with the trend for increasing ROX uptake with decreasing pH. The trend in pH 

coincided with the pHpzc value of goethite (pHpzc=8.6) in Figure 4.1 a [22]. The goethite-based iron 

oxide had a negative surface charge where electrostatic repulsions occurred with anionic 

adsorbates due to the accumulation of OH− ions on the adsorbent surface when the pH lie above 

the pHpzc of the adsorbent. By contrast, the adsorbent surface was positively charged when the pH 

lie below the pHpzc, and favored the adsorption of roxarsone anions due to favorable electrostatic 

interactions. The fact that GC materials adsorbed roxarsone more efficiently at pH values below 

7.0 compared with higher pH values revealed the role of the surface potential of the adsorbent, in 

accordance with the trends in zeta-potential and uptake of roxarsone anion species. At pH>6, the 

relative amount of ROX dianion species bound to the adsorbent was lower compared with lower 

pH conditions (pH<6). Roxarsone dianion species may occupy multiple binding sites on the 

adsorbent surface, as compared with singly charged ROX anions that occupy a single binding site. 

For the same adsorbent, the amount of roxarsone dianions were lower than the singly charged 

anion species at pH <6, in accordance with the speciation of ROX (Scheme 1.1) 
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4.1.2 Different Fe coated composites effect on the sorption of ROX 

 

4.1.2.1 Various Fe content goethite-cellulose composites 

 

The iron coating efficiency was studied by comparing supported materials with variable 

amounts of iron loading from the synthesis and the final product. Each of the composite materials 

was evaluated for roxarsone uptake using batch experiments where ca. 37.5 mg of adsorbent in 1.5 

mM roxarsone solution (7 mL) at pH 7 was equilibrated for 18 h. The roxarsone uptake results for 

different Fe coated GC composites were compared, where composite materials with greater iron 

content had greater roxarsone uptake, as shown in Table 4.1. The composites with higher Fe 

content showed increased roxarsone uptake, it was evidenced that ROX molecules must bond with 

iron oxide NPs. The uptakes of roxarsone from cellulose fibers of the composite adsorbent would 

also contribute in the adsorption process, the uptakes from cellulose were much lower comparing 

with goethite. 

Table 4.1 Roxarsone adsorption values by GC composite adsorbent materials with variable Fe 

content 

Adsorbent Fe content (w/w %) Roxarsone uptake (mmol/g) 

10% Fe coated GC 10.1 0.0222 

20% Fe coated GC 20.3 0.0446 

30% Fe coated GC 30.9 0.0661 

 

4.1.2.2 Various Fe coated hematite-cellulose composites 

      

The iron coating efficiency was studied by comparing supported materials with variable 

amounts of iron loading from the synthesis and the final product. Each of the composite materials 

was evaluated for roxarsone uptake using batch experiments where ca. 37.5 mg of adsorbent in 1.5 

mM roxarsone solution (7 mL) at pH 7 was equilibrated for 18 h. The roxarsone uptake results for 

different Fe coated HeCell composites were compared, where composite materials with greater 

iron content had greater roxarsone uptake, as shown in Table 4.2. There was a correlation between 
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the Fe content and the ROX uptake by the iron oxide-cellulose composites, it was evidenced that 

ROX molecules must bond with iron oxide NPs.  

 

Table 4.2 Roxarsone adsorption values by HeCell materials with variable Fe content 

Adsorbent Fe content  

(w/w %) 

Fe coating 

efficiency (%) 

Roxarsone uptake 

(mmol/g) 

5% Fe coated 

HeCell 

4.34 86.8 0.0509 

10% Fe coated 

HeCell 

8.47 84.7 

 

0.0873 

25% Fe coated 

HeCell 

19.7 78.6 0.101 

 

4.1.3 Adsorption isotherm models for the goethite and goethite-cellulose composites 

 

Adsorption isotherms revealed uptake properties of an adsorbate between solution and 

adsorbent phase at equilibrium conditions. In order to understand the sorption capacity and affinity 

of the roxarsone with various sorbent materials, a suitable isotherm model was required to describe 

the adsorption behavior. Figure 4.2 (a-b) illustrated the equilibrium uptake isotherms for the 

goethite, GC composites, and cellulose with roxarsone at pH 7. In all cases the uptake (Qe) 

increased in a nonlinear fashion with increasing Ce (see Equation 1.1). Among the various sorbents, 

cellulose showed the lowest uptake of ROX (ca. 0.0284 mmol/g) over the range of concentrations. 

By comparison, 30% Fe coated GC showed greater uptake (ca. 0.0661 mmol/g), while goethite 

displayed the highest uptake overall (ca. 0.073 mmol/g). The monolayer uptake (Qm) capacity 

paralleled the trend in slope of the Qe vs. Ce curves at low concentration. The isotherm results 

indicated that goethite had greater uptake over cellulose, while the 30% Fe coated GC composite 

was intermediate. Thus, the active adsorption sites in the composite material were attributed to the 

goethite domains; whereas, cellulose accounts for approximately 10% of the roxarsone uptake 

overall. The best-fit lines through the data for the pure materials (goethite and cellulose) were well 

described by the Langmuir model, in accordance with homogeneous adsorption sites of these 
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materials. By contrast, the best-fit results for the GC composites were well-described by the 

Freundlich model (see Equation 1.2), in accordance with the presence of heterogeneous adsorption 

sites due to the cellulose and goethite domains. The corresponding best-fit parameters are listed in 

Table 4.3. 

 

Table 4.3 Isotherm adsorption parameters for the roxarsone onto the cellulose, the goethite, and 

GC composite materials at 295 K 

Adsorbent T 

(K) 

Langmuir Freundlich 

  Qm 

(mmol/g) 

KL 

(L/mmol) 

SSE KF n SSE 

Cellulose 295 0.0284 0.289 3.69E-7 0.00629 1.23 4.96E-7 

Goethite 295 0.0730 11.5 6.46E-6 0.0710 3.49 1.47E-4 

30% Fe coated 

GC  

295 0.0661 4.53 8.35E-6 0.0553 3.30 3.90E-6 

20% Fe coated 

GC 

295 0.0446 4.27 3.80E-6 0.0369 3.17 5.88E-7 

10% Fe coated 

GC 

295 0.0222 4.40 7.27E-7 0.0184 3.24 8.08E-8 
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Figure 4.2 Adsorption isotherms and “best fit” results for roxarsone with various adsorbent 

materials (Goethite, GC, and Cellulose) at 295 K (a) Langmuir isotherm and (b) Freundlich 

isotherm model  
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4.1.4 Adsorption isotherm models for the hematite and HeCell composites   

 

Adsorption isotherms showed the partitioning of adsorbate between solution and adsorbent 

phase at equilibrium conditions. In order to understand the sorption capacity and affinity of 

roxarsone with various sorbent materials, a suitable isotherm model was required to describe the 

behavior. Figure 4.3 (a-b) shows adsorption isotherm of the roxarsone with the hematite and the 

HeCell composite materials. The profile of the adsorption isotherm showed a good correspondence 

with the Freundlich isotherm, suggesting that the uptake occurs at heterogeneous sites on the 

HeCell adsorbents’ surface [52].  

 

Figure 4.3 Adsorption isotherm of roxarsone with various adsorbent materials at 295 K. (a) 

Langmuir model fit of the hematite and HeCell composites, and (b) Freundlich model fitting of 

the hematite and HeCell composites. 
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The isotherm parameters are listed in Table 4.4 according to the best-fit results. The 

monolayer adsorption capacity (Qm) of roxarsone with hematite was 0.155 mmol/g and the HeCell 

(10% Fe) composite was ca. 0.0873 mmol/g (Qm was calculated by Eqn 1.1). By comparison, the 

Qm value for cellulose was very low which indicated that hematite may serve as the principal 

adsorption site for roxarsone.  

 

Table 4.4 Isotherm adsorption parameters for the roxarsone onto the hematite and the HeCell 

composite materials at 295 K. 

Adsorbent T 

(K) 

Langmuir Freundlich 

  Qm 

(mmol/g) 

KL 

(L/mmol) 

     SSE KF 1/n    SSE 

Hematite 298 0.155 5.90 2.71E-4 0.136 0.293 2.77E-4 

5% Fe loaded 

HeCell 

298 0.0509 3.54 5.90E-5 0.0397 0.384 4.04E-5 

10% Fe loaded 

HeCell 

298 0.0873 2.39 5.06E-5 0.0613 0.434 1.03E-5 

25% Fe loaded 

HeCell 

298 0.101 4.84 2.13E-4 0.0848 0.319 3.33E-6 

 

 

4.2 Roxarsone Adsorption Kinetics by the "filter barrier" method 

 

4.2.1 Adsorption kinetics models for the goethite and goethite-cellulose composites 

 

Kinetic uptake isotherms provided information on the dynamic adsorption parameters for 

various systems. The kinetic parameters for ROX uptake (qe, mmol/g; see Eqn 1.9 and 1.10) with 

the various sorbent materials are shown in Figure 4.4 (a and b) and Table 4.5. A comparison of the 
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pseudo-first-order (PFO) and the pseudo-second-order (PSO) kinetic models for the adsorption 

process revealed that the PSO model provided a better fit, according to the SSE values in  

Table 4.5. During an initial period of the adsorption profile, the uptake displayed by the 

adsorbents was described by the PFO model. Over a longer time interval, the PSO kinetic model 

provided a better fit of the adsorption profile, the values of the correlation coefficients are all 

extremely high (>0.998) where similar trends were reported elsewhere [147]. 
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Figure 4.4 Kinetic uptake experiments for the cellulose, the goethite, and the 30% Fe loaded GC, 

as described by two kinetic models: (a) PFO, and (b) PSO models. 
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The PFO model assumed a single type of binding site [148]; whereas, the PSO model 

assumed that multi-adsorption sites exist. The GC materials may bind with roxarsone at multiple 

sites due to the presence of different surface functional groups in such composite materials. The 

greater rate of adsorption for roxarsone onto cellulose revealed that the kinetics of binding between 

cellulose and roxarsone was favoured and may relate to the labile hydration character of the 

polysaccharide surface due to its dipolar and the rapid diffusion process with such anion species 

[149]. By contrast, the adsorption process for ROX with goethite or GC composites was reduced 

at lower pH values for goethite-based materials. The similar rates of adsorption for goethite and 

its composites related to the goethite binding sites and the reduced lability of the hydration sphere, 

especially below the pHPZC, where surface bound water had reduced lability due to ion-dipole 

interactions at the sorbent surface. This kinetic barrier concurred with the greater Lewis acid 

character of the goethite relative to the cellulose, and provided further evidence that goethite was 

supported onto the cellulose. 

 

Table 4.5 Adsorption kinetics experiment parameters from the PFO and PSO models for uptake 

of roxarsone onto the cellulose, the goethite and the 30% Fe coated GC adsorbents at 295 K 

Adsorbent C0 (mM) PFO Model PSO Model 

  k1 

(min-1) 

Qe,cal 

(mmol/g) 

SSE k2  

(g/mmol 

min) 

Qe,cal  

(mmol/g) 

SSE 

Cellulose 0.194 0.498 0.0240 3.04E-5 31.8 0.0255 1.33E-5 

Goethite 0.194 0.176 0.0767 5.80E-5 2.36 0.0878 6.74E-6 

Goethite-

Cellulose 

(30.9% Fe 

loading) 

0.194 0.261 0.0652 1.26E-4 4.85 0.0719 4.87E-5 
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4.2.2 Adsorption kinetics models for the hematite and hematite-cellulose composites 

Kinetic uptake experiments provided information on the adsorption parameters for 

various systems. The kinetic parameters for the uptake of roxarsone (qe; mmol/g, see Eqn 1.9 and 

1.10) with various sorbent materials are shown in Figure 4.5 (a-b) and Table 4.6. The pseudo-

first-order (PFO) and the pseudo-second-order (PSO) kinetic models were used to describe the 

adsorption process.  

 

 

Figure 4.5 Kinetic uptake isotherms for the hematite and hematite-cellulose composite materials, 

as described by two kinetic models: (a) PFO, and (b) PSO models. 
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In Table 4.6, the SSE values were minimized according to each type of kinetic model (PFO 

and PSO). The PFO model assumed singular binding sites [148]; whereas, the PSO model assumed 

multiple adsorption sites where available. The hematite-cellulose materials can bind with 

roxarsone at multiple binding sites. Any chemisorption processes involving covalence forces 

through the sharing or exchange of electrons between the adsorbent and adsorbate were best 

described by the pseudo-second-order reaction [147]. On the other hand, an initial period of the 

adsorption process fit the pseudo-first-order reaction well [147]. At longer time intervals, the PSO 

kinetic model provided a better fit of the adsorption profile as shown herein. The similar rates of 

adsorption for hematite and its composites indicated that the binding sites occur between hematite 

and roxarsone. This concurred with the Lewis acid character of hematite and provided evidence 

that hematite is supported onto cellulose.  

 

 

Table 4.6 Adsorption kinetic parameters from the PFO and PSO models for the uptake of 

roxarsone onto hematite and HeCell adsorbents at 295 K 

Adsorbent C0 

(mM) 

PFO Model PSO Model 

  k1 (min-1) Qe,cal 

(mmol/g) 

SSE k2  

(g/mmol 

min) 

Qe,cal  

(mmol/

g) 

SSE 

Hematite 1.50 0.145 0.0868 3.54E-4 1.91 0.0981 1.53E-4 

25% Fe loaded 

HeCell 

1.50 0.186 0.0717 2.39E-4 3.55 0.0796 5.80E-5 

10% Fe loaded 

HeCell 

1.50 0.0556 0.0569 5.46E-5 0.626 0.0765 7.66E-5 

5% Fe loaded 

HeCell 

1.50 0.0582 0.0467 2.12E-5 0.951 0.0600 3.56E-5 
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4.3 Thermodynamic Study 

 

4.3.1 Adsorption parameters of the 30% Fe coated GC composite 

 

The △Go value can be obtained from the Langmuir adsorption constant (KL), where △Go = 

-RT lnKL and R is the ideal gas constant, T is temperature and KL was the Langmuir adsorption 

constant [150]. In Table 4.7, the △Go values were favorable according to the negative signs from 

the sorbent materials investigated. Among the various materials, goethite NPs had the most 

negative △Go value for the adsorption of roxarsone, which provided further support that iron oxide 

sites were the most active sites for the GC composites.   

 

Table 4.7 Thermodynamic parameters at 295 K for the adsorption of the roxarsone onto the 

goethite and the 30% Fe coated GC adsorbent materials 

Parameters T (K) Cellulose Goethite 30% Fe coated GC 

ΔG° (kJ/mol) 298 -23.9 

 

-33.1 

 

-30.8 

 

 

4.3.2 Adsorption parameters of the 25% Fe coated HeCell composite 

 

The △Go value can be obtained from the Langmuir adsorption constant (KL), where △Go = 

-RTlnKL and R is the ideal gas constant, T was temperature and KL was the Langmuir adsorption 

constant [150]. Herein, the △Go values are listed in Table 4.8, where negative values were observed 

for the materials investigated. This indicated the adsorption was spontaneous process.  
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Table 4.8 Thermodynamic parameters at 295 K for the adsorption of the roxarsone onto the 

hematite and HeCell adsorbent materials 

Parameters T (K) Cellulose Hematite 25% Fe coated 

HeCell 

ΔG° (kJ/mol) 298 -23.9 -31.5 -31.0 

 

4.3.3 The uptake of ROX by the 10% Fe coated HeCell at various Temperature 

 

The uptake of roxarsone increased as temperatures decreased, this trend demonstrated that 

the sorption of roxarsone by the 10% Fe coated HeCell composite was an exothermic process. In 

the Table 4.9, adsorption rate constant was the highest at the lowest temperature which also 

indicated that the low temperature facilitated the adsorption process.  
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Figure 4.6 PSO fitted ROX uptake by the 10% Fe coated HeCell composite material 
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Table 4.9 Adsorption kinetics experiment parameters from the PSO model for the uptake of 

ROX onto adsorbents at different temperature 

Adsorbent T (K) ROX C0 

(mM) 

PSO Model 

 k2  

(g/mmol min) 

Qe,cal  

(mmol/g) 

SSE 

10% Fe loaded 

HeCell 

278 1.5 1.0 0.76 7.5E-6 

10% Fe loaded 

HeCell 

288 1.5 0.88 0.75 4.3E-5 

10% Fe loaded 

HeCell 

298 1.5 0.66 0.74 7.7E-5 

 

The standard enthalpy of activation (ΔH*), the entropy of activation (ΔS*), and the Gibbs 

energy of activation (ΔG*) in the adsorption process are calculated from a plot of ln k/T versus 

1/T according to the Eyring equation (Eqn 4.1). 

ln (
k

T
) = ln

kb

h
+

ΔS∗

R
−

ΔH∗

RT
          (4.1) 

where k is the adsorption rate constant; kb is the Boltzmann constant (1.381 X 10-23 J•K-1); h is 

the Planck’s constant (6.626 X 10-34 J•s); R is the ideal gas constant (8.314 J•mol-1•K-1); and T is 

the temperature (K). The values of ΔH* and ΔS* are determined from the slope and intercept of a 

plot of ln (k/T) versus 1/T. These values obtained were used to compute ΔG* from Equation 4.2 

below: 

ΔG∗ = ΔH∗ − TΔS∗                           (4.2) 

The activation energy (Ea) of the process was obtained by plotting ln k versus 1/T according to 

the Arrhenius equation (Eqn 4.3), the value of the slop (Ea/R) can be used to calculate Ea. 

lnK = lnA +
Ea

R
(

1

T
)                             (4.3) 

Where k is the rate constant; A is the pre-exponential factor; Ea is the activation energy; R is the 

gas constant (8.314 J•mol-1•K-1); and T is the temperature (K). 
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Table 4.10 Thermodynamic parameters for the uptake of ROX by the 10% Fe coated HeCell 

T (K) ΔEa (kJ/mol) Activation Parameters 

ΔH* (kJ/mol) ΔS* (J/Kmol) ΔG* (kJ/mol) 

278 14.2 -16.6 

 

-304 

 

67.9 

288 70.9 

298 74.0 

 

 

Figure 4.7 Eyring plots for ROX uptake at variable temperature at pH 7 

 

 

Figure 4.8 The activation energy (Ea) of the adsorption process of roxarsone onto the 10% Fe 

coated HeCell composites  
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4.4 Regeneration of the 10% Fe Coated HeCell adsorbent 

 

4.4.1 10% Fe coated HeCell regeneration with the 0.6 M NaOH solution 

 

Approximately 500 bed volumes of 0.6 M NaOH eluent was used to wash ca. 80% ROX 

from the 10% Fe loaded HeCell’s surface, the high pH environment changed the hematite NPs’ 

surface charge from positive to negative which separated the same negatively charged ROX 

species. Similar experimental procedures were adopted to wash roxarsone off from the 10% Fe 

coated HeCell by the 0.6 M NaCl solution, but the results showed there was no detectable 

roxarsone in the eluent solution. The saline solution was not a good regeneration fluid compared 

with the same concentration NaOH solution.  

 

 

Figure 4.9 Regeneration graph of the 10% Fe loaded HeCell composite material 

 

After washing with caustic solution, the adsorbent 10% Fe loaded HeCell was washed 

again with a large amount water to bring the pH to neutral. The neutralized adsorbent was again 

tested with 1.5 mM ROX solution to see the ROX removal efficiency; the results of removal 

efficiency are listed in the  
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Table 4.11 ROX adsorption efficiency of the 10% Fe loaded HeCell after each washing cycle 

ROX adsorption efficiency of the 10% Fe 

loaded HeCell after each washing cycles  

ROX removal efficiency (%) 

1st cycle 11.66 

2nd cycle 10.86 

3rd cycle 10.43 

4th cycle 9.80 

 

 

 

 

 

 

 

 

 

4.5 Iron leaching test 

The iron leaching tests were done on the 10% Fe coated GC and the 30% Fe coated GC 

composite, the results showed there were very small amounts of Fe leached into the liquid phase 

during the 5 days leaching tests. The peak value of the iron washed from the composite materials 

happened within the first 24 h, and then the amount of the iron leached into the liquid phase 

reduced greatly to about 10 µg/L after 48 h. 
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Table 4.12 The iron leaching tests 

 10% Fe loaded GC 10% Fe loaded HeCell 30% Fe loaded GC 

Total 

Volume 

(L) 

0.1 0.1 0.1 

Iron mass 

in the 

composites 

(mg) 

10 10 30 

 

 

Time 

(hours) 

Amount of Fe leached 

out into the liquid phase 

(µg/L) 

Amount of Fe leached 

out into the liquid phase 

(µg/L) 

Amount of Fe leached 

out into the liquid phase 

(µg/L) 

1 5 47 120 

4 9.6 36 230 

22 62 66 760 

24 36 16 18 

48 12 11 14 

Total Fe 

leached 

(µg) 

12.5 17.6 114.2 

% of Iron 

leached 

out 

0.12 0.18 0.38 

The amount of iron leached out from the composite materials was less than 1% by weight, 

and provides support that most iron NPs were immobilized by the cellulose supports. Comparison 

of the 30% and 10% Fe coated GC composite materials, the 30% Fe coated material showed about 

3 times more iron leached out than the 10% Fe loaded GC composite. More iron leaching from the 

30% Fe loaded GC indicated there was more iron on the cellulose’s surface, hence, more chances 



99 

 

for these iron NPs to be washed off. On the other hand, comparing the 10% Fe coated GC to the 

same 10% Fe coated HeCell composite, more iron NPs were washed off from the HeCell 

composite material. This could be due to the smaller size of the hematite NPs (10nm) which were 

more mobile than the goethite NPs (200nm) [119].  

 

 

 

4.6 Adsorption mechanism  

From the adsorption kinetics experiments, the rapid adsorption rate indicated that favorable 

interactions occur between the ROX anions and goethite NPs [18]. The ion exchange process 

between the hydroxide groups of goethite NPs may involve H-bonding or electrostatic interactions 

with roxarsone (cf. Table 4.9) 

 

Figure 4.10 Electrostatic interactions between goethite NPs and roxarsone at pH 4 and pH 7. 

The Raman spectral results in Figure 3.5 and 3.7 showed evidence of a decreasing of Fe-OH2
+ 

signature after uptake of ROX. This trend indicated that the surface of hydrated goethite and 

composite contributed significantly to the binding of ROX. In Figure 3.5 b, the Fe-OH2
+ spectral 

band was reduced dramatically after adsorption of ROX, especially for goethite materials which 

indicated that goethite NPs contributed mainly as the primary binding site. 
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CHAPTER 5 : CONCLUSION AND FUTURE WORK 

 

5.1 Conclusion 

 

Composite materials containing cellulose and goethite were prepared at variable goethite 

composition and characterized using various materials characterization methods. The IR/Raman 

spectroscopy, TGA, and TEM analysis results provided support that goethite was coated onto 

cellulose up to 30% goethite (w/w) content. The adsorption properties of the binary composites 

and their precursors (cellulose and goethite) were compared at equilibrium and dynamic conditions 

using a model organoarsenical (roxarsone). The adsorption capacity of the materials revealed that 

the binary composites display greater uptake of roxarsone over the cellulose. The monolayer 

adsorption (Qm; mmol/g) capacity adopted the following trend, listed in parentheses: cellulose 

(0.028), 30% Fe loaded GC composite (0.066), and pure goethite (0.073), where goethite was the 

active adsorption site in the composite materials. The doubly charged anion of roxarsone appeared 

to be more strongly bound than the single charged species since the goethite-based sorbents 

adopted as positive zeta-potential at such conditions. However, the dianion roxarsone species may 

occupy more binding sites on the goethite surface which resulted in less dianion roxarsone species 

that can complex with goethite NPs. The pH dependent uptake for goethite and its composites 

displayed reduced adsorption at pH values above the pHpzc value of goethite. The kinetic 

adsorption profiles were well-described by the PSO model, in agreement with the presence of 

multiple adsorption sites for such binary GC composites. The binary GC composites reported 

herein were anticipated to have a wide range of application toward the sorption of inorganic and 

organic anions due to their synthetic versatility and tunable properties [151]. The development of 

reusable cellulose, bio-flocculants with magnetic properties represented promising materials for 

the green processing water and wastewater supplies [150].  

Composite materials containing cellulose and hematite were prepared and characterized. 

Hematite was supported onto cellulose, the adsorption properties of the composites and their 

precursors (cellulose and hematite) were compared at equilibrium and dynamic conditions with a 

model organoarsenical (roxarsone). The adsorption capacity of the various materials revealed that 

hematite and its composites with cellulose had the variable uptake capacity, where hematite served 
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as the primary adsorption site. The monolayer adsorption capacity adopted the following order: 

cellulose (0.028 mmol/g), 10% Fe coated GC (0.0222 mmol/g), 10% Fe coated HeCell (0.0873 

mmol/g), goethite (0.0730 mmol/g) and hematite (0.155 mmol/g). The larger surface area of 

hematite NPs resulted in greater uptake of roxarsone than goethite NPs since better dispersion of 

the hematite NPs increased the uptake of roxarsone. The kinetic adsorption profiles were well 

described by the PSO model, in agreement with multiple adsorption sites in the case of HeCell 

composites. The roxarsone uptake by both 30% Fe coated GC and 25% Fe coated HeCell showed 

that adsorption capacity of the ~25% Fe NPs coated cellulose composite can achieve similar 

roxarsone uptake as their precursor goethite and hematite.  

 

5.2 Future Work 

 

Future research involving iron oxide composite materials can be conducted in several areas. 

Firstly, the methods of dispersion iron oxide NPs onto their support materials need to be 

investigated in greater detail. A more comprehensive study on the formation of iron oxide and 

cellulose composite needs to be carried out to optimize the synthesis process, as evidenced from 

results published by Kong and Wilson [152]. In this research more than 30% goethite NPs were 

used to coat the cellulose to yield GC composite materials with similar performance as the pure 

goethite NPs. There is a need to study how the aggregation of iron oxide NPs can be prevented or 

controlled which will lead to the development of improved iron oxide coated cellulose adsorbents.  

Secondly, a support material with larger surface area than cellulose can be used to support 

iron oxide NPs. The larger surface of the supporting material would provide more active sites to 

bind the iron oxide NPs for the same unit mass of support. Tests of iron oxide coated clay samples 

with roxarsone have demonstrated improved uptake efficiency than the cellulose supported 

composites. The hypothesis was more surface area and active sites from the clay material could 

bind more iron oxide NPs than the cellulose support, hence more iron oxide NPs were available 

on the surface of clay to bind more roxarsone.   

Thirdly, it is also possible to synthesize iron oxide NPs with greater surface area and active 

sites that can complex with the oxyanion species. Iron resources are relatively abundant on earth, 
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and it is a cost effective way to develop iron-based nanomaterial with greater surface area for large 

scale environmental remediation. 

Fourthly, it is recommended to synthesize magnetite coated cellulose composites due to 

their paramagnetic properties. These composite materials can be collected in a strong magnetic 

field and reprocessed to isolate the composite materials.    

Finally, the iron oxide-cellulose regeneration study can be optimized by investigating the 

residence time for contacting eluent solution with the adsorbent and the effects of concentration of 

NaOH on the regeneration efficiency. The alternative eluent solution such as the saturated brine 

solution for the regeneration of iron oxide-cellulose adsorbents can be investigated to provide a 

more environmentally friendly process for the sorbent regeneration process. 
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